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Abstract

In our current hyper-connected digital world where data is growing enormously, in-
stance reduction is an essential pre-processing phase to obtain cleaner and smaller
datasets that are free from noise, redundant or irrelevant samples (the so-called,
Smart Data). The data after pre-processing may become more reliable, accurate and
useful for subsequent data mining tasks. Instance reduction consists of two types:
instance selection and instance generation; each can be formulated as a combinato-
rial/continuous optimisation problem depending on whether its decision variable
is discrete or continuous, respectively. It is an emerging challenge characterised by
multimodality and a large number of decision variables. Given such difficulties,
derivative-free methods are likely promising approaches to address the problem.
They are powerful search algorithms that seek the nearest local optimum and do
not necessarily take into account the gradient computation of the objective function
like derivative methods. Solutions for instance reduction fall into the intersection of
machine learning, data mining and optimisation at which the process of a domain
can take part in the execution of another. Thus, the synergy between domains is
important to solve the problem more effectively, and this has attracted a significant
interest from researchers.

Among many different derivative-free search approaches, the family of direct search
methods has introduced various strategies to tackle numerous modern numerical
optimisation problems, where population-based meta-heuristics and pattern search
can be considered two of the most prevalent in the literature. Population-based
meta-heuristics are an iterative search framework composing several subordinate
low-level heuristics to control exploration and exploitation for a pool of solution
candidates. This set of methods searches for high-quality solutions from multi-
points, and thus is usually associated with high computational expense. Pattern
search methods seek an improved solution from candidates that are generated from
different directions. They examine trial solutions sequentially by comparing each
trial solution with the ‘best’ solution found up to the present time. In this disserta-
tion, we will investigate these derivative-free search strategies to address instance
reduction, a critical optimisation problem in the field of data science.
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Although many derivative-free methods have been proved effective in addressing
instance reduction, they are usually time-consuming, especially when handling rel-
atively large datasets. This impediment limits their practicality in many data mining
systems and thus necessitates a solution to accelerate the search process. The need
for a fast and effective search framework for instance reduction has motivated us to
develop novel search strategies in the family of direct search approaches, aiming to
still obtain high quality solutions achieved by state-of-the-art techniques in the do-
main, but significantly reduce the runtime of the search process. Three major work
packages presented in this thesis will cover two direct search approaches for two
types of instance reduction, arranged in a progressive order at which findings at an
earlier stage will contribute to the understanding of the later outcomes. Firstly, a
novel evolutionary search framework for instance selection is proposed to balance
the number of samples between classes to address a case study of imbalanced clas-
sification. Secondly, we develop another search framework for instance generation
based on single-point search and memetic computing, namely Single-Point Memetic
Structure. An accelerated mechanism for computing the objective function is em-
bedded into the proposed search design, thus reducing significantly the runtime.
Finally, a novel search framework for simultaneous instance selection and genera-
tion is designed to handle the instance reduction problem in both combinatorial and
continuous search spaces.

In summary, the research conducted here introduces a set of novel search strate-
gies towards derivative-free methods to tackle instance reduction problems. They
are different search frameworks which aim to produce a high quality reduced set
from a relatively large original source within a reasonable amount of time. This
is accomplished by either taking advantage of machine learning integration or the
Single-Point Memetic Structure with an accelerated mechanism. The use of ma-
chine learning in a meta-heuristic search framework greatly speeds up the com-
putation of the objective function while the Single-Point Memetic Search allows us
to reuse virtually all prior calculations for computing the fitness value of newly
evolved individuals. Hence, these novel search strategies can save vast computa-
tional cost. Finally, we leverage the insights previously found to propose another
novel search framework that handles both instance selection and instance gener-
ation simultaneously, and operates in both combinatorial and continuous search
spaces. These novel search strategies are examined with a large number of datasets
in different hyper-parameter settings. The obtained numerical results are compre-
hensively analysed and verified by different statistical tests to prove the robustness
of the proposed search strategies with respect to other state-of-the-art techniques in
the domain.
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Chapter 1

Introduction

Nowadays, many disciplines such as medicine, business, transportation or energy
are collecting data at a very striking rate, likely quintillion bytes per day in the world
and this trend shows no sign of slowing down in the near future (Wang et al., 2020;
Amalina et al., 2019; Hajjaji et al., 2021). This is because of the hyper-connectivity
in the digital world induced by the Internet of Things and various social networks
as well as the development of powerful storage (Ramírez-Gallego et al., 2018). Vast
amounts of data from different sources have been collected for future analysis, aim-
ing to seek economic profit and competitive advantages for companies and society
in general. The term ‘Big Data’ has been coined, discussing multiple attributes of
this flood of data such as Volume, Velocity, Veracity, and Variety (among others V’s)
(Fernández et al., 2014; Hajjaji et al., 2021).

However, the real benefit of data is not on the data itself or their size but the inte-
rior information/knowledge they can potentially carry on (Taleb et al., 2016; Taleb,
Serhani, and Dssouli, 2018). Deriving knowledge from data has been qualified as
science and technology to explore data, known as ‘Data Science’ or ‘Knowledge Dis-
covery in Databases’ (KDD) (Larose and Larose, 2014; García, Luengo, and Herrera,
2015). It is a non-trivial process of extracting implicit, previously unknown and po-
tentially useful patterns and trends stored in datasets. The process involves different
methods at the intersection of machine learning (ML) and statistics. A KDD process
is divided into a number of stages which may not be similar among different re-
search communities, and each mining scheme has its own advantages and disadvan-
tages (García, Luengo, and Herrera, 2015; Han, Pei, and Kamber, 2011). However,
a KDD process typically consists of problem definition, data pre-processing, model
construction and analysis (Larose and Larose, 2014; García, Luengo, and Herrera,
2015). In the context of Big Data, a KDD process is more challenging because the
time and/or memory consumption is likely exceeding the processing capabilities
of a usual ML system. Since traditional ML methods are incapable of handling the
new data space requirements, distributed technologies such as the MapReduce pro-
gramming paradigm (Dean and Ghemawat, 2010) and Big Data frameworks such
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as Apache Spark (Zaharia et al., 2012) were introduced to address the new data-
intensive scenario.

Data mining and ML tools have been employed in various applications of data ana-
lytics (Raja et al., 2022) including descriptive (i.e. reveals what happened), diagnos-
tic (i.e. explains why it happened), predictive (i.e. anticipates what will happen in
the future), and prescriptive (i.e. provides and analyses the best decision to make
among all the possible ones) (Runkler, 2020). Data mining and ML are also essential
in a variety of sectors as the vast majority of decision-making is usually driven by
their real-time and historical data. Although data mining and ML are powerful to
reveal the knowledge, it is undeniable that they assume the data being analysed are
reliable, meaning that the mining algorithms do not generally distinguish between
good data (i.e. representative, informative) and bad data (i.e. redundant, noise,
outlier) on their own. As a result, more data for learning does not always mean
‘good’, but could be even ‘worse’. In general, more data leads to a higher possibil-
ity of holding information and therefore better insights may be discovered, but as
long as the data is of a high quality and representative. On the other hand, more
data also means potentially more noise and redundant samples. Broadly speaking,
mining knowledge from a higher rate of erroneous or incomplete data might result
in a lower value found. For example, a model trained with inconsistent labels, at
best, produces results that are not actionable or insightful. A bigger concern is that
it is likely to generate results that are misleading, providing improper directions to
decision-making in an application.

In many businesses, data quantity is bound to grow as the business grows, thus it
is important to establish a set of rules and procedures to regulate how data is ac-
cumulated in order to maintain/increase the intrinsic values of the data collection.
Besides, when having more data, costs on data storage and processing power grad-
ually creep up and eventually become less sustainable for businesses. Therefore,
data quality standards should be embedded within every data collection process, as
letting the pile freely grow can result in getting counterproductive effects in many
different aspects. In addition, there would come to a point where no additional data
is needed as the dataset was already broad enough to get the most out of a KDD
system. In such a circumstance, the data mining system is already completely sat-
urated with data, it might make more sense to reduce rather than to expand the
amount of data as there would be no more insights revealed. However, it has not
reached a consensus among the answers on the questions about data quantity: Is
more data better? Is it necessary to hoard big amounts of raw data that may contain
inaccuracies just for the sake of it (Taleb, Serhani, and Dssouli, 2018; Taleb et al.,
2016)?
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For years in data mining and ML, researchers have focused on improving the prob-
lem’s representations, or algorithms to improve the performance over different datasets
(Filippone et al., 2008; Gündüz et al., 2019; Alpaydin, 2014). One possible reason be-
hind this is that practitioners can reuse the knowledge implemented in a task to
address many other similar ones. On the other hand, it is difficult to create datasets
that can become generally recognised standards due to the lack of domain knowl-
edge or the unknowability of the instance space. As a result, the data mining and
ML communities believe that model-oriented approaches (i.e. focusing on improv-
ing the algorithms’ performance by techniques such as parameter tuning, model se-
lection, or different problem’s representation) might be more promising. Depending
on the nature of each learning algorithm, a model-oriented approach may not neces-
sarily require some pre-preprocessing step like noise removal (e.g. Naive Bayes and
Decision Tree) as they are robust against noise data (Atla et al., 2011)). However,
it does not mean that their performance is not affected at all levels. More gener-
alisable results might be produced with the high-quality training data feeding into
these models, not mentioning faster learning and less storage required.

Unlike Naive Bayes or Decision Tree models, many others ML techniques, especially
the Nearest Neighbour rule (NN), may perform more poorly than they would have
been if the data were not handled properly (i.e. outlier removal, noise removal, re-
dundant check, imputation). As time goes by, their performance may gradually go
down due to the contamination of the data collection when having more and more
unverified samples added. This situation eventually ends up with learning from a
lower-quality dataset, wasting hours on optimising hyper-parameters and other fac-
tors of a learning process. Perhaps, there has nothing to do with the improvement
on the model but on the data quality because simply maintaining a high-quality set
of data will already give a decent set of returns rather than just mindlessly fiddling
model hyper-parameters. In addition, models are usually susceptible to concept
drift, and their performance is deeply tied to the data they were trained on (Lu et
al., 2018; Polyzotis et al., 2018). Pitfalls for being too fixated on models might need
correction, perhaps by a different problem-solving paradigm. In various research
communities, there has been recently a transition from focusing on modelling (i.e.
model-centric) to the underlying data (i.e. data-centric) (Polyzotis et al., 2018; Liu
et al., 2019; Sharma and Liu, 2020; Bartel, 2021). Model-centric approaches keep the
data fixed and iterate over the model and its parameters to improve performances,
while data-centric counterparts concentrate on data quality and enhance the accu-
racy and generalisability of a more-or-less fixed model architecture. Thus, in this
research direction, the data preparation phase in a KDD process may not be a one-
time event, performed at the beginning of a project, but a continuation of tuning
when the instance space is changed.
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In the literature, the term Smart Data indicating quality data has been widely used
(Fernández et al., 2014; Iafrate, 2014; Triguero et al., 2019). It describes the develop-
ment of transforming raw data into quality data that can be exploited in almost all
domains and industries (Lenk et al., 2015). In this process, we optimise the number
of elements that will remain in the final set as well as their location quality in the in-
stance space which may help distinguish samples between classes. Thus, this prac-
tice can be modelled as an optimisation problem at which the Smart Data set will
be obtained through different search strategies such as meta-heuristics (e.g. Genetic
Algorithms - Crossover elitism population, Half uniform crossover combination,
Cataclysm mutation (CHC)) (Eshelman, 1991), Memetic Algorithms (García, Cano,
and Herrera, 2008), Differential Evolution (Triguero, García, and Herrera, 2011)),
machine-learning-based techniques (e.g. clustering (Xu and Wunsch, 2005; Yen and
Lee, 2009)), pattern search (Neri and Rostami, 2021) and others (Hedjazi et al., 2015;
Triguero et al., 2014). The process of extracting insights from the high-quality re-
sulting set (big or not) is called Smart Data discovery highlighting twofold: higher
quality data mining and reduction of cost (i.e storage and computation) (Iafrate,
2014; Lenk et al., 2015; García-Gil et al., 2019). The term Smart Data discovery is
used to distinguish itself from data discovery used in the past which was usually a
time-consuming and effort-inefficient practice as it did not leverage the aid of au-
tomation but relied on human’s understanding of the data (Lenk et al., 2015). With
the introduction of various data mining techniques and recent augmented analyt-
ics capabilities, Smart Data discovery has become the replaced model to convert
raw data into actionable insights. It is worth mentioning that though the existing
mining techniques are effective to convert data from raw to smart, they demand
high-computational cost and are time-consuming (Fernández et al., 2014; Triguero
et al., 2019). Thus there is room for either reducing the expense of computation or
runtime of execution.

Motivated by the recent transition from model-centric to data-centric, and Smart
Data discovery, the content presented in this thesis discusses different strategies to
obtain such a high-quality dataset in a fast manner. We mainly focus on solutions
for IR which are important techniques in the family of pre-processing methods for
a KDD process (Fayyad, Piatetsky-Shapiro, and Smyth, 1996b; Larose and Larose,
2014; García, Luengo, and Herrera, 2015). Its goal is to clean and correct input data
so that the modelling phase later applied may be faster and with greater accuracy.
The remainder of this chapter will present the basic concepts and structure of the
conducted research. Concretely, Section 1.1 presents pre-processing techniques in
a KDD approach, emphasising the fundamentals of IR. Then, the motivation and
objectives are discussed in Section 1.2. The contributions of the thesis are outlined
in Section 1.3. Finally, the structure of the whole thesis is summarised in Section 1.4.
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1.1 Data Pre-processing

As stated before, data mining techniques may be ineffective when the input data
is impure. Therefore, enhancing the data quality becomes one of the most relevant
stages to enable data mining methods to transform raw data into actionable insights
(Alexandropoulos, Kotsiantis, and Vrahatis, 2019). Data preprocessing contains a
variety of methods such as data preparation (i.e. integration, cleaning, normalisa-
tion and transformation), data reduction tasks (see Figure 1.1) (i.e. feature selection,
feature extraction, IS, discretisation) and others (Liu and Motoda, 2007; García, Lu-
engo, and Herrera, 2015; Zebari et al., 2020). In general, data pre-processing usually
aims to generate a less sizable dataset with respect to the original set, improving the
efficiency of the data mining algorithms and saving storage. More importantly, the
data pre-processing originates high-quality data, so that, more in-depth and accu-
rate knowledge may be revealed.

This thesis focuses on the development of novel IR strategies, aiming to provide
quick, simple and effective solutions. An IR solution seeks for a smaller set of the
starting dataset which is as informative as the original source (and potentially freer
of noise) to enhance the performance of supervised learning algorithms. Most of
the existing research has been focused on classification tasks (Garcia et al., 2012;
Saha et al., 2022), but its use for regression has recently been gaining popularity
(Arnaiz-González et al., 2016; Kordos, Blachnik, and Scherer, 2022). IR methods
are beneficial for a data mining process, and bring more other benefits to Big Data
systems such as reducing storage, decreasing computational complexity and system
complexity, and cutting down in-network movement of data. Considering a dataset
with l samples, each has m features as a matrix of l × m, the target of an IR solution
is to reduce the number of rows (i.e. l) to obtain p so that p ≪ l. Research about
IR can be categorised into two main directions, that is, instance selection (IS) (Gar-
cía et al., 2012) and instance generation (IG) (Triguero et al., 2012). IS searches for
representative examples in the available source while generation creates artificial
ones, if needed. The former group has frequently been modelled as a binary com-
binatorial optimisation problem since it deals with the decision whether or not to
include a sample in the final subset, whilst the latter counterpart may be modelled
as a continuous optimisation problem since the decision variables are operating on
the continuous space. IG typically considers modifying feature values of the exist-
ing samples and this results in new examples non-existing in the source but better
representing the training data. A similar reduction approach not focusing on rows
but columns is feature selection which shrinks the number of columns (i.e. m) to get
k, thus k ≪ m. As a result, methods proposed for IR can be technically employed
in feature reduction.
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FIGURE 1.1: Instance reduction (top), feature selection (middle) and
data discretisation (bottom).

IS methods are usually categorised into three main types of techniques: edition (Wil-
son, 1972), condensation (Hart, 1968), and hybrid (García et al., 2009). Edition meth-
ods aim to remove noisy instances, condensation methods focus on removing super-
fluous instances that have a little impact on the classification accuracy if removed,
and hybrid methods search for a small subset that achieves the elimination of both
noisy and superfluous instances. On the other hand, IG methods are grouped based
on their different properties such as type of reduction, resulting generation set, gen-
eration mechanisms, and the evaluation of the search (Triguero et al., 2012).

Since IR can be formulated as an optimisation problem in the combinatorial or con-
tinuous search spaces, different methods in the optimisation domain can be used
to address the problem. Due to its complexity (i.e. multimodal, high dimensional-
ity), a derivative-free method is likely more promising to tackle the problem rather
than a gradient-based approach (Brent, 1973; Conn, Scheinberg, and Vicente, 2009;
Caponio et al., 2007). Derivative-free methods neglect the gradient of the objective
function and seek the local optimal solution from the current position. Derivative
free methods can be categorised into model-based and direct search groups. The for-
mer builds a surrogate model of the objective function from generated data points,
and then computes the gradient of the surrogate model to search for the optimum
(Cartis et al., 2019; Cartis and Roberts, 2019), while the latter explores the domain
and searches for the optimal solution using the objective function values. Among
various techniques proposed in this search family, direct search methods construct
different strategies to seek for the locally optimal solution by generating and evalu-
ating new data points (Caraffini, Neri, and Picinali, 2014). Population-based meta-
heuristics and pattern search are the two most popular macro groups of direct search
in the literature (Neri and Rostami, 2021), which will be the two main search strate-
gies adopted in this dissertation. To the best of our knowledge, population-based
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evolutionary search solutions have achieved the highest performance among the
proposed techniques addressing IS and IG, considering both reduction rate and
classification accuracy metrics, though they were created in 2008 and 2011, respec-
tively (García, Cano, and Herrera, 2008; Triguero, García, and Herrera, 2011).

In the literature, most of the existing IR solutions (Brighton and Mellish, 2002;
Sánchez, 2004; Leyva, González, and Pérez, 2015; Ougiaroglou and Evangelidis,
2016) were proposed to enhance the performance of the well-known kNN classifier
(i.e. k is the number of nearest neighbours) (Cover and Hart, 1967), which will be
also adopted in this thesis. As a lazy algorithm, kNN does not build any model,
but works based on the concept of similarity between samples, given a similarity
metric. In a classification task, it finds the distances between a query and all exam-
ples in the data, and the assigned label is voted by the most frequent labels of the
samples holding the closest distances. However, as kNN considers all neighbours as
equally important in classification, it is more vulnerable to noise at the class bound-
aries. Although kNN experiences a series of difficulties such as high-computational
cost (i.e. in large datasets), high-storage requirements and sensitivity to noise, it is
characterised as a simple yet effective data mining technique in various applications
(Triguero et al., 2019). Most of the existing IR techniques were proposed to address
kNN drawbacks, but the resulting reduced dataset can be used in many other learn-
ing algorithms or the proposed IR mechanism can be tailored to a new classifier
(Luengo, García, and Herrera, 2012; Cano, Herrera, and Lozano, 2003).

One major benefit of IR is the increase of effectiveness and accuracy in predictive
tasks, demonstrated in numerous studies (He and Garcia, 2008; Marchiori, 2009;
Wilson and Martinez, 2000). Performing IR is important in most datasets even
where all classes are mostly equally distributed, and thus more necessary in skewed
distribution datasets (e.g. imbalanced classification) where the data values trail off
more sharply on one side than on the others (Fernández et al., 2018a; Thabtah et
al., 2020). Resampling (e.g. undersampling) is one of the critical strategies to help
balance the samples among classes, thus the classifiers can perform their learning
task appropriately. Handling imbalanced classification has been a rising challenge
in many domains such as bioinformatics, business management, or network analy-
sis (López et al., 2013; Haixiang et al., 2017; Zhu, Baesens, and Broucke, 2017; Chen
et al., 2018). We will discuss more details of IR in skewed datasets in Chapter 3.

Another significant advantage of IR is that it can increase the feasibility of utilising
ML algorithms over high volumes of data. For example, handling a large dataset
(i.e. multiple gigabytes) may not be feasible in a normal individual desktop com-
puter, but perhaps a much larger computer with tens of gigabytes of RAM (e.g.
Amazon Web Services). In the Big Data context, distributed technologies and Big
Data frameworks may be required to perform data mining tasks because the set is
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so large and complex. If the volume of data is reduced to a manageable size while
keeping the information of the original source, ML can easily perform its tasks with-
out or with a low level of requirement of large memory and high technology. In the
literature, ‘Green AI’ or ‘Sustainable AI’ has been recently introduced to refer to AI
research that yields high performance results while gives consideration to the lower
computational cost or resources consumed (Schwartz et al., 2019). We have aimed
at these advantages for our IR approaches and will present them concretely at each
research work in the later chapters.

It is important to highlight that though aiming at a shared objective of handling
large datasets for an ML task, we focus on designing smart algorithms and try not to
rely on hardware expansion or modern Big Data frameworks (Triguero et al., 2014;
Triguero et al., 2015a). As a result, our proposed pre-processing techniques can be
implemented in a single desktop computer to handle relatively large datasets (e.g.
20k-30k samples) in a reasonable time using an evolutionary-based search method,
while it was impractical or likely impossible to execute an evolutionary search with
such relatively large datasets (Triguero et al., 2017; Triguero et al., 2015a). It is worth
noting that though IG solutions are determined in the instance space where this
dissertation takes into consideration, the proposed algorithms are not limited to the
instance space, but can be applicable for the feature space (i.e. feature selection and
feature generation).

1.2 Motivation and Objectives

In data mining and ML, IR solutions have been widely researched for years and
have demonstrated their effectiveness in many research fields (Brighton and Mel-
lish, 2002; Triguero et al., 2012; Sánchez, 2004). In addition, IR is also considered as
an important stage to turn raw data into Smart Data for knowledge discovery. The
two main research directions of IR have been effectively resolved by evolutionary-
based approaches, particularly, Steady State Memetic Algorithm (SSMA) for IS
(García, Cano, and Herrera, 2008) and Differential Evolution-based algorithms for
IG (Triguero, García, and Herrera, 2011). Despite their effectiveness, evolutionary-
based approaches are typically very time-consuming, especially in large datasets,
due to the computational cost associated with numerous objective function calls and
memory cost due to the exhausted search with a population-based scheme. In the
recent literature, several solutions have been provided to address these challenges.

• Divide-and-Conquer: The idea of this approach is to parallelise the execution
of IR by splitting the training data into a number of chunks, typically through
Big Data technologies, see (Triguero et al., 2017; Triguero et al., 2015b; Triguero
et al., 2015a). Whilst they are necessary when the training set does not fit in
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main memory, the main limitation of this approach is that it does not address
the computational complexity of the problem, but only processing time, by
using additional computational resources. In addition, a trade-off between the
number of splits and the accuracy that can be obtained exists, and must be
experimentally found for the dataset at hand.

• Approximation: Different fitness approximation approaches, typically surro-
gate models, have been investigated for problems solved by evolutionary tech-
niques (Jin, Olhofer, and Sendhoff, 2000; Salami and Hendtlass, 2003; Jin, 2005;
Jin, 2011; Rosales-Pérez et al., 2015; Sun et al., 2019; Brownlee and Wright,
2015; Chugh et al., 2020). In addition, existing methods are usually designed
for problems in the continuous search landscape, while those for combina-
torial domains have been under-explored (Moraglio and Kattan, 2011; Bartz-
Beielstein and Zaefferer, 2017) due to the complexity of the field which requires
tailored domain knowledge. In the case of IS, the quality of a reduced set
(RS) was approximately estimated by windowing (Bacardit et al., 2004)) and
stratification (Cano, Herrera, and Lozano, 2005). The underlying idea of these
methods is to consider subsets of training data for fitness evaluation, reducing
the evaluation cost on larger datasets. While this approach reduces both run-
time and computation, its main limitation is that an approximated objective
function may mislead the search of the optimisation algorithm depending on
how representative the samples at each window are for the original source.

The above justification motivates us to develop novel strategies to deal with IR,
either to speed up Evolutionary Algorithm (EA) search techniques or to propose
different simpler search paradigms. The below research questions help us narrow
down our focus to the core issues, whose answers will be revealed in the later chap-
ters.

• Fitness approximation methods for IR solved by EA approaches is under-
explored due to the huge size and the nature of the combinatorial search space
(i.e. instance space). Aiming to infer the fitness of other RS(s) when know-
ing the actual fitness of an RS, the representation of RS(s) has to vary consis-
tently with its associated fitness. To do this, the representation among RS(s)
must hold the continuous spatial relation, so that a small variation in RS(s)
will cause a smooth change in their fitness space. Since the current representa-
tion of the IR problem is a binary chromosome, it is necessary to find a way to
transform this representation from the combinatorial space into its equivalent
form in the continuous space. One question promptly appears in mind that
what are the new features that can be used and to what standard that they
are defined? In addition, fitness approximation can be conducted when we
are able to group similar chromosomes into clusters. To do this, unsupervised
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learning methods in the family of ML techniques are important to help divide
candidate solutions into different groups. Thus, the entire framework we are
investigating falls into the employment of an ML technique in a search method
(i.e. meta-heuristic techniques) which is still under-explored (Song, Triguero,
and Ozcan, 2019).

• Many studies approximate the objective function by using a subset of data, as-
suming that it can represent the original source. Will it be possible to approxi-
mate the objective function more accurately by using the entire training data?
Other ideas are to leverage the hardware expansion to tackle large datasets,
but it depends heavily on the number of available computing nodes and the
supporting implemented framework. Will it be possible to design a simplified
algorithm achieving competitive results as an evolutionary-based approach,
so that it will be more independent from external computing resources?

• In the literature, hybrid approaches of combining IS and IG using population-
based evolutionary search methods have achieved the highest accuracy per-
formance at IR solutions, considering kNN as the base classifier. IS and IG
performed their tasks in separated and subsequent stages. More specifically,
IS reduces the size of the dataset while IG refines the results on the reduced
data. This is because IS is usually employed to decide the best distribution
of instances per class, providing a good starting point to let IG optimise the
positions of the instances. Will it be possible to merge these two stages of a
hybrid approach into one and let them synergise with each other?

Based on the motivations and research questions, we summarise the main aim of
this thesis as: To develop novel strategies to accelerate different search algorithms
in data reduction, which are capable of mitigating the computational cost of the
objective function or simplifying the algorithmic design while maintaining state-of-
the-art performance achieved. As opposed to parallelisation techniques that merely
focus on reducing processing time, these strategies aim at reducing the computa-
tional complexity; thus they can save substantial runtime and be employed in Big
Data frameworks at each single computing node. From the motivations and re-
search questions referred above, we define three objectives that cover IS, IG and
a hybrid of IS and IG. These three objectives will lead to the subsequent research
phases deployed in the following chapters, concretely:

(i) Objective 1: Propose a novel evolutionary-based search strategy for IS with
the integration of a clustering technique to reduce the computational cost of
fitness evaluation, therefore decrease the excessive runtime consumed in an
evolutionary search.
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(ii) Objective 2: Propose a simplified pattern search for IG to compete for the
complex design of an EA approach. The proposed pattern search is embedded
in a memetic search, an advanced search model in the family of evolutionary-
based algorithms.

(iii) Objective 3: Devise a novel single search approach which enables hybridising
IS and IG. This search framework thus can save significantly the computa-
tional cost if IS and IG are conducted separately.

1.3 Contributions

The work presented in this dissertation focuses on different strategies to target the
three mentioned objectives. The key aspect of these contributions is the capability of
speeding up different search methods, as well as saving computation and storage. It
is worth mentioning that all proposed techniques are applicable in addressing many
real-world problems such as imbalanced classification in network intrusion, spam
detection, identification of rare diseases, fraudulent transactions, etc. The contribu-
tions of this thesis are completed following a progressive order as follows:

(i) Contribution 1: In the context of binary imbalanced classification, we propose
a novel strategy to integrate a clustering-based technique into an evolutionary
search approach to accelerate the fitness computation. The main contribution
lies at not only substantial runtime saving but also the insights about devising
a surrogate model for a binary combinatorial optimisation problem (i.e. IS for
undersampling), which is under-explored in the literature.

(ii) Contribution 2: In the continuous search space, we investigate a simple and yet
effective domain-specific pattern search approach for IG. The proposed algo-
rithm is composed of a novel domain-specific implementation of local search
hybridised with a global evolutionary operator, which characterises this search
framework memetic computing (MC). The search algorithm is associated with
an acceleration mechanism to drastically reduce the cost of the objective func-
tion when using the NN algorithm as the base classifier. Note that the im-
plementation of the global operator can help prevent the search from getting
stuck in local optima.

(iii) Contribution 3: Stemming from the algorithmic design in contribution 2, we
propose a novel solution to tackle IR which can work in both combinatorial
and continuous search spaces. Unlike previous studies which can only ad-
dress IS and IG separately in each single search domain, the newly designed
algorithm can perform IS and IG within a single framework. The algorith-
mic design is also associated with an acceleration mechanism for the objective
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function, which maintains the main theme of substantial runtime saving in
this thesis.

The aforementioned contributions are part of or included in the following list of
works completed during my PhD study:

1. Le, H. L., Landa-Silva D., Mikel G., Salvador G., Triguero I. “EUSC: A Clustering-
based Surrogate Model to Accelerate Evolutionary Undersampling in Imbal-
anced Classification.” Applied Soft Computing 101 (2021):107033.

The content of this paper is covered in Chapter 3.

2. Le, H. L., Landa-Silva, D., Mikel G., Salvador G., Triguero I. “A Hybrid Surro-
gate Model for Evolutionary Undersampling in Imbalanced Classification.” In
2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8. IEEE, 2020.

The content of this paper is covered in Chapter 3.

3. Le, H. L., Neri F., Triguero I. “SPMS-ALS: A Single-Point Memetic Structure
with Accelerated Local Search for Instance Reduction.” Swarm and Evolu-
tionary Computation 69 (2022): 100991.

The content of this paper is covered in Chapter 4

4. Le, H. L., Neri F., Landa-Silva, D., Triguero I. “Accelerated Pattern Search with
Variable Solution Size for Simultaneous Instance Selection and Generation.”
The Genetic and Evolutionary Computation Conference (GECCO 2022).

The content of this paper is covered in Chapter 5

1.4 Structure of the Thesis

The structure of this thesis is outlined as follows:

• Chapter 1 presents an introduction to the research topic of this thesis. Next,
it discusses the research questions, motivations and objectives, followed by a
summary of the contributions achieved through multiple work packages and
an outline of the contents.

• Chapter 2 introduces the necessary background for the appropriate compre-
hension of multiple work packages conducted at different stages of the the-
sis. This includes an overview to ML, optimisation, mutual interactions of
ML and optimisation, and a comprehensive literature review of accelerating
the objective function evaluation. In addition, we also present data mining
and different data pre-processing techniques, followed by the background of
derivative-free search strategies that will be employed in the research.
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• Chapter 3 describes the novel methodology of constructing a clustering-based
surrogate model to accelerate an evolutionary search for IR. Considering im-
balanced classification as a study case, this novel surrogate design is thor-
oughly examined with a wide range of skewed datasets to validate its ef-
fectiveness. This chapter also includes an extension of fitness approximation
when another objective function approximation method (i.e. windowing) is
combined with the proposed clustering-based surrogate model.

• Chapter 4 delves into pattern search and MC to propose a simple and effective
single-point memetic structure for tackling IR. The search framework contains
an accelerated mechanism to enable saving fitness computation. This novel
algorithmic design is thoroughly verified over a large number of datasets and
competed with state-of-the-art algorithms in comprehensive experimentation.

• Chapter 5 presents a new methodology for IR, bridging the two search do-
mains of combinatorial and continuous in an algorithmic design. This chapter
adopts the work conducted Chapter 4 and insights gained in Chapter 3 to con-
struct a novel searching paradigm which can simultaneously handle IS and
IG in a search iteration.

• Chapter 6 concludes the main body of research works with a reflection on the
research gaps defined and the contributions achieved. It also analyses the lim-
itations of the dissertation, followed by a summary of several potential lines
of future work.
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Chapter 2

Background and Related Work

Data mining, ML and optimisation are several noticeably growing fields of AI with
an enormous number of computer science applications. The intersection of tech-
niques in these areas is the extraction of the insights from digital data using as min-
imum as possible the cost of computation and resources. To make an AI system
more robust, techniques in these areas are frequently hybridised, so that, one can
take advantage of the others for its own process. This thesis mainly delves into
enhancing the speed of different optimisation strategies, releasing the burden of ex-
pensive computation for the overall mining process.

In this chapter, we present the background and main related works which are es-
sential to develop the content in the later chapters of this dissertation. Firstly, Sec-
tion 2.1 introduces the basic concepts of ML, optimisation and an overview of the
dual interactions between ML and optimisation. Focusing on the literature of the
interaction of ML for optimisation, we dig further into the acceleration of objec-
tive function evaluation presented in Section 2.2. The literature review as well as
the understanding discussed in this section is essential to develop a novel search
framework in Chapter 3. Next, Section 2.3 presents the essentials of a typical data
mining process, followed by different pre-processing techniques where there are ap-
proaches we aim to improve. After that, Section 2.4 places several fundamentals of
multiple search strategies that will be used for investigation in this dissertation, in-
cluding population-based meta-heuristics, and Pattern Search with MC. Finally, the
contents of the chapter are summarised in Section 2.5, where they are linked to the
following chapters that deploy the main body of research work.

2.1 Machine Learning and Optimisation

This section presents an overview of ML and optimisation, and their dual interac-
tion which are the necessary background for constructing different research work
packages in this dissertation. Firstly, Subsection 2.1.1 introduces ML and its cate-
gories of techniques. Secondly, Subsection 2.1.2 presents optimisation, giving the
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overall picture of methods that will be used or are related to the search strategies
used in this thesis. Finally, Subsection 2.1.3 discusses the interaction between the
two domains.

2.1.1 Machine Learning

ML is a subset and one of the core components of artificial intelligence, which is the
science of getting computers to learn and enhance this learning ability progressively
using observed data (Alpaydin, 2014). A definition of ML widely used in the litera-
ture (Mitchell, 1997) by Tom Mitchell ‘a machine is said to learn from experience E
with respect to some class of tasks T and performance measure P if its performance
at tasks in T, as measured by P, improves with experience E’. ML focuses on the
capability of observing provided data to look for values or knowledge and improve
the performance with the knowledge.

The main branches of ML, comprising supervised learning, unsupervised learning,
and reinforcement learning, have been widely researched, providing numerous real-
world applications. These applications can be grouped based on the desired outputs
of ML tasks such as classification or regression (Erhan et al., 2014), clustering (Xu
and Tian, 2015), reinforcement learning (Večerík et al., 2017), and others.

Supervised Learning: The first type is supervised learning which means learning
with labelled data. It aims at inferring output to unseen data by a mapping function
using prior knowledge (labelled data). Labelled data is the ‘right answers’ playing
the role of a teacher to guide learning tasks. The term ‘supervised’ means that the al-
gorithm during the learning process is observed and corrected by the right answers.
Supervised learning makes use of labelled data for future prediction because of its
generalisation ability which can apply previous experience to new data. Supervised
learning problems can be grouped into two types, classification or regression. While
classification returns a discrete label to a given instance (i.e. {yes, no}, {red, green,
blue}); regression returns the outcome in the form of real values (i.e. the weight of a
person or the temperature in a specific time) (Fernández-Delgado et al., 2014). Let X
denote input, Y be the output and the mapping function from X to Y is g(.). Given
the mapping function Y = g(X|θ), the approach in supervised learning is tuning the
set of parameters θ. Y can be a real number in regression or class label in the case
of classification. In this dissertation, although different accelerated search strategies
contribute more understanding to the growing research area of IR solutions, the ul-
timate output is devoted to kNN, a widely used algorithm of supervised learning,
as well as other learning models.
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Unsupervised Learning: Another type of learning where there is no correspond-
ing output for input data, called unsupervised learning, aims to find the structure or
distribution of the data. The term ‘unsupervised’ is opposite to ‘supervised’ as the
algorithm during the learning process is not observed and corrected by the right
answers. Unsupervised learning problems can be categorised into two types of
clustering and association. The first category (Xu and Tian, 2015) divides data into
similar-feature groups or ‘like-minded’ individuals such as colour similarity. The
second type of unsupervised learning, association, aims at discovering relations be-
tween attributes represented in a majority of the dataset. Among many other unsu-
pervised learning approaches, k-means (Lloyd, 1982; MacQueen et al., 1967) will be
employed for a search methodology in Chapter 3. However, any other unsupervised
learning algorithms can be examined as an alternative to k-mean.

Reinforcement Learning: Reinforcement learning (RL) is a paradigm of learning
to control, which can determine which action to do within a specific context to max-
imise the numerical reward (Watkins and Dayan, 1992; Alpaydin, 2014). Unlike
learning with a teacher - supervised mode - who tells a learner what to do, this ap-
proach learns with a critic that can respond how well it has performed so far. RL
is also not unsupervised since feedback is returned. The setting of RL is a decision
maker, called the agent, and environment, where the agent makes interaction. When
an action is executed by the agent, it triggers a new state in the environment. In RL,
as there is an absence of existing training data, the agent just conducts trial-and-
error actions and finds the policy from returning feedback, which later becomes its
experience. Actions may not affect the immediate reward but may affect the sub-
sequence. A state might yield a low immediate reward but is perhaps followed by
other states that yield high rewards. Therefore, the objective is to opt for an action
that can maximise the total reward in the long run, not the immediate one.

2.1.2 Optimisation

Optimisation focuses on finding the optimal solution to a given problem with re-
spect to a number of constraints (Hillier, 2012). To clarify the notation employed,
we will refer to the general form of a minimisation problem (Silver, 2004):

minimise f (x)

subject to gi(x) = 0, i = 1, ..., m
(2.1)

where x represents the decision variables (i.e. either discrete, continuous or both)
and f () is the objective function of the examined optimisation problem. An op-
timisation algorithm with different search strategies seeks for the value of x that
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minimises the objective function f (), subject to a set of m constraints denoted as gi.

Optimisation problems can be grouped into combinatorial and continuous cate-
gories, depending on whether the type of the decision variables is discrete or con-
tinuous (Boyd and Vandenberghe, 2004; Hillier, 2012). To address these problems,
various techniques have been proposed for each domain. For continuous domain,
common methods include simplex algorithm, gradient-based methods (i.e. gradient
descent method and its variants, Newton’s method and its variants, conjugate gra-
dient method, interior-point methods) and gradient-free methods (i.e. Bayesian op-
timisation, heuristics and meta-heuristics) (Andréasson, Patriksson, and Evgrafov,
2020). For combinatorial domain, common methods consist of approximation algo-
rithms, mathematical programming, dynamic programming, gradient-free methods
and hyper-heuristics (Andréasson, Patriksson, and Evgrafov, 2020).

Amongst these many strategies, some of the most prevalent methods in the litera-
ture can be briefed as follows. Gradient-based methods rely on the gradient of a dif-
ferentiable objective function to search in the solution space (Ruder, 2016). Bayesian
optimisation is a sequential design strategy for the global optimisation of black-box
functions (Mockus, 2012). Heuristic methods are commonly problem-specific, and
therefore cannot be easily used to solve other problems. It may quickly lead to a
near-optimal solution, but can also get stuck there. A more advanced framework
is meta-heuristic which is problem independent and can provide a set of guidelines
for multiple heuristics (Sörensen and Glover, 2013). It consists of individual-based
search methods (i.e. tabu search (Glover, 1989), iterated local search (Lourenço,
Martin, and Stützle, 2003)) and population-based search methods (i.e. EAs (Back,
Emmerich, and Shir, 2008), ant colony optimisation algorithm (Dorigo and Gam-
bardella, 1997), particle swarm optimisation (PSO) (Kennedy and Eberhart, 1995)).
A more flexible design for selecting and generating multiple heuristics is called
hyper-heuristics. This family of techniques is ‘An automated methodology for se-
lecting or generating heuristics to solve hard computational search problems’ (Burke
et al., 2010; Burke et al., 2013). Typically, hyper-heuristics have two separate layers:
The first layer operates at the heuristic level to either select or generate a number of
low-level heuristics, while the second layer is a domain-specific heuristic working
at the solution space.

We would focus on EAs and their enhanced frameworks as they have been found as
the best performing techniques addressing IR. Before digging into the main focus,
we would present general understanding of EA-based optimisation techniques.EAs
is a population-based meta-heuristic search approach inspired by biological evo-
lution mechanisms proposed by Darwin (Sindhya, n.d.). The evolutionary-based
search strategy has been preeminent to solve IR problems in comparison with many
others such as Ranking-based Instance Selection (RIS) (Cavalcanti and Soares, 2020),
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clustering-based (Saha et al., 2022; Czarnowski, 2012), support vector machine (SVM)
based algorithms (Srisawat, Phienthrakul, and Kijsirikul, 2006), instance weighting
(Atkeson, Moore, and Schaal, 1997; Vallejo, Troyano, and Ortega, 2010) or conden-
sation techniques (Yen, Young, and Nagurka, 2004). This family has various forms
of techniques, including genetic algorithm, evolutionary programming, evolution-
ary strategies, genetic programming and differential evolution (DE). In general, an
evolutionary-base search strategy aims to maintain the fittest candidates, which is
its principle of survival. An EA works based on the basic rule that a population of
candidates are produced and they compete for survival in a changing environment.
All individuals in a population are evaluated with respect to the objective value of
the problem. The survival individuals are selected based on their fitness values. The
search is conducted within an allocated computation budget (e.g. pre-defined num-
ber of generations, computational time) to find the individual that is best adapted.

2.1.3 Interaction of Machine Learning and Optimisation

The two fields optimisation and ML interact frequently with each other for the sake
of improvement or overcoming their own limitations. In studies relevant to ML and
optimisation, many investigations have been conducted where each entity can en-
rich the performance of the other (Curtis and Scheinberg, 2017; Jensi and Jiji, 2014;
Song, Triguero, and Ozcan, 2019). The use of optimisation techniques in ML has
been extensively studied for decades, but the opposite view is still under-developed,
where optimisation is a target to receive benefits from data mining and ML tech-
niques. In this section, we will present the interaction of the two domains in the
literature, and focus more on the EAs as the optimisation technique to receive the
advantages of ML.

In a general process of constructing a ML model, several factors having influential
impact on its performance can be considered the quality of input instances/features,
proper hyper-parameter setting, and loss function optimisation (Fayyad, Piatetsky-
Shapiro, and Smyth, 1996a; Alpaydin, 2014). Different optimisation techniques in-
troduced in Section 2.1.2 have played an important role to provide the best con-
dition for a learning process. They have been widely employed to contribute to
the growth of ML algorithms (Narendra and Fukunaga, 1977; Yusta, 2009; Ahmad,
2015). Though the view of using ML for optimisation is not rigorously explored,
there have been approaches reported, mainly to improve the performance of hyper-
heuristics and meta-heuristics. Broadly speaking, the goal of introducing ML into
these optimisation frameworks is to accelerate the search speed, to improve the so-
lution’s quality or to advance the algorithmic design and thus this benefits for the
search to explore and exploit more regions within a limited computational budget.
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ML for Hyper-heuristic: Reinforcement learning, a branch of ML, is widely ap-
plied for heuristic selection based on the analysis of quality improvement, execu-
tion time or overall performance. Reinforcement learning is used to reward good
performing heuristics and punish bad performing heuristics (Kumari, Srinivas, and
Gupta, 2013; Choong, Wong, and Lim, 2018). The heuristic that has the highest per-
formance score is likely to have a higher probability of being selected in the next
iteration (Nareyek, 2003; Algethami, Martínez-Gavara, and Landa-Silva, 2019). For
example, the selection mechanism of a crossover operator is associated with a re-
ward function in (Algethami, Martínez-Gavara, and Landa-Silva, 2019). This func-
tion updates the score of all operators relying on two factors Fitness and Distance.
If there is an improvement in the fitness value, the score also goes up, which indi-
cates a reward for the performing operator. Likewise, if there is a decrease in the
fitness value, the score goes down, indicating a pelnaty applied for the performing
operator.

ML for Meta-heuristic: Other ML techniques (i.e. clustering, supervised learning)
have been attempted to enhance different aspects of the optimisation framework.
In this section, EAs and their enhanced frameworks are our main focus. Various
EAs with the integration of ML techniques have been reported (Jin, 2011; Zhang
et al., 2011; Shi and Rasheed, 2010) including statistical methods, interpolation and
regression, clustering analysis, artificial neural networks, support vector machines,
and Bayesian network. These techniques have been incorporated into variants of
EAs in a number of approaches, and place significant impacts on many aspects of
EAs. ML techniques can be investigated based on the processing stages of an EA
which are population initialisation, fitness evaluation, population diversification, or
algorithm adaptation.

For population initialisation, ML help initialise high quality solution with different
approaches (Diaz-Gomez and Hougen, 2007; Poikolainen, Neri, and Caraffini, 2015).
For example, orthogonal experimental design (OED), a kind of statistical technique
can generate an initial population whose solutions are scattered uniformly over the
feasible region (Leung and Wang, 2001). Given a problem constructed with multiple
factors and multiple choices per factor, an OED method explores the search space
comprehensively using only orthogonal combinations rather than all the combina-
tions of factor choices. Clustering techniques (k-means) is used for the initialised
step in a genetic algorithm (GA) to solve a symmetric travelling salesman problem
(TSP) (Deng, Liu, and Zhou, 2015). k-means is used to break a large-scale TSP into
small problems and then an algorithm computes the optimal path of each partition.
GA is carried out to achieve a globally optimal path by randomly rewiring each local
optimal solution.
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Algorithm adaptation shares a number of similarities with the aforementioned re-
search topic: ML for hyper-heuristics. Regarding the adaptability of EAs, various
approaches have been found to produce smarter EAs including parameter and op-
erator adaptation. Algorithm adaptation is about opting for one or multiple param-
eters/ operators from a pool of candidates adaptively. Parameter control involves
changing parameter values with respect to a feedback from the search (Rijn et al.,
2015), or attempting to vary parameter values corresponding to the current state
of the search (Zhang, Chung, and Lo, 2007). Population size is also the parameter
considered to be varied in many studies, in which different values can strongly af-
fect the efficacy of the search (Smith and Smuda, 1993; Algethami and Landa-Silva,
2017). Operator adaptation is a mechanism to better select the right operator at
a certain stage of the search. This is because different operators can have differ-
ent performances and they also perform differently at distinct stages of the search.
This research direction is closely similar to ML for hyper-heuristic, see mutation
operator adaptive selection (Zhang and Lu, 2008) or both mutation and crossover
operators adaptive selection (Magyar, Johnsson, and Nevalainen, 2000). Combined
approaches of updating not only parameters but also operators are presented in
(Algethami and Landa-Silva, 2017; Algethami, Martínez-Gavara, and Landa-Silva,
2019).

In addition, ML techniques are introduced to maintain the population diversity dur-
ing the evolutionary development. Clustering has been a popular ML technique as
its task is to separate the whole population into different areas based on the indi-
viduals’ inherent features. The individuals with similar features are stored in the
same cluster, and they compete with each other for survival without interference to
the counterparts in other regions. As different clusters naturally contain different
information about the population, interactions among these clusters can generate a
new population that maintains the variation. Several studies have been found in
this direction including (Streichert et al., 2003; Aichholzer et al., 2002).

However, an evolutionary population-based search technique always maintains a
number of candidates to explore and exploit, the computational cost of evaluation
a population through different iterations is the most noticeable. ML for objective
function evaluation is thus also important and speed up the search and save compu-
tational expense. The next section will present in detail this line of research, which is
the key background to develop the work in Chapter 3. Apart from dual-interaction
between ML and optimisation, self-interaction has been found in various studies at
which the use of other techniques in a domain assists a technique in the same do-
main. Summary of these types of interactions was comprehensively discussed in a
recent review study (Song, Triguero, and Ozcan, 2019).
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2.2 Accelerating the Objective Function Evaluation

In many optimisation problems, the evaluation of a solution may have a high com-
putational cost due to the function’s complexity or massive calculation. In the liter-
ature, numerous studies have been performed to speed up fitness evaluations (Jin,
2005; Buche, Schraudolph, and Koumoutsakos, 2005; Jin, 2011). Broadly speaking,
we can find delta evaluation approaches and fitness approximation. Delta evalua-
tion is a way of computing only the different parts between two solutions (Bianchi
and Dorigo, 2006). It can make use of previously evaluated similar regions and reuse
those parts in the evaluation of a new individual. The strategies of delta evaluation
are based on analytical computation to identify which part in the expression needs
re-calculating. For example, in a timetabling problem (Ross, Corne, and Fang, 1994),
instead of evaluating every timetable as only small changes are made between one
timetable and the next, it is possible to merely compute the changes and update the
previous cost with the value of that calculation.

Extensive studies have been proposed in the family of fitness approximation from a
simple approach like fitness inheritance to advanced techniques like machine learn-
ing methods (Jin, 2005; Shi and Rasheed, 2010; Jin, 2011). Fitness inheritance is ini-
tially inspired by the idea that an offspring can also inherit a fitness value from its
parents, not only its own genes. Thus, its quality can be obtained from where it de-
rives from instead of through a function. Two classical approaches for fitness inheri-
tance (Smith, Dike, and Stegmann, 1995) are the averaged inheritance (adopt the av-
erage fitness of its parents) and proportional inheritance (fitness is weighted based
on the amount of genetic material taken from each parent). These ideas were later
further investigated on several studies using for example fitness sharing in multi-
objective optimisation problems (Sastry, Goldberg, and Pelikan, 2001; Bui, Abbass,
and Essam, 2005), or using fitness inheritance with Bayesian optimisation (Pelikan
and Sastry, 2004).

ML techniques such as clustering and supervised learning can be used in numer-
ous ways to alleviate fitness evaluation. Clustering algorithms including hierar-
chical clustering, partition clustering, and overlapping clustering, typically aim to
decrease the number of original function evaluations (Xu and Tian, 2015). These
approaches split the entire population (based on the chromosome representation)
into a number of groups by a clustering algorithm, and then the chromosomes clos-
est to the clusters’ centres are evaluated by the exact function, while other cluster
members are approximated according to their distance to the evaluated solutions
(Kim and Cho, 2001; Jin and Sendhoff, 2004; Martínez-Estudillo et al., 2005). How-
ever, this approach is mostly applicable for continuous optimisation problems only,
and still challenging in combinatorial search space due to the problem of computing
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the correlation among solutions to interpolate the fitness value (Bartz-Beielstein and
Zaefferer, 2017).

Supervised learning techniques aim to create a surrogate model that can approxi-
mate the fitness function by prediction. The model is adjusted based on the known
data points accumulated from the evaluation history. Naturally, most surrogate
models are assumed spatial models which means the prediction task is about ex-
ploiting accepted spatial relations such as a smooth change in a response surface
between the fitness values of a query point and known data-points (Li et al., 2008).
In other words, a data-driven model is constructed with the assumption that there
is continuity among data points, at which a small variation in decision variables
will cause a smooth change in the response space. This makes surrogate models
naturally suited to continuous optimisation problems, while not easily applicable
to combinatorial optimisation problems (Moraglio and Kattan, 2011) because the re-
sponse in combinatorial space does not necessarily vary smoothly when the discrete
variables produce a minor variation. Hence, choosing an appropriate metric to ex-
press the correlation between chromosome representation and its quality has been a
difficult task, which makes combinatorial landscape analysis significantly challeng-
ing. More discussion can be found in (Moraglio and Kattan, 2011; Bartz-Beielstein
and Zaefferer, 2017).

2.3 Data Mining and Data Pre-processing

Data mining is considered the process of extracting useful information from a vast
amount of data. Nowadays, it is qualified as science and technology for exploring
data to discover the existing patterns which may be unknown to users (García, Lu-
engo, and Herrera, 2015). Although a KDD process is widely used as a synonym
of data mining, there exist other views considering data mining as the main step
of KDD (Han, Pei, and Kamber, 2011; Witten and Frank, 2017). DM is used to dis-
cover useful patterns in the data, searching for meaning and relevant information
for different businesses.

Data mining tasks can be different depending on different purposes such as de-
scription, estimation, classification, prediction, clustering and association (García,
Luengo, and Herrera, 2015). Description group finds ways to describe patterns and
trends lying within the data. Estimation approximates the numeric value of a target
variable given a set of predictor variables. Classification is similar to estimation but
the target variable is categorical. Prediction produces the output in either numeric
or categorical forms like estimation and classification, respectively, but the results lie
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FIGURE 2.1: Multiple stages of a data mining process. The workflow in
the chart is inspired by a data mining diagram in (García, Luengo, and

Herrera, 2015).

in the future. Clustering refers to categorising observations into multiple groups us-
ing a similarity measure. Finally, association seeks for which attributes ‘go together’
with others.

2.3.1 Data Mining Process

A data mining process is usually divided into multiple stages, displayed in Figure
2.1. Although these stages may be named or split slightly different with some ad-
vantages and disadvantages, they reflect the same process and contain the below
four stages (Han, Pei, and Kamber, 2011; García, Luengo, and Herrera, 2015). A
key aspect that characterises these stages is their interconnection, meaning that a
data mining process is actually a self-organised scheme where each phase shapes
the other remaining stages and the reverse direction is also enabled.

• Problem definition: The stage requires the design of the application domain,
and relevant knowledge from experts in the field. It also includes the com-
prehension of the selected data associated with the expert’s knowledge to pin-
point the problem that is needed to be solved.

• Data pre-processing: This stage operates data cleaning (i.e. noise removal,
missing values) and data transformation (i.e. normalisation, data reduction).

• Model construction: This stage involves the technical solution that will be used
to mine the data, including the algorithm selection, hyper-parameter tuning
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and validation procedures. The model construction may be influenced by the
data mining task (i.e. classification, regression, clustering or association).

• Analysis: This phase is involved with human actions to interpret the results
obtained into actionable insights.

In our rapidly growing digital world, many new technical terms and phrases have
been introduced and those get us overwhelmed or lose track. Several terms have
been used interchangeably, unaware that the words mean two different things, for
example ‘data mining’ and ‘machine learning’. This is because the shared character-
istics between them are vast, leading to a blurred boundary between the two terms.
Particularly, under the aegis of data science, both processes are involved in making
use of data for solving different complex problems, so consequently, people erro-
neously employ the two terms interchangeably. ML is sometimes used as a means
of conducting useful data mining and data gathered from a stage of data mining
can be used for ML to learn. Furthermore, both processes usually employ the same
critical algorithms for discovering data patterns, leading to even a more blurred
boundary between ML and data mining. Despite the mentioned similarities, there
are a considerable number of differences between them.

Firstly, they do not share the same purpose. Data mining is a designed method to
extract the rules or to determine a particular outcome from large quantities of data,
while ML teaches a computer how to learn and comprehend the given parameters.
Secondly, the human factor is severely involved in data mining whereas ML only
require human for setting up the initial. Data mining relies on human intervention
because it is a static procedure and follows pre-set rules, ultimately created for use
by people, while ML exists for the reason that it can teach itself through the data and
thus not rely on human actions. As a result, data mining cannot learn or adapt, but
that is the essence of ML. Lastly, data mining is a process that embodies two com-
ponents: the database and ML. The former provides data management techniques,
while the latter processes data analysis. Hence, while data mining needs ML to ac-
complish its purpose, and information gathered and processed via data mining can
then be used to help a machine learn. However, it is not a necessity in the opposite
direction as ML does not necessarily need data mining to perform its task.

2.3.2 Pre-processing Techniques

Once some basic concepts and processes of data mining have been introduced, the
next step is to question the data to be used. Different conditions have to be set for
the input data such as quantity, structure and format. Unfortunately, multiple nega-
tive factors such the presence of noise, missing values, label inconsistence, outliers,
and a huge number of samples or features or both strongly impact the quality of
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real-world databases, resulting in low-quality data mining performance. For this
reason, data-preprocessing is important to enhance the quality of the input data and
eventually improve the data mining performance. In this section, we will focus on
the general categorisation of data-preprocessing methods in which our dissertation
will focus on one of them.

To gain the most from the available dataset, data pre-processing has been conducted
to minimise the garbage that gets into a mathematical learning model, so that we can
maximise the insights that the learnt model can generate (Larose and Larose, 2014).
Data pre-processing includes different tasks, grouped into data preparation and
data reduction. The former group consists of data cleaning, data transformation,
data integration, data normalisation, missing value imputation, noise identification,
while the latter comprises data discretisation, IR and feature selection (García, Lu-
engo, and Herrera, 2015). This categorisation can highlight the raised importance of
data reduction set of techniques which has recently gained a significant interest in
the ML community (Larose and Larose, 2014; García, Luengo, and Herrera, 2015).
Data preparation is normally a mandatory step to produce correct input data for the
downstream mining process, whilst data reduction aims to maintain the essential
structure and integrity of the original data with a downsized amount.

As this dissertation digs into solutions for data reduction solutions, we would nar-
row down the literature review into this research topic. Data reduction consists of
simplifying the domain of an attribute (discretisation), reducing the dimensionality
(feature reduction), and reducing the number of instance (instance reduction) (Liu
and Motoda, 2007; García, Luengo, and Herrera, 2015; Zebari et al., 2020). Discreti-
sation procedure transforms numerical attributes into discrete values, reducing the
value spectrum and obtaining a non-overlapping partition of the continuous do-
main. Feature reduction is a set of techniques that aim to minimise set of attributes
used for learning. Different solutions have been proposed in the literature including
feature selection, feature generation and feature weighting. Feature selection seeks
for a representative subset of features from the original feature space, while feature
generation allows the modification of the internal values to generate new features
that can fill in gaps in data. Feature weighting schemes assign a weight to each
feature so that the computation of distance between samples is adjusted. Similar
to solutions for feature reduction but at the instance level, IR is devoted to find a
reduced set of samples that represents the original training data. It can be divided
into IS and IG depending on how it creates the reduced set. IS attempts to choose
a subset of the original training data, while IG generates new artificial instances to
better represent the decision boundaries between classes. In this manner, IG solu-
tions can supply new representative examples that has not existed in some regions
in the domain of the problem.
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2.4 Search Algorithms for IR

IR is a challenging real-world problem in the field of data science due to the large
number of variables (i.e. instances to be considered for selection/discard or huge
size of features for perturbation). In the literature, it can be modelled as an opti-
misation problem with discrete or continuous decision variables depending on the
search strategy (i.e. selection or generation). Due to its complexity, it does not allow
the application of gradient-based algorithms, see (Caponio et al., 2007) and the fit-
ness landscape could be highly multimodal. One key reason that a gradient-based
approach may be impractical is that the numerical computation of the gradient is
highly expensive, which results in an unacceptable overhead. In this circumstance, a
derivative-free method may be a highly accepted option (Brent, 1973; Conn, Schein-
berg, and Vicente, 2009) to tackle such a challenge. Derivative-free methods are
algorithms that search for the closest local optimum solution but do not necessarily
require computing the gradient of the objective function. Among many strategies,
the following four groups can be considered the most prevalent in the literature
(Neri and Rostami, 2021):

• Population-based meta-heuristics are an iterative master process that controls
the sequence of intensification and diversification phases to explore and ex-
ploit efficiently a pool of different solution candidates to produce efficiently
high-quality solutions. The process may contain several subordinate low-level
heuristics (e.g. crossover, mutation) tailored to a specific solving problem.

• Line search methods iteratively identify a unidimensional direction trans-passing
the n-dimensional space, and then optimise the objective function along this
direction, see (Box, 1969).

• Pattern search methods use different defined rules to sample a set of poten-
tial candidate solutions to cover the entire search space. The rules used for
generation are called a pattern, see (Kaupe Jr, 1963).

• Simplex methods search for the optimum based on geometry. They make use
of the geometric figure to set the exploratory rules, see (Nelder, 1965)

This thesis will delve into the enhancement of search strategies in the two micro-
groups of population-based meta-heuristics and pattern search. Subsection 2.4.1
presents population-based meta-heuristics, Subsection 2.4.2 discusses pattern search
and MC.
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2.4.1 Population-based Meta-heuristics

Two frameworks of population-based meta-heuristics used in our research are EAs
and MC. Both optimisation schemes have been proved effective to tackle IR prob-
lem and others in numerous studies (Lin and Gen, 2018; Wong, 2017; Reina et al.,
2016). From the general understanding of EAs search strategy presented in Section
2.1.3, MC approaches can be considered as further development of EAs when they
combine an EA and a local search component (Neri and Cotta, 2012). However,
MC is not limited to that only design, but can be flexible and versatile optimisa-
tion frameworks (Neri and Cotta, 2012). For example, it can be a hybrid algorithm
combining having two or more algorithms joined together in a synergistic manner
(e.g. a global search operator integrated with one local search) (Ma et al., 2020; Ting
et al., 2018; Ma et al., 2019). We will discuss more details the background of MC
in Section 2.4.2, where it is used together with Pattern Search. Many studies im-
plementing the ideas of EAs and memetic algorithms have been proved to hold the
highest performing records for IR considering both accuracy and reduction rate. In
particularly, IR solutions with evolutionary search include PSO (Zhan et al., 2009;
Nanni and Lumini, 2009; Cervantes, Galván, and Isasi, 2009), DE (Triguero, García,
and Herrera, 2010; Triguero, García, and Herrera, 2011), Factor Local Search Differ-
ential Evolution (SFLSDE) (García, Cano, and Herrera, 2008; Triguero, García, and
Herrera, 2011) and IR solutions with memetic algorithms are Steady State Memetic
Algorithm (SSMA), SSMA-SFLSDE (Triguero, García, and Herrera, 2011).

2.4.2 Pattern Search and Memetic Computing

The content presented in this section is intended to Chapters 4 and 5 at which we
will propose two novel search strategies for IR to achieve Objectives 2 and 3. This
section is devoted to deliver key backgrounds of the two above ideas, including
Pattern Search (Part A) and MC (Part B).

Part A: Pattern Search

To clarify the notation used for the pattern search and IR solutions, we would begin
this section with important mathematical definitions of IR and its objective function
formulation, which will be used throughout in later Chapters. These concepts are
the essential building blocks to construct the Single-Point Search algorithm.
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Mathematical Definition of IR Solutions:
Given an instance I having m features and belonging to a class w.

I = a1, a2, . . . , am (2.2)

In a supervised classification problem, the data is usually split into training (TR)
and test (TS) sets. Each instance belongs to a class w, which is known for TR and
unknown for TS. Both datasets can be viewed as a matrix in which instances Ii are
displayed on the rows whilst their features are shown on the column f j. aij indicates
the jth feature value of instance Ii. Given a binary classification problem where an
instance Ii belongs to one of the two classes {w0, w1}.

TR =


f1 f2 ... fm w

I1 a11 a12 ... a1m w0

I2 a21 a22 ... a2m w0

... ... ... ... ... ...
Il al1 al2 ... alm w1

 (2.3)

The main purpose of an IR technique is to clean and compress TR into a reduced
set RS, by either selecting or generating new representative instances, so that, it pre-
serves and provides valuable information for a machine learning algorithm to learn
useful insights about a classification problem. Thus, the resulting RS should satisfy
several conditions such as well-representing the distributions of the classes, signifi-
cantly reducing in size to minimise the required storage, which would be beneficial
to the posterior classification phase. An RS is a matrix having p rows (p ≪ l) and
m columns. Note that p is a parameter whose value signifies the compression of the
data with respect to l (i.e. the number of rows of TR). Hence, the reduction rate is
defined as l

p . In both matrices TR and RS each row is associated with its class label,
that is each instance Ii is assigned to its class on the basis of its features.

RS =


f1 f2 ... fm w

I1 b11 b12 ... b1m w0

I2 b21 b22 ... b2m w1

... ... ... ... ... ...
Ip bp1 bp2 ... bpm w0

 (2.4)

Overall, the two general processes of IS and IG are summarised by the below two
schematic designs. Figure 2.2 displays an example of an IS process where instances
I1, I3 & I9 are selected to remain in the final RS. Note that none of the features of
those selected samples is modified. Figure 2.3 shows an example of an IG process
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TR =


f1 f2 ... fm w

I1 a11 a12 ... a1m w0
I2 a21 a22 ... a2m w0
... ... ... ... ... ...
Il al1 al2 ... alm w1

 An IS process−−−−−−−−→
Select I1, I3 & I9

RS =


f1 f2 ... fm w

I1 a11 a12 ... a1m w0
I3 a31 a32 ... a3m w1
I9 a91 a92 ... a9m w0



FIGURE 2.2: Example of an IS process where instances I1, I3 & I9 are
selected to remain in the final RS. None of the features is modified.

TR =


f1 f2 ... fm w

I1 a11 a12 ... a1m w0
I2 a21 a22 ... a2m w0
... ... ... ... ... ...
Il al1 al2 ... alm w1

 An IG process−−−−−−−−→
Select & Modify

RS =


f1 f2 ... fm w

I1 a′11 a′12 ... b1m w0
I2 a21 a22 ... a2m w1
I5 a51 a′52 ... a5m w1



FIGURE 2.3: Example of an IG process where instances I1, I2 & I5 are
randomly selected and then features a11, a12, and a52 are modified into

a′11, a′12 and a′52 respectively.

where instances I1, I2 & I5 are randomly selected and then feature values of these
samples are modified. Specifically, features a11, a12, and a52 are modified into a′11,
a′12 and a′52, respectively.

Objective Function Formulation:

As discussed in Chapter 1, the development of many data pre-processing techniques
such as instance reduction was initially motivated by the imprecision and ineffi-
ciencies of the well-known nearest neighbour(s) (NN) algorithm (Cover and Hart,
1967). These weaknesses have turned into strengths and made the NN rule a core
algorithm to preprocess raw data (Triguero et al., 2019). Thus, most IR techniques
verify how well a candidate matrix RS represents the entire training dataset, TR, by
using the NN algorithm as base classifier. To do so, we essentially check how well
we can classify the large dataset TR using the small dataset RS as training data. The
Euclidean distance between each instance Ii (row vector) of RS and each instance
Ij (row vector) of TR is calculated. This process yields l × p distance computations.
Figure 2.4 shows an example of a distance matrix. An entry Di,j of the distance ma-
trix in position i, j indicates the distance of the ith instance in TR to the jth instance
in the RS:

Di,j =
√(

bi,1 − aj,1
)2

+
(
bi,2 − aj,2

)2
+ . . . +

(
bi,m − aj,m

)2. (2.5)
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FIGURE 2.4: Distance matrix of l instances in TR and p instances in RS.
The instance at the first row is verified by instance at column 2, while
the instance at the last row is checked by the one at column 1. Blue

entries represent the shortest distance among the neighbours.

When the distance matrix D is calculated, for each row (i.e. each instance of TR),
the smallest entry is detected, e.g. 0.12 in the first row of Figure 2.4, and that in-
stance is given the class label w of the closest instance in RS. When all instances in
TR have been classified, there are different ways to assign a score (objective func-
tion) to the performance of RS (Alpaydin, 2014; Witten and Frank, 2017). In bal-
anced datasets, Accuracy Rate Acc (Alpaydin, 2014; Witten and Frank, 2017) is an
appropriate measure, while other scenarios such as imbalanced classification would
require a different metric.

Acc =
number of correct classifications by means of RS

total number of examined samples
(2.6)

Thus, for an input RS the objective function value is Acc, that is

f (RS) = Acc. (2.7)

Algorithm 1 describes step-by-step the calculation of the objective function based
on the distance matrix.

Of course, since higher values of Acc correspond to a better classification, the objec-
tive function needs to be maximised. The variable space is now (p × m)− dimen-
sions where each one can continuously vary in a normalised interval [0, 1]. Hence,
the search space for the optimal solution occurs in the set [0, 1]p×m.

Regardless of the score used to measure the quality of RS, the procedure described
above requires the calculation of l × p Euclidean distances. This operation can be
computationally expensive especially when large datasets are under examination.
The two main problems that arise when tackling larger datasets are runtime (due
to the large number of distance computations required) and memory consumption
(e.g. when the size of TR does not allow us to store it in main memory). However,
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Algorithm 1 Objective Function

1: INPUT matrices TR =
[
ai,j
]

and RS =
[
bi,j
]

2: Build the matrix of Euclidean distances D =
[
Di,j
]

(Equation 2.5)
3: correct_classification = 0
4: for each row of the matrix D do
5: Find the smallest value and save its row and column indices
6: Select, from TR and RS, the instances corresponding to the calculated in-

dices
7: Check the corresponding labels
8: if the labels coincide then
9: correct_classification += 1

10: end if
11: end for
12: Calculate Acc (Equation 2.7)
13: OUTPUT the objective function value Acc

the required runtime to evaluate candidate solutions tends to be the most important
factor to enable IR of large datasets.

Single-Point Search:
Pattern Search is employed in the continuous domain to tackle IG problem at which
we aim to to maximise the objective function f (x) defined at Equation 2.6. From
an RS displayed in Equation 2.4, we flatten the 2-dimensional matrix into a 1-
dimensional vector. As a result, the candidate solution x is 1-dimensional and com-
posed of n design variables (i.e. n is the multiplication of p rows with m features),
see Equation 2.8. We search for the optimal solution in an n-dimensional space
by perturbing each single value of n design variable. The perturbation follows the
single-point pattern search at which the new candidate generated from solution x is
only different at one single feature value.

x = (b11, b12, . . . , b1m, b21, b22, . . . , b2m, . . . , bp1, bp2, . . . , bpm)

= (x1, x2, . . . , xn)
(2.8)

where xi represents the design variable of the feature perturbation process and n =

m · p.

Part B: Memetic Computing

MC is a broad family of techniques which will be employed in Chapters 4 and 5.
Since their earliest definition (Moscato and Norman, 1989; Moscato, 1989), Memetic
Algorithms (MAs) were introduced usually to enhance upon the performance of
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algorithms, such as Genetic Algorithms and Simulated Annealing. Unlike the ma-
jority of other algorithms, MAs are not fixed to a specific structure but are flexible
and thus versatile optimisation frameworks, see (Neri and Cotta, 2012). This flexi-
bility is one of the main features of MAs which likely inspired numerous subsequent
studies that shaped, over the past three decades, the field of MC.

By following the visionary ideas reported in (Gupta and Ong, 2019) and the classifi-
cation in (Chen et al., 2011), three groups/generations of MC approaches have been
identified:

• Simple Hybrids: this group includes hybrid algorithms generated by two or
more algorithms joined together in a synergistic manner. Usually, the algo-
rithms of this type combine a global search and at least one local search. Some
examples of successful hybridisations are reported in e.g. (Ma et al., 2020; Ting
et al., 2018; Ma et al., 2019)

• Adaptive Hybrids: this includes hybrid algorithms where multiple local search
algorithms are coordinated by an adaptive mechanism that selects the algorith-
mic elements at runtime. Popular selection criteria are performance-based like
in hyper-heuristics (Özcan, Bilgin, and Korkmaz, 2008) and meta-Lamarckian
learning (Le et al., 2009; Nogueras and Cotta, 2016), diversity-based (Caponio
et al., 2007) or self-adaptive (Nguyen et al., 2009).

• (Future) Memetic Automation: this kind reinterprets MAs as a combination
of ‘agents’ without a predefined structure (Acampora, Loia, and Gaeta, 2010;
Zhu, Jia, and Ji, 2010) and investigates mechanisms to attain fully self-generated
MAs. Although this design approach is still under investigation, some inter-
esting domain-specific frameworks (Feng et al., 2015; López-García et al., 2016)
and prototypes (Caraffini, Neri, and Epitropakis, 2019) have been proposed.

The flexibility of the subject facilitating domain-specific algorithmic design is one
of the reasons of the success of MAs in real-world applications, see (Amaya et al.,
2020; Elola et al., 2017; Zaher et al., 2019). In other words, while robust algorith-
mic design and testing on multiple abstract mathematical functions is fundamental
for the development of novel memetic structures (as well as for any optimisation
algorithm) (Fister et al., 2019; Martinez et al., 2019) real-world problems often pose
specific challenges which may be addressed by ad-hoc representations and specific
operators (Gupta and Ong, 2019). Among the plethora of MC structures the need
to design simple algorithm on a limited hardware inspired Single-Point Memetic
Structures which are the focus of the present study. For example, in (Neri, Iacca,
and Mininno, 2011) memetic structures using virtual populations (statistical mod-
els of populations) have been implemented directly in the control cards of robots.
In (Caraffini et al., 2014), a simplistic single-solution MC approach composed of a
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global evolutionary operator and a local search has been proven to be competitive
with complex meta-heuristics and has been successfully implemented in the control
card of an helicopter robot.

The two search frameworks that will be presented in Chapters 4 and 5 are part a
family of MAs designed according to the so-called Ockham’s Razor in MC principle
formulated in (Iacca et al., 2012): simple algorithmic structures designed by combin-
ing memes in a bottom-up approach while addressing the knowledge of the problem
(prior or available at run-time) often have a high performance despite their simplic-
ity. This idea links to other areas of optimisation research such as the pioneering
studies in (Yao, Liu, and Lin, 1999; Chang-Yong Lee and Xin Yao, 2004) and the
work on Fitness Landscape Analysis (Malan and Engelbrecht, 2013; Jana, Sil, and
Das, 2018).

In Chapters 4 and 5, we will employ MC to design search frameworks tailored to IR
problem. The details of each algorithmic design will be presented in each chapter,
but they generally join the Single-Point Search with one or more other algorithms
to synergise the effectiveness of different integrated components. Different from a
population-based approach generating a pool of candidates and perturbing multi-
ple variables to search at different points at once, this search strategy maintains only
a single solution and seeks improvement upon its performance (objective function
value). While the search moves along the axis and perturbs the elements of a candi-
date solution one by one, it exploits the fact that a sing-point search produces a new
candidate that is only ‘slightly’ different with respect to its previous state (Neri and
Rostami, 2021). That is why this search strategy belongs to the continuous domain
and is named Single-Point Memetic Structure.

2.5 Summary

This chapter has supplied the necessary background for an adequate comprehen-
sion of the conducted research throughout the thesis. We have covered different
aspects of ML, optimisation, accelerating an objective function, data mining and
search algorithms to set up the foundation for understanding different advanced IR
solutions. The comprehensive literature review in these sectors has reinforced us
to understand better the research gap and thus allows us to place our contributions
to where necessary. From the literature review, the main issue for current IR so-
lutions is largely related to the high cost of evaluating candidate solutions. When
tackling bigger datasets, their runtime may become excessive and we can find in
the specialised literature parallelisation approaches for IR (Triguero et al., 2015b),
which allow them to be executed, whilst increasing the need for additional com-
putational resources. Reducing the computational cost of the fitness evaluation is
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an under-explored area in IR, and just a few approximation approaches exist (e.g.
windowing (Bacardit et al., 2004) or surrogate models (Neri and Triguero, 2020)).
Hence, the contributions of this thesis is to provide several novel search strategies
to tackle the high cost of objective function evaluation. Different search strategies
require different backgrounds, which can be summarised as follows:

Sections 2.1, 2.2 and 2.3 are essential prior to clarifying the development of the
methodology to deal with IS problem presented in Chapter 3, which is our first con-
tribution as presented in Objective 1. Next, basic concepts about search pattern and
MC in Section 2.4 will be used to support the single-point memetic search structure,
proposed to tackle IG problem in Chapter 4. This chapter presents another contri-
bution to fulfil Objective 2. Finally, the findings from Chapter 4 will take part in a
novel algorithmic design for IS and IG, presented in Chapter 5.

This chapter has paved the way for the experiments and discussions deployed in the
following chapters. The investigation for enhancing different search strategies will
be based on the concepts and methods introduced above. As a result, the research
gaps, motivation and objectives identified in the introduction now become more
conceivable. The dissertation is now followed by our contributions with validated
solutions corresponding to the presented research gaps. In the next chapter, we
aim to address the first research question, how to improve the evolutionary search
strategy with the integration of an ML method.
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Chapter 3

A Surrogate Model for Accelerating
Evolutionary Undersampling

3.1 Introduction

As we agreed that the main theme of the dissertation is the acceleration of different
search strategies. In the first contribution presented in this chapter, we discuss the
acceleration for a population-based meta-heuristic search strategy for imbalanced
classification problem as a case study, while other search strategies will be discussed
as we progress towards later chapters. This is because the IS solution employed at
the data pre-processing stage, called undersampling, is found the state-of-the-art
method for this particular type of problem. This state-of-the-art undersampling ap-
proach modelled the selection of samples as an binary optimisation problem and
employed a meta-heuristic search framework to tackle the problem. As discussed
earlier, a typical problem associated with a meta-heuristic search is fitness compu-
tational expense, which demands a solution to reduce the cost.

Furthermore, when it comes to IR in general at which samples of all classes will be
considered for elimination, IS approaches do not hold the state-of-the-art perfor-
mance but its hybridisation with IG techniques. Hence, we investigate imbalanced
classification at the first stage of the research. We argue that imbalanced classifica-
tion is a typical case study found to demonstrate our first contribution established
in Objective 1. In addition, it may be less complex to start with because IS solutions
for imbalanced classification only consider to reduce samples at the majority class.
The content below will discuss in details imbalanced classification and is organised
as follows. First, we introduce the problem as well as justify why learning with
skewed datasets is different from learning with balanced datasets, then analyse dif-
ferent solutions proposed in the literature to tackle this problem. Next, we delve
into the bottleneck of the state-of-the-art undersampling solution, and discuss our
proposed solution for the problem.
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3.1.1 Imbalanced Classification

Learning from skewed data is a challenge arising in multiple domains such as bioin-
formatics, business management, or network analysis (Dai, 2015; Zhu, Baesens, and
Broucke, 2017; Chen et al., 2018). Focusing on two-class datasets, the problem hap-
pens when samples from the minority class (usually the class of interest) are highly
outnumbered by the counterparts from the majority class (He and Garcia, 2008;
López et al., 2013; Haixiang et al., 2017). The majority and minority classes are
typically known as the ‘negative’ and ‘positive’ classes, respectively.

In skewed datasets, canonical classification algorithms may be biased towards the
majority class, being unable to appropriately predict examples from the minority
class (Fernández et al., 2018a; Thabtah et al., 2020). Solutions tackling this diffi-
culty can be grouped into data pre-processing (Chawla et al., 2002; Batista, Prati,
and Monard, 2004; Triguero et al., 2019) and algorithmic modification (Zadrozny
and Elkan, 2001; Oh, 2011). Those operating at the algorithmic level modify the
learning algorithms to make them aware of the imbalanced situation at the learning
stage, while those at data-level pre-processing intervene in the cardinalities of posi-
tive and negative classes to make them less critically unequal. Cost-sensitive learn-
ing (Domingos, 1999; Krawczyk, Woźniak, and Schaefer, 2014) and ensemble-based
methods (Galar et al., 2011; Fernandes et al., 2019; Sundar and Punniyamoorthy,
2019) have also become very popular. Cost-sensitive techniques can be considered
algorithm level modifications that try to learn more characteristics of minority class
examples by incorporating a higher cost to their misclassification. Ensemble-based
methods usually combine an ensemble learning algorithm (e.g. Bagging, Boosting)
(Galar et al., 2011) with one of the mentioned approaches (e.g. data pre-processing
(Chawla et al., 2003), cost-sensitive techniques (Li et al., 2014)) to establish a combi-
nation of multiple base classifiers.

Data-level pre-processing solutions consist of undersampling (concerned with elim-
inating redundant examples in the majority class (Yen and Lee, 2009; García and
Herrera, 2009)), oversampling (generates new artificial data for the minority class
(Chawla et al., 2002; Batista, Prati, and Monard, 2004; Fernández et al., 2018b)), and
hybrid methods (a combination of the previous two) (Ramentol et al., 2012). While
all approaches are proved effective in many studies, oversampling and hybrid meth-
ods tend to generate more data, which may result in a higher computational cost.
Undersampling, on the other hand, aims at reducing the data size, which is more ad-
vantageous when employed in large datasets or big data scenarios (Triguero et al.,
2015a). Among other strategies for undersampling, Evolutionary Undersampling
(EUS) (García and Herrera, 2009), an evolutionary IS strategy (Garcia et al., 2012)
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for imbalanced classification, has been demonstrated to be very effective in multi-
ple studies, especially in combination with Ensemble-based approaches (Galar et al.,
2013; Krawczyk et al., 2016; Sun et al., 2018).

EUS is an example of optimisation techniques to improve ML processes (Song, Triguero,
and Ozcan, 2019). This does not only help to balance the distribution of classes but,
as an IS approach, this also allows us to remove noisy instances in the majority class,
which is a common issue in real-world applications (Tao et al., 2020; Stojanovic, He,
and Zhang, 2020). In particular, the EUS algorithm performs a binary search guided
by an Evolutionary Algorithm (EA) to optimise the selection of (training) examples
from the majority class that improves the classification performance. The chromo-
some quality is measured by classifying the entire training dataset based on the pre-
processed set represented by the chromosome. Similarly to most previous works
(e.g. in the original EUS (García and Herrera, 2009)), in this chapter we adopt the
Nearest Neighbour (NN) (Cover and Hart, 1967) rule as the base classifier. The re-
sulting pre-processed dataset, however, should be ready to be used by any classifier.

Despite its effectiveness, the EUS method is typically very time-consuming, espe-
cially in large datasets, due to the cost associated to fitness evaluation. Further ad-
vancement of the EUS requires two conditions: (1) reduce the processing time and
(2) still guarantee a high classification performance. In the recent literature, the pro-
cessing time of EUS (and other IS/IG based approaches) is being reduced by using
distributed approaches in big data platforms (Triguero et al., 2017; Triguero et al.,
2015a), increasing the need for a larger number of computing nodes.

In this work, we are interested in reducing the computational cost of EUS by using
fitness approximation approaches (Jin, Olhofer, and Sendhoff, 2000; Jin, 2005), such
as surrogate models (Jin, 2011; Rosales-Pérez et al., 2015; Sun et al., 2019), which
could accelerate the expensive computation of the classification performance of each
chromosome. Surrogate-based methods allow us to reduce the computational cost
of search algorithms, as opposed to parallelisation techniques that merely focus on
reducing processing time. This kind of approach has been widely investigated in
various problems employing evolutionary optimisation techniques (Brownlee and
Wright, 2015; Bertini et al., 2011; Salami and Hendtlass, 2003; Chugh et al., 2020), fol-
lowing different approaches, such as fitness inheritance and ML methods (Jin, 2005).
Existing methods are usually designed for problems in the continuous search land-
scape. However, methods for combinatorial domains have been under-explored
(Moraglio and Kattan, 2011; Bartz-Beielstein and Zaefferer, 2017) due to the com-
plexity of the field which requires domain knowledge to apply fitness approxima-
tion.

In the field of evolutionary IS (for imbalanced and standard classification), primitive
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approaches for fitness approximation have been employed to reduce the computa-
tional cost (windowing (Bacardit et al., 2004)) and processing time (stratification
(Cano, Herrera, and Lozano, 2005)). The underlying idea of these methods is to
consider subsets of training data for fitness evaluation, reducing the cost on larger
datasets. The windowing approach for EUS is dependent on the imbalanced ratio
(ImbR) (defined as the ratio of the number of instances from the negative class and
the positive class). For example, in a two-class dataset with 100k instances and an
ImbR < 9, each evaluation of any chromosome is processed with more than 20k
samples of a stratum (10k samples from each class). Thus, the lower ImbR, the more
computation is required. Whilst these approaches are important in addressing large
datasets with EUS, the use of surrogate models for evolutionary IS is an under-
developed area in the literature that can highly reduce the computational cost of
this kind of search technique.

3.1.2 Contributions

In this chapter, we propose a two-stage clustering-based surrogate model for EUS
(EUSC) that allows us to compute fitness values faster. As opposed to windowing or
stratification approaches, EUSC considers the entire training data when computing
fitness values. However, it only performs real evaluations for a limited number of
chromosomes. First, a preliminary clustering stage of majority examples allows us
to transform binary chromosomes into real coding chromosomes that represent the
overall location of the instances selected in a solution. Then, in every generation, the
entire population is clustered using the new intermediate chromosome representa-
tion to approximate the fitness values based on their similarity and imbalanced ra-
tio. Note that in this designed framework, the intermediate phase that transforms
the binary into continuous encoding representation is merely for the sake of fitness
approximation and thus it does not impact to the type of the solving problem (i.e.
combinatorial as IS). The rest of fitness values are approximated using a clustering-
based surrogate model that groups binary chromosomes based on their phenotype
similarity (which is the location in the space of the selected instances). To the best of
our knowledge, this is the first surrogate-based model for EUS, and one of the very
few surrogate models that work on a combinatorial problem (Bartz-Beielstein and
Zaefferer, 2017).

EUSC operates in a different way in which two elements are stressed: (1) Consider-
ing all the data at each evaluation for a few chromosome representatives, (2) Fitness
of the representatives is used to infer the quality of other chromosomes based on
a clustering-based model. In addition, we also propose a hybrid surrogate model,
called a hybrid surrogate model for EUS (EUSHC), that consists of windowing and
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EUSC to significantly reduce the computational cost of the objective function with-
out misleading the search. The difference of EUSHC and EUSC is that the hybrid
method uses windowing to estimate the fitness value of a reduced number of chro-
mosomes, and the fitness values of the rest of solutions are approximated based on
their similarity and imbalanced ratio. These judgements motivate this study whose
contributions can be summarised as follows:

• We investigate the challenge of devising surrogate models for a combinato-
rial/binary optimisation problem (IS for undersampling). We discuss the weak-
nesses of using the Hamming distance to compute the similarity between bi-
nary chromosomes, which would not reflect well how similar two solutions
are. The main novelty of this work lies in developing a means to perform that
similarity computation based on the phenotype of the chromosome.

• We propose a clustering-based surrogate model for EUS which highly reduces
the computational cost of this method, speeding up the algorithm without
reducing significantly its classification performance. Thus, the main contri-
bution is in the acceleration of the fitness evaluation of an IS method in the
context of imbalanced classification.

• We propose a hybrid surrogate model that integrates windowing with EUSC
to highly reduce the computational cost of the fitness function. As EUSHC
is hybridisation of EUSC and Windowing, the hybrid scheme contains two
approximation phases. The first approximation is from the use of windowing
to estimate the fitness value of a reduced number of chromosomes, and the
second approximation is the fitness inference for the rest of solutions, similar
to EUSC. Thus, the entire search is guided by only approximate fitness values.

• To validate the performance of EUSC, we explore different variants of the pro-
posed method considering multiple factors affecting the model, then analysing
empirically their effectiveness. We compare the proposed surrogate model
against the original EUS algorithm and EUS with windowing evaluation on
44 standard imbalanced datasets with various imbalance ratios. In compari-
son with the windowing strategy, the results obtained show that EUSC does
not only reduces runtime enormously, but it also provides a high-quality solu-
tion which does not significantly decrease classification performance in com-
parison to the original EUS. In addition, we show how the greedy surrogate
model EUSHC allows for a massive reduction of computational costs without
considerably reducing accuracy

The rest of this chapter is organised as follows. In Section 3.2, we introduce the
background and related works, consisting of EUS, recent work on accelerating fit-
ness evaluation in evolutionary search, and existing approaches to speed up EUS.
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Next, Sections 3.3 and 3.4 describe our two proposals in detail. Then Section 3.5
introduces the experimental framework used in this study. Before making several
concluding remarks in Section 3.8, we analyse the numerical results of EUSC and
EUSHC in Sections 3.6 and 3.7, respectively.

3.2 Background

This section presents background information about EUS for imbalanced classifica-
tion (Section 3.2.1) and the existing approaches to accelerate evolutionary IS tech-
niques (Section 3.2.2).

3.2.1 EUS for Imbalanced Classification

In learning with skewed data, balancing the class distributions can alleviate the bias
of standard classification algorithms towards the majority class. Among other ap-
proaches, undersampling is an interesting alternative for large datasets as they re-
duce the number of samples in the majority class (contrary to oversampling which
generates artificial minority class samples), consequently, enabling standard algo-
rithms to be capable of identifying examples from both classes more accurately. Un-
dersampling techniques can inherit from IR methods which were initially designed
for other preprocessing purposes in learning methods ( IS and IG (Garcia et al.,
2012; Triguero et al., 2012)).

The simplest way to obtain a balanced subset of the original data is to randomly
undersample the majority class (Batista, Prati, and Monard, 2004). However, this
non-heuristic approach may discard important data in the negative class due to the
randomness in this mechanism. EUS (García and Herrera, 2009) on the other hand,
is an evolutionary IS algorithm that carries out a heuristic search to optimise the
subset of samples that are selected, and thus can increase the accuracy of a classi-
fier on both classes. The search is guided by an EA, namely CHC (Eshelman, 1991),
which is efficient at maintaining the balance of exploration and exploitation by ap-
plying different mechanisms such as incest prevention, reinitialisation of the popu-
lation when the search does not progress and the competition among parents and
offspring for selecting the elitist. The reduced set is evolved from undersampled
instances until the highest performance computed by a fitness function is achieved
or stopping conditions are met. EUS can achieve two goals which are the balance of
samples between classes and high classification accuracy when the selected negative
samples are the most representative.

Assuming binary classification, a formal specification of the problem is the follow-
ing: A two-class dataset has N− negative class instances and N+ positive class
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instances. Let xi be an instance in the dataset where xi = (xi1 , xi2 , xi3 , ..., xim , xiω),
with xi belonging to a class given by xiω and an m-dimensional feature space in
which the feature value at the kth position of the ith sample is denoted as xik . In
the EUS approach, a candidate solution is a binary chromosome in which each gene
takes a value of {1, 0} to represent the presence or absence of an instance xi, respec-
tively. As only majority class instances are examined for elimination, the size of a
chromosome is thus equal to N−. Positive samples are automatically concatenated
with the selected negative examples to form a final reduced set RS for classifica-
tion. The representation of a chromosome in the EUS algorithm is expressed as:
chrj = (vx1 , vx2 , vx3 , . . . , vxN− ) where vxi ∈ {1, 0} indicates whether sample xi is in-
cluded or not.

EUS maintains a population of NP chromosomes that are assessed and ranked based
on their quality which considers two main factors: classification performance and
class imbalance. The fitness function uses RS to classify the entire training dataset.
However, in imbalanced classification, traditional accuracy measures are no longer
valid as they neglect the fact that there is an imbalanced class distribution. Two com-
monly used alternatives are geometric mean (GM) (Barandela et al., 2003) and the
area under the curve (AUC) of Receiver Operating Characteristic (Bradley, 1997).
Both measures have been extensively and interchangeably used in many experi-
mental studies of imbalanced classification. In this chapter, we will focus on the
GM, defined in Equation 3.1 to report the classification performance. This is not
only because it has been used in many experimental studies on imbalanced clas-
sification (López et al., 2013; García and Herrera, 2009; Triguero et al., 2015a), but
also because it can reflect the balance between the true positive rate (TPrate) and true
negative rate (TNrate) at the same time and therefore the contribution on either class
does not have a higher impact than that of the other.

GM =
√

TPrate × TNrate (3.1)

The complete fitness function for a chromosome chr is as follows:

fchr =

GMchr −
∣∣∣1 − N+

s−

∣∣∣ · P if s− > 0

GMchr − P if s− = 0,
(3.2)

where s− is the number of selected negative instances and P is a penalisation factor
that focuses on the balance between both classes. P is typically set to 0.2 as recom-
mended by the authors, since it provides a good trade-off between both objectives.

The time required to evaluate the quality of each chromosome highly depends on
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the size of the training set. In this work, we are interested in developing a fast EUS
that can quickly estimate the fitness values of chromosomes without misleading the
search.

3.2.2 Reducing Processing Time of Evolutionary IS

Several primitive approaches of fitness approximation have been used for evolu-
tionary IS strategies (such as EUS), namely stratification (Cano, Herrera, and Lozano,
2005) and windowing (Bacardit et al., 2004).

The first approach distributes the initial data into several disjoint strata where each
stratum still preserves original class distributions. Each stratum is then individually
processed by an evolutionary-based strategy to produce different reduced sets (RSs).
Finally, all RSs are joined into a final global set. In this approach, the fitness function
is not directly applied for the original data, but it is used with each stratified small
subset. The ultimate goal of stratification is to deal with the memory consumption
limitation rather than speed. The computational cost at evaluation is not reduced
in total, but the real fitness function is approximated by the way it is used with a
smaller scale of data.

Windowing also splits the training data into several strata with equal class distri-
bution, but it computes the performance on one stratum to represent for the entire
initial data. A windowing scheme employs all strata using round-robin policy to es-
timate chromosomes’ fitness during multiple iterations of an evolutionary process.
As the data quantity is reduced at each evaluation, the demand for computation
is therefore reduced. Despite many positive elements, this approach also has sev-
eral drawbacks which possibly limit it from extending in applications. Although
this method can handle larger datasets, each stratum is empirically limited to no
more than tens of thousands of instances (Derrac, García, and Herrera, 2010) in
evolutionary-based strategies. Thus, the method can alleviate the burden of fitness
computation in relatively large scale datasets (Cano, Herrera, and Lozano, 2005) but
not in extreme scenarios like big data. As such, this approach does reduce the com-
putational cost of an evolutionary IS and was first used for EUS in (Triguero et al.,
2015a).

In the big data context, current parallelisation approaches based on MapReduce aim
at reducing the processing time by splitting the datasets into several disjoint blocks
(similarly to the stratification approach) that are handled in parallel (Triguero et al.,
2015b). In (Triguero et al., 2015a), a two-level parallel scheme combining MapRe-
duce and windowing was proposed for EUS. This approach reduces both computa-
tional costs and processing time, but relies on windowing (for imbalanced sets) to
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reduce the computational cost. Note that windowing could easily be replaced by
the proposed EUSC.

3.3 EUS with a Clustering-based Surrogate Model

In this section, we describe the proposed EUSC framework in detail. Section 3.3.1
motivates the proposed approach, detailing the challenges to perform clustering-
based fitness approximation. Finally, Section 3.3.2 provides a detailed description
of the proposed model.

3.3.1 Challenges to Perform a Cluster-based Fitness Approxima-

tion

As mentioned in the chapter Background, Section 2.2, surrogate models usually rely
on distance measures between solutions to perform fitness approximations. As EUS
encodes solutions as binary chromosomes, the Hamming distance appears as a nat-
ural option to measure the similarity among these binary chromosomes. However,
if we do so, we would be expecting this distance metric to reflect the change of
chromosomes’ representation in the fitness landscape, so that, the fitness of chro-
mosomes varies according to the change of the Hamming distance. In preliminary
experiments, we observed that this option was not feasible and performed poorly.

In (imbalanced) classification, some instances may be very important when per-
forming classification, due to their location in the classification space (e.g. those
instances in the decision boundaries between classes are typically very important).
Using the genotype of the chromosome, the Hamming distance considers the pres-
ence of all instances with equal merit, ignoring and neglecting the degree of differ-
ence that the actual feature values of a particular example may reflect in the fitness
computation, misleading the fitness inference. For example, a chromosome with
only one gene swapped would be very similar according to this metric, but it may
lead to a great difference in classification performance.

This motivates us to propose the EUSC algorithm which can address the challenge
of computing differences among different solutions. The main contribution of this
work lies in establishing a bridge connecting the chromosomes’ representation and
their quality in the fitness landscape. The use of estimated fitness values might seem
to be linked to a reduction of the performance. However, currently we need to re-
member two main considerations for any existing IS algorithm (Garcia et al., 2012):
(1) the use of training data to compute fitness values is in itself an approximate way
to measure the quality of a solution and determine how well the resultant RS allows
us to learn a concept; (2) the search algorithm may overfit the training data. With
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these ideas in mind, we aim to develop a surrogate method capable of reducing the
computation cost of EUS without misleading the search.

3.3.2 Two-Stage Clustering-based Surrogate Model for EUS

The main advantage in the proposed EUS with clustering is the ability to quickly ob-
tain the fitness value of a chromosome without always computing its classification
performance. To do so, we propose a two-step process based on clustering, which
is represented in Figure 3.1. Note that the proposed surrogate model has been in-
tegrated with EUS, which was based on the CHC algorithm. However, the ideas
proposed here could be implemented in any evolutionary-based algorithm for un-
dersampling (or IS). The added computational cost of the proposed method will be
introduced twice as we progress into the two-step process based on clustering.

The complete pseudo-code for EUSC is presented in Algorithm 2 which empha-
sises (in bold-face) the main modifications to the EUS described in Section 3.2.1.
Our method follows the same structure of the CHC algorithm (Eshelman, 1991) that
maintains an excellent balance between exploration and exploitation. The CHC al-
gorithm has several important characteristics:

• It uses a heterogeneous uniform cross-over (HUX) for the combination of two
chromosomes aiming at maximising the differences of the offspring from their
parents (Algorithm 2, line 12).

• It applies an incest prevention mechanism in the combination with the HUX
operator to impede the cross of two parents if they are too similar in terms of
their Hamming distance.

• It has a restart mechanism to reinitialise the entire population when the evolu-
tion does not progress (Algorithm 2, lines 19-21).

• When the search is stagnated, a mutation mechanism is used to populates NP
candidates from the current best candidate solution (Algorithm 2, line 21).

We also summarise several functions and importnat parameters that are described
in Algorithms 2 and 3 as follows:

• PS, NS = Split(TR): Split the entire TR into two parts. PS includes only positive
samples while NS merely contains negative samples.

• Infer_At_Init is a user-defined hyper-parameter to indicate whether the fitness
inference is employ at the initialisation phase or not.

• Real_Evaluation (NP): Input is NP chromosomes that are needed to be evalu-
ated. This function employs Equation 3.2 to assess the chromosome’s quality.



3.3. EUS with a Clustering-based Surrogate Model 47

• Imbalance_penalisation (chrRj): Compute the penalty of a solution based on
the ratio between the number of positive and negative samples. The penalty
value is the subtraction part of GM in Equation 3.2.

• EUSC includes two additional parameters, namely k1 and k2. k1 is used at
Apply k1-means, line 2, Algorithm 3. k2 is employed at Fitness Inference lines 6
and 15, Algorithm 3.

Algorithm 2 Evolutionary undersampling clustering-based algorithm - EUSC
Input: Training Data (TR)
Output: Highest fitness chromosome (Best RS)

1: PS, NS = Split(TR)
2: {T1, T2, ...Tk1} = Apply k1-means(NS)
3: NP = Randomly initialise the population of chromosomes
4: if Infer_At_Init == True then
5: Intermediate_Pop = Transform_binary_rep (NP) ▷ Figure 3.1 (top)
6: Fitness Inference (Intermediate_Pop, NP) ▷ Computed at Alg. 3
7: else
8: Real_Evaluation (NP)
9: end if

10: while eval < MAX_EVALUATIONS do
11: newPop = Get M chromosomes from NP based on their structure’s diversity
12: newPop = crossover_HUX(newPop) ▷ crossover the selected candidates
13: if size(newPop) > k2 then ▷ Can do fitness inference
14: Intermediate_Pop = Transform_binary_rep (newPop)
15: Fitness Inference(Intermediate_Pop, newPop) ▷ Computed at Alg. 3
16: else
17: Real_Evaluation (newPop)
18: end if
19: NP = Select best candidates from NP and newPop
20: if stagnated == True then ▷ Restart mechanism
21: NP = Mutation (Best solution in NP)
22: Real_Evaluation (NP)
23: end if
24: end while
25: return Best solution in NP

Phase 1: Intermediate Form for Chromosomes, summarised in Figure 3.1 (top)
In EUS, the original binary representation for chromosomes is helpful to determine
which samples are selected/discarded. However, as stated before, one of its major
drawbacks is that it does not represent the real phenotype of a chromosome, which
is the actual position of the selected instances that interferes significantly in the clas-
sification performance.

Our first step to develop a surrogate model for EUS is related to transforming this
binary representation into a real-coding one. Note that it is key that this process is
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Algorithm 3 Fitness Inference
Input: Intermediate_Pop and Chromosomes that need fitness inference
Output: Chromosomes associated with their fitness

1: {C1, C2, ...Ck2} = Apply k2-means(Intermediate_Pop)
2: {chrR1, chrR2, ..., chrRk2} = Get k2 Representatives ▷ Representative: Centroid,

Random
3: for each cluster Cj in {C1, C2, ...Ck2} do
4: GMchrRj = Classification performance(RSchrRj) ▷ Computed by Equation 3.1
5: ImbchrRj = Imbalance penalisation (chrRj)
6: FitnessRepCj

= GMchrRj − ImbchrRj

// Infer the fitness of members in Cj using computed GMchrRj

7: for each chromosome chrm in cluster Cj {chr1Cj , chr2Cj , ..., chrkCj} do
8: Imbchrm = Imbalance penalisation (chrm)
9: Fitnesschrm = GMchrRj − Imbchrm

10: end for
11: end for
12: return chromosomes with fitness

very quick to really take advantage of a surrogate model (rather than using a real
fitness evaluation). The real-coding intermediate form is created in two steps. Note
that Step 1 and Step 2 below correspond to the two steps displayed in Figure 3.1
(top):

• Step 1: Before commencing the EUS algorithm, the training set is first split
into positive and negative sample sets (i.e. PS and NS, respectively). Then,
we group all majority class samples into different regions based on their fea-
ture values. This step will later allow us to reflect in which area the selected
instances are predominately based. In our experiments, we focus on the well-
known k-means algorithm to group data into k1 clusters {T1, T2, ...Tk1}. This is
the considered computational cost added to the EUSC model compared to the
EUS. Note that this clustering task may be considerably slow for big datasets,
however, it is only conducted once. The information of these clusters is used
during the search whenever a chromosome is needed to be transformed into
an intermediate form.

• Step 2: Whenever we need to approximate fitness values (initialisation or dur-
ing the evolutionary cycle), binary chromosomes will be transformed into in-
termediate forms with the support of {T1, T2, ...Tk1}. Note that each training
instance was allocated to a cluster in the previous step. Each intermediate
form is a vector of k1 features which is the number of k1 clusters. Firstly, from
the binary chromosome, we count the number of selected instances (i.e. genes
with a 1) that fall into each one of the clusters. Each value of the intermediate
chromosome is a real number, obtained from dividing the number of selected
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FIGURE 3.1: Two phases of an EUSC process: Chromosome transfor-
mation at phase 1 and fitness inference at phase 2.

instances by the cluster’s size. These k1 values tell us the proportion of selected
samples at each region, which is approximate information about the location
of the selected samples in the instance space. Thus, this is a simple and fast
strategy to obtain an approximate phenotype for each binary chromosome.

Phase 2: Fitness Computation, summarised in Figure 3.1 (bottom) After trans-
formation, a chromosome has also a real-coding representation, which allows us
to apply fitness inference following similar ideas implemented in the literature for
continuous optimisation problems (Kim and Cho, 2001). Algorithm 3 describes in
detail the fitness inference mechanism. This stage consists of the following three
steps. Note that Step 1, Step 2 and Step 3 below are corresponding to the three steps
displayed in Figure 3.1 (bottom)::

• Step 1: To compute the similarity among the current chromosomes considered
for evaluation, their intermediate forms are fed into a clustering algorithm
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(again we focus on k-means in our experiments) to split the population into k2

clusters C1, C2, ..., Ck2 . This is an additional computational cost added to EUSC
in comparison to EUS. However, the size of the data (i.e. a subset of NP × k1)
we are clustering is so small that the runtime for this process could be consid-
ered almost negligible. In this way, the clustering task also indirectly groups
the chromosomes into different regions in the binary space. Note that the bi-
nary representation is still needed at evaluation time (either real or inferred)
to compute the balance between classes (See Equation 3.2).

• Step 2: Compute the fitness value of only k2 representatives using the real fit-
ness function defined in Equation 3.2. Here we examine different approaches
for the selection of representatives. In particular, we analyse the effect of
selecting them randomly or using the centroid chromosome from each clus-
ter C1, C2, ..., Ck2 . As a result, we have a set of representative chromosomes
{chrR1, chrR2, ..., chrRk2} for which we can compute their GM values
{GMchrR1 , GMchrR2 , ..., GMchrRk2

}.

• Step 3: In this final step, we can now infer the fitness values for the remain-
ing chromosomes. As defined in Equation 3.2, the fitness function consists
of GM and imbalance penalisation. The GM values of the k2 representatives
will be reused for all the chromosomes belonging to the same cluster. This
means that all the members in the same cluster with the representative sim-
ply get the representative’s GM and thus the cost of classification performance
is saved. However, the component of imbalance penalisation can be quickly
computed from the binary chromosome for each particular solution. We are
aware that transferring the same GM to all members of a cluster may seem to
be an oversimplification, and more elaborated solutions will be investigated
in the future. However, as we will see in the experimental section, this simple
fitness inheritance mechanism allows us to achieve very competitive results.

We have described above the underlying ideas of EUSC but there are a number of
factors that should also be taken into consideration. In the evolutionary search, chro-
mosomes are evaluated at initialisation and during the evolutionary loop. When
designing EUSC, we realise that the initialisation may be a key step for the entire
search, and using approximate values to begin with may not be ideal. Thus, in our
experiments we investigate the influence of applying inference at both Initialisation
and Evolution or merely at the Evolution phase. Note that whenever the population
NP is restarted, we have decided to only perform real fitness evaluations to ensure
the search is not misled.



3.4. Hybrid Surrogate Model for EUS 51

3.4 Hybrid Surrogate Model for EUS

In Chapter 1 and Section 3.1.1, we have introduced Windowing as a fitness approx-
imation method to measure the quality of an RS (Bacardit et al., 2004). In this sec-
tion, we propose a hybrid surrogate model, called a hybrid surrogate model for EUS
(EUSHC), that integrates windowing with EUSC presented in Section 3.3 to highly
reduce the computational cost of the fitness function without misleading the search
for accurate solutions. This section is organised as follows: Initially, Section 3.4.1
discusses the motivation behind this approach, then Section 3.4.2 describes in detail
the windowing component and finally Section 3.4.3 details the hybrid approach.

3.4.1 Motivation

Since EUS can determine the best subset of majority class elements to balance the
number of samples among classes, it is capable of addressing the imbalanced clas-
sification problem (García and Herrera, 2009). The cost associated to its fitness eval-
uation motivates the use of approximations to assess the quality of a chromosome.
The main problem lies in the size of the training data that needs to be classified to
measure the classification performance of a given solution.

The use of approximate fitness values might seem linked to a reduction of the per-
formance. However, we postulate that for the problem of IS (undersampling) in
classification problems, using the training data to compute the fitness value is in it-
self an approximation of how well the solution (the resulting RS) allows us to learn
a concept (which may affect how well we can predict the test set). In addition, the
search algorithm may end up overfitting the training data. Hence, these are well-
known general weaknesses of any existing IS algorithm (Garcia et al., 2012).

The main goal of the proposed EUSHC is to drastically reduce the computational
cost of EUS and investigate whether this misleads the search or not. To do so, we
integrate two different approaches to approximate fitness values: Windowing and a
clustering-based surrogate model. The motivation as to why we add the two differ-
ent components together is given below.

3.4.2 Windowing for EUS

The idea of windowing was originally proposed in (Bacardit et al., 2004) to accel-
erate a genetic-based ML algorithm. The key idea is to use partial data instead of
the entire dataset for each fitness evaluation. This approach begins with splitting
the training set into multiple disjoint strata (W1, W2, ..., Wnw). For each generation of
the search, each stratum takes a turn to be used in evaluating candidate solutions.
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Due to the reduction of data quantity at each evaluation, the computational cost
decreases accordingly.

In the context of EUS for imbalance classification, windowing was first used in
(Triguero et al., 2015a). However, dividing the entire training set into several disjoint
windows with equal class distribution may produce a significant loss of information
of the positive class. Therefore, to apply windowing for EUS, minority class sample
will be kept to evaluate a chromosome. However, the set of majority class instances
is split into several disjoint strata. The size of each subset of majority examples is
set to the number of minority class instances to avoid setting a fixed value for the
number of strata. Thus, the number of strata is dependant on the imbalanced ratio.

This simple yet effective approach has been empirically proven to highly reduce
the cost of fitness evaluations without significant loss in classification performance.
Although the training data is not classified at once to evaluate one chromosome,
during the evolutionary process the algorithm utilises all existing training data. The
main drawback of this technique lies in the fact that its reduction of computational
cost depends on the imbalanced ratio. For this reason, we will use this technique
within the proposed hybrid surrogate model to speed up the fitness computation of
only some chromosomes of the population.

3.4.3 Construction of the Hybrid Windowing-Clustering Surrogate

Model

Fitness approximation based on surrogate models is an under-explored area in bi-
nary/combinatorial optimisation. For EUS, the main challenge lies at computing
distances between different binary chromosomes, so that, fitness values can be ei-
ther inherited or approximated based on similarity between chromosomes. EUSC
allows us to compute distances between binary chromosomes by transforming them
into an real-coding representation. The main advantage of such a model is the abil-
ity to very quickly infer the fitness value of a chromosome based on the distance
to others without computing any classification. There are two main differences be-
tween the windowing and the cluster-based approach:

• Windowing defines a strategy to split TR into multiple sets for fitness evalua-
tion, while EUSC approach employs the entire data for fitness evaluation.

• Fitness in Windowing method is approximate in any candidate solutions. For
EUSC, fitness is computed by Equation 3.2 for several representative candi-
dates and the approximation is employed for the rest of the solutions.
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In this work, we extend that approach by hybridising EUSC with a windowing ap-
proach. Figure 3.2 presents the workflow of the entire hybrid model, which consists
of the following two phases:

Phase 1: Chromosome Transformation The key point of EUSC is related to trans-
forming the binary representation into a real-coding one. This process should be
very quick to really take advantage of a surrogate model (rather than using the real
fitness evaluation). The main issue with the binary representation is that does not
represent well the real phenotype of the chromosome, which is the actual position
of the selected instances of the algorithm.

FIGURE 3.2: Workflow of EUSHC: Phase 1 conducts chromosome
transformation; in the illustration 1 element out of 3 is selected from
T0 cluster, 2 out of 3 in T1 cluster, and 2 out of 4 in T2 cluster. Phase
2 performs fitness inference based on similarities between the trans-
formed chromosomes. Only a representative chromosome from each

cluster is evaluated using a windowing approach.

• Step 1: Before starting the evolutionary cycle, all the training samples that
belong to the majority class are grouped into k1 clusters {T0, T1, ...Tk1}. In our
experiments, we use the well-known k-means algorithm. The goal of this step
is to quickly split the instance space into different regions based on the actual
position (i.e. using their feature values) of the majority class examples. Note
that this step is the most time-consuming one, but it is only applied once.
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• Step 2: During the evolutionary cycle, we will transform binary chromosomes
into an intermediate form using the previous clusters. This intermediate forms
will have k1 genes. Firstly, we count the number of selected instances (i.e.
genes with a 1) that fall into each of the clusters. Each gene of the intermediate
chromosome will be a real value which is computed as the division between
the number of selected instances of this cluster and the original number of
elements in the cluster. These values produce an intermediate form that tells
us approximate information about the location in the instance space of the
selected instances.

Phase 2: Fitness Inference When binary chromosomes have been transformed
into real-coding ones, we can use similar ideas as implemented in the literature for
continuous optimisation problems (Kim and Cho, 2001).

• Step 1: The population of chromosomes in their new intermediate form is fed
into a clustering algorithm, which splits the different solutions into k = k2

clusters, C0, C1, ..., Ck2 . In this way, the clustering task conducted in the in-
termediate forms will also indirectly separate the chromosomes in the binary
space.

• Step 2: Compute the fitness value of only k2 chromosomes. To accelerate this
step, we incorporate here the windowing approach. This means that for those
chromosomes a subset of the training set is classified (as describe in the previ-
ous subsection) with the RS. We tested different approaches to decide which
chromosomes should be evaluated with the fitness function. In this contribu-
tion we pick the centroid chromosome chrRi from each cluster {C0, ..., Ck2} as
a set of representative chromosomes {chrR0, ..., chrRk2}.

• Step 3: Infer the fitness value of the remaining chromosomes. The GM values
of the {chrR0, ..., chrRk2} (Algorithm 3.1) have been calculated in the previous
step. To compute the fitness of the rest of the chromosomes, Equation 3.2 uses
the GM value GMchrj of the centroid of the cluster. This means that all the
members of a cluster simply inherit the same GM value. However, the compo-
nent of the balance between classes of the fitness function is calculated based
on the number of elements selected by the particular solution. We acknowl-
edge that transferring the same GM to all members of a cluster may be an
oversimplification, and more elaborated solutions could be adopted; however,
our experiments show that this simple approach achieves good results.

In the experiments presented in the next section, the above fitness approximation is
applied to all fitness evaluations, including the evaluation of the initial population.
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3.5 Experimental Framework

In this section, we present the experimental framework in which our proposal, the
original EUS and the EUS with Windowing evaluation will be compared. This sec-
tion begins with the description of the used imbalanced datasets (Section 3.5.1) and
is followed by the parameter configuration (Section 3.5.2). Finally, we briefly intro-
duce the non-parametric statistical tests (Section 3.5.3) that will be used to analyse
the results.

3.5.1 Datasets

In our experiments we consider numerous two-class imbalanced datasets with dif-
ferent imbalanced ratios, from low to high. The datasets are obtained from the KEEL
dataset repository (Triguero et al., 2017) which has been used as a resource for many
experiments in previous studies (Galar et al., 2013; García et al., 2018). Table 3.1 sum-
marises the properties of the datasets and dataset entries are sorted by the ascending
order of the imbalanced ratio. The range of imbalanced ratio goes from 1.5 to 9 for
low imbalanced datasets and over 9 for highly imbalanced datasets. Each row repre-
sents a dataset showing its name (Dataset), the number of attributes (Att), the num-
ber of samples (Samp), the percentage of examples for each class (%Class(min,maj))
and the imbalanced ratio (ImbR). In total, there are 44 datasets in the experimental
setup; each one is partitioned using 5-fold stratified cross-validation which deliv-
ers an adequate number of positive class samples in the test partitions. In a 5-fold
cross-validation scheme, the original input data is randomly partitioned into 5 sub-
sets. To compute the performance of a method, a single subset is retained to test the
model, while the remaining 4 subsets are used as training data. This process is re-
peated until each one of the 5 subsets serves once as the test data. Thus, the overall
performance of each dataset is given by an average of the 5 results from the 5 folds.

3.5.2 Parameter Configuration

EUS has been widely used in the literature and we employ the parameter values
used in (García and Herrera, 2009), including the number of evaluations, population
size, penalisation factor and others, as it has been done in most studies for a fair
comparison. EUSC includes two additional parameters, namely k1 and k2. k1 is the
number of clusters when the majority class examples are divided in stage 1 of the
algorithm, while k2 is the number of groups into which intermediate chromosomes
are categorised in stage 2. We explored a great number of combination pairs {k1, k2}
where each k1 in {2, 4, 6, 8, 10, 12, 14, 20} is combined with each k2 in {2, 4, 6, 8, 10,
12}, resulting in a total of 48 pairs of {k1, k2}. We analysed the performance of EUC
on all datasets with these pairs and only found slight differences among them. Thus,
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TABLE 3.1: Summary of datasets from low to highly imbalanced ratios.

Dataset Att Samp %Class (min,maj) ImbR
glass1 9 214 (0.36, 0.64) 1.82

ecoli-0_vs_1 7 220 (0.35, 0.65) 1.86
wisconsinImb 9 683 (0.35, 0.65) 1.86

pimaImb 8 768 (0.35, 0.65) 1.87
iris0 4 150 (0.33, 0.67) 2.00

glass0 9 214 (0.33, 0.67) 2.06
yeast1 8 1484 (0.29, 0.71) 2.46

habermanImb 3 306 (0.26, 0.74) 2.78
vehicle2 18 846 (0.26, 0.74) 2.88
vehicle1 18 846 (0.26, 0.74) 2.90
vehicle3 18 846 (0.25, 0.75) 2.99

glass-0-1-2-3_vs_4-5-6 9 214 (0.24, 0.76) 3.20
vehicle0 18 846 (0.24, 0.76) 3.25

ecoli1 7 336 (0.23, 0.77) 3.36
new-thyroid1 5 215 (0.16, 0.84) 5.14
new-thyroid2 5 215 (0.16, 0.84) 5.14

ecoli2 7 336 (0.15, 0.85) 5.46
segment0 19 2308 (0.14, 0.86) 6.02

glass6 9 214 (0.14, 0.86) 6.38
yeast3 8 1484 (0.11, 0.89) 8.10
ecoli3 7 336 (0.10, 0.90) 8.60

page-blocks0 10 5472 (0.10, 0.90) 8.79

Dataset Att Samp %Class (min,maj) IR
yeast-2_vs_4 8 514 (0.10, 0.90) 9.08

yeast-0-5-6-7-9_vs_4 8 528 (0.10, 0.90) 9.35
vowel0 13 988 (0.09, 0.91) 9.98

glass-0-1-6_vs_2 9 192 (0.09, 0.91) 10.29
glass2 9 214 (0.08, 0.92) 11.59

shuttle-c0-vs-c4 9 1829 (0.07, 0.93) 13.87
yeast-1_vs_7 7 459 (0.07, 0.93) 14.30

glass4 9 214 (0.06, 0.94) 15.46
ecoli4 7 336 (0.06, 0.94) 15.80

page-blocks-1-3_vs_4 10 472 (0.06, 0.94) 15.86
abalone9-18 8 731 (0.06, 0.94) 16.40

glass-0-1-6_vs_5 9 184 (0.05, 0.95) 19.44
shuttle-c2-vs-c4 9 129 (0.05, 0.95) 20.50

yeast-1-4-5-8_vs_7 8 693 (0.04, 0.96) 22.10
glass5 9 214 (0.04, 0.96) 22.78

yeast-2_vs_8 8 482 (0.04, 0.96) 23.10
yeast4 8 1484 (0.03, 0.97) 28.10

yeast-1-2-8-9_vs_7 8 947 (0.03, 0.97) 30.57
yeast5 8 1484 (0.03, 0.97) 32.73

ecoli-0-1-3-7_vs_2-6 7 281 (0.02, 0.98) 39.14
yeast6 8 1484 (0.02, 0.98) 41.40

abalone19 8 4174 (0.01, 0.99) 129.44

we decided not to report all results in this study for the sake of simplicity as they
do not affect the conclusion of comparing the EUSC schemes to the EUS algorithm.
In particular, we have chosen the pair {6, 6} to present the outputs. Furthermore, as
discussed in Section 3.2.1, EUS uses a heuristic search to find the subset of examples
which can be different depending on the starting point of search. Hence, to make a
fair comparison, we set up 10 fixed seeds to let each algorithm begin from the same
point in 10 different executions. The results presented are the average of these ten
executions.

To analyse the effectiveness of our EUSC proposal, we will use four different strate-
gies (presented in Table 3.2), in which each is varied by two factors Representative
(Rep), and Inference (Infer_At_Init). As discussed in Section 3.3.2, these two ele-
ments contribute their significant influence on the behaviour of the search. Rep is
a boolean value to determine whether the representative is a random or the cen-
troid chromosome. Infer_At_Init is a boolean value to determine whether fitness
inference is used at both Initialisation and Evolution or merely at the Evolution phase.
The results obtained from these four schemes will be contrasted against two bench-
marks: (1) the original EUS, which is assumed to achieve the highest GM, but the
most time-consuming approach; (2) EUS using windowing to evaluate its fitness
function. Table 3.2 summarises all the parameters used in the experiments.

TABLE 3.2: Parameters used for different configurations of EUSC.

Rep Infer_At_Init Scheme Shared parameters

Random
Initialisation & Evolution R-IE Population Size (NP) = 50, Max Evaluations = 10000

Evolution R-E Probability of inclusion HUX = 0.25

Centroid
Initialisation & Evolution C-IE Measure = GM, k1 = 6

Evolution C-E k2 = 6, Number of Runs = 10
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3.5.3 Non-parametric Tests for Statistical Analysis

As there is not an established procedure to assert whether a classifier is better than
another, statistical approaches have been adopted to determine whether the differ-
ence in performance obtained from the experiments is real or random. While a para-
metric test requires several assumptions to be satisfied, such as a normal distribution
of inputs and homogeneity of variance, a non-parametric test is free from those re-
quirements (Demšar, 2006; Derrac et al., 2011). In this chapter, we will employ non-
parametric tests, specifically the Friedman Aligned-Ranks test (Hodges, Lehmann,
et al., 1962) plus a Holm post-hoc test (Holm, 1979) to perform statistical analysis
on the performance of the algorithms. Initially, the Friedman Aligned-Ranks test
conducts multiple comparisons to detect statistical differences in the performance
of multiple algorithms. This test will establish a ranking order of all compared
algorithms. Then, the Holm post-hoc test is used to discover whether the high-
est ranking algorithm (the control algorithm) presents statistical differences with
respect to the remaining methods. In our experiment, a level of significance of
α = 0.05 is adopted. Further information discussing these tests can be referred
at http://sci2s.ugr.es/sicidm/.

3.6 Analysis of Results of EUSC

In this section, we present an examination of the results of EUSC. It begins with
a detailed analysis of the behaviour of the EUSC scheme through an evolutionary
search cycle (Section 3.6.1), and is followed by the report of the runtime as well
as the reduction in the number of fitness function calls (Section 3.6.2). Finally, we
statistically compare the performance of the different algorithms (Section 3.6.3).

3.6.1 Detailed Analysis of the Behaviour of EUSC

EUSC approximates the fitness values for some of the chromosomes during the evo-
lutionary, which may change the behaviour of the original EUS. This section aims
to investigate whether our fitness approximation approach produces values close to
the real fitness ones and determine which of the four EUSC configurations perform
better on the 44 used datasets. To do so, we carry out the following two experiments.

Experiment 1 The first experiment involves an analysis of the fitness difference
between approximated and true fitness values through an evolutionary search cy-
cle. Note that the fitness difference is reported as an average figure in relation to the
number of chromosomes whose fitness is approximated in each generation (which
may differ in every generation). This is due to the nature of CHC which does not

http://sci2s.ugr.es/sicidm/
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FIGURE 3.3: Behaviour of the EUSC through generations run by
method R-IE on fold 1 of dataset ecoli2.

always produce NP offspring in every generation but the size of newPop depends
on how many chromosome candidates in the current population are selected for
conducting crossover. The selection mechanism is determined by the gene differ-
ence between two chromosome candidates, measured by the Hamming distance.
The two candidates will be selected if their gene difference surpasses a user-defined
threshold value. Hence, the surrogate model for fitness approximation is only em-
ployed when the quantity of chromosomes is greater than k2. An example of an
evolutionary search process run by scheme R-IE on fold 1 of dataset ecoli2 is plotted
in Figure 3.3. Two y-axes are sharing the same x-axis. The left y-axis presents the fit-
ness difference, while the right one expresses the number of chromosomes that are
evaluated. Note that Figure 3.3 is only an example to characterise the behaviour of
a specific EUSC on a dataset fold. However, a similar behaviour has been observed
in other datasets and the different variants.

Analysing this figure in detail, we can see how the evolutionary search cycle begins
with random initialisation of NP chromosomes. Due to random allocation, these
chromosomes have diverse fitness values, resulting in a large value of fitness dif-
ference. Through generations, the value progressively decreases and remains low
at less than 0.05 until the end of the search. Particularly, in generations 90-150, 190-
260, 290-370, and 420-440 where the fitness inference is used, while the chromosome
quantity follows an upward trend, the variation of fitness difference value remains
mostly unchanged, fluctuates at somewhere between 0 and 0.05. This means that
while the CHC algorithm introduces more diversity to the population, the EUSC
approach is yet effective to divide the chromosomes into groups at which members
of each group are approximate in fitness. There appear discontinuities in the fitness
difference curve, indicating that fitness approximation is not applied in these gen-
erations as the number of generated offspring is lower than k2. Furthermore, when
the upward trend of the chromosome quantity reaches the top value (NP), it sud-
denly drops to the bottom due to the restart mechanism of the CHC algorithm. The
algorithm uses a mutation process to generate a new generation from the current
best chromosome. Taking the highest fitness chromosome in the current population
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as the input, CHC mutates one or several genes to generate different chromosomes
for a new population. A new similar pattern of the search restarts from this point as
the population has been refreshed.

Experiment 2 With the previous experiment, we can say that at each generation of
a search, the EUSC does not produce a large difference between approximated and
true fitness values. If each EUSC scheme does not behave remarkably differently,
it may end up with the same number of generations per search, resulting in a close
fitness difference in total (note that the stopping criteria is based on number of eval-
uations, and not number of generations). In this experiment, we aggregate all the
generated fitness differences throughout the entire search and from the 5 folds of
each dataset, displayed in Figure 3.4. The aim of this experiment is to understand
how different the search of four schemes performs regarding the total fitness dif-
ference. Higher fitness difference in an EUSC configuration infers that either more
generations have been conducted in a search or fitness difference is large in some
particular EUSC schemes and some datasets. The results have been sorted by the
number of samples of datasets for the sake of studying the influence of their size.
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FIGURE 3.4: Total fitness difference aggregated from evolutionary
search of each EUSC scheme over 5 folds of each dataset.

Centroid-based schemes (representative is the centroid chromosome) are likely to
produce lower global fitness difference with respect to the random-based counter-
parts (representative is a random chromosome), denoted by a lower/nearly equal
value of fitness difference in all datasets. The higher aggregated value in these
random-based approaches can be attributed to the representative selection. The
random-based schemes might obtain a very good solution and assign its fitness to
other chromosomes, at which the least difference is generated. However, there is
a probability that the selection of a representative falls into the worst situation or
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nearby at which the inference task produces substantial fitness difference and thus
adds a heavy burden to the global value. Note that if chromosomes in a cluster
share approximate values, the difference may not be strongly affected by the selec-
tion mechanism.

In Figure 3.4 the four schemes tend to have a very similar behaviour in most of
the datasets, producing a similar accumulated fitness difference value. On datasets
that the range of total accumulated fitness difference is in between 40 and 50, the
four EUSC schemes tend to separate each other, meaning the search tends to be
slightly different. On datasets with the fitness difference values above 50, the four
EUSC schemes show clear differences. These datasets are usually the ones having
very high imbalance ratio. It is much more diffused on datasets with both high
imbalance ratio and low samples, such as glass5 and glass-0-1-6_vs_5. As a result,
with datasets having a low number of samples, it is reasonable not to use EUSC as
the EUS does not suffer from high computational expense.

3.6.2 Runtime and Real Evaluations Reduction

In this section, we will compare the runtime needed by all the compared algorithms
in every dataset. Figure 3.5 plots the comparison. For the sake of clarity and observ-
ing the influence of data size on the runtime, we group the first 22 datasets in the
top sub-plot (smaller datasets), 15 next datasets in the middle sub-plot (medium-
size datasets) and remaining 7 datasets in the bottom one (the larger datasets used
in the experiments). Looking at that figure, we can observe that:

• Overall, four EUSC schemes demanded an insignificant amount of time to per-
form undersampling in comparison to the time required by the original EUS.
This is also the case for EUS with windowing in about half of the datasets.
However, as mentioned before, the EUS with windowing is strongly influ-
enced by the IR. Thus, its runtime on datasets with high imbalance ratio was
low and much lower when the size of those datasets is small. However, in
other small datasets (low IR) this approach consumed a mostly comparable
amount of time to EUS, and the runtime dramatically reduced in larger ones.

• Although the four EUSC schemes have a difference in the amount of time
consumed, the variation is not significant in comparison with EUS. Over 44
datasets, the minimum and maximum percentage of the runtime saved are
16.76% and 83.24%, respectively. Additionally, on average in all datasets, EUS
takes 30.63s, EUS_windowing takes 9.03s, and the four EUSC schemes con-
sume from 6.66s to 7.25s.



3.6. Analysis of Results of EUSC 61

��
 �
���
��
��
!�
��
�

���
��

��
��
��
��
��

�

!�
�	

��
��
��
��
��

�

!�
��

��
"
���

#�
��
��

��
"
���

#�
��
��

��
��
�


��
��
�	

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

!�
��

�	
�


��
��
���
�!
��
�

��
��
���
��
��
��
�!
��
��



��
��

��
��

��
�

��
��
��

��
��
��

��
��
��

��
��
��

#�
��
���

�!
��
�

��
��

��
��
��
��
��
��

!�
��

�

�

�

�
�
��
��
�

 �
��

���
��

��
�

 �
��

���
��

��
�

 �
��

���
�	
�

��
�
��

��
�

�
��
��

��
��
��

�

 �
��

���
��
�	
��
��

��
�

��
��
��

�
��
�

��
�
��
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

 �
��

���
��
��
�
��

��
�

��
�
��
�

 �
��

��

 �
��

��

�

	�

���

��
�
��
��
�

(�
�#
$�

(�
�#
$	

(�
�#
$�

#�
%$
$��
��
��
&#
��
�

#�
��

� 
$�

��
��
! 

��



"�
��

��
�!
��
#�

��$�#�$#

�

���

���

��
�
��
�#
�

���
��
���
��
����� �!'� �
��

FIGURE 3.5: Comparison of the runtime (in seconds) of the involved al-
gorithms in every single dataset. Runtime of the first 22 datasets (Top),

next 15 datasets (Middle), last 7 datasets (Bottom).

In addition to runtime, we also report the number of evaluations that our method
saved. As there is not a significant difference observed in the number of real fitness
function calls among four EUSC schemes, we plot the histograms with the total
number of evaluations of two representative schemes (C-E and R-IE) compared to
the 10000 evaluations performed by the EUS for each dataset (Figure 3.6). As seen
in the graph, the two schemes save a significant number of evaluations, up to 80%
the evaluations demanded by the original EUS in most datasets. This infers a huge
reduction of extensive computation in calculating the fitness for each chromosome.

3.6.3 Classification Performance Comparison

In the previous section, we have shown that our proposal is more advantageous
than the original EUS or EUS_Windowing in terms of runtime and the number of
real evaluations used. However, these gains would not be of any value if the final
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FIGURE 3.6: The number of real evaluations from the two EUSC
schemes contrasted to the EUS algorithm over 44 imbalanced datasets.

goal of achieving high classification performance considerably decreased. This sec-
tion thus aims to report the average GM of all the algorithms in test data. Table 3.3
shows the results in detail. The best result for each dataset is highlighted in bold-
face. The last row shows the number of times in which an algorithm has obtained
the highest performance.
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FIGURE 3.7: The difference in terms of GM of the EUSC schemes and
EUS_Windowing constrated against the EUS.

Additionally, we also highlight how much difference in terms of GM of the four
EUSC configurations and the EUS_Windowing against the original EUS. Every GM
value of each EUSC scheme and EUS_Windowing subtracts the GM of the EUS to
produce the curves, displayed in Figure 3.7. The plots lying above 0 signify better
performance, while those under 0 mean worse. The distance measured from the
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TABLE 3.3: Average GM of all compared algorithms over 44 datasets.

Dataset R-IE R-E C-IE C-E EUS_Windowing EUS
shuttle-c2-vs-c4 0.9690 0.9690 0.9753 0.9527 0.6449 0.9582

iris0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
glass-0-1-6_vs_5 0.9289 0.9077 0.9175 0.9176 0.9151 0.9168
glass-0-1-6_vs_2 0.6612 0.6454 0.6409 0.6426 0.6164 0.6551

new-thyroid2 0.9888 0.9871 0.9856 0.9885 0.9773 0.9885
new-thyroid1 0.9851 0.9862 0.9862 0.9882 0.9809 0.9859

glass6 0.8724 0.8779 0.8768 0.9068 0.9071 0.8646
glass5 0.8298 0.8141 0.8602 0.8336 0.9076 0.8292
glass4 0.8712 0.8638 0.8752 0.8785 0.8513 0.8798
glass2 0.6879 0.6901 0.7085 0.6975 0.6525 0.7101
glass1 0.7668 0.7669 0.7680 0.7772 0.7010 0.7787
glass0 0.8015 0.8070 0.8072 0.8046 0.6176 0.7964

glass-0-1-2-3_vs_4-5-6 0.9493 0.9483 0.9496 0.9478 0.9385 0.9461
ecoli-0_vs_1 0.9580 0.9605 0.9591 0.9601 0.9312 0.9601

ecoli-0-1-3-7_vs_2-6 0.6800 0.6611 0.6591 0.6631 0.7048 0.6692
habermanImb 0.5547 0.5634 0.5594 0.5736 0.5635 0.5642

ecoli4 0.8972 0.9055 0.9016 0.8949 0.9362 0.9000
ecoli3 0.8470 0.8375 0.8447 0.8333 0.8153 0.8335
ecoli2 0.9005 0.8988 0.8971 0.8996 0.8663 0.8998
ecoli1 0.8639 0.8660 0.8676 0.8662 0.8306 0.8677

yeast-1_vs_7 0.7106 0.7140 0.7102 0.7144 0.7079 0.7250
page-blocks-1-3_vs_4 0.9575 0.9547 0.9652 0.9581 0.9399 0.9602

yeast-2_vs_8 0.7797 0.7739 0.7911 0.7802 0.7496 0.7954
yeast-2_vs_4 0.9074 0.9003 0.9070 0.9027 0.8774 0.9071

yeast-0-5-6-7-9_vs_4 0.7747 0.7848 0.7815 0.7792 0.7663 0.7749
wisconsinImb 0.9666 0.9684 0.9652 0.9674 0.9652 0.9678

yeast-1-4-5-8_vs_7 0.6412 0.6321 0.6427 0.6396 0.6088 0.6437
abalone9-18 0.7246 0.7297 0.7138 0.7341 0.6772 0.7313

pimaImb 0.6817 0.6867 0.6831 0.6859 0.6749 0.6951
vehicle0 0.9148 0.9143 0.9166 0.9179 0.9027 0.9148
vehicle1 0.6716 0.6667 0.6678 0.6588 0.6624 0.6715
vehicle2 0.9294 0.9280 0.9257 0.9247 0.9175 0.9232
vehicle3 0.7180 0.7265 0.7222 0.7232 0.7142 0.7208

yeast-1-2-8-9_vs_7 0.6469 0.6640 0.6479 0.6588 0.6078 0.6765
vowel0 0.9921 0.9918 0.9914 0.9910 0.9719 0.9918
yeast3 0.8751 0.8722 0.8780 0.8747 0.8740 0.8749
yeast1 0.6501 0.6509 0.6527 0.6532 0.6501 0.6552
yeast4 0.8222 0.8191 0.8206 0.8126 0.7799 0.8156
yeast6 0.8326 0.8432 0.8287 0.8381 0.8080 0.8438
yeast5 0.9639 0.9593 0.9611 0.9614 0.9494 0.9585

shuttle-c0-vs-c4 0.9960 0.9960 0.9960 0.9960 0.9968 0.9960
segment0 0.9884 0.9883 0.9876 0.9890 0.9870 0.9889
abalone19 0.6600 0.6509 0.6294 0.6401 0.6061 0.6343

page-blocks0 0.9096 0.9108 0.9103 0.9111 0.9038 0.9148
Wins 13 5 6 6 6 13

baseline (y = 0) to a plot indicates how much an algorithm performs better/worse
than the EUS. Looking at this table and figure, we can make the following observa-
tions:

• Despite using up to 80% more evaluations, EUS does not always achieve the
highest GM. In contrast, using fitness approximation approaches does not only
save a lot of computation but also might sometimes get even better perfor-
mance. From Table 3.3, we can highlight the configuration R-IE, which ap-
pears very competitive in comparison to the EUS algorithm, obtaining the
same number of wins out of the 44 datasets. Other algorithms find the best
solution in 5 or 6 out of 44 datasets.

• In Figure 3.7, four EUSC schemes oscillate around the baseline in a confined
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range of [-0.03, +0.04], while EUS_Windowing fluctuates with a larger dis-
tance. This infers stable performance of all configurations which is more con-
sistent with the performance attained by the EUS technique.

Although the differences of GM among all involved algorithms are likely inconsid-
erable from what has been analysed so far, there is no evidence to confirm whether
these differences are significant. Hence, we will employ the Friedman Aligned-
Ranks test to discover if there exist statistical differences in the involved algorithms.
After having the ranking table provided by the Friedman test, we then use Holm
post-hoc test to find out whether the highest-ranking algorithm statistically outper-
forms the rest. Table 3.4 presents the results of this test. In this table, algorithms are
sorted by their ranks, from the best to the worst and each algorithm is also associ-
ated with a pHolm value at the same row.

TABLE 3.4: Average rankings of the algorithms over 44 datasets (Fried-
man Aligned-Ranks test and Holm post-hoc test).

Algorithm Ranking pHolm
EUS 2.7386 -
C-E 3.0568 0.4881
C-IE 3.2841 0.4881
R-IE 3.2955 0.4881
R-E 3.4091 0.3711

EUS_Windowing 5.2159 0

• As expected, the original EUS gets the lowest ranking value and is established
as the control algorithm. Our EUSC schemes are placed in the middle of the
table, while EUS_Windowing with the largest ranking value lies in the last
position.

• With the level of significance α = 0.05, Holm’s test does not report any sig-
nificant difference between EUS and four EUSC schemes. However, the test
reveals the EUS algorithm statistically outperforms the EUS_Windowing as
p-value = 0.

• Although R-IE has the same number of wins with the EUS over 44 datasets, it
does not show this advantage in the Ranking and pHolm columns. This is be-
cause the benefits gained from winning in a number of datasets are deducted
from the significant loss in the other datasets. At datasets where R-IE does not
perform the best, its performance is usually ranked below C-E and C-IE.

Finally, to make sure that our proposed approach has not benefited from having the
EUS_Windowing algorithm in the 1 ∗ N comparison, we apply the Wilcoxon test
between the original EUS and the different EUSC schemes. Table 3.5 shows rankings
R+ (sum of the positive ranks) and R− (sum of the negative ranks) together with the
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p-values obtained from the Wilcoxon test. As we can see, R+ is slightly greater than
R− in the first two rows and moderately larger in the last two rows (meaning that
EUS obtains slightly better results). However, the Wilcoxon test does not report
significant differences between the EUS with a level of significance α = 0.05.

TABLE 3.5: Results of the Wilcoxon test when the EUS algorithm is
contrasted against the seven most effective EUSC schemes.

EUS vs R+ R− p-value
C-IE 582.5 407.5 ≥ 0.2
R-IE 569.5 420.5 ≥ 0.2
C-E 629.5 360.5 0.1185
R-E 656.5 333.5 0.0598

3.7 Analysis of Results of EUSHC

In this section, we analyse the performance of EUS related methods including EUS,
EUS_windowing, EUSC (i.e. variant C-E is selected as it ranked the highest perfor-
mance amongst others) and EUSHC (i.e. variant C-E with Windowing) with respect
to several aspects, including runtime, number of evaluations, and classification per-
formance.

3.7.1 Runtime

In this section, we compare the runtime required by each one of the methods in
every single dataset. Figure 3.8 plots this comparison. For the sake of clarity, we
sort the datasets by the runtime of EUS, and also apply logarithmic scale (base 10)
on the vertical axis. We present two subplots, grouping 44 datasets into two halves.
Looking at that figure, we can observe that:

• Overall, all the approximation methods consumed an insignificant amount of
time to perform undersampling compared to the time demanded by the origi-
nal EUS.

• Windowing spent a mostly equivalent amount of time to EUS in small datasets,
but the time is dramatically reduced in larger ones. As stated above, the win-
dowing approach is also affected by the imbalance ratio.

• Both EUSC and EUSHC show a very low runtime across the 44 examined
datasets. As expected the hybrid approach is always faster than EUSC, and
it is clearer on larger datasets. On average, EUSHC is roughly 52.84% faster
than EUSC (3.15s vs. 6.68s, respectively).
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FIGURE 3.8: Comparison of the runtime (in seconds, base 10 loga-
rithmic scale) of the different algorithms over 44 imbalanced datasets,
sorted by the runtime of EUS. Runtime of the first 22 datasets (Top), last
22 datasets (Bottom). On average in the 44 datasets, EUS takes 26.44s,

EUS_windowing 9.03s, EUSC 6.68s and EUSHC 3.15s.

3.7.2 Reduction of Evaluations

In addition to runtimes, we report the reduction of evaluations provided by the sur-
rogate models. Figure 3.9 displays a histogram with the total number of evaluations
of EUSC and EUSHC compared to the 10000 evaluations performed by EUS for each
dataset.

• The two surrogate assisted schemes use a significant lower number of evalua-
tions which is roughly a 20% of the 10000 evaluations used by EUS. The num-
ber of real evaluations avoided by the surrogate model varies among datasets.
When we use fitness approximation (windowing and/or a surrogate model),
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the behaviour of the CHC algorithm is also changed. The diversity in the pop-
ulation may be affected, so that, the proportion of chromosomes for which we
infer the fitness may be changed in every generation.

Note that CHC does not necessarily create an offspring of NP elements in ev-
ery generation. Hence, if the number of chromosomes to be evaluated in a
generation is very low (less or equal than k2), we would not take much advan-
tage of the surrogate model. In the experiments, this effect is more noticeable
on datasets with either a very small size or high imbalanced ratio.
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FIGURE 3.9: The number of fitness function calls in the original EUS,
EUSC and EUSHC

• It is important to observe that there is a slight difference in the number of ob-
jective function calls between EUSC and EUSHC, and the EUSHC consistently
saved more real evaluations in most of the datasets. This behaviour may seem
unexpected as both methods are using a clustering-based surrogate model to
reduce the number of evaluations, so that, both should report a similar num-
ber. However, the hybrid approach introduces windowing that changes the
behaviour of EUS, and the search. Including windowing may also affect the
quality of the chromosomes and, as explained above, the number of chromo-
somes to be evaluated in each generation.

3.7.3 Classification Performance Comparison

Until now, fitness approximation approaches has demonstrated its time-efficiency
with respect to EUS. However, reducing the runtime would not be of any value if
the classification performance is massively deteriorated. Table 3.6 shows the av-
erage GM performance of all the algorithms in test data. Values in bold indicate
that the algorithm at the column achieves the highest GM in the dataset at the row.
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Additionally, an extra row at the end displays the number of times that each algo-
rithm wins over 44 datasets. We also compare the number of wins, ties and losses of
EUSHC against each reference undersampling algorithm, displayed in Figure 3.10.
Looking at the above table and figure, we can observe that:

TABLE 3.6: GM obtained by all comparison methods in 44 imbalanced
datasets

Dataset EUS EUS_windowing EUSC EUSHC

shuttle-c2-vs-c4 0.9577 0.6449 0.9414 0.7365
iris0 1.0000 1.0000 1.0000 1.0000
glass-0-1-6_vs_5 0.9214 0.9151 0.9160 0.9501
glass-0-1-6_vs_2 0.6383 0.6164 0.6651 0.5815
new-thyroid2 0.9865 0.9773 0.9831 0.9746
new-thyroid1 0.9882 0.9809 0.9859 0.9653
glass6 0.8889 0.9071 0.9156 0.9054
glass5 0.8105 0.9076 0.9600 0.9103
glass4 0.8700 0.8513 0.8613 0.8531
glass2 0.7194 0.6525 0.7262 0.6173
glass1 0.7773 0.7010 0.7941 0.7367
glass0 0.8009 0.6176 0.8047 0.6595
glass-0-1-2-3_vs_4-5-6 0.9525 0.9385 0.9647 0.9546
ecoli-0_vs_1 0.9583 0.9312 0.9581 0.9615
ecoli-0-1-3-7_vs_2-6 0.6700 0.7048 0.6625 0.6865
habermanImb 0.5475 0.5635 0.5521 0.5497
ecoli4 0.8984 0.9362 0.8857 0.9645
ecoli3 0.8348 0.8153 0.8500 0.8097
ecoli2 0.9000 0.8663 0.9034 0.8772
ecoli1 0.8634 0.8306 0.8554 0.8424
yeast-1_vs_7 0.7176 0.7079 0.7068 0.6669
page-blocks-1-3_vs_4 0.9674 0.9399 0.9471 0.9294
yeast-2_vs_8 0.7931 0.7496 0.7656 0.7668
yeast-2_vs_4 0.9042 0.8774 0.9156 0.8930
yeast-0-5-6-7-9_vs_4 0.7685 0.7663 0.7901 0.7535
wisconsinImb 0.9690 0.9652 0.9600 0.9590
yeast-1-4-5-8_vs_7 0.6569 0.6088 0.6604 0.6149
abalone9-18 0.7269 0.6772 0.7224 0.6559
pimaImb 0.6943 0.6749 0.6957 0.7145
vehicle0 0.9164 0.9027 0.9103 0.9016
vehicle1 0.6729 0.6624 0.6512 0.6926
vehicle2 0.9259 0.9175 0.9265 0.9173
vehicle3 0.7280 0.7142 0.7165 0.7204
yeast-1-2-8-9_vs_7 0.6721 0.6078 0.6704 0.6500
vowel0 0.9897 0.9719 0.9877 0.9831
yeast3 0.8728 0.8740 0.8752 0.8550
yeast1 0.6533 0.6501 0.6600 0.6600
yeast4 0.8050 0.7799 0.8288 0.7970
yeast6 0.8357 0.8080 0.8034 0.8031
yeast5 0.9634 0.9494 0.9455 0.9653
shuttle-c0-vs-c4 0.9960 0.9968 0.9960 0.9960
segment0 0.9881 0.9870 0.9876 0.9858
abalone19 0.6258 0.6061 0.7214 0.6556
page-blocks0 0.9117 0.9038 0.9096 0.9085
Wins 18 4 18 8

• Despite using about 80% more evaluations, EUS does not always provide the
best classification performance. This result shows that the use of approxima-
tions may result in even better results, reducing overfitting of the training set.
As stated in Section 5.2.1, using the training data is already an approximation
of how well this data represents the concept to be learned.

• In this experiment, we can highlight EUSC, which seems to be very compet-
itive with respect to EUS, obtaining the same number of wins out of the 44
datasets. EUSHC also finds the best solution in 8 out of 44 datasets.

• Over 44 datasets, EUSHC shows a greater number of wins with respect to
EUS_windowing. It is predicted that EUSHC loses EUS and EUSC frequently
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FIGURE 3.10: Comparison of EUSHC and reference undersampling al-
gorithms with respect to the number of wins, ties, and losses over 44

imbalanced datasets.

as it applies two stages of approximation. However, figures in Table 3.6 show
a very reduced difference in GM between our hybrid approach and the other
algorithms. Note that the difference in GM is only more noticeable in those
datasets either having high imbalance ratio or low number of samples with
high IR.

In summary, the proposed EUSHC highly reduces the computational cost of the
EUS algorithm (about an 88.08% on average - from 26.44s to 3.15s), and the classi-
fication performance seems comparable to EUS and the other approximation meth-
ods. Looking at all the results presented in this contribution, when the number of
instances is low, it is reasonable not to use a surrogate or windowing approach as
the original EUS will not suffer from a high computational cost. However, in larger
datasets, the benefits of the proposed approach are promising.

3.8 Summary

In this chapter, we have achieved our first research objective by proposing a novel
evolutionary search strategy with the integration of two-stage clustering. The clustering-
based surrogate model allows fitness to be approximated, which reduces the com-
putational cost and thus accelerate the evolutionary search. Several characteristics
of our proposed framework are stressed as follows:

• The transformation of binary chromosomes into real coding ones at which the
overall location of the selected instances in that solution is summarised.
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• Considering all of the instances at the fitness evaluation for the representative
chromosomes, which is different from the Windowing method (Bacardit et al.,
2004) using partial training set.

• Approximating fitness of other chromosomes based on the Euclidean distance
correlation with the representative selected from the cluster they belong to.

To validate our approach, we have carried an extensive experimental framework
on 44 imbalanced datasets to verify runtime, reduction rate and GM performance.
The obtained numerical results can demonstrate the effectiveness of our proposal
compared to the original EUS method. The experiments show that we are capa-
ble of drastically reducing the runtime required to perform undersampling with-
out significantly losing classification performance. In comparison with alternative
approaches to approximate fitness values in evolutionary undersampling (namely
windowing), our method has demonstrated to consistently reduce the runtime and
maintain high quality solutions. In addition, the hybrid surrogate model EUSHC
has been examined under the same experimental setting. The proposed approach
approximates fitness values of the chromosomes using a clustering-based surrogate
model together with a windowing approach. The entire search is guided by ap-
proximate fitness values aiming to highly reduce the computational cost. From the
obtained results, we can highly reduce the runtime required to perform EUS, espe-
cially in larger datasets, without incurring in a noticeable classification performance
loss. As such, the proposed approach contributes towards the design of fitness ap-
proximation models based on surrogate models in EA for IS/undersampling.

We have completed the first phase of the dissertation with a valid solution tackling
IS for the established Objective 1. This serves as a first achievement of accelerating
population-based meta-heuristic search strategy. However, IR does not comprise
only IS on the combinatorial search space, but also IG on the continuous domain.
In the following chapter, we would develop another search strategy for IG, aiming
to fulfil Objective 2 with a simple, yet effective and time-efficient pattern search
approach.
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Chapter 4

Single-Point Memetic Structure with
Accelerated Local Search for IR

4.1 Introduction

In the first contribution, we have dealt with the acceleration for a population-based
meta-heuristic search strategy. The proposed solution has addressed the high com-
putational cost of fitness computation of an evolutionary search by the integration
of two-stage clustering. The proposed idea of fitness approximation is applicable
for a population-based search framework where multiple solution candidates are
required to be evaluated at once. The proposed framework has offered a novel way
of computing fitness at which the real fitness evaluation is conducted in only sev-
eral representative solution candidates, while others can be approximated using the
selected representative solutions. It is argued that a successful and validated solu-
tion has been offered to accelerate meta-heuristic search strategy and that is a novel
search framework for IS in the combinatorial space. However, the introductory
chapter has also discussed the Single-Point Memetic Structure as another prominent
search method operating in the continuous domain. Hence, for a comprehensive set
of solutions covering two types of IR (i.e. IS and IG), this chapter is devoted to
Single-Point Memetic Structure, focusing on IG in the continuous search space.

The novel search framework in this chapter is characterised by a mechanism that
while exploiting the structure of the optimisation algorithm allows a substantial
reduction of the computational complexity (i.e. number of distance computations)
of the objective function without approximations, see Section 4.2. Thus, the goal
of this work is not to tackle big datasets and the memory limitations associated to
it, but to devise a very fast and reliable IR process that could be combined together
with the approaches provided in (Triguero et al., 2015b) when very big datasets need
to be addressed. In this search framework, we will highlight two key components:
pattern search and memetic computing.
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Bearing in mind the elevated computational cost of the fitness function, we propose
a simple and yet effective domain-specific MC approach for IR. The proposed MC
approach is composed of a novel domain-specific implementation of local search
hybridised with a global evolutionary operator. The local search exploits the logic
of the Generalised Pattern Search that performs an implicit variable decomposition
technique and perturbs the elements of a candidate solution one by one (Neri and
Rostami, 2021). In contradistinction with existing population-based approaches that
create new solutions perturbing multiple variables at once, we exploit the fact that
the proposed local search produces candidate solutions that are only “slightly” dif-
ferent w.r.t the previous fitness evaluation. Based on this fact, we devise a mecha-
nism to drastically reduce the cost of the objective function when using the NN al-
gorithm as base classifier. The global search operator is a simple resampling mecha-
nism followed by crossover while an elite memory slot retains the solution with the
best performance. The key idea lies in keeping a single-point approach to highly
accelerate the objective function evaluation while using a global operator to avoid
getting stuck in local optima.

The remainder of this chapter is organised in the following way. Section 4.2 de-
scribes and justifies the proposed method. Section 4.3 presents the experimental
setup while Section 4.4 shows and discusses the results. Finally, Section 4.5 pro-
vides the summary of this chapter.

4.2 Methodology

From the description in Section 2.4.2, we may characterise IR as an optimisation
problem with the following considerations:

• the problem is large-scale and its number of variables (p × m) can be extremely
high depending on the size of the dataset

• due to the large number of variables, the problem is likely to be hard to solve
and the fitness landscape could be highly multimodal

• even if it were multimodal, an excessive exploitation of the basin of attraction
may yield an overfitted solution, that is a solution that performs well on the
training set but not on the test set

• each objective function call (or fitness evaluation) is computationally expen-
sive due to calculation of multiple Euclidean distances

In order to address the IR problem, a domain-specific MC approach that takes into
account the considerations above is here proposed. The proposed MC approach,
namely Single-Point Memetic Structure with Accelerated Local Search (SPMS-ALS)
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is population-less and designed according to the bottom-up logic reported in (Iacca
et al., 2012). SPMS-ALS perturbs a single solution and makes use of one more mem-
ory slot to store the elite solution, that is the best solution ever found. A novel
domain-specific accelerated local search implementation is here proposed. Section
4.2.1 describes the local search operator employed in SPMS-ALS while Section 4.2.2
illustrates how the local search logic is exploited to accelerate the calculation of
the objective function. The proposed SPMS-ALS makes also use of a simple global
search operator illustrated in Section 4.2.3. Finally, Section 4.2.4 discusses and justi-
fies the design of SPMS-ALS.

4.2.1 Local Search Operator

Given the candidate solution x as a 1-dimensional vector of n design variables, pre-
sented in 2.4.2. Let ei be the ith versor (that is a vector of modulus equal to 1) of a
basis in an n-dimensional space, that is a vector whose elements are all zeros except
from the ith element which is one (Neri, 2019):

ei = (0, 0, . . . , 1, . . . , 0, 0)

The local search works on the candidate solution x to locally improve it. The follow-
ing greedy implementation of a Generalised Pattern Search has been used, see (Neri
and Rostami, 2021). The algorithm perturbs each feature value of an instance at a
time in its feasible range and then check if any improvement is found. Specifically,
let x be the base vector (the best solution found at the time), for each design variable
i from 1 to n the algorithm explores at first

xt = x − ρ · ei

where xt is a trial vector and the scalar ρ is the step-size (exploratory radius). For
each index i, the algorithm attempts to explore the opposite orientation of the direc-
tion identified by ei if the first attempt fails, that is

xt = x +
ρ

2
· ei

As a remark, the asymmetric step-size is designed to avoid to revisit the same so-
lution (vector), see (Neri and Rostami, 2021). As soon as xt outperforms x, that is
f
(
xt) ≥ f (x), the trial vector xt replaces the base vector x.

Note that when applying the above perturbations, the resulting values in the vector
xt could be outside of the bounds [xlow, xhigh]. On the basis of preliminary tests we
employed a toroidal handling of the bounds, i.e. for xi ∈ [xlow, xhigh], if xi > xhigh it
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is reinserted by reassignment:

xi = xlow +

((
xi − xhigh

)
⌊
(
xi − xhigh

)(
xhigh − xlow

)⌋ (xhigh − xlow
))

while if xi < xlow it is reinserted by reassignment

xi = xhigh −
(
(xlow − xi)− ⌊ (xlow − xi)(

xhigh − xlow
)⌋ (xhigh − xlow

))

where the parentheses ⌊·⌋ indicate the truncation to the lower integer.

As an example, if we are in the range [0,1], and the resulting value xi of the per-
turbation is 1.1, the toroidal handling will begin from the beginning of the range,
producing a 0.1. Conversely, if xi were to be below 0, e.g. -0.1, this circular handling
would provide 0.9. This ensures that the investigated values are within the range.
Also, by forcing the perturbation to go to the other side of the bound, we increase
the exploratory abilities of the method before reducing the radius ρ. This strategy
provided good results in preliminary tests in comparison with other alternatives. If
after the entire exploration along the n directions no improved solution xt is found,
then the radius ρ is reduced by a reduction rate. The local search is interrupted when
either a budget condition is met or when the radius ρ is smaller than a pre-arranged
precision. For sake of clarity Algorithm 4 shows the local search operator used in
SPMS-ALS.

4.2.2 Accelerated Local Search

The proposed local search makes use of the search logic outlined in Algorithm 4 and
integrates within it a domain-specific procedure (i.e. accelerating fitness computa-
tion) to reduce the computational time of the algorithm. As highlighted in Section
2.4.2, when the NN algorithm is used as based classifier, most of the high computa-
tional cost of the IR problem is due to the calculation of l × p Euclidean distances.
However, the local search moves

xt = x − ρ · ei

and
xt = x +

ρ

2
· ei

affect only one design variable that is only one entry of the RS matrix.
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Algorithm 4 Local Search of the family of Pattern Search used by SPMS-ALS
Input: x
Output: x with different feature values

1: while local budget and precision conditions are not met do
2: xt = x
3: for i = 1 : n do
4: xt = x − ρ · ei

5: Apply toroidal handling of the bounds
6: if f

(
xt) ≥ f (x) then ▷ Compute f (x), see Algorithm 5

7: x = xt

8: else
9: xt = x + ρ

2 · ei

10: Apply toroidal handling of the bounds
11: if f

(
xt) ≥ f (x) then

12: x = xt

13: end if
14: end if
15: end for
16: if x has not been updated for Nmax times then
17: reduce ρ ▷ Reduced by reduction rate ρRed and stopped at thresholdρThr
18: end if
19: end while
20: RETURN x

It is a common practice to just store the shortest distance and instance ID/number
when accumulating the correct classifications for NN, and disregard any intermedi-
ate distance computations. Hence, most of the IR studies in the literature that use
k-NN perform the calculation of l × p Euclidean distances, e.g. (Triguero, García,
and Herrera, 2011). Unlike these studies, the accelerated objective function main-
tains a global distance matrix.

As a consequence, if we build a distance matrix D associated with xt, this differs by
only one column from the matrix D associated with x. When the objective function
f
(
xt) is calculated according to Algorithm 1, there is no need to recompute l × p

Euclidean distances since l × (p − 1) elements have already been computed and
appropriately stored.

Thus, when Algorithm 4 is applied, each objective function call requires the calcu-
lation of only l Euclidean distances. This fact can be effectively represented as the
modified objective function used by the local search outlined in Algorithm 5.

Our proposed local search performs once at the beginning the objective function call
as in Algorithm 1 and then integrates Algorithm 5 into each f

(
xt) function call for

the rest of its execution.
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Algorithm 5 Objective Function f
(
xt) of the Accelerated Local Search

Input: matrix TR =
[
ai,j
]
, matrix D associated with the base vector x,

and trial vector xt

Output: the objective function value Acc
1: Build the matrix RS =

[
bi,j
]

from xt

2: Update the matrix of Euclidean distances D =
[
Di,j
]

by recalculating the l ele-
ments of the pertinent column

3: correct_classification = 0
4: for each row of the matrix D do
5: Find the smallest figure and save its row and column indices
6: Select, from TR and RS, the instances corresponding to the calculated in-

dices
7: Check the labels of the two instances
8: if the labels coincide then
9: correct_classification += 1

10: end if
11: end for
12: Calculate Acc

4.2.3 Evolutionary Global Search Operator

At the beginning of the optimisation, a matrix RS (i.e. Equation 2.4) is randomly
sampled from the matrix TR (i.e. Equation 2.3) and from RS the corresponding base
vector x constructed and inputted into the local search operator. The local search is
continued until the stopping criteria conditions on budget and precision are met.
The local search returns a (possibly improved) solution x. Then, a new solution xr

is generated by randomly sampling a new RS matrix from TR and constructing the
corresponding vector. A uniform crossover is applied to xr and x to generate a new
trial vector xt.

In order to explain the functioning of this crossover, let us consider a candidate so-
lution x and let us remind it that it corresponds to a matrix RS whose rows are
instances and columns are features. By applying a matrix partitioning we may rep-
resent RS as a vector of row vectors

RS =


I1

I2

. . .
Ip


Similarly, we may consider the random solution xr and represent the corresponding
RSr matrix
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RSr =


Ir

1

Ir
2

. . .
Ir

p


whose instances are randomly selected from TR.

The proposed crossover generates a trial vector xt by randomly selecting some rows
from RS and some rows from RSr. Each row of the resulting matrix RSt has a
gene-resampling probability Gr to be selected from RS and 1 − Gr probability to
be selected from RSr. It must be remarked that a crossover that perturbs single
elements of RS instead of entire rows would yield a candidate solution which could
be noisy (i.e. not have the right class label), and therefore, not meaningful from a
classification point of view.

The gene-resampling probability Gr expresses the rate of the instances in RS which
are replaced by other instances sampled from TR. Algorithm 6 describes the crossover
mechanism.

Algorithm 6 Crossover between x and xr

1: INPUT base vector x and random vector xr

2: Build the matrices RS = [Ii] and RSr =
[
Ir

i
]

3: RSt =
[
It

i
]
= RS

4: for i = 1 : p do
5: Generate a random number rand
6: if rand < Gr then
7: It

i = Ir
i

8: end if
9: end for

10: From RSt calculate xt

11: OUTPUT the trial vector xt

The local and global search operators are repeated until the global budget conditions
are met. The framework of the proposed SPMS-ALS is illustrated in Algorithm 7.

4.2.4 Algorithmic Design

The proposed SPMS-ALS follows a bottom-up strategy as suggested in (Iacca et al.,
2012): we implemented within the algorithmic operators the necessary countermea-
sures to address each challenge associated with the problem.

The structure of the local search has been selected to address the large scale nature of
the IR problem, that is for a large dataset, the matrix RS can easily have hundreds if
not thousands of rows. The proposed local search perturbs the variables separately
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Algorithm 7 Framework of the SPMS-ALS for IR
Input: base vector x
Output: x with new feature values

1: Randomly generate a base vector x in [0, 1]n and calculate f (x) according to
Algorithm 1

2: Assign the elite xelt = x
3: while global budget conditions are met do
4: Apply the Accelerated Local Search to the base vector x according to Algo-

rithm 4 with the objective function f
(
xt) calculated according to Algorithm 5

5: if f (x) ≥ f
(
xelt) then

6: Update the elite xelt = x
7: end if
8: Randomly generate a vector xr in [0, 1]n

9: Apply Crossover between x and xr according to Algorithm 6 and generate a
new trial vector xt

10: Calculate f
(
xt) according to Algorithm 5

11: if f
(
xt) ≥ f

(
xelt) then

12: Update the elite xelt = xt

13: end if
14: Assign x = xt

15: end while

and thus implicitly performs a variable decomposition. Approaches of this type
have been proved effective for large scale problems, see (Ros and Hansen, 2008;
Tseng and Chen, 2008; Li and Yao, 2012).

This observation was reported in the experimental study in (Caraffini, Neri, and
Iacca, 2017). Large scale problems are by no means easier than low-dimensional
problems. However, since in practice the computational budget cannot grow expo-
nentially with the problem dimensionality, only a very limited portion of the deci-
sion space is explored. Under these experimental conditions, the algorithm “sees”
the problem as separable: average Pearson and Spearman coefficients of the vari-
ables approach zero independently on the problem when the number of dimensions
grows, see (Caraffini, Neri, and Iacca, 2017).

The high computational cost of each function call is addressed by the acceleration
mechanism outlined above: only the elements of one column of the Euclidean ma-
trix D and not those of the entire matrix are calculated at each function call. The
population-less structure of SPMS-ALS has also been chosen taking into considera-
tion the computational cost. The proposed SPMS-ALS naturally devotes most of the
computational budget (in terms of function calls) to the local search. On the con-
trary, the global search operator performs only sporadic function calls. This logic
perfectly suits the needs of reducing the computational cost since the global op-
erator requires the expensive objective function as in Algorithm 1 the local search
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operator uses its computationally cheaper version as in Algorithm 5.

In order to address the multimodality of the fitness landscape and prevent that the
algorithm converges to a suboptimal solution, we combined the Accelerated Local
Search with the simplistic global search described above. It must be noted that the
global search makes use of part of design variables (genotype) of previously im-
proved solutions. The best solution ever found is saved and stored in an elite slot
and called xelt. The elitism guarantees that previously detected promising solutions
are available at the end of the run. Furthermore, the gene-resampling mechanism,
happening at the instance level (considering the rows as building blocks) comple-
ments the local search that happens at the level of the elements of RS.

At last, the restarting local search logic combined with a limited local search bud-
get is an important countermeasure to prevent from overfitting: an excessive local
search budget is likely to yield an overly specialised solution that performs poorly
when the solution is tested on a new dataset. This characteristic is experimentally
analysed in Section 4.4.3.

4.3 Experimental Framework

This section presents the used datasets (Section 4.3.1) and introduces several IR
techniques that will be used for comparison with our proposal (Section 4.3.2). Fi-
nally, the parameter configuration is explained (Section 4.3.3).

4.3.1 Datasets

In the experimental study, we have examined 40 small and 17 medium multi-class
datasets from the KEEL dataset repository (Triguero et al., 2017). They are grouped
into small and medium categories based on the number of samples. It is worth
noting that the datasets used in this chapter are roughly balanced, which is dif-
ferent from the ones used for imbalanced classification in Chapter 3. This is be-
cause the purpose of this chapter is to do IR in general, not for a specific case
study like imbalanced classification. As a result, samples of all classes are reduced
rather than only the majority class. The properties of these datasets including name
(Dataset), the number of samples (Samp), the number of attributes (Att), the num-
ber of classes (%Class) are summarised in Table 4.1. Each dataset is partitioned us-
ing a 10-fold stratified cross-validation (10-fcv) procedure, see (Refaeilzadeh, Tang,
and Liu, 2009). Thus, the performance of each dataset is reported by an average
of the 10 folds. All of the experiments with these datasets have been conducted
on computers at which each has 2 x 20 core processors (Intel Xeon Gold 6138 20C
2.0GHz CPU) and 192 GB RAM.
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TABLE 4.1: Summary description for small (Sample < 2000) and
medium (Sample >= 2000) datasets.

Dataset Samp Att Class
Abalone 4174 8 28
Appendicitis 106 7 2
Australian 690 14 2
Autos 205 25 6
Balance 625 4 3
Banana 5300 2 2
Bands 539 19 2
Breast 286 9 2
Bupa 345 6 2
Car 1728 6 4
Chess 3196 36 2
Cleveland 297 13 5
Contraceptive 1473 9 3
Crx 125 15 2
Dermatology 366 33 6
Ecoli 336 7 8
Flare-solar 1066 9 2
German 1000 20 2
Glass 214 9 7
Haberman 306 3 2
Hayes-roth 133 4 3
Heart 270 13 2
Hepatitis 155 19 2
Housevotes 435 16 2
Iris 150 4 3
Led7digit 500 7 10
Lymphography 148 18 4
Magic 19020 10 2
Mammographic 961 5 2

Dataset Samp Att Class
Monks 432 6 2
Movement_libras 360 90 15
Newthyroid 215 5 3
Nursery 12960 8 5
Page-blocks 5472 10 5
Penbased 10992 16 10
Phoneme 5404 5 2
Pima 768 8 2
Ring 7400 20 2
Saheart 462 9 2
Satimage 6435 36 7
Segment 2310 19 7
Sonar 208 60 2
Spambase 4597 57 2
Spectheart 267 44 2
Splice 3190 60 3
Tae 151 5 3
Texture 5500 40 11
Thyrod 7200 21 3
Tic-tac-toe 958 9 2
Titanic 2201 3 2
Twonorm 7400 20 2
Vehicle 846 18 4
Vowel 990 13 11
Wine 178 13 3
Wisconsin 683 9 2
Yeast 1484 8 10
Zoo 101 16 7

4.3.2 Comparison Algorithms

In order to understand the benefits of the proposed MC approach, we first define
two baselines:

• Nearest Neighbour (1NN): we use the NN algorithm (k=1) employing the en-
tire TR for training, without any pre-processing. The performance of the NN
in TR is calculated following a leave-one-out validation scheme. This serves of
a baseline to understand the benefits of IR.

• LSIR: the local search presented and used in (Neri and Triguero, 2020). LSIR is
essentially the basic pattern search shown in Algorithm 4 without any acceler-
ation, that is the local search by using the basic fitness function as in Algorithm
1.

In addition, we test the performance of the proposed approach against the current
state-of-the-art in IR. SPMS-ALS belongs to the family of positioning adjustment
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methods (see (Triguero et al., 2012)), which are, to date, the best performing IRs
methods in the literature and follow a similar algorithmic structure to the proposed
approach. In (Neri and Triguero, 2020), we showed the classification performance of
the local search against the entire family of positioning adjustment methods. For the
sake of simplicity, here we only report the comparison against the most competitive
methods. SPMS-ALS can be categorised as a pure instance generation approach, as
we perform a continuous search. Thus, we choose the following metaheuristics IG
methods to compete against SPMS-ALS:

• Scale Factor Local Search Differential Evolution (SFLSDE): this memetic ap-
proach optimises the positioning of prototypes using an implementation of
differential evolution (Triguero, García, and Herrera, 2011).

• Particle Swarm Optimisation (PSO): this algorithm modifies the position of an
initial set using PSO rules, aiming to maximise the classification performance
(Nanni and Lumini, 2009).

Additionally, to compare against more recent meta-heuristics, we have adapted a
recent metaheuristic, proposed for the continuous domain, to tackle IR.

• Linear Population Size Reduction of the Success-History based Adaptive Dif-
ferential Evolution (LSHADE) (Tanabe and Fukunaga, 2014): this approach is
developed from Success-History based Adaptive Differential Evolution (SHADE)
(Tanabe and Fukunaga, 2013) and Adaptive Differential Evolution with Op-
tional External Archive JADE (Zhang and Sanderson, 2009). It makes use of
success-history and also applies the population size reduction to progress the
search. Note that this metaheuristic has not been previously used for IR, but
due to its similarity to JADE, we used the design ideas from (Triguero, García,
and Herrera, 2011) to adapt it to solve the IR problem.

These approaches evolve a population of solutions, whilst our method only evolves
a single solution (or more precisely two solutions the trial solution xt and the elite
xelt). However, similar to our method, both approaches start off from a random
(stratified) subset of the training set TR (one for each individual of their population),
which keeps the original distribution of instances per class. Thus, the reduction rate
is also defined by a parameter that determines how much we want to reduce TR.

As a further remark, while PSO, SFLSDE were existing meta-heuristics that have
been adapted to solve the IG problem, the proposed SPMS-ALS has been expressly
designed to solve this problem effectively in terms of accuracy efficiently in terms
of runtime. This design approach follows the bottom-up design logic of MC (Iacca
et al., 2012; Neri and Cotta, 2012) and can be observed in both accelerated local
search logic and crossover operator. Another remark is that LSHADE was used in
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the continuous domain to solve benchmark functions, this meta-heuristic design is
first time adapted to solve the IG problem in this study.

In (Triguero, García, and Herrera, 2011), the authors showed that using a random se-
lection as initialisation mechanism is not usually appropriate, and the hybridisation
of an IS step followed by IG was suggested to replace this random initialisation.
More specifically, the use of a Steady-State Memetic Algorithm (SSMA) (García,
Cano, and Herrera, 2008) demonstrated empirically to provide an excellent start-
ing point, which means a good selection of instances per class and a good reduction
rate (automatically determined by the IS step). To the best of our knowledge, the
hybrid IR algorithm, SSMA-SFLSDE (Triguero, García, and Herrera, 2011), remains
the best performing method for IR in both accuracy and reduction rate. To establish
a fair comparison against it, we will also hybridise the proposed MC approach and
the local search with SSMA (see Section 4.4.5).

Whilst the hybrid IS/IG method, SSMA-SFLSDE has not been outperformed to date,
in order to assess the potential of the proposed approach, we add a comparison with
recently published algorithms belonging to the family of IS. We included an ap-
proach based on local sets (Leyva, González, and Pérez, 2015) and a method based
on instance ranking (Cavalcanti and Soares, 2020). Note that these methods follow a
completely different approach to produce a reduced set from the training set. Thus,
we cannot set up the same computational budget that we do for the rest of the com-
parison algorithms, as they do not follow an optimisation-based approach (Section
4.3.3).

The study in (Leyva, González, and Pérez, 2015) contains three IS methods, namely
Local Set Smoother (LSSm), Local Set Core (LSCo) and Local Set Border (LSBo).
LSSm aims at achieving the highest accuracy regardless of the reduction, while LSCo
seeks at obtaining the highest reduction with acceptable accuracy. LSBo addresses
both accuracy and reduction rate with the same priority. For this reason, LSBo has
been selected for comparison against the proposed memetic approach.

The main idea of (Cavalcanti and Soares, 2020) is to exploit the relationship among
members in the training set by computing a rank for each element. A rank of an
instance introduces the correlation between itself and others in the training set. In-
stances with higher ranks are likely to be selected compared to those holding a low
rank. In Section 4.4.4, we report the performance of Ranking-based Instance Selec-
tion (RIS1) as it showed in (Cavalcanti and Soares, 2020) to display the best per-
formance, among multiple variants, w.r.t both measures of accuracy and reduction
rate.
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4.3.3 Parameter Settings

This section presents the parameter configuration for all the methods employed in
this chapter, including the accelerated local search outlined in Algorithms 4 and
5 and the entire memetic framework SPMS-ALS shown in Algorithm 7. We will
discuss below the computational budget and different hyper-parameters used in
SPMS-ALS.

Computational Budget: In the previous studies on IR, the computational budget
has usually been set empirically to a number of iterations (in search-like algorithms),
which remained fixed for all datasets (Triguero, García, and Herrera, 2011; Neri and
Triguero, 2020). Just like in scalability studies for ordinary optimisation problems,
in the IR problem, the complexity of the search space grows exponentially with
the problem size, (Caraffini, Neri, and Iacca, 2017). On the other hand, IR poses a
further challenge that is the risk of overfitting and underfitting. An incorrect local
search budget allocation is likely to lead to overfitting in small datasets and under-
fitting appears in larger datasets. In order to overcome this challenge and propose a
standard for setting the computational budget, we have here conducted an extensive
experimental study. Note that keeping the same number of evaluations through the
different comparison methods will also help establish a fairer comparison (which
has not been the case in previous studies).

Among the various properties of a dataset, the number of instances in training data,
i.e. the number of rows l of the matrix TR and the number of features (Features)
in an instance at each dataset are the two important factors that define the size of
the problem and need to be considered when the budget is allocated. We acknowl-
edge that other factors may be also required into consideration such as the number
of classes or the ratio of samples among claghsses. However, this simple yet effec-
tive approach of parameter setting has proven to significantly reduce the unneces-
sary allocated number of evaluations and thus can help mitigate overfitting in small
datasets and underfitting in larger ones. Since RIS1 and LSBo do not perform any
evaluation of their reduced set against the training set, we cannot apply a computa-
tional budget.

In the original setting based on 40 small datasets, SFLSDE (Triguero, García, and
Herrera, 2011) and LSIR (Neri and Triguero, 2020) use approximately 20,000 and
30,000 evaluations, respectively. We took these values as a reference and set three
levels in our experimental study: lower, comparable, and greater than the reference
ones. Table 4.2 displays, for all the algorithms considered in this study that employ
local search, the three local search budgets scenarios. From the total number of
evaluations presented in Table 4.2, we split the evaluations into two parts when
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SSMA is included. SSMA takes 3 × l evaluations in Setting 1 and 5 × l in Setting 2
and 3. The budget allocated to SSMA is indicated as SSMA_Eval. The rest of the
evaluations is used for IG methods (LSIR, SPMS-ALS, PSO, SFLSDE, LSHADE).

TABLE 4.2: Changing the number of evaluations considering training
size and features for fairer comparison.

Computational Budget
Algorithm Setting 1 Setting 2 Setting 3
SSMA SSMA_Eval = 3 × l SSMA_Eval = 5 × l SSMA_Eval = 5 × l
SFLSDE

2.5 × Features × l
− SSMA_Eval

5 × Features × l
− SSMA_Eval

10 × Features × l
− SSMA_Eval

LSIR
SPMS-ALS
PSO
LSHADE

Hyper-Parameters: The proposed SPMS-ALS contains some parameters to set to
coordinate global and local search. In particular, the following parameters are fun-
damental to coordinate the interruption of accelerated local search and restart of
global search.

• Nmax: the maximum number of times the local search accepts a new trial so-
lution xt with the same objective function (Acc) as that of the previous trial
solution i.e. maximum number of search moves allowed on a plateau

• ρRed: the reduction rate of the exploratory step ρ after the same fitness has been
calculated Nmax times, used in Algorithm 4

• ρThr: the threshold after which the local search is stopped, ρ ≤ ρThr. When ρ

reaches this defined threshold, we reset it to the original value, used in Algo-
rithm 4, line 17

• Gr: the gene-resampling probability as in Algorithm 6

Since small datasets have only few samples per class, a large Gr value is required
to make a significant refresh of the candidate solution. On the contrary, medium
datasets inherently pose a highly multivariate problems. Hence smaller Gr values
result into a major alternation of the candidate solution. We may consider this effect
analogous to the setting of the crossover rate in Differential Evolution with respect
to the number of dimensions of the problem, see (Neri, Iacca, and Mininno, 2011).
On the other hand, numerous configurations have been examined to find a set of
parameters that can guarantee a robust performance of SPMS-ALS on both small
and medium datasets. In this study, we report the performance of SPMS-ALS using
the following parameters: initial radius ρ = 0.4, Nmax = 3, ρRed = 0.25, ρThr = 0.005
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and Gr = 0.5 for small and 0.05 for medium datasets, respectively. Apart from the
budget condition, which is investigated for all the comparison algorithms as de-
scribed above, the rest of the parameters for all the algorithms are established as
recommended by the authors. All the details are presented in Table 4.3. Following
the experimental setup in (Triguero et al., 2012), the reduction rate parameter is set
to 95% for small size datasets, and 98% for medium datasets.

TABLE 4.3: Parameters used for comparison algorithms

Algorithms Parameter setting
SFLSDE PopulationSize = 40, iterSFGSS =8, iterSFHC = 20, Fl = 0.1, Fu = 0.9
LSIR initial ρ = 0.4
SSMA Population = 40, Cross = 0.5, Mutation=0.001
PSO SwarmSize = 40, C1 = 1, C2 = 3, Vmax = 0.25, Wstart = 1.5, Wend = 0.5
NN k = 1, Euclidean distance
RIS Thresholds = [0.0, 0.1, 0.2, ..., 0.9, 1.0]
LSBo –
LSHADE ArchiveSize = 1.4, PopulationSize = 40, MemorySize = 5

4.4 Analysis of Results

In this section, we analyse the results obtained from different sets of experiment,
divided into multiple subsections, to empirically examine the individual effect of
each component we propose in our algorithm. In the analysis, our aims are:

• To understand how well LSIR works in different settings of evaluations (Sub-
section 4.4.1). We discuss multiple aspects of LSIR such as the change in perfor-
mance measured by accurate rate to see the overfitting or underfitting effects
on the learning process. In addition, the number of evaluations that has been
used and saved for each dataset is reported.

• To measure the actual savings in terms of runtime when the proposed accel-
eration is integrated within LSIR (Subsection 4.4.2). We report in detail the
absolute and percentage figures of the runtime savings.

• To examine the performance enhancement due to the proposed memetic com-
ponents (Subsection 4.4.3), in comparison with the local search. We report the
accuracy rate depending on the number of evaluations and we analyse the
statistical significance of the improvements.

• To compare the performance of SPMS-ALS with the state-of-the-art techniques
in the family of IR, with a focus on IG (Subsection 4.4.4, Part A) considering
the 1NN rule as a baseline and recent IS methods (Subsection 4.4.4, Part B).
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In addition, the average runtime required by each algorithm is contrasted to
highlight the substantial computational saving in the proposed method.

• To establish a fair comparison between the proposed approach and the state-
of-the-art algorithm in the family of IR with hybrid IS and IG algorithm,
SSMA-SFLSDE, using the same memetic IS algorithm as initialisation mecha-
nism (Subsection 4.4.5).

• To contextualise the results presented in this chapter by comparing the per-
formance of SPMS-ALS with a recently proposed classifier (obRaF(H)) which
represents a robust algorithm in the field of classification (Katuwal, Sugan-
than, and Zhang, 2020) (Subsection 4.4.6).

For the sake of space, this section will only present summary results, and all the de-
tailed results can be found in the Supplementary Material and the associated GitHub
repository1.

4.4.1 LSIR Running with Different Computational Budgets

The Local Search LSIR as shown in Algorithm 4 has been run with the three budget
settings outlined in Table 4.2 to understand the influence of the budget allowance
in the performance of this algorithm. Its average classification performance in the
training and test phase is displayed in Table 4.4 on small and medium datasets. Note
that the reported performance is obtained from using Algorithm 1 changing TR by
TS to evaluate LSIR in the test phase. Analysing these average results and the de-
tailed results in the supplementary material, we can make the following comments:

• In the training phase the computational budget has a major impact on the per-
formance. However, while the performance grows consistently from Setting 1
to Setting 3, this improvement is not major when the performance of Setting 2
and Setting 3 are compared. This may infer that changing each feature value
cannot help the search seek a better solution after a certain number of function
calls.

• Regarding the test performance, we observe that the results are dramatically
different to those achieved during the training phase: Setting 1 achieves most
of the wins in test data overall. In small datasets, Setting 1 has 22 wins out
of 40, while Setting 2 and 3 win 14 and 11 times, respectively. In medium
datasets, Setting 1 has 9 wins out of 17, while Setting 2 and 3 win 6 and 8
times, respectively. We conclude that overfitting is likely to happen for LSIR
(possibly due to its exploitative structure) in Setting 2 and 3. This tendency
appears evident in small size datasets.

1https://github.com/lehoanglam20000/SPMS-ALS

https://github.com/lehoanglam20000/SPMS-ALS
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TABLE 4.4: Average training and test accuracy performance in different
settings of LSIR over small and medium datasets.

Training Test
Small Medium Small Medium

Setting 1 0.8521 ± 0.0128 0.9005 ± 0.0039 0.7411 ± 0.0605 0.8612 ± 0.0139
Setting 2 0.8657 ± 0.0128 0.9049 ± 0.0039 0.7419 ± 0.0614 0.8610 ± 0.0133
Setting 3 0.8693 ± 0.014 0.9052 ± 0.0041 0.7415 ± 0.0607 0.8609 ± 0.0136

In summary, we can conclude that this local search does not seem to benefit from
using a larger budget and, as possibly expected, may be falling into local optima,
which do not generalise well in terms of classification performance. This is espe-
cially noticeable in medium size datasets in which the average training performance
does not seem to increase much in respect to the number of evaluations.

To further illustrate the behaviour of the LSIR approach with respect to the number
of evaluations, Table 4.5 shows the effect of its stopping criteria. More specifically,
when LSIR does not succeed at enhancing upon the trial solution xt, the exploratory
step decreases by the factor ρRed until a threshold value ρThr is met (see Algorithm
4). When these conditions are met the run of LSIR is interrupted. Table 4.5 displays
the computational budget saving caused by the interruption of the run. The savings
are shown for small and medium datasets and for each of the setting under consid-
eration. For each configuration of dataset and setting the number of function calls
used by the algorithm is also shown.

TABLE 4.5: Number of evaluations used and saved by LSIR in different
settings and datasets.

Small datasets Medium datasets
Used Saved (%) Saved Used Saved (%) Saved

Setting 1 15398 117 0.76 290777 0 0.00
Setting 2 30795 562 1.83 581554 54094 9.30
Setting 3 61591 2966 4.82 1163108 588637 50.61

Table 4.5 shows that Setting 1 mostly uses up the allocated number of evaluations,
whilst Setting 2 saves 1.83% and 9.3% in small and medium datasets, respectively.
Setting 3 spends most of the evaluations in small datasets but only consumes nearly
half of the allocated number of evaluations. These figures may help optimise the
number of evaluations used for each dataset based on their size and features. On
the other hand, the allocation of a very large budget to the local search (like Setting
3) may not be always beneficial, and as mentioned above, the algorithm seems to
get trapped into local optima.



88 Chapter 4. Single-Point Memetic Structure with Accelerated Local Search for IR

4.4.2 Runtime Reduced in the Accelerated Version of LSIR

This subsection reports the runtime used by LSIR and how much it is reduced from
its accelerated version using Algorithm 4 and the fitness in Algorithm 5, here re-
ferred to as Accelerated Local Search for IR (ALSIR).

TABLE 4.6: Average runtime (in seconds) saved in different settings of
LSIR and ALSIR, smaller values are in bold.

Small datasets Medium datasets
LSIR ALSIR (%) Time saved LSIR ALSIR (%) Time saved

Setting 1 6.98 2.35 66.25 8676.67 856.05 90.13
Setting 2 19.47 3.60 81.54 15957.94 1508.85 90.54
Setting 3 37.68 5.92 84.29 18061.49 1784.64 90.12
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FIGURE 4.1: Runtime saved across 57 datasets, sorted by the ascending
order of time gaps in Setting 1.
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Of course, the time required by the local search depends directly on the allocated
budget and when the stopping criteria is reached. It is also important to remember
that ALSIR always provides exactly the same classification performance as LSIR,
this is because ALSIR focuses on accelerating the execution of the proposed method
but it does not change the behaviour of the algorithm at all. The objective of the
section is therefore to show how much we can accelerate LSIR with the proposed
acceleration strategy.

Details of the runtime of both LSIR vs ALSIR in small and medium datasets, re-
spectively, with respect to each setting of the number of evaluations can be found
in the Supplementary material. Table 4.6 summarises the average runtime for each
setting and the average percentage of time saved by the proposed acceleration. On
average in small datasets, the objective function of the accelerated local search as
in Algorithm 5 enables a time reduction from at least 66% to 84.29%. However, the
average runtime saved in medium datasets settles around 90% in the three settings.
Thus, the larger the dataset the more we can benefit from the proposed acceleration
strategy, as distance computations become the most dominant part of the execution
of the local search.

To illustrate the runtime reduction depending on the dataset size, Figure 4.1 depicts
the difference in runtime between LSIR and ALSIR for all the datasets, providing
a graphical representation of the average time saving for each dataset. In order to
enhance the readability of the diagram, the logarithmic scale has been used. Those
datasets which appear to have no value represent those scenarios where the search
can be completed is less than a second. Hence, the acceleration may not be essential
in these cases.

4.4.3 Validation of the Memetic Framework of SPMS-ALS

In this section, we compare the performance of LSIR and SPMS-ALS to demon-
strate the effectiveness of the proposed memetic framework. Table 4.7 provides
a full summary of this comparison, presenting the average accuracy values (over
all the datasets) and the corresponding standard deviations in the three settings of
computational budget in both training and test phases. The best average results in
training and test are highlighted in bold face.

Furthermore, the Wilcoxon test (Wilcoxon, 1945) is also applied to detect the sta-
tistical differences between the two methods. The corresponding p-values are also
shown in the last column of Table 4.7. When one algorithm significantly outper-
forms the other, the p-value is less than the confidence level 0.05. We highlight in
italic these p-values.
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TABLE 4.7: Comparison in average training and test performance be-
tween LSIR and SPMS-ALS over small and medium datasets. Wilcoxon
p-value is obtained from the comparison between SPMS-ALS and LSIR.

SPMS-ALS LSIR Wilcoxon

SMALL

TRAINING TEST TRAINING TEST p-value
Evaluations Acc Std Acc Std Acc Std Acc Std

Setting 1 0.8598 0.0130 0.7477 0.0633 0.8521 0.0128 0.7411 0.0605 0.1015
Setting 2 0.8665 0.0122 0.7512 0.0625 0.8657 0.0128 0.7419 0.0614 0.0867
Setting 3 0.8733 0.0110 0.7549 0.0615 0.8693 0.0140 0.7415 0.0607 0.0132

MEDIUM
Setting 1 0.9126 0.0034 0.8625 0.0127 0.9005 0.0039 0.8612 0.0139 >0.2
Setting 2 0.9129 0.0033 0.8626 0.0126 0.9049 0.0039 0.8610 0.0133 >0.2
Setting 3 0.9199 0.0028 0.8668 0.0110 0.9052 0.0041 0.8609 0.0136 0.0577
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FIGURE 4.2: Accuracy scatter plots over 40 small and 17 medium
datasets in the test phase.

Numerical results in Table 4.7 show that for both training and test phases, the memetic
framework outperforms on a regular basis LSIR. We may observe that in training
phase and small datasets, SPMS-ALS slightly outperforms LSIR while the difference
in performance is larger for medium datasets. According to our interpretation, this
shows the effectiveness of the global search component in complex spaces: while
the local search exploits the space and is likely to achieve a suboptimal point (we
may see that different computational budgets do not yield major changes in LSIR
performance), the crossover allows the search a further chance to detect a solution
closer to the global optimum. The results in the test phase display a consistent bet-
ter performance of the memetic framework across the datasets. This finding can be
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interpreted as a better performance of SPMS-ALS in terms of overfitting: the deter-
ministic and exploitative nature of LSIR may lead to overfitting while the degree
of randomisation introduced by the crossover-based global search element reduces
the risk of overfitting hence improving upon the performance of the algorithm in
test phase. Finally we may observe that SPMS-ALS statistically outperforms LSIR
in Setting 3 in small datasets and shows improved progress in medium datasets.
This fact is expected since longer runs tend to be more stable and thus be associated
with lower standard deviation values. On the contrary, with Setting 1 and 2 we are
more likely to observe “lucky” or “unlucky” runs that may jeopardise the statistical
significance of the results.

The test results are also graphically presented in Figure 4.2 which contains scatter
plots of the accuracy of the methods. Each point compares the test performance
of SPMS-ALS and LSIR algorithm on a single dataset. The accuracy of SPMS-ALS
is shown on the x-axis position of the point, while that of LSIR is on the y-axis
position. Thus, points below the y = x line correspond to datasets for which SPMS-
ALS achieves better performance than the compared algorithm. In most of the cases,
the points are plotted on or below the separating line, inferring greater performance
of SPMS-ALS. In this plot, we can also see that the biggest improvements have been
made in small datasets, but in turn, there are a few datasets in which SPMS-ALS
performs slightly worse. However, in medium size datasets the improvements are
less significant, especially in settings 1 and 2, but consistently better.
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FIGURE 4.3: Accuracy progress of SPMS-ALS and LSIR on the Chess
dataset.

In order to emphasise the different behaviour of LSIR vs SPMS-ALS we plot in Fig-
ure 4.3 the accuracy of the trial solution xt against function calls (evaluations) of the
two algorithms on the Chess dataset, using Setting 1. To show the functioning of the
crossover the plot of SPMS-ALS refers to the local solution (and not the elite). We
may observe that the crossover functions as a restart which then quickly reaches a
solution with a good performance.
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In conclusion, whilst the local search seemed to get stuck after a number of evalu-
ations, the proposed MC approach, despite its simplicity, benefits from larger com-
putation budgets, outperforming the local search.

4.4.4 Comparison with the State-of-the-art Methods in IG

This section consists of two parts: Part A covers the comparison of our proposal
with related IG methods; Part B presents the comparison with recently published
IS methods.

Part A: Comparison against Similar IG Techniques

In order to compare the performance of SPMS-ALS against that of the other global
optimisers for IG (PSO (Nanni and Lumini, 2009), SFLSDE (Triguero, García, and
Herrera, 2011), and the adapted LSHADE (Tanabe and Fukunaga, 2014)), we will
focus on the maximum number of evaluations (Setting 3) for all the algorithms. As
a baseline, we also include the 1NN algorithm as a comparison algorithm.

Table 4.8 summarises the performance of the comparison algorithm in all (57) datasets
(small and medium). We have employed the Friedman procedure (García et al.,
2010) plus a Holm post-hoc test to perform a ranking-based statistical analysis on
the performance of the algorithms for small and medium datasets, respectively. The
last two columns of Table 4.8 provide the results of these tests, including the rank-
ings and the resulting p-values. Note that the control method will obtain the lowest
ranking, and therefore, the p-value shows if the differences are significant compar-
ing the control algorithm against the rest of the methods.

As shown in Table 4.8, LSHADE and SFLSDE are reported as the control method
in small and medium datasets, respectively, since they hold the smallest ranking
values. In small datasets, our proposal SPMS-ALS ranks third after SFLSDE, while
it ranks second in the medium datasets and its ranking value is not far away from
that of the control algorithm.

The Holm post-hoc test is used to detect if there is any significant statistical dif-
ferences between the control algorithm (LSHADE and SFLSDE) with respect to the
remaining methods. Considering a level of significance of α = 0.05, LSHADE statis-
tically outperforms only 1NN in small datasets, and PSO in medium datasets. The
statistical tests have not reported significant differences between our proposal and
the control algorithm in either small or medium datasets.
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TABLE 4.8: Summary of the performance of SPMS-ALS against
SFLSDE, PSO, LSHADE and 1NN for IR over 57 datasets. The best

performance in the column is shown in bold.

TRAINING TEST Friedman+Holm

SMALL

Algorithm Acc Std Acc Std Ranking pHolm

LSHADE 0.8401 0.0165 0.7541 0.0612 2.425 –
SFLSDE 0.8480 0.0092 0.7615 0.0634 2.525 0.7773
SPMS-ALS 0.8733 0.0110 0.7549 0.0615 3.125 0.1017
PSO 0.8147 0.0156 0.7414 0.0606 3.175 0.1017
1NN 0.7369 0.0088 0.7369 0.0088 3.750 0.0007

MEDIUM

SFLSDE 0.8887 0.0048 0.8608 0.0122 2.177 –
SPMS-ALS 0.9199 0.0028 0.8668 0.0110 2.353 0.7448
LSHADE 0.8859 0.0138 0.8503 0.0147 3.294 0.1180
1NN 0.8316 0.0045 0.8316 0.0045 3.294 0.1180
PSO 0.8537 0.0066 0.8319 0.0137 3.882 0.0066

According to our interpretation, in training phase an exploitative action guarantees
a better performance of the algorithm especially in high dimensions (Caraffini, Neri,
and Iacca, 2017). However, the exploitative pressure should be counterbalanced by
a certain degree of randomisation to prevent the algorithm from overfitting and pay
off with a deteriorated performance in test phase. This feature of the IG problem
makes it especially suitable to be tackled by memetic frameworks. Albeit reason-
able, the excessively exploratory nature of PSO does not appear to effectively ad-
dress the large dimensional space.

In comparison with the baseline, 1NN, which uses all the data to classify the test
set, we have conducted the Wilcoxon test to conduct a pairwise comparison to our
method. Although SPMS-ALS shows better average performance , the Wilcoxon
test compute p-value 0.0415 for small datasets and > 0.2 for medium datasets. These
numeric p-values indicates that our algorithm statistically outperform 1NN in small
dataset, but has no significant different in medium datasets, considering a level of
significance of α = 0.05.

Finally, Table 4.9 displays the average runtime of the four global optimisers for
the small and medium datasets, respectively. On average, the runtime spent for
small datasets is 6.25s, saving 92.52%, 83.93% and 28.17% with respect to LSHADE,
SFLSDE and PSO, respectively. For medium datasets, the percentage of saving
time is slightly higher than what it did in small datasets, but the absolute value
is more meaningful. Specifically, SPMS-ALS only consumes roughly 5000s on av-
erage, while SFLSDE and PSO experience about 35000s, and LSHADE used up to
approximate 160.000s. In other words, for medium datasets, SPMS-ALS achieves
similar if not better results of SFLSDE and LSHADE in one seventh and less than
one thirtieth of the runtime, respectively.
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TABLE 4.9: Comparison of the runtime (in seconds) consumed in
SPMS-ALS and other approaches. Min values are in bold.

Small datasets Medium datasets
SFLSDE 38.89 ± 1.31 34738.82 ± 188.55
PSO 19.63 ± 0.80 34941.65 ± 188.86
LSHADE 83.63 ± 4.12 159009.10 ± 1154.75
SPMS-ALS 6.25 ± 0.39 5006.93 ± 405.33

Part B: Comparison against Recent IS

As mentioned in Section 4.3.2, two recent IS algorithms LSBo (Leyva, González, and
Pérez, 2015) and RIS1 (Cavalcanti and Soares, 2020) have been selected for compari-
son with our proposal. This section reports the experimental results of the these two
algorithms against SPMS-ALS over 57 datasets with reference to test performance
and reduction rate.

Details of the classification performance of RIS1, LSBo and SPMS-ALS in the test
phase on small and medium datasets can be found in the Supplementary Material,
while the summary information is displayed at Table 4.10. Overall, RIS1 obtains
a majority of wins in both small and medium datasets, SPMS-ALS ranks second
and LSBo lies at the lowest position. Particularly, RIS1 has 25 wins (18 small and
7 medium), SPMS-ALS achieves the best results 18 times (15 small and 3 medium),
while LSBo obtains 15 wins (8 small and 7 medium). However, the average test
performance of LSBo and SPMS-ALS are the highest for small and medium datasets,
respectively.

The overall goal of IR is to reduce the original dataset as much as possible whilst
keeping (or improving) the accuracy. Therefore, to establish a fairer comparison
between the two IS methods and our method, we will also provide an additional
metric to consider both test accuracy and reduction as equally important. Follow-
ing (Triguero, García, and Herrera, 2011), we simply multiply the accuracy in test
Acc and the reduction rate Red to form a new metric Acc*Rec. Table 4.10 presents
the overall average performance in accuracy Acc, reduction rate Red and both met-
rics Acc*Rec. Furthermore, Table 4.11 provides the set of rankings and p-values
obtained from Friedman+Holm tests for the three contrasted algorithms.

In the previous section, all algorithms (PSO, SFLSDE, LSHADE, and SPMS-ALS)
yield the same reduction rate. In particular, in this experiment, SPMS-ALS fixes the
rate up to 95% and 98% for small and mediums datasets, respectively. However,
LSBo and RIS1 do not specify the reduction rate as a parameter, but their reduction
depends on a particular dataset. RIS1 yields an average reduction rate of 59.06%
and 70.52% in small and medium datasets, respectively; whilst LSBo reduces 78.59%
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and 87.39% in small and medium datasets. Thus, both algorithms achieve a smaller
reduction rate than the IG approach investigated in this chapter.

TABLE 4.10: Summary of the performance of SPMS-ALS against RIS1
and LSBo considering Acc in the test phase, Red and Acc*Red mea-
sures for IR over 57 datasets. The best performance in the column is

shown in bold.

Algorithm Acc (Test) Std Wins Red Acc*Red

SMALL
RIS1 0.7319 0.0583 18 0.5906 0.4499
LSBo 0.7605 0.0576 8 0.7859 0.6064

SPMS-ALS 0.7549 0.0615 15 0.9500 0.7172

MEDIUM
RIS1 0.7972 0.0141 7 0.7052 0.6071
LSBo 0.8540 0.0099 7 0.8739 0.7639

SPMS-ALS 0.8668 0.0110 3 0.9800 0.8495

On average, the test performance of LSBo is the highest on small datasets, while
SPMS-ALS reports the highest average on medium datasets. However, apart from
having the best reduction rate, SPMS-ALS obtains the best balance between accu-
racy and reduction. The results from the non-parametric tests (Friedman+Holm) in
Table 4.11 reveal the advantage of SPMS-ALS looking at the Ranking and p-value
columns. The p-values reported for the comparison in terms of accuracy column do
not reflect any significant differences between the three methods in either small or
medium datasets. However, when the reduction rate is taken into consideration the
proposed technique stands out significantly.

TABLE 4.11: Friedman+Holm statistical test results in both Acc and
Acc*Rec metrics for small and medium datasets. The best performance

in the column is shown in bold.

Acc Acc * Red
Algorithm Ranking p-value Algorithm Ranking p-value

SMALL
SPMS-ALS 1.912 – SPMS-ALS 1.175 –
RIS1 1.938 0.9110 LSBo 2.000 0
LSBo 2.150 0.2882 RIS1 2.825 2.25E-04

MEDIUM
LSBo 1.882 – SPMS-ALS 1.176 –
RIS1 2.000 0.7316 LSBo 2.059 1.01E-02
SPMS-ALS 2.117 0.4927 RIS1 2.765 4.00E-06

4.4.5 Hybridisation with Instance Selection

As stated in Section 4.3.2, to perform a fair comparison against hybrid IR method
SSMA-SFLSDE (Triguero, García, and Herrera, 2011), the initialisation process of
the proposed algorithm must be replaced with a smarter approach. In particular,
we use the same IS algorithm, SSMA (García, Cano, and Herrera, 2008), as tested
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in (Triguero, García, and Herrera, 2011). This section compares LSIR, SFLSDE,
LSHADE and SPMS-ALS after using SSMA as initialisation. The resulting algo-
rithms are indicated as SSMA-LSIR, SSMA-SPMS-ALS, SSMA-LSHADE and the
state-of-the-art algorithm SSMA-SFLSDE (Triguero, García, and Herrera, 2011). The
detailed accuracy results for small and medium datasets in both training and test
can be found in the Supplementary Material. Table 4.12 shows the average results
obtained from the compared algorithms in conjunction with SSMA and the ranking
plus p-values from the Friedman + Holm test.

TABLE 4.12: Summary performance between four hybrid models over
57 datasets.

TRAINING TEST Friedman + Holm
Algorithm Acc Std Acc Std Ranking pHolm

SMALL
SSMA-LSHADE 0.8687 0.0101 0.7792 0.0570 2.000 –
SSMA-SFLSDE 0.8684 0.0108 0.7767 0.0594 2.200 0.4884
SSMA-SPMS-ALS 0.8727 0.0134 0.7670 0.0574 2.700 0.0306
SSMA-LSIR 0.8911 0.0148 0.7642 0.0604 3.100 0.0004

MEDIUM
SSMA-SPMS-ALS 0.9264 0.0033 0.8700 0.0107 2.265 –
SSMA-SFLSDE 0.9059 0.0040 0.8675 0.0125 2.441 1.0000
SSMA-LSHADE 0.9069 0.0035 0.8706 0.0118 2.647 1.0000
SSMA-LSIR 0.9245 0.0039 0.8682 0.0127 2.647 1.0000

The detailed results show that for small datasets and in training phase SSMA-SPMS-
ALS outperforms SSMA-SFLSDE and SSMA-LSHADE, and is outperformed by SSMA-
LSIR. However these results are not confirmed in test phase where SSMA-LSHADE
achieves the best performance, SSMA-SPMS-ALS the third best performance after
SSMA-SFLSDE, and SSMA-LSIR the worst performance over the four algorithms
considered in this section. This ranking is statistically significant and confirmed by
the Friedman + Holm test. According to our interpretation, the deterministic and ex-
ploitative local search logic in LSIR causes overfitting. The restriction of the search
space caused by SSMA increases the risk of overfitting. In the proposed memetic
framework, the resampling and crossover mechanism seems to mitigate the overfit-
ting.

Our interpretation is confirmed by the results for medium datasets. Since the search
space is naturally large, the exploitative local search is beneficial (Caraffini, Neri,
and Iacca, 2017) and is improved by the memetic framework. Hence, SSMA-SPMS-
ALS achieves the best performance in training phase. This ranking is confirmed
in test phase where SSMA-SPMS-ALS slightly outperforms SSMA-SFLSDE and is
established as the control algorithm in the Friedman test.
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In summary, and similar to what we saw when comparing against purely IG meth-
ods, the proposed memetic framework can obtain a very competitive classification
performance, especially in larger datasets, whilst reducing drastically the required
runtime.

At last we report some considerations about future improvements that can be ap-
plied. We will investigate the extension of our approach to big data frameworks
(Triguero et al., 2015b). In addition, we plan to expand our approach to new promis-
ing classifiers, such as Heterogeneous oblique random forest (Katuwal, Suganthan,
and Zhang, 2020). An initial comparison with this kind of classifier can be found in
the Supplementary Material. Further investigation is however required to perform
an appropriate IR for those classifiers.

4.4.6 Contextualising the Results and Limitations of SPMS-ALS

Experimental results from Sections 4.4.1 to 4.4.5 show that the proposed SPMS-ALS
and its hybrid form, SSMA-SPMS-ALS, are effective at reducing the size of the train-
ing data whilst maintaining, or even improving, the performance of the base classi-
fier; in our case, the 1NN rule. The goal of this section is to contextualise the clas-
sification results presented in this chapter with the 1NN as the base classifier, and
let the reader know where we are going in our future research. To do so, we com-
pare the results of the proposed SPMS-ALS and 1NN against the popular Random
Forest (RaF) algorithm and a state-of-the-art classifier also based on Trees, obRaF(H)
(Katuwal, Suganthan, and Zhang, 2020).

It is important to note that the classification performance of a classifier is not only
influenced by the pre-processing techniques but also its inherent robustness. For ex-
ample, an ensemble classifier is likely to outperform a single model (Rokach, 2010),
or tree-based approaches handle categorical attributes better than the NN classifier.
Thus, whilst the reader may expect the results of RaF and obRaF(H) to be superior to
the ones presented with the 1NN rule, we believe it is beneficial to still observe the
performance gap and understand potential future research lines for preprocessing
technique for more robust classifiers.

To establish a fair comparison against methods, we have re-run SPMS-ALS over the
121 UCI datasets used in (Fernández-Delgado et al., 2014; Katuwal, Suganthan, and
Zhang, 2020), following the exact same experimental framework, including depth
of a tree (i.e. 57), number of trees (i.e. 500), and a 4-fold cross validation scheme.
Details of the comparison on each single dataset can be found in the Supplemen-
tary Material, while the summary information and results of the statistical test are
displayed in Table 4.13. As expected, both RaF and obRaF(H) display a higher per-
formance than NN-based results. On the other hand, the proposed data reduction
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does not only reduce the storage need but also becomes much more efficient in terms
of runtime as we only preserve 2 to 5% of the training data (i.e. followed the experi-
mental setup in (Triguero et al., 2012). For this reason, it is essential to highlight that
the contribution of our proposal lies in the reduction of the training set, as a prepro-
cessing technique, whilst maintaining (or improving) the classification performance
of 1NN.

TABLE 4.13: Summary the average accuracy performance of 4-fold
cross validation between the basic models (1NN and RaF) and their

improved versions (SPMS-ALS and obRaF(H)) over 121 datasets.

Friedman + Holm
TRAINING TEST Ranking pHolm

obRaF(H) – 0.8336 146.24 –
RaF(Scikit-learn) 0.9892 0.8286 173.13 0.05
SPMS-ALS 0.8926 0.7597 324.99 0.03
1NN 0.7487 0.7534 325.64 0.02

The reader might wonder if the result of the preprocessing performed by the tech-
nique proposed in this chapter could be used directly by any other classifier like
RaF or obRaF(B). Although this pre-processing approach is intended for 1NN, as
highlighted in (Cano, Herrera, and Lozano, 2003) the resulting set could potentially
be used by any other classifiers. However, it is not straightforward to directly use
the reduced set obtained from SPMS-ALS in another classifier. We have performed
some preliminary experiments using the resulting reduced set as training data for
RaF in 89 small datasets (from the set of 121). The average results in the test phase
sets at 0.5656, whilst it is 1.000 on training. This suggests that RaF is overfitting the
training data with the parameters used (e.g. depth of the trees, or number of trees).
This could be expected as the reduction on small datasets may end up having as
few as 2-15 samples in some extremely small datasets. Whilst NN technique would
work well with such amount of data, Tree-like technique will not. Thus, as future
work we plan to explore the interaction between the proposed SPMS-ALS and more
robust classifiers like obRaF(B), for example, by adding it as base classifier or fine
tuning the parameters to use smaller training datasets without overfitting.

4.5 Summary

In this chapter, we have achieved research Objective 2 by designing a simple and
yet effective single-point memetic pattern search for IG, which is competitive to the
other complex designs of state-of-the-art methods. The proposed search framework
is composed of a novel accelerated local search and a crossover based global search.
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The local search is deterministic and exploitative belonging to the family of Pat-
tern Search methods whilst the global search is stochastic, based on resampling and
crossover. By making some considerations about the functioning of the NN clas-
sifier in instance generation and exploiting the search logic of Pattern Search, the
local search has been redesigned and implemented in an accelerated version. The
accelerated local search uses most of the calculations performed at the previous step
and thus lead to a major saving in terms of runtime with respect to the existing
algorithms in the literature.

Numerical results performed with and without IS as initialisation mechanism show
that the proposed single-point memetic approach tends to be slightly worse than
only one IR algorithm in small datasets. On the other hand, on medium datasets,
our proposal achieves the best accuracy performance in both training and test phases.
These results are extremely valuable when we consider that the proposed approach
is up to seven times faster than the other algorithms. Besides the proposed domain-
specific MC approach this article offers an extra contribution about experimentalism
in data reduction. More specifically, in this chapter we perform a thorough parame-
ter setting of the computational budget and display the results in multiple scenarios.
These results aim to offer some guidelines to data scientists to set their experimen-
tal conditions in a fair and effective manner to detect the desired trade-off between
accuracy and runtime.

In the first two stages of our research, we have concentrated on two different tasks
of IS and IG, constructing different innovative search solutions on combinatorial
and continuous spaces. Since the available information of integrating IS and IG
into a single search framework is very limited or non-existed (to the best of our
knowledge), we are motivated to propose a novel search framework to handle IS
and IG simultaneously. In the following chapter, we will introduce this new search
strategy which aims to cover Objective 3.
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Chapter 5

Accelerated Pattern Search for
Simultaneous IS and IG

5.1 Introduction

In previous chapters, we have dealt with different search strategies at which each
has a different accelerated mechanism to speed up the optimisation process. Con-
cretely, Chapter 3 has introduced a two-stage clustering method in a population-
based meta-heuristic search strategy, then Chapter 4 has presented Single-Point
Memetic Structure with an accelerated objective function evaluation. The contri-
bution made in Chapter 3 provides a solution for IS, while the counterpart made in
Chapter 4 is designed for IG. Considering both reduction rate and accuracy, state-of-
the-art performance in IR techniques is achieved by hybrid approaches in which IS
and IG combine their effectiveness to produce a final reduced dataset (Le, Neri, and
Triguero, 2021). In practice, all hybrid techniques proposed so far in the literature,
make use of cascade approaches which perform IS and IG in separated and subse-
quent stages. More specifically, IS reduces the size of the dataset while IG refines
the results on the reduced data. This is because IS is usually employed to decide
the best distribution of instances per class, providing a good starting point to let IG
optimise the positions of the instances. Optimisation-based IG approaches search
for a solution in the continuous space (generate instances) while keeping the num-
ber of instances fixed, i.e., deciding at first then the desired number of instances and
then searching for suitable instances within the continuous space defined (Triguero
et al., 2012). In contrast, a method that determines the most appropriate number of
instances while performing IG has not been explored yet.

Popular hybrid approaches combine a Steady State Memetic Algorithm (SSMA)
(García, Cano, and Herrera, 2008) plus an IG method (Triguero, García, and Her-
rera, 2011; Derrac, García, and Herrera, 2012; Le, Neri, and Triguero, 2021). SSMA
is a population-based memetic search approach developing on the evolutionary al-
gorithm including an LS component. The process of sample selection is explored
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globally by a variety of solution candidates in the population and is also exploited
locally by the LS association. As a result, the search seeks the reduced set at differ-
ent regions in the training instance space. After optimising the number of samples,
hybrid approaches feed the subset of well-distributed samples to an IG algorithm
to refine their positions. The subset of samples are further optimised to be capable
of filling regions that do not have any representative in the training instance space.
The best performing IG techniques reported in the literature usually belong to the
family of population-based evolutionary algorithms (Le, Neri, and Triguero, 2021).

Despite its effectiveness, this type of hybrid methods is typically time-consuming
due to the expensive cost of computing the objective function, not only caused by
SSMA but also by the IG phase (if tackled by evolutionary methods). A recent study
has introduced a simple, yet effective memetic approach which is able to yield major
savings in computational overhead during the IG phase (Le, Neri, and Triguero,
2021). However, this memetic approach still relies on SSMA feeding in a subset of
compact and well-rep resentative samples among classes. Thus, the computational
cost of the overall IR process is still high to handle medium sized datasets, taking
hours or even days to complete it (See Figure 5.4).

From the mentioned advantages and disadvantages, there is the necessity for an ap-
proach which can achieve the same high accuracy performance of hybrid methods
while addressing their drawback of excessive runtime. This technique should be ca-
pable of searching globally and exploiting locally the instance space like SSMA, but
also simultaneously adjusts the samples at the feature level. Besides from obtaining
a performance as good as that of hybrid methods, more importantly, the proposed
technique has to be fast to be applicable in solving real-world problems. To the best
of our knowledge, ideas of using simultaneously IS and IG in a single approach has
never been explored.

In this chapter, we propose an IR algorithm, called Accelerated Pattern Search with
Variable Solution Size (APS-VSS), that performs a fast reduction of the data by si-
multaneously doing IS and IG. Our proposal stems from the SPMS, proposed in
(Neri and Triguero, 2020; Le, Neri, and Triguero, 2021). SPMS algorithm is a domain-
specific technique for IG belonging to the family of Memetic Computing, which fea-
tures an accelerated objective function evaluation. Conversely, the proposed APS-
VSS integrates two domain-specific LS components to optimise the total number of
instances appearing in the reduced set within the IG local search of (Le, Neri, and
Triguero, 2021). These two LS components can adjust the size of a candidate solu-
tion during the optimisation process, to shrink the size, so that the IG local search
becomes more effective. The remainder of this chapter is as follows: Section 5.2 de-
tails the proposed APS-VSS algorithm. Section 5.3 describes the experimental setup
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while Section 4.4 shows and discusses the results. Finally, Section 5.5 provides the
summary of this final research stage.

5.2 Accelerated Pattern Search with Variable Solution

Size

This section describes the proposed algorithm APS-VSS. Subsection 5.2.1 highlights
the novelty of the proposed algorithm while, Subsection 5.2.2 presents the imple-
mentation details of APS-VSS.

5.2.1 Novelty of the proposed approach

Two main branches of IR may belong to different search space domains. While
IS may be considered in the combinatorial search space, IG is in the continuous
domain. Though there are IR techniques working in both search spaces but they are
applied sequentially, usually IS first and then IG (e.g. SSMA-SPMS-ALS (Le, Neri,
and Triguero, 2021)). Typically, IS searches for the best distribution of instances per
class to feed in IG for further optimisation. The current state-of-the-art approaches
are accurate but may be extremely computationally expensive (Triguero, García, and
Herrera, 2011). For example, with the dataset “Magic” (19020 samples, 10 features),
on average of 10 runs, SSMA-SFLSDE consumed 68.3 hours to complete (Triguero,
García, and Herrera, 2011), while SSMA-LSHADE took 92.6 hours (Le, Neri, and
Triguero, 2021). Broadly speaking, the novelty of our proposal lies in introducing
an IR algorithm which handles simultaneously an optimisation problem on both
continuous and combinatorial search spaces. Unlike previous studies which address
IR in separated stages, APS-VSS performs the selection and generation within a
single framework.

5.2.2 Algorithmic Description

The proposed APS-VSS partly makes use of the successful search logic of SPMS-ALS
(Le, Neri, and Triguero, 2021) but completely reinterprets the IR problem represen-
tation and hence the search space associated with it. APS-VSS employs two novel
extra LS components, named LSeli and LSasc, respectively. More specifically, a can-
didate solution x is considered to have variable length and its design variables to
continuously vary within intervals. The variable length of the candidate solution
encodes the IS and is optimised by LSeli where eli stands for “elimination” of the
non-representative instances. On the other hand, the values in the present design
variables encode the IG and are optimised by feature adjustment of LSIR. Further-
more, the proposed APS-VSS attempts to remove the instance just modified by the
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LSIR. If the accuracy of the candidate solution is not worsened after the removal of
the instance, then the instance is removed. In other words this LSasc has to “ascer-
tain” that the perturbed instance is indeed necessary to represent the dataset. The
pseudo-code of APS-VSS is presented in Algorithm 8.

Algorithm 8 Accelerated Pattern Search with Variable Solution Size
Input: Training Data (TR)
Output: An optimised RS

1: x = SelectSamples (TR) ▷ Select samples from TR, tuned by parameter Pinit
2: while local budget and precision conditions are not met do
3: for h = 1 : p do
4: xh = x after removing the elements bh1, bh2, . . . , bhm
5: if f (xh) ≥ f (x) then
6: x = xh
7: end if
8: end for

LSeli: LS in the
combinatorial space

9: for i = 1 : n (n = m · p) do
10: xt = x − ρ · ei

11: if f
(
xt) ≥ f (x) then

12: x = xt

13: else
14: xt = x + ρ

2 · ei

15: if f
(
xt) ≥ f (x) then

16: x = xt

17: end if
18: end if

LSIR: LS in the
continuous space

19: if mod (i, m) = 0 then
20: j = i / m ▷ Get index of the generated example
21: x

′
t = xt after removing the elements bj1, bj2, . . . , bjm

22: if f
(

x
′
t

)
≥ f (xt) then

23: x = x
′
t

24: end if
25: end if

LSasc: LS in the
combinatorial space

26: end for
27: if x has not been updated then
28: halve the exploratory radius ρ
29: if ρ < ϵ then
30: Randomly generate a candidate solution xr

31: Apply Crossover between x and xr to generate a new trial vector xt

32: Reinitialise x = xt

33: end if
34: end if
35: end while
36: RETURN x
37:

The pseudo-code of the LSeli is presented in lines 3-8 of Algorithm 8. The main con-
tribution of LSeli is to discard any elements in RS whose absence does not affect the
current solution quality. Although this simple idea of elimination relies heavily on
the quality of initial sampling, the output is yet promising as the RS can be enhanced
by the generation phase of the greedy LS (lines 9-26). Since feature perturbation, i.e.,
IG), is empirically more effective on a small set of samples (that is a smaller search
space), LSeli prepares a compact representative RS for the IG operator. In the results
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presented in Section 5.4.1, a consistently steady improvement of accuracy is made
during the optimisation, indicating that the shrunk RS is well-shaped by the LSeli.

The pseudo-code of the LSasc is shown in lines 19-25, which ascertain the new posi-
tioned sample is important in the current processing of RS. Different to LSeli, LSasc is
called only occasionally as its main role is to confirm the importance of the adjusted
sample. It is necessary because the feature perturbation process may adjust it into
an already existing (redundant) sample in RS.

Finally, the gene-resampling mechanism (lines 27-34), taken from SPMS-ALS, is an
important countermeasure to prevent the sample adjustment from overfitting. An
excessive effort on sample adjustment is likely to yield an overfitted RS, which re-
sults in poor performance on unseen data. This characteristic is controlled by mul-
tiple parameters introduced in (Le, Neri, and Triguero, 2021), and experimentally
analysed in Section 5.4.2.

In summary, apart from what was described for SPMS-ALS in (Le, Neri, and Triguero,
2021), APS-VSS introduces two LS components attempting to shrink the RS when
possible to maximise the effectiveness of the single-point pattern search structure.
Besides, it is important to note that it is usually expensive to check the RS quality
when the size of TR is large. Our proposal does not suffer from this computational
burden because it takes advantage of fast computation of the objective function,
described in Section 4.2.2. One iteration of APS-VSS can be summarised by the fol-
lowing operators:

• LSeli shrinks the initial RS, discarding any element whose absence does not dete-
riorate the solution quality and passes the shrunk solution to LSIR.

• LSIR perturbs features and searches for an accurate solution (one exploration of
LSIR).

• LSasc is embedded within LSIR and confirms whether the presence of the newly
generated instance is necessary.

• The crossover re-initialises the candidate solution to explore another search re-
gion when the LS seems to be no longer effective.

These four steps are iteratively repeated until the computational budget is exhausted
or a precision condition is reached.

5.3 Experimental Framework

This section presents the experimental setup of this study. Section 5.3.1 introduces
the datasets used in this chapter. Section 4.3.2 presents the IR techniques that have
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been used for comparison against APS-VSS. Finally, Section 5.3.3 describes the pa-
rameter configuration.

5.3.1 Datasets

In the experimental study, as we carry on a methodology of IR for balanced clas-
sification, we keep using 57 multi-class datasets with various sizes from the KEEL
dataset repository (Triguero et al., 2017) presented in Section 4.3.1 and summarised
in Table 4.1.

5.3.2 Comparison Algorithms

In order to understand the benefits of the proposed APS-VSS, we first define the
baselines.

• Nearest Neighbour (1NN): we use the NN algorithm (k=1) employing the entire
TR for training, without any pre-processing. This is the first baseline to verify if
an IR solution outperforms it.

• LSIR and SPMS-ALS, refer to the previous chapter, Sections 4.2.1 and 4.2.4, re-
spectively.

State-of-the-art approaches are hybrid techniques including SSMA-LSHADE (Tan-
abe and Fukunaga, 2014; Le, Neri, and Triguero, 2021), SSMA-SFLSDE (Triguero,
García, and Herrera, 2011), SSMA-SPMS-ALS (Le, Neri, and Triguero, 2021). These
approaches start with IS employing SSMA to intelligently select samples. The out-
put RS is then fed into generation techniques based on differential evolution (i.e.
LSHADE (Tanabe and Fukunaga, 2013), SFLSDE (Triguero, García, and Herrera,
2011)), or a single-point memetic struture (i.e. SPMS-ALS (Le, Neri, and Triguero,
2021)). To claim the effectiveness of APS-VSS, the performance needs to be bet-
ter than baselines and equivalently as good as several state-of-the-art methods (but
faster).

5.3.3 Parameter Settings

This section presents the parameter configuration for all the methods mentioned
in Section 5.3.2. The same parameters suggested by the authors in their original
works have been used. Apart from the shared parameters obtained from SPMS-
ALS including ρ, Nmax, ρRed, ρThr and Gr (Le, Neri, and Triguero, 2021), APS-VSS
requires the tuning of the Pinit parameter, which is the percentage of initialisation.
As described in Section 5.2.2, LSeli relies on the quality of initial sampling, Pinit is
tuned in a wide range, from 5% up to 70%. Pinit = 5 meaning 5% of samples of a
class are randomly allocated to the initial RS.
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TABLE 5.1: Parameters used for comparison algorithms

Algorithms Parameter setting
SFLSDE PopulationSize = 40, iterSFGSS =8, iterSFHC = 20, Fl = 0.1, Fu = 0.9
LSIR initial ρ = 0.4
SSMA Population = 40, Cross = 0.5, Mutation=0.001
NN k = 1, Euclidean distance
LSHADE ArchiveSize = 1.4, PopulationSize = 40, MemorySize = 5
SPMS-ALS ρ = 0.4, Nmax = 3, ρRed = 0.25, ρThr = 0.005, Gr = 0.5 (small), 0.05 (medium)
APS-VSS Pinit = 10, ρ = 0.4, Nmax = 3, ρRed = 0.5, ρThr = 0.005, Gr = 0.75 (small), 0.05 (medium)

Numerous combinations of these parameters have been examined to conclude a set
of values that can produce a robust performance of APS-VSS on both small and
medium datasets. Values of parameters for all algorithms are presented in Table 5.1.
To make a fair comparison, all compared algorithms in this study are allocated the
same computational budget, particularly 10 × #Samples × #Attributes evaluations,
as discussed in (Le, Neri, and Triguero, 2021) .

5.4 Analysis of results

In this section, we present the analysis of the results to provide insights of APS-VSS.
Our aims are:

• To understand the effectiveness of LSeli and LSasc. A plot displaying the search
behaviour of APS-VSS on a dataset fold are presented. We also discuss the causes
of improvement to explain why APS-VSS can achieve better performance with
respect to the previous algorithmic designs (Subsection 5.4.1).

• To establish a fair comparison of the accuracy performance between APS-VSS
with several baseline models, followed by competition with the state-of-the-art
algorithms in the family of IR (Subsection 5.4.2).

• To present multiple advantageous aspects of APS-VSS such as reduction rate and
runtime. We report in detail the absolute and percentage figures of the runtime
savings, the class proportion of all examined algorithms over 57 datasets.

Numerical results of all comparisons between algorithms at each dataset can be
found in the Supplementary Material at the associated GitHub repository1.

5.4.1 Detailed Analysis of the Search Behaviour

This section presents a detailed analysis of the search behaviour and the number of
function calls to the two local searches.

1https://github.com/lehoanglam20000/APS-VSS

https://github.com/lehoanglam20000/APS-VSS
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Search Behaviour:
In this section, we present the search behaviour of APS-VSS in comparison to SPMS-
ALS. We describe the limitations of SPMS-ALS and solutions to address them, which
may be helpful to understand the reason why our proposal outperforms previous
similar-structured algorithms. As an example, Figure 5.1 characterises the search
behaviour of APS-VSS and SPMS-ALS on the zoo dataset.
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FIGURE 5.1: Search behaviour of APS-VSS and SPMS-ALS at dataset
zoo, folds 2 and 5.

The search consists of several cycles, separated by a straight drop. The first cy-
cle begins with random initialisation of RS, and end after about 4,500 evaluations.
APS-VSS and SPMS-ALS do not share the same initial percentage of samples, as
they start at different positions. Then, the global evolutionary operator introduces
new materials to allow the search to start at a new region, initialising the start of the
second cycle. Note that the search does not necessarily use up the allocated com-
putational budget, but it might stop earlier if the stopping conditions are met (i.e.
accuracy hits 100%, ρ is below the threshold ρThr).

At Fold 2, through the feature perturbation, the accuracy value of SPMS-ALS pro-
gressively increases and remains unchanged at 97-98% until the end of the first
search cycle, while APS-VSS only reaches 94-95%. Around evaluation 4500, the
upward trends at both algorithms suddenly drop sharply due to the effect of the



5.4. Analysis of results 109

global gene-resampling crossover operator. It depends on the parameters used for
the operator to observe how far the accuracy drops down. As reported in Table 5.1,
APS-VSS has Gr = 0.75 while SPMS-ALS has Gr = 0.5, which means there are more
samples replaced in APS-VSS and thus resulting in a significant drop.

A new similar pattern of the search restarts from evaluation 4500 as the elements
in the RS have been refreshed. APS-VSS gradually develops the accuracy whilst
SMPS-ALS goes back to its previous peak, which can be attributed to the impact
of the two new LS components in APS-VSS. As discussed earlier, the effectiveness
of the single-point perturbation LS will appear more obvious in a smaller sized RS.
In Fold 2, it is likely APS-VSS discards more samples to let the search progress fur-
ther, while SPMS-ALS does not show this characteristic. In the end of the second
search cycle, APS-VSS achieves a higher accuracy rate while SPMS-ALS remains
unchanged until the end of the run. APS-VSS continues to develop a greater per-
formance in the next cycle and stops the search at evaluation 10, 500 as the stop
conditions are met.
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FIGURE 5.2: The average number of function calls of the two LS com-
ponents over small (top) and medium (bottom) datasets.

Different from Fold 2, the two algorithms used up the computational budget in Fold
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5. SPMS-ALS shows a better performance at a few first cycles, but eventually APS-
VSS obtains higher accuracy. APS-VSS is likely more consistent to make progression
after each restart than SPMS-ALS. As a memory slot has been allocated to store the
RS having the highest score, exploration in a new region does not affect the final
outcome when either algorithm gets lower performance at different search regions.

Average Function Calls of LSeli and LSasc: From the understanding of the search
behaviour of APS-VSS, it may be interesting to know about the number of function
calls that the two added LS are used. In general, the number of calls of LSeli is more
frequent than that of LSasc due to two reasons. Firstly, LSeli has more opportunities
to be called frequently to discard unimportant samples after initialisation. Second,
as Gr = 0.75 at a restart, LSeli has to consider more samples for elimination.

On the other hand, LSasc only focuses on checking whether the perturbation of all
features at an instance can contribute to any improvement. As explained in the algo-
rithm description, the adjusted instance will be only removed if its absence does not
deteriorate the current performance of the RS. Since the RS is usually shrunk before
conducting instance perturbation, samples surviving until this generation phase are
likely essential for 1NN classification, so that the elimination is not expected to oc-
cur frequently. Figure 5.2 summarises the number of function calls of LSeli and LSasc.
On average, while there are about 37 calls for LSeli on small datasets, LSasc gets 6,
which is less than LSeli about 6 times. Likewise, the ratio of LSeli over LSasc is ap-
proximately 6 in the medium datasets. Note that, the standard deviation is large
in any numerical values, indicating the two LS components are called significantly
more frequent in one dataset than in another.

5.4.2 Comparison with Other IR Algorithms

There are two comparisons in this section, Part A presents an examination of our
proposal against baseline models including 1NN, LSIR and SPMS-ALS. Part B shows
the comparison with the state-of-the-art algorithms including SSMA-LSHADE (Le,
Neri, and Triguero, 2021), SSMA-SFLSDE (Triguero, García, and Herrera, 2011) and
SSMA-SPMS-ALS (Le, Neri, and Triguero, 2021). We employ Wilcoxon test with a
confidence level α = 0.05 to analyse the significant difference among models.

Before discussing these results, it is important to note that as said earlier the goal
of this work was not to improve upon the accuracy results of the state-of-the-art IR
solutions, as they are usually more complex and time-consuming, but to verify that
with a simpler and faster strategy we can remain competitive in terms of accuracy.
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TABLE 5.2: Summary performance between APS-VSS and other base-
line models over small and medium datasets.

TRAINING TEST APS-VSS vs p-value
APS-VSS vsAcc ± Std Acc ± Std Win Tie Lose

SM
A

LL

1NN 0.7367 ± 0.012 0.7388 ± 0.061 27 1 12 0.031
LSIR 0.8693 ± 0.014 0.7415 ± 0.061 28 0 12 0.001
SPMS-ALS 0.8733 ± 0.011 0.7549 ± 0.062 25 0 15 0.044
APS-VSS 0.8753 ± 0.015 0.7656 ± 0.064 – – – –

M
ED

IU
M 1NN 0.8322 ± 0.006 0.8308 ± 0.017 11 11 3 0.08

LSIR 0.9052 ± 0.004 0.8609 ± 0.014 8 0 9 0.644
SPMS-ALS 0.9199 ± 0.003 0.8668 ± 0.011 6 1 10 0.431
APS-VSS 0.9271 ± 0.005 0.8682 ± 0.014 – – – –

Part A: Comparison with Baseline Models
The performance of our proposal and the baseline models is reported in Table 5.2.
We look into the average training and test of the 10-folds cross-validation, the num-
ber of Wins, Ties and Losses of APS-VSS with the algorithm in the row in both small
and medium datasets. The p−value is calculated to confirm if APS-VSS statistically
outperforms the algorithm in the row. Several observations can be drawn from the
numerical results:

• APS-VSS has obtained the highest average test accuracy in either small or medium
datasets. p-values at the last column have confirmed the difference is significant
in small datasets, while no significant difference found in medium ones.

• APS-VSS has a substantially greater number of Wins than Losses with respect to
the three baseline models in small datasets. Specifically, it is more than 2 times
compared with LSIR and 1NN, and more than 1.5 times compared with SPMS-
ALS. On the contrary, those figures are distributed mostly equal im medium
datasets which does not help distinguish which one outperforms the other.

Part B: Comparison with state-of-the-art techniques
APS-VSS statistically outperforms baseline models in small datasets, but no signif-
icant difference is found in medium datasets. However, APS-VSS is proposed to
work on both combinatorial and continuous space, it is, thus, necessary to contrast
its performance with state-of-the-art approaches. Note that, the three hybrid com-
parison methods share the same IS approach of SSMA as initialisation. Table 5.3
shares the same design of Table 5.2. The only difference is at the last column, where
p-value refers to the Wilcoxon statistical test of the algorithm in the row to APS-VSS.
This is because APS-VSS does not likely outperform these algorithms and p-value
in that comparison direction is reported > 0.2. As a result, p−value < α(0.05) in-
dicates APS-VSS is outperformed by the algorithm in the row. Several observations
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can be made:

• Though average training performance goes up in the order of SSMA-LSHADE,
SSMA-SFLSDE, SSMA-APMS-ALS and APS-VSS, the average test performance
does not follow the same pattern in both small and medium datasets.

• In either small or medium datasets, APS-VSS has no significant difference with
and SSMA-SFLSDE, SSMA-APMS-ALS. This information shows the robustness
of APS-VSS with respect to several state-of-the-art methods in IR techniques.

• SSMA-LSHADE outperforms statistically APS-VSS in small datasets but the sig-
nificant difference is rejected in medium datasets. Note that SSMA-LSHADE is
a very complicated meta-heuristic technique, demanding an excessive amount of
runtime to complete a run. We will report this aspect in Section 5.4.3.

TABLE 5.3: Summary performance between APS-VSS and other state-
of-the-art models over small and medium datasets.

TRAINING TEST APS-VSS vs p-value
vs APS-VSSAcc ± Std Acc ± Std Win Tie Lose

SM
A

LL

SSMA-LSHADE 0.8687 ± 0.010 0.7792 ± 0.057 11 0 29 0.008
SSMA-SFLSDE 0.8684 ± 0.011 0.7767 ± 0.059 15 0 25 0.096
SSMA-SPMS-ALS 0.8727 ± 0.013 0.7670 ± 0.057 19 0 21 0.979
APS-VSS 0.8815 ± 0.015 0.7623 ± 0.061 – – – –

M
ED

IU
M

SSMA-LSHADE 0.9069 ± 0.004 0.8706 ± 0.012 5 0 12 0.145
SSMA-SFLSDE 0.9059 ± 0.004 0.8675 ± 0.013 6 0 11 0.712
SSMA-SPMS-ALS 0.9264 ± 0.003 0.8700 ± 0.011 5 0 12 0.145
APS-VSS 0.9271 ± 0.005 0.8682 ± 0.014 – – – –

5.4.3 Advantages of APS-VSS

From Section 5.4.2, we have seen that APS-VSS is only statistically outperformed
by SSMA-LSHADE in small datasets. For other comparisons, our proposal outper-
forms or is statistically equivalent in either small or medium datasets. While main-
taining a competitive performance, APS-VSS is more advantageous when looking at
the reduction rate and runtime. In general, APS-VSS is capable of achieving similar
reductions rates to existing hybrid approaches based on SSMA, but reducing hugely
the required runtime to obtain the resulting reduced set. These two advantages will
be reported in detail in the below Part A and Part B.

Part A: Reduction Rate
Figure 5.3 plots a bar chart starting with the original size in TR, followed by the
reduction rate of SPMS-ALS, Hybrid approaches, and APS-VSS. At each algorithm,
three pieces of information are written above each bar. At topmost, it is the average
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size of the reduced set, then the percentage of the average size in relation to the
original size, and at last the percentage of reduction. The second and third pieces of
information are complementary to each other. At the top right corner, we also place
a text mentioning the quantity of 1% of the original size for reference,

Original Size SPMS-ALS SSMA-LSHADE
 SSMA-SFLSDE 

 SSMA-SPMS-ALS

APS-VSS
100

101

102

103

S
a
m

p
le

s

TR = 514.05

RS=25.7
5.0% x TR 
Red 95.0% x TR

RS=15.59
3.03% x TR 
Red 96.97% x TR

RS=15.1
2.94% x TR 
Red 97.06% x TR

Average 1% TR = 5.14 Samples

Original Size SPMS-ALS SSMA-LSHADE
 SSMA-SFLSDE 

 SSMA-SPMS-ALS
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104
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TR = 6399.06

RS=127.98
2.0% x TR 
Red 98.0% x TR

RS=75.44
1.18% x TR 
Red 98.82% x TR

RS=79.78
1.25% x TR 
Red 98.75% x TR

Average 1% TR = 63.99 Samples

FIGURE 5.3: Reduction rate of APS-VSS against other examined algo-
rithms over 57 datasets. The values on y-axis is displayed on the loga-

rithmic scale.

SPMS-ALS has a fixed reduction rate of 5% and 2% for small and medium datasets.
APS-VSS mostly shares the same reduction rate with hybrid methods, though it
shrinks slightly more in small datasets. On average, APS-VSS has reduced 97.06%
and 98.75% on small and medium datasets, respectively, while the hybrid approaches
have saved 96.97% and 98.82% the original data size on small and medium datasets,
respectively.
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Part B: Runtime
Figure 5.4 shows how much faster the proposed APS-VSS is against all the compar-
ison algorithms in small and medium datasets, respectively. This barplot shows the
total average runtime required to perform IR. Given the runtime of APS-VSS as T(s),
we also display, on top of each bar, the proportion of runtime that other algorithms
take in relation to T(s) in both types of datasets.
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FIGURE 5.4: Average runtime (in seconds) of all compared algorithms
and their multiplication to the runtime of APS-VSS T(s) over small (top)
and medium (bottom) datasets. The values on y-axis is displayed on

the logarithmic scale.

On small datasets, Figure 5.4 shows that although the runtime of APS-VSS is not
always smaller than SPMS-ALS, its average absolute value is not far away. This is
because APS-VSS has to spend fixed computation costs on multiple components.
Considering the time consumed for the baselines, APS-VSS spends around 9 sec-
onds while LSIR and SPMS-ALS are 1(s) or 2(s) lower. Other hybrid approaches
substantially consume more runtime than APS-VSS. Particularly, SSMA-LSHADE
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uses more than 10 times, SSMA-SFLSDE takes approximate 6 times, and SSMA-
SPMS-ALS is 1.38 times the runtime used in APS-VSS. The benefit of the runtime
is more obviously observed in medium datasets, where any compared algorithm
requires more runtime than our solution. Specifically, APS-VSS reduces 3.58 times
consumed in SSMA-SPMS-ALS and 43.79 times in SSMA-LSHADE. With respect to
LSIR and SPMS-ALS, the range is from 1.07 times and 3 times, respectively.

Taking into consideration the accuracy results reported in the previous section, we
would advise to use the proposed APS-VSS when using medium size datasets. We
have observed that no significant differences can be found in terms of accuracy com-
pared to the best hybrid IR algorithm (i.e. SSMA-LSHADE), but we can reduce the
size of the training data in a much faster way, up to 43.79 times.

5.5 Summary

This chapter has provided a thorough examination of the proposed search frame-
work for handling IS and IG simultaneously, which has covered our research ob-
jective 3. The proposed algorithm is a single point memetic structure that perturbs
candidate solutions in the continuous space, i.e., performing the IG endowed with
two LS mechanisms that attempt to shorten the length of the solutions, i.e., remov-
ing instances from the RS. The first LS attempts to remove instances from the solu-
tion, i.e. to perform IS, right before an IG cycle. The second LS attempts to remove
potentially just generated redundant instances. This algorithmic approach is new in
the domain-specific body of literature of IR.

Having considerations about the functioning of the NN classifier, APS-VSS is de-
signed to take more advantage of a fast objective function computation. Thus, the
acceleration is effectively used in guiding the search compared to other previous de-
signs, which results in a competitive accuracy performance and more time-saving.
The robustness of the proposed method with respect to performance, runtime and
reduction rate is proved competitive to a few state-of-the-art hybrid methods exist-
ing in the literature, and statistically better than published algorithms using single-
point search structure. The outputs of APS-VSS are valuable in the context of real-
world problems when an application is required to be processed in a timely fashion.
Also, these preliminary results may offer initial empirical evidence for investigating
mixed continuous/combinatorial optimisation in data science.

As the final stage of the thesis, the developed methodology of this chapter has lever-
aged the achievements obtained in the preceding stage, thus confirming the cover-
ing of different accelerated search strategies for IS and IG completed. To conclude
this thesis, in the next chapter we outline the final conclusions for the dissertation,
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highlight key aspects of several work packages conducted and summarise the con-
tributions. In addition, we also point out limitations of the research and some po-
tential lines for future work.
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Chapter 6

Conclusion

This chapter presents the final conclusions from different research works conducted
in this study. Firstly, Section 6.1 outlines a set of contributions corresponding to the
research gaps and objectives identified in the Introduction. Then, Section 6.2 points
out several limitations that have been observed but unresolved in this dissertation.
Finally, Section 6.3 draws some reflections on potential lines of future work.

6.1 Summary of Contributions

Meta-heuristic frameworks like EAs and different other derivative free search meth-
ods have been effectively employed to handle complex multimodal optimisation
problems such as IR. Accelerating a search process has arrived to the forefront of
scientific research as a valuable approach to quickly transform data into Smart Data.
It is more valuable when the size of a dataset is relatively large, at which memetic
algorithms or evolutionary-based optimisation methods are likely unable to pro-
duce high quality output in a reasonable amount of time. Although these search
strategies have been successful to address IR in either continuous or combinatorial
or both domains, they carry several drawbacks that hinder their deployment in dif-
ferent scenarios. It has been shown that there is a need of novel strategies to acceler-
ate these effective derivative-free search methods, so that meta-heuristics, memetic
computing with pattern search can fully demonstrate their potentials.

The research developed in this dissertation has contributed towards the improve-
ment of different robust search strategies to handle IR problems in either continu-
ous or combinatorial or both domains. A large number of datasets and multiple
hyper-parameter settings designed in the experiments, together with a thorough
analysis and the verification of different statistical tests have reinforced the insights
concluded in each chapter. The thesis began with a thorough literature review of
diverse approaches to address IR problem, then identified the strengths and draw-
backs of those solutions, with an emphasis on those that are considered state-of-
the-art, from which the research gaps and objectives have been established. Next,
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details of different backgrounds and related works related to the solving problems
have been completed, including key sections like meta-heuristics, fitness approxi-
mation, and memetic computing with pattern search. After this, three contributions
presented in the three research stages have been developed covering two types of so-
lutions for IR (i.e. IS and IG), in which early findings contribute to the later research
outcomes. The key contributions deployed through the dissertation are revisited in
the following paragraphs, where workable solutions are connected to the research
gaps and objectives initially established in the introductory chapter.

• The first contribution (Chapter 3) has addressed the high computational cost
of fitness evaluation in a population-based evolutionary search algorithm (i.e.
CHC). The key novelty of the proposed approach lies in the acceleration of
the fitness evaluation in the context of imbalanced classification. The acceler-
ation mechanism was conducted in two stages: Firstly, a preliminary cluster-
ing stage of majority examples transforms a binary chromosome into another
form which can describe the overall location of the existing samples in that
solution. This stage defines another equivalent encoding with new features
that can effectively group similar chromosomes. Secondly, another clustering
stage exploits the newly defined chromosome representation to categorise sim-
ilar elements into groups, and thus each chromosome’s fitness can be approxi-
mated based on its distance to a selected representative of the cluster it belongs
to. This chapter has introduced a new population-based meta-heuristic search
framework composing an evolutionary search and a surrogate model for fit-
ness evaluation. The reported results with the verification of different statis-
tical tests have confirmed the achievement of Objective 1, as the runtime has
been greatly reduced while maintaining the best so far achieved performance.

• After proposing successfully an effective and time-efficient solution for IS in
Chapter 3, Chapter 4 has introduced a movel derivative-free search method for
IG, which consists of Single-Point Search and MC. Various aspects of the pro-
posed single-point memetic search structure have been analysed with a large
number of datasets, including the number of evaluations (i.e. computational
budget), different forms of a single-point search starting from a naive structure
to a more complex one. As a results, SPMS-ALS has been successful to demon-
strate its effectiveness and time-efficiency when reporting a significantly low
runtime to achieve mostly equivalent high performance in comparison with
the state-of-the-art approaches. These achievements have covered Objective
2 of the thesis: a fast and yet effective domain-tailored memetic approach for
IG. In addition, fruitful insights obtained in this chapter are key achievements
for the development of a novel methodology handling both IS and IG in the
subsequent research stage.
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• From the success of accelerating different search strategies in Chapters 3 and
4, the output RS has been time-efficiently obtained from a selection or genera-
tion process, providing fundamentals to conduct the first attempt of integrat-
ing those two processes into one single search framework (Chapter 5). A new
search design has been developed adopting the well-established algorithm in
Chapter 4 plus several newly designed LS operators tailored to the problem
domain. We have demonstrated the improvement of the runtime used in this
new framework with respect to that of the previous algorithmic designs and
state-of-the-art search approaches. Achievements in Chapter 5 contains Ob-
jective 2, given that the algorithmic design is simple and effective in handling
IG. However, they mainly cover Objective 3 when presenting an IR solution to
work on both combinatorial and continuous search spaces, which is different
from other studies conducting either IS or IG separately. Being consistent with
the main theme of accelerating search algorithms in this thesis, this novel algo-
rithmic design is associated with an acceleration mechanism for the objective
function, and thus can speed up the search.

In conclusion, the contributions summarised throughout different chapters above
have thoroughly fulfilled the three defined thesis objectives. Each chapter has con-
tributed in its own way towards accelerating a search strategy for IR.

6.2 Limitations

In relation to the contributions summarised above, the research work completed in
this dissertation also contains limitations that need to be acknowledged. In this sec-
tion, we discuss those shortcomings which would reinforce the research conducted
and may also suggest ideas for future work.

• The experiments in which two-stage clustering was employed for fitness ap-
proximation may benefit from further an analysis of parameter tuning. The
analysis on the effect of parameters (i.e. k1, k2) in the two-stage clustering may
provide more in-depth understanding. In addition, features transformed from
the binary chromosome representation to an intermediate form, presented in
Section 3.3.2, was preliminary examined by only k-means. Employing other
powerful clustering methods or even supervised learning models may explore
more insights and/or provide solutions for other applications. Hence, an anal-
ysis of using these features in such different scenarios can provide more un-
derstanding and highlight their significance.

• As stated in the thesis the proposed search frameworks are designed for 1-
NN, a well-known instance-based learning approach. Though the resulting
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RS can be employed in other classifiers, other aspects such as tuning hyper-
parameters may be required to obtain the right RS for a specific classifier. In
this regard, this thesis will limit its discussion to the use of the proposed search
frameworks for 1-NN only, leaving the deployment of the RS with other classi-
fiers unexamined. It is noted that the accelerated computation of some search
frameworks (i.e. APMS-ALS, APS-VSS) may be infeasible in learning with
other classifiers as they are specifically designed for k-NN.

• The entire conducted research has employed the case study of classification
with small and medium datasets. Other scenarios like Big Data classifica-
tion or feature reduction have not been examined with the proposed search
frameworks, though empirical numerical results in those scenarios may pro-
vide more understanding and can further demonstrate their robustness. The
time constraint of completing those experiments and a high demand of com-
putational resources have limited the scope of experimental design of the dis-
sertation.

The limitations discussed above also represent for a set of enhancement that may
suggest immediate lines of work in the next research stage. In the next section, we
relate our current research stage to other sectors of investigation that would either
develop further the research work or deploy the found insights in other applica-
tions.

6.3 Future work

The research work conducted in this dissertation has aimed to enhance the speed of
derivative-free search techniques, bridging the gaps in the intersection of the three
domains of study, namely: ML, data mining and optimisation. The proposed fast
and effective search methods can extend their applicability to other research fields
or applications. In the following, we remark several ideas for future work derived
from our understanding about the findings and limitations. These ideas may be
applicable in deploying the success of our search frameworks in other applications
or in digging further the insights that have not been exploited.

• The curse of dimensionality has caused a lot of challenges to many learning
models, which has captured a lot of attention in recent works (Ayesha, Hanif,
and Talib, 2020). This problem has been tackled by various approaches as
discussed in Chapter 1. To participate in the family of solutions for feature
reduction, our different search frameworks present a wide range of advan-
tages to address the problem. The frameworks are now focusing on features
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(i.e. columns in the matrix of TR) to shrink the size of features or to generate
artificial feature values.

• As mentioned above, learning with more powerful models like ensemble may
reach higher classification accuracy (Rokach, 2010; Galar et al., 2011). Ensemble-
based learning methods (e.g. Bagging, Boosting) combine multiple weak clas-
sifiers to form ensembles of diverse base models (Chawla et al., 2003), which
have been proved more accurate than a non-ensemble learning approach (Galar
et al., 2011). To adopt the proposed search designs into other classifiers, more
investigation of understanding the learning models is necessary. While SPMS-
ALS or APS-VSS needs re-designing to maintain the acceleration mechanism,
EUSC and EUSHC are applicable for any classifier. Considering this important
characteristic of EUSC and EUSHC, a continuation of the research on these two
robust evolutionary search frameworks would be promising with ensemble
learning to obtain higher accuracy performance for imbalanced classification
with respect to EUS. From the insights gained in Chapter 3, the accelerated
search mechanism is highly possible to speed up EUSBoost (Galar et al., 2013),
the state-of-the-art method in the family of undersampling techniques for ad-
dressing imbalanced classification.

• Broaden the topic to Big data scenario where the examined datasets are not
small or medium, but huge. Learning algorithms may need to be re-designed
to capture the insights from the datasets through distributed Big Data tech-
nologies depending on what approach to be used (i.e. global and local). While
a global approach considers the entire dataset as one distribution, a local method
develops a solution with the split dataset locally available at a computing
node, which our search frameworks can be employed without any modifica-
tion to handle Big Data classification problem. Other local approaches employ-
ing evolutionary-based search may require more split from the original source
because excessive time is consumed to process a large volume of samples with
these techniques. In addition, the search may be misled with a small portion of
the original source. Our search frameworks have a significant lower runtime
to handle the same number of samples, so that, the original data can be split
to fewer chunks. On top of having lower possibility of misleading the search,
this deployment can contribute to time and energy saving as it allows a lower
number of computing nodes to handle a larger volume for dataset within a
reasonable amount of time.

• For EUSC, the features defined in the intermediate representation can be ex-
amined in supervised learning as follows: Initially, chromosomes are vastly
generated to cover the fitness space. Next, these chromosome samples are
transformed into an equivalent form where the features were constructed as
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guided in Section 3.3.2. The transformed vectors will be fed to other powerful
learning models for learning. Lastly, the learned model will be used glob-
ally for fitness prediction when the search requires an evaluation. As a result,
constructing a supervised learning model may have a positive impact on the
search performance (i.e. runtime or accuracy), and thus may extend the con-
tribution of our research in the literature.

• The reader might wonder how well the classification performance is when
the resulting RS is used directly by any other classifier like ensemble model,
decision tree or SVM. Although all of the proposed search frameworks are
intentionally designed for 1NN, the resulting set can be potentially employed
by another learning model. Parameter tuning may be investigated to obtain
the right size of an RS with respect to the decision boundary of a classifier.
Our first preliminary experiments using directly the resulting RS as training
data for other learning models were reported in Section 4.4.6 and the results
showed a clear overfitting issue at the learned model. However, it is promising
that learning with other classifiers exhibits several areas of improvement that
could uphold and extend the insights presented in this dissertation.
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