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Abstract

The aim of this work is to introduce and investigate 3 distinct problems in Algebraic
Quantum Field Theory whose solution relies on (higher) multicategorical methods.
More precisely, we will discuss a model-independent comparison between Algebraic
Quantum Field Theory and Factorization Algebras, a 2-categorical notion of algebraic
quantum field theory more sensitive to global aspects of gauge theories than previous
approaches and a “smoothness axiom” for algebraic quantum field theories encoding
“smooth responses of observable algebras” to “smooth variations of spacetimes”.
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I N T R O D U C T I O N

An algebraic quantum field theory (AQFT) is, roughly speaking, a law associating
associative and unital (∗-)algebras of observables to spacetimes, satisfying some phys-
ically motivated axioms, most notably Einstein causality, i.e. the axiom imposing ob-
servables with no causal relationship to commute with each other ([HK63, BFV03]).

Due to its rigour and expressiveness, this approach to axiomatize quantum field
theories on Lorentzian spacetimes has been widely studied in the last 50 years, see
e.g. [BDFY15] for a review of the recent successes of AQFT. As can be inferred by this
book, AQFT is a very broad field that can be approached from various viewpoints,
e.g. from analytical (operator algebras), geometrical and algebraic perspectives. Our
work contributes to the latter picture, more precisely the long-standing tradition of
categorical approaches.

In recent years various categorical techniques have been explored, leading to rel-
evant advancements in AQFT. For example, the use of multicategories has largely
improved the study of the relationships between AQFTs (see [BS19b, BSW21]), the
main reason for this success being the encoding of Einstein causality as a structure
and not as a property.

More recently, AQFT has witnessed huge developments toward the inclusion of
gauge theoretic models. This was started by Fredenhagen and Rejzner by introducing
chain complex-valued AQFTs ([FR12, FR13]) through the Batalin-Vilkovisky formal-
ism. Later, this framework was formalized by Benini, Schenkel and Woike in [BS19a]
and [BSW19b], motivating the use of higher categorical methods to study AQFTs.

The aim of this thesis is to discuss our humble contributions to this field ([BPS19,
BPS20, BPSW21]) and, leveraging on multicategorical and higher categorical tech-
niques, to show the effectiveness of Category Theory, not just as a unifying language,
but also as an active source of new ideas.

More precisely, the common thread of this work will be the use of higher (multi)cat-
egorical techniques to approach 3 rather different questions that motivated our stud-
ies.

The first question concerns, broadly speaking, the role of Category Theory as a
unifying language. In particular, we will discuss the relationship between Factoriza-
tion Algebras (FA) and Algebraic Quantum Field Theory (AQFT). A comparison at the
level of examples between these axiomatizations of quantum field theory was studied
by Gwilliam and Rejzner in [GR17] and our main contribution will be considering a
categorical and model-independent one. Recall that Factorization Algebras are an
axiomatization of quantum field theory due to Costello and Gwilliam (see [CG17])
that takes a slightly different perspective than AQFT, namely, a prefactorization algebra
(PFA) assigns vector spaces of observables to open subsets of a topological manifold
M and comes endowed with factorization products, i.e. with laws on how to multi-
ply observables coming from disjoint spacetimes. We will see (Theorem 2.4.1) that,
provided we assume some natural conditions on both sides, algebraic quantum field
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Introduction

theories and prefactorization algebras are intimately related, or, in categorical terms,
form the collections of objects of equivalent categories.

The second question concerns the use of higher categorical techniques to study
gauge theories. As mentioned earlier, higher categorical tools have already been used
in AQFT in the context of chain complex-valued AQFTs. The problem with these
methods, though, is that they are perturbative and detect only infinitesimal aspects
of gauge theories. Our aim is to study alternative higher categorical approaches,
more sensitive to global features.

In particular, we will develop a 2-categorical analogue of AQFTs, namely 2-algebraic
quantum field theories (2AQFTs), that assign K-linear locally presentable categories
(with K a field of characteristic 0) of observables to spacetime regions. The K-linear
categories assigned by a 2AQFT should be interpreted as a quantization of the quasi-
coherent sheaf category of the phase space of a physical system ([Toe14]). This be-
comes in particular relevant when the phase space is a stack, as it is the case in gauge
theory, due to the fact that quasi-coherent sheaf categories carry more information
than function algebras (see e.g. [Lur04] for a reconstruction theorem of geometric
stacks from their quasi-coherent sheaf categories).

The third question concerns the use of (higher) Topos Theory to endow algebraic
quantum field theories with a further axiom, which we call smoothness axiom. Such ax-
iom should encode the idea that the “algebras of observables shall respond smoothly
to smooth variations of spacetimes”. Let us try to be a bit clearer. Suppose we are
given a Lorentzian manifold and we decide to “vary smoothly” the coefficients of
its metric tensor, therefore obtaining a family {Ms|s ∈ S} of spacetimes “depending
smoothly” on the parameter s ∈ S. We would expect the algebras of observables
A(Ms) to “vary smoothly” accordingly, since we presume a “small change of space-
time” to induce a “small change of observable algebras”, but no axiom in AQFT
encodes this property. To tackle this inadequacy in full generality is an irksome
problem which will probably require the efforts of an heterogeneous community of
mathematicians (see Subsection 5.2.3). To make a first step toward fulfilling this la-
cuna and set a possible framework for discussions, we will focus on 1-dimensional
quantum field theories. In particular, we will use stacks, a 2-categorical analogue of
sheaves, to introduce smooth refinements of a suitable category of spacetimes and of
the category of associative and unital ∗-algebras, therefore defining smooth algebraic
quantum field theories as stack morphisms between such stacks.

Let us conclude this introduction by outlining the content of the remainder of this
thesis:

(a) In Chapter 1 we briefly recall the main tools needed to understand the content
of this work. From a categorical perspective we will need to talk about multicat-
egories and involutive categories (see Subsections 1.1.1 and 1.1.2). While the for-
mer are a straightforward generalization of categories in which morphisms have
multiple inputs, the latter represent the correct environment where to study ∗-
structures. The other concepts we will need to recall come mainly from the
world of AQFT. In particular, in Subsection 1.2.1 we introduce the category Loc
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Introduction

of globally hyperbolic Lorentzian manifolds while in Subsections 1.2.2 and 1.2.3
we present the core objects of this thesis: (ordinary) algebraic quantum field
theories. We will initially define an algebraic quantum field theory to be a func-
tor Loc → AlgK, where AlgK denotes the category of associative and unital
algebras, satisfying the Einstein causality axiom (i.e. causally independent ob-
servables must commute), while we will subsequentially opt for a more generic
and flexible definition replacing the category of spacetimes Loc with any or-
thogonal category Sp⊥ (an orthogonal category is a category endowed with a
suitable relation between morphisms with the same target) and replacing the
category AlgK with any category of algebras Alg(C) in a generic symmetric
monoidal (in general also closed and bicomplete) category (C,⊗, I). Further-
more, we will introduce the AQFT multicategory OSp⊥ and we will see that
algebraic quantum field theories can be conveniently interpreted in terms of
multicategory-morphisms (multifunctors) OSp⊥ → C.

(b) In Chapter 2 we will approach the first of the questions mentioned earlier, i.e.
what is the relationship between Factorization Algebras and Algebraic Quan-
tum Field Theory? Recall that a prefactorization algebra is a law that associates to
any spacetime M a vector space of observables F(M) and to each tuple of disjoint
Loc-morphisms ( f1 : M1 → N, . . . , fn : Mn → N) (i.e. morphisms whose im-
ages are mutually disjoint) a factorization product F( f ) : F(M1)⊗ · · · ⊗ F(Mn)→
F(N).

In order to obtain a meaningful comparison we will restrict our attention to
algebraic quantum field theories A : Loc → Alg(C), i.e. to quantum field the-
ories defined on globally hyperbolic Lorentzian manifolds, and we will endow
prefactorization algebras and algebraic quantum field theories with two further
axioms, namely Cauchy constancy and additivity (see [Few13],[FV12]). We will ob-
tain functorial comparisons between the categories formed by these objects, and
we will prove that the category of additive Cauchy constant algebraic quantum
field theories is equivalent to the category of time-orderable additive Cauchy con-
stant prefactorization algebras, where time-orderable prefactorization algebras
are prefactorization algebras that admit factorization products just for tuples of
Loc-morphisms that are time-orderable in some appropriate sense.

(c) In Chapter 3 we begin by introducing multicategorical analogues of 2-categories,
pseudo-functors, pseudo-natural transformations and modifications, namely 2-
multicategories, pseudo-multifunctors, pseudo-multinatural transformations and mul-
timodifications and we proceed by proving that algebraic quantum field theories
can be equivalently interpreted as Alg(C)-valued prefactorization algebras, a
fact that we will leverage to introduce 2-algebraic quantum field theories as
pseudo-multifunctors PSp⊥ → PrK, where PSp⊥ denotes the prefactorization

multicategory associated to the orthogonal multicategory Sp⊥ and PrK is the
2-multicategory of locally presentable K-linear categories. In this context, we
will investigate the properties of 2-algebraic quantum field theories and define
a gauging construction that will enable us to obtain simple toy-models of non-
truncated 2-algebraic quantum field theories, i.e. 2-algebraic quantum field the-
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ories that do not arise naturally (in some appropriate sense) from an ordinary
algebraic quantum field theory. Moreover, we will discuss local-to-global prop-
erties of our constructions and a categorification of Fredenhagen’s universal
algebra, which we call Fredenhagen’s universal category.

(d) In Chapter 4 we discuss smooth refinements of the categories Loc and ∗AlgC

(of associative and unital ∗-algebras) using stacks (a 2-categorical analogue of
sheaves) on the category Man of manifolds and smooth maps. We will then
introduce smooth 1-dimensional algebraic quantum field theories as stack mor-
phism and, more importantly, we will add a further level of smoothness to our
setting by defining a stack AQFT∞

1 that will allow us to define concepts such
as “smooth curves of smooth 1-dimensional algebraic quantum field theories”.
Furthermore, we will introduce the smooth automorphism group of a smooth al-
gebraic quantum field theory and we will give examples of the constructions
introduced. More precisely, we will discuss smooth refinements of the canonical
(anti-)commutation relation functors and define suitable concepts of Green oper-
ators for vertical differential operators, which we will leverage to obtain a smooth
analogue of the 1-dimensional massive scalar field with smoothly varying mass
parameter and an example of a U(1)-equivariant smooth 1-dimensional AQFT,
namely a smooth counterpart of the 1-dimensional massless Dirac field together
with its (global) U(1)-symmetry.

4



1
P R E L I M I N A R I E S

An Algebraic Quantum Field Theory (AQFT) on curved spacetimes is a functor
Loc → ∗AlgC from the category of globally hyperbolic Lorentzian manifolds to the
category of C-algebras with ∗-involutions satisfying some physically motivated ax-
ioms ([BFV03]). In more recent years this picture has been generalized in many dif-
ferent directions, from considering broader kinds of spaces and symmetric monoidal
target categories, to the use of multicategories for a more comprehensive study of
the categorical aspects. The aim of this chapter is to recall and explain some of these
advancements, in particular those that will be leveraged throughout the thesis. More
specifically, in Section 1.1 we recall the fundamentals of the theory of multicategories,
such as the definition of multicategory, multifunctor and multinatural transformation
and slightly more advanced topics such as multicategorical left Kan extensions and the
Boardman-Vogt tensor product ([EM09, Wei07]). Moreover, we introduce the prefactor-
ization multicategory ([BPS19]) and a natural categorical environment where to study
∗-involutions, namely involutive categories ([BSW19a, Jac12]).

In Section 1.2, we begin exploring the world of Algebraic Quantum Field Theory
(AQFT) by recalling some basic definitions and results from Lorentzian Geometry
([BS06, BGP07, BDH13]), by introducing the category Loc and by listing the Brunetti-
Fredenhagen-Verch axioms while giving some physical motivation ([BDFY15]). We
will proceed by defining categorically what an Algebraic Quantum Field Theory val-
ued in a generic symmetric monoidal category is ([BSW21]) and by introducing the
multicategorical formulation of AQFTs ([BSW21]), showing that AQFTs can be con-
veniently interpreted in terms of multifunctors (see Subsection 1.2.3).

For the sake of clarity we would like to point out that the only original result of
this section is Theorem 1.2.16.

1.1 multicategories and involutive categories

1.1.1 Multicategories

Symmetric multicategories (or operads, see [EM09, Wei07, Yau16]) are a generalization
of categories obtained by considering morphisms with more than one input (opera-
tions). In the spirit of Category Theory where the key focus is not on the objects
themselves, but on the relationships among those and their higher relationships, we
will introduce a multicategorical analogue of functors and natural transformations,
called multifunctors and multinatural transformations. To continue the analogy we will
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1.1 multicategories and involutive categories

see how multicategories, multifunctors and multinatural transformations form a 2-
category MULT in which the 2-category CAT of categories, functors and natural
transformations is embedded. Furthermore we will give some examples of multicat-
egories and introduce multicategorical left Kan extensions and the Boardman-Vogt
tensor product ([EM09, Wei07]).

Definition 1.1.1. A Set-valued symmetric multicategory O consists of the following
data ([EM09, Wei07, Yau16]):

(a) A collection of objects (or colours) O0.

(b) For all t ∈ O0, n ≥ 0, c := (c1, . . . , cn) ∈ On
0 , a set of n-operations O

(t
c
)
.

(c) For all t ∈ O0, n ≥ 1, a ∈ On
0 , mi ≥ 0, bi ∈ O

mi
0 , with i = 1, . . . , n, a composition

map γ : O
(t

a
)
×∏n

i=1O
(ai

bi

)
→ O

(t
b
)
, where

b = (b11, . . . , b1m1 , . . . , bn1, . . . , bnmn).

We write compactly φ ψ := γ(φ, (ψ1, . . . , ψn)) for the composition of operations.

(d) For every t ∈ O0 a function 1t : {∗} → O
(

t
t
)
, where {∗} is the one-object set.

We also write 1t ∈ O
(

t
t
)

for the corresponding identity.

(e) A right action of the permutation group on n letters Σn on the collection of all
n-operations

O(σ) : O
(t

c
)
→ O

( t
cσ

)
,

where cσ := (cσ(1), . . . , cσ(n)). We write φ · σ := O(σ)(φ) for the permutation
action (notice the dot) while we use the symbol ψσ to denote the permutation
(ψσ(1), . . . , ψσ(n)) of an n-tuple of operations (ψ1, . . . , ψn).

These data have to satisfy the following axioms:

(a) Associativity: for all t ∈ O0, n ≥ 1, a ∈ On
0 , φ ∈ O

(t
a
)
, mi ≥ 1, bi ∈ O

mi
0 ,

ψi ∈ O
(ai

bi

)
, sji ≥ 0, cji ∈ O

sji
0 , ρji ∈ O

(bjicji

)
with i = 1, . . . , n and ji = 0, . . . , mi, the

following equation holds:
(φ ψ) ρ = φ (ψ ρ) (1.1.1)

Therefore, we can unbiasedly write φ ψ ρ.

(b) Unitality: for all t ∈ O0, n ≥ 0 c ∈ On
0 , m ≥ 1, b ∈ Om

0 the following equations
hold :

1t φ = φ (1.1.2)
ψ1b = ψ (1.1.3)

where φ ∈ O
(t

c
)
, ψ ∈ O

(t
b
)

and 1b = (1b1 , . . . ,1bm).
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1.1 multicategories and involutive categories

(c) Equivariance: for all t ∈ O0, n ≥ 1, a ∈ On
0 , φ ∈ O

(t
a
)
, mi ≥ 0, bi ∈ O

mi
0 ,

ψi ∈ O
(ai

bi

)
, σ ∈ Σn, σi ∈ Σmi with i = 1, . . . , n, the following equations hold:

φψ · σ〈m1, . . . , mn〉 = (φ · σ)(ψσ〈m1, . . . , mn〉) (1.1.4)

(φψ) · (σ1 ⊕ · · · ⊕ σn)) = φ (ψ1 · σ1, . . . , ψn · σn) (1.1.5)

where σ〈m1, . . . , mn〉 is the block permutation on m1 + · · · + mn elements ob-
tained from σ and σ1 ⊕ · · · ⊕ σn is the permutation on m1 + · · ·+ mn elements
obtained from the σis.

Examples of multicategories abound. In particular, every category is a multicate-
gory.

Example 1.1.2. Let C be a category. The associated multicategory C is given by the
following data:

(a) The collection of objects is C0 = Ob(C), where Ob(C) is the underlying collec-
tion of objects of C.

(b) For every c, t ∈ C0, sets C
(

t
c
)

:= C(c, t), where C(c, t) is the set of morphisms
c → t in the category C (C-morphisms). For every tuple of objects c ∈ Cn

0 with
n 6= 1 and for every object t ∈ C0, sets C

(t
c
)

:= ∅.

(c) The composition maps for 1-operations are obtained from the composition maps
of the underlying category C and are trivial for other arities.

(d) For every t ∈ C0 the unit element is 1t := idt, where idt is the identity C-
endomorphism of t.

(e) The permutation actions are trivial.

The choice of setting C
(

t
∅
)
= ∅ for every t ∈ C0 may appear arbitrary and the

reader might notice that we could have just as well imposed C
(

t
∅
)
= {∗}. The reason

behind it is that, as we will see later, the former choice gives rise to an adjunction
CAT�MULT, while the latter does not. O

One other interesting source of examples is the multicategories arising from sym-
metric monoidal categories. In fact, we will see that for each symmetric monoidal
category C there exists an associated multicategory C. Notice that we are using the
same notations to denote a symmetric monoidal category and its associated multicate-
gory since the context should always make clear which kind of object we are referring
to.

Example 1.1.3. Let (C,⊗, I) be a symmetric monoidal category, not necessarily strict.
The associated multicategory C is given by the following data:

(a) The collection of objects is C0 = Ob(C).

7



1.1 multicategories and involutive categories

(b) For every t ∈ C0, n ≥ 0, c ∈ Cn
0 the sets of operations are

C
(t

c
)
= C(((. . . (((c1 ⊗ c2)⊗ c3) . . . )⊗ cn), t).

We will see that, since the tensor product is associative (up to invertible associa-
tors), the order of the parenthesis is not relevant and every choice of an ordering
will lead to the same multicategory up to isomorphism. Notice that we use the
convention ⊗n

i=1cn = I when n = 0.

(c) The composition maps are obtained from those of the monoidal category.

(d) For every t ∈ C0 the unit 1t = idt.

(e) The right action of Σn on the collection of all n-operations is given by the sym-
metric braiding of (C,⊗, I). In particular, let n 6= 0, c ∈ Cn

0 and f ∈ C
(t

c
)
.

The action of σ on f , which defines an operation f · σ ∈ C
( t

cσ

)
, is given by

f · σ = f ◦ flipσ where flipσ is obtained from the symmetric braiding.

Two symmetric monoidal categories that will be of particular relevance throughout
the thesis are the symmetric monoidal category (VecK,⊗K, K, τ) of K-vector spaces
(with its standard symmetric monoidal structure), where K will be always a field of
characteristic 0, and the symmetric monoidal category (AlgK,⊗, K, τ) of associative
and unital algebras over the field K (concretely, the tensor product of algebras A,
B ∈ AlgK is given by the tensor product algebra A ⊗ B, i.e. the algebra whose
multiplication is given by (a ⊗ b) (a′ ⊗ b′) := (a a′) ⊗ (b b′) and the unit element is
1A⊗ 1B ∈ A⊗ B, the monoidal unit is K ∈ AlgK and the symmetric braiding is given
by τ : A ⊗ B → B ⊗ A , a ⊗ b 7→ b ⊗ a) (notice that we will always consider unital
algebras). O

Examples 1.1.2 and 1.1.3 provide a lot of instances of multicategories, but they do
not exhaust them all. In particular, we will introduce multicategories, such as the
associative multicategory As and the multicategory PC⊥ associated to an orthogonal
category C⊥, that do not arise in this fashion.

Example 1.1.4. The commutative multicategory Com is given by the following data:

(a) The collection of objects Com0 := {∗}, where {∗} is the set with one-element.

(b) For all n ≥ 0, the sets Com(n) := {∗n}. In particular there is exactly one n-
operation for each n ≥ 0.

The units, the composition maps and the permutation actions are defined in the only
way possible. O

Example 1.1.5. The associative multicategory As is defined by the following data:

(a) The collection of objects As0 := {∗}, where {∗} is the one-element set.

(b) For all n ≥ 0, the sets As(n) := Σn, where Σn is the permutation group on n
elements. In particular, for n = 0 we impose As(0) := {∗0}.

8



1.1 multicategories and involutive categories

(c) For all n ≥ 1 and mi ≥ 0, for i = 1, . . . , n, the composition map γ : As(n) ×
∏n

i=1 As(mi)→ As(m1 + · · ·+ mn),

σ(σ1, . . . , σn) := σ〈mσ−1(1), . . . , mσ−1(n)〉 (σ1 ⊕ · · · ⊕ σm) (1.1.6)

for every σ ∈ As(n), σi ∈ As(mi), with i = 1, . . . , n, i.e. the group multiplication
in Σm1+···+mn of the block permutation σ〈mσ−1(1), . . . , mσ−1(n)〉 induced by σ and
the sum permutation σ1 ⊕ · · · ⊕ σn induced by the σis.

(d) The function 1∗ : {∗} → As(1) picking out the identity permutation 1∗ := e.

(e) The right action of Σn on the collection of all n-operations

As(σ) : As(n)→ As(n),

given by σ′ · σ = σ′σ where σ′ ∈ As(n) and σ′σ is the group product of σ′ and σ

in As(n) .

O

Orthogonal categories are essential to generalize AQFTs and Factorization Algebras
(FA) to generic classes of spaces endowed with a suitable notion of orthogonality.

Definition 1.1.6 ([BSW21]). An orthogonal category D⊥ is a pair D⊥ := (D,⊥) con-
sisting of a category D and a subcollection ⊥ ⊆ MorD t×t MorD of the collection of
pairs of morphisms with a common target (called orthogonality relation), such that the
following conditions hold true:

1. Symmetry: If ( f1, f2) ∈ ⊥, then ( f2, f1) ∈ ⊥.

2. ◦-Stability: If ( f1, f2) ∈ ⊥, then (g f1 h1, g f2 h2) ∈ ⊥, for all composable D-
morphisms g, h1 and h2.

We denote orthogonal pairs ( f1, f2) ∈ ⊥ also by f1 ⊥ f2.
An orthogonal functor F : D⊥ → E⊥ is a functor F : D→ E such that F( f1) ⊥E F( f2)

for all f1 ⊥D f2.
We denote by OrthCAT the category of orthogonal categories and orthogonal func-

tors.
Notice that given an orthogonal category E⊥ = (E,⊥E), a category D and a functor

F : D → E, we can endow D with the pullback orthogonality relation ⊥D:= F∗(⊥E)
given by: f ⊥D g ⇐⇒ F( f ) ⊥E F(g). In particular, F : D⊥ → E⊥ is an orthogonal
functor.

Example 1.1.7. Let Open(M) be the category of non-empty open subsets U ⊆ M of
a manifold M with morphisms U → V given by subset inclusions U ⊆ V ⊆ M. We
introduce an orthogonality relation ⊥d by declaring two morphisms U1, U2 ⊆ V ⊆ M
to be orthogonal if and only if U1 ∩U2 = ∅. We denote this orthogonal category by
Open(M)⊥d . O

9



1.1 multicategories and involutive categories

Example 1.1.8. Let M be a manifold and consider the orthogonal category Disk(M)⊥d =
(Disk(M),⊥d) where Disk(M) ⊆ Open(M) is the full subcategory of Open(M)
(see Example 1.1.7) consisting of the open non-empty subsets U ⊆ M such that U
is a Cartesian space, i.e. U ∼= Rm for m = dim(M), and where ⊥d is the pullback
orthogonality relation induced by the inclusion functor J : Disk(M) → Open(M)⊥d

(see Definition 1.1.6). O

Definition 1.1.9. The prefactorization multicategory PD⊥ associated to an orthogonal
category D⊥ is the multicategory defined by the following data (see [BPS19]):

(a) The collection of objects is PD⊥0
= Ob(D), where Ob(D) is the collection of

objects underlying the orthogonal category D⊥.

(b) For all n ≥ 0, t ∈ PD⊥0
, d ∈ Pn

D⊥0
, the sets

PD⊥
( t

d
)

:=
{

f := ( f1, . . . , fn) ∈
n

∏
i=1

D(di, t) : fi ⊥ f j for all i 6= j
}

, (1.1.7)

For the empty tuple d = ∅, we set PD⊥
(

t
∅
)

:= {∗t}, where {∗t} is a set with one
element.

(c) For all n ≥ 1, t ∈ PD⊥0
, a ∈ Pn

D⊥0
, mi ≥ 0, bi ∈ P

mi
D⊥0

, for i = 1, . . . , n, the

composition maps γ : PD⊥
(t

a
)
×∏n

i=1 PD⊥
(ai

bi

)
→ PD⊥

(t
b
)

are obtained from the
compositions in the underlying orthogonal category D⊥:

γ
(

f , (g
1
, . . . , g

n
)
)

:= f g :=
(

f1 g11, . . . , f1 g1m1 , . . . , fn gn1, . . . , fn gnmn

)
.

(1.1.8)

(d) For every t ∈ PD⊥0
, the functions 1t : {∗} → PC⊥

(
t
t
)

picking out the identity
map idt.

(e) The permutation actions PD⊥(σ) : PD⊥
( t

d
)
→ PD⊥

( t
dσ

)
are given by

PD⊥(σ)( f ) := f · σ := f σ := ( fσ(1), . . . , fσ(n)) . (1.1.9)

Remark 1.1.10. While we introduced prefactorization multicategories associated just to
orthogonal categories D⊥, i.e. categories D equipped with a binary relation on the set
of morphisms with the same target, there are more general prefactorization multicat-
egories that are constructed out of n-ary relations on the sets of morphisms with the
same target for all n (we will see the example of the time-orderable prefactorization
multicategory PtLoc in Chapter 2). M

Defining multifunctors, a generalization of functors in the context of multicate-
gories, is pretty straightforward and relies on the adagio that, as a map of categories
is structure preserving, i.e. preserves compositions and units, a map between multi-
categories should be structure preserving as well, i.e. compatible with compositions,
units and permutation actions. In particular, leveraging on Example 1.1.2, we will see
that functors are special examples of multifunctors.

10



1.1 multicategories and involutive categories

Definition 1.1.11. Let O and P be symmetric multicategories. A multifunctor F : O →
P is given by the following data:

(a) A map on the underlying collections of objects F0 : O0 → P0.

(b) For all t ∈ O0, n ≥ 0 and c ∈ On
0 , functions Ft

c : O
(t

c
)
→ P

(Ft
Fc
)
, where Fc =

(Fc1, . . . , Fcn).

Notice: We will drop the superscripts and subscripts when clear from the con-
text.

Satisfying the following axioms:

(a) Preservation of compositions: for all t ∈ O0, n ≥ 1, a ∈ On
0 , φ ∈ O

(t
a
)
, mi ≥ 0,

bi ∈ O
mi
0 , ψi ∈ O

(ai
bi

)
, with i = 1, . . . , n, the following equation holds:

F(φ ψ) = F(φ) F(ψ) (1.1.10)

where F(ψ) = (Fψ1, . . . , Fψn).

(b) Preservation of units: for all t ∈ O0 the following equation holds:

F(1t) = 1F(t) (1.1.11)

(c) Preservation of permutations: for all t ∈ O0, n ≥ 0, c ∈ On
0 , φ ∈ O

(t
c
)
, σ ∈ Σn, the

following equation holds:

F(φ · σ) = F(φ) · σ (1.1.12)

The collection of multicategories and multifunctors form a bicomplete ([EM09])) cate-
gory MULT in which the 1-category CAT of categories and functors naturally embeds
fully faithfully.

Example 1.1.12. Let C, D be categories, C, D their associated multicategories (see
Example 1.1.2) and let F : C → D be a functor. There is an obvious multifunctor
F : C → D which coincides with the functor F on objects and 1-operations.

O

Remark 1.1.13. Notice that every multicategory O gives rise to a category π0(O) by
restriction to 1-operations. In particular, the category π0(O) is given by the following
data:

(a) The collection of objects Ob(π0(O)) := O0.

(b) For all objects c, c′ ∈ Ob(π0(O)), the sets π0(O)(c, c′) := O
(

c′
c
)
.

(c) For every object c ∈ Ob(π0(O)), the identity element idc := 1c.

(d) Categorical composition is given by multicategorical composition.

11



1.1 multicategories and involutive categories

Notice further that, given multicategories O and P , for every multifunctor F : O → P
there exists an associated functor π0(F) : π0(O) → π0(P) obtained by restriction of
F to 1-operations.

It can be checked that these assignments are functorial and together with the func-
tor in Example 1.1.12 form the data of a 1-adjunction ↪→: CAT�MULT : π0. M

Example 1.1.14. Let D⊥ = (D,⊥D) and E⊥ = (E,⊥E) be orthogonal categories and
let j : D⊥ → E⊥ be an orthogonal functor. Then, there is an obvious multifunctor
J : PD⊥ → PE⊥ (notice the abuse of notations), where PD⊥ and PE⊥ denote the
prefactorization multicategories associated to D⊥ and E⊥ respectively (see Definition
1.1.9). It is given by the following data:

(a) J0 : PD⊥0
→ PE⊥0

associates to any object d ∈ PD⊥0
the object j(d) ∈ PE⊥0

(b) For every t ∈ PD⊥0
, n ≥ 0, d ∈ Pn

D⊥0
, J assigns to each f ∈ PD⊥

( t
d
)

the tuple

J( f ) = (j( f1), . . . , j( fn)) (which is a well-defined n-operation in PE⊥ since j is
an orthogonal functor).

O

Example 1.1.15. Let (C,⊗C, IC) and (D,⊗D, ID) be (not necessarily strict) symmetric
monoidal categories and (F, F1, F2) : C → D be a symmetric Lax-monoidal functor
with F1 : ID → F(IC) the unit-laxator and F2 : F(c)⊗D F(c′)→ F(c⊗C c′) the monoidal
product-laxator natural transformation. The following data defines a multifunctor F :
C→ D, where C and D are the multicategories associated to the symmetric monoidal
categories C and D (see Example 1.1.3):

(a) The function F0 on the collection of objects is given by the underlying map on
objects of F.

(b) For every t ∈ C0, n ≥ 1, c ∈ Cn
0 , φ ∈ C

(t
c
)

the operation Fc1 ⊗D · · · ⊗D Fcn → Ft

defined by F(φ) ◦ Fn−1
2 . For every t ∈ C0, φ ∈ C

(
t
∅
)

:= C(IC, t) the operation
ID → F(t) defined by F(φ) ◦ F1.

O

Remark 1.1.16. The assignments in Examples 1.1.3, 1.1.15 define the data of a functor
SMCATLax → MULT, where SMCATLax is the category of symmetric monoidal
categories and Lax-monoidal functors ([EM09, Wei07]), which restricts to a func-
tor SMCAT → MULT, where we denote by SMCAT the category of symmetric
monoidal categories and strong monoidal functors. Notice, that we will denote by
SMCat the category of small symmetric monoidal categories and strong monoidal
functors.

Notice that there exists a functor (−)⊗ : MULT→ SMCAT, left adjoint to SMCAT→
MULT, called the monoidal envelope functor ([Hor17]). This functor assigns to each
multicategory O the (strict) symmetric monoidal category O⊗ given by the following
data:

12



1.1 multicategories and involutive categories

(a) The collection of objects is Ob(O⊗) := än∈NOn
0 , i.e. the collection of all tuples

with elements in O0 (or equivalently the set underlying the free monoid on the
elements of O0).

(b) For all n ≥ 0, m ≥ 0, c ∈ Ob(O⊗) of length n, d ∈ Ob(O⊗) of length m, the sets

O⊗(c, d) := ä
α:n→m

∏
0≤i≤m

O
( dicα,i

)
,

where the coproduct is taken over all functions α : n→ m (in this context n and
m denote the sets {1, . . . , n} and {1, . . . , m} respectively) and cα,i is the (possibly
empty) sub-tuple of c containing only the cj’s satisfying α(j) = i. We will denote
morphisms by (α, φ) := (α, φ1, . . . , φm)

(c) The composition maps associate to any (α, φ) : b → a and (β, ψ) : a → t in
O⊗ the morphism (β, ψ) ◦ (α, φ) := (βα, γ) : b → t, where βα is the usual
composition of maps of sets and γ := (γ1, . . . , γ`) is the tuple of operations

γk := ψk φ
β,k
∈ O

( tk
bβα,k

)
determined by multicategorical composition, for k =

1, . . . , `, where φ
β,k

is the sub-tuple of φ = (φ1, . . . , φm) containing only the φj’s

satisfying β(j) = k.

(d) For every c = (c1, . . . , cn) ∈ O⊗ the identities idc := (id, (1c1 , . . . ,1cn)) : c→ c.

(e) The monoidal product O⊗ ×O⊗ → O⊗ is obtained from the free monoid func-
tor Set → Set (i.e. concatenation of tuples c ⊗ c′ := (c, c′)), the symmetric
braiding is obtained leveraging the permutation actions of the multicategory O,
while the monoidal unit is the empty tuple ∅.

To each multifunctor F : O → P it assigns the (strict) monoidal functor F⊗ : O⊗ →
P⊗ given by the following data:

(a) The map F⊗ : Ob(O⊗) → Ob(P⊗) that assigns, for all n ≥ 0, to each object
c ∈ Ob(O⊗) of length n the object F⊗c := (Fc1, . . . , Fcn).

(b) For all n ≥ 0, m ≥ 0, c ∈ Ob(O⊗) of length n, d ∈ Ob(O⊗) of length m,
functions

O⊗(c, d)→ P⊗(F⊗c, F⊗d),

sending (α, φ1, . . . , φm) ∈ O⊗(c, d) to (α, Fφ1, . . . , Fφm) ∈ P⊗(F⊗c, F⊗d).

M

After defining multicategories and multifunctors it is natural to define what cor-
responds to natural transformation in the multicategorical setting, i.e. multinatural
transformations.

Definition 1.1.17. Let O, P be multicategories and F, G : O → P multifunctors. A
multinatural transformation ζ : F → G is given by the following data:

(a) Functions ζt : {∗} → P
(

Gt
Ft
)
, for each t ∈ O0. We also write ζt ∈ P

(
Gt
Ft
)

for the
corresponding 1-operation.

13



1.1 multicategories and involutive categories

Satisfying the following axiom:

(a) Naturality: for each t ∈ O0 and φ ∈ O
(t

c
)

the following equation holds:

G(φ)ζc = ζtF(φ) (1.1.13)

where ζc = (ζc1 , . . . , ζcn).

Example 1.1.18. Let C, D be categories, C, D their associated multicategories (see
Example 1.1.2), F, G : C → D functors, F, G : C → D their associated multifunctors
(see Example 1.1.12) and ζ : F → G a natural transformation. It is easy to verify that
the collection of maps ζt with t ∈ C0 defines a multinatural transformation ζ : F →
G. O

Theorem 1.1.19 ([EM09]). Let O, P be multicategories. The collection of multifunctors
O → P and multinatural transformations between those form the data of a category [O,P ].

Moreover, the collection of all multicategories, multifunctors and multinatural transforma-
tions forms a 2-category MULT of which CAT is a fully faithful 2-subcategory (the embed-
ding CAT ↪→ MULT is obtained from Examples 1.1.2, 1.1.12 and 1.1.18).

In Remark 1.1.13 we noticed there exists a 1-adjunction ↪→: CAT � MULT : π0
where CAT and MULT are considered as 1-categories, CAT ↪→ MULT is fully faith-
ful and π0 : MULT → CAT is given by truncation to 1-operations. Is not difficult
to see that this adjunction lifts to an adjunction between 2-categories, i.e. a biadjunc-
tion. In fact, let F, G : O → P be multifunctors and let ζ : F → G be a multinatural
transformation. The collection of morphisms ζt for every t ∈ Ob(π0(O)) forms the
data of a natural transformation π0(ζ) : π0(F) → π0(G). In particular, the following
result can be proven:

Theorem 1.1.20. The adjunction of 1-categories ↪→: CAT�MULT : π0 in Remark 1.1.13
lifts to an adjunction of CAT-enriched categories ↪→: CAT�MULT : π0.

Remark 1.1.21. We have seen in Theorem 1.1.19 that given multicategories O and P
we can form a category AlgO(P) := [O,P ] called the category of algebras over O
with values in P or the category of P-valued O-algebras. In this thesis, we will mostly
deal with the case P = C where C is the multicategory associated to a symmetric
monoidal category (C,⊗, I) (see Example 1.1.3). By definition an algebra over the
multicategory O with values in C is a multifunctor from O to C. Concretely, such a
multifunctor assigns:

(a) To every object c of O0 an object A(c) ∈ C0.

(b) To every operation φ ∈ O
(t

c
)

a morphism

A(φ) : A(c)→ A(t),

where c = (c1, . . . , cn) and A(c) = A(c1)⊗ · · · ⊗ A(cn).

14
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It is then clear that an algebra morphism, i.e. a multinatural transformation, is just
an operation preserving map.

In particular, if O = As (see Example 1.1.5), the category AlgAs(C) is (isomorphic
to) the category Mon(C) of monoids in C. Moreover, when C is the symmetric
monoidal category VecK of vector spaces over K (see Example 1.1.2), AlgAs(VecK)
specializes to the category AlgK of associative and unital algebras over the field K.

Notice furthermore that, when O = Com, AlgCom(C) (see Example 1.1.4) is the
category of commutative monoids in C.

To see that the last statements hold is an exercise and can be intuitively understood
by noticing that the associative and commutative multicategories count respectively
in how many essentially different ways the elements of an associative or commutative
algebra can be multiplied. M

To shed some light on Remark 1.1.21, in particular to understand why
AlgAs(VecK) ∼= AlgK, we recall briefly how to generate a multicategory from a col-
lection of operations and relations.

The relevant adjunction which comes into play is between MULT and the category
ColO of collections of operations ([Wei07]). A collection of operations can be thought of
as the rough initial data we would like to build a multicategory from: some objects
and operations. More precisely, a collection of operations X on a set of inputs X0
consists of a family of sets X

(t
c
)
, for every t ∈ X0, for every n ≥ 0 and for every

c = (c1, . . . , cn) ∈ Xn
0 . A morphism of collections F : (X0, X) → (X′0, X′) consists of a

function F0 : X0 → X′0 and a function F : X
(t

c
)
→ X′

(F0(t)
F0(c)

)
for every t ∈ X0, for every

n ≥ 0 and for every c ∈ Xn
0 . We call the category of collections of operations and their

morphisms ColO.
It is clear that there exists a forgetful functor U : MULT → ColO, which sends a

multicategory to its underlying objects and operations. What is more interesting is
that U admits a left adjoint.

Theorem 1.1.22 ([Wei07]). The forgetful functor U : MULT → ColO has a left adjoint
Free : ColO→ MULT.

Theorem 1.1.22 provides a practical tool to build a multicategory just by specifying
a set of objects and a collection of generators G. In order to implement relations
on the generators it is then enough to build a collection R, a family of morphisms
Fi : R → UFree(G) representing the relations, and consider the coequalizer of the
family of maps Fi : Free(R) → Free(G) in MULT, where Fi is the map associated to
Fi under the adjunction for every i.

Example 1.1.23. As an exercise let us try to generate the multicategory As from Ex-
ample 1.1.5 using the aforementioned adjunction.

Suppose we are given a symmetric monoidal category (C,⊗, I) and we want to
generate a multicategory As such that AlgAs(C) can be identified with the category
of associative and unital algebras in C. Recalling from Remark 1.1.21 what an algebra
with values in C is and keeping in mind the previous discussion, we realize that
the (a multicategory isomorphic to the) associative multicategory As can be obtained
considering a collection of objects consisting of a single element {∗} and requiring
the generators
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∗

∅

1

∗

∗ ∗

µ

(1.1.14)

representing the unit and the multiplication, to satisfy the relations

∗

∅ ∗

µ
1 =

∗

∗

1 =

∗

∗ ∅

µ
1

∗

µ

µ

∗ ∗ ∗

=

∗

µ

µ

∗ ∗ ∗ (1.1.15)

O

Theorem 1.1.24 ([EM09]). Let (C,⊗, I) be a bicomplete symmetric monoidal category and
let O be a multicategory. The category AlgO(C) is bicomplete.

One of the multicategorical techniques we will use more often is called multicat-
egorical left Kan extension, an analogue of the categorical left Kan extension in the
multicategorical setting.

Definition 1.1.25. Let C, D and E be categories, let φ : C→ D be a functor and denote
by φ∗ the pullback functor [D, E]→ [C, E] given on functors by φ∗(H) = H ◦ φ. If φ∗

admits a left adjoint φ! : [C, E] → [D, E] we will say that φ! is the categorical left Kan
extension along φ.

Since most of the times the symmetric monoidal categories of interest will be bi-
complete and closed, we will assume from now on they are, if not stated otherwise.

The following Theorem provides left Kan extensions for multicategorical algebras
along multifunctors φ : O → P :

Theorem 1.1.26 (Multicategorical left Kan extension). Let O, P be multicategories, φ :
O → P a multifunctor, (C,⊗, I) a symmetric monoidal category (closed and bicomplete) and
let φ∗ : [P , C] → [O, C] be the pullback functor defined on multifunctors H ∈ [P , C] by
H → H ◦ φ, where C is the multicategory associated to C (see Example 1.1.3). There exists
an adjunction

φ! : AlgO(C) // AlgP (C) : φ∗ .oo (1.1.16)

In particular, we will say that φ! is the multicategorical left Kan extension along φ.
It can be shown ([Hor17]) that φ! can be obtained as an ordinary left Kan extension along

the functor φ⊗ : O⊗ → P⊗ (see Remark 1.1.16). Given an algebra A : O → C, the following
coend describes the value of φ!A on an object p ∈ P0:

φ!A(p) =
∫ q∈O⊗

P⊗
( p

φ⊗q
)
⊗A(q) (1.1.17)
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where n ≥ 0 and the tensor product of P⊗
( p

φ⊗q
)

and A(q) =
⊗n

i=1 A(qi) is given by Set-
tensoring. In fact, since the category C is bicomplete, the tensor product of a set X with an
element c ∈ C is defined by X⊗ c := äx∈X c.

Remark 1.1.27. The coend in Equation (1.1.17) can alternatively be obtained as the
following colimit:

φ!(A)(p) := colim
(

φ⊗/(p)
forget

// O⊗ A
// C
)

(1.1.18)

where (p) ∈ Ob(P⊗) is the length 1-tuple consisting of the object p ∈ P0, φ⊗/(p)
is the slice category of the functor φ⊗ : O⊗ → P⊗, forget : φ⊗/(p) → O⊗ is the
forgetful functor from the slice category to O⊗ and A : O⊗ → C is the functor
obtained by universal property of the monoidal envelope, i.e. the functor obtained by
post-composing A⊗ with the counit ε at C of the adjunction MULT� SMCAT from
Remark 1.1.16 M

The last ingredient we want to recall from the general theory of multicategories is
the Boardman-Vogt tensor product. The Boardman-Vogt tensor product is a monoidal
product on the category of multicategories and has some very nice properties. For
instance, the Boardman-Vogt tensor product admits a right adjoint, the internal-Hom
of MULT, therefore, it preserves colimits.

Definition 1.1.28 (Boardman-Vogt tensor product [EM09, Wei07]). Let O and P be
multicategories. The Boardman-Vogt tensor product O ⊗BV P is given in terms of the
following generators:

(a) The collection of objects underlying O ⊗BV P is O0 ×P0.

(b) For every q ∈ O0, n ≥ 0, q ∈ On
0 , p ∈ P0 there are generators φ⊗ p ∈ O ⊗BV

P
( (q,p)
((q1,p),...,(qn,p))) for every φ ∈ O

(q
q).

(c) For every p ∈ P0, n ≥ 0, p ∈ Pn
0 , q ∈ O0 there are generators q⊗ ψ ∈ O ⊗BV

P
( (q,p)
((q,p1),...,(q,pn))

) for every ψ ∈ P
(p

p).

Subject to the following relations:

(a) For every q ∈ O0, n ≥ 1, q ∈ On
0 , mi ≥ 0, q

i
∈ Omi

0 , p ∈ P0 we impose

(φ⊗ p)((φ1 ⊗ p), . . . , (φn ⊗ p)) = (φφ)⊗ p. (1.1.19)

where φ ∈ O
(q

q
)

and φi ∈ O
(qi

q
i

)
for i = 1, . . . , n.

(b) For every p ∈ P0, n ≥ 1, p ∈ Pn
0 , mi ≥ 0, p

i
∈ Pmi

0 , q ∈ O0 we impose

(q⊗ ψ)((q⊗ ψ1), . . . , (q⊗ ψn)) = q⊗ (ψψ) (1.1.20)

where ψ ∈ P
(p

p
)

and ψi ∈ P
(pi

p
i

)
for i = 1, . . . , n.
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1.1 multicategories and involutive categories

(c) For every q ∈ O0 and p ∈ P0 we impose

1q ⊗ p = 1(p,q) = q⊗ 1p. (1.1.21)

(d) For every q ∈ O0, n ≥ 0, q ∈ On
0 , p ∈ P0 we impose

(φ⊗ p) · σ = (φ · σ)⊗ p (1.1.22)

where φ ∈ O
(q

q
)

and σ ∈ Σn.

(e) For every p ∈ P0, n ≥ 0, p ∈ Pn
0 , q ∈ O0 we impose

(q⊗ ψ) · σ = q⊗ (ψ · σ) (1.1.23)

where ψ ∈ P
(p

p
)

and σ ∈ Σn.

(f) For every q ∈ O0, n ≥ 0, q ∈ On
0 , p ∈ P0, m ≥ 0, p ∈ Pm

0 we impose

(φ⊗ p)((q1 ⊗ ψ), . . . , (qn ⊗ ψ)) = ((q⊗ ψ)((φ⊗ p1), . . . , (φ⊗ pm))) · σ (1.1.24)

where φ ∈ O
(q

q
)
, ψ ∈ P

(p
p
)

and σ is the permutation that changes

((q1, p1), . . . , (qn, p1), . . . , (q1, pm), . . . , (qn, pm))

into
((q1, p1), . . . , (q1, pm), . . . , (qn, p1), . . . , (qn, pm)).

1.1.2 Involutive categories

An involution on an object c of a category C is normally understood to be a C-
morphism j : c → c that squares to the identity, i.e. j ◦ j = idc. The problem
with this notion in the context of quantum theory is that the associative and unital C-
algebra of observables A of a quantum system comes endowed with a map ∗ : A→ A

that although squaring to the identity is not a VecC-morphism, but what is called a
C-anti-linear map.

Motivated by the need to fill this gap Jacobs developed the theory of involutive
categories ([Jac12]), which was extended for the needs of quantum field theory, with a
multicategorical flavour, in [BSW19a].

In what follows, we present (symmetric monoidal) involutive categories, ∗-objects
and order-reversing ∗-monoids setting the foundations to endow the categories
AQFT(Sp⊥) (see Subsection 1.2.3) and the stack ∗Alg∞

C (see Subsection 4.2.2) with
involutive structures.

Definition 1.1.29. An involutive category is a triple (C, J, j), where C is a category,
J : C→ C an endofunctor and j : IdC → J2 is a natural isomorphism satisfying:

jJ = J j : J −→ J3 . (1.1.25)
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1.1 multicategories and involutive categories

Example 1.1.30. Let V ∈ VecC be a complex vector space. Its complex conjugate vector
space V is the vector space that has the same underlying set of elements and additive
group structure of V but where the scalar multiplication · : C×V → V is defined by
c · v̄ = cv̄, where c̄ denotes the complex conjugate of c ∈ C.

Let (−) : VecC → VecC be the endofunctor that assigns to every vector space V
its complex conjugate vector space V and that assigns to a linear map f : V → W
the induced linear map f : V → W that has the same action of f . It can be shown
that (VecC, (−), idIdVecC

), where idIdVecC
: IdVecC

→ IdVecC
is the identity natural

transformation, is an involutive category. O

Example 1.1.31. Let AlgC
∼= Mon(VecC) be the category of C-algebras. The triple

(AlgC, (−), id), where (−) : AlgC → AlgC is the functor that assigns:

(a) to every algebra (A, µA, ηA) ∈ AlgC the algebra (A, µA, ηA), where A is the
complex conjugate vector space of A (Example 1.1.30), µA is the linear morphism
A ⊗ A → A⊗A → A obtained by post-composing the canonical morphism
A⊗A→ A⊗A with µ

op
A : A⊗A→ A, the complex conjugate of µ

op
A : A⊗A→

A , and ηA = ηA ◦ ∗ : C → C → A is obtained by post-composing the complex
conjugation morphism ∗ : C→ C with ηA : C→ A, the complex conjugate of ηA
(notice that the ∗-involutions of algebras are order-reversing, i.e. (ab)∗ = b∗a∗).

(b) to every algebra morphism f : A1 → A2 its complex conjugate f : A1 → A2.

and where id : IdC → (−) = IdC denotes the identity natural transformation, is an
involutive category. O

Definition 1.1.32. Let (C, J, j) be an involutive category. A ∗-object in C is a couple
(c, ∗c) where c is an object belonging to Ob(C) and ∗c : c → Jc is a C-morphism
satisfying:

(J∗c) ◦ ∗c = jc (1.1.26)

where jc is the component at c of the natural transformation j.
A ∗-morphism f : (c, ∗c)→ (c′, ∗c′) is a C-morphism f : c→ c′ satisfying:

c
∗c
��

f
// c′

∗c′
��

Jc
J f

// Jc′

(1.1.27)

The collection of ∗-objects and ∗-morphisms, with the natural composition and
identities obtained from C, form a category ∗Obj(C).

Remark 1.1.33. We will see in Subsection 1.2.2 that the category of ∗-algebras ∗AlgC
∼=

∗Obj(AlgC) (see Definition 1.1.32 and Example 1.1.31), naturally arises in quantum
mechanics. M

Definition 1.1.34. An involutive symmetric monoidal category is a triple(C, J, j), where
C := (C,⊗, I) is a symmetric monoidal category, J := (J, J1, J2) : C → C is a sym-
metric monoidal endofunctor (see Example 1.1.3 for notations) and j : IdC → J2 is a
symmetric monoidal natural transformation satisfying equation (1.1.26).
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1.1 multicategories and involutive categories

Example 1.1.35. Let (VecC, (−), idIdVecC
) be the involutive category from Example

1.1.30. It is easy to see that the functor (−) can be promoted to a symmetric monoidal
functor (VecC,⊗, C) → (VecC,⊗, C), where ⊗ : VecC × VecC → VecC is the usual
tensor product of complex vector spaces. In particular, the unit-laxator (−)1 : C→ C

is given by complex conjugation and the monoidal product-laxator (−)2 : V ⊗W →
V ⊗W is given by the canonical map. O

Example 1.1.36. From Examples 1.1.35 and 1.1.31 and the natural symmetric
monoidal structure of AlgC it can be shown that (AlgC, (−), idIdAlgC

) is a symmet-
ric monoidal involutive category. O

Definition 1.1.37. Let (C, J, j) and (C′, J′, j′) be symmetric monoidal involutive cate-
gories. An involutive symmetric monoidal functor (F, ν) : (C, J, j) → (C′, J′, j′) consists
of a symmetric monoidal functor F : C → C′ and a symmetric monoidal natural
transformation ν : FJ → J′F satisfying

F
Fj
��

F
j′F
��

FJ2
νJ
// J′FJ

J′ν
// J′2F

(1.1.28)

An involutive symmetric monoidal natural transformation ζ : (F, ν) → (G, χ) between
involutive symmetric monoidal functors (F, ν), (G, χ) : (C, J, j) → (C′, J′, j′) is a sym-
metric monoidal natural transformation ζ : F → G satisfying the following axiom:

FJ

ν
��

ζ J
// GJ

χ
��

J′F
J′ζ

// J′G

(1.1.29)

Definition 1.1.38. We denote by ISMCAT the 2-category consisting of involutive sym-
metric monoidal categories, involutive symmetric monoidal functors and involutive
symmetric monoidal natural transformations.

In the literature an associative and unital ∗-algebra over the field of complex
numbers C (or an order-reversing ∗-monoid in VecC ) (A, µA, ηA, ∗A) is a monoid
(A, µA, ηA) in the category VecC of complex vector spaces, where µA and ηA denote
respectively the product and the unit of A, together with a linear map ∗A : A → A
satisfying the following axioms:

C

η
��

∗ // C

η
��

A ∗A
// A

(1.1.30)

A
∗A //

∼=
��

A

∗A
��

A

(1.1.31)
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1.2 aqft

A⊗ A

∗A⊗∗A
��

µA
// A
∗A
��

A⊗ A ∼=
// A⊗ A

µ
op
A

// A

(1.1.32)

This set of axioms can be generalized to any involutive symmetric monoidal cate-
gory (C, J, j) and we call a tuple (c, µc, ηc, ∗c) satisfying such generalization an order-
reversing ∗-monoid. In particular:

Proposition 1.1.39 ([BSW19a]). There exists a 2-functor ∗-Monrev : ISMCAT → CAT
defined by the following data:

(a) It sends each involutive symmetric monoidal category C = (C, J, j) to the category
∗-Monrev(C) whose objects are order-reversing ∗-monoids in C and whose morphisms
f : (c, µc, ηc, ∗c)→ (c′, µc′ , ηc′ , ∗c′) are C-morphisms f : c→ c′ preserving the monoid
structure and the ∗-structure.

(b) It sends an involutive symmetric monoidal functor

(F, ν) : (C, J, j)→ (C′, J′, j′)

to the obvious functor ∗-Monrev(F, ν) : ∗-Monrev(C) → ∗-Monrev(C′) and an
involutive symmetric monoidal natural transformation η : (F, ν) → (G, χ) to the
obvious natural transformation ∗-Monrev(η) : ∗-Monrev(F, ν)→ ∗-Monrev(G, χ).

In particular, the category ∗AlgC from Remark 1.1.33 can be equivalently interpreted as
the category ∗-Monrev(VecC) of order-reversing ∗-monoids in VecC.

1.2 aqft

1.2.1 The category Loc

In this section we introduce a category of well-behaved (free from future/past
directed closed causal curves) spacetimes, namely that of globally hyperbolic
Lorentzian manifolds Loc. In particular, we argue that these spacetimes represent
a good setting for studying initial value problems.

We begin by listing some basic definitions from Lorentzian geometry ([ONe83,
BG12]).

A Lorentzian manifold is a manifold M together with a metric g of signature (−+
· · ·+). The Lorentzian nature of the metric g enables us talking about the causal
structure of the manifold: we say that a non-zero tangent vector v ∈ Tx M at a point
x ∈ M is time-like if g(v, v) < 0, light-like if g(v, v) = 0, space-like if g(v, v) > 0 and
causal if it is either time-like or light-like. Analogously, we will say that a smooth
curve γ : I → M is time-like/light-like/space-like/causal if all its tangent vectors are
time-like/light-like/space-like/causal.

We say that M is time-orientable if there exists a smooth section t ∈ Γ∞(TM) of
its tangent bundle that is everywhere time-like. To avoid being notationally heavy,
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1.2 aqft

we will not display the metric g and time-orientation t of a time-oriented Lorentzian
manifold if not strictly necessary. A non-zero causal vector v ∈ Tx M in the tangent
space to a time-oriented Lorentzian manifold M at x ∈ M is future directed if g(tx, v) <
0 and past-directed if g(tx, v) > 0. Analogously, we will say that a smooth curve
γ : I → M is future/past directed if all the vectors tangent to γ are future/past directed.

We denote with I+(x) and I−(x) respectively the chronological future and the
chronological past of x ∈ M, i.e. the set of points that can be reached from x
via future or past directed time-like curves respectively. Given S ⊆ M we define
I+(S) := ∪{I+(x)|x ∈ S} and I−(S) := ∪{I−(x)|x ∈ S}. Similarly, we denote with
J±(x) the causal future/past of the point x ∈ M, i.e. the set of points that can be
reached from x via future/past directed causal curves and given S ⊆ M we define
J+(S) := ∪{J+(x)|x ∈ S} and J−(S) := ∪{J−(x)|x ∈ S}.

Notice that none of the definitions given so far excludes pathological (at least from
a physical perspective) aspects, such as closed past/future directed causal curves,
from entering the picture.

Example 1.2.1 (Gödel spacetime ). The Gödel spacetime is the manifold M = R4 with
line-element that in standard coordinates (t, x, y, z) reads as

ds2 = −(dt + e2kydx)2 + dy2 +
e4ky

2
dx2 + dz2

After introducing the following change of coordinates

e2ky = cosh(2kr) + sinh(2kr) cos ϕ,
√

2kxe2ky = sinh(2kr) sin ϕ,
kt√

2
=

kt′√
2
− ϕ

2
+ arctan

(
e−2kr tan

ϕ

2

)
,

where |k(t− t′)| < π√
2
, r ∈ [0, ∞) and ϕ ∈ [0, 2π), the line-element in the coordinates

(t′, z, φ, r) reads:

ds2 = −dt′2 + dr2 + dz2 −
√

8
k

sinh2(kr)dϕdt′ +
1
k2

(
sinh2(kr)− sinh4(kr)

)
dϕ2.

It is possible to check that any curve with t′ and z fixed, and r larger then or equal
to r0 = (1/k)ln(1 +

√
2), is closed causal.

O

The solution to the problem of closed causal curves relies on the notion of causal
convexity:

Definition 1.2.2. Let M be a time-oriented Lorentzian manifold. We say that S ⊆ M
is causally convex if J+(S) ∩ J−(S) ⊆ S.

It is clear from Definition 1.2.2 that asking every point x ∈ M to have arbitrarily
small causally convex open neighbourhoods is sufficient to avoid our manifold show-
ing pathologies like future/past directed closed causal curves. There is another issue
though: we will be interested in spacetimes that allow a well-posed initial value prob-
lem for hyperbolic differential operators and so far none on the conditions imposed
to the manifold help us with that. The idea is that we want the time-oriented man-
ifold M to have codimension 1 subspaces on which we can assign initial data. The
solution to this issue is contained in the following definition:
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Definition 1.2.3. A Lorentzian manifold M is called globally hyperbolic if it admits a
Cauchy surface Σ, i.e. there exists a set Σ ⊆ M such that every inextensible time-like
curve meets Σ exactly once.

Although Definition 1.2.3 looks quite obscure in the sense that it seems to sug-
gest we are going to assign initial data just from a distinguished (for what reason?)
hypersurface, it turns out that it is the right condition to consider:

Theorem 1.2.4 ([BS06]). Let M be a time-oriented Lorentzian manifold. Then the following
are equivalent:

(a) M is globally hyperbolic.

(b) M is isometric to R× Σ with line element ds2 = −βdt2 + ht, where β ∈ C∞(M) is
strictly positive and ht is a smooth Riemannian metric on Σ depending smoothly on t.
Furthermore, each {t} × Σ is a smooth Cauchy hypersurface in M.

Remark 1.2.5. Theorem 1.2.4 not only implies that a globally hyperbolic Lorentzian
manifold admits infinitely many Cauchy hypersurfaces; it also implies that we can
choose them to be smooth, providing a good framework for initial value problems.
Moreover, it can be proven that every globally hyperbolic Lorentzian manifold M is
strongly causal, i.e. admits arbitrary small causally convex open neighbourhoods for
every point x ∈ M. In particular, there are no closed future/past directed causal
curves in M. M

There is one last notion from Lorentzian geometry we need, i.e. causal disjointness.
The idea is that two subsets S, S′ ⊆ M of a Lorentzian manifold M are causally
disjoint if they have no causal relationship, i.e. there are no future/past directed
causal curves connecting S and S′, or equivalently:

Definition 1.2.6. Let M be a Lorentzian manifold and let S, S′ ⊆ M. We say that S
and S′ are causally disjoint if (J+(S) ∪ J−(S)) ∩ S′ = ∅.

We are now ready to define the central object of this section, the category Loc:

Definition 1.2.7. We denote by Loc the category whose objects are all the connected
oriented and time-oriented globally hyperbolic Lorentzian manifolds M (we will
call these objects spacetimes) and whose morphisms are all orientation and time-
orientation preserving isometric embeddings f : M → N with causally convex and
open image f (M) ⊆ N.

We denote by Locm the full subcategory of Loc consisting of the oriented and time-
oriented globally hyperbolic Lorentzian manifolds M of dimension dim(M) = m.

Remark 1.2.8. Since we will need it in Chapter 4 we give an explicit description of the
category Loc1 of 1-dimensional globally hyperbolic Lorentzian manifolds (which we
will often refer to as the “category of 1-dimensional spacetimes” for brevity).

(a) Objects: A 1-dimensional spacetime (time interval) is a pair (I, e) where I ⊆ R

is an open interval and e ∈ Ω1(I) is a non-degenerate 1-form encoding metric
g = e⊗ e and orientation of I.
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(b) Morphisms: A Loc1-morphism f : (I, e)→ (I′, e′) is an open embedding f : I →
I′ preserving the 1-forms, i.e. f ∗(e′) = e, where f ∗(e′) denotes the pullback
1-form along f of e′.

M

To conclude this section, we introduce some nomenclature that will be pivotal
throughout the thesis.

Definition 1.2.9. (a) Let M, N ∈ Loc and let f : M → N be a Loc-morphism. We
say that f is a Cauchy morphism if f (M) contains a Cauchy hypersurface of N.

(b) Let M1, M2, N ∈ Loc and let fi : Mi → N be a Loc-morphism for i = 1, 2. We
say that f1 and f2 are causally disjoint if f (M1) and f (M2) are causally disjoint
subsets of N.

(c) Let M1, M2, N ∈ Loc and let fi : Mi → N be a Loc-morphism for i = 1, 2. We
say that f1 and f2 are disjoint morphisms if f (M1) and f (M2) are disjoint subsets
of N. More generally, we will say that a tuple of Loc-morphisms f = ( f1 :
M1 → N, . . . , fn : Mn → N) is disjoint if the morphisms f1, . . . , fn are mutually
disjoint.

Remark 1.2.10. Notice that Definition 1.2.9 suggests two orthogonality relations (see
Definition 1.1.6) on the category Loc. The first is given by the collection of pairs
with common target ⊥c ⊆ MorLoc t×t MorLoc that are causally disjoint. We denote
the prefactorization multicategory (see Example 1.1.9) associated to the orthogonal
category (Loc,⊥c) with the symbol PLoc⊥c . The second is given by the collection of
pairs with common target ⊥d ⊆ MorLoc t×t MorLoc that are disjoint. We denote the
prefactorization multicategory associated to the orthogonal category (Loc,⊥d) with
the symbol PLoc⊥d . M

1.2.2 The Brunetti-Fredenhagen-Verch axioms

In the last 50 years the study of quantum field theories on backgrounds different from
Minkowski spacetime (curved backgrounds) has seen renovated efforts, most notably
in the field of Cosmology. In this picture Algebraic Quantum Field Theory is an
attempt to axiomatize the Heisenberg picture of quantum mechanics i.e. an attempt
to encode the dependence of observables on spacetimes. The Brunetti-Fredenhagen-
Verch axioms ([BFV03]) formalize this idea. In particular, an Algebraic Quantum Field
Theory (AQFT) is a map A satisfying the following physically motivated axioms:

Axiom (Algebraic structure of observables). The map A assigns to every spacetime
M ∈ Loc a complex algebra A(M) ∈ AlgC endowed with an involution (−)∗ :
A(M)→ A(M), i.e. A(M) ∈ ∗AlgC (Example 1.1.33).

The axiom states that the algebra of observables A(M) of a quantum field theory
is complex linear (which is not surprising to ask since reducing to the 1-dimensional
case, i.e. quantum mechanics, the algebra of linear operators on a Hilbert space is
a complex vector space) and comes endowed with an involution ∗ : A(M) → A(M)
of algebras which permits distinguishing the physical and non-physical observables.
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In particular, a physical observable in the algebra A(M) is an element a ∈ A(M) such
that a∗ = a (considering the example of a finite complex Hilbert space Cn and the
involution on the linear maps Cn → Cn given by the conjugate transpose should
make clear why this makes sense).

Axiom (Functoriality). The map A assigns to every Loc-morphism f : M → N a
map of ∗-algebras A( f ) : A(M) → A(N). This assignment must respect identities
and compositions. In particular, an Algebraic Quantum Field Theory is a functor
A : Loc→ ∗AlgC.

The Functoriality Axiom tells us that pushing forward observables along spacetime
embeddings is compatible with compositions and identities.

The axiom we want to introduce next appears in the literature with different names
such as axiom of causal locality or Einstein causality axiom and relies on the notion of ⊥c-
commutativity for a functor A : Loc → ∗AlgC (see Remark 1.2.10). Before describing
the axiom we introduce the following definition, which generalizes ⊥c-commutativity
to more generic orthogonal categories of spaces, since we will need it in what follows.

Definition 1.2.11. Let Sp⊥ = (Sp,⊥) be an orthogonal category, let (C,⊗, I) be a
symmetric monoidal category and let Alg(C) := Mon(C) denote the category of
monoids in C.

A functor A : Sp → Alg(C) is called ⊥-commutative if for every s1, s2, s ∈ Sp, and
for every fi : si → s, with i = 1, 2, such that f1 ⊥ f2 the diagram

A(s1)⊗A(s2)

A( f1)⊗A( f2)
��

A( f1)⊗A( f2)
// A(s)⊗A(s)

µ
op
s
��

A(s)⊗A(s) µs
// A(s)

(1.2.1)

in C commutes. Here µs denotes the multiplication on A(s) and µ
op
s := µs τ the

opposite multiplication on A(s), with τ the symmetric braiding of C.

Axiom (Einstein causality). Given causally disjoint Loc-morphisms f1 : M1 → N,
f2 : M2 → N the functor A is such that

µM(A( f1)a1,A( f2)a2) = µM(A( f2)(a2),A( f1)(a1))

where µM is the multiplication map of the associative algebra A(M) and ai ∈ A(Mi)
for i = 1, 2. In particular, A : Loc→ ∗AlgC is ⊥c-commutative (see Remark 1.2.10).

The Einstein causality axiom expresses the fact that observables coming from
causally disjoint regions, i.e. that have no causal relationship, commute with each
other. In particular, the axiom encodes the physical principle that information cannot
travel faster than light.

There is one more optional axiom which is dynamical in nature and may or may
not be considered. In particular, when enforced, the axiom implies that for each
spacetime M the algebra A(M) is determined by the value of A on any causally
convex open subset N of M containing a Cauchy hypersurface of M:

Axiom (Time-slice). For every Cauchy morphism f : M → N ∈ Mor Loc (see Defini-
tion 1.2.9), A( f ) is an isomorphism in ∗AlgC.
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1.2.3 C-valued AQFTs and the multicategorical perspective

In the previous section we have defined AQFTs to be functors A : Loc → ∗AlgC sat-
isfying the Einstein causality axiom (and optionally the time-slice axiom). Although
this approach is quite general we notice the following insufficiencies:

1. There exist approaches to quantum field theory where the orthogonal category
of globally hyperbolic Lorentzian spacetimes is replaced by intervals in the cir-
cle S1 or by Riemannian manifolds ([Sch99, Kaw15]).

2. More modern approaches to AQFT consider AQFTs valued in categories of
monoids other than AlgC, such as the category Alg(ChK) of algebras in chain
complexes ([FR12, BSW19b]) or, more generally, the category Alg(C) of algebras
in a symmetric monoidal category (C,⊗, I), see e.g. [BSS15, Yau19, BSW21].

These considerations motivate the following more general definition ([BSW21]):

Definition 1.2.12. Let Sp⊥ = (Sp,⊥) be an orthogonal category and let (C,⊗, I) be
a bicomplete closed symmetric monoidal category.

A C-valued Algebraic Quantum Field Theory on Sp⊥ is a ⊥-commutative functor (see
Definition 1.2.12) A : Sp→ Alg(C).

The collection of ⊥-commutative functors A : Sp → Alg(C) and natural transfor-
mations between those form the category AQFT(Sp⊥) ⊆ [Sp, Alg(C)] of C-valued
Algebraic Quantum Field Theories on Sp⊥.

Remark 1.2.13. Notice that in Definition 1.2.12 we dropped the ∗-structure. The reason
for this choice is twofold. Firstly, there are axiomatizations of quantum field theories,
such as Factorization Algebras, where the sets of observables are not normally endowed
with a ∗-algebra structure. Secondly, when suitable and possible, we will use the the-
ory of involutive categories to add involutions to the picture. Notice for example that
it is possible to endow the category AQFT(Sp⊥) of VecC-valued algebraic quantum
field theories with an involutive structure, (−) : AQFT(Sp⊥) → AQFT(Sp⊥). Con-
cretely, the involution assigns to every A ∈ AQFT(Sp⊥) the functor A : Sp → AlgC

that assigns to s ∈ Sp the algebra (A(s), µA, ηA) (see Example 1.1.31). It is easy to
confirm that the category ∗AQFT(Sp⊥) of ∗-objects (Remark 1.1.33) agrees with the
one from the literature [BFV03, BDFY15].

M

Although being rather straightforward, Definition 1.2.12 is not ideal to work with.
In fact, ⊥-commutativity is a property that a functor may or may not satisfy. More-
over, it is not clear what the properties of the category AQFT(Sp⊥) are. Is it com-
plete? Is it cocomplete? Some basic questions to which is difficult to give an imme-
diate answer. Luckily, we will be able to interpret AQFTs in terms of multicategories
and provide solutions to these questions. More precisely, we specify in the following
example generators and relations (mimicking the axioms of an AQFT), similarly to
what we have done for the associative multicategory As in Example 1.1.23, to obtain
a multicategory OSp⊥ whose algebras are precisely the AQFTs.
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Example 1.2.14 (AQFT multicategory). Let Sp⊥ = (Sp,⊥) be an orthogonal category.
As we mentioned in the previous discussion the goal of this example is to introduce
generators and relations mimicking the axioms of an AQFT in order to obtain a mul-
ticategory OSp⊥ whose category of algebras will be (equivalent to) that of AQFTs.
Taking inspiration from Example 1.1.23 and looking at Definition 1.2.12 it is clear that
we need as generators the morphisms of the category Sp as well as a multiplication
and a unit:

s′

s

f

s

∅

1s

s

s s

µs

(1.2.2)

for every s, s′ ∈ Ob(Sp) and ( f : s→ s′) ∈ Mor Sp.
After having determined the generators, we need to impose some relations, begin-

ning with functoriality:

s

s

1s =

s

s

ids

s′′

s

g

f
=

s′′

s

f g

(1.2.3)

for every s ∈ Ob(Sp) and every pair of composable morphisms f : s′ → s′′, g : s →
s′ ∈ Mor Sp.

Next, as in the case of the associative multicategory we need to impose relations
encoding the associativity and unitality of the algebras (see Example 1.1.23):

s

∅ s

µs1s
=

s

s

1s =

s

s ∅

µs 1s

s

µs

µs

s s s

=

s

µs

µs

s s s (1.2.4)

for every s ∈ Ob(Sp).
Moreover, we need to enforce a compatibility relation between the morphisms

(push forwards) and the algebraic structure:

s′

∅

1s

f
=

s′

∅

1s′

s′

s s

µs
f

=

s′

s s

µs′
f f

(1.2.5)

for every f : s→ s′ ∈ Mor Sp.
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Finally, we need a relation forcing the commutativity of pairs of observables coming
from push forwards along orthogonal embeddings:

s

s1 s2

µs
f1 f2

=

s

s1 s2

µs
f2 f1

(1.2.6)

for every couple of orthogonal Sp-morphisms f1 ⊥ f2.
The multicategory OSp⊥ obtained from this set of generators and relations is called

the AQFT multicategory. O

Although the description in Example 1.2.14 of the multicategory OSp⊥ in terms
of generators and relations is perfectly legit, it will be sometimes better to consider
alternative (isomorphic) descriptions:

Theorem 1.2.15 ([BSW21]). Let Sp⊥ = (Sp,⊥) be an orthogonal category. The AQFT
multicategory OSp⊥ ∈ MULT from Example 1.2.14 is (isomorphic to) the multicategory
specified by the following data:

(a) The collection of objects OSp⊥0
:= Ob(Sp);

(b) For every s ∈ OSp⊥0
, n ≥ 0, s = (s1, . . . , sn) ∈ On

Sp⊥0
, the sets

OSp⊥
(s

s
)
=
(

Σn ×
n

∏
i=1

Sp(si, s)
)/
∼⊥ , (1.2.7)

where Sp(si, s) are Hom-sets, and the equivalence relation is defined as follows:
(σ, f ) ∼⊥ (σ′, f ′) if and only if f = f ′ and the right permutation σσ′ −1 : f σ−1 →
f σ′ −1 is generated by transpositions of adjacent orthogonal pairs.

(c) For all t ∈ OSp⊥0
, n ≥ 1, a ∈ On

Sp⊥0
, mi ≥ 0, bi ∈ O

mi
0 , for i = 1, . . . , n, the

composition map γ : OSp⊥
(t

a
)
×∏n

i=1OSp⊥
(ai

bi

)
→ OSp⊥

(t
b
)
:

γ
(
[σ, f ],

(
[σ1, g

1
], . . . , [σn, g

n
]
))

=
[
σ(σ1, . . . , σn), f (g

1
, . . . , g

n
)
]

,

where σ(σ1, . . . , σn) = σ〈mσ−1(1), . . . , mσ−1(n)〉 (σ1 ⊕ · · · ⊕ σn) is the product of the
block permutation induced by σ and the sum permutation induced by the σi, and
f (g

1
, . . . , g

n
) =

(
f1 g11, . . . , f1 g1m1 , . . . , fn gn1, . . . , fn gnmn

)
is given by composition

in the category Sp.

(d) Units [e, ids] ∈ OSp⊥
(s

s
)
, where e ∈ Σ1 is the identity permutation and ids : s→ s the

identity morphism in Sp.

(e) The permutation actions are OSp⊥(σ
′)([σ, f ]) = [σσ′, f σ′].
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There is a third alternative (isomorphic) description of the OSp⊥ multicategory in
terms of the prefactorization algebra multicategory PSp⊥ (Example 1.1.9) associated

to Sp⊥ and the associative multicategory As (Example 1.1.5) using the Boardman-Vogt
tensor product (Definition 1.1.28):

Theorem 1.2.16. The multicategory OSp⊥ is equivalent to the multicategory PSp⊥ ⊗BV As

([BPSW21]).

Before proving Theorem 1.2.16, we want to discuss what it means for two multicat-
egories to be equivalent:

Remark 1.2.17. As in any 2-category, there is a notion of equivalence in the 2-category
MULT of multicategories, i.e. two multicategoriesO and P are equivalent if there exist
multifunctors F : O → P and G : P → O such that G ◦ F ∼= IdO and F ◦ G ∼= IdP .
Due to the analogy with categories it does not come as a surprise that O and P are
equivalent multicategories if and only if there exists a fully faithful essentially surjective
multifunctor F : O → P , where essential surjectivity means that the functor π0(F)
(see Remark 1.1.13) is essentially surjective and fully faithfulness means that the maps
F : O

(t
c
)
→ P

(t
c
)

are bijective for all c and t. M

Proof of Theorem 1.2.16. To prove the result we introduce a fully faithful multifunctor
F : OSp⊥ → PSp⊥ ⊗BV As given by the following data:

(a) It assigns to an object s ∈ OSp⊥0
, the object (s, ∗), where ∗ ∈ As0 is the only

element of As0.

(b) For all s ∈ OSp⊥0
, n ≥ 0, s = (s1, . . . , sn) ∈ On

Sp⊥0
it assigns to an n-operation

[σ, f ] ∈ OSp⊥
(s

s
)

the morphism (s ⊗ σ)(( f1 ⊗ ∗), . . . , ( fn ⊗ ∗)) (see Definition
1.1.28).

Being bijective on the underlying collections of objects, this functor is clearly essen-
tially surjective. To see that it is also well defined and fully faithful it is convenient to
think about the source and target multicategories in terms of generators and relations
(see Examples 1.1.23, 1.1.9, 1.2.14). To check that the functor is well-defined, i.e. that
the relations satisfied by the generators of OSp⊥ are preserved by the functor, it suf-
fices to notice the following: the relations in equation (1.2.4) are preserved because
they are satisfied by the associative multicategory, the relations in equation (1.2.5)
are preserved because of equation (1.1.24), while relation (1.2.6) can be seen to be
preserved after direct inspection by using the permutation action defined by the BV-
tensor product (see Definition 1.1.28). Fully faithfulness is a consequence of the fact
that from the descriptions of OSp⊥ , PSp⊥ and As in terms of generators and relations
it emerges that the images of the generators of OSp⊥ are in 1-to-1 correspondence
with the generators of Boardman-Vogt tensor product of PSp⊥ and As.
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Notice that the multicategory OSp⊥ has a natural graphical interpretation. We may

graphically visualize an element [σ, f ] ∈ OSp⊥
(

s′
s
)

by

s′

· · ·
s′nσ−1

s′n
· · ·

σ

s
f1 fn

(1.2.8)

This picture should be read from bottom to top and it should be understood as the
following ([BSW21]) :

(a) Apply the morphisms f to observables on s = (s1, . . . , sn);

(b) Permute the resulting observables on s′n.

(c) Multiply the resulting observables on s′nσ−1 according to the order in which
they appear.

As we mentioned earlier we can use the alternative descriptions ofOSp⊥ introduced

in this section to obtain equivalent representations of the category AQFT(Sp⊥). More
precisely:

Theorem 1.2.18. Let Sp⊥ be an orthogonal category and let C be a bicomplete closed
symmetric monoidal category. The category AQFT(Sp⊥) of C-valued AQFTs on Sp⊥ is
equivalent to the category AlgOSp⊥

(C) of C-valued OSp⊥-algebras. Therefore, the category

AQFT(Sp⊥) is bicomplete (Theorem 1.1.24).

Remark 1.2.19. We will not discuss, even though it would be feasible (see e.g.
[BSW21]), generalizations of the time-slice axiom (see Subsection 1.2.2) to algebraic
quantum field theories defined on orthogonal categories other than Loc⊥c . It is also
straightforward to generalize the time-slice axiom to C-valued algebraic quantum
field theories on Loc⊥c for generic symmetric monoidal categories (C,⊗, I). More
precisely, we say that an algebraic quantum field theory A : Loc→ Alg(C) is Cauchy
constant if A( f ) is an Alg(C)-isomorphism whenever f is a Cauchy morphism (see
Definition 1.2.9). We denote by AQFTc(Loc⊥c) ⊆ AQFT(Loc⊥c) the full subcategory
of Cauchy constant AQFTs. M

We conclude this section by briefly showing an example of how multicategorical
left Kan extension (see Theorem 1.1.26) can be used to extend algebraic quantum field
theories defined on an orthogonal subcategory Sp⊥nice ⊆ Sp⊥ of “nice” spacetimes to
the whole orthogonal category Sp⊥.

Example 1.2.20. Let Loc⊥c� ⊆ Loc⊥c be the orthogonal category of diamond globally
hyperbolic Lorentzian manifolds, i.e the full subcategory of Loc whose objects are
the manifolds M ∈ Ob(Loc) diffeomorphic to Rm for some m ≥ 0, endowed with
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pullback orthogonality relation ⊥c induced by the inclusion functor j : Loc� → Loc
(see Definition 1.1.6) and denote by J : OLoc⊥c�

→ OLoc⊥c the obvious multifunctor
induced by j : Loc� → Loc (see Example 1.1.14). The multicategorical left Kan
extension J! along J : OLoc⊥c�

→ OLoc⊥c is a functor that takes an A ∈ AQFT(Loc⊥c� )

defined on the category of diamond locally hyperbolic Lorentzian manifolds and
extends it to an algebraic quantum field theory J!(A) ∈ AQFT(Loc⊥c) defined on all
spacetimes M ∈ Ob(Loc). The algebra J!(A)(M) is a multicategorical refinement of
the ordinary categorical left Kan extension leading to Fredenhagen’s universal algebra
[Fre90, Fre93, FRS92]. We refer to [BSW21] for simple criteria on M under which the
multicategorical and traditional universal algebras coincide. O
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2
A Q F T V S P FA

The aim of this chapter is to compare from a model-independent perspective two ax-
iomatizations of Quantum Field Theory on globally hyperbolic Lorentzian manifolds,
namely the AQFT (see Definition 1.2.12) and the Factorization Algebra (FA) approach
([CG17]), drawing framework and results from our paper [BPS19].

As we have seen in Subsection 1.2.3, given a bicomplete closed symmetric monoidal
category C, an Algebraic Quantum Field Theory is a functor A : Loc → Alg(C) as-
sociating to each M ∈ Loc an associative and unital algebra (A(M), µM, ηM), where
µM denotes the multiplication and ηM the unit map, satisfying some axioms, most
notably the Einstein causality axiom, which states that observables coming from
causally disjoint regions commute, or equivalently, that A is ⊥c-commutative (see
Remark 1.2.10 and Definition 1.2.12). A prefactorization algebra, instead, is a multi-
functor F : PLoc⊥d → C (see Remark 1.2.10) that associates to each tuple of pairwise
disjoint Loc-morphisms (see Definition 1.2.9) f = ( f1 : M1 → N, . . . , fn : Mn → N) a
factorization product F(M1)⊗ · · · ⊗ F(Mn) → F(N) ([CG17]). In particular, in the fac-
torization algebra approach, manifolds do not come equipped with a multiplication
of observables µM : F(M) ⊗ F(M) → F(M) since there is no factorization product
associated to the tuple (idM : M→ M, idM : M→ M), being not disjoint.

Although these axiomatizations look (and are) different, we will see that they coin-
cide (are isomorphic) when required to satisfy some further natural axioms, namely
the Cauchy constancy and the additivity axioms. To be more precise, our main result
states that there exists an equivalence between the category AQFTadd,c of additive
Cauchy constant algebraic quantum field theories on Loc and the category tPFAadd,c

of additive Cauchy constant time-orderable prefactorization algebras on Loc. We will
see that our result admits an interpretation in terms of multicategories, suitable for
potential generalizations to higher quantum field theories such as gauge theories. In
order to prove our main Theorem we structure the chapter as follows:

In Section 2.1 we introduce additivity and Cauchy constancy for Factorization Alge-
bras and AQFTs. Broadly speaking, a prefactorization algebra F (or an AQFT A) is
additive if it is such that for each spacetime M the observables F(M) (or A(M)) are
generated by those coming from the relatively compact and causally convex open sub-
sets of M. Cauchy constancy was defined in Remark 1.2.19 just in the case of AQFTs,
but the concept extends straightforwardly to Factorization Algebras. More precisely,
we say that a prefactorization algebra F is Cauchy constant if F( f ) is an isomorphism
for every Cauchy morphism f (see Definition 1.2.9).

In Section 2.2 we set the ground for our comparison Theorem by introducing
a functor A : PFAadd,c → AQFTadd,c sending an additive and Cauchy constant
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prefactorization algebra F to an additive and Cauchy constant algebraic quantum
field theory A[F]. In particular, we endow each spacetime M with a multiplication
µM : F(M) ⊗ F(M) → F(M) defined by taking any couple of disjoint Cauchy in-
clusions ιM

U = (ιM
U+

: U+ → M, ιM
U− : U− → M) such that there exist a Cauchy

surface Σ in M for which U± ⊆ I±(Σ) and composing the associated isomorphism
F(M)⊗ F(M) → F(U+)⊗ F(U−) with the factorization product F(U+)⊗ F(U−) →
F(M).

In Section 2.3 we introduce the concept of time-orderability for tuples of Loc-
morphisms f = ( f1 : M1 → N, . . . , fn : Mn → N) and define a functor F : AQFT →
tPFA sending each algebraic quantum field theory A to a time-orderable prefactoriza-
tion algebra F[A], i.e. a prefactorization algebra that has factorization products just for
time-orderable tuples of Loc-morphisms. The need to restrict our attention to time-
orderable tuples is based on the fact that, given an algebraic quantum field theory A,
it is not possible (at least for us) to associate an equivariant factorization product to
each tuple of disjoint Loc-morphisms f = ( f1 : M1 → N, . . . , fn : Mn → N), since
there is a priori no canonical ordering of observables (see Section 2.3). Moreover, we
prove that F restricts to a functor F : AQFTadd,c → tPFAadd,c.

In Section 2.4 we show that the functor A : PFAadd,c → AQFTadd,c of Section 2.2
can be restricted to a functor A : tPFAadd,c → AQFTadd,c, which is inverse to the
functor F : AQFTadd,c → tPFAadd,c introduced in Section 2.3, proving in particular
that AQFTadd,c ∼= tPFAadd,c. To conclude we will use this isomorphism to endow the
category tPFAadd,c with an involutive structure and we will apply our comparison
result to the example of the free Klein-Gordon field AKG ∈ AQFTadd,c.

Notice that [BPS19] is not the first effort toward obtaining such a comparison
Theorem but is significantly more general than the previous discussion in [GR17]:
we study a comparison in a model-independent framework and we study in de-
tail the unitality, associativity and Einstein causality of the multiplications µM :
F(M)⊗ F(M)→ F(M).

2.1 additive and cauchy constant pfas and aqfts

A prefactorization algebra is a multifunctor PSp⊥ → C, where Sp⊥ = (Sp,⊥) is usu-
ally an orthogonal category of topological spaces or Riemannian manifolds and C is
a bicomplete closed monoidal symmetric category ([CG17]). In order to consider a
context in which studying both Algebraic Quantum Field Theories and Factorization
Algebras makes sense we will fix Sp to be the category Loc of globally hyperbolic
Lorentzian manifolds (see Subsection 1.2.1). In what follows we will use interchange-
ably multicategorical or more explicit descriptions of the objects in play both for
practical convenience as for the sake of clarity. In particular, we will not ascribe to a
definitive picture but we will use this plurality of interpretations to make the concepts
introduced along the way, hopefully, more transparent.

Remark 2.1.1. Form now on, when referring to the objects of a category D, we will not
always enforce the notation d ∈ Ob(D) and prefer the slimmer d ∈ D. M
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Definition 2.1.2. A prefactorization algebra F on Loc with values in C is a multifunctor
F : PLoc⊥d → C, or more explicitly, a law given by the following data (see Remark
1.1.21):

(a) For each M ∈ Loc, an object F(M) ∈ C.

(b) For each tuple f = ( f1, . . . , fn) : M → N of pairwise disjoint morphisms, a
C-morphism F( f ) :

⊗n
i=1 F(Mi)→ F(N) (called factorization product).

satisfying the following axioms:

(a) For every n ≥ 0, mi ≥ 0, for every tuple of pairwise disjoint Loc-morphisms f =
( f1, . . . , fn) : M → N and for every tuple of pairwise disjoint Loc-morphisms
g

i
= (gi1, . . . , gimi) : Li → Mi with i = 1, . . . , n, the diagram

n⊗
i=1

mi⊗
j=1

F(Lij)

F( f (g
1
,...,g

n
))

((

⊗
i F(g

i
)
//

n⊗
i=1

F(Mi)

F( f )
��

F(N)

(2.1.1)

in C commutes, where f (g
1
, . . . , g

n
) := ( f1 g11, . . . , fn gnmn) : (L1, . . . , Ln) → N

is given by composition in Loc.

(b) For every M ∈ Loc, F(idM) = idF(M) : F(M)→ F(M).

(c) For every tuple of pairwise disjoint Loc-morphisms f = ( f1, . . . , fn) : M → N
and every permutation σ ∈ Σn, the diagram

n⊗
i=1

F(Mi)

permute
��

F( f )
// F(N)

n⊗
i=1

F(Mσ(i))

F( f σ)

77
(2.1.2)

in C commutes, where f σ := ( fσ(1), . . . , fσ(n)) : Mσ → N is given by right
permutation.

A similar concept of prefactorization algebra on Loc appeared in [GR17].

Remark 2.1.3. We know from Remark 1.1.21 that the collection of multifunctors
PLoc⊥d → C and multinatural transformations between those form a category
PFA := AlgP

Loc⊥d
(C). In the spirit of Definition 2.1.2, we want to give an explicit de-

scription of what a morphism of prefactorization algebras is. A morphism ζ : F→ G

of prefactorization algebras is a family ζM : F(M) → G(M) of C-morphisms, for all
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M ∈ Loc, that is compatible with the factorization products, i.e. for all f : M → N
the following diagram (in C) commutes:

n⊗
i=1

F(Mi)

⊗
i ζMi

��

F( f )
// F(N)

ζN

��n⊗
i=1

G(Mi)
G( f )

// G(N)

(2.1.3)

M

A factorization algebra is a prefactorization algebra that satisfies codescent for
Weiss covers ([CG17]).

Definition 2.1.4. Let M be a topological space. We say that a collection of open
subsets U of M is a Weiss cover if for any finite set S of points of M there exist an open
U ∈ U covering S.

A prefactorization algebra F is a factorization algebra if it is satisfies the codescent
condition for all Weiss covers, i.e. if it is a cosheaf with respect to Weiss covers
([CG17]). More precisely, F is a factorization algebra if for every spacetime M ∈ Loc
and every Weiss cover {Uα : α ∈ A} of M the canonical diagram

ä
U,V∈{Uα :α∈A}

U∩V 6=∅

F(U ∩V) //
// ä

U∈RCM

F(U) // F(M)

is a coequalizer in C.

In our discussion we will consider prefactorization algebras satisfying a weaker
property than codescent, namely additivity, and we will see that every factorization
algebra is an additive prefactorization algebra. Additivity is defined considering a
particular kind of Weiss cover of a globally hyperbolic Lorentzian manifold M, i.e.
the one given by its relatively compact and causally convex open subsets.

Lemma 2.1.5. Let M ∈ Loc. We denote by RCM the subcategory of Loc whose objects are
the relatively compact and causally convex open subsets U of M (with the induced metric,
orientation and time-orientation) and whose morphisms are given by subset inclusions ιVU :
U → V. The set of objects Ob(RCM) of RCM is directed. In particular, Ob(RCM) is a
Weiss cover of M.

Proof. Let U1, U2 ∈ RCM. We shall construct U ∈ RCM such that Ui ⊆ U, for i = 1, 2.
Since K := U1 ∪ U2 is compact, there exists a Cauchy surface Σ of M such that
K ⊆ I−M(Σ). We set S := J+M(K) ∩ J−M(Σ) and observe that this is a compact subset
of M by [BGP07, Corollary A.5.4]. Using also [BGP07, Lemma A.5.12], it follows
that U := I+M(K) ∩ I−M(S) belongs to RCM. By construction, U contains both U1 and
U2.

For each spacetime M ∈ Loc the category RCM can be endowed with the pull-
back orthogonality relation ⊥d induced by the inclusion RCM ⊆ Loc (see Defini-
tion 1.1.6). We can therefore consider the obvious embedding of multicategories
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ι : P
RC
⊥d
M
→ PLoc⊥d and use (1.1.16) to restrict any prefactorization algebra F ∈ PFA

to a multifunctor F|M := ι∗(F) ∈ AlgP
RC
⊥d
M

(C).

Definition 2.1.6. Let F be a prefactorization algebra on Loc. We say that F is additive
if for every spacetime M ∈ Loc the natural map

colim
(

π0(F|M) : RCM → C
)

// F(M) (2.1.4)

is a C-isomorphism, where π0 is the functor MULT→ CAT from Remark 1.1.13. We
denote by PFAadd ⊆ PFA the full subcategory of additive prefactorization algebras.

Remark 2.1.7. In this chapter we will only deal with C-valued algebraic quantum field
theories on the orthogonal category Loc⊥c . Therefore, we will abuse notations writing
AQFT := AQFT(Loc⊥c) for its entire duration. M

Analogously, additivity can be defined for AQFTs.

Definition 2.1.8. Let A ∈ AQFT be an algebraic quantum field theory on Loc⊥c (see
Definition 1.2.12). We say that A is additive if for every spacetime M ∈ Loc the natural
map

colim
(
A|M : RCM → Alg(C)

)
// A(M) (2.1.5)

is an Alg(C)-isomorphism. We denote by AQFTadd ⊆ AQFT the full subcategory of
additive algebraic quantum field theories and we denote by AQFTadd,c the full sub-
category of additive Cauchy constant algebraic quantum field theories (see Remark
1.2.19).

Remark 2.1.9. Notice that since Ob(RCM) is a directed set (see Lemma 2.1.5), the
colimit in Definition 2.1.8

colim
(
A|M : RCM → Alg(C)

)
(2.1.6)

can be computed in the underlying category C, see e.g. [Fre17, Proposition 1.3.6].
Therefore, to check additivity of an algebraic quantum field theory A ∈ AQFT,

it is enough to consider the underlying functor A : Loc → C to the category C,
i.e. forgetting the algebra structures, and verify that the natural map colim

(
A|M :

RCM → C
)
→ A(M) is an isomorphism in C.

As we mentioned in the introduction to this chapter, we can think of an additive
prefactorization algebra (additive algebraic quantum field theory) to be a prefactor-
ization algebra F (an algebraic quantum field theory A) such that, for every spacetime
M ∈ Loc, the observables of F(M) (A(M)) are generated by those of the relatively
compact and causally convex open subsets of M. M

Proposition 2.1.10. Every factorization algebra F on Loc is an additive prefactorization
algebra.
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Proof. Suppose that F is a factorization algebra (see Definition 2.1.4), i.e. it satisfies
a cosheaf condition with respect to all Weiss covers of every M ∈ Loc. For every
M ∈ Loc, the cover defined by RCM is a Weiss cover (see Lemma 2.1.5). The property
of being a factorization algebra then implies that the canonical diagram

ä
U,V∈RCM
U∩V 6=∅

F(U ∩V) //
// ä

U∈RCM

F(U) // F(M) (2.1.7)

is a coequalizer in C. Our claim then follows by observing that the cocones of
(2.1.4) are canonically identified with the cocones of (2.1.7). Indeed, any cocone
{αU : F(U) → Z} of (2.1.4) defines a cocone of (2.1.7) because U ∩ V ∈ RCM (when-
ever nonempty) and hence the diagram

F(U)
αU

''
F(U ∩V)

αU∩V //

F(ιVU∩V)
))

F(ιUU∩V) 55

Z

F(V)
αV

77

(2.1.8a)

in C commutes. Vice versa, any cocone {αU : F(U) → Z} of (2.1.7) defines a cocone
of (2.1.4) because U ∩V = U, for all U ⊆ V, and hence the diagram

F(U)
αU

''
F(ιVU)

��

F(U ∩V)

F(ιVU∩V)
))

Z

F(V)
αV

77

(2.1.8b)

in C commutes.

To conclude this section we recall a time-slice axiom for prefactorization algebras
(see Remark 1.2.19 for a comparison).

Definition 2.1.11. Let F be a prefactorization algebra on Loc. We say that F is Cauchy
constant if F( f ) is a C-isomorphism for every Cauchy morphism f ∈ MorLoc. We
denote by PFAc ⊆ PFA the full subcategory of Cauchy constant prefactorization
algebras on Loc and we denote by PFAadd,c ⊆ PFA the full subcategory of Cauchy
constant and additive prefactorization algebras on Loc.

2.2 from pfa to aqft

The aim of this section is to define a functor A : PFAadd,c → AQFTadd,c.
To achieve this goal we will follow three steps and dedicate a whole subsec-

tion to each of those. More precisely, in Subsection 2.2.1 we show that for every
F ∈ PFAc and for every M ∈ Loc, the object F(M) can be endowed with an as-
sociative and unital algebra structure (notice that we are not asking F to be ad-
ditive so far). In Subsection 2.2.2 we rely on additivity and Cauchy constancy to
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show that for every F ∈ PFAadd,c the algebras defined in the first step are compat-
ible with the C-morphisms F( f ) for every f ∈ MorLoc, i.e. we define a functor
A : PFAadd,c → [Loc, Alg(C)]. In Subsection 2.2.3 we carefully check that the image
of A is actually contained in the category AQFTadd,c by proving that A[F] satisfies
the Einstein causality axiom for every F ∈ PFAadd,c.

2.2.1 Algebraic structure

In this subsection we will assume every prefactorization algebra F to be Cauchy con-
stant.

We begin the first step toward the construction of the aforementioned functor A :
PFAadd,c → AQFTadd,c by recalling the intuition behind the statement that for each
spacetime M ∈ Loc the object F(M) ∈ C carries an algebra structure. Suppose
there exist causally convex open subsets U+, U− ⊆ M and a Cauchy hypersurface
Σ ⊆ M such that U+ and U− are contained in the chronological future and in the
chronological past of Σ respectively, i.e. U± ⊆ I±(Σ), and that the inclusions ιM

U± :

U±
c→ M are Cauchy morphisms. We can then compose the factorization product

F(ιM
U ) associated to the tuple of disjoint morphisms ιM

U = (ιM
U+

, ιM
U−) with the inverse

of the C-isomorphism F(ιU+)⊗ F(ιU−) (notice that we are using Cauchy constancy)
to obtain the map:

F(M)⊗ F(M)
µM

// F(M)

F(U+)⊗ F(U−)

∼=
F(ιM

U+
)⊗F(ιM

U−
)

ii

F(ιM
U )

66
(2.2.1)

It is not clear, however, whether different choices of U+ and U− lead to the same
multiplication µM. We claim that this is actually the case and to prove it we proceed
in the following way:

1. We collect all possible choices in a category PM (see Definition 2.2.1).

2. We prove that PM is a non-empty and connected category (see Lemma 2.2.2).

3. We prove that any two objects in PM connected by an arrow lead to the same
multiplication µM of equation (2.2.1), proving the claim (see Corollary 2.2.3).

Definition 2.2.1. Let M ∈ Loc. We denote by PM the category given by the following
data:

(a) The collection of objects consists of tuples of pairwise disjoint morphisms ιM
U =

(ιM
U+

, ιM
U−) : U → M where U+, U− are causally convex open subsets of M such

that there exists a Cauchy hypersurface Σ of M with U± ⊆ I±M(Σ) and such that
ιM
U± : U±

c→ M are Cauchy morphisms.

(b) A a unique morphism (ιM
U : U → M)→ (ιM

V : V → M) if and only if U± ⊆ V±.

Lemma 2.2.2. For every M ∈ Loc, the category PM is non-empty and connected.
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Proof. Non-empty: Choose any Cauchy surface Σ of M and define Σ± := I±M(Σ). Then
ιM
Σ = (ιM

Σ+
, ιM

Σ−) : Σ→ M defines an object in PM.
Connected: We have to prove that there exists a zig-zag of morphisms in PM between

every pair of objects ιM
U : U → M and ιM

V : V → M. For every object ιM
U : U → M in

PM, there exists by hypothesis a Cauchy surface Σ of M such that U± ⊆ Σ± := I±M(Σ).
Hence, there exists a morphism (ιM

U : U → M) → (ιM
Σ : Σ → M). As a consequence,

our original problem reduces to finding a zig-zag of morphisms in PM between ιM
Σ :

Σ → M and ιM
Σ′ : Σ′ → M, for any two Cauchy surfaces Σ, Σ′ of M. To exhibit such a

zig-zag, let us introduce Ũ+ := Σ+ ∩ Σ′+ and Ũ− := Σ− ∩ Σ′−. If we could prove that
ιM
Ũ±

: Ũ±
c→ M are Cauchy morphisms, then(

ιM
Σ : Σ→ M

)
←−

(
ιM
Ũ

: Ũ → M
)
−→

(
ιM
Σ′ : Σ′ → M

)
(2.2.2)

would provide a zig-zag that proves connectedness of PM.
It remains to show that Ũ+ = Σ+ ∩ Σ′+ = I+M(Σ) ∩ I+M(Σ′) ⊆ M contains a Cauchy

surface of M. (A similar argument shows that Ũ− ⊆ M also contains a Cauchy surface
of M.) Because Σ, Σ′ are by hypothesis Cauchy surfaces of M, there exists a Cauchy
surface Σ1 ⊂ I+M(Σ) of M in the future of Σ and a Cauchy surface Σ′1 ⊂ I+M(Σ′) of M
in the future of Σ′. We define the subset

Σ̃ :=
(
Σ1 ∩ J+M(Σ′1)

)
∪
(

J+M(Σ1) ∩ Σ′1
)
⊂ Ũ+ ⊆ M (2.2.3)

and claim that Σ̃ is a Cauchy surface of M. To prove the last statement, consider
any inextensible time-like curve γ : I → M, which we may assume without loss
of generality to be future directed. (If γ would be past directed, then change the
orientation of the interval I.) Because Σ1 and Σ′1 are Cauchy surfaces of M, there
exist unique t, t′ ∈ I such that γ(t) ∈ Σ1 and γ(t′) ∈ Σ′1. If t ≥ t′, then γ(t) ∈
Σ1 ∩ J+M(Σ′1) ⊆ Σ̃, and if t′ ≥ t, then γ(t′) ∈ J+M(Σ1) ∩ Σ′1 ⊆ Σ̃. Hence, γ meets Σ̃ ⊂ M
at least once. Multiple intersections are excluded by the definition of Σ̃ in (2.2.3) and
the fact that both Σ1 and Σ′1 are Cauchy surfaces of M.

Corollary 2.2.3. For every M ∈ Loc, the multiplication map µM in (2.2.1) does not depend
on the choice of object ιM

U : U → M in PM.

Proof. By Lemma 2.2.2, it is sufficient to prove that ιM
U : U → M and ιM

V : V → M
define the same multiplication if U+ ⊆ V+ and U− ⊆ V−. This is a consequence of
the commutative diagram

F(V+)⊗ F(V−)

∼=

F(ιM
V+

)⊗F(ιM
V−

)

tt

F(ιM
V )

))

F(M)⊗ F(M) F(M)

F(U+)⊗ F(U−)

∼=
F(ιM

U+
)⊗F(ιM

U−
)

jj

F(ιM
U )

55
F(ι

V+
U+

)⊗F(ιV−U−
)

OO
(2.2.4)

where one also uses the composition properties (2.1.1) of prefactorization algebras.
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Equation (2.2.1) and Corollary 2.2.3 endow, for all Cauchy constant prefactorization
algebra F and all M ∈ Loc, the object F(M) with a multiplication µM. To obtain an
associative and unital algebra structure on F(M) though, we have to define a unit
ηM : I → F(M). The natural choice for such a map is the distinguished object
ηM = F(∗M), where ∗M is the 0-operation in PLoc⊥d

(
M
∅
)
.

Proposition 2.2.4. Let F ∈ PFAc and let M ∈ Loc. The object F(M) ∈ C can
be endowed with an associative an unital algebra structure (F(M), µM, ηM) where µM :
F(M) ⊗ F(M) → F(M) is given by (2.2.1) and the unit ηM : I → F(M), where I de-
notes the unit of the monoidal category C, is given by evaluating F on the unique 0-operation
∅→ M ∈ PLoc⊥d

(
M
∅
)
.

Proof. To prove that the multiplication µM is associative, we consider two Cauchy
surfaces Σ0, Σ1 of M such that Σ1 ⊂ I+M(Σ0), i.e. Σ1 is in the future of Σ0. Using
the independence result from Corollary 2.2.3 and the composition properties of pref-
actorization algebras, one easily confirms that µM (id⊗ µM) is the upper path and
µM (µM ⊗ id) the lower path from F(M)⊗3 to F(M) in the commutative diagram

F(Σ1+)⊗ F(Σ1− ∩ Σ0+)⊗ F(Σ0−)

∼=F(ιM
Σ1+

)⊗F(ιM
Σ1−∩Σ0+

)⊗F(ιM
Σ0−

)
��

id⊗F(ιΣ1−
Σ1−∩Σ0+

,ι
Σ1−
Σ0−

)
// F(Σ1+)⊗ F(Σ1−)

F(ιM
Σ1+

,ιM
Σ1−

)
��

F(M)⊗ F(M)⊗ F(M) F(M)

F(Σ1+)⊗ F(Σ1− ∩ Σ0+)⊗ F(Σ0−)

∼=F(ιM
Σ1+

)⊗F(ιM
Σ1−∩Σ0+

)⊗F(ιM
Σ0−

)

OO

F(ι
Σ0+
Σ1+

,ι
Σ0+
Σ1−∩Σ0+

)⊗id

// F(Σ0+)⊗ F(Σ0−)

F(ιM
Σ0+

,ιM
Σ0−

)

OO

(2.2.5)

where as before we denote by Σ± := I±M(Σ) ⊆ M the chronological future/past of a
Cauchy surface Σ of M. Unitality of the product follows immediately from the fact
that there exists a unique morphism ∅ → M for each M ∈ Loc and the composition
properties (2.1.1) of prefactorization algebras.

2.2.2 Preservation of algebraic structures

In this subsection we prove that for all f ∈ MorLoc and F ∈ PFAadd,c the C-
morphisms F( f ) are Alg(C)-morphisms with respect to the algebraic structures
defined by Proposition 2.2.4. In particular, we prove the existence of a functor
A : PFAadd,c → [Loc, Alg(C)]. We will proceed in the following way:

(a) We show that given a Cauchy constant prefactorization algebra F, a Loc-
morphism f : M → N with relatively compact image f (M) ⊆ N is an alge-
bra morphism when F(M) and F(N) are endowed with the algebra structure
defined in Proposition 2.2.4.

(b) Next, we show that, whenever F is also additive, F( f ) is an algebra morphism
for every Loc-morphism f . To do so we leverage item (a), the fact that in a
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bicomplete closed symmetric monoidal category (C,⊗, I) the monoidal product
⊗ commutes with colimits and that Ob(RCM) is a directed set for every M ∈
Loc.

(c) Finally, we prove the existence of the aforementioned functor

A : PFAadd,c → [Loc, Alg(C)] .

It is important to notice that while additivity did not play any role in Subsection 2.2.1
it is of fundamental importance in this subsection.

Lemma 2.2.5. Let F ∈ PFAc be a Cauchy constant (and not necessarily additive) prefac-
torization algebra and let f : M → N be a Loc-morphism with relatively compact image
f (M) ⊆ N. Then, endowing F(M) and F(N) with the algebraic structure from Proposi-
tion 2.2.4, makes F( f ) : F(M) → F(N) an Alg(C)-morphism, i.e. µN (F( f ) ⊗ F( f )) =
F( f ) µM and ηN = F( f ) ηM.

Proof. The units are clearly preserved for every Loc-morphism f : M → N because
composing the unique empty tuple ∅→ M with f : M→ N yields the unique empty
tuple ∅→ N.

Let us focus now on the multiplications. Because f (M) ⊆ N is by hypothesis
relatively compact, its closure f (M) ⊆ N is compact. Let us take any Cauchy surface
Σ of M and note that f (Σ) ⊆ N is a compact subset. Using further that f (M) ⊆ N is
causally convex and that the causality relation induced by time-like curves is open (cf.
[ONe83, Lemma 14.3]), it follows that f (Σ) ⊆ N is achronal, i.e. every time-like curve
in N meets this subset at most once. By [BS06, Theorem 3.8], there exists a Cauchy
surface Σ̃ of N such that f (Σ) ⊆ Σ̃.

Using the Cauchy surfaces constructed above, we can define the multiplication µM
in terms of Σ± := I±M(Σ) and the multiplication µN in terms of Σ̃± := I±N (Σ̃), cf. (2.2.1).

By construction, f : M → N restricts to Loc-morphisms f Σ̃±
Σ± : Σ± → Σ̃±. Our claim

that F( f ) : F(M) → F(N) preserves the multiplications then follows by observing
that the diagram

F(M)⊗ F(M)

F( f )⊗F( f )
��

F(Σ+)⊗ F(Σ−)∼=

F(ιM
Σ+

)⊗F(ιM
Σ− )

oo

F( f Σ̃+
Σ+

)⊗F( f Σ̃−
Σ−

)
��

F(ιM
Σ )

// F(M)

F( f )
��

F(N)⊗ F(N) F(Σ̃+)⊗ F(Σ̃−)
∼=

F(ιN
Σ̃+

)⊗F(ιN
Σ̃−

)
oo

F(ιN
Σ̃
)

// F(N)

(2.2.6)

commutes.

Remark 2.2.6. In the proof of Lemma 2.2.5 we relied on the fact that given a spacetime
M, a Cauchy surface Σ of M and a Loc-morphism f : M → N such that the image
f (M) is a relatively compact subset of N, there exists a Cauchy hypersurface Σ̃ ⊆ N
such that f (Σ) ⊆ Σ̃. If f (M) ⊆ N fails to be relatively compact such a Σ̃ might not
exist as the example of the inclusion ιVU : U → V of the following diamond regions
in 2-dimensional Minkowski spacetime demonstrates (notice that U is not relatively
compact in V):
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V

U

Σ

time

(2.2.7)

The set f (Σ) ⊆ V is clearly not contained in any Cauchy hypersurface Σ̃ of V. There-
fore, given a Cauchy constant prefactorization algebra F it might be the case that
F(ιVU) is not an algebra morphism with respect to the algebra structures on F(U) and
F(V) defined by Proposition 2.2.4. As promised, we will see that this insufficiency is
overcome by considering prefactorization algebras that are both additive and Cauchy
constant. M

Proposition 2.2.7. Let F ∈ PFAadd,c be an additive Cauchy constant prefactorization al-
gebra on Loc, let f : M → N be a Loc-morphism and endow F(M) and F(N) with the
algebra structure from Proposition 2.2.4. Then, the C-morphism F( f ) : F(M)→ F(N) is an
Alg(C)-morphism.

Proof. We already observed in the proof of Lemma 2.2.5 that F( f ) preserves the units.
For the multiplications we have to prove that µN (F( f ) ⊗ F( f )) = F( f ) µM as C-

morphisms from F(M)⊗F(M) to F(N). Because F is by hypothesis additive (cf. Defi-
nition 2.1.6) and the monoidal product ⊗ in a cocomplete closed symmetric monoidal
category preserves colimits in both entries, it follows that

F(M)⊗ F(M) ∼= colimU,V∈RCM

(
F(U)⊗ F(V)

) ∼= colimU∈RCM

(
F(U)⊗ F(U)

)
,

(2.2.8)

where in the last step we also used that RCM is directed by Lemma 2.1.5. For every
U ∈ RCM, consider the diagram

F(U)⊗ F(U)

F( fU)⊗F( fU)

%%

F(ιM
U )⊗F(ιM

U )
**

µU
// F(U)

F(ιM
U )

))

F( fU)
##

F(M)⊗ F(M)

F( f )⊗F( f )
��

µM
// F(M)

F( f )
��

F(N)⊗ F(N) µN
// F(N)

(2.2.9)

where fU : U → N denotes the restriction of f : M → N to U ⊆ M. The top
and bottom squares of this diagram commute because of Lemma 2.2.5 and the fact
that both U ⊆ M and f (U) ⊆ N are relatively compact subsets. The two triangles
commute by direct inspection. By universality of the colimit in (2.2.8), this implies
that the front square in (2.2.9) commutes, proving our claim.

Corollary 2.2.8. Every Cauchy constant additive prefactorization algebra F ∈ PFAadd,c

defines a functor A[F] : Loc → Alg(C) assigning to each M ∈ Loc the algebra
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A[F](M) := (F(M), µM, ηM) and to each Loc-morphisms f : M → N the algebra
map A[F]( f ) := F( f ). The assignment F 7→ A[F] canonically extends to a functor
A : PFAadd,c → [Loc, Alg(C)].

Proof. It remains to prove that every morphism ζ : F → G in PFAadd,c defines a
natural transformation A[ζ] : A[F]→ A[G] between Alg(C)-valued functors on Loc,
i.e. that all components ζM : F(M) → G(M) preserve the multiplications and units.
For the units this is immediate, while for the multiplications it follows from the fact
that the diagram

F(M)⊗ F(M)

ζM⊗ζM
��

F(U+)⊗ F(U−)∼=

F(ιM
U+

)⊗F(ιM
U−

)
oo

ζU+⊗ζU−
��

F(ιM
U )

// F(M)

ζM
��

G(M)⊗G(M) G(U+)⊗G(U−)
∼=

G(ιM
U+

)⊗G(ιM
U−

)
oo

G(ιM
U )

// G(M)

(2.2.10)

commutes by the compatibility properties (2.1.3) of prefactorization algebra mor-
phisms.

2.2.3 Einstein causality

The aim of this section is to show that the functor A : PFAadd,c → [Loc, Alg(C)]
factors through the category AQFTadd,c, i.e. defines a functor A : PFAadd,c →
AQFTadd,c. In order to prove this result we proceed similarly to Subsection 2.2.2,
by first restricting our attention to Loc-morphisms with relatively compact image
and then obtaining the general case by leveraging the fact that the monoidal product
of a bicomplete closed symmetric monoidal category commutes with colimits and
that Ob(RCM) is a directed set for every M ∈ Loc.

Lemma 2.2.9. Let F ∈ PFAc be a Cauchy constant (and not necessarily additive) pref-
actorization algebra and let ( f1 : M1 → N) ⊥c ( f2 : M2 → N) be a causally dis-
joint pair of Loc-morphisms with relatively compact images f1(M1), f2(M2) ⊆ N. Then
µ

op
N (F( f1)⊗ F( f2)) = µN (F( f1)⊗ F( f2)), where µ

(op)
N denotes the (opposite) multiplica-

tion on F(N) from Proposition 2.2.4.

Proof. In order to compare the two morphisms µN (F( f1)⊗ F( f2)) and µ
op
N (F( f1)⊗

F( f2)) from F(M1)⊗F(M2) to F(N), we introduce convenient ways to compute these
composites. Let us choose arbitrary Cauchy surfaces Σ1 of M1 and Σ2 of M2. As in
the proof of Lemma 2.2.5, we deduce that f1(Σ1), f2(Σ2) ⊆ N are achronal compact
subsets. Causal disjointness of the pair f1 ⊥c f2 entails achronality of the union
f1(Σ1) ∪ f2(Σ2) ⊆ N. By [BS06, Theorem 3.8], there exists a Cauchy surface Σ̃ of N
that contains the union f1(Σ1) ∪ f2(Σ2) ⊆ Σ̃. Similarly, choosing any Cauchy surface
Σ′1 ⊂ I+M1

(Σ1) of M1 that lies in the future of Σ1 and any Cauchy surface Σ′2 ⊂ I−M2
(Σ2)

of M2 that lies in the past of Σ2, there exists a Cauchy surface Σ̃′ of N that contains
the union f1(Σ′1) ∪ f2(Σ′2) ⊆ Σ̃′. Let us introduce

U1 := I+M1
(Σ1) ∩ I−M1

(Σ′1) ⊆ M1 , U2 := I+M2
(Σ′2) ∩ I−M2

(Σ2) ⊆ M2 , (2.2.11)
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and also consider Σ̃± := I±N (Σ̃) ⊆ N and Σ̃′± := I±N (Σ̃′) ⊆ N. By construction,

ι
Mi
Ui

: Ui
c→ Mi, for i = 1, 2, and ιN

Σ̃(′)
±

: Σ̃(′)
±

c→ N are Cauchy morphisms. The following

picture illustrates in dark gray the chosen subsets U1 ⊆ M1 and U2 ⊆ M2:

N

M1 M2

Σ̃

Σ̃′

time

(2.2.12)

With these preparations, we can compute µN (F( f1)⊗ F( f2)) by

F(M1)⊗ F(M2)
F( f1)⊗F( f2)

// F(N)⊗ F(N)
µN

// F(N)

F(U1)⊗ F(U2)

∼=F(ι
M1
U1

)⊗F(ιM2
U2

)

OO

F
(
( f1)

Σ̃+
U1

)
⊗F
(
( f2)

Σ̃−
U2

) // F(Σ̃+)⊗ F(Σ̃−)

∼=F(ιN
Σ̃+

)⊗F(ιN
Σ̃−

)

OO

F(ιN
Σ̃
)

33

(2.2.13)

where ( f1)
Σ̃+
U1

: U1 → Σ̃+ denotes the restriction of f1 : M1 → N to U1 ⊆ M1, and

analogously for ( f2)
Σ̃−
U2

. Similarly, µ
op
N (F( f1)⊗ F( f2)) can be computed by

F(M1)⊗ F(M2)

flip
��

F( f1)⊗F( f2)
// F(N)⊗ F(N)

µ
op
N //

flip
��

F(N)

F(M2)⊗ F(M1)
F( f2)⊗F( f1)

// F(N)⊗ F(N)

µN
33

F(U2)⊗ F(U1)

∼=F(ι
M2
U2

)⊗F(ιM1
U1

)

OO

F
(
( f2)

Σ̃′+
U2

)
⊗F
(
( f1)

Σ̃′−
U1

) // F(Σ̃′+)⊗ F(Σ̃′−)

∼=F(ιN
Σ̃′+

)⊗F(ιN
Σ̃′−

)
OO F(ιN

Σ̃′
)

88

(2.2.14)

The claim follows from the equivariance property (2.1.2) of prefactorization algebras:

F(U1)⊗ F(U2)

∼=flip
��

F(ιN
U )

// F(N)

F(U2)⊗ F(U1)
F(ιN

U ·τ)

55
(2.2.15)

where τ is the permutation that flips 1 and 2.
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Proposition 2.2.10. Let F ∈ PFAadd,c and let ( f1 : M1 → N) ⊥c ( f2 : M2 → N) be a
pair of causally disjoint Loc-morphisms. Then µ

op
N (F( f1)⊗ F( f2)) = µN (F( f1)⊗ F( f2)),

where µ
(op)
N denotes the (opposite) multiplication on F(N) from Proposition 2.2.4.

Proof. Because F is by hypothesis additive (cf. Definition 2.1.6) and the monoidal
product ⊗ in a cocomplete closed symmetric monoidal category preserves colimits in
both entries, it follows that

F(M1)⊗ F(M2) ∼= colim(U1,U2)∈RCM1×RCM2

(
F(U1)⊗ F(U2)

)
. (2.2.16)

For every (U1, U2) ∈ RCM1 × RCM2 , consider the diagram

F(U1)⊗ F(U2)

F
(
( f1)U1

)
⊗F
(
( f2)U2

)
((

F
(
( f1)U1

)
⊗F
(
( f2)U2

)

%%

F(ι
M1
U1

)⊗F(ιM2
U2

)

&&

F(M1)⊗ F(M2)

F( f1)⊗F( f2)

��

F( f1)⊗F( f2)
// F(N)⊗ F(N)

µ
op
N

��

F(N)⊗ F(N) µN
// F(N)

(2.2.17)

where ( fi)Ui
: Ui → N denotes the restriction of fi : Mi → N to Ui ⊆ Mi, for

i = 1, 2. The two triangles coincide and commute by direct inspection. Furthermore,
for every (U1, U2) ∈ RCM1 × RCM2 , the outer square commutes as a consequence
of Lemma 2.2.9 applied to the causally disjoint pair ( f1)U1

⊥c ( f2)U2
, whose images

f1(U1), f2(U2) ⊆ N are relatively compact subsets. Hence, by universality of the
colimit in (2.2.16), the inner square commutes as well, which is our claim.

We can finally prove that A : PFAadd,c → [Loc, Alg(C)] factors through AQFTadd,c.

Theorem 2.2.11. Every Cauchy constant additive prefactorization algebra F ∈ PFAadd,c de-
fines a Cauchy constant additive algebraic quantum field theory A[F] ∈ AQFTadd,c. Hence,
the functor A : PFAadd,c → [Loc, Alg(C)] from Corollary 2.2.8 factors through the full
subcategory AQFTadd,c ⊆ [Loc, Alg(C)].

Proof. Proposition 2.2.10 implies that the functor A[F] : Loc → Alg defined in
Corollary 2.2.8 is an algebraic quantum field theory, i.e. it satisfies the Einstein
causality axiom (see Definition 1.2.12). Because F is by hypothesis Cauchy con-
stant, it follows that A[F] is Cauchy constant too. Because the underlying functors
A[F]|M = F|M : RCM → C to the category C coincide, additivity of F ∈ PFAadd,c and
Remark 2.1.9 immediately imply additivity of A[F]. Hence, A[F] ∈ AQFTadd,c.
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2.3 from aqft to tpfa

The goal of this section is to build a functor F : AQFTadd,c → tPFAadd,c associat-
ing to any (additive Cauchy constant) algebraic quantum field theory A on Loc⊥c a
time-orderable (additive Cauchy constant) prefactorization algebra F[A] on Loc. The
reason for introducing a new type of prefactorization algebras, namely time-orderable
prefactorization algebras, is the following: Suppose we are given the task to con-
struct an additive Cauchy constant prefactorization algebra F[A] out of an additive
Cauchy constant algebraic quantum field theory A ∈ AQFTadd,c. The first step one
might want to take is trying to define the factorization products F( f ) for every tu-
ple f = ( f1 : M1 → N, . . . , fn : MN → N) of disjoint Loc-morphisms. To make
things easier we focus on the case n = 2, i.e. the case in which we have a couple
( f1 : M1 → N, f2 : M2 → N) of disjoint Loc-morphisms. A reasonable attempt is
trying to define F[A]( f ) : A(M1)⊗A(M2)→ A(N) via the following diagram

A(M1)⊗A(M2)

A( f1)⊗A( f2) ))

F[A]( f )
// A(N)

A(N)⊗A(N)

µN

66
(2.3.1)

Unluckily, this simple approach does not work, in fact, the equivariance axiom for
prefactorization algebras (see Equation (2.1.2)) requires us to verify that F[A]( f ) =
F[A]( f · τ) ◦ flip, i.e. that the following equation holds µN(A( f1) ⊗ A( f2)) =

µ
op
N (A( f1)⊗A( f2)) for every pair of disjoint morphisms and this is not true in general

unless f1 and f2 are causally disjoint. To deal with this insufficiency, we introduce a
new sort of prefactorization algebras called time-orderable in which factorization prod-
ucts exist just for couples of disjoint Loc-morphisms ( f1 : M1 → N, f2 : M2 → N)
where f (M1) is in some sense “later” than f (M2).

Definition 2.3.1. Let n ≥ 0, fi : Mi → N ∈ MorLoc for every i = 1, . . . , n. We say
that:

(a) f = ( f1, . . . , fn) is time-ordered if J+N( fi(Mi)) ∩ f j(Mj) = ∅ for all 1 ≤ i < j ≤ n,
where J+N( f (Mi)) denotes the causal future in N of f (Mi) for every i.

(b) f is time-orderable if there exists a permutation ρ ∈ Σn such that f ρ =
( fρ(1), . . . , fρ(n)) is time-ordered. We call such a ρ a time-ordering permutation.

By convention all 0-tuples ∅→ N and all 1-tuples f : M→ N are time-ordered.

Remark 2.3.2. Time-orderability is a condition that a tuple of disjoint Loc-morphisms f
may or may not satisfy. To see that this is the case, consider for example the inclusion
of the following causally convex open subsets M1 and M2 into the Lorentzian cylinder
N:
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M2

M1

M1

Ntime

(2.3.2)

In this picture the left and right boundaries are identified as indicated, thereby pro-
ducing the Lorentzian cylinder N = (R× S1, g = −dt2 + dφ2, t = ∂

∂t ). It is clear that
the tuple ιN

M = (ιN
M1

, ιN
M2

) is not time-orderable. M

Definition 2.3.3. The following data defines a multicategory PtLoc, called the time-
orderable prefactorization multicategory:

(a) The collection PtLoc0 consists of the objects of Loc, i.e. PtLoc0 := Ob(Loc).

(b) For every N ∈ PtLoc0 , n ≥ 0, M ∈ Pn
tLoc0

, the sets PtLoc
(N

M
)
= { f = ( f1 : M1 →

N, . . . , fn : Mn → N) : f is a time-orderable tuple of Loc-morphisms}.

The identities, composition maps and permutation actions are obtained restricting
those of the multicategory PLoc⊥d to time-orderable tuples.

To check that Definition 2.3.3 satisfies the axioms of a multicategory it is sufficient
to prove the following Lemma:

Lemma 2.3.4. (a) Let f = ( f1 : M1 → N, . . . , fn : Mn → N) be a time-orderable tuple,
ρ0 a time-ordering permutation for f and σ ∈ Σn. Then σ−1ρ ∈ Σn is a time-ordering
permutation for f σ = ( fσ(1), . . . , fσ(n)) : Mσ→ N.

(b) Let f = ( f1 : M1 → N, . . . , fn : Mn → N) be a time-orderable tuple, ρ0 a time-
ordering permutation for f , g

i
= (gi1, . . . , gimi) : Li → Mi be a time-orderable tuple

with time-ordering permutation ρi for every i = 1, . . . , n. Then, the permutation

ρ0〈m1, . . . , mn〉 (ρρ0(1) ⊕ . . .⊕ ρρ0(n)) ∈ Σm1+···+mn , (2.3.3)

where ρ0〈m1, . . . , mn〉 denotes the block permutation corresponding to ρ0 and ρρ0(1) ⊕
. . .⊕ ρρ0(n) the sum permutation of the ρρ0(i), is a time-ordering permutation for

f (g
1
, . . . , g

n
) := ( f1 g11, . . . , fn gnmn) : (L1, . . . , Ln) −→ N . (2.3.4)

(c) Let f = ( f1 : M1 → N, . . . , fn : Mn → N) be a time-orderable tuple and let ρ0 and ρ′0
be time-ordering permutations for f . Then, the right permutation ρ−1

0 ρ′0 : f ρ0 → f ρ′0
is generated by transpositions of adjacent causally disjoint pairs of morphisms.
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Proof. (a): Trivial.
(b): Since

f (g
1
, . . . , g

n
) ρ0〈m1, . . . , mn〉 (ρρ0(1) ⊕ . . .⊕ ρρ0(n)) = ( f ρ0)(g

ρ0(1)
ρρ0(1), . . . , g

ρ0(n)
ρρ0(n)) ,

(2.3.5)

it is sufficient to prove that the composition of time-ordered tuples is time-ordered.
Therefore, assuming that f and g

i
, for i = 1, . . . , n, are time-ordered, we have to show

that ( f1 g11, . . . , fn gnmn) is time-ordered, i.e. J+N( figii′(Lii′)) ∩ f jgjj′(Ljj′) = ∅ for the
following two cases: Case 1 is i < j and arbitrary i′ = 1, . . . , mi and j′ = 1, . . . , mj.
Case 2 is i = j and j < j′. Case 1 follows immediately from the hypothesis that f
is time-ordered, i.e. J+N( fi(Mi)) ∩ f j(Mj) = ∅ for all i < j. For case 2 we use that
g

i
is time-ordered, i.e. J+Mi

(gii′(Lii′)) ∩ gij′(Lij′) = ∅ for all j < j′, and hence by the
properties of Loc-morphisms

J+N( figii′(Lii′)) ∩ figij′(Lij′) = fi

(
J+Mi

(gii′(Lii′)) ∩ gij′(Lij′)
)
= ∅ . (2.3.6)

This proves that ( f1 g11, . . . , fn gnmn) is time-ordered.
(c): Suppose that ρ−1

0 ρ′0 : f ρ0 → f ρ′0 reverses the time-ordering between fk and f`,
i.e. ρ0(i) = k = ρ′0(i

′) and ρ0(j) = ` = ρ′0(j′) with i < j and j′ < i′ or vice versa
with j < i and i′ < j′. Let us consider the case i < j and j′ < i′, the other one
being similar. By hypothesis, we have that J+N( fρ0(i)(Mρ0(i))) ∩ fρ0(j)(Mρ0(j)) = ∅ and
J+N( fρ′0(j′)(Mρ′0(j′)))∩ fρ′0(i

′)(Mρ′0(i
′)) = ∅, which is equivalent to fk ⊥c f` being causally

disjoint. Summing up, this proves that every pair ( fk, f`) of morphisms whose time-
ordering is reversed by ρ−1

0 ρ′0 is causally disjoint fk ⊥c f`.
To conclude the proof, let us recall that every permutation σ : (h1, . . . , hn) →

(hσ(1), . . . , hσ(n)) admits a (not necessarily unique) factorization into adjacent trans-
positions that flip only elements whose order is reversed by σ. (One way to ob-
tain such a factorization is as follows: Start from (h1, . . . , hn) and move by adjacent
transpositions the element hσ(1) to the leftmost position. Then move by adjacent
transpositions the element hσ(2) to the second leftmost position, and so on.) This
implies that we obtain a factorization ρ−1

0 ρ′0 = τ1 · · · τN : f ρ0 → f ρ′0, where each
τl : f ρ0τ1 · · · τl−1 → f ρτ1 · · · τl transposes two adjacent Loc-morphisms whose time-
ordering is reversed by ρ−1

0 ρ′0. Our result in the previous paragraph then implies
that each τl is a transposition of adjacent causally disjoint pairs of morphisms, which
completes our proof.

Definition 2.3.5. We denote by tPFA the category AlgPtLoc
(C) of C-valued algebras

on PtLoc (see Remark 1.1.21) and call its objects time-orderable prefactorization algebras.
Like we did in the case of Definition 2.1.2 we give a more explicit description of
a generic time-orderable prefactorization algebra F. In particular, a time-orderable
prefactorization algebra consists of the following data:

(a) For each M ∈ Loc, an object F(M) ∈ C.

(b) For each tuple of time-orderable Loc-morphisms f = ( f1, . . . , fn) : M → N, a
C-morphism F( f ) :

⊗n
i=1 F(Mi)→ F(N) (called time-ordered product).
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Satisfying the analogues of the prefactorization algebra axioms from Definition 2.1.2
for time-orderable tuples.

A morphism ζ : F → G of time-orderable prefactorization algebras is a family
ζM : F(M) → G(M) of C-morphisms, for all M ∈ Loc, that is compatible with the
time-ordered products as in Definition 2.1.2.

In analogy to what we have done for algebraic quantum field theories and prefac-
torization algebras we introduce the categories tPFAadd, tPFAc, tPFAadd,c of additive,
Cauchy constant and additive Cauchy constant time-orderable prefactorization alge-
bras.

Remark 2.3.6. There are two multifunctors which play a central role in the discussion
that follows. The first is the multifunctor ψ : PtLoc → PLoc⊥d , which is the identity on
objects and the inclusion on the sets of n-operations. This functor is clearly faithful
and essentially surjective, but not full (see Example 2.3.2). As we have seen in The-
orem 1.1.26, ψ defines an associated pullback functor ψ∗ : PFA := AlgP

Loc⊥d
(C) →

tPFA := AlgPtLoc
(C) which is faithful and preserves both additivity and Cauchy con-

stancy. The role of this multifunctor is to take a prefactorization algebra F ∈ PFA
and give back a time-orderable prefactorization algebra ψ∗F ∈ tPFA obtained by
restriction to tuples of time-orderable morphisms.

The second is the multifunctor φ : PtLoc → OLoc⊥c defined by sending each ob-
ject to itself and by sending each time-orderable tuple f ∈ PtLoc with time-ordering
permutation ρ to the couple (ρ−1, f ) ∈ OLoc⊥c (the appearance of the inverse of ρ

is justified by the physical interpretation of the multicategory OLoc⊥c , see equation
(1.2.8)). To see that this functor is well defined is a consequence of Lemma 2.3.4, in
particular of the fact that given time-ordering permutations ρ, ρ′ of f , the permuta-
tion ρ−1ρ′ : f ρ → f ρ′ is generated by transpositions of causally disjoint morphisms,
i.e. (ρ−1, f ) and (ρ′−1, f ) define the same n-operations in OLoc⊥c (see Theorem 1.2.15).
Theorem 1.1.26 shows there are two multifunctors associated to φ : PtLoc → OLoc⊥c ,
namely its pullback φ∗ : AQFT → tPFA and the multicategorical left Kan extension
φ! : tPFA → AQFT along φ. It turns out that φ∗ : AQFT → tPFA is the functor
F : AQFT → tPFA we are interested in. More explicitly, for any algebraic quantum
field theory A, the time-orderable prefactorization algebra F[A] associates to a tuple
of disjoint Loc-morphisms f = ( f1 : M1 → N, . . . , fn : Mn → N) with time-ordering
permutation ρ the following time-ordered product:

n⊗
i=1

A(Mi)

permute
��

F[A]( f )
// A(N)

n⊗
i=1

A(Mρ(i)) ⊗
i A( fρ(i))

// A(N)⊗n

µ
(n)
N

OO
(2.3.7)

The product F[A]( f ) can be understood as the following procedure:

(a) Consider observables a1 ∈ A(M1), . . . , an ∈ A(Mn).

(b) Swap the observables according to the permutation ρ and push them forward
to N.
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(c) Multiply the observables using the multiplication µN in N according to the
order in which they appear after the last step.

The case n = 2 is particularly illuminating:

(a) If f1 and f2 are causally disjoint (in particular time-ordered) then φ : PtLoc →
OLoc⊥c sends f to (e, f ) = (τ, f ), where τ is the permutation swapping 1 and
2. In particular, Einstein causality shows that there is no ambiguity in using
equation (2.3.7) to define F[A]( f ).

(b) If f1 and f2 are time-ordered, then the product of observables a1 ∈ A(M1) and
a2 ∈ A(M2) is given by a1a2 ∈ A(N), otherwise it is given by a2a1 ∈ A(N),
where a1a2 and a2a1 denote the two possible products of the push-forwards in
N of a1 and a2.

M

We summarize the construction of F : AQFT → tPFA just discussed in the follow-
ing Theorem:

Theorem 2.3.7. Let A ∈ AQFT be an algebraic quantum field theory. Then the following
data defines a time-orderable prefactorization algebra F[A] ∈ tPFA := AlgPtLoc

(C):

(a) F[A] assigns to each each M ∈ PtLoc0 the object A(M), where A(M) is considered as
an object of C via the forgetful functor Alg(C)→ C;

(b) F[A] assigns to each time-orderable tuple of pairwise disjoint morphisms f =
( f1, . . . , fn) : M → N, the time-ordered product F[A]( f ) :

⊗n
i=1 F[A](Mi) →

F[A](N) defined by equation (2.3.7), and assigns the unit ηN : I → F[A](N) of
A(N) to the only morphism in PtLoc

(
N
∅
)

for every N ∈ PtLoc0 .

The assignment A 7→ F[A] canonically extends to a functor F : AQFT→ tPFA.

We can finally prove that the functor F from Theorem 2.3.7 restricts to functors
F : AQFTadd → tPFAadd, F : AQFTc → tPFAc and F : AQFTadd,c → tPFAadd,c.

Proposition 2.3.8. Let A ∈ AQFT. Then A is additive (respectively Cauchy constant) if
and only if F[A] ∈ tPFA is additive (respectively Cauchy constant). In particular, the functor
F : AQFT → tPFA from Theorem 2.3.7 restricts to the categories AQFTadd, AQFTc and
AQFTadd,c as F : AQFTadd → tPFAadd, F : AQFTc → tPFAc and F : AQFTadd,c →
tPFAadd,c respectively.

Proof. Let us recall that, by our construction, the underlying functors F[A] = A :
Loc → C to the category C coincide. It is then a consequence of Remark 2.1.9 that
F[A] is additive if and only if A is additive. Furthermore, because the forgetful
functor Alg(C) → C preserves and detects isomorphisms, it follows that F[A] is
Cauchy constant if and only if A is Cauchy constant.
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2.4 equivalence theorem

The aim of this section is to introduce an equivalence between the category of additive
Cauchy constant time-orderable prefactorization algebras on Loc and the category of
additive Cauchy constant algebraic quantum field theories on Loc by leveraging the
functors A : PFAadd,c → AQFTadd,c and F : AQFTadd,c → tPFAadd,c in Sections 2.1
and 2.3. In particular, we consider the factorization of A : PFAadd,c → AQFTadd,c

through the category tPFAadd,c and denote it by A : tPFAadd,c → AQFTadd,c. More-
over, using this equivalence, we discuss how to introduce ∗-involutions for additive
Cauchy constant time-orderable prefactorization algebras. To conclude, we apply our
equivalence Theorem to the example of the free Klein-Gordon field to recover the
results from [GR17].

Theorem 2.4.1. The functors A : tPFAadd,c → AQFTadd,c (see Section 2.1 and the previous
discussion) and F : AQFTadd,c → tPFAadd,c (see Section 2.3) are inverse to each other. In
particular, the categories AQFTadd,c and tPFAadd,c are isomorphic

Proof. The only non-trivial check to confirm that A ◦F = idAQFTadd,c amounts to show

that, for every A ∈ AQFTadd,c, the multiplications on A[F[A]](M) and on A(M)
coincide, for all M ∈ Loc. By (2.2.1) and (2.3.7), the multiplication on A[F[A]](M) is
given by

A(M)⊗2 A(U+)⊗A(U−)
A(ιM

U+
)⊗A(ιM

U−
)

∼=
oo

A(ιM
U+

)⊗A(ιM
U−

)
// A(M)⊗2 µM

// A(M) , (2.4.1)

where ιM
U = (ιM

U+
, ιM

U−) : U → M is any object of PM. This clearly coincides with the
original multiplication µM on A(M).

Conversely, to show that F ◦A = idtPFAadd,c , we have to confirm that the time-
ordered products of F[A[F]] ∈ tPFAadd,c coincide with the original time-ordered
products of F ∈ tPFAadd,c. In arity n = 0 and n = 1 this is obvious. For n ≥ 2,
this is more complicated and requires some preparations. Using equivariance under
permutation actions, it is sufficient to compare the time-ordered products for time-
ordered (in contrast to time-orderable) tuples f = ( f1, . . . , fn) : M → N. Because of
additivity, we can further restrict to the case where f : M→ N has relatively compact
images, i.e. fi(Mi) ⊆ N is relatively compact, for all i = 1, . . . , n. We shall now show
that, due to Cauchy constancy, we can further restrict our attention to time-ordered
tuples h = (h1, . . . , hn) : L→ N with relatively compact images for which there exists
a Cauchy surface Σ of N such that

h1(L1), . . . , hn−1(Ln−1) ⊆ Σ+ := I+N (Σ) ⊆ N and hn(Ln) ⊆ Σ− := I−N (Σ) ⊆ N .
(2.4.2)

Indeed, given any time-ordered tuple f : M→ N with relatively compact images, we

shall prove below that there exists a family of Cauchy morphisms gi : Li
c→ Mi, for

i = 1, . . . , n, such that h := f (g1, . . . , gn) = ( f1 g1, . . . , fn gn) : L→ N admits a Cauchy
surface Σ that satisfies (2.4.2). Cauchy constancy and the fact that the time-ordered
products of F[A[F]] and F agree in arity n = 1 then implies that F[A[F]]( f ) = F( f )
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if and only if F[A[F]](h) = F(h). To exhibit such a family of Cauchy morphisms
for f : M → N, let us choose Cauchy surfaces Σi of Mi, for i = 1, . . . , n, and define

Li := I+Mi
(Σi), for i = 1, . . . , n− 1, and Ln := I−Mn

(Σn). Let us further define gi := ι
Mi
Li

:

Li
c→ Mi by subset inclusion, for i = 1, . . . , n. A Cauchy surface Σ of N is constructed

by extending via [BS06, Theorem 3.8] the compact and achronal subset

Σ̃ :=
n⋃

i=1

(
fi(Σi)

∖
I+N
( n⋃

j=i+1

f j(Σj)
))
⊆ N . (2.4.3)

By direct inspection one observes that Σ fulfils (2.4.2).
Using (2.4.2), we obtain a factorization

h = ιN
Σ
(
(hΣ+

1 , . . . , hΣ+
n−1), hΣ−

n
)

, (2.4.4)

where on the right-hand side we regard hΣ+
i : Li → Σ+ as morphisms to Σ+, for i =

1, . . . , n− 1, and hΣ−
n : Ln → Σ− as a morphism to Σ−. Iterating this construction, we

observe that it is sufficient to prove that F[A[F]](ιN
Σ ) = F(ιN

Σ ), for all ιN
Σ = (ιN

Σ+
, ιN

Σ−) :
Σ→ N, where N ∈ Loc and the Cauchy surface Σ of N is arbitrary. Using (2.3.7) and
(2.2.1), we obtain that F[A[F]](ιN

Σ ) : F(Σ+)⊗ F(Σ−)→ F(N) is given by

F(Σ+)⊗ F(Σ−)
F(ιN

Σ+
)⊗F(ιN

Σ− )
// F(N)⊗ F(N) F(Σ+)⊗ F(Σ−)

F(ιN
Σ+

)⊗F(ιN
Σ− )

∼=
oo

F(ιN
Σ )
// F(N) ,

(2.4.5)

which clearly coincides with the original time-ordered product F(ιN
Σ ) : F(Σ+) ⊗

F(Σ−)→ F(N). This concludes our proof.

Remark 2.4.2. We mentioned in Remark 2.3.6 that the functor φ : PtLoc → OLoc⊥c

induces two functors, namely the pullback φ∗ = F : AQFT → tPFA and the mul-
ticategorical left Kan extension φ! : tPFA → AQFT along φ. It is clear then, after
restricting to the appropriate domains and codomains, that the functor φ! and A

coincide (are equivalent), being adjoint to the same functor F.
Note, that in order to obtain our results, we could have avoided taking into account

the multicategorical perspective, but we expect it to be crucial for higher-categorical
generalizations of our equivalence Theorem, i.e. to situations in which the target
monoidal category C is replaced by some higher category or model category. These
generalizations are needed to describe quantum gauge theories in terms of factor-
ization algebras and algebraic quantum field theories. Moreover, it can be noticed
how removing the burden of sticking to a particular perspective, i.e. the freedom
of passing from a categorical to a multicategorical perspective and vice-versa, helps
clarifying and explaining the results. M

2.4.1 Transfer of ∗-involutions

In Remark 1.2.13 we observed that the category of VecC-valued algebraic quantum
field theories naturally carries the structure of an involutive category (AQFT, (−), id).
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It is not difficult to see that the involutive structure (−) : AQFT → AQFT restricts
to an involutive structure functor (−) : AQFTadd,c → AQFTadd,c. In particular, we
can use the isomorphism in Theorem 2.4.1 to obtain a transferred involutive structure
(−) : tPFAadd,c → tPFAadd,c and hence an involutive category (tPFA, (−), id). More
explicitly the functor (−) : tPFAadd,c → tPFAadd,c assigns to any F ∈ tPFAadd,c its
conjugate F given by F[A[F]]. We can then consider the category ∗tPFAadd,c of ∗-
objects in tPFAadd,c (see Definition 1.1.32).

Notice that the definition of the involutive structure (−) : tPFAadd,c → tPFAadd,c re-
lies on additivity and Cauchy constancy. In particular, the transfer of the ∗-structure
is not generalizable to all time-orderable prefactorization algebras. The reason for
this insufficiency lies on the fact that Cauchy constancy is needed to define the con-
jugate factorization products. More specifically, let M ∈ Loc and let Σ+ and Σ− be
respectively the chronological past and the chronological future of a Cauchy hyper-
surface Σ ⊆ M. The complex conjugate F(ιM

(Σ+,Σ−)
) : F(Σ+)⊗ F(Σ−)→ F(M), where

ιM
Σ± : Σ± → M denotes the inclusion of Σ± in M, is given by the following diagram:

F(Σ+)⊗ F(Σ−)
F(ιM

(Σ+ ,Σ−)
)

// F(M)

F(Σ+)⊗ F(Σ−)
F(ιM

Σ+
)⊗F(ιM

Σ−
)

// F(M)⊗ F(M) F(Σ−)⊗ F(Σ+)
∼=

F(ιM
Σ−

)⊗F(ιM
Σ+

)

oo

F(ιM
(Σ− ,Σ+)

)

OO

(2.4.6)

Notice that the rightmost arrow in the second line uses explicitly Cauchy constancy,
therefore, it is unclear, at least to us, whether it is possible to get rid of this issue and
define an involutive structure on tPFA.

2.4.2 Free Klein-Gordon

In this subsection we recall the description of the Free Klein-Gordon field AKG ∈
AQFTadd,c in terms of Algebraic Quantum Field Theory and use the isomorphism in
Theorem 2.4.1 to obtain the corresponding description F[AKG] ∈ tPFAadd,c in terms
of Factorization Algebras.

Example 2.4.3. Let M ∈ Loc be a spacetime and let PM denote the Klein-Gordon
operator defined by −�M + m2 : C∞(M) → C∞(M), where �M is the d’Alembert
operator and m2 ≥ 0 is a mass parameter and let G±M : C∞

c (M) → C∞(M) denote the
uniquely defined retarded/advanced Green’s operator associated to PM, where the
subscript ‘c’ denotes compactly supported functions. Then, the real vector space of
linear observables is defined by the following cokernel:

C∞
c (M)

PM // C∞
c (M) // V(M) := C∞

c (M)
/

PM(C∞
c (M)) . (2.4.7)

Since C∞
c : Loc → VecR is a cosheaf with respect to (causally convex) open covers,

P : C∞
c → C∞

c is a natural transformation and cosheaves cokernels can be computed
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point-wise, it follows that V : Loc→ VecR is a cosheaf too. The associative and unital
algebra AKG(M) :=

(
SymC(V(M)), ?M, ηM

)
∈ AlgC that the algebraic quantum field

theory version of the Free Klein-Gordon field assigns to M is a deformation of the
complexified symmetric commutative algebra SymC(V(M)) ∈ AlgCom(VecC) (see
Remark 1.1.21) obtained in the following way:

We define a differential d : SymC(V(M)) → SymC(V(M))⊗ V(M) by setting on
monomials

d
(

ϕ1 · · · ϕn
)

:=
n

∑
i=1

ϕ1 · · ·
i
∨. · · · ϕn ⊗ ϕi , (2.4.8)

where
i
∨. means omission of ϕi. Using the causal propagator GM := G+

M − G−M :
V(M) → ker PM and the integration map

∫
M : V(M) ⊗ ker PM → R , ϕ ⊗ Φ 7→∫

M ϕ Φ volM, we define the bi-differential operator

SymC(V(M))⊗2

(id⊗τ⊗id)◦(d⊗d)
��

〈GM,d⊗d〉
// SymC(V(M))⊗2

SymC(V(M))⊗2 ⊗ V(M)⊗ V(M)
id⊗id⊗GM

// SymC(V(M))⊗2 ⊗ V(M)⊗ ker PM

id⊗
∫

M

OO

(2.4.9)

where we recall that τ is the symmetric braiding on VecC, i.e. the flip map. The
?-product ?M : SymC(V(M))⊗2 → SymC(V(M)) is defined by composing

SymC(V(M))⊗2
exp
(

i
2 〈GM,d⊗d〉

)
// SymC(V(M))⊗2 ·M // SymC(V(M)) ,

(2.4.10)

where ·M denotes the commutative product on SymC(V(M)). (The exponential se-
ries converges because it terminates for polynomials.) The unit ηM is the unit of
SymC(V(M)), for all M ∈ Loc.

In particular, AKG ∈ AQFTadd,c, where the additivity follows from the fact that
V : Loc→ VecR is a cosheaf. O

To understand the time-orderable prefactorization algebra F[AKG] obtained from
AKG by applying the isomorphism from Theorem 2.4.1 it is instructive to compute ex-
plicitly the factorization products F[AKG]( f ), where f = ( f1 : M1 → N, f2 : M2 → N)
is a time-orderable couple of Loc-morphisms (see Definition 2.3.1). We can distin-
guish two cases:

(a) If f is time-ordered, we obtain from (2.3.7), (2.4.10) and the support properties
of G±N that

FKG( f ) = ·N ◦ exp
( i

2 〈G
+
N , d⊗ d〉

)
◦
(
AKG( f1)⊗AKG( f2)

)
. (2.4.11a)

(b) If f = ( f1, f2) : M → N is anti-time-ordered, i.e. J+N( f2(M2)) ∩ f1(M1) = ∅, we
obtain

FKG( f ) = ·N ◦ exp
( i

2 〈G
−
N , d⊗ d〉

)
◦
(
AKG( f1)⊗AKG( f2)

)
. (2.4.11b)
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2.4 equivalence theorem

In particular, using once more the support properties of G±N , we obtain a combined
formula for the two cases:

FKG( f ) = ·N ◦ exp
(
i 〈GD

N, d⊗ d〉
)
◦
(
AKG( f1)⊗AKG( f2)

)
( f time-orderable) ,

(2.4.12)

where GD
N := 1

2(G
+
N + G−N) is the so-called Dirac propagator. In perturbative algebraic

quantum field theory (see e.g. [FR12]), the products ·TN
:= ·N ◦ exp

(
i 〈GD

N, d⊗ d〉
)

are called time-ordered products, henceforth, the additive Cauchy constant time-
orderable prefactorization algebra F[AKG] associated to the free Klein-Gordon addi-
tive Cauchy constant algebraic quantum field theory AKG encodes the time-ordered
products obtained via the Dirac propagator. In particular, this result agrees with
[GR17].
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3
C AT E G O R I F I C AT I O N O F A Q F T S

The aim of this chapter is to introduce a 2-categorical version of algebraic quantum
field theories drawing framework and results from our paper [BPSW21]. As we have
seen in the previous chapters, an algebraic quantum field theory is, broadly speaking,
a functor that associates associative and unital algebras of observables to spacetimes,
satisfying some physically motivated axioms, e.g. Einstein causality. Although this
perspective has been proven fruitful it is not sufficient to capture the higher cate-
gorical features that appear in gauge theories. Such insufficiency has been already
widely noticed and attempts to deal with it have been explored (see e.g. [FR12],
[FR13] and [BSW19b] for an approach that considers homotopy-coherent algebraic
quantum field theories with values in differential graded algebras). Our claim is that
the 2-categorical approach we propose is more sensitive to global aspects of quantum
gauge theories than previous approaches (see [FR12, FR13, BSW19b]).

We will prove (see Section 3.1) that any VecK-valued algebraic quantum field the-
ory can be interpreted as an AlgK-valued prefactorization algebra, i.e. as a multifunc-
tor A : PSp⊥ → AlgK. Hence, we will leverage this fact to define 2-algebraic quantum

field theories as pseudo-multifunctors PSp⊥ → PrK, where Sp⊥ = (Sp,⊥) is an orthog-
onal category, PSp⊥ is the prefactorization algebra multicategory (see Definition 1.1.9)

on Sp⊥ and PrK is the 2-multicategory of locally presentable K-linear categories (Section
3.2). Saying it otherwise, a 2-algebraic quantum field theory is a 2-categorical multi-
functor that assigns a locally presentable K-linear category to each spacetime s ∈ Sp.
To understand why we want our 2-algebraic quantum field theories to assign locally
presentable K-linear categories to spacetimes s ∈ Sp it is worth recalling why an ordi-
nary (i.e. 1-categorical) algebraic quantum field theory assigns associative and unital
K-algebras. The algebra A should be interpreted as a quantization of the commu-
tative algebra O(X) of functions on the phase space X of a physical system. If X is
“nice”, i.e. it is an affine scheme, then passing to its function algebra does not lose any
information, hence it is justified to quantize X by deforming its function algebraO(X)
to a noncommutative algebra A. However, many important examples of phase spaces
that feature in physics are not of this “nice” kind. For instance, if the phase space X
is a stack (for example the classifying stack BG of a group G), as happens in a gauge
theory, it is generically not true that X is faithfully encoded by its function algebra
O(X), which, in this case, is a differential graded algebra (see [Toe14, BSW19b]). For
instance, if X := BZ2 the dg-algebraO(BZ2) coincides with the dg-algebra C•(Z2, K)
of group cochains with values in the trivial Z2-representation K. Hence, since for all
n 6= 0 all the cohomology groups Hn(Z2, K) = 0 are trivial and since H0(Z2, K) = K,
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we obtain that O(BZ2) ' K = O({∗}). Therefore, the function algebra loses all the
information regarding the group Z2.

A possible solution to this insufficiency is obtained by considering, in place of the
function algebra O(X), the category QCoh(X) of quasi-coherent sheaves over X. In
fact, it can be proven that QCoh(X), which should be thought as a well behaved
analogue of the category of vector bundles on a ringed space, fully faithfully encodes
the space X. More precisely a theorem of Lurie (see [Lur04]) states that a geometric
stack X can be reconstructed from its category QCoh(X) of quasi-coherent sheaves.
For example, if X is an affine scheme, QCoh(X) ∼= ModO(X), hence, the algebra
O(X) can be recovered as the endomorphism algebra End(O(X)) of the free rank
1-module O(X). When X is not affine, things get more interesting. For instance, if
X = BG, we obtain that QCoh(X) is equivalent to the symmetric monoidal category
RepK(G) of K-linear representations of G, which is, in general, much richer than the
dg-algebra O(BG).

The question we have to answer then is: what does it mean to quantize QCoh(X)?
When X is an affine scheme QCoh(X) ∼= ModO(X), where ModO(X) is the symmetric
monoidal category of rightO(X)-modules. Therefore, given an algebra A that quantizes
O(X), a natural choice for the quantization of QCoh(X) is the category ModA of right
A-modules. Since A is in general non-commutative, the category ModA can not be
equipped with the relative tensor product ⊗A, however, it is a pointed (i.e. endowed
with a distinguished object, namely the rank 1-module A) locally presentable (i.e.
“obtained from small generators” and relations) K-linear category. This suggests
that the quantization of QCoh(X) should be a pointed locally presentable K-linear
category.

Let us outline in more detail the content of this chapter.
In Section 3.1 we present the relevant background on Cat-enriched multicategories (or

2-multicategories), pseudo-multifunctors, pseudo-multinatural transformations and multi-
modifications, i.e. multicategorical analogues of 2-categories, pseudo-functors, pseudo-
multifunctors and modifications.

In Section 3.2 we begin by proving that ordinary (i.e. 1-categorical) algebraic quan-
tum field theories can alternatively be described as AlgK-valued prefactorization alge-
bras and we proceed, leveraging this fact, by defining 2-algebraic quantum field theories
as pseudo-multifunctors PSp⊥ → PrK, where PrK is the 2-multicategory of locally
presentable K-linear categories.

In Section 3.3 we describe a fully faithful inclusion pseudo-functor ι :
AQFT(Sp⊥) → 2AQFT(Sp⊥) and a truncation 2-functor π : 2AQFT(Sp⊥) →
AQFT(Sp⊥), where 2AQFT(Sp⊥) denotes the category of 2-algebraic quantum field
theories over the orthogonal category Sp⊥ = (Sp,⊥). More precisely, the inclusion
pseudo-functor takes an ordinary algebraic quantum field theory A and produces a
2-algebraic quantum field theory ι(A) that assigns to every spacetime s ∈ Sp the
locally presentable K-linear category ModA(s). The truncation 2-functor takes a 2-
algebraic quantum field theory A ∈ 2AQFT(Sp⊥) and produces an ordinary alge-
braic quantum field theory π(A) ∈ AQFT(Sp⊥) assigning to every spacetime s ∈ Sp
the associative and unital K-algebra End(as), where as is the pointing of A(s), i.e. the
object that is picked out by the co-continuous K-linear functor A(∗s) : ModK → A(s),
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3.1 Cat-enriched multicategories

image of the only 0-operation ∗s ∈ PSp⊥
( s

∅
)

(any co-continuous K-linear functor
F : ModK → A, where A is a locally presentable K-linear category, is fully deter-
mined by F(K), the image of the rank 1 free module K ∈ ModK). Moreover, we
prove that ι a π forms a biadjoint pair of morphisms that exhibits AQFT(Sp⊥) as
a coreflective full 2-subcategory of 2AQFT(Sp⊥). This means that applying the in-
clusion and the truncation functor to an ordinary algebraic quantum field theory
A ∈ AQFT(Sp⊥) in succession one obtains an ordinary algebraic quantum field the-
ory equivalent to A itself (which is easily seen by considering the following chain
of equivalences π(ι(A(s))) ∼= π(ModA(s))

∼= End(A(s)) ∼= A(s)). Therefore, we con-
clude that ordinary algebraic quantum field theories can be equivalently studied in
the 2-category of 2-algebraic quantum field theories. Finally, we introduce a notion
of “truncatedness” with the following meaning: we say that a 2-algebraic quantum
field theory is truncated if it is equivalent to an algebraic quantum field theory of the
form ι(A), where A is an ordinary algebraic quantum field theory.

In Section 3.4 we introduce a gauging construction, i.e. a functor associating to
any ordinary algebraic quantum field theory A ∈ AQFT(Sp⊥) endowed with a G-
action ρ : G → Aut(A), a 2-algebraic quantum field theory AG defined by sending
each s ∈ Sp to the locally presentable K-linear category G-ModA(s) of G-equivariant
right A(s)-modules (i.e. the category whose objects are K-linear representations V ∈
ModK of G endowed with a G-equivariant right A(s)-action V ⊗ A(s) → V). We
will see that AG can be physically interpreted as a local gauging of A with respect
to G and we call it the categorified orbifold construction of (A, ρ). Finally, we show
that this construction provides toy-models for non-truncated 2-algebraic quantum
field theories and use Hopf-Galois theory to determine when categorified orbifold
constructions are truncated.

In Section 3.5 we introduce a categorification of Fredenhagen’s universal algebra
(see Example 1.2.20), called Fredenhagen’s universal category, obtained by noticing (see
Theorem 1.1.26) that any orthogonal functor J : D⊥ → E⊥ gives rise to an exten-
sion/restriction biadjunction J! : 2AQFT(D⊥) ∼= AlgPD⊥

(PrK) � AlgPE⊥
(PrK) ∼=

2AQFT(E⊥) : J. To conclude, we use this construction to study extensions to the en-
tire circle S1 of 2-algebraic quantum field theories defined in proper connected open
subsets I ⊂ S1.

3.1 Cat-enriched multicategories

In this section we briefly recall the theory of Cat-enriched multicategories (or
2-multicategories) by introducing pseudo-multifunctors, pseudo-multinatural transfor-
mations and multimodifications ([BPSW21]), multicategorical analogues of pseudo-
functors, pseudo-natural transformations and modifications (see e.g. [Lei04, SP09,
Lac10]). It is worth noticing that our approach is slightly different from the one con-
sidered by Corner and Gurski (see [CG13]) since we allow pseudo-multifunctors to
preserve permutation actions only up to isomorphism. The reason for this difference
is that our quantum field theoretic examples come with non-trivial coherences for
permutations.
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Remark 3.1.1. Generalizing multicategories, multifunctors and multinatural transfor-
mations to the 2-categorical setting can be done in several ways, depending on the
degree of strictness one wants the coherence axioms to satisfy. For our purposes it
is sufficient to consider Cat-enriched (or 2-strict multicategories), the strictest form
of 2-categorical multicategory, pseudo-multifunctors and pseudo-multinatural trans-
formations, i.e. 2-categorical multifunctors and multinatural transformations whose
coherence axioms are determined up to isomorphism. M

Definition 3.1.2. A Cat-enriched symmetric multicategoryO consists of the following
data:

(a) A collection of objects (or colours) O0.

(b) For all t ∈ O0, n ≥ 0, c := (c1, . . . , cn) ∈ On
0 , a category O

(t
c
)

whose objects
are called 1-morphisms (or n-operations, if one wants to specify the arities of 1-
morphisms) and are denoted with symbols like φ, ψ and whose maps are called
2-morphisms and are denoted with symbols like α, β.

(c) For all t ∈ O0, n ≥ 1, a ∈ On
0 , mi ≥ 0, bi ∈ O

mi
0 , with i = 1, . . . , n, composition

functors γ : O
(t

a
)
×∏n

i=1O
(ai

bi

)
→ O

(t
b
)
, where

b = (b11, . . . , b1m1 , . . . , bn1 . . . , bnmn).

We write compactly φ ψ := γ(φ, (ψ1, . . . , ψn)) for the composition of 1-
morphisms and α ∗ β = γ(α, (β1, . . . , βn)) for the composition of 2-morphisms.
We denote by Id the identity 2-morphisms.

(d) For every t ∈ O0 functors 1t : 1 → O
(

t
t
)

, where 1 is the category with one
object. We also write 1t ∈ O

(
t
t
)

for the corresponding identity 1-operations.

(e) A right action of the permutation group on n letters Σn on the collection of
categories of n-operations for all n

O(σ) : O
(t

c
)
→ O

( t
cσ

)
,

where cσ := (cσ(1), . . . , cσ(n)) and O(σ) is a functor for every σ ∈ Σn. We write
φ · σ := O(σ)(φ) and α · σ := O(σ)(α) for the permutation action (notice the
dot) while we use the symbol ψσ to denote the permutation (ψσ(1), . . . , ψσ(n)) of
an n-tuple of 1-morphisms (ψ1, . . . , ψn).

Satisfying analogues of the Associativity, Unitality and the Equivariance axiom (see
Definition 1.1.1)

Definition 3.1.3. Let O and P be Cat-enriched symmetric multicategories. A pseudo-
multifunctor F : O → P is given by the following data:

(a) A map on the underlying collections of objects F0 : O0 → P0.

(b) For all t ∈ O0, n ≥ 0 and c ∈ On
0 , functors Ft

c : O
(t

c
)
→ P

(Ft
Fc
)
, where Fc =

(Fc1, . . . , Fcn).
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3.1 Cat-enriched multicategories

Note: We will drop the apexes and subscripts when clear from the context.

(c) For all t ∈ O0, n ≥ 1, a ∈ On
0 , mi ≥ 0, bi ∈ O

mi
0 , with i = 1, . . . , n, natural

isomorphisms

O
(t

a
)
×

n
∏
i=1
O
(ai

bi

)
γO
��

F×∏i F
// P
(Ft

Fa
)
×

n
∏
i=1
P
(Fai

Fbi

)
γP
��

F2

px
O
(t

b
)

F
// P
(Ft

Fb
)

(3.1.1)

(d) For all t ∈ O0, natural isomorphisms

1

1
O

��

1
P

&&

F0

u}
O
(

t
t
)

F
// P
(

Ft
Ft
)

(3.1.2)

(e) For all t ∈ O0, n ≥ 0, c := (c1, . . . , cn) ∈ On
0 , σ ∈ Σn, natural isomorphisms

O
(t

c
)

O(σ)
��

F // P
(Ft

Fc
)
P(σ)
��

Fσ

rz
O
( t

cσ

)
F

// P
( Ft

Fcσ

)
(3.1.3)

Satisfying the following axioms:

(a) Preservation of compositions:

(Fφ) (Fψ) (Fρ)

Id∗∏ F2

��

F2∗∏ Id
// F(φ ψ) (Fρ)

F2

��

(Fφ) F(ψ ρ)
F2

// F(φ ψ ρ)

(3.1.4)

(b) Preservation of units:

1
P (Fφ)

F0∗Id
��

Id

))

(Fφ) ∏ 1
P

Id∗∏ F0

��

Id

**

(F1O) (Fφ)
F2

// F(1O φ) (Fφ)∏ F1O
F2

// F(φ ∏ 1
O)

(3.1.5)
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3.1 Cat-enriched multicategories

(c) Preservation of permutations:

((Fφ) · σ) · σ′

Id
��

Fσ·σ′ // (F(φ · σ)) · σ′

Fσ′

��

Fφ

Id
��

Id

))

(Fφ) · (σσ′)
Fσσ′

// F(φ · (σσ′)) (Fφ) · e
Fe

// F(φ · e)

(3.1.6)

((Fφ) (Fψ)) · σ〈m1, . . . , mn〉

Id
��

F2·σ〈m1,...,mn〉
// (F(φ ψ)) · σ〈m1, . . . , mn〉

Fσ〈k1,...,kn〉
��

((Fφ) · σ) (Fψσ)

Fσ∗∏ Id
��

F
(
(φ ψ) · σ〈m1, . . . , mn〉

)
Id
��

F(φ · σ) (Fψσ)
F2

// F
(
(φ · σ) (ψσ)

)
(3.1.7)

((Fφ) (Fψ)) · (σ1 ⊕ · · · ⊕ σn)

Id
��

F2·(σ1⊕···⊕σn)
// (F(φ ψ)) · (σ1 ⊕ · · · ⊕ σn)

Fσ1⊕···⊕σn
��

(Fφ)
(
(Fψ) · (σ1 ⊕ · · · ⊕ σn)

)
Id∗∏ Fσi

��

F
(
(φ ψ) · (σ1 ⊕ · · · ⊕ σn)

)
Id
��

(Fφ)
(

F(ψ · (σ1 ⊕ · · · ⊕ σn))
)

F2
// F
(
φ (ψ · (σ1 ⊕ · · · ⊕ σn))

)
(3.1.8)

Example 3.1.4. There is an obvious functor ι : Set → Cat that takes a set S and
produces a category ι(S) whose underlying collection of objects is S and where the
morphisms are identities. Therefore, any Set-enriched multicategory O produces a
Cat-enriched multicategory by “upgrading” the sets of morphisms O

(t
c
)
∈ Ob(Set)

to categories ι(O
(t

c
)
) ∈ Ob(Cat). O

Definition 3.1.5. LetO, P be Cat-enriched symmetric multicategories and F, G : O →
P pseudo-multifunctors. A pseudo-multinatural transformation ζ : F → G is given by
the following data:

(a) Functors ζt : 1 → P
(

Gt
Ft
)
, for each t ∈ O0. We also write ζt ∈ P

(
Gt
Ft
)

for the
corresponding 1-operation.

61



3.1 Cat-enriched multicategories

(b) For all t ∈ O0, n ≥ 0, c ∈ On
0 , natural isomorphisms

O
(t

c
)
×

n
∏
i=1

1

∼=
��

G×∏i ζci // P
(Gt

Gc
)
×

n
∏
i=1
P
(Gci

Fci

)

γP

��

ζ•

t|

1×O
(t

c
)

ζt×F
��

P
(

Gt
Ft
)
×P

(Ft
Fc
)

γP
// P
(Gt

Fc
)

(3.1.9)

Satisfying the following axioms:

(a) Naturality:

(Gφ) (Gψ) ∏ ζbij

G2∗∏ Id
��

Id∗∏ ζ•
// (Gφ) ∏ ζai (Fψ)

ζ•∗∏ Id
// ζt (Fφ) (Fψ)

Id∗F2

��

G(φ ψ) ∏ ζbij ζ•
// ζt F(φ ψ)

(3.1.10a)

1
P ζt

Id
��

G0∗Id // (G1O) ζt

ζ•

��

ζt 1
P

Id∗F0
// ζt (F1O)

(3.1.10b)

((Gφ) ∏ ζci) · σ

Id
��

ζ•·σ
// (ζt (Fφ)) · σ

Id
��

((Gφ) · σ) ∏ ζcσ(i)

Gσ∗∏ Id
��

ζt ((Fφ) · σ)

Id∗Fσ

��

G(φ · σ) ∏ ζcσ(i) ζ•
// ζt F(φ · σ)

(3.1.10c)

where ζc = (ζc1 , . . . , ζcn).

The last definition we introduce is a multicategorical analogue of modifications,
namely multimodifications.

Definition 3.1.6. LetO and P be Cat-enriched symmetric multicategories, F, G : O →
P pseudo-multifunctors and ζ, κ : F ⇒ G pseudo-natural transformations. A multi-
modification Γ : ζ V κ consists of the following data:
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(a) For all t ∈ O0, natural transformations

Γc

��

1

ζc

''

κc

77
P
(

Gc
Fc
) (3.1.11)

Satisfying the following axiom:

(Gφ)∏ ζci

ζ•

��

Id∗∏ Γci // (Gφ)∏ κci

κ•
��

ζt (Fφ)
Γt∗Id

// κt (Fφ)

(3.1.12)

Remark 3.1.7. It can be shown that Cat-enriched multicategories, pseudo-
multifunctors, pseudo-natural transformations and multimodifications form a tri-
category, where compositions are straightforward multicategorical analogues of the
ones for the tricategory of bicategories (see [SP09, Appendix A.1] for a brief re-
view or [GPS95] for a more thorough treatment). Therefore, similarly to Remark
1.1.21, we can introduce, for all Cat-enriched multicategories O and P , the 2-category
AlgO(P) := [O,P ] consisting of pseudo-multifunctors, pseudo-multinatural transfor-
mations and multimodifications, called the 2-category of P-valued O-algebras. If O and
P are Set-enriched multicategories (see Definition 1.1.1) the 2-category AlgO(P) co-
incides with the 1-category AlgO(P) from Remark 1.1.21 considered as a 2-category
(notice that every 1-category can be considered as a 2-category by adding identity 2-
morphisms to it). Moreover, given pseudo-multifunctors F : O → O′ and G : P → P ′
we define pseudo-functors

F∗ : [O′,P ] −→ [O,P ] , G∗ : [O,P ] −→ [O,P ′] , (3.1.13)

called the pullback and pushforward respectively (see Definition 1.1.25 for comparison).
M

Remark 3.1.8. The reader not acquainted with 2-categories, pseudo-functors, pseudo-
natural transformations and modifications might still be wondering what they are.
The definitions of these concepts are easily obtained from those of Cat-enriched mul-
ticategory, pseudo-multifunctor, pseudo-multinatural transformation and multimod-
ification by considering only operations of arity 1.

More precisely:

(a) A Cat-enriched category is a Cat-enriched multicategory in which only operations
of arity 1 appear.

(b) Given Cat-enriched categories D and E, a pseudo-functor X : D→ E is a pseudo-
multifunctor X : D→ E.

(c) Given X, Y : D → E pseudo-functors, a pseudo-natural transformation (or 1-
morphism) F : X → Y is a pseudo-multinatural transformation F : X → Y.
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3.2 definition of 2aqfts

(d) Given pseudo-natural transformations (1-morphisms) F, G : X → Y a modifica-
tion (or 2-morphism) η : F → G is a multimodification η : F → G.

M

Example 3.1.9. Analogously to Example 3.1.4, any category D produces a Cat-
enriched category D (notice the abuse of notations). O

3.2 definition of 2aqfts

The aim of this section is to introduce a 2-categorical analogue of algebraic quantum
field theories. Broadly speaking, while an algebraic quantum field theory associates
associative and unital K-algebras of observables to spacetimes, a 2-algebraic quantum
field theory associates locally presentable K-linear categories to spacetimes.

In order to prepare the ground for the aforementioned categorification it is im-
portant to notice that the category AQFT(Sp⊥) of VecK-valued algebraic quantum
field theories over Sp⊥ = (Sp,⊥) (see Definition 1.2.12) is equivalent to the 1-
category AlgPSp⊥

(AlgK) of AlgK-valued PSp⊥-algebras, where AlgK is the multi-

category associated to the symmetric monoidal category AlgK of associative and
unital K-algebras (see Example 1.1.3). This is easily seen by leveraging the fact that
HomMULT(As, VecK) and AlgK are equivalent multicategories (HomMULT denotes
the internal-Hom of MULT, right adjoint to the Boardman-Vogt tensor product)
and by using the following chain of equivalences: AQFT(Sp⊥) ∼= [OSp⊥ , VecK] ∼=
[PSp⊥ ⊗BV As, VecK] ∼= [PSp⊥ , HomMULT(As, VecK)] ∼= [PSp⊥ , AlgK] where the first
equivalence is given by Theorem 1.2.15, the second by Theorem 1.2.16, the third by
the BV-tensor product/ internal-Hom adjunction and the fourth is consequence of
HomMULT(As, VecK) ∼= AlgK.

Theorem 3.2.1. Let Sp⊥ = (Sp,⊥) be an orthogonal category. Then, the category
AQFT(Sp⊥) of VecK-valued algebraic quantum field theories on Sp⊥ is equivalent to the
category AlgPSp⊥

(AlgK) of AlgK-valued prefactorization algebras over Sp⊥.

Remark 3.2.2. Theorem 3.2.1 provides an interesting description of ⊥-commutativity
(see Definition 1.2.11). An algebraic quantum field theory can be interpreted as a
prefactorization algebra F : PSp⊥ → AlgK with two kinds of compatible multipli-
cations, i.e. a multiplication µF(s) : F(s) ⊗ F(s) → F(s) and factorization products
F( f ) : F(s1)⊗ · · · ⊗ F(sn) → F(s) (see Definition 2.1.2). Therefore, ⊥-commutativity
is an instance of an Eckmann-Hilton argument. More precisely, consider two mor-
phisms ( f1 : s1 → s) ⊥ ( f2 : s2 → s) then, since F( f ) is an algebra morphism, we
obtain that F( f )(a1a′1 ⊗ a2a′2) = F( f )(a1 ⊗ a2) · F( f )(a′1 ⊗ a′2), where µs1 , µs2 and µs
are the multiplications of the associative and unital algebras F(s1), F(s2) and F(s) re-
spectively. Furthermore, since Theorem 3.2.1 implies that factorization products F( f )
for f = ( f1, . . . , fn) ∈ PSp⊥

(t
c
)

factorize as

F( f ) :
n⊗

i=1
F(ci)

⊗
i F( fi)

// F(t)⊗n
µn
F(t)

// F(t) , (3.2.1)
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3.2 definition of 2aqfts

substituting a′1 = 1F(s1)
and a2 = 1F(s2), we obtain that F( f1)a1 · F( f2)a2 = F( f2)a2 ·

F( f1)a1. M

As mentioned in the introduction to this chapter a natural choice of target for
2-algebraic quantum field theories is the 2-category PrK of locally presentable K-
linear categories. In particular, in light of Theorem 3.2.1, we will define a 2-algebraic
quantum field theory A to be a pseudo-multifunctor A : PSp⊥ → PrK. Before explicitly
stating this definition let us recall a few facts regarding locally presentable K-linear
categories.

A K-linear category is a category D enriched over the closed symmetric monoidal
category of vector spaces VecK. In particular, this means that in a K-linear category
D the sets of D-morphisms D(d, d′) are vector spaces, i.e. D(d, d′) ∈ VecK, and
that the composition maps γ : D(d′, d′′)×D(d, d′) → D(d, d′′) are K-bilinear. Given
K-linear categories D and E, a K-linear functor is a functor F : D → E such that
Fd′

d : D(d, d′)→ E(Fd, Fd′) is K-linear for all d, d′ ∈ Ob(D).

Definition 3.2.3 ([BCJF15]). A locally presentable K-linear category is a K-linear cat-
egory D that:

(a) Is cocomplete, i.e. it has all small colimits.

(b) Contains a set Γ ⊆ Ob(D0) of small objects such that every object in D is a κ-
directed colimit of objects of Γ for some regular cardinal κ (a cardinal κ is called
regular if the cardinality of any disjoint union indexed by a set of cardinality
smaller than κ of sets of cardinality smaller than κ, is smaller than κ).

Notice that here the word locally in “locally presentable category" refers to the objects
of the category and not to the category itself. In particular, local presentability can be
thought as the categorical analogue of being finitely generated for modules.

Definition 3.2.4. We denote by PrK the 2-category of locally presentable K-linear
categories, co-continuous K-linear functors and natural transformations.

Definition 3.2.5. The Cat-enriched multicategory (see Definition 3.1.2) PrK of locally
presentable K-linear categories is defined by the following data:

(a) The collection of objects PrK0 consists of all the locally presentable K-linear
categories.

(b) For every T ∈ PrK0 , n ≥ 0, D = (D1, . . . , Dn) ∈ Prn
K0

, the categories

PrK

(T
D
)
⊆ Fun

( n

∏
i=1

Di, T
)

, (3.2.2)

where PrK

(T
D
)

is the full subcategory of Fun
(

∏n
i=1 Di, T

)
consisting of all the

functors F : ∏n
i=1 Di → T that are K-linear and co-continuous in each variable.

For the empty tuple D = ∅, we set PrK

(
T
∅
)

:= Fun(1, T), where 1 is the category
with only one object and the identity morphism.
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3.2 definition of 2aqfts

(c) For every T ∈ PrK0 , n ≥ 1, D ∈ Prn
K0

, mi ≥ 0, Ei ∈ Prmi
K0

for i = 1, . . . , n, the com-

position functors γ : PrK

(T
D
)
×∏n

i=1 PrK

(Di
Ei

)
→ PrK

(T
E
)

given by composition
of functors and (horizontal) composition of natural transformations, i.e.

γ
(

F, (G1, . . . , Gn)
)

:= F G := F
n

∏
i=1

Gi , (3.2.3a)

γ
(
α, (β1, . . . , βn)

)
:= α ∗ β := α ∗

n

∏
i=1

βi . (3.2.3b)

(d) For every T ∈ PrK0 , functors 1T : 1 → PrK

(
T
T
)

picking out the identity functors
1T := idT ∈ PrK

(
T
T
)
⊆ Fun(T, T).

(e) The right action of Σn on the collection of categories of n-operations are given
by functors PrK(σ) : PrK

(T
D
)
→ PrK

( T
Dσ

)
defined by

PrK(σ)(F) := F flipσ , PrK(σ)(α) := α ∗ Idflipσ
, (3.2.4)

where flipσ : ∏n
i=1 Dσ(i) → ∏n

i=1 Di is the permutation functor and Idflipσ
:

flipσ ⇒ flipσ the identity natural transformation.

Remark 3.2.6. Notice that we are abusing notation by indicating the 2-category PrK of
locally presentable K-linear categories, co-continuous K-linear functors and natural
transformations (see Definition 3.2.3), and the Cat-enriched multicategory PrK with
the same symbol. The reason for this choice relies on the fact that the 2-category PrK

is closed symmetric monoidal with respect to the Kelly-Deligne tensor product D�E
of locally presentable K-linear categories and the monoidal unit given by VecK. In
fact, the Cat-enriched multicategory PrK is then the 2-multicategory assigned via the
2-categorical analogue of Example 1.1.3 to this symmetric monoidal 2-category. In
particular, we have that:

PrK

(T
D
)
' PrK

( n

�
i=1

Di, T
)

(3.2.5)

It should be (hopefully) always clear from the context whether, by the symbol PrK,
we mean the 2-category from Definition 3.2.3 or the Cat-enriched multicategory from
Definition 3.2.5. M

Similarly to what we have done in Chapter 2 for prefactorization algebras and mor-
phisms between those, we will give both multicategorical and explicit descriptions
of 2-algebraic quantum field theories, 1-morphisms between those and 2-morphisms
between 1-morphisms of 2-algebraic quantum field theories, both for practical conve-
nience as for the sake of clarity. In particular, we will bounce back and forth between
interpretations, hopefully leading to more transparency.

Definition 3.2.7. Let Sp⊥ = (Sp,⊥) be an orthogonal category. We denote by
2AQFT(Sp⊥) the 2-category [PSp⊥ , PrK] (see Remark 3.1.7), where PrK denotes the
Cat-enriched multicategory from Definition 3.2.5. In particular, we call an object
A ∈ 2AQFT a 2-algebraic quantum field theory on Sp⊥.

More explicitly, a 2-algebraic quantum field theory consists of the following data:
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3.2 definition of 2aqfts

(a) For each s ∈ Sp, a locally presentable K-linear category A(s) ∈ PrK.

(b) For each tuple f = ( f1, . . . , fn) ∈ PSp⊥
(t

s
)

of pairwise orthogonal Sp-
morphisms, a functor (called factorization product)

A( f ) :
n

∏
i=1

A(si) −→ A(t) (3.2.6)

that is K-linear and co-continuous in each variable. For the empty tuple s = ∅,
this defines an object at := A(∗t) ∈ A(t) (called pointing, see e.g. [BZBJ18a])
that is associated to the only element ∗t ∈ PSp⊥

(
t
∅
)
.

(c) For each f ∈ PSp
(t

a
)

and g = (g
1
, . . . , g

n
) ∈ ∏n

i=1 PSp⊥
(ai

bi

)
, a natural isomor-

phism

n
∏
i=1

mi
∏
j=1

A(bij)

A( f g)
''

A(g) :=∏i A(g
i
)
//

n
∏
i=1

A(ai)

A( f )

��

A2
( f ,g)

t|

A(t)

(3.2.7)

(d) For each t ∈ Sp, a natural isomorphism

A0
t
��

A(t)

idA(t)

((

A(idt)

66
A(t)

(3.2.8)

(e) For each f ∈ PSp⊥
(t

s
)

and permutation σ ∈ Σn, a natural isomorphism

n
∏
i=1

A(sσ(i))

A( f σ)
''

flipσ //
n
∏
i=1

A(si)

A( f )

��

Aσ
f

t|

A(t)

(3.2.9)

Satisfying the axioms from Definition 3.1.3.
A 1-morphism ζ : A→ B between A,B ∈ 2AQFT(Sp⊥) is given by the following

data (see Definition 3.1.5):

(a) For each s ∈ Sp, a co-continuous K-linear functor ζs : A(s)→B(s).

67



3.3 biadjunction

(b) For each f ∈ PSp⊥
(t

s
)
, a natural isomorphism

n
∏
i=1

A(si)

A( f )
��

∏i ζsi //
n
∏
i=1

B(si)

B( f )
��

ζ f

rz
A(t)

ζt
// B(t)

(3.2.10)

Notice that, for f = ∗t ∈ PC
(

t
∅
)
, this amounts to a B(t)-isomorphism ζ∗t :

bt
∼=−→ ζt(at) from the pointing bt = B(∗t) ∈B(t) to the image of the pointing

at = A(∗t) ∈ A(t) under the functor ζt : A(t)→B(t).

Satisfying the axioms from Definition 3.1.5.
A 2-morphism Γ : ζ ⇒ κ between 1-morphisms ζ, κ : A → B in 2AQFT(Sp⊥) is

given by the following data:

(a) For each s ∈ Sp, a natural transformation

Γs

��

A(s)

ζs

((

κs

66
B(s)

(3.2.11)

These data are required to satisfy the axioms from Definition 3.1.6.

Remark 3.2.8. Cat-valued prefactorization algebras have appeared in [BZBJ18a,
BZBJ18b]) in the context of factorization homology. Notice that we can interpret
the examples in those papers in terms of 2-algebraic quantum field theories by con-
sidering the orthogonal category Man⊥d

2 = (Man2,⊥d), where Man2 is the category
of 2-dimensional (oriented or framed) manifolds and ⊥d is the orthogonality relation
given by disjointness, and by considering locally constant prefactorization algebras,
i.e. prefactorization algebras F such that F( f ) is an equivalence in the 2-category
PrK for every isotopy equivalence ( f : M → N) ∈ Mor(Man2), i.e. for every
( f : M → N) ∈ Mor(Man2) such that there exists (g : N → M) ∈ Mor(Man2)
with the property that f ◦ g and g ◦ f are isotopically equivalent respectively to the
identities idN : N → N, idM : M→ M. M

3.3 biadjunction

The aim of this section is to show the existence of a biadjunction

ι : AQFT(Sp⊥)� 2AQFT(Sp⊥) : π

by explicitly building pseudo-functors π : 2AQFT(Sp⊥) → AQFT(Sp⊥) and ι :
AQFT(Sp⊥)→ 2AQFT(Sp⊥), which we call respectively the inclusion and truncation
(not to be confused with the functor π : MULT→ CAT from Remark 1.1.13) pseudo-
functors.
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3.3 biadjunction

Intuitively, the truncation 2-functor π associates to any A ∈ 2AQFT(Sp⊥) a 1-
algebraic quantum field theory π(A) ∈ AQFT(Sp⊥) defined by sending each object
s ∈ Sp⊥ to the algebra π(A)(s) := End(as), where as denotes the pointing of A(s)
(see Definition 3.2.7) and the K-algebra structure on π(A)(s) is given by compositions
and K-linear sums of endomorphisms (remember that A(s) is a K-linear category).

The inclusion pseudo-functor ι : AQFT(Sp⊥) → 2AQFT(Sp⊥) assigns to any
A ∈ AQFT(Sp⊥) the 2-algebraic quantum field theory ι(A) ∈ 2AQFT defined on
objects s ∈ Sp⊥ by ι(A)(s) := ModA(s), where ModA(s) denotes the K-linear cat-
egory of right A(s)-modules. Therefore, given A ∈ AQFT(Sp⊥), we obtain that
A(s) ∼= πι(A(s)), recovering the intuition from the introduction that when X is an
affine scheme the algebra of functions O(X) can be recovered from the category
of quasi-coherent sheaves QCoh(X) ∼= ModO(X) as the endomorphism K-algebra
End(O(X)).

We will see that the biadjunction ι a π exhibits the category AQFT(Sp⊥) as a
coreflective full 2-subcategory of the 2-category 2AQFT(Sp⊥), i.e. the unit η : id →
πι of the biadjunction is an equivalence. In particular, this implies that the category
AQFT(Sp⊥) can be equivalently studied inside the 2-category 2AQFT(Sp⊥) and
that any A ∈ AQFT(Sp⊥) can be recovered from its associated 2-algebraic quantum
field theory ι(A) ∈ 2AQFT(Sp⊥).

The biadjunction ι a π is not, in general, an adjoint equivalence as we will see in
Section 3.4. Therefore, there exist examples of 2-algebraic quantum field theories that
are non-truncated, i.e. are not equivalent to a 2-algebraic quantum field theory of the
form ι(A).

The outline of this section is as follows:

(a) In Subsection 3.3.1 we introduce the truncation 2-functor π : 2AQFT(Sp⊥) →
AQFT(Sp⊥).

(b) In Subsection 3.3.2 we introduce the inclusion pseudo-functor ι : AQFT(Sp⊥)→
2AQFT(Sp⊥).

(c) In Subsection 3.3.3 we prove that ι and π form the data of a biadjunction ι a π.

3.3.1 Truncation

The goal of this subsection is to introduce the truncation 2-functor π :
2AQFT(Sp⊥) → AQFT(Sp⊥) mentioned in the introduction to Section 3.3. More
precisely, we build a 2-functor π : 2AQFT(Sp⊥) → AlgPSp⊥

(AlgK) ∼= AQFT(Sp⊥)

(see Theorem 3.2.1).

Proposition 3.3.1. Let Sp⊥ = (Sp,⊥) be an orthogonal category. The following data defines
a 2-functor π : 2AQFT(Sp⊥)→ AQFT(Sp⊥), which we call truncation 2-functor:

(a) On objects (2-algebraic quantum field theories): Given A ∈ 2AQFT, π(A) ∈
AlgPSp⊥

(AlgK) is given by the following data:
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3.3 biadjunction

(a.1) It assigns to each s ∈ Sp, the associative and unital K-algebra

π(A)(s) := End(as) := A(s)(as, as) , (3.3.1)

where as ∈ A(s) is the pointing of A(s).

(a.2) It assigns to every non empty tuple of morphisms f ∈ PSp⊥
(t

s
)

the AlgK-
morphism

π(A)( f ) :
n⊗

i=1

π(A)(si) −→ π(A)(t) ,

h1 ⊗ · · · ⊗ hn 7−→ A2
( f ,∗s)

◦A( f )(h1, . . . , hn) ◦ (A2
( f ,∗s)

)−1 ,

(3.3.2)

where A( f ) :
⊗n

i=1 End(asi)→ End
(
A( f )(as1 , . . . , asn)

)
denotes the K-algebra

map induced from the universal property of tensor products of algebras by the re-
striction of the functor A( f ) : ∏n

i=1 A(si)→ A(t) to the endomorphism algebras
A( f ) : ∏n

i=1 End(asi) → End
(
A( f )(as1 , . . . , asn)

)
, and where A2

( f ,∗s)
is the

coherence isomorphism A2
( f ,∗s)

: A( f )(as1 , . . . , asn) → at associated to the com-

position ( f , ∗s) := ( f , (∗s1 , . . . , ∗sn)).

To a 0-operation ∗t ∈ PSp⊥
(

t
∅
)
, π(A) assigns the AlgK-morphism π(A)(∗t) :

K→ π(A)(t) that picks out the identity idat of π(A)(t).

To check that π(A) ∈ Ob(AQFT(Sp⊥)) is an easy (but tedious) exercise which re-
quires leveraging the axioms of Definition 3.2.7 and performing some diagram chasing.

(b) On 1-morphisms: To a 1-morphism ζ : A → B of 2-algebraic quantum field theories
π assigns the AlgK-morphism π(ζ) : π(A)→ π(B) defined by

π(ζ)s : π(A)(s) −→ π(B)(s) ,

h 7−→ (ζ∗s)
−1 ◦ ζs(h) ◦ ζ∗s . (3.3.3)

where ζ∗s : bs → ζs(as) is the coherence map from Equation (3.2.10) and ζs :
End(as) → End(ζs(as)) is the restriction of the functor ζs : A(s) → B(s) to en-
domorphism algebras.

Checking that π(ζ) is a well defined morphism of AlgK-valued prefactorization algebras
(or 1-algebraic quantum field theories) is an exercise of diagram chasing which involves
using the axioms from Definition 3.2.7.

(c) On 2-morphisms: For all 1-morphisms ζ, κ : A → B of 2-algebraic quantum field
theories A, B ∈ 2AQFT(Sp⊥), π assigns to each 2-morphism Γ : ζ → κ the identity
map π(Γ) := Id : π(ζ) ⇒ π(κ). To check that π(Γ) is well defined consider the
commutative diagram :

bs

ζ∗s ∼=
��

= // bs

∼= κ∗s
��

ζs(as) Γs
// κs(as)

(3.3.4)
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3.3 biadjunction

obtained from the axioms in Definition 3.2.7. From (3.3.4) we deduce that Γs is an
isomorphism and leveraging Equations (3.3.3) and (3.3.4) we obtain the following chain
of equalities:

π(κ)s(h) = (κ∗s)
−1 ◦ κs(h) ◦ κ∗s = (ζ∗s)

−1 ◦ (Γs)
−1 ◦ κs(h) ◦ Γs ◦ ζ∗s

= (ζ∗s)
−1 ◦ ζs(h) ◦ ζ∗s = π(ζ)s(h) , (3.3.5)

where in the third step we used that (3.2.11) is a natural transformation. Therefore, we
conclude that π(ζ) and π(κ) define the same 1-morphism of 1-algebraic quantum field
theories, i.e π(Γ) := Id : π(ζ)⇒ π(κ) is well defined.

3.3.2 Inclusion

In this subsection we define an inclusion pseudo-functor ι : AQFT(Sp⊥) →
2AQFT(Sp⊥). More precisely, similarly to Subsection 3.3.1, we introduce a pseudo-
functor ι : AlgPSp⊥

(AlgK) → 2AQFT(Sp⊥) and leverage Theorem 3.2.1 to obtain

a pseudo-functor ι : AQFT(Sp⊥) → 2AQFT(Sp⊥) (notice the slight abuse of nota-
tions).

Proposition 3.3.2. Let Sp⊥ = (Sp,⊥) be an orthogonal category. The following data defines
a pseudo-functor ι : AlgPSp⊥

(AlgK) → 2AQFT(Sp⊥) (or equivalently a pseudo-functor

ι : AQFT(Sp⊥)→ 2AQFT(Sp⊥)):

(a) On objects: Given A ∈ AlgPSp⊥
(AlgK) ∼= AQFT(Sp⊥), ι(A) ∈ 2AQFT(Sp⊥) is

defined by the following data:

(a.1) It assigns to every s ∈ PSp⊥0
the locally presentable K-linear category

ι(A)(s) := ModA(s) (3.3.6)

where ModA(s) denotes the locally presentable K-linear category of right A(s)-
modules (see [BCJF15]).

(a.2) It assigns to every non empty tuple of morphisms f ∈ PSp⊥
(t

s
)

the co-continuous
K-linear functor

ι(A)( f ) :
n
∏
i=1

ModA(si)
⊗n

// Mod⊗n
i=1 A(si)

A( f )!
// ModA(t) , (3.3.7)

where ⊗n : ∏n
i=1 VecK → VecK is the functor that sends n K-vector spaces

V1, . . . , Vn ∈ VecK to their tensor product V1 ⊗ · · · ⊗Vn as K-vector spaces and
where

A( f )! = (−)⊗⊗n
i=1 A(si)

A(t) : Mod⊗n
i=1 A(si)

−→ ModA(t) . (3.3.8)

is the induced module functor, i.e. the left adjoint of the restriction functor
A( f )∗ : ModA(t) → Mod⊗n

i=1 A(si)
induced by the AlgK-morphism A( f ) :⊗n

i=1 A(si)→ A(t).
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3.3 biadjunction

Moreover, ι(A) assigns to the unique morphism ∗t ∈ PSp⊥
(

t
∅
)

the pointing
ι(A)(∗t) := A(t) ∈ ModA(t) determined by the rank 1 free A(t)-module A(t).

(a.3) The coherence natural isomorphisms for compositions from (3.2.7) are given by
pasting of

n
∏
i=1

mi
∏
j=1

ModA(bij)

⊗∑ mi

((

∏i ⊗mi
//

n
∏
i=1

Mod⊗mi
j=1 A(bij)

∏i A(g
i
)!
//

⊗n

��

(?)

s{

n
∏
i=1

ModA(ai)

⊗n

��

(??)

s{
Mod⊗n

i=1
⊗mi

j=1 A(bij)

A( f g)!
))

(
⊗

i A(g
i
))!
// Mod⊗n

i=1 A(ai)

A( f )!

��

(???)

rz

ModA(t)

(3.3.9)

Where (?) and (??) are the natural isomorphisms determined by the coherence
isomorphisms of the tensor product, while (???) is the natural isomorphism deter-
mined by uniqueness (up to unique isomorphism) of left adjoints and the (strict)
composition property (

⊗
i A(g

i
))∗ A( f )∗ =

(
A( f )

⊗
i A(g

i
)
)∗

= A( f g)∗ of the
right adjoints.

(a.4) The coherence natural isomorphisms for identities in (3.2.8) are canonically de-
termined by uniqueness of left adjoint functors and the strict identity property
A(idt)∗ = id∗A(t) = idModA(t)

of the right adjoints.

(a.5) The coherence natural isomorphisms for the permutations actions in (3.2.9) are
given by pasting of

n
∏
i=1

ModA(sσ(i))

⊗n

��

flipσ //
n
∏
i=1

ModA(si)

⊗n

��

(?)

s{
Mod⊗n

i=1 A(sσ(i))

A( f σ)!
((

(τσ)!
// Mod⊗n

i=1 A(si)

A( f )!

��

(??)

rz

ModA(t)

(3.3.10)

To check that this data defines a 2-algebraic quantum field theory ι(A) ∈ 2AQFT(Sp⊥)
it suffices to notice that all the coherences in ((a.3)-(a.5)) are canonically given by coher-
ence isomorphisms.

(b) On 1-morphisms: Given a 1-morphism ζ : A → B of AlgK-valued prefactorization
algebras, ι(ζ) : ι(A)→ ι(B) is defined by the following data:
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3.3 biadjunction

(b.1) For every s ∈ PSp⊥0

ι(ζ)s := (ζs)! : ModA(s) −→ ModB(s) (3.3.11)

is the K-linear and co-continuous induced module functor along the AlgK-
morphism ζs : A(s)→ B(s).

(b.2) The coherence natural isomorphisms in (3.2.10) are given by pasting of

n
∏
i=1

ModA(si)

⊗n

��

∏i(ζsi )!
//

n
∏
i=1

ModB(si)

(?)

qy
⊗n

��

Mod⊗n
i=1 A(si)

A( f )!
��

(
⊗

i ζsi )!
// Mod⊗n

i=1 B(si)

B( f )!
��

(??)

px
ModA(t) (ζt)!

// ModB(t)

(3.3.12)

where (?) is canonically determined by the coherence isomorphisms for tensor
products and (??) is canonically determined by uniqueness of left adjoint func-
tors and the strict naturality property (

⊗
i ζsi)

∗ B( f )∗ =
(
B( f )

⊗
i ζsi

)∗
=(

ζt A( f )
)∗

= A( f )∗ (ζt)∗ of the right adjoints.

3.3.3 Biadjunction

The aim of this subsection is to prove that ι : AQFT(Sp⊥)� 2AQFT(Sp⊥) : π forms
a biadjoint pair of pseudo-functors. To achieve this goal, we will define a functor
between Hom-categories

(̃−) : 2AQFT(Sp⊥)
(
ι(A),B

)
−→ AQFT(Sp⊥)

(
A, π(B)

)
, (3.3.13)

for every A ∈ AQFT(Sp⊥) and B ∈ 2AQFT(Sp⊥) and prove that this is an equiva-
lence of categories natural both in A and B.

In order to build such functor we will define a natural transformation η : id → πι,
which plays the role of the unit of the biadjunction, and use it to define (3.3.13)
as the functor that assigns to a 1-morphism ζ : ι(A) → B in 2AQFT(Sp⊥), the
AQFT(Sp⊥)-morphism

ζ̃ : A
ηA
// π ι(A)

π(ζ)
// π(B) . (3.3.14)

and to a 2-morphism Γ : ζ ⇒ κ between 1-morphisms ζ, κ : ι(A) → B in
2AQFT(Sp⊥) the identity Γ̃ = Id : ζ̃ ⇒ ζ̃ = κ̃ (notice that the latter assignment
is legit since, as we have seen in Subsection 3.3.1 , π(ζ) = π(κ)).

In order to construct the natural transformation η : id→ πι, which will correspond
to the unit of the biadjunction, we notice that the action of the composed pseudo-
functor πι : AQFT(Sp⊥) → AQFT(Sp⊥) (see Subections 3.3.1 and 3.3.2 for an ex-
plicit construction of π and ι respectively) on a given AlgK-valued prefactorization
algebra A ∈ AQFT(Sp⊥) at an object s ∈ PSp⊥0

is given by

(π ι(A))(s) = End(A(s)) = ModA(s)
(
A(s),A(s)

)
(3.3.15)
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3.3 biadjunction

where End(A(s)) is the endomorphism algebra of A(s) ∈ ModA(s). Therefore, we
define η : id → πι to be the natural transformation determined on each component
ηA : A→ π ι(A) by the AlgK-morphism

(ηA)s : A(s) −→ End(A(s)) , a 7−→ µA(s)(a⊗−) , (3.3.16)

where µA(s)(a⊗−) : A(s)→ A(s) , a′ 7→ a a′ is the right A(s)-module endomorphism
given by left multiplication by a ∈ A(s) for every s ∈ PSp⊥0

.

Theorem 3.3.3. Let Sp⊥ = (Sp,⊥) be an orthogonal category. Then the functor (3.3.13)
is an equivalence of categories natural in A ∈ AQFT(Sp⊥) and B ∈ 2AQFT(Sp⊥).
Therefore, we obtain a biadjunction

ι : AQFT(Sp⊥) // 2AQFT(Sp⊥) : πoo , (3.3.17)

where the left biadjoint is the inclusion pseudo-functor from Proposition 3.3.2 and the right
biadjoint is the truncation 2-functor from Proposition 3.3.1. Moreover, the unit η : id ⇒
π ι of this biadjunction is a natural isomorphism, exhibiting the category AQFT(Sp⊥) of
ordinary algebraic quantum field theories as a coreflective full 2-subcategory of the 2-category
2AQFT(Sp⊥).

Proof. Let us recall from [BCJF15] the following fact: For any associative and unital K-
algebra A ∈ AlgK, denote by BEnd(A) the full K-linear subcategory of ModA ∈ PrK

on the object A ∈ ModA. (Note that BEnd(A) is just the endomorphism algebra
End(A) regarded as a K-linear category with only one object.) Then, for any lo-
cally presentable K-linear category D ∈ PrK, the restriction along the inclusion
BEnd(A) ⊆ ModA of K-linear categories induces an equivalence (i.e. a fully faith-
ful and essentially surjective functor)

LinK,c
(
ModA, D

) ' // LinK

(
BEnd(A), D

)
(3.3.18)

from the full subcategory of Fun(ModA, D) that consists of K-linear and co-
continuous functors to the full subcategory of Fun(BEnd(A), D) that consists of
K-linear functors. Using this result, we can check that the functor (3.3.13) is fully
faithful and essentially surjective as claimed.

Faithful: Let Γ, ∆ : ζ ⇒ κ be 2-morphisms between the 1-morphisms ζ, κ : ι(A)→B

in 2AQFT(Sp⊥). (Note that Γ̃ = ∆̃ is automatic.) From (3.3.4) we deduce that, for
every s ∈ PSp⊥0

, the morphisms Γs = ∆s : ζs(A(s)) → κs(A(s)) in B(s) coincide.
This means that the two natural transformations Γs, ∆s : ζs ⇒ κs between the co-
continuous K-linear functors ζs, κs : ModA(s) →B(s) have the same restriction along
the inclusion BEnd(A(s)) ⊆ ModA(s). Recalling that the restriction functor (3.3.18) is
faithful, we conclude that Γs = ∆s : ζs ⇒ κs coincide as natural transformations, for
all s ∈ PSp⊥0

, and hence that Γ = ∆ : ζ ⇒ κ coincide as 2-morphisms in 2AQFT(Sp⊥).
This shows that the functor (3.3.13) is faithful.

Full: Let ζ, κ : ι(A) → B be 1-morphisms in 2AQFT(Sp⊥) such that ζ̃ = κ̃ : A →
π(B) in AQFT(Sp⊥). (Recall that AQFT(Sp⊥) only has identity 2-morphisms.) For
each s ∈ PSp⊥0

, consider the morphism κ∗s ◦ (ζ∗s)
−1 : ζs(A(s)) → κs(A(s)) in B(s).
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3.3 biadjunction

Using ζ̃ = κ̃, one shows that this defines a natural transformation between the re-
strictions along the inclusion functor BEnd(A(s)) ⊆ ModA(s) of the co-continuous K-
linear functors ζs, κs : ModA(s) →B(s). Recalling that the restriction functor (3.3.18)
is full, there exists a natural transformation Γs : ζs ⇒ κs whose A(s)-component is
κ∗s ◦ (ζ∗s)

−1. We still have to prove that the collection Γs, for all s ∈ PSp⊥0
, defines a

2-morphism Γ : ζ ⇒ κ between the 1-morphisms ζ, κ : ι(A) → B in 2AQFT(Sp⊥).
This amounts to showing that the diagram

B( f ) ∏i ζsi

ζ f
��

Id∗∏i Γsi // B( f ) ∏i κsi

κ f
��

ζs ι(A)( f )
Γt∗Id

// κt ι(A)( f )

(3.3.19)

of natural transformations commutes, for all f ∈ PSp⊥
(t

s
)
. Since this diagram lives in

the category PrK

( B(t)
ι(A)(s)

)
, i.e. all functors are K-linear and co-continuous in each vari-

able, we deduce from the equivalences in (3.2.5) and (3.3.18) that the diagram (3.3.19)
of natural transformations commutes if and only if the corresponding component on
the object ∏n

i=1 A(si) ∈ ∏n
i=1 ModA(si)

commutes. This can be checked directly by
using that ζ, κ : ι(A) → B are 1-morphisms in 2AQFT(Sp⊥). (Here the axioms of
Definition 3.1.5 enter explicitly.) This shows that the functor (3.3.13) is full.

Essentially surjective: Let ζ : A→ π(B) be any AQFT(Sp⊥)-morphism. We denote
its component AlgK-morphisms by ζs : A(s) → End(bs), for all s ∈ PSp⊥0

. Recalling
that A(s) ∈ AlgK is naturally isomorphic via η (cf. (3.3.16)) to the endomorphism al-
gebra End(A(s)) of the object A(s) ∈ ModA(s), we define a functor ζ̂s : BEnd(A(s))→
B(s) that sends the only object A(s) ∈ BEnd(A(s)) to bs ∈ B(s) and each
BEnd(A(s))-morphism h ∈ End(A(s)) to the B(s)-morphism ζ̂s(h) := ζs((ηA)

−1
s (h)).

This functor is by construction K-linear, i.e. ζ̂s ∈ LinK(BEnd(A(s)),B(s)). Since
the functor (3.3.18) is essentially surjective, there exists a K-linear and co-continuous
functor κs ∈ LinK,c(ModA(s),B(s)) and a natural isomorphism κ∗s from the func-
tor ζ̂s to the restriction along the inclusion BEnd(A(s)) ⊆ ModA(s) of the functor
κs. Because A(s) ∈ BEnd(A(s)) is the only object, the natural isomorphism κ∗s con-
sists of a single B(s)-isomorphism κ∗s : bs → κs(A(s)), with naturality being en-
coded in the condition κs(h) ◦ κ∗s = κ∗s ◦ ζ̂s(h), for all h ∈ End(A(s)). Note that
we have just constructed part of the data defining a 1-morphism κ : ι(A) → B in
2AQFT(Sp⊥) (cf. Definition 3.2.7). To complete the data, we have to construct, for
each f ∈ PSp⊥

(t
s
)
, a natural isomorphism κ f : B( f ) ∏i κsi ⇒ κt ι(A)( f ) between func-

tors from ∏n
i=1 ModA(si)

to B(t) that are K-linear and co-continuous in each variable.
Using again the equivalences in (3.2.5) and (3.3.18), this problem is equivalent to
constructing a B(t)-isomorphism, denoted with a slight abuse of notation also by
κ f : B( f )

(
∏i κsi

(
∏i A(si)

))
→ κt

(
ι(A)( f )

(
∏i A(si)

))
, fulfilling the naturality con-
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3.4 gauging construction and orbifold 2aqfts

dition κt

(
ι(A)( f )(h)

)
◦ κ f = κ f ◦B( f ) (∏i κsi(h)), for all h ∈ ∏n

i=1 End(A(si)). We
define the B(t)-isomorphism κ f according to

B( f )
(
∏i κsi

(
∏i A(si)

)) κ f
// κt

(
ι(A)( f )

(
∏i A(si)

))
∼= κt

(
ι(A)2

( f ,∗s)

)
��

B( f )
(

∏i bsi

)
B2

( f ,∗s)

//

∼=B( f )
(

∏i κ∗si

) OO
bt κ∗t

// κt(A(t))

(3.3.20)

and observe that the required naturality condition for κ f follows from naturality of κ∗s

and of ζ. This provides us with the desired natural isomorphism κ f : B( f ) ∏i κsi ⇒
κt ι(A)( f ) and hence completes the data needed to define a 1-morphism κ : ι(A)→B

in 2AQFT(Sp⊥). It remains to check that the relevant axioms hold (cf. Defini-
tion 3.2.7 and Definition 3.1.5). Using once again the equivalences in (3.2.5) and
(3.3.18), confirming these axioms can be reduced to checking that certain diagrams
in B(t) commute. This can be done directly by using that ι(A) and B are objects in
2AQFT(Sp⊥). (Here the axioms for pseudo-multifunctors from Definition 3.1.3 enter
explicitly.) Since by construction the AQFT(Sp⊥)-morphisms κ̃ = ζ : A → π(B)
coincide, this shows that the functor (3.3.13) is essentially surjective.

The counit ε : ιπ → id of the biadjunction in Theorem 3.3.3 is retrieved implicitly
as the pseudo-natural transformation whose B-components are the 1-morphisms
εB : ιπ(B) → B of 2-algebraic quantum field theories corresponding under the
equivalence of categories in (3.3.13) to the identities ε̃B = idπ(B) : π(B) → π(B)

in AQFT(Sp⊥) (see [LN16, Definition 2.5 and Remark 2.6] for further details on bi-
adjunctions). Notice further that to determine whether a 2-algebraic quantum field
theory B is equivalent to some ι(A), where A denotes any ordinary AQFT, is suffi-
cient to see if the B-component of the counit εB : ιπ(B) → B is an equivalence in
the 2-category 2AQFT(Sp⊥). If this is the case the 2-algebraic quantum field theory
B is fully determined by the 1-algebraic quantum field theory π(B). Therefore, we
give the following definition:

Definition 3.3.4. Let Sp⊥ = (Sp,⊥) be an orthogonal category. We say that a 2-
algebraic quantum field theory B is truncated if the B-component εB : ιπ(B) →B

of the counit ε : ιπ → id of adjunction in Theorem 3.3.3 is an equivalence in the
2-category 2AQFT(Sp⊥).

The question now is whether genuine non-truncated 2-algebraic quantum field the-
ories exist. We will show in Section 3.4 that the answer to this interrogative is affir-
mative, therefore proving that the biadjunction in Theorem 3.3.3 is not, in general, a
biadjoint equivalence.

3.4 gauging construction and orbifold 2aqfts

The aim of this section is to show the existence of genuine (i.e. non-truncated) 2-
algebraic quantum field theories through introducing a functor

(−)G : G-AQFT(Sp⊥)→ 2AQFT(Sp⊥) ,
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3.4 gauging construction and orbifold 2aqfts

called gauging construction, that associates to every G-equivariant 1-algebraic quantum
field theory, i.e. to every algebraic quantum field theory A endowed with an action
ρ : G → Aut(A) of a finite group G, a 2-algebraic quantum field theory AG, called
the categorified orbifold theory of (A, ρ), which should be understood from a physical
perspective as a local gauging of A with respect to G (see Remark 3.4.6). Furthermore,
we give concrete criteria to establish when a categorified orbifold theory AG is non-
truncated.

Notice that some of the definitions that follow can be generalized to deal with
infinite groups but since the main result of this section, i.e. Theorem 3.4.12, holds just
for finite groups we prefer not to discuss such generalizations.

Let us begin by introducing some nomenclature.

Definition 3.4.1. Let Sp⊥ = (Sp,⊥) be an orthogonal category and G a finite group.
A G-equivariant 1-algebraic quantum field theory is a pair (A, ρ) where A ∈ AQFT(Sp⊥)
is a 1-algebraic quantum field theory and ρ : G → Aut(A) is a representation of
G as natural automorphisms of A. A morphism ζ : (A, ρ) → (B, σ) of G-equivariant
algebraic quantum field theories is a morphism ζ : A → B of algebraic quantum field
theories compatible with the G-actions, i.e. ζ ρ(g) = σ(g) ζ, for all g ∈ G. We denote
by G-AQFT(Sp⊥) the category consisting of G-equivariant algebraic quantum field
theories and their morphisms.

Remark 3.4.2. Consider the category RepK(G) consisting of K-linear representations
of G endowed with the symmetric monoidal structure (RepK(G),⊗, K, τ), where ⊗
denotes the tensor product V ⊗W of representations, K denotes the trivial represen-
tation G → Aut(K) sending each g ∈ G to the identity idK : K → K and τ is the
symmetric braiding given by the flip map. Moreover, denote by G-AlgK the category
of G-equivariant associative and unital K-algebras, i.e. the category AlgAs(RepK(G))
of monoids in the symmetric monoidal category (RepK(G),⊗, K, τ) (see Remark
1.1.21). This category is symmetric monoidal with respect to the tensor product alge-
bra A⊗ B (see Section 3.2) endowed with the tensor product G-action, monoidal unit
K endowed with the trivial representation and symmetric braiding given by the flip
map.

It is not difficult to show that a G-equivariant algebraic quantum field theory
(A, ρ) ∈ G-AQFT(Sp⊥) can be equivalently defined as a ⊥-commutative functor (see
Definition 1.2.11) A : Sp → G-AlgK and that morphisms of G-equivariant algebraic
quantum field theories can be equivalently defined as natural transformations be-
tween ⊥-commutative functors Sp → G-AlgK. Therefore, our choice of terminology
is coherent. M

Given any G-equivariant algebraic quantum field theory (A, ρ) ∈ G-AQFT(Sp⊥)
we can construct its associated orbifold theory AG

0 ∈ AQFT(Sp⊥), i.e. the alge-
braic quantum field theory that associates to every s ∈ Sp the associative and
unital K-algebra AG

0 (s) given by the G-invariants of A(s) ([Xu00, Mug05]). As
anticipated in the beginning of this section, we will show that AG

0 is the trun-
cation AG

0
∼= π(AG) (see Subsection 3.3.1) of a 2-algebraic quantum field theory

AG, called categorified orbifold construction, obtained from A by applying a functor
(−)G : G-AQFT(Sp⊥) → 2AQFT(Sp⊥) called gauging construction. Conceptually,
the functor (−)G : G-AQFT(Sp⊥)→ 2AQFT(Sp⊥) is a G-equivariant generalization
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3.4 gauging construction and orbifold 2aqfts

of the functor ι from Subsection 3.3.2 obtained by sending each A ∈ G-AQFT(Sp⊥)
to the the 2-algebraic quantum field theory AG which associates to each s ∈ PSp⊥0

the
K-linear category G-ModA(s) of G-equivariant right A(s)-modules.

Remark 3.4.3. Notice that the construction of the category ModA(VecK) of right A-
modules for a given algebra A ∈ AlgK

∼= AlgAs(VecK) can be generalized to any
symmetric monoidal category C. More precisely, given a symmetric monoidal cate-
gory (C,⊗, I) and its associated category of monoids AlgAs(C) it is possible to con-
sider for every monoid (c, µc, ηc) the category Modc(C) of right c-modules in C.

If C = RepK(G) is the symmetric monoidal category (see Remark 3.4.2) of
K-linear G-representations of a finite group G, the symmetric monoidal category
AlgAs(RepK(G)) := G-AlgK is the category of G-equivariant associative algebras
(see Remark 3.4.2). For any A ∈ G-AlgK we call the K-linear locally presentable
category G-ModA := ModA(RepK(G)), the category of G-equivariant right A-modules.
Explicitly, G-ModA is the category whose objects are couples (V, V ⊗ A→ V) where
V ∈ RepK(G) and V ⊗ A → V is a RepK(G)-morphism satisfying the axioms of a
G-action.

Analogously to the non-equivariant case, given a G-AlgK-morphism κ : A → B,
there exists a K-linear co-continuous functor κ! = (−)⊗A B : G-ModA → G-ModB,
left adjoint to the restriction functor κ∗ : G-ModB → G-ModA induced by κ : A→ B,
called the induced G-module functor. M

Proposition 3.4.4. Let Sp⊥ = (Sp,⊥) be an orthogonal category. Then, the following
data defines a pseudo-functor (−)G : G-AQFT(Sp⊥)→ 2AQFT(Sp⊥) called the gauging
construction:

(a) On objects: Given any G-equivariant algebraic quantum field theory A ∈
G-AQFT(Sp⊥) the functor (−)G assigns:

(a.1) To each s ∈ PSp⊥0
the locally presentable K-linear category

AG(s) := G-ModA(s) (3.4.1)

of G-equivariant right A(s)-modules (see Remark 3.4.3).

(a.2) To each non-empty tuple f = ( f1, . . . , fn) ∈ PSp⊥
(t

s
)

of mutually orthogonal
Sp-morphisms AG , the functor

AG( f ) :
n
∏
i=1

G-ModA(si)
⊗n

// G-Mod⊗n
i=1 A(si)

A( f )!
// G-ModA(t) ,

(3.4.2)

where ⊗n : (V1, . . . , Vn) 7→ V1 ⊗ · · · ⊗ Vn is the functor that assigns to all
V1 ∈ G-ModA(s1)

, . . . , Vn ∈ G-ModA(sn) their tensor product as representations
with the induced G-equivariant structure over the tensor product of algebras and
where A( f )! is the induced G-module functor along the G-AlgK-morphism A( f ) :⊗n

i=1 A(si) → A(t) (see Remark 3.4.3). In particular, AG( f ) is K-linear and co-
continuous in each variable, i.e. defines a 1-morphism in PrK. To a 0-operation
∗s ∈ PSp⊥

( s
∅
)
, AG associates the pointing AG(∗s) := A(s) ∈ G-ModA(s).
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3.4 gauging construction and orbifold 2aqfts

(a.3-a.5) The coherences are analogous to those of the inclusion functor ι : AQFT(Sp⊥)→
2AQFT(Sp⊥) from Subsection 3.3.2.

(b) On 1-morphisms: To any 1-morphism ζ : A→ B of G-equivariant algebraic quantum
field theories AG assigns the 1-morphism ζG : AG → BG of 2-algebraic quantum field
theories given for every s ∈ PSp⊥0

by the induced G-module functor (K-linear and
co-continuous, see Remark 3.4.3) along the G-AlgK morphism ζs : A(s)→ B(s)

(ζG)s := (ζs)! : G-ModA(s) −→ G-ModB(s). (3.4.3)

The coherences for ζG : AG → BG are analogous to those of ι(ν), where ν denotes any
1-morphism of 1-algebraic quantum field theories and ι is the inclusion pseudo-functor
from Subsection 3.3.2.

Proposition 3.4.5. Let (A, ρ) ∈ G-AQFT(Sp⊥) be a G-equivariant algebraic quantum field
theory. Then, there exists an isomorphism AG

0
∼= π(AG) between the orbifold theory AG

0 and
the truncation (see Subsection 3.3.1) π(AG) of the categorified orbifold construction AG. This
isomorphism is natural in (A, ρ) ∈ G-AQFT(Sp⊥).

Proof. From the description of the truncation 2-functor in Subsection 3.3.1, we obtain
that π(AG)(s) = End(A(s)) is the endomorphism algebra of the G-equivariant mod-
ule A(s) ∈ G-ModA(s), for each s ∈ Sp. Since morphisms in G-ModA(c) preserve by
definition the G-action, it follows that End(A(s)) is isomorphic to the subalgebra of
G-action invariants in A(s), hence π(AG)(s) ∼= AG

0 (s) is isomorphic to the algebra that
is assigned by the traditional orbifold theory AG

0 . Using further the explicit descrip-
tion of the factorization products of π(AG) from Section 3.3.1, one checks that this
family of AlgK-isomorphisms defines an AQFT(Sp⊥)-isomorphism π(AG) ∼= AG

0 .
Naturality of this isomorphism in (A, ρ) ∈ G-AQFT(Sp⊥) is obvious.

Remark 3.4.6. Proposition 3.4.5 suggests that we can really think of the gauging con-
struction AG as a categorified orbifold theory for (A, ρ) ∈ G-AQFT(Sp⊥). However,
this is not the only justification for our choice of nomenclature as the following (in-
formal) argument should explain: The field configurations of a classical σ-model are
maps φ : Σ → X where Σ is a world-sheet and X is a target space. Furthermore, if X
is endowed with an action of a finite group G, we can form the quotient stack (orb-
ifold) X//G and consider the associated orbifold σ-model whose field configurations
are maps φ : Σ→ X//G. The space of field configurations is the mapping stack

Fields(Σ) := Map
(
Σ, X//G

)
. (3.4.4)

To study local aspects of this field theory we restrict our attention to the orthog-
onal category Disk(Σ)⊥d = (Disk(Σ),⊥d) (see Example 1.1.8). For spaces U ∈
Ob(Disk(Σ)) the mapping stack commutes with the stacky quotient, i.e.

Fields(U) ' Map(U, X//G) ' Map(U, X)//G. (3.4.5)

and Map(U, X) is an ordinary mapping space. Therefore, if we decide to ignore for
a moment the stacky quotient by G, we are in the usual scenario where the space
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of field configurations Map(U, X) is an ordinary space and not a stack, hence, formal
deformation quantization of such a field theory leads to an 1-algebraic quantum field
theory A ∈ AQFT(Disk(Σ)⊥d), which, in the case of no anomalies, can be endowed
with a G-action ρ : G → Aut(A), i.e. (A, ρ) ∈ G-AQFT(Disk(Σ)⊥d). By construc-
tion, A(U) is a deformation quantization of a suitable G-equivariant function algebra
O(Map(U, X)).

Taking the perspective of [Lur04, Bra14], if we do consider the stacky quotient by
G we should assign to the stack Fields(U) its category of quasi-coherent sheaves

QCoh
(
Fields(U)

)
' QCoh

(
Map(U, X)//G

)
' G-ModO(Map(U,X)) . (3.4.6)

Considering the aforementioned algebra A(U), obtained via formal quantization
of O(Map(U, X)), we can legitimately think of the pointed category AG(U) =
G-ModA(U) as a quantization of the category G-ModO(Map(U,X)) (see Proposition
3.4.4). Therefore, our gauging construction encodes local aspects of orbifold σ-
models. M

Notice that the categorified orbifold construction from Proposition 3.4.4 enables us
to introduce of simple toy-models of non-truncated 2-algebraic quantum field theo-
ries (see Definition 3.3.4) for non trivial groups G.

Example 3.4.7. Let G 6= e be a non trivial group and consider the G-equivariant al-
gebraic quantum field theory (K, ρ) ∈ G-AQFT(Sp⊥) where K ∈ AQFT(Sp⊥) is
the trivial 1-algebraic quantum field theory associating to every s ∈ Sp the field
K and where ρ : G → Aut(K) is the trivial G-action sending any element g ∈ G
to the identity idK. The categorified orbifold theory KG (see Proposition 3.4.4)
assigns, by definition, to each s ∈ Sp the locally presentable K-linear category
KG(s) = G-ModK = RepK(G) of K-linear G-representations with pointing given
by K with the trivial representation. Our claim is that KG is non-truncated, therefore,
we proceed to show that the counit ε : ιπ → id at KG is not an equivalence (see Defi-
nition 3.3.4). We begin by noticing that for every s ∈ Sp, ιπ(KG)(s) ∼= VecK, and that
the K-linear functor εs : ιπ(KG)(s) ∼= VecK → RepK(G) preserves the pointing up
to coherence isomorphisms, i.e. εs(K) ∼= K. Therefore, since εs is co-continuous and
since any vector space V over the field K is isomorphic to a direct sum of copies of K,
i.e. V ∼= ⊕i∈IK for some index set I, we obtain that the image εs(VecK) ⊆ RepK(G)
is contained in the subcategory of RepK(G) consisting of trivial representations, prov-
ing our claim. O

Example 3.4.7 provides instances of simple toy-models of non-truncated 2-algebraic
quantum field theories, proving that, generally, the 2-category 2AQFT(Sp⊥) is bigger
than the category AQFT(Sp⊥) of ordinary algebraic quantum field theories. What
is more surprising is that we can characterize exactly those G-equivariant algebraic
quantum field theories (A, ρ) ∈ G-AQFT(Sp⊥) that are truncated. We will find
out that this characterization relies on whether or not the inclusion of the G-action
invariants of the algebra AG

0 (s) ⊆ A(s) is a O(G)-Hopf-Galois extension for every
s ∈ Sp.

Remark 3.4.8 (see [DT89, Mon09]). The purpose of this Remark is to recall some basic
terminology from Hopf-Galois theory that will be needed in what follows.
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A Hopf algebra H = (µ, η, ∆, ε, S) over K is an associative and co-associative K-
bialgebra together with a K-linear antipode map S : H → H satisfying the following
equation: µ ◦ (id⊗ S) ◦ ∆ = µ ◦ (S⊗ id) ◦ ∆ = η ◦ ε.

Given a Hopf algebra H, consider the monoidal category ModH of right H-
comodules and its associated category of algebras AlgH

K = AlgAs(ModH). We call
the objects of the latter category, i.e. the algebras A ∈ AlgK endowed with an
AlgK-morphism δ : A → A ⊗ H satisfying the axioms of a right H-coaction, right
H-comodule algebras.

Given an H-comodule algebra A, we can consider the category ModH
A of right

(H, A)-Hopf comodules, i.e. the category of right A-modules in ModH (see Remark
3.4.3). The objects of ModH

A are the right A-modules V ∈ ModA with a compatible
H-coaction δV : V → V ⊗ H (i.e. δV(va) = δV(v)δ(a)). The morphisms of ModH

A are
the A-action and H-coaction preserving K-linear maps. M

Definition 3.4.9. Let H be a Hopf algebra over K, let A ∈ AlgH
K be a right H-comodule

algebra with H-coaction δ : A → A ⊗ H and denote by B := AcoH := {a ∈ A :
δ(a) = a⊗ 1H} ⊆ A the subalgebra of H-coaction invariants. We say that the extension
B := AcoH ⊆ A is Hopf-Galois, if the map

β : A⊗B A −→ A⊗ H , a⊗B a′ 7−→ (a⊗ 1H) δ(a′) (3.4.7)

is bijective.

Given a Hopf algebra H over K any right H-comodule algebra A induces the fol-
lowing adjunction:

Φ : ModB
// ModH

A : Ψoo , (3.4.8)

where Φ : ModB → ModH
A is the induced Hopf-module functor that sends a right

B(:= AcoH)-module V to the (H, A)-Hopf module V ⊗B A endowed with the natural
right H-coaction id⊗B δ (δ : A → A⊗ H is the right H-coaction on A), and where
Ψ : ModH

A → ModB is the functor assigning to each right (H, A)-Hopf module
W ∈ ModH

A , the right B-module VcoH := {v ∈ V : δV(v) = v⊗ 1H} of H-coaction
invariants.

As we mentioned earlier, we will see that whether the categorified orbifold con-
struction of a G-equivariant algebraic quantum field theory is truncated or not relies
on checking if certain algebra extensions are O(G)-Hopf Galois. Before restricting
our attention to the Hopf algebra of functions O(G), we need the following general
result (see [Mon09, Theorem 5.6] or [DT89]):

Theorem 3.4.10. Let H be a finite dimensional Hopf algebra over K and let A be an H-
comodule algebra. Then, the extension B = AcoH ⊆ A is H-Hopf-Galois if and only if the
counit ε : Φ Ψ⇒ id of the adjunction (3.4.8) is a natural isomorphism.

In the case where the Hopf algebra over K under consideration is the Hopf algebra
of functions H = Map(G, K) := O(G), which is finite dimensional for finite groups
G, the category ModH

A of right (H, A)-Hopf modules is equivalent to the category
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G-ModA of G-equivariant right A-modules. To see this, notice that any right O(G)-
coaction δV : V → V ⊗ O(G) determines a group action ρ : G → Aut(V) defined
by ρ(g)(v) = v(0) 〈v(1), g〉, where we used Sweedler notation δV(v) = v(0) ⊗ v(1) and
the duality pairing 〈·, ·〉 : O(G)⊗K[G] → K. Moreover, notice that the subalgebra
B := AcoH ⊆ A of H-coaction invariants coincides with the subalgebra of G-action
invariants AG

0 ⊆ A, i.e. B = AG
0 . These observations lead us to reinterpret the

adjunction in equation (3.4.8) as an adjunction Φ : ModB � G-ModA : Ψ.

Corollary 3.4.11. Let G be a finite group, let H = O(G) = Map(G, K) denote the function
Hopf algebra of G and let B = AcoH ⊆ A be the subalgebra of A of H-coaction invariants.
Then, the adjunction in equation (3.4.8) reads as

Φ : ModB
// G-ModA : Ψoo , (3.4.9)

and it is an adjoint equivalence in PrK if and only if the extension B = AG
0 ⊆ A is O(G)-

Hopf-Galois.

Proof. The left adjoint functor Φ = (−)⊗B A is clearly K-linear and co-continuous,
i.e. a 1-morphism in PrK. The right adjoint functor Ψ = (−)coH = (−)G

0 assigns the
G-invariants (given by a categorical limit), which for actions of finite groups G and
char(K) = 0 coincides with the G-coinvariants (i.e. a categorical colimit). Hence, the
right adjoint Ψ is a K-linear and co-continuous functor too and the adjunction (3.4.9)
is in the 2-category PrK.

The unit η : id ⇒ Ψ Φ of the adjunction (3.4.9) is given by the components ηW :
W → (W ⊗B A)G

0 , w 7→ w ⊗B 1A, for all W ∈ ModB. Using again that forming
G-invariants coincides with forming G-coinvariants, we find that η : id ⇒ Ψ Φ is a
natural isomorphism. Our claim then follows from Theorem 3.4.10.

Theorem 3.4.12. Let G be a finite group, Sp⊥ = (Sp,⊥) be an orthogonal category and let
(A, ρ) ∈ G-AQFT(Sp⊥) be a G-equivariant algebraic quantum field theory. Then, the cate-
gorified orbifold construction AG ∈ 2AQFT(Sp⊥) is truncated if and only if the extension
B := A(s)G

0 ⊆ A(s) is O(G)-Hopf-Galois for every s ∈ PSp⊥0
.

Proof. Recalling Definition 3.3.4, the 2AQFT AG ∈ 2AQFT(Sp⊥) is by definition
truncated if the corresponding component εAG : ι π(AG) → AG of the counit
of the inclusion-truncation biadjunction from Theorem 3.3.3 is an equivalence in
2AQFT(Sp⊥). The component εAG of the counit is determined uniquely (up to in-
vertible 2-morphisms in 2AQFT(Sp⊥)) by the condition ε̃AG = idπ(AG) : π(AG) →
π(AG) on its adjunct under (3.3.13). Using the explicit description of the inclusion
and truncation pseudo-functors from Section 3.1 and the one of the gauging con-
struction from the present section, one observes that the induced module functors
Φs = (−)⊗AG

0 (s)
A(s) : ι π(AG)(s) ∼= ModAG

0 (s)
→ AG(s) = G-ModA(s) (together with

the obvious coherence isomorphisms) define a 1-morphism Φ : ι π(AG) → AG in
2AQFT(Sp⊥) that satisfies Φ̃ = idπ(AG) : π(AG) → π(AG). Hence, Φ ∼= εAG and we
can equivalently investigate if Φ is an equivalence in 2AQFT(Sp⊥).

By a straightforward but slightly lengthy calculation, one proves that a 1-morphism
in 2AQFT(Sp⊥) is an equivalence if and only if all its components are equivalences

82



3.4 gauging construction and orbifold 2aqfts

in the 2-category PrK. (In this proof one uses that every equivalence in any 2-category
(here PrK) can be upgraded to an adjoint equivalence in order to define quasi-inverse
1-morphisms in 2AQFT(Sp⊥).) Thus, to prove that AG ∈ 2AQFT(Sp⊥) is truncated
we can equivalently study the components Φs = (−) ⊗AG

0 (s)
A(s) : ModAG

0 (s)
→

G-ModA(s), for all s ∈ Sp. By Corollary 3.4.11, these components are equivalences in
PrK if and only if the algebra extension AG

0 (s) ⊆ A(s) is O(G)-Hopf-Galois, for all
s ∈ Sp. This completes the proof.

Remark 3.4.13. Notice that Theorem 3.4.12 matches the physical intuition from Remark
3.4.6. In particular, it shows that we can think of the Hopf-Galois extension condition
as an analogue for algebras of a free G-action on spaces. More precisely, when the
action of G on a space X is free, the stacky quotient X//G is nothing else but the
ordinary quotient space X/G. Therefore, the resulting σ-model is an ordinary σ-
model and no higher categorical features appear. Analogously, when a G-equivariant
algebraic quantum field theory satisfies the point-wise Hopf-Galois condition, its cat-
egorified orbifold construction is an ordinary algebraic quantum field theory and no
higher categorical features appear. M

To conclude this section we show an example of a non-truncated classical field
theory that quantizes to a truncated quantum field theory.

Example 3.4.14. Consider the orthogonal category Disk(S1)⊥d from Example 1.1.8
and the algebraic quantum field theory A ∈ AQFT(Disk(S1)⊥d), called chiral free
boson, defined by the following data:

(a) On objects: To each open interval I ⊂ S1, A assigns the canonical commutation
relations algebra (CCR):

A(I) := T⊗
C

C∞
c (I)

/〈
ϕ1 ⊗ ϕ2 − ϕ2 ⊗ ϕ1 − ih̄

∫
I

ϕ1 dϕ2 1
〉
∈ AlgC , (3.4.10)

where h̄ ∈ R is the Planck’s constant treated as a number and not as a formal
deformation parameter, C∞

c (I) is the vector space of compactly supported real-
valued functions on I ⊂ S1 and T⊗

C
C∞

c (I) :=
⊕∞

n=0(C
∞
c (I)⊗R C)⊗n ∈ AlgC is

the complexified free algebra.

(b) On morphisms: To each inclusion ιJ
I : I → J, A assigns the AlgK-morphism

A(ιJ
I) : A(I) → A(J) defined on the generators by pushforward (i.e. extension

by zero) of compactly supported functions.

Furthermore, endow A with the Z2-action ρ : Z2 → Aut(A) defined for every open
I ⊂ S1 by ρ(±)(φ) = ±φ for every generator φ of A(I), obtaining a Z2-equivariant
algebraic quantum field theory (A, ρ) ∈ Z2-AQFT(Disk(S1)⊥d).

Our goal is to find whether the categorified orbifold construction AG is trun-
cated using Theorem 3.4.12. Let’s begin by studying the subalgebra B := AcoH =

AZ2
0 ⊆ A of H-coaction invariants and how the Hopf-Galois map β : A ⊗B A
→ A ⊗ H (see Definition 3.4.9) acts. Having a look at equation (3.4.10) makes
clear that B consists of the even part of the algebra (3.4.10). Moreover, since we
can decompose A into its even part B and odd part V, i.e. A = B ⊕ V and since
A⊗O(G) ∼= ∏g∈G A, β reads as:
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3.5 fredenhagen’s universal category

β : B⊕ (V ⊗B V)⊕V ⊕V −→ ∏
g∈Z2

A ,

b + v⊗B v′ + v1 + v2 7−→
(

b + v v′ + v1 + v2
b− v v′ + v1 − v2

)
. (3.4.11)

Notice that from equation (3.4.11) we get that β : A⊗B A → A⊗ H is a bijection if
and only if µ : V ⊗B V → B , v⊗B v′ 7→ v v′ is. Hence, to study whether the chiral
free boson theory A is truncated, is sufficient to study µ.

Let’s begin by considering the case h̄ = 0, i.e. the case in which the chiral free boson
theory A is a classical field theory. In this case (3.4.10) is a complexified symmetric
algebra over C∞

c (I) and the map µ : V ⊗B V → B is not surjective because its image is
at least quadratic in the generators. Therefore, using Theorem 3.4.12, we obtain that
the classical chiral free boson theory is non-truncated.

When h̄ 6= 0, µ is bijective. To prove that µ is surjective notice that one can always
find two generators ϕ1, ϕ2 ∈ C∞

c (I) ⊆ V ⊆ A that satisfy [ϕ1, ϕ2] = ih̄ 1. Then, given
any b ∈ B the following equation holds:

µ
(

b
1
ih̄
(ϕ1 ⊗B ϕ2 − ϕ2 ⊗B ϕ1)

)
= b

1
ih̄
[ϕ1, ϕ2] = b , (3.4.12)

proving surjectivity. For injectivity, consider ∑j vj⊗B v′j ∈ V ⊗B V such that ∑j vj v′j =
0 and observe that

∑
j

vj ⊗B v′j =
1
ih̄ ∑

j
[ϕ1, ϕ2] vj ⊗B v′j

=
1
ih̄

ϕ1 ⊗B ϕ2 ∑
j

vj v′j −
1
ih̄

ϕ2 ⊗B ϕ1 ∑
j

vj v′j = 0 , (3.4.13)

where we used that ϕ1 vj ∈ B and ϕ2 vj ∈ B.
Therefore, when h̄ 6= 0, the categorified orbifold construction is truncated (see

Theorem 3.4.12). This example shows that quantization can “destroy” classical higher
categorical features.

O

3.5 fredenhagen’s universal category

The aim of this section is twofold: first of all we want to introduce a categorification
of Fredenhagen’s universal algebra (see Example 1.2.20) that should be considered
as an analogue of Factorization Homology for topological quantum field theories
([AF15, BZBJ18a, BZBJ18b]). Secondly, we want to show some examples of Freden-
hagen’s universal categories on the circle S1. Before introducing the aforementioned
categorification we would like to recall what Fredenhagen’s universal algebra is.

We have seen in Example 1.2.20 that multicategorical left Kan extension can be
used to extend any ordinary algebraic quantum field theory A ∈ AQFT(Loc⊥c� ) to
an ordinary algebraic quantum field theory J!(A) ∈ AQFT(Loc⊥c), where Loc⊥c� is
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the orthogonal category of diamond globally hyperbolic Lorentzian manifolds. This
construction can be generalized to more general orthogonal categories by recalling
that a VecK-valued algebraic quantum field theory on a generic orthogonal category
Sp⊥ = (Sp,⊥) can be equivalently interpreted as an AlgK-valued prefactorization
algebra (see Theorem 3.2.1). In particular, remembering from Example 1.1.14, that
given orthogonal categories D⊥ = (D,⊥D) and E⊥ = (E,⊥E) and an orthogonal
functor J : D⊥ → E⊥, there exists an induced multifunctor J : PD⊥ → PE⊥ (notice
the slight abuse of notations) and recalling Theorem 1.1.26 we obtain the following
adjunction:

J! : AQFT(D⊥) ∼= AlgPD⊥
(AlgK) // AlgPE⊥

(AlgK) ∼= AQFT(E⊥) : J∗oo ,

(3.5.1)

where the right adjoint functor J∗ is given by restriction of AQFTs along J and J! is
obtained via multicategorical left Kan extension.

Given e ∈ PE⊥ and an A ∈ AQFT(D⊥), we say that J!(A)(e) is Fredenhagen’s univer-
sal algebra along J for A on e.

To categorify Fredenhagen’s universal algebra we will use a 2-categorical general-
ization of the multicategorical left Kan extensions (see Theorem 1.1.26) along multi-
functors J : PD⊥ → PE⊥ induced by maps of orthogonal categories J : D⊥ → E⊥.
More precisely, we will leverage the biadjunction

J! : 2AQFT(D⊥) // 2AQFT(E⊥) : J∗oo , (3.5.2)

where the right adjoint 2-functor J∗ is given by restriction of 2AQFTs along J and the
left adjoint pseudo-functor J! is a 2-categorical generalization of multicategorical left
Kan extension along J. Analogously to the 1-categorical case, given A ∈ 2AQFT(D⊥)
and an object e ∈ PE⊥0

, we call the category J!(A)(e), Fredenhagen’s universal category
along J for A on e.

Let us outline briefly the content of this section.
In Subsection 3.5.1 we introduce a bicolimit formula, analogous to that of Remark

1.1.27, to compute Fredenhagen’s universal category in explicit terms. Finally, in
Subsection 3.5.2 we give some examples of Fredenhagen universal categories along
the inclusion orthogonal functor ι : Disk(S1)⊥d ↪→ Open(S1)⊥d . More precisely,
we will focus on Fredenhagen’s universal categories along ι for categorified orbifold
algebraic quantum field theories (see Section 3.4).

3.5.1 Extension

The aim of this subsection is to obtain an explicit description of Fredenhagen’s uni-
versal category. In order to achieve this goal we begin by describing in explicit terms
the monoidal pseudo-functor A : P⊗D⊥ → PrK associated to any A ∈ 2AQFT(D⊥)
by the universal property of monoidal envelopes (see Remarks 1.1.16 and 1.1.27) and
proceed by introducing a 2-categorical analogue of the colimit formula in Remark
1.1.27 to compute J!(A) ∈ 2AQFT(E⊥), where J! is the left adjoint in (3.5.2), i.e. the
2-multicategorical left Kan-extension pseudo-functor along J.
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Remark 3.5.1. We can associate to every A ∈ 2AQFT(D⊥) a symmetric monoidal
pseudo-functor

A : P⊗D⊥ −→ PrK (3.5.3a)

given by the universal property of monoidal envelopes (see Remarks 1.1.16 and
1.1.27). This pseudo-functor is defined by the following data:

(a) On objects: It assigns to each non empty tuple d = (d1, . . . , dn) ∈ P⊗D⊥ the n-ary
Kelly-Deligne tensor product

A(d) :=
n

�
i=1

A(di) (3.5.3b)

of the locally presentable K-linear categories A(di) ∈ PrK (see Remark 3.2.6).
The empty tuple, i.e. the monoidal unit of P⊗D⊥ , is assigned, by convention the
monoidal unit of PrK, i.e. A(∅) := VecK.

(b) On morphisms: It assigns to each (α, f ) : d→ t in P⊗D⊥ , the functor

A(α, f ) : A(d) =
n

�
i=1

A(di)
'α //

m

�
j=1

A(dα,j)
�j A( f

j
)
//

m

�
j=1

A(tj) = A(t) ,

(3.5.3c)

where 'α is the equivalence in the symmetric monoidal 2-category PrK associ-
ated to the permutation induced by α.

(c) The coherences are canonically given by the coherences for A ∈ 2AQFT(D⊥)
and the symmetric monoidal structure on PrK.

M

Remark 3.5.2. In Remark 1.1.27 we have seen that, given a multifunctor φ : O → P , the
multicategorical left Kan-extension φ!(A) ∈ AlgP (C) of a multifunctor A ∈ AlgO(C)
can be computed point-wise as a particular colimit. Analogously, given an orthogonal
functor J : D⊥ → E⊥ and denoting by J! : 2AQFT(D⊥) → 2AQFT(E⊥) the 2-
multicategorical left Kan-extension along J, i.e. the left adjoint in Equation (3.5.2), we
can compute J!(A)(e), for every e ∈ PE⊥0

, via the following bicolimit in PrK (which
always exists since PrK is bicomplete, see e.g. [BCJF15, Lemma 2.4]):

J!(A)(e) := bicolim
(

J⊗/(e)
forget

// P⊗D⊥
A
// PrK

)
(3.5.4a)

where J⊗/(e) is the slice category for the functor J⊗ : P⊗D⊥ → P
⊗
E⊥ over the 1-tuple

(e) ∈ P⊗E⊥ and A : P⊗D⊥ → PrK is the functor from Remark 3.5.1.
Describing the functor

J!(A)(g) :
n

∏
i=1

J!(A)(ei) −→ J!(A)(t) (3.5.4b)
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associated to an operation g = (g1, . . . , gn) ∈ PE⊥
(t

e
)

is a bit more complicated. Con-
sider the diagram

n
∏
i=1

J⊗/(ei)
∏i forget

//

g∗
��

n
∏
i=1
P⊗

D⊥D

∏i A //

⊗n

��

n
∏
i=1

PrK

�n

��

(?)

rz
J⊗/(t)

forget
// P⊗

D⊥D A
// PrK

(3.5.4c)

where g∗ : ∏n
i=1 J⊗/(ei) → J⊗/(t) is the functor induced by post-composition with

g in the multicategory PE⊥ . The left square of this diagram commutes by direct
inspection. In the right square, the natural isomorphism (?) between the functors
given by the clockwise and counter-clockwise paths is obtained using the symmetric
monoidal structure on the pseudo-functor A. Passing to bicolimits and recalling that
the Kelly-Deligne tensor product � commutes with bicolim (in each variable) pro-
vides a co-continuous K-linear functor�n

i=1 J!(A)(ei) → J!(A)(t). Pre-composition
with the canonical functor ∏n

i=1 J!(A)(ei) → �n
i=1 J!(A)(ei), which is K-linear and

co-continuous in each variable, completes the construction of the functor in Equa-
tion (3.5.4b). The K-linear co-continuous functor associated to the only operation
∗e ∈ PE⊥E

( e
∅
)
, i.e. the pointing J!(A)(∗e) ∈ J!(A)(e) of Fredenhagen’s universal cate-

gory J!(A)(e), is obtained in the same fashion from (3.5.4c).
The coherences (see Remark 3.2.7) for the extended 2-algebraic quantum field the-

ory J!(A) ∈ 2AQFT(E⊥) are obtained canonically from the construction above and
the symmetric monoidal pseudo-functor A : P⊗D⊥ → PrK. M

In order to obtain an explicit description of J!(A)(e), i.e. Fredenhagen’s universal
category along J for A on e, we compute the bicolimit in (3.5.4a) using Lemma 2.4 of
[BCJF15].

Lemma 3.5.3 (Lemma 2.4 [BCJF15]). The 2-category of locally presentable K-linear cat-
egories is bicomplete and bicocomplete. In particular, bicolimits are computed by replacing
every 1-morphism by its right adjoint (which exists because every co-continuous K-linear
functor between locally presentable categories admits a right adjoint by the special adjoint
functor theorem [AR94, BCJF15]), therefore obtaining a contravariant bifunctor PrK → Cat
and by computing the corresponding bilimit in Cat, ignoring that the arrows happen to be
right adjoint.

In particular, Lemma 2.4 of [BCJF15] states that J!(A)(e) can be computed via the
following two step procedure:

(a) First, we consider the pseudo-functor AR : (P⊗D⊥)
op → Cat obtained from the

pseudo-functor A : PD⊥ → PrK in the following way:

(a.1) On objects: it assigns to every object d ∈ Ob(P⊗D⊥) the category AR(d) =
A(d).

(a.2) On morphisms: it assigns to every morphism (α, f ) ∈ P⊗D⊥
( t

d
)

the right

adjoint AR : AR(t) → AR(d) of the K-linear co-continuous functor A :
AR(d)→ AR(t), which exists because every co-continuous K-linear functor
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between locally presentable categories admits a right adjoint (which is not
generally co-continuous) by the special adjoint functor theorem ([AR94,
BCJF15]).

(b) J!(A)(e) is the bilimit in Cat of the pseudo-functor AR ◦ forget : (J⊗/(e))op →
Cat, which is a locally presentable K-linear category in a canonical way
([BCJF15]).

An explicit description of the bilimit of AR ◦ forget : (J⊗/(e))op → Cat can be
obtained by applying the models for bilimits of pseudo-functors in [Str80, LN16]. In
particular, J!(A)(e) is the following category:

Objects: An object

(V, ξV) :=
(
{Vh}, {ξV

(α, f )}
)
∈ J!(A)(e) (3.5.5)

consists of the following data:

(1) For each object
(
h := (∗, h) : d → (e)

)
∈ J⊗/(e), where ∗ : {1, . . . , n} →

{1} denotes the unique map of sets to the singleton {1}, an object

Vh ∈ A(d) =
n

�
i=1

A(di) . (3.5.6a)

(2) For each morphism (α, f ) : h→ h′ in J⊗/(e), an isomorphism

ξV
(α, f ) : AR(α, f )

(
Vh′
)
−→ Vh (3.5.6b)

in the category A(d).

These data have to satisfy the following cocycle conditions:

(i) For all objects
(
h : d→ (e)

)
∈ J⊗/(e), the diagram

AR(idh)
(
Vh
)

AR 0
e ∼=
��

ξV
idh

// Vh

Vh

idVh

55 (3.5.7a)

in A(d) commutes, where AR 0
e denotes the coherence isomorphisms for

identities that are associated with the pseudo-functor AR.

(ii) For all composable pairs of morphisms (α, f ) : h → h′ and (β, g) : h′ → h′′

in J⊗/(e), the diagram

AR(α, f )AR(β, g)
(
Vh′′
)

AR 2
((β,g),(α, f )) ∼=

��

AR(α, f )(ξV
(β,g))

// AR(α, f )
(
Vh′
)

ξV
(α, f )
��

AR((β, g) ◦ (α, f )
)(

Vh′′
)

ξV
(β,g)◦(α, f )

// Vh

(3.5.7b)
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3.5 fredenhagen’s universal category

in A(d) commutes, where AR 2
((β,g),(α, f )) denotes the coherence isomorphisms

for compositions that are associated with the pseudo-functor AR.

Morphisms: A morphism

Γ := {Γh} : (V, ξV) −→ (W, ξW) (3.5.8)

in J!(A)(e) consists of a family of A(d)-morphisms

Γh : Vh −→ Wh , (3.5.9a)

for all
(
h : d→ (e)

)
∈ J⊗/(e), such that the diagrams

AR(α, f )
(
Vh′
)

ξV
(α, f )
��

AR(α, f )(Γh′ )
// AR(α, f )

(
Wh′
)

ξW
(α, f )
��

Vh Γh

// Wh

(3.5.9b)

in A(d) commute, for all morphisms (α, f ) : h→ h′ in J⊗/(e).

Identities and compositions: Identities and composition are defined component-wise.

3.5.2 Examples on M = S1

The goal of this subsection is to provide examples of Fredenhagen’s universal cat-
egories along the orthogonal inclusion functor ι : Disk(S1)⊥d → Open(S1)⊥d (see
Example 1.1.8). More precisely, we study extensions of categorified orbifold theories
defined on Disk(S1) to the whole circle S1, i.e. locally presentable K-linear categories
of the form J!(A)(S1) with A ∈ 2AQFT(Disk(S1)). Therefore, we will be particularly
interested in the following bicolimit:

J!(A)(S1) = bicolim
(

J⊗/(S1)
forget

// P⊗
Disk(S1)⊥d

A
// PrK

)
(3.5.10)

To compute it we will leverage the explicit description of Fredenhagen’s universal
category from Subsection 3.5.1 and the fact that the slice category J⊗/(S1) for the
functor ι : PDisk(S1)⊥d ↪→ POpen(S1)⊥d over (S1) admits the following, easy, description:

(a) Objects: The objects are tuples I = (I1, . . . , In) of pairwise disjoint open intervals
Ii ⊂ S1 (notice that the inclusion Ii ⊂ S1 is strict, i.e Ii 6= S1), i.e. Ii ∩ Ij = ∅ for
all i 6= j.

(b) Morphisms: A morphism α : I = (I1, . . . , In) → J = (J1, . . . , Jm) is a map of sets
α : {1, . . . , n} → {1, . . . , m} such that Ii ⊆ Jα(i), for all i = 1, . . . , n.

Let us outline the content of the remainder of this subsection:
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3.5 fredenhagen’s universal category

(a) Firstly, we discuss extensions J!(A) ∈ 2AQFT(Open(S1)⊥d) of truncated alge-
braic quantum field theories A ∈ 2AQFT(Disk(S1)⊥d). More precisely, we
realize that J!(ι(B)) ∈ 2AQFT(Open(S1)⊥d) computed on S1, where ι is the
inclusion functor from Subsection 3.3.2 and B ∈ AQFT(Disk(S1)⊥d), is equiv-
alent to the category ModJ!(B)(S1) of right modules over Fredenhagen’s univer-
sal algebra J!(B)(S1) (notice the abuse of notations in denoting with the same
name the extension functors AQFT(Disk(S1)⊥d) → AQFT(Open(S1)⊥d) and
2AQFT(Disk(S1)⊥d)→ 2AQFT(Open(S1))).

(b) Secondly, we discuss the extension J!(K
G) ∈ 2AQFT(Open(S1)⊥d) of the cat-

egorified orbifold category KG ∈ 2AQFT(Disk(S1)⊥d) from Example 3.4.7.
In particular, we realize that J!(K

G)(S1) is the category G-ModO(G) of G-
equivariant right modules over the function Hopf algebra O(G). We will no-
tice that this identification has something to do with the fact that the cate-
gory QCoh(BundG(S

1)) of quasi-coherent sheaves over the stack of principal
G-bundles on S1 is equivalent to G-ModO(G).

(c) Finally, we study extensions J!(A
G) ∈ 2AQFT(Open(S1)⊥d) of gaugings AG ∈

2AQFT(Disk(S1)⊥d) of generic G-equivariant algebraic quantum field theories
(A, ρ) ∈ G-AQFT(Disk(S1)⊥d). Unluckily, since our 2-algebraic quantum field
theories AG ∈ 2AQFT(Disk(S1)⊥d) are not locally constant (i.e. do not in general
assign equivalences to interval inclusions), the description of Fredenhagen’s
universal category J!(A

G) ∈ 2AQFT(Open(S1)⊥d) will be more complicated.

Example 3.5.4. Let A ∈ 2AQFT(Disk(S1)⊥d) be a truncated algebraic quantum field
theory, i.e. A ∼= ι(A), with A ∈ AQFT(Disk(S1)⊥d). To compute Fredenhagen’s
universal category J!(A)(S1) (see the beginning of this section) consider the following
square of biadjunctions:

AQFT(Disk(S1)⊥d)

J!

��

ι // 2AQFT(Disk(S1)⊥d)

J!

��

π
oo

AQFT(Open(S1)⊥d)

J∗

OO

ι // 2AQFT(Open(S1)⊥d)
π

oo

J∗

OO
(3.5.11)

where the horizontal biadjunctions are the inclusion/truncation biadjunctions from
Section 3.3 (notice that we are abusing notations by denoting with J! a J∗ the restric-
tion/extension adjunctions both for ordinary algebraic quantum field theories and
2-algebraic quantum field theories). It is not difficult to see that the square in Equa-
tion (3.5.11) formed by the right adjoints commutes, i.e. π J∗ = J∗ π, therefore, the
square formed by the left adjoints commutes up to equivalence, i.e ι J! ' J! ι. This
means, not surprisingly, that the extension J!(A) of a A = ι(A) is truncated. There-
fore, Fredenhagen’s universal category along J on S1 is equivalent to the category
ModJ!(A)(S1) of right modules over Fredenhagen’s universal algebra

J!(A)(S
1) = colim

(
J⊗/(S1)

forget
// P⊗

Disk(S1)⊥d

A
// AlgK

)
. (3.5.12)
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3.5 fredenhagen’s universal category

To build more intuition and obtain a better understanding of Fredenhagen’s univer-
sal category we provide a detailed description of the equivalence F : ModJ!(A)(S1)

∼=
J!(ι(A))(S

1) : F−1 by explicitly building the functor F : ModJ!(A)(S1) → J!(ι(A))(S
1).

Notice that we will rely on the explicit description of Fredenhagen’s universal cate-
gory in Subsection 3.5.1 to describe the category J!(ι(A))(S

1).
The functor F : ModJ!(A)(S1) → J!(ι(A))(S

1) is given by the following data:

(a) On objects: It assigns to every right J!(A)(S
1)-module V ∈ ModJ!(A)(S1) the object

(V, ξV);= ({VI}, {ξV
α }) ∈ J!(ι(A))(S

1) defined in the following way:

(a.1) For every I ∈ J⊗/(S1), the right A(I) :=
⊗n

i=1 A(Ii)-module VI (
⊗n

i=1 A(Ii)
denotes the tensor product algebra) is defined by

VI := χ∗I
(
V
)
∈ ModA(I) (3.5.13)

where χ∗I is the restriction of modules associated to the canonical AlgK-
morphism χI : A(I) =

⊗n
i=1 A(Ii) → J!(A)(S

1) to the colimit (3.5.12), for
every I ∈ J⊗/(S1).

(a.2)

ξV
α := idVI

: ι(A)R(α)
(
VJ
)
−→ VI (3.5.14)

is an identity for every α : I → J. The reason why this assignment is
legit is the following: For any morphism α : I → J in J⊗/(S1), the functor
ι(A)R(α) = A(α)∗ : ModA(J) → ModA(I) is given by restriction of modules
along the AlgK-morphism A(α) : A(I)→ A(J). Because {χI}I is a co-cone,
we obtain

ι(A)R(α)
(
VJ
)
= A(α)∗ χ∗J

(
V
)
=
(
χJ A(α)

)∗(V) = χ∗I
(
V
)
= VI (3.5.15a)

Therefore, an object in Fredenhagen’s universal category can be described
as a family of modules over the algebras A(I) =

⊗n
i=1 A(Ii) whose restric-

tions along inclusions α : I → J coincide.

(b) On morphisms: F associates to any ModJ!(A)(S1)-morphism L : V → W the mor-
phism L : (V, ξV)→ (W, ξW) in J!(ι(A))(S

1) defined by

LI := χ∗I
(

L
)

: VI = χ∗I
(
V
)
−→ χ∗I

(
W
)
= WI , (3.5.16)

for all I ∈ J⊗/(S1) (it is easily seen that L satisfies the coherence conditions in
(3.5.9)).

Therefore, the morphisms in Fredenhagen’s universal category can be described
as families of module morphisms (see (3.5.16)), whose restrictions along inclu-
sions α : I → J coincide.

O
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Example 3.5.5. In Example 3.4.7 we have shown that the categorified orbifold theory
KG ∈ 2AQFT(Disk(S1)⊥d), assigning to every open non empty interval I ⊂ S1 the
locally presentable K-linear category RepK(G), is a genuine non-truncated and locally
constant (i.e. KG(ιJ

I) : KG(I) → KG(J) is an equivalence in PrK for every interval
inclusion ιJ

I : I → J) 2-algebraic quantum field theory whenever G is non trivial, i.e.
G 6= {e}.

Before computing Fredenhagen’s universal category J!(K
G)(S1) along J for KG on

S1, we would like to discuss how it should look intuitively: By Remark 3.4.6 we can in-
terpret KG ∈ 2AQFT(Disk(S1)⊥d) as an orbifold σ-model defined on the non-empty
intervals I ⊂ S1 of the circle with target the classifying stack BG = {∗}//G of G. In
fact, the stack of fields on an interval I ⊂ S1 is Fields(I) = Map(I, BG) ' {∗}//G
and its category of quasi-coherent sheaves is QCoh(Fields(I)) ' RepK(G). On the
whole circle S1, the stack of fields Fields(S1) coincides with the stack Map(S1, BG),
which, by the universal property of the classifying stack, is equivalent to the stack
BunG(S

1) of principal G-bundles on S1. The non-trivial bundles of BunG(S
1) can be

thought as “twisted sectors" of the orbifold σ-model. The category of quasi-coherent
sheaves QCoh(Fields(S1)) on BunG(S

1) is equivalent to the category G-ModO(G) of
G-equivariant right O(G)-modules. Hence, our expectation is that J!(K

G)(S1) ∼=
G-ModO(G). Let us verify it.

Since KG ∈ 2AQFT(Disk(S1)⊥d) is locally constant we can use techniques from
Factorization Homology, in particular [AF15, Theorem 3.19], to compute Freden-
hagen’s universal category J!(K

G)(S1) along J over S1. More precisely, we ob-
tain that J!(K

G)(S1) is equivalent to HH•
(
RepK(G)

)
, where HH•

(
RepK(G)

)
de-

notes Hochschild homology of the associative and unital algebra (RepK(G),⊗, K) ∈
AlgAs(PrK) (see Remark 3.4.2 for an explicit description of the monoidal structure
of RepK(G) and notice that ⊗ : RepK(G)�RepK(G) → RepK(G) is co-continuous
K-linear). Hochschild homology of RepK(G) can be obtained as the bicolimit of
the simplicial diagram associated to (RepK(G),⊗, K) ∈ AlgAs(PrK) (see [BZFN10,
Section 5.1] ), i.e.

HH•
(
RepK(G)

)
= bicolim

(
RepK(G) RepK(G)�2oo

oo RepK(G)�3oo
oo

oo · · ·oo
oo

oo
oo

)
(3.5.17)

where we are suppressing the degeneracy maps as usual. Notice, moreover, that, in
order to compute the bicolimit, the simplicial diagram in Equation (3.5.17) can be
truncated to RepK(G)�3. The bicolimit in (3.5.17) can then be computed, by taking
right adjoints of face and degeneracy maps in (3.5.17), as the bilimit in the 2-category
Cat of small categories of the truncated co-simplicial diagram (Lemma 3.5.3):

HH•
(
RepK(G)

)
= bilim

(
RepK(G) //

// RepK(G2) //
//

//

RepK(G3).
)

(3.5.18)

where G2 and G3 appear because, for a generic n ∈N, the n-ary Kelly-Deligne tensor
product RepK(G)�n is equivalent to RepK(Gn), the category of K-linear representa-
tions of Gn.

To obtain an explicit description of the bilimit in (3.5.18), i.e. of the category
HH•

(
RepK(G)

)
, it is helpful to describe the co-face and co-degeneracy maps in
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(3.5.18). In particular, co-faces and co-degeneracies are obtained as co-induced repre-
sentation functors φ∗ : RepK(G′)→ RepK(G′′) for suitable group maps φ : G′ → G′′.
More explicitly:

(a) The co-face map

δ0 = δ1 = ∆∗ : RepK(G) −→ RepK(G2) (3.5.19)

is the co-induced representation functor associated to the map ∆ : G → G2 , g 7→
(g, g).

(b) The co-face maps

δi = φi
∗ : RepK(G2) −→ RepK(G3) (3.5.20a)

For 1 = 1, 2, 3 are co-induced representation functors determined by

φi : G2 −→ G3 , (g1, g2) 7−→


(g1, g1, g2) , for i = 0 ,
(g1, g2, g2) , for i = 1 ,
(g1, g2, g1) , for i = 2 .

(3.5.20b)

(c) The co-degeneracy map ε0 : RepK(G2) → RepK(G) is given by the co-induced
representation functor for G2 → G , (g1, g2) 7→ g1.

We can then describe the category HH•
(
RepK(G)

)
, i.e. the bilimit in (3.5.18), as

the category given by the following data:

(a) Objects: An object is a couple (V, θV), where V ∈ RepK(G) is a K-linear rep-
resentation of G and θV : δ1(V) → δ0(V) is a RepK(G2)-isomorphism such
that ε0(θV) = idV and δ0(θV) ◦ δ2(θV) = δ1(θV) in RepK(G3) (ε0 denotes the
co-degeneracy map ε0 : RepK(G2)→ RepK(G)).

(b) Morphisms: A morphism L : (V, θV) → (W, θW) is a morphism L : V → W in
RepK(G), such that the diagram

δ1(V)

θV

��

δ1(L)
// δ1(W)

θW

��

δ0(V)
δ0(L)

// δ0(W)

(3.5.21)

in RepK(G2) commutes.

Our claim is that this category is equivalent to the category G-ModO(G) of G-
equivariant right O(G)-modules. In fact, we can simplify its description by noticing
that, since K is a field of characteristic 0 and since G is a finite group, the co-induced
representation functors φ∗ : RepK(G′) → RepK(G′′) are naturally isomorphic to the
induced representation functors φ! : RepK(G′) → RepK(G′′) which are easy to de-
scribe: Considering RepK(G′) = K[G′]Mod and RepK(G′′) = K[G′′]Mod respectively

93



3.5 fredenhagen’s universal category

as the categories of left K[G′]-modules and left K[G′′]-modules, where K[G′] and
K[G′′] denote the Hopf-group algebras of G′ and G′′, the functor φ! : RepK(G′) →
RepK(G′′) sends an object V ∈ RepK(G′′) to the object φ!(V) := K[G′′]⊗K[G′] V ∈
RepK(G′′). Therefore, we can use the explicit description of the co-induced repre-
sentation functors φ∗ : RepK(G′) → RepK(G′′) in terms of the induced representa-
tion functors φ! : RepK(G′) → RepK(G′′) to deduce that for any object (V, θV) ∈
HH•

(
RepK(G)

)
, the map θV : K[G2]⊗K[G] V → K[G2]⊗K[G] V is completely deter-

mined by a K-linear map ϑV : V → K[G]⊗ V via θV(1⊗ 1⊗ v) = 1⊗ ϑV(v), which
is G-equivariant with respect to the adjoint action on K[G] and satisfies the axioms of
a left K[G]-coaction. Moreover, we deduce that a morphism in HH•

(
RepK(G)

)
is a

G-equivariant map that preserves these K[G]-coactions. Hence, we get the following
chain of equivalences

J!(K
G)(S1) ' HH•

(
RepK(G)

)
' G-K[G]Mod ' G-ModO(G) , (3.5.22)

where the last equivalence holds since left K[G]-comodules are equivalent to right
modules over the dual Hopf algebra O(G) of functions on G (the G-action on O(G)
is again the adjoint action). O

Example 3.5.6. As a last example we consider extensions to the circle J!(A
G)(S1)

of gaugings AG of generic (A, ρ) ∈ G-AQFT(Disk(S1)⊥d). Unluckily, since our 2-
algebraic quantum field theories are not generally locally constant, we cannot bor-
row techniques from Factorization Homology to simplify the description of Freden-
hagen’s universal category J!(A

G)(S1) as we did in Example 3.5.5. Anyhow, we would
like to specify the explicit construction in Subsection 3.5.1 to the case at hand to build
some intuition.

An object (V, ξV) ∈ J!(A
G)(S1) consists of the following data:

(a) For each tuple I = (I1, . . . , In) ∈ J⊗/(S1) of mutually disjoint intervals, a Gn-
equivariant right A(I) =

⊗n
i=1 A(Ii)-module

VI ∈ Gn-ModA(I) (3.5.23)

where A(I) =
⊗n

i=1 A(Ii) denotes the tensor product of algebras and the Gn-
action on the tensor product of algebras is given by the component-wise G-
actions.

Notice that VI is a right A(I) =
⊗n

i=1 A(Ii)-module, with the Ii’s pairwise dis-
joint, endowed with a separate G-action for each connected component. In par-
ticular, the group G is allowed to act differently on different intervals, which is
a feature of local gauge symmetries.

(b) For each morphism α : I = (I1, . . . , In) → J = (J1, . . . , Jm) in J⊗/(S1), a
Gn-ModA(I)-isomorphism

ξV
α : (AG)R(α)

(
VJ
)
−→ VI . (3.5.24)
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Here (AG)R(α) : Gm-ModA(J) → Gn-ModA(I) is the right adjoint of the functor

Gn-ModA(I)

∆∗α ))

AG(α)
// Gm-ModA(J)

Gm-Mod∆∗α(A(I))

A(α)!

55

(3.5.25)

where ∆α : Gm → Gn , (g1, . . . , gm) 7→ (gα(1), . . . , gα(n)) is the group map deter-
mined by α : {1, . . . , n} → {1, . . . , m}, ∆∗α : RepK(Gn)→ RepK(Gm) denotes the
corresponding restricted representation functor and A(α)! is the induced mod-
ule functor for the Gm-equivariant algebra morphism A(α) : ∆∗α(A(I)) → A(J).
Explicitly, one finds that (AG)R(α) is given by the composition

Gm-ModA(J)

A(α)∗

��

(AG)R(α)
// Gn-ModA(I)

Gm-Mod∆∗α(A(I)) ∆α∗
// Gn-Mod∆α∗∆∗α(A(I))

η∗
A(I)

OO
(3.5.26)

where η denotes the unit of the adjunction ∆∗α : RepK(Gn)� RepK(Gm) : ∆α∗.

These data have to satisfy the coherence conditions (3.5.7).
To get a better feeling for the coherence maps ξV(3.5.24), we study the case where

we include two intervals I1, I2 ⊂ S1 into a single bigger interval J ⊂ S1, i.e. α : I =
(I1, I2) → J. In this case ∆α = ∆ : G → G2 is the diagonal map and (3.5.24) is given
by a G2-ModA(I)-isomorphism

ξV
α : η∗A(I) ∆∗ A(α)∗

(
VJ
)
−→ VI . (3.5.27)

Using as in Example 3.5.5 that the co-induced representation functor ∆∗ :
RepK(G)→ RepK(G2) is naturally isomorphic to the induced representation functor
∆! : RepK(G) → RepK(G2), we obtain that ξV

α is completely determined by a K-
linear map κV

α : VJ → VI via ξV
α (1⊗ 1⊗ v) = κV

α (v), for all v ∈ VJ . This K-linear map
has to satisfy the following conditions: 1.) G-equivariance: κV

α (g v) = (g, g) κV
α (v), for

all v ∈ VJ and g ∈ G. 2.) Preservation of the A(I)-actions:

κV
α (v) · (a1 ⊗ a2) = ∑

(g1,g2)∈G2

(g−1
1 , g−1

2 ) κV
α

(
v ·
(
A(ιJ

I1
)(g1 a1)A(ι

J
I2
)(g2 a2)

))
,

(3.5.28)

for all a1 ⊗ a2 ∈ A(I1) ⊗ A(I2) and v ∈ VJ , where ιJ
Ii

: Ii → J denote the interval
inclusions. (The sum over G2 comes from the unit η of the adjunction ∆∗ a ∆∗
when we use ∆! as a model for ∆∗.) Comparing (3.5.28) with the truncated case from
Example 3.5.4, we observe that there is a component-wise G2-action on the algebra
element a1 ⊗ a2 ∈ A(I1) ⊗ A(I2) on a pair of intervals before it acts on the module
element v ∈ VJ on the single bigger interval. From a superficial point of view, this
behaviour resembles the twisted representations of G-equivariant AQFTs by Müger
[Mug05]. Unfortunately, we do not understand at the moment if there exists a precise
relationship between Fredenhagen’s universal category J!(A

G)(S1) for categorified
orbifold theories and the results in [Mug05]. O
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4
S M O O T H 1 - D I M E N S I O N A L A Q F T S

An m-dimensional algebraic quantum field theory is a functor A : Locm → ∗AlgC

(see Definition 1.2.7) satisfying some physically motivated axioms, e.g. Einstein causal-
ity. This perspective on quantum field theories, although leading to very interesting
model-independent results and to a prolific exchange of techniques between AQFT
and Category Theory as we have seen in the previous chapters, has the following in-
sufficiency: the axioms of an algebraic quantum field theory do not entail a suitable
concept of smoothness, in the sense that there is no prescription on how observable
algebras should respond to smooth changes of spacetimes. Let us be slightly more
precise: Let’s say we have a globally hyperbolic Lorentzian manifold Ms depending
smoothly on a parameter s (in some appropriate sense, as we will see later). Such
a family could be generated for example by changing smoothly the coefficients of
the metric tensor. We would expect then the family of ∗-algebras A(Ms), obtained
by evaluating A on each Ms, to vary smoothly accordingly, since, from a physical
perspective, we can imagine small changes of the spacetimes to not affect too much
observable algebras, but, to our knowledge, there is no suitable concept of smooth-
ness for ∗-algebras. To solve this inadequacy, our long term plan is to carry out a
program similar to the one conducted in the context of functorial quantum field the-
ory [ST11, BEP15, BW21, LS21], i.e. by using stacks to introduce smooth refinements
of the categories Locm and ∗AlgC. In order to make a first step toward such goal we
decide to avoid technical complications of both categorical and analytical nature by
restricting our attention to 1-dimensional globally hyperbolic Lorentzian manifolds
(recall that a 1-dimensional globally hyperbolic Lorentzian manifold is just an open
interval together with a differential 1-form, see Remark 1.2.8) in which context or-
dinary algebraic quantum field theories boil down to functors Loc1 → ∗AlgC since
Einstein causality does not enter the picture.

More precisely, in this chapter, drawing framework and results from our paper
[BPS20], we introduce stacks Loc∞

1 : Manop → Cat and ∗Alg∞
C : Manop → Cat rep-

resenting smooth refinements of Loc1 and ∗AlgC, i.e. pseudo-functors (see Remark
3.1.8) from the opposite category of manifolds and smooth maps to the category
of small categories satisfying a suitable categorification of the descent condition for
sheaves, and define smooth 1-dimensional algebraic quantum field theories to be
stack morphisms (i.e. pseudo-natural transformations) A : Loc∞

1 → ∗Alg∞
C . Lever-

aging the right biadjoint to the cartesian product of stacks, i.e. the mapping stack, we
introduce a stack AQFT∞

1 of smooth 1-dimensional algebraic quantum field theories
adding further layers of smoothness to our setting. In particular, this stack will en-
able us to talk about smooth families of smooth 1-dimensional algebraic quantum
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field theories (via the functor of points approach) and will permit us to assign a smooth
automorphism group to each smooth 1-dimensional algebraic quantum field theory.

In what follows, we shall carefully describe such constructions and illustrate them
via simple examples.

Let us outline in more detail the content of the remainder of this chapter.
In Section 4.1 we discuss the relevant concepts from the theory of stacks. In partic-

ular, we introduce the descent category, i.e. the category of descent data for a pseudo-
functor on an open cover of a manifold, the 2-Yoneda Lemma, a 2-categorical analogue
of the Yoneda Lemma, and the mapping stack.

In Section 4.2 we define the aforementioned smooth refinements of the categories
Loc1 and ∗AlgC, i.e. the stacks Loc∞

1 : Manop → Cat and ∗Alg∞
C : Manop → Cat,

and we introduce the mapping stack AQFT∞
1 := Map(Loc∞

1 , ∗Alg∞
C ). Moreover, we

introduce smooth 1-dimensional algebraic quantum field theories as “global points” {∗} →
AQFT∞

1 , i.e. as stack morphisms Loc∞
1 → ∗Alg∞

C , and assign to each of them a
smooth automorphism group. Furthermore, we will introduce smooth G-equivariant
1-dimensional algebraic quantum field theories, smooth analogues of ordinary G-
equivariant AQFTs.

In Section 4.3 we discuss smooth refinements of the canonical commutation relation
(CCR) functor and of the canonical anti-commutation relation (CAR) functor.

In Section 4.4 we introduce smooth generalizations of retarded and advanced
Green operators which we harness to build examples of smooth 1-dimensional al-
gebraic quantum field theories. In particular, we discuss a smooth analogue of the
1-dimensional massive scalar field (quantum harmonic oscillator) in the presence of
a smooth variation of the mass (frequency) parameter and an example of a U(1)-
equivariant smooth 1-dimensional AQFT, which can be interpreted physically as a
smooth counterpart of the 1-dimensional massless Dirac field together with its global
U(1)-symmetry.

4.1 preliminaries on stacks of categories

The aim of this section is to introduce the relevant concepts from the theory of stacks
that will be needed in the remainder of this chapter. In particular, we recall the notion
of stack, 1-morphism (or simply morphism) between stacks and 2-morphism between 1-
morphisms of stacks. The interested reader can find a thorough treatment of the
theory of stacks in [Vis05].

A stack is, roughly speaking, a 2-categorical analogue of a sheaf where the functo-
riality, locality and gluing axioms hold up to coherent isomorphisms. While both the
concepts of stack and sheaf can be introduced over generic sites (i.e. categories with
a suitable notion of covering for their objects) we will avoid such complication and
focus our attention on stacks and sheaves defined on the site Man, i.e. the category
of manifolds and smooth maps endowed with the open cover Grothendieck topology,
where such concepts become pretty straightforward. For instance, a Set-valued sheaf
on Man is just a contravariant functor F : Manop → Set such that F|M, where F|M
denotes the restriction of F to the subcategory Open(M)op ⊆ Manop (see Example
1.1.7), is a sheaf on M for every M ∈ Man.
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Before defining stacks, we have to introduce the 2-categorical analogue of
presheaves on Man, i.e. prestacks on Man. As per usual, after introducing the rel-
evant 2-categorical objects, we will explicitly spell out their data (see Remark 4.1.2).

Definition 4.1.1. The 2-category of prestacks (of categories) [Manop, Cat] consists of
pseudo-functors Manop → Cat, pseudo-natural transformations and modifications
(see Remark 3.1.8). The objects of this category, i.e. the pseudo-functors Manop →
Cat, are called prestacks, while we will refer to pseudo-natural transformations and
modifications as (1-)morphisms and 2-morphisms of prestacks respectively.

Remark 4.1.2. A prestack (of categories) X : Manop → Cat consists of the following
data:

(a) For each object U ∈ Man, a category X(U).

(b) For each morphism h : U → U′ in Man, a functor X(h) : X(U′)→ X(U).

(c) For each pair of composable morphisms h : U → U′ and h′ : U′ → U′′ in Man,
a natural isomorphism Xh′,h : X(h) X(h′) ⇒ X(h′ h) of functors from X(U′′) to
X(U).

(d) For each object U ∈ Man, a natural isomorphism XU : idX(U) ⇒ X(idU) of
functors from X(U) to X(U).

Satisfying the following axioms:

(a) For all triples of composable morphisms h : U → U′, h′ : U′ → U′′ and h′′ :
U′′ → U′′′ in Man, the diagram

X(h) X(h′) X(h′′)

Id∗Xh′′ ,h′
��

Xh′ ,h∗Id +3 X(h′ h) X(h′′)

Xh′′ ,h′h
��

X(h) X(h′′ h′)
Xh′′h′ ,h

+3 X(h′′ h′ h)

(4.1.1)

of natural transformations commutes. (The capital Id denotes identity natural
transformations and ∗ denotes horizontal composition of natural transforma-
tions.)

(b) For all morphisms h : U → U′ in Man, the two diagrams

idX(U) X(h)

XU∗Id
��

X(h) idX(U′)

Id∗XU′
��

X(idU) X(h)
Xh,idU

+3 X(h) X(h) X(idU′) XidU′ ,h
+3 X(h)

(4.1.2)

of natural transformations commute.

From now on we will often suppress the coherence isomorphisms Xh′,h, XU of a
prestack X ∈ [Manop, Cat].

A morphism F : X → Y of prestacks consists of the following data:
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(a) For each U ∈ Man, a functor FU : X(U)→ Y(U).

(b) For each morphism h : U → U′ in Man, a natural isomorphism

X(U′)

X(h)
��

FU′ // Y(U′)

Y(h)
��

Fh

u}
X(U)

FU

// Y(U)

(4.1.3)

These data have to satisfy the following axioms:

(a) For all pairs of composable morphisms h : U → U′ and h′ : U′ → U′′ in Man,
the diagram

Y(h)Y(h′) FU′′

Yh′ ,h∗Id
��

Id∗Fh′ +3 Y(h) FU′ X(h′)
Fh∗Id +3 FU X(h) X(h′)

Id∗Xh′ ,h
��

Y(h′ h)FU′′ Fh′h
+3 FU X(h′ h)

(4.1.4)

of natural transformations commutes.

(b) For all U ∈ Man, the diagram

idY(U) FU

YU∗Id
��

FU idX(U)

Id∗XU
��

Y(idU) FU FidU

+3 FU X(idU)

(4.1.5)

of natural transformations commutes.

A 2-morphism ζ : F ⇒ G between two prestack morphisms F, G : X → Y consists of
the following data:

(a) For each U ∈ Man, a natural transformation ζU : FU ⇒ GU of functors from
X(U) to Y(U).

These data have to satisfy the following axioms:

(a) For all morphisms h : U → U′ in Man, the diagram

Y(h) FU′

Fh
��

Id∗ζU′ +3 Y(h) GU′

Gh
��

FU X(h)
ζU∗Id

+3 GU X(h)

(4.1.6)

of natural transformations commutes.

M
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As we mentioned earlier, a sheaf (of sets) on Man is a presheaf X : Manop → Set
satisfying a descent condition (the combination of locality and gluing axioms) for
any open cover {Uα ⊆ U} of any manifold U ∈ Man. This descent condition can
be interpreted in terms of limits or in a more explicit way by defining a descent set
X({Uα ⊆ U}) and checking whether a certain canonically induced map X(U) →
X{Uα ⊆ U} is a bijection. In order to define stacks on Man we decide to follow
a categorification of the latter approach but we would like to point out that also a
categorification of the former in terms of bilimits is feasible (and equivalent to the
first, see [Vis05]).

Definition 4.1.3. Let X : Manop → Cat be a prestack and U ∈ Man be a manifold.
For any open cover {Uα ⊆ U} there exists a category X({Uα ⊆ U}), called descent
category of X on the open covering {Uα ⊆ U}, defined by the following data:

(a) Objects: An object is a tuple({
xα

}
,
{

ϕαβ : xβ|Uαβ
→ xα|Uαβ

})
∈ X({Uα : α ∈ A}) (4.1.7a)

of families of objects xα ∈ X(Uα) and isomorphisms ϕαβ in X(Uαβ) satisfying

xβ|Uβγ
|Uαβγ

∼=
''

xγ|Uβγ
|Uαβγ

∼=
��

ϕβγ|Uαβγ
77

xβ|Uαβ
|Uαβγ

ϕαβ|Uαβγ
��

xα|Uαα

∼=
��

ϕαα
// xα|Uαα

∼=
��

xγ|Uαγ |Uαβγ

ϕαγ|Uαβγ
''

xα|Uαβ
|Uαβγ

∼=ww

xα idxα

// xα

xα|Uαγ |Uαβγ

(4.1.7b)

for all α, β, γ, where we denoted by Uα1α2···αn := Uα1 ∩Uα2 ∩ · · · ∩Uαn the inter-
section of open subsets, by |Ũ := X(ιUŨ) : X(U) → X(Ũ) the functor obtained
by evaluating X on a subset inclusion Man-morphism ιUŨ : Ũ → U and where
the unlabelled isomorphisms are given by the coherence isomorphisms of the
pseudo-functor X : Manop → Cat.

(b) Morphisms: A X({Uα : α ∈ A})-morphism

{ψα} :
(
{xα}, {ϕαβ}

)
−→

(
{x′α}, {ϕ′αβ}

)
(4.1.8a)

is a family of morphisms ψα : xα → x′α in X(Uα) satisfying

xβ|Uαβ

ψβ|Uαβ
//

ϕαβ
��

x′β|Uαβ

ϕ′αβ
��

xα|Uαβ ψα|Uαβ

// x′α|Uαβ

(4.1.8b)

for all α, β.

100



4.1 preliminaries on stacks of categories

Given a prestack X : Manop → Cat and an open cover {Uα ⊆ U} of a manifold
U ∈ Man, there exists a canonical functor

X(U) −→ X({Uα ⊆ U}) ,

x 7−→
(
{x|Uα}, {x|Uβ

|Uαβ

∼=−→ x|Uα |Uαβ
}
)

,

ψ 7−→ {ψ|Uα} . (4.1.9)

Definition 4.1.4. A stack (of categories) on Man is a prestack X : Manop → Cat
satisfying the descent condition for stacks, i.e. such that for each manifold U ∈ Man
and each open cover {Uα ⊆ U} the functor X(U) → X({Uα ⊆ U}) in (4.1.9) is an
equivalence of categories.

Example 4.1.5. A classical example of stack is the stack Sh : Manop → Cat of sheaves,
i.e. the prestack assigning to each manifold U the category Sh(U) of Set-valued
sheaves over it and to each Man-morphism h : U → U′ the functor h∗ : Sh(U′) →
Sh(U) sending each sheaf on U′ to its inverse image sheaf on U. The coherence
isomorphisms of Sh are determined by the universal property of the inverse image.
The descent condition can then be interpreted by saying that to construct a sheaf X
on U is sufficient to produce a compatible collection of sheaves XUα for each open Uα

of an open cover {Uα ⊆ U}. O

Example 4.1.6. Another standard example is the stack of vector bundles VecBunK :
Manop → Cat assigning to each manifold U ∈ Man the category VecBunK(U) of
locally trivializable and finite rank K-vector bundles over U with morphisms given by
base space-preserving vector bundle maps, and to each Man-morphism h : U → U′

the functor h∗ : X(U′) → X(U) sending each vector bundle (π : M → U′) over U′ to
its pullback vector bundle h∗(π : M → U′) over U. The coherence isomorphisms of
VecBunK are determined by the universal property of pullbacks.

What the descent condition for VecBunK describes is the well-known fact that a
vector bundle (π : M → U) on U can be built from a family of vector bundles
(πα : Mα → Uα) on an open cover {Uα ⊆ U}, together with transition functions on
the overlaps satisfying the cocycle condition (see [Lee13, Problem 10-6]). O

Definition 4.1.7. We denote by St the full 2-subcategory of the category of prestacks
[Manop, Cat] consisting of stacks.

We conclude this section by recalling a few constructions that will be exploited in
the remainder of this chapter, namely:

(a) The 2-Yoneda Lemma, which, as the name suggests, is a 2-categorical analogue
of the 1-categorical Yoneda Lemma.

(b) The product of stacks X×Y.

(c) The Mapping stack, i.e the internal-Hom for the 2-cartesian closed category St.
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the 2-yoneda embedding and the 2-yoneda lemma : There exists a fully
faithful 2-functor

(−) : Man −→ St (4.1.10)

called 2-Yoneda embedding that assigns to any manifold N ∈ Ob(Man) the
stack N := Man(−, N) : Manop → Cat , U 7→ Man(U, N) where the set
Man(U, N) = C∞(U, N) of smooth maps is considered as a category with only
identity morphisms (see Example 3.1.4).

The 2-Yoneda Lemma states that given any stack X : Manop → Cat and a
representable stack U, there exists a canonical equivalence of categories

St(U, X) ' X(U) (4.1.11)

natural in X and U. Therefore, we can interpret X(U) as the category of
“smooth maps" U → X. For instance, X({∗}) can be understood as the cate-
gory of “global points” of X, while X(R) can be interpreted as the category of
“smooth maps” R→ X.

products of stacks Given two stacks X, Y ∈ St, the product stack X×Y is defined
by:

X×Y : Manop −→ Cat ,
U 7−→ X(U)×Y(U) ,(

h : U → U′
)
7−→

(
X(h)×Y(h) : X(U′)×Y(U′)→ X(U)×Y(U)

)
(4.1.12)

with coherence isomorphisms induced by those of X and Y.

The product stack is, as the name suggests, the bicategorical product of the
stacks X and Y. Notice that the product of two representable stacks M× N is
equivalent to the stack M× N.

mapping stack Given stacks X, Y ∈ St the mapping stack Map(X, Y) is defined by :

Map(X, Y) : Manop −→ Cat ,
U 7−→ St(X×U, Y) ,(

h : U → U′
)
7−→

(
(id× h)∗ : St(X×U′, Y)→ St(X×U, Y)

)
,

(4.1.13)

where (id× h)∗ := (−) ◦ (id× h) denotes pre-composition.

The mapping stack Map(X, Y) can be considered as the space of “smooth maps”
X → Y. More precisely, we will be able to interpret stack morphisms Ũ →
Map(X, Y) as “smooth Ũ-families of smooth maps X → Y” (this approach is
called functor of points perspective, see [BS19a, Section 3.2] and [BS17] for a
review in the context of field theory). To justify this statement let us consider
the case in which X = M and Y = N are representable stacks (manifolds).
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In this setting the category of “global points” St({∗},Map(M, N)) ∼= C∞(M, N)
(notice that we are using the 2-Yoneda Lemma and the definition of the mapping
stack) reduces to the set of smooth maps M→ N, while, for a generic Ũ ∈ Man,
an Ũ-family of smooth maps Ũ → Map(M, N) boils down to an element of the
set St(Ũ,Map(M, N) ∼= C∞(Ũ ×M, N), i.e. a smooth map Ũ ×M→ N.

Notice that the mapping stack is right biadjoint to the cartesian product of stacks
and endows St with the structure of a closed 2-category (the same statement is
true replacing “stack” with “prestack”). This implies that for all stacks X, Y and
Z, there exists an equivalence St(X×Y, Z) ∼= St(X,Map(Y, Z)) (analogously for
prestacks).

4.2 smooth 1-dimensional aqfts

An m-dimensional algebraic quantum field theory is a ⊥c-commutative functor
Locm → ∗AlgC, i.e. a law that assigns ∗-algebras of observables to m-dimensional
spacetimes in a functorial way, satisfying the Einstein causality axiom (see Definition
1.2.12). We have seen in the previous chapters that m-dimensional algebraic quantum
field theories can equivalently be interpreted as VecK-valued OLoc⊥c

m
-algebras (see

Subsection 1.2.3) or AlgK-valued PLoc⊥c
m

-algebras (see Section 3.2.7), where OLoc⊥c
m

and PLoc⊥c
m

denote the restrictions OLoc⊥c and PLoc⊥c to m-dimensional manifolds.
As mentioned in the introduction to this chapter our long-term goal is to define a

suitable axiomatization of m-dimensional algebraic quantum field theories that takes
smoothness into account. The idea is to introduce smooth algebraic quantum field
theories as morphisms between smooth (lax)stacks of multicategories, taking advan-
tage of the aforementioned multicategorical descriptions of AQFTs. However, this
goal comes with challenges of both categorical and analytical nature (see Chapter 5).
Therefore, as a first step, we restrict our attention to 1-dimensional algebraic quantum
field theories. In the 1-dimensional case, in fact, spacetimes are just time intervals to-
gether with a differential 1-form and the axiom of Einstein causality disappears from
the picture (see Remark 1.2.8). In this context, the idea is to introduce smooth re-
finements Loc∞

1 and ∗Alg∞
C of the categories of spacetimes Loc1 and algebras ∗AlgC

respectively, i.e. stacks Loc∞
1 : Manop → Cat and ∗Alg∞

C : Manop → Cat, and to
call smooth algebraic quantum field theories the stack morphisms A : Loc∞

1 → ∗Alg∞
C

between them.
Notice that the category of smooth algebraic quantum field theories

and 2-morphisms between those is equivalent to the category of global
points Map(Loc∞

1 , ∗Alg∞
C )({∗}) ∼= St(Loc∞

1 , ∗Alg∞
C ) of the mapping stack

Map(Loc∞
1 , ∗Alg∞

C ), therefore suggesting a further level of smoothness: the mapping
stack Map(Loc∞

1 , ∗Alg∞
C ) plays the role of a stack of smooth algebraic quantum field

theories AQFT∞
1 , hence permitting us, through the functor of points approach (see

Section 4.1), to make sense of questions like “what is a smooth curve of smooth 1-
dimensional algebraic quantum field theories?", or more generally “what is a smooth
Ũ-family of smooth 1-dimensional algebraic quantum field theories?”.

Let us outline briefly the content of this section:
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(a) In Subsection 4.2.1 we introduce the stack Loc∞
1 of smooth 1-dimensional glob-

ally hyperbolic Lorentzian manifolds, a smooth refinement of the category Loc1
of 1-dimensional globally hyperbolic Lorentzian manifolds (see Remark 1.2.8).

(b) In Subsection 4.2.2 we define the stack ∗Alg∞
C of smooth associative and unital

algebras, a smooth refinement of the category ∗AlgC of associative and unital
∗-algebras (see Remark 1.1.33).

(c) In Subsection 4.2.3 we define the stack AQFT∞
1 of smooth algebraic quantum

field theories, a smooth refinement of the category AQFT1 := AQFT(Loc⊥d
1 ),

and the smooth automorphism group of a smooth 1-dimensional alge-
braic quantum field theory. Moreover, we discuss G-equivariant smooth 1-
dimensional AQFTs.

4.2.1 The stack Loc∞
1

The aim of this subsection is to introduce the stack Loc∞
1 : Manop → Cat, a smooth

refinement of the category Loc1 from Remark 1.2.8.
The idea is that, given a manifold U, the objects of the category Loc∞

1 (U) should
represent smooth U-families of 1-dimensional spacetimes, i.e. bundles with vertical
fibers given by 1-dimensional globally hyperbolic Lorentzian manifolds.

Definition 4.2.1. A smooth U-family of 1-dimensional spacetimes is a pair (π : M→ U, E)
consisting of a (locally trivializable) fiber bundle π : M → U with typical fiber an
open interval I ⊆ R and a non-degenerate vertical 1-form E ∈ Ω1

v(M) on the total
space.

Notice that for U = {∗}, the category Loc∞
1 ({x}) is equivalent to the category Loc1.

Remark 4.2.2. A smooth U-family of 1-dimensional spacetimes (π : M → U, E) (see
Definition 4.2.1) can be interpreted as a U-parametrized family of smoothly varying
1-dimensional spacetimes. In fact, each fiber (M|x, E|x) = (π−1({x}), E|π−1({x})) is
a 1-dimensional globally hyperbolic Lorentzian manifold and the bundle structure
encodes the smooth variation of such spacetimes over the base space U. M

Recall that a Loc1-morphism f : (I, e) → (I′, e′) is an open embedding f : I → I′

preserving 1-forms, i.e. f ∗(e′) = e (Remark 1.2.8). Therefore, in order to obtain a
suitable notion of morphism between smooth U-families of 1-dimensional spacetimes
we have to take into consideration the following elements:

(a) We want a morphism f : (π : M → U, E) → (π′ : M′ → U, E′) of smooth
U-families of 1-dimensional spacetimes to be smooth, i.e. to be a fiber bundle
map

M

π
��

f
// M′

π′
��

U

(4.2.1)

(b) We want f : (π : M → U, E) → (π′ : M′ → U, E′) to preserve 1-forms, i.e.
f ∗(E′) = E.
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(c) Furthermore, we want f : (π : M → U, E) → (π′ : M′ → U, E′) to be, in some
suitable sense, an “open embedding of fiber bundles".

Notice that there are a priori different ways to implement this last requirement. We
could ask for example the fiber bundle map f : (π : M → U) → (π′ : M′ → U)
underlying f : (π : M → U, E) → (π′ : M′ → U, E′) to be such that f |x : M|x →
M′f (x) is an open embedding for every x ∈ U. However, this notion is incompatible
with pushing forward vertically compactly supported functions on the total spaces (cf.
Section 4.4), which is pivotal to construct examples of smooth AQFTs. Hence, what
we are looking for is a more “U-uniform” notion of open embedding between smooth
U-families of 1-dimensional spacetimes. Such considerations lead us naturally to
three possible candidates that are, luckily, equivalent:

Lemma 4.2.3. Let (π : M → U) and (π′ : M′ → U) be locally trivializable fiber bundles
and let f : (π : M → U) → (π′ : M′ → U) be a fiber bundle map. Then, the following
three statements are equivalent:

(a) For each x ∈ U, there exists an open neighbourhood Ux ⊆ U, such that the restricted
map f |Ux : M|Ux → M′|Ux is an open embedding of manifolds.

(b) The map f : M→ M′ is an open embedding of manifolds.

(c) The restricted maps f |Ũ : M|Ũ → M′|Ũ are open embeddings of manifolds for each
open subset Ũ ⊆ U.

Proof. (a) ⇒ (b): From the hypothesis it is clear that f : M → f (M) is a bijection of
sets. Furthermore, for each x ∈ U, there exists an open neighbourhood Ux ⊆ U such
that f |Ux : M|Ux → M′|Ux is an open embedding, which implies that f : M → f (M)
is a diffeomorphism. To show that the image f (M) ⊆ M′ is open, observe that
f |Ux(M|Ux) ⊆ M′|Ux is by hypothesis open and that M′|Ux ⊆ M′ is open too. Hence,
f (M) =

⋃
x∈U f |Ux(M|Ux) ⊆ M′ is open.

(b) ⇒ (c): The open embedding f : M → M′ factors as a diffeomorphism f : M →
f (M) followed by an open inclusion f (M) ⊆ M′. Take any open subset Ũ ⊆ U and
consider the restriction f |Ũ : M|Ũ → M′|Ũ, which factors as a map f |Ũ : M|Ũ →
f (M|Ũ) followed by an inclusion f (M|Ũ) ⊆ M′|Ũ. Because f is a fiber bundle map,
we have that f (M|Ũ) = f (M) ∩M′|Ũ, which implies that f |Ũ : M|Ũ → f (M|Ũ) is a
diffeomorphism and that f (M|Ũ) ⊆ M′|Ũ is an open inclusion. Hence, f |Ũ : M|Ũ →
M′|Ũ is an open embedding.

(c).⇒ (a).: Trivial.

Definition 4.2.4. Let U ∈ Man be a manifold. We denote by Loc∞
1 (U) the category

whose objects are smooth U-families of 1-dimensional spacetimes (π : M → U, E)
and whose morphisms f : (π : M → U, E) → (π′ : M′ → U, E′) are fiber bundle
maps f : (π : M → U) → (π′ : M′ → U) preserving 1-forms, i.e. f ∗(E′) = E, and
satisfying one of the equivalent conditions from Lemma 4.2.3.

Definition 4.2.4 describes the stack Loc∞
1 : Manop → Cat on objects (i.e. on man-

ifolds U ∈ Man). It remains then to describe it on the morphisms h : U → U′ (see
Remark 4.1.2), i.e. we have to establish functors

h∗ := Loc∞
1 (h) : Loc∞

1 (U′) −→ Loc∞
1 (U) . (4.2.2)
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Recall that given a fiber bundle (π : M→ U′) we can form the pullback bundle

h∗M
πh
��

h
M
// M

π
��

U
h
// U′

(4.2.3)

which is a locally trivializable fiber bundle with the same typical fiber as π : M→ U′.
Therefore, we define, for each Man-morphism h : U → U′, h∗ = X(h) : Loc∞

1 (U′) →
Loc∞

1 (U) to be the functor given by the following data:

(a) On objects: it assigns to any smooth U′-family of 1-dimensional spacetimes (π :
M→ U′, E) the U-family

h∗
(
π : M→ U′, E

)
:=
(
πh : h∗M→ U, h

M∗
(E)
)

(4.2.4a)

(b) On morphisms: it assigns to any Loc∞
1 (U′)-morphism f : (π : M → U′, E) →

(π′ : M′ → U′, E′) the Loc∞
1 (U)-morphism

h∗ f :
(
πh : h∗M→ U, h

M∗
(E)
)
−→

(
π′h : h∗M′ → U, h

M′∗
(E′)

)
, (4.2.4b)

determined from the universal property of pullback bundles by the commuta-
tive diagram

h∗M′ h
M′

//

π′h

M′

π′

��

h∗M

πh ""

h∗ f
<<

h
M
//

��

M

π
��

f
@@

U
h

// U′

(4.2.4c)

To check that h∗ f is actually a Loc∞
1 -morphism we have to verify, first of all,

that h∗ f preserves 1-forms, i.e. that (h∗ f )∗h
M′∗

(E′) = h
M∗

(E), which is a
consequence of diagram (4.2.4c) and the fact that f ∗(E′) = E. Secondly, we
need to control that h∗ f satisfies one of the conditions from Lemma 4.2.3. This
is easily checked by noticing that since f satisfies condition (a) of Lemma 4.2.3,
h∗ f does.

Proposition 4.2.5. The prestack Loc∞
1 : Manop → Cat defined by sending each manifold U

to the category Loc∞
1 (U) and any Man-morphism h : U → U′ to the functor h∗ in (4.2.2),

with coherence isomorphisms obtained from the universal property of pullback bundles, is a
stack.

Proof. This is a direct consequence of descent for fiber bundles and differential forms,
and the fact that the first condition on the fiber bundle morphisms stated in Lemma
4.2.3 is a local condition on U ∈ Man. Therefore, we do not have to spell out the
details.
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4.2.2 The stack ∗Alg∞
C

The aim of this section is to introduce a smooth refinement ∗Alg∞
C : Manop → Cat

of the category ∗AlgC of associative and unital ∗-algebras (see Subsection 1.1.2 and
in particular Remark 1.1.39). As we have seen in Proposition 1.1.39, ∗AlgC can be
interpreted as the category ∗-Monrev(VecC) of order-reversing ∗-monoids in the cate-
gory of complex vector spaces VecC. The idea is therefore to define a suitable smooth
analogue of the category VecC of vector spaces and leverage the 2-functor ∗-Monrev
from Proposition 1.1.2 to define the stack ∗Alg∞

C .
The first, naive, attempt we make to define a smooth refinement of VecK, where

K = R or C (for the sake of generality), is to consider the stack VecBunK : Manop →
Cat from Example 4.1.6 assigning the category VecBunK(U) to each manifold U.
However, we immediately find an obstacle. In fact, the fibers of the vector bundles in
VecBunK(U) consist of finite-dimensional vector spaces, while, for the scopes of AQFT,
we need infinite-dimensional ones (think for example about canonical commutation
relation algebras). But not everything is lost, since there exists a natural way to
solve this insufficiency, consisting in enlarging the category VecBunK(U), through
the sheaf of sections functor, to the category ShC∞

K
(U) of sheaves of C∞

K,U-modules,
where C∞

K,U : Open(U)op → AlgK , (Ũ ⊆ U) 7→ C∞
K(Ũ) is the sheaf of K-valued

smooth functions on U.
(Notice that VecBunK(U) is equivalent to the subcategory of ShC∞

K
(U) consisting

of locally free C∞
K,U-modules of finite rank, see e.g. [Ram05, Chapter 2].)

Proposition 4.2.6. Let K be either the field of real numbers R or the field of complex numbers
C. Then, the following data defines a stack ShC∞

K
: Manop → Cat:

(a) To any manifold U, ShC∞
K

assigns the category ShC∞
K
(U) of sheaves of C∞

K,U-modules
over U.

(b) To every Man-morphism h : U → U′, ShC∞
K

assigns the functor

h∗ := ShC∞
K
(h) : ShC∞

K
(U′) −→ ShC∞

K
(U) (4.2.5a)

that acts on V ∈ ShC∞
K
(U′) as

h∗V := h−1(V)⊗h−1(C∞
K,U′ )

C∞
K,U , (4.2.5b)

where ⊗h−1(C∞
K,U′ )

denotes the relative tensor product and h−1 the inverse image functor.

(c) The coherences are those associated to the relative tensor product ⊗h−1(C∞
K,U′ )

and the

inverse image functor h−1.

(Notice that the category ShC∞
K
({∗}) of global points {∗} → ShC∞

K
is equivalent to the

category of vector spaces VecK.)

Proof. This is a standard result in stack theory. See for example [KS06, Proposition
19.4.7].
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Remark 4.2.7. The reader might wonder why we did not choose other approaches for
enlarging VecBunK(U) such as considering fiber bundles on U with bornological or
diffeological fibers or full subcategories of ShC∞

K
(U) that describe sheaves of modules

with additional properties such as projectivity or finitely generatedness. The reason
for our choice ShC∞

K
(U) is that it is known to be a stack, while such other more

restrictive approaches would require further checks of the descent property. M

As mentioned earlier, our plan is to leverage the stack ShC∞
C

from Proposition 4.2.6
and the 2-functor ∗-Monrev : ISMCat → Cat from Proposition 1.1.39 to define a
smooth analogue of the category ∗AlgC

∼= ∗-Monrev(VecC) of associative and unital
∗-algebras over C. More precisely, we want to do the following:

(a) Firstly, we want to prove that the stack ShC∞
K

: Manop → Cat can be promoted
to a stack ShC∞

K
: Manop → SMCat.

(b) Secondly, we want to prove that in the case K = C the stack ShC∞
C

: Manop →
SMCat can be promoted to a stack ShC∞

C
: Manop → ISMCat.

(c) Finally, we want to pre-compose the 2-functor ∗-Monrev : ISMCat → Cat with
the stack ShC∞

C
: Manop → ISMCat from the previous point to define ∗Alg∞

C :=
∗-Monrev ◦ ShC∞

C
.

Our first task is then to prove that the stack ShC∞
K

: Man → Cat naturally lifts to a
stack ShC∞

K
: Manop → SMCat. This is easily seen by noticing the following facts:

(a) For each manifold U, the category ShC∞
K
(U) is symmetric monoidal with respect

to the monoidal product defined by the relative tensor product

V ⊗C∞
K,U

V′ ∈ ShC∞
K
(U) , (4.2.6)

for all V, V′ ∈ ShC∞
K
(U), and the monoidal unit given by C∞

K(U) ∈ ShC∞
K
(U)

considered as a sheaf of C∞
K,U-modules.

(b) For any Man-morphism h : U → U′, the functor h∗ from (4.2.5) is strong sym-
metric monoidal with coherence isomorphisms given by

h∗
(
V ⊗C∞

K,U′
V′
)
= h−1(V ⊗C∞

K,U′
V′
)
⊗h−1(C∞

K,U′ )
C∞

K,U

∼= h−1(V)⊗h−1(C∞
K,U′ )

h−1(V′)⊗h−1(C∞
K,U′ )

C∞
K,U

∼=
(
h−1(V)⊗h−1(C∞

K,U′ )
C∞

K,U
)
⊗C∞

K,U

(
h−1(V′)⊗h−1(C∞

K,U′ )
C∞

K,U
)

= (h∗V)⊗C∞
K,U

(h∗V′) (4.2.7a)

and

h∗C∞
K,U′ = h−1(C∞

K,U′)⊗h−1(C∞
K,U′ )

C∞
K,U
∼= C∞

K,U . (4.2.7b)

Moreover, the canonical coherence isomorphisms of the stack ShC∞
K

are
monoidal natural transformations.
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Corollary 4.2.8. The stack ShC∞
K

: Manop → Cat can be promoted canonically to a stack
ShC∞

K
: Manop → SMCat.

Our second task is to prove that when K = C, the stack ShC∞
C

: Manop → SMCat
lifts to a stack ShC∞

C
: Manop → ISMCat.

(a) We begin by noticing that there exists an involution endofunctor (squaring to the
identity) (−) : ShC∞

C
(U) → ShC∞

C
(U) defined by sending each V ∈ ShC∞

C
(U) to

the complex conjugate sheaf V of right C∞
C,U-modules whose underlying sheaf

is V and whose C∞
C,U-module structure is given by conjugation of C-valued

functions as v · a := v · a∗, for all v ∈ V and a ∈ C∞
C,U (here v · a∗ is the ele-

ment v · a∗ of V considered as an element of V, see Section 1.1.2 for similar
notations in the context of the complex conjugate vector space). Moreover, we
notice that (−) : ShC∞

C
(U) → ShC∞

C
(U) is a strong symmetric monoidal functor

with respect to the monoidal structure on ShC∞
C
(U) discussed earlier. Therefore,

ShC∞
C
(U) is an involutive symmetric monoidal category for every manifold U.

(b) We proceed by noticing that for each Man-morphism h : U → U′ in Man,
the symmetric monoidal functor (4.2.5) is involutive via the coherence isomor-
phisms

h∗V = h−1(V)⊗h−1(C∞
C,U′ )

C∞
C,U
∼= h−1(V)⊗h−1(C∞

C,U′ )
C∞

C,U

∼= h−1(V)⊗h−1(C∞
C,U′ )

C∞
C,U = h∗V , (4.2.8)

for all V ∈ ShC∞
C
(U′), where in the second step we used complex conjugation

∗ : C∞
C,U → C∞

C,U.

Corollary 4.2.9. The stack ShC∞
C

in Corollary 4.2.8 lifts to a stack ShC∞
C

: Manop →
ISMCat valued in the 2-category ISMCat of involutive symmetric monoidal categories, in-
volutive strong symmetric monoidal functors and involutive monoidal natural transforma-
tions.

As promised, we define a prestack

∗Alg∞
C := ∗-Monrev ◦ ShC∞

C
: Manop −→ Cat . (4.2.9)

Explicitly ∗Alg∞
C is given by the following data:

(a) It assigns to each manifold U ∈ Ob(Man) the category ∗Alg∞
C (U) :=

∗-Monrev(ShC∞
C
(U)). Recall (see Remark 1.1.33) that an object of ∗Alg∞

C (U)
is a quadruple (A, µ, η, ∗), where A ∈ ShC∞

C
(U) is a sheaf of C∞

C,U-modules on
U and

µ : A⊗C∞
C,U

A −→ A , η : C∞
C,U −→ A , ∗ : A −→ A (4.2.10)

are ShC∞
C
(U)-morphisms satisfying the axioms of an associative and unital ∗-

algebra.

109



4.2 smooth 1-dimensional aqfts

(b) It assigns to each Man-morphism h : U → U′ the functor

h∗ := ∗Alg∞
C (h) : ∗Alg∞

C (U′) −→ ∗Alg∞
C (U) (4.2.11)

sending each (A, µ, η, ∗) ∈ ∗Alg∞
C (U′) to the object h∗A ∈ ShC∞

C
(U) given in

(4.2.5b), endowed with the following order-reversing ∗-monoid structure:

(h∗A)⊗C∞
C,U

(h∗A) ∼= h∗
(

A⊗C∞
C,U′

A
) h∗µ

// h∗A , (4.2.12a)

C∞
C,U
∼= h∗C∞

C,U′
h∗η
// h∗A , (4.2.12b)

h∗A h∗∗ // h∗A ∼= h∗A , (4.2.12c)

obtained by harnessing the coherence isomorphisms of the involutive symmet-
ric monoidal stack ShC∞

C
: Manop → ISMCat (see Corollary 4.2.9).

Proposition 4.2.10. The prestack ∗Alg∞
C := ∗-Monrev ◦ ShC∞

C
: Manop → Cat is a stack.

(Notice that the category ∗Alg∞
C ({∗}) of global points {∗} → ∗Alg∞

C is equivalent to the
category ∗AlgC of associative and unital ∗-algebras.)

Proof. Let {Uα : α ∈ A} be any open cover of any U ∈ Man. The key step is to
realize that the descent category ∗Alg∞

C ({Uα : α ∈ A}) coincides with the category
∗-Monrev

(
ShC∞

C
({Uα : α ∈ A})

)
of order-reversing ∗-monoids in the descent category

ShC∞
C
({Uα : α ∈ A}), which we endow with the involutive symmetric monoidal

structure given by(
{Vα}, {ϕαβ}

)
⊗
(
{V′α}, {ϕ′αβ}

)
:=
(
{Vα ⊗C∞

C,Uα
V′α}, {ϕαβ ⊗C∞

C,Uαβ
ϕ′αβ}

)
(4.2.13a)(

{Vα}, {ϕαβ}
)

:=
(
{Vα}, {ϕαβ}

)
, (4.2.13b)

where we have suppressed the coherence isomorphisms (4.2.7) and (4.2.8). Fully
explicitly, the conjugated cocycle ϕαβ is given by

Vβ|Uαβ
∼= Vβ|Uαβ

ϕαβ
// Vα|Uαβ

∼= Vα|Uαβ
, (4.2.14)

and similarly for the tensor product cocycle ϕαβ ⊗C∞
C,Uαβ

ϕ′αβ. The functor to the de-

scent category ShC∞
C
(U) → ShC∞

C
({Uα : α ∈ A}) given in (4.1.9) carries a canonical

involutive symmetric monoidal structure and it is an equivalence in ISMCat because
ShC∞

C
is a stack. Applying the 2-functor ∗-Monrev : ISMCat → Cat that takes

order-reversing ∗-monoids then yields the equivalence of categories ∗Alg∞
C (U) →

∗Alg∞
C ({Uα : α ∈ A}) that proves descent for ∗Alg∞

C .

4.2.3 The stack AQFT∞

The aim of this subsection is to define a smooth refinement (i.e. a stack) AQFT∞
1 :

Manop → Cat of the category AQFT1 of 1-dimensional algebraic quantum field
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theories and study some of the consequences such definition entails. In particu-
lar, we introduce the “global points" of AQFT∞

1 , i.e. smooth 1-dimensional alge-
braic quantum field theories, and verify they capture “smooth changes of observ-
able algebras corresponding to smooth variations of spacetimes”. Moreover, we de-
scribe from the functor of points perspective “smooth Ũ-families (Ũ is a manifold)
of smooth 1-dimensional algebraic quantum field theories”, i.e. stack morphisms
Ũ → AQFT∞

1 , and we introduce the smooth automorphism group Aut(A) of a
smooth 1-dimensional algebraic quantum field theory A. Finally, we define what a G-
equivariant smooth 1-dimensional algebraic quantum field theory, for G a smooth Lie
group, is. In particular, we prove that this definition represents, in a suitable sense, a
generalization of the notion of G-equivariant ordinary algebraic quantum field theory
(see Section 3.4), i.e. an ordinary algebraic quantum field theory B together with a
group action ρ : G → Aut(B).

We begin by recalling that AQFT1 is the functor category [Loc1, ∗AlgC]. This fact
suggests the following definition:

Definition 4.2.11. Let Loc∞
1 : Manop → Cat be the stack from Proposition 4.2.5 and

∗Alg∞
C : Manop → Cat be the stack from Proposition 4.2.10. We call the mapping

stack (see Section 4.1)

AQFT∞
1 := Map

(
Loc∞

1 , ∗Alg∞
C

)
∈ St , (4.2.15)

the stack of smooth 1-dimensional algebraic quantum field theories.
Moreover, we call a global point {∗} → AQFT∞

1 a smooth 1-dimensional algebraic
quantum field theory.

In order to show that that smooth algebraic quantum field theories capture “smooth
changes of observables algebras associated to smooth variations of spacetimes”, recall
that a smooth 1-dimensional algebraic quantum field theory, which by definition (see
Definition 4.2.11) is a global point A : {∗} → AQFT∞

1 , can be equivalently described
(using 2-Yoneda Lemma) as an object of the category AQFT∞({∗}) ∼= St(Loc∞

1 ×
{∗}, ∗Alg∞

C ) ∼= St(Loc∞
1 , ∗Alg∞

C ), i.e. as a stack morphism A : Loc∞
1 → ∗Alg∞

C .
Explicitly, a smooth 1-dimensional algebraic quantum field theory A : Loc∞

1 →
∗Alg∞

C consists of the following data:

(a) For every U ∈ Man, functors

AU : Loc∞
1 (U) −→ ∗Alg∞

C (U) . (4.2.16a)

(b) For every Man-morphism h : U → U′, natural isomorphisms

Loc∞
1 (U′)

h∗
��

AU′ // ∗Alg∞
C (U′)

h∗
��

Ah

s{
Loc∞

1 (U)
AU

// ∗Alg∞
C (U)

(4.2.16b)

satisfying the coherence axioms for stack morphisms from Remark 4.1.2.

111



4.2 smooth 1-dimensional aqfts

Therefore, interpreting the objects of Loc∞
1 (U) and ∗Alg∞

C (U) as smooth U-families
of spacetimes and algebras respectively, we conclude that it is the functors AU which
capture the response of “observables algebras to smooth variations of spacetimes”,
hence convincing us of the suitability of our definition.

The mapping stack AQFT∞
1 from Definition 4.2.11 adds a further level of “smooth-

ness” to the picture by enabling us talking about “smooth curves of smooth AQFTs”,
i.e. stack morphisms R → AQFT∞

1 , or more generally about “smooth Ũ-families
of smooth 1-dimensional algebraic quantum field theories" for a generic manifold
Ũ ∈ Man, i.e. stack morphisms B : Ũ → AQFT∞

1 . In particular, using 2-Yoneda
Lemma, we obtain that a smooth Ũ-family of 1-dimensional AQFTs B : Ũ → AQFT∞

1
can be equivalently described as an object of the category B ∈ AQFT∞

1 (Ũ), which,
by definition of mapping stack is just a stack morphism B : Loc∞

1 × Ũ → ∗Alg∞
C .

Furthermore, using the fact that the mapping stack is right adjoint to the cartesian
product of stacks we can interpret B : Loc∞

1 × Ũ → ∗Alg∞
C as a stack morphism

B : Loc∞
1 −→ Map

(
Ũ, ∗Alg∞

C

)
. (4.2.17)

Finally, using again 2-Yoneda Lemma on B : Loc∞
1 → Map(Ũ, ∗AlgC), we obtain that

a smooth Ũ-family of smooth algebraic quantum field theories is equivalent to the
following data:

(a) For each manifold U ∈ Man, functors

BU : Loc∞
1 (U) −→ ∗Alg∞

C (U × Ũ) , (4.2.18a)

(b) For each Man-morphism h : U → U′, natural isomorphisms

Loc∞
1 (U′)

h∗
��

BU′ // ∗Alg∞
C (U′ × Ũ)

(h×id)∗
��

Bh

rz
Loc∞

1 (U)
BU

// ∗Alg∞
C (U × Ũ)

(4.2.18b)

Satisfying the conditions from Remark 4.1.2.
The functors B(U) : Loc∞

1 (U) → ∗Alg∞
C (U × Ũ) capture both the “smooth re-

sponse of observable algebras to smooth U-variations of spacetimes” as well as
“smooth Ũ-variations of the smooth algebraic quantum field theory itself”, which is
in line with the intuition of how a smooth Ũ-family of smooth 1-dimensional AQFTs
should look like.

To conclude this section we discuss the smooth automorphism group Aut(A) :
Manop → Cat of a smooth 1-dimensional algebraic quantum field theory A : Loc∞

1 →
∗Alg∞

C .

Definition 4.2.12. Let A be a smooth 1-dimensional algebraic quantum field theory.
We call the following bicategorical pullback (loop stack):
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Aut(A)

��

// {∗}

A
��

{∗}
A

// AQFT∞
1

(4.2.19)

the smooth automorphism group of A.
Notice that this pullback exists for any smooth 1-dimensional quantum field theory

A since St admits all bicategorical limits, see [Fio04, Theorem 5.1].

Remark 4.2.13. Computing the bicategorical limit Aut(A) : Manop → Cat in diagram
(4.2.19) we obtain a Set-valued sheaf on Man, i.e. the categories Aut(A)(U) are
discrete (i.e. sets) for each manifold U, endowed with a group action. Recall that any
Set-valued sheaf X : Manop → Set endowed with a group action can be equivalently
described as a Grp-valued sheaf X : Manop → Grp, where Grp is the category
of groups and group morphisms, since the free-forgetful adjunction Set � Grp is
monadic. Therefore, we can alternatively describe the bicategorical limit in diagram
(4.2.19) as a Grp-valued sheaf Aut(A) : Manop → Grp. M

Remark 4.2.13 suggests a way to generalize Definition 3.4.1 to smooth 1-
dimensional algebraic quantum field theories. In fact, given a Lie group G, we could
define a G-equivariant smooth 1-dimensional algebraic quantum field theory to be
a couple (A, ρ), where A is a smooth 1-dimensional algebraic quantum field theory
and ρ is a stack morphism ρ : G → Aut(A) (where the Lie group is considered as a
stack via the 2-Yoneda embedding) to the smooth automorphism group that is also a
morphism of group objects (the group structure on G is given by point-wise multipli-
cation of functions). However, we decide to follow a different (but equivalent, as we
will see later in Remark 4.2.15) path (more suitable for eventual generalizations) and
give a definition of G-equivariant smooth 1-dimensional AQFT based on the follow-
ing fact: a group action on an object d in a category D can be equivalently described
in terms of a functor BG → D, where BG denotes the groupoid with a single object
and G as morphisms.

Definition 4.2.14. Let G be a Lie group and let [{∗}/G] denote the quotient stack

[{∗}/G] := bicolimSt

(
{∗} // Goo

oo //

// G2
oo

oo

oo

//

//

//
· · ·oo

oo

oo

oo )
∈ St (4.2.20)

associated with the trivial action of G, where bicolimSt denotes the bicategorical col-
imit in St.

Then, we call any stack morphism

Aeq : [{∗}/G] −→ AQFT∞
1 . (4.2.21)

a G-equivariant smooth 1-dimensional algebraic quantum field theory.

Remark 4.2.15. By the universal property of bicategorical colimits, we obtain that a
G-equivariant smooth 1-dimensional AQFT Aeq : [{∗}/G] → AQFT∞

1 can be equiva-
lently described as a smooth 1-dimensional AQFT A : {∗} → AQFT∞

1 together with
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a 2-automorphism A2 of the stack morphism G → {∗} A→ AQFT∞
1 satisfying com-

patibility conditions arising from the face and degeneracy maps in (4.2.20) that at
the level of components A2U, where U ∈ Man, reads as follows: Since G(U) is a
discrete category (a set with identity morphisms for each object), A2U boils down to
a family of AQFT∞

1 (U)-isomorphisms A2U g : AU(∗) → AU(∗) labelled by elements
g ∈ G(U) = C∞(U, G). The compatibility conditions then imply that this labelling
is compatible with the group structure on G(U) = C∞(U, G) given by point-wise
product of functions, i.e. A2U g·g′ = A2U g ◦A2U g′ , for all g, g′ ∈ G(U), and A2Ue = id,
for the identity element e ∈ G(U). From this we obtain a bicategorical cone

G

��

// {∗}

A
��

A2

v~
{∗}

A
// AQFT∞

1

(4.2.22)

and, by the universal property of the bicategorical pullback in (4.2.19), a stack mor-
phism G → Aut(A) to the smooth automorphism group of A, which, due to the
compatibility conditions of A2 is also a morphism of group objects. M

We conclude by giving an alternative description of G-equivariant smooth 1-
dimensional algebraic quantum field theories. More precisely, we will see that any
G-equivariant smooth 1-dimensional AQFT Aeq : [{∗}/G] → AQFT∞

1 can be equiva-
lently interpreted as a prestack morphism

Ã : Loc∞
1 × [{∗}/G]pre −→ ∗Alg∞

C (4.2.23)

where [{∗}/G]pre : Manop → Cat denotes the prestack assigning to each U ∈ Man
the groupoid

[{∗}/G]pre(U) =

{
Obj : ∗
Mor : C∞(U, G)

(4.2.24)

and to each Man-morphism h : U → U′ the functor given by pullback of functions
[{∗}/G]pre(h) := h∗, a fact that will turn out to be very helpful in concrete computa-
tions.

In order to obtain the aforementioned description we need to recall that similarly
to the case of Set-valued sheaves on Man, where the universal property of the sheafi-
fication functor (−)+ : PSh(Man) → Sh(Man) (recall that the sheafification func-
tor exhibits Sh(Man) as a reflective full subcategory of PSh(Man)) tells us that
given a presheaf P and a sheaf X, the set of sheaf morphisms Sh(P+, X) is in bi-
jection with the set of presheaf morphisms PSh(P, X). There exists a pseudo-functor
(−)+ : [Manop, Cat]→ St, called stackyfication, such that for every prestack P and ev-
ery stack X, the categories of stack morphisms St(P+, X) and of prestack morphisms
[Manop, Cat](P, X) are equivalent.

The stack [{∗}/G]+pre is equivalent to the stack [{∗}/G] from (4.2.20). Hence, from
the universal property of stackyfication we obtain that a G-equivariant smooth 1-
dimensional smooth algebraic quantum field theory Aeq : [{∗}/G] → AQFT∞

1 is
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4.3 smooth canonical quantization

equivalent to a prestack morphism Ã : [{∗}/G]pre → AQFT∞
1 . Moreover, from the

universal property of the mapping prestack we get that Ã : [{∗}/G]pre → AQFT∞
1 is

equivalent to a prestack morphism

Ã : Loc∞
1 × [{∗}/G]pre −→ ∗Alg∞

C .

4.3 smooth canonical quantization

The aim of this section is to introduce smooth refinements of the canonical com-
mutation relation (CCR) functor and anti-commutation relation (CAR) functor (see
[BGP07, BG12]), which are central for the construction of ordinary free field theories.
In particular, in Subsection 4.3.1 we introduce a smooth refinement PoVec∞

R of the cat-
egory PoVecR of Poisson vector spaces and a commutation relation stack morphism
CCR : PoVec∞

R → ∗Alg∞
C , while, in Subsection 4.3.2 we introduce a smooth refine-

ment IPVec∞
C of the category IPVecC of inner product vector spaces and a canonical

anti-commutation relation stack morphism CAR : IPVec∞
C → ∗Alg∞

C .
For the sake of completeness, let us recall how the categories PoVecR, IPVecC,

and the (ordinary) functors CCR : PoVecR → ∗AlgC, CAR : IPVecC → ∗AlgC are
defined.

Definition 4.3.1. PoVecR is the category given by the following data:

(a) Objects: The collection of objects Ob(PoVecR) consists of couples (W, τ) where
W ∈ VecR is a vector space and τ : W ⊗R W → R is an antisymmetric VecR-
morphism called Poisson structure.

(b) Morphisms: For any (W, τ), (W ′, τ′), a morphism ψ : (W, τ) → (W ′, τ′) consists
of a VecR-morphism ψ : W →W ′ satisfying τ′ ◦ (ψ⊗R ψ) = τ.

The CCR functor CCR : PoVecR → ∗AlgC assigns to a Poisson vector space
(W, τ) ∈ PoVecR the associative and unital ∗-algebra

CCR
(
W, τ

)
:=

⊕
n≥0

(
W ⊗R C

)⊗Cn
/
ICCR
(W,τ) ∈

∗AlgC , (4.3.1)

where ICCR
(W,τ) denotes the 2-sided ∗-ideal generated by the canonical commutation

relations w⊗ w′ − w′ ⊗ w = i τ(w, w′), for all w, w′ ∈ W, and where i ∈ C denotes
the imaginary unit, with ∗-involution given by w∗ = w, for all w ∈W.

Remark 4.3.2. In order to construct a smooth refinement of the CCR functor it will
be helpful to describe more abstractly how the associative and unital ∗-algebra
CCR(W, τ) is obtained:

(a) First of all, given a Poisson vector space (W, τ), one needs to consider the
complexification W ⊗ C of the real vector space W with the ∗-object structure
id⊗R ∗ : W ⊗R C → W ⊗R C = W ⊗R C determined by complex conjugation
on C. Therefore, (W ⊗R C, id⊗R ∗) ∈ ∗Obj(VecC) defines a ∗-object in the in-
volutive symmetric monoidal category of complex vector spaces (see Definition
1.1.32).
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4.3 smooth canonical quantization

(b) Secondly, one considers the free order-reversing ∗-monoid on

(W ⊗R C, id⊗R ∗) ∈ ∗Obj(VecC),

which is the associative and unital ∗-algebra
⊕

n≥0
(
W ⊗R C

)⊗Cn ∈ ∗AlgC.

(c) Thirdly, one implements the canonical commutation relations associated to the
antisymmetric VecR-morphism τ : W ⊗R W → R via a coequalizer in ∗AlgC.

M

Definition 4.3.3. The category IPVecC is defined by the following data:

1. Objects: The collection of objects Ob(IPVecC) consists of triples (V, ∗, 〈·, ·〉),
where (V, ∗) ∈ Ob(∗Obj(VecC)) is a ∗-object in the involutive symmetric
monoidal category VecC and where 〈·, ·〉 : (V, ∗) ⊗ (V, ∗) → (C, ∗) is a sym-
metric ∗-morphism. Recall from Definition 1.1.32 that a ∗-morphism 〈·, ·〉 :
(V, ∗) ⊗ (V, ∗) → (C, ∗) is a C-linear map 〈·, ·〉 : V ⊗ V → C satisfying the
following equation:

V ⊗V
∗⊗∗

��

〈·,·〉
// C

∗
��

V ⊗V ∼= V ⊗V
〈·,·〉

// C

(4.3.2)

which concretely reads: 〈v, v′〉∗ = 〈v∗, v′∗〉, for all v, v′ ∈ V.

2. Morphisms: For all objects (V, ∗, 〈·, ·〉), (V′, ∗′, 〈·, ·〉′) ∈ Ob(IPVecC), a mor-
phism ψ : (V, ∗, 〈·, ·〉) → (V′, ∗′, 〈·, ·〉′) consists of a ∗-morphism ψ : (V, ∗) →
(V′, ∗′) satisfying 〈·, ·〉′ ◦ (ψ⊗ ψ) = 〈·, ·〉.

The CAR functor CAR : IPVecC → ∗AlgC assigns to an object (V, ∗, 〈·, ·〉) ∈
Ob(IPVecC) the associative and unital ∗-algebra

CAR
(
V, ∗, 〈·, ·〉

)
:=

⊕
n≥0

V⊗n
/
ICAR
(V,∗,〈·,·〉) ∈

∗AlgC , (4.3.3)

where ICAR
(V,∗,〈·,·〉) is the 2-sided ∗-ideal generated by the canonical anti-commutation

relations v⊗ v′ + v′ ⊗ v = 〈v, v′〉, for all v, v′ ∈ V.

Remark 4.3.4. In order to obtain a smooth refinement of the CAR functor it will
be helpful to describe more abstractly how the associative and unital ∗-algebra
CAR(V, ∗, 〈·, ·〉) is obtained:

(a) Firstly, given an object (V, ∗, 〈·, ·〉) ∈ Ob(IPVecC), one considers the free order-
reversing ∗-monoid

⊕
n≥0 V⊗n ∈ ∗AlgC of (V, ∗) ∈ Ob(∗Obj(VecC)) (see Re-

mark 4.3.2).

(b) Secondly, one implements the canonical anti-commutation relations associated
with 〈·, ·〉 by a coequalizer in ∗AlgC.

M
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4.3 smooth canonical quantization

4.3.1 Canonical commutation relations stack morphism

The aim of this subsection is to discuss a smooth refinement CCR : PoVec∞
R → ∗Alg∞

C

of the CCR functor CCR : PoVecR → ∗AlgC. In order to introduce it, we begin by
describing how to produce a smooth refinement of the category PoVecR of Poisson
vector spaces.

In Subsection 4.2.3 we have seen that a sensible notion of smooth refinement of the
category of vector spaces VecR is the stack ShC∞

R
. Therefore, a suitable refinement of

PoVecR should be obtained from this stack. This is pretty straightforward:

Proposition 4.3.5. The prestack PoVec∞
R : Manop → Cat is given by the following data:

(a) On objects: It assigns to each manifold U ∈ Man the category PoVec∞
R(U) whose

objects are couples (W, τ), where W ∈ ShC∞
R
(U) and τ : W ⊗C∞

R,U
W → C∞

R,U is an
antisymmetric ShC∞

R
(U)-morphism called Poisson structure, and whose morphisms

ψ : (W, τ) → (W ′, τ′) consist of a ShC∞
R
(U)-morphisms ψ : W → W ′ satisfying

τ′ ◦ (ψ⊗C∞
R,U

ψ) = τ.

(b) On 1-morphisms: It assigns to each Man-morphism h : U → U′ the functor

h∗ := PoVec∞
R(h) : PoVec∞

R(U′) −→ PoVec∞
R(U) (4.3.4)

sending an object (W, τ) ∈ PoVec∞
R(U′) to the C∞

R,U-module h∗W ∈ ShC∞
R
(U) (see

(4.2.5b)) endowed with the Poisson structure

(h∗W)⊗C∞
R,U

(h∗W) ∼= h∗
(
W ⊗C∞

R,U′
W
) h∗τ // h∗C∞

R,U′
∼= C∞

R,U , (4.3.5)

where ∼= denotes the coherence isomorphisms in (4.2.7).

This prestack is a stack.

Proof. This follows from the fact that ShC∞
R

is a stack, see Proposition 4.2.6. In-
deed, spelling out descent for objects (W, τ) ∈ PoVec∞

R(U), one observes that it
involves descent for the underlying objects W ∈ ShC∞

R
(U) and also for the under-

lying ShC∞
R
(U)-morphisms τ : W ⊗C∞

R,U
W → C∞

R,U, which are both simple conse-
quences of descent for the stack ShC∞

R
. Similarly, descent for PoVec∞

R(U)-morphisms
ψ : (W, τ) → (W ′, τ′) involves descent for the underlying ShC∞

R
(U)-morphisms

ψ : W → W ′ and the verification that τ′ ◦ (ψ ⊗C∞
R,U

ψ) = τ coincide as ShC∞
R
(U)-

morphisms, which are again both consequences of descent for the stack ShC∞
R

and of
the fact that the descent data have this property.

Now that we have defined a smooth refinement PoVec∞
R of the category PoVecR

we can formalize a CCR stack morphism CCR : PoVec∞
R → ∗Alg∞

C . To do so, we
begin by abstracting the 3-steps construction from Remark 4.3.2 to obtain functors

CCRU : PoVec∞
R(U) −→ ∗Alg∞

C (U) , (4.3.6)

for every manifold U ∈ Man and proceed by defining the coherence isomorphisms
for CCR.
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(a) First of all, given (W, τ) ∈ PoVec∞
R(U), one needs to consider its complexifica-

tion W ⊗C∞
R,U

C∞
C,U ∈ ShC∞

C
(U) with the ∗-object structure id⊗C∞

R,U
∗ determined

by complex conjugation ∗ : C∞
C,U → C∞

C,U. Notice that this data defines a functor
LU : ShC∞

R
(U)→ ∗Obj

(
ShC∞

C
(U)

)
that is part of an adjunction

LU : ShC∞
R
(U) // ∗Obj

(
ShC∞

C
(U)

)
: RUoo . (4.3.7)

where the right adjoint RU assigns to a ∗-object (V, ∗) in ShC∞
C
(U) the sheaf of

∗-invariants RU(V, ∗) = ker
(
VR
∗−id−→ VR

)
∈ ShC∞

R
(U) and where VR ∈ ShC∞

R
(U)

denotes the restriction of V ∈ ShC∞
C
(U) to a sheaf of C∞

R,U-modules via the
morphism C∞

R,U → C∞
C,U.

(b) Secondly, one considers the free order reversing ∗-monoid
⊕

n≥0(W ⊗C∞
R,U

C∞
C,U)

⊗n on (W ⊗C∞
R,U

C∞
C,U, id⊗C∞

R,U
∗), where tensor products and coproducts

are formed in the symmetric monoidal category ShC∞
C
(U), with order-reversing

∗-structure determined by canonical extension of the ∗-structure on the genera-
tors of (W ⊗C∞

R,U
C∞

C,U, id⊗C∞
R,U
∗).

Notice that there exists a functor FU assigning to each ∗-object (V, ∗) the
free order-reversing ∗-monoid FU(V, ∗) :=

⊕
n≥0 V⊗n with order-reversing ∗-

structure defined by the canonical extension of the ∗-structure on the generators
(V, ∗), whose right adjoint is the forgetful functor GU assigning to an associative
and unital ∗-algebra (A, µ, η, ∗) in ShC∞

C
(U) its underlying ∗-object (A, ∗), (i.e.

it forgets multiplication µ and unit η):

FU : ∗Obj
(
ShC∞

C
(U)

)
// ∗Alg∞

C (U) : GUoo . (4.3.8)

(c) Thirdly, we need to implement the commutations relations determined by the
antisymmetric ShC∞

R
(U)-morphism τ : W ⊗C∞

R,U
W → C∞

R,U. We do so via the
following coequalizer in ∗Alg∞

C (U):

CCRU
(
W, τ

)
:= colim

(
FU LU

(
W ⊗C∞

R,U
W
) r1 //

r2
// FU LU

(
W
) )

, (4.3.9)

where r1, r2 are associated to (we suppress the subscripts U to simplify notations)

W ⊗C∞
R,U

W

unit LaR
��

r̃1 // RGFL(W)

RL
(
W ⊗C∞

R,U
W
)

∼=
// R
(

L(W)⊗C∞
C,U

L(W)
)

unit FaG
// R
(
GFL(W)⊗C∞

C,U
GFL(W)

)R(µ−µop)

OO

(4.3.10a)

and

W ⊗C∞
R,U

W

τ
��

r̃2 // RGFL(W)

C∞
R,U unit LaR

// RL
(
C∞

R,U
)

∼=
// R
(
C∞

C,U, ∗
)R( i η)

OO
(4.3.10b)
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under the adjunctions in (4.3.7) and (4.3.8) and where µ(op) and η denote the
(opposite multiplication) and unit element of FL(W) respectively. Since the
coequalizer in (4.3.9) is functorial with respect to morphisms ψ : (W, τ) →
(W ′, τ′) in PoVec∞

R(U), we can conclude that CCRU defines a functor CCRU :
PoVec∞

R(U)→ ∗Alg∞
C (U).

Remark 4.3.6. Notice that if U = {∗} is a point, the algebra CCRU(W, τ) from (4.3.9)
coincides with the CCR algebra from (4.3.1). M

To conclude the definition of the stack morphism CCR : PoVec∞
R → ∗Alg∞

C , we
need to introduce, for every Man-morphisms h : U → U′, coherence isomorphisms
(see Remark 4.1.2)

PoVec∞
R(U′)

h∗
��

CCRU′ // ∗Alg∞
C (U′)

h∗
��

CCRh

qy
PoVec∞

R(U)
CCRU

// ∗Alg∞
C (U)

(4.3.11)

These can be built from the coherence isomorphisms for the left adjoint functors in
(4.3.7) and (4.3.8)

ShC∞
R
(U′)

h∗
��

LU′ // ∗Obj
(
ShC∞

C
(U′)

)
Lh

qy
h∗
��

FU′ // ∗Alg∞
C (U′)

Fh

qy
h∗
��

ShC∞
R
(U)

LU

// ∗Obj
(
ShC∞

C
(U)

)
FU

// ∗Alg∞
C (U)

(4.3.12)

by pasting them. Let us describe why this works more precisely. For W ∈ ShC∞
R
(U′),

the isomorphism Lh is given by

h∗LU′(W) = h∗
(
W ⊗C∞

R,U′
C∞

C,U′ , id⊗ ∗
)

∼=
(

h−1(W)⊗h−1(C∞
R,U′ )

h−1(C∞
C,U′)⊗h−1(C∞

C,U′ )
C∞

C,U, id⊗ ∗⊗ ∗
)

∼=
(

h−1(W)⊗h−1(C∞
R,U′ )

C∞
C,U, id⊗ ∗

)
∼=
(

h−1(W)⊗h−1(C∞
R,U′ )

C∞
R,U ⊗C∞

R,U
C∞

C,U, id⊗ id⊗ ∗
)
= LUh∗(W) ,

(4.3.13a)

and for (V, ∗) ∈ ∗Obj
(
ShC∞

C
(U′)

)
, the isomorphism Fh is given by

h∗FU′(V, ∗) = h∗
(⊕

n≥0
V
⊗C∞

C,U′
n) ∼= ⊕

n≥0
h∗
(

V
⊗C∞

C,U′
n)

∼=
⊕
n≥0

(
h∗(V)

)⊗C∞
C,U

n
= FUh∗(V, ∗) , (4.3.13b)

where in the second step of (4.3.13b) we have used that h∗ preserves coproducts
being a left adjoint and in the third step of (4.3.13b) we have used the coherence
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isomorphisms of the involutive symmetric monoidal stack ShC∞
C

from Corollary
4.2.9. Pasting the natural isomorphisms in (4.3.12) defines a natural isomorphism
(FL)h : h∗FU′LU′ ⇒ FU LUh∗. For every object (W, τ) ∈ PoVec∞

R(U′), the associated
isomorphism h∗FU′LU′(W) ∼= FU LUh∗(W) descends to the CCR algebras (4.3.9) and
thereby defines the natural isomorphism CCRh in (4.3.11).

Proposition 4.3.7. The construction above defines a stack morphism CCR : PoVec∞
R →

∗Alg∞
C .

4.3.2 Canonical anti-commutation relations stack morphism

The aim of this subsection is to define a smooth refinement CAR : IPVec∞
C → ∗Alg∞

C

of the CAR functor CAR : IPVecC → ∗AlgC (see its explicit description at the begin-
ning of this section). In order to achieve this goal we proceed similarly to Subsection
4.3.1. In particular, we begin by providing a smooth refinement IPVec∞

C : Manop →
Cat of the category IPVecC (see Definition 4.3.3).

Proposition 4.3.8. The prestack IPVec∞
C : Manop → Cat is given by the following data:

(a) On objects: It assigns to each manifold U ∈ Man the category IPVec∞
C (U) whose

objects are triples (V, ∗, 〈·, ·〉) consisting of a ∗-object (V, ∗) ∈ ∗Obj(ShC∞
C
(U)) and a

symmetric ∗-morphism 〈·, ·〉 : (V, ∗)⊗C∞
C,U

(V, ∗)→ (C∞
C,U, ∗), and whose morphisms

ψ : (V, ∗, 〈·, ·〉) → (V′, ∗′, 〈·, ·〉′) are ∗Obj(ShC∞
C
(U))-morphisms ψ : (V, ∗) →

(V′, ∗′) satisfying 〈·, ·〉′ ◦ (ψ⊗C∞
C,U

ψ) = 〈·, ·〉.

(b) On 1-morphisms: It assigns to any Man-morphism h : U → U′ the functor

h∗ := IPVec∞
C (h) : IPVec∞

C (U′) −→ IPVec∞
C (U) (4.3.14)

assigning to each (V, ∗, 〈·, ·〉) ∈ IPVec∞
C (U′) the object in IPVec∞

C (U) determined by
h∗(V, ∗) ∈ ∗Obj(ShC∞

C
(U)) and

(h∗(V, ∗))⊗C∞
C,U

(h∗(V, ∗)) ∼= h∗
(
(V, ∗)⊗C∞

C,U′
(V, ∗)

)
h∗〈·,·〉−−−→ h∗(C∞

C,U′ , ∗) ∼= (C∞
C,U, ∗) , (4.3.15)

where we have used the coherence isomorphisms of the involutive symmetric monoidal
stack ShC∞

C
from Corollary 4.2.9.

This prestack is a stack.

Proof. Analogous to the proof of Proposition 4.3.5.

To define the stack morphism CAR : IPVec∞
C → ∗Alg∞

C we proceed similarly to
Subsection 4.3.1, defining its component functors CARU : IPVec∞

C (U) → ∗Alg∞
C (U)

and coherence isomorphisms.

Proposition 4.3.9. The following data defines a stack morphism CAR : IPVec∞
C → ∗Alg∞

C :
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(a) Functors: For all manifolds U ∈ Man, functors CARU : IPVec∞
C (U) → ∗Alg∞

C (U),
defined on (V, ∗, 〈·, ·〉) ∈ IPVec∞

C (U) by the coequalizer in ∗Alg∞
C (U)

CARU
(
V, ∗, 〈·, ·〉

)
:= colim

(
FU
(
(V, ∗)⊗C∞

C,U
(V, ∗)

) s1 //

s2
// FU

(
V, ∗

) )
,

(4.3.16)

where the relations s1, s2 are associated to (we suppress the subscripts U to simplify
notations)

(V, ∗)⊗C∞
C,U

(V, ∗)

unit FaG
��

s̃1 // GF(V, ∗)

GF(V, ∗)⊗C∞
C,U

GF(V, ∗)
µ+µop

55
(4.3.17a)

and

(V, ∗)⊗C∞
C,U

(V, ∗)

〈·,·〉
��

s̃2 // GF(V, ∗)

(C∞
C,U, ∗)

η

66
(4.3.17b)

under the adjunction in (4.3.8).

(b) Coherences: for any Man-morphisms h : U → U′, coherence isomorphisms

IPVec∞
C (U′)

h∗
��

CARU′ // ∗Alg∞
C (U′)

h∗
��

CARh

qy
IPVec∞

C (U)
CARU

// ∗Alg∞
C (U)

(4.3.18)

defined similarly to those in Subsection 4.3.1.

4.4 illustration through free theories

The goal of this section is to introduce smooth refinements of the Fermionic and
Bosonic free field theories discussed in [BGP07, BG12]. Roughly speaking, we intro-
duce:

bosonic models : a stack morphism

Loc∞
1

Lb
%%

Ab
// ∗Alg∞

C

PoVec∞
R

CCR

88
(4.4.1)
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defined by pre-composing the stack morphism Lb : Loc∞
1 → PoVec∞

R (see Sub-
section 4.4.2), assigning linear observables with their Poisson structure deter-
mined by a suitable smooth refinement of the concept of retarded/advanced
Green operators G± (see Subsection 4.4.1), with the CCR stack morphism
CCR : PoVec∞

R → ∗Alg∞
C from Proposition 4.3.7.

fermionic models : a stack morphism

Loc∞
1

Lf
%%

Af
// ∗Alg∞

C

IPVec∞
C

CAR

88
(4.4.2)

defined by pre-composing the stack morphism Lf : Loc∞
1 → IPVec∞

C (see Sub-
section 4.4.3), assigning linear observables with their bilinear product deter-
mined by a suitable smooth refinement of the concept of retarded/advanced
Green operators G± (see Subsection 4.4.1), with the CAR stack morphism
CAR : IPVec∞

C → ∗Alg∞
C from Proposition 4.3.9.

More precisely:

(a) In Subsection 4.4.1 we introduce smooth refinements of retarded and advanced
Green operators G± and give concrete examples of these constructions. More
precisely, we study the retarded and advanced Green operators for a differential
operator P̃(π,E) : C∞

π×id → C∞
π×id describing a smooth U-family of 1-dimensional

scalar fields and for a differential operator D(π,E) : C∞
π ⊗ C2 → C∞

π ⊗ C2 rep-
resenting a smooth generalization of the massless Dirac field. Moreover, we
discuss smoothly parametrized initial value problems.

(b) In Subsection 4.4.2 we introduce a smooth Ũ-family of smooth AQFTs (in the
sense of (4.2.17)) describing a family of 1-dimensional massive scalar fields with
smoothly varying mass parameter m ∈ C∞(Ũ, R>0), i.e. a stack morphism
B = Map(Ũ,CCR) ◦W : Loc∞

1 → Map(Ũ, ∗Alg∞
C )

Loc∞
1

W
''

B // Map
(
Ũ, ∗Alg∞

C

)
Map

(
Ũ, PoVec∞

R

) Map(Ũ,CCR)

55
, (4.4.3)

where W, representing a “smooth Ũ-parametrized refinement of the functor
associating Poisson vector space of linear observables”, reduces to the stack
morphism Lb from (4.4.1) when U = {∗} (therefore also B reduces to Ab in this
case).

(c) In Subsection 4.4.3 we introduce the smooth 1-dimensional massless Dirac field
as a smooth AQFT, i.e. the stack morphism Af = CAR ◦Lf from (4.4.2), and ver-
ify that its global U(1)-symmetry is realized in terms of smooth automorphisms
in the sense of (4.2.19).
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4.4 illustration through free theories

4.4.1 Green operators, solutions and initial data

In this subsection we introduce smooth analogues of retarded and advanced Green
operators G± (see [BDH13] for an excellent introduction to these topics). More pre-
cisely, we will begin by introducing an object

C∞
π ⊗Kn ∈ ShC∞

K
(U) (4.4.4)

representing the field configuration space of a vector-valued field on the smooth fam-
ily of spacetimes (π : M → U, E) ∈ Loc∞

1 (U) and will consider as equations of
motion ShC∞

K
(U)-morphisms P : C∞

π ⊗Kn → C∞
π ⊗Kn determined by vertical differ-

ential operators on π : M → U. We will then introduce a concept of retarded/advanced
Green operators G± : C∞

π vpc/vfc ⊗Kn → C∞
π vpc/vfc ⊗Kn for any ShC∞

K
(U)-morphism

P : C∞
π ⊗Kn → C∞

π ⊗Kn, and by giving some examples of such constructions.
The object C∞

π ∈ ShC∞
R
(U), that we interpret as the field configuration space of a

real scalar field on the smooth family of spacetimes (π : M → U, E) ∈ Loc∞
1 (U), is

the sheaf of sets

C∞
π : Open(U)op −→ Set (4.4.5)

defined by the following data:

(a) On objects: It associates to every U′ ⊆ U the set C∞(M|U′).

(b) On 1-morphisms: It associates to every Open(U)-morphism ιU
′′

U′ : U′ ⊆ U′′, i.e.
to every inclusion U′ ⊆ U′′(⊆ U), the restriction map C∞

π (ιU
′′

U′ ) : C∞
π (U′′) →

C∞
π (U′).

endowed with the C∞
R,U-module structure induced by pullback of functions.

As mentioned earlier, we interpret

C∞
π ⊗Kn ∈ ShC∞

K
(U) (4.4.6)

as the field configuration space of a vector-valued field on the smooth family of
spacetimes (π : M → U, E) ∈ Loc∞

1 (U), where n ∈ Z≥1 denotes the number of
field components.

Definition 4.4.1. A vertical differential operator on π : M→ U is a differential operator
on M that differentiates only along fibers.

Remark 4.4.2. Notice that every vertical differential operator on π : M → U de-
termines an equation of motion given by the ShC∞

K
(U)-morphism P : C∞

π ⊗Kn →
C∞

π ⊗Kn. M

In order to define Green operators for a ShC∞
K
(U)-morphism P : C∞

π ⊗Kn → C∞
π ⊗

Kn determined by a vertical differential operator, we need to introduce subsheaves
C∞

π vc, C∞
π vpc, C∞

π vfc ∈ ShC∞
R
(U) of the sheaf of modules C∞

π , representing functions
with restrictions on their support.
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4.4 illustration through free theories

Definition 4.4.3. Let (π : M → U, E) ∈ Loc∞
1 (U) be a smooth U-family of 1-

dimensional spacetimes and let S ⊆ M be a subset of the total space. We denote
by J±v (S) the vertical future / past of S i.e. the set of points that can be reached from S
via future/past directed causal curves with respect to the orientation given by E.

Definition 4.4.4. Let (π : M → U, E) ∈ Loc∞
1 (U) be a smooth U-family of 1-

dimensional spacetimes and let U′ ⊆ U be an open subset of U. We say that a function
φ ∈ C∞

π (U′) := C∞(M|U′) is vertically future (past) compactly supported if there is a sec-
tion σ : U′ → M|U′ such that the support of φ is contained in J−v (σ(U′)) (J+v (σ(U′))).
Moreover, we say that a function φ is vertically compactly supported if it is both fu-
ture and past compactly supported, i.e. if there exist two sections σ1 : U′ → M|U′ ,
σ2 : U′ → M|U′ , such that the support of φ is contained in J−v (σ1(U′)) ∩ J+v (σ2(U′)).

We denote the sets of vertically future/past compactly supported functions φ ∈
C∞

π (U′) with the symbol C̃∞
π vf/pc(U

′) and the set of vertically compactly supported

functions by C̃∞
π vc(U′).

(Notice that our fiber bundles admit sections because the fibers are open intervals,
see e.g. [Ste51, Sections 12.2 and 6.7].)

Definition 4.4.4 enables us to define the following presheaves associated to a U-
family of 1-dimensional globally hyperbolic Lorentzian manifolds (π : M → U, E) ∈
Loc∞

1 (U):

(a) The presheaf C̃∞
π vc of vertically compactly supported functions, i.e. the sub-

presheaf of C∞
π assigning to each U′ ⊆ U the set C̃∞

π vc(U′).

(b) The presheaf C̃∞
π vpc of vertically past compactly supported functions, i.e. the

subpresheaf of C∞
π assigning to each U′ ⊆ U the set C̃∞

π vpc(U′).

(c) The presheaf C̃∞
π vfc of vertically future compactly supported functions, i.e. the

subpresheaf of C∞
π assigning to each U′ ⊆ U the set C̃∞

π vfc(U
′).

Definition 4.4.5. We denote by C∞
π vfc, C∞

π vpc and C∞
π vc the sheafification (see the dis-

cussion at the end of Subsection 4.2.3) C̃∞,+
π vfc of the presheaf C̃∞

π vfc, the sheafification
C̃∞,+

π vpc of the presheaf C̃∞
π vpc and the sheafification C̃∞,+

π vc of the presheaf C̃∞
π vc respec-

tively.

Remark 4.4.6. Since they are obtained under sheafification, we can interpret the
sheaves from Definition 4.4.5 as the “local datum of their presheaves". For in-
stance, the sheaf C∞

π vfc of vertically future compactly supported functions evaluated
at U′ ⊆ U is the subset C∞

π vfc(U
′) ⊆ C∞

π (U′) of functions φ that admit for every x ∈ U′

an open neighbourhood Ux ⊆ U′ of x such that when restricted to Ux are vertically
future compact. Analogous statements hold for the sheaves C∞

π vpc and C∞
π vc. M

We can now introduce the advanced and retarded Green operators.

Definition 4.4.7. Let P : C∞
π ⊗Kn → C∞

π ⊗Kn be a ShC∞
K
(U)-morphism determined

by a vertical differential operator on π : M → U (see Definition 4.4.1) and suppose
that the restrictions P : C∞

π vpc/vfc ⊗Kn → C∞
π vpc/vfc ⊗Kn of P to the subsheaves
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4.4 illustration through free theories

of vertically past/future compactly supported functions are invertible with inverses
G± : C∞

π vpc/vfc ⊗Kn → C∞
π vpc/vfc ⊗Kn. Then, we say that G± : C∞

π vpc/vfc ⊗Kn →
C∞

π vpc/vfc⊗Kn are retarded/advanced Green operators for P if for each open subset U′ ⊆
U and ϕ ∈ C∞

π vpc/vfc(U
′)⊗Kn, we have supp(G±ϕ) ⊆ J±v (supp(ϕ)).

If P admits both retarded and advanced Green operators, we call the ShC∞
K
(U)-

morphism G := G+ − G− : C∞
π vc ⊗Kn → C∞

π ⊗Kn the causal propagator.

The usual exact sequence (see [BGP07, BD15]) for P and G generalizes to our con-
text.

Remark 4.4.8. Before introducing the aforementioned exact sequence we would like
to point out that an exact sequence of sheaves in ShC∞

K
(U) might not be an exact

sequence of presheaves. M

Proposition 4.4.9. Let P : C∞
π ⊗Kn → C∞

π ⊗Kn be a ShC∞
K
(U)-morphism determined

by a vertical differential operator on π : M → U that admits retarded and advanced Green
operators G± : C∞

π vpc/vfc ⊗Kn → C∞
π vpc/vfc ⊗Kn. Then, the associated sequence

0 // C∞
π vc ⊗Kn P // C∞

π vc ⊗Kn G // C∞
π ⊗Kn P // C∞

π ⊗Kn // 0 (4.4.7)

in ShC∞
K
(U) is exact. Even stronger, the corresponding sequence of presheaves is exact, i.e.

for each open subset U′ ⊆ U, the sequence

0 // C∞
π vc(U′)⊗Kn P // C∞

π vc(U′)⊗Kn G // C∞
π (U′)⊗Kn P // C∞

π (U′)⊗Kn // 0
(4.4.8)

of C∞
K(U′)-modules is exact.

Proof. We prove the second (stronger) statement, which implies the first. Let U′ ⊆ U
be any open subset. To prove exactness at the first term, consider any ϕ ∈ C∞

π vc(U′)⊗
Kn such that Pϕ = 0 and note that 0 = G±Pϕ = ϕ by Definition 4.4.7. For the
second term, let ϕ ∈ C∞

π vc(U′) ⊗Kn be such that Gϕ = 0. Then G+ϕ = G−ϕ =:
ρ ∈ C∞

π vc(U′) ⊗Kn because of the support properties of Green operators and the
definition of vertically compact support. Hence, Pρ = PG±ϕ = ϕ by Definition 4.4.7.

For the third term, let Φ ∈ C∞
π (U′) ⊗Kn be such that PΦ = 0. Choosing two

non-intersecting sections σ± : U′ → M|U′ such that σ+ lies in the vertical future of σ−,
we obtain an open cover {M|U′ \ J−v (σ−(U′)), M|U′ \ J+v (σ+(U′))} of M|U′ . Choosing
a partition of unity subordinate to this cover, we can decompose Φ = Φ+ + Φ− with
Φ± ∈ C∞

π vpc/vfc(U
′)⊗Kn. Then ρ := PΦ+ = −PΦ− ∈ C∞

π vc(U′)⊗Kn is vertically
compactly supported and Gρ = G+ρ− G−ρ = G+PΦ+ + G−PΦ− = Φ+ + Φ− = Φ
by Definition 4.4.7.

For the last term, take any Φ ∈ C∞
π (U′)⊗Kn and decompose as before Φ = Φ+ +

Φ− with Φ± ∈ C∞
π vpc/vfc(U

′)⊗Kn. Defining ρ := G+Φ+ + G−Φ−, we obtain Pρ =

PG+Φ+ + PG−Φ− = Φ+ + Φ− = Φ by Definition 4.4.7.
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4.4 illustration through free theories

Remark 4.4.10. Proposition 4.4.9 tells us that the cokernel sheaf

C∞
π vc⊗Kn

P(C∞
π vc⊗Kn)

:= coker
(

P : C∞
π vc ⊗Kn → C∞

π vc ⊗Kn) ∈ ShC∞
K
(U) (4.4.9a)

is isomorphic to the presheaf quotient coker
(

P : C∞
π vc ⊗ Kn → C∞

π vc ⊗ Kn) ∈
PShC∞

K
(U), i.e.

C∞
π vc⊗Kn

P(C∞
π vc⊗Kn)

(U′) = C∞
π vc(U

′)⊗Kn/P(C∞
π vc(U

′)⊗Kn) , (4.4.9b)

for every open subset U′ ⊆ U. Furthermore, this sheaf is isomorphic to the solution
sheaf Solπ := ker(P : C∞

π ⊗Kn → C∞
π ⊗Kn) ∈ ShC∞

K
(U) via the causal propagator

G : C∞
π vc⊗Kn

P(C∞
π vc⊗Kn)

∼= // Solπ (4.4.10)

M

Let us now study some examples of Green operators.

Example 4.4.11. In this example we study the retarded and advanced Green opera-
tors for a vertical differential operator P : C∞

π → C∞
π describing a smooth U-family

of 1-dimensional scalar fields (harmonic oscillators) with a fixed mass/frequency pa-
rameter m, on time intervals whose geometry depends on the point x ∈ U.

Let (π : M→ U, E) ∈ Loc∞
1 (U) be a smooth U-family of 1-dimensional spacetimes,

let m ∈ (0, ∞) be a fixed parameter, let dv denote the vertical de Rham differential on
π : M → U and let ∗v denote the vertical Hodge operator induced by E ∈ Ω1

v(M).
As equation of motion we take the vertical differential operator

P(π,E) := ∗v dv ∗v dv + m2 : C∞
π −→ C∞

π . (4.4.11)

In order to prove that (4.4.11) admits retarded and advanced Green operators, we
consider an open cover {Uα : α ∈ A} that locally trivializes the bundle π : M → U,
i.e. such that the restricted fiber bundles M|Uα → Uα admit trivializations M|Uα

∼=
R×Uα, and show that each Pα,(π,E) : C∞

π |Uα → C∞
π |Uα admits retarded and advanced

Green operators G±α : C∞
π vpc/vfc|Uα → C∞

π vpc/vfc|Uα . This is sufficient, because, since
the uniqueness of the advanced and retarded Green operators implies that the Gαs
form naturally a morphism in the descent category ShC∞

K
({Uα ⊆ U}) (see Defini-

tion 4.1.3), and since ShC∞
K

is a stack, we can “glue” the Gαs to obtain retarded and
advanced Green operators G± : C∞

π vpc/vfc → C∞
π vpc/vfc on all U.

With respect to this trivializing cover {Uα : α ∈ A}, we have that E|Uα
∼= ρ dt, where

ρ ∈ C∞(R×Uα, R>0) is a positive function and where t ∈ R is a time coordinate on R.
In particular, Pα reads as Pα = ρ−1 ∂t ρ−1∂t + m2. In order to simplify the expression
for Pα we introduce a new time coordinate T(t, x) (notice the dependence on x ∈ Uα)
such that dvT = ρ dt. More precisely, the equation of motion operator reads as
Pα = ∂2

T + m2, which admits the following retarded/advanced Green operator

(G±α ϕ)(T, x) =
∫ T

T(∓∞,x)
m−1 sin

(
m (T − S)

)
ϕ(S, x)dS . (4.4.12)
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4.4 illustration through free theories

Notice that the integral in (4.4.12) exists, because ϕ ∈ C∞
π vpc/vfc|Uα is verti-

cally past/future compactly supported, and depends smoothly on both T ∈
(T(−∞, x), T(∞, x)) and x ∈ Uα.

O

Example 4.4.12. This example constitutes a generalization to “smooth mass parame-
ters" m ∈ C∞(Ũ, R>0) of Example 4.4.11. We will harness it to introduce the smooth
Ũ-family of smooth 1-dimensional algebraic quantum field theories presented in Sub-
section 4.4.2.

Given a manifold U and a smooth U-family of 1-dimensional spacetimes (π : M→
U, E) ∈ Loc∞

1 (U), we introduce the object (π × id : M × Ũ → U × Ũ, pr∗M(E)) ∈
Loc∞

1 (U × Ũ) and the vertical differential operator

P̃(π,E) := ∗v dv ∗v dv + pr∗Ũ(m
2) : C∞

π×id −→ C∞
π×id , (4.4.13)

where prM : M× Ũ → M and prŨ : M× Ũ → Ũ denote the projection maps. Analo-
gously to Example 4.4.11, we proceed by choosing an open cover {Uα : α ∈ A} that
trivializes (π× id : M× Ũ), i.e (M× Ũ)|Uα×Ũ

∼= R×Uα× Ũ for every Uα, and prove
the existence of Green operators for P̃α : C∞

π×id|Uα → C∞
π×id|Uα . Again, in complete

analogy with Example 4.4.11, we choose the time coordinate T obtained by solving
dvT = ρ dt = pr∗M(E)|Uα×Ũ and derive P̃α = ∂2

T + m2(x̃) (notice the dependence on
x̃ ∈ Ũ). This operator admits a retarded/advanced Green operator given by

(G̃±α ϕ)(T, x, x̃) =
∫ T

T(∓∞,x)
m(x̃)−1 sin

(
m(x̃) (T − S)

)
ϕ(S, x, x̃)dS , (4.4.14)

for all ϕ ∈ C∞
π×id vpc/vfc|Uα×Ũ. O

Example 4.4.13. In this example we describe the advanced and retarded Green oper-
ators associated to the smooth 1-dimensional massless Dirac field.

Let U ∈ Man be a manifold and let (π : M → U, E) ∈ Loc∞
1 (U) be a smooth

U-family of 1-dimensional spacetimes. We introduce the massless Dirac vertical dif-
ferential operator

D(π,E) :=
(

i ∗v dv 0
0 − i ∗v dv

)
: C∞

π ⊗C2 −→ C∞
π ⊗C2 , (4.4.15)

where i ∈ C is the imaginary unit and the elements
(Ψ

Ψ

)
∈ C∞

π ⊗ C2 should be
interpreted as the Dirac field Ψ and its Dirac conjugate Ψ.

We then proceed similarly to Examples 4.4.11 and 4.4.12: we consider a trivializing
cover {Uα ⊆ U} and the local time coordinate T, obtaining the following formula for
the local Dirac operators

Dα =

(
i ∂T 0
0 − i ∂T

)
(4.4.16)

Therefore, the retarded/advanced Green operators associated to the Dαs are given by(
S±α
(ψ

ψ

))
(T, x) =

∫ T

T(∓∞,x)

(
− i ψ(S, x)

i ψ(S, x)

)
dS , (4.4.17)
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4.4 illustration through free theories

where T(∓∞, x) was defined in Example 4.4.11.
O

We conclude this subsection with a few remarks on smoothly parametrized initial
value problems. In particular, we want to show that the operators introduced in
Examples 4.4.11, 4.4.12 and 4.4.13 have a well-posed initial value problem. The question
now is: what does it mean that a vertical differential operator has a well-posed initial
value problem? We are particularly interested in answering this question for the
vertical differential operators introduced in the examples of this subsection, i.e. on
particular instances of vertical differential operators of first and second order.

Remark 4.4.14. Let U ∈ Man, let (π : M → U, E) ∈ Loc∞
1 (U) and let P : C∞

π → C∞
π be

the ShC∞
K
(U)-morphism determined by a second order vertical differential operator.

Then, for every section σ : U → M, we can define a ShC∞
K
(U)-morphism

data2nd
σ : Solπ −→

(
C∞

R,U ⊗Kn)⊕2 (4.4.18a)

defined, for each open subset U′ ⊆ U, by assigning to any Φ ∈ Solπ(U′) ⊆ C∞
π (U′)⊗

Kn = C∞
R (M|U′)⊗Kn (see Remark 4.4.10) its initial data

data2nd
σ (Φ) :=

(
σ∗(Φ), σ∗(∗vdvΦ)

)
∈
(
C∞

R (U′)⊗Kn)⊕2 (4.4.18b)

on σ(U′) ⊆ M|U′ .
We say that P has a well-posed initial value problem if (4.4.18) is an isomorphism in

ShC∞
K
(U). M

Remark 4.4.15. Let U ∈ Ob(Man), let (π : M → U, E) ∈ Loc∞
1 (U) and let

P : C∞
π → C∞

π be the ShC∞
K
(U)-morphism determined by a first order vertical differen-

tial operator. Then, for any section σ : U → M, we can define a ShC∞
K
(U)-morphism

data1st
σ : Solπ −→ C∞

R,U ⊗Kn (4.4.19a)

defined, for each open subset U′ ⊆ U, by assigning to a solution Φ ∈ Solπ(U′) its
initial data

data1st
σ (Φ) := σ∗(Φ) ∈ C∞

R (U′)⊗Kn (4.4.19b)

on σ(U′) ⊆ M|U′ .
Analogously to Remark 4.4.14, we say that P has a well-posed initial value problem if

(4.4.19) is an isomorphism in ShC∞
K
(U). M

Example 4.4.16. The aim of this example is to show that the operators in Examples
4.4.11 and 4.4.12 have a well-posed initial value problem. In particular, we will focus
on the vertical differential operator from the latter example since the vertical differ-
ential operator from the former can be obtained from it by imposing Ũ = {∗}. In
order to check that the sheaf morphism in (4.4.18) is an isomorphism, it is sufficient,
since ShC∞

K
is a stack (see Example 4.4.11), to check it locally, i.e. on an open cover

{Uα : α ∈ A}. Once more, we choose said open cover to be trivializing and in-
troduce a suitable time coordinate T, obtaining local vertical differential operators:
P̃α = ∂2

T + m2(x̃).
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Therefore, for every (Φ0, Φ1) ∈ (C∞
R,Uα×Ũ)

⊕2, the inverse of the restriction of the

initial data map data2nd
σ to Uα ⊆ U is given by

solveσ

(
Φ0, Φ1

)
(T, x, x̃) := Φ0(x, x̃) cos

(
m(x̃) (T − Tσ(x))

)
+ Φ1(x, x̃)m(x̃)−1 sin

(
m(x̃) (T − Tσ(x))

)
, (4.4.20)

where the initial time Tσ(x) ∈ (T(−∞, x), T(∞, x)) is determined by the (local) coor-
dinate expression σ(x) = (Tσ(x), x) of the section σ, for all x ∈ Uα. O

Showing that the Dirac vertical differential operator from Example 4.4.13 has a
well-posed initial value problem, in the sense of Remark 4.4.15, is an easy exercise.

4.4.2 1-dimensional scalar field

The aim of this section is to provide a smooth refinement of the massive scalar
field. More precisely, our goal is, harnessing Example 4.4.12, to build a stack mor-
phism W : Loc∞

1 → Map(Ũ, PoVec∞
R) that, post-composed with Map(Ũ,CCR) :

Map(Ũ, PoVec∞
R) → Map(Ũ, ∗Alg∞

C ) from Subsection 4.3.1, will provide us the stack
morphism

Loc∞
1

W
''

B // Map
(
Ũ, ∗Alg∞

C

)
Map

(
Ũ, PoVec∞

R

) Map(Ũ,CCR)

55
, (4.4.21)

representing a smooth Ũ-family of 1-dimensional scalar fields with smoothly varying
mass parameter m ∈ C∞(U, R>0).

Let P̃(π,E) : C∞
π×id → C∞

π×id be the vertical differential operator from Example 4.4.12.
Then, the following data defines a stack morphism W : Loc∞

1 → Map(Ũ, PoVec∞
R):

(a) Functors: For every manifold U ∈ Man, functors

WU : Loc∞
1 (U) −→ PoVec∞

R(U × Ũ) (4.4.22)

assigning to any smooth U-family of 1-dimensional spacetimes (π : M →
U, E) ∈ Loc∞

1 (U) the object

WU
(
π : M→ U, E

)
:=
(

C∞
π×id vc

P̃(π,E)C∞
π×id vc

, τ(π×id,pr∗M(E))

)
∈ PoVec∞

R(U × Ũ)

(4.4.23a)

with Poisson structure given by

τ(π×id,pr∗M(E)) = 〈·, G̃(π,E)(·)〉(π×id,pr∗M(E)) , (4.4.23b)

where G̃(π,E) is the causal propagator for P̃(π,E), see Example 4.4.12, and where

〈·, ·〉(π×id,pr∗M(E)) : C∞
π×id vc ⊗C∞

R,U×Ũ
C∞

π×id vc
µ
// C∞

π×id vc

∫
π×id(−)pr∗M(E)

// C∞
R,U×Ũ

(4.4.23c)
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is the ShC∞
R
(U × Ũ)-morphism given by post-composition of the fiber integra-

tion on (π × id : M× Ũ → U × Ũ, pr∗M(E)) ∈ Loc∞
1 (U × Ũ) with the multipli-

cation map of functions µ, i.e.

τ(π×id,pr∗M(E))
(

ϕ, ϕ′
)
=
∫

π
ϕ G̃(π,E)(ϕ′)pr∗M(E) . (4.4.24)

(Notice that the Poisson structure is well-defined on the quotient in (4.4.23a)
because P̃(π,E) is formally self-adjoint with respect to the pairing (4.4.23c) and
G̃(π,E) ◦ P̃(π,E) = 0 = P̃(π,E) ◦ G̃(π,E) due to the definition of Green operators, see
Definition 4.4.7.)

Moreover, the functors WU are defined on Loc∞
1 (U)-morphisms f : (π : M →

U, E)→ (π′ : M′ → U, E′) (keep in mind that f is an open embedding) by

WU( f ) := ( f × id)∗ : WU
(
π : M→ U, E

)
−→ WU

(
π′ : M′ → U, E′

)
.

(4.4.25)

where ( f × id)∗ : C∞
π×id vc → C∞

π′×id vc is the pushforward (of compactly sup-
ported functions, i.e. extension by zero, see Definition 4.2.4) ShC∞

R
(U × Ũ)-

morphism associated to the Loc∞
1 (U × Ũ)-morphism

f × id : (π × id : M× Ũ → U × Ũ, pr∗M(E))
→ (π′ × id : M′ × Ũ → U × Ũ, pr∗M′(E′))

To conclude, notice that ( f × id)∗ : C∞
π×id vc → C∞

π′×id vc intertwines the equation
of motion operators, i.e. P̃(π′,E′) ( f × id)∗ = ( f × id)∗ P̃(π,E) and that the preser-
vation of Poisson structures follows from the uniqueness of retarded/advanced
Green operators.

(b) Coherence isomorphisms: For each morphism h : U → U′ in Man, natural isomor-
phisms (see Definition 4.1.2)

Loc∞
1 (U′)

h∗
��

WU′ // PoVec∞
R(U′ × Ũ)

(h×id)∗
��

Wh

px
Loc∞

1 (U)
WU

// PoVec∞
R(U × Ũ)

(4.4.26a)

defined on each component (π : M→ U′, E) ∈ Loc∞
1 (U′) by the morphisms

Wh : (h× id)∗WU′
(
π : M→ U′, E

)
−→ WU

(
h∗(π : M→ U′, E)

)
(4.4.26b)

given on the underlying ShC∞
R
(U × Ũ)-modules by

(h
M × id)∗ : (h× id)∗

(
C∞

π×id vc
P̃(π,E)C∞

π×id vc

)
−→

C∞
πh×id vc

P̃h∗(π,E)C∞
πh×id vc

. (4.4.27)
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Equation (4.4.27) needs some explaining: Recall the pullback bundle construc-
tion in (4.2.3) and (4.2.4), and consider the ShC∞

R
(U × Ũ)-morphism

(h
M × id)∗ : (h× id)∗C∞

π×id vc −→ C∞
πh×id vc (4.4.28)

defined through its adjunct under (h× id)∗ : ShC∞
R
(U× Ũ)� ShC∞

R
(U′× Ũ) by

the components (denoted with abuse of notation by the same symbol)

(h
M × id)∗ : C∞

R

(
(M× Ũ)|U′′

)
−→ C∞

R

(
(h∗M× Ũ)|(h×id)−1(U′′)

)
, (4.4.29)

for all open subsets U′′ ⊆ U′ × Ũ, which describe the pullback of func-
tions along the map of total spaces. Due to the universal property of pull-
back bundles, one easily checks that each section σ : U′ × Ũ → M × Ũ in-
duces a section σh : U × Ũ → h∗M × Ũ of the pullback bundle that satisfies
σ (h × id) = (h

M × id) σh, hence the maps in (4.4.29) preserve vertically com-
pact support. Due to naturality of the vertical differential operators P̃ in (4.4.13),
we obtain the commutative diagram

(h× id)∗C∞
π×id vc

(h×id)∗ P̃(π,E)
��

(h
M×id)∗

// C∞
πh×id vc

P̃h∗(π,E)
��

(h× id)∗C∞
π×id vc

(h
M×id)∗

// C∞
πh×id vc

(4.4.30)

in ShC∞
R
(U × Ũ), which allows us to induce (4.4.28) to the quotients

(h
M × id)∗ : (h× id)∗

(
C∞

π×id vc
P̃(π,E)C∞

π×id vc

)
−→

C∞
πh×id vc

P̃h∗(π,E)C∞
πh×id vc

.

Here we also used that (h × id)∗ is a left adjoint functor, hence it commutes
with the colimit defining these quotients. From the explicit expression (4.4.29)
for (the adjunct of) this morphism and observing that a diagram similar to
(4.4.30) involving retarded/advanced Green operators commutes due to their
uniqueness, one checks that (4.4.27) preserves the relevant Poisson structures
and thereby defines the desired PoVec∞

R(U′ × Ũ)-morphism Wh := (h
M × id)∗

in (4.4.26b).

It remains to confirm that (4.4.27) is an isomorphism in PoVec∞
R(U′ × Ũ). Us-

ing the causal propagators (4.4.10) and the initial data morphisms (4.4.18) corre-
sponding to any choice of section σ : U′ × Ũ → M× Ũ and its induced section
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σh : U × Ũ → h∗M × Ũ of the pullback bundle, we obtain the commutative
diagram

(h× id)∗
(

C∞
π×id vc

P̃(π,E)C∞
π×id vc

)
(h×id)∗G̃(π,E)

��

(h
M×id)∗

//
C∞

πh×id vc

P̃h∗(π,E)C∞
πh×id vc

G̃h∗(π,E)
��

(h× id)∗Solπ×id

(h×id)∗data2nd
σ
��

(h
M×id)∗

// Solπh×id

data2nd
σh

��

(h× id)∗
(
C∞

R,U′×Ũ

)⊕2
∼=

//
(
C∞

R,U×Ũ

)⊕2

(4.4.31)

in ShC∞
R
(U × Ũ), where the bottom horizontal isomorphism uses that (h× id)∗

preserves coproducts (as it is a left adjoint functor) and the symmetric monoidal
coherence isomorphism for the monoidal unit in (4.2.7). By Remark 4.4.10 and
Examples 4.4.12 and 4.4.16, all vertical arrows in this diagram are isomorphisms,
hence the top horizontal arrow is an isomorphism too. This implies that Wh is
an isomorphism in PoVec∞

R(U × Ũ).

Post-composing the stack morphism W : Loc∞
1 → Map(Ũ, PoVec∞

R) with the
stack morphism Map(Ũ,CCR) : Map(Ũ, PoVec∞

R) → Map(Ũ, ∗Alg∞
C ) (see Proposition

4.3.7), we obtain a smooth Ũ-family of smooth 1-dimensional scalar field theories
B : Loc∞

1 → Map(Ũ, ∗Alg∞
C ).

4.4.3 1-dimensional Dirac field

As mentioned in the introduction to this section, the aim of this subsection is to
leverage Example 4.4.13 in order to define a stack morphism Lf : Loc∞

1 → IPVec∞
C

that post-composed with the CAR stack morphism CAR : IPVec∞
C → ∗Alg∞

C will
give us a smooth 1-dimensional algebraic quantum field theory Af := CAR ◦ Lf that
should be thought as a smooth refinement of the massless 1-dimensional Dirac field.

Moreover, we will show that such smooth 1-dimensional algebraic quantum field
theory can be lifted to a U(1)-equivariant smooth algebraic quantum field theory,
i.e the smooth automorphism group Aut(Af) (see (4.2.19)) includes the global U(1)-
symmetry of the Dirac field (see the discussion at the end of Subsection 4.2.3).

Let D(π,E) be the vertical differential operator from Example 4.4.13. Then, the fol-
lowing data defines a stack morphism Lf : Loc∞

1 → IPVec∞
C :

(a) For each manifold U ∈ Man, functors

Lf
U : Loc∞

1 (U) −→ IPVec∞
C (U) (4.4.32)

assigning to each (π : M→ U, E) ∈ Loc∞
1 (U) the object

Lf
U
(
π : M→ U, E

)
:=
(

C∞
π vc⊗C2

D(π,E)(C∞
π vc⊗C2)

, ∗(π,E), 〈·, ·〉(π,E)

)
∈ IPVec∞

C (U) ,

(4.4.33a)
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with ∗-involution

∗(π,E)

(
ψ

ψ

)
:=
(

ψ
∗

ψ∗

)
(4.4.33b)

given by swapping the components followed by complex conjugation (which
descends to the quotient since ∗(π,E) ◦ D(π,E) = D(π,E) ◦ ∗(π,E)) and symmetric
pairing〈(ψ

ψ

)
,
(

ψ′

ψ
′

)〉
(π,E)

:=
∫

π

(
ψ ψ

) ( 0 i
− i 0

)
S(π,E)

(
ψ′

ψ
′

)
E (4.4.33c)

given by fiber integration, by the causal propagator S(π,E) for D(π,E) and by the
displayed matrix multiplications. It is easy to check that 〈·, ·〉(π,E) descends to
the quotient in (4.4.33a) and that it satisfies the compatibility condition (4.3.2)
for ∗-involutions.

The definition of the functor (4.4.32) on morphisms f : (π : M → U, E) → (π′ :
M′ → U, E′) is as in (4.4.25) via pushforward of vertically compactly supported
functions.

(b) For Man-morphisms h : U → U′, coherence isomorphisms constructed in com-
plete analogy to (4.4.26).

Post-composing the stack morphism Lf : Loc∞
1 → IPVec∞

C with the CAR stack
morphism CAR : IPVec∞

C → ∗Alg∞
C (see Proposition 4.3.7), we obtain the smooth

1-dimensional massless Dirac field Af : Loc∞
1 → ∗Alg∞

C .
To conclude this section, we prove that Lf : Loc∞

1 → IPVec∞
C lifts to a stack mor-

phism L̃f : Loc∞
1 × [{∗}/U(1)]pre → IPVec∞

C . In particular, this will imply that the
smooth 1-dimensional Dirac field Af = CAR ◦ Lf : Loc∞

1 → ∗Alg∞
C is endowed with

a smooth action of the unitary group U(1)

Loc∞
1 × [{∗}/U(1)]pre

L̃f
))

Ãf
// ∗Alg∞

C

IPVec∞
C

CAR

88
(4.4.34)

(see the final discussion in Subsection 4.2.3 and diagram (4.2.23)).
The following data defines a stack L̃f : Loc∞

1 × [{∗}/U(1)]pre → IPVec∞
C :

(a) Functors: For each manifold U ∈ Man, functors

L̃f
U : Loc∞

1 (U)× [{∗}/U(1)]pre(U) −→ IPVec∞
C (U) (4.4.35)

that act on objects (π : M → U, E) ∈ Loc∞
1 (U)× [{∗}/U(1)]pre(U) precisely as

in (4.4.33), i.e.

L̃f
U
(
π : M→ U, E

)
:= Lf

U
(
π : M→ U, E

)
=
(

C∞
π vc⊗C2

D(π,E)(C∞
π vc⊗C2)

, ∗(π,E), 〈·, ·〉(π,E)

)
(4.4.36)
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(Notice that the objects of Loc∞
1 (U)× [{∗}/U(1)]pre(U) are canonically identi-

fied with the objects of Loc∞
1 (U) because [{∗}/U(1)]pre(U) has only a single ob-

ject, see (4.2.24).). On Loc∞
1 (U)× [{∗}/U(1)]pre(U)-morphisms ( f , g), i.e. pairs

consisting of a Loc∞
1 (U)-morphism f : (π : M → U, E) → (π′ : M′ → U, E′)

and a U(1)-valued smooth function g ∈ C∞(U, U(1)), the functor acts by a com-
bination of the pushforward of vertically compactly supported functions and a
complex phase rotation

L̃f
U( f , g)

(
ψ

ψ

)
:=
(

f∗
(
π∗(g)ψ

)
f∗
(
π∗(g)−1 ψ

)) =

(
π∗(g) f∗(ψ)

π∗(g)−1 f∗(ψ)

)
, (4.4.37)

where π∗(g) denotes the pullback of g ∈ C∞(U, U(1)) along the projection map
π : M → U. (The second equality in (4.4.37) follows from the fact that f∗ only
acts along the fibers where π∗(g) is constant.) These maps clearly preserve the
quotient in (4.4.36), the ∗-involution (4.4.33b) and the pairing (4.4.33c), hence
they define IPVec∞

C (U)-morphisms.

(b) Coherence isomorphisms: For every Man-morphisms h : U → U′, coherence
isomorphisms constructed in complete analogy to our previous examples.

Post-composing the stack morphism L̃f : Loc∞
1 × [{∗}/U(1)]pre → IPVec∞

C with the
CAR stack morphism CAR : IPVec∞

C → ∗Alg∞
C defines the smooth U(1)-equivariant

smooth 1-dimensional massless Dirac field Ãf := CAR ◦ L̃f : Loc∞
1 × [{∗}/U(1)]pre →

∗Alg∞
C .
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5
C O N C L U S I O N S A N D O U T L O O K

The aim of this chapter is to gather the conclusions and outlooks of this thesis. In
Section 5.1 we “take stock of the situation” and briefly summarize the main results
discussed in this work, while we reserve Section 5.2 to propose some outlooks for our
work and discuss some possible future developments.

5.1 conclusions

In this work we have presented in a (hopefully) self-contained way the results con-
tained in our papers [BPS19, BPS20, BPSW21]. The central theme surrounding this
thesis has been the use of Category Theory as a unifying and powerful language to
build bridges between subjects (see Chapter 2), but also as a tool to bring new ideas
and features to Algebraic Quantum Field Theory (see Chapter 3 and Chapter 4).

In Chapter 2 we have seen that Factorization Algebras and Algebraic Quantum
Field Theory are intrinsically related. In particular, we have proven that the category
of time-orderable additive Cauchy constant prefactorization algebras is equivalent to
the category of additive Cauchy constant algebraic quantum field theories. Moreover,
we have seen how involutive ∗-structures can be passed from the latter category to
the former.

The relevance of these results lies in their model-independent (categorical) nature
and their potential to lead to a prolific exchange of techniques between Factoriza-
tion Algebras and Algebraic Quantum Field Theory. Notice however, that our work
is probably far from being the last attempt toward a comparison between FAs and
AQFTs, since further investigations will be needed to obtain fully general results in
the context of gauge theories (see 5.2.1 for a more thorough discussion of this point).

In Chapter 3, motivated by gauge theory, we have introduced, via suitable multi-
categorical tools, a 2-categorical analogue of ordinary algebraic quantum field theo-
ries, namely 2-algebraic quantum field theories, and we have proven that ordinary
algebraic quantum field theories can be equivalently studied in the 2-category of 2-
algebraic quantum field theories. Moreover, we have provided a gauging construction
assigning to each G-equivariant AQFT its categorified orbifold construction, which
we leveraged to produce simple toy-models of non-truncated 2-algebraic quantum
field theories. To conclude we have discussed a categorification of Fredenhagen’s
universal algebra, i.e. Fredenhagen’s universal category.

These results are promising since they show that our 2AQFTs are more sensitive
to global aspects of gauge theories, such as disconnected components of the gauge
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group, than previous approaches to higher categorical AQFT and can be considered
as a first step toward the use of n-categories to study higher categorical aspects of
algebraic quantum field theories as opposed to the use of model-categories. This
work cannot be considered as the end point of the discussion, but as the beginning.
In fact, there is a lot of room for work and further developments as better explained
in Subsection 5.2.2.

In Chapter 4 we have made a first step toward the formalization of a notion of
“smoothness” for algebraic quantum field theories. More precisely, we have de-
fined smooth generalizations Loc∞

1 and ∗Alg∞
C of the category Loc1 of 1-dimensional

Lorentzian manifolds and of the category ∗Alg∞
C of associative and unital ∗-algebras,

and we have introduced smooth 1-dimensional algebraic quantum field theories as
stack morphisms A : Loc∞

1 → ∗Alg∞
C . Moreover, we have defined a stack AQFT∞

1
of smooth 1-dimensional algebraic quantum field theories, introduced the smooth
automorphism group of a smooth 1-dimensional algebraic quantum field theory and
showed examples of such constructions.

These results represent, hopefully, a starting point of a much broader discussion
regarding “smoothness”, as hoped for by many researchers in the community. Their
relevance, in fact, relies on their role as foundation and template for further general-
izations. Although we decided to relegate a more in-depth discussion of such aspects
to Subsection 5.2.3, we would like to point out that a suitable generalization of our
results that considers m-dimensional globally hyperbolic Lorentzian manifolds, for a
generic m ≥ 1, will probably require contributions of researcher from several distinct
areas of mathematics, therefore representing a potential source of collaborations and
interactions within different communities.

5.2 outlooks

The outlooks of this thesis are various and heterogeneous in nature, since the topics
presented in our work ascribe to slightly different domains and can capture the atten-
tion of researchers with distinct backgrounds. Therefore, for the sake of clarity and
order, we will present a section of outlooks for each of the papers presented in this
work ([BPS19, BPS20, BPSW21]).

5.2.1 Outlook: FA vs AQFT in model/∞-categories

In Chapter 2 we have proven that the category of time-orderable additive Cauchy
constant prefactorization algebras and the category of additive Cauchy constant alge-
braic quantum field theories are equivalent (see Theorem 2.4.1), and that, remarkably,
this equivalence can be interpreted in multicategorical terms (see Remark 2.4.2). Al-
though this result is by itself pretty pleasing it does not represent the end of the story.
In fact, in the context of gauge theories, as it is customary in situations involving
higher structures, the correct way to compare two objects is not via isomorphisms,
but via weak equivalences. Therefore, the target monoidal categories where the values
of algebraic quantum field theories and prefactorization algebras are assigned, are, in
general, model-categories (or higher-categories). Even though in this context the ad-
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junction in Remark 2.4.2 becomes a Quillen adjunction between model-categories, it
is not clear, at least to us, which analogues of Cauchy constancy and additivity would
induce desirable Quillen-equivalent restrictions of these higher categories of AQFTs
and tPFAs. We believe that this problem could be of interest to different communities
of topologists/category theorists working in model-category theory (notice in partic-
ular [CFM21], in which a model structure for locally constant factorization algebras
is constructed, and also [Car21], in which model structures presenting the homotopy
theory of algebraic quantum field theories satisfying the time-slice and additivity ax-
ioms are described) and mathematical physicists working either in algebraic quantum
field theory or factorization algebras.

5.2.2 Outlook: Examples of genuine non-truncated 2-AQFTs

In Chapter 3 we introduced a 2-categorical analogue of ordinary algebraic quantum
field theories in order to capture some of the higher categorical features appearing
in gauge theories and we produced some simple examples. It is precisely the sim-
plicity of those examples that naturally brings new outlooks for our work. In fact, in
Example 3.4.14 we showed an instance of a non-truncated classical orbifold field the-
ory that is quantized to a truncated orbifold quantum field theory and the question
whether more sophisticated non-truncated examples of quantum field theories exist
is still open.

5.2.3 Outlook: Smooth algebraic quantum field theories in higher dimensions

In Chapter 4, while introducing smooth refinements of 1-dimensional (ordinary) al-
gebraic quantum field theories, namely smooth 1-dimensional algebraic quantum
field theories, we have mentioned several times that our choice of focusing on 1-
dimensional globally hyperbolic Lorentzian manifolds was dictated by complications
of both categorical and analytical nature arising with spacetimes of dimension m ≥ 2,
but we have not been precise on what these difficulties are. We will use this subsec-
tion to briefly mention them and to discuss possible avenues for solutions.

Let us first discuss possible generalizations of the stack Loc∞
1 of smooth 1-

dimensional spacetimes. The issue in trying to generalize this notion relies on deter-
mining how “global hyperbolicity” should be enforced. Let us be more precise. Given
U ∈ Man, we can define a smooth U-family of m-dimensional manifolds to be fiber
bundles (π : M→ U) with typical fiber an m-dimensional manifold N. Moreover, one
can easily define notions of vertical orientation o and vertical time-orientation t and
introduce notions of smooth U-families of oriented and time-oriented m-dimensional
Lorentzian manifolds (π : M → U, g, o, t). The problem now is that we are un-
sure about how a good definition of “smooth global hyperbolicity” should look like.
Should it be implemented fiber-wise, i.e. asking each fiber (M|x, g|x) to be globally
hyperbolic? Should it be “U-uniform” in some suitable sense? However one decides
to implement it, this condition should guarantee that vertical normally hyperbolic op-
erators admit retarded and advanced Green operators and a well-posed initial value
problem. Finding a suitable candidate would enable us to generalize most of the con-
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structions in Section 4.4, with one exception: since in higher dimensions the space
of initial data is infinite dimensional, we could not proceed as in (4.4.31) to conclude
that the assignment of linear observables L : Loc∞

m → PoVec∞
R is a stack morphism.

Therefore, we are presented with the following questions: should we consider weaker
notions of stack morphisms (lax stack morphisms)? Should we instead consider re-
placing the sheaf ShC∞

K
of right C∞

K,U-modules with other candidates?
Another issue of categorical nature is the following: we have seen that algebraic

quantum field theories can be equivalently introduced using multicategorical tools
and how this is convenient to handle “intrinsically” Einstein causality (which in di-
mensions higher m ≥ 2 enters the picture). Should we then consider “stacks of
multicategories” in any appropriate sense?

We believe that to approaching these questions will require the contributions of
researchers with distinct mathematical backgrounds and interests.

Let us wrap-up the possible challenges:

Open Problem 5.2.1. Find a suitable generalization of global hyperbolicity to smooth U-
families of m-dimensional oriented and time-oriented Lorentzian manifolds (π : M →
U, g, o, t) such that vertical normally hyperbolic operators admit smoothly parametrized re-
tarded and advanced Green operators and a well-posed smoothly parametrized initial value
problem.

Open Problem 5.2.2. Find a suitable framework such that the assignment L : Loc∞
m →

PoVec∞
R of linear observables for a smooth m-dimensional free AQFT is a morphism between

stacks. Possible options could be enlarging the 2-category St of stacks to allow for lax mor-
phisms or replacing the stack ShC∞

R
of sheaves of C∞

R -modules by a stack describing sheaves of
topological (or bornological) modules.

Open Problem 5.2.3. Develop a theory of stacks of multicategories in order to define the
stack AQFT∞

m of smooth m-dimensional AQFTs in terms of a suitable mapping stack between
stacks of multicategories.
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