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Abstract

Intracellular calcium oscillations are a versatile signalling mechanism responsible for

many biological phenomena including immune responses and insulin secretion. There

is now compelling evidence that whole-cell calcium oscillations are stochastic, arising

from random molecular interactions at the subcellular level. This poses a significant

challenge for modelling.

In this thesis, we develop a probabilistic approach that treats calcium oscillations

as a stochastic point process. By employing an intensity function — a one dimension

function over time which corresponds to the mean calcium spiking rate — we capture

intrinsic cellular heterogeneity as well as inhomogeneous extracellular conditions,

such as time-dependent stimulation.

We adopt a Bayesian approach to infer the model parameters from calcium

oscillations. Under this approach we need to be able to infer the intensity function.

One method is to use a parametric model for the intensity function. For example

we could assume the intensity function has the linear form x(t) = at + b. Then

the intensity function is reduced to only needing to infer the two parameters a and

b. However, parametric models suffer from strict assumptions, in this case, for the

shape of the intensity function. Therefore, to lessen such assumptions, we utilise

a non-parametric approach. This requires a prior distribution over the space of

functions. We use two such priors, namely Gaussian processes and piecewise constant

functions.

We use Markov chain Monte Carlo (MCMC) techniques to sample from the

posterior distribution to obtain estimates for our model parameters. Although advan-

tageous — due to sampling from the true posterior distribution — MCMC algorithms
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can experience issues relating to their computational cost and imprecise samplers.

We discuss the issues arising for our particular model and data and develop methods

to improve the functionality of the MCMC algorithms in this case. For example we

discuss the difficulty of inferring the length scale of the Gaussian process when fitted

from calcium oscillations.

An important mechanism of calcium oscillations is the refractory period, the min-

imum amount of time before the next calcium oscillation. Thus, it may be beneficial

to explicitly include the refractory period as part of the model. We investigate the

advantages and disadvantages of including the refractory period.

We fit the model to HEK293 cells and astrocytes challenged under a variety of

stimulation protocols. We find that our model can accurately generate surrogate spike

sequences with similar properties to those the model is fitted from. Therefore, the

model can be used to cheaply create spike sequences that are synonymous to those

found experimentally. Moreover, our model captures the similarity between calcium

spike sequences obtained from step-change stimulus protocols and constant stimulus

protocols. Combining intensity functions inferred from constant stimulus experiments

closely follow the intensity function from a step change experiment. This implies

it may be possible to build surrogate spike sequences for complex time-dependent

stimulation protocols by combining results from simpler experiments.

Of particular interest are patterns found in the intensity function which describes

the heterogeneity in the calcium oscillations over time. Common patterns could help

to understand the different time scales of the calcium response. Standard approaches

often fail in grouping intensity functions with similar shape. Therefore, we develop

an approach to cluster intensity functions based on their shape alone by utilising the

Haar basis.

In summary, we have developed novel statistical approaches based on the concept of

stochastic point processes and non-standard MCMC techniques. We have successfully
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applied these new methodologies to gain a deeper understanding into the stochastic

nature of intracellular calcium oscillations, in particular how different cell types

respond to a variety of stimulation protocols. In turn, this brings us one step closer to

unravel the complex dynamics of this pivotal intracellular messenger which controls

life from its very beginning to its end.
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CHAPTER 1

Introduction

Calcium (Ca2+) is a highly versatile intracellular messenger that contributes to

numerous biological functions such as cell maturation, [7], gene expression [8] and

orchestrating fertilisation [9, 10, 11]. Along with these functions excessive Ca2+ can

damage cells [12, 13] and alterations in the Ca2+ response of cells can contribute to

the onset of multiple human diseases [14].

Ca2+ controls these biological functions by transient rises and falls of Ca2+ con-

centration in the cell — commonly known as Ca2+ oscillations or Ca2+ spikes. These

oscillations encode information that the cell is presented with such as hormones or

neurotransmitters.

To visualise the Ca2+ encoding of information we show the Ca2+ response of

human embryonic kidney (HEK293) cells challenged with carbachol. This is shown

in Figure 1.1 for three different stimulation protocols. In Figure 1.1(A) we present

the Ca2+ concentration for two cells that experience the same stimulus — 10µM

carbachol. We see that the two responses are considerably different with one cell

exhibiting 11 Ca2+ spikes and the other 32 Ca2+ spikes. This illustrates the cell-to-cell

variability of the Ca2+ response in cells challenged with the same stimulus. Moreover,
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Figure 1.1: Ca2+ oscillations of HEK293 cells for a variety of stimulation protocols

as shown by the bars. (A) Two cells challenged with 10µM carbachol. (B) A cell

initially challenged with 50µM carbachol and then with 100µM carbachol at 3380s.

(C) A cell challenged with three waves of carbachol. This is shown in the coloured

bar where the lighter colour corresponds to a larger concentration of carbachol. The

red ticks on the time axis correspond to the Ca2+ spike times.

by presenting three different stimulation protocols in Figure 1.1(A,B,C) we can see

that the Ca2+ response of the cell depends on the timing and strength of the stimulus
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arriving to it. One example of time dependence is that we see more Ca2+ spikes closer

to the onset or exchange of the stimulus in Figure 1.1(A,B). This data illustrates the

versatility of Ca2+ oscillations for a single cell type and different types of stimulus.

In addition the Ca2+ response also varies depending on cell type.

Figure 1.1 illustrates that Ca2+ spikes vary in amplitude and frequency. As we

discuss in Section 1.1.1.1 both features are thought to encode information about the

applied stimulus. For the purpose of the thesis, we will focus on the frequency of

Ca2+ oscillations and hence base our analysis on the times when Ca2+ spikes occur.

We want to understand how Ca2+ oscillations differ between cell types and how

the response is affected when the signal is time-dependent, as in real physiological

conditions. Doing so would improve the understanding of the underlying dynamics

driving the Ca2+ response, which in turn could enhance our knowledge of the Ca2+

signalling toolbox. In particular, considering time-dependent stimulus will provide

insight into the interplay between the timing of signals and the biological processes

that the signals control.

In this thesis, we take a data-driven approach to capture the behaviour of Ca2+

oscillations. This involves fitting models using Ca2+ spike sequences, such as the one

shown by red ticks in Figure 1.1(C). One advantage of this approach is that is can be

used to capture the Ca2+ response of any cell type or stimulation protocol, as it only

requires the Ca2+ spike sequence. This flexibility will allow us to compare models

fitted from different cell types and find differences in the Ca2+ response, whereas

mechanistic models of different cell types may require cell-type specific models to

capture the intrinsic difference in the Ca2+ response — such as cells expressing

different parts of the Ca2+ signalling toolbox1.

A natural starting point is to treat a Ca2+ spike sequence as a realisation of a

point process. Indeed, Tilunaite et al. [16] developed such a framework for Ca2+

1Elements of the Ca2+ signalling toolbox control Ca2+ concentration in the cell such as exchangers

or pumps, for more information see [15].
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spike sequences, where the point process is defined in terms of an inhomogeneous

inter-spike interval (ISI) distribution. To account for the time-dependence of the

Ca2+ spikes they employed so-called intensity functions. Here, we will develop further

the statistical framework used by Tilunaite et al., along three critical ways.

Firstly, we extend the modelling framework to include more ISI distributions. By

including more ISI distributions we find new parameterisations that better describe

the Ca2+ oscillations. This could in turn lead to a greater understanding of what drives

the Ca2+ response. In the current framework the ISI distributions do not directly

contain the refractory period — the minimum time after a Ca2+ spike where another

spike cannot occur. To understand more of the underlying mechanisms controlling the

Ca2+ oscillations it may therefore be advantageous to explicitly contain the refractory

period in our ISI distributions. Thus, we will also investigate the advantages and

disadvantages of including the refractory period as an additional model parameter.

Secondly, the statistical framework developed here uses Bayesian inference to fit

the models. In this approach each parameter requires a prior distribution containing

our belief of the values the parameter takes before seeing the data. This is then used

in combination with the data to obtain a posterior distribution of the parameter

containing the beliefs after seeing the data. As a model parameter, the intensity

function therefore requires a prior distribution. Tilunaite et al. (2017) utilised

Gaussian processes for the prior of the intensity function. The advantage of Gaussian

processes comes from the fact that they are non-parametric and as such they avoid

imposing strict restrictions of the types of functions allowed. For example constraining

the intensity function to be linear. However, this added flexibility comes with a

large computational cost. In particular, Therefore, in addition to Gaussian processes

it would be beneficial to extend the modelling framework to allow for other prior

distributions for the intensity function. In this thesis, we provide such priors in the

form of the constant prior and the piecewise constant prior. They are less flexible

than the Gaussian process but are substantially cheaper to work with.

Tilunaite et al. approximated the posterior distribution by using Laplace’s ap-

proximation. Using an approximation may lead to inaccuracies in the posterior
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distribution. Therefore, to avoid such issues, in this thesis we develop Markov chain

Monte Carlo (MCMC) algorithms to sample from the true posterior distribution.

We then apply our methods to Ca2+ spike sequences obtained from HEK293 cells

challenged with a variety of stimulation protocols and astrocytes challenged with

constant stimulus. We investigate whether the extended modelling framework is able

to more accurately capture the dynamic nature of Ca2+ oscillations. We also use

our methods to explore the differences and similarities of Ca2+ oscillations across

different cell types (HEK293 cells and astrocytes) and stimulation protocols.

Pivotal to learning about the heterogeneity of Ca2+ oscillations in our model is

the intensity function, which describes the mean spiking rate over time. Therefore,

one method to help understand the cell-to-cell variability in Ca2+ oscillations is to

look for common features or patterns in the intensity functions, thereby clustering

them.

Importantly, cell-to-cell variability is often found in the magnitude of the Ca2+

response. For instance, picture two intensity functions which are both linear with the

same gradient but whose intercepts are far apart. In this case, the intensity functions

share the same shape but different magnitudes. In the context of Ca2+ signalling

it would be insightful to group together such functions because they have the same

shape. For example it would be preferable to group together intensity functions that

all have a peak in intensity at the same point in time, as this may provide information

of underlying processes controlling the Ca2+ oscillations. Common clustering methods

struggle to group such responses together, because they cluster on the magnitude

rather than the shape. Therefore, it is desirable to develop a clustering approach that

finds patterns in the shape of the intensity functions. We develop such a clustering

approach and use our method to cluster intensity functions inferred from Ca2+ spike

sequences, obtained from HEK293 cells.

Finally, we have also created web applications to work in conjunction with the
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methods developed. This will give practitioners a simple interface to apply our

methods with their own experimental data.

1.1 Ca2+ signalling background

Ca2+ is needed for the normal function of cells and their survival. The importance of

Ca2+ in animal cells was first discovered by Sidney Ringer, when he showed that Ca2+

was required for the normal contraction of frog hearts [17]. In 1882, he originally

reported the opposite result that Ca2+ was not necessary for the beating frog heart

[18]. However, afterwards he discovered that pipe water rather than distilled water

was accidentally used in the original experiment. Repeating the experiment with

distilled water his results differed from the original experiment. Thus, he proposed

that the effects were caused by inorganic constituents of the pipe water, which was

later revealed to be Ca2+.

In the years since that discovery, it is known that in addition to influencing the

heart beat, Ca2+ has 4 main biological roles [19]:

• cofactor for enzymes or proteins,

• electrical (i.e. in the formation of action potentials in excitable cells),

• intracellular second messenger,

• structural (i.e. in skeletal structures such as bones or shells) [20].

In this thesis we consider Ca2+’s role as an intracellular second messenger, or to

be more precise we investigate how changes to the Ca2+ concentration inside a cell

informs on the applied stimulus. In particular we explore the effect of time-dependent

stimulus on the Ca2+ concentration of single cells. In this chapter, we begin by

introducing intracellular Ca2+ signalling. We then briefly review the literature of

mathematical models used to analyse Ca2+ signals. After which, we explain how

experimental Ca2+ concentrations are recorded and describe the data used throughout.
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1.1.1 Calcium Signalling

In its simplest form cells have a cytosolic baseline Ca2+ concentration about 100nM.

Through components of the ‘Ca2+ signalling toolbox’ — for example Ca2+ pumps that

move Ca2+ out of the cell or from one cellular compartment to another — the level

of Ca2+ varies in the cell. These changes in Ca2+ concentration are used to regulate

many processes due to its versatility, i.e. its speed, amplitude and spatio-temporal

patterning [15].

The overarching idea of the Ca2+ signalling network can be split into 4 sections.

Firstly, signalling is triggered by a stimulus — such as a hormone or neurotransmitter

— that generates various Ca2+-mobilising signals. Secondly, these signals activate

channels and pumps that feeds Ca2+ into the cytoplasm from outside the cell and

internal stores. Thirdly, Ca2+ functions as a messenger to stimulate numerous Ca2+-

sensitive processes — such as muscle contraction or egg fertilisation. Finally, The OFF

mechanism activates leading to the removal of Ca2+ — via pumps and exchangers —

from the cytoplasm. This returns the Ca2+ concentration to its basal level.

We illustrate the process by considering the inositol-1,4,5-trisphosphate (IP3)

Ca2+ pathway that releases Ca2+ from the endoplasmic reticulum (ER) — an internal

store of Ca2+ — leading to changes (oscillations) in cytosolic Ca2+ concentration.

This pathway has been shown to be associated with lipolysis — the breakdown of fats

by hydrolysis [21]. The pathway’s effect on a cell’s Ca2+ concentration is visualised

in Figure 1.2(A), where we depict the state of the cell at 5 stages.

For this pathway, we require several components of the ‘Ca2+ signalling toolbox’.

Firstly, the plasma membrane contains Ca2+ ATPase (PMCA) pumps that transport

Ca2+ out of the cell and cell-surface receptors that facilitate Ca2+-mobilising signals.

Within the cell we have the ER, whose surface contains IP3 receptors (IP3Rs) and

sarco-endoplasmic reticulum Ca2+ATPase (SERCA) pumps. IP3Rs transfer Ca2+

from the ER into the cytoplasm, whereas SERCA pumps transfer Ca2+ from the

cytoplasm into the ER. An IP3R has a tetrameric mushroom-like structure with four

subunits [3]. A 3D representation is shown in Figure 1.2(C). The dynamics of the

receptor has been modelled by conjecturing that each subunit contains one Ca2+
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Figure 1.2: (A) Diagram is adapted from [1]. (B) Graph taken from [2]. (C) Image

taken from [3]. (A) Illustration of Ca2+ oscillations generated by the IP3 Ca2+ pathway.

(B) Open probability of IP3Rs as a function of Ca2+ concentration shown for varying

IP3 concentration. Filled dots show experimentally recorded values and simulation

results by the solid lines. (C) 3D IP3R structure drawn from two perspectives: the

cytosol and along the membrane plane.

activation site, one Ca2+ deactivation site and one IP3 binding site [22] and see Falcke

and Sneyd for further models [23, 24]. The receptors are distributed on the ER’s

surface in random clusters, where each cluster contains between 5 and 30 IP3Rs per
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cluster [25]. On average there are 8 IP3Rs per cluster [26].

In stage one the cell is at rest, where the cytosolic Ca2+ concentration is low and

the ER’s Ca2+ concentration is high.

In stage two an agonist — such as carbachol — arrives to the cell, which leads

to the production of IP3, a Ca2+-mobilising signal. Specifically, the agonist binds to

the muscarinic M3 receptor in the extracellular medium which itself is coupled with

a G-protein which induces the activation of Phospholipase C (PLC). The increase

of PLC causes subsequent production of IP3 (and diacyl-glycerol (DAG)), via the

hydrolysis of PLC and phosphatidylinositol 4,5-bisphosphate (PIP2).

In stage three IP3 diffuses into the cytoplasm and binds to IP3Rs situated on the

ER. The IP3R opens in response to IP3 and Ca2+ binding to activation sites. The

activated channels release large amount of Ca2+ into the cytoplasm from the ER.

The influx of Ca2+ into the cytoplasm leads to more IP3R opening — an example of

Ca2+-induced Ca2+ release (CICR). Figure 1.2(B) illustrates this affect where the

probability that an IP3R is open increases as the Ca2+ concentration increases from

baseline level.

However, as the cytosolic Ca2+ concentration increases further the open probability

of IP3Rs decreases as Ca2+ binds to inactivation sites on the IP3Rs. This is represented

by stage four. Note that this corresponds to the peak Ca2+ concentration in the

cytoplasm and the ER has been depleted. At this stage Ca2+ flux through the SERCA

pumps begins to refill the ER to prepare the cell for another oscillation in Ca2+ [1].

Once an IP3R channel has closed it cannot reopen for some time — the channel is

in a refractory state [27, 28]. We reach stage five and Ca2+ is transported out of the

cytoplasm into the ER and out of the cell by SERCA and PMCA pumps, respectively

[29]. This reduces the cytosolic Ca2+ concentration back to basel level and refills the

ER.

Although not shown cytosolic Ca2+ is also controlled by buffers — compounds

that bind free Ca2+ such as parvalbumins and calretinins [30]. At rest, the majority

of buffers are Ca2+ free. This means that they are ready to bind with Ca2+ ions

whenever the cytosolic Ca2+ concentration increases. Hence Ca2+ buffers can affect
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the timing, amplitude and recovery time of Ca2+ transients [31, 30]. The intracellular

Ca2+ buffering capacity depends on cell type [32, 33]. For example motoneurons have

a buffering capacity approximately 50 times smaller than Purkinje neurons [31].

Repeated increases and decreases in Ca2+ caused by the opening and closing of

IP3Rs along with Ca2+ pump activity creates Ca2+ oscillations. Depending on the

cell type the period of Ca2+ oscillations varies from seconds to hours. For example in

toadfish swimbladder muscle cells Ca2+ oscillations have a period of 10ms compared

to a period of approximately 1 day for circadian rhythms [34, 35]. Ca2+ oscillations

also range from regular spiking to bursting [36].

Changes in cytosolic Ca2+ concentration generally does not occur uniformly across

the cell. Rather local Ca2+ changes occur. These Ca2+ events are often categorised

into 3 groups: blips, puffs and waves — as illustrated in Figure 1.3. A blip occurs

when Ca2+ is released from a single receptor, whereas a puff arises when a cluster of

receptors are activated. Ca2+ can diffuse from one puff site to surrounding clusters

activating the receptors within, which leads to wave propagation. In astrocytes it has

been shown that at least three puff sites need to be activated synchronously to cause

a wave [37]. Intracellular Ca2+ waves spread throughout the cell and can transfer

information from one part of the cell to another.

1.1.1.1 Encoding and decoding Ca2+ Patterns

Cells use spatio-temporal patterns — such as Ca2+ oscillations — to transmit in-

formation (both within the same cell and to surrounding cells) [38, 39, 40] and to

initiate an appropriate physiological response [41, 42]. For example for some cells

the frequency of Ca2+ oscillations are proportional to the amount of stimulus applied

to the cell [43]. However, it is not yet fully understood how encoding and decoding

mechanisms convey information. To date, it has been shown that Ca2+ responses

can vary amongst different cell types [44], and even in the same cell type [45]. Along

with cell type, the agonist type [45, 46, 47] and its concentration [44] also affects the

Ca2+ response of cells.

Currently there are two main schools of thought for stimulus encoding, namely
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Figure 1.3: Figure taken from [4]. Illustration of Ca2+ events, where IP3R channels

that are active and release Ca2+ are shown in green. (A) represents a blip, where

Ca2 is released from a single receptor. (B) represents a puff, where all receptors from

a single cluster are activated. (C) represents a wave, where neighbouring clusters are

activated by CICR.

amplitude modulation (AM) and frequency modulation (FM) or some combination of

both [48, 47]. AM proposes that the concentration of agonist increases the amplitude

of Ca2+ signals, whereas FM claims that the frequency of the Ca2+ signals increase

with the stimulus strength. Recent studies have shown that apoptosis can be modelled

using amplitude modulation [49]. The frequency of Ca2+ oscillations has been shown

to activate genes, affect the dilation of arteries and other events [42, 39, 50, 51, 52].

Although both are valid encoding mechanisms, under repeated constant stimula-

tion experiments cells can exhibit a mixed response [53, 54]. For example HEK293

cells challenged with the same stimulus strength of carbachol have been shown to

have a mixed response. Some cells only contain a single Ca2+ oscillation at the

inset of stimulus, whereas others oscillate regularly but with varying frequency and
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amplitude. This is an example of cell-to-cell variability.

The underlying causes of cell-to-cell variability is unknown [55], although it

has been postulated that the variability could arise from differences in the cellular

composition — for example it has been shown that genetically identical cells arrange

components of the Ca2+ signalling toolbox in different spatial patterns [56]. Or the

variability could come from the intrinsic stochasticity of Ca2+ oscillations [37].

Moreover, cell-to-cell variability could improve a systems ability to transmit

information. For example it has been postulated that variability in intercellular

response may increase the capacity of a system to transmit information [57].

1.1.2 Modelling Ca2+ oscillations

Ca2+ signalling is often modelled using either deterministic or stochastic models. In

this section we provide a brief overview of these models. For a more detailed view,

we refer readers to [27, 58, 59, 60, 24]. Often deterministic and stochastic models of

Ca2+ oscillations follow a modelling approach known as bottom-up. This is when

the model contains mechanistic details of the underlying cell such as Ca2+ pumps or

channels. These models regularly contain a large number of equations and parameters

which can come with a heavy computational cost. Therefore recently, studies have

explored so-called top-down approaches. These begin with the big picture and model

cellular Ca2+ spikes directly [61, 16, 62].

1.1.2.1 Deterministic models

As shown in Section 1.1.1, three components that control the cytosolic Ca2+ con-

centration c(t) are IP3Rs, SERCA pumps and PMCA pumps. IP3Rs control Ca2+

release from the ER into the cytoplasm (JIP3R), whereas SERCA and PMCA pumps

transport Ca2+ from the cytoplasm back into the ER (JSERCA) and outside the cell

(JPMCA), respectively. Combining the fluxes, we can mathematically describe the

dynamics of the cytosolic Ca2+ concentration by the following ordinary differential
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equation
dc

dt
= JIP3R − JSERCA − JPMCA. (1.1)

Here, c describes the spatially averaged Ca2+ concentration across the cell. Note that

this is not exhaustive and we could include more fluxes to describe other parts of the

Ca2+ signalling toolbox, such as Ryanodine receptors and ORAI channels or flows

into different compartments of the cell. For a review of the Ca2+ signalling toolbox

we refer the reader to [15].

One of the first realistic models for Ca2+ oscillations was produced by De Young

and Keizer (DYK) in 1992 [22]. The model became an archetype for later deterministic

[63, 64, 65, 66] and stochastic models [67, 68].

The DYK model considers the Ca2+ flow into the cytosol via the IP3R channels

and a leak from the internal store, and the Ca2+ flow out of the cytosol via an

ATP-dependent pump (i.e. the SERCA pump). The SERCA pump is described by a

Hill function of c(t)

JSERCA =
vc2

k2 + c2
, (1.2)

where parameters v and k represent maximum Ca2+ uptake and pump activation

constant, respectively [22].

The IP3R channel was modelled by a simplified version of the biological mechanics

described in Section 1.1.1, where an IP3R was modelled by three identical and

independent subunits. Each subunit had one IP3 binding site, one Ca2+ activation

site and one Ca2+ inhibition site. A subunit was classed as activated when the IP3

and Ca2+ activation sites were bound and the Ca2+ inhibition site unbound. The

IP3R channel is open when all three subunits are activated. Therefore, each subunit

was modelled using eight ODEs with a total of 10 parameters. In particular the

probability that one of the subunits is activated is given by x110, where the index

indicates that the IP3 site is bound (110), the Ca2+ activation site is bound (110)

and Ca2+ inhibition site is unbound (110). From this the flux into the cytoplasm can

be computed by

Jin = c1

(
v1x

3
110 + v2

)
(cer − c) , (1.3)
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where the parameters c1, cer, v1 and v2 correspond to the ratio of ER to the cy-

tosolic volume, Ca2+ concentration in the ER, maximal Ca2+ influx and Ca2+ leak,

respectively.

The DYK model showed that activation and inactivation of the IP3R channels is

sufficient to produce cytosolic Ca2+ oscillations. The DYK model only accounts for

changes in cytosolic Ca2+ concentration over time and not in space. To generalise we

could incorporate a space variable x and include a diffusion term in equation (1.1)

∂c

∂t
= Dc

∂2c

∂x2
+ JIP3R − JSERCA − JPMCA, (1.4)

where Dc is a diffusion constant.

1.1.2.2 Stochastic Models

Stochastic models are considered more realistic than deterministic models due to the

random nature of IP3R channels caused by the small number of channels per cluster

and variations in channel opening and closing times [67, 69, 70, 71, 72, 73, 74]. By

investigating the relationship between the mean interspike interval (ISI) and standard

deviation of the ISI the stochastic nature of four cell types was confirmed [61, 75, 76].

One method to account for the random dynamics of the IP3Rs is to describe them

through a Markov chain. This is then coupled to the differential equations to describe

the cellular Ca2+ response. We refer the reader to [58, 77, 78] for further discussions.

1.1.2.3 Top-down approach

All the models described previously are classed as bottom-up approaches, where the

models are built using the mechanistic understanding of processes controlling the

Ca2+ concentration — such as IP3R activity. Deterministic and stochastic models

have played a vital part in increasing the understanding of Ca2+ dynamics. This

includes aiding the understanding which parts of the cell influence Ca2+ responses

and what can be done to adjust them. However even simple models often end up with

a vast number of equations which can lead to computational challenges [58, 24, 72].

Moreover, complex models often have a large number of parameters that can be
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difficult to estimate. For example Maurya et al. [79] suggested a model for the Ca2+

dynamics of RAW 264.7 cells stimulated with C5a ligand with 65 parameters. 19 of

these parameters depended on the cell type.

In contrast the so-called top-down approach constructs models that directly

describe key properties of Ca2+ oscillations such as their frequency, amplitude or

duration without incorporating mechanistic detail. Although this approach cannot

immediately inform on specific molecular processes it does offer distinct advantages.

Namely, the computational demand is substantially smaller than bottom-up ap-

proaches. Therefore, with a top-down approach we can generate large quantities

of realistic Ca2+ spike sequences which can be used as an input to signalling cas-

cades that decode Ca2+ spikes. Moreover, top-down approaches provide a strong

framework for fitting data and testing hypotheses on Ca2+ spike generation. In par-

ticular, information gained from top-down models can be used to improve bottom-up

approaches.

Indeed, Skupin et al. [61, 80, 75] used such an approach to model Ca2+ oscillations

for cells challenged with constant stimulus. Their model uses a time-dependent

conditional rate for the Ca2+ oscillations containing two parameters, a time scale

and an amplitude. They demonstrated that the time scale was cell type specific and

different cells of the same type could be distinguished by their amplitude. However,

their model can only be used for cells that experience a constant stimulation, but

time-dependent stimulus is a vital ingredient to improve understanding of Ca2+

dynamics of cells in vivo.

To capture the heterogeneity of Ca2+ oscillations and investigate time-dependent

stimulation Tilunaite et al. [16, 62] define a statistical framework which qualitatively

describes the heterogeneous timing of Ca2+ spikes. This is done by employing so-

called intensity functions to capture the time-dependence of the Ca2+ spiking rate.

The model is defined by two parameters the ISI distribution and the Ca2+ spike rate.

Bayesian inference is used to to determine the most likely model parameters. In their

work, they found that an inhomogeneous Gamma ISI distribution best describes Ca2+

oscillations.
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1.1.3 Ca2+ imaging

The most common and widely used method to capture the Ca2+ response of cells is

by fluorescent Ca2+ indicators — first introduced by Tsien et al., in 1980 [81]. The

indicators are special molecules that emit changes in fluorescence when bound with

Ca2+. Thus, changes in Ca2+ concentration are mirrored by changes in fluorescent

intensity. To make use of Ca2+ indicators they need to be loaded into the cell or

tissue of interest. The changes in fluorescence are captured by using a scientific

camera setup with a fluorescence microscope.

There are a large variety of Ca2+ indicators available such as Fura-2, Fluo-8 and

GCaMP [82, 83]. The Ca2+ indicator used often depends on the experimental details,

such as length, type of cell, or if the experiment is in vivo. The indicators can be

split into two groups: chemical indicators and genetically encoded calcium indicators

(GECI). An advantage of GECI is that the cellular location of the indicators is

easier to control compared to chemical indicators. However, all experimental data

we consider uses chemical indicators, whose advantages include the ease at which

these dyes can be introduced into the experiment and the large range of Ca2+

affinities that are commercially available [82]. Chemical indicators can be grouped

into single wavelength indicators or duel-wavelength indicators such as Fluo-8 and

Fura-2 respectively [84]. The difference lies in the fact that duel-wavelength indicators

have two excitation wavelengths whereas single wavelength indicators only have one.

Duel-wavelength indicators are often used for quantitative measurements of Ca2+

concentration. However, the difference in intensities of Ca2+-free and Ca2+-bound

indicators are often smaller then single wavelength indicators, making it harder to

detect smaller Ca2+ changes.

In Figure 1.4 we provide an example of fluorescence microscopy, where each image

shows the fluorescence at a single point in time. The white arrows indicate cells

whose fluorescence varies over time. By combining these images over all time we can

create a video of fluorescence, which shows how the Ca2+ concentration varies in

the region recorded. Moreover, we can calculate time-series information for regions

of interest by calculating the fluorescence ratio in the region. Regions of interest
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Figure 1.4: Figure taken from [5]. Illustration of Ca2+ imaging. Images of chon-

drocytes in a cartilage explant that were dyed with the Ca2+ indicator Fluo-8 AM.

Bright green regions correspond to a larger Ca2+ concentration. Responsive cells —

cells whose Ca2+ concentration changes — are marked with a white arrow.

often include whole cells or compartments of cells. Calculation of the fluorescence

ratio depends on the type of chemical indicator used. If a single wavelength indicator

is used the fluorescence ratio is given by the current fluorescence divided by the

fluorescence recorded at the start of the experiment. If a duel-wavelength indicator is

used the fluorescence ratio is calculated using the fluorescence at each wavelength.

For example Fura-2 data is often shown by a 340/380 ratio. Depending on the Ca2+

indicator used the fluorescent ratio can be converted into the Ca2+ concentration, for

example see [85].

It is important to note that Ca2+ indicators are also Ca2+ buffers — molecules

that bind to free-Ca2+. As such the indicators can impact the levels and kinetics of

Ca2+ signalling in the cell. Other issues include cell damage, photobleaching and

indicator leakage. For more information on Ca2+ indicators we refer the reader to

[82, 83, 84].

1.1.3.1 Experimental data used in this thesis

Throughout our analysis we use two cell types, human embryonic kidney (HEK293)

cells and astrocytes.
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HEK293 cells were originally derived from aborted embryo kidney cells in 1973

by Alex van der Eb’s laboratory [86]. Since the 1980s HEK293 cells have been used

to derive new cell line such as HEK293T and HEK293S [87]. HEK293 cells are often

used due to the fact they are easy to grow, maintain, transfect and they have a fast

division rate [88].

Astrocytes belong to a group of cells known as glial cells. They are non-excitable

cells which communicate with each other and neurons through Ca2+ signalling

initiated by external stimuli, such as neurotransmitters or hormones. Astrocytes,

were named after their star shape by Michael von Lenhossek [89]. Recent research

has found that the size and shape of astrocytes depend on the age, location and

species of astrocyte [90, 91]. Moreover, astrocytes have been found to contribute to

functions of the central nervous system (CNS) such as the blood-brain barrier and

local CNS blood flow regulation [92]. Astrocytes are also involved in various diseases

including glaucoma, Parkinson’s, Huntington’s and other neurodegenerative diseases

[90, 93, 94].

In this thesis we analyse Ca2+ concentration data obtained from fluorescence

microscopy of HEK293 cells and astrocytes. In particular, we analyse both cell

types under a constant stimulation protocol with varying stimulus strengths. For

HEK293 cells we also analyse time-dependent stimulation protocols. This includes

step-changes, pulses and waves of stimulus. To challenge HEK293 cells with a time-

varying stimulation protocol a custom built perfusion system was used, for more

details see [95]. The Ca2+ data has been kindly provided from four sources, namely

Dr Falcke, Dr Taylor, Dr Skupin and Dr Bellamy. For experimental protocols we

refer the reader to [6, 61, 16] .

1.2 Point Process Background

In this section, we give a brief introduction to point processes and Poisson point

processes defined on the positive real line [0,∞). For an in depth review of the theory

of point processes we refer the reader to [96, 97].
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Figure 1.5: Visualisation of the different ways to define a point process. The red lines

correspond to event times.

A point process is a stochastic process composed of a time-series of binary events

that occur in continuous time [96]. This is illustrated in Figure 1.5, where we have

three events. A point process can be defined in four equivalent ways — shown in

Figure 1.5 — by the events times, waiting times, a counting process or discrete

increments. In particular, define S1, S2, . . . to be random variables describing the

times that the events of the point process occur. Then a realisation of a point process

is S1 = s1, S2 = s2, . . . where 0 < s1 < s2 < . . . . We can also define the point process

by the set of waiting times X1, X2, . . . where Xi is the random variable describing the

time between the (i− 1)th and ith event time. By definition we have Xi = Si − Si−1

and Si =
∑i

k=1Xk. A third way to define the point process is the counting process

N(t) which describes the number of events to have occurred up to and including

time t. The final method to define a point process is by discrete increments where

we discretise time t = {ti}Mi=1 and we record the number of events to occur in each

interval ∆N(ti,ti+1) = N(ti+1)−N(ti).
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In this thesis, we consider Ca2+ spike times as point processes. Therefore, we

refer to the event times as spike times and waiting times as inter-spike intervals (ISIs).

We shall use this notation for the rest of this section. Furthermore, throughout this

thesis we will define the point process models of Ca2+ spikes by their ISI distribution.

1.2.1 Poisson Process

We now define two commonly used point processes the Poisson process and the

inhomogeneous Poisson process. Due to the various ways to define a point process

there are equivalent ways to define the Poisson process, we provide two.

Definition 1. A Poisson process of rate λ is a point process satisfying:

a) For any interval [t, t+ ∆t] the number of spikes in the interval is distributed

as a Poisson random variable with rate λ∆t,

b) For any non-overlapping intervals the number of spikes in each interval is

independent.

Definition 2. A Poisson process of rate λ is a point process with independent and

identically distributed exponential ISI times with rate λ.

Therefore, given the last spike occurred at time t1 the probability density function

of the next spike occurring at time t2 is

p(t1, t2) = λ exp{−λ(t2 − t1)}. (1.5)

The first definition illustrates why the process is named the Poisson process, as the

number of spikes in any interval is Poisson distributed. By using the ISI distribution

we can easily sample from a Poisson process — by repeated sampling of the exponential

ISI distribution.

The inhomogeneous Poisson process is a generalisation of the Poisson process

that allows the spiking rate to vary over time. The constant rate parameter λ of the

Poisson process is replaced with the rate function λ(t) which defines the instantaneous
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probability of a spike at each point in time

λ(t) = lim
∆t→0

Pr(∆N(t,t+∆t) = 1)

∆t
. (1.6)

Definition 3. The inhomogeneous Poisson process with rate λ(t) is a point process

satisfying:

a) For any interval [τ, τ + ∆τ ] the number of spikes in the interval is distributed

as a Poisson random variable with rate
∫ τ+∆τ

τ
λ(t)dt,

b) For any non-overlapping intervals the number of spikes in each interval is

independent.

For the inhomogeneous Poisson process the distribution of the ISIs now depends

on the time of the previous spike time. Therefore, given the last spike occurred at

time t1 the probability density function of the next spike occurring at time t2 is given

by

p(t1, t2) = λ(t2) exp

{
−
∫ t2

t1

λ(s)ds

}
(1.7)

The simple Poisson process is a special case of the inhomogeneous Poisson process

where λ(t) is constant.

1.2.2 Point processes and time-dependent renewal theory in

neuroscience

Although a good starting point, Poisson processes cannot account for the refractoriness

of Ca2+ spike sequences - a minimum amount of time before another Ca2+ spike can

occur. One method to account for such properties is to look at renewal processes,

which have been influential when modelling spiking neurons, see [98, 99, 100].

In particular, a common model for neurons is the Spike Response Model (SRM)

which describes the membrane potential (voltage) of a neuron in relation to the last

spike time, and the neuronal response to an input current. A new spike is recorded

when the membrane potential hits a threshold voltage. Notably, the discrete-time

version of voltage equation in the SRM can be expressed as a scalar product

ut = k · xt
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where ut is the membrane potential at time t, k is the parameter vector — which

needs estimating — and xt is the “input vector” [98]. Gerstner and Kistler [101]

added noise into the SRM by replacing the fixed threshold by a stochastic process.

With this change, the instantaneous firing rate ρ(t) is a function of the momentary

difference between the membrane potential u(t) and the threshold θ(t)

ρ = f(u− θ) = f(k · xt − θ).

Models of this kind are often referred to as Generalised Linear models (GLM) as

the membrane potential can be written as a linear function of the parameters. An

example of the functional forms of f is the exponential function [102].

The advantage of the model is that the interspike interval distributions can be

expressed analytically for time-dependent input. In particular, given a spike occurs

at time s, the next spike will occur at time t with probability

P (t|s) = ρ(t) exp

[∫ t

s

−ρ(u)du

]
.

In point process theory, the above equation is the interval distribution in terms of

the hazard for a time-dependent renewal process [98]. To infer model parameters

of GLMs, efficient maximum likelihood estimation (MLE) or maximum a posteriori

(MAP) solutions are used, see [98]. These models have been found to accurately

describe and predict spiking neurons.

In this thesis, we will endeavour to use time-dependent renewal processes to model

the Ca2+ spike sequences. However, rather than consider physiological conditions we

go straight to point processes. One justification for our approach is that Ca2+ spikes

occur less often than spikes from neurons, therefore there is less information to infer

the underlying mechanics.

1.3 Structure of the Thesis

This thesis is divided into 6 chapters. Chapter 2 outlines our modelling framework and

details how to simulate spike sequences from the ISI model and how to sample from
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the posterior distribution using MCMC algorithms. Throughout the chapter we use

the inhomogeneous Gamma ISI distribution to illustrate the methods contained within

it. In Chapter 3, we explain how to create inhomogeneous ISI distributions from any

distribution whose support is (0,∞). We also, describe and mitigate difficulties in

sampling from the posterior distribution. In particular, issues arising from: inferring

the length scale of the GP, the speed of sampling from the posterior distribution and

challenges with sampling form the conditional distribution of the intensity function

for the GP prior. In Chapter 4, we extend the model to include the refectory period

as a model parameter and discuss the advantages and disadvantages of doing so.

In Chapter 5, we apply our modelling framework to HEK293 cells and astrocytes

challenged under constant stimulation and HEK293 cells challenged with various

time-dependent stimulation protocols. In Chapter 7, we investigate the best method

to cluster intensity functions and apply clustering to the intensity functions inferred

from HEK293 cells. Chapter 8, describes web applications developed alongside the

modelling framework to: extract Ca2+ spikes from raw data, simulate surrogate Ca2+

spike sequences and generate the features of intensity functions.



CHAPTER 2

Model and Bayesian Inference

In this chapter we describe how Ca2+ spikes can be modelled as point processes, and

how to create time-heterogeneous models generalising stationary inter-spike interval

(ISI) dynamics, by utilising so-called intensity functions. We then explain how to

simulate spike sequences from our ISI model. Next we explain how to use Bayesian

inference to fit the ISI model to spike sequences, by employing Markov chain Monto

Carlo (MCMC). In particular, we give three different prior models for the intensity

function and discuss which MCMC algorithms to use for each prior. Throughout this

chapter, we provide explicit guidance on how to simulate and fit model parameters

for the inhomogeneous Gamma ISI distribution. We conclude with an example of

fitting our ISI model using simulated data.

2.1 The model

Before developing a model for Ca2+ spiking in cells, we first need to understand

the raw Ca2+ concentration data. The raw data consists of time-series data for the

concentration of Ca2+ in individual cells. This is shown in Figure 3.5 where we can
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Figure 2.1: Fura-2 fluorescence intensity trace of a HEK293 cell stimulated initially

by 20µM carbachol and then with 50µM carbachol at 3444s. The spike times (red

ticks) are obtained by thresholding (red line) the change in fluorescence at 0.8. The

data was kindly provided by Dr. Falcke, for experiment details see [6].

see the transient rises and falls in the Ca2+ concentration. We extract Ca2+ spikes

(red ticks on the x-axis) by thresholding the Ca2+ concentration (red line in Figure

3.5). This is shown for one cell, however we have Ca2+ concentration data for HEK293

cells and astrocytes challenged with a variety of stimulation protocols. Hence our

aim is to create a statistical model to mimic the behaviour of Ca2+ spikes in cells.

Moreover, once we have fitted models to Ca2+ spike sequences we will investigate

which parameter values are associated with certain cell types and stimulus profiles.

A natural starting point to model Ca2+ spikes are point processes, where each

spike is an event in the process. Point processes are fully defined by their inter-event

distribution, or in our case inter-spike interval distribution. Namely, the probability

density p(s, t) of a spike occurring at time t given a spike at time s and no spikes in

the interval (s, t). ISIs are obtained directly from experimental recordings, from which

we can acquire the empirical distribution. From this we can choose a probability

distribution to model the ISI, such as the Gamma, Weibull and inverse Gaussian

distributions. For example the probability density function of the Gamma distribution
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is

p(s, t|α, β) =
βα

Γ(α)
(t− s)α−1e−β(t−s), (2.1)

where α and β are the shape and rate parameters respectively and Γ denotes the

Gamma function. The mean and variance of the Gamma distribution is α/β and

α/β2, respectively. It is known that directly after a spike in Ca2+ concentration the

probability of a spike occurring shortly afterwards is low [103]. The downtime after a

spike when no spikes occur is known as the refractory period trefract. The Gamma

distribution is a suitable choice since increasing both α and β simultaneously, whilst

retaining the ratio α/β, has the affect of maintaining the mean of the distribution but

decreasing the variance, which will in turn reduce the probability of a spike occurring

in the refractory period. Another approach would be to directly incorporate the

refractory period into the ISI probability density by adding the parameter trefract,

such that if t < trefract then p(s, t) = 0. Indeed, Skupin et al. [61] included the

refractory period when modelling Ca2+ spikes with an Exponential distribution. The

advantage of this approach is that since we assume ISIs are independent and identically

distributed the probability of a Ca2+ spike sequence factorises into individual ISIs.

Suppose Ca2+ spikes occur at times y1, y2, . . . , yN and denote the set of all spikes by

y. Then the probability density of the spike sequence factorises to

p(y) = p1(0, y1)p(y1, y2) . . . p(yN−1, yN)pN(yN , T ), (2.2)

where p1(0, y1) denotes the probability density of the first spike occurring at time y1

and pN (yN , T ) denotes the probability density of no spikes occurring between yN and

the end of experiment T . These events are separated as they do not constitute an

ISI, and as such they are often modelled by different probability distributions, such

as an Exponential distribution.

These models are called time-dependent renewal processes [98]. If additionally,

p(yi, yi+1) = p(yi−1 − yi), these models are often referred to as time-homogeneous. If

p1() is chosen as the forward recurrence time it is a stationary renewal process [104].

Note that for a time-homogeneous renewal processes the ISI probability depends

only on the time since the last Ca2+ spike and not on the absolute experiment time.
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For example, suppose the first two Ca2+ spikes are separated by 100s, the probability

of this occurring is the same whether the first spike occurs 50s or 1000s into the

experiment. In Figure 3.5, notice that after the stimulus is exchanged — at 3444s —

the rate of Ca2+ spikes increases. This demonstrates that the spiking rate depends

on the absolute experiment time.

Therefore we need to consider a time-dependent renewal process as a model

for Ca2+ spike sequences. We choose to follow the practical approach first used

by Barbieri et al. [105] for modelling neural spiking activity and later adapted by

Tilunaite et al. [16] for Ca2+ oscillations. Their method relies upon combining

a known probability model that defines the stochastic nature of the Ca2+ spikes

sequences with a one-to-one transformation that relates the Ca2+ spike times with

its history and applied stimulus.

Assume that Ca2+ spikes occur at times {yi}Ni=1 where yi < yi+1 for all i. Let

fz(z) denote the renewal process probability density function for a general renewal

process on z ∈ (0,∞). In other words p(z)dz is the probability that a spike occurs in

[z, z + dz], and subsequent spikes are independent. Let y represent a time variable

on the interval (y∗,∞) and X be a one-to-one mapping X(y) = z from (y∗,∞) to

(0,∞) for y∗ ≥ 0. By transformation of variables the probability density of y can be

calculated from fz(z) and X by

p(y) =

∣∣∣∣dXdy
∣∣∣∣ fz(X(y)), (2.3)

(see [105]). In other words, the probability density for a Ca2+ spike at yi can be

calculated from the renewal probability density function fz if we know the mapping

X. A practical form of X is

X(y) =

∫ y

y∗

x(v)dv. (2.4)

This form of X satisfies the conditions above and we call x(t) the intensity function,

which is a parameter that we will need to estimate. Equation (2.4) can be viewed

as rescaling the original time y, such that the time between Ca2+ spikes become

independent and identically distributed (i.i.d) in the new time [106]. For proof that
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the transformation gives rise to i.i.d ISIs we refer the reader to [107]. Therefore, given

Ca2+ spike times yi and yi−1 in the original time, the ISI in the new time is

X(yi−1, yi) =

∫ yi

yi−1

x(v)dv. (2.5)

Note that only through the addition of the intensity function x(t) do the Ca2+

ISIs become Markov. Therefore, we include the intensity function explicitly in the

ISI probability density function via p(yi−1, yi|x), where we also include the time of

the previous spike yi−1 directly replacing y∗.

To illustrate the above construction, we create the inhomogeneous Gamma ISI

distribution. We begin with the one-parameter Gamma probability distribution with

parameter γ defined by

fz(z) =
γγ

Γ(γ)
zγ−1e−γz, (2.6)

where z > 0, γ > 0 and Γ(γ) is the gamma function. The mean and variance of this

distribution is 1 and 1/γ, respectively. By applying the transformation in equation

(2.3) to equation (2.6) and setting y∗ = yi−1 and y = yi we get the inhomogeneous

Gamma ISI distribution

p(yi−1, yi|x, γ) =
γx(yi)

Γ(γ)

[
γX(yi−1, yi)

]γ−1
e−γX(yi−1,yi), (2.7)

where

X(s, t) =

∫ t

s

x(v)dv, for any s, t ∈ [0, T ]. (2.8)

At this stage, it may appear that the intensity x(t) is devoid of biological meaning,

and only a mathematical trick. However, for the Ca2+ spiking models contained

within the thesis, the intensity function corresponds to the probability of Ca2+ spiking

independent of the history of the Ca2+ spike sequence. See Section 3.1 for further

detail. Put differently, if there are N identical Ca2+ spiking cells, Nx(t) is the expected

number of Ca2+ spikes at time t. This is demonstrated for the inhomogeneous Gamma

ISI distribution in Section 2.2 — in Figure 2.2(B).

In summary, we model Ca2+ spike sequences as point processes that are fully

described by their ISI distribution. To construct an inhomogeneous ISI distribution

we use a known probability distribution and a time-transformation as described above,
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after which the model is defined by the distribution type (Gamma, Weibull, etc) and

their parameter θ and the intensity function x(t). In this chapter we have shown

the case for the inhomogeneous Gamma distribution, however the concept can be

used for any probability distribution on (0,∞) used to describe the ISI dynamics,

see Section 3.1 for more detail.

Notice that the more complex time-heterogeneous model contains the simpler

stationary model within it. To visualise this suppose that the intensity function

is constant x(t) = x∗ for some x∗ > 0, then the integrated intensity simplifies to

X(s, t) = x∗(t− s). Substituting this into (2.7) we retrieve the Gamma distribution

with shape α = γ and rate β = γx∗, in (2.1).

2.2 Simulating Spikes

Suppose we are given the ISI distribution with parameter θ and intensity function

x(t), our goal is to create spike sequences from the ISI distribution. There are

numerous ways to simulate spike sequences, such as time rescaling, an approach

using a Bernoulli process and the inverse transform method [107, 99, 108]. For

all ISI distributions bar the Exponential distribution we use the inverse transform

method. Since the Exponential ISI distribution leads to an inhomogeneous Poisson

process, we use a thinning method [96]. This method begins by simulating from the

homogeneous Poisson process with rate max(x(t)), and then thinning (removing)

spikes with probability x(yi)/max(x(t)).

The inverse transform method samples from the target distribution by initially

sampling from the uniform distribution on [0, 1], a ∼ U [0, 1]. Then if the cumulative

density function (CDF) F of the target distribution is know, the sampled value is

F−1(a), the inverse CDF evaluated at a.

To sample spike sequence in [0, T ] we iterate this approach for each ISI interval.

Namely, for i > 0 given the last spike occurred at time yi the next spike time yi+1

is simulated by using the inverse CDF of our ISI distribution. If T occurs before

the next spike then yi is the last spike in the spike sequence. However, the CDF of
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our ISI distribution does not have a closed form. Therefore, we discretise time and

numerically calculate the CDF. Specifically, we choose K steps to evenly discretise

[0, T ], obtaining the discretisation t = {ti}Ki=0 where ti = iT/K.

Thus to simulate spike sequences we require the following inputs: length of

experiment T , the ISI distribution, ISI parameter θ, intensity function x(t) defined on

[0, T ] and the number of steps for the discretisation K. Pseudocode for the method

is described in Algorithm 1, where C stores the value of the CDF whilst we iterate

through times t and ycur is the most recent spike time.

As stated previously, x(t) is the spiking rate independent of the spike history.

Hence, if we simulate a large number of spike sequences from the same distribution

and then average over all of the sequences this should return the intensity function.

In Figure 2.2(A), we have simulated 50 spike sequences from the inhomogeneous

Gamma ISI distribution with ISI parameter γ = 10 and intensity function x(t) =

2 cos t
2

+ cos t
4

+ 2.8. We see that the simulated spike sequences mirror the intensity

function, with more spikes at the start of the experiment and a wave of spikes in

Algorithm 1: Simulating spike sequences.

Input: T , K, ISI distribution, θ and x(t).

Output: A spike sequence y between [0, T ].

Set t = 0, ycur = 0, y = ∅ and h = T/K;

while t < T do

Draw a ∼ U [0, 1] and set C = 0;

while C < a do

t = t+ h;

if t > T then

STOP;

Numerically calculate C =
∫ t
ycur

p(ycur, u|x(u), θ)du;

Add t to the set of spike times y, and set ycur = t;

Return spike times y;
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[10s, 15s]. To visualise the intensity function’s biological representation we simulate

1000 spike sequences and bin the spikes into small time regions, creating a peri-

stimulus time histogram. Due to the large number of spike sequences used this is

comparable to the expected number of spikes, in each time region, irrespective of

the spike history. In Figure 2.2(B) we find good agreement between the intensity

function (red) and the peri-stimulus time histogram (blue), demonstrating that the

intensity function corresponds to the mean spiking rate independent of spike history.

2.3 Bayesian Inference

We have shown that given parameters of an inhomogeneous Gamma ISI distribution

we can simulate spike sequences. Now consider the reverse, given Ca2+ spike data can

we infer the model parameters from which the spikes occurred. In other words, which
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Figure 2.2: (A) Raster plot of simulated spike sequences in [0s, 20s] from an inhomo-

geneous Gamma ISI distribution with ISI parameter γ = 10 and intensity function

x(t) = 2 cos t
2

+ cos t
4

+ 2.8. (B) Comparison of the intensity function (red) and

the histogram (blue) obtained from 1000 spike sequences simulated from the ISI

distribution used in (A).
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values of model parameters describe the properties of Ca2+ spike sequences. Consider

a single cell and observe its Ca2+ concentration over the time period [0, T ]. From

this we determine the times 0 < y1 < · · · < yN < T of Ca2+ spikes. Let y = {yi}Ni=1

denote the set of all spike times. The quantity of interest is the posterior distribution

π(x, θ|y), which is the probability distribution of the parameters given the data. This

approach has the benefit that we do not only get a point estimate for our parameters

but a joint distribution of x and θ.

To illustrate the advantage of distributions over point estimates consider the

distribution of the ISI parameter θ. If the distribution is strongly centred around

some value θ∗ then we can be confident that θ∗ is a good estimate for θ. However,

if the distribution has multiple maxima or large variance, this would imply less

confidence in the estimate.

Furthermore, the joint posterior distribution is all we need to answer any question

about the experiment or model dynamics, such as mean, variance or the interplay

between the ISI parameter and intensity function.

To calculate the posterior distribution we apply Bayes’ theorem

π(x, θ|y) =
π(y|x, θ)π(x, θ)

π(y)
. (2.9)

On the right hand side we have: the likelihood function π(y|x, θ), the prior π(x, θ)

and the normalising constant π(y).

We need to derive an expression for the likelihood in our model. In our case this

means the likelihood of obtaining the Ca2+ spike sequence given the parameters of the

model, i.e. the probability of spike sequence y given x(t) and θ. This is exactly how

we defined the model — see (??) and (??). Therefore, the joint probability density

of a spike sequence factorises into individual ISIs. Thus, the likelihood is given by

π(y|x, θ) = p1(y1|x)pT (T, yN |x)
N∏
i=2

p(yi−1, yi|x, θ). (2.10)

Here, p1(y1|x) represents the conditional probability of finding the first Ca2+

spike at time y1. This probability describes the forward recurrence time. In other

words, the time measured forward to the first Ca2+ spike. Furthermore, pT (T, yN |x)
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represents the conditional probability of finding no Ca2+ spike in the interval (yN , T ].

We assume p1 and pT come from an inhomogeneous Poisson process, i.e.

p1(y1|x) = x(y1)e−X(0,y1), pT (T, yN |x) = e−X(yN ,T ), (2.11)

where X(·, ·) is defined in (2.8).

For the inhomogeneous Gamma ISI distribution putting together equations (2.7),

(2.10) and (2.11) gives the likelihood to be

π(y|x, γ) = x(y1)e−X(y0,y1)e−X(yN ,T )

×
N∏
i=2

γx(yi)

Γ(γ)

[
γX(yi−1, yi)

]γ−1
exp(−γX(yi−1, yi)). (2.12)

Γ denotes the Gamma function which is defined for all real numbers z except 0 and

negative integers by

Γ(z) =

∫ ∞
0

tz−1e−tdt. (2.13)

The prior contains our beliefs about the parameters before seeing the data. For

example, if we strongly believed θ to be close to the value θ∗ then we would choose a

prior distribution that is centred around θ∗, such as π(θ) = Γ(κθ∗, κ) for some value

of κ. On the other hand, if we are unsure of the value of θ we would choose a wider

prior. Moreover, if we believe there is a positive correlation between say θ1 and θ2

then a priori we could choose a joint distribution with positive correlation such as

the bivariate normal, π(θ1, θ2) = N ((θ∗1, θ
∗
2) ,Σ), where Σ has positive correlation.

It is easy to think of priors for the ISI parameter θ as this is a point variable,

however it is harder to imagine a prior for the intensity function x(t). We require a

prior over the space of functions on [0, T ]. The first method to combat this is to add

a parametric form to x(t), the most basic would be to assume it is constant, x(t) = x.

This simplifies the problem greatly as x becomes a point variable. Therefore we only

require a distribution on (0,∞) such as a Gamma or inverse Gaussian distribution.

To allow for time-heterogeneity more complex forms could be considered, such as

a quadratic x(t) = at2 + bt + c. Then to describe our model we would need priors
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on {a, b, c}, such as independent Gamma distributions. However, even with this

improvement over the constant intensity, the shape of x(t) is still limited. Furthermore,

a priori there is little evidence to suggest what parametric form x(t) takes, and this

could vary significantly from cell to cell.

Hence, we aim to use a non-parametric method for the prior as this allows more

flexibility for the shape of x(t). We use two such methods, namely applying a

Gaussian Processes (GP) — as suggested by Cunningham et al. [109] — and a

piecewise constant (PWC) prior. Details of these priors are described in Sections

2.4.3 and 2.4.2, respectively.

Expanding the normalising constant we have

π(y) =

∫
π(y|x, θ)π(x, θ)dxdθ, (2.14)

which is an integral over all intensity functions and θ. The high dimensionality

of this integral would require efficient methods, as a direct integration would be

computationally expensive if not impossible. Rather than compute the posterior

directly, Tilunaite et al. [16] determined the maximum of the distribution and its

variance, by applying Laplace’s approximation for the intensity and integrating out

the ISI parameter. Whilst this is a sufficient method it does has its limitations, since

it only approximates the intensity function. We adopt a different approach using

Markov chain Monto Carlo (MCMC). The computational difficult part of the posterior

calculation comes from the normalising constant. To avoid calculating it we can

utilise MCMC algorithms to sample from the posterior distribution instead. When

sampling the posterior distribution we only need to know the posterior distribution up

to a multiplicative constant. Therefore we can sample from π(y|x, θ)π(x, θ) and avoid

the normalising constant. The construction of the MCMC algorithms are detailed in

the next section.

The method above can be generalised to input multiple spike sequences. Assuming

the multiple spike sequences {yi}Mi=1 are all independent then the only effect is on

the likelihood, where we now have the product of all the individual spike sequences

π
({

yi
}M
i=1
|x, θ

)
=

M∏
i=1

π
(
yi|x, θ

)
. (2.15)
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Multiple spike sequences may be considered if we believe the spikes all come from

the same distribution.

2.4 Bayesian Computation

In this section we explore how to use MCMC methods to obtain the posterior

distribution of the model parameters. The concept behind MCMC is that if the

required probability density is know up to a multiplicative constant, then we can

create a Markov chain whose stationary distribution is the probability density we

desire. Once we create the chain, we start at some arbitrary initial value and iterate

the Markov chain to create samples. Doing so many times, the samples converge

onto the target stationary distribution. There are many standard MCMC methods

(e.g Gibbs sampler, Metropolis-Hastings Algorithm [110, 111]), which can be used

in a plethora of different problems. However, due to the fact that the intensity is

a function of time we will require complex MCMC algorithms to sample from the

desired posterior.

Simplistically, an MCMC algorithm begins at some initial value, say φ0 = φ0

where φ can be and often is multi-dimensional. Suppose we are at iteration i, where

the current value is φi, we have a proposal regime that gives us a new candidate value

φ∗, often dependent on the current value φi. Then we accept the candidate value

with probability pacc, relating to the probability that φ∗ is a better estimate then φi,

giving φi+1 = φ∗, else φi+1 = φi.

We utilise a Gibbs sampling method over x(t) and ISI parameter θ. This means

that rather than propose candidate values of both parameters together, we split

the algorithm into two sections where we update x(t) first and then update θ. So

rather than sample from the full joint distribution we sample from the conditional

distributions. One benefit of this method is that the conditional distributions are

often easier to deal with than the full joint distribution. The MCMC algorithm begins

by choosing initial values x0 and θ0 then iterating the process

Step 1: Update x(t) applying either a constant prior (Section 2.4.1), a piecewise constant
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prior (Section 2.4.2) or Gaussian Process prior (Section 2.4.2);

Step 2: Update θ using a Metropolis-Hastings algorithm (Section 2.4.4).

Thus the algorithm returns samples for x and θ, namely {xi}Mi=1 and {θi}Mi=1,

where M is the total number of iterations. It often takes the algorithm time to

converge onto the target distribution, as such the first Mburn iterations are removed.

We begin in the next section by applying MCMC methods to the case x(t) is

constant. This significantly reduces the difficultly of the problem, nevertheless it is a

good starting point and is useful to compare against time-dependent models later.

2.4.1 Simple Model

We begin by assuming the intensity function is constant, x(t) = x. As stated

previously, this assumption gives rise to time-homogeneity. Furthermore, we get

X(s, t) = x(t− s) for the integrated intensity function in the likelihood. The model

is now simpler as we only need to estimate two parameters, x and the ISI parameter

θ. We use two different methods to achieve this, Maximum likelihood estimation

(MLE) and MCMC.

We need to decide prior distributions for x and θ, we choose to use independent

Gamma distributions for both x and θ, i.e.

π(x) = Gamma(αx, βx) and π(θ) = Gamma(αθ, βθ). (2.16)

These Gamma distributions are often set to be non-informative with shape 1 and

rate small. If we assume the ISIs follows a Gamma distribution then the likelihood

simplifies to

π(y|x, θ) = xe−x(y1−y0)e−x(T−yN )

×
N∏
i=2

γx

Γ(γ)

[
γx(yi − yi−1)

]γ−1
exp(−γx(yi − yi−1)). (2.17)

MLE is a method where we search the parameter space and return the values

which give rise to the largest likelihood. This is done using an optimisation function
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(such as optim in R), and returns a point estimate. The benefit of this method is

that it is quick and easy to implement. However, it only returns individual values for

the parameters, rather than full distributions. For example suppose we have spikes y

and we want to fit the Gamma ISI distribution. MLE method works by solving for

(x∗, γ∗) = max
x,γ∈(0,∞)

π(y|x, θ), (2.18)

where π(y|x, θ) comes from (2.17).

For the MCMC method we use Gibbs sampling. We use random walk (RW)-

Metropolis algorithms to update x and θ separately. The RW-Metropolis algorithm

is a special case of the Metropolis-Hastings algorithm that comprises of two steps: a

proposal regime and whether to accept the proposal. Suppose at our current iteration

we have a value z of the parameter of interest. We propose a new value z′ using the

proposal distribution q(z′|z) which is the conditional probability of proposing state

z′ given we are in state z. Then we accept z′ with probability

pacc = min

{
1,
P (z′)q(z|z′)
P (z)q(z′|z)

}
, (2.19)

where P (z) is proportional to the target distribution (in our case the likelihood and

prior). For RW-Metropolis the proposal distribution is Gaussian centred around

the current value with some variance, z′ ∼ N(z, σ2). In this case the q ratio in the

acceptance probability cancels leaving

pacc = min

{
1,
P (z′)

P (z)

}
. (2.20)

We now explain how to use this framework, within a Gibbs sampler to sample

from (x, θ). Since we update x and θ separately, when updating x θ is constant and

vice versa. Hence the target distribution reduces to the conditionals π(x|θ,y) and

π(θ|x,y) and by using Bayes’ theorem

π(x|θ,y) = π(y|x, θ)π(x) and π(θ|x,y) = π(y|x, θ)π(θ). (2.21)

The algorithm begins by selecting initial values xcur = x0 and θcur = θ0, sampling

variances σ2
x and σ2

θ and the number of iterations M . In each iteration, begin by
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updating x. Propose a new value xcan ∼ N(xcur, σ
2
x), and accept the candidate

value with probability min
(

1, π(xcan|θcur,y)
π(xcur|θcur,y)

)
. Next we update θ by proposing a new

value θcan ∼ N(θcur, σ
2
θ), and it is accepted probability min

(
1, π(θcan|y,xcur)

π(θcur|y,xcur)

)
. Often the

calculations include large powers of variables, for example the Gamma ISI distribution

(2.12) contains γγ, where γ can be large. To circumvent this issue the calculations

are assessed on the logarithmic scale. The algorithm outputs a matrix of dimension

2×M , where column i contains the values (xi, θi) the ith sample. Often, the initial

Mburn iterations are removed to allow the Markov chain time to converge onto the

stationary distribution.

In particular for the Gamma ISI distribution with parameter γ, we have the

likelihood given by (2.17). Expanding the priors for x and θ in (2.16) we have

π(x) =
βx

αx

Γ (αx)
xαx−1 exp {−βxx} and π(γ) =

βγ
αγ

Γ (αγ)
γαγ−1 exp {−βγγ} . (2.22)

Recall we only require the density up to a multiplicative constant hence removing

constants and rearranging we get the acceptance probability for x.

pxacc =
xαxcan exp {−xcan (βx + y1 + (T − yN))}

∏N
i=2 x

γ
can exp({−γxcan(yi − yi−1)}

xαxcur exp {−xcur (βx + y1 + (T − yN))}
∏N

i=2 x
γ
cur exp({−γxcur(yi − yi−1)}

,

(2.23)

=
x
αx+(N−1)γ
can exp {−xcan (βx + y1 + (T − yN) + γ (yN − y1))}
x
αx+(N−1)γ
cur exp {−xcur (βx + y1 + (T − yN) + γ (yN − y1))}

. (2.24)

The equation above only holds if pxacc < 1.

In the case of the Gamma ISI distribution it is possible to simplify the method

stated above. Note that the conditional π(x|γ,y) (i.e the numerator in (2.24)) is the

kernel of a Gamma distribution. This implies that when we update x we could draw

from the distribution Γ (αx + (N − 1)γ, βx + y1 + (t− yN) + γ (yN − y1)). However,

this is not true for other ISI distributions such as the inverse Gaussian or log-normal.

Similarly the acceptance probability for γ is

pγacc =
(γ∗)αγ−1e−βγγ

∗∏N
i=2

(γ∗x)γ
∗

Γ(γ∗)

[
(yi − yi−1)

]γ∗−1
exp(−γ∗x(yi − yi−1))

γαγ−1e−βγγ
∏N

i=2
(γx)γ

Γ(γ)

[
(yi − yi−1)

]γ−1
exp(−γx(yi − yi−1))

, (2.25)

=
(γ∗)αγ−1 exp {−γ∗ (βγ + yn − y1)} (γ∗x)(N−1)γ∗

Γ(γ∗)N−1

∏N
i=2(yi − yi−1)γ

∗−1

γαγ−1 exp {−γ (βγ + yn − y1)} (γx)(N−1)γ

Γ(γ)N−1

∏N
i=2(yi − yi−1)γ−1

, (2.26)
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where we swap notation γcur = γ and γcan = γ∗ for clarity in the equation, and x is the

current value in the iteration. Due the large number of exponents and exponentials

the calculations are computed on the logarithmic scale. We draw u ∼ U [0, 1], then

accept the candidate value if log u < log pacc.

In Figure 2.3 we give an example for where we fit the Gamma ISI distribution to

a simulated Ca2+ spike sequence. The simulated Ca2+ spike sequence was generated

from the Gamma ISI distribution in the region [0, 20] with parameters x(t) = 3 and

γ = 9. We apply the MCMC algorithm beginning with x0 = 1 and γ0 = 1 and

both variances σ2
x, σ

2
γ also set to 1. We ran the algorithm for 40,000 iterations and

Figure 2.3: Posterior Gamma ISI distribution of the simple model fitted to a single

simulated Ca2+ spike sequence. Each grey point represents one sample from the

posterior distribution — consisting of intensity function x and ISI parameter θ —

where overlapping values become darker. The red dot is the value obtained using

MLE. The histograms, top and right, represent the individual posterior distributions

of x and θ respectively.
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removed the first 10,000. Each grey dot represents the values of a single iteration of

the algorithm, such that if dots overlap the colour becomes darker. We also calculate

the MLE which corresponds to the red point in the scatter plot. We see that we

recover the model parameters well, with most of the density centred about the true

values. Furthermore, the MLE occurs at approximately the values with the most

probability from the MCMC as expected.

2.4.2 Piecewise Constant Prior

We now generalise the simple model, where the intensity function can now take

multiple values via a step function. We assume that a priori the intensity function

is piecewise constant (PWC) and is defined by the times (change points) where the

intensity changes and the values of the intensity between these times (heights). This

is a reasonable assumption to make in step-change experiments, where the stimulus

is exchanged during the experiment. Even if a priori we believe the intensity varies

continuously, every continuous function can be approximated by a step function,

taking the number of change points to be large.

To apply Bayesian inference we require a prior distribution over the space of

PWC functions and require an MCMC method to sample form the posterior. Notice

that with this functional form the number of parameters that describe the intensity

function changes depending on the number of change points. For example if x(t) = 1,

we have 0 change points and 1 height and a total of 1 parameter, whereas if x(t) = 0.5

if t < 20 and 1.5 otherwise, we have 1 change point and 2 heights and a total of

3 parameters. Hence we require an MCMC method which allows jumps between

parameter spaces with varying dimensions. We implement a Reversible jump MCMC

(RJMCMC) algorithm [112], which extends standard MCMC to allow for parameter

spaces of varying dimension. In our case, the sample space is X = ∪kXk, where Xk
corresponds to the parameter space with k change points and k + 1 heights. The

method works by either changing parameter space or parameter values in the current

space at each iteration, full details are in the following section.

The advantage of this method compared to the Gaussian Process prior is that
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it requires less computational demand. However in vitro the belief is that cells are

exposed to time varying (continuous) stimuli and the intensity function should inherit

this behaviour, thus with PWC we can only approximate this continuous change with

step functions.

2.4.2.1 Prior Distribution

We assume that the intensity function x(t) on [0, T ] is a step function. Suppose that

there are k change points 0 = s0 < s1 < · · · < sk < sk+1 = T and that the height on

each interval [sj, sj+1) is hj for j = 0, 1, . . . , k. Hence we have

x(t) =
k∑
j=0

hj1[sj ,sj+1)(t). (2.27)

We assume that a priori k has a Poisson distribution with rate λ conditioned on

k ≤ kmax

p(k) =
λke−λ

k!

/ kmax∑
i=0

λie−λ

i!
. (2.28)

This means that the most likely number of change points is λ and we limit the

maximum number to be kmax. Suppose we have k change points s1, . . . , sk a priori

they are distributed as the even-numbered order statistics of 2k + 1 points uniformly

and independently distributed on [0, T ]. To visualise imagine we were to simulate the

position of the change points, we would sample 2k + 1 points in the interval [0, T ].

Then order the points from smallest to largest to obtain {ti}2k+1
i=1 , and set si = t2i

for i ∈ 1, . . . , k. This prior for the change points was used by Green (1995) [112]

to probabilistically penalise short intervals and improve the spacing of the change

points.

For the heights we have two options for the prior. Firstly, h0, h1, . . . , hk have

independent Gamma(κ, µ) distributions. Secondly, the heights can follow a martingale

structure (Following Arjas and Gasbarra (1994) [113]) where we assume that h0 ∼

Gamma(κ, µ) and that given h0, . . . , hi−1 we have hi ∼ Gamma(κ, µi) where µi =

κ/hi−1 so that E[hi|hi−1] = hi−1. This should have the affect of smoothing x(t). In

Figure 2.4 we see that the heights with the martingale structure do indeed vary less
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Figure 2.4: Realisations from the PWC prior, where T = 20, kmax = 10, λ = 5, κ = 1

and µ = 1. In (A) the heights are independent and in (B) the heights follow the

martingale structure.

then those assumed to be independent. Indeed, we see in Figure 2.4 that with the

martingale structure consecutive heights have more similar values than if the heights

are assumed to be independent.

2.4.2.2 Posterior Computation

In this section we will show how the RJMCMC proposes new step functions, and

whether or not to accept the new function. In Algorithm 2 we outline the MCMC

algorithm where a priori the intensity function is PWC. Furthermore, the algorithm

states when to update the ISI parameter, with more details in Section 2.4.4. Note

that the algorithm requires the following inputs: spikes y; the ISI distribution (e.g.

Gamma, Weibull, etc); the number of iterations to compute M along with training

period of Mburn iterations; the parameters of the PWC prior λ, kmax, κ and µ; the

variance σ2
θ used in the RW-Metropolis algorithm and the prior type for heights

(either independent or martingale structure). The algorithm outputs M samples
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of the intensity function, where each sample is composed of the change points and

corresponding heights. The number of change points and heights can vary in each

sample. In addition to M samples of the ISI parameter θ.

We will begin by considering the heights to be independent a priori, and discuss

how the martingale structure alters the formulation afterwards. At each iteration of

the algorithm we make one of three types of updates:

1. Birth of a change point.

2. Death of a change point.

3. Within model updates (moving existing change points and change heights).

These occur respectively with probabilities bk, dk and 1− bk − dk, where

bk = cmin{1, p(k + 1)/p(k)}, dk = cmin{1, p(k − 1)/p(k)}. (2.29)

Above p(k) is the probability mass function of a Poisson random variable with rate

λ conditioned with maximum value kmax and c is chosen such that maxk(bk+dk) = 0.9

[112]. This is done to make sure within model changes occur at a frequent rate, such

that each iteration is not always a change in parameter space.

For all of the updates we need to calculate the likelihood ratio. Suppose we

initially have intensity function x(t) and the candidate intensity function is x′(t) then

the likelihood ratio is

(likelihood ratio) =
π(y|x′, θ)
π(y|x, θ)

. (2.30)

Note that θ takes the same value in both numerator and denominator, thus any

terms purely in θ cancel. In particular for the inhomogeneous Gamma ISI distribution

the likelihood function p(y|x, θ) is given in (2.12), where the ISI parameter is γ. This

gives the ratio

x′(y1)e−X
′(y0,y1)e−X

′(yN ,T )
∏N

i=2 x
′(yi)

[
X ′(yi−1, yi)

]γ−1
exp(−γX ′(yi−1, yi))

x(y1)e−X(y0,y1)e−X(yN ,T )
∏N

i=2 x(yi)
[
X(yi−1, yi)

]γ−1
exp(−γX(yi−1, yi))

, (2.31)

where X ′ is the integrated candidate intensity function.
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Algorithm 2: Inference for PWC prior.

Input: Spikes y, ISI distribution, M ,Mburn, λ, kmax, κ, µ, σ2
θ and the

prior type for heights.

Output: M samples of the intensity x(t), given by heights h and change

points s, and ISI parameter θ.

Calculate c such that maxk(bk + dk) = 0.9;

Set initial values h(0), s(0) and θ(0);

for i in 1 to (M +Mburn) do

Calculate bk and dk;

Draw u ∼ U [0, 1];

(Step 1) if u < bk then

Propose a new change point and corresponding heights;

Accept the proposed values with probability given by the acceptance

probability, update h(i+1) and s(i+1) ;

(Step 2) else if bk < u < bk + dk then

Propose a death of a current change point and corresponding heights;

Accept the proposed values with probability given by the acceptance

probability, update h(i+1) and s(i+1);

(Step 3) else

Propose a move for an existing change point;

Accept the proposed values with probability given by the acceptance

probability, update s(i+1);

Propose a change of an existing height;

Accept the proposed values with probability given by the acceptance

probability, update h(i+1);

Use RW-Metropolis algorithm to update θ (Section 2.4.4);

Return h, s and θ with initial Mburn iterations removed;
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Figure 2.5: Illustration of the possible moves at each iteration of the RJMCMC.

The black line corresponds to the original step function. The blue, red, cyan and

magenta lines correspond to candidate intensity functions when: a change point is

removed, a new change point is added, a height is changed and a change point moves,

respectively.

2.4.2.3 Step 1. Birth of a change point

Firstly, we want to describe how to calculate the position of the new change point

and how this changes the heights. Assume initially we have change points s1, . . . , sk

and corresponding heights h0, . . . , hk. A new change point s∗ is chosen uniformly on

[0, T ]. The new change point lies in an existing interval [sj, sj+1) with probability 1.

So our set of change points becomes {s1, . . . , sj, s
∗, sj+1, . . . , sk}.

Next we want to propose the new heights. We will replace height hj (this

corresponds to the interval [sj, sj+1) ) with two new heights h′j and h′j+1, using a

weighted geometric mean so that

(s∗ − sj) log(h′j) + (sj+1 − s∗) log(h′j+1) = (sj+1 − sj) log(hj) (2.32)
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and
h′j+1

h′j
=

1− u
u

(2.33)

where u ∼ U [0, 1]. Hence the candidate heights are h0, . . . , hj−1, h′j, h
′
j+1, hj+1, . . . , hk.

The acceptance probability takes the form

pacc = min{1, (likelihood ratio)× (prior ratio)

× (proposal ratio)× (Jacobian)}. (2.34)

The likelihood and prior terms correspond to the target distribution, the proposal

ratio is analogous to the transition ratio in the Metropolis-Hastings algorithm (2.19),

and the Jacobian is the transformation of coordinates from the original to the new

space, e.g from k changepoints to k + 1.

Begin by deriving the prior ratio. In words we have:

(prior ratio) = (prior ratio for heights)

× (prior ratio for change points). (2.35)

Consider the heights. We assumed that the heights come from independent

Gamma(κ, µ) distributions. Thus, the probability of heights h0, . . . , hk is

p(h0, . . . , hk) =
k∏
j=0

µκ

Γ(κ)
hκ−1
j e−µhj . (2.36)

Consequently, the ratio takes the form p(h0, . . . , h
′
j, h
′
j+1, . . . , hk) / p(h0, . . . , hj,

. . . , hk), notice that all heights apart from hj, h
′
j and h′j+1 cancel in the division.

Hence, the ratio reduces to p(h′j, h
′
j+1)/p(hj). Solving this gives:

(prior ratio for heights) =

((
µκ

Γ(κ)

)2
(h′j)

κ−1e−µh
′
j(h′j+1)κ−1e−µh

′
j+1

)
(

µκ

Γ(κ)
hκ−1
j e−µhj

) , (2.37)

=
µκ

Γ(κ)

(
h′jh

′
j+1

hj

)κ−1

exp{−µ(h′j + h′j+1 − hj)}. (2.38)
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Next consider the change points. Each individual change point is uniformly

distributed on [0, T ], i.e si ∼ U [0, T ], with density p(si) = 1/T for i = 1, . . . , k. Hence

considering the joint distribution we get

p(s1, . . . , sk) = (2k + 1)!

∫
· · ·
∫

1

T 2k+1
1{s0<t1<s1<t3<s2<t5... }dt1dt3 . . . dt2k+1, (2.39)

=
(2k + 1)!

T 2k+1

∫
· · ·
∫

1{s0<t1<s1<t3<s2<t5... }dt1dt3 . . . dt2k+1, (2.40)

=
(2k + 1)!

T 2k+1
(s1 − s0) . . . (sj+1 − sj) . . . (sk+1 − sk), (2.41)

where s0 = 0 and sk+1 = T , are the start and end times of the experiment.

Furthermore, (2k + 1)! comes from the number of permutations of 2k + 1 points.

Hence the prior probability of having k change points at times {si}ki=1 is (2.28)×(2.41),

where we leave the conditioned Poisson as p(k) for simplicity in the following equations.

Similar to the heights ratio, all the factors of the form (si+1 − si), i = 1, . . . , k cancel

except for the intervals that have been changed by the introduction of the new change

point s∗. Thus giving

(prior ratio for change points) =

(
p(k + 1) (2k+3)!

T 2k+3 (s∗ − sj)(sj+1 − s∗)
)

(
p(k) (2k+1)!

T 2k+1 (sj+1 − sj)
) , (2.42)

=
p(k + 1)

p(k)

(2k + 2)(2k + 3)

T 2

(s∗ − sj)(sj+1 − s∗)
(sj+1 − sj)

.

(2.43)

Putting together equation (2.38) and (2.43) we get that the prior ratio is

(Prior ratio) =
p(k + 1)

p(k)

(2k + 2)(2k + 3)

T 2

(s∗ − sj)(sj+1 − s∗)
(sj+1 − sj)

× µκ

Γ(κ)

(
h′jh

′
j+1

hj

)κ−1

exp{−µ(h′j + h′j+1 − hj)}. (2.44)

Next we want to compute the proposal ratio. As stated previously, this is analogous

to the ratio q(x′|x)/q(x|x′), where x is the current value of the intensity function
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and x′ the candidate value. In this case where we are now jumping between different

dimensions this becomes j(x′)/(j(x)q(u)), where j(x) is the probability of choosing x

and q(u) probability density function for the random variable u. Hence, j(x′) is the

move from x′ to x which is a death at the point s∗ and j(x) is the move from x to x′

which is the birth of point s∗.

(Proposal Ratio) =
j(x′)

j(x)q(u)
=

dk+1
1

k+1

bk
1

T−0
1

1−0

=
dk+1T

bk(k + 1)
. (2.45)

The Jacobian calculates the change in co-ordinates from our original space to the

candidate space. Due to the nature of adding a single change point this reduces to

the change from hj (and u) to h′j and h′j+1. We first need to rearrange equations

(2.32) and (2.33) to h′j and h′j+1 in terms of hj and u. This is done initially taking

the exponential (
h′j
)(s∗−sj) (h′j+1

)(sj+1−s∗) = h
(sj+1−sj)
j . (2.46)

Then we substitute h′j+1 = h′j
1−u
u

, thus getting the exponent for h′j to be (sj+1 − sj).

Hence, rearranging for h′j we get

h′j = hj

(
u

1− u

) sj+1−s
∗

sj+1−sj
. (2.47)

Similarly, for h′j+1 we have

h′j+1 = hj

(
1− u
u

) s∗−sj
sj+1−sj

. (2.48)

For ease of notation we let r = (sj+1 − s∗)/(sj+1 − sj), and ergo 1 − r = (s∗ −

sj)/(sj+1 − sj) from now on.
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(Jacobian) =

∣∣∣∣∣∣
∂h′j
∂hj

∂h′j
∂u

∂h′j+1

∂hj

∂h′j+1

∂u

∣∣∣∣∣∣ , (2.49)

=

∣∣∣∣∣∣
(

u
1−u

)r
hjr
(

u
1−u

)r−1 1
(1−u)2(

1−u
u

)1−r
hj(1− r)

(
1−u
u

)−r−1
u2

∣∣∣∣∣∣ , (2.50)

= hj(1− r)
u2r−2

(1− u)2r
+ hjr

u2r−2

(1− u)2r
, (2.51)

= hj
u2r−2

(1− u)2r
, (2.52)

= hj
[ur−1u+ ur−1(1− u)]2

(1− u)2r
, (2.53)

=
[hj(

u
1−u)r + hj(

1−u
u

)1−r]2

hj
, (2.54)

=
(h′j + h′j+1)2

hj
. (2.55)

2.4.2.4 Step 2. Death of a change point

Select a change point sj+1 uniformly at random from the existing change points for

deletion, and propose new height h′j over the interval (sj, sj+2) = (s′j, s
′
j+1) by

(sj+1 − sj) log(hj) + (sj+2 − sj+1) log(hj+1) = (s′j+1 − s′j) log(h′j). (2.56)

The acceptance probability is obtained by inversion of the terms for the corre-

sponding birth probability. Hence the prior ratio is

p(k − 1)

p(k)

T 2

2k(2k + 1)

(s′j+1 − s′j)
(sj+2 − sj+1)(sj+1 − sj)

× Γ(κ)

µκ

(
h′j

hjhj+1

)κ−1

exp{−µ(h′j − hj − hj+1)}, (2.57)

the proposal ratio is

bk−1k

dkT
, (2.58)
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and the Jacobian is

h′j
(hj + hj+1)2

. (2.59)

2.4.2.5 Step 3. Within model updates

When we are not proposing a birth or a death, the following within model updates

take place.

Move an existing change point: provided that k > 0 a change point sj is chosen

uniformly at random from the existing change points and a new position s′j is proposed

uniformly at random on [sj−1, sj+1] and accepted with probability

min

{
1, (likelihood ratio)×

(sj+1 − s′j)(s′j − sj−1)

(sj+1 − sj)(sj − sj−1)

}
(2.60)

Change a height: a height hj is chosen uniformly at random from the existing

heights and a new height h′j is proposed such that log(h′j/hj) is uniformly distributed

on [−1/2, 1/2], and accepted with probability

min
{

1, (likelihood ratio)× (h′j/hj)
κ exp{−µ(h′j − hj)}

}
(2.61)

The second term in equations (2.60) and (2.61) come from the prior distribution

for the change points and heights, respectively.

2.4.2.6 Martingale structure for the heights

In the steps above we have used the assumption that the heights are a priori inde-

pendent and identically distributed. We will now discuss how the calculations change
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with the martingale structure. This change does not affect the mechanism of which

move is used in an iteration nor how we propose the candidate function. Changes

only occur via the prior ratio in the acceptance probability.

First, consider a birth of a new point. Recall that the original heights are h0, . . . hk

and the proposed heights are h0, . . . , hj−1, h
′
j, h
′
j+1, hj+1, . . . , hk and the only change

comes from replacing height hj with heights h′j and h′j+1, where for the martingale

structure we have hi ∼ Gamma(κ, κ
hi−1

), for i > 0 and h0 ∼ Gamma(κ, µ). Notice

that even with the more complex structure most of the terms will cancel in the prior

ratio. In fact, the probability of each height only depends on the previous height,

thus the ratio simplifies to p(h′j, h
′
j+1, hj+1)/p(hj, hj+1). We will need to spilt into

2 cases, for when j < k and j = k since hj+1 does not exist if j = k. Furthermore,

care needs to be taken when only one height exists, as the ratio simplifies further to

p(h′1, h
′
2)/p(h1).

First lets consider the simpler case when j = k, explicitly writing the prior ratio

gives the following(
(κ/hk−1)κ

Γ(κ)
(h′k)

κ−1 exp
{
− κ
hk−1

h′k

})(
(κ/h′k)

κ

Γ(κ)

(
h′k+1

)κ−1
exp

{
− κ
h′k
h′k+1

})
(

(κ/hk−1)κ

Γ(κ)
hκ−1
k exp

{
− κ
hk−1

hk

}) (2.62)

Then collecting terms and simplifying gives

(Prior ratio) =
κκ

Γ (κ)

1

hk

(
h′k+1

h′k

)κ−1

exp

{
κ

(
hk − h′k
hk−1

−
h′k+1

h′k

)}
(2.63)

Now consider the case where j < k, for simplicity define h−1 = µ because

h0 ∼ Gamma(κ, µ).

(
(κ/hj−1)κ

Γ(κ)

(
h′j
)κ−1

exp
{
− κ
hj−1

h′j

})(
(κ/h′j)

κ

Γ(κ)

(
h′j+1

)κ−1
exp

{
− κ
h′j
h′j+1

})
×
(

(κ/h′j+1)
κ

Γ(κ)
(hj+1)κ−1 exp

{
− κ
h′j+1

hj+1

})
(

(κ/hj−1)κ

Γ(κ)
(hj)

κ−1 exp
{
− κ
hj−1

hj

})(
(κ/hj)

κ

Γ(κ)
(hj+1)κ−1 exp

{
− κ
hj
hj+1

}) (2.64)

Simplifying

κκ

Γ (κ)

hj
h′j + h′j+1

exp

{
κ

(
−
h′j − hj
hj−1

−
h′j+1

h′j
− hj+1

h′j+1

+
hj+1

hj

)}
(2.65)
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Figure 2.6: Realisation of a Gaussian Process (top line), with mean 0 and SE

covariance. The bell shape curves show the probability distributions of the values

the realisation can take at times 0, 50, 100 and 150, where the probability is coloured

such that light blue indicates low probability and magenta high probability. The

dashed lines indicated the probability of the given value that the GP takes at that

time.

Similar to before, for a death of a change point we just inverse the prior for the

birth. There is no affect for changing the value of a change point. Next consider

changing a height, again we must split into two cases when j < k and j = k repeating

the argument above we get the prior ratio to be

(
h′j
hj

)κ−1

exp

{
− κ

hj−1

(
h′j − hj

)}
, (2.66)

for j = k, and

hj
h′j

exp

{
− κ

hj−1

(
h′j − hj

)
− κhj+1

(
1

h′j
− 1

hj

)}
, (2.67)

for j < k. This replaces (h′j/hj)
κ exp{−µ(h′j − hj) in (2.61).
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2.4.3 Gaussian Process Prior

A Gaussian process (GP) is a collection of random variables where any finite number

of which have a multivariate Gaussian distribution. A GP is fully specified by its

mean and covariance function. Often the mean is taken to be 0, in which case a

GP is defined solely by its covariance function. There are many potential covariance

functions that could be used such as: constant, linear, or Gaussian noise [114].

However, we use the widely applied standard squared exponential (SE) covariance

function,

Σ(t1, t2) = σ2
f exp

[
(t1 − t2)2

2l2

]
+ δ(t1 − t2)σ2

v . (2.68)

This is because realisations from a GP with SE covariance are smooth when σ2
v = 0.

This is a property we desire for the intensity function, to mimic the varying stimulus

that cells experience in vitro.

A Gaussian process can be viewed as a probability distribution over the space of

functions on [0, T ], the domain of interest. For example in Figure 2.6 the top line is

a draw from a GP with mean 0 and SE covariance function, each curve underneath

corresponds to the normal distribution that the point comes from, where magenta

corresponds to a higher probability of the value occurring and blue a lower probability.

With the SE covariance, three hyper parameters define the shape of the intensity

function. This is illustrated in Figure 2.7. σ2
f determines the function’s average

distance from the mean (Figure 2.7(A,C)); l controls the ‘smoothness’ of the intensity,

where smaller l leads to an intensity that varies more (Figure 2.7(A,B)) and σ2
v is

additional Gaussian noise (Figure 2.7(A,D)).

To sample from a GP we discretise time by partitioning it into t = {ti}Ri=1, where

ti = i∆ such that ∆ is the time step used. From these points we can retrieve the

covariance matrix Σ = {Σ(ti, tj)}ti,tj∈t, where Σ is defined in (2.68). Assuming the

GP has mean µ — a vector of length R — we can approximate a realisation from the

GP by sampling from the multivariate normal with mean µ and covariance matrix Σ.

Furthermore, we can calculate the probability of any function f(t) defined on

[0, T ] by discretising to f = {fi}Ri=1 with fi = f(ti) and evaluating the probability
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Figure 2.7: Illustration of how varying hyper parameters changes realisations of a

Gaussian Process with mean 0. We draw 3 samples from the following GP priors:

(A) σ2
f = 1, l = 2, σ2

v = 0 (B) σ2
f = 1, l = 1, σ2

v = 0 (C) σ2
f = 2, l = 2, σ2

v = 0

(D) σ2
f = 1, l = 2, σ2

v = 0.01. The magenta region indicates the 95% confidence

intervals. In (B) we notice that decreasing the length scale leads the realisation to

vary more frequently with time. In (C) increasing σ2
f increases the range of values

taken (variance). Finally, (D) shows noise is controlled by σ2
v .

density function for the multivariate normal distribution, i.e N (f |µ,Σ).

Next we consider how to use a GP as a prior for our intensity function x(t), as

noted above we need to discretise the intensity function for practical purposes, thus

x(t) becomes x = {xi}Ri=1, where xi = x(ti). Often the time step ∆ is taken to be the
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inverse of the recording frame rate of the experiment such that spikes occur on the

discretised grid. However, care needs to be taken if the spike data is altered before

fitting the model, such as removing linear trends. In this situation, the altered spike

times do not occur on the time grid created from the experiment frame rate. To

combat this, we extend the grid to include the spike times, for example if the original

grid is t = {ti}Ri=1, we extend to t̃ = t ∪ y, where y = {yi}Ni=1 are the spike times.

We define the time indices of the spike times by ι = {ιi}Ni=1, where ιi corresponds to

the time index of the ith spike time.

For the inhomogeneous Gamma ISI distribution we obtain the likelihood function

with the discretisation to be

π(y|x, γ) = x1e
−X̂0,1e−X̂N,N+1

N∏
i=2

γxιi
Γ(γ)

[
γX̂i−1,i

]γ−1

e−γX̂i−1,i , (2.69)

where X̂i,j = ∆
∑ιj

k=ιi
xk with ι0 = 0, and ιN+1 = T/∆. Since we are updating x we

can remove terms purely in γ, to get

π(y|x, γ) = x1e
−X̂0,1e−X̂N,N+1

N∏
i=2

xli

[
X̂i−1,i

]γ−1

e−γX̂i−1,i . (2.70)

Note that we require the intensity function to be positive, as it is impossible to

have a negative spiking rate. Thereby, we will assume that the logarithm of the

intensity function has a Gaussian Process prior with SE covariance, that is

log x ∼ N (0,Σ), (2.71)

where Σ is defined in (2.68).

It is not necessary to take the logarithm, however if we sampled the posterior

distribution of x(t) without taking the logarithm many proposed intensity functions

would not be positive and would be rejected instantaneously, requiring a longer

mixing time.

Hence in general, with the GP prior the unknowns are the model parameters and

the hyper parameters of the GP, i.e {x, θ, σ2
f , l, σ

2
n}.

We choose to fix the signal variance σ2
f to improve the mixing of the Markov

Chain. For methods to fit the signal variance we refer the reader to [114]. It is vital to
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choose a suitable value since if σ2
f is too small the intensity function will not be able

to capture the underlying spiking rate. However, a signal variance that is too large

will result in a Markov chain that mixes poorly. To visualise the effect of the signal

variance we consider the one-dimensional normal prior distribution. If the variance

parameter for the normal prior is small this corresponds to a narrow prior distribution

(centered about the mean of the normal distribution). Conversely, choosing a very

large variance leads to a vague prior distribution which can place too much weight

on values that are outside a plausible range. In both this one-dimensional example

and the GP prior we need to choose the variance to be suitably vague. We elect to

fix σ2
f = 1000 which we found to be suitably vague without affecting the mixing of

the Markov chain.

To determine realisations from the GP we need to be able to sample from a large

multivariate normal distribution which requires inversion of the covariance matrix.

We want to set σ2
n = 0 to retain the smoothness property of the intensity function,

however doing such renders the matrix computationally singular. Hence, we set

σ2
n = 0.0001, small, hereby making the inversion possible with negligible random

noise. This is equivalent to adding a nugget term to the Gaussian process [115]. A

priori we have little information to inform us on a sensible value for l. For this reason

we keep it as a model parameter. Thus for the GP prior we introduce a new variable

l which we also need to estimate.

Therefore, with the GP prior our model consists of the intensity function x(t),

ISI parameter θ and length scale l. To sample from the posterior distribution we

utilise a Gibbs sampler, where we sample each variable one at a time whilst keeping

the remaining model parameters fixed. For the length scale and ISI parameter we

use a RW-Metropolis algorithm. For the intensity function we use an under-relaxed

algorithm. The intensity function requires a more complex MCMC algorithm as in

each iteration we need to create a new candidate function.

In Algorithm 3 we outline the method used, where the required inputs are: the

Ca2+ spikes y; the ISI distribution used (e.g. Gamma, Weibull, etc); the experiment

length T ; the number of samples required M ; the initial number of iterations to
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Algorithm 3: Inference for GP prior.

Input: y, ISI distribution, T , M , Mburn, t, ω, σ2
θ , σ

2
l

Output: M samples of intensity x, ISI parameter θ and length

scale l.

Set initial values x(0), θ(0) and l(0);

for i in 1 to (M +Mburn) do
Step 1. Propose xcan and calculate acceptance probability using

under-relaxed algorithm, update x(i);

Step 2.Propose lcan and calculate acceptance probability using a

RW-Metropolis algorithm, update l(i);

Step 3.Update θcanand calculate acceptance probability using a

RW-Metropolis algorithm, update θ(i) (Section 2.4.4);

Return: x, θ and l with initial Mburn iterations removed;

remove Mburn; the discretisation t used for the GP; step-size parameter ω used in the

under-relaxed method and the variances σ2
θ , σ

2
l used in the RW-Metropolis algorithms

for θ and l, respectively.

In the upcoming sections we describe in detail the under-relaxed method used to

update x, followed by the RW-Metropolis algorithm used for l.

2.4.3.1 Step 1. Posterior Computation for x

In this section we describe the algorithm used to propose candidate intensity functions

and probability of accepting the new intensity function. We use an under-relaxed

algorithm, based on a Metropolis-Hastings method [116]. Begin by choosing an initial

value x0. As x(t) describes the spiking rate, we set x0 to be the mean spike rate from

the experiment. For example if an experiment ran for 100s and a total of 58 spikes

were recorded then we set x0 = 0.58, the vector of length R with all values equal

0.58. Consider an iteration, with current intensity function xcur, we propose a new

intensity function xcan by xcan = ex∗can where

x∗can =
√

1− ω2 log(xcur) + ων, ν ∼ N (0,Σ). (2.72)
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Figure 2.8: Samples from the intensity function prior distribution, where its logarithm

has a GP prior. To illustrate the affect of the length scale on the prior distribution

the black, red and blue lines correspond to length scales 10, 5 and 1, respectively.

ω ∈ [−1, 1] is a step-size parameter. The nearer ω is to zero the closer xcan

resembles xcur whereas, if ω is close to one xcan will be similar to a draw from the

prior distribution. We use a value close to zero, often ω = 0.01, to improve the mixing

of the MCMC — candidate intensity functions get accepted more often.

Next we need to determine the acceptance probability,

pacc = min

{
1,
π (y|xcan, θ) π (xcan) q (xcur|xcan)

π (y|xcur, θ) π (xcur) q (xcan|xcur)

}
(2.73)

where for the Gamma ISI distribution π (y|x, θ) comes from (2.70), the prior π(x) is

defined in (2.71) and q(r|s) is the probability of transitioning from intensity function

s to intensity function r. Due to the proposal regime this reduces to the likelihood

ratio because the prior and q ratios cancel out.

For simplicity we show that the prior and transition probabilities cancels for the

case when x is a constant. Note from (2.72) we have q (xcan|xcur) =
√

1− ω2 log(xcur)+
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ων, where ν ∼ N(0, σ2), this means the transition from the current to the candi-

date value is normally distributed about
√

1− ω2 log(xcur) with variance ω2σ2, i.e

q (xcan|xcur) is equal in distribution to N
(√

1− ω2 log(xcur), ω
2σ2
)
. In this case the

prior on log(x) is a gaussian centred at 0 with variance σ2. Substituting this into

(2.73) gives

π (y|xcan, θ)
1√

2πσ2
exp

{
− log(xcan)2

2σ2

}
1√

2πω2σ2
exp

{
−(log(xcur)−

√
1−ω2 log(xcan))

2

2ω2σ2

}
π (y|xcur, θ)

1√
2πσ2

exp
{
− log(xcur)2

2σ2

}
1√

2πω2σ2
exp

{
−(log(xcan)−

√
1−ω2 log(xcur))

2

2ω2σ2

} .
(2.74)

Then we note that the contributions by the prior and transition probabilities

cancel; by combining the exponentials, equating the denominator and expanding the

square term in the transition probabilities, thereby leaving

pacc = min

{
1,
π (y|xcan, θ)

π (y|xcur, θ)

}
. (2.75)

The advantage of this proposal mechanism is that the acceptance probability does

not require any contributions from the multivariate normal, and in particular the

computational expensive matrix inversion. Since most ISI distributions contain large

exponents we convert to the logarithmic scale and accept candidate value xcan if

log u < log π (y|xcan, θ)− log π (y|xcur, θ) , (2.76)

where u ∼ U [0, 1]. For the Gamma ISI distribution taking the log of equation

(2.70) and substituting into (2.76), we accept the candidate intensity function if

log u < log (x′1)− X̂ ′0,1 − X̂ ′n,n+1

N∑
i=2

log
(
x′li
)

+ (γ − 1) log
(
X̂ ′i−1,i

)
− γX̂ ′i−1,i

−

(
log (x1)− X̂0,1 − X̂n,n+1

N∑
i=2

log (xli) + (γ − 1) log
(
X̂i−1,i

)
− γX̂i−1,i

)
, (2.77)

where we consider the discretised intensity functions. For clarity in the equation

we use x′ and X̂ ′ to correspond to the candidate intensity function and integrated
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candidate intensity function and x and X̂ the current intensity function and integrated

current intensity function.

The base MCMC algorithm for the intensity function can incur mixing issues.

These are described and resolved in Section 3.2.

2.4.3.2 Step 2. Estimating the length scale

In this section we describe the method to sample the length scale from the posterior

distribution. We begin by applying Bayes’ theorem where we consider only the

intensity function and length scale of the GP prior

π(x, l|y) ∝ π(y|x, l)π(x, l), (2.78)

= π(y|x)π(x|l)π(x)π(l). (2.79)

We do not include the ISI parameter because it is fixed when updating the

length scale and does not affect the conditional distribution of the length scale.

Equation (2.79) is obtained by conditioning the likelihood on l, and noticing that the

likelihood (2.70), is not directly influenced by l. Furthermore, our priors for x and l

are independent. Since we only require the marginal up to multiplicative constant we

have

π(l|,x,y) ∝ π(x|l)π(l). (2.80)

Note that l is defined on (0,∞) and a priori we have little idea what value l will

take. Hence we apply a non-informative Gamma prior, l ∼ Gamma(1, 0.01), unless

specified otherwise.

Recall that log x ∼ N (0,Σ), where Σ depends on the hyperparameters {l, σ2
f , σ

2
n}

and that σ2
f and σ2

n are fixed. Thus we have

π(x|l) ∝ 1∏R
i=1 xi

1

|Σ|1/2
exp

[
− 1

2
xT∗Σ

−1x∗
]
, (2.81)

where x∗ = log x. The term 1∏R
i=1 xi

is the Jacobian factor of the transformation.

Recall that we discretised the intensity function into R steps. Hence, combining with
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the prior we have

π(l|y,x) ∝ 1∏R
i=1 xi

1

|Σ|1/2
exp

[
− 1

2
xT∗Σ

−1x∗
]
e−λl (2.82)

We implement a RW-Metropolis algorithm to sample the length scale. We choose

initial value l0, then at each iteration we propose a candidate value lcan generated

from a normal distribution centred about the current value with variance σ2
l , i.e

lcan ∼ N(lcur, σ
2
l ). Recall for this algorithm the transition probabilities cancel out —

see (2.19). Thus by taking the logarithm lcan is accepted if

log u < log π(lcan|y,x)− log π(lcur|y,x) (2.83)

where u ∼ U [0, 1].

Inferring the length scale of the GP prior is not always viable due to the limited

information contained within a single Ca2+ spike sequence. This is investigated

further in Section 3.3.

2.4.4 Updating ISI Parameter

In the above two sections we have considered how to sample the posterior for the

intensity function x(t), whilst we consider the ISI parameter θ to be fixed. Now we

consider how to sample the ISI parameter θ, where we fix the value of x(t) whilst

updating θ. Note that the length scale of the GP only affects the prior of the intensity

function we do not consider it when updating the ISI parameter. Applying Bayes’

theorem we have

π(θ, x|y) =
π(y, |x, θ)π(θ, x)

π(y)
. (2.84)

Since we use a Gibbs sampler, we concentrate on the conditional distribution π(θ|x,y).

The priors on x and θ are independent and we only require the distribution up to a

multiplicative constant giving

π(θ|x,y) ∝ π(y|x, θ)π(θ). (2.85)

We require a prior distribution on θ. For all ISI distributions their parameters

are defined on (0,∞). Hence any distribution on (0,∞) could be suitable. However,
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throughout we use a non-informative Gamma prior, i.e θ ∼ Gamma(1, 0.01), unless

specified otherwise. Since we are only updating θ we remove any terms that are purely

in x in the likelihood π(y|x, γ), as these will cancel when we take the likelihood ratio.

For clarification, this is shown below for the inhomogeneous Gamma ISI distribution

where we have θ = γ, and we use the generalised prior γ ∼ Gamma(α, β)

π(γ|x,y) ∝ π(y|x, γ)π(γ), (2.86)

= x(y1)e−X(y0,y1)e−X(yN ,T )

N∏
i=2

γx(yi)

Γ(γ)

[
γX(yi−1, yi)

]γ−1
e−γX(yi−1,yi)

× γβ

Γ(α)
γα−1e−βγ, (2.87)

∝ γα−1e−βγ
N∏
i=2

γγ

Γ(γ)
[X(yi−1, yi)]

γ−1e−γX(yi−1,yi). (2.88)

For the Gamma ISI distribution the terms in red were removed, as they do not

depend on γ. For computational ease we will work on the logarithmic scale, as there

are several exponents in (2.88). Hence taking the logarithm we have

log π(γ|x,y) ∝ (γ (N − 1) + α− 1) log γ − (N − 1) log Γ (γ)− βγ

+
N∑
i=2

[
(γ − 1) log(X(yi−1, yi))− γX(yi−1, yi)

]
. (2.89)

In order to sample the ISI parameter θ we use a RW-Metropolis algorithm.

We begin with initial value θ0, which depends on the ISI distribution. For the

inhomogeneous Gamma ISI distribution the initial value is taken to be 1. Suppose

the current value is θcur, in the next iteration we propose a candidate value θcan

drawn from N(θcur, σ
2
θ), Where σ2

θ is chosen ad hoc. Since we follow a RW-Metropolis

algorithm, the transition probabilities cancel and the acceptance probability reduces

to

pacc = min

{
1,
π(θcan|x,y)

π(θcur|x,y)

}
. (2.90)

Converting to the logarithmic scale we accept the candidate value if

log u < log π(θcan|x,y)− log π(θcur|x,y), (2.91)

where u ∼ U [0, 1].
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Figure 2.9: Illustration of fitting an inhomogeneous Gamma ISI distribution to spike

sequences simulated from a model with a constant intensity function. (A) Raster plot

of 40 simulated spike sequences. (B) Mean and 95% credible region of the posterior

intensity function distribution inferred from a single spike sequence. The black line

represents the intensity function used to simulate spike sequences. (C) Histogram of

the ISI parameter γ for the spike sequence and PWC priors shown in (B). In (B,C)

The constant, PWC and GP priors for the intensity function are represented by the

colours magenta, red and blue, respectively. (D) Scatterplot of the MLEs for 200

spike sequences, where each dot corresponds to the MLE of a single spike sequence.
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2.5 Example with simulated data

In this section we demonstrate how to fit the inhomogeneous Gamma ISI distribution

to simulated Ca2+ data. To simulate Ca2+ spike sequences we use the approach

outlined in Section 2.2. We choose to generate spikes sequences over 20s from an

inhomogeneous Gamma ISI distribution with ISI parameter γ = 10 and constant

intensity function x(t) = 2, where K = 8000 steps were used. The expected number

of Ca2+ spikes in one sequence is 40. The simulated Ca2+ spike sequences are shown

in Figure 2.9(A).

We fit our inhomogeneous Gamma ISI distribution to individual simulated spike

sequences. We do this by sampling from the posterior distribution using MCMC

algorithms, as outlined in Section 2.4. Recall that we have three choices for the prior

of the intensity function: constant, PWC and GP. We infer model parameters for

each choice of prior. In all instances the ISI parameter γ has a Gamma(1, 0.01) prior

distribution and RW-Metropolis variance σ2
θ = 1. We compute 20,000 iterations after

an initial burn-in period of 10,000 iterations. When the intensity function is constant

a priori we give it a Gamma(1, 0.01) prior distribution, where the RW-Metropolis

variance is σ2
x = 1. For the PWC prior the parameters are: maximum number of

change points kmax = 30, mean number of change points λ = 20, height parameters

κ = 1 and µ = 2 where the heights have a martingale prior. For the GP prior

the parameters are: the discretisation t = {0, 0.05, 0.1, . . . , 20}, step-size parameter

ω = 0.01 and length scale variance σ2
l = 0.5.

In Figure 2.9(B,C) we illustrate the posterior ISI distribution fitted to a single

simulated Ca2+ spike sequence shown by the black ticks in (B). In both the con-

stant, PWC and GP priors are represented by the colours magenta, red and blue,

respectively. The 95% credible region and mean of the posterior intensity function

distribution is shown in Figure 2.9(B), where the intensity function used to simulate

the spike sequence is shown in black. In Figure 2.9(C) we present histograms of

the posterior ISI parameter γ. As expected, we find that the posterior distributions

of x and θ are close to the model parameters the spike sequence was simulated
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from — x = 2 and θ = 10. Note that the mean of the intensity function for each

prior is higher (∼ 2.2) then the intensity function the spikes were generated from

— x(t) = 2 shown by the black line). This is due to the simulated spike sequence

having 44 spikes. The MLE of the simple model fitted to the spike sequence was

x = 2.214 and θ = 11.76. Even though the PWC and GP prior allows for large

changes in the intensity function, we see that both remain approximately at 2.2, with

slight fluctuations due to variation in the ISIs. In Figure 2.9(C) we find that the

histograms of the posterior γ distribution all are centered around the true value of

γ = 10. Therefore, we have shown that our posterior ISI distribution closely follows

the model used to simulate Ca2+ spike sequences. To consolidate that we recover the

model parameters we calculate the MLE for 200 spike sequences. In Figure 2.9(D)

we plot the MLEs for each individual spike sequence. We observe that the dots are

scattered around the true model parameters. The variance of the dots around the

model parameters we simulated from is due to the random nature of the simulated

Ca2+ spike sequences.

In the above example we used a constant intensity function. However, we have

seen that Ca2+ spike times are dependent on the absolute time. Therefore consider a

time-dependent intensity function, we choose x(t) = 2 cos(t/2) + 1.1. We simulate

40 spike sequences using the new intensity function — where we keep γ = 10. This

is shown in Figure 2.10(A). We see that the simulated spike sequences are time

dependent, where more spikes occur in the regions [0s, 4s] and [9s, 17s].

To each simulated spike sequence we fit the inhomogeneous Gamma ISI distribution

using a constant, PWC and GP prior. The parameters used to fit each model are

identical to the example using a constant intensity function, described previously.

In Figure 2.10(B,C) we illustrate the posterior intensity function distribution

using two different spike sequences, shown by black ticks in both. The intensity

function used to simulate spike sequences is shown by the black line. The constant,

PWC and GP priors correspond to magenta, red and blue, respectively. We see

that the posterior mean intensity function with a PWC and GP prior both closely



Chapter 2: Model and Bayesian Inference 66

0 5 10 15 20
Time (s)

AA

0 5 10 15 20

0
2

4
6

8

Time (s)

In
te

ns
ity

 (s
pi

ke
s/

s)

BB

0 5 10 15 20

0
2

4
6

8

Time (s)

In
te

ns
ity

 (s
pi

ke
s/

s)

CC

0 5 10 15 20

0
1

2
3

4
5

6

Time (s)

In
te

ns
ity

 (s
pi

ke
s/

s)

DD

Figure 2.10: Illustration of fitting an inhomogeneous Gamma ISI distribution to spike

sequences simulated from a model with a time-varying intensity function. (A) Raster

plot of 40 of the simulated spike sequences. (B,C) Mean and 95% credible region of

the posterior intensity function distribution inferred from a single spike sequence,

shown as black ticks in both. The black line represents the intensity function used

to simulate spike sequences. In addition red, blue and magenta lines correspond

to posterior intensity computed via PWC, GP and simple priors respectively. (D)

Comparison of the intensity function used to simulate spike sequence (black) and the

posterior mean of 40 intensity function distributions where each is fitted to a single

simulated spike sequences with a PWC prior.
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resemble the underlying intensity function. This shows that the flexibility in these

intensity priors can capture the time-dependence of the spike sequences. However,

the intensity function with a constant prior — equivalent to a stationary ISI model —

cannot capture the underlying intensity function. This illustrates the strength of our

inhomogeneous ISI model, as it can express changes in the spiking rate over time.

This provides a method to capture underlying properties in Ca2+ oscillations.

To check that we can recover the intensity function used to simulate Ca2+ spike

sequences we plot the mean of the posterior intensity function distribution using the

PWC prior fitted to 40 individual spike sequences. This is shown in Figure 2.10(D),

where the black line is the intensity function used to simulate spike sequences and

the red lines the mean of the posterior intensity function distributions. We see that

all posterior intensity functions closely follow the underlying rate. This shows that

we can accurately recover the time-dependent intensity function used to simulate

spike sequences.

2.6 Summary

In summary, in this chapter we have illustrated how to statistically model Ca2+ spike

sequences as point processes. Our model allows for time-heterogeneity in the Ca2+

spikes by employing so-called intensity functions which captures the average Ca2+

spiking rate irrespective of the spiking history. We have also shown how to simulate

spike sequences given model parameters.

We used a Bayesian framework to fit model parameters to Ca2+ spike sequences.

Under the Bayesian framework we required prior distributions for the model param-

eters. To maximise flexibility in the intensity function we used a non-parametric

approach, whereby we use PWC and GP priors for the intensity function. To calculate

the posterior distribution we utilise MCMC algorithms to do exact inference, rather

than approximate the posterior distribution as Tilunaite et al. [16] did. We applied

a Gibbs sampling algorithm to obtain samples from the posterior distribution. This

relies on sampling each model parameter individually, whilst keeping the remaining
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parameters fixed. Therefore, for each model parameter — and intensity function prior

— we need to define an MCMC algorithm. For each univariate model parameter —

intensity function with a constant prior, length scale of the GP and ISI parameter —

we used a RW-Metropolis algorithm. For the intensity function with a GP prior we

employed an under-relaxed algorithm and with a PWC prior we used a RJMCMC

algorithm.

Finally, we provided two examples of fitting model parameters to simulated Ca2+

spike sequences. In the first example, we fitted the ISI model to stationary spike

sequences. We found that the posterior intensity function distribution for all three

priors were similar in distribution. Moreover, we calculated the MLEs of the ISI

model for 200 individual spike sequences. We found that the MLEs are centered

about the model parameters used to simulate the spike sequences. Thus, illustrating

that we recover the underlying model parameters. In the second example, we simulate

from an ISI distribution when the intensity function depends on time. We found that

with the PWC and GP priors for the intensity function the posterior distribution was

able to capture the time-varying nature of the underlying intensity function, whereas

the constant prior cannot. This illustrates the advantage of the PWC and GP priors

for the intensity function over the constant prior.



CHAPTER 3

Non-trivial Model Properties

In Chapter 2 we gave an insight into our ISI model and how to compute the posterior

distribution given Ca2+ spike sequences for a selection of prior beliefs for the intensity

function. In this chapter we take a closer look at the details behind the model and

how to sample from the posterior distribution, addressing problems that arise within

our methodology. This chapter is split into four distinct sections, each dealing with

a single issue. In Section 3.1 we extend the choice of ISI distributions from the

inhomogeneous Gamma distribution to include the Exponential, inverse Gaussian,

log-normal and Weibull distributions. We also confront challenges with the GP prior.

In particular, we discuss mixing issues of the intensity function and difficulties in

inferring the length scale in Sections 3.2 and 3.3, respectively. In Section 3.4 we

consider the computational demand of our MCMC algorithms and propose methods

to reduce the cost.
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3.1 ISI Distribution

In this section we discuss the importance of the choice of the inter-spike interval

(ISI) distribution. In Tilunaite et al.’s original work [16], they considered three ISI

distributions, derived from the Exponential, Gamma and inverse Gaussian probability

distributions. We explain, in general, how to transition from stationary to non-

stationary ISI distributions, and extend the ISIs considered to include the log-normal

and Weibull distributions. Furthermore, our generalisation of the inverse Gaussian

distribution differs from the one proposed by Tilunaite et al. This is to maintain the

meaning on the intensity function across all ISI distributions.

In Chapter 2 we gave an example whereby we created a time-dependent ISI distri-

bution by extending the one dimensional Gamma(γ, γ) distribution. The extension

is performed by applying a time-rescaling method via the intensity function x(t)

which accounts for the time-dependence of Ca2+ spiking. This approach can be

used for a wide variety of probability distributions, such as an inverse Gaussian or

Weibull probability distributions. We will demonstrate that the choice of the original

distribution is crucial to how well the model fits the Ca2+ data. Furthermore, we

will explain how to create a time-dependent ISI distribution from any probability

distribution on (0,∞). Care is required in constructing these inhomogeneous ISI

distributions to avoid non-identifiability issues. We will show how to circumvent this

problem whilst also providing biological meaning to the intensity function.

To begin, let us first consider the case of stationary Ca2+ spikes — spikes that

depend only on the time since the last spike and not the time of the experiment.

The ISI distribution can be modelled as a function of the time t since the last spike

s. We can choose to model the ISI distribution ψ(t, s) as a continuous probability

distribution on (0,∞) such as: the Exponential distribution

ψ(t, s|α) = αe−α(t−s) α > 0,
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which has mean 1/α and variance 1/α2; the Gamma distribution

ψ(t, s|α, β) =
βα (t− s)α−1 e−β(t−s)

Γ(α)
α, β > 0,

which has mean α/β and variance α/β2; the inverse Gaussian distribution

ψ(t, s|λ, µ) =

√
λ

2π(t− s)3
exp

{
−λ((t− s)− µ)2

2µ2(t− s)

}
λ, µ > 0,

which has mean µ and variance µ3/λ; the log-normal normal

ψ(t, s|µ, σ) =
1

(t− s)σ
√

2π
exp

{
−(log(t− s)− µ)2

2σ2

}
µ ∈ R, σ > 0,

which has mean exp(µ+σ2/2) and variance [exp(σ2)−1] exp(2µ+σ2); or the Weibull

distribution

ψ(t, s|λ, k) =
k

λ

(
t− s
λ

)k−1

e−((t−s)/λ)k λ, k > 0,

which has mean λΓ(1 + 1/k) and variance λ2 [Γ(1 + 2/k)− (Γ(1 + 1/k))2], where Γ

denotes the Gamma function [117]. The ISI parameters for each distribution are α,

(α, β), (λ, µ), (µ, σ) and (λ, k), respectively. For a general distribution we denote

the ISI parameters by θ. Note that since we are considering stationary spikes, the

distributions do not depend explicitly on the timing of spikes but the time since the

last spike. This means the times t and s only appear as t− s and we could rewrite

ψ(t, s|θ) = ψ(t− s|θ) = ψ(τ |θ), where τ denotes the time since the last spike.

We consider the Exponential distribution because it is the simplest distribution

with support in (0,∞). Moreover, it describes a process which is memoryless, i.e.

a process that does not depend on its history. For example, the probability of the

next spike occurring after 1s is identical to the probability of the next spike occurring

after 2s given we know there is not a spike in [0s, 1s]. The Gamma distribution

offers a natural extension to the Exponential distribution, such that the Exponential

distribution is a special case of the Gamma — where α = 1. The Gamma distribution

is an appealing candidate for the ISI distribution because it is a probability distribution

for a combination of events occurring for the first time. Thus each event could be

interpreted as a Ca2+ puff, and each spike occurs the first time that α puffs occur.
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The Weibull distribution can also be viewed as an extension to the Exponential

distribution — the special case k = 1 gives rise to the Exponential distribution. The

Weibull distribution is often used to describe the “time to failure” of some component

where the failure rate is proportional to a power of time. Thus, this distribution is

justifiable if we believe Ca2+ spikes depend on a power of time, i.e. if k > 1 a spike

is more likely to occur as time goes on. We use the inverse Gaussian distribution

because it has been used to model first passage events which contains positive drift

and random diffusion only. Thus, since conceptually Ca2+ spikes have been described

as first passage events, the inverse Gaussian is a suitable distribution to test. The

log-normal distribution is often used to model the firing rate across a population of

neurons. Although firing neurons differ from Ca2+ oscillations both describe a spiking

process. Therefore, the last ISI distribution model we consider is the log-normal

distribution.

To find which of the models best describes a Ca2+ spike sequence we first convert

the spike sequence into a sequence of K ISI times {Ti}Ki=1. Then to fit the model

ψ(τ |θ) with ISI parameter(s) θ, we calculate the maximum likelihood estimate (MLE)

θ̂ by

θ̂ = arg max
θ∈Θ

{
K∏
i=1

ψ(Ti|θ)

}
,

where Θ is the space of all possible parameter values.

To visualise the difference between the five stationary ISI distribution models we

fit each model to the same spike sequence generated by a HEK293 cell challenged

with 10µM carbachol. The cell exhibited 66 Ca2+ spikes and we convert the spikes

into a sequence of ISI times — shown as the black ticks on the x-axis of Figure 3.1.

Subsequently, we calculate the MLE θ̂ for each of the distributions. The results are

shown in the second column of Table 3.1. We compare the models by examining the

log likelihood at the MLE, shown as the third column in Table 3.1. We find that the

Exponential model performs badly having a log likelihood substantially lower than

the other models. The inverse Gaussian model has the largest log likelihood, implying

it fits the spike sequence the best. However, the log likelihood of the Gamma is

similar, thus either model could be used to describe the spike sequence.
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Distribution MLE of ISI parameter/s Log Likelihood

Exponential (α) = 0.0221 −312.75

Gamma (α, β) = (0.229, 10.35) −261.86

Inverse Gaussian (λ, µ) = (442.13, 45.22) −261.06

Log-normal (µ, σ) = (3.762, 0.312) −268.78

Weibull (k, λ) = (3.226, 50.41) −266.48

Table 3.1: The MLE and log likelihood of the MLE of each distribution fit to Ca2+ ISIs

from a HEK293 cell challenged with 10µM carbachol. The colour of the distribution

matches the colour of the probability densities shown in Figure 3.1.
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Figure 3.1: Probability density functions corresponding to the MLE of: an Exponential

(dark green), a Gamma (orange), inverse Gaussian (pink), log-normal (light green) or

Weibull distribution (blue) fit to Ca2+ ISIs — shown as black ticks on the x-axis.
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To explain this difference in performance we plot the probability density function

of the MLE for each model. This is shown in Figure 3.1 where dark green, orange,

pink, light green and blue correspond to the Exponential, Gamma, inverse Gaussian,

log-normal and Weibull distributions respectively. We see that the largest proportion

of spike times are centered around 40s, which is mirrored by the probability densities

of all the distributions bar the Exponential. The Exponential model does not capture

this due to the limitations of its shape, i.e. it must take the shape of an exponential

function. We see that the Gamma and inverse Gaussian have similar probability

density functions and hence similar likelihoods, whereas the log-normal and Weibull

have similar centers as the Gamma and inverse Gaussian but with narrower and

wider tails respectively. Zooming in on the region between 0s and 20s we see a single

ISI just before 20s. In this region we observe that the Weibull’s probability density

is too high — we would expect more ISIs smaller than 20s — and the log-normal’s

probability density is too low — the density at the lowest ISI time is almost zero.

This illustrates why the log-normal and Weibull do not fit the ISIs as well as the

Gamma and inverse Gaussian models.

The above example demonstrates that the choice of ISI distribution is crucial, since

we found that the distribution affects how accurately the model describes the Ca2+

ISIs. This is due to the fact that shape of the probability density function varies for

each family of probability distributions. Thus, when considering the ISI distribution

for non-stationary spike sequences we need to consider several distributions as some

may describe the Ca2+ spikes better than others.

Returning to our model, we want to create non-stationary ISI distributions by

generalising the distributions — the Exponential, Gamma, inverse Gaussian, log-

normal and Weibull — described in the stationary case.

We begin with the Exponential distribution. This differs from the other distri-

butions because it only has a single parameter α. A point process with identical

Exponential(α) ISI distributions is known as a Poisson process with rate α because

the number of events in the interval [s, t] is a Poisson random variable with mean

α(t − s). The non-stationary generalisation of the Poisson process is called the
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inhomogeneous Poisson process, where the parameter α is replaced with the rate

function α(t). Thus, we shall call the inhomogeneous Exponential ISI distribution

p(t, s|α) = α(t) exp

{
−
∫ t

s

α(u)du

}
.

Consider now a general stationary ISI distribution ψ(t, s|θ) with parameter θ. To

generalise to an inhomogeneous distribution we rescale time via the positive intensity

function x(t). This maps the original experiment time t to a new time z by

z(t) =

∫ t

0

x(u)du.

Thus by the transformation of variables we generalise the stationary ISI distribution

ψ(t, s|θ) into a non-stationary ISI distribution p(t, s|x, θ) by

p(t, s|x, θ) =
dz

dt
ψ(z(t), z(s)|θ),

=
dz

dt
ψ(z(t)− z(s)|θ),

= x(t)ψ(

∫ t

0

x(u)du−
∫ s

0

x(u)du|θ),

= x(t)ψ(

∫ t

s

x(u)du|θ),

= x(t)ψ(X(s, t)|θ),

where X(s, t) =
∫ t
s
x(u)du.

We apply the transformation to the Gamma, inverse Gaussian, log-normal and

Weibull distributions. We obtain the following probability density functions for: the

inhomogeneous Gamma ISI distribution

p(t, s|x, α, β) =
βx(t)

Γ(α)

[
βX(s, t)

]α−1
exp {−βX(s, t)} α, β > 0,

the inhomogeneous inverse Gaussian distribution

p(t, s|x, λ, µ) = x(t)

(
λ

2πX(s, t)3

)0.5

exp

{
−λ(X(s, t)− µ)2

2µ2X(s, t)

}
λ, µ > 0,

the inhomogeneous log-normal distribution

p(t, s|x, µ, σ) =
x(t)

X(s, t)σ
√

2π
exp

{
−(logX(s, t)− µ)2

2σ2

}
µ ∈ R, σ > 0,
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and the inhomogeneous Weibull distribution

p(t, s|x, k, λ) =
x(t)k

λ

(
X(s, t)

λ

)k−1

exp

{
−
(
X(s, t)

λ

)k}
λ, k > 0.

Thus, each inhomogeneous ISI distribution has x(t) as an additional parameter.

The parameter set of the inhomogeneous Gamma, inverse Gaussian, log-normal and

Weibull are (x, α, β), (x, λ, µ), (x, µ, σ) and (x, k, λ), respectively.

We first need to check if each parameter in the ISI distribution is identifiable. This

means that we can theoretically learn the true values of the parameters if given an

infinite number of observations. Moreover, a model is non-identifiable if two distinct

parameterisations lead to identical probability distributions.

Begin by considering the Gamma ISI distribution. Notice that β is always

multiplied by either a factor of x(t) or X(s, t). Thus, it appears that we cannot

untangle β and the intensity function x(t). Indeed, consider the Gamma distribution

with parameters (ax, α, β/a) with a > 0 a constant, where we have varied the values

of β and x but maintained the value of their product. Rearranging we get

p(t, s|ax, α, β/a) =
(β/a)ax(t)

Γ(α)

[
(β/a)

∫ t

s

ax(u)du
]α−1

exp

{
−(β/a)

∫ t

s

ax(u)du

}
,

=
βx(t)

Γ(α)

[
(β/a)a

∫ t

s

x(u)du
]α−1

exp

{
−(β/a)a

∫ t

s

x(u)du

}
,

=
βx(t)

Γ(α)

[
βX(s, t)

]α−1
exp {−βX(s, t)} ,

= p(t, s|x, α, β).

Thus, we find two parameterisations with identical probability distributions and the

Gamma ISI distribution is non-identifiable. Furthermore, all the other considered

ISI distributions are also non-identifiable. This is shown in Table 3.2, where each

distribution is given a pair of unique parameters that give rise to identical distributions

— for proof these parameter sets lead to identical distributions see Appendix A.

To resolve the non-identifiability issues we need to constrain the ISI distributions.

One method for doing this is restricting the stationary distributions we used to create

the inhomogeneous ISI distributions. For example we could restrict the stationary
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Distribution Base parameters Identical to ..

Gamma (x, α, β) (ax, α, β/a)

Inverse Gaussian (x, λ, µ) (ax, aλ, aµ)

Log-normal (x, µ, σ) (ax, µ+ log a, σ)

Weibull (x, k, λ) (ax, k, aλ)

Table 3.2: Parameterisations of the inhomogeneous ISI distributions which lead to

non-identifiability, where a > 0 is a constant.

Gamma distribution from two parameters (α, β) to one parameter γ by setting

α = β = γ or α = γ and β = γ2. However, there are infinitely many possibilities for

restricting the stationary ISI distribution. Thus we want to find a more principled

way to restrict these distributions whilst giving meaning to the remaining parameters.

Recall that the intensity function is a mathematical construct that allows time-

dependent spiking processes to be factorised into individual ISIs. Thus, it would be

advantageous to restrict the parameterisation in such a manner to give some meaning

to the intensity function. Furthermore, it would be beneficial if the intensity function

had the same meaning for each ISI distribution. In this case, after fitting, say, the

Gamma and inverse Gaussian model to Ca2+ spikes we can check if the intensity

functions of both models are similar, which would show consistency between the

models.

Taking this into account, we choose to restrict the ISI distributions by setting the

mean to one in the corresponding stationary ISI distributions. With this condition

the intensity function coincides with the mean spike rate irrespective of the chosen

stationary ISI distribution, i.e. Gamma, inverse Gaussian, etc.

To visualise the impact of setting the mean of the stationary ISI distribution

to one, we simulate spike sequences from a variety of inhomogeneous models. The

intensity function x(t) is the same for each model — the red line in Figure 3.2(A)

and (B) — and is drawn from a GP. The first model has a Gamma ISI distribution

with parameters α = 1.8 and β = 1.8, and the second model also has Gamma ISI
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distribution but with the parameters α = 3.6 and β = 1.8. Recall that the mean of a

Gamma distribution is α/β, hence the mean for the first and second models are one

and two respectively. We simulate 1000 spike sequences from both models and bin

the spikes to calculate the mean spiking rate — this is shown as the light and dark

grey boxes in Figure 3.2(A) for the first and second model respectively. We find that

only the spikes from the first model have mean spiking rate equalling the intensity

function. In fact, the second model’s mean spiking rate is equal to half the intensity

function, shown as the red dotted line. Consequently, we find that only the Gamma

ISI distribution with mean one has its mean spike rate coincide with the intensity

function.

Furthermore, we consider a third model with the same intensity function but

whose ISI distribution follows an inverse Gaussian with parameters λ = 1.8 and µ = 1,

which has mean one. We simulate 1000 spike sequences from this model. In Figure

3.2(B), we compare the mean spike rate of this model with the first model — Gamma

ISI distribution with mean one. The red and blue boxes correspond to binning the

spike sequences from the inverse Gaussian and Gamma models respectively. The

overlap of the boxes is coloured purple. We see that the mean spike rate from both

models are near identical. This shows that the intensity function of both models

correspond to the mean spike rate, thus allowing us to compare intensity functions

from models using different underlying probability distributions.

Henceforth, we use inhomogeneous ISI distributions generalised from stationary

distributions with mean one (see page 71 for the mean of the ISI distributions), the

parameterisations of which are shown in Table 3.3.

Applying the time-rescaling transformation to the new restricted one-parameter

version of the stationary distributions leads to the following probability density

functions for: the inhomogeneous Gamma ISI distribution

p(t, s|x, γ) =
γx(t)

Γ(γ)

[
γX(s, t)

]γ−1
exp {−γX(s, t)} γ > 0,

the inhomogeneous inverse Gaussian ISI distribution

p(t, s|x, λ) = x(t)

(
λ

2πX(s, t)3

)0.5

exp

{
− λ(X(s, t)− 1)2

2X(s, t)

}
λ > 0,
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Figure 3.2: Comparing the intensity function — the red line in both plots — to

histograms of 1000 simulated spike sequences. In (A) the light and dark boxes

correspond to spikes generated from the model with Gamma ISI distributions with

parameters Gamma(1.8,1.8) and Gamma(3.6,1.8) respectively. In (B) the spike

sequences are simulated from a Gamma(1.8,1.8) and an inverse Gaussian (1.8,1)

resulting in the histograms in blue and red respectively, whose overlap is purple.

Distribution Original parameters New parameter

Gamma (α, β) (γ, γ), γ > 0

Inverse Gaussian (λ, µ) (λ, 1), λ > 0

Log-normal (µ, σ) (−µ,
√

2µ, ), µ > 0

Weibull (k, λ) (k, 1
Γ(1+1/k)

), k > 0

Table 3.3: One parameter version of the stationary ISI distributions with mean one.
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the inhomogeneous log-normal ISI distribution

p(t, s|x, µ) =
x(t)

2X(s, t)
√
πµ

exp

{
−(logX(s, t) + µ)2

4µ

}
µ > 0

and the inhomogeneous Weibull ISI distribution

p(t, s|x, k) =
x(t)k

1
Γ(1+1/k)

(
X(s, t)

1
Γ(1+1/k)

)k−1

exp

−
(
X(s, t)

1
Γ(1+1/k)

)k
 k > 0.

Recall, we also have the Exponential ISI distribution giving rise to an inhomoge-

neous Poisson process. We can replace α(t) with x(t) since both describe the mean

spiking rate of the process. Thus the inhomogeneous Exponential ISI distribution is

given by

p(t, s|x) = x(t)e−X(s,t).

Thus, we have created five inhomogeneous ISI distributions based on the Exponen-

tial, Gamma, inverse Gaussian, log-normal and Weibull probability distributions. The

time-dependence of each distribution comes from the intensity function x(t) which for

our models corresponds to the time-dependent spike rate. All the ISI distributions

bar the Exponential also have a single ISI parameter γ, λ, µ and k for the Gamma,

inverse Gaussian, log-normal and Weibull, respectively. This parameter describes the

shape and variance of the ISI distribution.

In Figure 3.3 we show how the ISI parameter affects simulated Ca2+ spikes for

the inhomogeneous Gamma ISI distribution. We simulate spike sequences from two

Gamma ISI models with the same intensity function (Panel A), where the first has

ISI parameter γ = 3 (Panel B) and the second has γ = 20 (Panel C). We see that

the larger ISI parameter leads to more regular spiking. This corresponds to an ISI

distribution whose mass is centered around the mean with small tails.

Each inhomogeneous ISI distribution contains the stationary distribution as a

special case, when the intensity function is constant. Specifically, if x(t) = a for some

a > 0 then:

• the inhomogeneous Gamma ISI distribution with parameters (x, γ) is equivalent

to a Gamma distribution with rate γa and shape γ,
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Figure 3.3: Raster plots comparing spike sequences drawn from two Gamma ISI

distributions with the same intensity function — shown in (A) — and differing

ISI parameter. The sequences in (B) and (C) correspond to γ values of 3 and 20

respectively.

• the inhomogeneous inverse Gaussian ISI distribution with parameters (x, λ)

is equivalent to a inverse Gaussian distribution with mean 1/a and shape
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parameter λ/a,

• the inhomogeneous log-normal ISI distribution with parameters (x, µ) is equiv-

alent to a log-normal distribution with mean log a− µ and standard deviation
√

2µ,

• the inhomogeneous Weibull ISI distribution with parameters (x, k) is equivalent

to a Weibull distribution with shape k and scale (aΓ(1 + 1/k))−1,

We will use the five inhomogeneous ISI distributions — namely Exponential,

Gamma, inverse Gaussian, log-normal and Weibull — in our analysis of Ca2+ spike

sequences and explore which, if any, of the distributions best describe Ca2+ data and

what we can learn from the results. This is shown in Chapter 5.

We now compare our inhomogeneous ISI distributions to previously explored

distributions from the literature. Tilunaite et al. [16] used three ISI distributions

in their work, the so-called inhomogeneous Poisson (IP), inhomogeneous Gamma

(IG) and the inhomogeneous inverse Gaussian (IIG). The IP and IG agree exactly

with our inhomogeneous Exponential ISI distribution and inhomogeneous Gamma ISI

distribution. However, their IIG ISI distribution has a different parameterisation to our

inhomogeneous inverse Gaussian ISI distribution. Their model is generalised from the

inverse Gaussian with parameters (1, α) whereas our model is based on the parameters

(λ, 1). We do not use their parameterisation because their parameterisation does not

lead to a distribution with mean one, and as such the intensity function x(t) does

not align with the mean spiking rate.

Thus the ISI distributions we consider builds upon previous work using the inho-

mogeneous Exponential and Gamma ISI distributions and explores new distributions

including the log-normal and Weibull, which could better describe the Ca2+ spike

sequences.



Chapter 3: Non-trivial Model Properties 83

3.2 Mixing issues with the GP and their resolu-

tions

In this section, we outline the difficulty in inferring the start and end of the intensity

function when using a GP prior. In particular, the standard MCMC algorithm often

gets stuck in regions of the posterior distribution with large intensity before the first

spike time and after the last spike time. In response, we create a bespoke proposal

mechanism to work in tandem with the standard approach to improve the mixing of

the MCMC.

When using a GP prior for the logarithm of the intensity function we use the

under-relaxed MCMC method. This method was first proposed by Neal in 1995 [118]

and applied to GPs by Adams et al [119]. We use this method because it allows

the intensity function to be updated as a single block and the acceptance probably

simplifies to the ratio of likelihoods. To propose a candidate intensity function x∗ we

use

log x∗ =
√

1− ω2 log(x) + ων, ν ∼ GP prior, (3.1)

where ν is a draw from the GP prior and ω ∈ (0, 1]. The parameter ω is a

tuning parameter that acts similarly to the variance parameter in the RW-Metropolis

algorithm. When ω is close to 1 the candidate intensity functions closely resemble

draws from the prior distribution, whereas when ω is close to 0 the candidate intensity

function is similar to the current intensity function.

We have found that using this method alone can lead to posterior intensity

functions that have undesirable properties. Namely, the intensity at the beginning

and end of the intensity function can be artificially high. We show this in the

following example, where we apply the under-relaxed method to a Ca2+ spike sequence

obtained from a HEK293 cell challenged with a time-varying stimulus. The Ca2+

spike sequence can be seen as the black ticks in Figure 3.4. The spikes occur in 3

bursts at approximately 4s, 10s and 17s. Figure 3.4 shows the posterior mean and

95% credible region for the intensity function as the black line and red shaded region,
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respectively. The posterior ISI parameter distribution had mean 3.4 and 95% credible

region [1.4, 6.2]. As expected we find peaks in intensity surrounding the regions where

the spikes occur. However, we also find the intensity increases in [0s, 1.5s] when

approaching 0s and in [19s, 20s] when approaching 20s. Since there are no spikes

in [0s, 1.5s] and [19s, 20s] we would expect the intensity to be close to zero. To test
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Figure 3.4: Posterior mean — black line — and 95% credible interval — red shaded

area — for the intensity function, from the model with an inhomogeneous Gamma

ISI distribution. The inference was calculated using 80,000 iterations with a burn-in

of 50,000. The covariance parameters are σ2
f = 1000, σ2

n = 1e−5 and l = 1.50 — l is

obtained using the PWC prior, see Section 3.3 for more detail. The intensity function

is split into N = 2000 steps and the under-relaxed parameter ω = 0.001. The ISI

parameter had an exponential prior with rate 0.01. The blue line shows a candidate

intensity function created by flattening the posterior mean in [0s, 1.5s] and [19s, 20s].

The black ticks represent the Ca2+ spike times used to fit the model.
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whether the intensity function should be close to zero in these regions we propose

a candidate intensity function equal to the mean of the posterior intensity function

except for the regions [0s, 1s] and [19s, 20s] where the intensity is flattened — shown

in blue in Figure 3.4. To flatten the intensity function we set the intensity in [0s, 1s]

and [19s, 20s] to the value of the posterior mean intensity function at 1s and 19s,

respectively. We found that the log likelihood of the posterior mean is −8.90 and

that of the newly proposed intensity function is −7.20. Therefore, it is more likely

that the intensity function stays close to zero in the regions [0s, 1.5s] and [19s, 20s].

To investigate why the under-relaxed method gives rise to large intensity at 0s,

we generate trace plots of the sampled intensity functions at 0s. This is illustrated

in Figure 3.5, for three traces where each is produced using a different random seed.

Each plot shows the value of the sampled intensity at 0s against the iteration number,

with no burn-in. In Figure 3.5(A) we see that the intensity varies in [0, 8] for the

first 150,000 iterations and after this the intensity remains around zero. In Figure

3.5(B) the intensity converges close to zero within the first 25,000 iterations. However,

at around the 250,000th iteration we find that the intensity increases and does not

converge to zero in the next 50,000 iterations. This shows that the under-relaxed

method is liable to get stuck in regions where the intensity at 0s is large. Furthermore,

running more iterations or having a larger burn-in will not alleviate this issue because

we can move from zero intensity back to regions with large intensity as shown in

Figure 3.5(B). To visualise why we can go from low intensity at 0s to high intensity

we plot the intensity functions corresponding to the coloured dots in Figure 3.5(C).

This is shown in Figure 3.6, where the intensity functions go from purple through

green to yellow as the intensity at 0s increases. We see that the intensity function

was initially flat in [0s, 3s] and as the iterations progress we find a large peak of

intensity at 0s which quickly decreases to zero within thefirst 2s. We also find that

the intensity at the 3 peaks — approximately at 4s, 10s and 17s — vary considerably,

which mirrors the uncertainty of the intensity function. As we will show next, we

accept intensity functions with high intensity in [0s, 1s] because the likelihood over

the rest of the domain is improved.
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Figure 3.5: Trace plots of the intensity function at time 0s over 300,000 iterations,

for the GP prior utilising an under-relaxed method. Each plot shows the results

obtained for the same spike sequence; the only difference is the random seed used.

The inference parameters are the same as Figure 3.4, using the same spike data. The

coloured dots in (C) correspond to the coloured intensity functions shown in Figure

3.6.

We partition time into two regions [0s, 3.16s] and [3.16s, 20s] which corresponds to

the time up to the first spike and the time after the first spike. Since our likelihood

function factorises into individual ISIs we can split the likelihood into contributions
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Figure 3.6: Sampled intensity functions, corresponding to the coloured dots in Figure

3.5. Intensity functions go from purple through green to yellow, as the intensity at 0s

increases. The black ticks represent the Ca2+ spike times.

in [0s, 3.16s] and [3.16s, 20s]. For example the likelihood of the purple and yellow

intensity functions in Figure 3.6 is 3.45 and 4.75, respectively. Therefore, the yellow

intensity function is more likely. However, the likelihood from [0s, 3.16s] is 0.11 and

−1.15 for the purple and yellow lines, respectively and the likelihood from [3.16s, 20s]

is 3.34 and 5.80. We find that the improvement of the likelihood in [3.16s, 20s]

outweighs the decrease of the likelihood in [0s, 3.16s] when comparing the yellow and

purple intensity functions. Therefore, we accept intensity functions with an increasing

intensity towards 0s, i.e the yellow intensity function. Moreover, the same holds true

for the high intensity found at the end of the experiment.

Therefore, we want to create a new proposal mechanism to work in tandem with

the under-relaxed method to improve the mixing at the beginning and end of the
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intensity function. We will do this by proposing candidate intensity functions that

vary only on these regions of interest. In particular, we will call the proposals the data-

driven method at the start and the data-driven method at the end, for the proposals

that only change values in the beginning and end of the experiment, respectively.

3.2.1 Method

We first present the steps for updating the intensity function only at the beginning of

the intensity function. Assume initially that we have discretised time into N + 1 steps

by t = {t0, t1, . . . , tN} defined as ti = iT/N for i ∈ {0, . . . , N}. Furthermore, the

current value of the discretised intensity function is x = {x0, . . . , xN} where xi = x(ti)

for i ∈ {0, . . . , N}. We need to decide how to partition x into two regions — the part

we update and the part that remains unchanged. We choose to sample the width M

at which to delineate the two partitions uniformly between time zero and just after

the first spike time. Suppose the first spike occurs at time tξ, where ξ ∈ {1, . . . , N}.

Then the partition value M is drawn uniformly from the set {1, 2, . . . ,min(ξ+w,N)},

where w controls how far past the first spike we can sample. The minimum is used to

only allow valid index values. We split time into two groups A and B, one either side

of tM : A = {t0, . . . tM} and B = {tM+1, . . . tN}. We similarly split x into two groups

xA = {x0, . . . , xM} and xB = {xM+1, . . . , xN}. Therefore, the candidate intensity

function x? consists of two parts: x?A describing the new values we propose in region

A and x?B which corresponds to the unchanged values in region B, x?B =xB.

In Figure 3.7 we give an example of splitting x — the black line — into two

regions. In this example x is discretised into 2000 steps. The first spike occurs at

3.08s which corresponds to the 309th element of t. Taking w = 100 we sample the

partition index M from {1, . . . , 408} which corresponds to times {0.01, . . . , 4.08} —

which is shown as the grey box. A realisation is indicated by the red dotted line

where M = 326. Thus, the thin black line in region B will remain the same for the

candidate function and we propose new values in region A.

We now need to choose a method to propose x?A given the current value xA. A

natural option is to propose candidate values from a multivariate normal (MVN)
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Figure 3.7: Illustration of how to partition x into two regions A and B. The partition

value is drawn uniformly from the grey region. An example draw tM is shown by

the dotted red line. The thick black line — left of tM — is the region of x we will

propose new values for, whereas the thin black line — right of tM — will remain

unchanged. The black ticks on the x-axis represent spike times.

distribution. Recall that we say the random vector X = {X0, X1, . . . , XM} comes

from a (M + 1)-dimensional MVN distribution X ∼ NM+1(µ,Σ) if its probability

density function ϕM+1(x;µ,Σ) of x = {x0, , . . . , xM} is given by

ϕM+1(x;µ,Σ) = (2π)(M+1)/2 det (Σ)−1/2 exp

[
−1

2
(X− µ)Σ−1(X− µ)

]
,

where µ ∈ RM+1 is the vector of means and Σ ∈ R(M+1)×(M+1) is the covariance

matrix. In our case we want our proposal to depend on the current value of the

intensity function. We do this by making the mean of the MVN depend on xA via a

function f giving µ = f(xA). The choice of f is discussed in Section 3.2.2. Recall

that the prior for the intensity function is a GP with square exponential covariance
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with hyperparameters {σ2
f , σ

2
n, l} representing the signal variance, noise, and length

scale, respectively. We would like our proposal to match the ‘shape’ of the GP prior.

Therefore the covariance matrix Σ for our proposal inherits the length scale and noise

parameter of the GP. Formally, Σ = {Σi,j}i,j∈{0,...,M} where

Σi,j = σ2 exp

[
(ti − tj)2

2l2

]
+ δ(ti − tj)σ2

n,

where l and σ2
n come from the GP prior. The variance σ2 is often taken small, such

that the proposed values are close to f(xA).

Recall that we defined the intensity function to be a positive function. Therefore

to only allow positive intensity functions we choose to propose intensity functions on

the logarithmic scale. Thus, the proposal on region A is given by x∗A = ex†A where

x†A ∼ NM+1(f(xA),Σ) and the logarithm is subsumed into f .

However, if we choose to propose new values in this manner there is no guarantee

the new intensity function would be continuous at tM . To mitigate this issue we will

propose candidate values in the region A by drawing from the MVN distribution

described above conditioned on the first K values of xB. The conditioned MVN

distribution follows a MVN distribution with mean and covariance matrix outlined

below. To construct the conditional MVN we first need a MVN distribution defined

on region A and the values we wish to condition on, namely C = {tM+1, . . . , tM+K}

and xC = {xM+1, . . . , xM+K}. It follows that x†A∪C ∼ NM+K+1(f(xA∪C),Σ) such

that

x†A∪C =

 x†A

x†C

 ∼ NM+K+1

 f(xA)

f(xC)

 ,
 Σ11 Σ12

Σ21 Σ22

 ,

where f(xA∪C) is partitioned into f(xA) and f(xC). Σ has been partitioned into four

blocks: Σ11 of size (M+1)×(M+1), Σ12 of size (M+1)×K, Σ21 of size K×(M+1),

and Σ22 of size K ×K. Then the conditional distribution of x†A∪C |(x
†
C = log xC) is a

(M + 1)-dimensional MVN distribution with mean µ̄ and covariance Σ given by

µ̄ = f(xA) + Σ12Σ
−1
22 (log xC − f (xC)) (3.2)

and

Σ = Σ11 −Σ12Σ
−1
22 Σ21.
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Therefore, we propose candidate values x∗A on region A by x∗A = ex†A where

x†A ∼ NM+1

(
µ̄,Σ

)
. Thus the candidate function x∗ = [x∗A,xB] is the concatenation

of vectors x∗A and xB. Simply put, the candidate function consists of a draw from a

MVN distribution in region A conditioned on the first K values in B and is equal to

the current intensity on all other points.

The probability that we accept the candidate function is given by

pacc =
Likelihood(x∗)Prior(x∗)q(x∗|x)

Likelihood(x)Prior(x)q(x|x∗)
.

The likelihood is defined in equation (2.10). We work with a Gaussian Process prior

for the logarithm of the intensity function — with mean zero and square exponential

covariance function with hyperparameters σ2
f , σ2

n and l. Therefore, in discretised time

we have Prior(x) = ϕN+1(log x; 0,Σprior), where Σprior denotes the covariance matrix

on t for the GP. Since the hyper-parameters remain the same for both x∗ and x the

prior ratio simplifies

Prior(x∗)

Prior(x)
=

(2π)(N+1)/2det (Σprior)
−1/2 exp

[
−1

2
(log x∗)Σ−1

prior(log x∗)
]

(2π)(N+1)/2det (Σprior)
−1/2 exp

[
−1

2
(log x)Σ−1

prior(log x)
]

=
exp

[
−1

2
(log x∗)Σ−1

prior(log x∗)
]

exp
[
−1

2
(log x)Σ−1

prior(log x)
] .

Working on the logarithmic scale gives

log

(
Prior(x∗)

Prior(x)

)
=

1

2

(
(log x)Σ−1

prior(log x)− (log x∗)Σ−1
prior(log x∗)

)
.

q(x∗|x) is the proposal distribution — the conditional distribution of proposing

function x∗ given x. For our proposal we have q(x∗|x) = ϕM+1(log x∗A; µ̄(xA∪C),Σ),

where we explicitly state the dependency of µ̄ on xA∪C . Similar to the prior ratio,

we can simplify the proposal ratio since Σ is the same for q(x∗|x) and q(x|x∗). This

is true because Σ depends only on the choice of σ2, σ2
n and l. On the logarithmic

scale this gives

log

(
q(x∗|x)

q(x|x∗)

)
=

1

2

(
(log xA − µ̄(x∗A∪C))Σ−1(log xA − µ̄(x∗A∪C))

− (log x∗A − µ̄(xA∪C))Σ−1(log x∗A − µ̄(xA∪C))

)
. (3.3)
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To propose intensity functions that vary at the end of the experiment time a

symmetric argument can be used where we swap the definitions of regions A and B.

3.2.2 Choice of f

In this section we discuss the choice of the function f used to propose x∗A. Recall that

the idea behind these proposals is to ‘flatten’ the intensity in region A. A natural

starting point is to use the current intensity as the mean of the proposed MVN

distribution giving f(xA) = fcur = log xA — where the log arises from proposing

on the logarithmic scale. One advantage of this approach is that the acceptance

probability simplifies due to the proposal ratio cancelling out, because the mean of

the MVN simplifies due to the second term in (3.2) cancelling, leaving µ̄ = log xA.

Substituting into equation (3.3) we get

log

(
q(x∗|x)

q(x|x∗)

)
=

1

2

(
(log xA − log x∗A))Σ−1(log xA − log x∗A)

− (log x∗A − log xA)Σ−1(log x∗A − log xA)

)
= 0,

since Σ does not depend on xA. Thus, the acceptance ratio simplifies to

pacc =
Likelihood(x?)Prior(x?)

Likelihood(x)Prior(x)
.

However, this approach may be slow at ‘flattening’ the intensity in region A. This

is because the candidate intensity functions are centered on xA. This can be seen in

Figure 3.8(A) which shows ten candidate intensities — with fixed partition — zoomed

in on the region [0, 3.3]. The red line shows the current intensity function xA and the

grey lines show ten candidate intensity functions. We see that four of the candidate

functions have larger intensity than xA and the majority of proposals are close to xA.

It is also important to note that the smaller xA the more difficult it is to propose

smaller values since the calculations are done on the logarithmic scale. For example,

suppose on the logarithmic scale the intensity at time t is 0 and the drawn candidate

value equals −1, this translates to an original intensity of 1 and candidate intensity
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Figure 3.8: Illustration of the proposal mechanism when f = log xA. (A) shows ten

candidate functions — grey lines — where the current intensity is shown by the

red line. (B) The accepted candidate functions from 100 iterations of the proposal

mechanism where the original xA is shown as the red line. The iterations progress

from black to blue. The black ticks show the spike times. The proposal parameters

in (A) and (B) are K = 10, l = 1.59, σ2
n = 1e−5 and σ2 = 1. In (A) the width is fixed

with M = 337, whereas in (B) the width varies in each iteration and w = 100.

equal 0.368, hence squashing smaller values closer together. This implies that it will

take many iterations to flatten the curve in the region [0, 1]. Indeed, this is shown

in Figure 3.8(B) where the red line shows xA, we then compute 100 iterations, the

accepted candidate functions are shown going from the black lines to blue lines as

iterations progress. We see that we do indeed steadily flatten the intensity function

in the region [0, 1].

So we have found that using f = fcur does reduce the peak intensity found at

time 0s. However, decreasing the intensity often requires a large number of iterations.

With this in mind, it may be more intuitive to propose functions whose shape is

flatter than the current intensity function. For example proposing intensity functions

whose mean is constant. We shall consider two alternative functions for f both of
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which are constant. Namely, fmean = {mean(log xA)}Mi=0 which returns a constant

vector where each element is the mean of log xA and fmin = {min(log xA)}Mi=0 which

returns a constant vector where each element is the minimum of log xA.

In Figures 3.9(A) and (C) we show ten candidate functions from the proposal

distribution using fmin and fmean, respectively. The blue lines depict the mean of the

proposal distribution. This illustrates how using fmin and fmean makes the candidate

intensity functions flatter then those using f = fcur in Figure 3.8. Therefore, if

accepted we require fewer iterations then fcur to remove the peak intensity at time 0.

We also see a marginal difference between using fmean and fmin where the proposed

functions using fmin are smaller than those using fmean. In (B,D) we plot the accepted

candidate functions from 100 iterations of this proposal mechanism, where we begin

at the red line. Iterations are shown going from grey to blue lines at the iterations

progress. It takes fmin three accepted iterations and fmean five accepted iterations for

the intensity function to take values close to zero at 0s. This corresponds to the 14th

and 15 iteration for fmin and fmean, respectively. Hence, we find that it takes fmin

and fmean fewer iterations to reduce the intensity in [0s, 1.5s] compared to fcur.

In the above discussion we have always used the same initial intensity function,

and we found that all considered f reduce the high intensity found in the region

[0s, 1.5s]. Therefore when deciding which method to implement we are interested

in the speed at which the proposals flatten this region. Therefore, in the particular

example shown one would choose to use either fmin or fmean as they took a similar

amount of iterations. However, in general it may take a large number of iterations

to accept a proposal when using fmin or fmean. For example in Figure 3.10 we show

proposed candidate functions on the logarithmic scale compared to the logarithm

of the current intensity function shown in black. The blue lines show candidate

functions when f = fcur. We see that these candidate are all close to the current

intensity function and have the same shape. Whereas the candidate functions when

f = fmin are far from the current intensity function and the shapes vary. In other

words some have an uptick at 0s whereas others are decreasing. The large difference

in the current intensity function and the proposed candidate functions can lead to a
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Figure 3.9: (A,B) and (C,D) are illustrations of the proposal mechanism for f = fmin

and f = fmean, respectively. (A,C) shows ten candidate functions — grey lines —

where the current intensity is shown by the red line, and the mean of the proposal is

shown in blue. (B,D) The accepted candidate functions from 100 iterations of the

proposal mechanism where the original xA is shown as the red line. The iterations

progress from black to blue. The black ticks show the spike times. The proposal

parameters are the same as in Figure 3.8.

reduced acceptance probability. For example, we find that the likelihood ratio is 1.32

for the candidate intensity function shown by the brown line in Figure 3.10. However,
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Figure 3.10: The logarithm of proposed candidate functions from using the data-

driven method at the start, where red and brown lines show candidate functions

using fmin and blue lines show candidate functions using fcur. The logarithm of the

current intensity function is shown in black, and spike times as black ticks.

this improvement is outweighed by the proposal ratio which equals −26.13. We find

that only 1 of the candidate intensity functions were accepted for fmin which is lower

than the 6 accepted using fcur.

Therefore, we find that if candidate functions are accepted fast enough fmin and

fmean will flatten the region quicker. However, there is no guarantee that candidate

functions will get accepted. Thus, although fcur reduces the intensity less per iteration

it will not get stuck not accepting proposals.

Other functions could be used in this proposal mechanism, and further research

could look into whether there is an optimal f for proposing updates to the intensity

function on these regions of interest.
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3.2.3 Proposal mechanism for GP

We now need to decide how to use this new proposal in conjunction with the under-

relaxed method. We choose to use both fcur and fmin because fmin can quickly flatten

the intensity if accepted, and fcur can reduce the intensity if fmin fails to. We only

want to update at the beginning and end of the intensity function infrequently. This is

because we are only using this method to help explore regions that the under-relaxed

methods struggles to search. Therefore, we will only use this proposal every 1000th

iteration, but we shall use the proposal multiple times. This is to improve the chance

of removing undesired features in these regions. We choose to initially do 50 iterations

on both the beginning and end of the function using fmin. If no candidate functions

are accepted under fmin then we do a further 50 iterations using fcur. The algorithm

for the MCMC is shown in Algorithm 4.
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Figure 3.11: (A) gives the posterior mean and 95% credible region using the new

proposal mechanism. The inference was calculated using 80,000 iterations with a

burn-in of 50,000 with parameters σ2
f = 1000, σ2

n = 1e−5, l = 1.50, N = 2000 and

ω = 0.001. (B) shows ten trace plots of the intensity at time 0s using the new

proposal mechanism.
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Algorithm 4: Inference for GP intensity function.

Input:

Spikes, ISI distribution, T , Number of iterations Niter, burn in Nburn, t,

GP hyperparameters and ISI parameter

Output: Niter samples of intensity x

Set initial values x(0);

for i in 1 to (Niter +Nburn) do
Propose xcan and calculate acceptance probability using under-relaxed

method, update x(i);

if i %% 1000 == 0 then

for j in 1 to 50 do
Use data-driven method at the start with fmin, and data-driven

method at the end with fmin to update x(i);

if No proposals using fmin are accepted then

for j in 1 to 50 do
Use data-driven method at the start with fcur, and data-driven

method at the end with fcur to update x(i);

Return: x;

We now apply the new proposal mechanism for the GP prior to the Ca2+ spike

data used in Figures 3.4 and 3.5. In Figure 3.11(A) we show the posterior mean

and 95% credible region by the black line and red shaded region respectively. The

inference was calculated using 80,000 iterations with an initial burn-in of 50,000.

We see that the intensity at 0s and 20s is near zero. To check that this posterior

distribution does not correspond to a fortunate region where the intensity is small at

time 0s and 20s we look at the trace plots of the intensity at time 0s over 300,000

iterations. This is shown in Figure 3.11(B), where we have ten trace plots for ten

different initial random seeds. We find that after the initial transients the intensity

quickly converges towards zero intensity — within 10,000 iterations. Occasionally,

we find small upticks in the intensity at time 0s, at for example iteration 75,000 or

290,000. These correspond to the under-relaxed method accepting intensity functions
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with larger intensity at time 0s and then the data-driven proposal quickly reducing

the intensity close to zero. Therefore, our data-driven proposal mechanism aids the

under-relaxing method before the first spike time and after the last spike time.

In summary, we found that the under-relaxed method often gets stuck in regions

of the posterior distribution with high intensity before the first spike time and after

the last spike time, which the likelihood does not support. To help avoid the MCMC

from getting stuck in these regions we created a bespoke data-driven method to work

in tandem with the under-relaxed method to improve the mixing of our MCMC.

3.3 Estimating the Length Scale of a GP prior

In this section we explain the difficulty of inferring the length scale of the GP prior.

In particular, we find that it is only possible to infer the length scale when provided

with several spike sequences. To mitigate this issue when fitting the ISI model to

individual Ca2+ spike sequences we use the intensity function inferred using a PWC

prior to provide an appropriate length scale.

Imperative to inferring the intensity function of our model with a GP prior is the

length scale we use in the square exponential covariance function. The length scale

informs the shape the intensity function takes, where the smaller we choose l the

quicker the intensity is allowed to vary over time.

To illustrate the effect that l has on the inferred intensity function we fit an

inhomogeneous Gamma ISI distribution with a GP prior to a single spike sequence

shown by the black ticks in Figure 3.12. The Ca2+ spike sequence comes from a

HEK293 cell in a step change experiment over 6766s, where the cell is initially

challenged with 20µM carbachol before the stimulus is exchanged at 3434s for 50µM

carbachol. We fit the model for six different length scales varying from 169 to 6766.

The mean of the posterior intensity function distribution for each choice of l is shown

in Figure 3.12. We see that the smallest l gives rise to the intensity function that

varies the quickest over time. Moreover, when l = 169 the intensity function often

peaks at the locations of individual spikes and decreases between spike times — for
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Figure 3.12: The mode of the posterior intensity function distribution fitted to a single

spike sequence — shown by the black ticks. The model used was an inhomogeneous

Gamma ISI distribution with a GP prior, where the length scale of the GP varies

from 169 to 6766 — as shown in the legend. The inference was calculated over 20,000

iterations after a burn-in of 20, 000, the parameters used were: N = 2000, σ2
h = 0.5,

σ2
f = 1000, σ2

n = 10−5, w = 0.01. The prior for the ISI parameter was an exponential

with rate 0.01.

example in [800s, 3300s]. As l increases the intensity function no longer peaks at spike

times. Instead, the intensity function requires more time to fluctuate. For example,

when l = 3383 the intensity function gradually increases in [800s, 3300s]. Therefore,

the choice of l can lead to posterior intensity functions with substantially different

features.

We also infer the ISI parameter γ. The mean of the posterior distribution of γ was

13.49, 8.22, 7.96, 6.60, 5.93 and 4.11 for l equal to 169 through to 6766, respectively.

We find that the larger the length scale the smaller the inferred γ. Note that a larger

γ implies the variance of the ISI distribution is smaller. This suggests that a smaller

length scale allows more of the variability of the spike times to be accounted by the

intensity function. Indeed, we expect this behaviour because if the intensity function
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cannot vary quickly enough to encompass the changing spiking rate, then we require

a larger variance in the ISI distribution.

We have seen that the length scale can have a large affect on the inferred ISI

distribution, affecting both the intensity function and ISI parameter. Since we aim

to use our model to help inform on mechanisms of Ca2+ signalling — such as using

the intensity function to examine how a cell’s Ca2+ oscillations vary over time — it

is vital to find the optimal length scale.

Theoretically, it is possible to infer the length scale from the spiking data we use

to fit our model. One method is to use Bayes’ theorem to obtain the marginal for

l and a RW-Metropolis algorithm to sample the posterior of the length scale given

spiking data, as described in Section 2.4.3.2.

However, in certain instances it is not possible to infer l. For example, suppose

our spike sequence consists of a solitary spike. From this single spike it is not possible

to determine if we have a small constant intensity throughout the entire experiment,

or if the spiking intensity is zero everywhere except for a small region surrounding

the spike time, where the intensity would be high. Moreover, it is possible to create

two intensity functions that have the same likelihood but whose length scales differ

significantly. Note that the likelihood of a spike sequence depends on the intensity

function only through its value at spike times and the integral of the intensity function

between spike times. For example, recall that the likelihood of a Ca2+ spike sequence

y coming from an inhomogeneous Gamma ISI distribution with intensity x(t) and

ISI parameter γ is

π(y|x, γ) = x(y1)e−X(y0,y1)e−X(yN ,T )

×
N∏
i=2

γx(yi)

Γ(γ)
[γX (yi−1, yi)]

γ−1 exp (−γX (yi−1, yi)) .

We see that π(y|x, γ) only interacts with the intensity function at spike times x(yi)

and the integral between spike times X(yi−1, yi), for i = 1, . . . , N . Therefore, we can

create two intensity functions with the same likelihood provided that the intensity

function at spike times and the integral of the intensity function between spike times

are equal. This is illustrated in Figure 3.13, where we demonstrate two such intensity
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Figure 3.13: Two intensity functions which give rise to the same likelihood with the

spike sequence shown by the black ticks.

functions. The length scale of the intensity functions are 42 and 0.195 for the black

and red curves, respectively. This shows that with limited spiking data it is not

possible to infer a length scale.

In this section we explore, via an example, the number of spikes and spike

sequences required to infer the length scale directly. Furthermore, we describe an

approach to choose an appropriate length scale when there is not enough information

in the spiking data.

3.3.1 Estimating l with multiple spike sequences

The more spike sequences we use to fit our model the more information about the

underlying ISI distribution we have. Therefore, using multiple spike sequences leads

to additional detail about the shape of the intensity function. To explore if multiple

spike sequences can accurately infer the shape of the intensity function we create a

surrogate dataset from a known intensity function. We then fit an inhomogeneous

Gamma ISI distribution with a GP prior — comprised of the intensity function, ISI
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Figure 3.14: (A) The intensity function used to create surrogate spike sequences,

drawn from a GP with mean 0 and square exponential covariance with parameters

l = 3, σ2
f = 1 and σ2

n = 10−5. (B) Histogram of posterior samples of l inferred from

the intensity function given in (A). (C) 20 simulated spike sequences generated from

an inhomogeneous Gamma ISI distribution with γ = 7 and intensity function given

by (A).

parameter and length scale — using 2, 5, 10 and 20 spike sequences.

To create a surrogate dataset we first draw an intensity function on [0s, 30s]
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by sampling from a GP where we take the hyperparameters to be l = 3, σ2
f = 1

and σ2
n = 10−5. The drawn function is shown in Figure 3.14(A). Due to sampling

variability the best length scale to describe the drawn function is not necessarily l = 3.

Therefore, to find the best length scale we use Bayes’ theorem to infer l from our

drawn intensity function, where the prior for l is an Exponential distribution with

rate 0.01. We use a RW-Metropolis algorithm with a Gaussian proposal distribution

with variance of 1. We draw 5000 samples from the posterior distribution after an

initial burn-in period of 5000. A histogram of the posterior is shown in Figure 3.14(B).

We find that the 95% confidence interval of the length scale for the drawn intensity

function is in [4, 4.8].

We create a dataset of 20 spike sequences obtained from the Gamma ISI dis-

tribution with γ = 7 and intensity function given in Figure 3.14(A). We fit an

inhomogeneous Gamma ISI distribution with a GP prior to 1, 2, 5, 10 and 20 spike

sequences amalgamated from the dataset. The spike sequences are shown in Figure

3.14(C) where if we fit the model using Y spike sequences this consists of the bottom

Y sequences shown. For each, the prior for γ and l are Exponential distributions

with rate 0.01. We calculate 20, 000 iterations after an initial burn-in of 20, 000. The

inference parameters used were: ω = 0.001, σ2
f = 1000, σ2

n = 10−5, σ2
h = 0.5 and

σ2
l = 0.5.

In Figure 3.15 we illustrate the posterior ISI distribution via trace plots for l and

γ and the mean of the posterior intensity function distribution. The results for fitting

the model with 1, 2, 5, 10 and 20 spike sequences are shown in different colours —

ranging from purple to yellow — as shown by the key at the top of the figure.

Consider the traces of γ shown in Figure 3.15(A). We find that with additional

spike sequences we have stronger confidence in the estimate of γ. For example the

95% credible interval for γ is [3.25, 12.62] and [6.58, 7.06] when we use 1 and 20 spike

sequences, respectively. We find that each of the 95% credible intervals contain γ = 7,

the ISI parameter used to generate the spike sequences. The mean γ is 7.84 7.71,

7.18, 6.81 and 6.82 when using 1, 2, 5, 10 and 20 spike sequences, respectively. Hence,

with fewer spike sequences the mean of the inferred γ is slightly larger.
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Figure 3.15: Visualisation of the posterior ISI distribution when using 1, 2, 5, 10 and

20 spike sequences to infer an inhomogeneous Gamma ISI distribution with a GP

prior. (A-B) Trace plots of the ISI parameter and length scale, respectively. (C) The

mean of the posterior intensity function distribution. The black curves in (A) and

(C) coincide with the ISI parameter and intensity function used to generate the spike

sequences.
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In Figure 3.15(B) we show traces of the inferred length scale. We see that none

of the traces converge onto the length scale of the intensity function used to create

the spike sequences — in the region [4, 4.8]. However, we do find that given at least

5 spike sequences the length scale converges towards 6.6. When we used either 1 or

2 spike sequences the inferred length scale is considerably smaller than the models

using 5, 10 or 20 spike sequences — the mean l is 1.30 and 1.70 when using 1 and 2

spike sequences, respectively.

The effect of the inferred l on the intensity function can be seen in Figure 3.15(C),

which shows the posterior mean of the intensity function. We see that smaller l

corresponds to a posterior mean that fluctuates in a shorter time frame. Moreover,

the mean posterior intensity function from fitting either one or two spike sequences

does not mirror the function used to simulate the spike sequences. Instead, they

fluctuate around the true intensity function. Whereas, when we increase the number

of sequence to 5, the posterior mean closely mirrors the true intensity, which only

improves as the number of sequences increases to 10 and 20. Therefore, although the

length scale does not align with the length scale of the true intensity, the mean of

the posterior does closely resemble the true intensity.

In this example, to infer the intensity function such that shape is similar to the

true intensity we require at least 5 spike sequences. When we inferred from one

or two spike sequences the posterior intensity function has a length scale that is

too small, and therefore changes of the intensity occurs quicker than the intensity

function used to create the spike sequence. Therefore, in this example, there is not

enough information from one or two spike sequences to infer the shape of the intensity

function accurately.

In general, we find that with limited data it is difficult to infer l directly from the

spike sequences. The number of sequences required could vary substantially since the

information available in a single spike sequence depends on the number of spikes in

the sequence. For example, if the average spike sequence contained only two spikes

then we would require far more spike sequences to infer the correct shape of the

intensity function compared to a dataset where every spike sequence contained 50
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spike sequences. Therefore, it is difficult to determine whether a dataset contains

enough information such that we can directly infer the shape of the intensity function

from the spike sequences.

In regards to the Ca2+ datasets we consider each contains at least 15 spike

sequences where the average number of spikes in each sequence exceeds 18 for each

dataset. Therefore, if we want to fit the ISI model to an entire dataset, there is

enough information to infer the shape of the intensity function. However, we also aim

to infer ISI models onto individual spike sequences, since cells respond to stimulus in

a heterogeneous manner. Moreover, in vivo each cell experiences a unique stimulus,

therefore it is inappropriate to assume the dynamics are the same for each cell. In

this case there is often not enough information to directly infer the length scale.

Therefore, it is imperative to create a robust method to estimate l when a spike

sequence alone does not possess enough information to accurately infer the shape of

the intensity function.

3.3.2 Estimating l with limited information

We have found that given limited spike data it is difficult to infer the length scale

directly. Therefore, we need to decide which values we expect the length scale to take.

For example, returning to Figure 3.12, do we expect an intensity function with peaks

centered at spike times — as for l = 169 – or an intensity that changes more gradually

— for example l = 677? Since the cell is subject to a step change experiment we would

expect a gradual change in intensity rather than an intensity that varies about each

spike time. Therefore l = 677 is preferred to l = 169.

Broadly speaking, we want a length scale that is small enough to pick out all the

details in the intensity function but not too small that the intensity ‘wobbles’ when

it should remain flat. One advantage of approximating l is that a small change in

the length scale only makes a small difference in the shape of the sampled intensity

functions. For example, from Figures 3.14 and 3.15 we found that the true intensity

function with l in [4, 4.8] was closely mirrored by the inferred intensity function with

l in [6.58, 7.06]. Therefore, we do not need to be unduly precise on the length scale
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Figure 3.16: Examples of the mean of the posterior intensity function where we fit

an inhomogeneous Gamma ISI distribution with a GP prior to the spike sequence

— shown by the black ticks — whilst varying the length scale. The spike sequence

is taken from Figure 3.14. We calculate 20000 iterations after an initial burn-in of

20000. The inference parameters used were: ω = 0.001, σ2
f = 1000, σ2

n = 10−5 and

σ2
h = 0.5. The length scale used for each model is shown in the legend.

we choose. Choosing a length scale that is too small will lead to an intensity function

that varies too quickly. This leads to an intensity function that will fluctuate about

the ideal intensity function. On the other hand, if we choose a length scale too large

then the intensity function cannot capture the features of the spike sequence because

it takes too long for the intensity function to vary. We prefer a smaller length scale to

a larger one since the intensity will fluctuate around true intensity function whereas

a larger intensity cannot capture the shape of the true intensity function.

To give context on the effect of l we fit inhomogeneous Gamma ISI distributions

using several values of l to a single spike sequence from the simulated data given

in Figure 3.14. In Figure 3.16 we plot the mean of the posterior intensity function

distribution. We see that the larger length scales do not pick up features of the spike

times. For example when l = 20, the intensity slowly increases over the entire domain,
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which does not capture the increased spiking rate in [15s, 20s]. Whereas, smaller

length scales — such as l = 0.5 or l = 1 — have a larger intensity in this region.

Examining the posterior intensity function for l = 0.5 we find that it fluctuates

in regions where we would expect the intensity to remain flat, such as in [3s, 8s].

Therefore, Figure 3.16 shows the caveats of both large and small l. We also observe

that a smaller length scale is preferable because the inferred intensity varies about

the underlying rate.

Given a single spike sequence it is not obvious how to select l. To help inform on

an appropriate length scale we fit the model with a PWC prior, and use the posterior

mean of the intensity function distribution xpwc to inform our choice of l. The PWC

prior does not mitigate the fact that intensity functions with varying shape can have

the same likelihood. However, the structure of the prior contains more information

compared to the GP prior. The frequency with which the intensity function can vary

is controlled in the prior distribution by the number of change points. The more

change points you expect the more the function can vary. Therefore, by limiting the

number of change points it is less likely for the intensity function to contain peaks of

intensity around spike times. If we infer l directly from xpwc the length scale would

be too small because of the large change of intensity at change points. Moreover,

this would rely upon inferring a smooth function to a PWC function. Therefore, to

create a good estimate of l we smooth xpwc and only infer l on a wide time grid. For

example, if xpwc if defined on a time step of 0.01s to infer l we use a coarser grid with

a time step of 0.5s.

To estimate l we begin by fitting the model with a PWC prior to obtain xpwc,

defined on the time index with N steps. Next we smooth xpwc. There exists several

methods to smooth a function. Here, we use local polynomial regression with

automatic smoothing parameter selection [120], because it does not require the tuning

of any smoothing parameters. We restrict the smoothed function to the uniform time

grid with M < N steps — where N is divisible by M — to get x†pwc . We estimate l

by finding the MLE of the marginal of l given x†pwc.

An example of estimating l using a PWC prior is shown in Figure 3.17. We



Chapter 3: Non-trivial Model Properties 110

0 5 10 15 20 25 30

0.
5

1.
5

2.
5

Time (s)

In
te

ns
ity

 (
sp

ik
es

/s
)

Figure 3.17: Illustration of obtaining l using the PWC prior. Begin by fitting an

inhomogeneous Gamma ISI distribution with a PWC prior to the spike times shown

as the black ticks. The parameters for the PWC prior were: kmax = 25, κ = κ0 = 1

and µ = 0.5. The posterior mean of the intensity function xpwc is shown by the

purple line. We smoothed xpwc by using local polynomial regression with automatic

smoothing parameter selection — shown by the blue line. We estimate l by finding

the MLE of l using a subset of the smoothed xpwc — shown by the yellow dots. The

intensity function used to generate the spike sequence is shown by the black line.

use the same spike sequence from Figures 3.14 and 3.16. We begin by fitting an

inhomogeneous Gamma ISI distribution with a PWC prior, whose mean intensity

function xpwc is shown by the purple line. We then smooth xpwc which is shown by

the blue line. We use a subset of the smoothed function — shown as the 20 yellow

points — as the input to infer the length scale and we obtain l = 2.74.

The choice of M impacts the estimate for l, where the smaller we choose M the

larger the estimate for l. This is because a sparser partition contains less details of

intensity function inferred using a PWC prior. For example, if we took M equal to

5, 10, 20, 40, 80 in the above example the estimated length scale would be 12.97,

5.96, 2.74, 1.50, 1.18, respectively. As previously stated, we err on the side of using a
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Figure 3.18: The posterior mean and 95% credible interval for the intensity function

fitted using an inhomogeneous Gamma ISI distribution with a GP prior. We use blue

to represent the fixed length scale l = 2.74 and purple is used when we draw l from a

Gamma(2.74× 8, 8) in each iteration. The inference parameters are identical to those

used in Figure 3.16. The spikes used to fit the model are shown by the black ticks.

The yellow line represents the intensity function used to generate the spike times.

smaller length scale therefore we often use M in the range of 20− 40.

We can use the estimated l as a fixed length scale for our MCMC hyperparameter.

Or, to allow more flexibility in the length scale, we can center a distribution about l

and draw from this distribution each time we want to draw from the GP prior. This

is shown in Figure 3.18, where l is fixed at 2.74 and given the prior Gamma(2.74× 8,

8). This can be compared to Figure 3.16 where we used a variety of fixed length

scales. We find that using the PWC to inform on l chooses a good length scale that is

both small enough to capture features over the experiment’s length and large enough

that the inferred intensity function does not oscillate between individual spike times.

Recall that the intensity function used to generate the spike sequence had l in

the region [4, 4.8] and when we fit 20 sequences simultaneously the inferred l was in

[6.17, 7.13]. Therefore, estimating l via a PWC prior gives smaller l compared to the
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model used to generate the spike sequences or the inferred l from 20 spike sequences.

However, it is an improvement over inferring l directly from the single spike sequence

where we obtained l in [1.26, 1.33], as the estimated l is approximately twice as large.

We find that this approach leads to a desirable choice of l.

3.3.3 Summary

In this section we expressed the importance of the length scale to our model, and how

different length scales can lead to drastically different posterior intensity functions.

We found that we can infer l if we fit the model to several spike sequences collectively.

However, with limited spiking data it may not be possible to directly infer l. In this

case, we instead use the posterior intensity function from fitting the same model with

a PWC prior to estimate l. We can either use the estimated l as a fixed parameter in

the GP prior or use it to inform the prior on l. When fitting ISI distributions with a

GP prior to a single Ca2+ spike sequence we use the PWC prior to estimate l and

use this as a fixed hyper-parameter of the covariance function.

3.4 Speed of MCMC algorithms

In this section, we investigate the speed of our MCMC algorithms. We find that

it is computationally demanding to sample the posterior distribution when using

the GP prior. For example updating the length scale requires the generation and

multiplication of large covariance matrices. To resolve this issue we use two approaches

depending on whether we fit the length scale. When fitting the ISI model using several

spike sequences we infer the length scale, and use Mean Projection Approximation

(MPA) to improve the speed. Whereas, if we fit the ISI with a single spike sequence

we fix the length scale — or fix its prior distribution —. In this case, we improve the

speed by simulating from the GP prior using the spectral representation of the GP.

In this section, we investigate the speed of our MCMC algorithms. Namely, the

algorithms used for the PWC prior and GP prior for the intensity function. It is

important for the algorithms to be quick because they need to be applied repeatedly
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for the different ISI distributions and for each Ca2+ spike sequence. Throughout

this section we will give examples for the amount of time taken to perform MCMC

algorithms and their subcomponents, all computations are computed on a Dell R720

rackmount server with: 2 x Intel(R) Xeon(R) CPU E5-2690 @ 2.90GHz each with 8

cores and 16 threads, 256Gb RAM and 2 x 2Tb SATA disks in RAID-1 mirror.

Recall for the PWC prior we use a RJMCMC algorithm to update the intensity

function. The RJMCMC is comprised of three different types of update: a birth of a

new change point, a death of a change point and an update to a height and change

point location. For the GP prior we utilise an under-relaxed method to propose

new intensity functions. This method creates a candidate function by combining

the current intensity function with a draw from the prior — a high dimension

multivariate Normal (MVN) distribution. The advantage of this approach is the

acceptance probability simplifies to the ratio of likelihoods. A common issue with GPs

is the computational demand of sampling from its distribution when the dimension

is large [121, 122, 123]. We often use the recording rate of the Ca2+ experiments as

our time-index which leads to a discretisation with size in the range of 2000 to 4000.

Moreover, we often need to infer the length scale of the GP. We use a RW-Metropolis

algorithm to propose candidate values. For each candidate length scale we need to

calculate the corresponding covariance matrix which is computationally demanding

when the dimension of the intensity function is large.

To visualise the limiting factor in the speed of our MCMC algorithms we record the

time taken to compute 1000 iterations — after an initial burn in of 10000 iterations —

using both a GP and PWC prior. We fit an inhomogeneous Gamma ISI distribution

given a spike sequence with 34 spikes. The number of steps used for the GP prior was

N = 2000. This was chosen so that the discretisation was similar to the recording

rate of experimental Ca2+ spike sequences. We also record the time taken in each

sub-compartment of the MCMC algorithms. In particular, for the PWC prior we

record the time taken for each of the updates to the intensity function via the

RJMCMC: a birth, a death or a change in height and partition, in addition to the

time taken updating the ISI parameter. For the GP prior we assume the length scale
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PWC GP

Birth Death Other ISI x ISI l

0.00144s 0.00143s 0.00274s 0.0015s 0.0157s 0.0010s 11.03s

Table 3.4: The average time taken to compute a single MCMC loop using either a

GP prior or a PWC prior over 1000 iterations. We fitted an inhomogeneous Gamma

ISI distribution to a single spike sequence with 34 spikes. The ISI parameter had an

exponential prior with rate 0.001. The inference parameters for the GP prior were:

N = 2000, w = 0.001, σ2
h = 1, σ2

f = 1000 and σ2
n = 10−5. The prior for the length

scale l was an exponential with rate 0.01, the initial value was 1.5 and σ2
l = 0.25. For

the PWC prior the parameters were: kmax = 25, λ = 10, κ = 1, µ = 2, κ0 = 1 and

σ2
h = 1. The column denoted ‘Other’ represents an update of both a height and a

change point.

is unknown and infer it. We record the time spent updating: the intensity function,

the ISI parameter and the length scale. The results are shown in Table 3.4. We find

that the average time taken for a single iteration using the PWC and GP prior are

0.003242s and 11.046s, respectively. The vast difference in time taken comes from the

time-required to update the length scale. This can be split into 10.93s to setup the

GP for the candidate length scale and 0.10s to calculate the acceptance probability.

Therefore, the bottleneck of the computation comes from varying the length scale.

To understand why changing the length scale is computationally demanding recall

that the GP prior has mean zero and a square exponential covariance which between

two times t1 and t2 is defined as

k(t1, t2) = σ2
f exp

[
(t1 − t2)2

2l2

]
+ σ2

nδ (t1, t2) , (3.4)

where σ2
f is the signal variance, l is the length scale and σ2

n is the noise variance.

Suppose the domain of the intensity function is [0, T ]. We discretise our domain into a

time set t = {ti}Ni=0 where ti = iT/N and N controls the fineness of our discretisation.

Therefore, on this domain, the GP prior is the MVN distribution with mean zero

and covariance matrix Σ = {k(ti, tj)}i,j∈{0,...,N}, i.e x ∼ NN+1(0,Σ). When updating
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the intensity function we need to sample from this MVN distribution to create a

candidate intensity function. Furthermore, updating l requires the creation of a new

covariance matrix for the candidate length scale.

A common method for sampling from a MVN distribution is to transform samples

from a standard normal distribution. This approach relies on finding a matrix A

such that AAT = Σ [124]. A commonly used method to find the matrix A is by a

Cholesky decomposition. There exists other techniques to obtain A — such as an

eigenvalue or single value decomposition — however a Cholesky decomposition is

often the quickest, where the computational complexity of it is O(N3). Moreover,

calculating the probability density function of the MVN distribution requires the

inverse and determinant of Σ. The fastest approach to calculate these utilises the

Cholesky decomposition [125].

Therefore, when given a new length scale we need to create its corresponding

covariance matrix Σ and the Cholesky decomposition Chol(Σ). Both of which

are computationally demanding operations. Once calculated we reuse Chol(Σ) in

sampling from the GP prior and calculating the acceptance probability for l.

Note that for a smooth intensity function we would set σ2
n = 0. However doing

so can render the covariance matrix computationally singular. To mitigate this, we

employ the widely used approach of adding a small amount of noise to the model —

for example setting σ2
n = 10−5 — which improves the conditioning of the matrix and

has little affect on the drawn functions [126].

In section 3.2, we discussed inferring the length scale. We concluded that depending

on the amount of spiking data we choose to either infer l directly or approximate l

using the PWC prior. If we choose to infer l directly we found that the average time

for a single iteration is 11.046s. To infer the ISI distribution would take approximately

24.5 days — equating to 200,000 iterations. Therefore, we require methods to mitigate

the time taken if we infer l. If there are not enough spikes to directly infer the l

then we calculate an approximation lPWC via the PWC prior. We can use lPWC as a

fixed length scale. In this case, we only need to calculate Chol(Σ) once for lPWC. We

can then reuse it each time we draw from the prior. An average loop of the MCMC
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algorithm would take 0.0157s, if N = 2000. This is significantly faster than inferring

l, and only 5-fold slower than using a PWC prior. However, a fixed value for l will

limit the shape of the intensity function. Another approach would be to use lPWC as

a basis for a prior on l. For example l ∼ Uniform(lPWC − 1, lPWC + 1). In this case,

we do not infer l, rather when we draw from the GP prior we first draw l from its

prior distribution. The cost of this approach is still large, because each time we draw

l from its prior we need to calculate Chol(Σ) to be able to sample from the prior.

Indeed, this would require an average 10.94s per iteration when N = 2000.

Therefore, we require methods to mitigate the time taken if we vary l. In this

sections we propose two methods to efficiently alleviate this issue. The first method

uses a projection scheme, where we draw from a MVN distribution with smaller

dimension and then project this onto the desired dimension. This can be used if we

include the length scale as a model parameter. The second method uses the spectral

representation of a GP and a fast Fourier transform (FFT) to quickly generate

samples on the targeted domain when l has a prior distribution.

3.4.1 The Mean Projection Approximation

We first look at improving the computational demand of our MCMC algorithm when

we infer l from the spiking data. One approach to mitigate the time taken is to

use a projection method to construct an approximation of the intensity function.

A projection method creates a similar model on a smaller set of time points and

performs exact inference on this new model. We shall use the Mean Projection

Approximation (MPA). The MPA gives a GP prior distribution over a smaller set

of time points and then projects it onto the full set of time points, which we use to

calculate the likelihood of our spike sequences [122].

To calculate the likelihood of a spike sequence we require an original time set t of

size N large. For the proposal of new intensity functions we create a smaller time set

t of size Q < N . The set t must cover enough of the domain such that our intensity

function still maintains any interesting features. We choose to construct t as a set of

uniformly placed points from the original time set, including 0 and T . We denote the
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intensity function over the original time set by x and the intensity function over the

smaller time set by x̄. We place a joint GP prior distribution on x and x̄ such that

 x

x̄

 ∼ N
 0

0

 ,
 Σt,t Σt,t

Σt,t, Σt,t

 , (3.5)

where Σt,t is the covariance matrix for the original time set, Σt,t is the covariance

matrix for t and Σt,t is the covariance between the original and smaller time sets.

The MPA uses the conditional distribution of a MVN, which gives the distribution of

x given x̄ by

x|x̄ = NN+1

(
Σt,tΣ

−1
t,t

x̄, Σt,t − Σt,tΣ
−1
t,t

Σt,t

)
. (3.6)

This projects x̄ onto the original time set t. However, if we draw from x|x̄ to

obtain x this would take a similar amount of time as drawing x directly, as we would

be sampling from a MVN distribution with dimension N + 1. Therefore, we take the

projection to be the mean of x|x̄, namely

x = Σt,tΣ
−1
t,t

x̄. (3.7)

The computational complexity of (3.7) comes from calculating Σ−1
t,t

with O(Q3) and

generating Σt,t with O(NQ).

Implementing this approach only requires minor changes to our MCMC algorithm.

In particular, the under-relaxed proposal (3.1) and length scale acceptance probability

(2.82) change by substituting x with x̄ and Σ with Σt̄,̄t. In the likelihood we replace

x with Σt,tΣ
−1
t,t

x̄. Recall that the logarithm of the intensity function follows a GP

prior not the intensity function itself. Therefore the projection needs to be applied

to the logarithm of the intensity function.

Figure 3.19 illustrates the MPA method showing x and x in the ith and (i+ 1)th

iteration, where N = 200 and Q = 20. The red arrows describe the methods used

to draw a candidate function and to calculate the intensity function used in the

likelihood.

The improvement of speed depends on how fine we choose the smaller time grid,

where we have a trade off in the time taken against the accuracy of the intensity
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Figure 3.19: Illustration of MPA, showing how a smaller time index is used for

proposing the new intensity function (A → B) and how projection is used to create

the intensity function on the desired time index (A→ C and B→ D). In this example

we use Q = 20 and N = 200.

function. For example, returning to the example from Table 3.4 we found that the

average time taken for a single iteration is 11.046s, when N = 2000. When we use the

MPA we need to be careful defining the average time taken for a single MCMC loop.

This is because if we accept the candidate l we need to recalculate Σt,t. Therefore,

when we use MPA with Q equal to 10, 20, 50 and 200. The average time for a single

MCMC loop is 0.0633s (0.0038s), 0.1133s (0.0043s), 0.2705s (0.0131s) and 1.1748s

(0.1571s), respectively. The first time and time given in the brackets correspond

to the time taken if we accept and reject the candidate l, respectively. Hence, the

smaller we choose Q, the larger the improvement in the time taken. However, the
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Figure 3.20: A known intensity function compared to its MPA approximation using

a varying values of Q. The intensity function — shown in black — is defined by

x(t) = (1.5 − t/30) cos(t2/15) + 2. The MPA is calculated for Q equal to 10, 20,

50 and 200, using the parameters σ2
f = 1000, σ2

n = 10−5 and l = 1. The projected

intensity function for each Q is shown by a coloured line described in the legend.

improvement comes at the cost of the accuracy of x as the projection cannot contain

the same level of detail as sampling directly from the GP prior distribution.

To visualise how the choice of Q impacts the intensity function we approximate

a known function. We take the intensity function, defined on [0s, 30s], to be x(t) =

(1.5− t/30) cos(t2/15)+2. We chose this intensity function because as time progresses

the function oscillates quicker. Therefore, we can see how different choices of Q affect

the projected intensity function with different length scales. For a given choice of Q,

we first restrict the intensity function to the time set {tk}Qk=0 where tk = 30k/Q. We

then project the restricted intensity function via equation (3.7) where N = 2000. We

do this for Q equal to 10, 20, 50 and 200. The resultant intensity functions are shown

in Figure 3.20. We see that when Q = 200 to the eye there is little difference between

the true intensity function and the projected intensity function. However, as we

take Q smaller the difference between the projected intensity function and the truth
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increases. When Q = 10 the projected intensity function differs greatly compared

to the true intensity function. Therefore, the choice of Q is a trade off between the

improvement in the computational time and the accuracy of the projected intensity

functions.

Thus, we have found that the MPA approach reduces the computational demand

of inferring the length scale from the spiking data. We have shown that this approach

can lead up to a 200-fold improvement — when N = 2000 — of the time taken

compared to the direct approach. However, this improvement in time comes at the

cost of the accuracy of the intensity function, where the smaller we choose Q the

fewer features the intensity function can exhibit.

3.4.2 Simulating using spectral representation

In this section, we utilise the spectral representation of our GP prior to improve the

time taken in our MCMC algorithm when we assume that l has a given distribution.

Therefore, each time we propose a candidate function we first draw l from its

distribution and use the drawn l to sample from the GP prior.

So far we have defined a GP through its mean and covariance function. Note that

the square exponential covariance function — see equation (3.4) — depends only on

the time difference τ = t1 − t2. As such we can write the covariance as a function of

the time difference k(τ) = σ2
f exp [τ 2/2l2] + δτ , where δ is the Dirac delta function.

Recall that noise is added to the covariance function otherwise the covariance matrix

is numerically singular. Since the spectral approach does not rely on the covariance

matrix we can remove the noise and obtain k(τ) = σ2
f exp [τ 2/2l2].

We can remove the noise because we do not require σ2
n small to improve the

conditioning of the covariance matrix. Therefore, our GP is a stationary stochastic

process. This means that we can define the GP in terms of its spectral density
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function S(ω) which is the Fourier transform of the covariance function

k(τ) =

∫ ∞
−∞

S(ω)eiωτdω, (3.8)

S(ω) =
1

2π

∫ ∞
−∞

k(τ)e−iωτdτ. (3.9)

For our square exponential covariance function the spectral density function is

given by

S(ω) = σ2
f (2πl

2)0.5 exp
[
−2π2l2ω2

]
[114]. (3.10)

Following the approach used by Shinozuka and Deodatis [127] we can express the

GP f(t) in terms of its spectral density by

f(t) =
√

2
∞∑
k=0

(2S(ωk)∆ω)1/2 cos (ωkt+ Φk) . (3.11)

where ∆ω is the frequency step size which is taken to be small, ωk = k∆ω and Φk

are independent random phase angles uniformly distributed in [0, 2π]. To obtain a

sample f(t) from the spectral representation of the GP we approximate equation

(3.11). We do this by restricting to the first Nω terms and replace the random phase

angles Φk with their realisations φk, thereby obtaining

f(t) =
√

2
Nω−1∑
k=0

(2S(ωk)∆ω)1/2 cos(ωkt+ φk) (3.12)

where

∆ω = ωc/Nω. (3.13)

The frequency step size ∆ω depends on the cutoff ωc where we assume the spectral

density is zero for larger frequencies. Nω can be viewed as the number of points we

partition ωc into. To find the value of the cutoff we use∫ ωc

0

S(ω)dω = (1− ε)
∫ ∞

0

S(ω)dω (3.14)

where ε is small; we take ε = 0.001.
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To take advantage of FFT methods to sample the GP we express equation (3.12)

by

f(p∆t) = Re

{
NFFT−1∑
k=0

Ake
ikp2π/NFFT

}
, p = 0, 1, . . . , NFFT − 1, (3.15)

where

Ak =
√

2 (2S(ωk)∆ω)1/2 eiφn , n = 0, 1, . . . , NFFT − 1, (3.16)

∆ω = ωc/Nω (3.17)

and ∆t is the time step size, which must satisfy ∆t ≤ π/ωc. Moreover, we discretise

time into NFFT time points. The sample function f(t) is periodic with period T0

T0 = NFFT∆t = 2π/∆ω = 2πNω/ωc (3.18)

Therefore we see that the number of steps we partition time into (NFFT) and the

number of steps we partition the frequencies into (Nω) are linked via equation (3.18).

We can then apply FFT algorithms to equation (3.15) to sample from the GP prior.

We employ the commonly used Cooley-Tukey FFT algorithm, details of it can be

found in [128].

The main limitation of this approach is the length of the sampled function is

fixed at T0, which is dependent on ωc and Nω. For example, if ωc equals 2π rad/s

for our choice of hyper-parameters and we choose Nω = 128 then the length of the

sampled function is 2πNω/ωc = 128s. Suppose we require a step size of 0.1s then

we would have to choose NFFT = 1280 such that the condition T0 = NFFT∆t is

satisfied. Therefore, we find that the choice of NFFT is informed by the step-size

we require. Furthermore, often T0 is not a number that is divisible by our choice

of step size and since NFFT is defined as an integer we must approximate our step

size. For example if T0 = 128.38s and our step size is 0.1 then NFFT = 1283.8.

Rounding gives NFFT = 1284 from which the step size used in the sampled function

is 128.38/1284 = 0.09998s. Another issue of having NFFT informed by our step-size

is that to take full advantage of the Cooley-Tukey FFT algorithm we require NFFT

to have multiple factors [129]. This is illustrated in Figure 3.21 where we compute

the time taken to sample 100 draws from a GP where NFFT varies between 3000 and
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Figure 3.21: The average time taken to simulate an intensity function over 100 samples

using the Cooley-Tukey FFT algorithm applied to the spectral representation of a

GP against NFFT. The GP has mean zero and square exponential hyper-parameters

σ2
f = 1000, σ2

n = 0 and l = 1.3. The points are coloured depending on the number of

factors NFFT has, shown by the legend.

4000. We see that the speed to sample functions depends on the number of factors

NFFT has. Indeed, we see that it is 10-fold faster to draw samples when NFFT = 3492

compared to NFFT = 3491 — a prime.

To mitigate this issue we take advantage of the cutoff frequency to give values of

NFFT that allow for quick computation via FFT and an exact time step. Recall that

ωc is calculated by equation (3.14) where we took ε small. Therefore, increasing ωc is

equivalent to choosing a smaller ε.

Decreasing ε effects the simulated GP in two ways: the spectral cutoff increases

and and the frequency step size ∆ω = ωc/Nω increases. Provided that we choose Nω



Chapter 3: Non-trivial Model Properties 124

large increasing ωc has little affect on the simulated intensity function.

Suppose we want to sample an intensity function from a GP in [0, T ] with time

step ∆t. We begin by choosing Nω and calculating ωc given ε = 0.001. We can

then calculate NFFT that gives us our desired time step by NFFT = 2πNω/ωc∆t.

However, this NFFT does not have to be an integer and its rounded value need not

have many factors. Therefore we decrease NFFT and increase ωc while maintaining

their product. We do this by choosing a new N∗FFT taken to be a whole number smaller

than NFFT with at least 8 prime factors. We then choose new cutoff frequency by

ω∗c = 2πNω/N
∗
FFT∆t. Therefore, using N∗FFT and ω∗c takes advantage of Cooley-Tukey

FFT algorithm whilst using the exact time step we desire.

Recall that simulating a GP using this approach gives a sample function with

fixed length, defined by T0 = 2πNω/ωc. Rather than choose Nω such that T0 is equal

to the length of our intensity function, we choose Nω large — often Nω = 128 — and

restrict the sampled function to our desired length. This is to ensure the accuracy of

the sampled function. For example, suppose we want to sample from the GP prior

in [0s, 40s] with a step size of 0.01s, where the covariance parameters are σ2
f = 1000

and l = 1.3. For this covariance the spectral cutoff is ωc = 0.3915. Taking Nω = 128

gives a sampled function with length T0 = 2πNω/ωc = 314.88s, and NFFT = 31488.

Therefore, to obtain the intensity function on [0s, 40s] we restrict the sampled function

to the first 4000 entries.

The length of the sampled function depends on the length scale. This is because

the larger l is the smaller ωc. For example, if we increase l from 1.3 to 4 in the above

example ωc decreases from 2.55 to 0.829 leading to a period of 969.6s. Thus, we

would require NFFT = 96960, and the length of the sampled function is approximately

3 times longer. With a larger NFFT the Cooley-Tukey FFT algorithm takes longer to

compute. Therefore, the larger the length scale the longer it takes to sample intensity

functions.

In Figure 3.22 we show the average time taken over 100 samples of using the

spectral approach on the region [0s, 20s] with σ2
f = 1000 and length scale varying

between 0.5 and 10, with time step 0.01s. We describe the length scale as a percent
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Figure 3.22: The average time taken over 100 samples to draw an intensity function

with varying length scale. We sampled functions in [0s, 20s] with a step size of 0.01s

and σ2
f = 1000. The length scale is given in percentage of the experiment length, e.g

l = 4 is given by a length scale of 20%.

of the experiment length. For example l = 5 is equivalent to 20%. This is because the

length of the experiment varies for Ca2+ spike sequences. Thus, using a percentage

gives an approach to compare length scales when the experiment length varies. Indeed,

scaling doesn’t affect the computational cost, for example T = 20 and l = 2 produces

NFFT which is the same if we used T = 40 and l = 4. We find a linear trend between

the length scale and the average time taken to sample from the prior for the majority

of the points, shown by the red line. However, as the length scale increases we find

that for some values the time taken increases up to 6-fold compared to surrounding

length scales. This is due to amount of factors NFFT has, even after choosing a

suitable value. Recall, that small changes in the length scale only has a minimal affect
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on the sampled functions. Therefore, we restrict our choice of l to those near the

linear trend. The inferred intensity function to Ca2+ spike sequences usually require

a length scale in the region [5%, 15%] due to variation in spiking over time. Therefore,

the average time taken to sample an intensity function is in [0.0035s, 0.0100s].

Although above we chose N = 2000 picking a larger N has little affect on the

time required to sample an intensity function. This is because the spectral approach

simulates a function with length NFFT which is often far greater then N . For example,

suppose we require a sample on [0s, 20s] with a step size of 0.01s, and our GP

hyperparameters are l = 2 and σ2
f = 1000. Sampling from the GP via the spectral

approach — where we take Nω = 100 — we find that the period of the simulated

function is T0 = 378.56s, and NFFT = 37856. Therefore, increasing N up to 37856

will have no effect on the time taken to sample from the GP with the same step size.

If we were to require N larger than NFFT we would have to increase Nω which

increases the period of the sampled function. For example, with the same parameters

increasing Nω to 128 leads to a sampled function with T0 = 484.8s, and NFFT = 48480.

We now compare the spectral approach to both the direct method and MPA

approximation when l has a prior distribution. We do this for the spike sequence

used in Table 3.4. For each method we calculate the time taken per iteration of the

MCMC loop where we fit an inhomogeneous Gamma ISI distribution. The shared

GP prior parameters were: ω = 0.01, σ2
h = 0.25, σ2

f = 1000 and N = 2000. In the

direct approach and MPA σ2
n = 10−5, whereas for the spectral method σ2

n = 0. The

prior for l was a uniform distribution between 1 and 5. The average time taken

over 100 iterations is shown in Table 3.5 for each method, where for MPA we use

M = 10, 20, 50, 200.

Approach Direct
MPA (M = )

Spectral
10 20 50 200

Avg. time taken 10.87s 0.0658s 0.1106s 0.2701s 1.163s 0.0101s

Table 3.5: Comparison of the average time taken for a single MCMC iteration using

varying approaches when l has a prior distribution.
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We find that the spectral approach is substantially quicker than the direct approach

and MPA, even for small M . This vast increase in speed comes from removing the

requirement of computing covariance matrices and their decompositions. Thus, the

best method to use if l is given a prior distribution is the spectral approach.

3.4.3 Summary

To summarise, we have considered two different approaches to resolve the computa-

tional demand of our MCMC algorithms. We found that the MPA is best used when

we fit the length scale at the same time as the intensity function and ISI parameter.

We use this approach if we fit our model to several spike sequences simultaneously.

In particular, when we fit our model to a dataset of Ca2+ spike sequences obtained

from cells exposed to the same stimulus. If we fit the ISI distribution to a single spike

sequence there is often not enough information to infer l. Therefore for single spike

sequences we choose to give l a prior distribution and we use the spectral approach

because it is the fastest in this case. We base the prior on the estimate of l obtained

using the PWC prior lPWC, often by setting the mean of the distribution to be lPWC.



CHAPTER 4

Refractory Period

The refractory period is the minimum amount of time after a Ca2+ spike before

another Ca2+ spike can be triggered. A large number of experiments have shown the

existence of a refractory period and that the refractory period is cell type specific

[24, 61, 103, 130]. Therefore, it would be beneficial to extend our ISI model to include

the refractory period as a model parameter.

In this chapter, we extend the current modelling framework to include the refrac-

tory period and we develop an MCMC algorithm to sample the posterior distribution

of the refractory period. We then explore the advantages and disadvantages of

including the refractory period as a model parameter. In particular, we investigate

how the posterior distribution changes the effect of the refractory period on the other

model parameters: the intensity function xt and ISI parameter θ. We also consider

if a Ca2+ spike sequence contains enough information to accurately estimate the

refractory period.
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4.1 Including the refractory period in the ISI model

To add the refractory period into the ISI model we begin with an inhomogeneous ISI

distribution, such as those defined in Section 3.1. Without loss of generality, assume

the inhomogeneous ISI distribution is given by p(s, t|x, θ) where s is the time of the

previous spike, t is the time of the current spike, x is the intensity function and θ is

the ISI parameter. To construct an inhomogeneous ISI model with a refractory period

we add the parameter Tmin to represent the refractory period. With the inclusion of

Tmin the probability density function of the inhomogeneous ISI distribution becomes

prefract(t, s|x, θ, Tmin) =

0 if t− s < Tmin,

p(t, s+ Tmin|x, θ) otherwise.

(4.1)

For example the probability density function of the inhomogeneous Gamma ISI

distribution with refractory period is

prefract(t, s|x, γ, Tmin) =

0 if t− s < Tmin,

γx(t)
Γ(γ)

[
γX(s+ Tmin, t)

]γ−1
e−γX(s+Tmin,t) otherwise,

(4.2)

where

X(s, t) =

∫ t

s

x(u)du. (4.3)

The extension of the inhomogeneous ISI distribution with the refractory period

contains the original ISI distribution as a special case when Tmin = 0. Constructing an

ISI distribution with the refractory period can be viewed as shifting the inhomogeneous

ISI distribution in the time axis by Tmin. To illustrate this, we consider the Gamma

ISI distribution with the refractory period where the intensity function x = 1 is fixed.

We do this because the model becomes stationary and we can plot the probability

density function of the ISI distribution. This is illustrated in Figure 4.1 where we

show the ISI distribution when Tmin = 0s, 0.5s and 1s. We see that an increase in

Tmin shifts the ISI distribution to the right.
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Figure 4.1: Illustration of the ISI distribution with varying values of Tmin. The purple,

blue and yellow lines correspond to a Gamma ISI distribution with x = 1, γ = 10

where Tmin = 0s, 0.5s and 1s, respectively.

4.1.1 Affect on the intensity function

In Section 3.1 we explained how we parameterised the ISI distributions such that the

intensity function aligns with the average Ca2+ spiking rate irrespective of the spiking

history. However, with the addition of Tmin this property no longer holds. This can

be seen in Figure 4.1 since increasing Tmin while keeping the intensity function the

same increases the average ISI time. If we fix the intensity function x(t) = a for some

a > 0, without the refractory period the mean ISI is 1/a. If we include the refractory

period the mean ISI is shifted by the refractory period giving 1/a+ Tmin.

To visualise the impact of the refractory period on the mean spiking rate, we

simulate 1000 spike sequences from two inverse Gaussian ISI distributions with the

refractory period which only differ in Tmin, where for one Tmin = 0s and the other

Tmin = 0.2s. We then bin the spike times to create peristimulus-time histograms.

This is shown in Figure 4.2. We see that the model without the refractory period

has a larger mean spiking rate which coincides with the intensity function of the ISI
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Figure 4.2: Illustration of the affect of including the refractory period as a model

parameter on the intensity function. We simulated 1000 spike sequences from two

ISI distributions. Namely, an inhomogeneous Inverse Gaussian ISI distribution

with the refractory period where the ISI parameter λ = 2 and intensity function

x(t) = sin(t/2.5) + 1.1 — shown by the black line — and Tmin = 0s or 0.2s. The

lighter blue histogram is obtained by binning the spike sequences when Tmin = 0 and

the darker blue when Tmin = 0.2. The red line corresponds to the intensity function

sifted by Tmin as described in equation (4.4).

model — shown by the black line. When Tmin > 0 the mean spiking rate decreases.

This means that the intensity function no longer describes the mean spiking rate

when Tmin > 0. Notice that when the intensity function is larger, the refractory

period causes a larger decrease in the mean spiking rate. This occurs because the

larger the intensity function, the smaller the average ISI and therefore the larger the

affect of the refractory period. For example, suppose we have the intensity function

x = 5, then the mean spiking rate without a refractory period is 1/x = 0.2s. If

we include a refractory period of Tmin = 0.2s, then the mean spiking rate becomes

1/x+ Tmin = 0.4s. Therefore the average ISI time has doubled which is equivalent to

50% of the spiking rate without the refractory period. On the other hand, if x = 0.5
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this gives a mean spiking rate of 1/x = 2s and adding Tmin = 0.2 changes the mean

spiking rate to 1/x+ Tmin = 2.2s which is equivalent to a spiking rate of 5/11 which

is approximately 90.1% of the spiking rate without the refractory period.

We can calculate the resultant mean spiking rate by generalising the above

calculations by

(Mean spiking rate) = (x+ Tmin)−1. (4.4)

This result is a quasi-stationary approximation that is only valid for slowly changing

x(t).

This is shown by the red line in Figure 4.2, which coincides with the mean spiking

rate for the model with the refractory period.

Therefore, when considering models including the refractory period we cannot

directly compare intensity functions. Instead, we need to compare the mean spiking

rate which is calculated using the intensity function and refractory period, as shown

in (4.4).

4.2 Estimating Tmin

In this section we explore how the addition of the refractory period as a model

parameter affects the computation of the posterior distribution. Firstly, recall that

we use a Bayesian framework where the posterior distribution is calculated using

Bayes’ theorem. More precisely, consider the inhomogeneous ISI model with the

refractory period with model parameters: the intensity function x, the ISI parameter

θ and the refractory period Tmin. Given a spike sequence y = {yi}Ni=1 the posterior

ISI distribution is given by

π(x, θ, Tmin|y) =
π(y|x, θ, Tmin)π(x, θ, Tmin)

π(y)
. (4.5)

Therefore to calculate the posterior distribution we need: the likelihood π(y|x, θ, Tmin),

the prior π(x, θ, Tmin) and the normalising constant π(y).

First we consider the likelihood. Similar to the ISI model without the refractory
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period, the likelihood factorises into individual ISIs giving

π(y|x, θ, Tmin) = p1(y1|x, θ, Tmin)pT (T, yN |x, θ, Tmin)
N∏
i=2

prefract(yi−1, yi|x, θ, Tmin).

(4.6)

The ISI distribution prefract is defined in equation (4.1). However, we need to decide

how Tmin affects p1, the time until the first Ca2+ spike, and pT , the time after the last

Ca2+ spike until the end of the experiment. We assume that Tmin has no effect on p1,

since we do not know the time of the last spike before the initial spike. Hence, the

refractory period may have already occurred. As in the model without the refractory

period, we assume p1 comes from an inhomogeneous Exponential distribution

p1(y1|x) = x(y1)e−X(0,y1). (4.7)

The refractory period does affect pT . This is because if the time difference between

the last spike yN and the end of the experiment T is less than Tmin, then the cell is in

the refractory period and no Ca2+ spike can occur. Therefore pT = 1 if T −yN < Tmin.

To be consistent with the model without the refractory period we choose pT to

represent the probability of no spike in [yN , T ] from an inhomogeneous Exponential

distribution with a refractory period

pT (T, yN |x, θ, Tmin) =

1 if T − yN < Tmin,

e−X(yN+Tmin,T ) otherwise.

(4.8)

Consider next the prior distribution. We choose to give each model parameter an in-

dependent prior. Therefore, the prior factorises giving π(x, θ, Tmin) = π(x)π(θ)π(Tmin).

Details of the prior for the intensity function and ISI parameter can be found in

Chapter 2. Therefore, to generalise the prior to include the refractory period we

only need to add a prior for Tmin. As Tmin can only take values between zero and

the minimum ISI time TISI = mini∈{1,...N−1} yi+1 − yi, we require a prior distribution

on [0, TISI]. As a priori we have no knowledge of the refractory period, we use a

non-informative prior, namely the uniform distribution

π(Tmin) = 1/TISI. (4.9)
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Similar to the model without the refractory period, the normalising constant π(y)

is computationally challenging. Therefore, to avoid calculating it we utilise MCMC

algorithms to sample from the posterior distribution. In particular, in Chapter 2

we used a Gibbs sampler to update each model parameter individually, while the

remaining parameters are fixed. With the addition of Tmin this creates an extra step

where we update the refractory period. We choose to use a RW-Metropolis algorithm

to update Tmin, which is described in further detail later in this section. Therefore,

to sample from the posterior distribution, the MCMC algorithm begins by choosing

initial values x0, θ0 and (Tmin)0. Then we iterate the process

Step 1: Update x(t) applying either: a RW-Metropolis algorithm for the constant prior

(Section 2.4.1); a RJMCMC algorithm for a piecewise constant prior (Section

2.4.2) or an under-relaxed algorithm for a GP prior (Section 2.4.3).

Step 2: Update θ using a RW-Metropolis algorithm (Section 2.4.4).

Step 3: Update Tmin using a RW-Metropolis algorithm.

In Steps 1 and 2 the only difference from the model without the refractory period

comes from the likelihood function, which is updated to include the refractory period

as shown in equation (4.6).

To update the refractory period we use a RW-Metropolis algorithm, similar to

the method used for the ISI parameter shown in Section 2.4.4. Recall that as we

use the RW-metropolis algorithm within a Gibbs sampler when updating Tmin we

treat the intensity function x and ISI parameter θ as fixed. Therefore we evaluate

the conditional distribution π(Tmin|y, x, θ) rather than the full posterior distribution.

Note that any terms not involving Tmin will cancel in the acceptance probability.

Therefore the conditional distribution is proportional to the likelihood function, as
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shown below

π(Tmin|y, x, θ) ∝ π(y|x, θ, Tmin)π(x, θ, Tmin), (4.10)

= π(y|x, θ, Tmin)π(x)π(θ)π(Tmin), (4.11)

∝ π(y|x, θ, Tmin)
1

TISI

, (4.12)

∝ π(y|x, θ, Tmin). (4.13)

Since we are only updating Tmin we remove any terms that are purely in x or θ in

the likelihood π(y|x, θ, Tmin). This is shown below for the inhomogeneous Gamma

ISI distribution with the refractory period, in the case where each ISI and the time

after the last spike are larger than Tmin.

π(Tmin|y, x, θ) ∝ π(y|x, θ, Tmin) (4.14)

= x(y1)e−X(0,y1)eX(yN+Tmin,T ) (4.15)

×
N∏
i=2

γx(yi)

Γ(γ)
[γX(yi−1 + Tmin, yi)]

γ−1 eγX(yi−1+Tmin,yi), (4.16)

∝ eX(yN+Tmin,T )

N∏
i=2

X(yi−1 + Tmin, yi)
γ−1eγX(yi−1+Tmin,yi). (4.17)

If the time after the last spike is smaller than Tmin then the term eX(yN+Tmin,T )

disappears.

In order to sample the refractory period we first initialise Tmin to be half the

minimum ISI time (Tmin)0 = TISI/2. Suppose the current refractory period is (Tmin)cur.

To propose a candidate refractory period (Tmin)can we draw from the normal distri-

bution with mean (Tmin)cur and variance σ2
Tmin, (Tmin)can ∼ N((Tmin)cur, σ

2
Tmin). The

sampling variance is often taken to be 1/20 of the minimum ISI time σ2
Tmin = TISI/20,

to ensure proposed values often occur in the region [0, TISI].

By using a RW-Metropolis algorithm the transition probabilities cancel and the

probability we accept (Tmin)cur becomes

pacc = min

{
1,
π((Tmin)can|y, x, θ)
π((Tmin)cur|y, x, θ)

}
. (4.18)

Converting to the logarithmic scale we accept the candidate value if

log u < log π((Tmin)can|y, x, θ)− log π((Tmin)cur|y, x, θ),
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where u ∼ U [0, 1].

4.3 Advantages and disadvantages of including Tmin

With the introduction of the refractory period, the model remains theoretically

identifiable, where we can learn the true values of our model’s underlying parameters

given an infinite number of observations. However, with the addition of the refractory

period we have another parameter to infer. With the limited information available

in a single Ca2+ spike sequence we need to investigate whether the extended model

leads to a more informative posterior ISI distribution compared to the model without

the refractory period. We do this by considering two examples using simulated spike

sequences to fit the inhomogeneous Exponential ISI distribution with and without

the refractory period and the inhomogeneous inverse Gaussian ISI distribution with

and without the refractory period.

We begin by simulating spike sequences from a known model, and fitting the ISI

distribution with and without the refractory period. We generate 50 spike sequences

in [0s, 20s] from an inhomogeneous inverse Gaussian ISI distribution with intensity

function x(t) = 2, ISI parameter λ = 4 and Tmin = 0.2. This gives an average of 28.5

spikes per spike sequence. For both the simulated spike sequences and the models we

infer we will assume the intensity function is constant. This allows comparison of the

ISI distribution directly in addition to the model parameters. We use the MCMC

algorithms to sample 100,000 iterations from each model. We remove the first 20,000

iterations as a burn-in period. The MCMC parameters were chosen to be σ2
x = 0.25

and σ2
h = 0.25. When we infer the refractory period we set σ2

Tmin = TISI/20, where

TISI is the minimum ISI time. To visualise the posterior distribution we randomly

choose 200 iterations. For each iteration we convert the model parameters to an

ISI probability distribution and plot each ISI probability distribution on the same

graph. Each line has a large transparency, therefore darker regions correspond to

more likely values of the ISI distribution. We use this approach because it illustrates

the uncertainty in the estimation of the ISI distribution and the refractory period.
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Figure 4.3: Illustration of the posterior inhomogeneous Exponential ISI distribution

with and without the refractory period. (A,B) show samples of the posterior ISI

distribution when fitted to one and ten simulated spike sequences, respectively. The

black line represents the ISI distribution the simulated spike sequences were drawn

from. Red and blue lines correspond to samples from the model with and without

the refractory period, where the overlap is shown in purple. In (A) the ISIs used to

fit the models are shown by black ticks on the x axis.

We first consider the inhomogeneous Exponential distribution with and without

the refractory period. This is the only ISI distribution considered with no ISI

parameter. Moreover, an Exponential distribution is decreasing over time therefore

no parameterisation can capture a refractory period. Therefore, the inhomogeneous

Exponential ISI distribution with the refractory period is unique from the distribution

without it.

This is illustrated in Figure 4.3, where the models with and without the refractory

period are shown in red and blue, respectively. We see that neither model can capture

the underlying inverse Gaussian ISI distribution — shown by the black line — whether

the models are fitted to one spike sequence (Figure 4.3(A)) or ten spike sequences

(Figure 4.3(B)). However, the model with the refractory period improves upon the
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model without it. In particular, with the refractory period the model captures that

no ISIs are smaller than 0.4s. This example shows that the addition of the refractory

period for the Exponential ISI distribution allows the model to capture a larger

range of ISI distributions. Moreover, the posterior distribution of the Exponential

ISI model with the refractory period is unique from the posterior distribution of the

inhomogeneous Exponential without the refractory period.

All other ISI distributions — Gamma, inverse Gaussian, log-normal and Weibull

— contain an ISI parameter, which allows for flexibility in the variance of the ISI

distribution. In particular, for each the ISI parameter allows the density of the ISI

distribution to remain close to zero when the ISI time is small. This can be seen for

the Gamma ISI distribution in Figure 4.1, where the density is close to zero over the

first 0.2s when Tmin = 0s. Therefore, it is unclear whether the refractory period can

be disentangled from the intensity function and ISI parameter.

To investigate, we repeat the process shown for the Exponential ISI distribution in

Figure 4.3 for the inverse Gaussian ISI distribution. This is shown in Figure 4.4. We

find that the ISI distribution with or without the refractory period is indistinguishable

when the models are fit to either one or ten spike sequences shown in Figure 4.4(A-B),

respectively. This is illustrated by samples of the posterior ISI distribution with

and without the refractory period (red and blue lines) overlapping — creating the

illusion of purple lines. This example illustrates the difficultly in separating the

refractory period from the intensity function and ISI parameter. This is because the

refractory period can be subsumed into a combination of the intensity function and

ISI parameter. Although shown for the inverse Gaussian ISI distribution the same

holds true for the Gamma, log-normal and Weibull ISI distributions. Therefore, the

addition of the refractory period has not provided any extra information about the

ISI distribution when the models are fitted to one or ten spike sequences.

Although the refractory cannot be accurately estimated as a model parameter we

can approximate it by considering samples of the posterior distribution shown by the

blue lines in Figure 4.4. We find that the samples of the posterior ISI distribution

contain the refractory period since the probability density is close to zero in [0s, 0.3s].



Chapter 4: Refractory Period 139

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ISI (s)

D
en

si
ty

A

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

ISI (s)

D
en

si
ty

B

Figure 4.4: Illustration of the posterior inhomogeneous inverse Gaussian ISI distribu-

tion with and without the refractory period. (A,B) show samples of the posterior ISI

distribution when fitted to one and ten simulated spike sequences, respectively. The

black line represents the ISI distribution the simulated spike sequences were drawn

from. Red and blue lines correspond to samples from the model with and without

the refractory period, where the overlap is shown in purple. In (A) the ISIs used to

fit the models are shown by black ticks on the x axis.

Therefore, for each sample we can find the first time that the probability density

function reaches a threshold, such as 0.01. This will provide an upper bound for the

refractory period in each sample. For the samples shown in Figure 4.4(A,B) we find

that the upper bound for the refractory period — for threshold equal to 0.01 — is

[0.21s, 0.30s] and [0.23s, 0.27s], respectively. Therefore, from the ISI distribution plots

we have estimated an upper bound for the refractory period.

We now investigate the effect of the refractory period on the posterior distribution

of the intensity function and ISI parameter. This is illustrated in Figure 4.5, where we

plot the value of the constant intensity function against the ISI parameter correspond-

ing the models shown in Figure 4.4(A). We see that adding the refractory period

increases the range of values that the intensity function takes and shifts the values of
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Figure 4.5: Samples of the posterior intensity function and ISI parameter from an

inhomogeneous inverse Gaussian ISI distribution with and without the refractory

period, shown in blue and yellow, respectively. The posterior distribution coincides

with the ISI distribution shown in Figure 4.4(A), where the intensity function is

constant. Above and to the right of the plot we provide probability density functions

of the intensity function and ISI parameter, respectively.

the ISI parameter. In particular, the 95% credible region of the intensity function

went from [1.22, 1.47] to [1.09, 1.53] with the inclusion of the refractory period. This

corresponds to a 73% increase in the range of the 95% credible region, whereas the

ISI parameter changed from [6.53, 14.52] to [3.90, 12.32] with the inclusion of the

refractory period. This demonstrates that the ISI parameter of the inverse Gaussian

ISI distribution becomes smaller with the inclusion of the refractory period and this

also corresponds to a 5% increase in the range of the 95% credible region.

In the above example we used the inverse Gaussian ISI distribution, however the

same behaviour occurs for the Gamma, log-normal and Weibull distributions. This

is because in each model the intensity function and ISI parameter can be used in

combination to create near zero probability density for small ISI times, mirroring the

refractory period. In the example provided we concentrate on a constant intensity
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function to create clear visualisations of the issue. The constant intensity function

can be viewed as a special case of the inhomogeneous ISI distributions and the issue

remains when allowing for time-varying intensity functions.

In summary, we have shown that the addition of the refractory period to the

inhomogeneous Exponential ISI distribution allows for a a wider variety of Ca2+

ISI dynamics to be captured. However, for all other considered ISI distributions —

Gamma, inverse Gaussian, log-normal and Weibull — it is difficult to untangle the

refractory period from the intensity function and ISI parameter. We find that the

models without the refractory period capture a near identical posterior ISI distribution

to the model with the refractory period. Moreover, inclusion of the refractory period

leads to more uncertainty in the parameter estimates. Therefore, we only include the

inhomogeneous Exponential ISI distribution with refractory period when analysing

Ca2+ spikes from HEK293 cells and astrocytes in Chapter 5.



CHAPTER 5

Application to Real Data

In this chapter, we use the model and methods developed in Chapters 2-4 to fit the

previously discussed inhomogeneous ISI distributions to Ca2+ spike sequences from

astrocytes and HEK293 cells. We use these models to gain insight into the Ca2+

response of the two cell types, which is driven by changes in the stimulus and stimulus

strength. In particular, since our models are inhomogeneous we examine how the

Ca2+ response varies over time. This is crucial in understanding Ca2+ dynamics as

many pathways occur on different time scales.

We also identify parameter values for our ISI models that can be used to easily

create surrogate Ca2+ spike sequences with similar properties to the real data. This

is beneficial because if we have a signalling cascade that is dependent on the timing

of Ca2+ oscillations then the surrogate spike sequences can be used as a realistic

input. This provides a cheaper alternative to simulating the Ca2+ concentration

from a detailed mechanistic model, which is computationally more expensive because

it generates additional characteristics such as the amplitude or width of the Ca2+

oscillations.

We first describe the methods to assess and compare the inhomogeneous ISI
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distributions. We then use these methods to analyse Ca2+ spike sequences obtained

from astrocytes and HEK293 cells under constant stimulus. Finally, we apply our

methods to Ca2+ spike sequences obtained from HEK293 cells challenged with a time

dependent stimulus. Specifically, the cells are challenged with a step-change, waves

and pulses of carbachol.

5.1 Model Assessment

In this section, we explore methods to assess the quality of our ISI models. In

particular, we require methods to distinguish the most appropriate ISI distribution

and prior for the intensity function.

We follow and build upon the approach used by Tilunaite et al., [16] which utilises

the time-rescaling theorem to rescale the ISI times, such that the rescaled ISI times

are independent and identically distributed (i.i.d) exponential random variables with

unit rate. To assess the goodness of fit they employ Quantile-Quantile (Q-Q) plots

and Kolmogorov-Smirnov (K-S) plots.

We begin by first illustrating how to create Q-Q and K-S plots and use them

for model assessment. We then improve on the methods developed by Tilunaite et

al., namely by using radians for the slope of the Q-Q and K-S plots and employing

violin plots instead of box plots. We also create other tools to aid model assessment.

Specifically, simulating spike sequences and plots of the rescaled ISIs in the order that

the ISIs occur. These two methods can detect whether the model can generate spike

sequences similar to those used to fit the model and dependence in the rescaled ISIs.

5.1.1 Kolmogorov-Smirnov and Quantile-Quantile plots

Recall that we define our models in terms of an intensity function x(t) and ISI

parameter θ, where the ISI probability density function of spikes occurring at times t

and s with no spikes between is denoted by p(t, s|x(t), θ).

The aim of this section is to assess how well our model — defined by x(t) and θ

and ISI distribution — describes the Ca2+ spike sequence with N spikes {yi}Ni=1 used
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to fit the model. To assess the quality of our ISI models we utilise the time rescaling

transformation. It states that any point process with an integrable conditional

intensity function can be transformed into a homogeneous Poisson process with unit

rate [97, 107, 131]. The conditional intensity function is defined as

q(t) = lim
∆t→0

Pr (N(t+ ∆t)−N(t) = 1|Ht)

∆t
, (5.1)

where N(t) is the number of spikes in the interval (0, t) and Ht is the spiking history

up to time t — but not including time t. The conditional intensity function q(t)

defines the instantaneous spike rate at time t given the history of spikes up to time t.

To test our models it is advantageous to define the conditional intensity function in

terms of the ISI probability density function by

q(t) =
p(t, yk|x(t), θ)

1−
∫ t
yk
p(u, yk|x(t), θ)du

(5.2)

for t > yk, where yk is the last spike before time t [105].

Let R(t) =
∫ t

0
q(u)du denote the integrated conditional intensity function. The

time rescaling theorem [107] states that rescaled spike times R(yi), for i = 1, . . . , N

are from a Poisson process with unit rate. Therefore, the rescaled ISI times τk

τk = R(yk)−R(yk−1) =

∫ yk

yk−1

q(u)du (5.3)

are i.i.d exponential random variables with unit rate.

A Q-Q plot is a graphical method to compare two probability methods by plotting

their quantiles against each other. In our case, we compare the quantiles of the

exponential distribution with rate one and our empirical quantiles — the rescaled ISI

times. If our model is correct the rescaled ISIs should be drawn from an exponential

distribution with rate one and therefore the points of the Q-Q plot should lie on the

line y = x. To construct a Q-Q plot, we first generate the empirical quantiles τ̂k as

the set of ordered τk from smallest to largest. The quantiles τ k for an exponential

distribution with rate one are given by τ k = − log
(
1− k−0.5

N

)
for k = 1, . . . , N where

N is the number of Ca2+ spikes. If the model is correct then the Q-Q plot should

form a straight line through the origin with slope one [132, 133].
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The K-S plot is another goodness of fit graphical test[134]. It claims the model

is correct if uk = 1 − e−τk are i.i.d uniform random variables on [0, 1]. Therefore,

plotting the ordered uk against sk = k−0.5
N

for k = 1, . . . , N forms a straight line

through the origin with slope one. The K-S plot is similar to the Q-Q plot except

the quantiles are transformed to the uniform distribution on [0, 1]. The K-S plot is

more sensitive at the center of the distribution, whereas Q-Q plots are more sensitive

at the tails.

To ascertain which ISI model best describes a dataset of Ca2+ spike sequences we

calculate the slope of the Q-Q and K-S plots for each individual spike sequence in the

dataset. The slope is calculated using linear regression using least squares estimation.

An ISI model performs well if the slopes obtained from individual spike sequences

are close to one. To visualise the set of slopes obtained from the Q-Q and K-S plots

Tilunaite et al. [16] used box and whisker plots. This is a good approach because it

indicates the spread of the slopes as well as any skewness. However, we choose to use

violin plots to visualise the slopes. A violin plot, is similar to a box and whisker plot,

except in addition we have a kernel density plot which gives a visual representation of

how the slopes are distributed. This is beneficial since it informs on how many of the

slopes are close to one. Examples of violin plots compared to box and whisker plots

are shown in Figure 5.1, for three sets of slopes E, F and G. E contains 200 draws

from a uniform distribution on [0.3, 0.99], F = 1/E and G contains the smallest 100

values from E and the largest 100 from F . We see that the white point and black

line in the violin plot agrees with the box of the box and whisker plot — consisting

of the 25%, 50% and 75% quantiles. Furthermore, the range of the box and whisker

plot and violin plots are the same. However, the violin plot’s shape informs on the

distribution of the slopes, unlike the box and whisker plot. This can be seen for the

set G in Figure 5.1(A), where the violin plot is narrower in [0.8, 1.2]. This indicates

that few of the slopes are in this region. No such information is provided in the box

and whisker plot.

Note that the slope obtained by least square linear regression is in the region

[0,∞]. We cannot have negative slopes since the experimental quantiles are ordered
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Figure 5.1: Illustration of violin plots compared to box and whisker plots, for 3

datasets E, F and G. E consists of 200 draws from a uniform distribution on

[0.3, 0.99], F = 1/E and G consists of the smallest 100 draws from E and the largest

100 from F . (A,B) show the difference from using the slope compared to the angle of

the slope in radians.

from smallest to largest. The ideal slope equals one whereas slopes in [0, 1) and (1,∞

are too flat and steep, respectively. We have no preference whether the slope is flatter

or steeper than the ideal slope. Therefore, a slope of say 1.5 is as far from the ideal

slope as the slope of 1/1.5 = 0.67 as they are the mirror of each other through the line

with slope 1. However, since 0.67 is closer to one than 1.5, we prefer the shallower

slope over the steeper one. This can be seen in Figure 5.1(A) where the slopes in

datasets E and F are equally far from the ideal slope, i.e F = 1/E. However, for

both the violin plots and box and whisker plots we find that F is stretched over a

larger range than E and further from ideal slope line — shown by the dashed line. To

mitigate this issue we transform the slope sslope to the angle of the slope in radians

sangle by sangle = tan−1 (sslope), mapping [0,∞] into [0, π/2]. The ideal slope of 1 is

transformed to the angle π/4. Using this transformation mirrored slopes are now

equidistant from π/4. For example slopes 1.5 and 0.67 are transformed to angles
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Figure 5.2: Posterior intensity distribution and Q-Q plot using an inhomogeneous

Gamma ISI distribution with a constant and GP prior — shown in black and red,

respectively. (A) The 95% confidence interval and posterior mean of the intensity

function fitted to a spike sequence shown by the black ticks. (B) Q-Q plot for the

models shown in (A), with the slope obtained by least square linear regression. The

dashed line represents the line with slope one.

0.983 and 0.588, respectively, and both are 0.197 away from π/4. This can be seen in

Figure 5.1(B) where the violin plots of E and F are now mirror images through the

line π/4 and G is symmetric. From now on we use the angle of the slope rather than

the slope directly.

5.1.2 Issue with Q-Q and K-S plots

Note that for both the Q-Q and K-S plot we order the experimental quantiles from

smallest to largest. Therefore, neither approach accounts for the dependence between

the τk. This can cause an issue where the Q-Q or K-S plots show that a model fits

the data well, even if the τk are dependent. To visualise this, we fit an inhomogeneous

Gamma ISI distribution to a Ca2+ spike sequence using a constant and GP prior for
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the intensity function. The spike sequence comes from a step-change experiment,

where a HEK293 cell was initially stimulated with 10µM carbachol. The stimulus

was exchanged at 3430s for 50µM carbachol. The posterior mean of the intensity

function with 95% credible interval is shown in Figure 5.2(A), where the spike times

are given by the black ticks. From this figure it appears that the model fitted with

the GP prior performs better than the model with the constant prior because the

intensity is larger in the regions [0s, 1000s] and [3300s, 4200s] where there are more

spikes. In Figure 5.2(B) we calculate the Q-Q plot for the models using a constant

and GP prior shown by the black and red points, respectively. The Q-Q plot suggests

that the constant prior leads to a better model than the GP prior. This is because

the points are closer to the line through the origin with slope one — shown by the

dashed line. Furthermore, by fitting the best line though the Q-Q points we find

slopes of 0.91 and 0.76 for the constant and GP priors, respectively. Therefore, it

appears that using a constant prior leads to the model which better describes the

Ca2+ spike sequence.

To validate the findings of the Q-Q plot we plot the rescaled ISIs in the order that

the ISIs occur. Namely, τ1, τ2, ..., τN . We denote this as the rescaled ISI occurrence

plot. If the model is correct each τk should be exponentially distributed with rate 1

and independent of other rescaled ISIs. Thus, in this plot we look to identify any

dependence between the rescaled ISIs. Moreover, we simulate spike sequences from

the posterior distribution. If the model is suitable the simulated spikes should mirror

those used to fit the model. This is shown in Figure 5.3.

First consider the rescaled ISI occurrence plot in Figure 5.3(A,B) for the constant

and GP prior, respectively. For the constant prior we find the τk appear to depend

on the order the ISIs occur. In particular, the smaller τk are often grouped together

— i.e quantile numbers 1-6 and 16-22 in (A). Whereas, if we use a GP prior there

is no evidence from the rescaled ISI occurrence plot that the τk are dependent.

This provides evidence against using the constant prior compared to the GP prior.

Moreover, we simulate 10 spike sequences from the posterior ISI distribution for both

the constant and GP prior – shown in Figure 5.3(C,D). We find that the simulated
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Figure 5.3: Comparison of rescaled ISI in the order they occurred (A,B) and ten

simulated spike sequences (C,D) for the ISI distributions with a constant (A,C) and

GP prior (C,D). In (A,B) the rescaled ISIs are obtained by rescaling the ISIs of the

spike sequence shown in Figure 5.2(A) using the posterior Gamma ISI distribution

fitted to the same spike sequence with a constant and GP prior, respectively. In

(C,D) each black row corresponds to a simulated spike sequence and the red row

corresponds to the spike sequence used to fit the models.

spike sequences generated from the model assuming a constant prior are not similar

to the spike sequence used to infer the model. This is because the spike times occur

randomly over the entire interval. When we used a GP prior the simulated spike

sequences have a similar behaviour to the spikes used to fit the model, where we get

more spikes in [0s, 1000s] and [3300s, 4200s] and less spikes elsewhere.

Therefore, using the rescaled ISI occurrence plot and simulated spike sequences

shows that, for this example, the model using a GP prior is preferable to the model
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with a constant prior. This, confirms that the Q-Q and K-S plots alone are not

enough to assess the models. To decide which model best describes the Ca2+ spike

sequences we use a combination of rescaled ISI occurrence plots, simulated spike

sequences, Q-Q plots and K-S plots.

5.2 Constant Stimulus

In this section we apply our methods to HEK293 cells and astrocytes that have been

challenged with a constant stimulus.

One could argue that the ISIs would be independent of time due to the stimulus

not depending on time. Indeed, previous investigates have made this assumption, such

as [6, 61]. However, such studies often require cleaning of the data. This is because

once the stimulus is applied there is often a region of transients and potentially a

linear trend in the ISIs, see for example [6]. However, since our models do not require

stationary ISIs we can use the entire Ca2+ spike sequences without the removal of

transients.

Therefore, by fitting our models we look to gain insight into the mechanics that

drive the Ca2+ oscillations, and search for any time-dependent properties of the Ca2+

oscillations in cells challenged with a constant stimulus. Moreover, we investigate

the difference in response between HEK293 cells and astrocytes, together with the

difference caused by varying the stimulus strength.

5.2.1 Astrocytes

We first consider astrocytes that are stimulated with glutamate. We have two datasets

containing 56 and 73 Ca2+ spike sequences where astrocytes were challenged with

10µM and 100µM glutamate, respectively. Each Ca2+ spike sequence is obtained from

a unique cell. In both experiments the Ca2+ concentration was recorded every 0.5s

and the stimulus was first applied at 120s. The experiments lasted 1192.5s and 1200s

when the stimulus strength was 10µM and 100µM, respectively. The experimental

data was kindly provided by Dr. Alexander Skupin and for the detailed experimental
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Figure 5.4: Raster of Ca2+ spike sequences obtained by stimulating astrocytes with

10µM and 100µM glutamate in (A,B), respectively. Each Ca2+ spike sequence

corresponds to the response from a unique astrocyte. We split the datasets into the

Ca2+ spike sequences with at least 15 spikes and those with fewer spikes, shown by

the red and black points, respectively. The solid black line represents the length of

the experiments.

protocol we refer the reader to [61].

We illustrate the Ca2+ spike sequences in Figure 5.11, where each row corresponds

to the response of an individual cell, and each dot in a row corresponds to a spike

time. In both datasets there are no Ca2+ spikes until the stimulus is applied. Once

the stimulus is applied a spike is recorded in all cells within the next 7s. In general,

we find there are more spikes just after the stimulus is applied than later in the

experiment and some cells cease spiking before the end of the experiment. Comparing

Figure 5.4(A) and Figure 5.4(B) we find it is more common for cells to stop spiking
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before the end of the experiment if challenged with the smaller stimulus. Moreover,

the ISIs appears more regular when cells are challenged with the larger stimulus.

This is especially true for cells that have more Ca2+ spikes. Surprisingly, the cell with

the most Ca2+ spikes is challenged with the smaller stimulus.

In Figure 5.4 we observe that all cells exhibit a Ca2+ spike at the onset of

stimulus. Moreover, Ca2+ spikes appear to occur more frequently in the first half of

the experiment. Therefore, we first fit the datasets as a whole to a single ISI model.

This approach aims to learn whether a single ISI model can capture the behaviour

of all responses to the same stimulus. In this approach each spike sequence is a

realisation from the same ISI distribution. Another way to view this approach, is

that we look at the mean response of astrocytes to the same stimulus.

We fit the datasets using an inhomogeneous Exponential, Gamma, inverse Gaus-

sian, log-normal and Weibull ISI distributions. For each ISI distribution we use a

constant, PWC and GP prior for the intensity function. We sample from the posterior

with 100,000 iterations after an initial burn in of 100,000. The parameters for the

constant prior were σ2
x = 0.5 and σ2

h = 1. The parameters for the PWC prior were

kmax = 25, λ = 10, κ = κ0 = 1, µ = 0.5 and the PWC heights had a martingale

structure. Finally, the parameters for the GP prior were w = 0.001, N = 2400,

σ2
v = 1000 and σ2

n = 10−6. Since each dataset contains a large quantity of spike

sequences we fit the length scale of the GP where the prior of l is an Exponential

distribution with rate 0.01 and σ2
l = 0.5.

To decide which models perform best we consider simulated spikes sequences and

consider the likelihood of the model. Of the three prior types we find that the PWC

performs the best. This is because the PWC framework has the largest flexibility due

to the intensity function being discontinuous, which allows the intensity function to

abruptly vary over time. In this case, with a PWC prior we are able to capture the

sharp increase in spiking rate at the onset of the stimulus followed by a brief plateau

at a lower intensity — see Figure 5.5. Neither the GP prior nor constant prior are

able to capture this feature.

Due to using a large number of spike sequences the posterior intensity function
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Figure 5.5: Comparison of the posterior of the inverse Gaussian ISI distribution with

a PWC prior fitted to datasets of Ca2+ spike sequences when the applied stimulus

was 10µM (black) and 100µM (red) glutamate. For each we plot the mean and

95% credible region of the posterior intensity function distribution and a box plot

summary of the posterior ISI parameter distribution.

is similar across all choices of ISI distribution for the PWC prior. This is expected

because the intensity function describes the mean spiking rate. We find that the

inhomogeneous inverse Gaussian ISI distribution is the most suitable model for both

the Ca2+ spike datasets.

To visualise the posterior distribution we show the mean and 95% credible region

of the posterior intensity function distribution and a box plot summary of the posterior

ISI parameter distribution. This is shown in Figure 5.5 when the applied stimulus

is 10µM and 100µM glutamate, respectively. We find that the posterior intensity

function has a similar shape irrespective of the strength of the stimulus. The posterior
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intensity function remains close to zero until the onset of the stimulus, at which

point a spike in the intensity function occurs. This shows that a Ca2+ spike occurs at

the onset of stimulus. After this spike the intensity function immediately decreases

from 0.126 to 0.0087 for approximately 20s. This shows that after the first Ca2+

spike there is often a recovery time before the next spike can occur. After 20s the

intensity increases 4-fold indicating that the astrocytes begin to spike. We see that

the intensity function gradually decreases until approximately 400s. Afterwards the

intensity functions are approximately constant for the remainder of the experiment.

However, we notice that the posterior intensity function is larger when the stimulus

is 10µM in [140s, 1000s], indicating that cells present more spikes when applied with

a smaller concentration of glutamate. Furthermore, the posterior intensity function

decreases after 1000s when the stimulus strength is 10µM. This shows that some

cells do not spike until the end of the experiment, unlike when the stimulus strength

is 100µM. Finally, there is a small peak in the posterior intensity function fitted

from cells challenged 10µM glutamate around 400s. Returning to the raster plot in

Figure 5.4(A) we see that a subset of cells spike in this region causing the peak in

the intensity function. Since this is not common to all cells, it is most likely that

the underlying spiking rate would continue to decrease in [350s, 400s] and this is not

a feature of the smaller stimulus. We find that the ISI parameter is larger when

a larger stimulus is used. Recall that a larger ISI parameters gives rise to a larger

variance in the ISI distribution — see Section 3.1. This suggests that there is less

variability in the ISIs when the stimulus applied is larger.

To ascertain if the inverse Gaussian ISI model consistently describes all Ca2+ spike

sequences in the dataset we simulate spike sequences from the posterior distribution.

Each simulated spike sequence is created by first drawing a random iteration from

the samples obtained using the MCMC, consisting of an intensity function and ISI

parameter. We then follow the approach in Chapter 2 Section 2 to simulate spike

sequences. 100 samples from the posterior ISI distribution fitted from astrocytes

challenged with 10µM glutamate are shown in Figure 5.6. The simulated sequences are

ordered by their total number of spikes. Comparing the simulated spike sequences to
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Ca2+ spike sequences — see Figure 5.4(A) — we find less variability in the simulated

spike sequences. In particular, simulated spike sequences do not capture that some

Ca2+ spike sequences only have spikes in the first half of the experiment. This

provides evidence that the mean response of astrocytes does not accurately describe

the Ca2+ dynamics of individual cells. Therefore, we need to fit our ISI models to

individual Ca2+ spike sequences to account for the cell-to-cell variability of Ca2+

oscillations.

Note that an individual Ca2+ spike sequence contains far less information than an

ensemble of spike sequences. Therefore, when fitting ISI distributions to individual

spike sequences we require the spike sequence to contain at least 15 spikes, such that

there is enough information to infer the ISI distribution. These Ca2+ spike sequences

are shown in red in Figure 5.4.

For each individual spike sequence we fit an inhomogeneous Exponential, Expo-

nential with refractory period, Gamma, inverse Gaussian, log-normal and Weibull

ISI distributions, where the intensity function has a constant, PWC or GP prior. We

sample from the posterior distribution for 200,000 iterations after an initial burn in

of 200,000. The parameters for the constant prior were σ2
x = 0.5 and σ2

h = 1. The

parameters for the PWC prior were kmax = 25, λ = 10, κ = κ0 = 1 and µ = 0.5

where the PWC heights have a martingale structure. Finally, the parameters for

the GP prior were w = 0.001, N = 2400, σ2
v = 1000 and σ2

n = 0. The length scale l

of the GP prior has a prior distribution utilising the PWC approximation, lpwc by

l ∼ Uniform(lpwc, lpwc + 5) — see Section 3.3 for more detail.

To visualise the difference between fitting ISI distributions to individual spike

sequences and a dataset of spike sequences we compare the posterior intensity

function distributions of both, where we use an inhomogeneous inverse Gaussian ISI

distribution with a PWC prior. This is shown in Figure 5.6(B) when the Ca2+ spike

sequences were obtained from astrocytes challenged with 10µM glutamate. The black

lines correspond the mean of the posterior intensity function distribution fitted using

individual Ca2+ spike sequences. The mean of these intensity function is shown by

the yellow line. Furthermore, the mean and 95% credible region of the posterior
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Figure 5.6: (A) 100 Samples taken from the posterior inverse Gaussian ISI distribution

with a PWC prior fitted from the dataset of astrocytes challenged with 10µM

glutamate — shown in Figure 5.4(A). (B) Comparison of posterior intensity functions

fitted either from individual Ca2+ spike sequences (black) or the dataset of all Ca2+

spike sequences (red). For each ISI distribution fit from an individual Ca2+ spike

sequence we show the mean of the posterior intensity function distribution and

the average over these intensity functions is shown by the yellow line. For the ISI

distribution fit from the dataset of all Ca2+ spike sequences we present the mean and

95% credible region of the posterior intensity function distribution.

intensity function distribution fitted using the entire dataset is shown by the red line

and region — we denote this the collective fit. The mean of the individual intensity

functions is close to the collective intensity function in [180s, 1200s]. However, there is

a large difference in [0s, 180s]. Firstly, we find that the individual intensity functions

do not converge to zero in [0s, 120s], even though most spike sequences contain zero

spikes in this region. This is due to the martingale prior for the heights of the PWC.

In particular, note that the second step of the PWC intensity function often occurs

at the peak in intensity at 120s. The prior for this height has a mean of the previous

height — e.g. the intensity in [0s, 120s]. Thus, the prior distribution penalises large
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changes in intensity, so that we have an artificially large intensity in [0s, 120s]. This

can be countered in two manners: add more spike sequences or change the prior for

the heights. As shown when considering the entire dataset the intensity converges

to zero in [0s, 120s] with adequate data. Changing to the independent prior for the

heights would also alleviate this issue. However, recall that we chose the martingale

prior over the independent to give structure to the intensity functions. This is because

heuristically we want our intensity function to mirror the continuous nature of the

arrival of stimuli to the cell. Notice that the mean of the individual intensity functions

does not capture the initial spike after the onset of stimulus followed by the brief

period of low intensity. Thus, when fitting our ISI model the additional information

of multiple Ca2+ spike sequences captures this feature, whereas the individual Ca2+

spike sequences do not.

Comparing the posterior mean intensity functions inferred from individual spike

sequences to the collective fit we see large differences in the intensity outside the

95% credible interval. In particular, some intensity functions have a dip between

[600s, 800s] and some converges to zero before the end of the experiment. This shows

that the collective fit does not capture the spiking rate of individual astrocytes. In

summary, we have shown quantitatively that astrocytes respond heterogeneously

when applied with the same stimulus and that the intensity function inferred from

the entire dataset gives a poor representation of the spiking behaviour. This also

holds true for astrocytes challenged with 100µM glutamate.

To assess each choice of ISI distribution and prior for the intensity function when

fitted to individual Ca2+ spike sequences we use Q-Q and K-S plots together with

simulated spikes and rescaled ISI occurrence plots as outlined in Section 5.1.

We begin by considering ISI distributions inferred from individual spike sequences

from the dataset where the applied stimulus was 10µM glutamate. Since the applied

stimulus is constant a natural assumption would be that the spiking rate would

mirror this. However, we find that the models with a constant prior for the intensity

function are outperformed by the PWC and GP prior. This can be seen in Figure

5.7 where the violins for the Q-Q and K-S plots for the constant prior have a larger
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range than the respective violins for the PWC and GP prior. Moreover, the rescaled

ISI occurrence plots indicate that the ISIs are dependent for the constant prior — see

Appendix B. We see that the slopes resulting from the inhomogeneous exponential

ISI distribution are far from the line of π/4, irrespective of the prior used for the

intensity function. We also find that the addition of the refractory period as a

parameter for the inhomogeneous exponential ISI distribution improves the resultant

slopes. However, the slopes are still far from the line of π/4 and other ISI models are

more suitable. Furthermore, we see that the inhomogeneous log-normal distribution

performs poorly. Each of the remaining three ISI distributions — Gamma, inverse

Gaussian and Weibull — perform well for both the PWC and GP prior. However,

the Weibull ISI distribution with a PWC prior performs the best with slope centered

about π/4 with the narrowest violins for both the slopes of the K-S and Q-Q plots.

We find similar results when considering individual spike sequences obtained from

astrocytes challenged with 100µM glutamate. The slope summaries of the Q-Q and

K-S plots are shown in Figure 5.8. By considering the rescaled ISI occurrence plot and

simulated spike sequences — shown in Appendix B — we can rule out the constant

prior for the intensity function. Consulting the slopes of the Q-Q and K-S plots we

find that the inhomogeneous Weibull distribution with a PWC prior perform the

best.

In Figure 5.9 we present the mean of the posterior intensity function distribution

and the mean of the posterior ISI parameter distribution when the stimulus applied

was either 10µM or 100µM glutamate. We first consider the intensity functions.

Concentrating on the region [100s, 400s] we see that the intensity function is larger

when the applied stimulus is smaller. This is surprising as often a larger stimulus

leads to larger Ca2+ response. One potential explanation could be the larger stimulus

depletes resources within the cell, such as the ER. Furthermore, the intensity functions

are more likely to converge to zero before the end of the experiment when the stimulus

is smaller. Finally, intensity functions vary less when the applied stimulus is larger,

i.e. the intensity functions are grouped closer together. Whereas, intensity functions

are more likely to take different shapes when the applied stimulus is smaller. For
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Figure 5.7: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models using the data of 24 astrocytes challenged with 10µM glutamate.

example not all intensity functions have a trough in intensity in [600s, 800s] and some

intensity function do not follow the decreasing pattern in [180s, 400s]. This implies

that a larger stimulus reduces the variability in the cell’s Ca2+ response. Indeed, it

has been shown that applying larger stimuli to astrocytes leads to a response that is

more deterministic, see [135]. Further evidence is provided by looking at the inferred

ISI parameter for each cell – shown in Figure 5.9 — where the ISI parameter is larger
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Figure 5.8: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models using the data of 29 astrocytes challenged with 100µM glutamate.

when the applied stimulus is larger. Note that for the inhomogeneous Weibull ISI

distribution the larger the ISI parameter the smaller the variance.

In summary, we have found that astrocytes challenged with a constant stimulus

react in a time dependent manner. By considering the ensemble of astrocytes tested

we found that cells respond to the stimulus by initiating a Ca2+ spike immediately.

This is followed by a brief — approximately 20s — drop in spiking rate, where we
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Figure 5.9: Comparison of the posterior Weibull ISI distribution with a PWC prior

fitted to individual Ca2+ spike sequences from astrocytes cells challenged with 10µM

(black) and 100µM (red) glutamate. Each Ca2+ spike sequence comes from a unique

astrocyte. For each fit we plot the mean of the posterior intensity function distribution.

We also plot the mean of the posterior ISI parameter distribution, where we produce

box plots for each stimulus strength.

often do not find a Ca2+ spike. Afterwards, the cells begin to exhibit regular Ca2+

spiking and over time the spiking rate decreases. We found that a single spiking

model does not describe the varying Ca2+ oscillations of all the cells suggesting we

should treat cells individually. However, we found a common property across most

cells where the first Ca2+ spike occurs at the onset of stimulus. Moreover, there

is period of 20s after the first spike where there is a reduced spiking rate. For the

individual fits, the inhomogeneous Weibull distribution best describes the Ca2+ spikes

of astrocytes, irrespective of the strength of the stimulus. Since the intensity function
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Figure 5.10: Comparison of posterior ISI distributions when approximated by a

constant intensity over the region [400s, 1100s]. This is shown for 5 posterior Weibull

ISI distributions inferred from individual Ca2+ spike sequences (black) and the fit

from the whole dataset (red) for cells challenged with 100µM glutamate.

is almost constant in [400s, 1100s] for cells challenged with the larger stimulus we can

calculate the ISI distribution in the region. This is shown for 5 individual fits and

the collective fit in Figure 5.10. We see large variability in the ISI distributions, and

that the model fitted from the dataset of Ca2+ sequences is spread across the range

of all potential cell responses but does not agree with a single individual fit.

Interestingly, the strength of the applied stimulus actually decreases the rate

at which the cell’s Ca2+ oscillations occur when initially exposed. However, the

fluctuations occur more regularly and often last longer compared to a weaker stimulus.

Therefore, in general we find that using a stronger stimulus weakens the initial Ca2+

response to the stimulus, but after the initial transients the Ca2+ spikes are more

regular and last further into the experiment.
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Figure 5.11: Raster of Ca2+ spike sequences obtained by stimulating HEK293 cells

with 10µM and 30µM carbachol in (A,B), respectively. We split the dataset into the

spike sequences with at least 15 spikes and those with fewer spikes, shown by the red

and black points, respectively. The black line shows the length of the experiments.

We provide a yellow box in (A) to indicate a region containing fewer spikes than

expected.

5.2.2 HEK293 cells

In this section we apply our methods to HEK293 cells challenged with constant

stimulus. We have two datasets containing 60 and 49 Ca2+ spike sequences where

HEK293 cells are challenged with 10µM and 30µM carbachol, respectively. Both

experiments lasted 3000s where the Ca2+ concentration was recorded every 5s. The

stimulus was applied at 30s. The experimental data was kindly provided by Dr. Colin

Taylor, for experimental protocol details we refer the reader to [6].

The Ca2+ spike times for both datasets are shown in Figure 5.11. We see that
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after the onset of stimulus the cells exhibit Ca2+ spikes. For both stimulus strengths

we witness more Ca2+ spikes at the beginning of the experiment and the rate of the

spikes decreases over the first 500s. After this time it is unclear whether the rate of

Ca2+ spikes plateaus or continues to decrease. The majority of cells express Ca2+

spikes over the entire experiment. Observe that the number of Ca2+ spikes varies

considerably from cell-to cell. For example HEK293 cells challenged with 30µM

carbachol have between 9 and 94 Ca2+ spikes. Comparing the datasets we notice that

the number of Ca2+ spikes appears larger for cells stimulated with 30µM carbachol.

Therefore, a larger stimulus strength may lead to a higher spiking rate. We also find

that cells challenged with the smaller stimulus with less than 35 Ca2+ spikes in total

appear to have a smaller spiking rate in [250s, 750s] then after 750s. This is shown by

the yellow region in Figure 5.11(A). Cells that have a larger number of Ca2+ spikes

or challenged with the larger stimulus do not have this behaviour.

To examine if any features are cell type specific we begin by fitting our ISI models

to the entire dataset of Ca2+ spike sequences. For both datasets we found that the

inverse Gaussian ISI distribution has the largest likelihood where we assume that the

intensity function has a PWC prior.

In Figure 5.12 we illustrate the posterior ISI distribution fitted to the dataset

of Ca2+ spike times. This is shown by the mean and 95% credible region of the

posterior intensity function distribution and box plots summaries of the posterior

ISI parameter distribution. We see that the shape of the posterior intensity function

is the same irrespective of the strength of the stimulus. Namely, the intensity is

initially close to zero and rapidly increases and peaks at approximately 40s. Then

the intensity function gradually decreases over the next 500s and plateaus, at which

point the intensity function remains almost constant. In comparison, we find that

the intensity function is greater when fitted to the dataset with the larger stimulus.

We see that the posterior ISI parameter distribution is similar for both datasets —

marginally smaller for the weaker stimulus. Therefore, the variability in the spiking

rate appears similar irrespective of the stimulus strength.

Similar to astrocytes we find that the average response of cells to constant stimulus
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does not accurately describe the response from individual cells. This can be seen in

simulated spike sequences provided in Appendix B. This is also evident in Figure 5.12,

as the 95% credible regions are narrow. Therefore, spike sequences generated from

the posterior ISI distribution do not contain the range of spike’s per spike sequence

that the original data has. Thus, to capture the cell-to-cell variability we fit our ISI

models to individual spike sequences.

We use the following parameters to fit our ISI models to individual spike sequences.

When the intensity function has a constant prior we choose σ2
x = 0.5 and σ2

h = 1. For

the PWC prior we set kmax = 25, λ = 10, κ = κ0 = 1 and µ = 0.5 where the PWC
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Figure 5.12: Comparison of the posterior inverse Gaussian ISI distributions with a

PWC prior fitted from the datasets where the applied stimulus was 10µM (red) and

30µM (black) carbachol, respectively. We present the mean and 95% credible region

of the posterior intensity function distributions and box plots of the posterior ISI

parameter distributions.
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heights have a martingale structure. The parameters for the GP prior were w = 0.001,

N = 1200, σ2
v = 1000 and σ2

n = 0. The length scale l of the GP prior has a prior

distribution utilising the PWC approximation, lpwc by l ∼ Uniform(lpwc, lpwc + 5). For

each choice of intensity function prior we recored 200,000 iterations of the MCMC

after an initial burn-in of 200,000.

To ascertain which ISI model best describes the Ca2+ spike sequences we consider

the slopes of the Q-Q and K-S plots. This is shown is Figure 5.13 when the HEK293

cells were challenged with 30µM carbachol. We refer the reader to Appendix B for

the Q-Q and K-S plot when the applied stimulus was 10µM carbachol. We find that

the most suitable model is either the inhomogeneous Gamma or inverse Gaussian ISI

distributions, where both have a PWC prior for the intensity function. However, since

the inverse Gaussian performed best when fitting the datasets of spike sequences, we

choose this distribution to consider the parameters of the individual fits.

In Figure 5.14 we compare the mean of the posterior inverse Gaussian ISI distri-

bution fitted to individual Ca2+ spike sequences. In (A,B) the ISI model is inferred

from HEK293 cells challenged with 10µM and 30µM carbachol, respectively. Almost

all posterior intensity functions begin with a large spiking rate which reduces quickly.

The time taken for the intensity functions to plateau varies cell-to-cell, between

[150s, 750s]. HEK293 cells challenged with the larger stimulus tend to take a longer

time to plateau then other cells. We see that most cells experience a near constant

spiking rate during the experiment after the first 500s. This spiking rate varies

between 0.43 and 3.0 spikes per 100s. Therefore, these intensity functions capture the

variability of Ca2+ response in HEK293 cells. Comparing the two stimulus strengths,

we find that the average number of spikes over 100s is 1.25 and 1.46 spikes for cells

challenged with 10µM and 30µM carbachol, respectively. This provides evidence that

a larger stimulus may lead to a faster spiking rate. Across the cells we find regions

where the intensity function includes sharp peaks and troughs. These correspond

to regions where multiple spikes occur quickly or no spikes at all. Towards the end

of the experiment the spiking rate of some cells converges towards 0. This shows

that the intensity functions capture that some cells do not spike over the entire
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Figure 5.13: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models using the data of 56 HEK293 cells challenged with 30µM carbachol.

experiment’s length. Comparing the intensity functions for the two datasets we see

that the shape of posterior intensity functions are broadly similar. However, we

find that for some cells challenged with the smaller stimulus after the initially peak

intensity at the beginning of the experiment there is a region of lower intensity that

takes approximately 500s. This does not occur for cells challenged with the larger

stimulus. The region of lower intensity could indicate that HEK293 cells require a

threshold of stimulus to arrive to the cell before regular spiking can occur.

We see that the mean posterior ISI parameter takes a large range of values between
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Figure 5.14: Overview of the posterior inverse Gaussian ISI distribution with PWC

prior fitted to individual Ca2+ spike sequences. The Ca2+ spikes come from HEK293

cells challenged with 10µM and 30µM carbachol in (A) and (B), respectively. For

each fit we plot the mean of the posterior intensity function distribution. We also plot

the mean of the posterior ISI parameter distribution, where we produce box plots

for each stimulus strength. The ISI parameters are coloured from purple to yellow

depending on their value. The matching intensity function is shown in the same

colour. The posterior mean intensity function and box plot of the ISI parameter fitted

from the datasets of Ca2+ spike sequences are shown in black — this corresponds to

the posterior mean and boxplots shown in Figure 5.12.

8 and 90 for cells exposed to 10µM carbachol and between 9 and 132 when challenged

with 30µM carbachol. By considering the colour of the intensity functions compared

to the mean ISI parameter in Figure 5.14 we can see a relationship between the

intensity functions and ISI parameters. When the stimulus strength was 30µM we

find that the smaller ISI parameters (purple) tend to correspond to intensity functions

that have a lower spiking rate. This could indicate that the ISIs are more variable



Chapter 5: Application to Real Data 169

when the spiking rate is smaller. However, for 10µM carbachol there is no clear

relationship.

For both stimuli strengths we find that the ISI parameter fitted using the datasets

of Ca2+ spike sequences is smaller than ISI parameters inferred from individual

sequences. This indicates there is larger variability of the ISIs is subsumed into the

ISI parameter, where a smaller ISI parameter implies a larger variance in the ISI

distribution. We find that the posterior mean of the intensity function fitted from

datasets approximately aligns with the mean of the individual fits. This shows that

the collective fit does not capture the cell-to-cell variability of the Ca2+ spikes.

In summary, HEK293 cells appear to respond to a constant stimulus in a time

dependent manner. We find the cells respond over two different time scales. The

shorter time scale consists of a burst of Ca2+ spikes just after the stimulus is first

applied. The longer time scale consists of regular spiking whilst the cell is still

challenged with the stimulus but far from — often around 500s — the time the

stimulus was applied. These two response could lead to the activation of different

Ca2+ sensitive processes.

We find that the models fitted to the dataset of Ca2+ spike sequences does not

mirror the variability of the Ca2+ response across cells. However, it does find a strong

response at the onset of stimulus is common across all cells. We find that our models

fitted from individual Ca2+ spike sequences captures this variability.

Considering the two datasets our models agree that cells challenged with a larger

stimulus on average respond with a larger number of Ca2+ spikes. We find that the

shape of the intensity functions remains broadly similar between the two stimulus

strengths. This shows that cells respond in the same manner irrespective of the

strength of carbachol. However, for HEK293 cells challenged with the smaller stimulus

we occasionally infer an intensity function whose spiking rate decreases close to zero

after the initial burst of activity, before recovering later on in the experiment. This

suggests under small stimulus there may be a lag between the burst of Ca2+ spikes

at onset and regular Ca2+ spikes later in the experiment. This could be caused by

the cell requiring a threshold of stimulant to arrive to the cell prior to regular Ca2+
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spikes. Or with a smaller stimulus, the burst of spikes at the onset of stimulus could

deplete other resources in the HEK293 cells that require a period of time to recover.

5.2.3 Summary

In the above sections we have concentrated on cells challenged with a constant

stimulus. In each case we have seen that cells respond in a time-dependent manner.

For example in both astrocytes and HEK293 cells the Ca2+ concentration oscillates

quicker at the onset of the stimulus than later in the experiment. This is confirmed

in our models since the constant prior for the intensity function performs badly. This

shows the importance of using a time-dependent model for the ISI even when the

stimulus is constant.

We have found that the mean population response of astrocytes and HEK293

cells to constant stimulus is different. Namely, astrocytes have a region of low spiking

rate after the initial spike before rebounding, unlike HEK293 cells. This property

gives us a distinguishing feature between Ca2+ spikes from astrocytes and HEK293

cells. Furthermore, this could indicate that different elements of the Ca2+ signalling

toolbox are required for HEK293 cells and astrocytes.

Our models have found that the strength of the applied stimulus affects the Ca2+

response in different ways. Increasing the strength of glutamate in astrocytes causes

Ca2+ spikes to occur less often and with less variability, and the spiking occurs over a

longer duration. Whereas, increasing the strength of carbachol in HEK293 cells leads

to a larger spiking rate over the entire experiment and the time taken for the spiking

rate to plateau increases. This demonstrates that increasing the stimulus strength

affects Ca2+ spikes dependent on the cell type and the stimulant used.

We have found that the simplest ISI model — the inhomogeneous Exponential

ISI distribution — does not accurately describe Ca2+ spike sequences. This remains

true even with the addition of a refractory period. Therefore we have shown that

Ca2+ spike sequences require more-complex ISI models such as the inhomogeneous

Gamma, inverse Gaussian or Weibull ISI distributions.
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5.3 Time-dependent Stimulus

So far we have only considered cells that experience a constant stimulus. In vivo cells

experience a plethora of stimulants and inhibitors which arrive to a cell in a time

dependent manner. Therefore, it is vital to understand how Ca2+ oscillates when a

cell is exposed to a time-dependent stimulus. In this section we consider HEK293

cells challenged with three different stimulus profiles: a step-change, waves and pulses.

For each we analyse the Ca2+ spike times and fit inhomogeneous ISI distributions.

We endeavour to find an ISI model that accurately describes the Ca2+ spikes, and

link back to biological implications.

5.3.1 Step-change stimulus

We now consider HEK293 cells that have been challenged with carbachol in a step-

change experiment. This means that a cell is challenged with carbachol of strength

AµM for the first half of the experiment at which point the stimulus is exchanged

for carbachol of strength BµM. We denote this stimulus by AµM → BµM. We

have been kindly provided with four datasets of HEK293 cells challenged with a

step-change in carbachol from Dr. Falcke — for the experimental protocol see [6]. In

the four datasets the strength of carbachol varies, where the experiments consist of

10µM→ 50µM, 20µM→ 50µM, 20µM→ 100µM and 50µM→ 100µM. The number

of HEK293 cells in each dataset is 19, 11, 39 and 14, respectively. The experiments

vary in length but all are within the range of 6474s and 7414s. In both experiments,

the Ca2+ concentration was recorded every 2s.

In Figure 5.15 we illustrate the response of HEK293 cells to a step-change in

carbahol. In Figure 5.15(A) we show a Ca2+ trace of a single HEK293 cell challenged

with a step-change in carbachol. The stimulation profile is shown above the trace plot.

We see more Ca2+ spikes when the stimulus is first applied and when the stimulus is

exchanged. We find that before the exchange of stimulus there were 18 Ca2+ spikes

and 47 afterwards. Therefore, the larger stimulus strength leads to more Ca2+ spikes.

This illustrates the well-known phenomenon of frequency encoding, by which the
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Figure 5.15: (A) Fura-2 fluorescence intensity traces of a HEK293 cell challenged

initially with 20µM carbachol and then with 100µM carbachol, as shown in the bar.

The corresponding spike times are shown as red ticks on the x-axis. (B) Raster of

Ca2+ spike times obtained from HEK293 cells in a step-change experiment where

the stimulus strength 20µM→ 100µM. The black line represents the length of the

experiments across the dataset.

frequency of Ca2+ spikes increases with an increase in stimulation strength. The

Ca2+ spike times for every cell in the 20µM → 100µM dataset is shown in Figure

5.15(B). We see that most cells display the same characteristics. Namely, more

Ca2+ spikes when the stimulus is first applied or when the stimulus is exchanged.

Moreover, across most cells we find more Ca2+ spikes after the stimulus is exchanged

for a larger concentration. We find that the total number of Ca2+ spikes varies

considerably — between 19 and 122 spikes — between HEK293 cells, showing the

large cell-to-cell variability. The Ca2+ spike sequences are consistent with joining two

constant stimulus experiments together.

We want to fit our ISI models to entire datasets of Ca2+ spike sequences created

from cells that experience the same stimulus. However, as some datasets contain

experiments of varying length we cannot fit all the sequences to the same model. This
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is because we require the intensity function to be defined over the experiment’s length.

Therefore, we fit the ISI models to the subset containing the most Ca2+ spike sequences

with the same experiment length and stimulus exchange times. Consequently, we

consider three sub-datasets where the stimulus varies from 10µM→ 20µM, 20µM→

50µM and 50µM→ 100µM. They contain 11, 12 and 14 spike sequences respectively.

Each of these datasets is fitted using all our ISI models. When the intensity function

has a constant prior we set σ2
x = 0.5 and σ2

h = 1. For the PWC prior we choose

kmax = 25, λ = 10, κ = κ0 = 1 and µ = 0.5 where the PWC heights have a martingale

prior. The parameters for the GP prior were w = 0.001, σ2
v = 1000 and σ2

n = 0. N

is taken such that the step size matches the recording rate of the experiment. We

infer the length scale of the GP prior using the projection method with σ2
l = 0.5, see

Section 3.3.1. For each choice of prior for the intensity function we recored 200,000

iterations of the MCMC after an initial burn-in of 200,000.

Figure 5.16 gives an overview of the posterior ISI distribution fitted using the

three datasets. As expected we see that the cells challenged with the larger stimulus

strength respond by spiking more frequently. Moreover, we see large peaks in the

intensity function when the stimulus begins or is exchanged. As anticipated the

intensity function has a similar shape to adjoining two constant stimulus experiments.

However, the cells converge to a flat spiking rate quicker when the stimulus is

exchanged compared to the onset of the stimulus. We see that the larger stimulus

strength used leads to a smaller ISI parameter. This implies cells exposed to a larger

stimulus have a larger variability in the ISIs.

We find that the ISI model fitted to entire datasets does not encapsulate the

cell-to-cell variability of the individual Ca2+ spike sequences. Therefore, we now fit

our ISI models to individual Ca2+ spike sequences.

The parameters used were the same as when fitting the ISI models to the dataset

of spikes sequences. Except in the GP prior where the length scale l has a prior

distribution centered via the PWC approximation, lpwc by l ∼ Uniform(lpwc, lpwc + 5).

To find which ISI model best describes the step-change in stimulus irrespective

of the stimulus strength we include Q-Q and K-S slopes across all datasets. This
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Figure 5.16: Comparison of the posterior of the inhomogeneous inverse Gaussian ISI

distribution with a PWC prior fitted from datasets of HEK293 cells under a step-

change experiment. We show the mean of the posterior intensity function distribution

together with the 95% credible region. We also present box plots of the mean of the

ISI parameter over all spike sequences in the datasets.

is shown in Figure 5.17. Similar to analysis with constant stimulus we see that

the inhomogeneous Exponential and log-normal ISI distributions do not represent

the Ca2+ spike times. From the Q-Q and K-S slope plots there appears to be a

similar performance across the priors for the intensity function. However, considering

rescaled ISI occurrence plots we find dependence between the ISIs for the constant

prior. This is shown in Appendix B. Of the remaining ISI models we find that the

inhomogeneous Weibull ISI distribution with a PWC prior is most suitable. This is

because both the Q-Q and K-S slopes are centered about the line π/4 and the K-S

slopes have the smallest range.

Above we compare the Q-Q and K-S slope plots for all cells challenged with a
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Figure 5.17: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models using the data of 78 HEK293 cells subject to a step-change experiment with

varying stimulus strengths.

step change in stimulus irrespective of the stimulus strength. In Appendix B we

shown that the Weibull is also a suitable model when the step change in stimulus is:

10µM→ 20µM, 20µM→ 50µM or 50µM→ 100µM.

We compare the Weibull ISI distributions fitted from individual Ca2+ spike

sequences in Figure 5.18. In general, the intensity functions have a similar shape

across datasets and individual cells. Specifically, we find peaks in spiking rate at the

onset of stimulus and when the stimulus is exchanged and the spiking rate remains
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Figure 5.18: Comparision of the posterior intensity function for the inhomogeneous

Weibull ISI distribution with a PWC prior fitted to individual Ca2+ spike sequences

obtained from HEK293 cells under a step-change experiment. (A,B,C,D) correspond

to the mean of the posterior distributions fitted to spikes sequences in the datasets

where the stimulus strengths were 10µM→ 50µM, 20µM→ 50µM, 20µM→ 100µM

and 50µM→ 100µM, respectively.

near constant elsewhere. This is the same shape as found when fitting the datasets

to a single ISI model. However, we find a large variability in the strength of the
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response, across all datasets. For example when the stimulus is 50µM→ 100µM the

largest spiking rate found in [2000s, 3000s] is 15 times bigger than the smallest. We

see that cells challenged with a larger stimulus tend to have a posterior intensity

functions that are larger in [1000s, 3000s] and [4000s, 6000s]. In other words, cells

challenged with a larger stimulus have a bigger spiking rate after the transient periods

when the stimulus is first applied or exchanged. We also find that cells challenged

with 10µM → 50µM do not mirror the other datasets up to the stimulus being

exchanged. We see that there is initially a peak in the spiking rate at the start of

the experiment. Afterwards the spiking rate remains low before recovering after

approximately [1500s, 2000s]. Furthermore, we notice that the time taken for the

intensity function to plateau varies with the stimulus strength, where the larger the

stimulus the longer the time.

The ISI parameter lies between 2 and 10 for the majority of the cells. We see that

values taken are similar for each dataset. This suggests that the ISI parameter could

be independent of the strength of the stimulus used, when considering individual

cells. Notice across all datasets the intensity functions with smaller magnitude tend

to have a smaller ISI parameter, i.e the purple intensity functions are the ones with

the smallest spiking rate. Therefore, we find that there is more variability in the ISIs

when the spiking rate is smaller.

In summary, we have found that our posterior ISI models are synonymous with

two adjoined constant stimulus experiments. Similar to HEK293 cells under constant

stimulus we find that the larger the concentration of stimulus the larger the Ca2+

spiking rate and a lag to regular Ca2+ spikes when the stimulus was 10µM. In other

words, the intensity function decreases to close to zero after the initial peak before

recovering.

5.3.2 Wave stimulus

In this section we study a single dataset of 63 HEK293 cells that were challenged

with carbachol. The carbachol concentration varies over the experiment in three

waves, where each lasts 650s. Each experiment was recorded over 3000s, where the
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Figure 5.19: (A) An example of the wave stimulus applied to a HEK293 cell (I) and

the cell’s Ca2+ response (II). (B) Raster of Ca2+ spike times obtained from HEK293

cells challenged carbachol which varies over three waves. The black line indicates the

length of the experiment.

Ca2+ concentration was recorded every 1s. The data have been kindly provided by

Dr. Bellamy — for the experimental protocol see [16].

In Figure 5.19(A) we show the stimulus (I) and Ca2+ response (II) from one of the

HEK293 cells. From the stimulus, we find that the level of carbachol oscillates over

the experiment in three waves at [300s, 950s], [1300s, 1950s] and [2300s, 2950s]. Each

wave has approximately the same amplitude. The Ca2+ spikes mirror the applied

stimulus with three bursts of Ca2+ activity. We find that the bursts begin at the

times when the stimulus begins to increase. However, we see that subsequent bursts

contain fewer Ca2+ spikes — 29, 16 and 10, respectively. This could be due to the

fluorescent dye buffering the Ca2+ response over time or the cell desensitising to the

stimulus over repeated waves.

The Ca2+ spike times for each HEK293 cell in the dataset are displayed in Figure
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5.19(B). All cells experience Ca2+ spikes in three distinct bursts surrounded by

intervals with no spikes. We find large cell-to-cell variability both in the number of

Ca2+ spikes and in the width of the spiking regions.

To explore if there are any common features across all cells we fit the whole

dataset to our ISI models. Due to the large cell-to-cell variability we also fit our ISI

models to individual Ca2+ spike sequences, provided they have at least 16 spikes.

The parameters of the ISI models are the same as those used to fit the Ca2+ data

from a step-change experiment, for the whole dataset and individual spike sequences.

To find which ISI model best describes individual Ca2+ spike sequences we consider

the slopes of the Q-Q and K-S plots, this is shown in Appendix B. We identify the

Gamma ISI model with a PWC prior to be the most suitable. When fitting the whole

dataset we find that the Gamma ISI distribution also performs well. Therefore, to

allow comparisons between the different fits we consider the Gamma ISI model for

both. An overview of the posterior Gamma ISI distribution with a PWC prior is

given in Figure 5.20. In (A) we illustrate the posterior intensity function distribution

from fitting a Gamma ISI distribution to all Ca2+ spike sequences. We see that the

posterior intensity function mimics the applied stimulus, containing three waves. We

see that subsequent waves have smaller amplitudes and widths. We find a large peak

in the intensity function at 1670s. This corresponds to a region where some cells

experience a large spike in the stimulus. In the raster plot we also see that all cells

have a Ca2+ spike at 1670s. The mean of the posterior intensity function distribution

fitted from individual spike sequence is shown in (B). Again, the intensity function

mirrors the applied stimulus consisting of three waves. Furthermore, subsequent

waves appear to decrease in amplitude and width. However, the individual fits capture

the cell-to-cell variability of the Ca2+ spikes, where the width and height of each

wave varies substantially over all intensity functions shown. For example at 500s the

maximum intensity is 6.5 times larger than the minimum. In Figure 5.20(A) we plot

the mean intensity function over all the individual fits — shown in yellow. We find

that the collective fit is approximately followed the mean over all individual intensity

functions shown, except in the regions [0s, 250s] and [1650s, 1700s]. The difference
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Figure 5.20: Comparison of the posterior of the inhomogeneous Gamma ISI distri-

bution with a PWC prior fitted to individual Ca2+ spike sequences and the whole

dataset. (B) the posterior mean of the intensity function for each fit from an individual

Ca2+ spike sequence. The mean of these intensity functions (yellow) is shown in (A)

compared with the posterior mean and 95% credible region of the intensity function

fitted from the entire dataset (red). (C) comparison of the posterior ISI parameter

when fitting the Ca2+ spike sequences collectively (red) or individually (grey). The

ISI parameters are coloured depending on their size and their corresponding mean

intensity function is coloured the same.
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in [0s, 250s] occurs due to the martingale prior used for the heights of the PWC

— which reduces large jumps in the intensity function — and limited information

contained in a single Ca2+ spike sequence. In [1650s, 1700s] the collective fit captures

that almost all Ca2+ cells spike in this region, which leads to a peak in the intensity

function. Whereas, a single Ca2+ spike sequence does not find this feature. This is

due to the limited information a single spike sequence contains compared to an entire

dataset. We see that the ISI parameters takes a large range of values in [1, 41]. We

find that a smaller ISI parameter corresponds to an intensity function that has a

smaller amplitude of the waves — as shown by the colour of the points and lines

in Figure 5.20(B,C). In contrast, in the collective fit we find a narrow range for the

posterior ISI parameter — as shown by the red box plot at 2.1. Note that a smaller

ISI parameter leads to an ISI distribution with a larger variance. Thus, the collective

fit’s ISI parameter is small to account for the variability in spiking rate across all

Ca2+ spike sequences. Whereas, when considering individual Ca2+ spike sequences

the ISI parameter can take a plethora of values. This indicates that some cells spike

with minimal variance (large ISI parameters) and others contain a large amount of

variability (small ISI parameter).

In summary, we found that the posterior intensity function mirrors the applied

stimulus, with three waves of larger spiking rate. We find that the collective fit

captures a spike in the intensity at 1670s that the models fitted to individual Ca2+

spike sequences do not. However, only the individual fits capture the cell-to-cell

variability in the Ca2+ response.

We find that although the strength of the stimulus is the same for each wave, the

Ca2+ response decreases over subsequent waves, as captured in the intensity function.

This could be caused by the cell desensitising to the stimulant or the fluorescent dye

used to record the Ca2+ concentration acting as a Ca2+ buffer.

5.3.3 Pulse stimulus

We now consider Ca2+ spikes obtained from HEK293 cells where the cells are exposed

to pulses of carbachol. A single dataset containing 77 cells was kindly provided
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Figure 5.21: (A) The applied pulse stimulus (I) and three trace plots of HEK293

cells response to the stimulus (II). (B) Raster of Ca2+ spike sequences obtained from

HEK293 cells challenged with pulses of carbachol. The black line represents the

length of the experiment.

by Dr Bellamy, for experimental protocol see [16]. In each experiment the Ca2+

concentration was recorded every 1s for a total of 3000s.

The stimulus time course is shown in Figure 5.21(AI). We see that the stimulus is

initially low at approximately 5µM for the first 400s. Between 405s and 1320s there

are 21 pulses of carbachol, for each pulse the concentration of carbachol is increased

from 5µM to 45µM for 6s. Finally, the concentration remains at the high level after

1320s until the end of the experiment. In Figure 5.21(AII) we produce Ca2+ trace

plots for three HEK293 cells. We see that Ca2+ oscillations are locked to the times

of the stimulus pulses for the three cells. Interestingly, the amplitude of the Ca2+

oscillations tend to decrease as the experiment proceeds. Furthermore, the chance of
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a Ca2+ spike occurring at a stimulus pulse decreases further into the experiment. For

example we see that the blue trace only has two spikes in [900s, 1300s], when there

are 7 pulses.

Indeed, considering the raster plot of all Ca2+ spike times in Figure 5.21(B), we

see that the further along the experiment the fewer spikes occur across the whole

dataset. When the stimulus remains high at 1320s almost all cells respond with

a Ca2+ spike. After this time we find a variability in response, where some cells

repeatedly spike until the end of the experiment and others only once.

Due to the locking of the spike times it is clear that there is correlation between the

spike sequences. Therefore, it is best to fit the ISI models to the dataset containing

all Ca2+ spike sequences. We do this for all our ISI models. The parameters used

were the same as the step-change experiment, except for the PWC. We set kmax = 60

and λ = 35. We have increased kmax and λ because the stimulus has 21 pulses and

therefore we expect the intensity function will change at the times that the pulses

occur. The inferred intensity function using a PWC prior outperforms the GP and

constant priors. This is because the PWC allows for the sharp changes in the intensity

function which can captures the quick pulses of the stimulus used to challenge the

HEK293 cells. Moreover, the applied stimulus — shown in Figure 5.21(AI) — is PWC

itself. Therefore, no matter the choice of the length scale for the GP it will struggle

to capture the shape of the intensity function. To visualise the difference we show the

mean and 95% credible region of the posterior intensity function distribution for the

inhomogeneous Gamma ISI distribution with each type of prior in Figure 5.22(A). We

find that only the PWC prior has the flexibility to mirror the pulse stimulus applied

to the cells. In Figure 5.22(B) we present 10 simulated spike sequences generated from

the posterior Gamma ISI distribution with each prior. We find that only simulated

spike sequences from the PWC capture the locking of the Ca2+ spikes used to fit the

model. Occasionally, we find that the model simulates double spikes in a single pulse

which the true data does not contain. We also find that after 1320s — the time of the

last pulse in stimulus — the intensity functions of the GP and PWC are consistent.

In this case the most suitable model is the inhomogeneous Gamma ISI distribution
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Figure 5.22: (A) The posterior mean and 95% credible regions for the inhomogeneous

Gamma ISI distribution with a Constant, PWC and GP prior, shown in yellow, green

and purple, respectively. (B) 10 Simulated spike sequences for each of the posterior

ISI distributions shown in (A).

with a PWC prior.

At this stage we often fit individual Ca2+ spike sequences to our ISI models.

However, in this case the Ca2+ spike times are locked onto the timing of the carbachol

pulses. Therefore, the Ca2+ spike sequences do not contain any cell-to-cell variability.

Thus, there is no need to fit our ISI models to individual Ca2+ spike sequence

Moreover, if we consider a single Ca2+ spike sequence from 5.21(B) we do not know

that the spike times are locked onto the times of the carbachol pulses — assuming the

stimulus is unknown. This property only becomes apparent when inspecting multiple

spike sequences. Thus, when fitting our ISI models for a single spike sequence there is

not enough information to capture the pulse like behaviour of the intensity function.

In summary, we have found that the Ca2+ oscillations of HEK293 cells challenged

with pulses of carbachol are best described by the inhomogeneous Gamma ISI

distribution with a PWC prior for the intensity function. Doing so leads to a

posterior ISI distribution which can faithfully capture the locking of the Ca2+ spike
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times. Only the PWC is suitable due to its flexibility to quickly change values at the

times of the pulses.

5.4 Summary

In this chapter we have shown how inhomogeneous ISI models capture the behaviour

of astrocytes challenged with constant stimulus and HEK293 cells under a variety of

carbachol stimulation profiles. It is notable across all Ca2+ spike sequences studied

that a constant intensity function in the ISI distribution does not accurately represent

the spikes. Therefore, it is vital that our model incorporates time-heterogeneity.

Moreover, we found that the inhomogeneous Exponential ISI distribution with

or without a refractory period cannot faithfully represent Ca2+ spikes. Thus, we

required the added complexity of either the Gamma, inverse Gaussian or Weibull ISI

distributions to describe Ca2+ spike sequences.

For cells challenged with constant stimulus we have found that both HEK293 cells

and astrocytes respond on two different time scales, where we find an initial burst of

Ca2+ spikes at the onset of stimulus and more regular Ca2+ spikes further into the

experiments. This is mirrored in our ISI models where we also find that the strength

of the applied stimulus acts differently for HEK293 cells and astrocytes, indicating

the stimuli affect the cells in different ways.

We found that HEK293 cells challenged with a step-change stimulus is synonymous

with joining two constant stimuli together, and this is also shown in the posterior

intensity function. Moreover for the waves or pulse stimulus the Ca2+ spikes mirror

the stimulus, as does the intensity function. This suggests it may be possible to

build intensity functions which describe specific stimulus profiles. If achievable , this

approach could then be used as an inexpensive way to create realistic spike sequences

without requiring to fit the model to experimentally recorded Ca2+ spike sequences.

When fitting our ISI models to Ca2+ spike sequences we have found that it is

important to consider both the fits to individual spike sequences and to the dataset of

spike sequences. This is because the individual fits captures the cell-to-cell variability
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of the Ca2+ response, whereas the collective response can find common properties

across cells challenged with the same stimulation profile. For example from Ca2+

spikes obtained from HEK293 cells challenged with pulses of carbachol.

Suppose we want to create simulated spike sequences to have the same properties

as real Ca2+ spike sequences. By fitting our ISI models we have the framework to do

exactly this. However, using one of the collective fit or the individual fits does not tell

the entire story of the Ca2+ dynamics. This is because the collective fit is sensitive

to common features across cells and the individual fit to cell-to-cell variability. For

example consider the inhomogeneous inverse Gaussian ISI distribution fit to HEK293

cells challenged with a constant stimulus — as shown in Section 5.2.2. We saw

that the collective fit captured the captured the behaviour in [0s, 50s] but not the

remainder of the experiment. Whereas, the individual fits captured the cell-to-cell

variability in [50s, 3000s]. Therefore, neither approach captured all features of the

Ca2+ spike sequences. Therefore, to create surrogate spike sequences we can take

properties both approaches. We do this by joining the intensity function obtained

from the collective fit in [0s, 50s] to the individual intensity functions for [50s, 3000s].

In Figure 5.23(A) we illustrate the combined intensity functions fitted to the

dataset of Ca2+ spike sequences and to individual spike sequences. We see that in

[0s, 50s] all intensity functions take the same value — following the collective fit.

However, after 50s the intensity functions vary to express the cell-to-cell variability.

The intensity functions are coloured to indicate the value of the ISI parameter. Thus,

to create a simulated spike sequences we first sample uniformly over the intensity

function and ISI parameter pairs. Then we generate the spike sequence using the

method outlined in Section 2.2.

In Figure 5.23(B,C) we show the real Ca2+ spike sequences used to fit the ISI

models and the simulated spike sequences generated from the ISI models. Comparing

we find the simulated spike sequences contain all the properties of the original dataset.

Namely, a large range of Ca2+ spikes per sequence, a higher spiking rate closer to the

onset of stimulus, and some cells having fewer spikes in [150s, 750s].

Therefore, given a dataset of Ca2+ spike sequences we can create surrogate spike
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Figure 5.23: Visualisation of simulating spike sequences using ISI distributions fitting

to HEK293 cells challenged with 10µM carbachol. (A) the intensity function —

created by combining individual and collective fits — and ISI parameter pairs used

to simulate spike sequence. (B) The Ca2+ spike sequences obtained from HEK293

cells, used to fit the ISI distributions in (A). (C) 50 simulated spike sequences from

the ISI distributions shown in (A).

sequences with the same properties. This provides a convenient method to generate

sizeable datasets of similar spike sequences when only limited real data is available.
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Figure 5.24: Illustration of simulating spike sequences using parameter values from

previous or similar experiments. (A) visualisation of the intensity functions required

for an experiment where HEK293 cells are challenged with two step changes in

stimulus. In particualar, cells challenged with 10µM carbachol at 500s and the

stimulus is exchanged at 2500s and 5000s for 25µM and 50µM, respectively. (B)

Raster plot of 50 simulated spike sequences using the intensity functions with the

shape shown in (A).

However, for certain cell types or stimulation profiles it is difficult, if not impossible,

to record Ca2+ spike sequences. For example we may want to record a cell over

an extended time region which is experimental infeasible. In this case it would be

beneficial to be able to generate surrogate spike sequence that have the expected

properties of the cells we want to investigate. In this case, one approach could be to

simulate spikes using parameter values found for previous or similar experiments.
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For example suppose we require spike sequences that mirror HEK293 cells chal-

lenged with multiple step changes in stimulus over 8000s. Specifically, when cells are

first challenged with 10µM carbachol at 500s, and the stimulus is exchanged at 2500s

and 5000s for 25µM and 50µM, respectively. Using the models fit in Section 5.3.1, we

see that the intensity function for a step change experiment is consistent with joining

multiple intensity functions from constant stimulus experiments. Furthermore, the

larger the stimulus the larger the Ca2+ response and the longer it takes for the spiking

rate to plateau. Putting together this information we create intensity functions as

illustrated in Figure 5.24(A). We see that the intensity function can be split into

four sections. In [0s, 500s] the intensity function is zero because no spikes should

occur until the onset of the first stimulus. The remaining three sections [500s, 2500s],

[2500s, 5000s] and [5000s, 8000s] correspond to the regions where the stimulus is

10µM, 25µM and 50µM carbachol, respectively. We see that each starts with 30s of

large intensity (0.08 spikes/s) this corresponds to the onset of the stimulus, where

almost always a Ca2+ spike occurs. This is followed by an intensity which gradually

plateaus over time. Note that the larger the stimulus strength the larger the intensity

function and the longer it takes for the intensity function to plateau. Since the Ca2+

response varies considerably from cell-to-cell, the intensity function can take numerous

paths as illustrated by the shaded regions. For HEK293 cells under a step-change

experiment we found the inhomogeneous Weibull ISI distribution performed the best.

Therefore, we use the Weibull in this example. Across all step-change experiments

the ISI parameter took values in [1.5, 10] across all stimulus strengths with minimal

difference across the different experiments. Thus, fitting the 81 ISI parameters from

the step-change experiments in Section 5.3.1 to a Gamma distribution produces a

Gamma(3.64, 0.78). Recall that we found a positive relationship between the ISI pa-

rameter and the intensity function, where larger intensity functions often correspond

to a larger ISI parameter. Therefore, in our ISI models, a large baseline intensity

function has a large ISI parameter. For example a function following the top black

line in the shaded regions in Figure 5.24(A) would have an ISI parameter close to 10.

Once we have decided on the ISI distribution, intensity functions and ISI parame-
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ters we can simulate spikes sequences. We do this by first fixing the ISI distribution

to the inhomogeneous Weibull. Then for each simulated spike sequence we sample an

ISI parameter and use its value to pick the corresponding intensity function. From

the intensity function and ISI parameter we generate the spike sequence. 50 such

spike sequences are shown in Figure 5.24(B). We see that the simulated spikes contain

the features we expect. Namely, no spikes until the onset of the first stimulus, a

larger spiking rate closer to the onset/exchange of stimulus, more spikes for larger

stimuli, large cell-to-cell variability.

Constructing intensity functions in the manner described above assumes that the

the Ca2+ response is invariant to the history of previous stimulation. For example

the intensity functions used to mimic the behaviour of HEK293 cells challenged with

50µM after 5000s were obtained from experimental Ca2+ data where HEK293 cells

were challenged at 0s. Therefore, we do not account for any effect of the stimulation

between 500s and 5000s, which could potentially result in a diminishing Ca2+ spike

rate. Future work could investigate whether the assumption is valid, by comparing

simulated data to Ca2+ spike sequences obtained experimentally.

Therefore, we have seen that our ISI models give a computationally inexpensive

method to simulate spike sequences mirroring the Ca2+ response of HEK293 cells.

Although shown for HEK293 cells, this approach can be used for the Ca2+ response

of a multitude of cells. This is especially useful to create surrogate datasets for

experimentally challenging cells or stimulus profiles. Such datasets could then be fed

into ’signalling cascades’ to gain insight into Ca2+ signalling toolbox.



CHAPTER 6

Clustering Intensity Functions

Previously we have shown how to obtain Ca2+ spike sequences from fluorescence time

course data of intracellular Ca2+ concentration. We have utilised the Ca2+ spike

sequences to infer the parameters of our model — the intensity function and ISI

parameters. Crucially, the inferred intensity function describes the mean spiking

rate of the cell. This can be seen in Figure 6.1(A-C) for a HEK293 cell challenged

with a step change in carbachol. We threshold the time course data — shown in

(A) — to obtain a Ca2+ spike sequence — shown in (B). We then fit our ISI model

using the Ca2+ spike sequence and obtain the posterior distribution for the intensity

function. In (C) we show the mean of the posterior intensity function distribution

(black line) with the 95% credible interval (grey region). The cell shown belongs to a

dataset containing 13 other cells. Thus we can obtain the posterior distribution of

the intensity function for each cell individually. In Figure 6.1(D) we plot the mean of

the posterior intensity function distribution for each cell in the dataset. This plot

shows the variability in Ca2+ response for the same cell type challenged with the

same stimulus. In this case we see that the mean spiking rate varies between 0 and

0.06 spikes/s. Furthermore, we see that most functions contain a peak in [0s, 1000s]
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Figure 6.1: An illustration of how we generate intensity functions from experimental

data. For a single cell we begin with a Fura-2 fluorescence intensity trace (A) — the

changes in the fluorescence of the Ca2+ indicator is recored relative to its basal level

(∆F ) — which is thresholded to calculate Ca2+ spike times (B). The Ca2+ spike times

are used as an input into our model which returns the posterior distribution of the

intensity function (C). The posterior distribution in (C) shows the mean (black line)

with 95% credible interval (grey region). In (D) we show the mean of the posterior

intensity function distribution obtained by fitting our model to 14 individual cells.

and another in the region [3400s, 4000s]. However, not all intensity functions have

the same behaviour, in particular the red line’s ‘peaks’ appear to last longer and its

intensity tends to be higher than the other intensity functions.

In this chapter we investigate how to partition intensity functions — such as those

in Figure 6.1(D) — into groups that have similar properties. We want to group the
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intensity functions as this will give insight into how cells respond to stimulus. Firstly,

consider cells challenged with a constant stimulus. It is often assumed that after

some initial transience Ca2+ oscillations relax into a stationary regime. This means

that the spiking rate converges to a constant. Many models have been developed

with this assumption [61, 75]. However our model makes no such assumption on the

mean spiking rate. This allows us to consider the Ca2+ spike rate over the entire

time course (not removing initial transients) and identify trends in this rate. With

the inclusion of initial transients we can explore if each cell experiences a similar

transient period. For example do we find that the transient period lasts the same

length of time for all cells? In addition, what shape does the spiking rate take in the

transient period? For example, the spiking rate could gradually decrease or oscillate

as it converges to a constant. Moreover, do we find that the spiking rate converges at

all? To fit models assuming the Ca2+ times are stationary it is sometimes required to

remove linear trends in the ISI, which is justified as fluorescent dyes used to record

the Ca2+ concentration acts as a Ca2+ buffer [6]. Thus, we may expect to find that

the intensity decreases over time. If this is the case, do all cells show this decrease

and is the amount the intensity decrease similar for each cell? If not, this could point

to other mechanisms controlling the decreasing intensity such as negative feedback

mechanisms found in the cell. Thus, grouping the intensity functions inferred from

constant stimulus experiments will test the assumption if a constant spike rate is

biologically realistic.

Now consider cells challenged with a time-dependent stimulus. Do we find that a

cell’s spiking rate mirrors the applied stimulus, and does this happen for all cells?

Furthermore, this analysis can be applied to cells challenged with agonist time courses

that mimic physiological conditions in vivo. Thus, allowing us to investigate cell’s

spiking rate from a realistic environment.

In the above considerations each cell is challenged with the same stimulus. However,

we can also cluster intensity functions where groups of cells are challenged with

different stimuli. In this case, if the clusters can distinguish between different stimuli

this will give insight into how the stimuli affect the Ca2+ concentration. Furthermore,
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if we can match cells to their stimulus then we can analysis populations of cells

and find which cells in the population receive similar stimuli, which in turn can aid

understanding of how signals transmit through populations of cells.

The challenge of grouping together objects is known as clustering. The aim of

clustering is to group together objects such that objects in the same group are more

similar than objects in other groups [136]. For example points in two dimension

are similar if they are close together. As such, the clusters generated depend on

the definition of similarity and initial assumptions [137]. Rather than considering

the intensity functions let us begin by first simplifying our problem; represent each

intensity function by its mean and variance, shown as the points in Figure 6.2.

Now our problem involves partitioning these points into groups, depending on the

proximity of the points. One method to cluster these points is to use k-means

clustering [138]. This involves finding centers (crosses in Figure 6.2) — where each

point belongs to their nearest center — optimised such that the distance of all points

to their corresponding center is minimised. Thus, Figure 6.2 shows how the points

are clustered using this approach with three clusters. One disadvantage of k-means

clustering is that the number of clusters is fixed before applying the algorithm.

Therefore, k-means clustering cannot be used to automatically detect the optimum

number of clusters in the data. Therefore it is often beneficial to use other clustering

methods such as: mean shift [139], DSBSCAN [140] or spectral clustering [141]. Each

of these methods are easy to apply on two-dimensional data — such as the mean and

variance of our intensity functions — but not to functions directly. Therefore, we

need to develop an approach suitable for grouping functions, otherwise we will lose

vital information such as how the intensity function varies over time.

We mentioned previously that we want to cluster objects that have similar

properties, but what does this mean for functions? Consider once again the functions

in Figure 6.1(D). In this case we could say functions are similar if their intensities

remain close between 0s and 6860s, or if they have the same properties, such as a

peak in intensity around 3500s. Recall that the same type of cell challenged with the

same stimulus experiences large cell-to-cell variability. For example HEK293 cells
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Figure 6.2: Example of clustering using k-means with 3 clusters. Each point on the

graph corresponds to a single intensity function. The points are clustered into 3

groups shown by their colour — blue, black and red. The crosses correspond to the

center of each cluster.

stimulated with 10µM carbachol were found to have between 9 and 87 Ca2+ spikes

over 3000s. Hence, the mean spiking rate varies widely from cell to cell. With this in

mind, we aim to cluster our intensity functions via their features, rather than the

absolute rate. By features, we refer to properties such as increasing and decreasing

regions and peaks/troughs in the intensity. Any region where a peak occurs — an

initial increase in rate followed by a decrease — we shall refer to as a bump. For

example, suppose we have 3 intensity functions (black, red and blue lines in Figure

6.3) from an experiment that lasts 3000s with mean spiking rate of 1, 1 and 0.5

respectively. Suppose further that only the first and last functions increase in the

region [0s, 1000s] and have a bump in the region [2000s, 3000s], while the second

function is constant. Although the first and third functions (black and blue lines)

have significantly different mean rates, we want to cluster these functions in the same
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Figure 6.3: Example of clustering methodology applied to three functions. The black

and blue lines are grouped together as they have similar shape. Whereas, although

the red and black lines have a similar intensity they will not be grouped together as

they have different shapes.

group since they have the same shape. Whereas, even though the first two functions

(black and red lines) have the same mean firing rate, due to their differing features

we do not group these together.

We now require a method that clusters functions with respect to such features.

Since functions have infinite dimensions we cannot directly apply the clustering

methods mentioned previously. One way to mitigate this challenge is to decompose

the functions into a finite number of variables where we can use standard clustering

methods. Tilunaite et al. [16] did exactly this to intensity functions calculated from

Ca2+ oscillations. They decomposed each intensity function into its three leading

principal components, using principal component analysis (PCA). They then clustered

the components using k-means, mean shift, DBSCAN and spectral clustering. They

found that the clustering methods could not detect one unique cluster structure.
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Hence, they applied k-means for their analysis due to its speed and simplicity. More

recently, Delaigle et al. [142] developed a method specifically designed to cluster

functions. Their method consists of applying a weighted k-means on projections of

each function onto a space of finite dimension p, where rather than project onto a

predetermined basis — such as a principal component basis — the projection is chosen

to optimise clustering performance. In practice this is done by first approximating

each function via the Haar basis and projecting the coefficients into a space of p

dimensions in a manner to optimise clustering. This method has been shown to

cluster asymptotically perfectly in some cases. This means if we have two populations

in the dataset which differ in their means, then as the sample size increases the

proportion of data from one population belonging to the same cluster tends to one.

We tested the methods proposed by Titunaite [16] and Delaigle [142] on surrogate

data with attributes similar to those that intensity functions inferred from experimen-

tal data contain. We found that both methods perform well in some situations but

not others. In particular, both methods fail to cluster a dataset containing constant

functions and functions with varying bump placements. In Figure 6.4 we show the

results of clustering for this dataset where the two clusters are represented by the

colour (red/black) of the lines. Figure 6.4(A) shows that the method proposed by

Titunaite clusters functions that have a bump around 1000s, whilst the remaining

functions with bumps are grouped with the constant functions. Figure 6.4(B) shows

that the method proposed by Delaigle clusters 5 bumps centered around 500s with

the constant functions. Thus, neither method managed to group all the functions

with bumps together.

Another challenge in clustering is choosing the number of clusters. Some methods

automatically choose the number of clusters such as DBSCAN and mean shift.

Titunaite et al. [16] set the number of clusters in their case to 5, having noted that

differing methods found different number of clusters.

In light of the above, we have developed our own method, specifically designed

to decompose functions into their features which we can then cluster. We begin by

describing each function by the number and type of features it has. For example



Chapter 6: Clustering Intensity Functions 198

0 500 1000 1500 2000

0.
00

5
0.

01
5

0.
02

5

Time (s)

In
te

ns
ity

 (
sp

ik
es

/s
)

A

0 500 1000 1500 2000

1
2

3
4

5
6

Time (s)

In
te

ns
ity

 (
sp

ik
es

/s
)

B

Figure 6.4: Clustering a dataset containing constant functions and functions with a

single bump. In (A) we cluster using the method in Tilunaite and (B) Delaigle.

a function could be described by decreasing in [0s, 100s] and a bump in the region

[1000s, 1500s]. Furthermore, we will provide each feature with a magnitude which

describes how large the feature is, which can be used to detect the important features.

The benefit of this approach is that it prioritises the shape of the features over the

exact value of the function. The clustering is performed by comparing the features of

individual functions and is done at the user’s discretion, rather than using a clustering

algorithm. The advantage of this method is it allows flexability in the clustering and

allows the user to choose the type of clusters. For example we may be interested in

the interval [200s, 500s] and we can cluster on the behaviour in this interval. In a

different situation we may be interested in the total number of bumps over the entire

function, which can then be clustered accordingly.

In the following sections we explain how to extract features of functions by utilising

the Haar basis and how to find a feature’s magnitude. We then explain how to cluster

on an example dataset, before applying our method to data from HEK293 cells

stimulated with carbachol.
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6.1 The Haar basis

The Haar basis is a sequence of square-like functions that forms an orthonormal basis

on L2[R] — the space of square-integrable functions on R . Originally, the basis was

put forward by Alfred Haar in 1909 as an example of an orthonormal basis on [0, 1]

[143]. The basis was the first known example of a wavelet — a series of mathematical

functions that cuts up data into different frequency components — although this

concept was only invented in 1982, 73 years after Alfred Haar first constructed the

basis [144].

We were motivated to use the Haar basis because it was used by Delaigle et al.

[142] in their approach for clustering functions. They found that the Haar basis

captures both local and global trends without requiring a large number of bases. We

also find that the formation of the basis is well suited to finding locations of features,

as described in the next section.

Since we are only considering functions on bounded intervals, we derive the Haar

basis on the interval [0, T ] equipped with the L2-inner product 〈f, g〉 =
∫ T

0
fg dt for

f, g ∈ L2 ([0, T ]). The basis consists of functions formed by scaling and shifting the

Haar mother function,

ψ(t) =


1 0 ≤ t < 0.5,

−1 0.5 ≤ t < 1,

0 otherwise,

and a constant function [143]. Since we are forming an orthonormal basis we

require the bases to be normalised and orthogonal. This means that for bases hi and

hj we require 〈hi, hj〉 = δi,j , where δi,j represents the Kronecker delta. The bases will

consist of stretching the Haar mother such that each base is zero everywhere except

for a region of length T/2a for some a ∈ N. Thus, to satisfy the normality condition

each function will be scaled by a factor of
√

2a/T .

We will briefly explain how the first 8 bases are determined. The first base h1

is defined as the constant function taking value 1/
√
T . The second base h2 is the

Haar mother function stretched to take non-zero values on [0, T ] and scaled by 1/
√
T ,
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Figure 6.5: The first 8 Haar bases on the interval [0s, 20s].
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h2 = (1/
√
T )ψ(t/T ). By definition this is a step function with height 1/

√
T in

[0, T/2] and −1/
√
T in [T/2, T ]. The next two bases are h3 =

√
2/Tψ(2t/T ) and

h4 =
√

2/Tψ((2t − T )/T ). These are scaled versions of the Haar mother function

taking non-zero values only the intervals [0, T/2] and [T/2, T ] respectively. The next

4 bases are created in the same manner by splitting the function into 4 equal regions

h5 = (2/
√
T )ψ(4t/T ), h6 = (2/

√
T )ψ((4t− T )/T ), h7 = (2/

√
T )ψ((4t− 2T )/T ) and

h8 = (2/
√
T )ψ((4t−3T )/T ). The graphs of these 8 functions are shown in Figure 6.5,

where T was taken to be 20s. From these graphs we can visualise the orthogonality

of the bases. Consider two bases hi and hj. If the non-zero regions of the two bases

do not overlap — for example h4 and h5 in Figure 6.5(D,E) — then their product

hihj = 0. Otherwise, if the bases do overlap the region that is non-zero in their

product is just a multiple of the finer base. This can be seen in Figure 6.5 (C,E) for

bases h3 and h5, where the product of these two functions is a multiple of h5. By

construction
∫ T

0
hidt = 0 for i > 1, hence if hi and hj do overlap with hj finer than

hi we get 〈hi, hj〉 =
∫ T

0
hihjdt =

∫ T
0
Chjdt = 0, for some constant C.

From this procedure notice that we generate the bases in levels, starting with

{h1}, then {h2}, {h3, h4}, {h5, h6, h7, h8} and so on. We label these levels 0, 1, 2

and 3 respectively. From Figure 6.5 we see that each level k consists of breaking

the space into l = 2k−1 equal regions. Consider the kth level, of which we generate l

bases g1, . . . , gl. Each base gi only takes non-zero values in a region of length T/l;

for g1 this region is [0, T/l], for g2 it is [T/l, 2T/l] and so forth. The non-zero region

consists of a scaled version of the Haar mother function, where the first half of this

region takes the value
√
l/T and the second half has value −

√
l/T . More precisely

we get

gi =

√
l

T
ψ

(
lt− (i− 1)T

T

)
.

In respect to the Haar basis the bases from the kth level corresponds to the bases

hl+1, . . . , h2k . In other words hl+i = gi. Since the sequence of Haar bases {hi}∞i=1
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forms an orthonormal basis in [0, T ], any function f(t) can be expressed as

f(t) =
∞∑
i=1

αihi,

where αi is the coefficient of the Haar base hi, for i ∈ N.

Naturally, this poses the question: given a function f(t) how do we calculate the

Haar coefficients? Since our basis is orthonormal we can calculate the coefficient αj

of the base hj by considering the inner product of f and the base hj

〈f, hj〉 =
∞∑
i=1

αi〈hi, hj〉,

=
∞∑
i=1

αiδi,j,

= αj.

However, in practice the functions we consider are discretised. In particular, we

have a time grid t = {ti}Ri=0 where ti = iT/R, where R is the number of equal steps we

split [0, T ] into. Therefore, we obtain the discretised function of interest f = {fi}Ri=0

and discretised bases hj = {(hj)i}Ri=0 for j ∈ N, where fi = f(ti), (hj)i = hj(ti), and

R large. In this case we choose to find the coefficient for the jth base αj by

αi = 〈f, hj〉,

=

∫ T

0

f(t)hj(t)dt,

≈
N∑
k=0

T

R
fk(hj)k,

=
T

R

N∑
k=0

fk(hj)k.

Other numerical integration method exists, for example using a trapezoid rule or

Simpson’s rule. However, with R large we found our method to be sufficient.

We want to approximate f by calculating the coefficients for the first q = 2a Haar

bases for some a ∈ N. Rather than calculate each base individually using the formula

above, we can calculate the bases by using matrices. To calculate the coefficients
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α = (α1, . . . , αq) we first combine the discretised Haar bases into a basis matrix B —

of dimension (R + 1)× q — where the ith column of B is hi. We then calculate the

Haar coefficients by α = (T/R)f ×B, which is analogous to the computation above.

We can visual the Haar approximation compared to the original function by

computing fapprox =
∑q

k=1 αkhk = α×BT .

Let f be a draw from a GP on the interval [0s, 20s] with length scale 3 and

step size 0.01s, shown as the black line in Figure 6.6. We then approximate f by

decomposing it into 32 Haar bases. The coefficients of the first 16 Haar bases can be

seen in Table 6.1.

Base h1 h2 h3 h4 h5 h6 h7 h8

f -0.39 -5.54 2.94 -1.14 3.23 -2.76 -0.03 -0.34

Base h9 h10 h11 h12 h13 h14 h15 h16

f 0.68 1.39 -0.32 -1.26 -0.13 -0.08 -0.25 -0.03

Table 6.1: The coefficients of the Haar bases for function f drawn from a GP shown

in Figure 6.6.

In Figure 6.6, we plot the true function (black line) along with the Haar approxi-

mation for q = 2, 8 and 32 (red, orange and blue lines respectively). We see that by

increasing q the approximation improves. Note that where the Haar approximation

is constant, this equals the mean of f in this region.

6.2 Extracting features

We will now explain how to use the Haar basis to extract features from a function.

We begin by expressing the function f , defined in the interval [0, T ], in terms of a

Haar basis with q bases

f ≈ α1h1 + · · ·+ αqhq,
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Figure 6.6: Approximating a function via the Haar basis. The function (black line) is

approximated by using 2 (red), 8 (orange) and 32 (blue) Haar bases.

where for i = 1, . . . , q the αi are the coefficients of the Haar bases hi. The

advantage of the Haar basis is that the sign of the coefficient can inform us whether

the function is increasing or decreasing in the corresponding interval.

For example consider the base h7, which is shown in Figure 6.5(G) for T = 20.

We see that the base is zero everywhere except for the interval [T/2, 3T/4]. In this

interval h7 is positive in [T/2, 5T/8] and negative in [5T/8, 3T/4]. Thus, if α7 > 0

then α7h7 would have the same shape as h7 and it appears that the function would

be decreasing in [T/2, 3T/4]. Whereas, if α7 < 0 then α7h7 is similar in shape to the

reflection of h7 in the x-axis and is negative in [T/2, 5T/8] and positive in [5T/8, 3T/4].

This implies that the function is increasing in [T/2, 3T/4]. It is important to note

that this is true only if the function does not vary too much in these intervals. For

example consider the approximation with two Haar bases (red line) in Figure 6.6. By

the above reasoning we would say the function is increasing in [0s, 20s], which does

not capture how the function truly varies in this region. Hence, we will only consider
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the bases on the finest intervals because the function will vary less on those intervals.

We build on this idea to calculate the features of functions. The method is

explained below in 5 steps.

Step 1: Consider the appropriate bases. We have q bases and each base

informs us on the behaviour of the function in a different interval. Recall that q must

be a power of 2 and contains η levels. Thus we consider only bases which inform

us of details on the smallest intervals, i.e the bases in the ηth level. The ηth level

corresponds to the final p = q/2 bases. Thus, set B = {p+ 1, . . . , q} the index of the

bases to be considered. For example if q = 16, we consider the last 8 bases and set

B = {9, 10, . . . , 16}.

Step 2: Find the important bases. We need to decide which of the appropriate

bases informs us on potential features. For a base to contribute to a feature we

need the function to be substantially increasing or decreasing in the corresponding

interval. An alternative view is that we need to remove the bases whose intervals

remain almost flat, as this will not lead to a feature. Thus, we choose a threshold

σthres such that we remove index i from B if |αi| < σthres.

Choosing σthres can be a difficult task. The coefficients of the haar bases scales with

the function’s range. For example consider a new function g = 10f and approximate

g with q Haar bases giving g ≈
∑q

i=1 βihi. Since g is just a scaled version of f we get

βi = 10αi for all i. Hence the threshold value for function f may not be appropriate

for g. One approach to avoid this issue would be to scale the functions to a similar

range before assessing features. However, this could cause insignificant features to

become enhanced. Another issue arises from the choice of q. The larger we take q the

smaller the coefficients are due to the factor of 2 in the definition of the bases. With

the above taken into account, we find that the threshold should depend on the range

∆ and the number of bases q. Thus, we often take σthres = ∆/10q, which performed

well on simulated data, with q either 16 or 32. Note that this would lead to different

thresholds been applied to different functions. In some cases, it may be preferable to

threshold the functions with the same value for consistency.

Step 3: Check for peaks. In step 2 we removed bases that do not correspond
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to a significant increase or decrease. However, a flat interval could be interpreted

as a peak of a bump, which is a feature we want to extract. To include a peak

the function must be increasing prior to the peak and decreasing afterwards. Thus,

to check whether we need to add a base back into B we require the prior base’s

coefficient to have negative value (an increase before) and the base after to have

positive value (decrease afterwards). For example suppose base i was removed from B

after thresholding. If αi−1 < −σthres and αi+1 > σthres then we add i into the set B.

Step 4: Split B into groups. Next we split B into groups that correspond to

different features. This is done by partitioning the set B into sets of consecutive

bases, B1, B2, . . . , Bn. For example, suppose B = {9, 10, 13, 14, 16}, then we split into

3 groups B1 = {9, 10}, B2 = {13, 14}, and B3 = {16}.

Step 5: Determine the features. We now look at each of the groups

B1, B2, . . . , Bn individually. Consider the group Bi. If the group only contains

a single base it may be worth zooming in by considering a finer discretisation in this

region. For example suppose Bi = {13}, this consists of the region [T/4, 3T/8]. To

zoom in consider the group {25, 26} which correspond to the regions [T/4, 5T/16]

and [5T/16, 3T/8] respectively. Suppose Bi contains multiple bases. We want to

distinguish between increases, decreases and bumps in the group. Furthermore, each

group could consist of multiple features that are close together. However, recall

that the sign of coefficients corresponds to either increasing or decreasing intervals.

Thus we can partition Bi into k either increasing and decreasing sections Bi =

Bi,1 ∪ Bi,2 ∪ · · · ∪ Bi,k. We order the sets Bi,j such that Bi,1 contains the smallest

indices and Bi,k the largest. For example suppose Bi = {10, 11, 12, 13, 14} with

corresponding coefficients {−0.7,−0.2, 0.3, 0.5, 0.8}. The resultant partition is then

{10, 11} ∪ {12, 13, 14}.

We now examine each Bi,j to calculate the features in Bi.

• If the corresponding coefficients ofBi,1 are positive then this group is a decreasing

interval.

• If the corresponding coefficients of Bi,k are negative then this group is an
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increasing interval.

• For n in {1, 2, . . . , k − 1} if the coefficients corresponding to group Bi,n are

negative and Bi,n+1 positive, join the groups together Bi,n∗ = Bi,n ∪Bi,n+1 and

a bump occurs in this region.

To calculate the position of the features we utilise the indices of the Haar bases.

Suppose a feature occurs in the group Bi,j, where a and b are the minimum

and maximum indices in Bi,j respectively. Then the interval of the feature is

[(a− p− 1)T/p, (b− p)T/p].

We now give a worked example of extracting features from three functions shown

by the black lines in Figure 6.7, where each function is decomposed into q = 16 Haar

bases. The functions are drawn from GPs on the interval [0, 20] with length scales 2,

4 and 10 respectively. Our first step is to consider the finest bases, for q = 16 this

corresponds to the last 8 bases. The coefficients of the last 8 bases are shown in

Table 6.2.

Function α9 α10 α11 α12 α13 α14 α15 α16

1 -0.19 -0.30 0.62 0.71 0.02 0.06 -2.60 1.09

2 -0.74 -0.19 0.75 0.90 0.23 -0.23 -0.17 -0.29

3 -0.33 -0.35 -0.30 -0.19 -0.05 0.11 0.24 0.33

Table 6.2: The coefficients of bases h9, . . . h16 for the three functions shown in Figure

6.7.

Next we need to threshold the coefficients to remove bases that correspond to

almost flat regions. Here we choose to threshold on σthres = ∆/10q, where ∆ is the

range of the function and q = 16. Hence, the coefficients are thresholded at 0.18,

0.13 and 0.08 for functions 1, 2 and 3 respectively. Thresholding determines the

important bases as B1 = {9, 10, 11, 12, 15, 16} for the first function, B2 = {9, . . . , 16}

for the second function and B3 = {9, 10, 11, 12, 14, 15, 16} for the third function. The

important bases can be visualised as the highlighted cells in step 2 of Figure 6.8.
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Figure 6.7: Functions (black lines) drawn from a GP on the interval [0s, 20s] with step

size equal to 0.01s and length scale equal 2 (A), 4 (B) and 10 (C). The red piecewise

constant functions show the approximation given by 16 Haar bases. The intervals of

the finest 8 Haar bases are visualised by the regions separated by the grey lines.

We need to check whether the removed indices correspond to the peak of a bump.

For the first function the indices of the removed bases are 13 and 14. To see if

index 13 corresponds to a bump we require α14 > σthres and α12 < −σthres. However,

α14 = 0.06 < 0.18 = σthres so the index does not correspond to a peak. Similarly,

when we check if index 14 corresponds to a peak we find α13 = 0.02 < 0.18. Hence

index 14 is not added to B1. Notice that B2 contains all the indices so we do not need
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Figure 6.8: Visualisation of extracting features for the functions in Figure 6.7. In step

2 we highlight the bases whose coefficient is larger than the threshold — 0.18, 0.13

and 0.08 for functions 1, 2 and 3 respectively. In step 3 the orange box symbolised

the base added into the important bases, when checking for a peak. In step 4 we

split the bases into consecutive indices, hence splitting the bases for function 1 into

two groups, shown in light and dark blue. In step 5 each group from step 4 is

partitioned into negative (red) and positive values (yellow). The boxes surrounding

the bases shows the different features found by looking at the pattern of sign changes.

Function 1 has two features; a bump in bases {9, 10, 11, 12} and another bump in

bases {15, 16}. Function 2 also has two features; a bump in bases {9, 10, 11, 12, 13}

and an increasing region in bases {14, 15, 16}. Function 3 has one feature; a bump in

the bases {9, . . . , 16}.
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to check for missing peaks. For the third function index 13 does not belong to B3, so

we need to check if it corresponds to a peak. We find that α12 = −0.19 < −0.08 and

α14 = 0.11 > 0.08, hence the base does correspond to a peak and we add the base

into B3.

We then split the index sets into their consecutive parts. For function 1 we split

into {9, 10, 11, 12} and {15, 16}, whereas for functions 2 and 3 we obtain {9, . . . , 16}.

Now we are ready to determine the features of each function. This involves

splitting each set of indices depending on the sign of the corresponding coefficients.

Then depending on the pattern of positive and negative coefficients we assign features.

This can be visualised by step 5 of Figure 6.8. For each function the partition on sign

is shown by the red/yellow cells. The features for each function is shown by black

boxes surrounding the coefficients. Below we explain in detail how the features are

obtained for each function.

For function 1 we have two groups. Let us first consider {9, 10, 11, 12}. Partitioning

on the sign of corresponding coefficients gives B1,1 = {9, 10} and B1,2 = {11, 12},

with negative and positive coefficients, respectively. This sign pattern corresponds

to a bump across both B1,1 and B1,2. We join the groups together to form B1,1∗ =

{9, 10, 11, 12}. The bump occurs in the interval [20(9− 9)/8, 20(12− 8)/8] = [0, 10].

We consider next the other group B2 = {15, 16}. We partition depending on the sign of

corresponding coefficients giving B2,1 = {15} and B2,2 = {16}. Since α15 = −2.6 < 0

and α16 = 1.09 > 0 we join the groups together B2,1∗ = {15, 16}, giving a bump in

the region [20(15− 9)/8, 20(16− 8)/8] = [15, 20].

Consider the second function. We partition B2 according to the sign of correspond-

ing coefficients. This gives B1,1 = {9, 10}, B1,2 = {11, 12, 13} and B1,3 = {14, 15, 16},

where B1,1 and B1,3 corresponds to negative coefficients and B1,2 positive coefficients.

Thus applying step 5 we find that B1,3 leads to an increasing region in [12.5, 20].

Additionally, we join the bases B1,1 and B1,2 together to get B1,1∗ = {9, 10, 11, 12, 13},

which describes a bump in the interval [0, 12.5].

Finally, following step 5 for the third function gives B1,1 = {9, 10, 11, 12, 13} and

B1,2 = {14, 15, 16}. The indices in B1,1 and B1,2 correspond to negative and positive
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coefficients, respectively. Thus, we join the two sets together and we find a single

bump in the region [0, 20].

In summary, we have found that the first function has two bumps; one in the

region [0, 10] and the other in the region [15, 20]. For the second function we obtained

one bump in the region [0, 12.5] and the function is increasing in [12.5, 20]. Finally

for the third function we found a single bump in the region [0, 20]. Looking at the

functions in Figure 6.7 we see that these features accurately describe the features in

the functions.

6.2.1 Calculating the magnitude of the features

We have shown above how to extract features and their positions from a function.

However, when clustering functions we also want to judge them on the size of their

features. For example suppose we are given 10 functions. We extract the features

from these functions and find that they all have a bump in the region [0, 5]. The first

six functions have a bump with range smaller than 3 and the remaining four have

range larger than 5. In this case we may want to split the functions into two groups;

one with first six functions and the other with the remaining four. Hence, to each

feature we attach a value that signifies the magnitude of the feature.

Consider again the function f , which has k features ξ1, ξ2, . . . , ξk. Each feature ξi

consists of the feature type — bump, increasing or decreasing — and the interval

[ai, bi] ⊂ [0, T ] to which it belongs. To each feature ξi we adjoin a magnitude mi

that is defined as the range of f in the interval [ai, bi], namely mi = max(f |[ai,bi])−

min(f |[ai,bi]).

We apply the above to find the magnitudes of the features for the functions in

Figure 6.7. For the first function, the magnitude of the bump between [0, 10] is 14.6

and for the bump between [15, 20] is 29.1. Thus the magnitude of the first bump is

14.5 smaller than the second. Looking at Figure 6.7(A) we see that the first bump is

indeed smaller by a factor of two. The second function has two features, the bump in

[0, 12.5] which has magnitude 21.5 and the increasing interval which has magnitude

7.8. By considering Figure 6.7(B), we find that the bump is larger than the increasing
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region. Finally, the third function has a single bump in region [0, 20] which has

magnitude 13.7. Hence, the magnitudes accurately distinguish between large and

small features.

The method implemented above does not directly use the Haar basis but rather

the values the function of interest takes. It is possible to construct a method that

calculates the magnitude by using the Haar basis. Namely, for each feature combine

the contribution from all bases that are defined on that interval. For example, suppose

a feature occurs in the interval [0, 5]. If we approximated the function with 16 Haar

bases, the bases that take a non-zero value on this interval are: h1, h2, h3, h5, h9

and h10. We then calculate the approximated value of the function on each of

the finest grid in the interval. The approximated value for the interval [0, 1.25] is

α1 + α2 + 20.5α3 + 2α5 + 21.5α9. We have no contribution from h10 as it is defined

on [2.5, 5]. Furthermore, on other intervals we will have a negative contribution

from some bases, i.e in the interval [1.25, 2.5] the contribution from h9 is negative.

However, this method has two main limitations. Firstly, we only have a few values

to evaluate the magnitude. In the above example we would only have 4 values -

corresponding to the intervals [0, 1.25], [1.25, 2.5], [2.5, 3.75] and [3.75, 5] - to decide

the magnitude. Secondly, since the Haar approximation only gives a single value

for the intervals, if the function varies significantly this value may not accurately

represent the magnitude. Hence, we decided to evaluate the magnitude using the

values of the function rather than the Haar approximation, as it does not suffer from

these pitfalls.

In our method we decided to take a single value to describe the size of features.

However, an alternative is to consider how the function changes on smaller intervals.

For example consider the function in Figure 6.7(A) which has a bump in [15, 20]

with magnitude 29.1. Rather than a single value for the whole region, we now assign

26.4 and −12.4 to the smaller regions [15, 17.5] and [17.5, 20]. The values describe

the change of the function in these intervals. The advantage of this new approach

is that it gives extra details in the shape and size of the feature. Furthermore, this

breakdown informs on the rate of change of intensity for the bump or whether the
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bump begins and ends at similar intensity values. In the above example, we see

that the functions increase more in the region [15, 17.5] than it decreases in [17.5, 20].

Also, the intensity is higher at the end of the bump than the beginning. However,

with the addition details comes more complex descriptions. If every feature was

described more accurately it would be difficult to decide how to cluster the functions

on the magnitude. Hence, we decided to use the simpler method to allow for easier

clustering at the cost of less detailed features.

6.3 Clustering

We now consider how to cluster a set of functions depending on the features they

contain. As mentioned at the beginning of this chapter clustering is not an easy

challenge and the type of clusters can vary dramatically depending on what we are

interested in. For example, we may only be interested in features that occur in the

same time intervals whereas another may be interested in the total number of features.

Consequently, we present a representation of the data which can be easily clustered

by the user, rather than create a method that clusters the functions without input.

This flexibility allows for a greater variety of clusters to be considered.

For our approach we require a method to easily compare the features of multiple

functions. We do this by representing the features in terms of a vector over the intervals

provided by the Haar basis. Begin by considering a single function f on the interval

[0, T ]. We express f in terms of q Haar bases and find its features. With q bases

considered, our method partitions [0, T ] into p equal intervals, [0, T/p], . . . , [(p −

1)T/p, T ], with p as defined above. By construction the region that a feature

is defined in comes from these intervals. Thus, we can express the features of

f in a vector ffeat = (ffeat,1, . . . , ffeat,p) of length p, where ffeat,i corresponds to

the feature in the interval [(i − 1)T/p, iT/p].For example, suppose f defined on

[0, 10] is decomposed into its features via 8 Haar bases. With 8 bases we spilt the

interval into 4 regions [0, 2.5], [2.5, 5], [5, 7.5] and [7.5, 10]. We find that f has a

single feature; an increasing interval in [0, 5]. Expressing as a vector we obtain
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ffeat = (increasing, increasing, NA, NA). Notice that intervals with no features are

expressed as NA. To distinguish between different bumps they will be labelled in the

order of appearance, i.e bump 1, bump 2, etc. This is not required for increasing or

decreasing regions because by definition two increases/decreases cannot be connected.

To clarify this, suppose we have two increasing regions [A,B] and [B,C] that link

to the indices {a, b, c} and {d, e} respectively. To be increasing the corresponding

coefficients must be negative for both groups. Hence, when generating features we

would only create a single group {a, b, c, d, e} when splitting for positive and negative

coefficients. Thus, the method would output a single increasing region in [A,C]

rather than two connected intervals. The magnitude of features can be stored in a

similar vector fmag = (fmag,1, . . . , fmag,p), of length p, where fmag,i corresponds to the

magnitude of the feature in the interval [(i− 1)T/p, iT/p].

For example, consider once more the function given in Figure 6.7(A). The function

is defined on the interval [0, 20], and we used 16 Haar bases. We found the function

had two bumps, one in the interval [0, 10] with magnitude 14.6 and the other in the

interval [15, 20] with magnitude 29.1. With q = 16 we partition [0, 20] into 8 equal

regions [0, 2.5], . . . , [17.5, 20]. Thus, we can express the features and corresponding

magnitudes on these intervals, as shown in Table 6.3. Rather than displaying NA if

there is no feature we now keep the position blank.

Interval [0, 2.5] [2.5, 5] [5, 7.5] [7.5, 10]

ffeat bump 1 bump 1 bump 1 bump 1

fmag 14.61 14.61 14.61 14.61

Interval [10, 12.5] [12.5, 15] [15, 17.5] [17.5, 20]

ffeat bump 2 bump 2

fmag 29.07 29.07

Table 6.3: Example of vector representation for the features and magnitudes of the

function shown in Figure 6.7(A).

Now consider a dataset with N functions defined on the interval [0, T ]. For each
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function fj with j ∈ {1, . . . , N} we approximate with q Haar bases and calculate its

features and their magnitudes. We use the vector representation of the features f jfeat

and magnitudes f jmag. We create a matrix F to store the features of all the functions.

The matrix has p columns and N rows, where the jth row is taken to be f jfeat. This

matrix gives us a way to easily compare features of multiple functions via visual

inspection. To improve the visualisation further we colour the matrix such that each

feature has a unique colour and cells without a feature are coloured white. Similarly,

we create the matrix M to contain the magnitudes of the features. The jth row of

matrix M is the vector f jmag. The elements of this matrix are coloured on a scale

where larger values are yellow and smaller values red.

The advantage of representing the features in this manner is the ease at which

one can compare the functions, which is further enhanced by colouring the matrices.

To illustrate the method we generate 30 intensity functions on the interval [0, 20],

shown in Figure 6.9(A). Each function has a base intensity drawn uniformly between 1

and 5. Functions 1-10 (black lines) have a bump added in the region [0, 10]. Functions

11-20 (red lines) have a bump added in the region [10, 20]. And functions 21-30 (blue

lines) have a bump added in both regions. The width of the bumps are fixed at 3.1

and 1.9 in the regions [0, 10] and [10, 20], respectively. The height of each bump is

drawn uniformly between 0.5 and 5. The onset of the bumps in [0, 10] occur uniformly

in the interval [1, 5.4] and the onset on the bumps in [10, 20] occur uniformly in

[11, 15.4].

We then apply our methods, with q = 32, to find the features of each function

and their magnitude. In Figure 6.9(B) we show the matrix of features. As q was

taken to be 32, we split [0, 20] into 16 equal regions [0, 1.25], [1.25, 5] to [18.75, 20]—

which can be viewed as the number of columns of Figure 6.9(B). Furthermore, each

row of Figure 6.9(B) corresponds to a function. The top row corresponds to the first

function in the dataset and the bottom row the last function in the dataset. We

see the matrix contains 3 colours; white for intervals with no feature, green for the

first bump and orange for the second bump. A key is provided on the right hand

side. Figure 6.9(C) shows the corresponding magnitudes. Notice that the matrix has
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Figure 6.9: (A) shows the functions to be clustered, where the first 10 functions

(black lines) have a single bump in [0, 10], functions 11-20 (red lines) have a single

bump in [10, 20], and functions 21-30 (blue lines) have a bump in each region. (B)

shows the resultant features of each function and (C) the magnitude of the features.

the same dimension as Figure 6.9(B), and the same matrix elements are coloured.

However, the colours have changed to show the magnitude. The colours form a scale

from red to yellow, where red corresponds to a small magnitude (in this case between
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0 and 1) and yellow a large magnitude (between 4 and 5).

For example, consider the 24th function (thick blue line in Figure 6.9(A)). By

inspecting the 24th row in Figure 6.9(B) we find two bumps: the first in the interval

[2.5, 6.25] (green cells) and the second in the interval [11.25, 13.75] (orange cells).

Consider the same row in Figure 6.9(C). We see that the interval for [2.5, 6.25] is

coloured bright yellow, thus this feature has magnitude in the region [3, 4]. The

interval for [11.25, 13.75] is coloured deep red, hence the magnitude is in the region

[0, 1]. By using the two matrices together we can distinguish the type and size of

features.

We now consider clustering the functions. Depending on the criteria used we can

find different clusters. First consider only the features of the functions — shown in

Figure 6.9(B). We find that functions 1 to 20 have a single bump. The bump lies

somewhere in the region [1.25, 8.75] for functions 1 to 10 and [11.25, 17.5] for functions

11 to 20. On the other hand, functions 21 to 30 have two bumps, one in each of

the regions above. One option is to cluster on the position and number of bumps.

This gives three clusters {1, . . . , 10}, {11, . . . , 20} and {21, . . . , 30}. If we were only

interested in the number of features we could split the functions into those with one

bump and those with two. This gives two clusters {1, . . . , 20} and {21, . . . , 30}. If

we were only interested in functions that have bumps in a precise location we could

also cluster on this, for example functions {16, 22, 23} all have a bump in the interval

[15, 17.5].

We can also take into consideration the magnitudes of these features from Figure

6.9(C). Suppose we have grouped the functions via their features into three clusters

{1, . . . , 10}, {11, . . . , 20} and {21, . . . , 30}. Notice that all the magnitude of features

are contained in the ranges [0, 1], . . . , [4, 5]. Hence we can split these clusters depending

on the size of their features. For the functions in {1, 10}, we find that the magnitude

of {1, 3, 8, 9, 10} lies in [0, 3] and for {2, 4, 5, 6, 7} the magnitude lies in [3, 5]. Applying

this to each of the clusters gives us a new partition, as shown in Table 6.4. For the

functions in {21, . . . , 30} we took the largest magnitude of both bumps. The clusters

can be seen in Figure 6.10.
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Cluster
Description

Magnitude Feature

{1, 3, 8, 9, 10} in [0, 3] Single bump within [1.25, 8.75]

{2, 4, 5, 6, 7} in [3, 5] Single bump within [1.25, 8.75]

{11, 16, 19} in [3, 5] Single bump within [11.25, 17.5]

{12, 13, 14, 15, 17, 18, 20} in [0, 3] Single bump within [11.25, 17.5]

{22, 24, 25, 30} in [3, 5] Two bumps within [1.25, 8.75] and

[11.25, 17.5]

{21, 23, 26, 27, 28, 29} in [0, 3] Two bumps within [1.25, 8.75] and

[11.25, 17.5]

Table 6.4: Six clusters of the example dataset, clustered on feature position and

magnitude.

We see by analysing the simulated dataset the flexibility that this method offers.

The matrices of features and magnitudes summarises the shape of each function

and allows for quick comparison between functions. Furthermore, depending on our

interest (e.g. number of bumps, features in [0, 10], etc) the matrices allows us to

choose the way in which we cluster the functions.

6.4 Application to HEK293 cells

In this section we apply our clustering method to HEK293 cells stimulated with

carbachol. Before clustering takes place, we need to estimate the intensity functions

from the Ca2+ data. For each cell that presents a sequence of Ca2+ oscillations we

convert this to a sequence of Ca2+ spike times. The Ca2+ spike times are used to

infer the parameters of our model — the intensity function and ISI parameter. See

Chapters 2 and 3 for details of how the model parameters are inferred. Recall, the

posterior intensity function is not a single function but a probability density function

over the space of functions. Thus, for clustering we will use the mean of the posterior
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Figure 6.10: Clusters of the simulated dataset, where clustering depends on position

and magnitudes of features explained in Table 6.4.
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intensity function distribution.

This section is split into 3 parts. The first looks at how the method used to obtain

Ca2+ spike sequences can change the features of the inferred intensity function. The

second clusters intensity functions from constant stimulus experiments and, the third

clusters intensity functions from step change experiments.

6.4.1 Effects of altering Ca2+ spike times on features

As discussed in the introduction, the Ca2+ concentration of a cell is recorded exper-

imentally by using a fluorescent dye. These dyes can act as a Ca2+ buffer, which

over time reduces the spiking rate of the cell. Thus, it may seem sensible to adjust

the Ca2+ spike times to counter these effects. Indeed, Thurley et al. [6] remove

linear trends (if they exist) in the ISIs when modelling Ca2+ oscillations as stationary

processes. With this in mind, it is not unreasonable to adjust the Ca2+ spike times

if we believed they did not mirror the true dynamics in the cell. However, it is

important to note that any change to the Ca2+ spike times may change the output of

our model. In particular, the features of the posterior intensity function could change

their locations or be removed, which could alter the clustering.

To highlight this, we consider two HEK293 cells that are stimulated with 50µM

carbachol over 3240s. The Fura-2 fluorescence intensity traces of the two cells are

shown in Figure 6.11. From the traces we extract the Ca2+ spike sequences. In

both these cases the corresponding ISIs show a positive trend. This is to say that

the further into the experiment the longer the time between Ca2+ spikes. Thus, we

generate new Ca2+ spike times where the linear trends are removed. This is done

by first fitting a linear model to the ISI times against ISI number. Then we scale

the ISIs with respect to the linear fit whilst preserving the mean. See Figure 6.12 to

visualise the transformation, where the black dots and line correspond to the original

ISI times and their trend. The red dots are the new ISI times with the linear trend

removed. Hence, for each cell we have two sets of Ca2+ spikes times corresponding to

with and without removing trends.

We then fit the inhomogeneous Gamma ISI model to these Ca2+ spike sequences
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Figure 6.11: Fura-2 fluorescence intensity traces of two HEK293 cells stimulated with

50µM carbachol. Changes in the fluorescence of the Ca2+ indicator is recored relative

to its basal level (∆F ).
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Figure 6.12: Example of removing the trend from ISIs, where the ISIs with trends

are shown by black dots and the ISIs with linear trends removed are red. The solid

lines show the linear trends in the respective ISIs.

where the intensity function has a PWC prior. In Figure 6.13 we see how the posterior

intensity function distribution changes depending on whether we remove linear trends.

The red lines and regions represent the mean and 95% credible region of the posterior
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Figure 6.13: Illustration of the posterior intensity distribution when the model is fitted

to an individual Ca2+ spike sequence with (black) and without (red) linear trends

in the spike times removed. This is shown for two cells in (A) and (B), respectively.

The solid lines and shaded regions correspond to the mean of the posterior intensity

function distribution and 95% credible region.

intensity function distribution fitted with the original Ca2+ spike sequence, whereas

the black lines and regions corresponds to the transformed Ca2+ spike sequence with

linear trends removed. Recall from above that both original ISIs contained a positive

trend. A positive trend in the time between Ca2+ spikes corresponds to a negative

trend in the spiking rate. This can be seen in both Figure 6.13(A) and (B) where

the red lines tend to decrease over time. In other words, if we fitted a line of best

fit through the mean of the posterior intensity function distribution it would have a

negative gradient, whereas this trend cannot be found in the intensity distribution

fitted with the Ca2+ spike sequence with linear trends removed (black lines). Thus,

the posterior intensity function distribution can detect whether we removed the linear

trends in the ISIs or not.

We notice that the functions maintain the majority of their overall shape. In

Figure 6.13(A) both the red and black lines begin by decreasing, then a bump before
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plateauing and decreasing at the end. However, the intervals over which these events

occur are different. We see that the bump for the red line occurs in the interval

[500s, 1500s] whereas for the black line it occurs in [750s, 1750s]. Thus, removing the

linear trends in the ISIs has affected the position of features in the intensity function.

When we shift our focus onto Figure 6.13(B), we see again that the functions maintain

most of their shape, but not all. In the initial 1000s of the function we see the red

line is decreasing but the black remains mostly constant. Thus, removing trends may

also remove increasing or decreasing regions found in the intensity function.

We apply our feature extracting method with 32 Haar bases to the inferred

intensities in Figure 6.13(A). The features are described in 16 intervals [0s, 202s],

[202s, 405s], . . . , [3038s, 3240s]. The features are shown in the table below, where the

intervals are labelled 1 to 16, and decreasing and increasing regions are represented

as dec and inc respectively.

Interval 1 2 3 4 5 6 7 8

Raw dec bump 1 bump 1 bump 1 inc inc inc

No trend dec bump 1 bump 1 bump 1 inc

Interval 9 10 11 12 13 14 15 16

Raw dec dec

No trend inc dec dec

Table 6.5: Features of intensity functions generated from the same cell, shown in

Figure 6.13. Raw and no trend corresponds to the intensity function when the model

was fitted from the original Ca2+ spike sequence and the spike sequence with linear

trends removed, respectively.

We see that that the same types of features occur in both functions but the

times where they occur has changed. Therefore, we have shown how altering — in

particular removing linear trends — Ca2+ spike times can affect the features of an

inferred intensity function. From this point onwards we do not alter the Ca2+ spike

times prior to fitting the intensity function.
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6.4.2 Constant stimulus experiments

We will apply our clustering method to 60 HEK293 cells challenged with 10µM

carbachol for 3002s. For each Ca2+ spike sequence we fit the inhomogeneous Gamma

ISI distribution with a PWC prior for the intensity function. The means of the

posterior intensity function distributions are shown in Figure 6.14. We see that the

intensity functions are generally between 0 and 0.03 Ca2+ spikes per second over the

whole experiment, although there does appear to be an initial peak in intensity in

the region [0s, 300s]. Furthermore, it appears that most functions remain flat in large

regions although, some functions vary in intensity after the initial peak.

We now decompose each of these functions into their features, using q = 32 Haar

bases. The functions are partitioned into 16 intervals where features can occur. As
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Figure 6.14: The mean of the posterior intensity function distribution obtained from

fitting individual Ca2+ spike sequences to the inhomogeneous Gamma ISI distribution.

The Ca2+ spike sequences were obtained from HEK293 cells challenged with constant

stimulus.



Chapter 6: Clustering Intensity Functions 225

the intensity for each functions is small we multiple each by 100 to emphasise the

difference between flat regions and features in the Haar bases. The threshold used

for most functions was ∆/10q. The exceptions are functions 2, 9, 28, 41, 56 where we

thresholded at 0.002, 0.008, 0.01, 0.002, 0.003, 0.005, respectively. For these functions

the threshold ∆/10q did not accurately find all features. Either the threshold was

too small (created features that did not exist) or too large (missed features). The

resultant matrices are shown in Figures 6.15 and 6.16 for the features and magnitude,

respectively.

Consider first only the features. We can see via the key that the functions contain

increasing and decreasing regions (inc and dec) and up to three individual bumps.

In fact, only function 31 contains three bumps. The majority of functions either have

no bumps (22 functions), or a single bump (38 functions), with only eight functions

having two bumps. Observing the first two columns of the matrix we see that the

majority of functions have a feature here. Only function 42 does not have a feature

occurring in these two intervals. All of these features are either decreasing regions or

bumps, with the majority (54/59) containing decreasing intervals. This corresponds

to the initial transience in spiking rate, where once stimulated the spiking rate begins

high but quickly degrades. We see both bumps and decreasing regions because in

some cases the spiking rate initially increases before a large drop in intensity. After

the initial decrease we see that some cells recover and an increase in spike rate occurs

— the lime green boxes in the third to eighth intervals. This does not occur in all

functions and is a property we could cluster on. It is rare to find a decrease in intensity

in this region. Consider the last eight columns. We see varied behaviour, with both

bumps and decreasing and increasing regions. However, we see these columns contain

far more decreasing intervals then columns 3-8. Concentrating on the bumps, we see

their positions do vary over the entire function. The bumps length varies from only

one column to nine, with the majority covering 2-4 columns. Thus, we have found

that initially the features cells present is common throughout most cells, then as time

progresses the type and timing of features is harder to predict. This can be seen by

looking at the first 3 columns, where the majority of cells contain a decrease (purple).
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Figure 6.16: Matrix containing the magnitudes of the features for the constant

stimulus experiments.
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Then the following columns contain an increase (lime). After this the features vary,

and we see a mixture of all colours in columns 7-16. This could imply temporal

heterogeneity.

Consider the corresponding magnitudes in Figure 6.16. We decided the scale used

to colour the magnitudes by considering the histogram of all magnitudes, shown in

Figure 6.17. We see that the majority of features have magnitude in [0, 0.5] (red

bar), and there are less features with larger magnitudes. Hence, we want to break

this region into smaller sections. The scale we used ranges from yellow to lime green

for magnitudes in [0, 0.5]. Then for magnitudes in [0.5, 1], [1, 2], [2, 3.5] and [3.5, 6]

we colour from a dark green/blue to purple. This is shown in the key of Figure

6.16. We find that the large magnitudes are dominated at the start of the function

corresponding to the initial decrease. The amount a function decreases does vary

considerably between functions — from 5.59 to 0.36. We see that the majority of

features away from first to third columns are far smaller in size with only a few being

larger than one. The magnitudes clearly indicate the difference between features at

the beginning of the function compared to the rest of the function. However, it is
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Figure 6.17: Histogram of the magnitudes of all the features found from the intensity

functions inferred from the constant stimulus experiments.
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unclear whether the magnitude can easily be used to differentiate between features

in the middle and end of the intensity functions.

We now aim to cluster the functions. We use the information provided above

to help us choose what characteristics to partition the functions on. We decide to

cluster the functions that contain a bump outside the initial two columns (to remove

bumps corresponding to the initial decrease). This partitions the functions into two

groups; the 28 functions containing no bumps and the 32 functions containing bumps.

In Figure 6.18(A-B) we show the clusters, where (A) contains bumps and (B) does

not. In the Figure we see the intensity varies more for the functions with bumps. We
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Figure 6.18: Clusters of the intensity functions inferred from a constant stimulus

experiment. (A) and (B) corresponds to clusters with and without bumps respectively.

Whereas, (C) and (D) corresponds to clustering on functions that do and do not

rebound after the initial decrease in intensity respectively.
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can also cluster on those functions that have an increase after the initial decrease.

This splits the functions into two groups, both containing 30 functions. The clusters

can be seen in Figure 6.18(C-D), where (C) corresponds to the functions with the

increase and (D) without. The difference can be viewed by concentrating on the

region [500s, 1200s], where in (C) we see that most functions increase in the region.

Our analysis shows strong cell-to-cell variability to HEK293 cells challenged with

constant stimulus. In almost all cells we see an initial decrease in spiking rate with

varying magnitude. From the clustering we have found that some cells experience a

rebound in intensity after the initial decrease. We also find that some cells experience

a bump in intensity, whereas others remaining mostly constant after the initial

transience.

6.4.3 Step change experiments

We now apply the clustering method to intensity functions inferred from HEK293

cells challenged with a step-change in carbachol for 6860s. The cells were first

stimulated with 10µM carbachol and then with 50µM carbachol, where the solution

was exchanged at 3430s. For each Ca2+ spike sequence we fit the inhomogeneous

Weibull ISI distribution with a PWC prior for the intensity function. The means of

the posterior intensity function distributions are shown in Figure 6.19(A). We see

that the intensity begins high and decreases within the first 1500s, then the intensity

appears relatively flat until the intensity spikes when the stimulus is exchanged.

We now decompose each of these functions into their features, where we use q = 32

Haar bases. Thus the functions are partitioned into 16 intervals [0s, 429s], [429s, 858s],

. . . , [6431s, 6860s] where features can occur. Due to the small values the intensity

takes we multiply each function by 100 to more easily recognise features in the Haar

bases. The threshold used for each function was ∆/10q. The resultant matrices are

shown in Figure 6.19(B,C) for the features and magnitude, respectively.

Consider first only the features. We can see via the key that the functions contain

increasing and decreasing regions and up to three individual bumps. However, only

the tenth function contains increasing regions. In fact, the tenth function may be an
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Figure 6.19: (A) shows the intensity functions inferred from the step change ex-

periment. (B) shows the extracted features of each function and (C) the feature’s

magnitude. The functions in (A) are coloured corresponding to the row that describes

their features in (B) and (C).
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outlier, as it is the only function to have two features at the start of the function and

the only function to contain an increasing region. All functions contain a feature in

the first 900s, with either a bump or a decreasing interval. All functions also have a

bump when the stimulus is exchanged, however the length of the bump varies. The

only other common feature is that some of the functions contain a decreasing interval

between the stimulus change and the end of the experiment.

We now consider the magnitudes of the features in Figure 6.19(C). We see that

the features in [0s, 1286s] tend to have the largest magnitude for a single function.

However, the magnitude varies significantly between functions. The bumps that

occur from the exchange of stimulus [3000s, 3500s] have magnitudes ranging from

2.36 to 0.11 and in all cases they are smaller than the feature at the beginning of the

experiment. We also find that the decreasing regions in intensity after the stimulus is

exchanged have small magnitudes between 0.26 and 0.10.

After taking into account the features and their magnitudes, we choose to cluster

on the magnitude of the bump in the region [3000s, 4000s]. We find that the functions

{10, 11, 12} have larger bumps compared to the other functions. After accounting for

this, we also split the functions into two whether they have a decreasing region after

this bump. We find that the functions {1, 3, 4, 7, 8, 9, 14} have a decreasing interval

and {2, 5, 6, 12} do not. The clusters can be viewed in Figure 6.20, where (A),(B)

and (C) correspond to the clusters {10, 11, 12}, {1, 3, 4, 7, 8, 9, 14} and {2, 5, 6, 13}

respectively.

In the step change experiment we find that all functions initially begin with a

high spiking rate which reduces significantly over the first 1000s. Once the stimulus

is exchanged all cells experience an increase in spiking intensity that reduces after

1000-1300s. Hence, we find that most cells experience a strong change in spiking rate

at the initial exposure to stimulus and again when stimulus is changed. In between

these two features the change in intensity is smaller. However, decreases in intensity

is found for some of the functions after the second peak in intensity.
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Figure 6.20: Clusters of the intensity functions obtained from a step change experiment.

We cluster into 3 groups; (A) functions with a large bump, (B) functions that have a

decrease after the bump in [3000s, 4000s] and (C) those that do not have a decrease

afterwards.

6.5 Summary

Intensity functions inferred from HEK293 cells applied with the same stimulus vary

in shape. The shape of each intensity function contains information about how a

single cell responds to the stimulus. Thus, by analysing these functions we can find

common responses to the stimulus. To do this we suggested clustering the intensity

functions according to features that each function contains. Our initial investigation

found that recent methods — proposed by Tilunaite and Delaigle — for clustering

functions did not perform well with our clustering ideology. In particular, neither

method could accurately partition a set of constant functions and a set of functions
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with a bump. In light of this we have created a new method to cluster functions,

where we first decompose each function into its features before clustering.

Our method takes the intensity functions as its input. Then by utilising the

Haar basis each function is decomposed into its features, where each feature has a

corresponding magnitude. The features and magnitudes are outputted into matrices,

which allows for easy comparisons between functions. We then use the matrices to

cluster the functions. The benefit of this method is that we can cluster the functions

according to the features that interest us.

Our method for finding the features relies entirely on the structure of the Haar

basis, and we have shown that this basis can accurately find features given a good

threshold. However, we have not investigated to what extent other bases can also

find features. In future work it may be worth exploring if other bases — such as

Daubechies wavelet — are better suited to calculating features. Moreover, we have

only empirically found that ∆/10q acts as a good threshold in most cases. Further

investigation into finding an optimal threshold would help decomposing functions

into their features.

Currently all clustering is performed by examining the matrices of features and

magnitudes. This method allows for direct input from the user in choosing the

clusters, which enables the choice of particular clusters; for example clustering on the

number of bumps. However, if our dataset contained hundreds of intensity functions

this method could become difficult to implement. It may be beneficial to add a

method which directly compares the features and magnitudes. For example a method

based on the Jaccard distance — a measure of how dissimilar two sets are — could

potentially be used to compare the features of two functions.

We applied our methods to HEK293 cells challenged with constant stimulus and

a step change in stimulus. From the constant stimulus data we found that all cells

have a peak in spiking rate after the stimulus is applied, which quickly decreases.

When using q = 32 bases we found that most transient period occurs within the first

12.5% of the experiment’s length. However, the amount the intensity changes varies

considerably with magnitudes from 0.22 to 5.59. Thus, the decrease in intensity
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occurs for a consistent amount of time at the beginning of the experiment, but the

magnitude of the decrease varies considerable across the cells. We also found that

half the cells experience a recovery where the intensity increases after the initial drop

in intensity at the beginning of the experiment. This recovery always has smaller

magnitude than the decrease prior. This could indicate that the quick Ca2+ spiking

after the cell is challenged with stimulus induces a negative feedback mechanism,

which causes the spiking rate to decrease beyond its stationary value. Furthermore,

this might suggest that the initial transiences lasts longer than originally thought,

where the transient period also includes this increase in intensity. In addition, we

found that over half the cells contain a bump in spiking rate away from the start

of the experiment. This implies that the intensity function is not constant. Thus,

the assumption that the spiking rate is stationary away from the beginning of the

experiment may not be accurate, and requires further investigation. Finally, we

discovered that as time progressed the features become less common throughout the

cells, which could imply temporal heterogeneity.

We found that HEK293 cells in step change experiments have two peaks in

intensity at the times when initially stimulated and when the stimulus is exchanged.

Furthermore, the first peak always has larger magnitude than the second, which is

counter intuitive given that the second stimulus is stronger than the first. We find

that the inferred intensity does partially mirror the stimulus, as a peak in intensity

can be found at the times that the stimulus is applied/exchanged.



CHAPTER 7

Web applications of our methods

To supplement the methods described in this thesis we have created an R package that

implements them. The package can be found at https://github.com/JPNotts/CaliumSpikes.

This allows for our methods to be openly available for anyone’s use. We have also

created three applications (apps) to accompany the package. The apps are used for:

converting raw data into spike times, simulating spike sequences and decomposing

intensity functions into their features. These apps provide a straightforward, easy

to use interface for the end user, without specialised knowledge of the computer

language R. Moreover, the apps for raw data and decomposing intensity functions

allows for downloading and uploading inputs for the ease of checking previous work

and alterations.

We have not included an app to fit our ISI models to Ca2+ spike sequences due

to the large computational and memory demands. However, to make model fitting as

easy as possible we have included a vignette explaining how to use the package to

fit ISI models. Moreover, we explain how to run multiple processes simultaneously

reducing the overall time to fit multiple ISI models.

In the following sections we shall explore each app and give an example of how
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they can be used.

7.1 Web application for viewing/analysing raw data

We have created an app to view the raw time series data of Ca2+ concentration

with a user-friendly method of thresholding the data to calculate Ca2+ spike times.

Depending on the experiment the raw data for each cell is either the fluorescent ratio

or the Ca2+ concentration against time. The only difference between the two is the

scale used. Therefore, both can be used with this app. However, to simplify the app

we always regard the raw data to be the Ca2+ concentration over time. The app can

be found at https://shiny.maths.nottingham.ac.uk/pmxjp8/ViewData/.

This bespoke app has been created with Ca2+ data in mind. For example, it is

often required to remove transient regions from the experiment and remove linear

trends in the ISIs [6]. Both of these features are implemented in the app allowing

the user to view how transients and linear trends effect the generated Ca2+ spike

sequence. Moreover, it is often difficult to decide the concentration to threshold

the raw data. For example the magnitude of the Ca2+ spikes may vary over the

experiment. Therefore, the app allows for varied thresholding to capture all spikes

using the user’s discretion. We can also zoom into regions of the time series data to

give a clearer picture of the concentration at that time. The Ca2+ concentration is

often noisy, which can lead to false spikes being detected. For example, a spike time

may be found when the noise causes a small local increase in Ca2+ concentration. To

negate this we include a closeness parameter which merges spikes together if they are

too close. Finally, the app allows for the uploading and downloading of threshold

parameters, allowing users to save and return to analysing the raw data at a later

date.

7.1.1 Example of using the app

To assist the user, a step-by-step guide of instructions is provided on loading the app.

We now give an example where we use the app to obtain spike sequences from raw
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data.

First we must upload raw data to the app. To do this we press the ‘Input

Data’ button, and a pop up window appears. On the popup we are presented with

two upload boxes, the first for the raw data and the second for loading threshold

details. We upload the raw data into the input box from our local machine,

where the file is formatted such that the first column corresponds to the experiment

time and subsequent columns are the Ca2+ concentrations for each cell. On pressing

the ‘Ok’ button the popup disappears and we are presented with the concentration

plot — Ca2+ concentration against time — for the first cell in the dataset. We want

to obtain spike times by thresholding the raw data. The options to threshold are

shown in the ‘Thresholding’ section of the sidebar. After considering the plot we

enter 0.7 into the ‘Thresholding at?’ box. This causes a red threshold line to

appear on the concentration plot along with red ticks on the time axis representing

the spike times and the experiment’s length. Furthermore, a new plot showing the ISI

times against the order they arise appears underneath the concentration plot. The

ISI plot contains a linear fit, showing any trends in the ISIs. Beneath the ISI plot are

written the obtained spike times together with the end time of the experiment. This

is shown in Figure 7.1.

To aid in the choice of threshold we can vary the time and concentration (conc)

axes in the concentration plot. This is especially useful to zoom into regions where

the spikes occur rapidly proportional to the experiment’s length. Moreover, if the

concentration is far larger in one region — often at the onset of stimulus — compared

to the rest of the experiment we can scale the concentration axis to make spikes

distinguishable. By default the conc axis is between the maximum and minimum

values for the concentration data for the current cell and the time axis is the length

of the experiment. In the sidebar we find a section called ‘Change concentration plot

axes?’, where we have two checkboxes for the time and conc axes, respectively. To

change the time axis simply click and drag a box on the concentration plot for

the region you want to zoom into. On releasing the click the concentration plot has

zoomed the time axis into the region of the drawn box, whilst the conc axis remains
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Figure 7.1: Screenshot of the app for viewing/analysing raw data when we threshold at 0.7.
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unchanged. The ‘Default time axis?’ checkbox has become unchecked revealing

inputs for the maximum and minimum times for the plot window. If we want to

rescale the conc axis uncheck the default conc axis checkbox. This rescales the

conc axis between the minimum and maximum concentration found in the selected

region. The user can change the axes limits by changing the values in the provided

maximum and minimum input boxes for the time and conc axes. By rechecking

the default time axis and default conc axis checkboxes the axes returns to

their default setting.

Between 800s and 1000s we see a small spike in the Ca2+ concentration that we

may want to include as a spike time. However, if we lowered the threshold time we

may lose some of the other spikes — i.e the first three spike times. So, to include

this spike we can use multiple thresholds by entering ‘0.7,0.45,0.7,800,1000’ into

the ‘Threshold at?’ box. This tells the app that between 0s and 800s you want to

threshold at 0.7, between 800s and 1000s we threshold at 0.45 and for times greater

than 1000s threshold at 0.7. In figure 7.2(A) we see the red line has updated for our

new threshold and a new red tick is produced on the time axis representing the new

spike time. Moreover, we find that the large ISI time of around 800s has been split

into two new ISIs of approximately 320s and 480s in the ISI plot.

Note that the Ca2+ data comes from a step change experiment and we may want

to remove the transient sections at the start and middle of the experiment. By

checking the ‘Transient period’ checkbox in the sidebar we are prompted to

enter the transient regions at either the start, middle or end of the experiment. We

enter the transient periods to be between 0s and 200s and between 3300s

and 3500s. In figure 7.2(B) we see the affect of adding the transient periods. In the

concentration plot, red boxes appear over the transient periods. The first transient

period alters the start time of the calculated spike times, which now begins at the

time of the first spike after 200s, namely at 254s. We use this approach such that

we only need to choose the transient period between two spikes, i.e. any transient

period between the spikes at 177s and 254s gives rise to the same spike sequence. For

example, without transient regions the first 6 spike times are given by 82s, 122s, 176s,
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Figure 7.2: The concentration and ISI plots shown in the app when we (A) change

the threshold to ‘0.7,0.45,0.7,800,1000’ and (B) add two transient regions.
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254s, 378s, 534s. By adding the transient period [0s, 200s] we cut the first 254s off

the experiment time — the time of the first spike after the transient period. Thus,

the new spike times are given by 134s, 146s, etc. This maintains the ISI times, e.g.

378s − 254s = 134s. This is shown in the concentration plot by removing the red

ticks for the spikes up to 254s. Similarly for the transient period in [3300s, 3500s],

we remove the time between the last spike before 3300s to the first spike after 3500s.

This is shown by removing the red ticks of the spikes under the transient region and

the red tick corresponding to the first spike afterwards. Since we use a transient

period in the middle of the experiment the ISI plot is now split into two windows.

The first window corresponds to the spikes before the middle transient period and the

second window for the spike times afterwards. Both subsets of spikes have their own

linear fit line. We choose to split the ISIs in this manner because a middle transient

period usually arises due to a change of stimulus. Therefore, the spikes after the

transient region do not share the same trend as the spikes before it.

If we wish to remove linear trends in the ISIs we press the ‘Remove linear

trends?’ checkbox. This alters the spike times by removing the linear trends found

in the ISI times. If the ISIs are split into two windows this is performed for both

subsets of ISIs. Visually, this has no affect on the concentration plot. However, the

ISI times change and the lines of best fit are now flat, showing there are no linear

trends in the adjusted ISIs.

We then change to the second cell by entering 2 into the ‘Cell number’ box.

We threshold the cell by inputting 0.85 into the ‘Threshold at?’ box — the

concentration plot, in the region [400s, 800s], is shown in Figure 7.3(A). We see

that using this threshold leads to false spike times. For example, we get two spikes

in [480s, 500s], which is caused by noise in the Ca2+ concentration. To solve this

problem we check the ‘Limit closeness of spikes?’ checkbox and an input box

appears in the sidebar for ‘closeness’. We enter 10 into the ‘closeness’ input,

which merges spikes that are within 10s of each other. This results in the false spikes

been removed, as shown in Figure 7.3(B).

We can repeat this process for all the others cells in the dataset. At any stage
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Figure 7.3: Screenshots of the concentration plot for the second cell using a threshold

of 0.85. The closeness parameter is set to 0 and 10 in (A) and (B), respectively.

we can download the spikes and threshold details for later use. Pressing the

‘Download’ button will prompt the user to select a location to download a folder

on their local machine. In this folder there are three files. The first file ‘Details.txt’

informs the user of the file name of the raw data used. The second file ‘spikes.csv’

stores the calculated spike sequences as columns in a table, where the ith column

contains the spikes for the ith cell. Cells which have not been thresholded are denoted

by a column of NAs. The third file ‘store.csv’, contains the threshold details for each

cell in the dataset. This file can be uploaded into the app with the raw data allowing

changes to the thresholds and checking how spike times were created.

7.2 Web application for simulating spikes

We have created an app to generate surrogate spike sequences using the methods

described in Section 2.3. The app can be found at

https://shiny.maths.nottingham.ac.uk/pmxjp8/SimSpikes/.

This app supplies an accessible user interface for simulating spike sequences. It
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also provides graphical techniques to allow the user to visually decide whether the

spikes sequences match their needs. The created spike sequences can be used as

surrogate data to Ca2+ models when experimental data is difficult to obtain.

In this app we use the sidebar to enter the ISI distribution we want to generate

spike sequences from and the number of sequences we require. Once inputted a plot

of the intensity function and a raster plot of the spike times are presented . The user

may then download the spike sequences which can easily be used as an input in other

applications.

7.2.1 Example of using the app

On opening the app the user is presented with a guide explaining how to use it and a

sidebar containing inputs — the ISI distribution and the number of spike sequences

we want to generate. We shall give two examples of using the app. Firstly, we choose

the following inputs:

• ISI distribution = ‘Gamma’. A choice between an inhomogeneous Exponential,

Gamma, inverse Gaussian, log-normal or Weibull ISI distributions.

• ISI parameter = 32. The parameter of the chosen ISI distribution.

• Refractory period = 0. The time after a spike when the next spike cannot occur.

• Intensity function = cos(t/2.3) + 1.2. A positive function defined in terms of

the variable t over the experiment’s length.

• End time = 40. The length of time we simulate spikes for.

• Number of sequences = 10. How many spike sequences we want to generate.

Once the desired inputs have been entered we press the ‘Get spikes’ button.

The main panel is updated with a figure containing the intensity function and the

raster plot of the generated spike sequences — with a maximum of 20 sequences shown.

Furthermore, underneath the figure the first spike sequence is written. This is shown
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Figure 7.4: Screenshot of the simulating spikes app.

in Figure 7.4. If we only require a single spike sequence it can easily be copied from

the app. If we require more than one spike sequence we can press the ‘Download’

button. This creates a zipped folder on the user’s local machine containing two files.

The first file ‘spikes.csv’ contains each spike sequence as a column of a table, which

can easily be used in other applications. The second file ‘details.txt’ contains the

parameters used to create the spike sequences.

In the second example we will consider a step function as the intensity function.

The inputs are set to:

• ISI distribution = Weibull

• End time = 40

• ISI parameter = 7

• Refractory period = 0

• Number of sequences = 7
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Figure 7.5: Screenshot of the results panel for the second example where the intensity

function was c (t [t < 20 ] ∗ 0 + 1 , t [t > 20 ] ∗ 0 + 0 .5 ).

• Intensity function = c (t [t < 20 ] ∗ 0 + 1 , t [t > 20 ] ∗ 0 + 0 .5 )

The input for the intensity function may look confusing. However, this is the

format required for the app to understand the step function. The intensity function

is generated by applying the input provided to the vector t which partitions the

experiment’s length into 8000 equal pieces. Thus, in the example of the step function

we split t into two parts by t [t < 20] for the first 20s and t [t ≥ 20] for the last 20s.

Then to get the constant intensity we multiply each part by 0 and add the required

intensity. In our case we set the intensity to 1 in [0s, 20s] and 0.5 in [20s, 40s]. Then

we join the two parts together by using c() — the app’s method to concatenate

vectors. The benefit of this approach is that the user can create complex intensity

functions using the app.

Pressing the ‘Get spikes’ button we are presented with the intensity function

and spike times as shown in Figure 7.5. We see that the inputted intensity function

matches the previously described step function.
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7.3 Web application for finding features in inten-

sity functions

This app is used for the decomposing intensity functions into their features, which

can be used to cluster them. The app can be found at

https://shiny.maths.nottingham.ac.uk/pmxjp8/Cluster features/.

This app provides an interface for generating the features — and their corre-

sponding magnitudes — of intensity functions. After uploading intensity functions

the app will automatically find the features. The user may check the features of

any intensity function and change them if required. To search for common features

between intensity functions the feature or magnitude tables can be sorted by the

region of interest. Finally, the app allows the user to download the features and

magnitude tables for later use.

7.3.1 Example of using the app

On opening the app the user is greeted with a panel where they can input the intensity

functions and a link to the step-by-step guide for the app, see Figure 7.6. We shall

now go through an example of uploading data to the app, calculating features and

looking for clusters from the features.

We first upload the intensity functions into the app. This is done by uploading

the intensity functions via the ‘Load functions’ input. The data must be

contained in a ‘.csv’ file where the first row consists of the time indexing and each

subsequent row is an intensity function. After the upload is completed, we need to

choose how to decompose the intensity functions into their features. We have two

choices; either we upload features from previous analysis or use a Haar decomposition.

We select a Haar decomposition with 16 regions. To finalise our decision we

press the ‘OK’ button, this causes a popup to appear in the bottom right hand

corner with a loading bar. The popup informs on the process of creating the feature

and magnitude tables. Once completed, the app takes us to the Overview tab where

we are presented with the feature and magnitude tables, as shown in Figure 7.7. The
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Figure 7.6: Screenshot of the opening panel of the app.

feature table shows the features for the first 10 intensity functions and we can shift

between functions by using the ‘previous’ or ‘next’ buttons in the bottom right corner

of the table. Depending on the number of regions selected we may need to scroll left

and right to see all the regions. The features are coloured to make similarities easier

to distinguish — for example a decreasing region is coloured pink. Similarly, in the

magnitude table the darker the red the larger the magnitude of the corresponding

feature.

To check that the automated features give an accurate representation of the

intensity functions we can switch to the Individual tab in the sidebar, this is

shown in Figure 7.8. In this section we can view single intensity functions and alter

their features. The main panel is split into three sections via horizontal lines. The

top section contains three options. The first option ‘Show Haar?’ is a checkbox

that when selected overlays the Haar representation of the intensity function (in

red) in the intensity function plot. The second option ‘Threshold level’ gives the

threshold used to decide where the features are. This can be altered to change the

features found for the intensity function. For more information on the threshold see

Section 6.2. The third option ‘Functions:’ allows the user to switch between the
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Figure 7.7: Screenshots of the feature (top) and magnitude (bottom) tables taken

from the app.

intensity functions found in the dataset. The middle section contains the plot of

the intensity function, which has been split into 16 regions vertically. This allows

the user to easily compare the features and the intensity function. For example,

we clearly see that region 1 is decreasing. The bottom section outlines the features
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Figure 7.8: Screenshot of the Individual tab taken from the app.

for the current intensity function. These can be updated by the user to match the

features they observe in the intensity plot. Any changes made in the Individual tab

are automatically updated in the Overview tab.

We can use the feature and magnitude table to aid us in clustering the functions.

By clicking ‘Region.1’ on the feature table this sorts the table by the features

found in the first region. This is helpful to differentiate functions that start with a

decreasing region and those that do not. This can be applied to any region on both

the feature and magnitude tables. Moreover, if we are only interested in intensity

functions that contain two bumps we can enter ‘bump2’ into the search bar

and only functions that contain at least two bumps will remain in the feature table.

Therefore, the sorting and searching of the magnitude and feature tables simplifies
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the clustering process.

Once we are happy with the feature table we can download it, along with the

magnitude table, by pressing the ‘Download’ button provided on the sidebar.

This creates a folder on the user’s local machine containing three files. The first

‘fns.csv’ is the dataset of intensity functions used to create the feature and magnitude

tables. The other two files ‘features.csv’ and ‘magnitudes.csv’ contain the feature

and magnitude tables, respectively. This allows the features and magnitudes to

be examined externally as well as storing all the files collectively in one location

reducing the risk of file misplacement. Furthermore, ‘fns.csv’ and ‘features.csv’ can

be uploaded into the app allowing the user to revisit the data.



CHAPTER 8

Conclusion

8.1 Overview

In this thesis, we have developed a statistical model of Ca2+ oscillations that captures

the intrinsic heterogeneity of Ca2+ responses and the dynamic stimulation that cells

are challenged with in vivo. We applied our approach to Ca2+ oscillations from

HEK293 cells and astrocytes and investigated their common features, and clustered

cells that have similar responses.

We began with the modelling framework for Ca2+ oscillations first developed by

Tilunaite et al. [16]. This consisted of representing Ca2+ oscillations as a stochastic

point process, which is defined by its ISI distribution. To account for heterogeneity in

the Ca2+ oscillations and time-dependence of the stimulus challenging cells Tilunaite

et al. utilised an intensity function in the model to capture how the ISIs vary over

time. Therefore, their model was defined by the type of ISI distribution used —

Exponential, Gamma or inverse Gaussian — together with the intensity function

and ISI parameters. Tilunaite et al. utilised a Bayesian framework to fit their model

to Ca2+ spike sequences, where each model parameter has a prior belief which is
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then updated to get the posterior belief after observing the data. In their work they

took a non-parametric approach for the intensity function, assigning it a GP prior

distribution. To fit their model they approximated the posterior distribution by using

a Laplace’s approximation.

In this thesis, we extended Tilunaite’s work in three critical ways. Firstly, we

increased the number of ISI distributions used to describe the ISI dynamics. In

particular, we explained how to create an inhomogeneous ISI distribution using any

continuous probability distribution with support on the positive real numbers. Our

approach imbued meaning to the intensity function to describe the average spiking

rate irrespective of the spiking history. We found that the inhomogeneous inverse

Gaussian ISI distribution used by Tilunaite et al. does not agree with our formulation

of the intensity function — it does not describe the average spiking rate. Therefore,

we provided a new parameterisation for the inhomogeneous inverse Gaussian ISI

distribution. We also included the log-normal and Weibull distributions as candidates

for the ISI distribution.

Secondly, we considered additional priors for the intensity function. In addition

to the GP prior used by Tilunaite et al, we added the constant and PWC priors for

the intensity function. This allowed us to explore different functional forms for the

intensity function. Moreover, constant and PWC priors are computationally cheaper

than GPs. Therefore, the additional priors may give rise to a computationally cheaper

method to generate similar posterior intensity functions as the GP.

Thirdly, Tilunaite et al. approximated the posterior distribution, which can

lead to approximation errors. For example such an approach struggles to capture

if the posterior distribution is multimodal. Therefore, in this thesis we changed

the model fitting philosophy and use exact inference. To do this we developed

MCMC algorithms to sample from the posterior distribution. In general, we use

Metropolis-within-Gibbs sampling over the parameter space, where we sample the

intensity function and ISI parameter individually. For the ISI parameter we used
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a Metropolis-Hastings algorithm. For the intensity function we developed efficient

MCMC algorithms tailored to each prior. For the constant prior we used a Metropolis-

Hastings algorithm. For the PWC prior we utilised a RJMCMC algorithm. The

advantage of this algorithm is that it can change the dimension of the search space

by birth/death/split/merge moves. In our case, it allowed for moves between PWC

functions with varying number of pieces. For the Gaussian process prior we used

an under-relaxed algorithm. The main advantage of this approach is that in each

iteration a new intensity function is proposed over then entire domain, which is prefer-

able compared to proposing a change at each time index individually. The MCMC

algorithms are described in Chapter 2 for the inhomogeneous Gamma ISI distribution.

Although sampling from the posterior is advantageous it comes with computational

challenges. These are described and resolved in Chapter 3. We summarise the three

challenges below.

One obstacle is sampling the posterior distribution when the intensity function

has a GP prior because it is slow, often due to the requirement of repeated sampling

from the GP prior. We resolve this issue using two approaches. Firstly, if we fix the

length scale of the GP prior, we used the spectral representation of a Gaussian process

to improve the speed we could sample the GP prior distribution. Secondly, when

we infer the length scale we used an approximation method called Mean Projection

Approximation. This fits the GP prior distribution over a smaller time indexing set

and then projects this function onto the full time index. Both of these approaches

drastically decrease the time taken to sample from the posterior distribution.

Another obstacle is understanding when we can infer the length scale of the GP

prior directly. As we often fit our models to a single Ca2+ spike sequence there is only

limited information about the value and shape of the intensity function. For example

between two Ca2+ spikes we do not know if the spiking rate is zero in this region or

we were just unlucky to find no spikes in this region. Thus, we do not know if the

intensity function remains flat in this region or varies quickly. This makes inferring

the length scale of the Gaussian process very difficult. We mitigated this issue by
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developing an approach that uses the inferred intensity function from the PWC prior

to inform the length scale of the Gaussian process.

The final issue we encountered was that sampling from the conditional distribution

of the intensity function can be very challenging for the GP prior. In particular, the

intensity function took artificially large values before the first spike time and after

the last spike. To alleviate this problem we developed a new sampling approach to

be used in tandem with the under-relaxed method to reduce the intensity in these

problematic regions.

In Chapter 4, we expanded the model to include the refractory period as a param-

eter. We found that it was computationally difficult to decouple the refractory period

from the intensity function and ISI parameter. This was due to the models without

the refractory period being able to have near zero spiking rate in the region of the

refractory period. Therefore, with the exception of the inhomogeneous Exponential

distribution, it was not possible to extend the inhomogeneous distributions to include

the refractory period explicitly. However, even with this setback simulated Ca2+ spike

sequences still implicitly contain the refractory period.

In Chapter 5, we turned our attention to real data sets. We analysed Ca2+ spike

sequences obtained from HEK293 cells and astrocytes. We first considered Ca2+

spike sequences of HEK293 cells and astrocytes challenged with a constant stimulus.

For both cell types our model captured the heterogeneity of the Ca2+ response. In

particular, the intensity function demonstrates two time scales in the Ca2+ response,

where initially there is a burst of Ca2+ spikes at the onset of the stimulus and more

regular Ca2+ spiking further into the experiment. We also found distinct differences

in the Ca2+ response between the two cell types where astrocytes often have an

extended ISI after the first Ca2+ spike, whereas HEK293 cells do not. Furthermore,

we found on average astrocytes challenged with 100µM glutamate express fewer Ca2+

spikes than those challenged with 10µM glutamate but the Ca2+ spikes occur more

regularly. In comparison, HEK293 cells exhibit a larger number of Ca2+ spikes when
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the stimulus strength was increased — from 10µM to 30µM carbachol.

We then analysed Ca2+ spike sequences obtained from HEK293 cells challenged

with carbachol delivered via time-dependent protocols. In particular, step-changes,

waves and pulses of carbachol. HEK293 cells challenged with a step-change in stimulus

are comparable with joining together two constant stimulus experiments. This was

captured in our model by the intensity function which closely mirrored joining two

intensity function from constant stimulation experiments. For cells challenged with

waves or pulses of stimulus we found that the inferred intensity function followed a

similar shape as the applied stimulation protocol.

Therefore, for all stimulation protocols we found that our model was able to

capture the heterogeneity in the Ca2+. One advantage of our framework is that given

model parameters we can cheaply simulate surrogate spike sequences with similar

properties to the Ca2+ spike sequences used to fit the model. Since our approach

only uses Ca2+ spike times, we can create realistic spike sequences for HEK293 cells

and astrocytes challenged with a variety of stimulation profiles without building

individual mechanistic models for each situation. This allows us to cheaply generate

realistic spike sequences for several cell types which can be used in signalling cascades

to gain insight into the Ca2+ signalling toolbox.

For each dataset of Ca2+ spike sequences we fit our model for a selection of inho-

mogeneous ISI distributions, namely the Exponential with or without the refractory

period, Gamma, inverse Gaussian, log-normal and Weibull. For each we fit the model

with three different choices for the prior of the intensity function: constant, PWC

and GP. For all datasets considered we found that the constant prior for the intensity

function was too restrictive and cannot capture the underlying Ca2+ response. Simi-

larly, we found that the inhomogeneous Exponential ISI distribution with or without

the refractory period cannot accurately describe the Ca2+ spiking of any cell type

or stimulation protocol. We often found that the models with a PWC prior for the

intensity function leads to a similar or better performance than the GP prior. This is

because both priors allow intensity functions that have similar shapes. The PWC

prior occasionally outperforms the GP prior due to the discrete jumps in intensity it
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allows, which allows sharp changes in the Ca2+ spiking rate to be captured in the

intensity function.

In Tilunaite et al.’s work [16] they found that the inhomogeneous Gamma ISI

distribution outperformed the inhomogeneous Exponential and inverse Gaussian

ISI distributions. In comparison, for all the cell types and stimulation protocols

considered we found that the best ISI distribution is between the inhomogeneous

Gamma ISI distribution, the inhomogeneous inverse Gaussian ISI distribution or the

inhomogeneous Weibull ISI distribution, where the inverse Gaussian ISI distribution

has been reparameterised. Therefore, by extending the modelling framework we have

found two more ISI distributions along with the Gamma ISI distribution that are

consistent with Ca2+ spikes. Our analysis further confirmed that the inhomogeneous

Exponential ISI model does not capture the Ca2+ response even with the addition of

the refractory period as a model parameter.

As expressed by Tilunaite et al. the inhomogeneous Gamma ISI distribution was

an appealing candidate for Ca2+ spikes because the Gamma probability distribution

represents a combination of events occurring for the first time, such as Ca2+ puffs

leading to a Ca2+ spike. We have shown that the inhomogeneous Gamma ISI

distribution performs well and this interpretation is still valid. However, we have also

found that the inhomogeneous Weibull and inverse Gaussian perform similarly. This

leads to other potential interpretations that could drive Ca2+ spikes. For example

Ca2+ spikes have been described as first-passage events and the inverse Gaussian

distribution has been used to model such problems.

From our analysis it appears that the Ca2+ response of cells challenged with

a complex stimulation protocol is comparable to joining the Ca2+ response from

simpler experiments. For example a single step-change experiment leads to a similar

Ca2+ response to two constant stimulus experiments. Therefore, it might be possi-

ble to generate realistic spike sequences for complex stimulation protocols by using

knowledge from simpler experiments. This would be particularly exciting to create

surrogate spike sequences for stimulation protocols that are difficult to record experi-

mentally. We give an illustration of how this may be achieved in principle in Chapter 5.
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In Chapter 6, we investigated how to cluster intensity functions. In particular, we

wanted to cluster them depending on their shape over time. We took this approach

because the shape contains important information about the underlying dynamics

controlling the Ca2+ response. We began by considering recent methods used by

Tilunaite et al. [16] for intensity functions and Delaigle et al. [142] for functional

data. We found that neither approach clustered the intensity functions by their shape.

Therefore we developed a new approach that decomposes intensity functions into their

features, utilising the Haar basis, which are used to perform clustering. The features

of the intensity functions are visualised by matrices containing the shapes and the

magnitudes of the features. The approach successfully allows intensity functions to be

clustered via their shape. We applied our method to intensity functions inferred from

HEK293 cells challenged with constant stimulus and a step-change in stimulus. By

decomposing the intensity functions into their features we found that most intensity

functions share a similar shape. For example in constant stimulus experiments most

intensity functions begin with a large decrease before plateauing. As expected we

found the shape remains similar across all cells irrespective of the strength of the

Ca2+ response. This illustrates that the shape of the intensity function is alike across

the same cell type and stimulation protocol. However, we do find some differences

that allow for clustering. For example some cells experience a prolonged region of low

intensity after the initial peak when the stimulus is applied before recovering later

in the experiment to ’plateaued’ level of intensity, whereas other cells converge to

the plateau directly after the stimulus is applied. Therefore, by clustering we have

found differences in the cellular response in HEK293 cells. It is intriguing whether

the differences occur randomly or arise from difference in the Ca2+ signalling toolbox

expressed in the same cell type. For example one justification could be that the

applied stimulus depletes cellular Ca2+ resources for some of the cells, which leads to

the extended period of low intensity.

Finally, in Chapter 7, we outlined the online applications we created to be used

alongside our work. In particular, we created applications to simulate Ca2+ spike
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sequences, threshold Ca2+ concentration data into Ca2+ spike sequences and cluster

intensity functions. These applications allow for an easy-to-use interface for some of

the approaches used in this thesis.

8.2 Future work

Within our framework we took a non-parametric approach to model the intensity

function. In particular, we used a GP prior for the intensity function. With this

prior, we implemented an under-relaxed algorithm to sample from the conditional

distribution of the intensity function, as this updates the intensity function as a block.

However, computationally more complex methods — such as Hamiltonian Monte

Carlo or Stochastic Gradient MCMC — may be more efficient at sampling from the

conditional distribution. Therefore, in future developing such methods within our

framework would be advantageous.

In our model the intensity function is by definition positive, where regions of near

zero intensity correspond to regions of near zero Ca2+ spiking rate. Often the Ca2+

response of cells contain regions with no spikes — such as before the stimulus is

applied. Therefore, the inferred intensity functions often contain near zero regions.

Within the GP prior to constrain the intensity function to be positive we consider its

logarithm. However, on the logarithmic scale regions where the intensity function

is close to zero gets stretched by the transformation. This may lead to difficulty

in inferring the length scale, as a small change in intensity function may lead to

large changes in its logarithm. Therefore, future work looking for alternatives to the

logarithm may improve the implementation of the GP prior for the intensity function.

One difficulty faced when fitting inhomogeneous ISI distributions is the balance

between single cell heterogeneity and informative parameter values. We have shown

that models fitted to datasets of Ca2+ spike sequences describe the mean spiking

behaviour which does not encapsulate the cell-to-cell variability shown across all Ca2+
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spike sequences. However, a single Ca2+ spike sequence only contains limited infor-

mation and therefore parameter estimates can contain a large amount of uncertainty.

This could be one of the reasons it is difficult to tease apart which ISI distribution

best describes the Ca2+ spike sequences. In future, it may be beneficial to create a

procedure to group similar Ca2+ spike sequences together to be fitted simultaneously.

It would be interesting whether such an approach would lead to parameter estimates

with less uncertainty whilst capturing the cell-to-cell variability.

As illustrated in Chapter 5, our approach has the potential to generate realistic

surrogate Ca2+ spike sequences from experimentally difficult stimulation protocols.

A starting point to achieving this goal is to apply the methods provided to a wide

range of Ca2+ spike sequences obtained from a variety of cell types and stimulation

protocols, to explore if it is possible to classify cell types or stimulation protocols by

their representative model parameters.

In Chapter 6 clustering is performed by examining the feature and magnitude

matrices. This can be viewed as a positive as it forces the practitioner to consider

how to cluster rather than trusting an automatic clustering scheme, which can lead

to clusters that are difficult to understand. However, with large amounts of data it

may preferred to use an automatic clustering mechanism. Therefore, in future work

it would be beneficial to create such a tool for this approach, and investigate how

automatic clusters compare to those chosen by the practitioner.

Throughout our goal has been to develop a statistical framework to analyse single

cell Ca2+ spike sequences. We have shown that our models can accurately capture

the Ca2+ spiking behaviour of astrocytes and HEK293 cells challenged with a variety

of stimulation protocols. As an input our modelling framework only require Ca2+

spike sequences. Therefore, our framework can also be applied to any data that

corresponds to a sequence of events over time. In particular, our methods could also

be used to explore other aspects of Ca2+ signalling. For example the Ca2+ oscillations
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of individual Ca2+ channels or Ca2+ oscillations in tissue could be used as an input.

It would be interesting to apply our methods to such data and explore patterns

that occur across different biological levels. So far, we have only considered Ca2+

oscillations from single cells in isolation. Subsequent work could investigate how

single cells interact in tissue. For example are clustered cells equally distributed

throughout the tissue or do we find regions of the tissue where cells respond similarly?

Moreover, it would be exciting to find out whether intensity functions can track a

stimulus’s path through the tissue. For example this could be represented by the first

peak in the intensity function, which varies across the population of cells. Finally,

the methods herein are not restricted only to Ca2+ oscillations, it would be intriguing

to see in which other fields such approaches could be used.



Appendices



APPENDIX A

Non-identifiable distributions

In this appendix we show the non-identifiability of the 3 parameter inhomogeneous

inverse Gaussian, log-normal and Weibull ISI distributions.

• Inverse Gaussian: Consider the inhomogeneous inverse Gaussian distribution

with parameters (ax, aλ, aµ) with a > 0 a constant below we show this is identical to

the inverse Gaussian with parameters (x, λ, µ).

p(t, s|ax, aλ, aµ) = ax(t)

(
aλ

2π (aX(s, t))3

)0.5

exp

{
aλ (aX(s, t)− aµ)2

2(aµ)2aX(s, t)

}
,

= ax(t)

(
λ

a22πX(s, t)

)0.5

exp

{
a3λ (X(s, t)− µ)2

2a3µ2X(s, t)

}
,

= x(t)

(
λ

2πX(s, t)3

)0.5

exp

{
λ (X(s, t)− µ)2

2µ2X(s, t)

}
,

= p(t, s|x, λ, µ).

• Log-normal: Consider the inhomogeneous log-normal distribution with pa-

rameters (ax, µ+ log a, σ) with a > 0 a constant below we show this is identical to
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the log-normal with parameters (x, µ, σ).

p(t, s|ax, µ+ log a, σ) =
ax(t)

aX(s, t)σ
√

2π
exp

{
−(log aX(s, t)− (µ+ log a))2

2σ2

}
,

=
x(t)

X(s, t)σ
√

2π
exp

{
−(logX(s, t)− µ+ log a− log a)2

2σ2

}
,

=
x(t)

X(s, t)σ
√

2π
exp

{
−(logX(s, t)− µ)2

2σ2

}
,

= p(t, s|x, µ, σ).

• Weibull: Consider the inhomogeneous Weibull distribution with parameters

(ax, k, aλ) with a > 0 a constant below we show this is identical to the Weibull with

parameters (x, k, λ).

p(t, s|ax, k, aλ) =
ax(t)k

aλ

(
aX(s, t)

aλ

)k−1

exp

{
−
(
aX(s, t)

aλ

)k}
,

=
x(t)k

λ

(
X(s, t)

λ

)k−1

exp

{
−
(
X(s, t)

λ

)k}
,

= p(t, s|x, k, λ).



APPENDIX B

Complementary figures for application to real data

3

B.1 Astrocytes challenged glutamate

In this section, we provide rescaled ISI occurrence plots for four Ca2+ spike sequences;

two obtained from astrocytes challenged with 10µM glutamate and two from astrocytes

challenged with 100µM glutamate. This is shown in Figure B.1, B.2, B.3 and B.4 for

the constant prior of the intensity function only.
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Figure B.1: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from an astrocyte challenged with 10µM glutamate.
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Figure B.2: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from an astrocyte challenged with 10µM glutamate. The cell used differs

from the one used in Figure B.1.
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Figure B.3: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from an astrocyte challenged with 100µM glutamate.
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Figure B.4: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from an astrocyte challenged with 100µM glutamate. The cell used differs

from the one used in Figure B.3.
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B.2 HEK293 cells challenged with constant carba-

chol

In figure B.5 we compare simulated spike sequences using the posterior of the inverse

Gaussian ISI model with a PWC prior fitted to HEK293 cells challenged with 30µM

carbachol, with the Ca2+ spikes used to fit the model.

The slopes of the Q-Q and K-S plot when the applied stimulus was 10µM carbachol

is shown in Figure B.6.
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Figure B.5: (A) 50 simulated spike sequences from the posterior inverse Gaussian ISI

distribution with a PWC prior fitted from the datasets where the applied stimulus

30µM carbachol. (B) The dataset of Ca2+ spike sequences used to fit the model

used to simulate spikes in (A). In both the spike sequences are ordered such that the

sequences with the most spikes occur at the top of the plots.
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Figure B.6: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with 10µM carbachol.
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B.3 HEK293 cells challenged with a step change

in carbachol

In this section, we first provide rescaled ISI occurrence plots for two Ca2+ spike

sequences obtained from HEK293 cells challenged with a step change of carbachol of

strength 10µM→ 50µM. This is shown in Figure B.7 and Figure B.8 for the constant

prior of the intensity function only.

We also produce the slopes of the Q-Q and K-S plots for HEK293 cells challenged

with a step-change in stimulus, shown in Figures B.9, B.10, B.11 and B.12.
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Figure B.7: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from HEK293 cells challenged with a step change of carbachol of strength

10µM→ 50µM.
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Figure B.8: Rescaled ISI occurrence plots for the ISI models fitted with a constant

prior for the intensity function. The models were fitted to a single Ca2+ spike sequence

obtained from HEK293 cells challenged with a step change of carbachol of strength

10µM→ 50µM. The cell used was different from that used in Figure B.7.



Chapter B: Complementary figures for application to real data 276

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
ng

le
 o

f s
lo

pe
s

Q
−

Q

0.7

0.8

0.9

1.0

1.1

E
xp

T
m

in LN

G
am IG

W
ei

E
xp

T
m

in LN

G
am IG

W
ei

E
xp

T
m

in LN

G
am IG

W
ei

A
ng

le
 o

f s
lo

pe
s

K
−

S

Constant PWC GP

Figure B.9: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with a step change of carbachol of strength

10µM→ 50µM.
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Figure B.10: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with a step change of carbachol of strength

20µM→ 50µM.
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Figure B.11: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with a step change of carbachol of strength

20µM→ 100µM.
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Figure B.12: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with a step change of carbachol of strength

50µM→ 100µM.
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B.4 HEK293 cells challenged with three waves of

carbachol

The slopes of the Q-Q and K-S plots for HEK293 cells challenged with three waves

of carbachol.
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Figure B.13: Slope summaries of Q-Q and K-S plots of the inhomogeneous Exponential,

Exponential with refractory period, log-normal, Gamma, inverse Gaussian and Weibull

models for HEK293 cells challenged with three waves of carbachol.
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