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Abstract  

 

This thesis is devoted to the propose a novel particle stabilization scheme, improve the 

existing Smoothed Particle Hydrodynamics (SPH) and apply it to the multi-phase 

turbulent flow in the bearing chamber of an aeroengine. 

 

In SPH, the motion of particles is based on symmetric inter-particle forces, such that 

the conservation of momentum is guaranteed. Inter-particle forces, however, can not 

prevent particle clustering. Clustering may occur for several reasons. A fundamental 

issue is the so-called tensile instability, which is caused by the properties of the kernel 

gradient. Clustering may also be caused by discontinuities in the pressure (e.g. due to 

surface tension) and the pressure gradient (e.g. due to gravity), which may lead to 

instabilities around the interface between two fluids (Kruisbrink et al., 2018 [1]). Wall 

penetration is also a form of particle clustering. 

 

Standard SPH is known to suffer from particle clustering, which affects the stability 

of simulations in particular in cases with large deformations and high fluid velocities. 

One of the grand challenges defined by the SPHERIC Steering Committee is the 

clustering of particles. Kruisbrink et al. (2018) developed a particle collision model to 

reduce particle clustering. This model is quite effective and performs the best for so-

called inelastic collisions. However, by changing the approach velocities of colliding 

particles, the model is energy dissipating to some extent. 

As further work, it is investigated in this thesis whether the original particle collision 

model may be further developed into a shift model, such that there is no dissipation of 
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global kinetic energy. This has resulted in the particle collision shift model, where the 

positions of colliding particles are changed, but not their velocities. Thus, kinetic 

energy is conserved. It is demonstrated that potential energy is also conserved in a 

constant force field, like gravitation. With these features the particle collision shift 

model is non-dissipative in the simulation of many real cases. 

 

To allow for the modelling of the multi-phase flow in a bearing chamber, characterized 

by an incompressible (oil) phase and a compressible (air) phase, a compressible flow 

solver is needed. For this purpose, weakly compressible SPH is used. Moreover, at the 

higher rotational shaft speeds in a bearing chamber, the air flow is turbulent. 

Turbulence modelling is relatively underdeveloped in SPH. Some available SPH 

turbulence models and models from the CFD literature are explored, in particular SPH 

versions of the mixing length and Spalart-Almaras turbulence models, as made 

available in the WCSPH code Hydra of the University of Nottingham. 

 

The particle collision shift model in WCSPH is used in combination with so-called -

SPH, a method from the SPH literature to reduce high-frequent fluctuations in the 

density and pressure. In this thesis a simplified version of -SPH is used, to decrease 

the computational cost. 

 

The above-mentioned SPH modelling approach is used to validate the two turbulence 

models in WCSPH against the commercial CFD code Ansys Fluent. As benchmark 

case the Taylor-Couette flow between two concentric rotating cylinders is chosen, as 

a simplified bearing chamber without sump and vent pipes. A number of two-
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dimensional configurations is studied, at different rotational speeds and radius ratios 

of the cylinders, under single phase and multi-phase, laminar and turbulent flow 

conditions. 

The agreement of the single phase, laminar and turbulent SPH results with those of 

Fluent is good in terms of velocity and pressure profiles, and reasonably well in terms 

of turbulent viscosity. The turbulent viscosity obtained with the Spalart-Almaras 

turbulence model matches better with Fluent than that of the mixing length turbulence 

model, but the model is computationally much more expensive. 

The agreement of the multi-phase, turbulent SPH results with Fluent is reasonable, in 

terms of velocity and pressure profiles, although the latter show more pressure 

fluctuations. The turbulent viscosity is underpredicted by both SPH turbulence models, 

compared to that of Fluent, whilst the difference between the two SPH turbulence 

models is small. 

 

Finally, two and three dimensional SPH simulations are performed of a simplified 

bearing chamber with one suction pipe. Multi-phase turbulent flow conditions are 

modelled with air around a rotating inner shaft and a liquid film along the outer 

chamber wall. Surface tension is taken into account, as modelled by the continuum 

surface force model of Brackbill, in Fluent as well as SPH. The results of the 2D 

bearing chamber show similar trends as those of the corresponding Taylor-Couette 

flow. The results of the 3D bearing chamber show quite some dissipation of energy, 

due to a turbulent viscosity, which is much higher than that of Fluent, and affects the 

velocity distribution.  
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In summary:  

An energy-conserving shift (collision shift) model to prevent the particle clustering is 

derived and through the comparative study with the Fickian shift model, the superiority 

of the collision displacement model in terms of accuracy, stability, computational 

efficiency and dissipation characteristics is obtained.  

A hybrid method which combines the so-called 𝛿-SPH and the collision shift model is 

proposed. The potential of this hybrid method in application with multiphase flow is 

demonstrated in five benchmark case studies. 

Progress has been made in the turbulence modelling with SPH in applications that are 

moving towards that of a bearing chamber in aeroengines. In particular the results of 

the two-dimensional simulations are promising, as they show a reasonable agreement 

with those of Fluent, whilst further investigation is needed in the application of the 

SPH models to three dimensional cases, towards the real bearing chamber. 
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Chapter 1 Introduction 

 Background 

Since the invention of the jet engine, engine manufacturers have improved engine 

power and efficiency by increasing air pressure and temperature. However, to prevent 

the temperature of turbine blades reaching their melting point, the demand for 

efficiency improvements in other parts of the engine, including air syphon systems, oil 

systems, and bearing chamber systems has increased. 

An aircraft engine’s bearing chamber is designed to capture the oil flowing out of the 

bearing and retransmit it to the oil system. The captured oil both lubricates the gearbox 

components and cools the engine core. 

The bearing chamber is the key part of the oil system. A jet engine bearing chamber, 

which is a cylinder around the turbine shaft, is shown in Fig. 1. As the turbine shaft 

rotates on these ball bearings, oil is forced to leave the ball bearing by the turbine 

shaft’s angular velocity. Oil is collected on the side wall of the bearing chamber. 
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Fig. 1. A schematic representation of a bearing chamber [2]. 

The shaft speed can reach 15,000 rpm. The shaft’s high angular velocity accelerates 

the airflow which generates an airflow shear force in the chamber’s annular space 

strong enough to drive the oil film against the chamber wall. At the upper limit of 

shafts’ velocity ranges, the shear force generated by the airflow can become the oil 

driving force, which, together with the centrifugal force, overcomes gravity. 

Oil should be removed from the system to prevent oil build-up, overheating and 

degradation. When oil is discharged from the system, some air is also discharged 

automatically. 

 The Challenge 

1.2.1. Challenge in bearing chamber 

 

Engine designers need a powerful numerical method that can completely model aero-

engine bearing chambers. However, simulating aero-engine bearing chambers is 
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challenging due to high-density ratios and high-speed multiphase flows inside such 

bearing chambers. Modelling mass, momentum and heat exchanges in multiphase 

flows and selecting a way to model fluid interactions are significant challenges. In 

bearing chambers, the oil film is driven by the airflow, and it is, therefore, illogical to 

treat the multiphase flow as a single-phase flow. When liquid in the bearing chamber 

is a flowing film, it exists as a continuum and sometimes forms droplets. Dispersed air 

bubbles can also be trapped on the surface of the liquid continuum or film. Since the 

interface is moving, its location cannot be determined in advance. Furthermore, the 

film can be deformed into any shape under the influence of velocity, viscosity, surface 

tension and density. For example, different rotational speeds at the inner shaft produce 

different flow patterns (laminar or turbulent). Different flow patterns, in turn, lead to 

different interface deformations, and the interface may even roll or break up. When 

the interface rolls, air gets trapped in the liquid film; when the interface breaks up, oil 

droplets form. 

Modelling these phenomena simultaneously is complicated. It is critical to use 

computational fluid dynamics (CFD) method to analyse challenges and make 

engineering design choices. Comprehending the multiphase flow processes and 

turbulent flow patterns in aero-engine bearing chambers is difficult. Most bearing 

chamber research is conducted via experimentation, mathematical analysis and grid-

based CFD modelling, often under single-phase, two-dimensional and isothermal 

conditions. 

However, the grid-based CFD method has no advantages for simulating multiphase 

flow problems. Volume of fluid and level-set methods, in combination with 

Lagrangian methods to simulate droplets, are used to capture interfaces with large 
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deformations. Nonetheless, smoothed particle hydrodynamics (SPH), as a pure 

Lagrangian method, may become an alternative for simulating the multiphase flow in 

aero-engine bearing chambers. 

1.2.2. Challenge in SPH 

 

Although researchers have been developing the SPH method for nearly fifty years, 

there is still no easy way to simulate multiphase turbulent flow in bearing chambers 

Developing the SPH method into a practical solution will require reducing particle 

clustering, which is prevalent in single-phase and multiphase flows (including static), 

in SPH [1,3–6]. Clustering may occur for several reasons. A fundamental issue is the 

so-called tensile instability, which is caused by properties of the kernel gradient. 

Clustering may also be caused by pressure discontinuities (caused by surface tension 

and other factors) and the pressure gradient (influenced by such factors as gravity). 

Pressure-induced clustering can lead to instabilities around the interface between two 

fluids [1]. Wall penetration is another form of particle clustering. Most particle 

stabilisation methods apply to single-phase flows and are energy dissipating. No 

method for dealing with particle clustering in multiphase flows while preserving 

energy has yet been identified. 

A related challenge is reducing non-physical/numerical fluctuations in the pressure 

around the interface. Huge pressure fluctuations influence how interfaces move. Most 

well-known turbulence models are designed for grid-based methods. The literature on 

SPH and turbulence models is limited, and all SPH turbulence models are applied in 

hydrodynamics (single-phase flow). Developing a simple and effective turbulence 

model for the multiphase flow in bearing chambers is another challenge. Finally, 
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modelling a bearing chamber requires identifying proper boundaries, such as inlets, 

outlets and pressure boundaries, and a proper treatment for the rotating shaft. Each 

boundary condition may influence the turbulence property near the chamber wall. 

 

 The Thesis 

1.3.1. Specific objectives 

The aim of this work is to develop an improved SPH method to model the complex 

multiphase flow of air and oil in aeroengine bearing chambers. The major objectives 

of the work presented in this thesis are: 

1. survey the literature on particle stabilisation methods and turbulence models in 

SPH; 

2. develop a shift model based on particle collisions to help prevent particle 

clustering in SPH and validate the model; 

3. contribute to the stability and accuracy of the SPH method for high-density 

ratio multiphase flow and validate improved methods against theoretical and 

experimental data from existing literature; 

4. apply the improved SPH method to modelling the multiphase turbulence flow 

in a 2D/3D bearing chamber. 

 

Two SPH methods are used in this study: 

Incompressible SPH (ISPH) is mainly used to develop and validate the above-

mentioned shift model. The simulations of a variety of benchmark cases are performed 

with the ISPH code, developed at the Harbin Engineering University, China by 

amongst others Prof. Xing Zheng  
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Weakly compressible SPH (WCSPH) is used to validate the turbulence models in SPH. 

The simulations of the Taylor-Couette flow and bearing chamber are performed with 

the WCSPH code Hydra, developed at the University of Nottingham by amongst 

others my supervisor Dr. Arno C.H. Kruisbrink. 

 

1.3.2. Thesis Overview 

This chapter introduces the background of the thesis. It also discusses the challenges 

associated with multiphase flow and the SPH method. This chapter also describes the 

thesis’s specific objectives. 

In Chapter 2, the chapter briefly reviews the application of conventional CFD to 

multiphase flow in bearing chambers the survey of all of the relevant literature is 

presented. Chapter 2 also provides an overview of the SPH method as well as of the 

improved SPH models used in this study.  

Chapter 3 explains the SPH methodology. This chapter describes the SPH models and 

model coefficients used in this study’s simulations. 

The basic principles of ISPH and WCSPH are described in sections 3.3 and 3.5. 

Section 3.4 describes an improved 𝛿-SPH model for multiphase flow in WCSPH, 

which deals with pressure fluctuations, and the simplified version used in this study. 

The well-known mixing length (ML) turbulence model and the Spalart-Allmaras (SA) 

turbulence model are described in sections 3.9.1 and 3.9.2. The Fickian shift model, a 

popular shift model in the literature, used for comparison, is described in section 3.10. 

The new shift model for reducing particle clustering based on particle collisions is 

described in section 3.11.2. These models are indispensable for the simulation of the 

multiphase turbulent flow in a bearing chamber. 
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In Chapter 4, the results of four benchmark cases and two engineering cases are 

presented. This chapter discusses single-phase simulations performed with ISPH. The 

particle collision shift model’s results are compared with those of the Fickian shift 

model. Both shift models’ conservative properties, accuracy and computational 

efficiency are then assessed. 

 

Whereas Chapter 4 presents the simulation of the particle collision shift model with 

ISPH for a single-phase flow, Chapter 5 presents numerical studies of the particle 

collision shift model with 𝛿-SPH for multiphase cases, including low-/high-density 

ratio, static and dynamic, and short- and long-duration flows. The work presented in 

these two chapters perfectly verifies the particle collision shift with both ISPH and 𝛿-

SPH and for both single-phase and multiphase cases. This result lays a solid foundation 

for simulating multiphase flows in bearing chambers. 

 

Chapter 6 presents a series of single-phase Taylor-Couette flows with three different 

radius ratios obtained by using improved 𝛿 -SPH (𝛿 -SPH_CS) with ML and SA 

turbulence models. The simulation results are comparable with the Fluent results, also 

with SA, and thus lead into the work presented in Chapters 7 and 8. 

 

Chapters 7 presents the multiphase Taylor-Couette flow at different rotational speeds 

obtained with 𝛿-SPH_CS (SA and ML). The simulation results are also validated with 

Fluent (k-𝜔). Chapter 7 also compares ML and SA. Based comparison results, 𝛿-

SPH_CS (SA) is chosen for the work discussed in Chapter 8. 
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Based on results in Chapters 6 and 7, Chapter 8 presents the simulation of multiphase 

turbulent flow in simplified 2D and 3D bearing chambers. The simulations presented 

in this chapter provide qualitative insight into modelling turbulent flow in bearing 

chambers by comparing the results with those of Fluent. 

 

Chapter 9 provides a summary and conclusion of the thesis. This chapter also includes 

recommendations for future work and summarises this thesis’s unique contribution to 

SPH method and jet engine research. 
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Chapter 2 Literature review 

 Conventional CFD model 

Farral et al. [7] modelled the oil film formed on the walls of the bearing chamber by a 

depth averaged method and implemented it with a commercial computational fluid 

dynamics (CFD) code CFX 4.3 which accounts for the effect of shear force and gravity. 

Although the model ignores the variation of axial direction, the error in the prediction 

of results for this model was still under 15% when compared to the experimental data. 

Farrall et al. [8] used a Euler-Lagrange solver to model the interaction between the oil 

film and the oil droplets, as well as the motion of the oil film along the bearing chamber 

walls. However, this method is computationally expensive and only valid for thin oil 

films. Robinson et al. [9] also used a commercial CFD code, Fluent 6, to model the 

draining flow perpendicular to the moving oil film, with surface tension and 

sharpening algorithms used to increase the accuracy of the simulation. This numerical 

study validated their experimental work. Glahn [10] illustrated the air/oil flow heat 

transfer using a temperature gradient method based on a two-dimensional finite 

element method. To satisfy the safety and reliability criteria for the bearing chamber, 

especially at high rotational speeds, Stefan [11] introduced a function for the bearing 

chamber heat transfer and used the flow rate, shaft speed and chamber geometry to 

build the Nusselt number. 

 

Among the available simulation techniques, the volume of fluid (VOF) method has 

been widely applied to the flow in the bearing cavity, especially for capturing the oil-
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gas interface. Young and Chew [12] introduced many complex multiphase flow 

applications, such as air/oil system applications in the aeroengine, in which the VOF 

method plays an important role. Hasmhi et al. [13] investigated several multiphase 

models and concluded that the VOF method is the most useful oil-gas model for shear 

driven wall film flow and introduced the 𝑘 − 𝜀 turbulence model to investigate the 

complex multiphase flow in the bearing chamber. Peduto et al [14] also used the 𝑘 − 𝜀 

turbulence model and VOF method as a correction of their own CFD simulation. In 

this method, the interface needs to be reconstructed during the simulation, and the 

interface shear force from the air flow needs to be handled correctly. When shaft and 

pressure velocity are low, the simulation results are very reliable. Alexandre et al. [15] 

describe a new multiphase flow simulation model based on the Adaptive Mesh 

Approach (AMA). Not only was the computational requirement reduced, but also the 

breakup of interface could be captured. The level set (LS) method is another method 

for capturing the interface, however, in this method, the mass is not conserved.  

Recently, several studies have developed the LS method further to improve on this 

disadvantage. Menard [16] improved the LS method by combining it with the ghost 

fluid and VOF methods to capture the discontinuities for pressure, density and 

viscosity, and the conservation of mass. Yaguo et al. [17] use coupled level set and 

volume of fluid (CLSVOF) in ANSYS-Fluent 14.5 to simulate the oil-gas multiphase 

flow and the performance of the oil return system.  

Adeniyi et al. [18] presented a CFD method which combines the Eulerian-Lagrangian 

method with the CLSVOF method to simulate the oil droplets and complex multiphase 

flow, with encouraging results. Based on this work, Adeniyi et al. [19] applied the 
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CLSVOF method as well as 𝑘 − 𝜔 turbulence model to simulate the transition of oil 

droplets emerging into the bearing chamber. 

 

 Smoothed particle hydrodynamics 

Smoothed Particle Hydrodynamics (SPH) was introduced by Gingold and Monaghan 

[20] and Lucy [21] in 1977 to simulate astrophysical problems. It is now frequently 

used to simulate the dynamics of continuous media like fluid flows. The Lagrangian 

SPH technique approximates the continuous flow field using particles, with variables 

such as pressure, density, and velocity interpolated by a kernel function. It offers 

several significant benefits over conventional Eulerian CFD techniques. SPH is 

capable of simulating fluid motion with large deformations, and the free surface and 

interface between two fluids are captured in a straightforward manner.  SPH has found 

a position in aero-engine design as a truly mesh-free Lagrangian approach [22,23].  

 

In the SPH method, the fluid incompressibility can be exerted in two distinct ways. 

Initially, incompressible fluid flows were simulated using a weakly compressible SPH 

method (WCSPH), in which the fluid was assumed to be somewhat compressible, with 

its pressure solved by an equation of state based on the density and the artificial sound 

speed introduce by Monaghan [24]. The standard WCSPH method is simple and easy 

to programme, however, the time step of this method must be short, and the oscillation 

of the density causes significant pressure fluctuations in the spatial and temporal 

domains [6]. 
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To decrease this kind of fluctuation in the pressure, Antuono et al. [25] introduced the 

δ-SPH method to obtain a smoothed pressure by applying a zeroth-order density 

smoothing term to the continuity equation. For the simulations of complex free surface 

flow, this has been proven to be accurate and robust [26] although it will case extra 

dissipation. As mentioned by Sun [27] the δ-SPH method is simple to implement and 

is effective for avoiding high frequency pressure fluctuations and the occurrence of 

non-physical energy by numerical error in standard SPH. In recent years this method 

has become popular and widely used for hydrodynamics problems in different 

scientific areas [13–21].  

 

To overcome the timestep limitation of WCSPH, a strictly incompressible SPH (ISPH) 

approach has been proposed. In ISPH, the pressure is solved by the Poisson equation, 

making it more stable and precise than WCSPH [28]. Shao and Lo [29] developed a 

density-invariant ISPH method, while Lee et al. [30] developed a velocity divergence-

free ISPH. Additionally, Hu and Adams [31] improved the stability of ISPH by 

combining a divergence-free velocity field with a density-invariant field.  

 

2.2.1. Multiphase model 

 

Fluid phenomena in nature, engineering, and scientific research often involve multiple 

fluids. The particles that comprise each fluid are different and exhibit unique 

characteristics. One notable difference is the fluid’s density. The ratio of the heavy 

fluid to the lighter fluid is known as the density ratio and typically ranges 1 and 1.3 

under ambient temperature and pressure. For instance, the typical water–silicone oil 
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density ratio is around 1.25. The density ratio between two gases can be larger than 

between two liquids. For example, the oxygen–hydrogen density ratio is 16. 

Furthermore, the density ratio in a liquid-gas system can be even higher [32]. For 

example, the typical oil–air density ratio is around 1000.  

J.J. Monaghan and A. Kocharyan [33] used the conventional SPH technique to study 

the dusty gas that results from volcanic activity. They demonstrated the ability of SPH 

to handle broken free surfaces, highlighting its capability of analysing multiphase flow 

at small densities ratios. However, this method is not suitable for multiphase flows 

with high density ratios due to interfacial instabilities. Valizadeh et al. [34] determined 

the conventional SPH technique is only valid for multiphase flows with density ratios 

(
𝜌𝑑𝑒𝑛𝑠𝑒

𝜌𝑙𝑖𝑔ℎ𝑡
) below 10. However, in most gas–liquid flows, the density ratio is more than 

10, often reaching the hundreds or thousands.  

Colagrossi and Landrini [35] also determined that for density ratios larger than 10 

numerically and suggested a modified approximation for spatial derivatives based on 

this concept. In their scheme, pressure is calculated separately for dense and light 

fluids. For dense fluids, the equation of state is the Tait equation; for light fluids, the 

equation of state is the modified Tait equation, which includes a linked cohesive 

pressure term to describe the surface tension. A moving least squares method is used 

to reinitialize the density periodically at intermediate time steps. Artificial viscosity 

and XSPH can stabilise the flow field. In addition to these non-physical improvements, 

small time steps are required. Hu and Adams [31,36] proposed a multiphase SPH 

method that uses a particle smoothing function in which neighbouring particles 

contribute to the volume but not the density. Their method resolves a density 

discontinuity at a phase interface and fulfils mass conservation since it uses a density 
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summation equation. Their technique was successfully applied to macroscopic and 

mesoscopic multiphase flows. Monaghan and Rafiee [32] found that despite a high 

density ratio, air must be considered because its thermodynamic pressure has a 

substantial impact on the dynamics. Thus, they developed an SPH method that 

incorporates a repulsion term between the phases. Their algorithm effectively analyses 

multiphase flows with high density ratios. Kruisbrink et al. [37] proposed a quasi-

buoyancy correction term to simulate multiphase flow at high density ratios. Their 

approach produced acceptable results for modelling stratified flow and internal gravity 

waves for multiphase fluid with a density ratio of 100. Kruisbrink et al. [1] used 

particle collisions to avoid particle clustering and stabilise the fluid–fluid interface. 

Their approach targeted water–air applications with density ratios up to 1000 and 

physically realistic wave speed ratios.  

To reduce the pressure fluctuation in the multiphase flow, Zheng and Chen [38] 

proposed a first-order density correction term, instead of the zeroth-order density 

smoothing term in δ-SPH [25], which could effectively suppress density oscillation in 

multiphase flow.  

 

2.2.2. Surface tension model 

Oil will be introduced into the bearing chamber simulation and will strike the wall as 

a kind of droplet. Surface tension is an important physical property that results in 

numerous phenomena in gas–liquid and liquid–liquid multiphase flow simulations. 

Surface tension is the dominant force acting on the interface at small length scales, 

such as the micron scale. Thus, properly represented surface tension is critical for 

accurate numerical analysis of two-phase flow in SPH. Surface tension results from a 
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force imbalance at the interface when the molecules at the interface experience uneven 

attraction to their neighbouring molecules.  

The Continuum surface force (CSF) model developed by Brackbill et al. [39], treats 

surface tension as a body force. In this model, the interface is defined as a transition 

zone with a specified thickness. 

Morris [40] first introduced the CSF model with the colour function and used it to 

compute the surface tension. Different phases are represented by a colour function in 

this approach, and the interface is defined as a transitional band. Within this band, the 

surface tension force is approximated as a continuous force. The curvature and normal 

vector of the interface is determined using the colour function. Significant errors occur 

in the surface tension calculation when using the SPH method to discretise the normal 

vector and the interface curvature. Hu and Adams [36] used a sharp colour function 

with an interface discontinuity to evaluate the surface tension. The surface curvature 

was achieved by introducing a colour gradient-dependent surface stress tensor. A 

density-weighted colour gradient formulation represents an asymmetric surface 

tension distribution. The interface's curvature can also be determined by recording the 

location of particles at the interface.  

2.2.3. Turbulence model  

 

Turbulence is more common than laminar flow in nature and industrial applications. 

Exact and numerical solutions of laminar flow have been determined. However, no 

precise solution exits for transition to turbulence flow and fully developed turbulence 

flow, outside of a few classic academic examples. Several generations of scientists 

from around the globe have studied this topic because of its practical importance and 
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complexity. The academic and industry interest in this topic has motivated many 

researchers to develop concepts and models that describe turbulent flow. All well-

known turbulence models were initially designed and verified for the mesh-based 

method at early stage. In recent years, efforts have been made to use various turbulence 

models in particle methods. 

2.2.3.1. The 𝒌 − 𝜺 turbulence model 

 

The k − ε model was proposed by Launder and Spalding [41] in 1974 and is one of 

the most used models for industrial applications. 

Shao [42] coupled the turbulence model with the incompressible SPH method to 

investigate spilling and plunging waves breaking over a slope and obtained results that 

compared favourably with experiments. Following this, Shao[43] used his model to 

investigate wave breaking and overtopping a sea wall and obtained results in good 

agreement with experimental results from the literature. Monaghan [44] introduces the 

SPH −ε  model for decaying turbulence in a square box with no-slip boundary 

conditions, where a smoothed velocity models the effect of turbulent viscosity. This 

model conserves linear and angular momentum and satisfies a discrete form of Kelvins 

circulation theorem. Ferrand et al. [45] proposed a unified semi-analytical wall 

boundary condition and used it for the diffusion term in the  k − ε turbulence model, 

producing simulation results that match those from the FVM method. Leroy [46] 

proposed an ISPH model that included the semi-analytical boundary conditions and a 

k − ε turbulence model, which is effective for cases with inflow and outflow.  
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However, as described by Shao[43], the k − ε model has some disadvantages, such as 

inaccurately addressing the initiation of turbulence in a rapidly distorted shear flow 

region, such as in the wave breaking 

A turbulence model based on sub-particle scale (SPS) in the moving particle semi-

implicit (MPS) method is applied to SPH to avoid this issue. 

2.2.3.2. Large Eddy Simulation 

 

Arena et al. [47] determined artificial viscosity has similar effects as a sub-grid scale 

turbulence model. They simulated protoplanetary discs and concluded that turbulent 

properties could be partially mimicked, but only for less intense fluctuation fields, and 

turbulent eddies cannot be resolved. Shao et al. [48] combined the Large Eddy 

Simulation (LES) model with the SPH method. The computed turbulent eddy viscosity 

and velocity distributions demonstrate the robustness of the incorporated LES sub-

particle scale turbulence model. Subsequently, Shao and Ji [49] presented a 2D-LES 

model based on the SPH method and calculated the turbulent viscosity using the 

Smagorinsky model. They obtained satisfactory results of turbulence under breaking 

waves. Dalrymple and Rogers [50] used XPSH to smooth the velocity and Shephard 

filtering to smooth the density, making the free surface physically acceptable. They 

also determine the eddy viscosity using the Smagorinsky model. Mayrhofer et al. [51] 

performed LES simulations with SPH using unified semi-analytical wall boundary 

conditions. The model was validated with the Taylor–Green vortex, a well-known 

benchmark case. They concluded that agreement with reference data was poor and the 

result of insignificant resolution. Di Mascio et al. [52] illustrated that the SPH 

smoothing procedure has the same property as Lagrangian filtering used for LES. 

Meringolo et al. [53] proposed a δ–LES–SPH model by using the turbulence closure 
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models to determine the magnitude of the viscous and density diffusion terms 

considering the local flow conditions at every instant. They used this model to analyse 

the interaction between waves and structures. 

2.2.3.3. Mixing length turbulence model 

 

The mixing length hypothesis, developed by Prandtl, attempts to characterise 

momentum transfer via turbulent Reynolds stresses using eddy viscosity within a 

Newtonian fluid boundary layer. Violeau et al. [54] successfully described the eddy 

viscosity concept using the mixing length model, and it was verified by the turbulent 

Poiseuille flow solved using the Lagrangian form of the N-S equations. De Padova et 

al. [55] applied a mixing length model to the case without strong turbulent rollers, 

yielding a reasonable prediction of water levels and wave patterns in 2D and 3D 

undular hydraulic jumps, similar to that of the k − ε  model. Kazemi et al. [56] 

constructed the SPS model based on the mixing length model rather than the 

Smagorinsky model to improve the model’s performance in open channel flow. 

Subsequentially, Kazemi [57] proposed a generalised three-layer mixing length model 

that represents the different eddy flow structure sizes in different flow regions. He used 

this model to simulate turbulent flow over two porous beds and achieved good results 

in all eight test cases. 

Mayrhofer et al. [58] incorporated an additional volume diffusion term into the 

continuity equation to mitigate errors caused by the SPH discretisation. The extra 

diffusion term estimated by an eddy–viscosity model with a mixing-length approach 

can correct the free surface [45]. This scheme produces results comparable to the VOF 

method for dam-break flow over a wedge. The mixed length model is simple for 



19 

 

calculating the eddy viscosity but lacks generality and is unsuitable for complicated 

flows with uncertain turbulent length scale distributions. 

2.2.3.4. Other turbulence model 

 

Lopez et al. [59] used a variable artificial viscosity to achieve good accuracy without 

a turbulence model for the hydraulic jump case. Bertevas et al.[60] detailed the 

implementation of the k − ω SST RANS model, the wall treatment, the discretization 

of the various governing equations, and their boundary conditions. This turbulence 

model produced simulation results that show good agreement with experiments when 

applied to two-phase flow. 

 

Based on the in-house code of Gas Turbine and Transmission Research Centre 

(G2TRC) in the University of Nottingham, the mixing length model is chosen for the 

turbulent flow in the bearing chamber. A single-equation turbulence model called the 

Spalart–Allmaras (SA) turbulence model developed by Spalart and Allmaras[61] is 

also applied. The SPH formulation of these two turbulence models will be introduced 

in Chapter 3. 

2.2.4. Stabilization method  

Particle clustering is an unavoidable phenomenon, due to the properties of the kernel 

gradient, which approaches zero at small particle distances [1]. This in particular is 

seen in the simulation of strong vortices (e.g. the Taylor-Green vortex [1,62]) or 

violent waves (e.g. the solitary wave [6,63]). A regular particle distribution is the crux 

of veracity and robustness of simulations, and if this is not the case, it will seriously 

influence the accuracy and stability of the results. For this reason, it is very important 
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to reduce particle clustering as much as possible. Besides in fluid dynamics, tensile 

instability is also common in solid dynamics simulation using SPH method. Different 

with the fluid dynamics, many researchers, such as J. Bonet and S. Kulasegaram [64–

66] C.H. Lee et al. [67] and F.R. Ming et al. [68] have been demonstrated the tensile 

instability can be solved by the totally Lagrangian SPH method in the solid dynamics. 

However, for the research in this thesis, more stabilization methods are needed.  

In the past 30 years, several remedies have been published to deal with particle 

clustering. In literature, a distinction is made between six types of stabilization 

methods, which are described below.  

The first type is based on a virtual viscosity introduced by artificial viscosity or by 

smoothing the velocity which is the main idea in the XSPH method [35,69]. As early-

stage methods, they can prevent particle penetration effectively, but they are energy 

dissipating. 

The second type is kernel-based stabilization methods. Several researchers have 

introduced kernel functions. Schüssler and Schmitt [70] introduced a kernel with a 

gradient that tends to infinity for small inter-particle distances, but it does not have a 

continuous first derivative. The piecewise polynomial kernels introduced by 

Wendland [71] are commonly used, due to their favourable properties. Others have 

modified the kernel features. Read et al [72] take the inner part of the kernel gradient 

as a constant, by extending its (negative) minimum value to smaller distances. Convex 

kernels are constructed such that the kernel gradient is no longer zero and may even 

reach its minimum value at zero distance [73], although density estimates of convex 

kernels become more sensitive to changes in neighbour particle positions [74]. 

Corrective kernel estimates, such as e.g. introduced by Dilts [75], are more accurate 
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and may reduce the so-called tensile instability, but involve substantially more work 

[76]. Sigalotti and López [76] introduce an adaptive density kernel estimation with 

variable (pairwise averaged) smoothing length, which is computationally rather 

expensive. Although these kernel-based remedies have a stabilizing effect and are 

momentum conserving, the suppression of particle clustering is not guaranteed with 

smoothing kernels used in the evaluation of pair-wise forces [1]. 

The third type of preventing particle clustering is controlling the pressure gradient. 

Sriram and Ma [77] introduced the minimum pressure method. In this method, the 

minimum pressure within the support domain of a particle is used to replace the 

pressure of that particle, in the evaluation of the pressure gradient. However, due to 

the replacement of pressures, the inter-particle pressure gradient is no longer 

symmetrical, so that the conservation of momentum is violated to some extent. Zhang 

et al. [6] combine the minimum pressure method with a Fickian shift method in a 

hybrid method, which improves the accuracy and stability. Adami et al. [78] 

introduced the concept of a constant background pressure as a remedy for the so-called 

tensile instability. The gradient of the background pressure is taken into account in a 

so-called transport velocity, which is used for the advection of particles. The concept 

makes an irregular particle distribution more homogeneous. It is momentum 

conserving but can only be used if the kernel is fully supported (i.e., not at free 

surfaces). Zhang et al. [79] extend the concept by introducing a variable background 

pressure, which is proportional to the particle pressure and/or the bulk modulus. The 

concept is applied to fluids as well as solids with large deformations. The concept with 

variable background pressure is no longer momentum conserving. 



22 

 

The fourth type is a periodic reinitialization method in which the position of the 

particles is reinitialized at certain time steps during the simulation when needed. This 

method, described by Chaniotis et al. [80], may prevent particle clustering, although it 

is computationally very expensive.  

The fifth type is based on particle shifting, which has become more popular in recent 

years and is now commonly used to maintain a regular particle distribution. In this 

method, the shift is relatively small compared to the displacement of the particles 

within a time step. The direction of the shift is based on the anisotropy of the particles. 

Xu et al. [4] introduced a method based on particle concentration. Lind et al. [62] 

introduced a method based on Fick’s law, called the Fickian shift model, in which 

particles are shifted from regions of high concentration to low concentration. It should 

be noted that the Fickian shift model needs a special treatment at the free surface and, 

according to the authors, conservation of momentum is not satisfied. The method is 

based on several coefficients and some of these are case dependent. Khayyer et al. [5] 

proposed an optimized particle shift scheme which improves the performance of the 

Fickian shift model. 

The sixth type is based on particle collisions. The method is obtained from kinetic 

collision theory, which ensures the conservation of momentum (for inelastic and 

elastic collisions), and non-dissipative for elastic collisions. This has resulted in the 

particle collision model as introduced by Kruisbrink et al. [1], which is based on 

velocities rather than forces. This inter-particle model is only applied when particles 

are too close together. If detected, the approach velocity between the particles is 

changed. This approach has been used in WCSPH. 
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 Summary 

Although previous studies have shown that the SPH method is superior to those 

traditional CFD methods when dealing with the violent waves and large deformation 

of interfaces in terms of the Largrangian property, the study of the turbulence model 

in the SPH method and the particle clustering in multiphase flow is still in an early 

stage, and many challenges are yet to be overcome. 

 

First of all, in the SPH method, particle clustering is an unavoidable phenomenon 

without the numerical stabilised method such as the background pressure and Fickian 

shift model. However, the coefficient of the background pressure and the Fickian shift 

model are case-dependent, and the latter is very complex when dealing with 

multiphase flow and the free surface of single-phase flow. Furthermore, in WCSPH, 

the pressure fluctuates without the diffusion term due to the slight variation of density. 

The multiphase flow simulation is limited by the fluctuation of pressure and the 

particle clustering by using the WCSPH method. After that, the turbulence model in 

SPH is not fully developed yet. Using the SPH method to simulate the high-density 

ratio multiphase turbulent flow in the bearing chamber is another challenge. 

 

 

 

From the literature review, the existing challenges and research gaps were concluded 

as below: 
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1. The movement of particles suffers from clustering when particles move along the 

streamline. The existing stabilised methods are all case-dependent and complex, 

especially for multiphase flows. A simple and efficient stabilised particle shift method 

needs to be investigated. 

2. The application of existing turbulence models has rapidly developed in recent years 

based on the Eulerian CFD method. However, in the SPH method, the development of 

turbulence models is not as many as in the mesh-based CFD method. 

3. The mainstream numerical method for the multiphase flow in the bearing chamber 

is based on Eulerian CFD techniques. It is complex to deal with the interface when it 

has large deformations such as rolling or breaking, even with the combination of the 

Lagrangian method. The volume of fluid method and level set method are always 

needed to capture and stabilise the interface. However, SPH as a pure Lagrangian 

method should have superiority in the simulation of high-density ratio multiphase 

turbulence flow, but it has not been conducted. Furthermore, the application of the 

pure Lagrangian method, such as the SPH method, in an aero-engine bearing chamber 

has not been demonstrated. 

 

 

  



25 

 

Chapter 3 SPH methodology 

In this section, the methodology of SPH is described. In a Lagrangian framework, the 

mass and momentum conservation equations can be written as  

 𝜌 𝛻 ⋅ 𝑢⃗ +
𝑑𝜌

𝑑𝑡
= 0 ,  (1) 

 𝜌
𝑑𝑢⃗⃗ 

𝑑𝑡
= −𝛻𝑝 + 𝐹𝑉⃗⃗⃗⃗  ⃗ + 𝐹𝑆⃗⃗ ⃗⃗  + 𝐹𝐵⃗⃗⃗⃗  ⃗,  (2) 

where ρ is the fluid density, u⃗  is the velocity, t is the time, p is the pressure, FV⃗⃗ ⃗⃗  is 

viscous force, the FS⃗⃗⃗⃗  is the surface tension force and FB⃗⃗ ⃗⃗  is the external body force. The 

body force always means the gravity, and  𝐹𝑉⃗⃗⃗⃗  ⃗, 𝐹𝑆⃗⃗ ⃗⃗ , 𝐹𝐵⃗⃗⃗⃗  ⃗ have different discrete equation 

which will be described in this chapter. 

 

 Kernel approximation 

SPH is a Lagrangian method where the flow field can be considered as a group of 

discrete particles. Each particle carries physical quantities such as density, pressure 

and velocity, etc.  

In SPH method, the SPH formulation is basically made up of kernel approximation 

and particle approximation. The particle properties are estimated from a convolution 

integral, known as the kernel approximation. In the kernel approximation, a field 

function f(r ) at position r  can be transformed to an integral form, which is as follows 

 𝑓(𝑟 ) = ∫ 𝑓(𝑟 ′) 𝛿(𝑟 − 𝑟 ′)𝑑𝑟′
𝛺

,  (3) 

where f(r ) represents a continuous function defined on a domain Ω, dr′ represents a 

volume element and Ω denotes the integral domain. The Dirac delta function  δ(r −

r ′) is as follows 
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 𝛿(𝑟 − 𝑟 ′) = {
+∞, 𝑟 = 𝑟 ′,
0, 𝑟 ≠ 𝑟 ′.

  (4) 

Dirac delta function δ(r − r ′) only has value at one point (r = r ′), so that it is not 

suitable for field function discretisation. To solve this problem, the smoothing function 

is constructed to replace Dirac delta function. Thus, the kernel approximation of f(r ) 

can be converted to the following equation,  

 < 𝑓(𝑟 ) >= ∫ 𝑓(𝑟 ′) 𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟′
𝛺

.  (5) 

The angle brackets < > indicate an approximation, and h is the smoothing length. 

W(r − r ′, h) is a smoothing kernel function defined on a support domain which is a 

circle with radius of κh, and κ is a constant based on different kernel function. Despite 

the fact that W(r − r ′, h) is not the Dirac delta function, these conditions make kernel 

function W(r − r ′, h) have the same attributes as Dirac delta function [81].  

The first condition is called the unity condition, which is  

 ∫ 𝑓(𝑟 ′) 𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟′
𝛺

= 1.  (6) 

The second condition guarantee the W(r − r ′, h) has the same attributes as the Dirac 

delta function, which is 

 𝑙𝑖𝑚
ℎ→0

𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟′ = 𝛿(𝑟 − 𝑟 ′).  (7) 

The third condition is called the compact condition, which is  

 𝑊(𝑟 − 𝑟 ′, ℎ) = 0 𝑤ℎ𝑒𝑛 |𝑟 − 𝑟 ′| > 𝜅ℎ.  (8) 

With these conditions, the kernel approximation has first order accuracy [82]. 

Following the kernel approximation of the f(r ), the kernel approximation of the spatial 

derivatives of the f(r ) can be derived by substituting ∇ ∙ f(r ) for f(r ) in Eq. (2), which 

is as follows 

 < 𝛻 ∙ 𝑓(𝑟 ) >= ∫ [𝛻 ∙ 𝑓(𝑟 ′)] 𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟′
𝛺

= −∫ 𝑓(𝑟 ′)𝛻𝑊(𝑟 − 𝑟 ′)𝑑𝑟′
𝛺

, (9) 

where ∇W is the kernel gradient. In this thesis, the Wendland kernel is applied, and it 

is defined as 
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 𝑊(𝑟 − 𝑟 ′, ℎ) = 𝛼𝑑(1.0 − 0.5𝑞)4(1.0 + 2.0𝑞) (𝑞 ≤ 2.0)  (10) 

 𝛻𝑊(𝑟 − 𝑟 ′, ℎ) = 𝛼𝑑[2.0(1.0 − 0.5𝑞)4 − 2.0(1.0 − 0.5𝑞)3(1.0 + 2.0𝑞)]  (11) 

in which 𝑞 = |r⃗⃗ − r ′|/ℎ, in 2D case αd =
7.0

4.0πh3, while in 3D case αd =
7.0

8.0πh4. 

 Particle approximation 

Following [83], the function and its gradient of particle i can be further approximated 

in discretized form by a summation of neighbour particles (particles in the support 

domain of particle i), which is known as particle approximation, as follows  

  𝑓(𝑟 𝑖) = ∑ 𝑓(𝑟 𝑗) 
𝑚𝑗

𝜌𝑗
 𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑗 ,  (12) 

 𝛻𝑓(𝑟 𝑖) = −∑ 𝑓(𝑟 𝑗) 
𝑚𝑗

𝜌𝑗
 𝛻𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑗 ,  (13)  

With these two equations, the function value and the gradient value of particles can be 

obtained from Eqs. (6) and (9). According to Monaghan’s approach [84], Eq. (9) can 

be rewritten by introducing the density to the differential operator with the following 

two formulas, 

 𝛻 ∙ 𝑓(𝑟 𝑖) =
1

𝜌𝑖
[∑ 𝑚𝑗 (𝑓(𝑟 𝑗) − 𝑓(𝑟 𝑖)) ∙ 𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑁

𝑗=1 ],  (14)  

 𝛻 ∙ 𝑓(𝑟 𝑖) =
1

𝜌𝑖
[∑ 𝑚𝑗 (

𝑓(𝑟 𝑗)

𝜌𝑗
2 +

𝑓(𝑟 𝑖)

𝜌𝑖
2 ) ∙ 𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑁

𝑗=1 ].  (15)  

Eqs. (14) and (15) have several advantages over Eq.(13). To start, derivatives of the 

field function are defined in the particle pair-wise form. This increases the stability 

and robustness of SPH simulations [85].  

Due to a second order derivative term is a part of the right side of the momentum 

equation, it is important to find an accurate way to discretize it. One option is using 

Eq. (13) twice [86], and the other option is using the second order derivative of the 

smoothing kernel function. However, both of these two methods may produce higher 

errors at low resolution. To overcome this shortage, Brookshaw [87] proposed a novel 
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discretizing way to improve the accuracy of the second-order derivative. Following 

this way, the approximation of the Laplacian of a function can be evaluated as  

 𝛻2𝑓(𝑟 𝑖) = ∑
𝛻𝑖𝑊(𝑟 𝑖−𝑟 𝑗 ,ℎ)∙(𝑟 𝑖−𝑟 𝑗)

|𝑟 𝑖−𝑟 𝑗|
2

𝑁
𝑗=1 (𝑓(𝑟 𝑖) − 𝑓(𝑟 𝑗))𝑉𝑗 .  (16) 

This method is a finite difference approximation of a first-order derivative. Some 

researchers discretize the second order derivative in this way [88–91]. For the SPH 

method, various discretization schemes based on finite difference like formulae have 

been proposed (e.g. [92,93]). Morris [88] applied this Brookshaw type SPH formula 

to the approximating Laplace operator for discretization of the viscosity term in the 

Navier–Stokes equations, and this scheme is one of the most widely used in the SPH 

method for discretization of the Laplacian. 

Following the kernel approximation and particle approximation mentioned before, the 

continuity and momentum equations can then be discretized. In SPH method, the 

continuity equation can be discretized as follows in these two forms. One way is to 

calculate the density by the summation of neighbouring particles by using Eq. (12) 

when the field function is the density, which is as follows: 

 𝜌𝑖 = ∑ 𝑚𝑗𝑊𝑖𝑗
𝑁
𝑗=1 .  (17) 

The other way is to calculate the 
Dρ

Dt
 through Eq. (1), which is as follows, 

 
𝑑𝜌𝑖

𝑑𝑡
= −𝜌𝑖 ∑

𝑚𝑗

𝜌𝑗
(𝑢⃗ 𝑗 − 𝑢⃗ 𝑖)𝛻𝑖𝑊𝑖𝑗

𝑁
𝑗=1 .  (18) 

The density is updated from Eq. (18). In this work, Eq. (18) is used in WCSPH. 

The divergence of the velocity in Eq. (1) and the pressure gradient and viscosity term 

in Eq. (2) are evaluated as 

 𝛻 ∙ 𝑢⃗ = −
1

𝜌𝑖

∑ 𝑚𝑗(𝑢⃗ 𝑖 − 𝑢⃗ 𝑗)𝛻𝑖𝑊𝑖𝑗𝑗   (19) 
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As for the momentum equation, due to the different forms of different terms of Eq. (2), 

the momentum equation is more complex than the continuity equation. For the 

pressure gradient, these three forms are usually used [93,94]. 

 −
1

𝜌
𝛻𝑝 = −∑ 𝑚𝑗(

𝑝𝑖+𝑝𝑗

𝜌𝑖𝜌𝑗
)𝛻𝑖𝑊𝑖𝑗

𝑁
𝑗=1   (20) 

 −
1

𝜌
𝛻𝑝 = −∑ 𝑚𝑗(

𝑝𝑖

𝜌𝑖
2 +

𝑝𝑗

𝜌𝑗
2)𝛻𝑖𝑊𝑖𝑗

𝑁
𝑗=1   (21) 

 −
1

𝜌
𝛻𝑝 = ∑ 𝑚𝑗(

𝑝𝑖−𝑝𝑗

𝜌𝑖𝜌𝑗
)𝛻𝑖𝑊𝑖𝑗

𝑁
𝑗=1   (22) 

Eq. (20) is used in WCSPH. It is suited to multi-phase flows with very different 

densities. This can be seen by considering the pressure gradient force by multiplying 

Eq. (20) with mi . The force is based on volumes (Vi = mi/i and Vj = mj /j) and as 

such the formulation is suited to multi-phase flows with different densities. This does 

not hold for Eq. (21), which is based on densities.  

When the boundary is truncated by solid boundaries, the accuracy of the above 

equations is heavily affected by the particle distributions and the shape of the solid 

boundary. To decrease the error caused by the boundary, Zheng et al. [95] use the 

Simplified Finite Difference Interpolation (SFDI) method, originally developed by 

Sriram and Ma (2012) [77], to calculate the first-order derivative of the pressure on 

the solid boundary. SFDI is a second-order accurate numerical scheme based on the 

Taylor series expansions. In 2D case, the key formulas of the pressure derivative are 

 (
𝜕𝑝𝑖

𝜕𝑥
) = ∑

𝑛𝑖,𝑥𝑚𝐵𝑖𝑗,𝑥𝑘
−𝑛𝑖,𝑥𝑦𝐵𝑖𝑗,𝑦

𝑛𝑖,𝑥1𝑛𝑖,𝑥2−𝑛𝑖,𝑥𝑦
2

𝑁
𝑗=1.𝑗≠𝑖 (𝑝𝑖 − 𝑝𝑗)  (23) 

 (
𝜕𝑝𝑖

𝜕𝑌
) = ∑

𝑛𝑖,𝑥1𝐵𝑖𝑗,𝑦−𝑛𝑖,𝑥𝑦𝐵𝑖𝑗,𝑥

𝑛𝑖,𝑥1𝑛𝑖,𝑥2−𝑛𝑖,𝑥𝑦
2

𝑁
𝑗=1.𝑗≠𝑖 (𝑝𝑖 − 𝑝𝑗)  (24) 

 𝑛𝑖,𝑥𝑦 = ∑
(𝑟𝑗,𝑥𝑚−𝑟𝑖,𝑥𝑚)(𝑟𝑗,𝑥𝑘

−𝑟𝑖,𝑥𝑘
)

|𝑟 𝑖−𝑟 𝑗|
2

𝑁
𝑗=1.𝑗≠𝑖 𝑊  (25) 

 𝐵𝑖𝑗,𝑥𝑚
=

(𝑟𝑗,𝑥𝑚−𝑟𝑖,𝑥𝑚)

|𝑟 𝑖−𝑟 𝑗|
2 𝑊  (26) 
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where m = 1 and k = 2 or m = 2 and k = 1, N is the number of neighbour particles of 

particle i; x1 = x and x2 = y are defined; and 𝑟𝑗,𝑥𝑚
 is the component of position vector 

in x (or y) direction. 

For the viscous term 𝐹𝑉⃗⃗⃗⃗  ⃗, several viscosity models are available in SPH [96,97], which 

can be presented as follows, 

 𝜈𝛻2𝑢⃗ 𝑖 = 4∑ 𝑚𝑗
𝜈𝑖+𝜈𝑗

𝜌𝑖+𝜌𝑗

(𝑟 𝑖−𝑟 𝑗)(𝑢⃗⃗ 𝑖−𝑢⃗⃗ 𝑗)

(|𝑟 𝑖−𝑟 𝑗|
2+(0.01ℎ)2)𝑗 𝛻𝑖𝑊𝑖𝑗   (27) 

 𝜈𝛻2𝑢⃗ 𝑖 = −16∑ 𝑚𝑗
𝜈𝑖+𝜈𝑗

𝜈𝑗𝜌𝑗+𝜈𝑖𝜌𝑖

(𝑟 𝑖−𝑟 𝑗)(𝑢⃗⃗ 𝑖−𝑢⃗⃗ 𝑗)

|𝑟 𝑖−𝑟 𝑗|ℎ
𝑗 𝛻𝑖𝑊𝑖𝑗   (28) 

The equation of discretization of the continuity equation and the momentum equation 

should be chosen based on the simulation requirement. The continuity and momentum 

equation will be closed once the pressure has been solved. 

At present, for incompressible flows, the pressure is usually solved in two ways: (1) in 

weakly compressible SPH (WCSPH), the fluid is considered to be slightly 

compressible, and the pressure is explicitly solved by the equation of state (Monaghan 

[98]), and (2) in incompressible SPH (ISPH), the fluid is considered to be fully 

incompressible, and the pressure is solved through the projection method by the 

Poisson equation. The details of these two ways to solve the pressure will be discussed 

in the next section. 

 Weakly compressible SPH method 

As previously stated, there are two ways to calculate pressure. The ISPH and WCSPH 

will be introduced in detail. 

WCSPH use the state equation to build a relationship between the pressure and density. 

The Tait equation [24] is the most frequently used, which is as follows,  



31 

 

 𝑝 = 𝑐0
2𝜌0/[(

𝜌

𝜌0
)
𝛾
− 1].  (29) 

where 𝑐0  is the speed of sound at the reference density 𝜌0 . Based on Courant–

Friedrich– Levy (CFL) condition the realistic speed of sound will make the time step 

of the simulation very small, and it will increase the computation cost. Monaghan and 

Kos [99] prove that artificial sound speed can also get satisfying results. So that the 

artificial sound speed is used here, it should be noted that the sound speed should be 

at least 10 times higher than the maximum fluid velocity. 𝛾 is a constant and 1.4 for 

air, 7 for water is commonly used. From Eq. (29), the pressure suffers from significant 

fluctuations, even if the density is slightly changed in WCSPH. 

 𝜹-SPH  

As mentioned before, one of the disadvantages of the WCSPH is the instability in the 

pressure. To prevent the pressure fluctuation from the density, Antuono et al [100] first 

defined 𝛿-SPH and then further developed by many researchers and have a very wide 

range of applications e.g. [26,101–103]. In this method, a specific diffusive term is 

added to the right side of the continuity equation, which can reduce the high-frequency 

stray noise of density/pressure fields. In 𝛿 -SPH, the continuity equation (18) is 

changed to,  

 
𝑑𝜌𝑖

𝑑𝑡
= −𝜌𝑖 ∑

𝑚𝑗

𝜌𝑗
(𝑣 𝑗 − 𝑣 𝑖) ∙ 𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ) + 𝛿ℎ𝑐0𝒟𝑖

𝑁
𝑗=1   (30) 

 𝒟𝑖 = 2∑ 𝜓𝑗𝑖
(𝑟 𝑗−𝑟 𝑖)∙𝛻𝑖𝑊(𝑟 𝑖−𝑟 𝑗,ℎ)

|𝑟𝑗𝑖|
2

𝑁
𝑗=1 𝑉𝑗  (31) 

 𝜓𝑗𝑖 = {(𝜌𝑗 − 𝜌𝑖) −
1

2
(〈𝛻𝜌〉𝑗

𝐿 + 〈𝛻𝜌〉𝑖
𝐿) ∙ 𝑟 𝑗𝑖}  (32) 

 〈𝛻𝜌〉𝑖
𝐿 = ∑ (𝜌𝑗 − 𝜌𝑖)

𝑁
𝑗=1 𝐿𝑖𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑉𝑗   (33) 

 𝐿𝑖 = [∑ (𝑟 𝑗 − 𝑟 𝑖)
𝑁
𝑗=1 ⨂𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑉𝑗]  (34) 
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The above equation can only apply to single phase flow. In the multiphase flow, the 

large density difference may lead to huge errors in the above equations. For multiphase 

flow, B. Zheng and Z. Chen [38] assume that the oscillation of the density increment 

𝛿𝜌 is the essential reason for the oscillation of the pressure, and more general form of 

𝛿-SPH is proposed. The continuity equation is changed to  

 
𝑑𝜌𝑖

𝑑𝑡
= −𝜌𝑖 ∑

𝑚𝑗

𝜌𝑗
 (𝑣 𝑗 − 𝑣 𝑖) ∙ 𝛻𝑖𝑊𝑖𝑗 + 𝜗〈𝛻2𝛿𝜌𝑖〉

𝑁
𝑗=1   (35) 

 𝜗〈𝛻2𝛿𝜌𝑖〉 = −2𝜆𝑐𝑠 ∑ [(𝛿𝜌𝑗 − 𝛿𝜌𝑖) −
1

2
(〈𝛿𝜌〉𝑗

𝐿 − 〈𝛿𝜌〉𝑖
𝐿) ∙ 𝑟 𝑖𝑗]

𝑁
𝑗=1

𝜕𝑊𝑖𝑗

𝜕|𝑟 𝑖𝑗|

1

|𝑟 𝑖𝑗|
𝑉𝑗   (36) 

 〈𝛿𝜌〉𝑖
𝐿 = ∑ (𝛿𝜌𝑗 − 𝛿𝜌𝑖)

𝑁
𝑗=1 𝐿𝑖𝛻𝑖𝑊(𝑟 𝑖 − 𝑟 𝑗 , ℎ)𝑉𝑗   (37) 

To avoid an extra loop to calculate the Eq. (34), in this paper, a simple version of the 

𝛿-SPH is used. Eq. (32) and Eq. (36) are simplified as follows, 

 𝜓𝑗𝑖 = (𝜌𝑗 − 𝜌𝑖)  (38) 

 𝜗〈𝛻2𝛿𝜌𝑖〉 = −2𝜆𝑐𝑠 ∑ (𝛿𝜌𝑗 − 𝛿𝜌𝑖)
𝑁
𝑗=1

𝜕𝑊𝑖𝑗

𝜕𝑅

1

|𝑟 𝑖𝑗|
𝑉𝑗   (39) 

It is very interesting to see that δ-SPH scheme is very similar to the Jameson-Schmidt-

Turkel (JST) stabilization scheme which is always applied to the SPH method in solid 

dynamics.[67,104]. C.H. Lee et al. [105] proposed a new JST-SPH method, which also 

obtain great improvement for large strain solid dynamics. 

 Incompressible SPH method 

In ISPH the pressure needs to be solved by a complex pressure Poisson equation 

through a prediction-correction solution scheme, which is more stable and accurate 

than in WCSPH. In ISPH, the incompressibility of the fluid is enforced by setting 

𝐷𝜌 𝐷𝑡 = 0⁄  at each particle. This is done using the method proposed by Chorin [106] 

based on a divergence-free ISPH during the correction step in the time integration. The 

prediction–correction solution scheme of the ISPH method includes two steps.  
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(a) Prediction step 

In the prediction step of the projection method, the intermediate particle velocity 𝑢⃗ ∗ 

and position 𝑟 ∗ are  

 𝛥𝑢⃗ ∗ = (𝑔 + 𝜈𝛻2𝑢⃗ (𝑡))𝛥𝑡,  (40) 

 𝑢⃗ ∗ = 𝑢⃗ (𝑡) + 𝛥𝑢⃗ ∗,  (41) 

 𝑟 ∗  = 𝑟 (𝑡) + 𝑢⃗ ∗𝛥𝑡,  (42) 

where 𝑢⃗ (𝑡),  𝑟 (𝑡) are the velocity and position at time 𝑡, 𝛥𝑡 is the time step and 𝛥𝑢⃗ ∗ is 

the change of particle velocity during the prediction step. 

(b) Correction step 

In the correction step, the pressure is solved by 

 𝛻2𝑝(𝑡 + ∆𝑡) =
𝜌 𝛻⋅𝑢⃗⃗ ∗

𝛥𝑡
.  (43) 

The velocity change 𝛥𝑢⃗ ∗∗ during the correction step is 

 𝛥𝑢⃗ ∗∗ = −
1

𝜌
𝛻𝑝(𝑡 + ∆𝑡) 𝛥𝑡.  (44) 

The velocity and position of a particle at the new time step are 

 𝑢⃗ (𝑡 + ∆𝑡) = 𝑢⃗ ∗ + 𝛥𝑢⃗ ∗∗,  (45) 

 𝑟 (𝑡 + ∆𝑡) = 𝑟 (𝑡) + 
𝑢⃗⃗ (𝑡+∆𝑡)+𝑢⃗⃗ (𝑡)

2
𝛥𝑡.  (46) 

The above equation uses the divergence of the intermediate velocity field as the source 

term of pressure of Poisson equation (PPE), which is similar to the study of Lee [30], 

and it is solved by Biconjugate gradient stabilized method. 

In ISPH method, The Laplacian term of left-hand-side of Equation (34) is commonly 

discretized by the combination of gradient formulation with a first-order finite 

difference scheme (e.g. [88,107,108]), which is as follows 

 𝛻2𝑝𝑖 = ∑ 2
𝑚𝑗

𝜌𝑗

(𝑝𝑖−𝑝𝑗)(𝑟 𝑖−𝑟 𝑗)

𝑟𝑖𝑗
2+𝜂2

𝑁
𝑗=1 ∙ 𝛻𝑖𝑊𝑖𝑗   (47) 
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 Boundary condition 

In order to get the accurate results of the governing equation, a proper way to deal with 

the truncation of the boundaries is important. In this part, two different types of 

boundaries are introduced for WCSPH and ISPH, respectively. 

3.6.1. Fixed ghost particle. 

The fixed ghost particle model is also called the image particle model. Before the 

simulation, the fixed ghost particles are placed outside of the fluid domain and just 

behind the boundary. Marrone et al. [26] describe a fixed ghost particle, which can 

describe the wall boundary accurately, but it is difficult to get the properties of the 

fixed ghost particle, when the boundaries have a complex shape. To place the fixed 

ghost particle Kruisbrink et al. [22] introduced a so-called parameterized wall, which 

is based on the body’s fitted coordinates, allowing curved walls to match the shape of 

the real walls. The parameterized wall allows for the modelling of more complex 

geometries. Moreover, in this wall concept a hexahedral particle distribution is used, 

which is better than the uniform distribution seen in many SPH applications.  

The Neumann boundary condition is a well-known, very useful and simple concept to 

impose zero gradients. A zero-pressure gradient on a fluid particle i is obtained by 

imposing 𝑝𝑗 = 𝑝𝑖 to neighbouring ghost particles j. This simple concept fits very well 

in the SPH concept. For the case with large pressure gradient near the boundary, a 

dynamic boundary particle (DBPs) [109]) is used to obtain the pressure of the fixed 

ghost particle, which is as follows, 

 𝑝𝑗 =  𝑝𝑖 +
1

𝑁
∑

𝑑𝑝𝑗

𝑑𝑟 𝑗𝑖
(𝑟 𝑗 − 𝑟 𝑖)

𝑁
𝑗=1    (48) 



35 

 

where N is the number of fluid particle j near the fixed ghost particle i. As for the 

velocity of the ghost particle, a no-slip condition is applied. 

 

3.6.2. SFDI boundary treatment 

In this part, the SFDI boundary treatment following Zheng et al. [95] is used. There is 

only one layer of particles arranged on the boundaries. The particles on the solid 

boundary should satisfy the continuity of the pressure gradient, which is represented 

by the following momentum equation as  

 𝑛⃗ ∙ 𝛻𝑃 = 𝜌(𝑛⃗ ∙ 𝑔 − 𝑛⃗ ∙ 𝑈⃗⃗ ̇)  (49) 

where 𝑛⃗  is the normal unit vector on the solid boundary, 𝑈⃗⃗ ̇ is the velocity of the solid 

boundary and 𝑔  is the gravity (if it is needed).. The above equation can be used to 

replace the standard PPE. The advantage of this approach is that the second-order 

pressure derivative is avoided and replaced by an exact first-order derivative, which 

can be more precisely calculated by the SPH particles even with disordered 

distributions. This should be able to preserve the pressure stability at complex solid 

boundaries. By using Eqs. (23) to (26), Eq. (49) can be rewritten as  

 𝑛⃗ ∙ {∑
𝑛𝑖,𝑥1𝐵𝑖𝑗,𝑦−𝑛𝑖,𝑥𝑦𝐵𝑖𝑗,𝑥

𝑛𝑖,𝑥1𝑛𝑖,𝑥2−𝑛𝑖,𝑥𝑦
2

𝑁
𝑗=1.𝑗≠𝑖 (𝑝𝑖 − 𝑝𝑗) + ∑

𝑛𝑖,𝑥𝑚𝐵𝑖𝑗,𝑥−𝑛𝑖,𝑥𝑦𝐵𝑖𝑗,𝑦

𝑛𝑖,𝑥1𝑛𝑖,𝑥2−𝑛𝑖,𝑥𝑦
2

𝑁
𝑗=1.𝑗≠𝑖 (𝑝𝑖 − 𝑝𝑗)} = 𝜌(𝑛⃗ ∙ 𝑔 − 𝑛⃗ ∙ 𝑈⃗⃗ ̇)  (50) 

By adopting this practice, there is no need to generate the mirror particles outside of 

the solid boundary. This makes the ISPH computations more efficient and accurate. 

 Surface tension model  

In the bearing chamber in the aeroengine, the oil droplet will be formed and move from 

the oil film from one side to the other side. The surface tension model of Adami et al. 
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[36] based on Brackbill et al. [39] is implemented in our in-house SPH code and used 

in the thesis. Adami’s model is a continuum surface force model in which the force 

can be expressed as  

 𝐹𝑆⃗⃗ ⃗⃗  = −𝜎𝜅𝑛⃗ 𝛿𝛴   (51) 

The surface tension force in this model is computed by the curvature and the normal 

vector of the interface, and the surface-delta function 𝛿𝛴 . A colour function c is 

introduced to approximate the surface tension, which is as follows: 

 𝑐𝑙
𝑘 = {

1,         𝑖𝑓 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑏𝑒𝑙𝑜𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑙,
0,                        𝑖𝑓 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑙.

  (52) 

The gradient of the colour function is 

 𝛻𝑐𝑖 =
1

𝑉𝑖

∑ [𝑉𝑖
2 + 𝑉𝑗

2]𝑐̃𝑖𝑗
𝜕𝑊

𝜕𝑟𝑖𝑗
𝑒 𝑖𝑗𝑗 .  (53) 

𝑐̃𝑖𝑗 is the inter-particle average value of the colour function, which is as follows: 

 𝑐̃𝑖𝑗 =
𝜌𝑗

𝜌𝑖+𝜌𝑗
𝑐𝑖
𝑖 +

𝜌𝑖

𝜌𝑖+𝜌𝑗
𝑐𝑗
𝑖 .  (54) 

This gradient of colour function has the same attribute as the surface-delta function 𝛿𝛴 

in Eq. (51) which usually used to replace the 𝛿𝛴. Furthermore, the normal direction at 

the interface can be obtained from the colour gradient by  

 𝑛 =
𝛻𝑐

|𝛻𝑐|
  (55) 

The curvature is the divergence of the normal vector which is as follows: 

 𝜅𝑖 = 𝛻 ∙ (
𝛻𝑐

|𝛻𝑐|
)
𝑖
= 𝑑

∑ (
𝛻𝑐

|𝛻𝑐|
)∙

𝑟⃗⃗ 𝑖𝑗

|𝑟𝑖𝑗|

𝜕𝑊

𝜕𝑟𝑖𝑗
𝑉𝑗𝑗

∑ 𝑟 𝑖𝑗
𝜕𝑊

𝜕𝑟𝑖𝑗
𝑉𝑗𝑗

.  (56) 

Substitution of Eqs. (53), (55) and (56) into (51), the SPH form of the surface tension 

is obtained. 
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 Artificial viscosity 

The above sections describes all the term is on the right side of Eq. (2), however for 

the practical engineering case with high impact force or violation interface movement 

multiphase problem, a small artificial viscous term need be added [38,102,110,111]. 

Usually the viscosity term is calculated together with the pressure gradient in the 

momentum equation. For 𝑣 𝑖𝑗 ∙ 𝑟 𝑖𝑗 < 0, 

 
𝑑𝑢⃗⃗ 𝑖

𝑑𝑡
= −∑ 𝑚𝑗 (

𝑝𝑖+𝑝𝑗

𝜌𝑖𝜌𝑗
− 𝛼𝑐𝑠

ℎ𝑣⃗ 𝑖𝑗∙𝑟 𝑖𝑗

|𝑟 𝑖𝑗|
2
+ℎ2

)𝛻𝑖𝑊𝑖𝑗
𝑁
𝑗=1 +

𝐹𝑉⃗⃗ ⃗⃗  ⃗+𝐹𝑆⃗⃗⃗⃗  ⃗+𝐹𝐵⃗⃗ ⃗⃗  ⃗

𝜌𝑖
,  (57) 

where 𝛼  is the coefficient of the artificial viscosity. 𝑣 𝑖𝑗 = 𝑣 𝑖 − 𝑣 𝑗 . Among various 

existing multiphase models, artificial viscosity is used throughout the whole flow field. 

The artificial viscosity is only used in the multiphase sloshing tank and multiphase 

dam break. 

 Turbulence model   

For the turbulence flow in the bearing chamber, the implementation of turbulence 

models in SPH method is needed. A good and useful turbulence model should have 

wide applicability, be accurate, simple, and economical to run. In this part, two RANS 

based eddy viscosity models will be coupled in SPH method. In this thesis, the 

turbulence property is characterised by turbulent viscosity 𝜈𝑡 . In this part, two 

turbulence models are introduced to calculate the 𝜈𝑡. In 1877, Boussinesq established 

the concept of eddy viscosity, known as the Boussinesq eddy viscosity hypothesis, in 

an effort to build a mathematical explanation of turbulent stresses. This hypothesis 

established a relationship between Reynolds stresses and eddy viscosity. In contrast to 
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molecular viscosity, eddy-viscosity is a flow characteristic rather than a property of 

the fluid. The Boussinesq eddy-viscosity hypothesis is the core of the eddy-viscosity 

turbulence model. Boussinesq assumed that the vortex viscosity 𝜈𝑡, can describe the 

momentum transfer caused by turbulent eddies. The one equation model of the 

Reynolds stress tensor under the Boussinesq hypothesis can be written in the following 

way: 

 −𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅ = 2𝜇𝑇𝑆𝑖𝑗  (58) 

3.9.1. Prandtl’s Mixing length model 

In mixing length model, the eddy-viscosity is related to the mean strain rate from 

Prandtl’s theory by using a turbulence characteristic length 𝑙𝑚 as follows: 

 𝜈𝑡 = 𝑙𝑚
2 |

𝜕𝑈

𝜕𝑦
|  (59) 

where 𝑙𝑚  is the mixing length and 
𝜕𝑈

𝜕𝑦
 is the velocity gradient normal to the flow 

direction. The mixing length is different for each flow and must be known in advance 

to obtain a solution. The flow in the bearing chamber is similar to the pipe flow. 

Following Nikuradse [10], the mixing length is evaluated following, 

 
𝑙𝑚

𝑟0
= 0.14 − 0.08 (1 −

𝑦

𝑟0
)
2
− 0.06 (1 −

𝑦

𝑟0
)
4
  (60) 

where 𝑟0 is the half radius of the pipe. 

In turbulent flows the velocity gradients near walls are very high. The fluid velocity 

may be very different from the velocity of boundaries, such as e.g. the rotating shaft 

in a bearing chamber. It is explored and concluded that the standard evaluation of the 

velocity gradient from the particle approximation (see Eq.(13)), where boundary 

particles are included in the kernel gradient evaluations, leads to poor estimates. For 

this reason, the Simplified Finite Difference Interpolation (SFDI) is used as an 
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alternative method. This method is described in Section 2.2, where it is applied to the 

pressure. Here the method is applied to the velocity (components), which may be 

formulated as 

 (
𝜕𝑢𝑖

𝜕𝑌
) = ∑

𝑛𝑖,𝑥1𝐵𝑖𝑗,𝑦−𝑛𝑖,𝑥𝑦𝐵𝑖𝑗,𝑥

𝑛𝑖,𝑥1𝑛𝑖,𝑥2−𝑛𝑖,𝑥𝑦
2

𝑁
𝑗=1.𝑗≠𝑖 (𝑢𝑖 − 𝑢𝑗)  (61) 

combine the Eqs. (25) and (26) the 
𝜕𝑢

𝜕𝑦
 can be calculated.  

where the coefficients 𝑛𝑖and 𝐵𝑖𝑗 are given in the Eqs. (25) and (26). The velocity u is 

the velocity in flow direction, which is further defined below. The mixing length model 

is explored in the 2D Taylor-Couette flow cases (Chapter 6 and Chapter 7). In these 

cases, the flow direction is assumed to coincide with the tangential direction of the 

rotational flow between two concentric cylinders. Around each particle i a local 

Cartesian coordinate system is defined, with the origin on particle i, the x-direction 

parallel to the walls and the y-direction perpendicular to the walls. The velocity 

components ui ad uj of particle i and its neighbouring particles j are all taken as the 

velocity components in the x-direction. Mixing length model as a zero-equation model 

is very simple to code and inexpensive, but it only works well for relatively simple 

problems and it is directly influenced by the distance to the boundary. 

3.9.2. Spalart-Allmaras model 

This one-equation turbulence model, developed by Spalart and Allmaras [61], is 

basically intended for aerodynamic flow. The Spalart-Allmaras model is selected out 

of a wide variety of turbulence models, since it is originally based on vorticity and it 

is based on one equation, contrary to several others, like e.g. the 𝑘 − 𝜀 and 𝑘 − 𝜔 

turbulence models. The transport equation in the tensor notation can be written as, 

 
𝐷𝜐̃

𝐷𝑡
= 𝐺𝑉 +

1

𝜎
[𝛻 ∙ ((𝜈 + 𝜐̃)𝛻𝜈 + 𝐶𝑏2(𝛻𝜈)2)] − 𝑌𝑉  (62) 
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where 𝐺𝑉  is the production of turbulent viscosity, 𝑌𝑉  the destruction of turbulent 

viscosity that occurs in the near-wall region due to wall blocking and viscous damping. 

The term between square brackets represents the diffusion of turbulent viscosity. These 

three terms are defined below. The transport equation solves 𝜈 “tilde“, which is the 

turbulent kinematic viscosity, except in the near-wall region. This variable is defined 

such that it equals 𝜅𝑦𝑢𝜏 all the way to the wall, so that the turbulent dynamic viscosity 

𝜇𝑡 satisfies the log-wall function. This allows for an enhanced wall treatment, which 

is less sensitive to the dimensionless wall distance y+. The turbulent dynamic viscosity 

is obtained from 

 𝜇𝑡 = 𝜌𝜈𝑓𝑣1  (63) 

 𝑓𝜈1 =
𝜒3

𝜒3+𝐶𝜈1
3  ;  𝜒 =

𝜈̃

𝜈
 ;  𝑐𝑣1 = 7.1  (64) 

where 𝑓𝜈1is a viscous damping function and 𝜒 is the ratio of turbulent and laminar 

viscosity. 

The production term is 

 𝐺𝑣 = 𝐶𝑏1𝑆̃𝜈  (65) 

with 

 𝑆̃ = 𝑆 +
𝜈̃

𝜅2𝑑2 𝑓𝜈2 ;  𝑓𝜈2 = 1 −
𝜒

1+𝜒𝑓𝜈1
 ;  𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 ;  𝑆𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
)  (66) 

where S is the vorticity as a scalar measure of the deformation tensor, 𝑆𝑖𝑗 the mean 

rate-of-rotation tensor, and d the distance from the wall. The vorticity is normalized so 

that it reduces to a velocity gradient in a simple shear flow. The justification for the 

expression of S is that for shear flows, vorticity and strain rate are identical. 

The destruction term is 

 𝑌𝑉 = 𝑐𝑤1𝑓𝑤 (
𝜈̃

𝑑
)
2
  (67) 

With 



41 

 

 𝑓𝑤 = 𝑔 [
1+𝐶𝑤3

6

𝑔6+𝐶𝑤3
6 ]  ;  𝑔 = 𝑟 + 𝐶𝑤2(𝑟

6 − 𝑟) ;  𝑟 ≡
𝜈̃

𝑆𝜅2𝑑2
  (68) 

𝑐𝑤1 =
𝐶𝑏1

𝜅2 +
(1 + 𝐶𝑏2)

𝜎
 ;  𝐶𝑏1 = 0.1355 ;   

 𝐶𝑏2 = 0.622; 𝜎 =
2

3
 ;  𝐶𝑤2 = 0.3 ;  (69) 

𝐶𝑤3 = 2 ;  𝜅 = 0.4187  

The diffusion term is rewritten as 

 𝐷𝑣 =
1

𝜎
{𝛻 ∙ [(𝜐 + 𝜐̃)𝛻𝜐̃] + 𝐶𝑏2|𝛻𝜐̃|2}=

1

𝜎
{𝜐̃ + (1 + 𝐶𝑏2)|𝛻𝜐̃|2}  (70) 

At the right-hand side of this equation, the Laplacian operator (∇2) appears. This form 

is more suited to SPH. Note that the laminar viscosity is neglected. The Laplacian is 

evaluated following Eq. (16) 

 𝛻2𝜐̃ = ∑
𝛻𝑊𝑖𝑗∙(𝑟 𝑖−𝑟 𝑗)

|𝑟 𝑖−𝑟 𝑗|
2

𝑁
𝑗=1 (𝜐̃𝑗 − 𝜐̃𝑗)𝑉𝑗  (71) 

Following Eq. (14), the gradient term in Eq. (70) is evaluated as  

 𝛻𝜐̃ = −
1

𝜌
∑ 𝑚𝑗(𝜐̃𝑖 − 𝜐̃𝑗)𝛻𝑖𝑊𝑖𝑗𝑉𝑗

𝑁
𝑗=1   (72) 

In this way, all the terms in Eq. (62) is approximate in SPH form. This turbulence 

model is explored in the chapter 5. 

 Fickian shift model 

In this section the commonly used Fickian shift model is described, which is used for 

comparison with our particle collision shift model (Section 4). In particle shift models, 

the trajectory of particles is changed by adding a relatively small artificial 

displacement δ𝑟 𝑠. In the shift model described by Lind et al. [62], Fick’s law is used 

to shift particles from regions of high concentration to low concentration. 

Fick’s law is 

 𝐽 =  − 𝐷′𝛻𝐶,  (73) 
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where J is the flux, C is the concentration and 𝒟′ is the diffusion coefficient. The shift 

vector is  

 𝛿𝑟 𝑖 =  −𝐷𝛻𝐶𝑖,  (74) 

where 𝒟  is a shift coefficient, which should be chosen as 𝒟 ≤ 0.5 ℎ2
. The 

concentration of particle i is obtained from the kernel function (W) 

 𝐶𝑖 =  ∑ 𝑉𝑗𝑗 𝑊𝑖𝑗,  (75) 

where 𝑉𝑗 is the volume of neighbour particles j. The gradient of the concentration is 

obtained from the kernel gradient as 

 𝛻𝐶𝑖 =  ∑ 𝑉𝑗𝑗 𝛻𝑊𝑖𝑗 .  (76) 

Monaghan [112] introduced an artificial function to stabilize the pressure 

 𝑓𝑖𝑗 = 𝑅(
𝑊𝑖𝑗

𝑊(𝑑𝑥)
)𝑛,  (77) 

where R and n are coefficients with values R = 0.2 and n = 4. This function is also used 

in the gradient of the concentration, which now becomes 

 𝛻𝐶𝑖 =  ∑ 𝑉𝑗𝑗 (1 + 𝑓𝑖𝑗) 𝛻𝑊𝑖𝑗 .  (78) 

The shift of an inner particle is described by 

 𝛿𝑟 𝑖 =  −𝐷 ∑ 𝑉𝑗𝑗 (1 + 𝑓𝑖𝑗)𝛻𝑊𝑖𝑗 .  (79) 

The above result cannot be applied at the free surface, for which a special treatment is 

needed. Here, the shift vector is described by 

 𝛿𝑟 𝑖 =  −𝐷 (
𝜕𝐶

𝜕𝑠
𝑠 + 𝛼 (

𝜕𝐶

𝜕𝑛
−  𝛽) 𝑛⃗ ),  (80) 

where 𝑠  and 𝑛⃗  denote the tangent and normal vectors to the free surface, β is a 

reference concentration gradient at the free surface. 𝛼 is a coefficient between 0 and 1 

to control the shift in the normal direction. The upper limit of the particle shift is 0.2 h 

[62], where h is the smoothing length. 

The linear correction of the velocity in the Fickian shift model, as proposed by [62] is 

 𝑣′⃗⃗  ⃗
𝑖 = 𝑣 𝑖 + (𝛻𝑣 𝑖) ∙ 𝛿𝑟 𝑖 ,  (81) 
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in which ∇𝑣 𝑖  is the velocity gradient. The Fickian shift model does not conserve 

momentum [62]. A relatively small numerical error is introduced in the interpolation 

of the velocity and the velocity gradient may introduce an error when the support 

domain is truncated, at the free surface. 

The above algorithms show that the Fickian shift model is rather complex and relies 

on several coefficients. The model (with velocity correction) is applied in the case 

studies (Section 5). 

 Models based on particle collisions 

In this section, the novel particle collision shift model is derived from the original 

particle collision model. For this purpose, the particle collision model [1] is described 

first. 

3.11.1. Particle collision model 

In the particle collision model, kinetic collision theory is applied to SPH particles, to 

deal with particle clustering. This is only performed when particles are (too) close 

together. The collisions are applied to the relative approach velocity so that the velocity 

components in other directions remain unchanged. To deal with collisions between 

more than two particles, the model is extended to simultaneous collisions, although 

this rarely occurs if the time step is chosen sufficiently small. Both elastic and inelastic 

collisions are considered, and the extent of elasticity is controlled by a coefficient of 

restitution (0 ≤ 𝐶𝑅 ≤ 1). The principle of the original particle collision model is 

described below, where collisions between particles are considered.  

Collisions between particles are applied when the following two criteria are satisfied: 
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 𝑑𝑖𝑗(𝑡) < 𝑑𝑐𝑜𝑙  and  𝑟 𝑖𝑗(𝑡) ∙ 𝑣 𝑖𝑗(𝑡) < 0,  (82) 

where 𝑑𝑖𝑗(𝑡) is the distance between particle i and j at time t, 𝑑𝑐𝑜𝑙  is the collision 

distance, 𝑟 𝑖𝑗(𝑡)  = 𝑟 𝑖(𝑡) − 𝑟 𝑗(𝑡)  and 𝑣 𝑖𝑗(𝑡) =  𝑣 𝑖(𝑡) − 𝑣 𝑗(𝑡)  are the relative position 

and velocity vectors, respectively. If the second term in Eq. (82) is negative, the 

particles approach each other. In the particle collision model, the change of the velocity 

of a particle i due to simultaneous collisions with neighbour particles j is  

 ∆𝑣 𝑖→𝑗 = −
1

𝑚𝑖+∑𝑚𝑗

∑𝑚𝑗 (1 + 𝐶𝑅)
(𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡))

𝑑𝑖𝑗(𝑡)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
.  (83) 

For a collision between two particles, the above equation reduces to 

 ∆𝑣 𝑖→𝑗 = −
1

𝑚𝑖+𝑚𝑗
𝑚𝑗(1 + 𝐶𝑅)

(𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡))

𝑑𝑖𝑗(𝑡)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
,  (84) 

where m is a particle mass, and 𝐶𝑅 is the coefficient of restitution, representing the 

elasticity of the collision. The change of the velocity is proportional but opposite to 

the approach velocity (𝑟 𝑖𝑗(𝑡) ∙ 𝑣 𝑖𝑗(𝑡))/𝑑𝑖𝑗(𝑡). With the above equation, it follows for 

the relative velocity between two particles due to a collision (superscript ’) 

 𝑣 𝑖𝑗
′ (𝑡) = [𝑣 𝑖𝑗(𝑡) −

(𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡))

𝑑𝑖𝑗(𝑡)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
] + {

(𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡))

𝑑𝑖𝑗(𝑡)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
} − (1 + 𝐶𝑅)

(𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡))

𝑑𝑖𝑗(𝑡)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
.  (85) 

Note that the relative velocity 𝑣 𝑖𝑗
′  is here split into the velocity in inter-particle 

direction {between braces} and the component perpendicular to that [between square 

brackets]. The last term is the change of the relative velocity due to a collision. This 

change of velocity is only in inter-particle direction, so that the perpendicular 

component always remains unchanged. This equation shows that for 𝐶𝑅 = 0  the 

approach velocity is reduced to zero, so that the particle velocities become (almost) 

parallel. For 𝐶𝑅 = 1 the approach velocity is reversed, so that the particle velocities 

diverge. Inelastic collisions (𝐶𝑅 = 0) appear to give more stable results, however, 

energy is dissipated [1], and with parallel particle velocities the separation of particles 

is not guaranteed. 
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The above concept is used in the derivation of the particle collision shift, which 

guarantees particle separation whilst the shift model itself is non-dissipative. 

 

3.11.2. Particle collision shift model 

In this section the new particle collision shift model is introduced and derived from 

the original particle collision model. For this purpose, the velocity term in Eq. (84) is 

considered. In Appendix A it is shown that the approach velocity can be approximated 

as 

 
𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
≈

𝑑𝑖𝑗(𝑡)−𝑑𝑖𝑗(𝑡−∆𝑡)

∆𝑡
.  (86) 

Substitution of Eq. (86) into Eq. (84) gives  

 ∆𝑣 𝑖→𝑗 ≈ −
𝑚𝑗

𝑚𝑖+𝑚𝑗
(1 + 𝐶𝑅)(

𝑑𝑖𝑗(𝑡)−𝑑𝑖𝑗(𝑡−∆𝑡)

∆𝑡
)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
.  (87) 

The shift induced by the collision velocity in timestep t is 

 ∆𝑟 𝑖→𝑗 = −
𝑚𝑗

𝑚𝑖+𝑚𝑗
(1 + 𝐶𝑅)(𝑑𝑖𝑗(𝑡) − 𝑑𝑖𝑗(𝑡 − ∆𝑡))

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
.  (88) 

In this result the previous distance 𝑑𝑖𝑗(𝑡 − ∆𝑡) appears. In case of an inelastic collision 

(𝐶𝑅 = 0), the particles are bounced back to their previous distance. This can be easily 

seen if the particle masses are equal (𝑚𝑖 = 𝑚𝑗). The bouncing back of particles is not 

the intention, it may even lead to instabilities and is undesirable. The intention is to 

avoid particle distances smaller than the collision distance. Therefore, the particle 

distance 𝑑𝑖𝑗(𝑡 − ∆𝑡) is replaced by 𝑑𝑐𝑜𝑙, leading to 

 ∆𝑟 𝑖→𝑗 = −
𝑚𝑗

𝑚𝑖+𝑚𝑗
(1 + 𝐶𝑅)(𝑑𝑖𝑗(𝑡) − 𝑑𝑐𝑜𝑙)

𝑟 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
.  (89) 

The above result describes the particle collision shift between two particles, if their 

distance is too small. 

Following Eq. (89), the shift of particle j due to a collision with particle i is  
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 ∆𝑟 𝑗→𝑖 = −
𝑚𝑖

𝑚𝑖+𝑚𝑗
(1 + 𝐶𝑅)(𝑑𝑗𝑖(𝑡) − 𝑑𝑐𝑜𝑙)

𝑟 𝑗𝑖(𝑡)

𝑑𝑗𝑖(𝑡)
.  (90) 

The relative position after the collision shift between the particles i and j now becomes 

 𝑟 𝑖𝑗
′ (𝑡) = 𝑟 𝑖𝑗(𝑡) + ∆𝑟 𝑖→𝑗 − ∆𝑟 𝑗→𝑖 = [(1 + 𝐶𝑅)

𝑑𝑐𝑜𝑙

𝑑𝑖𝑗(𝑡)
− 𝐶𝑅] 𝑟 𝑖𝑗(𝑡).  (91) 

So that the distance between particles i and j is 

 𝑑𝑖𝑗
′ (𝑡) = (1 + 𝐶𝑅) 𝑑𝑐𝑜𝑙 − 𝐶𝑅 𝑑𝑖𝑗(𝑡).  (92) 

For 𝐶𝑅 = 0 , the distance becomes  

 𝑑𝑖𝑗
′ (𝑡) = 𝑑𝑐𝑜𝑙 ,  (93) 

and for 𝐶𝑅 = 1 

 𝑑𝑖𝑗
′ (𝑡) = 2 𝑑𝑐𝑜𝑙 − 𝑑𝑖𝑗(𝑡).  (94) 

The above two equations show that the particle distance after an inelastic collision shift 

is constant and equal to the collision distance, whilst after an elastic collision shift, the 

distance is variable and larger than the collision distance. This shows that the inelastic 

collision shift is more stable than the elastic collision shift. This is consistent with the 

conclusion that inelastic collisions are more stable than elastic collisions [1]. 

For collisions between more than two particles, the concept of simultaneous collisions 

from [1] is applied. Substitution of Eq. (86) in Eq. (83) and following the steps from 

Eq. (88) to Eq. (89) leads to (𝑑𝑖𝑗 < 𝑑𝑐𝑜𝑙). 

 ∆𝑟 𝑖→𝑎𝑙𝑙𝑗 = −
∑𝑚𝑗(1+𝐶𝑅)(𝑑𝑖𝑗−𝑑𝑐𝑜𝑙)

𝑟⃗⃗ 𝑖𝑗

𝑑𝑖𝑗

𝑚𝑖+∑𝑚𝑗
.  (95) 

The above result is the full particle collision shift model. The process of collision 

shifting is shown in Fig. 2 for two and three particles, which are separated if they are 

too close together. 
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Fig. 2. The shift process after collisions of two and three particles with equal mass. 

When Eq. (95) is applied to more than two particles, the particle distances are no longer 

exactly equal to the collision distance for CR = 0. However, the distance between each 

particle becomes much closer to 𝑑𝑐𝑜𝑙  than it was before the collision. The (first) 

distance criterion (𝑑𝑖𝑗 < 𝑑𝑐𝑜𝑙) in Eq. (82) is also used in the particle collision shift 

model. Note that the (second) criterion in Eq. (82) is no longer necessary since the 

term (𝑟 𝑖𝑗 ∙ 𝑣 𝑖𝑗) no longer appears in the above equation. It is important to note that in 

the particle collision model, velocities are updated (and not positions), whilst in the 

particle collision shift model particle positions are updated (and not velocities). Thus, 

kinetic energy and linear momentum are conserved in the shift model. In Appendix B, 

it is proven that the conservation of potential energy is satisfied, so that the particle 

collision model in itself is energy conserving and non-dissipative. In this appendix it 

is also shown that angular momentum cannot be conserved in a shift process that 

conserves kinetic energy. 
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 Summary 

In this chapter, the basic methodology of SPH and the physical model in SPH as well 

as those coefficients are introduced. In addition, the derivation and demonstration of 

the novel collision shift model is conducted. This novel shift model will be validated 

in benchmark cases by the comparison with the Fickian shift model in next chapter.  
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Chapter 4 Validation of particle 

collision shift model in incompressible 

SPH (single-phase flow) 

 Introduction 

In last chapter, a new particle collision shift model is proposed. The shift is based on 

the change of velocity due to collisions, however the velocity itself remains unchanged. 

Owing to the latter, this not only satisfies the conservation of momentum, but also 

kinetic energy. It is proven that potential energy is conserved in a constant force field. 

Thus, the shift model is non-dissipative in real cases with gravitation. To avoid particle 

clustering (when particles are too close together) collision shifts are applied, noting 

that clustering is a local phenomenon at a scale smaller than the kernel support domain. 

Our model is validated in six benchmark cases, which are the decay of Taylor-Green 

vortices, the lid driven cavity, the rotation of a square fluid patch, the oscillation of a 

droplet, the propagation of a solitary wave and the dam break. The Fickian shift model 

(Section 3.10) and the new particle collision shift model (Section 3.11.2) are explored 

and compared in six case studies. For convenience, the following abbreviations are 

made: Fickian Shift (FS) and Collision Shift (CS). 

 

Following [62], the coefficients in FS are taken as follows, unless otherwise stated. 

The shift coefficient 𝒟 = 0.5 h2 in most cases. In the cases without free surface (Taylor-
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Green vortex in Section 4.2 and lid-driven cavity in Section 4.3), the free surface 

treatment in Eq. (80) is not applied. For slow flows of long durations (oscillation of 

droplet in Section 4.4 and rotation of square fluid patch in Section 4.5) 𝛼 = 0.1 and  

is the concentration gradient at the unperturbed plane free surface. For high-speed 

violent flows (solitary wave in Section 4.6 and dam break in Section 4.7) 𝛼 = 0, so 

that there is no shift in normal direction at the free surface.  

In the particle collision shift model, the collision distance 𝑑𝑐𝑜𝑙 is chosen equal to the 

initial particle distance in all cases. When the original particle collision model is 

applied in WCSPH, the collision distance is obtained from a minimum particle 

distance, occurring in a compressed state at maximum pressure [1]. The minimum 

particle distance also depends on the compressibility, as represented by the (artificial) 

wave speed [1]. The coefficient of restitution is chosen CR = 0 in all cases, representing 

an inelastic CS. In all cases a cube spline kernel [113] is used and the smoothing length 

is 1.2 ∆𝑥, where ∆𝑥, is the initial particle distance. To allow for a direct comparison 

of FS and CS, fixed time stepping is used (∆𝑡 = 0.001s). 

 

 Taylor-Green vortex 

The Taylor-Green vortex is a benchmark case which represents the unsteady flow of 

decaying vortices. This case is studied by e.g. [1,4,5,62]. In this case, an exact solution 

of the incompressible Navier-Stokes equations exists. In the two-dimensional case, the 

velocity and pressure fields are  

 (𝑢(𝑟,𝑡)
𝑣(𝑟,𝑡)

) = (
−𝑈0𝑐𝑜𝑠 (

2𝜋𝑥

𝐿
)𝑠𝑖𝑛 (

2𝜋𝑥

𝐿
)𝑒−𝑏𝑡

𝑈0𝑠𝑖𝑛 (
2𝜋𝑥

𝐿
)𝑐𝑜𝑠 (

2𝜋𝑥

𝐿
)𝑒−𝑏𝑡

),  (96) 

 𝑝(𝑟, 𝑡) = −
𝜌𝑈0

4
(𝑐𝑜𝑠 (

4𝜋𝑥

𝐿
) + 𝑐𝑜𝑠 (

4𝜋𝑦

𝐿
))𝑒−2𝑏𝑡，  (97) 
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where 𝑈0 is the velocity amplitude (𝑈0 = 1 𝑚/𝑠), L is the size of the squared fluid 

domain (L = 1 m), the exponent b represents the decay (𝑏 = 8𝜋2 𝑅𝑒⁄ ), x and y are the 

horizontal and vertical axis, 𝑢  and 𝑣  are the horizontal and vertical velocity 

components, respectively and 𝑝 is the pressure. The Reynolds number is here defined 

as 𝑅𝑒 = 𝑈0𝐿 𝜈 ⁄ , where 𝜈 is the kinematic viscosity of the fluid. The fluid density  = 

1 kg/m3 and the kinematic viscosity is varied to obtain the desired Reynolds numbers 

which are 𝜈 = 10-2, 10-3 and 10-6. 

As an initial condition a hexahedral particle distribution is chosen with 4200 particles. 

Simulations are performed at three different Reynolds numbers Re = 102, 103 and 106. 

The results of the simulations with FS and CS are shown in Fig. 3, in which the 

pressure contour and particle distribution are compared at 𝑅𝑒 = 103  at the 

dimensionless time 𝑡𝑈0 𝐿⁄ = 0.15. Standard ISPH suffers from particle layering as 

shown in Fig. 3 (a). The results obtained with FS in Fig. 3 (b) and the new particle 

collision shift model in Fig. 3 (c) are much better and show an almost regular particle 

distribution. Next, the decay of kinetic energy and maximum velocity is analysed to 

reveal the differences between FS and CS. 

 

 

            (a) Standard ISPH                      (b) FS                                (c) CS 

Fig. 3. Taylor-Green vortex (Re=103). Particle distribution at time  𝑡𝑈0/𝐿 = 0.15, 
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simulations with (a) standard ISPH, (b) FS, (c) CS. 

In Fig. 4 to Fig. 6 the decay of kinetic energy and maximum velocity is presented on 

the log scale, together with the relative errors of the FS and CS models at three 

Reynolds numbers Re = 102, 103 and 106, respectively. The kinetic energy of the 

system and the maximum velocity are used as a measure for the accuracy and stability 

of these models. The relative error is defined as 

 𝐸𝑟𝑒𝑙 =
𝑓𝑠𝑝ℎ−𝑓𝑡ℎ𝑒𝑜

𝑓𝑡ℎ𝑒𝑜
× 100%,  (98) 

where 𝑓𝑠𝑝ℎ is the simulation result whilst 𝑓𝑡ℎ𝑒𝑜 is the theoretical data. 

Fig. 4 shows the results at Re = 102.  It can be seen in the Fig. 4(a) and (b) that the 

decay obtained with the schemes is very similar, although there are small differences 

found in the relative errors. The results of FS are slightly better than CS, for both 

kinetic energy and maximum velocity. Fig. 5 shows the results at Re = 103. The results 

of CS here are the best for both kinetic energy and maximum velocity. The differences 

between the schemes are larger here. At Re = 103 the errors in CS are 4% lower in 

kinetic energy and 3% lower in maximum velocity than in FS at t = 10 s. Fig. 6 shows 

the results at Re = 106. This case is no longer laminar but turbulent. It should be noted 

that no turbulence model is used in this case, like other researchers have done [1,5]. 

Now the decay is very slow, resulting in an almost constant kinetic energy and 

maximum velocity. The fluctuation in the maximum velocity is the highest here, which 

may be expected in this more violent case. FS is performing reasonably well for both 

kinetic energy and maximum velocity. However, the error in the kinetic energy of CS 

is about 10% lower whilst the error in the maximum velocity is 10% higher than that 

of FS at t = 10 s. High Reynolds numbers will cause turbulent viscosity, however, 

physical dissipation and numerical dissipation are hard to be separated, and there is no 
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turbulence model implementation for this case. The dissipation here can be considered 

as numerical dissipation. 
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Fig. 4. Taylor Green vortex. Comparison of FS and CS models at Re = 102. The panels 

show (a) kinetic energy, (b) maximum velocity, (c) relative error of kinetic energy, (d) 

relative error of maximum velocity. 
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Fig. 5. Taylor Green vortex. Comparison of FS and CS models at Re = 103. The panels 

show (a) kinetic energy, (b) maximum velocity, (c) relative error of kinetic energy, (d) 

relative error of maximum velocity. 
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Fig. 6. Taylor Green vortex. Comparison of FS and CS models at Re = 106. The panels 

show (a) kinetic energy, (b) maximum velocity, (c) relative error of kinetic energy, (d) 

relative error of maximum velocity. 
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Table 1. Average absolute error of pressure, horizontal and vertical velocity at the 

instant t = 1 s. 

Reynolds number Re=102 Re=103 Re=106 

Shift scheme CS FS CS FS CS FS 

P 0.008 0.011 0.014 0.019 0.022 0.026 

U 0.025 0.026 0.020 0.021 0.025 0.023 

V 0.028 0.028 0.022 0.022 0.0276 0.016 

 

 
                         (a)                                             (b)                                            (c) 

Fig. 7. Taylor Green vortex. Comparison of FS and CS at Re = 102 and t = 1 s. The 

panels show (a) pressure profiles along x = 0.5 m, (b) horizontal velocity profiles along 

x = 0.5 m, (c) vertical velocity profiles along y = 0.5 m. 
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                         (a)                                             (b)                                           (c) 

Fig. 8. Taylor Green vortex. Comparison of FS and CS at Re = 103 and t = 1 s. The 

panels show (a) pressure profiles along x = 0.5 m, (b) horizontal velocity profiles along 

x = 0.5 m, (c) vertical velocity profiles along y = 0.5 m. 

 
                         (a)                                            (b)                                             (c) 

Fig. 9. Taylor Green vortex. Comparison of FS and CS at Re = 106 and t = 1 s. The 

panels show (a) pressure profiles along x = 0.5 m, (b) horizontal velocity profiles along 

x = 0.5 m, (c) vertical velocity profiles along y = 0.5 m. 
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Fig. 10. Taylor Green vortex, results of CS. (a) Relative error of kinetic energy in time 

at four particle resolutions. (b) Pressure at centre point (0.5, 0.5) in time at four particle 

resolutions. (c) Convergence of the RMS error of pressure with increasing particle 

resolution (∆𝑥 → 0). 

In Fig. 7 to 8 pressure and velocity profiles at the three above-mentioned Reynolds 

numbers are shown at the instant t = 1 s like [4,5,62]. The pressure and horizontal 

velocity of particles along the vertical line x = 0.5 m, and the vertical velocity of 

particles along the horizontal line y = 0.5 m are shown in the panels (a), (b) and (c), 

respectively. Both FS and CS show a reasonable agreement with theory. The average 

absolute error is defined as 

 𝐸̅𝑎𝑏𝑠 =
∑ |𝑓𝑖

𝑠𝑝ℎ
−𝑓𝑖

𝑟𝑒𝑎𝑙|𝑁
𝑖=1

𝑁
 ,  (99) 

where N is the total number of the particles within a bandwidth  ∆𝑥 of the two lines. 

The results in  
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Table 1 show that the errors in pressure obtained with CS are all lower than with FS, 

whilst the errors in velocity are lower with CS, except at the highest Reynolds number. 

Fig. 10(a) and (b) show the relative error of the kinetic energy and pressure at centre 

point (0.5, 0.5) at four resolutions, obtained with CS. Both errors are decreasing with 

increasing resolution and showing convergence. Fig. 10(c) shows the order of 

convergence of the root of the mean square (RMS) of the relative error in the pressure 

at the centre point, which is approximately 1.07. 

Table 2 provides information about the required CPU (Intel(R) Xeon(R) CPU E5-1620 

v4@ 3.50GHz) time for each of the shift schemes. FS needs a kernel summation to 

evaluate the shift of all particles, which is computationally more expensive. CS is an 

inter-particle concept, which does not need a kernel summation. The inter-particle 

concept is here computationally 16% cheaper as shown in Table 2. 

 

Table 2. Taylor green vortex. Required CPU time for 5 seconds of simulation time at 

a resolution ∆𝑥 =
1

200
𝑚. 

Method CS FS 

CPU time [s] 3805.83 4432.75 

 

 Lid driven cavity 

The lid driven cavity is a typical shear driven flow, where no-slip boundaries play a 

significant role. Several researchers have used this case to validate their SPH methods 

[4,96,108,114]. The parameters are commonly chosen as follows. The size of the 
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square fluid domain is 𝐷 = 1.0 𝑚, the velocity of the lid at the top of the cavity is U 

= 1.0 𝑚/𝑠 and the Reynolds number is 𝑅𝑒 = 𝑈𝐷/𝜈, where the kinematic viscosity is 

varied to obtain the desired Reynolds numbers (Re = 100, 400, 1000). The density of 

the fluid is 1 kg/m3. 

In Fig. 11, the steady state solution is shown as obtained with standard ISPH, FS and 

CS. Standard ISPH suffers from particle clustering from the start of the simulation. 

This can be seen in Fig. 11(a) at the left and right top corners before any vortex is 

formed. In contrast, the particle clustering does not appear in the results obtained with 

FS and CS. Here the vortex is very stable and shows excellent agreement between the 

two methods.  

 

         

(a) Standard ISPH (t = 0.06 s)          (b) FS (t = 5 s )                        (c) CS (t = 5 s) 

Fig. 11. Lid-driven cavity (Re = 1000). Particle distribution with velocity magnitude 

(colour bar), simulations with (a) standard ISPH; (b) FS; (c) CS. 

To assess the accuracy of the results, profiles of the horizontal velocity component (u) 

along the vertical at x = 0.5 m and vertical velocity component (v) along the horizontal 

at y = 0.5 m are considered in the Fig. 12 to 16. 

In the Fig. 12 to 14 the velocity profiles at Re = 100, 400, 1000 are presented, as 
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obtained with CS for three resolutions (∆𝑥 = 1/80 m, ∆𝑥 = 1/160 m and ∆𝑥 = 1/240 

m), with a validation against simulations obtained with a multigrid finite volume 

method from Ghia et al. [37]. The figures show that with increasing resolution, the 

results are closer to those of Ghia et al [115]. This tendency can also be seen in Table 

3 where the average absolute error of the horizontal velocity is given for Re = 1000. 

Table 3. Lid driven cavity. Average absolute error of CS in the horizontal velocity at 

Re = 1000 for different resolutions. 

∆𝑥 (m) 1/80 1/160 1/240 

Average absolute error 0.997 % 0.257% 0.132 % 
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Fig. 12. Lid driven cavity. Velocity profiles of CS for three resolutions at Re = 100. 

(a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m. 
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                                    (a)                                                                (b) 

Fig. 13. Lid driven cavity. Velocity profiles of CS for three resolutions at Re = 400. 

(a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m. 
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                                    (a)                                                                (b) 

Fig. 14. Lid driven cavity. Velocity profiles of CS for three resolutions at Re = 1000. 

(a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m.  
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                                     (a)                                                               (b) 

Fig. 15. Lid driven cavity. Velocity profiles of FS and CS at Re = 100 and medium 

resolution. (a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m.  
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Fig. 16. Lid driven cavity. Velocity profiles of FS and CS at Re = 400 and medium 

resolution. (a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m.  
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Fig. 17. Lid driven cavity. Velocity profiles of FS and CS at Re = 1000 and medium 

resolution. (a) Horizontal velocity at x = 0.5 m, (b) vertical velocity at y = 0.5 m. 

 

Table 4. Average absolute error of horizontal and vertical velocity at medium 

resolution (∆𝑥 = 1/160m). 

 Re = 100 Re = 400 Re = 1000 

CS horizontal velocity 2.016% 0.217% 0.257% 

FS horizontal velocity 2.697% 0.429% 0.130% 

CS vertical velocity 0.123% 0.808% 2.761% 

FS vertical velocity 0.201% 0.214% 1.858% 

 

In the Figs. 15 to17 velocity profiles at Re = 100, 400, 1000 and medium resolution 

(∆𝑥 = 1/160 m) are presented, obtained with FS and CS, and again compared with the 

results from Ghia et al. [115]. The results of FS and CS are nearly the same and are in 

a reasonable agreement with those of Ghia. 
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Table 4 shows the average absolute error of the horizontal and vertical velocity 

components, obtained with FS and CS at medium resolution. The errors of FS and CS 

are of the same order.  

In Fig. 18(a) the pressure profiles at Re = 1000, as obtained with CS for four resolutions 

(∆𝑥 = 1/40 m, ∆𝑥 = 1/80 m, ∆𝑥 = 1/160 m and ∆𝑥 = 1/320 m), are validated against 

simulations performed with STAR_CD commercial CFD software, taken from [4]. 

The figure shows that with increasing resolution, the results are closer to those of 

STAR_CD. In Fig. 18(b) the order of convergence, evaluated as the root of the mean 

square (RMS) of the error in the pressure along the diagonal line (from (0.0, 0.0) to 

(1.0, 1.0)), is plotted for Re = 1000. The results show that the order of convergence is 

approximately 1.36. 

 

                                      (a)                                                           (b) 

Fig. 18. Lid driven cavity. (a) Pressure profile along the diagonal line, from (0.0, 0.0) 

to (1.0, 1.0) for CS at four particle resolutions. (b) Convergence of the RMS error of 

pressure for Re = 1000 with increasing particle resolution (∆𝑥 → 0). 
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 Oscillation of a droplet 

The third case is an inviscid free surface flow in which a two-dimensional droplet is 

oscillating under a fictive force. This case is proposed and analysed by Monaghan and 

Rafiee [32], followed by Antuono et al. [116], Sun et al. [117] and Khayyer et al. [5]. 

The periodic motion of the droplet is driven by a conservative field -Ω2 r, where Ω is 

a dimensional parameter which is chosen to be equal to 1.2 s−1. The initial shape of 

the droplet is a circle with radius of 0.5 m. And the initial velocity distribution at 

𝑡 =  𝑡0 is 

 {
𝑢(𝑡0) =    𝐴(𝑡0)𝑥  

𝑣(𝑡0) = −𝐴(𝑡0)𝑦 ,
    (100) 

where 𝐴(𝑡0) is 0.4 s−1. The period of the oscillation is 𝑇 = √2𝜋/Ω ≈ 3.70 s. The 

resolution is varied from low to high by choosing five different initial particle distances 

of ∆𝑥 = 1/50, 1/100, 1/150, 1/200, and 1/300 m. The density of the fluid is 1000 kg/m3. 

 

                                (a)                                                               (b) 

Fig. 19. Oscillation of droplet. Particle distribution and pressure (color bar) after 5.4 

oscillations (t = 20 s), at resolution ∆𝑥 = 1/100 m, (a) FS, and (b) CS. 
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                             (a)                                                                (b) 

Fig. 20. Oscillation of droplet. Particle distribution and pressure (color bar) after 5.4 

oscillations (t = 20 s), at resolution ∆𝑥 = 1/300 m, (a) FS, and (b) CS. 

 

The results of FS and CS are shown in Fig. 19(a) and (b) after a simulation time of 20 

s for the low resolution ∆𝑥 =  1/100 m  case. The details of the free surface are shown 

in the square boxes. In FS the free surface treatment in Eq. (80) is applied to free 

surface particles. However, the details in Fig. 19(a) still show a small unphysical gap 

between the outer particle layer and inner particles, which is also observed and shown 

in [5]. In CS no free surface treatment is needed. Here, the gap between free-surface 

particles and inner particles does not exist. In Fig. 20(a) and (b) the results of the two 

schemes are shown at a higher resolution ∆𝑥 = 1/300 m. At this resolution, the droplets 

in both figures have nearly the same elliptical shape. In the details of Fig. 20 (a) the 

gap between the free-surface particles and inner particles still exists. Again, with CS, 

no gap appears, as shown in the details of Fig. 20 (b). 

The oscillation of the droplet is quantified by considering the expansion and 

contraction of the semi-major axis, the decay of kinetic energy and decay of potential 
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energy (∑ 0.5𝑁
𝑖=1 𝑚𝑖𝛺

2(𝑥𝑖
2 + 𝑦𝑖

2)) in time, following [5,32]. In Fig. 21 the expansion 

of the vertical semi-major axis, obtained with FS and CS is compared with theory. The 

results at low and high resolution are presented in Fig. 21(a) and (b). The half-length 

of the semi-major axis obtained with FS is no longer oscillating around b = 0.5 m but 

drifts away from the theoretical solution for both resolutions. The results simulated 

with CS show no drifting and almost no decay, as it should be according to theory. 

Fig. 22(a) and (b) show the decay of kinetic energy at low and high resolution. The 

kinetic energy obtained with FS decays faster at low resolution than at high resolution. 

The results of CS are nearly 15% closer to the theoretical solution at a lower resolution 

at t = 20 s. For an inviscid flow, the total energy remains conserved, so that there is no 

decay in the kinetic energy. Fig. 23 (a) and (b) show the potential energy in time at 

low and high resolution. The potential energy obtained with FS is increasing in time, 

whilst the decay of kinetic energy decreases. This is attributed to the unphysical gap 

near the free surface. The shift of the particles at the free surface affects the potential 

energy, which is larger than the theoretical value in both resolutions. In contrast, the 

results obtained with CS show a good agreement with theory at high resolution, whilst 

a slight decay can be seen at low resolution. At high resolution, there is no visible 

decay of potential energy. It is thus demonstrated that, although potential energy is 

strictly not conserved with CS in this case with the radial fictive force field, it is 

practically conserved. 

Fig. 24 (a) shows the relative error of CS in the total energy, defined as the sum of 

potential and kinetic energy, for five resolutions. The error is 6% for the lowest 

resolution and 0.03% for the highest resolution at t = 20 s and shows convergence with 

increasing resolution. Fig. 24 (b) illustrates the order of convergence of the root of the 
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mean square (RMS) of the relative error in the total energy. The results show that the 

order of convergence is approximately 2.6. 

Table 5 provides information about the required CPU (Intel(R) Xeon(R) CPU E5-1620 

v4@ 3.50GHz) time for both shift schemes at all five resolutions. This table shows 

again that an inter-particle concept (CS) is computationally cheaper than a concept 

based on a kernel summation (FS). From table 5 it is concluded that the total CPU time 

is on average reduced by 20% with CS compared to FS. 
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                                     (a)                                                               (b) 

Fig. 21. Expansion of vertical semi-axis of oscillating droplet. FS and CS at 

resolutions: (a) ∆𝑥 = 1/100 m, (b) ∆𝑥 = 1/300 m. 
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                                     (a)                                                               (b) 

Fig. 22. Kinetic energy of oscillating droplet. FS and CS at resolutions: (a) ∆𝑥 =

1/100 m, (b) ∆𝑥 = 1/300 m. 
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                                     (a)                                                               (b) 

Fig. 23. Potential energy of oscillating droplet. FS and CS at resolutions: (a) ∆𝑥 =

1/100 m, (b) ∆𝑥 = 1/300 m. 
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                                     (a)                                                               (b) 

Fig. 24. (a) Relative error of the total energy in time, for CS at five particle resolutions. 

(b) Convergence of the RMS error of total energy with increasing particle resolution 

(∆𝑥 → 0).  

Table 5. Oscillation of a droplet. Required CPU time for 20 seconds of simulation time 

at five resolutions 

 ∆𝑥 = 1/50m ∆𝑥 = 1/100 m ∆𝑥 = 1/150 𝑚 ∆𝑥 = 1/200 m ∆𝑥 = 1/300 m 

FS 1207.73s 3818.81s 8476.52s 15863.65s 53275.98s 

CS 976.22s 2737.26s 6573.86s 13341.94s 45340.26s 

 

 Evolution of a square patch of fluid 

In this case the evolution of a square patch of an inviscid fluid is studied, which 

deforms under a prescribed constant vorticity. The case is used previously to evaluate 

stabilization methods, including shift schemes based on Fick’s law, both in ISPH and 

WCSPH (e.g. [5,117]). Here the case is used to compare CS and FS. The initial state 

of the fluid is a square patch with size L = 1 m, and the vorticity of the flow field is a 
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constant 2𝜔, where the angular velocity is chosen as 𝜔 =10 rad/s. The density of the 

fluid is 1000 kg/m3. The initial velocity distribution at 𝑡 = 𝑡0 is 

 {
𝑢(𝑡0) =     𝜔𝑦
𝑣(𝑡0) = −𝜔𝑥

  (101) 

Simulations with FS and CS are performed at resolution ∆𝑥 = 1/100 m, until the 

stage 𝑡𝜔 = 8 rad is reached. The shift coefficient 𝒟 in FS is varied from 0.0 to 0.5 h2. 

The best results are obtained with 𝒟 = 0.1 ℎ2 and presented here. The results of FS 

and CS are shown in Fig. 25 to Fig. 31. 

In Fig. 25 to 26 snapshots are shown obtained with standard ISPH, FS and CS at 𝑡𝜔 =

1.2, 2.0 and 4.0 rad, together with the Lagrangian finite-difference method (LFDM) 

[118] in Fig. 25 and 26 and boundary element method (BEM) [118] in Fig. 27 solution 

for the free surface. The result obtained with standard ISPH in Fig. 25(a) shows some 

particle layering and clustering near the free surface. This is not seen with FS and CS 

in Fig. 25 (b) and (c). The free surface contours obtained with FS and CS are nearly 

the same and match well with the LFDM solution. The particle distribution at a later 

stage is shown in Fig. 26. Here, the results obtained with standard ISPH show a severe 

particle clustering such that the free surface and pressure distribution are affected, 

whilst the particle distributions of FS and CS still fit well within the BEM solution. 

Fig. 27 shows that the result of standard ISPH is now rather chaotic. The free surfaces 

with FS and CS still have a good agreement with the BEM solution. The details of Fig. 

27 for FS ( 𝒟 = 0.1 ℎ2 ) and CS at 𝑡𝜔 = 4.0 rad are shown in Fig. 28, where the result 

of FS ( 𝒟 = 0.2 ℎ2 ) is added for comparison. The result with FS ( 𝒟 = 0.2 ℎ2 ) shows 

some peaks at the free surface, violating the BEM solution, which are not seen with 

FS ( 𝒟 = 0.1 ℎ2 ) and CS, demonstrating that the shift coefficients in FS are case 

dependent. 
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Further results at 𝑡𝜔 = 8.0 rad are shown in Fig. 29 (BEM solution is not available 

here). The result with standard ISPH is seriously clustering. In contrast, with CS and 

FS ( 𝒟 = 0.1 ℎ2 ) particle clustering is effectively prevented, even at this late stage.  

The error in the kinetic energy obtained with FS and CS is shown in Fig. 30. For this 

case with an inviscid fluid, the kinetic energy theoretically remains at its initial value. 

With both shift schemes, the error is less than 5% when 𝑡𝜔 < 4.0 rad. The result 

obtained with CS is again slightly better than FS. 

Next the pressure time history of the centre of the fluid patch is considered, following 

[5,117]. The results in Fig. 31 show that the dimensionless pressures obtained with FS 

and CS have the same trend as the BEM solution. However, a small deviation is shown 

between the SPH results and the BEM solution from the beginning to the end. The 

result of CS is slightly better than FS as revealed in Fig. 31(b).  

 

 

                          (a)                                       (b)                                    (c)                                        

Fig. 25. Square fluid patch. Particle distribution with pressure at 𝑡𝜔 = 1.2 (a) standard 

ISPH, (b) FS, (c) CS. 
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                          (a)                                       (b)                                    (c)                                        

Fig. 26. Square fluid patch. Particle distribution with pressure at 𝑡𝜔 = 2.0 (a) standard 

ISPH, (b) FS, (c) CS. 

 

                          (a)                                       (b)                                    (c)                                        

Fig. 27. Square fluid patch. Particle distribution with pressure at 𝑡𝜔 = 4.0 (a) standard 

ISPH, (b) FS, (c) CS. 
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                          (a)                                       (b)                                    (c)                                        

Fig. 28. Square fluid patch. The details of particle distribution with pressure at 𝑡𝜔 =

4.0, (a) FS ( 𝒟 = 0.2 ℎ2), (b) FS ( 𝒟 = 0.1 ℎ2), (c) CS. 

 

                          (a)                                       (b)                                    (c)                                        

Fig. 29. Square fluid patch. Particle distribution with pressure at 𝑡𝜔 = 8.0 (a) standard 

ISPH, (b) FS, (c) CS. 
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Fig. 30. Square fluid patch. The relative error of kinetic energy. 
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                                       (a)                                                                (b) 

Fig. 31. Square fluid patch. (a) Pressure time history of mid-point and (b) its detail. 

 

 Solitary wave 

The four cases in the previous sections are theoretical cases. The fifth case is an 

engineering problem. Also, here CS is explored and compared with FS. Solitary waves 

are violent sea waves in complex ocean environments. During an earthquake for 

example waves are generated by the intense movement of the earth's crust. Following 

Zheng et al. [63] and Ma and Zhou [119], the impact of a solitary wave on a vertical 

wall is studied. The case set up is shown in Fig. 32. The length of the reservoir is 10 

m and its depth is 0.25 m. The pressure is recorded at point P1 on the wall, 0.05 m 

above the base. The fluid is water with a density of 1000 kg/m3 and viscosity of 0.001 

Pa∙s. The wave is generated by a vertical pushing plate, following [119].  

This case is simulated with standard ISPH, FS and CS at a resolution of ∆𝑥 =

1 100⁄  m and compared with experimental data from [63].  
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Fig. 32. Impact of a solitary wave on a vertical wall. 

      

Fig. 33. Solitary wave simulated with CS at (a) t = 1.2 s, (b) t = 3 s, (c) t = 5 s and (d) 

t = 8 s. Pressure on color bar.  

The results of a simulation obtained with CS at four different instants are shown in Fig. 

33. The pressure distribution of the stratified flow shows layers that remain stable 

whilst no particle clustering is seen. 

Fig. 34 (a) to (c) shows the particle distribution obtained with standard ISPH, FS and 

CS at t = 1.2 s. With standard ISPH the layering of the pressure is broken due to particle 

clustering, as seen in Fig. 34 (a). With FS and CS, the particle distribution and layering 

remain stable. 

In Fig. 35(a) and (b) the free surface obtained with FS and CS is compared with an 

analytical solution from [6] at the instants t = 2.0 s and t = 3.1 s. The results of FS and 

CS are very similar. At the peak of the wave, CS shows a slightly better agreement 

with the analytical solution at t = 3.1 s.  
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                          (a)                                       (b)                                    (c)                                        

Fig. 34. Solitary wave. Particle distribution at t = 1.2 s obtained with (a) Standard 

ISPH, (b) FS and (c) CS. 
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                                    (a)                                                               (b) 

Fig. 35. Free surface of solitary wave. Comparison of FS and CS with analytical 

solution, (a) t = 2 s, (b) t = 3.1 s. 

In Fig. 36 the pressure at point P1 obtained with FS and CS is compared with 

experimental data from [63]. With FS the impact pressure of the solitary wave exceeds 

the experiment, the first peak appears slightly earlier and both peak values are larger. 

With CS the impact pressure is still larger but closer to the experiment. Here the first 

peak appears at the same instant as in the experiment, but the instant of the second 

peak is later than in the experiment. And the value of those two peaks of CS are closer 

to experiment than FS. Overall, CS performs slightly better. 
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Fig. 36. Pressure at point P1 in solitary wave. Comparison of CS and FS with 

experimental data. 

 

 Dam break 

The two-dimensional dam-break is also an engineering problem, which is a classic 

SPH benchmark case with free-surface (e.g.[6,26,63,120]). In this case CS and FS are 

compared and evaluated against experimental data. The set-up is given in Fig. 37 with 

water column length L, height H and basin length D, with a pressure measuring point 

P1 on the right wall at height h1. The fluid is water with a density of 1000 kg/m3 and 

viscosity of 0.001 Pa∙s. Two scenarios are simulated. In both cases the diffusion 

coefficient 𝒟 in FS is varied from 0.0 to 0.5 h2. 

In the first scenario L = 2 m, H =1 m, D = 5.366 m and h1 = 0.14 m, following [35,62]. 

The initial particle distance is 0.01 m. The best results with FS are obtained for 𝒟 =

0.1 ℎ2 and presented here. 

In Fig. 38 to 39 results obtained with standard ISPH, FS and CS are shown at the 

dimensionless instant of time 𝑡√𝑔/𝐻 = 0.85. From the detailed view of Fig. 38(b) it 
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is observed that standard ISPH suffers from particle clustering and layering, which 

affects the pressure distribution. The results of FS and CS are nearly the same and 

much better than those of standard ISPH. 

 

Fig. 37. Set-up of the dam break case. 

 

 

 

                                     (a)                                                               (b) 

Fig. 38. Dam break. Standard ISPH at time 𝑡√𝑔/𝐻 = 0.85 , (a) global view, (b) 

detailed view at water front. 
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                                     (a)                                                               (b) 

Fig. 39. Dam break. FS at time 𝑡√𝑔/𝐻 = 0.85. (a) global view, (b) detailed view at 

water front. 

 

 

                                     (a)                                                               (b) 

Fig. 40. Dam break. CS at time 𝑡√𝑔/𝐻 = 0.85. (a) global view, (b) detailed view at 

water front.  
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(d) 

Fig. 41. Evolution of dam break. Comparison of the free surface contours of FS and 

CS with Marrone et al. [26] at instants (a)  𝑡√𝑔/𝐻 = 1.5 , (b) 𝑡√𝑔/𝐻 = 3.0 , (c) 

𝑡√𝑔/𝐻 = 5.7 , (d) 𝑡√𝑔/𝐻 = 6.45 , together with the particle distribution of CS 

(dimensionless pressure on color bar). 



83 

 

0 1 2 3 4 5 6 7

0

2

P
/

g
H

t(g/H)1/2

 Exp

 FS

 CS

 

Fig. 42. Time histories of pressure at point P1 in dam break case Validation of FS and 

CS against experimental data from Zhou et al. [121]. 
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                                     (c)                                                             (d) 

Fig. 43. Dam break. A comparison of numerical results (lines) with experimental data 

(squares) (a) waterfront evolution in time, (b) detail of (a), (c) water column height 

(highest point of water column) evolution in time, (d) detail of (c). Note in either case 

the lengths are scaled with respect to their initial values L, while times are scaled by 

√𝑔/𝐻.  
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                   (a)                                       (b)                                    (c)                                        

Fig. 44. Pressure distrbution at instant 𝑡√𝑔/𝐻 = 4.2 obtained with (a) FS of Lind et 

al. [62], (b) FS and (c) CS. 

 

In Fig. 41 the evolution of the dam break is shown at four instants 𝑡√𝑔/𝐻 = 1.5, 3.0, 

5.7 and 6.45. Here the particle distribution of CS is shown together with the free 

surface profiles of CS, FS and -SPH from Marrone et al. [26] which is stable and 

accurate. Before the wave front impacts at the right wall, the free surface contours of 

CS and FS are in good agreement with -SPH as shown in Fig. 41 (a) and (b). After 

this impact, the free surface contours of CS match better with -SPH than FS, before 

the cavity appears in Fig. 41 (c) and around the cavity in Fig. 41 (d). It is interesting 

to see those results of ISPH with CS are very similar to those of -SPH here. 

In Fig. 42 the pressure time histories at point P1 are shown. The results obtained with 

FS and CS are validated against experiments from Zhou et al.[121]. The results of FS 

and CS are similar, and both show higher transient pressures than in the experiment, 

whilst the second pressure peak appears later than in the experiment. 
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In the second scenario the dimensions are L = 0.1 m, H = 2.0 L and D = 4.0 L. The 

best results with FS are obtained for 𝒟 = 0.05 ℎ2 and presented here. In Fig. 43 the 

time evolution of the waterfront and height of the water column obtained with FS and 

CS are validated against experiments from Martin et al. [122]. The waterfront moves 

faster than in the experiment, whilst the water column heights of the SPH methods 

show a reasonable match with the experiment. The results of our FS are almost the 

same as the results of Lind et al. [62], which may be expected since the same Fickian 

shift model is applied. The details of the waterfront in Fig. 43 (b) show that the results 

of CS are slightly closer to the experiment. The details of the water column height in 

Fig. 43 (d) show that the results of our FS, FS of Lind and CS are practically the same. 

In Fig. 44 the pressure distribution of the breaking wave is shown at the instant 

𝑡√𝑔/𝐻 = 4.2 . The results obtained with CS, FS and FS of Lind et al. [62] are also 

here very similar, whilst the results of both FS and CS show a steep vertical wave that 

is smoother and without particle scatter. 

 

 Summary 

A new particle shift model based on collisions to avoid particle clustering is introduced. 

It is based on the particle collision model from Kruisbrink et al. [1]. The latter is 

obtained from kinetic collision theory, which ensures the conservation of momentum, 

whilst no energy is dissipated for fully elastic collisions. In the particle collision shift 

model, the shift is also evaluated from kinetic collision theory. However, the change 

of velocity due to collisions is no longer applied, so that the kinetic energy is not 

affected. Just like in the original particle collision model, the shift is applied in the 
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inter-particle direction only, whilst the magnitude of the shift depends on the particle 

masses. The concept is introduced as the “particle collision shift” (CS) model. 

A comparative study into the accuracy, stability, computational efficiency, and 

dissipative properties is conducted between the particle collision shift model and the 

Fickian shift model. These are explored in six case studies. In the Taylor-Green vortex 

case, the collision shift model is more stable and accurate than the Fickian shift model, 

both at low and high Reynolds numbers. The collision shift model as an inter-particle 

model is computationally faster than the Fickian shift model. In the lid driven cavity 

case, the results obtained with the collision shift and Fickian shift models are nearly 

the same as those of a multigrid finite volume solution. In the oscillating droplet, the 

Fickian shift model suffers from dissipation, whilst the collision shift model does not. 

In the evolution of a square fluid patch, the free surface obtained with the collision 

shift model is slightly smoother and in closer agreement with the BEM solution from 

literature than the Fickian shift model. In the solitary wave case, the impact pressure 

obtained with the collision shift model slightly matches better with experimental data. 

In the two scenarios of the dam break case, the results obtained with the collision shift 

model also show a slightly better match with the experiment. The solitary wave and 

dam break cases demonstrate that the collision shift model can be applied to 

engineering problems. 

The particle collision shift model is an inter-particle model that is only active when 

the distance between two particles is too small. On the other hand, the Fickian shift 

model is a kernel-based model that is always active, i.e. all particles are shifted at every 

time step. The collision shift model in itself preserves kinetic energy as well as 

potential energy in a constant force field, like gravitation. As such, the model is non-
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dissipative in many real cases. Linear momentum is conserved, whilst angular 

momentum cannot be conserved in a shift process that conserves (kinetic) energy. The 

collision shift model does not need a special treatment at the free surface, whilst this 

is needed in the Fickian shift model because the support domain is truncated here. 

In conclusion, the results obtained with the collision shift model show a slight 

improvement compared with the Fickian shift model, whilst the model is much simpler 

and computationally cheaper. The collision shift model is a stable, efficient and robust 

model, which has great potential for application in engineering problems. 
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Chapter 5 Validation of particle 

collision shift model in weakly 

compressible SPH (multi-phase flow) 

 Introduction 

In Chapter 4, the accuracy, stability, computational efficiency, and dissipative features 

of the particle collision shift model were validated against the Fickian shift model in 

single-phase flow by ISPH. In this chapter, the particle collision shift model in 

multiphase flow is verified. As discussed in Chapter 3, weakly compressible SPH 

(WCSPH) is more suitable for multiphase flow but exhibits greater pressure 

fluctuation, whereas δ-SPH can improve the pressure stability in standard WCSPH. A 

hybrid method, which combines the δ-SPH and collision shift models, was 

investigated in five benchmark case studies, including one single-phase case and four 

multiphase cases. For convenience, the following abbreviations are used: standard 

WCSPH and collision shift model (SPH_CS) and δ-SPH and collision shift model (δ-

SPH_CS). 

 

In the single-phase case (Taylor–Green vortex in Section 5.1), a comprehensive 

analysis of δ-SPH_CS was conducted by comparing it with standard SPH, δ-SPH and 

SPH_CS. For the remaining four multiphase cases, only δ-SPH_CS was applied. The 

parameters of the artificial coefficient (𝜆) and artificial viscosity (𝛼) of δ-SPH were 
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case-dependent [38]. For the low-density ratio (
𝜌𝑑𝑒𝑛𝑠𝑒

𝜌𝑙𝑖𝑔ℎ𝑡
< 10) flow (Rayleigh–Taylor 

instability in Section 5.2) and static flow (stagnate multiphase flow in Section 5.3), 𝜆 

= 1 and 𝛼 = 0. For the high-density (
𝜌𝑑𝑒𝑛𝑠𝑒

𝜌𝑙𝑖𝑔ℎ𝑡
> 10) ratio dynamic flow (multiphase dam 

break in Section 5.4 and multiphase sloshing tank in Section 5.5), 𝜆 = 1 and 𝛼 = 0.03. 

The collision distance dcol was selected to be equal to the initial particle distance, and 

the coefficient of restitution CR was selected to be 0 in all cases. 

 Taylor–Green vortex in WCSPH 

The first benchmark case was the Taylor–Green vortex as described in Chapter 3, in 

which it was tested using the ISPH method. To investigate the collision shift model in 

WCSPH, this case used in Chapter 4 was simulated again using WCSPH. Here, the 

initial condition, properties of the fluid and exact solution followed Eqs. (96) and (97) 

in Chapter 4. 
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                              (a)                                                               (b) 

  

                              (c)                                                               (d) 

Fig. 45. Taylor-Green vortex (Re=102). Particle distribution at time  𝑡𝑈0/𝐿 = 0.3, 

simulations with (a) standard WCSPH; (b) 𝛿-SPH; (c) SPH_CS, (d) 𝛿-SPH_CS. 

 

Simulations were performed at a Reynolds number Re of 102. The results of the 

simulations obtained with standard WCSPH, 𝛿 -SPH, SPH_CS and δ-SPH_CS are 

shown in Fig. 45, in which the pressure contour and particle distribution are compared 

at Re = 102 at the dimensionless time 𝑡𝑈0 𝐿⁄ = 0.3 . Standard WCSPH exhibited 

particle layering, as shown in Fig. 45(a). The particle distribution obtained with 𝛿-SPH 

in Fig. 45(b) shows the same degree of particle clustering as that of standard WCSPH; 
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however, the pressure improved with 𝛿 -SPH. Compared with 𝛿 -SPH, the particle 

distribution of SPH_CS in Fig. 45(c) is better and shows an almost regular particle 

distribution, but the pressure distribution is not favourable. The best results were 

obtained with δ-SPH_CS. The particle distribution of δ-SPH_CS shown in Fig. 45 (d) 

is nearly the same as that of SPH_CS shown in Fig. 45(c), and the pressure distribution 

of δ-SPH_CS was identical to that of 𝛿 -SPH. Next, the decay of kinetic energy, 

maximum velocity and pressure is analysed to reveal the differences between standard 

SPH, 𝛿-SPH, SPH_CS and δ-SPH_CS. 

 

In Fig. 46 to 49, the pressure of the centre point of the fluid domain, the decay of 

kinetic energy and maximum velocity are presented together with their relative errors 

obtained with standard WCSPH, 𝛿-SPH, SPH_CS and δ-SPH_CS at Re = 102. The 

kinetic energy of the system, maximum velocity and pressure of the centre point of the 

fluid domain were used as measures of accuracy and stability for these models. The 

relative error was defined by Eq. (98). 

   

                                (a)                                                               (b) 
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                          (c)                                                              (d) 

  

                         (e)                                                               (f) 

Fig. 46. Comparison of standard WCSPH, SPH_CS, 𝛿-SPH, and 𝛿-SPH_CS at Re = 

100. The panels show (a) kinetic energy, (b) maximum velocity, (c) relative error of 

kinetic energy, (d) relative error of maximum velocity, (e) pressure at centre point, and 

(f) relative error of pressure at centre point. 

 

Fig. 46 shows the decay of kinetic energy, maximum velocity and pressure of the 

standard WCSPH, δ-SPH, SPH_CS and δ-SPH_CS models at Re = 100.  Compared 

with standard WCSPH, the stability and accuracy of the simulation results of the three 

improved models (δ-SPH, SPH_CS and δ-SPH_CS) were improved, as demonstrated 

by the relative errors shown in Fig. 46(b), (d) and (f). Although the particle distribution 
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of SPH_CS was considerably better than that of δ-SPH, the relative error of the results 

for SPH_CS was nearly double that of both δ-SPH and δ-SPH_CS. The relative errors 

of the kinetic energy and maximum velocity of δ-SPH_CS and δ-SPH were both less 

than 10% before 2 s. The δ-SPH model exhibited 4% and 2% higher kinetic energy 

and maximum velocity, respectively, than δ-SPH_CS at t = 2 s. However, the relative 

error of the pressure of δ-SPH_CS was 50% less than that of δ-SPH at t = 2 s.  

 

                                  (a)                                                              (b) 

 

                            (c)                                                            (d) 
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                            (e)                                                              (f) 

Fig. 47. Comparison of three particle resolutions at Re = 102 obtained with 𝛿-SPH_CS. 

The panels show (a) kinetic energy, (b) maximum velocity, (c) relative error of kinetic 

energy, (d) relative error of maximum velocity, (e) pressure at centre point, (f) relative 

error of pressure at centre point 

 

In Fig. 47, the pressure of the centre point, the decay of kinetic energy and maximum 

velocity are presented along with the relative errors at Re = 102. These were obtained 

with δ-SPH_CS for three resolutions (∆𝑥 = 1/60 m, ∆𝑥 = 1/120 m and ∆𝑥 = 1/240 m) 

and validated against the theoretical values. These figures illustrate that, with 

increasing resolution, the results approached the theoretical values.  

 Rayleigh–Taylor instability 

The low-density ratio (
𝜌𝑑𝑒𝑛𝑠𝑒

𝜌𝑙𝑖𝑔ℎ𝑡
) Rayleigh–Taylor instability is a classical two-phase flow 

that has been studied by many researchers through a variety of numerical approaches 

based on the SPH method [38,91,123]. In this section, Rayleigh–Taylor instability is 

used to validate the -SPH_CS model, specifically at the interface between the low-
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density ratio phases. In this case, two immiscible fluids were placed in a rectangular 

container with dimensions of 1𝑚 × 2𝑚 .The geometrical details of the Rayleigh–

Taylor instability at the initial state are presented in Fig. 48. As illustrated in Fig. 48, 

yellow particles represent the heavier fluid with a density of 𝜌1 = 1.8 kg/m3 while blue 

particles represent the lighter fluid with a density of 𝜌2  = 1 kg/m3. Initially, the 

interface of these two fluids was located at 𝑦 = 1.0 − 0.15sin (2𝜋𝑥)  to generate 

instability. The gravity acceleration was set to g = 1 m/s2 [38]. The Reynolds number 

was 𝑅𝑒 = √𝐻3𝑔 𝜈⁄ = 420 and the kinematic viscosity 𝜈 for both fluids was assumed 

to be the same. The no-slip condition was enforced on all solid boundaries. 

In Fig. 49, the results obtained with standard SPH and δ-SPH_CS at a resolution ∆𝑥 

of 1/100 m are shown at a dimensionless instant of time, 𝑡(𝑔/𝐻)1/2 = 1.23. As shown 

in the detail view of Fig. 49(a), standard SPH suffered from particle clustering. Around 

the interface, the particles showed a laying distribution and gathered around the bottom 

corner. Fig. 49(b) shows that δ-SPH_CS did not exhibit particle clustering, even at the 

interface. 

 

Fig. 48. Geometrical details of Rayleigh-Taylor instability at the initial state. 
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                                 (a)                                                         (b) 

Fig. 49. Rayleigh-Taylor instability with 𝛥𝑥 = 0.01 . Density distribution at 

time 𝑡(𝑔/𝐻)1/2 = 1.23, simulations with (a) standard WCSPH, (b) 𝛿-SPH_CS. 

Fig. 50 shows the interface shapes and pressure fields of heavier and lighter fluids at 

instants t = 3 s and t = 5 s with a particle resolution of ∆𝑥 = 1/200 m. At each time step, 

the left column represents the distribution of different phases, and the right column 

shows the pressure field and interface of the whole domain. From these results, it can 

be observed that δ-SPH_CS clearly captured the complex interface between heavier 

and lighter fluids, and the pressure field was continuous and smooth at the multiphase 

interface. Fig. 51 shows a comparison of the interface obtained with δ-SPH_CS with 

the level-set solver [38]. Compared with the interface of the level-set method, the 

interface of δ-SPH_CS became a mushroom-like shape at t = 3 s, which showed good 

agreement with the level-set method. Although there were a few differences at t = 5 s, 

the overall trend of δ-SPH_CS was similar to the level-set method. 
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                                 (a)                                                               (b) 

Fig. 50. Rayleigh-Taylor instability. (a) density distribution, (b) pressure field obtained 

by 𝛿-SPH_CS at 𝑡(𝑔/𝐻)1/2 = 3 and 5. 

 

                        (a)                                       (b)                                      (c) 

Fig. 51.Comparison of the interface of 𝛿-SPH_CS and Level-Set [38] at 𝑡(𝑔/𝐻)1/2 =

1, 3 and 5(from left to right). 
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As illustrated in Fig. 52 and Fig. 53, the vorticity contours and interface simulated by 

the presented methodology at resolution ∆𝑥 = 1/200 m are compared to the level-set 

method [38] at three instants. The distributions of vorticity were similar, thus 

validating the accuracy of the 𝛿-SPH_CS.  

 

                    (a)                                     (b)                                     (c) 

Fig. 52. Vorticity contour obtained with 𝛿-SPH_CS at instants (a) 𝑡(𝑔/𝐻)1/2 = 1, (b) 

𝑡(𝑔/𝐻)1/2 = 3, (c) 𝑡(𝑔/𝐻)1/2 = 5. 
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                   (a)                                      (b)                                     (c) 

Fig. 53. Vorticity contour obtained with Level-Set method in Grenier et al.[124] at 

𝑡(𝑔/𝐻)1/2 = 1, 3 and 5 (from left to right). 

 

Fig. 54. The time variation of the highest point of the low-density fluid. 
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The results are compared with those from the theory of Layzer [32], which are shown 

in black in Fig. 54. The position of the maximum y-coordinate of the low-density fluid 

is shown on a graph for three different resolutions (∆𝑥 = 1/200 m, ∆𝑥 = 1/100 m and 

∆𝑥 = 1/50 m) in order to investigate convergence. In particular, for t > 2.4 s, the data 

demonstrated convergence and was in excellent agreement with the Layzer theory at 

the greatest resolution. 
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 Stagnate multiphase flow  

The third case was a multiphase hydrostatic test in a rectangular reservoir. The heavier 

fluid was water with a density of 1000 kg/m3 and a viscosity of 0.001 Pa∙s, while the 

lighter fluid was air with a density of 1 kg/m3 and a viscosity of 0.00001 Pa∙s. The 

length of the reservoir was L = 1.0 m and the height was H = 1.0 m. The lower part of 

the reservoir was composed of water and the depth of the water was D = 0.5 m, while 

the upper part was composed of air. The bottom and top walls of the reservoir were 

represented by three fixed layers of ghost particles. Periodic boundaries were used to 

represent the two vertical walls of the reservoir. The initial particle spacing was ∆𝑥 = 

1/60 m, giving a total of 4,080 particles.  

 

                       (a)                                      (b)                                       (c) 

Fig. 55. Stagnate multiphase flow. Density distribution, (a) Initial state; (b) Standard 

WCSPH ( t = 2.0 s ); (c) δ-SPH_CS ( t = 2.0 s ). 

Fig. 55 illustrates the particle distributions obtained with standard WCSPH and 𝛿-

SPH_CS. The black circles represent water particles, while the red circles represent air 

particles. As Fig. 55(b) shows, the particles around the interface as well as the air 

particles exhibited particle clustering. Particle clustering was effectively prevented by 

the 𝛿-SPH_CS model, as demonstrated in Fig. 55(c).  
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                                    (a)                                                            (b)                                                 

Fig. 56. Pressure profiles along x = 0.5 m. Comparison of standard WCSPH, δ-

SPH_CS and theory at t = 2.0 s (a) Full reservoir; (b) Top part of reservoir. 

The pressure distribution along x = 0.5 m at t = 2.0 s can be seen in Fig. 56. Because 

of particle clustering around the interface, the pressure significantly fluctuated around 

the theoretical value with standard WCSPH. The pressures were substantially closer 

to the theoretical value and thus more stable when using the δ-SPH_CS model.  

 

                                    (a)                                                            (b)                                                 

Fig. 57. The evolution of potential and kinetic energy of the static multiphase flow in 

time. Comparison of standard WCSPH, 𝛿-SPH_CS and theory. (a) Potential energy; 

(b) Kinetic energy. 
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The time history of the potential and kinetic energy of the static multiphase flow is 

displayed in time in Fig. 57, which illustrates the stability of δ-SPH_CS. When using 

standard WCSPH, the potential energy and kinetic energy both increased shortly after 

the simulation began and then fluctuated around a relatively high value, indicating that 

the particles were in an unstable state. In contrast, with δ-SPH_CS, the potential 

energy decreased shortly after the simulation began. Compared with the increase in 

potential energy with standard WCSPH, the decrease in potential energy with δ-

SPH_CS was less severe and accompanied by a tiny increase in kinetic energy. 

 Multiphase dam break 

The results of the multiphase dam break to test the δ-SPH_CS model are presented in 

this section. The two-dimensional dam break is a representative SPH benchmark case 

that is simulated not only in the single-phase with a free surface [125] but also in the 

multiphase with an interface [38]. Multiphase dam break is a classic problem of fluid–

structure interactions (FSI), which is characterised by a high-density ratio of 1000:1, a 

complicated interface and a significant impact. It has been simulated by many 

researchers to test multiphase SPH models. Zheng and Chen [38] used multiphase dam 

break to analyse artificial viscosity in detail. In the current work, the coefficient of 

artificial viscosity was set at a fixed value (0.03), the collision shift model was tested 

and the results were compared with those of Zheng and Chen [38]. The initial condition 

was the same as in [24,25], in which the length and height of the computation domain 

were 3.22 m and 1.8 m, respectively. The water column, which had a reference density 

of 1000 kg/m3, was located at the left bottom of the containers with a length of 1.2 m 

and a height of 0.6 m. The rest of the container was filled with air particles, which had 



105 

 

a reference density of 1 kg/m3. The domain boundary consisted of ghost particles. The 

initial particle spacing was selected to be Δx/h = 0.01667 m, which is the same as in 

[38]. The wave speeds for water and air were 60 and 15 m/s, respectively.  

 

                                (a)                                                            (b)                                                 

Fig. 58.  Phase distribution and their details of multiphase dam break flow at 𝑡√𝑔/𝐻 

= 1.09. (a) standard WCSPH, (b) 𝛿-SPH_CS. 

 

The particle distributions obtained with standard WCSPH and δ -SPH_CS are 

presented in Fig. 58 at the dimensionless instant 𝑡√𝑔/𝐻 =  1.09. With standard 

WCSPH, particle clustering was evident, as shown in Fig. 58 (a), and poor particle 

distribution caused the simulation to crash. In contrast, with δ-SPH_CS, the particle 

distribution was good even around the interface at the same instant. The later instant 

of particle distribution and free surface will be presented next. 

 

                                 (a)                                                            (b)                                                 
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                                  (c)                                                               (d)                                                 

Fig. 59. Evolution of the dam break. Comparison of the interface contours of 𝛿 -

SPH_CS and Zheng and Chen [38] with ISPH results at instants (a) 𝑡√𝑔/𝐻 = 2.4, (b) 

𝑡√𝑔/𝐻 = 2.8 , (c) 𝑡√𝑔/𝐻 = 5.2 , (d) 𝑡√𝑔/𝐻 = 6.4 , together with the particle 

distribution of 𝛿-SPH_CS. Red line represent the free surface particle of ISPH, while 

the black dots represents the interface particles of Zheng and Chen’s model [38].  

 

Fig. 60. Details of dam break flow at 𝑡√𝑔/𝐻 = 6.0. 

 

The progression of the multiphase dam break is shown at four instants: 𝑡√𝑔/𝐻 = 2.4, 

2.8, 5.2 and 6.4. The particle distribution of -SPH_CS is illustrated above, together 

with the free surface profiles from Zheng and Chen [38] as well as ISPH_CS. The free 

surface contours of -SPH_CS and that of Zheng and Chen were in excellent 

agreement with ISPH_CS before the wavefront reached the right wall, as shown in Fig. 
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59 (a) and (b). After this impact, the free surface contours of -SPH_CS aligned better 

with ISPH_CS than with -SPH, as shown in Fig. 59 (c) before the cavity appeared 

and in Fig. 59 (d) around the cavity. The results of -SPH_CS were similar to those of 

ISPH_CS.  

Fig.60 illustrates the phase distribution of -SPH_CS and -SPH reported by Zheng 

and Chen [38] as well as a comparison of the free surface with the BEM solution at 

𝑡√𝑔/𝐻 = 6.0. The result of Zheng and Chen [38] was closer to the BEM solution, but 

the particle distribution of -SPH_CS improved compared to the BEM solution. 

 

                                (a)                                                             (b)                                                 

Fig. 61. Pressure distribution of multiphase dam break flow at t(g/H)1/2 = 2.4. (a) Zheng 

and Chen’s model, (b) -SPH_CS. 

 

                                (a)                                                             (b)                                                 

Fig. 62. Pressure distribution of multiphase dam break flow at t(g/H)1/2 = 2.8. (a) Zheng 

and Chen’s model, (b) -SPH_CS. 
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                                (a)                                                             (b)                                                 

Fig. 63. Pressure distribution of multiphase dam break flow at t(g/H)1/2 = 5.2. (a) Zheng 

and Chen’s model, (b) -SPH_CS. 

 

                                (a)                                                             (b)                                                 

Fig. 64. Pressure distribution of multiphase dam break flow at t(g/H)1/2 = 6.1. (a) Zheng 

and Chen’s model, (b) -SPH_CS. 

 

Fig. 65. Time histories of dimensionless pressure at point P1 in dam break case. 

Figs. 61 to 64 show the pressure distribution obtained with -SPH_CS as well as the 

results from Zheng and Chen [38] at four instants: 𝑡√𝑔/𝐻 = 2.4, 2.8, 5.2 and 6.1, and 

they are very similar. To further illustrate the effect of the collision shift model on the 



109 

 

computational results, the time histories of the dimensionless pressure at P1 are 

presented in Fig. 65. The pressure of -SPH_CS is comparable with the experimental 

measurements and the results from [38]. 
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 Multiphase sloshing tank 

 

Fig. 66. Set up of liquid sloshing. 

The case of a liquid sloshing in a rectangular tank was considered to evaluate the 

performance of -SPH_CS. In contrast to the dam break case, this case had a high 

density ratio as well as a long physical duration, resulting in an unstable particle 

distribution around the interface [126]. The set-up of the liquid sloshing case is given 

in Fig. 66 with water depth D and width B. The sloshing of the liquid was caused by 

the swinging motion of the tank and followed 𝑥 = 𝐴sin𝜔𝑡, where A is the amplitude 

and 𝜔 is the frequency, which was chosen to be 6.0578 s−1. In the first scenario, B = 

0.57 m, D = 0.15 m, A = 0.005 m and 𝜔 = 6.0578 s−1. The density of water is 1000 

kg/m3 while the density of air is 1.27 kg/m3. The dynamic viscosity of water is 

1.01 × 10−3 while the viscosity of air is 1.96 × 10−5. The parameter setting of the 

swinging motion followed [126] and the initial particle distance was ∆𝑥 = 0.002 m. 
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                                (a)                                                             (b)                                                 

Fig. 67. Sloshing tank. Standard WCSPH at time 𝑡 = 0.15 𝑠 , (a) global view, (b) 

detailed view . 

 

                                (a)                                                             (b)                                                 

Fig. 68. Sloshing tank. -SPH_CS at time 𝑡 = 6.72 s, (a) global view, (b) detailed 

view. 

In Figs. 67 and 68, the results obtained with standard WCSPH and -SPH_CS are 

shown at the instants t = 0.15 s and t = 6.72 s. Standard WCSPH simulation will be 

crashed at t = 0.15 s due to the particle clustering, while -SPH_CS can stabilize the 

simulation and have a very good result. From the detailed view Fig. 67(b), it can be 

observed that standard WCSPH suffered from particle clustering and layering while 

the particle distribution of -SPH_CS was favourable compared to standard WCSPH. 



112 

 

 

Fig. 69 The wave elevation at 0.02 m from the left wall. 

 

To record the change in the wave height during the sloshing of the tank, a numerical 

probe was placed at x = 0.02 m. The height of the highest water particle between 𝑥 =

𝑥 − ∆𝑥  and 𝑥 = 𝑥 + ∆𝑥  was used to represent the height of the wave. Fig. 69 

illustrates the wave height over time compared to the SPH results of Zheng and Sun 

[126], the analytical solution offered by Faltinsen [127] and the experimental 

measurements published by Liu and Lin [128]. The simulation result corresponded 

well with the experimental data and SPH results in [126], indicating that the -SPH_CS 

method is accurate and reliable. 

 

To further validate the pressure in -SPH_CS, a second scenario was studied. In this 

scenario, B = 1 m, D = 0.125 m, A = 0.003 and 𝜔 = 3.927 s−1. A pressure sensor was 

located on the right wall, and the distance to the bottom was 0.115 m. The parameter 

setting of the swinging motion followed [129] and the initial particle distance was ∆𝑥 

= 0.005 m. 
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Fig. 70. From top to bottom: a sequence of images illustrating the evolution of the free 

surface (left), particle distribution (middle), and pressure distribution (right) during a 

flip through (∆t =
2

23
s). 

 

In Fig. 70, the evolution of the sloshing tank during a flip through is shown from t = 

4.28 s to t = 4.58 s. The free surface contours of -SPH_CS together with the 

experimental photo from [130] are shown on the left side of Fig. 70. These contours 

are very close to the experimental photo. The centre of Fig. 70 indicates that the 

particle distribution of -SPH_CS was stable throughout the entire simulation process. 

The pressure distributions of -SPH_CS are shown on the right side of Fig. 70. The 

pressure distribution was nearly hydrostatic before the wave impacted the right wall, 
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as shown in Fig. 70 (a), (c) and (d), and the maximum pressure was at the bottom of 

the tank. The maximum pressure was at the impact region on the right wall during the 

impact process, as shown in Fig. 70 (b). During the flip process, the maximum pressure 

was obtained by the hydrostatic distribution. 
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Fig. 71. Time histories of the pressure along the right wall. 

In Fig. 71, the pressure–time histories at point P1 (on the right wall at height 0.05 m)are 

shown. The result obtained with -SPH_CS was validated against experiments and the 

SPH pressures of Colagrossi et al. [129]. The result of -SPH_CS was smoother and 

closer to the experimental data than the results in [120], especially after 6 s. 

 Summary 

A hybrid SPH method based on δ-SPH and the collision shift model was presented. 

The δ-SPH model was introduced in Chapter 3 and its stability has been verified by 

many researchers in single-phase [25,27,101,131,132] and multiphase [38,126]. 

However, although δ-SPH can reduce pressure fluctuation, it cannot avoid particle 

clustering during simulation. The collision shift model can only guarantee a uniform 
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particle distribution but not a stable pressure in the fluid domain. The disadvantages 

of each model can be enhanced by the advantages of the other. A hybrid method based 

on the properties of δ-SPH and the collision shift model, was introduced (δ-SPH_CS). 

 

In the Taylor–Green vortex case, standard SPH, δ-SPH, SPH_CS and δ-SPH_CS were 

compared in terms of stability, particle distribution and dissipative properties. Not only 

did δ-SPH_CS maintain pressure stability, but it also prevented particle clustering. In 

the Rayleigh–Taylor instability case, -SPH_CS effectively prevented particle 

clustering, and the interface and vorticity distribution were comparable to those of the 

level-set method. In the static multiphase flow case, the pressure distribution, kinetic 

energy, and potential energy obtained showed significant improvement compared with 

those of the standard WCSPH model. Additionally, particle clustering around the 

interface of -SPH_CS disappeared. In the multiphase dam break case, -SPH_CS 

exhibited a better particle distribution and interface compared with the results of -

SPH by other researchers. Additionally, the pressure had good agreement with 

experimental data. In the multiphase sloshing tank case, the wave evaluation obtained 

with -SPH_CS aligned well with the experimental data in the first scenario. In the 

second scenario, both the interface and the pressure were identical to the experimental 

data. 

 

In conclusion, -SPH_CS demonstrated its potential in applications with long duration 

multiphase flow. This serves as the basis for its use in the bearing chamber of an aero-

engine in the chapters that follow. 
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Chapter 6 Single-phase Taylor–Couette 

flow (2D) 

The previous chapter examined the applicability of -SPH in combination with the 

particle collision shift model to multiphase flows at high-density ratios (liquid, gas). 

This combination not only suppresses particle clustering but also smooths the pressure 

distribution, which could not be achieved with the standard SPH approach. The 

combination is held for benchmark cases with relatively low fluid velocities compared 

to the high rotational speeds in an aeroengine. 

 

In this chapter, the Taylor–Couette (TC) flow between two concentric cylinders is 

studied as the next step towards the modelling of a bearing chamber. The proper 

modelling of the single-phase 2D flow between a rotating inner cylinder and a non-

rotating outer cylinder is a crucial step towards the modelling of the complex 3D flow 

in high-speed rotating elements of engines, turbines and pumps. The model is not only 

a foundation for the multiphase flow in a bearing chamber but also forms an excellent 

benchmark case for the validation of turbulence models, though turbulence is typically 

a 3D phenomenon. Simulation results are presented of the laminar and turbulent 

single-phase TC flow. The laminar flow results are validated against analytical 

solutions, while the turbulent flow results are validated against simulations performed 

with Fluent and against Direct Numerical Simulation (DNS) results available in the 

literature. 
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 Case description and initial conditions 

6.1.1. Case setup 

 

Fig. 72. Setup of the 2D TC flow. 

The setup of the 2D TC flow is shown in Fig. 72. The definitions are as follows: R and 

𝜔 are the radius and rotational speed of the inner or outer circles, respectively. The 

ratio of the inner and outer radius is 

 𝜂 =
𝑅𝑖𝑛𝑛𝑒𝑟

𝑅𝑜𝑢𝑡𝑒𝑟
  (102) 

Instead of the Reynolds number, one can alternatively characterise the flow between 

concentric cylinders by the Taylor number [133]. 

 𝑇𝑎 =
(1+𝜂)4(𝑅𝑜𝑢𝑡𝑒𝑟−𝑅𝑖𝑛𝑛𝑒𝑟)

2(𝑅𝑜𝑢𝑡𝑒𝑟+𝑅𝑖𝑛𝑛𝑒𝑟)
2(𝜔𝑜𝑢𝑡𝑒𝑟−𝜔𝑖𝑛𝑛𝑒𝑟)

2

64𝜂2𝜐2   (103) 

When 𝑇𝑎 is larger than 108, the flow can be treated as turbulent flow; otherwise, the 

flow is laminar.  

For systematic research, a series of single-phase 2D TC flow with three different radius 

ratios is studied in this chapter, including laminar and turbulent flows. For the 

turbulence models in the 2D TC flow, the mixing length turbulence model (ML) and 
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Spalart–Allmaras model (SA) are applied. The dimensions and fluid properties of the 

following simulation are shown in Table 6. 

 

Table 6. Dimensions and fluid properties of single-phase Taylor–Couette flow. 

 𝜂 𝜇 

(m2/s) 

𝑇𝑎 Turbulent 

model 

Case1 0.7 0.01 108 No 

Case2 0.5 0.001 1010 ML, SA 

Case3 0.7 0.001 1010 ML, SA 

Case4 0.9 0.001 1010 ML, SA 

6.1.2. Initial and boundary conditions 

In this section, the initial velocity and pressure distribution at 𝑡 =  𝑡0 are obtained with 

the laminar flow distribution. The laminar flow between two rotating cylinders forms 

an exact solution of the Navier–Stokes equations. The solution for the velocity and 

pressure distribution, given in cylindrical coordinates (R, θ, z), is 

 𝑣𝑅 = 0 ; 𝑣𝜃 =
𝐶7

𝑅
+ 𝐶8𝑅; 𝑣𝑧 = 0  (104) 

 𝑝(𝑅) = 𝜌[−
𝐶7

2

2
(

1

𝑅2 −
1

𝑅𝑖𝑛𝑛𝑒𝑟
2 ) + 2𝐶7𝐶8 𝑙𝑛 (

𝑅

𝑅𝑖𝑛𝑛𝑒𝑟
) +

1

2
𝐶8

2(𝑅2 − 𝑅𝑖𝑛𝑛𝑒𝑟
2 )]  (105) 

With the coefficients in the angular velocity 

 𝐶7 = −
𝑅𝑖𝑛𝑛𝑒𝑟

2 𝑅𝑜𝑢𝑡𝑒𝑟
2 (𝜔𝑜𝑢𝑡𝑒𝑟−𝜔𝑖𝑛𝑛𝑒𝑟)

𝑅𝑜𝑢𝑡𝑒𝑟
2 −𝑅𝑖𝑛𝑛𝑒𝑟

2   (106) 

 𝐶8 = −
𝜔𝑜𝑢𝑡𝑒𝑟𝑅𝑜𝑢𝑡𝑒𝑟

2 −𝜔𝑖𝑛𝑛𝑒𝑟𝑅𝑖𝑛𝑛𝑒𝑟
2

𝑅𝑜𝑢𝑡𝑒𝑟
2 −𝑅𝑖𝑛𝑛𝑒𝑟

2   (107) 

Following the above equation, the velocity and pressure distribution of laminar TC 

flow are determined. In the following sections, the initial conditions for the case study 

follow Eqs. (104) and (105). The boundary condition is referred to in Section 2. The 
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profiles of pressure, velocity and viscosity are presented on the horizontal axis (y = 0) 

between (−𝑅𝑜𝑢𝑡𝑒𝑟 < = x < = −𝑅𝑖𝑛𝑛𝑒𝑟), as indicated by the solid line L0 (red) in Fig. 72. 

6.1.3. SPH and CFD model coefficients 

The authors also simulate the single-phase laminar and turbulent TC flow by using 

Fluent (2019 R2), which is an industry-leading fluid simulation software. Fluent is 

known for its advanced physics modelling capabilities and industry-leading accuracy. 

In this way, the accuracy of -SPH_CS can be validated against the results of Fluent 

in the next sections. In the fluent, the initial condition is the same as SPH simulation 

and the resolutions in fluent and SPH are roughly the same while only SA model is 

applied for the turbulent flow. 

 

The rest of the sections are organised as follows: Numerical results for the 2D laminar 

TC flow are first presented in Section 6.2. Based on the knowledge acquired from the 

2D TC flow, we conduct an elaborate study in Section 6.3 on the different radius ratios 

relevant to the single-phase 2D turbulent flow. The influence of the radius ratio and 

convergence study are presented in Section 6.4. Finally, the major research findings 

are summarised in Section 6.5. 

 Single phase laminar Taylor–Couette flow (2D) 

In this case, 𝜂 = 0.7, and 𝑇𝑎 = 108. The viscosity term is calculated through laminar 

viscosity. 
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                 (a)                                    (b)                                     (c) 

Fig. 73. Pressure distribution at time t = 0.12 s, (a) standard SPH, (b) -SPH_CS, (c) 

Fluent.  

 

                      (a)                                                      (b) 

Fig. 74. Detailed view of the pressure distribution at time t = 1.2 s, (a) standard SPH, 

(b) -SPH_CS.  

  



121 

 

 

                               (a)                                                               (b) 

Fig. 75. Results comparison between -SPH_CS and Fluent at t = 1.2 s. (a)velocity 

profile from (−Router, 0.0) to (−Rinner, 0.0), (b) pressure profile from (−Router, 0.0) to 

(−Rinner, 0.0). 

 

Fig. 73 illustrates the particle distribution with pressure presented in colour obtained 

with standard WCSPH, -SPH_CS and Fluent at instant t = 0.12 s. As shown in the 

pressure legend in Fig. 73(a), standard SPH suffers from unrealistic and fluctuated 

pressure distribution. The results obtained with -SPH_CS in Fig. 73(b) and Fluent in 

Fig. 73(c) are much better. The pressure distribution is quite smooth only a slight 

fluctuation can be seen in the distribution of -SPH_CS. To make the particle 

distribution clearer, a detailed view of the particle distribution obtained with Standard 

SPH and -SPH_CS is shown in Fig. 74. According to the detailed view of Fig. 74(a), 

the standard WCSPH suffers from particle clustering near the inner shaft as well as 

particles penetrating, which also affects the pressure distribution. In contrast, results 

at instant t = 1.2 s obtained with the -SPH_CS are shown in Fig. 74(b), which is much 

improved over standard SPH and shows an almost regular particle distribution.  
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To further verify the correctness of -SPH_CS, the pressure and velocity distribution 

along y = 0 of the -SPH_CS method are compared with laminar theory and the results 

of Fluent in Fig. 75. The velocity and pressure profile of -SPH_CS and Fluent are 

almost the same in laminar theory. 

 

From the above figures, the collision shift model results in a significant improvement 

in the particle distribution. The combination with -SPH also leads to a highly stable 

pressure distribution in the laminar flow. The turbulence in the single-phase flow is 

discussed in the following section. -SPH_CS is further denoted as SPH in this chapter. 

 Single phase turbulent Taylor–Couette flow (2D) 

To systematically verify the ML model and SA model presented in Chapter 3 and 

determine the influence of the radius ratio on the turbulent properties, a series of 2D 

TC flows with three different 𝜂 (0.5, 0.7, 0.9) are simulated by SPH when 𝑇𝑎 = 1010 

in the following subsections. To verify the SPH, the same series of cases are also 

simulated by Fluent with the SA model. The turbulent viscosity calculated by the SA 

and ML models will be added to the laminar viscosity to calculate the viscous term in 

the momentum equation. 
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6.3.1. 𝜼 = 𝟎. 𝟓 

 

                   (a)                                       (b)                                      (c) 

Fig. 76. Pressure distribution at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH), (c) SA 

(Fluent). 

 

                              (a)                                                             (b) 

Fig. 77. Pressure profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 
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                              (a)                                                              (b) 

Fig. 78. Velocity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

                                 (a)                                                             (b) 

Fig. 79. Turbulent viscosity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

Fig. 76 displays the pressure distribution of SA (SPH), ML (SPH) and SA (Fluent), 

and the results of each model are nearly the same. Fig. 77 to 79 illustrate profiles along 

the line L0 from (−Router, 0.0) to (−Rinner, 0.0) for pressure, velocity and viscosity. As 

indicated in Fig. 77, the pressure profiles of SA (SPH) and ML (SPH) are smooth and 

identical to SA (Fluent). As revealed in Fig. 78, the velocity profiles of SA (SPH) and 

ML (SPH) are almost consistent with the results of SA (Fluent), including near the 

boundary. The velocity profile SA (SPH) is slightly closer to the Fluent results than 

ML (SPH). As seen in Fig. 79, the turbulent viscosity of SA (SPH) is similar to that of 
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SA (Fluent), while the turbulent viscosity of ML (SPH) is almost double that of SA 

(Fluent). This viscosity disparity might be the reason for the slightly different velocity 

profile. 

6.3.2. 𝜼 = 𝟎. 𝟕 

This radius ratio is always applied in the bearing chamber in the aeroengine. Similar 

to the results of 𝜂 = 0.5, the comparison of pressure distribution and pressure, velocity 

and viscosity profiles along the line L0 from (−Router, 0.0) to (−Rinner, 0.0) is also present 

in this section. 

 

                     (a)                                      (b)                                     (c) 

Fig. 80. Pressure distribution at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH), (c) SA 

(Fluent). 

 

                                 (a)                                                             (b) 
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Fig. 81. Pressure profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

                                 (a)                                                             (b) 

Fig. 82. Velocity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

                                 (a)                                                             (b) 

Fig. 83. Turbulent viscosity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

The pressure distribution of SA (SPH), ML (SPH) and SA (Fluent) is shown in Fig. 

80, and the results of each model are nearly identical to one another. The pressure 

profiles of SA (SPH) and ML (SPH) can be seen in Fig. 81. The results of both 

turbulence models are quite smooth and consistent with SA (Fluent). Fig. 82 depicts 

the velocity profile of ML (SPH) and SA (SPH), where the result of SA (SPH) is better 

than that of ML (SPH). Although the results of ML (SPH) and SA (Fluent) are almost 

the same, the results of SA (SPH) and SA (Fluent) are completely consistent. The 
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turbulent viscosity profiles of ML (SPH) and SA (SPH) are illustrated in Fig. 83. The 

turbulent viscosity of SA (SPH) is nearly the same as SA (Fluent), while the turbulent 

viscosity of ML (SPH) is a bit larger than that of SA (Fluent). This discrepancy might 

be the reason for the slightly different velocity profile. 

6.3.3. 𝜼 = 𝟎. 𝟗 

Note that the radius ratio of the journal bearing is always between 0.9 and 1 in 

engineering applications. Analogous to the above sections, the turbulence models are 

validated in this section regarding pressure, velocity and viscosity along the line L0 

from (−Router, 0.0) to (−Rinner, 0.0). 

 

                     (a)                                      (b)                                     (c) 

Fig. 84. Pressure distribution at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH), (c) SA 

(Fluent). 
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                                 (a)                                                             (b) 

Fig. 85. Pressure profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

                                 (a)                                                             (b) 

Fig. 86. Velocity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

 

                                 (a)                                                             (b) 

Fig. 87. Turbulent viscosity profile at time t = 1.2 s. (a) SA (SPH), (b) ML (SPH). 

The pressure distribution of the simulations with SA (SPH), ML (SPH), and SA 

(Fluent) is displayed in Fig. 84. The pressure distributions obtained with these three 

models have no visible difference. However, as shown in Fig. 85, the pressure profile 

of SA (SPH) and ML (SPH) is slightly larger than SA (Fluent), particularly near the 

outer wall. Fig. 86 depicts the velocity profile of ML (SPH) and SA (SPH). The 

velocity of ML (SPH) and SA (SPH) is slightly larger than SA (Fluent), although the 

trend is almost the same. As illustrated in Fig. 87, the turbulent viscosity of SA (SPH) 
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is greater than SA (Fluent), while the turbulent viscosity of ML (SPH) is less than that 

of SA (Fluent).  
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 Analysis of results 

 

                                 (a)                                                                (b) 

Fig. 88. 2D TC flow (𝜂 = 0.7). (a) Velocity profile along the horizontal line from 

(−Router, 0.0) to (−Rinner, 0.0) for SA (SPH) at three particle resolutions. (b) 

Convergence of the RMS error of velocity with increasing particle resolution (∆𝑥 →

0). 

In Fig. 88(a), the velocity profiles at 𝑇𝑎 = 1010, as obtained with SA (SPH) for three 

resolutions ( ∆𝑥  = 0.001 m, ∆𝑥  = 0.002 m, ∆𝑥  = 0.004 m), are validated against 

simulations performed with SA (Fluent). The figure shows that with increasing 

resolution, the results are closer to those of Fluent. In Fig. 88(b), the order of 

convergence, evaluated as the root of the mean square (RMS) of the error in the 

velocity profile along the line from (−Router, 0.0) to (−Rinner, 0.0), is plotted for 𝜂 = 0.7 

and 𝑇𝑎 = 1010. The results show that the order of convergence is approximately 2.4. 

 

To further consider the influence of different radius ratios on the fluid properties, 

velocity and pressure profiles are shown below. As Section 6.3 illustrates, the results 

of SA and ML in SPH are almost the same in various radius ratios, and the turbulence 
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model in Fluent is SA. Here, the results of SA (SPH) represent the results of SPH 

compared with Fluent. 

 

Fig. 89. Angular velocity for varying radius ratios across the Taylor–Couette gap for 

only inner cylinder rotation from [133]. 

 

                                 (a)                                                             (b) 

Fig. 90. Angular velocity and pressure profiles for several radius ratios across the 

Taylor–Couette gap for only inner cylinder rotation obtained with SA (SPH) and SA 

(Fluent) at 𝑇𝑎 = 1010. (a) Angular velocity, (b) viscosity ratio.  

The angular velocity and pressure profile strongly depend on the radius ratio, η, as 

seen from the results of SPH and Fluent in Fig. 90. The angular velocity from (−Router, 

0.0) to (−Rinner, 0.0) of SPH and Fluent are nearly the same, particularly when η = 0.5 

and 0.7, the profiles almost overlap in Fig. 90(a). The same trend can also be seen in 
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the profiles obtained with DNS (3D), as shown in Fig. 89. The angular velocity 

gradient decreases with increasing η, and the profile of η = 0.9 is the flattest (most 

turbulent characteristics) among these three η. In contrast, for small η = 0.5, a large 

decrease of Ω’ to less than 0.5 is observed in both Fig. 89 and Fig. 90 (a).  The varying 

extent of the pressure decrease can correspondingly be seen in Fig. 90 (b). The pressure 

for η = 0.5 also represents the largest decrease (almost 60%). However, it also means 

that the largest radius ratio leads to the closest pressure to laminar flow (most laminar 

characteristics). This result seems to be contradictory to the velocity profile. To further 

analyse these two profiles, the viscosity ratio (𝜇/𝜇𝑙𝑎𝑚𝑖𝑛𝑎𝑟) and the so-called viscosity 

loss (
𝜇(𝑟𝑜−𝑟𝑖)

𝜇𝑙𝑎𝑚𝑖𝑛𝑎𝑟𝑟𝑖
) profiles are shown in Fig. 91. 

 

                       (a)                                                               (b) 

Fig. 91. Dimensionless profiles for varying radius ratios across the Taylor–Couette 

gap for only inner cylinder rotation obtained with SA (SPH) and SA (Fluent) at 𝑇𝑎 =

1010, (a) viscosity ratio, (b) viscosity loss. 

Fig. 91(a) shows the viscosity ratio. The smaller radius ratio leads to a larger viscosity 

ratio (more turbulent characteristics), which matches Fig. 90 (a) quite well. The 

decrease in velocity and pressure can be treated as a kind of dimensionless loss in the 

bearing chamber. The loss is not only related to the viscosity but also to the gap 
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between the inner and outer radius. The value of the loss can therefore be validated 

through a dimensionless variable called ‘viscosity loss’ in Fig. 91(b). The figure 

demonstrates that the smaller radius ratio will create a large dimensionless loss at the 

same Ta, which verifies the large decrease in velocity and pressure in Fig. 90. 

 Summary  

The single-phase two-dimensional Taylor–Couette flow is modelled using -SPH in 

combination with the particle collision shift model in this chapter. Simulations are 

performed for several configurations represented by the radius ratio and rotational 

speeds represented by the Taylor number (𝑇𝑎). All simulations are performed at 𝑇𝑎 =

1010. 

 

The SPH simulations under turbulent flow conditions are performed with the mixing 

length turbulence model (ML) as well as the Spalart–Allmaras turbulence model (SA). 

The results are validated against Fluent, also using the Spalart–Allmaras model. 

 

The SPH results for the configuration with a low radius ratio ( = 0.5, large clearance) 

show a reasonable match with Fluent. The pressure and velocity profiles obtained with 

ML and SA are both in excellent agreement with Fluent. The turbulent viscosity profile 

of ML shows values that are about twice as high as those of Fluent, with quite some 

fluctuation in an asymmetrical profile. The turbulent viscosity profile of SA is much 

closer to that of Fluent, without fluctuation. Here, note that none of the results is time 

averaged.  
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The SPH results for the configuration with a medium radius ratio ( = 0.7, medium 

clearance) show a similar match with Fluent. The pressure and velocity profiles are all 

in good agreement. The turbulent viscosity profile of ML shows values that are now 

closer to those of Fluent, although the level of turbulent viscosity has more than 

doubled. The turbulent viscosity profile of SA coincides well with that of Fluent, again 

without fluctuation. 

The SPH results for the configuration with a high radius ratio ( = 0.9, small clearance) 

show more deviation than those of Fluent. The pressure and velocity profiles of both 

ML and SA are no longer in agreement with Fluent, though there is still a reasonable 

match. This is revealed in the slightly higher velocity gradients, which have a small 

clearance. The turbulent viscosity profile of ML shows values somewhat lower than 

Fluent, while those of SA are higher. 

Comparing the results of all four cases, it can be seen that the pressure increases from 

the inner cylinder towards the outer cylinder. The lower radius ratio leads to lower 

pressure and velocity. In contrast, the higher radius ratio makes the velocity profile 

flatter. With the increasing of the radius ratio, the difference of the turbulent pressure 

and laminar pressure is getting smaller 
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Chapter 7 Multiphase Taylor–Couette 

flow (2D) 

In Chapter 6, the 2D single-phase Taylor–Couette (TC) flow is examined under 

laminar as well as turbulent flow conditions. This chapter studies the 2D multiphase 

TC flow between two concentric circles. The multiphase case is more analogous to 

that in the bearing chamber of an aeroengine. At the high rotational speeds in a bearing 

chamber, the airflow is typically turbulent, whilst the oil flow along the wall remains 

laminar. Simulation results are presented of relative lower and higher rotational speeds. 

For validation in this chapter, these flow regimes are also modelled in the multiphase 

TC case. 

 Case description  

7.1.1. Case setup 

The dimensions of the multiphase TC flow are different with a single-phase, due to the 

dimensions is confidential, here using 𝑅𝑖𝑛𝑛𝑒𝑟 and 𝑅𝑜𝑢𝑡𝑒𝑟 to represent the dimensions. 

The fluid properties are 𝜇𝑎𝑖𝑟 = 1 × 10−5𝑃𝑎 ∙ 𝑠 , 𝜇𝑜𝑖𝑙 = 2.7 × 10−2𝑃𝑎 ∙ 𝑠 , 𝜌𝑎𝑖𝑟 =

1 𝑘𝑔/𝑚3 and 𝜌𝑜𝑖𝑙 = 1000 𝑘𝑔/𝑚3. To analyse the effects of the different rotational 

speeds on the flow states, two cases are simulated at different rotational speeds of the 

inner shaft. The relatively lower rotational speed of the inner shaft is 𝜔𝑖𝑛𝑛𝑒𝑟
𝑙𝑜𝑤  , and the 



136 

 

relatively higher rotational speed is 𝜔𝑖𝑛𝑛𝑒𝑟
ℎ𝑖𝑔ℎ

, yield 𝑇𝑎 = 1.1 × 1010  and 𝑇𝑎 = 7.2 ×

1010 respectively.  

7.1.2. Initial and boundary conditions 

The initial condition of the 2D multiphase TC flow is shown in Fig. 92. A thin layer 

of oil film (red) is put onto the circumference of the outer wall and will be driven by 

the rotating airflow (blue). The profiles of velocity, pressure, vorticity and viscosity 

are presented on the horizontal axis (y = 0) between (−𝑅𝑜𝑢𝑡𝑒𝑟 < = x < =  −𝑅𝑖𝑛𝑛𝑒𝑟), 

as indicated by the solid line L1 (pink) in Fig. 92. The thickness of the oil film is ℎ𝑜𝑖𝑙. 

The initial condition of the multiphase TC flow is given by Eqs.(104) and (105) in 

Chapter 6. To make the pressure at the interface continuous, the initial pressure of the 

oil film is calculated by using 𝜌𝑎𝑖𝑟 instead of 𝜌𝑜𝑖𝑙 in Eq. (105). The boundary condition 

is referred to in Section 3.6.1. It should be noted that in this case the gravity is not 

considered. 

 

Fig. 92. Setup of 2D multiphase TC flow. 
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7.1.3. SPH and CFD model coefficients 

Chapters 5 and 6 conclude that a combination of the particle collision shift model (CS) 

and density smoothing (-SPH) gives the best SPH results. The diffusive term in 

continuity equation has a direct effect on the pressure distribution, which becomes 

smoother. This combination of models is used in all SPH simulations with the mixing 

length (ML) and Spalart–Allmaras (SA) turbulence model presented in this chapter. 

This SPH approach is further denoted as SPH in this chapter. SPH is validated against 

Fluent, differing from the single-phase TC flow, the parameter setting of multiphase 

TC flow is more complex in Fluent. Following Adeniyi et al. [19] the 𝑘 − 𝜔 SST 

model is used as the turbulence model. VOF and level-set models are applied to deal 

with interfaces. In this chapter, the continuum surface force proposed by Brackbill [39] 

is used in both SPH and Fluent. The surface tension coefficient is 0.032 N/m for the 

oil. The number of the orthogonal mesh in Fluent is 332298, while the number of 

particles of SPH is 242,142 in which the initial particle distance Δ𝑥 = 4 × 10−4 𝑚. 

The rest of the sections are organised as follows. Numerical results for the 2D turbulent 

multiphase TC flow at relatively low rotational speed are first presented in Section 7.2, 

while the result at relatively high rotational speed is in Section 7.3. Section 7.4 

analyses the effects of the different rotational speeds of the inner shaft as well as the 

influence of the different turbulence models in SPH through the comparison with the 

results of Fluent. Finally, the main research findings are summarised in Section 7.5. 
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 Multiphase Taylor–Couette flow at relatively 

lower rotational speed 

In this section, the 2D turbulence multiphase flow at a relatively lower rotational speed 

is simulated with ML (SPH) and SA (SPH). 

7.2.1. Simulation with mixing-length turbulence model 

 

 

                     (a)                                         (b)                                         (c) 

 

 

 

                     (d)                                          (e)                                         (f) 

Fig. 93. Density distribution of ML (SPH). (a) 0.6 s, (b) 1.2 s, (c) 1.8 s, (d) 2.4 s, (e) 

3.0 s, (f) 3.6 s. 
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                                   (a)                                                               (b) 

Fig. 94. Velocity distribution of ML (SPH). (a) 1.8 s, (b) 3.6 s. 

 

                                   (a)                                                               (b) 

Fig. 95. Pressure distribution of ML (SPH). (a) 1.8 s, (b) 3.6 s. 

 

                                   (a)                                                               (b) 

Fig. 96. Vorticity distribution of ML (SPH). (a) 1.8 s, (b) 3.6 s. 
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                                   (a)                                                               (b) 

Fig. 97. Turbulent viscosity distribution of ML (SPH). (a) 1.8 s, (b) 3.6 s. 

 

Fig. 93 shows the density distributions obtained with ML (SPH) at various instants 

from 0.6 s to 3.6 s. The development of the waveform can be seen in Fig. 93. Fig. 94 

to 97 illustrate the comparison of the velocity, pressure, vorticity and viscosity profiles 

along the line L1 of ML (SPH) and 𝑘 − 𝜔 (Fluent) at different instants. Although the 

velocity profile of ML (SPH) is not as flat as that of 𝑘 − 𝜔 (Fluent) in Fig. 94, it is still 

in good agreement with the results of 𝑘 − 𝜔 (Fluent). As a consequence, the vorticity 

profile in Fig. 96 is comparable with the results of 𝑘 − 𝜔 (Fluent). Considering the 

serious pressure fluctuations in the standard SPH method, the pressure profile in Fig. 

95 is very smooth and similar to the results of 𝑘 − 𝜔 (Fluent). However, as indicated 

in Fig. 97, the viscosity profile of ML (SPH) has a larger difference than that of 𝑘 − 𝜔 

(Fluent). The viscosity of ML (SPH) is almost half that of 𝑘 − 𝜔 (Fluent). However, 

the effects of the two turbulence models on velocity and pressure are approximately 

the same, although the turbulence models applied to SPH and Fluent are different. Due 

to the differences in the turbulence models of SPH and Fluent, the difference in 

viscosity is acceptable. As the thickness of the oil film at the point (y = 0, x =−𝑅𝑜𝑢𝑡𝑒𝑟) 

will change with the movement and deformation of the oil film, the mixing length 
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cannot be accurately obtained, especially with thicker oil films. This difference 

explains the discontinuity in the viscosity profile, as shown in Fig. 97 (a).  

7.2.2. Simulation with the Spalart-Allmaras turbulence 

model 

 

 

                     (a)                                         (b)                                         (c) 

 

                     (d)                                          (e)                                         (f) 

Fig. 98. Density distribution of SA (SPH). (a) 0.6 s, (b) 1.2 s, (c) 1.8 s, (d) 2.4 s, (e) 

3.0 s, (f) 3.6 s. 
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                                   (a)                                                               (b) 

Fig. 99. Velocity distribution of SA (SPH). (a) 1.8 s, (b) 3.6 s. 

 

                                   (a)                                                               (b) 

Fig. 100. Pressure distribution of SA (SPH). (a) 1.8 s, (b) 3.6 s.  

 

                                   (a)                                                               (b) 

Fig. 101 Vorticity distribution of SA (SPH). (a) 1.8 s, (b) 3.6 s. 
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                                   (a)                                                               (b) 

Fig. 102. Turbulent viscosity distribution of SA (SPH). (a) 1.8 s, (b) 3.6 s. 

Fig. 98 displays the density distribution of SA (SPH) at different instants, which 

closely resembles those of ML (SPH). In that the oil film moves along the outer wall 

driven by the airflow, the wavy oil film propagates along the wall with the wave speed. 

Simultaneously, the thickness of the oil film has also changed at the point (y = 0, x 

= −𝑅𝑜𝑢𝑡𝑒𝑟), and the height of the thickest and thinnest oil film of both ML and SA 

turbulence models is nearly the same. Fig. 99 to 101 show the velocity, pressure, 

vorticity and viscosity profiles along the line L1 obtained with SA (SPH) at 1.8 s 

(thicker oil thickness) and 3.6s (thinner oil thickness). These simulation results are 

identical to those of ML (SPH) and 𝑘 − 𝜔 (Fluent).  

Fig. 102 shows the viscosity profiles at different instants. Similar to the viscosity of 

ML (SPH), the viscosity of SA (SPH) is still half the viscosity of 𝑘 − 𝜔 (Fluent). 

Differing from the ML (SPH), the instability and discontinuity at the interface of the 

viscosity are absent in the profile obtained with SA (SPH). As shown in Fig. 102, the 

viscosity profile of SA (SPH) is stable, even at the interface. The modest improvement 

in viscosity makes the velocity profile slightly closer to that of 𝑘 − 𝜔 (Fluent) than 

ML (SPH). The impact of the thickness of the oil film can be ignored with SA. The 

distance to the interface dominates the turbulent viscosity in the ML model. However, 
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in SA, the distance to the interface is not that vital, so the error in the distance to the 

interface caused by the change of the oil film is acceptable. 

 Multiphase Taylor–Couette flow at a relatively 

higher rotational speed 

To study the stability of the SPH and the adaptability of the turbulence models (SA 

and ML) at a higher rotational speed, the multiphase turbulent flow generated by the 

higher rotational speed of the inner shaft in the bearing chamber will be simulated. 

Due to the increased rotational speed, the simulation time has decreased to 1.44 s. 

7.3.1. Simulation with mixing length turbulence model 
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                     (a)                                         (b)                                         (c) 

 

                     (d)                                         (e)                                         (f) 

Fig. 103. Density distribution of ML (SPH). (a) 0.24 s, (b) 0.48 s, (c) 0.72 s, (d) 0.96 

s, (e) 1.2 s, (f) 1.44 s. 

 

                                   (a)                                                               (b) 

Fig. 104. Velocity distribution of ML (SPH). (a) 0.72 s, (b) 1.44 s. 
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                                   (a)                                                               (b) 

Fig. 105. Pressure distribution of ML (SPH). (a) 0.72 s, (b) 1.44 s. 

 

                                   (a)                                                               (b) 

Fig. 106. Vorticity distribution of ML (SPH). (a) 0.72 s, (b) 1.44 s. 

 

                                       (a)                                                             (b) 

Fig. 107. Turbulent viscosity distribution of ML (SPH). (a) 0.72 s, (b) 1.44 s. 

Fig. 103 shows the density distributions obtained with ML (SPH) at different instants, 

from 0.12 s to 1.44s. The waveform of the oil film develops from a small to a large 
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amplitude and the air will be rolled into the oil film. Fig. 104 to 106 illustrate the 

velocity, pressure and vorticity profile at a high rotation speed at two instants. Since 

the speed has been increased by 2.5 times, the velocity, pressure and vorticity have 

also been increased accordingly. Similar to the profiles obtained with ML (SPH) at a 

low rotation speed, the profiles of velocity, pressure and vorticity at a high rotation 

speed are also identical to 𝑘 − 𝜔 (Fluent). Fig. 107 displays the viscosity profiles of 

ML (SPH) and 𝑘 − 𝜔 (Fluent). The viscosity of ML (SPH) at a high rotation speed is 

similar to that at a low rotation speed. The small fluctuations and discontinuities at the 

interface also exist. However, the viscosity of 𝑘 − 𝜔 (Fluent) also shows the instability.  
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7.3.2. Simulation with the Spalart-Allmaras turbulence 

model 

 

 

                     (a)                                         (b)                                         (c) 

 

                     (d)                                         (e)                                         (f) 

Fig. 108. Density distribution of SA (SPH). (a) 0.24 s, (b) 0.48 s, (c) 0.72 s, (d) 0.96 s, 

(e) 1.2 s, (f) 1.44 s. 
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                                    (a)                                                                 (b) 

Fig. 109. Velocity distribution of SA (SPH). (a) 0.72 s, (b) 1.44 s. 

 

                                    (a)                                                                 (b) 

Fig. 110. Pressure distribution of SA (SPH). (a) 0.72 s, (b) 1.44 s. 

 

                                   (a)                                                                 (b) 

Fig. 111. Vorticity distribution of SA (SPH). (a) 0.72 s, (b) 1.44 s. 
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                                          (a)                                                             (b) 

Fig. 112. Turbulent viscosity distribution of SA (SPH). (a) 0.72 s, (b) 1.44 s. 

 

Fig. 108 illustrates the density distribution obtained with SA (SPH) at different instants, 

from 0.12 s to 1.44 s. The development of the waveform is analogous to that of SA 

(SPH). The rolling of the oil film is also shown in Fig.108, which is not seen at a low 

rotation speed. Fig. 109 to Fig. 112 show the comparison between SA (SPH) and 𝑘 −

𝜔 (Fluent) in terms of the velocity, pressure, vorticity and viscosity profile. Except for 

the viscosity profile, the other profiles of SA (SPH) are perfectly consistent with those 

of 𝑘 − 𝜔 (Fluent). The viscosity of SA (SPH) is more stable than that of ML (SPH), 

which is already proven at the low rotation speed. 

 Analysis of results 

In the two sections above, the results of SPH at line L1 are compared with those of 

Fluent. To assess the results of the whole fluid domain, the density, pressure and 

velocity distribution obtained with SPH are compared with the results of Fluent in this 

section. 
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7.4.1. Relatively lower rotation speed 

 

                     (a)                                         (b)                                         (c) 

Fig. 113 . Density distribution. (a) ML (SPH), (b) SA (SPH), (c) 𝑘 − 𝜔 (Fluent). 

 

                     (a)                                         (b)                                         (c) 

Fig. 114 . Pressure distribution. (a) ML (SPH), (b) SA (SPH), (c) 𝑘 − 𝜔 (Fluent).  

 

                     (a)                                         (b)                                         (c) 

Fig. 115 . Velocity distribution. (a) ML (SPH), (b)SA (SPH), (c) 𝑘 − 𝜔 (Fluent). 
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Fig. 113 depicts the density distribution obtained with ML (SPH), SA (SPH) and 𝑘 −

𝜔 (Fluent). The waveform of SPH is comparable to that of Fluent. Figs. 114 and 115 

illustrate the pressure and velocity distribution of ML (SPH), SA (SPH) and 𝑘 − 𝜔 

(Fluent). Both the pressure and velocity distribution of ML (SPH) and SA (SPH) are 

roughly the same as those of 𝑘 − 𝜔 (Fluent). Although the pressure fluctuation of SPH 

is larger than that of Fluent, the interface is still quite stable, indicating that SPH is 

suitable for multiphase flow.  

7.4.2. Relatively higher rotation speed 

 

                     (a)                                         (b)                                         (c) 

Fig. 116 . Density distribution. (a) ML (SPH), (b) SA (SPH), (c) 𝑘 − 𝜔 (Fluent). 

 

                     (a)                                     (b)                                         (c) 

Fig. 117 . Pressure distribution. (a) ML (SPH), (b) SA (SPH), (c) 𝑘 − 𝜔 (Fluent). 
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                     (a)                                         (b)                                         (c) 

Fig. 118 . Velocity distribution. (a) ML (SPH), (b)SA (SPH), (c) 𝑘 − 𝜔 (Fluent). 

 

  

                     (a)                                         (b)                                         (c) 

Fig. 119 . Turbulent viscosity distribution. (a) ML (SPH), (b)SA (SPH), (c) 𝑘 − 𝜔 

(Fluent). 

 

Figs. 116 to 119 display the density, pressure, velocity and viscosity distribution at a 

high rotation speed obtained with ML (SPH), SA (SPH) and 𝑘 − 𝜔  (Fluent). The 

results of these three methods are similar. With the speed of the inner shaft increased, 

the velocity and pressure also rose as well as the amplitude of the waveform. This 

process leads to some air being rolled into the oil film, as shown in Fig. 116. This 
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phenomenon is not seen at low rotation speeds. In addition, the wave-rolling is 

captured by the VOF and LS models in Fluent, while only collision shift is used for 

the interface in the SPH method. The collision shift model is much simpler and 

computationally cheaper during the simulation. Fig.119 shows the viscosity 

distribution obtained with ML (SPH), SA (SPH) and 𝑘 − 𝜔 (Fluent) at a high rotation 

speed. The viscosity distribution of ML (SPH), SA (SPH) is more stable than that of 

𝑘 − 𝜔  (Fluent), which is consistent with the viscosity profile in Fig. 112 in 

Section 7.3.2. Notably, there is a discontinuity in the pressure, as shown in Fig. 118(c), 

which can be resolved by reducing the time step in which the air rolls in a very thin oil 

film. 

 Summary 

In this chapter, the two-dimensional multiphase Taylor–Couette flow is modelled 

using the hybrid SPH method, which is a combination of -SPH and the particle-

collision shift model. Simulations are performed at two different rotational speeds of 

the inner shaft whilst the outer wall is fixed.  

 

The SPH simulations were conducted under multiphase turbulent flow conditions with 

the mixing length (ML) turbulence model and the Spalart–Allmaras turbulence (SA) 

model as well as the surface tension model. Following [19], the results of the Fluent 

with k-ω turbulence model, volume of fluid (VOF), level-set (LS) model and the same 

surface-tension model are used to validate the results of the SPH simulation. 
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Differing from the single-phase 2D TC flow, the oil film will move along the outer 

wall with deformation. The simulation results are performed along a horizontal line 

(y = 0 on the horizontal axis (y = 0) between (−𝑅𝑜𝑢𝑡𝑒𝑟 < = x < = −𝑅𝑖𝑛𝑛𝑒𝑟)) as well as 

in the whole-fluid domain. 

 

The SPH results for the configuration with a relatively low rotational speed show a 

reasonable match with Fluent. The oil moves along the outer wall, and the waveforms 

of SA and ML are quite similar. The pressure velocity and vorticity profiles obtained 

with ML and SA are roughly the same and are in good agreement with Fluent. 

Furthermore, the velocity profile of SA is closer to that of Fluent than ML. The 

turbulent viscosity profile of ML fluctuates and shows values about half of those of 

Fluent, while the result of SA is smoother, with almost the same values as ML. Here, 

the profiles of velocity, pressure and vorticity will have slight changes at different 

instants under the influence of the movement of the oil film. The influence of the 

movement of oil film is greater in the viscosity profile obtained with ML. When the 

thickness of oil film at the point (−𝑅𝑜𝑢𝑡𝑒𝑟, 0) is quite different from the initial value, 

the viscosity profile obtained with ML shows a visible discontinuity around the 

interface. However, this kind of discontinuity can be avoided using SA.  

 

The SPH results for the configuration with a relatively high rotation speed show a 

similar match with Fluent. A higher amplitude waveform is obtained with SA and ML, 

and some air will be involved in the oil film. The pressure, velocity and vorticity 

profiles of SA and ML are now closer to those of Fluent. Similar to the viscosity profile 

at relative lower rotational speed, the value of viscosity of ML and SA is still half of 
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𝑘 − 𝜔 (Fluent). Moreover, there are still discontinuities in the viscosity profile of ML 

at the interface, which can still be prevented by SA. Varying from the viscosity profile 

at relative lower rotational speed, the viscosity of Fluent becomes unstable, and the 

fluctuation is even larger than ML, while the that of SA maintains its stability at the 

relatively high rotation speed. This finding might indicate that the stability of the high-

rotation-speed multiphase flow is an advantage of the SPH method.  

 

At both rotational speeds, the density, velocity and pressure distributions of the entire 

flow field obtained with ML(SPH), SA(SPH) and 𝑘 − 𝜔 (Fluent) are almost the same. 

The rolling of the oil film can be well captured at a high rotation speed. Only the 

airflow between the two concentric circles is turbulent, while the oil film remains 

laminar at a very low velocity. The pressure fluctuations at the interface of SPH are 

also shown in the results of Fluent. Although the fluctuation of SPH is larger, the 

interface is still not clustering. Differing from Fluent, SPH can capture the interface 

without VOF and LS models, which is another advantage of the SPH method.  

 

In conclusion, although the turbulence model in SPH differs from Fluent, the velocity 

and pressure are almost identical. This finding demonstrates that the turbulence model 

in SPH is effective for the multiphase turbulent TC flow. Due to the viscosity of SA is 

more stable, only SA (SPH) will be used for the multiphase turbulent flow in the 

bearing chamber, in the next chapter. 
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Chapter 8 Turbulent flow in a 

simplified bearing chamber 

In the previous chapters, the Taylor–Couette (TC) case is examined under 2D 

multiphase turbulent flow conditions. In this chapter, the TC case is extended to a 

simplified bearing chamber, which is accomplished by adding a sump pipe. The 

suction effect of the pipe is taken into account by including gravitation. First a bearing 

chamber in 2D is examined, as a next step in the TC case (without gravitation) in 3D, 

and finally, the bearing chamber in 3D. The cases in this chapter are simulated with 

the particle-collision shift model (CS) in combination with -SPH, exactly as in the 

previous chapters. This combination of SPH models is further denoted as SPH and 

compared with the Fluent. In 3D TC case, this combination of SPH models is 

compared with standard WCSPH (Section 8.3.1). 

 Case description 

8.1.1. Case setup 

The 2D simplified bearing chamber consists of two concentric circles and one sump 

pipe, as shown in Fig. 120. The dimensions of the bearing chamber is the same as those 

in 2D TC flow. 

SPH simulations performed at real rotational speeds on the order of 15,000 rpm appear 

to be quite challenging [23]. In that case, very small timesteps are needed, as well as a 

high artificial wave speed and very thin oil films. The very thin oil films require a high 
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particle resolution. For these reasons, a lower rotational speed is chosen to allow for 

larger timesteps, whilst a higher film thickness is selected. The rotational speed of the 

shaft is scaled down from 15,000 rpm to 𝜔𝑖𝑛𝑛𝑒𝑟
𝑙𝑜𝑤  rpm. In a real case with high rotational 

speeds, the effect of gravity is relatively low compared to the centrifugal effects. For 

this reason, the gravitational acceleration is scaled down from 9.81 𝑚/𝑠2  to 

0.02 𝑚/𝑠2 . In addition, the thickness of the oil film is scaled up from ℎ𝑜𝑖𝑙 =

1.9 × 10−4 m to ℎ𝑜𝑖𝑙  . The scaling of the above three parameters is done in such a way 

that the ratio of shear and gravitational forces remains the same. For details of the 

scaling, it is referred to Kruisbrink [134]. 

 

Fig. 120. Initial state of 2D turbulent multiphase flow in a bearing chamber. 

8.1.2. Initial and boundary conditions 

At the initial stage, a thin layer of oil film (red) is placed on the circumference of the 

outer wall, including the top of the sump pipe, which will be driven by the rotation 

airflow (blue) and moved into the sump pipe under gravity. In the chamber, oil is 

injected from the inner rotating shaft. Similar to the 2D multiphase TC flow, the initial 

condition is given by Eqs. (104) and (105).  
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8.1.3. SPH and CFD models and model coefficients 

The SPH and CFD models used in this chapter are the same as those in Chapter 7. As 

a surface tension model, the continuum surface force model [39] is used here for both 

SPH and Fluent. The surface tension coefficient is 0.032 N/m. The SPH and CFD 

models’ coefficients are described in Section 6.1.3.  

 Two-dimensional turbulent multiphase flow in 

bearing chamber 

In this section, the 2D turbulence multiphase flow in the bearing chamber is simulated 

with SA (SPH). The rotation of the inner shaft is clockwise. 

 

 

                   (a)                                      (b)                                      (c) 
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                   (d)                                      (e)                                      (f) 

 

                   (g)                                      (h)                                      (i) 

Fig. 121. Evolution of the multiphase turbulent flow in the simplified two-dimensional 

bearing chamber (thicker oil film) at instants (a) 0.3 s, (b) 0.6 s, (c) 0.9 s, (d) 1.2 s, (e) 

1.5 s, (f) 1.8 s, (g) 2.1 s, (h) 2.4 s, (i) 2.7, together with the density distribution of SA 

(SPH). 
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                                     (a)                                                              (b) 

Fig. 122 Velocity profiles of SA (SPH). (a) 1.8 s, (b) 3.0 s. 

 

                                    (a)                                                                (b) 

Fig. 123 Pressure profiles of SA (SPH). (a) 1.8 s, (b) 3.0 s. 

 

Fig. 121 displays the evolution of the turbulent flow in the bearing chamber from 

t = 0.3 s to t =2.7 s. Under the action of gravity and shear force from the air flow, the 

oil film not only rotates along the outer wall but also discharges from the bearing 

chamber along the sump pipe. When the simulation starts, the oil film above the pipe 

descends along the pipe. The remainder of the oil will then move clockwise, driven by 

the air. Regarding the oil on the chamber wall, some on the right side of the chamber 

wall will move through the gap to the left side of the chamber wall, and the rest of the 

oil will move into the sump pipe. Oil entering the pipeline will flow out of the outlet. 

The waveform amplitude remains similar to that of a 2D TC flow. Fig. 122 and Fig. 
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123 illustrate the velocity and pressure profiles along the line L2 obtained with SA 

(SPH) and k-ω (Fluent) at two different moments. The velocity profile of SA (SPH) is 

almost identical to that of Fluent, and quite close to that in the 2D turbulent multiphase 

TC flow (Section 7.3.1.2). However, the pressure profile in the bearing chamber is not 

as smooth as that in 2D turbulent multiphase TC flow (Section 7.3.1.2). As shown in 

Fig. 123, though the trend of the pressure of SA (SPH) is the same as that of k-ω 

(Fluent), the pressure of SA (SPH) exhibits more fluctuation. 

 Three-dimensional multiphase turbulent flow 

The turbulence model in the 2D multiphase flow in the bearing chamber is verified in 

the section above. In this section, to validate the turbulence model in the 3D case, SA 

(SPH) is used to simulate a 3D multiphase turbulent Taylor–Couette flow (without 

gravitation) and a 3D turbulent flow in the bearing chamber. For the particles will 

move across the side wall, their velocity component perpendicular to the side wall will 

be reversed to prevent the particle penetration.  

8.3.1. Three-dimensional multiphase turbulent Taylor–

Couette flow 

A 3D TC multiphase flow is presented here. The initial particle distance is  ∆𝑥 =

0.001. In this case, all the parameters are the same as the 2D multiphase turbulent TC 

flow. w is the width (z direction) of the 3D TC flow.  
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Fig. 124. Setup of the 3D TC flow. 

Fig. 124 shows the setup of the 3D TC flow. In the three-dimensional case, the particle 

distribution is difficult to observe. For the convenience of checking the particle 

distribution, two sections are chosen for observation. The first section is taken up by 

the pink rectangle in Fig. 124, which is located at x = 0.  

 

                            (a)                                                              （b） 

Fig. 125. Particle distribution around the first section at t = 0.007 s. (a) standard 

WCSPH, (b) SPH. 
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                            (a)                                                                （b） 

Fig. 126. X-direction view of Fig. 125. (a) standard WCSPH, (b) SPH. 

Fig. 125 illustrates the particle distribution around this section at t = 0.007 s. Fig. 126 

depicts an x-direction view of the particle distribution in Fig. 125. With standard 

WCSPH, the particle suffers serious clustering, as shown in Fig. 126(a). With SPH, 

the particle distribution remains stable. The second section is taken up by the 

concentric circles section located at z = 0. Fig. 127 shows the particle distribution 

around this section.  

 

                                     (a)                                                      （b） 

Fig. 127. Particle distribution around the second section at t = 0.007 s. (a) standard 

WCSPH and (b) SPH. 
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                                     (a)                                                 （b） 

Fig. 128. Z-direction view of Fig. 127(a) and detail.  

       

                                       (a)                                                    （b） 

Fig. 129. Z-direction view of Fig. 127(b) and detail. 

 

The result obtained with standard WCSPH in Fig. 127(a) shows the particle layering 

and clustering. This result is not seen with SPH. To further consider the particle 

distribution, the z-direction view of Fig. 127(a) and 11(b) are presented in Fig. 128 

and Fig. 129, respectively. From the z-direction view, it is seen that the standard 

WCSPH suffers from particle layering. In contrast, the result of SPH is much better 

than standard WCSPH. 
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                              (a)                                                                (b)                                             

Fig. 130. Evolution of the three-dimensional multiphase turbulent TC flow at instants 

(a) 0.04 s, (b) 0.4 s, together with the density distribution of SA (SPH). 

     

                                  (a)                                                               (b)                                               

Fig. 131. Evolution of the three-dimensional multiphase turbulent TC flow at instants 

(a) 6 s, (c) 10 s, together with the density distribution of k-ω (Fluent). 
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                              (a)                                                           (b) 

Fig. 132. Velocity distribution of the multiphase turbulent TC. (a) SA (SPH) t = 0.4 s, 

(b) k-ω (Fluent) t = 6 s. 

Fig. 130 and Fig. 131 show the evolution of the three-dimensional multiphase turbulent 

TC flow. As shown in Fig. 130, the oil film obtained with SA (SPH) will move from 

the middle to both side chamber walls in 0.4 s. Similar phenomena can be observed in 

Fig. 131. However, the oil film obtained with k-ω (Fluent) moves from the middle to 

the one side wall in 10 s. Although the instants are not the same, the oil film 

distribution of SPH is quite similar to that of Fluent  

In the next part of this section, the results of t = 0.04 s and t = 0.4 s in SPH will be 

compared with those of Fluent. 

The velocity distribution of the whole fluid domain is illustrated in Fig. 132. The 

results of both models are roughly the same. To obtain a detailed analysis, the profiles 

of velocity, pressure and viscosity are presented on the horizontal axis in Fig. 133: the 

first line (L3) is the red line (y = 0, z =0, −𝑅𝑜𝑢𝑡𝑒𝑟 < = x < =  −𝑅𝑖𝑛𝑛𝑒𝑟) at the middle 
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part and the second line (L4) is the green line (y = 0, z =0.01, −𝑅𝑜𝑢𝑡𝑒𝑟  < = x 

< =  −𝑅𝑖𝑛𝑛𝑒𝑟) close to the right side. 

 

Fig. 133. Line to plot the velocity and pressure profiles inside the concentric 

cylinders. 

 

                                     (a)                                                              (b)  

Fig. 134. Velocity profile of SA (SPH) at t = 0.04 s. (a) L3, (b) L4. 
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                                     (a)                                                              (b)  

Fig. 135. Velocity profile of SA (SPH) at t = 0.4s. (a) L3, (b) L4. 

 

                                        (a)                                                           (b) 

Fig. 136. Turbulent viscosity profile of SA (SPH). (a) 2D, (b) 3D.  

In the simulation results of Fluent, before the most of the oil moves to the side wall, 

the velocity profile is in a relatively stable state. Here, the simulation results of Fluent 

at t = 6 s are chosen to validate the results of SPH. 

Fig. 134 and Fig. 135 illustrate the velocity profile obtained with SA (SPH) along the 

lines L3 and L4 at t = 0.04 s and 0.4 s, respectively. As shown in Fig. 134, the velocity 

profile of SA (SPH) is similar to that of k-ω (Fluent). However, afterward, as seen in 

Fig. 135, the velocity profile of SA (SPH) is lower than that of k-ω (Fluent) no matter 

whether the profile was plotted along L3 or L4. 

Fig. 136 shows the turbulent viscosity profile of SPH in 2D and 3D. In 2D cases, the 

turbulent viscosity of k-ω (Fluent) is twice that of SA (SPH). However, the turbulent 
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viscosity of SA (SPH) is nearly 20 times that of k-ω (Fluent) in 3D. This viscosity 

difference is one of the reasons for the variance in the velocity profile between SA 

(SPH) and k-ω (Fluent). The remaining reasons for the variances between the two 

models above need further investigation. 

 

8.3.2. Three-dimensional multiphase turbulent flow in the 

bearing chamber 

 

 

                   (a)                                       (b)                                        (c) 

Fig. 137, Density distribution of SA (SPH). (a) 0.08 s, (b) 0.16 s, (c) 0.24 s. 
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                             (a)                                                        (b) 

Fig. 138. Velocity distribution. (a) Turbulent flow in the bearing chamber at t = 0.24 s 

obtained with SA(SPH), (b)Turbulent TC flow at t = 6 s obtained with k-ω (Fluent). 

 

                                     (a)                                                             (b) 

Fig. 139. Velocity profile of SA (SPH) at t = 0.04 s. (a) L3, (b) L4. 
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                                     (a)                                                             (b) 

Fig. 140. Velocity profile of SA (SPH) at t = 0.24 s. (a) L3, (b) L4. 

Under the high rotational speed, the effect of gravity can be ignored. Similar to the 

above section, the simulation results of 3D TC flow (without gravity) obtained with 

Fluent at t = 6 s are chosen to validate the results of SPH. 

Fig. 137 displays the evolution of the 3D multiphase turbulent flow in the bearing 

chamber at 3 moments from 0 to 0.24 s. The oil film will move into the sump pipe and 

out of the bearing chamber. Fig. 138 illustrates the velocity distribution obtained with 

SA (SPH) of the entire bearing chamber, which is close to the results of k-ω (Fluent).  

Fig. 139 and Fig. 140 illustrate the velocity profile along the lines L3 and L4 at t = 0.04 s 

and 0.24 s, respectively. The velocity profiles of the turbulent flow in bearing chamber 

obtained with SA (SPH) are very similar to that in 3D TC flow. Compared with the 

results of Fluent, the velocity profile of SPH has a good agreement in the early stages 

of the simulation, and then it will decrease. The length of the red line in Fig. 139 and 

Fig. 140 represents the thickness of the oil film, it can be seen that the thickness of the 

oil film at the middle of the outer wall decreases, while the thickness of the oil film 

increases near the side wall. In the bearing chamber, the oil also moves from the middle 

to the side wall. 
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Fig. 141. Turbulent viscosity profile of SA (SPH). 

Fig. 141 illustrates the turbulent viscosity profile in the bearing chamber. It is very 

similar to that in 3D TC flow, which again 20 times larger than that of Fluent. This 

may cause the dissipation of the velocity. At high rotational speed, gravity can be 

neglected, and the turbulent viscosity will dominate the evolution of the velocity. 

 

 Summary 

In this chapter, the multiphase turbulent flow in the simplified two- and three-

dimensional bearing chamber as well as the three-dimensional turbulent Taylor–

Couette (TC) flow (without gravitation) are modelled using -SPH in combination 

with the particle-collision shift model. All simulations are performed with the Spalart–

Allmaras (SA) turbulence model as well as the surface tension model. The results are 

validated against Fluent using the k-ω model with the same surface tension model. 

 

In the two-dimensional bearing chamber case, the evolution of the oil film is 

reasonable – it will move out of the chamber under gravity and centrifugal force. The 

SPH results for the configuration of the turbulent flow in the two-dimensional bearing 

chamber show a reasonable match with Fluent. The velocity profiles obtained with SA 
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(SPH) are identical to Fluent. The pressure profile of SA (SPH) has the same trend as 

that of Fluent but with more fluctuation caused by the point-source particles.  

 

In the 3D TC flow case, the evolution of the oil film is similar to that of Fluent. The 

oil will move from the middle of the outer wall to the side. However, the oil obtained 

with SPH will move to both sides of the outer wall symmetrically, while only to one 

side with Fluent. The velocity profile of SPH for the configuration is in good 

agreement with Fluent no matter whether at the centre of the outer wall (L3) or near 

the side of the boundary (L4) at the early stage. Later on, the velocity profile shows 

more deviation from those of Fluent.  

 

In the 3D-bearing-chamber case, a sump pipe is added, and gravity is considered. 

Similar to the evolution of the above case, the oil film still tends to move from the 

middle of the chamber wall on both sides. In addition, the oil will move out from the 

sump pipe. Similar to the 3D turbulent TC flow, the velocity profile obtained with SPH 

of the bearing chamber is also comparable to that of Fluent at the early stage of the 

simulation. Subsequently, the velocity profile will decrease, and the final results will 

be lower than those of Fluent. The main reason is that the turbulent viscosity calculated 

by (SA) SPH is 20 times larger than that of k-ω (Fluent), which leads to more 

dissipation in the velocity. 

 

The three-dimensional simulation was conducted using 132 cores on the University of 

Nottingham HPC at an average rate of about 0.32 s per week for 1,000,000 particles. 

The resolution is still not high enough to have an accurate interface which leads error 
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distance to the boundary of SA model. That is one of the main reason of large 

difference of viscosity between SPH and Fluent.  

 

Chapter 9 Conclusion and 

Recommendations 

 

In this thesis, a novel particle shift SPH model is presented and applied it to the 

multiphase flow in jet engine bearing chambers. 

 

 Concluding remarks 

The turbulence model in the SPH method was reviewed. 

 

A new particle shift model based on the particle collision model from Kruisbrink [1] 

was proposed. This new model was designed to prevent particle clustering, including 

but not limited to unstable interface, particle wall penetration, and particle gathering 

and separating. The new model’s conservative and non-dissipative properties were 

demonstrated. 
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The accuracy, stability, computational efficiency and dissipative properties of the 

particle collision shift and Fickian shift were compared. These properties were 

explored through six case studies, including four academic and two benchmark 

engineering cases, using the incompressible SPH method. The collision shift is simpler 

(does not require special treatment at the free surface), more efficient (requires less 

CPU time) and more accurate. 

 

A hybrid method, consisting of a combination of the particle collision shift model and 

𝛿-SPH, was proposed and named 𝛿-SPH_CS. This hybrid method fits both single-

phase and multiphase flows. The particle collision shift model’s equation is the same 

for multiphase as for single-phase flow. This result was verified with four classical 

multiphase cases, including low- and high-density ratio cases. 

 

For the two-dimensional, single-phase Taylor-Couette flow, the SPH simulation 

results for laminar flow were consistent with the laminar theoretical value. Moreover, 

the turbulent flow results were almost identical to the Ansys Fluent results at three 

different radius ratios. 

 

The evolution of the two-dimensional, multiphase, turbulent Taylor-Couette flow was 

studied systematically at two different rotational speeds. The motion of the oil film 

was observed. The waveform, velocity, pressure and viscosity distributions matched 

those of Fluent for both rotational speeds. 
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The evolution of multiphase turbulent flow in bearing chambers was studied in both 

two and three dimensions. The two-dimensional bearing chamber’s velocity profile 

was almost identical to those of Fluent. However, the pressure profile of the bearing 

chamber, unlike those produced by Fluent, had fluctuations caused by the point source 

particle. In the three-dimensional bearing chamber, the movement of oil film is similar 

to that of Fluent. Due to the higher turbulent viscosity created in the SPH method, the 

velocity profile only matched Fluent’s results well in the early stages. After that, the 

velocity will be lower than that of Fluent. 

 

 Recommendations for future work 

In this thesis, the particle collision shift model is used with a fixed restitution 

coefficient (CR = 0; representing inelastic collisions), and a fixed collision distance 

equal to the initial particle distance (dcol = dnat). It may be interesting to explore the 

effect of a variable collision distance and restitution coefficient. In weakly 

compressible SPH, the particle distribution represents the state of compression. The 

smaller the particle distance, the denser the particle distribution and the higher the 

pressure. This implies that under high pressure the collision distance should be chosen 

smaller. This leads to the concept of a collision distance that is pressure dependent (dcol 

= f (p)). The same potentially may be done for the restitution coefficient. A fluid 

becomes more stagnant at high pressures, which may be associated with inelastic 

collisions (CR = 0). A fluid becomes more dynamic at low pressures, which may be 

associated with elastic collisions (CR > 0). This leads to a concept of a restitution 

coefficient that is pressure dependent (CR = f (p)). 
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In this thesis, the particle collision shift model is used without the original particle 

collision model. The combination of both models may be useful, particularly in 

turbulence modelling. In the original particle collision model, only the approach 

velocities of colliding particles are changed, not their positions. By combining these 

two models, colliding particles are not only separated (by shifting), but their velocities 

are also changed, such that they no longer approach each other. The latter avoids 

repetitive shifting. Moreover, the original particle collision model leads to better no-

slip conditions [1]. This combination may be useful in the stabilization of turbulent 

flows, characterized by steep velocity gradients at walls. The original particle collision 

model is dissipative to some extent, which however, is acceptable in dissipative 

turbulent flows that are dominated by a turbulent viscosity that may be several orders 

higher than the laminar viscosity. 

 

The Prandtl’s mixing length model and the Spalart-Allmaras model are used in this 

work, and the distance from the wall must be known. In simple geometries, such as 

the Taylor-Couette flow between concentric cylinders, this can be calculated with a 

simple function. However, in complex geometries such as the real bearing with several 

sump pipes, this becomes less obvious. In SPH a fluid particle can only see particles 

within its kernel domain. This implies that ghost particles (that represent a wall) can 

only be seen at a short distance. Moreover, when running a parallel SPH code, walls 

may be present at other cores. Thus, the evaluation of wall distances in SPH is not 

straightforward. This needs further investigation. 
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At the current stage of the research, the mixing length turbulence model and the 

Spalart-Allmaras model are implemented in the SPH method. However, both models 

are based on the distance to the interface or boundaries. The k-ω and k-e models should 

be considered as options to potentially implement in the in-house code. 

 

For multiphase fluid problems with rapid gradient changes in physical quantities (e.g. 

density, velocity), it may be useful to utilise adaptive particle splitting and merging 

schemes for refined resolution near the interface and the inlet particles on the shaft. 

 

Given the success in modelling turbulent flow with an initially thin layer of oil film at 

the outer wall, the form of the oil film produced by the rotating shaft’s action on the 

inlet oil particles should be studied further. 

 

The turbulence model and 𝛿-SPH_CS were successfully validated with Ansys Fluent’s 

two-dimensional simulation. More numerical studies need to be conducted to validate 

the models in three dimensions. 
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Appendix 

Appendix A 

 

In this appendix the relationship between the approach velocity and the distance 

between particles i and j at subsequent time steps, according to Eq. (86), is proven. 

This is an important step in the derivation of the particle collision shift model.  

The positions of particle i and a neighbour particle j at a new time step are 

 {
𝑟 𝑖(𝑡 + ∆𝑡) = 𝑟 𝑖(𝑡) + 𝑣 𝑖(𝑡)∆𝑡

𝑟 𝑗(𝑡 + ∆𝑡) = 𝑟 𝑗(𝑡) + 𝑣 𝑗(𝑡)∆𝑡
 (A1) 

The relative particle position of particle i and j is 

 𝑟𝑖𝑗⃗⃗  ⃗(𝑡 + ∆𝑡) = 𝑟 𝑖𝑗(𝑡 + ∆𝑡) = 𝑟 𝑖𝑗(𝑡) + 𝑣 𝑖𝑗(𝑡)∆𝑡 (A2) 

The particle distance at a new time step is 

𝑑𝑖𝑗
2(𝑡 + ∆𝑡) = (𝑟 𝑖𝑗(𝑡) + 𝑣 𝑖𝑗(𝑡) ∗ ∆𝑡)

2
= 𝑑𝑖𝑗

2(𝑡) + 2𝑟 𝑖𝑗(𝑡) ∙ 𝑣 𝑖𝑗(𝑡)∆𝑡 + 𝑣 𝑖𝑗(𝑡) ∙ 𝑣 𝑖𝑗(𝑡)(∆𝑡)2 (A3) 

Eq. (A3) can be rewritten as, 

 𝑑𝑖𝑗(𝑡 + ∆𝑡) = 𝑑𝑖𝑗(𝑡)√1 +
2𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)∆𝑡

𝑑𝑖𝑗(𝑡)
2 + [

𝑣⃗ 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
2 ]∆𝑡2. (A4) 

The negative sign is further ignored since the distance is always positive. For 

convenience, the terms under the square root are represented in short notation by  

 {

𝜀1 = 
𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
2

𝜀2 = 
𝑣⃗ 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
2

 (A5) 

Substitution of Eq. (A5) into Eq. (A4) results in 
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 𝑑𝑖𝑗(𝑡 + ∆𝑡) = 𝑑𝑖𝑗(𝑡)√1 + 2𝜀1∆𝑡 + 𝜀2∆𝑡2. (A6) 

Note that for small time steps ( ∆𝑡 → 0 ) the value of 𝜀  also tends to zero 

( |2𝜀1∆𝑡 + 𝜀2∆𝑡2| → 0  ). Therefore, the square root term in Eq. (A6) can be 

approximated by a Taylor series expansion, resulting in 

 𝑑𝑖𝑗(𝑡 + ∆𝑡) = 𝑑𝑖𝑗(𝑡)(1 + 𝜀1∆𝑡 + 𝜀2∆𝑡2 − 𝜀1
2∆𝑡2 − 𝜀1𝜀2∆𝑡3 + 𝑂(∆𝑡2)).  (A7) 

Neglecting higher-order terms (∆𝑡2, ∆𝑡3, …), the first-order approximation of Eq. (44) 

becomes 

 𝑑𝑖𝑗(𝑡 + ∆𝑡) = 𝑑𝑖𝑗(𝑡)(1 + 𝜀1∆𝑡 + 𝑂(∆𝑡)). (A8) 

Ignoring the O(∆𝑡) term and substituting Eq. (A5) into Eq. (A8) yields 

 𝑑𝑖𝑗(𝑡 + ∆𝑡) ≈ 𝑑𝑖𝑗(𝑡) + [
𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
]∆𝑡.  (A9) 

Using -∆𝑡 to replace ∆𝑡 in Eq. (A9)  

 𝑑𝑖𝑗(𝑡 − ∆𝑡) ≈ 𝑑𝑖𝑗(𝑡) − [
𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
]∆𝑡.  (A10) 

Rewriting the above result, the relationship between the approach velocity and distance 

is approximated as  

 
𝑟 𝑖𝑗(𝑡)∙𝑣⃗ 𝑖𝑗(𝑡)

𝑑𝑖𝑗(𝑡)
≈

𝑑𝑖𝑗(𝑡)−𝑑𝑖𝑗(𝑡−∆𝑡)

∆𝑡
. (A11) 

This result is equal to Eq. (86), which was to be proven. 

 

Appendix B 

In this appendix, the conservative features of the collision shift model (CS) in itself 

are analysed. In CS, the velocity is not updated, so that the kinetic energy and linear 

momentum are conserved. The conservative features of potential energy and angular 
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momentum are assessed in the sections B.1 and B.2. For this purpose, a set S of N 

particles is considered that take part in a single simultaneous collision. 

B.1 Conservation of potential energy in a gravitation field 

The change of potential energy of a particle i  S, due to its shift is 

 𝛥𝐸𝑖  =  − 𝑚𝑖 [𝑔 ⋅ 𝛥𝑟 𝑖] .  (B1) 

where 𝑔  is the gravitational acceleration. The shift of particle i due to a simultaneous 

collision with (N-1) particles j  S is given in Eq. (95). Substitution of Eq. (95) in Eq. 

(B1) yields 

 𝛥𝐸𝑖  =   
∑  𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [𝑔⃗  ⋅ 𝑒 𝑖𝑗]

𝑁
𝑗=1  

∑  𝑚𝑗
𝑁
𝑗=1

,  (B2) 

where 𝑒 𝑖𝑗 = 𝑟 𝑖𝑗 / dij is a unit vector. Note that the summation is extended to all (N) 

colliding particles, including particle i itself. This is allowed since particle i does not 

contribute to its own shift ( [𝑔 ⋅ 𝑒 𝑖𝑖] = 0 ). The change of potential energy of the set S 

now becomes 

 𝛥𝐸  =     
∑ ∑  𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [𝑔⃗  ⋅ 𝑒 𝑖𝑗]

𝑁
𝑗=1

𝑁
𝑖=1  

∑  𝑚𝑗
𝑁
𝑗=1

. (B3) 

The change of potential energy of particle i due to its collision with particle j is  

 ∆𝐸𝑖𝑗 =
𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [𝑔⃗  ⋅ 𝑒 𝑖𝑗]

∑  𝑚𝑗
𝑁
𝑗=1

. (B4) 

The above result is symmetrical, swapping the indices i and j only changes its sign (𝑒 𝑖𝑗 

= −𝑒 𝑗𝑖). Thus, the pairwise contribution to the change of potential energy of the set is 

 ∆𝐸𝑖𝑗 + ∆𝐸𝑗𝑖 =
𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [𝑔⃗  ⋅ (𝑒 𝑖𝑗+𝑒 𝑗𝑖)] 

∑  𝑚𝑗
𝑁
𝑗=1

. (B5) 

Consequently, all pairwise contributions within the set are zero, so that the total 

potential energy of the set S is conserved. The above derivation holds for any value of 

the gravitational acceleration and thus for any constant conservative force field. 
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B.2 Conservation of angular momentum 

The change of angular momentum of a particle i due to its shift is 

 𝛥𝐿𝑖  =  − 𝑚𝑖 [𝛥𝑟 𝑖 × 𝑣 𝑖] . (B6) 

Substitution of Eq. (95) into Eq. (B6) gives for the shift due to collisions with the 

colliding particles 

 𝛥𝐿𝑖  =   
∑  𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [ 𝑒 𝑖𝑗×𝑣⃗ 𝑖]

𝑁
𝑗=1  

∑  𝑚𝑗
𝑁
𝑗=1

. (B7) 

The change of angular momentum of the set now becomes 

 𝛥𝐿  =     
∑ ∑  𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [ 𝑒 𝑖𝑗×𝑣⃗ 𝑖]

𝑁
𝑗=1

𝑁
𝑖=1  

∑  𝑚𝑗
𝑁
𝑗=1

 (B8) 

The change of angular momentum of particle i due to the collision with particle j is 

 ∆𝐿𝑖𝑗 =
𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [ 𝑒 𝑖𝑗×𝑣⃗ 𝑖]

∑  𝑚𝑗
𝑁
𝑗=1

. (B9) 

The pairwise contribution to the change of angular momentum of the set now becomes 

 ∆𝐿𝑖𝑗 + ∆𝐿𝑗𝑖 =
𝑚𝑖𝑚𝑗 (1 + 𝐶𝑅) (𝑑𝑖𝑗 − 𝑑𝑐𝑜𝑙) [ 𝑒 𝑖𝑗×𝑣⃗ 𝑖𝑗] 

∑  𝑚𝑗
𝑁
𝑗=1

. (B10) 

The cross product in Eq. (B10) is in general non-zero, so that the conservation of 

angular momentum is not satisfied. Angular momentum cannot be conserved in a shift 

process without a change of velocity. It thus may be concluded that kinetic energy and 

angular momentum cannot both be conserved in a shift process. 

B.3 Case validation 

Potential energy is assessed in the dam break and oscillating droplet cases. To quantify 

the effect of CS and FS (without velocity correction) on the potential energy, other 

dissipation effects (e.g. due to viscosity) must be eliminated. Therefore, the potential 

energy just before and immediately after a shift is considered at each instant. If energy 

is conserved for every shift step, for the longer term, the energy dissipation due to the 
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collision shift can remain zero. And the shift process is after the movement calculated 

by the momentum equation and before the next time calculation start. Only the position 

of the particle is slightly changed. The properties such as velocity, density and 

temperature remain the same. The change of potential energy (∆𝐸 = 𝐸𝑎𝑓𝑡𝑒𝑟 − 𝐸𝑏𝑒𝑓𝑜𝑟𝑒) 

is presented in Figs. A and B (below) for the dam break case and oscillation droplet 

case. 

Dam break: Fig. A below shows that the change of potential energy with CS is zero, 

as expected. The change of potential energy with FS is small but not zero, which may 

be attributed to the free surface treatment and (small) numerical errors in the kernel 

estimates. 

Fig. A is not included in the thesis, because it is analytically proven (in appendix B) 

that the change of potential energy due to the CS shifting in a gravitational field is zero, 

whilst it is shown that potential energy is not conserved without velocity correction.  
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Fig. A. Dam break. Change of potential energy in time due to CS and FS shifting 

(without velocity correction). 

 

Oscillating droplet (in section 4.4): In this case with radial (fictive) force field , 

potential energy is strictly not conserved in CS. However, in Fig. B below it is 
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demonstrated that the change of potential energy is almost zero and still very low 

compared to FS. This figure is not included in the paper, because the potential energy 

was already assessed in section 4.4 Fig. 23. Fig. 23 in the paper shows that the potential 

energy varies periodically with the oscillation of the droplet, with almost no decay (at 

low resolution) and no visible decay (at high resolution). 
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Fig. B. Oscillation droplet. Change of potential energy in time due to CS and FS 

shifting (no velocity correction). 

The shift models, such as collision shift and Fickian shift models, are also applicable 

to non-Newtonian fluids, as they are unaffected by fluid particle viscosity. 
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