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Abstract

The Duchenne muscular dystrophy (DMD) gene and its major translated protein product
Dystrophin (Dp427m) have for decades been associated with musculoskeletal function, with
specific mutations giving rise to dysfunction in Duchenne and Becker muscular dystrophies.
Alterations in the expression of the DMD gene have recently been associated with the

development, progression, and survival outcomes of several tumours.

A bioinformatic workflow employing an outcome-based cutpoint selection method was
developed. It was implemented to provide a comprehensive approach to examine the
association of DMD mRNA expression and survival outcomes across 33 different tumour types

and used bulk RNAseq data of primary tumours from the cancer genome atlas project.

Nine of the 33 tumours had significant survival outcomes using Kaplan Meier log-rank
statistics and were the focus of further downstream analysis. High DMD expression was
significantly associated with poor survival in low grade glioma, thymoma, rectal and kidney
cancer. Conversely, low expression of DMD was associated with poor survival in uveal

melanoma, pancreatic, lung adenocarcinoma, acute myeloid leukemia, and breast carcinoma.

Univariate Cox proportional hazard modelling was used to calculate DMD hazard ratios. In
combination with hazard ratios from other dystrophin associated glycoprotein complex
genes, hierarchical clustering was used to identify clusters that may potentially be used as
candidate biomarkers for different cancer types and help identify potentially common

underlying causal factors in these tumours.

The expression of the individual DMD gene products was examined and were also significantly
associated with overall survival, with specific patterns of expression likely to have differential

biological effects relevant to the pathogenesis of each tumour. The smallest gene product,



Dp40 was expressed across all tumours and most tumours expressed at least one Dp71
isoform. Full length Dp427m was expressed in breast cancer, low grade glioma, lung
adenocarcinoma, pancreatic adenocarcinoma, rectal cancer, and uveal melanoma. Low grade
glioma had the broadest expression of different DMD gene products and acute myeloid

leukemia was restricted to just Dp40 expression.

To explore differences between tumours expressing high or low amounts of total DMD RNA,
differential gene expression and preliminary pathway analysis identified dysregulated genes
with gene ontology biological terms that related to motility and adhesion which is concordant
with dystrophin’s known role as a structural/scaffold protein that facilitates cellular
interaction of the actin cytoskeleton with the extracellular matrix. However, in some cancers
novel terms relating to ion homeostasis (pancreatic and rectal) and chemical/sensory

perception (lung) were identified, and the biological significance of this is currently unclear.

Future work will require confirmation of dystrophin protein expression in these tumours with
follow-up functional experiments to demonstrate that dysregulated dystrophin is a
contributor to individual hallmarks of cancer. DMD gene or protein product expression may
have potential utility as an independent prognostic marker which can further stratify patients
to identify those with risk of poor survival. This knowledge may ultimately improve risk
stratification, patient management and aid our understating of the role dystrophin in these

cancers.
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Chapter 1

1. Introduction

1.1 The biology of DMD
1.1.1 DMD gene structure and encoded dystrophin products

The Duchene muscular dystrophy gene (DMD) is named after the clinical condition of the
same name and is one of the largest genes in the human genome comprised of seventy-nine
exons spanning 2Mb on the short arm of chromosome X (ChrX (p21.2-p21.1). It resides within
a known a fragile site and encodes a large 427KDa protein with an N-terminal binding domain
and multiple spectrin repeats (Jones et al., 2021). As part of a dystrophin associated protein
complex (DAPC), dystrophin bridges the inner cytoskeleton to the extracellular matrix. The
locus is a known site where point mutations and larger copy number alterations (deletions or
duplications) contribute to disease causing Duchene and Becker muscular dystrophies
(Muntoni et al., 2003). In addition, mutation in DMD contributes to cardiomyopathy. With

seven alternate promoters and alternative splicing events, a number of dystrophin gene
variants (Figure 1.1) and isoforms (i.e. Dp71; Figure 1.2) are produced that have distinct tissue

localisation and function which are incompletely characterised. The complexity is reflected in
examples such as Dp71 and Dp40, which share the same promoter and first exon but Dp40

makes use of an alternative polyadenylation site.
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Figure 1.1 Structure of DMD gene.
(a) location of independent promoters. (b) Differential expression and domain structure of the
different gene products. WW:WW domain; Cys: cysteine rich domain; CT: C-terminal domain (Jones

et al., 2021).
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Figure 1.2 Dp71 isoforms and preferred nomenclature.

Dp71 splice isoforms are grouped according to their C-terminus. Group d contains exon 78 and 79.
Group F lacks exon 78 and has an alternative exon 79 (79f). Group E contains part of intron 77 (i77)
and lacks exon 78 and 79. Group G has an isoform with a stop codon in exon 77. Alternative names of
major Dp71 isoforms: Dp71d = Dp71; Dp71da71 = Dp71a; Dp71f = Dp71b; Dp71; Dp71fa71 = Dp71ab.
Their differential C-termini are illustrated and the location of dystroglycan and syntrophin- binding
sites are indicated (Naidoo and Anthony, 2020).

1.1.2 Dystrophin as a component of the Dystrophin associated protein complex (DAPC)

Dystrophin is associated with a protein complex (Figure 1.3) that has unique structural and
functional roles that depend on tissue localisation. The canonical role of the DAPC is to
stabilise the plasma membrane of striated muscle cells by linking it to the basal lamina by
interacting through ECM interactions. If this does not correctly function, the result is a
collection of inherited diseases characterised by degeneration of muscle fibres and muscle
weakness (discussed in next section). Additional functions also include regulation of cation
and water channels as well as kinases and nNOS (Pilgram et al., 2010). DAPC proteins can
reside either as extracellular, transmembrane or cytoplasm proteins. a-dystroglycan is

located on the surface of the sarcolemma, is heavily glycosylated and interacts with laminin-

16



2 linking the plasma membrane to the extracellular matrix. a-dystroglycan is associated with

B-dystroglycan and together forms an interaction with dystrophin. A Sarcoglycan sub-

complex is tightly linked to dystroglycan (through interaction with Sarcospan) and consists of

four transmembrane proteins (a, B, y and 8). The sarcoglycan-sarcospan sub-complex is also

involved in signal transduction and mechanoprotection. Cytoplasmically, dystrophin interacts

with both B-dystroglycan and the actin cytoskeleton. Dystrophin also interacts with

syntrophins, dystrobrevins, and nNOS (a producer of nitric oxide) which are recruited to the

C-terminus of dystrophin and mediate signal transduction pathways that (for example)

override sympathetic vasoconstriction and prevent functional ischemia in contracting

muscles (Percival, 2018).

Figure 1.3 Dystrophin as a component of the Dystrophin-associated protein complex

(DAPC).

@
&
E |
=
2
]

intracellular

Microtubules
Dystrobrevin
Syntrophins

Intermediate
filaments

F-actin

Dystrophin

€

The DAPC facilitates the stabilisation of muscle fibres by connecting the intracellular actin
cytoskeleton to the extracellular matrix. ABD, actin binding domain; SSPN, Sarcospan; ECM,

extracellular matrix; nNOS, neuronal nitric oxide synthase (taken from (Gao and McNally, 2015).
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The full-length Dystrophin protein (427KDa, 3,684 amino acids) has four functional domains
(Figure 1.4). An amino-terminal actin-binding domain, a central rod domain with twenty-four
spectrin-like repeats interspersed with 4 hinge regions, a cysteine-rich and WW containing
dystroglycan-binding domain, and finally a carboxy-terminal domain facilitating interaction
with the sarcolemma via dystrobrevin and syntrophin binding sites. The N and C termini are
critical for function but the loss of spectrin repeats in the rod domain are somewhat tolerated
(Kahana and Gratzer, 1995) and are the basis of dystrophin restoration therapies for DMD

(Cirak et al., 2012).

1.1.3 Duchenne and Becker muscular dystrophies: The canonical diseases associated
with DMD mutation

DMD mutations occur as germline (in two thirds of cases) or as sporadic copy number
alterations. 60-70% of cases harbour deletions and 10% have duplications within the DMD
gene. There are also point mutations (20-35% of cases) that collectively give rise to Duchenne
muscular dystrophy (DMD) and the milder and related disorder Becker muscular dystrophy
(BMD). These monogenic disorders, are rare and have an estimated combined prevalence of
1 in 7250 males (Romitti et al., 2015). Clinically, from 4-5 years of age in DMD, there is
progressive weakness and degeneration of skeletal muscle. Patients struggle to walk and are
typically wheelchair bound by their early teens. Although better management has
ameliorated life expectancy, patients require more clinical intervention (ventilation) in their
mid-late teens and often die with associated cardiomyopathy by 30 years of age. In contrast,
BMD occurs later (average age of 12 years old), and ambulation loss, if it occurs, does not
manifest until post-twenties with overall survival times that are longer than DMD and in some

cases can even approach normal life expectancy.
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Typically, DMD deletions (60-65% of cases) account for the largest proportion of dystrophin
mutations and more rarely duplications (5-15%) are observed. Although these CNAs can occur
anywhere within the DMD locus, two deletion hotspots cluster, either within the central
region (between exons 43 and 53) of the gene or towards the 5’ end (exons 6 and 7) (Figure
1.4). The consequence of these and other mutational events may be a truncated but partly
functional protein (i.e. due to an in-frame mutation in BMD) or a truncated but unstable

protein (due to a frameshift mutation or nonsense point mutation in DMD).
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Figure 1.4 Dystrophin gene and protein.

(A) The dystrophin protein has functional domains including a hinge (H), WW, cysteine-rich (CR), and
carboxyl-terminal (CT) domain. (B) Options for alternative splicing of 79 exons of the human
dystrophin gene. The colours correspond to functional domains of the protein in A. Exon shapes
highlight whether splicing between adjacent exons maintains a contiguous ORF (when the shapes fit
together) (Olson, 2021)

The phenotype of patients with DMD mutations can be complex and immunohistochemistry
of muscle biopsy material using anti-dystrophin antibodies can be informative and diagnostic.
In some cases interesting phenotypes occur intermediate between Becker and Duchenne. In
others, mosaicism leads to revertant fibres (Figure 1.5) (Muntoni et al., 2003). For female

carriers, even asymptomatic individuals, there can be high risk of cardiomyopathy with a
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spectrum of severity due to random X inactivation. However, overt DMD in females is very

rare but does happen (Abbadi et al., 1994).

Normal Mild BMD Severe BMD

Manifesting carrier Revertant fibres in a
of DMD patient with IMD DMD

Figure 1.5 Expression of dystrophin

Dystrophin protein expression in (a) Normal muscle, (b) mild BMD, (c) severe BMD, (d) a manifesting
DMD carrier, (e) a patient with an intermediate BMD/DMD phenotype and (f) DMD (Muntoni et al.,
2003).

1.2 A putative role for Dystrophin in human cancers
1.2.1 The hallmarks of cancer

Recently, the Hanahan and Weinberg hallmarks of cancer have been updated (Hanahan,
2022) where the original hallmarks defined capabilities acquired by cells as they underwent
neoplastic progression (Figure 1.6). The acquired capabilities proposed in 2000 were
consolidated where provisional hallmarks have now been sufficiently validated and are
considered part of the core set. In this recent review by Hanahan, two new proposed

hallmarks and two enabling characteristics have been described.

20



Sustaining Evading Emerging halimari_(s_&
proliferative signaling growth suppressors Unlocking S0ADIN0 CHABCarSICS Nonmutational

phenotypic epigenetic

Avoiding i
ﬁmmune | \@
' g '

Deregulating
cellular

metabolism destruction

\”,

"‘"f-e

Resisting o 3 Enabling
cell death a ",.;ff +108) repiicative
!- immortality

e

Genome
instability & Tumor-promoting < -3
mutation inflammation n
=
cells microbiomes

Inducing or accessing Activating invasion
vasculature & metastasis

Figure 1.6 Updated Hallmarks of cancer.

Left Hallmarks of cancer embodying eight hallmark capabilities and two enabling characteristics
(Inducing or accessing vasculature and tumour promoting inflammation). Right Additional proposed
emerging Hallmarks and enabling characteristics (Hanahan, 2022).

The two new emerging hallmarks are unlocking phenotypic plasticity (i.e. to evade or escape
from the state of terminal differentiation) and (tumour promoting) senescent cells. Enabling
characteristics include non-mutational epigenetic reprogramming and polymorphic
microbiomes. In the context of this expanded cancer model, this thesis will explore
consequences of the new enabling characteristics where alterations in gene expression may
be driven either by mutation and general genome instability or these new enabling
characteristics, which include non-mutation or epigenetic reprogramming (Skrypek et al.,
2017). This may occur because of mechanisms within the tumour microenvironment that
results in epigenetic reprogramming, for example hypoxia in tumours may alter the activity
of enzymes involved in epigenetic reprogramming (Thienpont et al., 2016). Another example
may be epigenetic regulatory heterogeneity or epigenetic regulation of stromal cell types that

populate the tumour microenvironment (Lu et al., 2020).
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1.2.2 Overview of DMD in different tumour types

There have been a number of studies suggesting DMD mutation is associated with
tumorigenesis across different cancers which we reviewed recently (Jones et al., 2021) and

(Figure 1.7).
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10%-
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Figure 1.7 cBioportal was used to rank DMD alteration frequencies across the TCGA

PanCancer Atlas studies
10,953 patients were studies across thirty-three studies. Alteration frequencies consist of mutations

(green), fusions (purple), amplifications (red), deep deletions (blue) and multiple alterations (grey).
Only TCGA studies with both mutation data and copy number alteration (CNA) data are shown (Jones
etal., 2021).

Examples are found across sarcomas, central nervous system tumours, melanomas, and

haematological malignancies. There are also several carcinoma’s that are implicated. Below

(and Table 1.1) are detailed some of the studies that report these interesting associations.
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Table 1.1 Summary of evidence for the role of the DMD gene in cancer (Jones et al., 2021)

Tumour type DMD mutation(s) DMD expression Oncogenic or tumour Strength of Ref(s)
suppressive? evidence
STS 5" deletions affecting only Dp427. Dp427 absent or severely Tumour suppressive +H+ [18, 37, 38.41]
Intron retention. reduced, Dp71 maintained role for Dp427
Olfactory neuroblastoma 5 deletions Predicted to affect Dp427 nd ++ [22]
expression and maintain Dp71

Meningioma 5* deletions, 2nd most Reduced Dp427 expression Tumour suppressor +H++ (46, 47]
frequently altered gene role for Dp427

Malignant melanoma Tumour specific deletions and Reduced Dp427m expression, Tumour suppressor + [21, 43]
polymorphisms e.g. IF Dp71 maintained, role for Dp427
A3-29, IF A17-30, Dpl16 frequently absent
OOF A42-43

Lymphoma nd DMD downregulated in nd -+ (19, 43]

tumour vs. progenitor cells.
DMD upregulated in

EBV-positive vs.

EBV-negative tumours

Lymphocytic nd DMD upregulated Oncogenic +H+) [20, 43, 57-59]
leukaemia

Lung adenocarcinoma nd DMD downregulated Oncogenic role for Dp71 ++ (24, 43]

Gastric adenocarcinoma nd DMD downregulated, Tumour suppressive ++ [25]

attributed to Dp71 role for Dp71
Nasopharyngeal carcinoma Intronic SNP rs5927056 nd nd, SNP associated ++ [26]
with reduced risk

Oropharyngeal squamous nd DMD downregulated Tumour suppressive ++H+) [61, 62]
cell carcinoma

Renal cell carcinoma nd DMD upregulated nd + [43]

Other carcincomas including nd DMD downregulated Tumour suppressive ++) [43]
prostate cancer, pancreatic (nd for uterine cancer)

ductal adenocarcinoma,
colon, breast and uterine cancer

Only characterised mutations are noted. Where we refer to DMD we cannot attribute the effect to specific gene product(s). IF: in-frame; OOF: out-of-frame; A: denotes exon deletions; nd: not determined;
+: in-vitro or in-silico evidence only; ++: primary tumour cells or in-vivo evidence, tissue gene expression; +++: survival and clinicopathological associations, xenograph models. Parentheses indicate
evidence partially met

1.2.2.1 Sarcomas

Sarcomas have been of particular interest in evaluating whether DMD is associated with
cancer. In part, this is because of the role of dystrophin in the normal biology of muscle. mdx
mice have a naturally occurring mutation (nonsense point mutation in exon 23) that
abrogates Dp427 expression. A consequence is that aged mdx mice develop alveolar
rhabdomyosarcoma (RMS) like tumours (Chamberlain et al., 2007). The occurrence of RMS
in these mice is thought to be, in part, due to continual degeneration and regeneration of
myofibres throughout the life of the animals. The result is increased satellite cell proliferation
and their constitutive activation increasing the chance of further mutation that may affect
cellular differentiation (Chamberlain et al., 2007). RMS spontaneously develops in nine
percent of mdx mice aged over one year, compared with control animals (Fernandez et al.,
2010). Upon further characterization of the RMS tumours, they were found to be more
consistent with the embryonal rather than alveolar type. These tumours had mutations in

genes orthologous with human genes including TP53 and mouse double minute 2 (MDM?2), a
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negative regulator of p53. In support for the evidence of DMD in sarcomas, abnormalities in
the dystrophin associated protein complex (particularly dystroglycans) have been linked to
tumorigenesis (Brennan et al., 2004; Sgambato and Brancaccio, 2005). Interestingly, the
incidence of tumours in mdx mice has been as high as 40% in one study (Schmidt et al., 2011).
The reasons for this were unclear but may include housing or environmental factors.
Alternatively, the genetic background of the mice may be pertinent which is why researchers
compared DMD deficiency in mice on different backgrounds (Schmidt et al., 2011). For
example, both mdx mice and mdx-3Cv mice (Cox et al., 1993) both develop tumours.
However, mdx-3Cv mice have reduced incidence (and develop tumours at approx. 660 days
compared with 540 days: mean age of onset). Both animals were on a C57BL/6 backgrounds.
However mdx animals lack only Dp427 whilst mdx-3Cv mice have low Dp427 expression but
lack all C-terminal products. Therefore, strain specific differences or the levels of the different
DMD gene products may account for differences in the incidence of cancer in these animals.
Mdx mice also exhibit genomic instability with recurrent amplification of Jun and Met.
CDKN2A and NF1 are frequently lost and copy number gains frequently occur involving
chromosomes 8 and 15. In summary, mouse models recapitulating Duchenne muscular

dystrophy harbour genomic instability with increased risk of specific sarcomas.

In humans, a study by Wang et al identified Dp427 as having tumour suppressor activity in
myogenic tumours (Wang et al., 2014) where intragenic deletions drive progression to high
grade sarcoma. The authors used SNP arrays and identified deletions in 63% of myogenic
cancers. This included gastrointestinal stroma tumours (GIST), leiomyosarcomas (LMS) and
Rhabdomyosarcomas (RMA). Employing Multiplex Ligation Dependent Probe Amplification
(MLPA), 43% of high-grade myogenic tumours had copy number alterations within the DMD

gene. These mutations typically occurred and involved exons 1-3 and but rarely extended
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beyond exon 62. Consequently, Dp427 was typically absent in these tumours. However, the
smaller dystrophin gene product Dp71 was maintained in these patients implicating a role for
Dp71 in the pathology of these myogenic tumours. Functionally, Dp71 knockdown reduced
cancer cell growth in cell line models. Restoring Dp427 expression resulted in inhibition of
migration, invadeapodia formation and invasiveness. Therefore, the lack of full length Dp427
but the presence of the shorter Dp71 gene variant may be an oncogenic driver event in the
tumorigenesis of these myogenic cancers. Array comparative genomic hybridization studies
confirm DMD deletions in 16.5% of all tumours examined (Mauduit et al., 2019). This occurred
in 16.5% of sarcomas with structurally complex genomic profiles (including LMS), 21.6% of
synovial sarcomas and 14.2% of GIST cases. In summary, these data support a role for DMD

dysregulation in the pathogenesis of myogenic tumours.

1.2.2.1 Central nervous system tumours

RNAseq and microarray analysis of data from the CBioPortal repository and GEO database
respectively allowed DMD expression and mutation to be identified in non-myogenic tumours
including those of the central nervous system where DMD was overexpressed compared to
healthy tissues (Luce et al., 2017). This included ependymoma and astrocytoma. Conversely,
medulloblastoma was underexpressed compared with matched control tissue. Recent work
from our group has identified a novel association of DMD expression with low grade glioma
using bulk RNAseq data (discussed further in Chapter 4). High DMD expression was
significantly associated with poor survival outcomes in low grade glioma (LGG) with a
difference in survival of over seven years (p=<0.01). DMD remains significant in a multivariate
model and may represent an independent prognostic marker for low grade glioma. This
association of DMD with survival was only apparent in IDH mutant cases where non-1p/19q
deleted patients could be further stratified into high and low DMD groups. This work identifies
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DMD expression as an independent prognostic marker potentially further stratifying IDH
mutant cases to identify those at increased risk of poor survival. For neuroblastoma, SNP
analysis as well as whole genome and exome sequencing was employed on 14 cases to
identify somatic DMD deletions which occurred in 86% of the tumours (Gallia et al., 2018).
These olfactory neuroblastoma cases had mutations localised to the 5’ end of the gene with
predicted Dp71 retention. In high grade meningioma patients (n=55) 32% had DMD deletions
or silenced expression (Juratli et al., 2018). Twenty-one percent of deletions were in the 5’
region (between exons 2-30 or entire deletions of DMD). These cases had a loss or reduction
of full-length dystrophin resulting in reduced density of cytoskeletal components in the
tumour. When comparing patients with DMD alterations, those patients had shorter
progression free survival and overall survival compared to patients without DMD alterations.
These alterations were more common in high grade meningiomas compared with low grade
(grade | and Il) meningiomas. In studying mutation patterns in these tumours, it was found

that DMD is the second most frequently altered gene (Paramasivam et al., 2019).

Glioblastoma has a particularly poor survival outcome for patients and McAvoy et al
demonstrated that DMD expression was reduced in brain tumour cell lines and xenograft
models of GBM (McAvoy et al., 2007). GBM lines have been examined for expression of
dystrophin isoforms and to date there have been six Dp71 isoforms identified in the U251-
MG cell line (Rani et al., 2019). Ruggieri et al explored Dp71 and its role in glioblastoma and
meningioma and the authors found Dp71d was decreased in a GBM cell line and biopsy
material compared with a control cell line (Ruggieri et al., 2019). Dp71 expression resulted in
reduced proliferation (Ki-67 staining) suggesting in the context of GBM Dp71 is associated

with reduced proliferation.
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1.2.2.2 Melanomas

In melanoma dysregulation of DMD may be involved in the pathogenesis of this disease
(Koérner et al., 2007). PCR analysis of cell lines revealed DMD deletions in three cell lines
towards the 5’ region of DMD. These mutations were not in the classic hotspot regions that
occurs in patients with dystrophinopathies suggesting these mutations are tumour specific.
Dp427 was highly expressed in these cell lines. However, in an expanded panel of 55
melanoma cell lines, full length DMD expression was low or absent in 87% of them.
Immunoblotting of cell lines show Dp71 expression remains even in the absence of Dp427.
Dp427m when knocked down in melanoma cell lines and cells had reduced spheroid

formation and enhanced invasion and migration.

1.2.2.3 Haematological malignancies

Baumforth et al used microarray analysis to show that DMD was downregulated eightfold in
primary Hodgkin's lymphoma (in the nodular sclerosing subtype) compared with germinal
centre B cells (Baumforth et al., 2008). In this work EBV expression drove DMD upregulation
compared with EBV negative cell lines. This suggests EBV driven upregulation of DMD in
lymphoma may be important in the pathogenesis of this disease although it requires further
investigation. To note, a case report identified in Becker muscular dystrophy patients an
association with Hodgkin’s (Cereda et al., 2004) and non-Hodgkin’s lymphoma (Uotani et al.,

2001).

In acute lymphoblastic leukaemia (ALL) only one case study has observed an association
between DMD and ALL (Svarch et al., 1988). In a study of 134 chronic lymphocytic leukaemia
(CLL) patients, it was reported that high DMD expression in these tumours was associated

with reduced cell doubling time and was predictive of patient survival where median overall
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survival for patients with high DMD expression was 90 months compared with a median that

was not reached in patients with low DMD expression (Nikitin et al., 2007).

1.2.2.4 Carcinoma’s

The association of DMD with various carcinomas has been reported with most evidence being
accumulated for lung adenocarcinoma, gastric carcinoma and carcinomas of the head and
neck. In Lung adenocarcinoma Tan et al explored the use of cell line shRNA mediated
knockdown of Dp71 in A549 cells which led to reduced growth, migration an invasion capacity
compared with controls functional assays (Sichuang Tan et al., 2016). These knockdown cells
were more chemosensitive to cisplatin mediated apoptosis and had enhanced caspase
activity. Transplanting the cells into a nude xenograft model with Dp71 depletion, led to
reduced tumour growth, compared with controls and reduced expression of Lamin B1, Bcl-2

and MMP2 proteins.

In gastric carcinoma, Dp71 may play a tumour suppressor role as immunohistochemistry was
used to show that cancer cell differentiation (p=0.001) and lymphovascular invasion (p=0.041)
were associated with downregulation of the Dp71 (Sipin Tan et al., 2016). Patients with high
Dp71 expression had a favourable overall survival outcome compared with patients with low
Dp71 expression suggesting Dp71 may act as a tumour suppressor in this context. The authors
also overexpressed Dp71d and Dp71f in gastric cell lines and this inhibited proliferation
compared with controls cells. Using pull-down experiments, Dp71 interacted with Lamin B1
in normal gastric epithelial cells suggesting a significant role for Dp71 in proliferation and

Lamin-B complex formation.
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In the EBV associated tumour nasopharyngeal carcinoma an X-chromosome wide SNP based
study identified a strong signal within the DMD gene (intronic SNP rs5927056) validated in
replication cohorts (Zuo et al., 2019). This intronic SNP was associated with reduced risk of
NPC. Finally, in other tumour types DMD has been associated with neoplasia. This includes
breast and uterine cancer patients where DMD alterations had significantly poorer survival

outcomes (Luce et al., 2017).

1.3 The Cancer Genome Atlas (TCGA) as a repository for mining cancer genomics data

The Cancer Genome Atlas (TCGA) repository represents one of the most valuable publically
available data sources for cancer scientists comprised of sequence, expression, single
nucleotide, copy number, and methylation data from 11K cancers across 33 major types
(Figure 1.8). Accompanying this molecular data, is extensive clinical data for each cancer type
including survival data which can be joined together to provide a powerful tool for cancer
interrogation. A series of landmark papers have been published by the TCGA research

network and continue to be updated (National Cancer Institute, 2022).

Case count per Data Category

WAJOR

PROJECT cAsE FILE FILE PRIMARY
D SEQ SNV CHV METH BIO COUNT SIZE SITES

Adrenal Gland
Bile Duct
Bladder
Bone
Bone Marrovr
Brain
Breast
Cenvix
Colorectal
Esophagus
Eye
Head and Neck

TCGA-BRCA
TCGA-GBM
TCGA-OV
TCGA-LUAD
TCGA-UCEC
TCGA-KIRC
TCGA-HNSC
TCGA-LGG
TCGA-THCA
TCGA-LUSC

TCGA-PRAD
TCGA-SKCM
TCGA-COAD
TCGA-STAD
TCGA-BLCA
TCGA-LIHC
TCGA-CESC
TCGA-KIRP
TCGA-SARG
TCGA-LAML
TCGA-PAAD
TCGA-ESCA
TCGA-PCPG
TCGA-READ
TCGA-TGCT
TCGA-THYM
TCGA-KICH
TCGA-ACC
TCGA-MESO
TCGA-UVM
TCGA-DLBC
TCGA-UCS
TCGA-CHOL

Lymph Nodes
Hervous System

Hot Reported

Other and lll-defined Sites
Qvary

Pancreas

Pleura

Prostale

Skin

Soft Tissue

Stomach

Testis

Thymus

Thyroid

Uterus

1 g
allllllllllllll :
:

allllllllllllllllllll
ST E

ST ITTHTTHTH]

allllllllllllllllllll

allllllllllllllllllll
| 2
ghllllllllllllllll ;
2

allllllllllllllllllll

;---llll[

Figure 1.8 Overview of TCGA cases including clinical and molecular data.
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Sequence (SEQ), RNAseq and microarray expression (EXP), single nucleotide variation (SNV), Copy
number variation (CNV), methylation (METH) clinical and Biosample (BIO) sample are available across
11.3K cases (33 tumour types). Expression data was available from 10.6K cases.

Recently, the pipelines for TCGA bioinformatic analysis have been harmonised across clinical
studies at the Genomic Data Commons (GDC) (Figure 1.9). Raw sequence FASTQ or BAM files
originally mapped to the GRCh37/hg19 (legacy) assembly were re-mapped to an updated
GRCh38/hg38 reference genome assembly (Gao et al., 2019). mRNA expression data from
these studies was originally derived from polyA+ RNA that was sequenced using lllumina NGS
instruments and sequencing chemistry kits that evolved over time. As discussed by others
(Gao et al., 2019), the bioinformatic workflow for generating GRCh38/hg38 RNAseq data at
the GDC is considerably different from that used to generate the earlier GRCh37/hg19 RNAseq
data in TCGA. In addition, recent release updates have also occurred (March 2022) at GDC
with differences in alignment, expression quantification, normalisation, and reference

assemblies, potentially giving different results in abundance estimates.

TCGA Legacy GDC Project GDC Current
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Figure 1.9 mRNA-Seq processing and data comparison in TCGA Legacy and the GDC

Three bioinformatic pipelines have been used to derive gene or isoform level abundance estimates
for this project. Legacy isoform level data (Left) is derived from the TCGA Legacy (GRCh37/hg19)
pipeline with output files deposited in the GDC legacy archive. The GDC project pipeline (Middle) was
used to obtain total DMD gene expression data. During the project, the GDC project pipeline was
superseded by the GDC current pipeline (hg38) (Right). All aspects of sample processing differ
including computational methods, the reference genome, and the reference transcriptome (adapted
from (Gao et al., 2019).
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1.4 Survival analysis and Cox proportional hazard modelling

As much of the analysis presented in this thesis is related to patient survival data (as an
outcome measure), a basic overview of survival analysis is warranted. For further information
on these topics, the reader is referred to some excellent articles (Clark et al., 2003; Bradburn

et al., 2003b; Bradburn et al., 2003a).

Survival analysis considers the time between a starting point (e.g. either the date of diagnosis
or start of treatment) and the event of interest (e.g. death). A caveat is that for some patients
the event (death) may not have occurred by the end of the study period and so their ‘time-
to-event’ cannot be determined. Therefore specific methods are required to deal with this.
The Kaplan-Meier method can be used to estimate the survival probability (Kaplan and Meier,

1958).

Visually, this function can be presented as Kaplan-Meier survival curve (a plot of the survival
probability against time), and it indicates the probability of the event (for example, survival)
at specific time points. Summarising the data in this way also allows facile estimation of
median survival times. For example, in a hypothetical cohort (Figure 1.10), at 0.2 months, all
patients are alive, although one patient has undergone censoring which can occur for the
following reasons: (a) the patient does not experience the event of interest (death) for the
duration of the study (b) the patient was lost to follow-up during the study (c) a different
event occurs preventing further follow-up. When an individual patient event occurs beyond
the study period, this censoring is described as right censoring. 50% of the patients had died

at 0.7 years and only 22% of patients were alive at 1 year (Figure 1.10).
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Figure 1.10 Interpretation of survival curves

Survival curve of patients over 1 year. 4 patients are censored with an unknown time to event for
them. Median survival of the cohort is 0.7 years determined by extrapolation from 50% survival. At
one year only 22 of patients are still alive. Modified from Van den Reek (van den Reek et al., 2015)

If two or more survival curves are presented, they can be compared using the log-rank test,
which is a non-parametric test that is widely used to compare survival curves. Each curve
represents a group of patients (e.g. placebo vs. control) and the method calculates the
expected number of events (if the Null hypothesis were true), since the previous event and
compares it with observed number in each group. This is done for each event time, and for

each group and sums them calculating the following chi-square test statistic for which an

associated p-value can be computed:

i=1

Figure 1.11 The log-rank chi-square statistic comparing survival curves
Oi represents observed events in group i, Ei is the expected events in group i and g is the
number of groups. P- values are computed from the chi-square distribution.
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When comparing only two groups, the log rank test (Peto et al., 1977) can be used to test
whether there is a difference between the survival times of separate groups, but it does not
allow other explanatory variables to be considered. To achieve this and quantify the
contribution of multiple covariates, Cox modelling is a helpful semi-parametric approach that
can be used to fit univariate and multivariate regression models that have survival outcomes.

The regression uses:

h(t)=ho(t) x exp{Buxi+Baxa+---+Bx}

The hazard function h(t) is determined by p covariates (x1, x2, ..., xp). Their impact is
determined by the size of their coefficients (B1, B2, ..., Bp). The term hO represents the
baseline hazard when the value of all covariates x; are equal to zero. The (t) in h(t) indicates

that the hazard varies over time (but is proportional).

This equation can then be rearranged first dividing by the baseline hazard and then taking the
natural logarithm of both sides. The following form is obtained, with example covariates

substituted in:

1. In(h(t)/h0O(t) = (Sex[Male] * B1) +(Smoking[Yes]) * B2)+ (Chemotherapy([Yes]) * B3)+....

If the parameter estimates are exponentiated for the given predictor variable, the quantities

exp(Bp) are obtained:

2. (h(t)/hO(t)) — exp (,B 7)(Sex[Male] * exp (BZ)(SmokingYes] * exp (33)(Chemotherapy[Yes] *...

These are the hazard ratios (i.e. exp (B1)exMalel) A hazard ratio of 1 indicates no difference
in survival between the groups. Greater than 1 means an increase in the event probability
(death). Less than 1 represents a reduction in the hazard and chance of death.
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Hazard ratios represent the multiplicative effect that a given covariate (e.g. patient sex) has
on the outcome. If a particular covariate has a hazard ratio of 2, then an increase of 1 in that
covariates value will double the hazard rate across all time points. Cox proportional hazard

modelling assumes there is non-informative censoring, and the hazards are proportional.

With suitable background provided on the biology of DMD, it’s putative association with
cancer and the nature/provenance of the gene expression and clinical data analysed during

this project, the aim and objectives of the project can be defined.

1.5 Aims and objectives

Aim

Identify how DMD and DMD gene variants are associated with survival outcomes for

individuals with cancer.

Objectives

1. To identify whether total DMD gene expression is associated with survival outcomes
using Kaplan-Meier survival analysis across 33 tumour types.

2. To model hazard ratios of associated DAPC genes across TCGA cancers

3. To identify expression patterns of specific DMD gene variants in cancers and
determine their association with survival outcomes.

4. To identify transcriptome wide differentially expressed genes in DMD high vs. low
expressing cases to identify biological pathways dysregulated in specific cancer types

by DMD.
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Chapter 2

2. Materials and methods

2.1 Clinical sample data and ethical approval

Project approval was obtained from the University of Nottingham project approval
committee. All data were downloaded from the Cancer Genome Atlas (TCGA); therefore no
ethical approval was needed. Full details of ethics and policies associated with TCGA is
described elsewhere (NCI, n.d.). Genomic analysis was done on a data set of molecular and
clinical information from over 10,000 tumours representing 33 types of cancer (Weinstein et
al., 2013). Normalised RNA-seq gene expression and clinical data from these tumours were
collected and analysed using a bespoke bioinformatic workflow (Figure 2.1). The acronyms

for each cancer type analysed in this study are detailed and used throughout (Table 2.1).

Table 2.1 Definition of TCGA cancer types abbreviations.

Abbreviation Type of cancer

ACC Adrenocortical carcinoma

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma
CHOL Cholangiocarcinoma

COAD Colon adenocarcinoma

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
ESCA Oesophageal carcinoma

GBM Glioblastoma multiforme

HNSC Head and Neck squamous cell carcinoma

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukaemia

LGG Brain Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MESO Mesothelioma
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ov Ovarian serous cystadenocarcinoma

PAAD Pancreatic adenocarcinoma

PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate adenocarcinoma

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

STAD Stomach adenocarcinoma

TGCT Testicular Germ Cell Tumours

THCA Thyroid carcinoma

THYM Thymoma

UCEC Uterine Corpus Endometrial Carcinoma
ucs Uterine Carcinosarcoma

UVM Uveal Melanoma

2.2 Overview of workflow for DMD and gene variant survival analysis

To analyse the association of DMD and variant gene expression with patient survival
outcomes, RNAseq data from 33 tumour types from the genomic data Commons (GDC) was
imported into Rstudio using an R TCGAbiolinks library (Colaprico et al., 2016). Associated
harmonised clinical data was imported into Rstudio. DMD RNAseq gene expression was linked
to patient clinical data to perform survival analysis. Patients were split into high and low
expressing DMD RNA expressing groups based on cutpoint selection using Maxstat (Lausen
and Schumacher, 1992) . Kaplan-Meier survival analysis was used to explore overall survival
outcomes in these two patient groups. Hazard ratios were calculated based on univariate
analysis. Pathway analysis with iDEP identified putative functional pathways based on

differential gene expression between high and low DMD expressing tumours.
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Figure 2.1 Bioinformatic workflow

Workflow for analysing DMD, DAPC and DMD gene variants and their association with overall survival
outcomes in cancer and subsequent DEG analysis. Software packages and R libraries are indicated in
brackets.

2.2.1 Importing normalised gene expression and associated clinical data from TCGA

Although largely concordant, it is important to recognise the origin of the types of normalised
data used in this project. For isoform level data, TCGA legacy sequence data (hg19) was
originally aligned using MapSplice, with translation of co-ordinates using UCSC KnownGene.
Expression was quantified with RSEM, and raw counts were normalised to fixed upper quartile
values (500 for isoform estimates). Upper Quartile (UQ) normalisation methods remove genes
that have zero read counts across all samples and the remaining gene counts are scaled by
the upper quartile of the count distribution of the sample and multiplied by the mean upper

quartile across all samples (Abbas-Aghababazadeh et al., 2018).
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Output files for total DMD expression were derived from a GDC workflow that used legacy

BAM files which were reformatted as FASTQs using biobambam. These were then re-aligned

to the hg38 genome assembly using the STAR 2-pass approach (Dobin and Gingeras, 2015).

The Gencode v22 transcriptome definition was then quantified using htseqg-count procedure

within samtools. Raw counts, FPKM, and upper quartile normalized FPKM estimates are

provided (Figure 2.2). During the project (March 2022) GDC updated their pipeline using

Gencode v36 transcriptome annotation and used STAR for both alignment and raw count

production. RNA-Seq STAR-Counts output files from GDC now contain additionally not only

FPKM, FPKM-UQ but also TPM normalised abundance values.

Submitted Files

Convert to
FASTQ
Biobambam

Splice Junction
Detection +
Alignment
STAR 2 TwoPass

A
==

* Available in files processed after Data Release 14
** Available in files processed after Data Release 25

Aligned
Transcriptomic
BAM*

Aligned
Genomic
BAM

Gene Expression
Quantification
HTSeq

Aligned
Chimeric
BAM*

Transcript Fusion
Arriba

Transcript Fusion
STAR-Fusion

STAR Gene
Expression
Counts®

HTSeq Gene
Expression
Counts

Gene
Expression
FPKM

Gene
Expression
FPKM-UQ

Transcript
Fusion™
Transcript
Fusion™

Figure 2.2 Bioinformatic pipeline used by GDC to generate gene expression data
Overview of how submitted BAM and FASTQ files are processed by the GDC to produce output files
for users (GDC, 2022) https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/images/gene-

expression-quantification-pipeline-v3.png)
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FPKM-UQ was applied to gene-level read counts that are produced by HTSeq and generated

using custom scripts. The formula used to generate FPKM-UQ values is as follows:

FPKM = [RM; * 10% / [RMys * L]

e RMg: The number of reads mapped to the gene
e RMpys: The number of read mapped to the 75th percentile gene in the alignment.

e L:The length of the gene in base pairs

As an example of how FPKM-UQ normalisation works consider the following example:

Sample 1: Gene A

e Gene length: 3,000 bp
e 1,000 reads mapped to Gene A
e 1,000,000 reads mapped to all protein-coding regions

e 2,000 reads mapped in upper quartile in sample 1

FPKM for Gene A = (1,000)*(10°)/[(3,000)*(1,000,000)] = 333.33

FPKM-UQ for Gene A = (1,000)*(10°)/[(3,000)*(2,000)] = 166,666.67

For this study normalised FPKM-UQ RNA-seq data was extracted from GDC. FPKM-UQ files
were available as tab delimited files with the Ensembl gene IDs in the first column and the
expression values in the second. The R/Bioconductor package TCGAbiolinks (Colaprico et al.,
2016) version 2.24 was used employing GDCquery(), GDCdownload() and GDCprepare()
functions and using data.catagory as “Transcriptome profiling”, data.type as “Gene
Expression quantification” and workflow.type as “HTSeq — FPKM-UQ”. Later during pre-

processing non-primary tumours were filtered out (see FINALscript.R code — section 2.5 for
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code availability). Please note, GDC altered their pipeline for data extraction during the
project but after data extraction and analysis (see updated STAR script_edited.R code —

section 2.5).

2.2.2 Dichotomisation of patient tumours into high and low expressers

High versus low DMD expressing patients were dichotomised using cutpoint selection using
the R library Maxstat. Maxstat uses maximally selected rank statistics (smethod=LogRank) to
evaluate a simple estimated cutpoint. Simulation used conditional Monte-Carlo with B =9999

replications.

2.2.3 Kaplan-Meier survival analysis DMD high and low expressing tumour groups

The R library package Survival (Therneau, 2021) was used to do Kaplan-Meier survival
analysis. The function survfit() was used to compute Kaplan-Meier survival estimates.
Survdiff() was used to compute the log-rank test comparing the two survival curves. P-values
were adjusted for multiple testing using Bonferroni correction. The function ggsurvplot(), in
the R package Survminer was used to produce the survival curves for the two groups of

subject.

2.2.4 Univariate hazard modelling

Tumours where DMD or DAPC genes with high or low expression gave significant differences
in the Kaplan Meier analysis were analysed for the proportional hazard using Cox modelling.
For the univariate analysis, gene expression alone was used as a covariate. The function
coxph()[in the Survival package] was used to compute the Cox proportional hazards

regression model in R.

2.2.5 Cluster analysis
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Agglomerative hierarchical clustering analysis was performed using the hclust() function [in
stats package] using a Euclidean distance matrix with a Ward D2 minimum variance linkage
method which minimises the total within-cluster variance. For each step, the pair of clusters
with minimum between-cluster distance are merged. Enhanced visualisation was provided in

ggplot using the fviz_dend() function.

2.3 Isoform expression analysis

As the current GDC pipeline does not have isoform level data for protein coding genes,
isoform expression data from the GDC legacy archive data was extracted using the
R/Bioconductor package TCGAbiolinks (Colaprico et al., 2016) version 2.24 using GDCquery(),
GDCdownload() and GDCprepare() functions for primary tumour samples.types as well as
using data.type as “Isoform expression quantification” and file.type as “normalized” (see
isoform_GDC.R code — section 2.5 for code availability). This pipeline used MapSplice (Wang
et al., 2010) to do the alignment and RSEM to perform the quantification (Li and Dewey,
2011). Output files contained UCSC isoform identifiers and Table 2.2 (curated from the UCSC
Table browser) was used to convert them to specific DMD gene products for processing and

survival analysis.
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Table 2.2 Details of major DMD gene products including ids, genome and coding sequence

start and end positions and exons counts

DMD variant  exonCount UCSC ID Ensembl ID chrom strand  cdsStart cdsEnd proteinlD RefSeqID

Dp40 13 uc011mkb.1 ENST00000378723 chrX - 31139949 31284946  B4DSV7 NM_004019
Dp71ab 16 uc004dcp.1 ENST00000378723 chrX - 31139949 31284946  P11532-5 NM_004018
Dp71a 17 uc004dcn.1 ENST00000378723 chrX - 31140035 31284946  NP_004008 NM_004017
Dp71b 17 uc004dco.1 ENST00000378723 chrX - 31139949 31284946  P11532-6 NM_004016
Dp71 18 uc004dcm.1 ENST00000378723 chrX - 31140035 31284946  E9PDN1 NM_004015
Dpl16 25 uc004dcq.1 ENST00000378707 chrX - 31140035 31526354  NP_004005 NM_004014
Dp140bc 31 uc004dcs.1 ENST00000343523 chrX - 31139949 31792238  NP_004014 NM_004023
Dp140c 32 uc004dcr.1 ENST00000541735 chrX - 31140035 31792238  NP_004011 NM_004020
DpD140ab 34 uc004dcv.1 ENST00000359836 chrX - 31139949 31792238  NP_004013 NM_004022
Dp140b 35 uc004dcu.1 ENST00000378707 chrX - 31139949 31792238  A7E212 NM_004021
Dp140 36 uc004dct.1 ENST00000378707 chrX - 31140035 31792238  Al1LOU9S NM_004013
Dp260-1 51 uc004dcx.2 ENST00000378677 chrX - 31140035 32430326  NP_004002 NM_004011
Dp260-2 51 uc004dcw.2 ENST00000378677 chrX - 31140035 32430174  NP_004003 NM_004012
Dp427c 79 uc004ddb.1 ENST00000378677 chrX - 31140035 33357382  NP_000100 NM_000109
Dp427m 79 uc004dda.1 ENST00000357033 chrX - 31140035 33229429  P11532 NM_004006
Dp427p1 79 uc004dcy.1 ENST00000378677 chrX - 31140035 33146282  P11532-4 NM_004009
Dp427p2 79 uc004dcz.2 ENST00000378677 chrX - 31140035 32834745  NP_004001 NM_004010

24 Differential gene expression and pathway analysis

RNA-seq data is a powerful tool for transcriptome profiling of tumours. However, exploratory

analysis, differential expression and subsequent pathway analysis can be complicated. iDEP

connects 63 R/Bioconductor packages to provide workflows (Figure 2.3) that enable cancer

biologists to leverage gene expression data into functional experiments (Ge et al., 2018).
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Figure 2.3 iDEP: Integrated Differential Expression and Pathway analysis
iDEP is an integrated web application for differential expression and pathway analysis of RNA-Seq data
iDEP workflow and functional modules (Ge et al., 2018)

DEGs were identified using the Limma package (false discovery rate (FDR) cut-off of 0.1 and a
minimum fold-change of 2). Functional enrichment analysis of DEGs was performed in iDEP
using gene ontology (GO) biological processes. Enrichment trees and networks were
generated in iDEP. Protein-protein interaction (PPI) networks among top DEGs were retrieved

via an APl access to the STRING database.

2.5 Software, code, and data availability

All code for this project is available at https://github.com/Irmacha/TCGA All analyses used R

Statistical Software (v4.0.3; R Core Team 2020-10-10), GraphPad Prism 8 and Microsoft Excel.
Gene expression data analysed during this study are publicly available in the repository
https://portal.gdc.cancer.gov/ and can be downloaded directly by using the TCGAbiolinks R

package as described above.
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Chapter 3

3. A global analysis of DMD gene expression across TCGA tumours.

3.1 Introduction

Currently the association of DMD gene expression with survival outcomes across cancer types
is unclear. To explore this, existing libraries in R were employed to extract TCGA clinical cancer
and RNA-seq genomics data. To do survival analysis, continuous gene expression data was
dichotomised into high and low expressing cases. To achieve this, the R package Maxstat was
employed to achieve cutpoint selection and allow recoding of cases into high vs. low DMD
expressing groups. The CRAN ‘Survival’ package (Therneau, 2021) facilitated Kaplan—Meier
survival analysis (including associated log-rank tests) and allowed the production of summary

survival statistics.

3.2 Results
3.2.1 Estimating cutpoint values with Maxstat

The GDC data portal contains RNA-seq gene expression sets for 33 different tumour types
(Table 2.1) for download and downstream analysis. Upon download, gene expression data
was filtered on the gene of interest (e.g. total DMD) and concatenated with matched clinical
data. Overall survival, status and gene expression values were used to derive cutpoint values

for recoding cases into high or low DMD expressing cases.

To dichotomise continuous gene expression data for survival analysis, optimal cutpoint values
were obtained based on the use of total DMD gene expression, overall survival and status and
computed using maximally selected log-rank statistics implemented in Maxstat (Figure 3.1).
The output of the Maxstat.test function provided a log-rank statistic M and p-value by

conditional Monte-Carlo replication providing an estimated cutpoint value.
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Figure 3.1 Estimated cutpoints (dashed vertical line) for total mRNA expression in selected

TCGA cancers

See Table 2.1 for abbreviations. Based on standardised log-rank statistics. Exact conditional p-values
were simulated via conditional Monte-Carlo. M = maximum of the log-rank statistics.
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As an example, for Breast invasive carcinoma (BRCA), the estimated cutpoint was 7942 FPKM-
UQ, and the maximum of the log-rank statistics is M = 3.2113. The probability that, under the
null hypothesis, the maximally selected log-rank statistic is greater M = 3.2113 is less than
0.0297. Therefore, BRCA cases with DMD gene expression values above 7642 were recoded

as high expressing cases and those below 7942 were low expressing cases.

3.2.1 Kaplan Meier survival analysis of TCGA cancers

Applying the above discussed cutpoint approach, survival analysis was done on 33 TCGA
tumours dichotomising patients into high or low expressing groups (see appendices). Of the
33 tumour types examined, nine had significant differences in survival outcomes (Log-Rank
test) after Bonferroni correction (Figure 3.2). These included BRCA (p=0.0021), KIRP
(p<0.001), LAML (p=0.0048), LGG (p<0.0001), LUAD (p= 0.0003), PAAD (p=0.0008), READ
(p<0.0001), THYM (p<0.0001) and UVM (p<0.0001). For BRCA, LAML, LUAD, PAAD and UVM
patient overall survival was better in those patients with high total DMD tumour RNA
expression. In KIRP, LGG, READ and THYM high expression of total DMD was associated with
worse survival outcomes. As an example, LGG median survival of patients with high
expression of DMD was 1120 days compared with patients with high tumour expression of
DMD who lived for a median of 2875 days (2.57-fold, or a 4 years and 10 month increase in
overall survival time). For KIRP (low), LUAD (high DMD), READ (high DMD), THYM (low DMD)
and UVM (high DMD) median survival could not be calculated as it was greater than 50% at

the last time point.
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Figure 3.2 DMD expression is significantly associated with overall survival in nine specific

tumour types

(a) TCGA RNAseq data from nine TCGA cancer cases were dichotomised into high (blue) and low (red)
DMD expressing groups and survival analysis performed in GraphPad using the log-rank test. Numbers
in brackets are median overall survival times in days.
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3.2.2 Univariate Cox model analysis

Tumours significant in the Kaplan-Meier analysis were analysed in a Cox proportional hazard
model (Figure 3.3) employing gene expression as the sole covariate. A hazard ratio (HR) > 1
means that high expression of that gene is associated with decreased survival. Conversely, a
HR < 1 means that high expression of the gene is associated with increased survival (i.e. is
protective). High expression of DMD in THYM (HR 11.8, 95% Cl 2.9 to 47.8, p<0.001), READ
(HR 4.19, 95% CI 1.96 to 8.94, p<0.001), LGG (HR 3.15, 95% Cl 2.02 to 4.91, p<0.001), and KIRP
(HR 3.44, 95% Cl 1.87 to 6.33, p<0.001) was associated with increased risks of poor survival.
Conversely, high expression of DMD in UVM (HR 0.14, 95% CI 0.06 to 0.33, p<0.001), PAAD
(HR 0.46, 95% ClI 0.29 to 0.73, p<0.001), LUAD (HR 0.50, 95% Cl 0.34 to 0.73, p<0.001), LAML
(HR 0.46, 95% C1 0.29 t0 0.72, p<0.001) and BRCA (HR 0.59, 95% Cl 0.43 to 0.81, p<0.001) was
associated with protection (compared with high expressing cases). THYM had the highest risk
of poor survival and UVM has the lowest risk of poor survival, though with wide confidence

intervals in both cases.
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Figure 3.3 Hazard ratios in selected TCGA tumours
Forest plot revealing the log-rank hazard ratio with 95% confidence intervals. UVM n=80, THYM n=121,
READ n=177, PAAD n =182, LUAD n=594, LGG n= 529, LAML n= 151, KIRP n=321, BRCA n=1222
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3.2.3 Univariate DAPC gene hazard modelling and cluster analysis

Dystrophin (encoded by DMD) is a component of the Dystrophin associated protein complex
(DAPC) and so it was of interest to explore whether other DAPC genes (Table 3.1) had a similar

hazard ratio profile compared with DMD across the selected nine tumours (Figure 3.4).

Table 3.1 Genes and encoded protein products in the Dystrophin associated protein

complex
Gene Protein
DMD Dystrophin
DAG1 Dystroglycan 1 (Alpha & Beta)
SGCA Alpha Sarcoglycan
SGCB Beta Sarcoglycan
SGCD Delta Sarcoglycan
SGCE Epsilon Sarcoglycan
SGCG Gamma Sarcoglycan
sGcz Zeta Sarcoglycan
SSPN Sarcospan
SNTA1 Syntrophin Alpha 1
SNTB1 Syntrophin Beta 1
SNTB2 Syntrophin Beta 2
DTNA Dystrobrevin Alpha
DTNB Dystrobrevin Beta
NOS1 Nitric oxide synthase 1 (nNOS)

Interestingly, of the nine tumours examined, only LGG had all DAPC genes providing
statistically significant univariate hazard ratios (nine DAPC genes associated with increase in
hazard, six DAPC genes associated with a decrease in hazard). No tumour type had all
statistically significant hazard ratios trending in the same direction (i.e. all increase or
decrease the hazard), however, high expression of DAPC genes in LUAD was protective for

eight genes with only two increasing the hazard.

Interestingly, by doing hierarchical clustering analysis, hazard ratio data can be clustered by
rows (TCGA cancer) and columns (DAPC genes) using a Ward D2 hierarchical clustering
algorithm and a Euclidean distance as distance metric (Lawlor et al., 2016). In clustering by
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DAPC genes three clusters containing the fifteen genes are illustrated on the dendrogram
(Figure 3.5A). The first cluster contained genes encoding two sarcoglycans (gamma and delta)
and dystrobrevin beta, the second cluster contained sarcospan, dystrophin, nNQOS,
dystrobrevin alpha, sarcospan and dystroglycan. The third cluster contained sarcoglycans

(alpha, beta, zeta, and epsilon) and alpha and beta syntrophins.

With clustering analysis grouped on tumours, three clusters containing the nine tumours are
illustrated on the dendrogram (Figure 3.5B) which included two major clusters and a third
cluster containing only THYM. The middle cluster (yellow) contained READ, KIRP and LGG and

the largest cluster contained UVM, PAAD, LAML, BRCA and LUAD.

In summary, of the nine TCGA tumour types with significant survival differences between high
and low DMD expressing tumours, three major disease clusters could be defined based on

hazard ratios of DMD and 14 other DAPC-associated gene Hazard ratios.
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Figure 3.4 Association of DAPC gene expression with hazard ratios in selected TCGA
tumours

Forest plots revealing the log-rank hazard ratio with 95% confidence intervals. Red bars are significant
(alpha < 0.05) UVM n=80, THYM n=121, READ n=177, PAAD n = 182, LUAD n=594, LGG n= 529, LAML
n= 151, KIRP n=321, BRCA n=1222
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Figure 3.5 Cluster dendrograms based on hazard ratios

Identifying (a) DAPC-gene based dendrogram cluster analysis of tumours. (b) Tumour-based
dendrogram cluster analysis of DAPC genes. Significant univariate Hazard ratio values were used.
Three clusters were specified for both dendrograms, using Euclidean distance as a distance metric and
the Ward D2 clustering algorithm.
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3.2.4 \Variant specific expression analysis across TCGA tumours

Most studies to date have considered dystrophin as a single protein and have not considered
the complex diversity that arises from alternative splicing or promotor usage. For example, to
date, 14 Dp71 isoforms have been identified (Naidoo and Anthony, 2020). The splicing of
exons 71 and 78 are particularly important as their presence/absence determines subcellular
localisation and function (Naidoo and Anthony, 2020). Dp71 is alternatively spliced to produce
multiple isoforms, the isoforms lacking exon 71 (Dp71a, found exclusively in the nucleus) and
exons 71 and 78 (Dp71ab, found exclusively in the cytoplasm) are the most predominant in
soft tissue Sarcomas (STS) (Mauduit et al., 2019). However, this pattern may be different in
other cancers. Table 2.2 details the known correctly annotated DMD gene products which
were analysed for expression in the nine TCGA tumours that had significant survival
differences based on total DMD expression RNA levels (Figure 3.6). For LAML only Dp40 was
weakly expressed. THYM had additional expression of Dp71ab. For BRCA, LUAD, PAAD and
READ, Dp40, Dp71ab, Dp71b and Dp427m were expressed. KIRP and had a similar expression
profile but lacked Dp427m. UVM had the additional expression of Dp260-1. The broadest
expression of DMD gene products was observed in LGG with expression of eight different
gene products (Dp40, Dp71ab, Dp71b, Dp71a, Dp71, Dp116, Dp140, Dp260-1 and Dp427m).
Interestingly Dp40 was expressed in all tumours and at least one Dp71 gene product in all
tumours except LAML. Hierarchical clustering into four groups based on Dp gene expression

values confirms these observations (Figure 3.7)
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Figure 3.6 Expression of individual DMD gene products in selected TCGA cancers
Normalised counts were Log2 transformed +1. Red bars represent median values, dash lines
represent 95% confidence intervals.
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Figure 3.7 Cluster dendrograms based on Dp gene expression

A Dp gene variant based dendrogram cluster analysis of tumours. Gene expression values were used.
Four clusters were specified for the dendrogram, using Euclidean distance as a distance metric and
the Ward D2 clustering algorithm.
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3.2.5 Variant specific survival analysis across TCGA cancers

Based on expression of specific gene products in individual cancers, BRCA was first examined
to determine whether Dp40, Dp71ab, Dp71b and Dp427 were associated with overall survival
(Figure 3.8). High expression of the Dp71ab (p=0.0032) and Dp71b (p=0.036) gene products

were significantly associated with poor BRCA survival.
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Figure 3.8 The expression of Dp71ab and Dp71b gene products are significantly associated
with BRCA survival outcomes

(a) BRCA TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.

57



KIRP was examined to determine whether Dp40, Dp71ab and Dp71b were associated with
overall survival (Figure 3.9). High expression of the Dp71ab (p <0001) and Dp71b (p = 0.0007)

gene products were significantly associated with poor KIRP survival.
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Figure 3.9 The expression of Dp71ab and Dp71b products are significantly associated with
KIRP survival outcomes

KIRP TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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LAML was examined to determine whether Dp40 was associated with overall survival (Figure

3.10). No significant survival differences were found.
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Figure 3.10 The expression of the Dp40 gene product was not significantly associated with

LAML survival outcomes

LAML TCGA RNAseq data from Dp40 was dichotomised into high (blue) and low (red) expression
groups and survival analysis performed in GraphPad using the log-rank test. Numbers in brackets are
median overall survival times in months.
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LGG was examined to determine whether Dp40, Dp71ab and Dp71b, Dp71a, Dp71, Dp116,
Dp140, Dp260-1 and Dp260-2 were associated with overall survival (Figure 3.11). High
expression of the Dp40 (p = 0.0486), Dp71ab (p <0.0001), Dp71 (p <0.0001), Dpl16 (p

<0.0001) and Dp140 (p=0.0391) gene products were significantly associated with poor LGG

survival.
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Figure 3.11 The expression of Dp40, Dp71ab, Dp71, Dp116 and Dp140 gene products are
significantly associated with LGG survival outcomes
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LGG TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)

expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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LUAD was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were
associated with overall survival (Figure 3.12). Low expression of the Dp71ab (p =0.0011), and

Dp427m (p=0.0041) gene products were significantly associated with poor LUAD survival.
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Figure 3.12 The expression of Dp71ab and Dp427m gene products are significantly
associated with LUAD survival outcomes

LUAD TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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PAAD was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were
associated with overall survival (Figure 3.13). Low expression of Dp40 (p = 0.0009) was
associated with poor survival and high expression of Dp71b (p = 0.026), and Dp427m

(p=0.018) gene products were significantly associated with poor PAAD survival.
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Figure 3.13 The expression of Dp40, Dp71b and Dp427m gene products are significantly
associated with PAAD survival outcomes

PAAD TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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READ was examined to determine whether Dp40, Dp71ab and Dp71b, and Dp427m were
associated with overall survival (Figure 3.14). High expression of the Dp40 (p < 0.0001),
Dp71ab (p = 0.034), and Dp427m (p=0.00019) gene products were significantly associated

with poor READ survival.
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Figure 3.14 The expression of the Dp40, Dp71ab and Dp427m gene products are significantly
associated with READ survival outcomes

READ TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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THYM was examined to determine whether Dp40 and Dp71ab were associated with overall

survival (Figure 3.15). High expression of the Dp71ab (p =0.0011), gene product was

significantly associated with poor LGG survival.
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Figure 3.15 The expression of the Dp71ab gene product was significantly associated with
THYM survival outcomes
THYM TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)

expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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UVM was examined to determine whether Dp40, Dp71ab, Dp260-1 and Dp427 were
associated with overall survival (Figure 3.16). High expression of the Dp40 (p =0.031), Dp71ab
(p =0.00016), Dp260-1 (p =0.0367) and Dp427m (p =0.0092), gene products were significantly

associated with poor UVM survival.
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Figure 3.16 The expression of Dp40, Dp71ab, Dp260-1 and Dp427m gene products are
significantly associated with UVM survival outcomes

UVM TCGA RNAseq data for each DMD isoform was dichotomised into high (blue) and low (red)
expression groups and survival analysis performed in GraphPad using the log-rank test. Numbers in
brackets are median overall survival times in months.
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Based on the specific DMD gene products shown to be expressed in the nine selected TCGA
tumours, Hazard ratios were calculated with an overview of the specific gene variant shown
(Figure 3.17). In summary, UVM has four transcripts where low expression is associated with
the largest increase in the hazard across all cancers. Low expression of transcripts from THYM,
LGG, and KIRP are protective (HR <1) and low expression of transcripts in LUAD, BRCA (and
UVM) increased the hazard. PAAD has two transcripts associated with protection and one
associated with increased hazard. Finally, THYM has one protective transcript. In summary,
the associated direction of the hazard across (and sometimes within) TCGA cancers expressing

specific gene products is complex and variable.
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Figure 3.17 Hazard ratios of TCGA tumours expressing specific DMD gene products

Forest plots revealing the log-rank hazard ratio with 95% confidence intervals. Red bars have
significant p-values (alpha < 0.05) UVM n=80, THYM n=121, READ n=177, PAAD n = 182, LUAD n=594,
LGG n= 529, LAML n= 151, KIRP n= 321, BRCA n=1222. Hazard ratios below 1 indicate low gene

expression is protective and values above 1 indicate low expression is a hazard.
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3.2.6 iDEP pathway analysis

To aid future investigation of functional role(s) for the DMD gene across tumour types, a
preliminary bioinformatic analysis of differentially expressed genes (DEGs) was undertaken in
cases comparing high verses low DMD expression. iDEP was employed to identify
differentially expressed genes using the DESeq2 method. To examine the functional
annotations of the DEGs, an enrichment analysis (gene ontology [GO] biological processes)

for the DEGs was performed.

For UVM with the DESeq2 package, 750 upregulated and 472 downregulated genes were
identified (Figure 3.18a). A STRING network of protein-protein interactions (PPIs) among the
top 20 upregulated genes was constructed (Figure 3.18b). The connected network includes
several proto-cadherin interactions. The expected number of edges for a random set of
proteins of similar size was 3 compared with an observed of 6 suggesting functional
intersection of the identified DEGs. However, this did not reach significance (p=0.143). To
visualise the relationship among enriched GO terms the distance among the terms was
measured by the percentage of overlapped genes. Then this distance is used to construct a
hierarchical clustering tree (Figure 3.18c) and a network of GO terms (Figure 3.18d). Both
plots show that the enriched terms are distinct. The up-regulated genes are overwhelmingly
involved in cell migration and are related to cilium mediated motility, microtubule-based
movement, and adhesion pathways. The down-regulated genes are related to 2 major

themes: cell division and differentiation/developmental programmes.
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Figure 3.18 Exploratory analysis of the DEGs with high versus low DMD expression in UVM

(a) Column graph highlighting the number of upregulated and downregulated genes.

(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.

(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated genes
are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological processes
annotation, dot size corresponds to adjusted P values.
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For THYM, 1941 upregulated and 1383 downregulated genes were identified (Figure 3.19a).
A STRING network of protein-protein interactions (PPIs) among the top 20 upregulated genes
was constructed (Figure 3.19b). The connected network includes several Homeobox gene
interactions. The expected number of edges for a random set of proteins of similar size was 3
compared with an observed of 12 strongly suggesting functional intersection of the identified
DEGs (p=0.000198). To visualise the relationship among enriched GO terms the distance
among the terms was measured by the percentage of overlapped genes. Then this distance is
used to construct a hierarchical clustering tree (Figure 3.19c) and a network of GO terms
(Figure 3.19d). Both plots show that the enriched terms are distinct. The downregulated
genes are overwhelmingly involved in nuclear organisation and mitosis pathways. The
upregulated genes are related to 2 major themes: cell adhesion and cell migration

morphogenesis.
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Figure 3.19 Exploratory analysis of the DEGs with high versus low DMD expression in

THYM

(a) Column graph highlighting the number of upregulated and downregulated genes.

(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.

(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated

genes are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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For READ, 290 upregulated and 44 downregulated genes were identified (Figure 3.20a). A

STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes

(Figure 3.20b) identified several Melanoma Antigen Gene (MAGE) family members. The

expected number of edges for a random set of proteins of similar size was 3 compared with

an observed of 35 strongly suggesting functional intersection of the identified DEGs

(p<0.0001). To visualise the relationship among enriched GO terms hierarchical clustering tree

(Figure 3.20c) and a network analysis (Figure 3.20d) showed that the enriched terms were

distinct with downregulated genes overwhelmingly involved in humoral immune responses

and upregulated genes relating to calcium regulation and muscle processes.
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Figure 3.20 Exploratory analysis of the DEGs with high versus low DMD expression in READ
Column graph highlighting the number of upregulated and downregulated genes.
STRING Protein-protein interactions (PPl) among top 20 up-regulated genes.
Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated
genes are indicated by red and green points respectively.

Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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For PAAD, 1239 upregulated and 187 downregulated genes were identified (Figure 3.21a)
with a STRING network of protein-protein interactions (PPIs) among the top 10 upregulated
genes (Figure 3.21b) that identified several pancreatic enzyme family members (e.g.
Carboxypeptidases). The expected number of edges for a random set of proteins of similar
size was 1 compared with an observed of 16 strongly suggesting functional intersection of the
identified DEGs (p = 7.53 x10-12). To visualise the relationship among enriched GO terms
hierarchical clustering tree (Figure 3.21c) and a network analysis (Figure 3.21d) showed that
the enriched terms were not distinct for downregulated genes and upregulated genes related

to cation transport and regulation.
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Figure 3.21 Exploratory analysis of the DEGs with high versus low DMD expression in PAAD

(a) Column graph highlighting the number of upregulated and downregulated genes.

(b) STRING Protein-protein interactions (PPI) among top 10 up-regulated genes.

(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated genes are indicated by
blue points.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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In LUAD, 755 upregulated and 108 downregulated genes were identified (Figure 3.22a). A
STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes
(Figure 3.22b) showed some interaction centering on DDX53 (p = 0.0272). Hierarchical
clustering (Figure 3.22c) and a network analysis (Figure 3.22d) showed that enriched terms
represented immune responses for downregulated genes and stimulus detection for

upregulated genes.

Down ® Up

2e-14 Sensory perceplion of chemical stimulus
2e-15 Delection of chemical stimulus Involved In sensory perception
2e-14 Delection of chemical stimulus
c 2615 Detection of stimulus Involved in sensory peresption
1e-13 Delection of stimulus
4e-10 Sensary perception
e-10 Detection of chemical stimulus involved in sensory perception of smell
Downregulated Be-10 Sensary perceplion of smell
42.09 System process
9e-10 Nervous system procsss
126-17 G protein-coupled raceptor signaling pathway
16-07 Sensory perception of bt taste:
4e-08 Detection of chemical stimulus invalved in sensory perceplion of bitter laste
4804 Ep P450 pathway
7e-04 Feeding behavior
42-04 Defence response
46-05 Defens response fo other organism
t T T T 1 1e-04 Humoral immune response
0 200 400 600 800 = 5-06 Antimicrobial humaral responss
1 6e-06 Monocyte chamataxis
Number of differentially expressed genes [ 42-06 Lymphocte chemotaxis
2e-04 Lymphocyte migralion
3e-04 Granulocyte chemotaxis
26-06 Keratinization
1e-08 Comfilcation
2-06 Keratinocyte differentiation
proteing: 20 50.06 Epidemis davelopmant
b mieracions: 8 d 2¢-06 Epidermal cell differentiation
expeced interactions: 4 (p-value: 0.0272) 2e-06 Skin davelopmant
2e-05 Epithelial cell differentiation

Upregulated

.,

o . NAALL
o)

A

§

Figure 3.22 Exploratory analysis of the DEGs with high versus low DMD expression in LUAD

(a) Column graph highlighting the number of upregulated and downregulated genes.

(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.

(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated
genes are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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In LGG, 537 upregulated and 191 downregulated genes were identified (Figure 3.23a). A

STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes

(Figure 3.23b) showed interactions focusing on HOX family members (p = 0.000242).

Hierarchical clustering (Figure 3.23c) and a network analysis (Figure 3.23d) showed that

enriched terms represented hormone regulation and cell signalling for downregulated genes

and development/morphogenesis and cell motility for upregulated genes.
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Figure 3.23 Exploratory analysis of the DEGs with high versus low DMD expression in LGG
(a) Column graph highlighting the number of upregulated and downregulated genes.
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated

genes are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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In LAML, 965 upregulated and 88 downregulated genes were identified (Figure 3.24a). A

STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes

(Figure 3.24b) showed interactions of migration/adhesion molecules (p = 4.34 x10-11).

Confirming this hierarchical clustering (Figure 3.24c) and a network analysis (Figure 3.24d)

showed that enriched terms represented cell motility, morphogenesis a notably cell adhesion

for upregulated genes.
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Figure 3.24 Exploratory analysis of the DEGs with high versus low DMD expression in

LAML

(a) Column graph highlighting the number of upregulated and downregulated genes.

(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.

(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated

genes are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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In KIRP, 1349 upregulated and 132 downregulated genes were identified (Figure 3.25a). A

STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes

(Figure 3.25b) showed interactions focusing fibrinogen family members (p = 2.79 x10-5).

Hierarchical clustering (Figure 3.25c) and a network analysis (Figure 3.25d) showed that

enriched terms represented development/morphogenesis for upregulated genes.
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Figure 3.25 Exploratory analysis of the DEGs with high versus low DMD expression in KIRP
(a) Column graph highlighting the number of upregulated and downregulated genes.
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated genes are indicated by

blue points.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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In BRCA, 1886 upregulated and 235 downregulated genes were identified (Figure 3.26a). A

STRING network of protein-protein interactions (PPls) among the top 20 upregulated genes

(Figure 3.26b) did not contain interactions focusing on obvious family members although

there were more interactions than expected (p = 0.0384). Hierarchical clustering (Figure

3.26¢) and a network analysis (Figure 3.26d) showed that enriched terms represented

cornification and adhesion for upregulated genes.
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Figure 3.26 Exploratory analysis of the DEGs with high versus low DMD expression in BRCA
(a) Column graph highlighting the number of upregulated and downregulated genes.
(b) STRING Protein-protein interactions (PPI) among top 20 up-regulated genes.
(c) Visualisation of the relationship among enriched GO categories. Connected gene sets share
more genes, size of node represents adjusted P values. Upregulated and downregulated

genes are indicated by red and green points respectively.

(d) Network tree Visualisation of the enriched pathways in DEGs using the GO biological
processes annotation, dot size corresponds to adjusted P values.
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Chapter 4
4. Discussion

4.1 DMD is associated with survival outcomes in cancer patients

The aim of this project was to determine whether DMD and derived gene product expression
was associated with survival outcomes in patient tumours across 33 TCGA cancer types. This
pan-cancer analysis identified nine/33 tumours (after Bonferroni correction) where high vs.
low DMD expression was significantly associated with overall survival outcome differences
which is novel and worth further exploration. This has been done more comprehensively for
LGG where our research team has used an independent bioinformatic approach using
Cbioportal (Gao et al., 2013; Cerami et al., 2012) for data extraction, and X-tile (Camp et al.,
2004) to do cutpoint selection. This allowed subsequent survival and pathway analysis
(Naidoo et al., 2022). The key findings between the two approaches are largely concordant,
validating this novel bioinformatic approach, although for specific dystrophin gene products
(i.e. Dp427m) significance in survival was not quite reached using the pipeline described
herein. This may reflect the fact that gene expression values obtained from Cbioportal (RSEM)
and the GDC (FPKM-UQ) were derived using different bioinformatic pipelines. Indeed, during
this project, GDC have continued to update their pipeline again providing FPKM, FPKM-UQ
and now additionally TPM normalized gene expression data (see code availability section for
additional updated code). For LGG, this project showed preliminary data suggesting
differentially transcribed genes belonging to pathways relevant to
development/morphogenesis and cell motility. Furthermore, detailed pathway analysis in the
published study (Naidoo et al., 2022) identified biological processes relating to ribosome
biogenesis, synaptic signalling, neurodevelopment and immune pathways as well. The genes
spanning chromosome 1 were globally upregulated in high vs. low expressing DMD cohorts.
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Importantly immunohistochemistry was used to demonstrate dystrophin protein expression

in these tumours validating the RNAseq analysis.

Of the other tumour types significantly associated with survival outcomes, high expression of
DMD in THYM, READ and KIRP were also associated with increased risks of poor survival.
Conversely, high expression of DMD in UVM, PAAD, LUAD, LAML and BRCA were associated
with protection (compared with high expressing cases). The reasons for this are currently
unclear but may reflect the specific biological pathways affected and/or the composition of
the DAPC in different tumour tissues. For example, in healthy tissue, the composition of the
DAPC at the sarcolemma, neuromuscular junction (NMJ), CNS and retina is known to differ
(Figure 4.1). At the NMJ the DAPC is comprised of the dystrophin-related protein utrophin
and a-dystrobrevinl replaces a-dystrobrevin2 (Ohlendieck et al., 1991). In cancer, the muscle
wasting condition cachexia has been linked to dysfunction of the DAPC in an animal model
(Acharyya et al., 2005). Muscles from mice bearing subcutaneous colon-26 (C-26) tumours
were severely atrophic, with altered histology showing abnormal sarcolemma and associated
basal lamina from cachectic tibialis anterior muscles. This was associated with a switch from
dystrophin to utrophin expression and a higher migrating band for both B-DG and B-SG
suggested by the authors to be a hyperglycosylated form. This data suggests that cross talk
exists between tumour cells and the local tissue microenvironment modifying DAPC
formation. Interestingly, DMD gene products may not just play a role as a scaffold for
structural and signalling proteins at the plasma membrane. Dp71d is known to undergo
nuclear import employing an atypical nuclear localization signal by a ZZ-domain of the a2/B1
importin system. Afterimport Dp71d aids in the maintenance of nuclear architecture, through
interaction with the nuclear envelope proteins emerin and lamins A, C and B1. (Suarez-

Sanchez et al., 2014).
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Given the likely different composition of the DAPC across tumour types, we sought to
determine whether other gene members of the DAPC were associated with patient survival
outcomes. Across the nine tumours, several DAPC genes were not associated with survival
outcomes of those specific cancers. The exception was for LGG where intriguingly, every DAPC
gene was associated with different survival outcomes between high and low expressing cases.
As there were no easily immediately discernable patterns in the pattern of hazard ratios
across the genes in each tumour, cluster analysis was done to see if any patterns emerged.
Whether clustering was based on genes or tumour types, discernable clusters could be
identified showing the relationship between tumours based on DAPC gene expression hazard
ratios or genes based on tumour clustering. As discussed above the lack of a clear pattern
across tumours may reflect the different structures of the complex in different tissues and
the distinct roles DAPC gene products may contribute within the cell, based on cellular
location. In vitro and in vivo models as well as tissue immunohistochemical studies have been
deployed to interrogate the role of DAPC members in cancer with a number of studies
implicating dystroglycan (in particular) in cancer biology (Cross et al., 2008; Brennan et al.,
2004; Mitchell et al., 2013; Sgambato and Brancaccio, 2005; Fernandez et al., 2010; Mathew
etal.,2013; Calogero et al., 2006). Mice lacking sarcoglycan also spontaneously develop eRMS
tumours (Fernandez et al., 2010). Therefore, although this study has focused on the DMD
gene in particular, evidence implicates the DAPC in cancer biology although further studies

are urgently needed.
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Figure 4.1 Composition of the DAPC at different tissue sites

DAPC components differ in the (a) Sarcolemma, (b) neuromuscular junction, (c) central nervous
system and (d) Retina with respect to specific DMD gene products and other DAPC members. taken
from (Pilgram et al., 2010)
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Currently most studies of DMD associated cancers have ignored the complex pattern of gene
product usage. Therefore, this project explored the expression pattern of DMD gene variants
in tumours with significant survival associations with total DMD and highlighted novel
patterns of gene expression. Most tumours expressed Dp40, two of the Dp71 variants and
Dp427. However, there were differences with some tumours not expressing Dp427 and LGG
having a particularly broad pattern of gene product expression which is perhaps unsurprising
given the known significant role of DMD in the brain (Naidoo and Anthony, 2020). Dp40 was
expressed in all nine tumours which is interesting given its relatively poor characterisation
compared with other dystrophins. Dp40 is the shortest dystrophin reported, transcribed from
intron 62 to exon 70 and shares a promoter with Dp71. It lacks syntrophin and dystrobrevin
binding domains but contains a B-dystroglycan (B-DG) WW binding domain. Mass
spectrometry analysis showed Dp40 is expressed in synaptic vesicles and is associated with
syntaxin1A and SNAP25 (presynaptic proteins) (Tozawa et al., 2012). The effect of Dp40 and
Dp40L170P (leucine to proline in residue 170 of Dp40 which promotes exclusive nuclear
localisation of Dp40) stable overexpression during neuronal differentiation of PC12 Tet-On
cells was evaluated (Garcia-Cruz et al., 2022). Overexpression was shown to modify neurite
outgrowth and the protein expression profile of PC12 cells. Specifically, Dp40 overexpression
increased the proportion of PC12 cells with neurites and neurite length. Conversely,

Dp40L170P overexpression decreased neurites and neurite length.

Except for LAML, at least one Dp71 variant was expressed in all tumours examined. This may
reflect the ubiquitous expression of Dp71 family members in the body. Others have shown
that decreased Dp71 expression (in GBM cell lines compared with astrocytic control cells) is
associated with increased cancer cell proliferation (Ki-67 as a marker) and poor prognosis

(from cytoplasmic to nuclear relocalisation) in glioblastoma (Ruggieri et al., 2019). In gastric
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cancer cell lines Dp71 overexpression (both Dp71d and Dp71f) inhibited proliferation of
SGC7901 gastric cells. Dp71 protein was bound with lamin B1 in GES-1 cells demonstrated

with immunoprecipitation experiments (Sipin Tan et al., 2016).

Survival analysis showed that several specific transcripts were associated with different
survival outcomes across the analysed tumours. Typically for tumours with significant hazard
ratios, the specific gene products in each tumour trend in the same direction but not always.
Comparing across all cancers, UVM had the highest hazard ratios, for all four gene products
expressed (Dp40, Dp71ab, Dp260-1 and Dp427m). Interestingly, UVM cases have virtually no
mutation across the DMD gene suggesting non-mutational mechanism predominates in this
setting (Figure 1.7). This data generally supports our model where Dp427 and Dp71
expression may play a key role in the pathogenesis of tumours and/or may cooperate with
existing cell mutations and genomic instability to influence the progression to full neoplastic
disease. In a proposed model of DMD driven cancer development the relative balance of the
Dp427 and Dp71 gene products could influence the progression to full neoplastic disease
(Figure 4.2). The rationale for this model arises from soft tissue sarcomas studies where
recurrent mutation largely restricted to the 5’ region of the gene abrogates Dp427 expression
but retains Dp71 expression (Mauduit et al., 2019). Knockdown of Dp71 results in reduced
proliferation and cell cycle progression. This work built upon earlier studies where intragenic
deletions of DMD were frequently found (63%) in high grade myogenic tumors (Wang et al.,
2014). Restoration of dystrophin expression with a miniDMD construct (240-kDa dystrophin
product) in DMD-inactivated GIST, eRMS and LMS cells inhibits invasiveness, migration,
invadeapodia formation and anchorage independent growth. To confirm these findings in
additional cancer backgrounds including those identified herein, functional cell experiments

will be required that overexpress or knockdown/delete dystrophin variants in these different

84



tumour settings. This is ongoing work in our laboratory where, for example, we are currently

overexpressing specific Dp71 variants in glioma cell lines.
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Figure 4.2 Proposed model of DMD driven cancer development
The balance of Dp71 and Dp427 gene products contributes to neoplasia. Altered DMD gene product
levels have tissue specific effects on cancer hallmarks, such as proliferation and invasion, and disrupt
the dystrophin associated protein complex (DAPC) (Jones et al., 2021).

In a recent pre-publication, DMD gene expression was characterised across 25 TCGA cancers
and their corresponding normal tissues (where possible). This work showed that the largest
transcript Dp427 was downregulated in most tumours compared with healthy tissue (Alnassar
et al., 2022). Dp71 expression had variable transcript expression and a 10-gene signature
could identify discrete disease clusters. Pathway analysis was used from cell line
transcriptomic data was used to identify putative functional pathways (i.e. ECM-receptor
interactions) that are implicated in those tumour types (Alnassar et al., 2022). A limitation of
this work was the lack of comprehensive survival analysis. However, in pooling survival data
across 14 carcinomas and sarcoma, the overall survival of these patients with decreased DMD
expression in tumours was 27 months lower than that of patients with high DMD expression
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(Alnassar et al., 2022). The survival analysis herein indicates pooling across so many cancer
types with distinct survival characteristics may not be instructive. Furthermore, the authors
compared patients at the bottom 25% of DMD expression values and those at the top 25% of
DMD expression. This approach of dichotomising a continuous covariate based on
percentiles, medians, means or a proposed clinical threshold value are arbitrary and may miss
the true prognostic value of a putative biomarker. Our cutpoint approach incorporates an
outcome based method where the optimal cutpoint is defined by the threshold of the
distribution which optimally separates low and high risk patients with respect to an outcome
(i.e. overall survival) (Williams et al., 2006). In this project, the outcome-based method is
based on log rank statistics. Typically, in time-to-event analysis, outcome-oriented methods
perform better than data orientated methods (Mandrekar, n.d.). In addition, Alnassar et al.,
2022 focuses on the top 10 expressed DMD transcripts across all tissues, and therefore may
miss interesting findings with novel highly expressed transcripts in a specific tumour type.
Notably, analysis of Dp40 expression was not reported which was expressed in all nine

tumours in this study.

Having dichotomised patients into high or low gene expression groups based on total DMD
expression, preliminary differential transcriptome expression analysis allowed identification
of putative biological pathways impacted across the nine tumours examined. In many cases
GO Biological terms related to motility and adhesion were identified which is unsurprising
given the role of DMD as a structural/scaffold protein that facilitates cellular interaction of
the actin cytoskeleton with the extracellular matrix. However, in some cancers novel terms
relating to lon homeostasis (PAAD and READ) and chemical/sensory perception (LUAD) were

identified and the biological significance of this is currently unclear.

86



4.2 Is DMD a driver gene in cancer?

DMD is not considered a classic cancer driver but in a recent publication, deep learning was
used to reveal the exclusive functional contributions of individual cancer mutations (Gupta et
al., 2022). Their approach enabled identification and future exploration of putative driver
genes including DMD, RSK4, OFD1, WDR44, and AFF2. This approach described a newly
developed technique, Continuous Representation of Codon Switches (CRCS), that enabled the
generation of numerical vector representations of mutations, applicable in several machine
learning-based tasks. One task involved the authors constructing a novel deep learning
architecture constituting bidirectional long short-term memory with attention & CRCS
embeddings (BLAC) and demonstrated that a substantial chunk of cancer mutations are
distinguishable from noncancer mutations. The model differentiated between driver gene-
specific noncancerous and cancerous mutations and by merging multiple driver gene
databases they identified 33 potential driver genes on the X chromosome including DMD.
There is considerable scope for the use of novel machine learning approaches applied to gene
expression analysis for cancer prediction and this has been summarised in a recent review

(Khalsan et al., 2022).

As discussed in our prior review (Jones et al., 2021) ongoing studies should determine
whether DMD acts as a driver or passenger in neoplasia. In some tumours DMD is frequently
altered (i.e., single base mutations and copy number alterations) and varies across cancers
(Figure 1.5). In some cases, there is clear evidence that recurrent mutations abolish
expression of DMD gene products (i.e., Dp427 in soft tissue sarcomas) and/or specific focal
functional mutations in domains such as the actin-binding domain as seen in meningioma
(Juratli et al., 2018). The results presented in this thesis suggest that dysregulated gene
expression of dystrophin and/or the DAPC, through non-mutational mechanisms, may also be
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relevant for disease development (i.e., in virus-induced alterations in gene expression

programmes or epigenetic modifications).

4.3 Do Duchenne and Becker patients have an increased risk of cancer?

Given the increasingly recognised association and putative functional role(s) of DMD in
cancer, an obvious question arises as to whether patients with dystrophinopathies (e.g.
Becker and Duchenne) are at greater risk of cancer. The challenge(s) in addressing this issue
are considerable as DMD and BMD are rare diseases and historically patients (typically boys)
do not survive long enough for cancer to be an issue. However, with improved
treatment/management patients are living longer and some specific case studies have now
been identified from the literature (Table 4.1). For example, an interesting case report
identified Rhabdomyosarcoma (RMS) in a Patient with Duchenne muscular dystrophy
(Chandler et al., 2021). These cases provide interesting insights and highlight the need to
explore further the connection between DMD and cancer. The authors reported a case of
alveolar rhabdomyosarcoma (ARMS) in a five-year-old male with DMD who showed stable
disease after radiotherapy and maintenance chemotherapy (Chandler et al., 2021). The co-
occurrence of RMS with DMD in this individual is likely not a coincidence. Indeed, and
although missed in their assessment of the literature in this area (where the authors state
their subject was the third such case of a DMD patient developing RMS) there were at least
another four cases reported, two of which are ARMS (Vita et al., 2021; Saldanha et al., 2005;
Bliget et al., 2014). Moreover, there are an additional seven case reports of DMD co-occurring
with other cancer types, four of which are tumours of the central nervous system (Johnston
etal., 1986; Svarch et al., 1988; D et al., 2001; Doddihal and Jalali, 2007; Van Den Akker et al.,

2012; Vita et al., 2021).
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Table 4.1 Published case reports of cancer in individuals with DMD.

Publication Age at cancer
year DMD gene diagnosis Tumour
[reference] mutation (years) type Outcome
1986 (Johnston et Stage lll Alive > 25 months after surgery and
al., 1986) Unknown 0.75 neuroblastoma | chemotherapy
Acute
1988 (Svarch et al., lymphoblastic
1988) Unknown Unknown leukaemia Unknown
1999 (Rossbach et Exon 47-50
al., 1999) deletion 4 Alveolar RMS Alive after chemotherapy and radiation
2001 (Korones et Stage Il Wilms Alive 6 months after surgery, chemotherapy
al., 2001) Unknown 3 tumour and radiation
Stage Il
2002 (Jakab et al., embryonal
2002) Unknown 7 RMS Dead 2.5 years after combined therapy
2005 (Saldanha et
al., 2005) Unknown 5 RMS Unknown after surgery
Treated with surgery and radiation; tumour

2007 (Doddihal and Medulloblasto progressed; alive at 8 months post-
Jalali, 2007) Exon 44 deletion 7 ma treatment

Point mutation in Anaplastic
2012 (Van Den exon 32 (c.4483C > medulloblasto Alive 30 months after surgery,
Akker et al., 2012) T) 9 ma chemotherapy and radiation
2014 (Buget et al., Unknown after discharge following left arm
2014) Unknown 17 Massive RMS amputation
2021 ((Vita et al., Exon 46-47
2021) deletion 35 Brain tumour Dead 50 days after onset

Exon 48-50

deletion 14 Alveolar RMS Dead 9 months after onset

No

deletions/duplicati

ons 17 Alveolar RMS Dead after 1 year from lung metastases

Exon 45-54 Dead after 13 years from DMD-related

deletion 11 Enchondroma respiratory failure
2021(Chandler et Exon 45-62 Stable disease after radiotherapy and on
al., 2021) deletion 5 RMS maintenance chemo

Died due to ARMS exacerbation 5 months

2022 (Okuno et al., after treatment (chemo and radio)
2022) Unknown 9 Alveolar RMS interruption

Chandler et al. state there is no literature examining the prevalence of specific DMD
mutations amongst DMD individuals with RMS. This was confirmed in our review article
(Jones et al., 2021) and in a subsequent study (Vita et al., 2021). It should be noted that for
most case reports the location and/or type of DMD mutation was unknown or unreported
precluding definitive conclusions from such a small cohort. Our comprehensive review of the
literature (Jones et al., 2021) surrounding the DMD gene and cancer prompted Vita et al. to
undertake the first dedicated study to test this through examination of patient records from

all Italian Neuromuscular Centres for incidence of cancer (Vita et al.,, 2021). Their data
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suggests that, considering the lower risk of cancer in children, DMD individuals may indeed
have an increased risk and annual incidence (6/100,000) of RMS in Italian DMD population
developing RMS (Vita et al., 2021). This compares with annual childhood RMS incidence in the
USA is 0.44/100,000 (alveolar RMS is 0.15/100,000) suggesting up to a 40-fold increase over

what one would have expected for alveolar RMS in childhood.

In summary, the incidence of cancer in DMD people has been historically under-reported and
novel studies posit that RMS may be more common than is suggested from the case report
literature by Chandler et al. Speculatively, the degenerative muscle environment of
individuals with Duchenne may promote the development of RMS through increased tissue
turnover. In summary, multicentre reviews and fundamental investigations into the role of

the DMD gene in tumorigenesis are urgently required.

4.4 Future work and limitations

As mentioned, multicentre reviews and fundamental investigations into the role of the DMD

gene in tumorigenesis are urgently required as:

1. There is support for an increased risk of RMS in people with DMD
2. Therapeutic advances may not mitigate cancer risk

3. Increasingly, people with DMD are living longer

Therefore, a comprehensive population-based survey to ascertain the risk and incidence of
cancer in DMD is warranted which we are in the process of setting up to access data from the
paediatric North Star UK national neuromuscular database which was established in 2003 to
help drive improvements in services and set national standards of care for children living with

Duchenne muscular dystrophy (DMD).
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During this project, univariate analyses were done reporting hazard ratios where DMD was
the sole covariate. Associations with other clinical co-variates have not been determined or
whether DMD expression as a potential biomarker is confounded by other clinic-pathological
variables. In part, this was to simplify analysis as each cancer type is likely to have specific
additional covariates that are important for prognosis but specific for that disease. For
example, in LGG, a multivariate model containing DMD, IDH status, tumour subtype and age
revealed both DMD and IDH status remained independent prognostic markers (Naidoo et al.,
2022). IDH status is a valuable biomarker currently used in clinical practice for LGG and is

included in recently updated WHO criteria (Bale and Rosenblum, 2022).

It is currently unclear whether survival associations with DMD (and variant gene products)
replicate in independent disease cohorts. We employed the Chinese Glioma Genome Atlas
(CGGA) dataset for our LGG study (Naidoo et al., 2022) but this has not yet been done for the

other eight tumour types.

Survival analysis was limited to overall survival although there are other outcome measures
that could have been determined from the raw data (disease specific survival, progression
free survival, disease-free interval). There are pros and cons to using these different outcome
measures which has been previously discussed and evaluated (Liu et al., 2018). For example,
short-term clinical follow-up favours outcome analyses for more aggressive cancers, as
multiple events are observed within a short timeframe. Studies with less aggressive cancers,
where patients relapse after years or decades, may observe too few events during their
follow-up intervals to support reliable outcome determinations. Of the thirty-three tumours
analysed, OS was not recommended for 4 tumour types (DLBC, PCPG, TGCT and THYM). As

DMD was associated with survival outcomes in THYM, this result should be considered more
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cautiously as this report suggested the number of events was too small for OS and DSS; with

a longer follow-up needed. Only PFl was recommended for THYM.

Our analysis of the altered transcriptomic response between high and low DMD expressing
cases is exploratory and more detailed analysis is possible and required using other R
packages available in iDEP. The functional follow-on experiments from this will test whether
biological pathways (i.e. motility, morphogenesis and developmental programmes in LGG) are

relevant for the identified cancer.

Subset analysis (i.e. by different histologic sites, anatomical location or existing clinical
biomarkers) was beyond the scope of this project, however, it is clear from our LGG study
(Naidoo et al., 2022) that DMD expression can further stratify patients based on these other
clinical markers. For example, DMD expression further stratified IDH mutant LGG to identify
those at risk of poor survival. This knowledge may improve risk stratification and management

of LGG.

Ultimately, RNA expression does not necessarily translate to equivalent protein levels and so
for each tumour, accurate characterisation of protein expression (both levels and tissue
distribution) is needed. Similar survival analysis can then be employed based on the
association of Dystrophin protein expression and survival outcomes. A current caveat is the
lack of suitable antibody reagents that distinguish the different Dp protein gene products
expressed in cancer tissue. However, we are currently screening cell lines, and tissues by
western blotting to better address dystrophin expression. Finally, the composition of the
DAPC in different tumours is a fertile area for future research using either mass spectrometry

or immunoprecipitation approaches to clarify the relevant molecular players.
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4.5 Conclusions

DMD (both total and specific gene product) RNA expression was associated with the overall
survival outcomes of patients across nine different cancers. These included BRCA, KIRP, LAML,
LGG, LUAD, PAAD, READ, THYM and UVM. DMD is associated with the DAPC and other genes
encoding proteins in the complex are also associated with different survival hazards in these
tumours. Genes differentially expressed between high and low total DMD expressing cases
can be used to define putative biological pathways dysregulated during disease. Functional
studies will help unlock the importance of these pathways in DMD-associated

tumourigenesis.
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Supplementary figure 1. Kaplan-Meier survival curves for high vs. low DMD expression in ACC. Red

represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 2. Kaplan-Meier survival curves for high vs. low DMD expression in BLCA. Red

represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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calculated using the log-rank test.
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Supplementary figure 11. Kaplan-Meier survival curves for high vs. low DMD expression in KICH. Red
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calculated using the log-rank test.

120



Strata =t splitMGE=0 —~+ splitMGE=1

1.004
0.754
z
o
o
o)
2
0.(0.50
™
=
Il
=i
w
0.254
p = 0.003
0.004
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 G000

Survival time in days

Number at risk

T - 278 210 157 106 62 34 18 1 2 1 0 0 0
B - 261 202 151 98 56 33 22 8 1 0 0 0 0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Survival time in days

Supplementary figure 12. Kaplan-Meier survival curves for high vs. low DMD expression in KIRC. Red
represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.

121



Strata ~+ spltMGE=0 -+ splitMGE=1

1.007

0.757
£
= Tm T T bl o e T
0
(1]
0
o
Q.0.50
©
=
P
3
(5]

0.257

p < 0.0001
0.00
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Survival time in days
Number at risk
g 213 150 79 55 34 22 11 5 1 1 1 1 0
D = 75 50 29 18 12 2 0 0 0 0 0 0 0
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Survival time in days
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Supplementary figure 15. Kaplan-Meier survival curves for high vs. low DMD expression in LGG. Red
represents the low expression group and green represents the high expressing group. P value

calculated using the log-rank test.
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Supplementary figure 16. Kaplan-Meier survival curves for high vs. low DMD expression in LIHC. Red
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Supplementary figure 17. Kaplan-Meier survival curves for high vs. low DMD expression in LUAD.
Red represents the low expression group and green represents the high expressing group. P value

calculated using the log-rank test.
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Supplementary figure 18. Kaplan-Meier survival curves for high vs. low DMD expression in LUSC.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 19. Kaplan-Meier survival curves for high vs. low DMD expression in MESO.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 20. Kaplan-Meier survival curves for high vs. low DMD expression in OV. Red
represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 21. Kaplan-Meier survival curves for high vs. low DMD expression in PAAD.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 22. Kaplan-Meier survival curves for high vs. low DMD expression in PCPG.

Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 23. Kaplan-Meier survival curves for high vs. low DMD expression in PRAD.
Red represents the low expression group and green represents the high expressing group. P value

calculated using the log-rank test.
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Supplementary figure 24. Kaplan-Meier survival curves for high vs. low DMD expression in READ.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 25. Kaplan-Meier survival curves for high vs. low DMD expression in SARC.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 26. Kaplan-Meier survival curves for high vs. low DMD expression in SKCM.

Red represents the low expression group and green represents the high expressing group. P value

calculated using the log-rank test.
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Supplementary figure 27. Kaplan-Meier survival curves for high vs. low DMD expression in STAD.
Red represents the low expression group and green represents the high expressing group. P value

calculated using the log-rank test.
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Supplementary figure 28. Kaplan-Meier survival curves for high vs. low DMD expression in TGCT.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 29. Kaplan-Meier survival curves for high vs. low DMD expression in THCA.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 30. Kaplan-Meier survival curves for high vs. low DMD expression in THYM.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 31. Kaplan-Meier survival curves for high vs. low DMD expression in UCEC.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 32. Kaplan-Meier survival curves for high vs. low DMD expression in UCS. Red
represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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Supplementary figure 33. Kaplan-Meier survival curves for high vs. low DMD expression in UVM.
Red represents the low expression group and green represents the high expressing group. P value
calculated using the log-rank test.
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