
 
 

 

A bioinformatic analysis of the Duchenne 
muscular dystrophy gene and associated 

gene variants across human cancers 

 

 
A thesis submitted to the University of Nottingham for the degree of MRes in 

Bioinformatics 

 

Lee Machado 
 

September 2022 

 

Supervisors: Professor Richard Eames and Professor David Brook 

 

  



 
 

Abstract 
The Duchenne muscular dystrophy (DMD) gene and its major translated protein product 

Dystrophin (Dp427m) have for decades been associated with musculoskeletal function, with 

specific mutations giving rise to dysfunction in Duchenne and Becker muscular dystrophies. 

Alterations in the expression of the DMD gene have recently been associated with the 

development, progression, and survival outcomes of several tumours.  

A bioinformatic workflow employing an outcome-based cutpoint selection method was 

developed. It was implemented to provide a comprehensive approach to examine the 

association of DMD mRNA expression and survival outcomes across 33 different tumour types 

and used bulk RNAseq data of primary tumours from the cancer genome atlas project.  

Nine of the 33 tumours had significant survival outcomes using Kaplan Meier log-rank 

statistics and were the focus of further downstream analysis. High DMD expression was 

significantly associated with poor survival in low grade glioma, thymoma, rectal and kidney 

cancer. Conversely, low expression of DMD was associated with poor survival in uveal 

melanoma, pancreatic, lung adenocarcinoma, acute myeloid leukemia, and breast carcinoma.  

Univariate Cox proportional hazard modelling was used to calculate DMD hazard ratios. In 

combination with hazard ratios from other dystrophin associated glycoprotein complex 

genes, hierarchical clustering was used to identify clusters that may potentially be used as 

candidate biomarkers for different cancer types and help identify potentially common 

underlying causal factors in these tumours. 

The expression of the individual DMD gene products was examined and were also significantly 

associated with overall survival, with specific patterns of expression likely to have differential 

biological effects relevant to the pathogenesis of each tumour. The smallest gene product, 



 
 

Dp40 was expressed across all tumours and most tumours expressed at least one Dp71 

isoform. Full length Dp427m was expressed in breast cancer, low grade glioma, lung 

adenocarcinoma, pancreatic adenocarcinoma, rectal cancer, and uveal melanoma. Low grade 

glioma had the broadest expression of different DMD gene products and acute myeloid 

leukemia was restricted to just Dp40 expression. 

To explore differences between tumours expressing high or low amounts of total DMD RNA, 

differential gene expression and preliminary pathway analysis identified dysregulated genes 

with gene ontology biological terms that related to motility and adhesion which is concordant 

with dystrophin’s known role as a structural/scaffold protein that facilitates cellular 

interaction of the actin cytoskeleton with the extracellular matrix. However, in some cancers 

novel terms relating to ion homeostasis (pancreatic and rectal) and chemical/sensory 

perception (lung) were identified, and the biological significance of this is currently unclear. 

Future work will require confirmation of dystrophin protein expression in these tumours with 

follow-up functional experiments to demonstrate that dysregulated dystrophin is a 

contributor to individual hallmarks of cancer. DMD gene or protein product expression may 

have potential utility as an independent prognostic marker which can further stratify patients 

to identify those with risk of poor survival. This knowledge may ultimately improve risk 

stratification, patient management and aid our understating of the role dystrophin in these 

cancers.   
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Chapter 1 

1. Introduction 

1.1 The biology of DMD  

1.1.1 DMD gene structure and encoded dystrophin products  

The Duchene muscular dystrophy gene (DMD) is named after the clinical condition of the 

same name and is one of the largest genes in the human genome comprised of seventy-nine 

exons spanning 2Mb on the short arm of chromosome X (ChrX (p21.2-p21.1). It resides within 

a known a fragile site and encodes a large 427KDa protein with an N-terminal binding domain 

and multiple spectrin repeats (Jones et al., 2021).  As part of a dystrophin associated protein 

complex (DAPC), dystrophin bridges the inner cytoskeleton to the extracellular matrix. The 

locus is a known site where point mutations and larger copy number alterations (deletions or 

duplications) contribute to disease causing Duchene and Becker muscular dystrophies 

(Muntoni et al., 2003). In addition, mutation in DMD contributes to cardiomyopathy. With 

seven alternate promoters and alternative splicing events, a number of dystrophin gene 

variants (Figure 1.1) and isoforms (i.e. Dp71; Figure 1.2) are produced that have distinct tissue 

localisation and function which are incompletely characterised. The complexity is reflected in 

examples such as Dp71 and Dp40, which share the same promoter and first exon but Dp40 

makes use of an alternative polyadenylation site. 
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Figure 1.1 Structure of DMD gene.  
(a) location of independent promoters. (b) Differential expression and domain structure of the 
different gene products. WW:WW domain; Cys: cysteine rich domain; CT: C-terminal domain (Jones 
et al., 2021). 
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Figure 1.2 Dp71 isoforms and preferred nomenclature. 
Dp71 splice isoforms are grouped according to their C-terminus. Group d contains exon 78 and 79. 
Group F lacks exon 78 and has an alternative exon 79 (79f). Group E contains part of intron 77 (i77) 
and lacks exon 78 and 79. Group G has an isoform with a stop codon in exon 77. Alternative names of 
major Dp71 isoforms: Dp71d = Dp71; Dp71dΔ71 = Dp71a; Dp71f = Dp71b; Dp71; Dp71fΔ71 = Dp71ab. 
Their differential C-termini are illustrated and the location of dystroglycan and syntrophin- binding 
sites are indicated (Naidoo and Anthony, 2020). 

 

1.1.2 Dystrophin as a component of the Dystrophin associated protein complex (DAPC) 

Dystrophin is associated with a protein complex (Figure 1.3) that has unique structural and 

functional roles that depend on tissue localisation. The canonical role of the DAPC is to 

stabilise the plasma membrane of striated muscle cells by linking it to the basal lamina by 

interacting through ECM interactions. If this does not correctly function, the result is a 

collection of inherited diseases characterised by degeneration of muscle fibres and muscle 

weakness (discussed in next section). Additional functions also include regulation of cation 

and water channels as well as kinases and nNOS (Pilgram et al., 2010). DAPC proteins can 

reside either as extracellular, transmembrane or cytoplasm proteins. α-dystroglycan is 

located on the surface of the sarcolemma, is heavily glycosylated and interacts with laminin-
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2 linking the plasma membrane to the extracellular matrix. α-dystroglycan is associated with 

β-dystroglycan and together forms an interaction with dystrophin. A Sarcoglycan sub-

complex is tightly linked to dystroglycan (through interaction with Sarcospan) and consists of 

four transmembrane proteins (α, β, γ and δ). The sarcoglycan-sarcospan sub-complex is also 

involved in signal transduction and mechanoprotection. Cytoplasmically, dystrophin interacts 

with both β-dystroglycan and the actin cytoskeleton. Dystrophin also interacts with 

syntrophins, dystrobrevins, and nNOS (a producer of nitric oxide) which are recruited to the 

C-terminus of dystrophin and mediate signal transduction pathways that (for example) 

override sympathetic vasoconstriction and prevent functional ischemia in contracting 

muscles (Percival, 2018).        

 

 

Figure 1.3 Dystrophin as a component of the Dystrophin-associated protein complex 
(DAPC). 
The DAPC facilitates the stabilisation of muscle fibres by connecting the intracellular actin 
cytoskeleton to the extracellular matrix. ABD, actin binding domain; SSPN, Sarcospan; ECM, 
extracellular matrix; nNOS, neuronal nitric oxide synthase (taken from (Gao and McNally, 2015). 
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The full-length Dystrophin protein (427KDa, 3,684 amino acids) has four functional domains 

(Figure 1.4). An amino-terminal actin-binding domain, a central rod domain with twenty-four 

spectrin-like repeats interspersed with 4 hinge regions, a cysteine-rich and WW containing 

dystroglycan-binding domain, and finally a carboxy-terminal domain facilitating interaction 

with the sarcolemma via dystrobrevin and syntrophin binding sites. The N and C termini are 

critical for function but the loss of spectrin repeats in the rod domain are somewhat tolerated 

(Kahana and Gratzer, 1995) and are the basis of dystrophin restoration therapies for DMD 

(Cirak et al., 2012). 

 

1.1.3 Duchenne and Becker muscular dystrophies: The canonical diseases associated 
with DMD mutation 

DMD mutations occur as germline (in two thirds of cases) or as sporadic copy number 

alterations. 60-70% of cases harbour deletions and 10% have duplications within the DMD 

gene. There are also point mutations (20-35% of cases) that collectively give rise to Duchenne 

muscular dystrophy (DMD) and the milder and related disorder Becker muscular dystrophy 

(BMD). These monogenic disorders, are rare and have an estimated combined prevalence of 

1 in 7250 males (Romitti et al., 2015). Clinically, from 4-5 years of age in DMD, there is 

progressive weakness and degeneration of skeletal muscle. Patients struggle to walk and are 

typically wheelchair bound by their early teens. Although better management has 

ameliorated life expectancy, patients require more clinical intervention (ventilation) in their 

mid-late teens and often die with associated cardiomyopathy by 30 years of age. In contrast, 

BMD occurs later (average age of 12 years old), and ambulation loss, if it occurs, does not 

manifest until post-twenties with overall survival times that are longer than DMD and in some 

cases can even approach normal life expectancy.  
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Typically, DMD deletions (60-65% of cases) account for the largest proportion of dystrophin 

mutations and more rarely duplications (5-15%) are observed. Although these CNAs can occur 

anywhere within the DMD locus, two deletion hotspots cluster, either within the central 

region (between exons 43 and 53) of the gene or towards the 5’ end (exons 6 and 7) (Figure 

1.4). The consequence of these and other mutational events may be a truncated but partly 

functional protein (i.e. due to an in-frame mutation in BMD) or a truncated but unstable 

protein (due to a frameshift mutation or nonsense point mutation in DMD).  

 

Figure 1.4 Dystrophin gene and protein. 
(A) The dystrophin protein has functional domains including a hinge (H), WW, cysteine-rich (CR), and 
carboxyl-terminal (CT) domain. (B) Options for alternative splicing of 79 exons of the human 
dystrophin gene. The colours correspond to functional domains of the protein in A. Exon shapes 
highlight whether splicing between adjacent exons maintains a contiguous ORF (when the shapes fit 
together) (Olson, 2021) 

The phenotype of patients with DMD mutations can be complex and immunohistochemistry 

of muscle biopsy material using anti-dystrophin antibodies can be informative and diagnostic. 

In some cases interesting phenotypes occur intermediate between Becker and Duchenne. In 

others, mosaicism leads to revertant fibres (Figure 1.5) (Muntoni et al., 2003). For female 

carriers, even asymptomatic individuals, there can be high risk of cardiomyopathy with a 
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spectrum of severity due to random X inactivation. However, overt DMD in females is very 

rare but does happen (Abbadi et al., 1994). 

 

 

 

Figure 1.5 Expression of dystrophin 
Dystrophin protein expression in (a) Normal muscle, (b) mild BMD, (c) severe BMD, (d) a manifesting 
DMD carrier, (e) a patient with an intermediate BMD/DMD phenotype and (f) DMD (Muntoni et al., 
2003). 
 

1.2 A putative role for Dystrophin in human cancers 

1.2.1 The hallmarks of cancer 

Recently, the Hanahan and Weinberg hallmarks of cancer have been updated (Hanahan, 

2022) where the original hallmarks defined capabilities acquired by cells as they underwent 

neoplastic progression (Figure 1.6). The acquired capabilities proposed in 2000 were 

consolidated where provisional hallmarks have now been sufficiently validated and are 

considered part of the core set. In this recent review by Hanahan, two new proposed 

hallmarks and two enabling characteristics have been described.  
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Figure 1.6 Updated Hallmarks of cancer. 
Left Hallmarks of cancer embodying eight hallmark capabilities and two enabling characteristics 
(Inducing or accessing vasculature and tumour promoting inflammation). Right Additional proposed 
emerging Hallmarks and enabling characteristics (Hanahan, 2022). 
 

The two new emerging hallmarks are unlocking phenotypic plasticity (i.e. to evade or escape 

from the state of terminal differentiation) and (tumour promoting) senescent cells. Enabling 

characteristics include non-mutational epigenetic reprogramming and polymorphic 

microbiomes. In the context of this expanded cancer model, this thesis will explore 

consequences of the new enabling characteristics where alterations in gene expression may 

be driven either by mutation and general genome instability or these new enabling 

characteristics, which include non-mutation or epigenetic reprogramming (Skrypek et al., 

2017). This may occur because of mechanisms within the tumour microenvironment that 

results in epigenetic reprogramming, for example hypoxia in tumours may alter the activity 

of enzymes involved in epigenetic reprogramming (Thienpont et al., 2016). Another example 

may be epigenetic regulatory heterogeneity or epigenetic regulation of stromal cell types that 

populate the tumour microenvironment (Lu et al., 2020). 
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1.2.2 Overview of DMD in different tumour types 

There have been a number of studies suggesting DMD mutation is associated with 

tumorigenesis across different cancers which we reviewed recently (Jones et al., 2021) and 

(Figure 1.7).  

 

Figure 1.7 cBioportal was used to rank DMD alteration frequencies across the TCGA 
PanCancer Atlas studies 
10,953 patients were studies across thirty-three studies. Alteration frequencies consist of mutations 
(green), fusions (purple), amplifications (red), deep deletions (blue) and multiple alterations (grey). 
Only TCGA studies with both mutation data and copy number alteration (CNA) data are shown (Jones 
et al., 2021). 
 
Examples are found across sarcomas, central nervous system tumours, melanomas, and 

haematological malignancies. There are also several carcinoma’s that are implicated. Below 

(and Table 1.1) are detailed some of the studies that report these interesting associations. 
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Table 1.1 Summary of evidence for the role of the DMD gene in cancer (Jones et al., 2021) 

 

1.2.2.1 Sarcomas 

Sarcomas have been of particular interest in evaluating whether DMD is associated with 

cancer. In part, this is because of the role of dystrophin in the normal biology of muscle. mdx 

mice have a naturally occurring mutation (nonsense point mutation in exon 23) that 

abrogates Dp427 expression. A consequence is that aged mdx mice develop alveolar 

rhabdomyosarcoma  (RMS) like tumours (Chamberlain et al., 2007). The occurrence of RMS 

in these mice is thought to be, in part, due to continual degeneration and regeneration of 

myofibres throughout the life of the animals. The result is increased satellite cell proliferation 

and their constitutive activation increasing the chance of further mutation that may affect 

cellular differentiation (Chamberlain et al., 2007). RMS spontaneously develops in nine 

percent of mdx mice aged over one year, compared with control animals (Fernandez et al., 

2010). Upon further characterization of the RMS tumours, they were found to be more 

consistent with the embryonal rather than alveolar type. These tumours had mutations in 

genes orthologous with human genes including TP53 and mouse double minute 2 (MDM2), a 
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negative regulator of p53. In support for the evidence of DMD in sarcomas, abnormalities in 

the dystrophin associated protein complex (particularly dystroglycans) have been linked to 

tumorigenesis (Brennan et al., 2004; Sgambato and Brancaccio, 2005). Interestingly, the 

incidence of tumours in mdx mice has been as high as 40% in one study  (Schmidt et al., 2011). 

The reasons for this were unclear but may include housing or environmental factors. 

Alternatively, the genetic background of the mice may be pertinent which is why researchers 

compared DMD deficiency in mice on different backgrounds (Schmidt et al., 2011). For 

example, both mdx mice and mdx-3Cv mice (Cox et al., 1993) both develop tumours. 

However, mdx-3Cv mice have reduced incidence (and develop tumours at approx. 660 days 

compared with 540 days: mean age of onset). Both animals were on a C57BL/6 backgrounds. 

However mdx animals lack only Dp427 whilst mdx-3Cv mice have low Dp427 expression but 

lack all C-terminal products. Therefore, strain specific differences or the levels of the different 

DMD gene products may account for differences in the incidence of cancer in these animals. 

Mdx mice also exhibit genomic instability with recurrent amplification of Jun and Met. 

CDKN2A and NF1 are frequently lost and copy number gains frequently occur involving 

chromosomes 8 and 15. In summary, mouse models recapitulating Duchenne muscular 

dystrophy harbour genomic instability with increased risk of specific sarcomas.  

In humans, a study by Wang et al identified Dp427 as having tumour suppressor activity in 

myogenic tumours (Wang et al., 2014) where intragenic deletions drive progression to high 

grade sarcoma. The authors used SNP arrays and identified deletions in 63% of myogenic 

cancers. This included gastrointestinal stroma tumours (GIST), leiomyosarcomas (LMS) and 

Rhabdomyosarcomas (RMA). Employing Multiplex Ligation Dependent Probe Amplification 

(MLPA), 43% of high-grade myogenic tumours had copy number alterations within the DMD 

gene. These mutations typically occurred and involved exons 1-3 and but rarely extended 
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beyond exon 62. Consequently, Dp427 was typically absent in these tumours. However, the 

smaller dystrophin gene product Dp71 was maintained in these patients implicating a role for 

Dp71 in the pathology of these myogenic tumours. Functionally, Dp71 knockdown reduced 

cancer cell growth in cell line models. Restoring Dp427 expression resulted in inhibition of 

migration, invadeapodia formation and invasiveness. Therefore, the lack of full length Dp427 

but the presence of the shorter Dp71 gene variant may be an oncogenic driver event in the 

tumorigenesis of these myogenic cancers. Array comparative genomic hybridization studies 

confirm DMD deletions in 16.5% of all tumours examined (Mauduit et al., 2019). This occurred 

in 16.5% of sarcomas with structurally complex genomic profiles (including LMS), 21.6% of 

synovial sarcomas and 14.2% of GIST cases. In summary, these data support a role for DMD 

dysregulation in the pathogenesis of myogenic tumours. 

1.2.2.1 Central nervous system tumours 

RNAseq and microarray analysis of data from the CBioPortal repository and GEO database 

respectively allowed DMD expression and mutation to be identified in non-myogenic tumours 

including those of the central nervous system where DMD was overexpressed compared to 

healthy tissues (Luce et al., 2017). This included ependymoma and astrocytoma. Conversely, 

medulloblastoma was underexpressed compared with matched control tissue. Recent work 

from our group has identified a novel association of DMD expression with low grade glioma 

using bulk RNAseq data (discussed further in Chapter 4). High DMD expression was 

significantly associated with poor survival outcomes in low grade glioma (LGG) with a 

difference in survival of over seven years (p=<0.01). DMD remains significant in a multivariate 

model and may represent an independent prognostic marker for low grade glioma. This 

association of DMD with survival was only apparent in IDH mutant cases where non-1p/19q 

deleted patients could be further stratified into high and low DMD groups. This work identifies 
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DMD expression as an independent prognostic marker potentially further stratifying IDH 

mutant cases to identify those at increased risk of poor survival. For neuroblastoma, SNP 

analysis as well as whole genome and exome sequencing was employed on 14 cases to 

identify somatic DMD deletions which occurred in 86% of the tumours (Gallia et al., 2018). 

These olfactory neuroblastoma cases had mutations localised to the 5’ end of the gene with 

predicted Dp71 retention. In high grade meningioma patients (n=55) 32% had DMD deletions 

or silenced expression (Juratli et al., 2018). Twenty-one percent of deletions were in the 5’ 

region (between exons 2-30 or entire deletions of DMD). These cases had a loss or reduction 

of full-length dystrophin resulting in reduced density of cytoskeletal components in the 

tumour. When comparing patients with DMD alterations, those patients had shorter 

progression free survival and overall survival compared to patients without DMD alterations. 

These alterations were more common in high grade meningiomas compared with low grade 

(grade I and II) meningiomas. In studying mutation patterns in these tumours, it was found 

that DMD is the second most frequently altered gene (Paramasivam et al., 2019).  

Glioblastoma has a particularly poor survival outcome for patients and McAvoy et al 

demonstrated that DMD expression was reduced in brain tumour cell lines and xenograft 

models of GBM (McAvoy et al., 2007). GBM lines have been examined for expression of 

dystrophin isoforms and to date there have been six Dp71 isoforms identified in the U251-

MG cell line (Rani et al., 2019). Ruggieri et al explored Dp71 and its role in glioblastoma and 

meningioma and the authors found Dp71d was decreased in a GBM cell line and biopsy 

material compared with a control cell line (Ruggieri et al., 2019). Dp71 expression resulted in 

reduced proliferation (Ki-67 staining) suggesting in the context of GBM Dp71 is associated 

with reduced proliferation. 
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1.2.2.2 Melanomas 

In melanoma dysregulation of DMD may be involved in the pathogenesis of this disease 

(Körner et al., 2007). PCR analysis of cell lines revealed DMD deletions in three cell lines 

towards the 5’ region of DMD. These mutations were not in the classic hotspot regions that 

occurs in patients with dystrophinopathies suggesting these mutations are tumour specific. 

Dp427 was highly expressed in these cell lines. However, in an expanded panel of 55 

melanoma cell lines, full length DMD expression was low or absent in 87% of them. 

Immunoblotting of cell lines show Dp71 expression remains even in the absence of Dp427. 

Dp427m when knocked down in melanoma cell lines and cells had reduced spheroid 

formation and enhanced invasion and migration. 

1.2.2.3 Haematological malignancies 

Baumforth et al used microarray analysis to show that DMD was downregulated eightfold in 

primary Hodgkin's lymphoma (in the nodular sclerosing subtype) compared with germinal 

centre B cells (Baumforth et al., 2008). In this work EBV expression drove DMD upregulation 

compared with EBV negative cell lines. This suggests EBV driven upregulation of DMD in 

lymphoma may be important in the pathogenesis of this disease although it requires further 

investigation. To note, a case report identified in Becker muscular dystrophy patients an 

association with Hodgkin’s (Cereda et al., 2004) and non-Hodgkin’s lymphoma (Uotani et al., 

2001). 

In acute lymphoblastic leukaemia (ALL) only one case study has observed an association 

between DMD and ALL (Svarch et al., 1988). In a study of 134 chronic lymphocytic leukaemia 

(CLL) patients, it was reported that high DMD expression in these tumours was associated 

with reduced cell doubling time and was predictive of patient survival where median overall 
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survival for patients with high DMD expression was 90 months compared with a median that 

was not reached in patients with low DMD expression (Nikitin et al., 2007). 

 

1.2.2.4 Carcinoma’s 

The association of DMD with various carcinomas has been reported with most evidence being 

accumulated for lung adenocarcinoma, gastric carcinoma and carcinomas of the head and 

neck. In Lung adenocarcinoma Tan et al explored the use of cell line shRNA mediated 

knockdown of Dp71 in A549 cells which led to reduced growth, migration an invasion capacity 

compared with controls functional assays (Sichuang Tan et al., 2016). These knockdown cells 

were more chemosensitive to cisplatin mediated apoptosis and had enhanced caspase 

activity. Transplanting the cells into a nude xenograft model with Dp71 depletion, led to 

reduced tumour growth, compared with controls and reduced expression of Lamin B1, Bcl-2 

and MMP2 proteins.  

In gastric carcinoma, Dp71 may play a tumour suppressor role as immunohistochemistry was 

used to show that cancer cell differentiation (p=0.001) and lymphovascular invasion (p=0.041) 

were associated with downregulation of the Dp71 (Sipin Tan et al., 2016). Patients with high 

Dp71 expression had a favourable overall survival outcome compared with patients with low 

Dp71 expression suggesting Dp71 may act as a tumour suppressor in this context. The authors 

also overexpressed Dp71d and Dp71f in gastric cell lines and this inhibited proliferation 

compared with controls cells. Using pull-down experiments, Dp71 interacted with Lamin B1 

in normal gastric epithelial cells suggesting a significant role for Dp71 in proliferation and 

Lamin-B complex formation.  
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In the EBV associated tumour nasopharyngeal carcinoma an X-chromosome wide SNP based 

study identified a strong signal within the DMD gene (intronic SNP rs5927056) validated in 

replication cohorts (Zuo et al., 2019). This intronic SNP was associated with reduced risk of 

NPC. Finally, in other tumour types DMD has been associated with neoplasia. This includes 

breast and uterine cancer patients where DMD alterations had significantly poorer survival 

outcomes (Luce et al., 2017). 

 

1.3 The Cancer Genome Atlas (TCGA) as a repository for mining cancer genomics data 

The Cancer Genome Atlas (TCGA) repository represents one of the most valuable publically 

available data sources for cancer scientists comprised of sequence, expression, single 

nucleotide, copy number, and methylation data from 11K cancers across 33 major types 

(Figure 1.8). Accompanying this molecular data, is extensive clinical data for each cancer type 

including survival data which can be joined together to provide a powerful tool for cancer 

interrogation. A series of landmark papers have been published by the TCGA research 

network and continue to be updated (National Cancer Institute, 2022). 

 

Figure 1.8 Overview of TCGA cases including clinical and molecular data. 



30 
 

Sequence (SEQ), RNAseq and microarray expression (EXP), single nucleotide variation (SNV), Copy 
number variation (CNV), methylation (METH) clinical and Biosample (BIO) sample are available across 
11.3K cases (33 tumour types). Expression data was available from 10.6K cases.  
 

Recently, the pipelines for TCGA bioinformatic analysis have been harmonised across clinical 

studies at the Genomic Data Commons (GDC) (Figure 1.9). Raw sequence FASTQ or BAM files 

originally mapped to the GRCh37/hg19 (legacy) assembly were re-mapped to an updated 

GRCh38/hg38 reference genome assembly (Gao et al., 2019). mRNA expression data from 

these studies was originally derived from polyA+ RNA that was sequenced using Illumina NGS 

instruments and sequencing chemistry kits that evolved over time. As discussed by others 

(Gao et al., 2019), the bioinformatic workflow for generating GRCh38/hg38 RNAseq data at 

the GDC is considerably different from that used to generate the earlier GRCh37/hg19 RNAseq 

data in TCGA. In addition, recent release updates have also occurred (March 2022) at GDC 

with differences in alignment, expression quantification, normalisation, and reference 

assemblies, potentially giving different results in abundance estimates. 

 

Figure 1.9 mRNA-Seq processing and data comparison in TCGA Legacy and the GDC 
Three bioinformatic pipelines have been used to derive gene or isoform level abundance estimates 
for this project. Legacy isoform level data (Left) is derived from the TCGA Legacy (GRCh37/hg19) 
pipeline with output files deposited in the GDC legacy archive. The GDC project pipeline (Middle) was 
used to obtain total DMD gene expression data. During the project, the GDC project pipeline was 
superseded by the GDC current pipeline (hg38) (Right). All aspects of sample processing differ 
including computational methods, the reference genome, and the reference transcriptome (adapted 
from (Gao et al., 2019).  
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1.4 Survival analysis and Cox proportional hazard modelling 

As much of the analysis presented in this thesis is related to patient survival data (as an 

outcome measure), a basic overview of survival analysis is warranted. For further information 

on these topics, the reader is referred to some excellent articles (Clark et al., 2003; Bradburn 

et al., 2003b; Bradburn et al., 2003a). 

Survival analysis considers the time between a starting point (e.g. either the date of diagnosis 

or start of treatment) and the event of interest (e.g. death). A caveat is that for some patients 

the event (death) may not have occurred by the end of the study period and so their ‘time-

to-event’ cannot be determined. Therefore specific methods are required to deal with this. 

The Kaplan-Meier method can be used to estimate the survival probability (Kaplan and Meier, 

1958).  

Visually, this function can be presented as Kaplan-Meier survival curve (a plot of the survival 

probability against time), and it indicates the probability of the event (for example, survival) 

at specific time points. Summarising the data in this way also allows facile estimation of 

median survival times. For example, in a hypothetical cohort (Figure 1.10), at 0.2 months, all 

patients are alive, although one patient has undergone censoring which can occur for the 

following reasons: (a) the patient does not experience the event of interest (death) for the 

duration of the study (b) the patient was lost to follow-up during the study (c) a different 

event occurs preventing further follow-up. When an individual patient event occurs beyond 

the study period, this censoring is described as right censoring. 50% of the patients had died 

at 0.7 years and only 22% of patients were alive at 1 year (Figure 1.10).  
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Figure 1.10 Interpretation of survival curves 
Survival curve of patients over 1 year. 4 patients are censored with an unknown time to event for 
them. Median survival of the cohort is 0.7 years determined by extrapolation from 50% survival. At 
one year only 22 of patients are still alive. Modified from Van den Reek (van den Reek et al., 2015) 

 

If two or more survival curves are presented, they can be compared using the log-rank test, 

which is a non-parametric test that is widely used to compare survival curves. Each curve 

represents a group of patients (e.g. placebo vs. control) and the method calculates the 

expected number of events (if the Null hypothesis were true), since the previous event and 

compares it with observed number in each group. This is done for each event time, and for 

each group and sums them calculating the following chi-square test statistic for which an 

associated p-value can be computed: 

 

Figure 1.11 The log-rank chi-square statistic comparing survival curves 
Oi represents observed events in group i, Ei is the expected events in group i and g is the 
number of groups. P- values are computed from the chi-square distribution. 
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When comparing only two groups, the log rank test (Peto et al., 1977) can be used to test 

whether there is a difference between the survival times of separate groups, but it does not 

allow other explanatory variables to be considered. To achieve this and quantify the 

contribution of multiple covariates,  Cox modelling is a helpful semi-parametric approach that 

can be used to fit univariate and multivariate regression models that have survival outcomes. 

The regression uses: 

h(t)=h0(t) × exp{β1x1+β2x2+⋯+βpxp} 

The hazard function h(t) is determined by p covariates (x1, x2, …, xp). Their impact is 

determined by the size of their coefficients (β1, β2, …, βp). The term h0 represents the 

baseline hazard when the value of all covariates xi are equal to zero. The (t) in h(t) indicates 

that the hazard varies over time (but is proportional). 

This equation can then be rearranged first dividing by the baseline hazard and then taking the 

natural logarithm of both sides. The following form is obtained, with example covariates 

substituted in: 

1. ln(h(t)/h0(t)) = (Sex[Male] * β1) +(Smoking[Yes]) * β2)+ (Chemotherapy[Yes]) * β3)+…. 

If the parameter estimates are exponentiated for the given predictor variable, the quantities 

exp(βp) are obtained: 

2. (h(t)/h0(t)) = exp (β1)(Sex[Male] * exp (β2)(SmokingYes] * exp (β3)(Chemotherapy[Yes] *… 

 

These are the hazard ratios (i.e. exp (β1)(Sex[Male]). A hazard ratio of 1 indicates no difference 

in survival between the groups. Greater than 1 means an increase in the event probability 

(death). Less than 1 represents a reduction in the hazard and chance of death. 
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Hazard ratios represent the multiplicative effect that a given covariate (e.g. patient sex) has 

on the outcome. If a particular covariate has a hazard ratio of 2, then an increase of 1 in that 

covariates value will double the hazard rate across all time points. Cox proportional hazard 

modelling assumes there is non-informative censoring, and the hazards are proportional.  

With suitable background provided on the biology of DMD, it’s putative association with 

cancer and the nature/provenance of the gene expression and clinical data analysed during 

this project, the aim and objectives of the project can be defined. 

1.5 Aims and objectives 

 

Aim  

Identify how DMD and DMD gene variants are associated with survival outcomes for 

individuals with cancer. 

Objectives 

1. To identify whether total DMD gene expression is associated with survival outcomes 

using Kaplan-Meier survival analysis across 33 tumour types. 

2. To model hazard ratios of associated DAPC genes across TCGA cancers 

3. To identify expression patterns of specific DMD gene variants in cancers and 

determine their association with survival outcomes. 

4. To identify transcriptome wide differentially expressed genes in DMD high vs. low 

expressing cases to identify biological pathways dysregulated in specific cancer types 

by DMD. 
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Chapter 2 

2. Materials and methods 

2.1 Clinical sample data and ethical approval 

Project approval was obtained from the University of Nottingham project approval 

committee. All data were downloaded from the Cancer Genome Atlas (TCGA); therefore no 

ethical approval was needed. Full details of ethics and policies associated with TCGA is 

described elsewhere (NCI, n.d.). Genomic analysis was done on a data set of molecular and 

clinical information from over 10,000 tumours representing 33 types of cancer (Weinstein et 

al., 2013). Normalised RNA-seq gene expression and clinical data from these tumours were 

collected and analysed using a bespoke bioinformatic workflow (Figure 2.1). The acronyms 

for each cancer type analysed in this study are detailed and used throughout (Table 2.1).  

Table 2.1 Definition of TCGA cancer types abbreviations. 
 

Abbreviation Type of cancer 
ACC Adrenocortical carcinoma 
BLCA Bladder Urothelial Carcinoma 
BRCA Breast invasive carcinoma 
CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma 
CHOL Cholangiocarcinoma 
COAD Colon adenocarcinoma 
DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma 
ESCA Oesophageal carcinoma 
GBM Glioblastoma multiforme 
HNSC Head and Neck squamous cell carcinoma 
KICH Kidney Chromophobe 
KIRC Kidney renal clear cell carcinoma 
KIRP Kidney renal papillary cell carcinoma 
LAML Acute Myeloid Leukaemia 
LGG Brain Lower Grade Glioma 
LIHC Liver hepatocellular carcinoma 
LUAD Lung adenocarcinoma 
LUSC Lung squamous cell carcinoma 
MESO Mesothelioma 
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OV  Ovarian serous cystadenocarcinoma 
PAAD Pancreatic adenocarcinoma 
PCPG Pheochromocytoma and Paraganglioma 
PRAD Prostate adenocarcinoma 
READ Rectum adenocarcinoma 
SARC Sarcoma 
SKCM Skin Cutaneous Melanoma 
STAD Stomach adenocarcinoma 
TGCT Testicular Germ Cell Tumours 
THCA Thyroid carcinoma 
THYM Thymoma 
UCEC Uterine Corpus Endometrial Carcinoma 
UCS Uterine Carcinosarcoma 
UVM Uveal Melanoma 

 

2.2 Overview of workflow for DMD and gene variant survival analysis  

To analyse the association of DMD and variant gene expression with patient survival 

outcomes, RNAseq data from 33 tumour types from the genomic data Commons (GDC) was 

imported into Rstudio using an R TCGAbiolinks library (Colaprico et al., 2016). Associated 

harmonised clinical data was imported into Rstudio. DMD RNAseq gene expression was linked 

to patient clinical data to perform survival analysis. Patients were split into high and low 

expressing DMD RNA expressing groups based on cutpoint selection using Maxstat (Lausen 

and Schumacher, 1992) . Kaplan-Meier survival analysis was used to explore overall survival 

outcomes in these two patient groups. Hazard ratios were calculated based on univariate 

analysis. Pathway analysis with iDEP identified putative functional pathways based on 

differential gene expression between high and low DMD expressing tumours. 



37 
 

 

Figure 2.1 Bioinformatic workflow 
Workflow for analysing DMD, DAPC and DMD gene variants and their association with overall survival 
outcomes in cancer and subsequent DEG analysis. Software packages and R libraries are indicated in 
brackets. 
 

2.2.1 Importing normalised gene expression and associated clinical data from TCGA  

Although largely concordant, it is important to recognise the origin of the types of normalised 

data used in this project. For isoform level data, TCGA legacy sequence data (hg19) was 

originally aligned using MapSplice, with translation of co-ordinates using UCSC KnownGene. 

Expression was quantified with RSEM, and raw counts were normalised to fixed upper quartile 

values (500 for isoform estimates). Upper Quartile (UQ) normalisation methods remove genes 

that have zero read counts across all samples and the remaining gene counts are scaled by 

the upper quartile of the count distribution of the sample and multiplied by the mean upper 

quartile across all samples (Abbas-Aghababazadeh et al., 2018).  
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Output files for total DMD expression were derived from a GDC workflow that used legacy 

BAM files which were reformatted as FASTQs using biobambam. These were then re-aligned 

to the hg38 genome assembly using the STAR 2-pass approach (Dobin and Gingeras, 2015). 

The Gencode v22 transcriptome definition was then quantified using htseq-count procedure 

within samtools. Raw counts, FPKM, and upper quartile normalized FPKM estimates are 

provided (Figure 2.2). During the project (March 2022) GDC updated their pipeline using 

Gencode v36 transcriptome annotation and used STAR for both alignment and raw count 

production. RNA-Seq STAR-Counts output files from GDC now contain additionally not only 

FPKM, FPKM-UQ but also TPM normalised abundance values.  

 

Figure 2.2 Bioinformatic pipeline used by GDC to generate gene expression data 
Overview of how submitted BAM and FASTQ files are processed by the GDC to produce output files 
for users (GDC, 2022) https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/images/gene-
expression-quantification-pipeline-v3.png) 

 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/images/gene-expression-quantification-pipeline-v3.png
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/images/gene-expression-quantification-pipeline-v3.png
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FPKM-UQ was applied to gene-level read counts that are produced by HTSeq and generated 

using custom scripts. The formula used to generate FPKM-UQ values is as follows: 

FPKM = [RMg * 109] / [RM75 * L] 

• RMg: The number of reads mapped to the gene 

• RM75: The number of read mapped to the 75th percentile gene in the alignment. 

• L: The length of the gene in base pairs 

As an example of how FPKM-UQ normalisation works consider the following example: 

Sample 1: Gene A 

• Gene length: 3,000 bp 

• 1,000 reads mapped to Gene A 

• 1,000,000 reads mapped to all protein-coding regions 

• 2,000 reads mapped in upper quartile in sample 1 

FPKM for Gene A = (1,000)*(109)/[(3,000)*(1,000,000)] = 333.33 

FPKM-UQ for Gene A = (1,000)*(109)/[(3,000)*(2,000)] = 166,666.67 

For this study normalised FPKM-UQ RNA-seq data was extracted from GDC. FPKM-UQ files 

were available as tab delimited files with the Ensembl gene IDs in the first column and the 

expression values in the second. The R/Bioconductor package TCGAbiolinks (Colaprico et al., 

2016) version 2.24 was used employing GDCquery(), GDCdownload() and GDCprepare() 

functions and using data.catagory as “Transcriptome profiling”,  data.type as “Gene 

Expression quantification” and workflow.type as “HTSeq – FPKM-UQ”. Later during pre-

processing non-primary tumours were filtered out (see FINALscript.R code – section 2.5 for 
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code availability). Please note, GDC altered their pipeline for data extraction during the 

project but after data extraction and analysis (see updated STAR_script_edited.R code – 

section 2.5). 

2.2.2 Dichotomisation of patient tumours into high and low expressers 

High versus low DMD expressing patients were dichotomised using cutpoint selection using 

the R library Maxstat. Maxstat uses maximally selected rank statistics (smethod=LogRank) to 

evaluate a simple estimated cutpoint. Simulation used conditional Monte-Carlo with B = 9999 

replications. 

2.2.3 Kaplan-Meier survival analysis DMD high and low expressing tumour groups 

The R library package Survival (Therneau, 2021) was used to do Kaplan-Meier survival 

analysis. The function survfit() was used to compute Kaplan-Meier survival estimates. 

Survdiff() was used to compute the log-rank test comparing the two survival curves. P-values 

were adjusted for multiple testing using Bonferroni correction. The function ggsurvplot(), in 

the R package Survminer was used to produce the survival curves for the two groups of 

subject. 

2.2.4 Univariate hazard modelling 

Tumours where DMD or DAPC genes with high or low expression gave significant differences 

in the Kaplan Meier analysis were analysed for the proportional hazard using Cox modelling. 

For the univariate analysis, gene expression alone was used as a covariate. The function 

coxph()[in the Survival package] was used to compute the Cox proportional hazards 

regression model in R. 

2.2.5 Cluster analysis  
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Agglomerative hierarchical clustering analysis was performed using the hclust() function [in 

stats package] using a Euclidean distance matrix with a Ward D2 minimum variance linkage 

method which minimises the total within-cluster variance. For each step, the pair of clusters 

with minimum between-cluster distance are merged. Enhanced visualisation was provided in 

ggplot using the fviz_dend() function.  

2.3 Isoform expression analysis 

As the current GDC pipeline does not have isoform level data for protein coding genes, 

isoform expression data from the GDC legacy archive data was extracted using the 

R/Bioconductor package TCGAbiolinks (Colaprico et al., 2016) version 2.24 using GDCquery(), 

GDCdownload() and GDCprepare() functions for primary tumour samples.types as well as 

using data.type as “Isoform expression quantification” and file.type as “normalized” (see 

isoform_GDC.R code – section 2.5 for code availability). This pipeline used MapSplice (Wang 

et al., 2010) to do the alignment and RSEM to perform the quantification (Li and Dewey, 

2011). Output files contained UCSC isoform identifiers and Table 2.2 (curated from the UCSC 

Table browser) was used to convert them to specific DMD gene products for processing and 

survival analysis. 
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Table 2.2 Details of major DMD gene products including ids, genome and coding sequence 
start and end positions and exons counts 

DMD variant exonCount UCSC ID Ensembl ID chrom strand cdsStart cdsEnd proteinID RefSeqID 

Dp40 13  uc011mkb.1 ENST00000378723 chrX - 31139949 31284946 B4DSV7 NM_004019 

Dp71ab 16  uc004dcp.1 ENST00000378723 chrX - 31139949 31284946 P11532-5 NM_004018 

Dp71a 17  uc004dcn.1 ENST00000378723 chrX - 31140035 31284946 NP_004008 NM_004017 

Dp71b 17  uc004dco.1 ENST00000378723 chrX - 31139949 31284946 P11532-6 NM_004016 

Dp71 18  uc004dcm.1 ENST00000378723 chrX - 31140035 31284946 E9PDN1 NM_004015 

Dp116 25  uc004dcq.1 ENST00000378707 chrX - 31140035 31526354 NP_004005 NM_004014 

Dp140bc 31  uc004dcs.1 ENST00000343523 chrX - 31139949 31792238 NP_004014 NM_004023 

Dp140c 32  uc004dcr.1 ENST00000541735 chrX - 31140035 31792238 NP_004011 NM_004020 

DpD140ab 34  uc004dcv.1 ENST00000359836 chrX - 31139949 31792238 NP_004013 NM_004022 

Dp140b 35  uc004dcu.1 ENST00000378707 chrX - 31139949 31792238 A7E212 NM_004021 

Dp140 36  uc004dct.1 ENST00000378707 chrX - 31140035 31792238 A1L0U9 NM_004013 

Dp260-1 51  uc004dcx.2 ENST00000378677 chrX - 31140035 32430326 NP_004002 NM_004011 

Dp260-2 51  uc004dcw.2 ENST00000378677 chrX - 31140035 32430174 NP_004003 NM_004012 

Dp427c 79  uc004ddb.1 ENST00000378677 chrX - 31140035 33357382 NP_000100 NM_000109 

Dp427m 79  uc004dda.1 ENST00000357033 chrX - 31140035 33229429 P11532 NM_004006 

Dp427p1 79  uc004dcy.1 ENST00000378677 chrX - 31140035 33146282 P11532-4 NM_004009 

Dp427p2 79  uc004dcz.2 ENST00000378677 chrX - 31140035 32834745 NP_004001 NM_004010 

 

2.4 Differential gene expression and pathway analysis 

RNA-seq data is a powerful tool for transcriptome profiling of tumours. However, exploratory 

analysis, differential expression and subsequent pathway analysis can be complicated. iDEP 

connects 63 R/Bioconductor packages to provide workflows (Figure 2.3) that enable cancer 

biologists to leverage gene expression data into functional experiments (Ge et al., 2018). 
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Figure 2.3 iDEP: Integrated Differential Expression and Pathway analysis 
iDEP is an integrated web application for differential expression and pathway analysis of RNA-Seq data 
iDEP workflow and functional modules (Ge et al., 2018) 

 

DEGs were identified using the Limma package (false discovery rate (FDR) cut-off of 0.1 and a 

minimum fold-change of 2). Functional enrichment analysis of DEGs was performed in iDEP 

using gene ontology (GO) biological processes. Enrichment trees and networks were 

generated in iDEP. Protein-protein interaction (PPI) networks among top DEGs were retrieved 

via an API access to the STRING database.  

2.5 Software, code, and data availability 

All code for this project is available at https://github.com/lrmacha/TCGA All analyses used R 

Statistical Software (v4.0.3; R Core Team 2020-10-10), GraphPad Prism 8 and Microsoft Excel. 

Gene expression data analysed during this study are publicly available in the repository 

https://portal.gdc.cancer.gov/ and can be downloaded directly by using the TCGAbiolinks R 

package as described above. 

https://github.com/lrmacha/TCGA
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Chapter 3 

3. A global analysis of DMD gene expression across TCGA tumours. 

3.1 Introduction 

Currently the association of DMD gene expression with survival outcomes across cancer types 

is unclear. To explore this, existing libraries in R were employed to extract TCGA clinical cancer 

and RNA-seq genomics data. To do survival analysis, continuous gene expression data was 

dichotomised into high and low expressing cases. To achieve this, the R package Maxstat was 

employed to achieve cutpoint selection and allow recoding of cases into high vs. low DMD 

expressing groups. The CRAN ‘Survival’ package (Therneau, 2021) facilitated Kaplan–Meier 

survival analysis (including associated log-rank tests) and allowed the production of summary 

survival statistics. 

3.2 Results 

3.2.1 Estimating cutpoint values with Maxstat 

The GDC data portal contains RNA-seq gene expression sets for 33 different tumour types 

(Table 2.1) for download and downstream analysis. Upon download, gene expression data 

was filtered on the gene of interest (e.g. total DMD) and concatenated with matched clinical 

data. Overall survival, status and gene expression values were used to derive cutpoint values 

for recoding cases into high or low DMD expressing cases. 

To dichotomise continuous gene expression data for survival analysis, optimal cutpoint values 

were obtained based on the use of total DMD gene expression, overall survival and status and 

computed using maximally selected log-rank statistics implemented in Maxstat (Figure 3.1). 

The output of the Maxstat.test function provided a log-rank statistic M and p-value by 

conditional Monte-Carlo replication providing an estimated cutpoint value. 
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Figure 3.1 Estimated cutpoints (dashed vertical line) for total mRNA expression in selected 
TCGA cancers 
See Table 2.1 for abbreviations. Based on standardised log-rank statistics. Exact conditional p-values 
were simulated via conditional Monte-Carlo. M = maximum of the log-rank statistics. 
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As an example, for Breast invasive carcinoma (BRCA), the estimated cutpoint was 7942 FPKM-

UQ, and the maximum of the log-rank statistics is M = 3.2113. The probability that, under the 

null hypothesis, the maximally selected log-rank statistic is greater M = 3.2113 is less than 

0.0297. Therefore, BRCA cases with DMD gene expression values above 7642 were recoded 

as high expressing cases and those below 7942 were low expressing cases. 

3.2.1 Kaplan Meier survival analysis of TCGA cancers 

Applying the above discussed cutpoint approach, survival analysis was done on 33 TCGA 

tumours dichotomising patients into high or low expressing groups (see appendices). Of the 

33 tumour types examined, nine had significant differences in survival outcomes (Log-Rank 

test) after Bonferroni correction (Figure 3.2). These included BRCA (p=0.0021), KIRP 

(p<0.001), LAML (p=0.0048), LGG (p<0.0001), LUAD (p= 0.0003), PAAD (p=0.0008), READ 

(p<0.0001), THYM (p<0.0001) and UVM (p<0.0001). For BRCA, LAML, LUAD, PAAD and UVM 

patient overall survival was better in those patients with high total DMD tumour RNA 

expression. In KIRP, LGG, READ and THYM high expression of total DMD was associated with 

worse survival outcomes. As an example, LGG median survival of patients with high 

expression of DMD was 1120 days compared with patients with high tumour expression of 

DMD who lived for a median of 2875 days (2.57-fold, or a 4 years and 10 month increase in 

overall survival time). For KIRP (low), LUAD (high DMD), READ (high DMD), THYM (low DMD) 

and UVM (high DMD) median survival could not be calculated as it was greater than 50% at 

the last time point.  
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Figure 3.2 DMD expression is significantly associated with overall survival in nine specific 
tumour types 
(a) TCGA RNAseq data from nine TCGA cancer cases were dichotomised into high (blue) and low (red) 
DMD expressing groups and survival analysis performed in GraphPad using the log-rank test. Numbers 
in brackets are median overall survival times in days. 
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3.2.2 Univariate Cox model analysis 

Tumours significant in the Kaplan-Meier analysis were analysed in a Cox proportional hazard 

model (Figure 3.3) employing gene expression as the sole covariate. A hazard ratio (HR) > 1 

means that high expression of that gene is associated with decreased survival. Conversely, a 

HR < 1 means that high expression of the gene is associated with increased survival (i.e. is 

protective). High expression of DMD in THYM (HR 11.8, 95% CI 2.9 to 47.8, p<0.001), READ 

(HR 4.19, 95% CI 1.96 to 8.94, p<0.001), LGG (HR 3.15, 95% CI 2.02 to 4.91, p<0.001), and KIRP 

(HR 3.44, 95% CI 1.87 to 6.33, p<0.001) was associated with increased risks of poor survival. 

Conversely, high expression of DMD in UVM (HR 0.14, 95% CI 0.06 to 0.33, p<0.001), PAAD 

(HR 0.46, 95% CI 0.29 to 0.73, p<0.001), LUAD (HR 0.50, 95% CI 0.34 to 0.73, p<0.001), LAML 

(HR 0.46, 95% CI 0.29 to 0.72, p<0.001) and BRCA (HR 0.59, 95% CI 0.43 to 0.81, p<0.001) was 

associated with  protection (compared with high expressing cases). THYM had the highest risk 

of poor survival and UVM has the lowest risk of poor survival, though with wide confidence 

intervals in both cases. 
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Figure 3.3 Hazard ratios in selected TCGA tumours 
Forest plot revealing the log-rank hazard ratio with 95% confidence intervals. UVM n=80, THYM n=121, 
READ n=177, PAAD n = 182, LUAD n=594, LGG n= 529, LAML n= 151, KIRP n= 321, BRCA n=1222 
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3.2.3 Univariate DAPC gene hazard modelling and cluster analysis  

Dystrophin (encoded by DMD) is a component of the Dystrophin associated protein complex 

(DAPC) and so it was of interest to explore whether other DAPC genes (Table 3.1) had a similar 

hazard ratio profile compared with DMD across the selected nine tumours (Figure 3.4).  

Table 3.1 Genes and encoded protein products in the Dystrophin associated protein 
complex 

Gene Protein 
DMD  Dystrophin 
DAG1  Dystroglycan 1 (Alpha & Beta) 
SGCA  Alpha Sarcoglycan 
SGCB  Beta Sarcoglycan 
SGCD  Delta Sarcoglycan 
SGCE  Epsilon Sarcoglycan 
SGCG  Gamma Sarcoglycan 
SGCZ  Zeta Sarcoglycan 
SSPN  Sarcospan 
SNTA1  Syntrophin Alpha 1 
SNTB1  Syntrophin Beta 1 
SNTB2  Syntrophin Beta 2 
DTNA  Dystrobrevin Alpha 
DTNB  Dystrobrevin Beta 
NOS1  Nitric oxide synthase 1 (nNOS) 

 

Interestingly, of the nine tumours examined, only LGG had all DAPC genes providing 

statistically significant univariate hazard ratios (nine DAPC genes associated with increase in 

hazard, six DAPC genes associated with a decrease in hazard). No tumour type had all 

statistically significant hazard ratios trending in the same direction (i.e. all increase or 

decrease the hazard), however, high expression of DAPC genes in LUAD was protective for 

eight genes with only two increasing the hazard.  

Interestingly, by doing hierarchical clustering analysis, hazard ratio data can be clustered by 

rows (TCGA cancer) and columns (DAPC genes) using a Ward D2 hierarchical clustering 

algorithm and a Euclidean distance as distance metric (Lawlor et al., 2016). In clustering by 
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DAPC genes three clusters containing the fifteen genes are illustrated on the dendrogram 

(Figure 3.5A). The first cluster contained genes encoding two sarcoglycans (gamma and delta) 

and dystrobrevin beta, the second cluster contained sarcospan, dystrophin, nNOS, 

dystrobrevin alpha, sarcospan and dystroglycan. The third cluster contained sarcoglycans 

(alpha, beta, zeta, and epsilon) and alpha and beta syntrophins. 

With clustering analysis grouped on tumours, three clusters containing the nine tumours are 

illustrated on the dendrogram (Figure 3.5B) which included two major clusters and a third 

cluster containing only THYM. The middle cluster (yellow) contained READ, KIRP and LGG and 

the largest cluster contained UVM, PAAD, LAML, BRCA and LUAD.  

In summary, of the nine TCGA tumour types with significant survival differences between high 

and low DMD expressing tumours, three major disease clusters could be defined based on 

hazard ratios of DMD and 14 other DAPC-associated gene Hazard ratios.  
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Figure 3.4 Association of DAPC gene expression with hazard ratios in selected TCGA 
tumours 
Forest plots revealing the log-rank hazard ratio with 95% confidence intervals. Red bars are significant 
(alpha < 0.05) UVM n=80, THYM n=121, READ n=177, PAAD n = 182, LUAD n=594, LGG n= 529, LAML 
n= 151, KIRP n= 321, BRCA n=1222 
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Figure 3.5 Cluster dendrograms based on hazard ratios 
Identifying (a) DAPC-gene based dendrogram cluster analysis of tumours. (b) Tumour-based 
dendrogram cluster analysis of DAPC genes.  Significant univariate Hazard ratio values were used. 
Three clusters were specified for both dendrograms, using Euclidean distance as a distance metric and 
the Ward D2 clustering algorithm. 
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3.2.4 Variant specific expression analysis across TCGA tumours 

Most studies to date have considered dystrophin as a single protein and have not considered 

the complex diversity that arises from alternative splicing or promotor usage. For example, to 

date, 14 Dp71 isoforms have been identified (Naidoo and Anthony, 2020). The splicing of 

exons 71 and 78 are particularly important as their presence/absence determines subcellular 

localisation and function (Naidoo and Anthony, 2020). Dp71 is alternatively spliced to produce 

multiple isoforms, the isoforms lacking exon 71 (Dp71a, found exclusively in the nucleus) and 

exons 71 and 78 (Dp71ab, found exclusively in the cytoplasm) are the most predominant in 

soft tissue Sarcomas (STS) (Mauduit et al., 2019). However, this pattern may be different in 

other cancers. Table 2.2 details the known correctly annotated DMD gene products which 

were analysed for expression in the nine TCGA tumours that had significant survival 

differences based on total DMD expression RNA levels (Figure 3.6). For LAML only Dp40 was 

weakly expressed. THYM had additional expression of Dp71ab. For BRCA, LUAD, PAAD and 

READ, Dp40, Dp71ab, Dp71b and Dp427m were expressed. KIRP and had a similar expression 

profile but lacked Dp427m. UVM had the additional expression of Dp260-1. The broadest 

expression of DMD gene products was observed in LGG with expression of eight different 

gene products (Dp40, Dp71ab, Dp71b, Dp71a, Dp71, Dp116, Dp140, Dp260-1 and Dp427m). 

Interestingly Dp40 was expressed in all tumours and at least one Dp71 gene product in all 

tumours except LAML. Hierarchical clustering into four groups based on Dp gene expression 

values confirms these observations (Figure 3.7) 
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Figure 3.6 Expression of individual DMD gene products in selected TCGA cancers 
Normalised counts were Log2 transformed +1. Red bars represent median values, dash lines 
represent 95% confidence intervals. 
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Figure 3.7 Cluster dendrograms based on Dp gene expression 
A Dp gene variant based dendrogram cluster analysis of tumours. Gene expression values were used. 
Four clusters were specified for the dendrogram, using Euclidean distance as a distance metric and 
the Ward D2 clustering algorithm. 
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3.2.5 Variant specific survival analysis across TCGA cancers 

Based on expression of specific gene products in individual cancers, BRCA was first examined 

to determine whether Dp40, Dp71ab, Dp71b and Dp427 were associated with overall survival 

(Figure 3.8). High expression of the Dp71ab (p=0.0032) and Dp71b (p=0.036) gene products 

were significantly associated with poor BRCA survival. 
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Figure 3.8 The expression of Dp71ab and Dp71b gene products are significantly associated 
with BRCA survival outcomes 
(a) BRCA TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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KIRP was examined to determine whether Dp40, Dp71ab and Dp71b were associated with 

overall survival (Figure 3.9). High expression of the Dp71ab (p <0001) and Dp71b (p = 0.0007) 

gene products were significantly associated with poor KIRP survival. 
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Figure 3.9 The expression of Dp71ab and Dp71b products are significantly associated with 
KIRP survival outcomes 
KIRP TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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LAML was examined to determine whether Dp40 was associated with overall survival (Figure 

3.10). No significant survival differences were found. 
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Figure 3.10 The expression of the Dp40 gene product was not significantly associated with 
LAML survival outcomes 
LAML TCGA RNAseq data from Dp40 was dichotomised into high (blue) and low (red) expression 
groups and survival analysis performed in GraphPad using the log-rank test. Numbers in brackets are 
median overall survival times in months.  
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LGG was examined to determine whether Dp40, Dp71ab and Dp71b, Dp71a, Dp71, Dp116, 

Dp140, Dp260-1 and Dp260-2 were associated with overall survival (Figure 3.11). High 

expression of the Dp40 (p = 0.0486), Dp71ab (p <0.0001), Dp71 (p <0.0001), Dp116 (p 

<0.0001) and Dp140 (p=0.0391) gene products were significantly associated with poor LGG 

survival. 
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Figure 3.11 The expression of Dp40, Dp71ab, Dp71, Dp116 and Dp140 gene products are 
significantly associated with LGG survival outcomes 
LGG TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months.  
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LUAD was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were 

associated with overall survival (Figure 3.12). Low expression of the Dp71ab (p = 0.0011), and 

Dp427m (p=0.0041) gene products were significantly associated with poor LUAD survival. 
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Figure 3.12 The expression of Dp71ab and Dp427m gene products are significantly 
associated with LUAD survival outcomes 
LUAD TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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PAAD was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were 

associated with overall survival (Figure 3.13). Low expression of Dp40 (p = 0.0009) was 

associated with poor survival and high expression of Dp71b (p = 0.026), and Dp427m 

(p=0.018) gene products were significantly associated with poor PAAD survival. 
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Figure 3.13 The expression of Dp40, Dp71b and Dp427m gene products are significantly 
associated with PAAD survival outcomes 
PAAD TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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READ was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were 

associated with overall survival (Figure 3.14). High expression of the Dp40 (p < 0.0001), 

Dp71ab (p = 0.034), and Dp427m (p=0.00019) gene products were significantly associated 

with poor READ survival. 
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Figure 3.14 The expression of the Dp40, Dp71ab and Dp427m gene products are significantly 
associated with READ survival outcomes 
READ TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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THYM was examined to determine whether Dp40 and Dp71ab were associated with overall 

survival (Figure 3.15). High expression of the Dp71ab (p =0.0011), gene product was 

significantly associated with poor LGG survival. 
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Figure 3.15 The expression of the Dp71ab gene product was significantly associated with 
THYM survival outcomes 
THYM TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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UVM was examined to determine whether Dp40, Dp71ab, Dp260-1 and Dp427 were 

associated with overall survival (Figure 3.16). High expression of the Dp40 (p = 0.031), Dp71ab 

(p =0.00016), Dp260-1 (p =0.0367) and Dp427m (p =0.0092), gene products were significantly 

associated with poor UVM survival. 
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Figure 3.16 The expression of Dp40, Dp71ab, Dp260-1 and Dp427m gene products are 
significantly associated with UVM survival outcomes 
UVM TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red) 
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in 
brackets are median overall survival times in months. 
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Based on the specific DMD gene products shown to be expressed in the nine selected TCGA 

tumours, Hazard ratios were calculated with an overview of the specific gene variant shown 

(Figure 3.17). In summary, UVM has four transcripts where low expression is associated with 

the largest increase in the hazard across all cancers. Low expression of transcripts from THYM, 

LGG, and KIRP are protective (HR <1) and low expression of transcripts in LUAD, BRCA (and 

UVM) increased the hazard. PAAD has two transcripts associated with protection and one 

associated with increased hazard. Finally, THYM has one protective transcript. In summary, 

the associated direction of the hazard across (and sometimes within) TCGA cancers expressing 

specific gene products is complex and variable. 
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Figure 3.17 Hazard ratios of TCGA tumours expressing specific DMD gene products 
Forest plots revealing the log-rank hazard ratio with 95% confidence intervals. Red bars have 
significant p-values (alpha < 0.05) UVM n=80, THYM n=121, READ n=177, PAAD n = 182, LUAD n=594, 
LGG n= 529, LAML n= 151, KIRP n= 321, BRCA n=1222. Hazard ratios below 1 indicate low gene 
expression is protective and values above 1 indicate low expression is a hazard. 
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3.2.6 iDEP pathway analysis 

To aid future investigation of functional role(s) for the DMD gene across tumour types, a 

preliminary bioinformatic analysis of differentially expressed genes (DEGs) was undertaken in 

cases comparing high verses low DMD expression. iDEP was employed to identify 

differentially expressed genes using the DESeq2 method. To examine the functional 

annotations of the DEGs, an enrichment analysis (gene ontology [GO] biological processes) 

for the DEGs was performed.  

For UVM with the DESeq2 package, 750 upregulated and 472 downregulated genes were 

identified (Figure 3.18a). A STRING network of protein-protein interactions (PPIs) among the 

top 20 upregulated genes was constructed (Figure 3.18b). The connected network includes 

several proto-cadherin interactions. The expected number of edges for a random set of 

proteins of similar size was 3 compared with an observed of 6 suggesting functional 

intersection of the identified DEGs. However, this did not reach significance (p=0.143). To 

visualise the relationship among enriched GO terms the distance among the terms was 

measured by the percentage of overlapped genes. Then this distance is used to construct a 

hierarchical clustering tree (Figure 3.18c) and a network of GO terms (Figure 3.18d). Both 

plots show that the enriched terms are distinct. The up-regulated genes are overwhelmingly 

involved in cell migration and are related to cilium mediated motility, microtubule-based 

movement, and adhesion pathways. The down-regulated genes are related to 2 major 

themes: cell division and differentiation/developmental programmes.  
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Figure 3.18 Exploratory analysis of the DEGs with high versus low DMD expression in UVM 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated genes 
are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological processes 
annotation, dot size corresponds to adjusted P values. 
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For THYM, 1941 upregulated and 1383 downregulated genes were identified (Figure 3.19a). 

A STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

was constructed (Figure 3.19b). The connected network includes several Homeobox gene 

interactions. The expected number of edges for a random set of proteins of similar size was 3 

compared with an observed of 12 strongly suggesting functional intersection of the identified 

DEGs (p=0.000198). To visualise the relationship among enriched GO terms the distance 

among the terms was measured by the percentage of overlapped genes. Then this distance is 

used to construct a hierarchical clustering tree (Figure 3.19c) and a network of GO terms 

(Figure 3.19d). Both plots show that the enriched terms are distinct. The downregulated 

genes are overwhelmingly involved in nuclear organisation and mitosis pathways. The 

upregulated genes are related to 2 major themes: cell adhesion and cell migration 

morphogenesis.  
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Figure 3.19 Exploratory analysis of the DEGs with high versus low DMD expression in 
THYM 

(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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For READ, 290 upregulated and 44 downregulated genes were identified (Figure 3.20a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.20b) identified several Melanoma Antigen Gene (MAGE) family members. The 

expected number of edges for a random set of proteins of similar size was 3 compared with 

an observed of 35 strongly suggesting functional intersection of the identified DEGs 

(p<0.0001). To visualise the relationship among enriched GO terms hierarchical clustering tree 

(Figure 3.20c) and a network analysis (Figure 3.20d) showed that the enriched terms were 

distinct with downregulated genes overwhelmingly involved in humoral immune responses 

and upregulated genes relating to calcium regulation and muscle processes.  

 

Figure 3.20 Exploratory analysis of the DEGs with high versus low DMD expression in READ 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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For PAAD, 1239 upregulated and 187 downregulated genes were identified (Figure 3.21a) 

with a STRING network of protein-protein interactions (PPIs) among the top 10 upregulated 

genes (Figure 3.21b) that identified several pancreatic enzyme family members (e.g. 

Carboxypeptidases). The expected number of edges for a random set of proteins of similar 

size was 1 compared with an observed of 16 strongly suggesting functional intersection of the 

identified DEGs (p = 7.53 x10-12). To visualise the relationship among enriched GO terms 

hierarchical clustering tree (Figure 3.21c) and a network analysis (Figure 3.21d) showed that 

the enriched terms were not distinct for downregulated genes and upregulated genes related 

to cation transport and regulation. 

 

Figure 3.21 Exploratory analysis of the DEGs with high versus low DMD expression in PAAD 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 10 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated genes are indicated by 
blue points. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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In LUAD, 755 upregulated and 108 downregulated genes were identified (Figure 3.22a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.22b) showed some interaction centering on DDX53 (p = 0.0272). Hierarchical 

clustering (Figure 3.22c) and a network analysis (Figure 3.22d) showed that enriched terms 

represented immune responses for downregulated genes and stimulus detection for 

upregulated genes. 

 

Figure 3.22 Exploratory analysis of the DEGs with high versus low DMD expression in LUAD 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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In LGG, 537 upregulated and 191 downregulated genes were identified (Figure 3.23a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.23b) showed interactions focusing on HOX family members (p = 0.000242). 

Hierarchical clustering (Figure 3.23c) and a network analysis (Figure 3.23d) showed that 

enriched terms represented hormone regulation and cell signalling for downregulated genes 

and development/morphogenesis and cell motility for upregulated genes. 

 

Figure 3.23 Exploratory analysis of the DEGs with high versus low DMD expression in LGG 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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In LAML, 965 upregulated and 88 downregulated genes were identified (Figure 3.24a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.24b) showed interactions of migration/adhesion molecules (p = 4.34 x10-11). 

Confirming this hierarchical clustering (Figure 3.24c) and a network analysis (Figure 3.24d) 

showed that enriched terms represented cell motility, morphogenesis a notably cell adhesion 

for upregulated genes. 

 

Figure 3.24 Exploratory analysis of the DEGs with high versus low DMD expression in 
LAML 

(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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In KIRP, 1349 upregulated and 132 downregulated genes were identified (Figure 3.25a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.25b) showed interactions focusing fibrinogen family members (p = 2.79 x10-5). 

Hierarchical clustering (Figure 3.25c) and a network analysis (Figure 3.25d) showed that 

enriched terms represented development/morphogenesis for upregulated genes. 

 

Figure 3.25 Exploratory analysis of the DEGs with high versus low DMD expression in KIRP 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated genes are indicated by 
blue points. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 

  



78 
 

In BRCA, 1886 upregulated and 235 downregulated genes were identified (Figure 3.26a). A 

STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes 

(Figure 3.26b) did not contain interactions focusing on obvious family members although 

there were more interactions than expected (p = 0.0384). Hierarchical clustering (Figure 

3.26c) and a network analysis (Figure 3.26d) showed that enriched terms represented 

cornification and adhesion for upregulated genes. 

 

Figure 3.26 Exploratory analysis of the DEGs with high versus low DMD expression in BRCA 
(a) Column graph highlighting the number of upregulated and downregulated genes. 
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.  
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share 

more genes, size of node represents adjusted P values. Upregulated and downregulated 
genes are indicated by red and green points respectively. 

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological 
processes annotation, dot size corresponds to adjusted P values. 
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Chapter 4 
4. Discussion 

4.1 DMD is associated with survival outcomes in cancer patients 

The aim of this project was to determine whether DMD and derived gene product expression 

was associated with survival outcomes in patient tumours across 33 TCGA cancer types. This 

pan-cancer analysis identified nine/33 tumours (after Bonferroni correction) where high vs. 

low DMD expression was significantly associated with overall survival outcome differences 

which is novel and worth further exploration. This has been done more comprehensively for 

LGG where our research team has used an independent bioinformatic approach using 

Cbioportal (Gao et al., 2013; Cerami et al., 2012) for data extraction, and X-tile (Camp et al., 

2004) to do cutpoint selection. This allowed subsequent survival and pathway analysis 

(Naidoo et al., 2022). The key findings between the two approaches are largely concordant, 

validating this novel bioinformatic approach, although for specific dystrophin gene products 

(i.e. Dp427m) significance in survival was not quite reached using the pipeline described 

herein. This may reflect the fact that gene expression values obtained from Cbioportal (RSEM) 

and the GDC (FPKM-UQ) were derived using different bioinformatic pipelines. Indeed, during 

this project, GDC have continued to update their pipeline again providing FPKM, FPKM-UQ 

and now additionally TPM normalized gene expression data (see code availability section for 

additional updated code). For LGG, this project showed preliminary data suggesting 

differentially transcribed genes belonging to pathways relevant to 

development/morphogenesis and cell motility. Furthermore, detailed pathway analysis in the 

published study (Naidoo et al., 2022) identified biological processes relating to ribosome 

biogenesis, synaptic signalling, neurodevelopment and immune pathways as well. The genes 

spanning chromosome 1 were globally upregulated in high vs. low expressing DMD cohorts. 
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Importantly immunohistochemistry was used to demonstrate dystrophin protein expression 

in these tumours validating the RNAseq analysis.  

Of the other tumour types significantly associated with survival outcomes, high expression of 

DMD in THYM, READ and KIRP were also associated with increased risks of poor survival. 

Conversely, high expression of DMD in UVM, PAAD, LUAD, LAML and BRCA were associated 

with protection (compared with high expressing cases). The reasons for this are currently 

unclear but may reflect the specific biological pathways affected and/or the composition of 

the DAPC in different tumour tissues. For example, in healthy tissue, the composition of the 

DAPC at the sarcolemma, neuromuscular junction (NMJ), CNS and retina is known to differ 

(Figure 4.1). At the NMJ the DAPC is comprised of the dystrophin-related protein utrophin 

and α-dystrobrevin1 replaces α-dystrobrevin2 (Ohlendieck et al., 1991). In cancer, the muscle 

wasting condition cachexia has been linked to dysfunction of the DAPC in an animal model 

(Acharyya et al., 2005). Muscles from mice bearing subcutaneous colon-26 (C-26) tumours 

were severely atrophic, with altered histology showing abnormal sarcolemma and associated 

basal lamina from cachectic tibialis anterior muscles. This was associated with a switch from 

dystrophin to utrophin expression and a higher migrating band for both β-DG and β-SG 

suggested by the authors to be a hyperglycosylated form. This data suggests that cross talk 

exists between tumour cells and the local tissue microenvironment modifying DAPC 

formation. Interestingly, DMD gene products may not just play a role as a scaffold for 

structural and signalling proteins at the plasma membrane. Dp71d is known to undergo 

nuclear import employing an atypical nuclear localization signal by a ZZ-domain of the α2/β1 

importin system. After import Dp71d aids in the maintenance of nuclear architecture, through 

interaction with the nuclear envelope proteins emerin and lamins A, C and B1. (Suárez-

Sánchez et al., 2014).  
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Given the likely different composition of the DAPC across tumour types, we sought to 

determine whether other gene members of the DAPC were associated with patient survival 

outcomes. Across the nine tumours, several DAPC genes were not associated with survival 

outcomes of those specific cancers. The exception was for LGG where intriguingly, every DAPC 

gene was associated with different survival outcomes between high and low expressing cases. 

As there were no easily immediately discernable patterns in the pattern of hazard ratios 

across the genes in each tumour, cluster analysis was done to see if any patterns emerged. 

Whether clustering was based on genes or tumour types, discernable clusters could be 

identified showing the relationship between tumours based on DAPC gene expression hazard 

ratios or genes based on tumour clustering. As discussed above the lack of a clear pattern 

across tumours may reflect the different structures of the complex in different tissues and 

the distinct roles DAPC gene products may contribute within the cell, based on cellular 

location. In vitro and in vivo models as well as tissue immunohistochemical studies have been 

deployed to interrogate the role of DAPC members in cancer with a number of studies 

implicating dystroglycan (in particular) in cancer biology (Cross et al., 2008; Brennan et al., 

2004; Mitchell et al., 2013; Sgambato and Brancaccio, 2005; Fernandez et al., 2010; Mathew 

et al., 2013; Calogero et al., 2006). Mice lacking sarcoglycan also spontaneously develop eRMS 

tumours (Fernandez et al., 2010). Therefore, although this study has focused on the DMD 

gene in particular, evidence implicates the DAPC in cancer biology although further studies 

are urgently needed. 
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Figure 4.1 Composition of the DAPC at different tissue sites 
DAPC components differ in the (a) Sarcolemma, (b) neuromuscular junction, (c) central nervous 
system and (d) Retina with respect to specific DMD gene products and other DAPC members. taken 
from (Pilgram et al., 2010) 
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Currently most studies of DMD associated cancers have ignored the complex pattern of gene 

product usage. Therefore, this project explored the expression pattern of DMD gene variants 

in tumours with significant survival associations with total DMD and highlighted novel 

patterns of gene expression. Most tumours expressed Dp40, two of the Dp71 variants and 

Dp427. However, there were differences with some tumours not expressing Dp427 and LGG 

having a particularly broad pattern of gene product expression which is perhaps unsurprising 

given the known significant role of DMD in the brain (Naidoo and Anthony, 2020). Dp40 was 

expressed in all nine tumours which is interesting given its relatively poor characterisation 

compared with other dystrophins. Dp40 is the shortest dystrophin reported, transcribed from 

intron 62 to exon 70 and shares a promoter with Dp71. It lacks syntrophin and dystrobrevin 

binding domains but contains a β-dystroglycan (β-DG) WW binding domain. Mass 

spectrometry analysis showed Dp40 is expressed in synaptic vesicles and is associated with 

syntaxin1A and SNAP25 (presynaptic proteins) (Tozawa et al., 2012). The effect of Dp40 and 

Dp40L170P (leucine to proline in residue 170 of Dp40 which promotes exclusive nuclear 

localisation of Dp40) stable overexpression during neuronal differentiation of PC12 Tet-On 

cells was evaluated (García-Cruz et al., 2022). Overexpression was shown to modify neurite 

outgrowth and the protein expression profile of PC12 cells. Specifically, Dp40 overexpression 

increased the proportion of PC12 cells with neurites and neurite length. Conversely, 

Dp40L170P overexpression decreased neurites and neurite length. 

Except for LAML, at least one Dp71 variant was expressed in all tumours examined. This may 

reflect the ubiquitous expression of Dp71 family members in the body. Others have shown 

that decreased Dp71 expression (in GBM cell lines compared with astrocytic control cells) is 

associated with increased cancer cell proliferation (Ki-67 as a marker) and poor prognosis 

(from cytoplasmic to nuclear relocalisation) in glioblastoma (Ruggieri et al., 2019). In gastric 
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cancer cell lines Dp71 overexpression (both Dp71d and Dp71f) inhibited proliferation of 

SGC7901 gastric cells. Dp71 protein was bound with lamin B1 in GES-1 cells demonstrated 

with immunoprecipitation experiments (Sipin Tan et al., 2016).  

Survival analysis showed that several specific transcripts were associated with different 

survival outcomes across the analysed tumours.  Typically for tumours with significant hazard 

ratios, the specific gene products in each tumour trend in the same direction but not always.  

Comparing across all cancers, UVM had the highest hazard ratios, for all four gene products 

expressed (Dp40, Dp71ab, Dp260-1 and Dp427m). Interestingly, UVM cases have virtually no 

mutation across the DMD gene suggesting non-mutational mechanism predominates in this 

setting (Figure 1.7). This data generally supports our model where Dp427 and Dp71 

expression may play a key role in the pathogenesis of tumours and/or may cooperate with 

existing cell mutations and genomic instability to influence the progression to full neoplastic 

disease. In a proposed model of DMD driven cancer development the relative balance of the 

Dp427 and Dp71 gene products could influence the progression to full neoplastic disease 

(Figure 4.2). The rationale for this model arises from soft tissue sarcomas studies where 

recurrent mutation largely restricted to the 5’ region of the gene abrogates Dp427 expression 

but retains Dp71 expression (Mauduit et al., 2019). Knockdown of Dp71 results in reduced 

proliferation and cell cycle progression. This work built upon earlier studies where intragenic 

deletions of DMD were frequently found (63%) in high grade myogenic tumors (Wang et al., 

2014). Restoration of dystrophin expression with a miniDMD construct (240-kDa dystrophin 

product) in DMD-inactivated GIST, eRMS and LMS cells inhibits invasiveness, migration, 

invadeapodia formation and anchorage independent growth. To confirm these findings in 

additional cancer backgrounds including those identified herein, functional cell experiments 

will be required that overexpress or knockdown/delete dystrophin variants in these different 
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tumour settings. This is ongoing work in our laboratory where, for example, we are currently 

overexpressing specific Dp71 variants in glioma cell lines.  

 

 

 

Figure 4.2 Proposed model of DMD driven cancer development 
The balance of Dp71 and Dp427 gene products contributes to neoplasia. Altered DMD gene product 
levels have tissue specific effects on cancer hallmarks, such as proliferation and invasion, and disrupt 
the dystrophin associated protein complex (DAPC) (Jones et al., 2021). 

 

In a recent pre-publication, DMD gene expression was characterised across 25 TCGA cancers 

and their corresponding normal tissues (where possible). This work showed that the largest 

transcript Dp427 was downregulated in most tumours compared with healthy tissue (Alnassar 

et al., 2022). Dp71 expression had variable transcript expression and a 10-gene signature 

could identify discrete disease clusters. Pathway analysis was used from cell line 

transcriptomic data was used to identify putative functional pathways (i.e. ECM-receptor 

interactions) that are implicated in those tumour types (Alnassar et al., 2022). A limitation of 

this work was the lack of comprehensive survival analysis. However, in pooling survival data 

across 14 carcinomas and sarcoma, the overall survival of these patients with decreased DMD 

expression in tumours was 27 months lower than that of patients with high DMD expression 
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(Alnassar et al., 2022). The survival analysis herein indicates pooling across so many cancer 

types with distinct survival characteristics may not be instructive. Furthermore, the authors 

compared patients at the bottom 25% of DMD expression values and those at the top 25% of 

DMD expression. This approach of dichotomising a continuous covariate based on 

percentiles, medians, means or a proposed clinical threshold value are arbitrary and may miss 

the true prognostic value of a putative biomarker. Our cutpoint approach incorporates an 

outcome based method where the optimal cutpoint is defined by the threshold of the 

distribution which optimally separates low and high risk patients with respect to an outcome 

(i.e. overall survival) (Williams et al., 2006). In this project, the outcome-based method is 

based on log rank statistics. Typically, in time-to-event analysis, outcome-oriented methods 

perform better than data orientated methods (Mandrekar, n.d.). In addition, Alnassar et al., 

2022 focuses on the top 10 expressed DMD transcripts across all tissues, and therefore may 

miss interesting findings with novel highly expressed transcripts in a specific tumour type. 

Notably, analysis of Dp40 expression was not reported which was expressed in all nine 

tumours in this study. 

Having dichotomised patients into high or low gene expression groups based on total DMD 

expression, preliminary differential transcriptome expression analysis allowed identification 

of putative biological pathways impacted across the nine tumours examined. In many cases 

GO Biological terms related to motility and adhesion were identified which is unsurprising 

given the role of DMD as a structural/scaffold protein that facilitates cellular interaction of 

the actin cytoskeleton with the extracellular matrix. However, in some cancers novel terms 

relating to Ion homeostasis (PAAD and READ) and chemical/sensory perception (LUAD) were 

identified and the biological significance of this is currently unclear. 
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4.2 Is DMD a driver gene in cancer? 

DMD is not considered a classic cancer driver but in a recent publication, deep learning was 

used to reveal the exclusive functional contributions of individual cancer mutations (Gupta et 

al., 2022). Their approach enabled identification and future exploration of putative driver 

genes including DMD, RSK4, OFD1, WDR44, and AFF2. This approach described a newly 

developed technique, Continuous Representation of Codon Switches (CRCS), that enabled the 

generation of numerical vector representations of mutations, applicable in several machine 

learning-based tasks. One task involved the authors constructing a novel deep learning 

architecture constituting bidirectional long short-term memory with attention & CRCS 

embeddings (BLAC) and demonstrated that a substantial chunk of cancer mutations are 

distinguishable from noncancer mutations. The model differentiated between driver gene-

specific noncancerous and cancerous mutations and by merging multiple driver gene 

databases they identified 33 potential driver genes on the X chromosome including DMD. 

There is considerable scope for the use of novel machine learning approaches applied to gene 

expression analysis for cancer prediction and this has been summarised in a recent review 

(Khalsan et al., 2022).  

As discussed in our prior review (Jones et al., 2021) ongoing studies should determine 

whether DMD acts as a driver or passenger in neoplasia. In some tumours DMD is frequently 

altered (i.e., single base mutations and copy number alterations) and varies across cancers 

(Figure 1.5). In some cases, there is clear evidence that recurrent mutations abolish 

expression of DMD gene products (i.e., Dp427 in soft tissue sarcomas) and/or specific focal 

functional mutations in domains such as the actin-binding domain as seen in meningioma 

(Juratli et al., 2018). The results presented in this thesis suggest that dysregulated gene 

expression of dystrophin and/or the DAPC, through non-mutational mechanisms, may also be 
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relevant for disease development (i.e., in virus-induced alterations in gene expression 

programmes or epigenetic modifications). 

4.3 Do Duchenne and Becker patients have an increased risk of cancer? 

Given the increasingly recognised association and putative functional role(s) of DMD in 

cancer, an obvious question arises as to whether patients with dystrophinopathies (e.g. 

Becker and Duchenne) are at greater risk of cancer. The challenge(s) in addressing this issue 

are considerable as DMD and BMD are rare diseases and historically patients (typically boys) 

do not survive long enough for cancer to be an issue. However, with improved 

treatment/management patients are living longer and some specific case studies have now 

been identified from the literature (Table 4.1). For example, an interesting case report 

identified Rhabdomyosarcoma (RMS) in a Patient with Duchenne muscular dystrophy 

(Chandler et al., 2021).  These cases provide interesting insights and highlight the need to 

explore further the connection between DMD and cancer. The authors reported a case of 

alveolar rhabdomyosarcoma (ARMS) in a five-year-old male with DMD who showed stable 

disease after radiotherapy and maintenance chemotherapy (Chandler et al., 2021).  The co-

occurrence of RMS with DMD in this individual is likely not a coincidence. Indeed, and 

although missed in their assessment of the literature in this area (where the authors state 

their subject was the third such case of a DMD patient developing RMS) there were at least 

another four cases reported, two of which are ARMS (Vita et al., 2021; Saldanha et al., 2005; 

Büget et al., 2014).  Moreover, there are an additional seven case reports of DMD co-occurring 

with other cancer types, four of which are tumours of the central nervous system (Johnston 

et al., 1986; Svarch et al., 1988; D et al., 2001; Doddihal and Jalali, 2007; Van Den Akker et al., 

2012; Vita et al., 2021).  
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Table 4.1 Published case reports of cancer in individuals with DMD. 
Publication 
year 
[reference] 

DMD gene 
mutation 

Age at cancer 
diagnosis 
(years) 

Tumour 
type Outcome 

1986 (Johnston et 
al., 1986) Unknown 0.75 

Stage III 
neuroblastoma 

Alive > 25 months after surgery and 
chemotherapy 

1988 (Svarch et al., 
1988) Unknown Unknown 

Acute 
lymphoblastic 
leukaemia Unknown 

1999 (Rossbach et 
al., 1999) 

Exon 47-50 
deletion 4 Alveolar RMS Alive after chemotherapy and radiation 

2001 (Korones et 
al., 2001) Unknown 3 

Stage III Wilms 
tumour 

Alive 6 months after surgery, chemotherapy 
and radiation 

2002 (Jakab et al., 
2002) Unknown 7 

Stage II 
embryonal 
RMS Dead 2.5 years after combined therapy 

2005 (Saldanha et 
al., 2005) Unknown 5 RMS Unknown after surgery 

2007 (Doddihal and 
Jalali, 2007) Exon 44 deletion 7 

Medulloblasto
ma 

Treated with surgery and radiation; tumour 
progressed; alive at 8 months post-
treatment 

2012 (Van Den 
Akker et al., 2012) 

Point mutation in 
exon 32 (c.4483C > 
T) 9 

Anaplastic 
medulloblasto
ma 

Alive 30 months after surgery, 
chemotherapy and radiation 

2014 (Büget et al., 
2014) Unknown 17 Massive RMS 

Unknown after discharge following left arm 
amputation 

2021 ((Vita et al., 
2021) 

Exon 46-47 
deletion 35 Brain tumour Dead 50 days after onset 

 
Exon 48-50 
deletion 14 Alveolar RMS Dead 9 months after onset 

 

No 
deletions/duplicati
ons 17 Alveolar RMS Dead after 1 year from lung metastases 

 
Exon 45-54 
deletion 11 Enchondroma 

Dead after 13 years from DMD-related 
respiratory failure 

2021(Chandler et 
al., 2021) 

Exon 45-62 
deletion 5 RMS 

Stable disease after radiotherapy and on 
maintenance chemo 

2022 (Okuno et al., 
2022) Unknown 9 Alveolar RMS 

Died due to ARMS exacerbation 5 months 
after treatment (chemo and radio) 
interruption  

 

Chandler et al. state there is no literature examining the prevalence of specific DMD 

mutations amongst DMD individuals with RMS. This was confirmed in our review article 

(Jones et al., 2021) and in a subsequent study (Vita et al., 2021). It should be noted that for 

most case reports the location and/or type of DMD mutation was unknown or unreported 

precluding definitive conclusions from such a small cohort. Our comprehensive review of the 

literature (Jones et al., 2021) surrounding the DMD gene and cancer prompted Vita et al. to 

undertake the first dedicated study to test this through examination of patient records from 

all Italian Neuromuscular Centres for incidence of cancer (Vita et al., 2021).  Their data 
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suggests that, considering the lower risk of cancer in children, DMD individuals may indeed 

have an increased risk and annual incidence (6/100,000) of RMS in Italian DMD population 

developing RMS (Vita et al., 2021). This compares with annual childhood RMS incidence in the 

USA is 0.44/100,000 (alveolar RMS is 0.15/100,000) suggesting up to a 40-fold increase over 

what one would have expected for alveolar RMS in childhood. 

In summary, the incidence of cancer in DMD people has been historically under-reported and 

novel studies posit that RMS may be more common than is suggested from the case report 

literature by Chandler et al. Speculatively, the degenerative muscle environment of 

individuals with Duchenne may promote the development of RMS through increased tissue 

turnover. In summary, multicentre reviews and fundamental investigations into the role of 

the DMD gene in tumorigenesis are urgently required.     

4.4 Future work and limitations 

As mentioned, multicentre reviews and fundamental investigations into the role of the DMD 

gene in tumorigenesis are urgently required as: 

1. There is support for an increased risk of RMS in people with DMD 

2. Therapeutic advances may not mitigate cancer risk 

3. Increasingly, people with DMD are living longer 

Therefore, a comprehensive population-based survey to ascertain the risk and incidence of 

cancer in DMD is warranted which we are in the process of setting up to access data from the 

paediatric North Star UK national neuromuscular database which was established in 2003 to 

help drive improvements in services and set national standards of care for children living with 

Duchenne muscular dystrophy (DMD). 
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During this project, univariate analyses were done reporting hazard ratios where DMD was 

the sole covariate. Associations with other clinical co-variates have not been determined or 

whether DMD expression as a potential biomarker is confounded by other clinic-pathological 

variables. In part, this was to simplify analysis as each cancer type is likely to have specific 

additional covariates that are important for prognosis but specific for that disease. For 

example, in LGG, a multivariate model containing DMD, IDH status, tumour subtype and age 

revealed both DMD and IDH status remained independent prognostic markers (Naidoo et al., 

2022). IDH status is a valuable biomarker currently used in clinical practice for LGG and is 

included in recently updated WHO criteria (Bale and Rosenblum, 2022).  

It is currently unclear whether survival associations with DMD (and variant gene products) 

replicate in independent disease cohorts. We employed the Chinese Glioma Genome Atlas 

(CGGA) dataset for our LGG study (Naidoo et al., 2022) but this has not yet been done for the 

other eight tumour types. 

Survival analysis was limited to overall survival although there are other outcome measures 

that could have been determined from the raw data (disease specific survival, progression 

free survival, disease-free interval). There are pros and cons to using these different outcome 

measures which has been previously discussed and evaluated (Liu et al., 2018). For example, 

short-term clinical follow-up favours outcome analyses for more aggressive cancers, as 

multiple events are observed within a short timeframe. Studies with less aggressive cancers, 

where patients relapse after years or decades, may observe too few events during their 

follow-up intervals to support reliable outcome determinations. Of the thirty-three tumours 

analysed, OS was not recommended for 4 tumour types (DLBC, PCPG, TGCT and THYM). As 

DMD was associated with survival outcomes in THYM, this result should be considered more 
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cautiously as this report suggested the number of events was too small for OS and DSS; with 

a longer follow-up needed. Only PFI was recommended for THYM.  

Our analysis of the altered transcriptomic response between high and low DMD expressing 

cases is exploratory and more detailed analysis is possible and required using other R 

packages available in iDEP. The functional follow-on experiments from this will test whether 

biological pathways (i.e. motility, morphogenesis and developmental programmes in LGG) are 

relevant for the identified cancer.  

Subset analysis (i.e. by different histologic sites, anatomical location or existing clinical 

biomarkers) was beyond the scope of this project, however, it is clear from our LGG study 

(Naidoo et al., 2022) that DMD expression can further stratify patients based on these other 

clinical markers. For example, DMD expression further stratified IDH mutant LGG to identify 

those at risk of poor survival. This knowledge may improve risk stratification and management 

of LGG.  

Ultimately, RNA expression does not necessarily translate to equivalent protein levels and so 

for each tumour, accurate characterisation of protein expression (both levels and tissue 

distribution) is needed. Similar survival analysis can then be employed based on the 

association of Dystrophin protein expression and survival outcomes. A current caveat is the 

lack of suitable antibody reagents that distinguish the different Dp protein gene products 

expressed in cancer tissue. However, we are currently screening cell lines, and tissues by 

western blotting to better address dystrophin expression. Finally, the composition of the 

DAPC in different tumours is a fertile area for future research using either mass spectrometry 

or immunoprecipitation approaches to clarify the relevant molecular players.  
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4.5 Conclusions 

DMD (both total and specific gene product) RNA expression was associated with the overall 

survival outcomes of patients across nine different cancers. These included BRCA, KIRP, LAML, 

LGG, LUAD, PAAD, READ, THYM and UVM. DMD is associated with the DAPC and other genes 

encoding proteins in the complex are also associated with different survival hazards in these 

tumours. Genes differentially expressed between high and low total DMD expressing cases 

can be used to define putative biological pathways dysregulated during disease. Functional 

studies will help unlock the importance of these pathways in DMD-associated 

tumourigenesis. 

  



94 
 

5. References 
Abbadi, N., Philippe, C., Chery, M., Gilgenkrantz, H., Tome, F., Collin, H., Theau, D., Recan, D., 

Broux, O., Fardeau, M., Kaplan, J.C., Gilgenkrantz, S. (1994) Additional case of female 

monozygotic twins discordant for the clinical manifestations of Duchenne muscular 

dystrophy due to opposite X-chromosome inactivation. American journal of medical 

genetics. 52(2), 198–206. 

Acharyya, S., Butchbach, M.E.R., Sahenk, Z., Wang, H., Saji, M., Carathers, M., Ringel, M.D., 

Skipworth, R.J.E., Fearon, K.C.H., Hollingsworth, M.A., Muscarella, P., Burghes, A.H.M., 

Rafael-Fortney, J.A., Guttridge, D.C. (2005) Dystrophin glycoprotein complex dysfunction: A 

regulatory link between muscular dystrophy and cancer cachexia. Cancer Cell. 8(5), 421–

432. 

Van Den Akker, M., Northcott, P., Taylor, M.D., Halliday, W., Bartels, U., Bouffet, E. (2012) 

Anaplastic medulloblastoma in a child with Duchenne muscular dystrophy: Case report. 

Journal of Neurosurgery: Pediatrics. 10(1), 21–24. 

Alnassar, N., Borczyk, M., Tsagkogeorga, G., Korostynski, M., Han, N., Górecki, D.C. (2022) 

Loss of DMD gene expression results in Duchenne-like molecular abnormalities across 

diverse tissues. bioRxiv, 2022.04.04.486990. 

Bale, T.A., Rosenblum, M.K. (2022) The 2021 WHO Classification of Tumors of the Central 

Nervous System: An update on pediatric low-grade gliomas and glioneuronal tumors. Brain 

Pathology. 32(4), e13060. 

Baumforth, K.R.N., Birgersdotter, A., Reynolds, G.M., Wei, W., Kapatai, G., Flavell, J.R., Kalk, 

E., Piper, K., Lee, S., Machado, L., others, Hadley, K., Sundblad, A., Sjoberg, J., Bjorkholm, M., 

Porwit, A. a, Yap, L.-F., Teo, S., Grundy, R.G., Young, L.S., Ernberg, I., Woodman, C.B.J., 

Murray, P.G. (2008) Expression of the Epstein-Barr virus-encoded Epstein-Barr virus nuclear 

antigen 1 in Hodgkin’s lymphoma cells mediates up-regulation of CCL20 and the migration 

of regulatory T cells. The American journal of pathology. 173(1), 195–204. 

Bradburn, M.J., Clark, T.G., Love, S.B., Altman, D.G. (2003a) Survival Analysis Part II: 

Multivariate data analysis – an introduction to concepts and methods. British Journal of 

Cancer 2003 89:3. 89(3), 431–436. 



95 
 

Bradburn, M.J., Clark, T.G., Love, S.B., Altman, D.G. (2003b) Survival Analysis Part III: 

Multivariate data analysis – choosing a model and assessing its adequacy and fit. British 

Journal of Cancer 2003 89:4. 89(4), 605–611. 

Brennan, P.A., Jing, J., Ethunandan, M., Górecki, D. (2004) Dystroglycan complex in cancer. 

European Journal of Surgical Oncology. 30(6), 589–592. 

Büget, M.I., Eren, I., Küçükay, S. (2014) Regional anaesthesia in a Duchenne muscular 

dystrophy patient for upper extremity amputation. Agri. 26(4), 191–195. 

Calogero, A., Pavoni, E., Gramaglia, T., D’Amati, G., Ragona, G., Brancaccio, A., Petrucci, T.C. 

(2006) Altered expression of α-dystroglycan subunit in human gliomas. Cancer Biology and 

Therapy. 5(4), 441–448. 

Camp, R.L., Dolled-Filhart, M., Rimm, D.L. (2004) X-tile: A new bio-informatics tool for 

biomarker assessment and outcome-based cut-point optimization. Clinical Cancer Research. 

10(21), 7252–7259. 

Cerami, E., Gao, J., Dogrusoz, U., Gross, B.E., Sumer, S.O., Aksoy, B.A., Jacobsen, A., Byrne, 

C.J., Heuer, M.L., Larsson, E., Antipin, Y., Reva, B., Goldberg, A.P., Sander, C., Schultz, N. 

(2012) The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional 

Cancer Genomics Data. Cancer Discovery. 2(5), 401–404. 

Cereda, S., Cefalo, G., Terenziani, M., Catania, S., Fossati-Bellani, F. (2004) Becker Muscular 

Dystrophy in a Patient with Hodgkin’s Disease. Journal of Pediatric Hematology/Oncology. 

26(1), 72–73. 

Chamberlain, J.S., Metzger, J., Reyes, M., Townsend, D., Faulkner, J.A. (2007)  Dystrophin-

deficient mdx mice display a reduced life span and are susceptible to spontaneous 

rhabdomyosarcoma . The FASEB Journal. 21(9), 2195–2204. 

Chandler, E., Rawson, L., Debski, R., McGowan, K., Lakhotia, A. (2021) Rhabdomyosarcoma 

in a Patient With Duchenne Muscular Dystrophy: A Possible Association. Child Neurology 

Open. 8, 2329048X2110414. 

Cirak, S., Feng, L., Anthony, K., Arechavala-Gomeza, V., Torelli, S., Sewry, C., Morgan, J.E., 

Muntoni, F. (2012) Restoration of the dystrophin-associated glycoprotein complex after 



96 
 

exon skipping therapy in Duchenne muscular dystrophy. Molecular therapy : the journal of 

the American Society of Gene Therapy. 20(2), 462–7. 

Clark, T.G., Bradburn, M.J., Love, S.B., Altman, D.G. (2003) Survival Analysis Part I: Basic 

concepts and first analyses. British Journal of Cancer. 89(2), 232. 

Colaprico, A., Silva, T.C., Olsen, C., Garofano, L., Cava, C., Garolini, D., Sabedot, T.S., Malta, 

T.M., Pagnotta, S.M., Castiglioni, I., Ceccarelli, M., Bontempi, G., Noushmehr, H. (2016) 

TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic 

Acids Research. 44(8), e71. 

Cox, G.A., Phelps, S.F., Chapman, V.M., Chamberlain, J.S. (1993) New mdx mutation disrupts 

expression of muscle and nonmuscle isoforms of dystrophin. Nature Genetics 1993 4:1. 4(1), 

87–93. 

Cross, S.S., Lippitt, J., Mitchell, A., Hollingsbury, F., Balasubramanian, S.P., Reed, M.W.R., 

Eaton, C., Catto, J.W., Hamdy, F., Winder, S.J. (2008) Expression of β-dystroglycan is reduced 

or absent in many human carcinomas. Histopathology. 53(5), 561–566. 

D, K., MR, B., J, P. (2001) ‘Liver Function Tests’ Are Not Always Tests of Liver Function. 

American journal of hematology. 66(1), 46–48. 

Dobin, A., Gingeras, T.R. (2015) Mapping RNA-seq Reads with STAR. Current Protocols in 

Bioinformatics. 51(1), 11.14.1-11.14.19. 

Doddihal, H., Jalali, R. (2007) Medulloblastoma in a child with Duchenne muscular 

dystrophy. Child’s Nervous System. 23(5), 595–597. 

Fernandez, K., Serinagaoglu, Y., Hammond, S., Martin, L.T., Martin, P.T. (2010) Mice lacking 

dystrophin or α sarcoglycan spontaneously develop embryonal rhabdomyosarcoma with 

cancer-associated p53 mutations and alternatively spliced or mutant Mdm2 transcripts. 

American Journal of Pathology. 176(1), 416–434. 

Gallia, G.L., Zhang, M., Ning, Y., Haffner, M.C., Batista, D., Binder, Z.A., Bishop, J.A., Hann, 

C.L., Hruban, R.H., Ishii, M., Klein, A.P., Reh, D.D., Rooper, L.M., Salmasi, V., Tamargo, R.J., 

Wang, Q., Williamson, T., Zhao, T., Zou, Y., Meeker, A.K., Agrawal, N., Vogelstein, B., Kinzler, 

K.W., Papadopoulos, N., Bettegowda, C. (2018) Genomic analysis identifies frequent 



97 
 

deletions of Dystrophin in olfactory neuroblastoma. Nature communications. 9(1), 5410. 

Gao, G.F., Parker, J.S., Reynolds, S.M., Silva, T.C., Wang, L.B., Zhou, W., Akbani, R., Bailey, M., 

Balu, S., Berman, B.P., Brooks, D., Chen, H., Cherniack, A.D., Demchok, J.A., Ding, L., Felau, I., 

Gaheen, S., Gerhard, D.S., Heiman, D.I., Hernandez, K.M., Hoadley, K.A., Jayasinghe, R., 

Kemal, A., Knijnenburg, T.A., Laird, P.W., Mensah, M.K.A., Mungall, A.J., Robertson, A.G., 

Shen, H., Tarnuzzer, R., Wang, Z., Wyczalkowski, M., Yang, L., Zenklusen, J.C., Zhang, Z., 

Liang, H., Noble, M.S. (2019) Before and After: Comparison of Legacy and Harmonized TCGA 

Genomic Data Commons’ Data. Cell Systems. 9(1), 24-34.e10. 

Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun, Y., Jacobsen, A., 

Sinha, R., Larsson, E., Cerami, E., Sander, C., Schultz, N. (2013) Integrative analysis of 

complex cancer genomics and clinical profiles using the cBioPortal. Science signaling. 6(269), 

pl1. 

Gao, Q.Q., McNally, E.M. (2015) The Dystrophin Complex: Structure, Function, and 

Implications for Therapy. Comprehensive Physiology. 5(3), 1223–1239. 

García-Cruz, C., Merino-Jiménez, C., Aragón, J., Ceja, V., González-Assad, B., Reyes-Grajeda, 

J.P., Montanez, C. (2022) Overexpression of the dystrophins Dp40 and Dp40L170P modifies 

neurite outgrowth and the protein expression profile of PC12 cells. Scientific Reports 2022 

12:1. 12(1), 1–11. 

GDC (2022) Genomic Data Commons. Genomic Data Commons. [online]. Available from: 

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/images/gene-expression-

quantification-pipeline-v3.png [Accessed August 25, 2022]. 

Ge, S.X., Son, E.W., Yao, R. (2018) iDEP: An integrated web application for differential 

expression and pathway analysis of RNA-Seq data. BMC Bioinformatics. 19(1), 1–24. 

Gupta, P., Jindal, A., Ahuja, G., Jayadeva, Sengupta, D. (2022) A new deep learning technique 

reveals the exclusive functional contributions of individual cancer mutations. Journal of 

Biological Chemistry. 298(8), 102177. 

Hanahan, D. (2022) Hallmarks of Cancer: New Dimensions. Cancer discovery. 12(1), 31–46. 

Jakab, Z., Szegedi, I., Balogh, E., Kiss, C., Oláh, É. (2002) Duchenne muscular dystrophy-



98 
 

rhabdomyosarcoma, ichthyosis vulgaris/acute monoblastic leukemia: Association of rare 

genetic disorders and childhood malignant diseases. Medical and Pediatric Oncology. 39(1), 

66–68. 

Johnston, K.M., Zoger, S., Golabi, M., Mulvihill, J.J. (1986) Neuroblastoma in Duchenne 

muscular dystrophy. Pediatrics. 78(6), 1170–1171. 

Jones, L., Naidoo, M., Machado, L.R., Anthony, K. (2021) The Duchenne muscular dystrophy 

gene and cancer. Cellular Oncology. 44(1), 19–32. 

Juratli, T.A., McCabe, D., Nayyar, N., Williams, E.A., Silverman, I.M., Tummala, S.S., Fink, A.L., 

Baig, A., Martinez-Lage, M., Selig, M.K., Bihun, I. V., Shankar, G.M., Penson, T., Lastrapes, M., 

Daubner, D., Meinhardt, M., Hennig, S., Kaplan, A.B., Fujio, S., Kuter, B.M., Bertalan, M.S., 

Miller, J.J., Batten, J.M., Ely, H.A., Christiansen, J., Baretton, G.B., Stemmer-Rachamimov, 

A.O., Santagata, S., Rivera, M.N., Barker, F.G., Schackert, G., Wakimoto, H., Iafrate, A.J., 

Carter, S.L., Cahill, D.P., Brastianos, P.K. (2018) DMD genomic deletions characterize a 

subset of progressive/higher-grade meningiomas with poor outcome. Acta 

Neuropathologica. 136(5), 779–792. 

Kahana, E., Gratzer, W.B. (1995) Minimum folding unit of dystrophin rod domain. 

Biochemistry. 34(25), 8110–8114. 

Kaplan, E.L., Meier, P. (1958) Nonparametric Estimation from Incomplete Observations. 

Journal of the American Statistical Association. 53(282), 457–481. 

Khalsan, M., MacHado, L.R., Al-Shamery, E.S., Ajit, S., Anthony, K., Mu, M., Agyeman, M.O. 

(2022) A Survey of Machine Learning Approaches Applied to Gene Expression Analysis for 

Cancer Prediction. IEEE Access. 10, 27522–27534. 

Körner, H., Epanchintsev, A., Berking, C., Schuler-Thurner, B., Speicher, M.R., Menssen, A., 

Hermeking, H. (2007) Digital karyotyping reveals frequent inactivation of the 

Dystrophin/DMD gene in malignant melanoma. Cell Cycle. 6(2), 189–198. 

Korones, D.N., Brown, M.R., Palis, J. (2001) ‘Liver Function Tests’ Are Not Always Tests of 

Liver Function. J. Hematol. 66, 46–48. 

Lausen, B., Schumacher, M. (1992) Maximally Selected Rank Statistics. Biometrics. 48(1), 73. 



99 
 

Lawlor, N., Fabbri, A., Guan, P., George, J., Karuturi, R.K.M. (2016) MultiClust: An R-package 

for identifying biologically relevant clusters in cancer transcriptome profiles. Cancer 

Informatics. 15, 103–114. 

Liu, Jianfang, Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack, A.D., 

Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A. V., Omberg, L., Wolf, D.M., Shriver, C.D., 

Thorsson, V., Caesar-Johnson, S.J., Demchok, J.A., Felau, I., Kasapi, M., Ferguson, M.L., 

Hutter, C.M., Sofia, H.J., Tarnuzzer, R., Wang, Z., Yang, L., Zenklusen, J.C., Zhang, J. (Julia), 

Chudamani, S., Liu, Jia, Lolla, L., Naresh, R., Pihl, T., Sun, Q., Wan, Y., Wu, Y., Cho, J., 

DeFreitas, T., Frazer, S., Gehlenborg, N., Getz, G., Heiman, D.I., Kim, J., Lawrence, M.S., Lin, 

P., Meier, S., Noble, M.S., Saksena, G., Voet, D., Zhang, Hailei, Bernard, B., Chambwe, N., 

Dhankani, V., Knijnenburg, T., Kramer, R., Leinonen, K., Liu, Y., Miller, M., Reynolds, S., 

Shmulevich, I., Thorsson, V., Zhang, W., Akbani, R., Broom, B.M., Hegde, A.M., Ju, Z., Kanchi, 

R.S., Korkut, A., Li, J., Liang, H., Ling, S., Liu, W., Lu, Y., Mills, G.B., Ng, K.S., Rao, A., Ryan, M., 

Wang, Jing, Weinstein, J.N., Zhang, J., Abeshouse, A., Armenia, J., Chakravarty, D., Chatila, 

W.K., de Bruijn, I., Gao, J., Gross, B.E., Heins, Z.J., Kundra, R., La, K., Ladanyi, M., Luna, A., 

Nissan, M.G., Ochoa, A., Phillips, S.M., Reznik, E., Sanchez-Vega, F., Sander, C., Schultz, N., 

Sheridan, R., Sumer, S.O., Sun, Y., Taylor, B.S., Wang, Jioajiao, Zhang, Hongxin, Anur, P., 

Peto, M., Spellman, P., Benz, C., Stuart, J.M., Wong, C.K., Yau, C., Hayes, D.N., Parker, J.S., 

Wilkerson, M.D., Ally, A., Balasundaram, M., Bowlby, R., Brooks, D., Carlsen, R., Chuah, E., 

Dhalla, N., Holt, R., Jones, S.J.M., Kasaian, K., Lee, D., Ma, Y., Marra, M.A., Mayo, M., Moore, 

R.A., Mungall, A.J., Mungall, K., Robertson, A.G., Sadeghi, S., Schein, J.E., Sipahimalani, P., 

Tam, A., Thiessen, N., Tse, K., Wong, T., Berger, A.C., Beroukhim, R., Cherniack, A.D., 

Cibulskis, C., Gabriel, S.B., Gao, G.F., Ha, G., Meyerson, M., Schumacher, S.E., Shih, J., 

Kucherlapati, M.H., Kucherlapati, R.S., Baylin, S., Cope, L., Danilova, L., Bootwalla, M.S., Lai, 

P.H., Maglinte, D.T., Van Den Berg, D.J., Weisenberger, D.J., Auman, J.T., Balu, S., 

Bodenheimer, T., Fan, C., Hoadley, K.A., Hoyle, A.P., Jefferys, S.R., Jones, C.D., Meng, S., 

Mieczkowski, P.A., Mose, L.E., Perou, A.H., Perou, C.M., Roach, J., Shi, Y., Simons, J. V., 

Skelly, T., Soloway, M.G., Tan, D., Veluvolu, U., Fan, H., Hinoue, T., Laird, P.W., Shen, H., 

Zhou, W., Bellair, M., Chang, K., Covington, K., Creighton, C.J., Dinh, H., Doddapaneni, H.V., 

Donehower, L.A., Drummond, J., Gibbs, R.A., Glenn, R., Hale, W., Han, Y., Hu, J., Korchina, V., 

Lee, S., Lewis, L., Li, W., Liu, X., Morgan, M., Morton, D., Muzny, D., Santibanez, J., Sheth, M., 



100 
 

Shinbro, E., Wang, L., Wang, M., Wheeler, D.A., Xi, L., Zhao, F., Hess, J., Appelbaum, E.L., 

Bailey, M., Cordes, M.G., Ding, L., Fronick, C.C., Fulton, L.A., Fulton, R.S., Kandoth, C., Mardis, 

E.R., McLellan, M.D., Miller, C.A., Schmidt, H.K., Wilson, R.K., Crain, D., Curley, E., Gardner, 

J., Lau, K., Mallery, D., Morris, S., Paulauskis, J., Penny, R., Shelton, C., Shelton, T., Sherman, 

M., Thompson, E., Yena, P., Bowen, J., Gastier-Foster, J.M., Gerken, M., Leraas, K.M., 

Lichtenberg, T.M., Ramirez, N.C., Wise, L., Zmuda, E., Corcoran, N., Costello, T., Hovens, C., 

Carvalho, A.L., de Carvalho, A.C., Fregnani, J.H., Longatto-Filho, A., Reis, R.M., 

Scapulatempo-Neto, C., Silveira, H.C.S., Vidal, D.O., Burnette, A., Eschbacher, J., Hermes, B., 

Noss, A., Singh, R., Anderson, M.L., Castro, P.D., Ittmann, M., Huntsman, D., Kohl, B., Le, X., 

Thorp, R., Andry, C., Duffy, E.R., Lyadov, V., Paklina, O., Setdikova, G., Shabunin, A., 

Tavobilov, M., McPherson, C., Warnick, R., Berkowitz, R., Cramer, D., Feltmate, C., Horowitz, 

N., Kibel, A., Muto, M., Raut, C.P., Malykh, A., Barnholtz-Sloan, J.S., Barrett, W., Devine, K., 

Fulop, J., Ostrom, Q.T., Shimmel, K., Wolinsky, Y., Sloan, A.E., De Rose, A., Giuliante, F., 

Goodman, M., Karlan, B.Y., Hagedorn, C.H., Eckman, J., Harr, J., Myers, J., Tucker, K., Zach, 

L.A., Deyarmin, B., Hu, H., Kvecher, L., Larson, C., Mural, R.J., Somiari, S., Vicha, A., Zelinka, 

T., Bennett, J., Iacocca, M., Rabeno, B., Swanson, P., Latour, M., Lacombe, L., Têtu, B., 

Bergeron, A., McGraw, M., Staugaitis, S.M., Chabot, J., Hibshoosh, H., Sepulveda, A., Su, T., 

Wang, T., Potapova, O., Voronina, O., Desjardins, L., Mariani, O., Roman-Roman, S., Sastre, 

X., Stern, M.H., Cheng, F., Signoretti, S., Berchuck, A., Bigner, D., Lipp, E., Marks, J., McCall, 

S., McLendon, R., Secord, A., Sharp, A., Behera, M., Brat, D.J., Chen, A., Delman, K., Force, S., 

Khuri, F., Magliocca, K., Maithel, S., Olson, J.J., Owonikoko, T., Pickens, A., Ramalingam, S., 

Shin, D.M., Sica, G., Van Meir, E.G., Zhang, Hongzheng, Eijckenboom, W., Gillis, A., 

Korpershoek, E., Looijenga, L., Oosterhuis, W., Stoop, H., van Kessel, K.E., Zwarthoff, E.C., 

Calatozzolo, C., Cuppini, L., Cuzzubbo, S., DiMeco, F., Finocchiaro, G., Mattei, L., Perin, A., 

Pollo, B., Chen, C., Houck, J., Lohavanichbutr, P., Hartmann, A., Stoehr, C., Stoehr, R., 

Taubert, H., Wach, S., Wullich, B., Kycler, W., Murawa, D., Wiznerowicz, M., Chung, K., 

Edenfield, W.J., Martin, J., Baudin, E., Bubley, G., Bueno, R., De Rienzo, A., Richards, W.G., 

Kalkanis, S., Mikkelsen, T., Noushmehr, H., Scarpace, L., Girard, N., Aymerich, M., Campo, E., 

Giné, E., Guillermo, A.L., Van Bang, N., Hanh, P.T., Phu, B.D., Tang, Y., Colman, H., Evason, K., 

Dottino, P.R., Martignetti, J.A., Gabra, H., Juhl, H., Akeredolu, T., Stepa, S., Hoon, D., Ahn, K., 

Kang, K.J., Beuschlein, F., Breggia, A., Birrer, M., Bell, D., Borad, M., Bryce, A.H., Castle, E., 

Chandan, V., Cheville, J., Copland, J.A., Farnell, M., Flotte, T., Giama, N., Ho, T., Kendrick, M., 



101 
 

Kocher, J.P., Kopp, K., Moser, C., Nagorney, D., O’Brien, D., O’Neill, B.P., Patel, T., Petersen, 

G., Que, F., Rivera, M., Roberts, L., Smallridge, R., Smyrk, T., Stanton, M., Thompson, R.H., 

Torbenson, M., Yang, J.D., Zhang, L., Brimo, F., Ajani, J.A., Angulo Gonzalez, A.M., Behrens, 

C., Bondaruk, J., Broaddus, R., Czerniak, B., Esmaeli, B., Fujimoto, J., Gershenwald, J., Guo, 

C., Logothetis, C., Meric-Bernstam, F., Moran, C., Ramondetta, L., Rice, D., Sood, A., Tamboli, 

P., Thompson, T., Troncoso, P., Tsao, A., Wistuba, I., Carter, C., Haydu, L., Hersey, P., Jakrot, 

V., Kakavand, H., Kefford, R., Lee, K., Long, G., Mann, G., Quinn, M., Saw, R., Scolyer, R., 

Shannon, K., Spillane, A., Stretch, J., Synott, M., Thompson, J., Wilmott, J., Al-Ahmadie, H., 

Chan, T.A., Ghossein, R., Gopalan, A., Levine, D.A., Reuter, V., Singer, S., Singh, B., Tien, N.V., 

Broudy, T., Mirsaidi, C., Nair, P., Drwiega, P., Miller, J., Smith, J., Zaren, H., Park, J.W., Hung, 

N.P., Kebebew, E., Linehan, W.M., Metwalli, A.R., Pacak, K., Pinto, P.A., Schiffman, M., 

Schmidt, L.S., Vocke, C.D., Wentzensen, N., Worrell, R., Yang, H., Moncrieff, M., Goparaju, C., 

Melamed, J., Pass, H., Botnariuc, N., Caraman, I., Cernat, M., Chemencedji, I., Clipca, A., 

Doruc, S., Gorincioi, G., Mura, S., Pirtac, M., Stancul, I., Tcaciuc, D., Albert, M., Alexopoulou, 

I., Arnaout, A., Bartlett, J., Engel, J., Gilbert, S., Parfitt, J., Sekhon, H., Thomas, G., Rassl, D.M., 

Rintoul, R.C., Bifulco, C., Tamakawa, R., Urba, W., Hayward, N., Timmers, H., Antenucci, A., 

Facciolo, F., Grazi, G., Marino, M., Merola, R., de Krijger, R., Gimenez-Roqueplo, A.P., Piché, 

A., Chevalier, S., McKercher, G., Birsoy, K., Barnett, G., Brewer, C., Farver, C., Naska, T., 

Pennell, N.A., Raymond, D., Schilero, C., Smolenski, K., Williams, F., Morrison, C., Borgia, J.A., 

Liptay, M.J., Pool, M., Seder, C.W., Junker, K., Omberg, L., Dinkin, M., Manikhas, G., Alvaro, 

D., Bragazzi, M.C., Cardinale, V., Carpino, G., Gaudio, E., Chesla, D., Cottingham, S., Dubina, 

M., Moiseenko, F., Dhanasekaran, R., Becker, K.F., Janssen, K.P., Slotta-Huspenina, J., Abdel-

Rahman, M.H., Aziz, D., Bell, S., Cebulla, C.M., Davis, A., Duell, R., Elder, J.B., Hilty, J., Kumar, 

B., Lang, J., Lehman, N.L., Mandt, R., Nguyen, P., Pilarski, R., Rai, K., Schoenfield, L., Senecal, 

K., Wakely, P., Hansen, P., Lechan, R., Powers, J., Tischler, A., Grizzle, W.E., Sexton, K.C., 

Kastl, A., Henderson, J., Porten, S., Waldmann, J., Fassnacht, M., Asa, S.L., Schadendorf, D., 

Couce, M., Graefen, M., Huland, H., Sauter, G., Schlomm, T., Simon, R., Tennstedt, P., 

Olabode, O., Nelson, M., Bathe, O., Carroll, P.R., Chan, J.M., Disaia, P., Glenn, P., Kelley, R.K., 

Landen, C.N., Phillips, J., Prados, M., Simko, J., Smith-McCune, K., VandenBerg, S., Roggin, K., 

Fehrenbach, A., Kendler, A., Sifri, S., Steele, R., Jimeno, A., Carey, F., Forgie, I., Mannelli, M., 

Carney, M., Hernandez, B., Campos, B., Herold-Mende, C., Jungk, C., Unterberg, A., von 

Deimling, A., Bossler, A., Galbraith, J., Jacobus, L., Knudson, M., Knutson, T., Ma, D., Milhem, 



102 
 

M., Sigmund, R., Godwin, A.K., Madan, R., Rosenthal, H.G., Adebamowo, C., Adebamowo, 

S.N., Boussioutas, A., Beer, D., Giordano, T., Mes-Masson, A.M., Saad, F., Bocklage, T., 

Landrum, L., Mannel, R., Moore, K., Moxley, K., Postier, R., Walker, J., Zuna, R., Feldman, M., 

Valdivieso, F., Dhir, R., Luketich, J., Mora Pinero, E.M., Quintero-Aguilo, M., Carlotti, C.G., 

Dos Santos, J.S., Kemp, R., Sankarankuty, A., Tirapelli, D., Catto, J., Agnew, K., Swisher, E., 

Creaney, J., Robinson, B., Shelley, C.S., Godwin, E.M., Kendall, S., Shipman, C., Bradford, C., 

Carey, T., Haddad, A., Moyer, J., Peterson, L., Prince, M., Rozek, L., Wolf, G., Bowman, R., 

Fong, K.M., Yang, I., Korst, R., Rathmell, W.K., Fantacone-Campbell, J.L., Hooke, J.A., 

Kovatich, A.J., Shriver, C.D., DiPersio, J., Drake, B., Govindan, R., Heath, S., Ley, T., Van Tine, 

B., Westervelt, P., Rubin, M.A., Lee, J. Il, Aredes, N.D., Mariamidze, A., Hu, H. (2018) An 

Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome 

Analytics. Cell. 173(2), 400. 

Lu, Z., Zou, J., Li, S., Topper, M.J., Tao, Y., Zhang, H., Jiao, X., Xie, W., Kong, X., Vaz, M., Li, H., 

Cai, Y., Xia, L., Huang, P., Rodgers, K., Lee, B., Riemer, J.B., Day, C.P., Yen, R.W.C., Cui, Y., 

Wang, Yujiao, Wang, Yanni, Zhang, W., Easwaran, H., Hulbert, A., Kim, K.B., Juergens, R.A., 

Yang, S.C., Battafarano, R.J., Bush, E.L., Broderick, S.R., Cattaneo, S.M., Brahmer, J.R., Rudin, 

C.M., Wrangle, J., Mei, Y., Kim, Y.J., Zhang, B., Wang, K.K.H., Forde, P.M., Margolick, J.B., 

Nelkin, B.D., Zahnow, C.A., Pardoll, D.M., Housseau, F., Baylin, S.B., Shen, L., Brock, M. V. 

(2020) Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 

579(7798), 284–290. 

Luce, L.N., Abbate, M., Cotignola, J., Giliberto, F. (2017) Non-myogenic tumors display 

altered expression of dystrophin (DMD) and a high frequency of genetic alterations. 

Oncotarget. 8(1), 145–155. 

Mandrekar, J.N. Cutpoint Determination Methods in Survival Analysis using SAS ®. SUGI 28. 

[online]. Available from: 

https://support.sas.com/resources/papers/proceedings/proceedings/sugi28/261-28.pdf 

[Accessed August 16, 2022]. 

Mathew, G., Mitchell, A., Down, J.M., Jacobs, L.A., Hamdy, F.C., Eaton, C., Rosario, D.J., 

Cross, S.S., Winder, S.J. (2013) Nuclear targeting of dystroglycan promotes the expression of 

androgen regulated transcription factors in prostate cancer. Scientific Reports. 3(Sep 30), 



103 
 

2792. 

Mauduit, O., Delcroix, V., Lesluyes, T., Pérot, G., Lagarde, P., Lartigue, L., Blay, J.-Y., Chibon, 

F. (2019) Recurrent DMD Deletions Highlight Specific Role of Dp71 Isoform in Soft-Tissue 

Sarcomas. Cancers. 11(7), 922. 

McAvoy, S., Ganapathiraju, S., Perez, D.S., James, C.D., Smith, D.I. (2007) DMD and 

IL1RAPL1: Two large adjacent genes localized within a common fragile site (FRAXC) have 

reduced expression in cultured brain tumors. Cytogenetic and Genome Research. 119(3–4), 

196–203. 

Mitchell, A., Mathew, G., Jiang, T., Hamdy, F.C., Cross, S.S., Eaton, C., Winder, S.J. (2013) 

Dystroglycan function is a novel determinant of tumor growth and behavior in prostate 

cancer. Prostate. 73(4), 398–408. 

Muntoni, F., Torelli, S., Ferlini, A. (2003) Dystrophin and mutations: One gene, several 

proteins, multiple phenotypes. Lancet Neurology. 2(12), 731–740. 

Naidoo, M., Anthony, K. (2020) Dystrophin Dp71 and the Neuropathophysiology of 

Duchenne Muscular Dystrophy. Molecular Neurobiology. 57(3), 1748–1767. 

Naidoo, M., Jones, L., Conboy, B., Hamarneh, W., D’Souza, D., Anthony, K., Machado, L.R. 

(2022) Duchenne muscular dystrophy gene expression is an independent prognostic marker 

for IDH mutant low-grade glioma. Scientific reports. 12(1), 19–32. 

National Cancer Institute (2022) TCGA Research Network Publications. [online]. Available 

from: cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga/publications [Accessed August 17, 2022]. 

NCI The Cancer Genome Atlas - Ethics and Policies. [online]. Available from: 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga/history/policies [Accessed August 8, 2022]. 

Nikitin, E.A., Malakho, S.G., Biderman, B. V., Baranova, A. V., Lorie, Y.Y., Shevelev, A.Y., 

Peklo, M.M., Vlasik, T.N., Moskalev, E.A., Zingerman, B. V., Vorob’ev, I.A., Poltaraus, A.B., 

Sudarikov, A.B., Vorobjev, A.I. (2007) Expression level of lipoprotein lipase and dystrophin 

genes predict survival in B-cell chronic lymphocytic leukemia. Leukemia and Lymphoma. 



104 
 

48(5), 912–922. 

Ohlendieck, K., Ervasti, J.M., Matsumura, K., Kahl, S.D., Leveille, C.J., Campbell, K.P. (1991) 

Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. 

Neuron. 7(3), 499–508. 

Okuno, K., Kawaba, D., Maejima, A., Kakee, S., Namba, N. (2022) A high-risk alveolar 

rhabdomyosarcoma case with Duchenne muscular dystrophy. Pediatrics International. 

64(1), e14754. 

Olson, E.N. (2021) Toward the correction of muscular dystrophy by gene editing. 

Proceedings of the National Academy of Sciences of the United States of America. 118(22), 

e2004840117. 

Paramasivam, N., Hübschmann, D., Toprak, U.H., Ishaque, N., Neidert, M., Schrimpf, D., 

Stichel, D., Reuss, D., Sievers, P., Reinhardt, A., Wefers, A.K., Jones, D.T.W., Gu, Z., Werner, 

J., Uhrig, S., Wirsching, H.G., Schick, M., Bewerunge-Hudler, M., Beck, K., Brehmer, S., 

Urbschat, S., Seiz-Rosenhagen, M., Hänggi, D., Herold-Mende, C., Ketter, R., Eils, R., Ram, Z., 

Pfister, S.M., Wick, W., Weller, M., Grossmann, R., von Deimling, A., Schlesner, M., Sahm, F. 

(2019) Mutational patterns and regulatory networks in epigenetic subgroups of 

meningioma. Acta Neuropathologica. 138(2), 295–308. 

Percival, J.M. (2018) Perspective: Spectrin-like repeats in dystrophin have unique binding 

preferences for syntrophin adaptors that explain the mystery of how nNOSμ localizes to the 

sarcolemma. Frontiers in Physiology. 9(Oct 8), 1369. 

Peto, R., Pike, M.C., Armitage, P., Breslow, N.E., Cox, D.R., Howard, S. V., Mantel, N., 

McPherson, K., Peto, J., Smith, P.G. (1977) Design and analysis of randomized clinical trials 

requiring prolonged observation of each patient. II. Analysis and examples. British Journal of 

Cancer 1977 35:1. 35(1), 1–39. 

Pilgram, G.S.K., Potikanond, S., Baines, R.A., Fradkin, L.G., Noordermeer, J.N. (2010) The 

roles of the dystrophin-associated glycoprotein complex at the synapse. Molecular 

Neurobiology. 41(1), 1–21. 

Rani, A.Q.M., Farea, M., Maeta, K., Kawaguchi, T., Awano, H., Nagai, M., Nishio, H., Matsuo, 

M. (2019) Identification of the shortest splice variant of Dp71, together with five known 



105 
 

variants, in glioblastoma cells. Biochemical and Biophysical Research Communications. 

508(2), 640–645. 

van den Reek, J.M.P.A., Kievit, W., Gniadecki, R., Goeman, J.J., Zweegers, J., van de Kerkhof, 

P.C.M., Seyger, M.M.B., de Jong, E.M.G.J. (2015) Drug Survival Studies in 

Dermatology:Principles, Purposes, and Pitfalls. Journal of Investigative Dermatology. 135(7), 

1–5. 

Romitti, P.A., Zhu, Y., Puzhankara, S., James, K.A., Nabukera, S.K., Zamba, G.K.D., Ciafaloni, 

E., Cunniff, C., Druschel, C.M., Mathews, K.D., Matthews, D.J., Meaney, F.J., Andrews, J.G., 

Caspers Conway, K.M., Fox, D.J., Street, N., Adams, M.M., Bolen, J. (2015) Prevalence of 

Duchenne and Becker muscular dystrophies in the United States. Pediatrics. 135(3), 513–

521. 

Rossbach, H.C., Lacson, A., Grana, N.H., Barbosa, J.L. (1999) Duchenne muscular dystrophy 

and concomitant metastatic alveolar rhabdomyosarcoma. Journal of Pediatric 

Hematology/Oncology. 21(6), 528–530. 

Ruggieri, S., De Giorgis, M., Annese, T., Tamma, R., Notarangelo, A., Marzullo, A., Senetta, R., 

Cassoni, P., Notarangelo, M., Ribatti, D., Nico, B. (2019) Dp71 expression in human 

glioblastoma. International Journal of Molecular Sciences. 20(21), 5429. 

Saldanha, R.M., Gasparini, J.R., Silva, L.S., de Carli, R.R., Castilhos, V.U.D. de, Neves, M.M.P. 

das, Araújo, F.P., Sales, P.C. de A., Neves, J.F.N.P. das (2005) Anestesia em paciente portador 

de distrofia muscular de Duchenne: relato de casos. Revista Brasileira de Anestesiologia. 

55(4), 445–449. 

Schmidt, W.M., Uddin, M.H., Dysek, S., Moser-Thier, K., Pirker, C., Höger, H., Ambros, I.M., 

Ambros, P.F., Berger, W., Bittner, R.E. (2011) DNA Damage, Somatic Aneuploidy, and 

Malignant Sarcoma Susceptibility in Muscular Dystrophies H. T. Orr, ed. PLoS Genetics. 7(4), 

e1002042. 

Sgambato, A., Brancaccio, A. (2005) The dystroglycan complex: From biology to cancer. 

Journal of Cellular Physiology. 205(2), 163–169. 

Skrypek, N., Goossens, S., De Smedt, E., Vandamme, N., Berx, G. (2017) Epithelial-to-

Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity. Trends in 



106 
 

genetics : TIG. 33(12), 943–959. 

Suárez-Sánchez, R., Aguilar, A., Wagstaff, K.M., Velez, G., Azuara-Medina, P.M., Gomez, P., 

Vásquez-Limeta, A., Hernández-Hernández, O., Lieu, K.G., Jans, D.A., Cisneros, B. (2014) 

Nucleocytoplasmic shuttling of the Duchenne muscular dystrophy gene product dystrophin 

Dp71d is dependent on the importin α/β and CRM1 nuclear transporters and microtubule 

motor dynein. Biochimica et biophysica acta. 1843(5), 985–1001. 

Svarch, E., Menéndez, A., González, A. (1988) Duchenne muscular dystrophy and acute 

lymphoblastic leukaemia. Haematologia. 21(2), 123–124. 

Tan, Sichuang, Tan, Sipin, Chen, Zhikang, Cheng, K., Chen, Zhicao, Wang, W., Wen, Q., Zhang, 

W. (2016) Knocking down Dp71 expression in A549 cells reduces its malignancy in vivo and 

in vitro. Cancer Investigation. 34(1), 16–25. 

Tan, Sipin, Tan, J., Tan, Sichuang, Zhao, S., Cao, X., Chen, Z., Weng, Q., Zhang, H., Wang, K.K., 

Zhou, J., Xiao, X. (2016) Decreased Dp71 expression is associated with gastric 

adenocarcinoma prognosis. Oncotarget. 7(33), 53702–53711. 

Therneau, T.M. (2021) Survival Analysis [R package survival version 3.2-11]. 

Thienpont, B., Van Dyck, L., Lambrechts, D. (2016) Tumors smother their epigenome. 

Molecular & cellular oncology. 3(6), e1240549. 

Tozawa, T., Itoh, K., Yaoi, T., Tando, S., Umekage, M., Dai, H., Hosoi, H., Fushiki, S. (2012) The 

shortest isoform of dystrophin (Dp40) interacts with a group of presynaptic proteins to form 

a presumptive novel complex in the mouse brain. Molecular neurobiology. 45(2), 287–297. 

Uotani, H., Hirokawa, S., Saito, F., Tauchi, K., Shimoda, M., Ishizawa, S., Kawaguchi, M., 

Nomura, K., Kanegane, H., Tsukada, K. (2001) Non-Hodgkin’s lymphoma of the ascending 

colon in a patient with Becker muscular dystrophy: Report of a case. Surgery Today. 31(11), 

1016–1019. 

Vita, G.L., Politano, L., Berardinelli, A., Vita, G. (2021) Have Duchenne Muscular Dystrophy 

Patients an Increased Cancer Risk? Journal of Neuromuscular Diseases. Preprint(Preprint), 

1–5. 

Wang, Y., Marino-Enriquez, A., Bennett, R.R., Zhu, M., Shen, Y., Eilers, G., Lee, J.-C., Henze, J., 



107 
 

Fletcher, B.S., Gu, Z., Fox, E.A., Antonescu, C.R., Fletcher, C.D.M., Guo, X., Raut, C.P., 

Demetri, G.D., van de Rijn, M., Ordog, T., Kunkel, L.M., Fletcher, J.A. (2014) Dystrophin is a 

tumor suppressor in human cancers with myogenic programs. Nature genetics. 46(6), 601–

6. 

Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A., Ellrott, K., 

Sander, C., Stuart, J.M., Chang, K., Creighton, C.J., Davis, C., Donehower, L., Drummond, J., 

Wheeler, D., Ally, A., Balasundaram, M., Birol, I., Butterfield, Y.S.N., Chu, A., Chuah, E., Chun, 

H.J.E., Dhalla, N., Guin, R., Hirst, M., Hirst, C., Holt, R.A., Jones, S.J.M., Lee, D., Li, H.I., Marra, 

M.A., Mayo, M., Moore, R.A., Mungall, A.J., Robertson, A.G., Schein, J.E., Sipahimalani, P., 

Tam, A., Thiessen, N., Varhol, R.J., Beroukhim, R., Bhatt, A.S., Brooks, A.N., Cherniack, A.D., 

Freeman, S.S., Gabriel, S.B., Helman, E., Jung, J., Meyerson, M., Ojesina, A.I., Pedamallu, C.S., 

Saksena, G., Schumacher, S.E., Tabak, B., Zack, T., Lander, E.S., Bristow, C.A., Hadjipanayis, 

A., Haseley, P., Kucherlapati, R., Lee, S., Lee, E., Luquette, L.J., Mahadeshwar, H.S., Pantazi, 

A., Parfenov, M., Park, P.J., Protopopov, A., Ren, X., Santoso, N., Seidman, J., Seth, S., Song, 

X., Tang, J., Xi, R., Xu, A.W., Yang, Lixing, Zeng, D., Auman, J.T., Balu, S., Buda, E., Fan, C., 

Hoadley, K.A., Jones, C.D., Meng, S., Mieczkowski, P.A., Parker, J.S., Perou, C.M., Roach, J., 

Shi, Y., Silva, G.O., Tan, D., Veluvolu, U., Waring, S., Wilkerson, M.D., Wu, J., Zhao, W., 

Bodenheimer, T., Hayes, D.N., Hoyle, A.P., Jeffreys, S.R., Mose, L.E., Simons, J. V., Soloway, 

M.G., Baylin, S.B., Berman, B.P., Bootwalla, M.S., Danilova, L., Herman, J.G., Hinoue, T., 

Laird, P.W., Rhie, S.K., Shen, H., Triche, T., Weisenberger, D.J., Carter, S.L., Cibulskis, K., Chin, 

L., Zhang, Jianhua, Sougnez, C., Wang, M., Getz, G., Dinh, H., Doddapaneni, H.V., Gibbs, R., 

Gunaratne, P., Han, Y., Kalra, D., Kovar, C., Lewis, L., Morgan, M., Morton, D., Muzny, D., 

Reid, J., Xi, L., Cho, J., Dicara, D., Frazer, S., Gehlenborg, N., Heiman, D.I., Kim, J., Lawrence, 

M.S., Lin, P., Liu, Yingchun, Noble, M.S., Stojanov, P., Voet, D., Zhang, H., Zou, L., Stewart, C., 

Bernard, B., Bressler, R., Eakin, A., Iype, L., Knijnenburg, T., Kramer, R., Kreisberg, R., 

Leinonen, K., Lin, J., Liu, Yuexin, Miller, M., Reynolds, S.M., Rovira, H., Shmulevich, I., 

Thorsson, V., Yang, D., Zhang, W., Amin, S., Wu, C.J., Wu, C.C., Akbani, R., Aldape, K., 

Baggerly, K.A., Broom, B., Casasent, T.D., Cleland, J., Dodda, D., Edgerton, M., Han, L., 

Herbrich, S.M., Ju, Z., Kim, H., Lerner, S., Li, J., Liang, H., Liu, W., Lorenzi, P.L., Lu, Y., Melott, 

J., Nguyen, L., Su, X., Verhaak, R., Wang, W., Wong, A., Yang, Y., Yao, J., Yao, R., Yoshihara, 

K., Yuan, Y., Yung, A.K., Zhang, N., Zheng, S., Ryan, M., Kane, D.W., Aksoy, B.A., Ciriello, G., 



108 
 

Dresdner, G., Gao, J., Gross, B., Jacobsen, A., Kahles, A., Ladanyi, M., Lee, W., Lehmann, K. 

Van, Miller, M.L., Ramirez, R., Rätsch, G., Reva, B., Schultz, N., Senbabaoglu, Y., Shen, R., 

Sinha, R., Sumer, S.O., Sun, Y., Taylor, B.S., Weinhold, N., Fei, S., Spellman, P., Benz, C., 

Carlin, D., Cline, M., Craft, B., Goldman, M., Haussler, D., Ma, S., Ng, S., Paull, E., 

Radenbaugh, A., Salama, S., Sokolov, A., Swatloski, T., Uzunangelov, V., Waltman, P., Yau, C., 

Zhu, J., Hamilton, S.R., Abbott, S., Abbott, R., Dees, N.D., Delehaunty, K., Ding, L., Dooling, 

D.J., Eldred, J.M., Fronick, C.C., Fulton, R., Fulton, L.L., Kalicki-Veizer, J., Kanchi, K.L., 

Kandoth, C., Koboldt, D.C., Larson, D.E., Ley, T.J., Lin, L., Lu, C., Magrini, V.J., Mardis, E.R., 

McLellan, M.D., McMichael, J.F., Miller, C.A., O’Laughlin, M., Pohl, C., Schmidt, H., Smith, 

S.M., Walker, J., Wallis, J.W., Wendl, M.C., Wilson, R.K., Wylie, T., Zhang, Q., Burton, R., 

Jensen, M.A., Kahn, A., Pihl, T., Pot, D., Wan, Y., Levine, D.A., Black, A.D., Bowen, J., Frick, J., 

Gastier-Foster, J.M., Harper, H.A., Helsel, C., Leraas, K.M., Lichtenberg, T.M., McAllister, C., 

Ramirez, N.C., Sharpe, S., Wise, L., Zmuda, E., Chanock, S.J., Davidsen, T., Demchok, J.A., 

Eley, G., Felau, I., Sheth, M., Sofia, H., Staudt, L., Tarnuzzer, R., Wang, Z., Yang, Liming, 

Zhang, Jiashan, Omberg, L., Margolin, A., Raphael, B.J., Vandin, F., Wu, H.T., Leiserson, 

M.D.M., Benz, S.C., Vaske, C.J., Noushmehr, H., Wolf, D., Veer, L.V.T., Anastassiou, D., Yang, 

T.H.O., Lopez-Bigas, N., Gonzalez-Perez, A., Tamborero, D., Xia, Z., Li, W., Cho, D.Y., 

Przytycka, T., Hamilton, M., McGuire, S., Nelander, S., Johansson, P., Jörnsten, R., Kling, T. 

(2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nature Genetics 2013 45:10. 

45(10), 1113–1120. 

Williams, B.A., Mandrekar, J.N., Mandrekar, S.J., Cha, S.S., Furth, A.F., Williams, B., Jayawant 

Mandrekar, M.N., Alfred Furth, M.F. (2006) Finding Optimal Cutpoints for Continuous 

Covariates with Binary and Time-to-Event Outcomes. Mayo Foundation. [online]. Available 

from: https://www.mayo.edu/research/documents/biostat-79pdf/doc-10027230 [Accessed 

August 16, 2022]. 

Zuo, X.-Y., Feng, Q.-S., Sun, J., Wei, P.-P., Chin, Y.-M., Guo, Y.-M., Xia, Y.-F., Li, B., Xia, X.-J., 

Jia, W.-H., Liu, J.-J., Khoo, A.S.-B., Mushiroda, T., Ng, C.-C., Su, W.-H., Zeng, Y.-X., Bei, J.-X. 

(2019) X-chromosome association study reveals genetic susceptibility loci of nasopharyngeal 

carcinoma. Biology of sex differences. 10(1), 13. 

 



109 
 

  



110 
 

6. Appendices 

 

Supplementary figure 1. Kaplan-Meier survival curves for high vs. low DMD expression in ACC. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 2. Kaplan-Meier survival curves for high vs. low DMD expression in BLCA. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 3. Kaplan-Meier survival curves for high vs. low DMD expression in BRCA. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 4. Kaplan-Meier survival curves for high vs. low DMD expression in CESC. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 5. Kaplan-Meier survival curves for high vs. low DMD expression in CHOL. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 6. Kaplan-Meier survival curves for high vs. low DMD expression in COAD. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 7. Kaplan-Meier survival curves for high vs. low DMD expression in DLBC. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 8. Kaplan-Meier survival curves for high vs. low DMD expression in ESCA. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 9. Kaplan-Meier survival curves for high vs. low DMD expression in GBM. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 10. Kaplan-Meier survival curves for high vs. low DMD expression in HNSC. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 11. Kaplan-Meier survival curves for high vs. low DMD expression in KICH. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 12. Kaplan-Meier survival curves for high vs. low DMD expression in KIRC. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 13. Kaplan-Meier survival curves for high vs. low DMD expression in KIRP. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 14. Kaplan-Meier survival curves for high vs. low DMD expression in LAML. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 15. Kaplan-Meier survival curves for high vs. low DMD expression in LGG. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 16. Kaplan-Meier survival curves for high vs. low DMD expression in LIHC. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 17. Kaplan-Meier survival curves for high vs. low DMD expression in LUAD. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 18. Kaplan-Meier survival curves for high vs. low DMD expression in LUSC. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 19. Kaplan-Meier survival curves for high vs. low DMD expression in MESO. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 20. Kaplan-Meier survival curves for high vs. low DMD expression in OV. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 21. Kaplan-Meier survival curves for high vs. low DMD expression in PAAD. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 22. Kaplan-Meier survival curves for high vs. low DMD expression in PCPG. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 23. Kaplan-Meier survival curves for high vs. low DMD expression in PRAD. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 24. Kaplan-Meier survival curves for high vs. low DMD expression in READ. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 25. Kaplan-Meier survival curves for high vs. low DMD expression in SARC. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 26. Kaplan-Meier survival curves for high vs. low DMD expression in SKCM. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 

  



136 
 

Supplementary figure 27. Kaplan-Meier survival curves for high vs. low DMD expression in STAD. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 28. Kaplan-Meier survival curves for high vs. low DMD expression in TGCT. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 29. Kaplan-Meier survival curves for high vs. low DMD expression in THCA. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 30. Kaplan-Meier survival curves for high vs. low DMD expression in THYM. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 31. Kaplan-Meier survival curves for high vs. low DMD expression in UCEC. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 32. Kaplan-Meier survival curves for high vs. low DMD expression in UCS. Red 
represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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Supplementary figure 33. Kaplan-Meier survival curves for high vs. low DMD expression in UVM. 
Red represents the low expression group and green represents the high expressing group. P value 
calculated using the log-rank test. 
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