
 

 

 

 

 
 

 

Monitoring Sand Dune Movement using Remote 

Sensing 

 

 

  

By 

Ahmed Mutasim Abdalla Mahmoud 

BSc, MSc 

 

 

 

Thesis submitted to the University of Nottingham 

for the degree of Doctor of Philosophy 

Nottingham Geospatial Institute, Department of Civil Engineering  

University of Nottingham, UK 

April 2022 



I 

 

DECLARATION  

 

During this research study, three journal articles and one media article were published: 

1. ‘The Use of SAR Offset Tracking for Detecting Sand Dune Movement in Sudan’, 

which formed the basis of chapter 4. 

Mahmoud, A.M.A.; Novellino, A.; Hussain, E.; Marsh, S.; Psimoulis, P.; Smith, 

M. The Use of SAR Offset Tracking for Detecting Sand Dune Movement in 

Sudan. Remote Sens. 2020, 12, 3410. https://doi.org/10.3390/rs12203410.  

 

2. ‘Monitoring the Dynamics of Formby Sand Dunes Using Airborne LiDAR DTMs’. 

Mahmoud, A.M.A.; Hussain, E.; Novellino, A.; Psimoulis, P.; Marsh, S. 

Monitoring the Dynamics of Formby Sand Dunes Using Airborne LiDAR 

DTMs. Remote Sens. 2021, 13, 4665. https://doi.org/10.3390/rs13224665.  

 

3. ‘A Field Survey of Formby Coastal Dunes using TLS and GNSS’.            

Mahmoud, A.M.A.; A Field Survey of Formby Coastal Dunes using TLS and 

GNSS, SENSED-the RSPSoc Newsletter, July 2021. 

 

• Articles 2 and 3 formed the basis of chapter 5.  

 

4. Mahmoud, A.M.A.; Sudan’s ‘Forgotten’ Pyramids Risk being Buried by Shifting 

Sand Dunes (Media Article), The Conversation, June 2021.   

 

I acknowledge that all the processing and written content of the articles was done by me, 

and I led the analysis under the supervision and contribution of the supervisors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.3390/rs12203410
https://doi.org/10.3390/rs13224665


II 

 

ACKNOWLEDGEMENT  

 

This PhD research is a collaboration between the University of Nottingham and the British 

Geological Survey (BGS).  

Firstly, I would like to express my sincere gratitude to my principal supervisor Prof. Stuart 

Marsh who has been an excellent supervisor providing endless support, guidance and 

encouragement throughout my PhD study period.  

I would like also to thank Dr. Panos Pasimuiouls and Dr. Martin Smith for their exceptional 

supervision role. 

I would like to thank my supervisors from the British Geological Survey, Dr. Alessandro 

Novellino and Dr. Ekbal Hussain for their excellent support and supervision.  

I wish to extend my appreciation to Sean Ince (Senior Engineering Technical Supervisor) 

and Norma Oldfield (Engineering Survey Technician) from the Nottingham Geospatial 

Institute (NGI) for their tremendous support and participation in Formby field work study. 

I would like to thank the University of Nottingham and the Ministry of Higher Education 

and Scientific Research of the Republic of Sudan for awarding me this PhD studentship. 

Moreover, I would like to extend my thanks to the BGS University Funding Initiative 

(BUFI) for awarding me a partial funded PhD studentship, (S448). 

The financial assistance provided by the Faculty of Engineering of the University of 

Nottingham, during the COVID-19 pandemic is greatly appreciated. 

My words cannot express my gratitude to my parents, family and friends for their endless 

support and encouragement throughout my learning journey.  

 

 

 

 

 

 

 

 

 



III 

 

ABSTRACT  

Deserts are arid and semi-arid regions with low rainfall and sparse vegetation, which 

makes them suitable hosts for the formation of sand dunes. Deserts cover an area of more 

than one-fifth of the Earth’s total land cover. Despite the fact that some of these desert 

dunes have been monitored for many years, the size and volume of sand dunes as a whole 

are not adequately monitored and updated, due to both the difficulty of using traditional 

methods of measurement and the continuous movement of the sand dunes. Many 

attempts have been made to quantify desert areas around the world, but quantifying 

desert dunes requires a thorough investigation that considers the different sand dunes’ 

behaviour, as well as the impact of influencing factors such as wind, vegetation, 

topography, and sand supply on the dune movement. This must also involve analysing the 

dune activity both horizontally and vertically.  

The movement of sand dunes is considered one of the major environmental issues in arid 

and semi-arid regions, that threatens livelihoods and rural communities by causing them 

to be submerged in sand. It also contributes to the degradation of land, causing poverty 

and food insecurity. Sand movement can be experienced on different scales: individual 

dune movement, dune field changes or in the form of dust storms. The key to mitigating 

these risks is to understand the movement of the dunes.  

Sand dunes can also be found in coastal areas, where sediments are carried into the shores 

by sea tides and winds. Coastal dunes play an important role in coastal erosion risk 

management, where they act as a dynamic natural sea defence. In addition, they provide 

habitats that enrich coastal biodiversity and add resilience to the ecosystem. The world’s 

sandy beaches are undergoing significant changes, with 24% eroding and 28% 

accumulating material, while the remaining 48% are stable.  

Therefore, a comprehensive understanding of dune activity is urgently needed. This 

requires more accurate measurement techniques that match the frequency of observation 

to the rapid dynamic movement of the sand dunes.  

There are two main sets of techniques for monitoring sand dunes: conventional 

techniques, such as sand traps, Global Navigation Satellite System (GNSS) and Terrestrial 

Laser scanner (TLS); and remote sensing techniques such as optical, Synthetic Aperture 

Radar (SAR) and Airborne Light Detection and Ranging (LiDAR). The conventional 

techniques provide vital information about sand dunes, such as the sand particle size, 

which can be detected by sand traps, in addition to highly accurate ground truth data 

collected by GNSS, total station and levels that can be used for validating the monitoring 

results detected by the remote sensing techniques.  
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However, these conventional techniques have significant limitations related to time 

consuming data collection processes and the complexity of monitoring large, inaccessible 

sand areas. Additionally, they only provide an approximation of the dune movement, as 

the data are collected for discrete dune locations rather than the dune field as a whole. 

Moreover, with few repeated surveys, conventional techniques are limited to detecting the 

movement that occurs within days or hours due to the rapid movement of the sand dunes. 

This can be overcome by applying time series analysis using remote sensing techniques, 

providing continuous observations of the dunes over periods of years that are contiguous 

over very large areas.  

Therefore, the aim of this research is to investigate the capabilities of various novel remote 

sensing techniques (i.e. optical multi-spectral satellite sensors, SAR techniques, airborne 

LiDAR) for detecting and monitoring sand dune movement and its impact on urban areas, 

crop fields, forests, water bodies and archaeological sites, to determine the most 

vulnerable areas to sand dune movement. As part of this study, the impact of the 

influencing factors that control the movement of the dunes, such as wind speed/direction, 

vegetation, topography and sand supply, is also considered. This aim is fulfilled by four 

objectives: (1) develop an automated framework that uses Google Earth Engine and 

machine learning classifiers applied on multi-temporal satellite images to detect the areal 

changes in sand dunes, in addition to computing the displacement and direction of 

movement for individual sand dunes; (2) investigate the capabilities of the SAR Offset 

Tracking technique for detecting horizontal sand dune movement; (3) investigate the use 

of multi-temporal Airborne LiDAR DTMs for monitoring the dynamic activity of the coastal 

sand dunes; (4) investigating the capabilities of Differential Interferometric Synthetic 

Aperture Radar (DInSAR) for detecting the vertical deformation of sand dunes. This was 

carried out in two study areas: a desert sand dune area in Northern Sudan, and a coastal 

sandy beach near Formby in the Northwest of England. 

This research highlighted the capabilities of the novel remote sensing techniques in 

addition to defining the limitations of using the more traditional land surveying techniques 

for monitoring sand dunes. Moreover, it has been found that detecting the deformation of 

individual dunes could be provided from moderate spatial resolution images, but the higher 

resolution of the images, the better the footprints of the individual dunes. Additionally, 

using digital terrain models time series data demonstrated high capability in monitoring 

sand dunes both horizontally and vertically, providing rates of horizontal and vertical dune 

motion in addition to the volumetric changes of the dunes. 
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Based on that analysis, a strategy has been developed for monitoring sand dune 

movement, that consists of three main implementation stages: (1) the detection of sand 

dunes using different surveying techniques, measuring the changes and movement of the 

dunes; (2) a monitoring stage, where time series analysis is applied to distinguish patterns 

in the dune movement, in addition to identifying the impact of the sand movement 

influencing factors (i.e. wind, vegetation, topography, …etc.) and its relationship to the 

sand movement behaviour; and (3) a prediction stage of sand movement, based on 

previously detected dune behaviour and the influencing factors from the monitoring 

results. This strategy could have wide applicability and could also be modified to study 

other environmental challenges, such as glaciers. 
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1 CHAPTER 1: INTRODUCTION 

1.1 Background  

Dunes are an accumulation of fine particles of sand stimulated by wind (Huggett, 2007), 

where the sand particles are carried by the wind speed force until it strikes an obstacle 

such as bushes, rocks, fences…etc.; and start accumulating, forming the dunes. While 

recent experiments suggest that dunes can be also formed in sand sheets landscape 

without any obstacles (Ping et al. 2014).    

For many decades desert dunes have been under the microscope of earth observation 

scientists. Previous studies focused on three main aspects: (1) describing dune formation 

and patterns to distinguish the different types of dunes; (2) analysing dune sediment by 

investigating the grain size and sorting characteristics to reveal how dunes are 

accumulated; and (3) investigating dune dynamics and processes to understand the 

aeolian process and sand transport rates (Lancaster, 1995).  

Sand movement has a significant impact on arid and semi-arid regions threatening the 

livelihoods of rural communities (Shepherd et al. 2016). On the other hand, sand dunes 

play a vital role in protecting coastal shorelines (Nordstrom et al. 1990). This makes sand 

movement a pressing environmental issue. Therefore, understanding the 

geomorphological activity of the dunes has been the focus of this research. 

1.1.1 Desert Sand Dunes 

Deserts are arid and semi-arid regions with low rainfall and sparse vegetation (Goudie and 

Seely, 2011), which makes them suitable host for the formation of sand dunes. Deserts 

cover an area of more than one-fifth of the Earth’s total land cover (Abdelaziz Bouteflika 

et al. 2016). 

In 1989, the locations of major sand accumulation areas known as sand seas or ergs were 

mapped; these were considered to be the dust sources, (Figure 1.1). Geomorphologists 

agree that sand seas must cover an area of at least 125 km2 while smaller areas are 

classified as dune fields (Pye and Tsoar, 2008). Sand seas are mainly distributed in the 

eastern hemisphere forming sandy deserts in the Sahara, Arabia, central Asia, Australia 

and southern Africa covering about 15 to 30 per cent of the arid land cover class in these 

arid zones (Lancaster, 1995).  
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Figure 1.1. Location of major sand seas and dune fields, (after Thomas 1989) (Lancaster, 1995). 

In order for sand seas and dune fields to form, there must be a large supply of sand and 

sufficient wind energy to carry the sand or redistribute it in situ, in addition to suitable 

topographic and climatic conditions which enable the accumulation of a large thickness of 

sand over a long period of time (Pye and Tsoar, 2008).  

The geological records and age structure of the present sand dunes only show that the 

sand deposits are dated to no more than 100,000 years. Stratigraphic and radiocarbon 

dating evidence indicates that the current forms of sand dunes date back to the Pleistocene 

or the late Holocene (Pye and Tsoar, 2008). However, (Vermeesch et al. 2010) showed 

that sand dunes have resided in the Namib Sand Sea for at least one million years. 

Several of the largest sand seas in the northern hemisphere can be found in the subtropical 

desert belt of North Africa and the Arabian subcontinent into Iran and Pakistan, or in the 

mid-latitude desert basins of Central Asia (Pye and Tsoar, 2008). Table 1.1 shows the 

major world ergs with an area sized larger than 12,000 km2. 
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Table 1.1. Ergs in the world with an area larger than 12,000 km2. (After Wilson 1973), 

(Pye and Tsoar, 2008). 

No Name  

Area 

(km2) Activity No Name  

Area 

(km2) Activity 

  North Africa       Arabia     

1 Great Sand Sea 105,000 Active erg 26 Rub al Khali 560,000 

Active 

erg 

2 Sudanese Qoz 240,000 Fixed erg 27 Al Dahana 51,000 

Active 

erg 

3 Erg Rebiana 65,000 Active erg 28 Al Jafura 57,000 

Active 

erg 

4 Erg Calanscio 62,000 Active erg 29 

Ramlat 

Wahibah 16,000 

Active 

erg 

5 Edeyen Murzuq 61,000 Active erg 30 

Ramlat 

Sabatayn 14,000 

Active 

erg 

6 Edeyen Ubari 62,000 Active erg 31 Al Nefud 72,000 

Active 

erg 

7 

Issaouane-N-

Irarrarcn 38,500 Active erg 32 

Nafud 

complex' 25,000 

Active 

erg 

8 Erg Oriental 192,000 Active erg   Asia     

9 Erg Occidental 103,000 Active erg 33 Thal Desert 18,000 

Fixed 

erg 

10 Erg Iguidi 68,000 Active erg 34 Thar Desert 214,000 

Fixed 

erg 

11 Erg Chech-Adrar 319,000 Active erg 35 Ryn Peski 24,000 

Active 

erg 

12 

North 

Mauretanian Erg 85,000 Active erg 36 

Peski Kara-

kum 38,000 

Active 

erg 

13 

South 

Mauretanian Erg 65,000 Fixed erg 37 

Peski Kyzyl-

kum 276,000 

Active 

erg 

14 

Trarza and Cayor 

Erg 57,000 Fixed erg 38 

Peski 

Priaralskye 56,000 

Active 

erg 

15 

Ouarane, Aouker, 

Akle, etc. 206,000 

Active/Fixed 

erg 39 

Peski 

Muyunkum 38,000 

Active 

erg 

16 El Mreye 63,000 Active erg 40 

Peski Sary 

Isnikotrav 65,000 

Active 

erg 

17 Erg Tombuctou 66,000 Active erg 41 

Peski 

Dzosotin 47,000 

Active 

erg 

18 Erg Azouad 69,000 Fixed erg 42 Takla Makan 247,000 

Active 

erg 

19 Erg Gourma 43,000 Fixed erg 43 

East Takla 

Makan 14,000 

Active 

erg 

20 West Azouak 35,000 Fixed erg 44 

South Ala 

Shan 65,000 

Active 

erg 

21 East Azouak 34,000 

Active/Fixed  

erg 45 

North Ala 

Shan  44,000 

Active 

erg 

22 Erg Bilma-Tenere 155,000 Active erg 46 

South-east 

Ala Shan 14,000 

Active 

erg 

23 Erg Foch 13,000 Active erg 47 

East Ala 

Shan  12,000 

Active 

erg 
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24 Erg Djourab 45,000 Active erg 48 

West Ala 

Shan  27,000 

Active 

erg 

25 Erg Kanem 294,00 Fixed  erg 49 Ordos 17,000 

Active 

erg 

  Australia     50 

Peski Lop 

Nor' 18,000 

Active 

erg 

51 Victoria Desert  300,000 Fixed  erg     

52 

Great Sandy-

Gibson Desert 630,000 Fixed  erg     

53 Simpson Desert 300,000 

Active/Fixed  

erg     

54 Northern Desert' 81,000 Fixed  erg     

  South Africa          

55 Namib Desert  32,000 Active erg     

56 Kalahari Desert  N/A Fixed  erg     
 

Despite the fact that some of these desert dunes have been monitored for many years, 

the size and volume of sand dunes as a whole are not adequately monitored and updated, 

due to the difficulty of using traditional methods of measurement and the continuous 

movement of the sand dunes. Many attempts have been made to measure desert areas 

around the world but measuring desert dunes requires a thorough investigation that 

considers the different sand dune behaviour as well as the impact of influencing factors 

such as wind, vegetation, topography, and sand supply on the dune movement. This must 

also involve analysing the dune activity both horizontally and vertically. 

1.1.2 Coastal Sand Dunes 

Sand dunes can be also found in coastal areas (Nordstrom et al. 1990), where sediments 

are carried into the shores by sea tides and winds. Coastal dunes play an important role 

in coastal erosion risk management (Nordstrom et al. 1990), where they act as a dynamic 

natural sea defence (van de Graaff, 1986, Van der Meulen and Van der Maarel, 1989, 

Nordstrom et al. 1990, Pye et al. 2007, Pye and Tsoar, 2008, Provoost et al. 2011). In 

addition, they provide habitats that enrich coastal biodiversity and add resilience to the 

ecosystem (Pye et al. 2007). Figure 1.2 shows sand dunes on the coast of Formby, 

northwest England.  



5 

 

 

Figure 1.2. Coastal sand dunes on the coast of Formby, northwest England.  

The morphology of the coastal dunes depends mainly on four factors: (1) the beach 

morphology and shoreline dynamics, which affect the sand supply; (2) the wind 

characteristics, speed and direction variability; (3) the vegetation cover along the coastal 

area; and (4) human activities, such as planting trees, installing fences etc. (Nordstrom 

et al. 1990).  

The world's major dune coastlines are located along the Atlantic coasts of northwest 

Europe, the Pacific northwest of North America, southwest Australia and southwest Africa 

(Nordstrom et al. 1990). The Namibian sand sea in southwest Africa is the most famous 

sandy coast in the world. It has been nominated by UNESCO as a world heritage site 

(Seely, 2012). Figure 1.3 shows the sand dunes of the Namibian sand sea.   
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Figure 1.3. Landsat 8 satellite image captured on the 5th of July 2018 showing coastal 

desert dunes of the Namibian sand sea near Namib Naukluft National Park, 

(https://earthobservatory.nasa.gov/images/92695/between-the-ripples-of-the-namib-

sand-sea).  

The world’s sandy beaches are undergoing significant changes in coastal areas, with 24% 

eroding and 28% accumulating material, while the remaining 48% are stable (Luijendijk 

et al. 2018). Due to that, sand preservation projects have been initiated by local 

authorities where vegetation and fences are utilized to stabilize and reinforce the dunes 

(Pye et al. 2007). 

There are also projects that involve creating artificial sandy beaches as part of so-called 

sandscape projects. For instance, in the UK, a recent project was developed in North 

Norfolk after a devastating impact from a sea surge in 2013 caused significant damage to 

the infrastructure in the area: https://www.north-norfolk.gov.uk/sandscaping. The project 

was established in 2019 and involved importing 1.8 million cubic metres of sand from the 

seabed and depositing it onto the coast. This project intends to increase the level of 

protection of the coast defences and cliffs by reducing the energy of the sea waves. Such 

a project will need to be monitored consistently to determine its impact and stay on top 

of the potential risks. 

https://earthobservatory.nasa.gov/images/92695/between-the-ripples-of-the-namib-sand-sea
https://earthobservatory.nasa.gov/images/92695/between-the-ripples-of-the-namib-sand-sea
https://www.north-norfolk.gov.uk/sandscaping
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In general, climate change poses the main threat to coastal communities and natural 

habitats by causing severe storms and sea level rise (Zsamboky et al. 2011) making 

understanding coastal dunes activity an essential task. This must be addressed from a 

geomorphological perspective to understand the formation of the dunes

1.2 Research Problem: Sand movement 

Sand movement is one of the main environmental hazards in the arid and semi-arid 

regions defined in section 1.1. It threatens the livelihoods of rural communities. The 

invasion of urban areas (including buildings and roads), agricultural fields, water bodies, 

and archaeological sites is a prevalent problem caused by dunes’ movement. Figure 1.4 

shows the encroachment of sand towards the archaeological site of the royal cemetery of 

Meroe in Sudan. Figure 1.5 shows the invasion of sand dunes on houses in the same area, 

which resulted in the displacement of local communities (Shepherd et al. 2016). Figure 

1.6 illustrates the migration of dunes across a newly constructed road (Shepherd et al. 

2016).  

 

Figure 1.4. Sand encroachment toward archaeological sites in Sudan (Royal Cemetery of 

Meroe). 
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Figure 1.5. Sand encroachment displaced entire communities in the River Nile state, Sudan. 

 

Figure 1.6. Migration of dunes across a newly constructed road (Photo credit: David 

Thomas). 
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Moreover, the phenomenon has some serious health implications that are generated as a 

result of the frequent dust storms causing, for example, shortness of breath and air 

pollution (Aghababaeian et al. 2021). The movement of sand also contributes to the 

degradation of land in arid and semi-arid regions (Feng et al. 2019), causing poverty and 

food insecurity, and contributing to major conflicts over food and water resources.  

Considering all these reasons, it is vital to understand how sand dunes behave and respond 

to changing weather conditions. However, monitoring the movement of the dunes in 

deserts and coastal areas is a challenging task. For instance, conventional monitoring 

techniques such as sand traps and land surveying techniques (e.g. levelling, GNSS and 

terrestrial laser scanners) have several limitations, including a time consuming data 

collection process and the fact that many of them obtain only low spatial resolution data. 

This becomes more challenging if repeated surveys are required when covering larger 

dune areas, especially in remote areas.  

To overcome these challenges, this research suggests utilizing the latest advancement in 

remote sensing technologies to develop novel techniques for the estimation and 

monitoring of sand dune movement. This will provide more accurate and frequent 

detection of the dunes for large dune systems of all types described above.  

1.3 Research Aim and Objectives 

1.3.1 Aim  

This research investigates the capabilities of various novel remote sensing techniques (i.e. 

optical multi-spectral satellite sensors, Synthetic Aperture Radar (SAR) techniques, 

airborne LiDAR) for detecting and monitoring sand dune movement and its impact on 

urban areas, crop fields, forests, water bodies and archaeological sites, to determine the 

most vulnerable areas to sand dune movement. As part of this study, the impact of the 

influencing factors that control the movement of the dunes, such as wind speed/direction, 

vegetation, topography and sand supply will also be considered.  

In particular, this will involve the development of automated frameworks that use multi-

temporal optical and Airborne LiDAR data sets to monitor the movement of sand dunes. 

Other techniques such as SAR pixel offset, which have not been previously applied to this 

problem will also be investigated, as well as the use of DInSAR to detect the vertical 

deformation of sand dunes.  
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1.3.2 Objectives  

1. Develop an automated framework that uses machine learning classifiers applied on 

multi-temporal optical satellite images to detect the changes in sand dunes land 

cover and use it to compute the displacement and direction of individual sand dune 

movement identified from multi-temporal optical satellite images. 

2. Investigate the capabilities of the SAR Offset Tracking technique for detecting 

horizontal sand dune movement. 

3. Develop a framework that uses multi-temporal Airborne LiDAR DTMs for monitoring 

the dynamic activity of sand dunes. 

4. Investigate the capabilities of Differential Interferometric Synthetic Aperture Radar 

(DInSAR) for detecting the vertical deformation of sand dunes. 

Having established the vertical and horizontal movement dynamics of the dunes, we will 

be able to understand the relationship between the different influencing factors and the 

rate of dune movement, the influence of vertical changes on the horizontal movement of 

the dunes and ultimately define the limitations of using classical land survey techniques 

and how they can be improved by modern satellite-based surveying. 

1.4 Chapters Summary 

Following this introductory chapter, Chapter 2 provides a thorough literature review on 

the geomorphology of sand dunes describing the formation of the dunes, distinguishing 

different types of dunes, identifying factors that control dune movement, in addition to 

providing a reflection on previous research experiences on the use of land surveying and 

various remote sensing techniques for monitoring the dynamics of the dunes.  

Chapter 3 addresses objective 1 by presenting a developed automated framework that 

uses Google Earth Engine and machine learning classifiers applied on multi-temporal 

Sentinel 2 L2A satellite images to detect the changes in sand dunes, in addition to 

computing the displacement and direction of movement for individual sand dunes. Two 

machine learning classifiers were used in this study, the random forest and the support 

vector machine to monitor the horizontal movement of sand dunes in Northern Sudan 

between December 2018 to December 2021. It also demonstrates the use of the individual 

dune detection tool for detecting individual dune displacement and direction of movement. 

Chapter 4 investigates the use of SAR offset tracking for detecting the horizontal sand 

dune movement to meet objective 2. High-resolution images from the Sentinel-1 satellite 

were used for the generation of displacement maps. This technique showed high 

competency in monitoring the movement of sand dunes, in addition to identifying areas 

exposed to large sand drifting as a risk mapping technique. 
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Chapter 5 is aimed at objective 3 and investigates the use of multi-temporal Airborne 

LiDAR DTMs for monitoring the dynamic activity of the coastal sand dunes. A framework 

was developed to determine how much sand volume has been lost or deposited in a dune 

system as well as determining the rate of change in the elevation of the dunes, taking 

Formby sand dunes as a case study.   

Chapter 6 provides a discussion on the uses of different remote sensing techniques and 

the limitation of each technique. It also provides a reflection on the limitations of land 

surveying techniques while addressing its benefits. In the context of objective 4, a 

framework of DInSAR is initially investigated for detecting sand dune movement from short 

temporal SAR images. This chapter also provides a detailed strategy for monitoring sand 

dunes.  

Chapter 7 provides a conclusion on the uses of remote sensing techniques for detecting 

and monitoring sand dunes in deserts and coastal areas. It summarises the findings of the 

study and makes recommendations for future work in the field of dune monitoring.   
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2 CHAPTER 2: LITERATURE REVIEW: REFLECTION ON DUNE 

MONITORING AND MODELLING TECHNIQUES 

2.1 Geomorphology of Sand Dunes  

Studying the geomorphology of sand dunes has been an interest for researchers for many 

decades (Bagnold, 1941, Nordstrom et al. 1990, Lancaster, 1995, Huggett, 2007, 

Livingstone et al. 2007, Pye and Tsoar, 2009). In this section of the thesis, an 

understanding of dune formation processes is developed, presenting the different types of 

dunes, the factors that influence the dune morphology and the techniques that are used 

for monitoring and modelling the movement of the dunes. 

2.1.1 Dune Formation  

Sand dunes can be found in coastal areas, riverbanks and indeed most commonly in 

deserts (Bagnold, 1941). The aeolian transport plays a fundamental role in the formation 

of the dunes. This requires an understanding of the characteristics of the earth's surface 

including determining the sediment texture, vegetation cover, degree of cohesion and 

crusting, and the dynamics of airflow over the surface (Lancaster, 1995).  

Sand particles are transported by wind in three modes: suspension, saltation and creeping 

(Lancaster, 1995). These modes apply depending on the grain size of the sand particles 

and the wind speed (Bagnold, 1941). The first, suspension mode, controls the movement 

of sand particles that have a very small grain size <60-70µm, and this results in sand 

particles being transported for long distances by turbulent eddies in the wind and kept 

high up in the atmosphere. The role of the size of particles is considered insignificant in 

dune dynamics. However, the sand particles deposition by dust is important in many areas 

(Lancaster, 1995), for example, satellite images capture the migration of sand every year 

from the Sahara desert across the Atlantic Ocean and its deposition in the Amazon forest 

(Koren et al. 2006). 

The second aeolian transport mode is saltation, which is the dominant process in 

transporting sand particles. In this process, particles with a size of 60-500µm move 

downwind in a series of short distance jumps, where particles need a lifting force to make 

them vibrate and move to get in the airstream and initiate saltation. This force is generated 

due to the air pressure differences near the surface (Lancaster, 1995). The impact angle 

(i.e. the angle where the particle interacts with the surface) of a saltation particle increases 

with the decrease of wind velocity and particle size (Sorensen 1985; Lancaster 1995). 

Most sand particles travel close to the ground within the lowest part of the atmosphere, 

close to the ground surface (1-2 cm) (Lancaster, 1995). 
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The third aeolian transport mode is creeping where the sand particles with a size of 

>500µm are pushed and rolled along the surface and transported by the influence of 

saltating grains in surface creep (Lancaster, 1995). Figure 2.1 illustrates the different 

modes of aeolian transport of sand particles, (Kok et al. 2012). 

 

 

Figure 2.1. Different modes of aeolian transport of sand particles. 

 The wind's behaviour contributes significantly to the shaping of the desert dunes. An 

individual dune consists of a stoss side formed based on the dominant direction of wind 

where sand particles are pushed upwards in the direction of the wind, and a slip face side 

(lee side) on the downwind direction of the wind, with two horns at the end which represent 

the width of the dune (Durán et al. 2011, Bagnold, 1941). Figure 2.2 illustrate the 

components of an individual barchan dune, stoss side, lee side and horns.  
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Figure 2.2. Stoss side, lee side, horns of a barchan dune in Northern Sudan. It is showing a 

barchan dune moving south influenced by a southward wind. 

The formation of coastal sand dunes also depends on the wind and sand sediment supply 

(Nordstrom et al. 1990). The sand particles are transported landward in the wind direction 

and get deposited when the wind velocity decreases or with the increase in the surface 

slope. This movement continues landward until it is interrupted by vegetation or any other 

barrier; at that stage sand particles start forming the dunes (Nordstrom et al. 1990). An 

additional factor that also has an impact on the coastal dune formation process is the 

changes in sea level and water tides (Nordstrom et al. 1990, Pye and Blott, 2008, King et 

al. 2019). These sea tide waves move the sand particles along the shore and deposit them 

on the shorelines, a phenomenon known as longshore sand drifting (Engel et al. 2015).  

Sand dunes in coastal areas have several formation stages that rely mainly on time and 

the amount of sand supply. The fore dunes are the newly formed dunes that are closer to 

the beach, while the older dunes are formed further inland (Nordstrom et al. 1990, Tsoar, 

2001). Figure 2.3 demonstrates the cycle of coastal dune formation.  
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Figure 2.3. A repetitive process cycle of coastal dune formation. 

Recent studies that use numerical models and simulations have overturned the previously 

held theories of dune formation (Courrech du Pont et al. 2014, Lucas et al. 2014, Gao et 

al. 2015a, Gao et al. 2015b, Lü et al. 2017, Fernandez-Cascales et al. 2018, Hu et al. 

2021). According to (Courrech du Pont et al. 2014) a single multidirectional wind regime 

can cause dunes to form in two distinct directions depending on the availability of sand.   

2.1.2 Dune Types 

Sand dunes are classified based on two aspects morpho-dynamic and morphological 

classification (Lancaster, 1995). The morpho-dynamic classification relies on formative 

wind and sediment supply and its relationship to the dune types, expressly, the 

classification is based on the dune alignment to the resultant wind direction; shaping 

different classes of dunes (i.e. transverse, oblique and longitudinal)(Lancaster, 1995), see 

Figure 2.4. 
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Figure 2.4. Morpho-dynamic classification of dunes based on its relations to wind direction, 

after (Hunter et al. 1983). 

Other researchers also relied on the dune dynamic and classified the dunes based on their 

mobility and association to sediment flux, and by doing that they distinguished between 

the erosional types (i.e. parabolic dunes and sand ridges) and the depositional forms (i.e. 

barchanoid dunes, transverse chains, linear dunes and star dunes) (Lancaster, 1995).  

The other aspect of dune classification is the morphological classification and that depends 

on the external morphology of the dunes. It classifies the dunes into five types based on 

their shape and the number of slip faces (i.e. crescentic, linear, reversing, star, and 

parabolic) (McKee et al. 1979; Lancaster, 1995). Crescentic dunes are the dominant type 

of dunes in the absence of vegetation, while barchan dunes tend to be formed in areas 

with limited availability of sand and any increase in the amount of sand will result in 

shaping crescentic dunes or barchanoid ridges (Lancaster, 1995), which are considered 

the fastest moving type of dunes. When linear dunes are formed in straight lines, exhibit 

parallelism and a regular spacing shape (Lancaster, 1995), they are considered the most 

common type of dunes to be found in deserts (Pye and Tsoar, 2009). Figure 2.5 shows 

the major dune types, (Lancaster, 1995). 
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Figure 2.5. Major dune types. A: Barchan; B: Crescentic ridges; C: Linear; D Star; E: 

Reversing; F: Parabolic, after (McKee 1979a). 

The use of different naming conventions for dune types has resulted in some confusion in 

describing the dunes in different parts of the world (Pye and Tsoar, 2009). Pye and Tsoar, 

2009, put together a classification system for the major dune types which divides simple 

dunes into three categories: (a) dunes that are formed based on topographic obstacles, 

(b) dunes that are self-accumulated, and (c) dunes that are formed based on vegetation 

presence (Pye and Tsoar, 2009).  Figure 2.6 illustrates the classification of major dune 

types, (Pye and Tsoar, 2009). 
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Figure 2.6. Classification of major dune types, (Pye and Tsoar, 2009). 

2.1.3 Factors of Dune Morphology 

The morphology of sand dunes is determined by the interaction between sand and wind. 

Therefore, its characteristics have the major influence on the formation of dunes. These 

characteristics are represented by five main factors (Lancaster, 1995):  

1. Variation of wind speed and wind direction, as they play an important role in 

determining the dune type. The wind speed mainly works as the stirring force that 

determines the magnitude displacement of the dunes, while the wind direction 

plays the role of determining the direction in which the sand dune should move; 

downward wind movement (Kok et al. 2012). 

2. Sand supply has a significant impact on dune type (Hersen, 2005, Courrech du Pont 

et al. 2014, Gao et al. 2015b). 

3. Grain size and sorting characteristics of sand have a significant influence on dune 

size and spacing. 

4. Vegetation plays an important role in controlling sand dune movement (Nordstrom 

et al. 1990, Lancaster, 1995, Pye and Tsoar, 2009). 
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5. Time is as important as the other factors in the process of dune accretion 

(Lancaster, 1995).  

The influence of terrain and topography cannot be ignored in dune formation. The 

topography can be a mountain, a wall of trees or any barrier that changes the 

behaviour of wind near the surface and controls the movement of sand particles, 

which results in a deviation in the sand transport direction (Pye and Tsoar, 2009). 

Figure 2.7 illustrates the main factors of dune morphology. 

 

Figure 2.7. Factors of Dune Morphology. 
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Each one of these factors has a significant impact on the formation and movement of the 

dunes. The wind is considered the main driving factor in the movement of the dunes 

(Tsoar, 2001). The wind speed mainly works as the stirring force that determines the 

magnitude of displacement of the dunes, while the wind direction plays the role of 

determining the direction in which sand dunes should move, and therefore the dune type 

(Kok et al. 2012). The same wind regime can result in two different dune orientations 

based on sand availability (Gao et al. 2015b). Although the impact of wind is significant in 

the movement of the dunes, dune formation cannot be defined only based on wind 

behaviour as different dune types can be formed in the same area due to other factors 

(Zhu et al. 2021).  

Studies show that the presence of vegetation cover in sand dune areas works as a slowing 

mechanism on wind speed and therefore stabilises the movement of sand, resulting in the 

growth of dunes (Kok et al. 2012, Pye and Tsoar, 2009). Sand dunes with less vegetation 

migrate actively compared to sand dunes with denser vegetation (Thomas and Tsoar, 

1990; Lancaster, 1995). There are multiple, successful examples of the stabilization of 

sand movement, which involve using different types of vegetation to trap sand and to also 

to stop it from overwhelming field crops, houses and other landscapes (Levin and Ben-

Dor, 2004, Zhang et al. 2004b, Durán and Herrmann, 2006, Alghamdi and Al-Kahtani, 

2005, Wiggs et al. 1995, Xu et al. 2015, Hertling and Lubke, 1999, Lubke and Hertling, 

2001, Munro et al. 2012).  

Although, the impact of each factor in the process of sand movement and dune formation 

is generally clear, however, it is not possible to separate the impact of each individual 

factor, as the movement and formation of the dunes is a cumulative result of all these 

factors.  

2.2 Sand Dune Monitoring Techniques 

2.2.1 Sand Traps and Empirical Models  

Many techniques have been used to monitor and model the changes in sand dunes over 

the years; each technique has its capabilities and limitations. Sand traps (i.e. horizontal 

or vertical traps) are one of the conventional techniques that have been used for decades. 

They are devices that measure, in the field, the sand transport rates by capturing in traps 

the wind-blown sand grains (Pye and Tsoar, 2009). They measure the intensity of wind 

erosion and predict potential wind erosion using empirical functional relationships 

(Woodruff and Siddways, 1965; Pye and Tsoar, 2009). Vertical sand traps are used to 

measure the horizontal flux of the sand particles while horizontal sand traps are used for 

measuring the vertical sand flux (Goossens et al. 2000).  
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A vertical sand trap consists of several stalls that can catch sand particles on different 

heights and with different grain sizes (Wang and Kraus, 1999).  Most aeolian sand 

transport research involves using vertical sand traps (Rasmussen and Mikkelsen, 1998, 

Sherman et al. 1998, Goossens et al. 2000, Navarro-Pons et al. 2015, Hilton et al. 2017). 

These vertical sand traps rely mainly on the wind behaviour in the study area and the sand 

particles supply as the wind lifts and moves up the sand particles into the vertical traps. 

These traps can be installed easily and be placed simply at 90 degrees in the direction of 

the wind. Their efficiency varies due to the changes in wind speed and surface conditions 

(Wang and Kraus, 1999). Figure 2.8 shows a vertical sand trap used for measuring 

horizontal sand flux, (Sherman et al. 2014).  

 

Figure 2.8. A vertical sand trap used for measuring horizontal sand flux.  

In contrast, a horizontal sand trap is simply a hole dug in the ground that traps all the 

sand that passes over it (Wang and Kraus, 1999, Goossens et al. 2000, Munro et al. 2012). 

With blowing wind, sand particles are deposited in the traps and by placing a measuring 

rod inside the hole and knowing the size of the hole, the amount of sand captured in the 

hole can be computed and used to assess the volume change and therefore the vertical 

sand flux. Horizontal sand traps are considered more efficient compared to vertical sand 

traps as they have a more stable trapping efficiency (Wang and Kraus, 1999). However, 

one of the disadvantages of horizontal traps is that they cannot be readjusted in case of 

wind direction variation and also the digging process is hard and time consuming (Wang 

and Kraus, 1999).  Figure 2.9 is an example of a horizontal sand trap used to measure 

vertical sand flux, (Munro et al. 2012).  
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Figure 2.9. Horizontal sand trap used for measuring vertical sand flux.  

Researchers have developed several empirical formulas to model the transport rate of 

sand (Lancaster, 1995, Sherman et al. 1998) that use field data acquired by sand traps. 

Bagnold is the most famous pioneer researcher, who started working early in the 20th 

century, in the field of monitoring and modelling sand movement using sand traps and 

empirical models. Most researchers who came after followed him and developed their 

models on the foundation of Bagnold's models (Bagnold, 1941). Table 2.1 shows different 

empirical models for the transport of sand dunes by wind.  

Table 2.1. Several examples of empirical models used in aeolian sand transport, 

(modified after Lancaster 1995). 

Model  Empirical formulas for sand transport  Description  

Bagnold 1941 
q=√𝐶

𝑑𝑝

𝐷

𝜌

𝑔
𝑢∗

3   
This equation shows 

better saltation of sand 

grains with hard and 

pebbly surfaces as less 

momentum is extracted  

Kawamura 1951 q= 𝐾
𝜌𝑎

𝑔
(𝑢∗ − 𝑢∗𝑡)(𝑢∗ − 𝑢∗𝑡)2 

 

Proposed an equation 

that includes a 

threshold shear 

velocity.  

Bagnold 1953 q= (1.0.
10−4

(log 100𝑧)3) . 𝑡. (𝑣 − 16) This equation was 

modified to overcome 

the lack of wind shear 

velocity data   
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Hsu 1971 q=1.16. 10−4𝑣3 This formula has a 

problem when using 

wind velocity 

measurements for 

estimating the regional 

sediment transport 

rates where the shear 

velocity varies with the 

surface aerodynamic 

roughness.  

Lettau and Lettau 

1978  
q= 𝐶

𝑑𝑝

𝐷

𝜌

𝑔
𝑢 ∗2 (𝑢∗ − 𝑢∗𝑡) It does include a 

threshold shear 

velocity. 

White 1979 q= 2.61 𝑢∗
2(1 −

𝑢∗𝑡

𝑢∗
)(1 +

𝑢∗𝑡
2

𝑢∗
2 )𝜌𝑎/𝑔 A universal transport 

equation that shows 

good estimates of sand 

flux 

 

In these formulas, q is the sediment transport rate, (dp/D) is the ratio of the mean size of 

given sand to that of a 0.25mm sand. C is the sorting coefficient, 𝑢∗  is the shear velocity,  

𝑢∗𝑡 is a threshold shear velocity, K is an empirical coefficient which is a function of the 

textural characteristics of the sediment,  𝜌𝑎 is the air density, g is the gravitational 

acceleration, v is the wind speed and z is the wind measurement height.  

There are several limitations of using sand traps and one of the main ones is that sand 

transport rates measured by sand traps are only considered as an approximation, as the 

impact of airflow cannot be neglected (Bagnold, 1938a; Pye and Tsoar, 2009). Moreover, 

the flow of sand grains around the traps can generate vortices, which will lead to localizing 

the areas of bed erosion or deposition around traps (Pye and Tsoar, 2009), a particular 

problem in the case of using vertical sand traps (Wang and Kraus, 1999). Another 

limitation is that during wind storm events these sand traps cannot capture all the passing 

sand particles due to the high saltation generated effect, which means missing flux data 

(Goossens et al. 2000). 

Bagnold in 1941 shaped the equation of sediment transport mass flux in saltation and 

creep and defined that the sediment flux increases with the shape of the sand surface 

where the minimum increment appears with nearly uniform sand, while the sediment flux 

increases with poorly sorted sands. The maximum increment in the sediment flux tends to 

occur with pebbly surfaces (Bagnold, 1941). Therefore, sand grains saltate more with 

rough and pebbly surfaces, as a result of less generated momentum due to the impact of 

the bed (Bagnold, 1941). This is another limitation of these sand traps, in that they do not 

measure accurately the impact of vegetation cover and changes in topography on the 

transport rate of sand.  
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Despite all these limitations, sand traps can provide vital information about the sand grain 

size (Sherman et al. 1998, Navarro-Pons et al. 2015), which is essential in understanding 

its impact on the dynamic dune movement process. However, it is neither accurate enough 

in measuring the sand transport rate nor cost and time efficient, when it comes to 

monitoring sand movement over large, inaccessible areas.  

Another way of measuring sand flux instantaneously is using the impact responders (Baas, 

2004). According to (Davidson-Arnott et al. 2009) there are three main types of 

instruments for measuring the instantaneous aeolian sand transport rate: (1) instruments 

that record the acoustic signal generated by the impact of saltating grains on a 

microphone's screen (Leenders et al. 2005, Ellis et al. 2009); (2) instruments that 

measures and record the impact of saltating grains on a ring connected to a piezo-electric 

crystal (Stockton and Gillette, 1990, Stout and Zobeck, 1997, Wiggs et al. 2004, Baas, 

2004); and (3) instruments that use load cells or electronic balance to trap sediment and 

record the weight of sand grains (Jackson, 1996). A significant advantage of most impact 

responders over traditional sand traps is that the measurable quantities of sand are not 

required to be captured (Baas, 2004).  

2.2.2 Land Surveying Techniques  

There are several land surveying techniques that are used for measuring the changes in 

dunes by repeating surveys (Pye and Tsoar, 2009). These include measuring rods, 

theodolites, levels, total stations, and RTK-DGPS (Morton et al. 1993, Dornbusch, 2010, 

Łabuz, 2016). Figure 2.10 shows different land surveying instruments used for monitoring 

sand dunes changes.  

 

Figure 2.10. Different land surveying instruments. 
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Using land-surveying techniques could be more effective for modelling and monitoring 

small sand dunes, especially in areas with limited visibility of the remote sensing satellite 

(Hugenholtz et al. 2012). However, the main limitations of using such techniques are that 

the data collection process is time consuming, and it obtains low-resolution data over large 

areas, in addition to the complexity of accessible control points or benchmarks. However, 

the recent development of terrestrial laser scanning devices means that they can now 

provide an accurate, dense measurement of the dunes (Montreuil et al. 2013, Baddock et 

al. 2018, Corbí et al. 2018, Terefenko et al. 2019, Xiong et al. 2019). Nonetheless, the 

process of data collection takes days to cover a small dune field. In other words, this 

technique is suitable for monitoring the movement of small individual dunes, but it is not 

considered efficient enough when monitoring large dune fields in desert areas. A practical 

demonstration of the limitations of the land surveying techniques (i.e. TLS and GNSS) is 

discussed in section 5.3 in chapter 5. Table 2.2 shows a comparison between different 

land surveying techniques and their expected accuracy, (Łabuz, 2016).  

Table 2.2. Comparison between different land surveying techniques and their expected 

accuracy, modified after (Łabuz, 2016). 

Technique Data 

type 

Height 

accuracy 

range 

(cm) 

Expertise 

accuracy 

Field 

accuracy. 

Coverage 

hour or 

1-day 

research 

Points 

data 

per 

measure 

hour 

No. of 

working 

people 

Cost/day/ 

device 

(EURO) 

Measuring 

rods 

Points, 

lines 

0.5–

1/0.1-1 

Low Line 100 m, 

plot 

10 × 10 m/ 

2 h 

 

1–50, 

scattered 

or line 

1–2 50 

Traditional 

levelling 

Points, 

lines 

0.5–1 Medium Line 250 m 

long, 

plot 36 

sq.m/h 

30–150, 

line 

2–3 200 

Total 

Station 

(TS) 

Points, 

lines 

0.1–0.5 High 100 m line 

or 

10 × 10 

plot/h 

250–300 

Around 

device 

1–2 3,000 

DGPS and 

RTK 

GPS 

Points, 

lines 

0.1–0.5 High / 

very 

high 

Wide plot 

60 × 200 m/ 

day 

200(300) 

dep. on 

surface 

1–2 5,000-

10,000 

Terrestrial 

Laser 

Scanning 

(TLS) 

Point 

cloud 

<0.01 Very high c.a. 200 × 

200 m/ 

0.5 h 

2 min/ 

30 min 

2 14,000 
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The need for a full understanding of the dune movement is pressing, which requires 

accurate measuring techniques that take into consideration the frequency of observation 

and wide coverage of the area of interest. This can more readily be provided using remote 

sensing techniques.  

2.2.3 Optical Remote Sensing Techniques  

Remotely sensed images have been commonly used for monitoring and modelling the 

changes in the earth's surface and related environmental phenomena for decades (Willis, 

2015). Optical remote sensing is developed on sensing passive electromagnetic radiations 

(i.e. visible radiation, infrared and thermal radiations) where the source of radiation is the 

sun and the sensor is mounted on the satellite. The sensor receives the reflected 

electromagnetic waves from objects on the earth's surface or in the case of thermal 

radiation the earth's surface emits thermal energy which is also detected by the sensors 

(Tempfli et al. 2009, Mather and Koch, 2011, Lillesand et al. 2015). The backscattered 

waves shape the images with each pixel in that image having a different energy response 

from different characteristics of the area that it represents. Figure 2.11 illustrates the 

energy interaction with the atmosphere and the earth’s surface, (Tempfli et al. 2009). 

 

Figure 2.11. Energy Interaction with the Atmosphere and the Earth's Surface. 
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One of the first legacy satellites that have been used to collect optical images is LandSat, 

which has been running since 1972 providing a wide range of data for multiple 

environmental studies (Willis, 2015). Many multispectral satellites were launched into 

space for various purposes following LandSat. A widely used one is Sentinel 2. It is a space 

mission launched in 2015 by the European Space Agency (ESA) for monitoring the earth’s 

land surface changes (Phiri et al. 2020). The constellation of Sentinel-2 consists of two 

polar-orbiting sun-synchronous satellites, providing worldwide coverage of the earth, with 

a wide swath width of 290km, a spatial resolution of 10m x 10m in the visible and near 

infra-red bands and a high temporal resolution of 10 days in the equator with one satellite 

and 5 days with the two satellites (Sentinel 2A and 2B) and less than 6 days in mid-

latitudes (Sentinel). 

One of the data services that provide free support for various collections of satellite images 

is Earth Explorer from the United States Geological Survey (USGS) 

(https://earthexplorer.usgs.gov/). It is a data plug-in where different types of raw remote 

sensing data can be downloaded, in addition to some processed data such as topographic 

maps and normalized difference vegetation index (NDVI). Similarly, the Copernicus 

services hub is the data platform for Sentinel products, where it provides access to all the 

collected images in addition to the operational details and metadata of the acquisition 

process (https://scihub.copernicus.eu/). Table 2.3 provide a brief summary of some of the 

available optical satellites.  

Table 2.3. A brief summary of the available optical satellites; after (Willis, 2015). 

Satellite Mission Revisit Time Visible and NIR Bands 

Spatial Resolution (m) 

Scene Size Availabilit

y 

LandSat 1972-present, 

Different missions 

are up to space 

(LandSat1-5/6), 

LandSat-9 just 

been Launched 

LandSat 7,8 

every 16 days 

 30m, with a 

panchromatic band 

with 15m of spatial 

resolution 

170 km x 185 

km 

Free 

access, 

USGS 

SPOT 1986-present  2-3 days, and 

1 day for 

Spot-6/7 

Spot 1-4 (10m) 

 

Spot 5 (2.5m) 

Spot-6/7 (1.5m) 

60km X 

60km, 

120kmX 

120km, 

Licensed 

Access 

MODIS 1999-Present 1-2 days 250m/500m 2,330km x 

2,330km 

Free 

access, 

USGS 

IKONOS  1999-2015 Approx. 3 

days 

Panchromatic 0.80m 

Multispectral 2.4 m 

11.3km x 

11.3km 

Licensed 

Access 

ASTER 1999 16 days 15m visible NIR,  

30m shortwave IR,  

90m thermal IR 

 60 km x 60 

km 

Free 

access, 

USGS 

QuickBird 2001-2015 1-3.5 days 

 

Panchromatic 0.61m 

Multispectral 2.4m 

16.8Km X 

18Km 

Licensed 

Access 
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Worldview1 

 

2007 1.7 days Panchromatic 0.50m  17.6Km x 

14Km 

Licensed 

Access 

Pleiades 2011 24 Hours 0.70m spatial 

resolution 

20km x 20km Licensed 

Access 

GeoEye-1 2008 less than three 

days 

Panchromatic 0.46 m 

Multispectral 1.84 m 

15km x15km Licensed 

Access 

Sentinel 2 2014-present 6 days 10m spatial resolution  Level-1C 

100 km x 

100km 

Free 

access, 

EESA 

PlanetScope 2018-present daily 3m  24 km x 8 km Licensed/ 

Scientific 

Access  

 

Many techniques and spatial analysis tools that use optical remote sensing images have 

been developed for detecting and modelling the changes on the earth’s surface and 

modelling various environmental phenomena (Lu et al. 2004). Some of these techniques 

are image differencing, image ratioing and principal component analysis (PCA) (Mas, 1999, 

Singh, 1989), image classification (Ratnayake, 2004, Gómez-Chova et al. 2015, Lu and 

Weng, 2007) and normalized difference vegetation index (NDVI) (Pettorelli et al. 2005).  

These techniques have been applied for monitoring vegetation cover and forest canopy 

estimation (Hayes and Sader, 2001, Ratnayake, 2004, Nuri et al. 2016, Houborg et al. 

2015), land cover changes (Kharazmi et al. 2018, Chang et al. 2018, Regasa et al. 2021, 

Winkler et al. 2021), digital surface model generation (Barbarella et al. 2017, Nasir et al. 

2015, Toutin and Cheng, 2002), flood mapping (Shaker et al. 2008, Opolot, 2013, Mateo-

Garcia et al. 2021). Furthermore, some of them have been applied for monitoring and 

modelling the changes in sand dunes (Gómez et al. 2018).  

2.2.3.1 Researchers' experiences in detecting sand movement using optical 

remote sensing and GIS models 

This section is devoted to reflecting on different research experiences where optical remote 

sensing and GIS techniques have been applied for monitoring and modelling desertification 

and sand movement. Many studies were undertaken to analyse the capabilities of remote 

sensing and GIS techniques for the estimation of desert expansion and sand drifting rates; 

this was commonly achieved by combining these two techniques into one robust 

monitoring system (Albalawi and Kumar, 2013, Abdelrahim Elhag et al. 2019, El-Hadidy, 

2020, Lam et al. 2011, Lan et al. 2013, Abou El-Magd et al. 2013, Potter and Weigand, 

2016, Hadeel et al. 2010, Aydda et al. 2020, Pradhan et al. 2018, Ahmady-Birgani et al. 

2017).  
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Most researchers focused on developing different spatial analysis techniques to detect and 

model land degradation, where the normalized difference vegetation index (NDVI) and 

image classification are the most commonly used methods (Albalawi and Kumar, 2013, 

Higginbottom and Symeonakis, 2014, ED Chaves et al. 2020, Yengoh et al. 2015, Hadeel 

et al. 2010, Lu et al. 2004, Lu and Weng, 2007). The NDVI is computed from the ratio 

difference of the satellite image’s reflection in the red and near-infrared bands (Pettorelli 

et al. 2005). It distinguishes the variation in health and changes in coverage of vegetated 

areas. By comparing different NDVI maps for a certain period of time it reveals the level 

of increase or decrease of the vegetation land cover. This is a preliminary stage to 

understanding the characteristics of land cover changes in arid and semi-arid areas, as 

vegetation is one of the main factors for assessing land degradation. Additionally, this 

index indicates the presence or absence of vegetation in dune field areas, where the 

presence of vegetation plays a significant role in controlling the movement of the dunes.  

(Salih et al. 2017) used two models, the spectral mixture analysis (SMA) and change 

vector analysis (CVA) methods, for modelling desertification in arid and semi-arid areas in 

Sudan. Multi-temporal LandSat images were used to analyse the rate of desertification 

between 1987 and 2014. Those two techniques demonstrated high capabilities in 

characterizing and mapping desertification in this arid and semi-arid environment. 

Although modelling land degradation using spatial analysis techniques showed significant 

ability in the assessment and monitoring of land degradation, it is essential to develop 

techniques that are oriented to detect sand dune movement. These techniques must focus 

on studying the morphometric changes of sand dunes. Quite a large group of researchers 

have developed examples of this (Hugenholtz et al. 2012, Ahmady-Birgani et al. 2017, 

Ghadiry et al. 2012, Gómez et al. 2018, Chen et al. 2017, Pradhan et al. 2018, Aydda et 

al. 2020, Potter and Weigand, 2016, Abou El-Magd et al. 2013, Els, 2017, Lam et al. 2011, 

El-Hadidy, 2020, del Valle et al. 2008). 

(Ghadiry et al. 2012) developed a GIS-based model for an automated sand dune extraction 

process using remote sensing images, in order to assess the rate of sand movement. Two 

Spot images captured in 1995 and 2007 were used to detect the movement of sand dunes 

in the Dakhla oases area. An image subtraction was performed to determine the movement 

between the two images' dates. This model provided statistical information about the sand 

dunes migration rate, placing it between 3-9m per year. 
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In 2012, some researchers tried to understand the relationship between remote sensing 

technologies and spatial analysis of aeolian sand dunes, to understand the dune activity 

and its patterns (Hugenholtz et al. 2012). They stated that the recent revolution of remote 

sensing technologies and numerical modelling software has resulted in powerful 

techniques for modelling quantities and patterns of sand dunes. Also, that remote sensing 

and spatial analysis techniques play a vital role in understanding the dune activity. 

However, there are some challenges that face these techniques when monitoring and 

quantifying sand movement; such challenges are important when the surface reflectance 

characteristics are for a partly vegetated dune field.  

A sand dune encroachment vulnerability index (SDEVI) was developed to assess the dune 

encroachment in Nouakchott, Mauritania, relying on remote sensing and GIS techniques 

(Gómez et al. 2018). This model, Equation (2.1), includes some morphometric and 

topographic data, such as wind direction (DirFa), wind speed (SpeFa), slope (SloFa), 

height (HeiFa), vegetation cover (VegFa), land use and soil type (SoiFa), in order to 

compute the changes of sand cover and identify most vulnerable areas to sand 

encroachment.  

SDEVI = SpeFa + DirFa + HeiFa + SloFa + LanFa + VegFa + SoiFa      Equation (2.2) 

The study showed that, by using this vulnerability index, areas vulnerable to sand 

encroachment can be identified and monitored and the decision making process in land 

management projects can be supported (Gómez et al. 2018).  

In 2017, research was undertaken to model the Brittas-Buckroney dunes on the south-

eastern coast of Ireland (Chen et al. 2017). This research involved using unmanned aerial 

vehicle (UAVs) technology to collect high resolution images in order to map the 

topographical changes and generate vegetation maps of coastal dunes complexes. The 

stages of map generation included: setting ground control points, flight planning, data 

collection, data processing and results analysis. Pix4D and ArcGIS software were used for 

processing and analysing the data and generating topographical maps. This research 

concluded that UAVs could improve the quality of mapping in coastal areas. However, this 

conclusion was also constrained by the experienced weather conditions (e.g. wind, rain 

and low light) along the coast at the time of acquisition.  
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On a larger scale, high altitude satellites such as MODIS have been used to detect and 

monitor dust storms (Miller, 2003, Samadi et al. 2014, El-ossta et al. 2013, Qu et al. 2006, 

Shahraiyni et al. 2015, Butt and Mashat, 2018, Albarakat and Lakshmi, 2019, Li et al. 

2010, El-Askary et al. 2002, Boloorani et al. 2014). For instance, the journey of dust 

plumes initiated from the Sahara Desert in Africa, particularly from northeast of Lake Chad, 

is observed every year crossing the Atlantic Ocean and deposited in the Amazon Forests 

(Koren et al. 2006). Over 40 million tunes of sand are deposited providing these forests 

with essential nutrition such as phosphate (Koren et al. 2006). Figure 2.12 shows a dust 

storm captured by MODIS and crossing the Atlantic Ocean from West Africa on the 2nd of 

March 2003, (https://www.nasa.gov/multimedia/imagegallery/image_feature_22.html). 

 

Figure 2.12. A dust storm captured by MODIS crossing the Atlantic Ocean from West 

Africa on the 2nd of March 2003.  

NASA has developed several sensing techniques, such as the High Resolution Imaging 

Experiment (HiRISE) (McEwen et al. 2007) and Compact reconnaissance imaging 

spectrometer for Mars (CRISM) (Murchie et al. 2007) on the Mars Reconnaissance Orbiter 

(MRO) mission (Zurek and Smrekar, 2007). One of the applications of these techniques is 

monitoring the movement of the dunes on Mars (Silvestro et al. 2010). These techniques 

demonstrated that the dunes on Mars migrate (Silvestro et al. 2010) and have similar 

behaviour to the dunes on the Earth (Bridges et al. 2012). Figure 2.13 A HiRISE image 

showing sand dunes in the Nili Patera area on Mars, 

(https://mars.nasa.gov/resources/22285/a-dune-field-near-nili-patera/). 
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Figure 2.13. A HiRISE image showing sand dunes in the Nili Patera area on Mars, 

February 05, 2019. Credit: NASA/JPL-Caltech/University of Arizona.  

It can be concluded that optical remote sensing techniques are considered one of the best 

techniques for measuring and monitoring the movement of sand dunes. However, they 

only provide this for the horizontal component of the dunes, missing the vertical. In 

addition, there are some problems that remain unsolved, such as the mixed pixel problem 

(Ettritch et al. 2018), the effects of topography, the image commensurability and model 

parameterization (Hugenholtz et al. 2012). Medium resolution images might include 

different distinct features mixed in one pixel, which might result in misclassification of the 

land cover type (Ettritch et al. 2018). In addition, the high spectral similarity between 

dune pixels might cause the same issue (Afrasinei et al. 2018). 
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2.2.3.2 COSI-Corr for Sand Dune Motion Tracking 

Co-registration of Optically Sensed Images and Correlation (COSI_Corr) is a technique 

developed at the California Institute of Technology, (Caltech) (Leprince et al. 2007, Ayoub 

et al. 2017). This technique suggests an automated processing chain for co-registering 

and comparing optical satellite images to accurately measure ground deformations. The 

fundamental process consists of four stages: (1) projecting the image pixels from a 

satellite image focal plane to a projected ground reference system, (2) performing a 

resampling on the images based on the calculated projection system in order to generate 

ortho-rectified images. This is then followed by (3) a stage of optimization of the satellite 

viewing parameters to a reference frame needed to determine the magnitude of distortions 

and misregistration due to the uncertainties of the imaging system and the topography 

between the two ortho-rectified images and to prepare it for the last step (4) the 

correlation to measure the displacement. The technique requires the ancillary data of the 

raw images which contain details of the geometry of the satellite at the acquisition time, 

and also it requires a digital topographic model with a resolution close to the ground 

resolution of the images needed for the ortho-rectification stage (Leprince et al. 2007). 

The first application of COSI-Corr was to detect a seismic rupture in the Himalaya after 

the Mw 7.6 Kashmir earthquake that took place on the 8th of October 2005 (Avouac et al. 

2006). Two ASTER optical images were used, prior to and post the event, to measure 

surface slip and geometry of the rupture. This provided an early assessment of the 

damages of the devastating earthquake.  

COSI_Corr has been also used to detect the deformation of glaciers and landslides 

(Leprince et al. 2008, Türk, 2018), sand movement (Vermeesch and Drake, 2008, Necsoiu 

et al. 2009, Hermas et al. 2012, Vermeesch and Leprince, 2012, Scheidt and Lancaster, 

2013, Al-Ghamdi and Hermas, 2015, Sam et al. 2015, Al-Mutiry et al. 2016, Baird et al. 

2019) and also for the detection of sand movement in Mars (Bridges et al. 2012).  

A common element between all these studies is the long-time interval (months and years). 

This affects the computed dune migration rate as it disregards the migration of the dunes 

that occur in between these periods due to the rapid activity of the dunes. For instance, 

(Vermeesch and Leprince, 2012) applied COSI-Corr to measure the long term migration 

rate of sand dunes from optical satellite images in Central Sahara to study the dune 

changes over a period of 45 years. This study was oriented to provide wind information in 

desert areas based on the migration rates of the dunes where images with a time interval 

of 3-6 years were used, this is a quite large gap when modelling the movement of sand 

dunes as no dynamic dune motion that occurs in between these periods will be observed 

or captured. Therefore, to overcome that, using satellite images with the smallest 

acquisition time will accommodate the changes that occur at shorter intervals and thus 

result in a much more accurate estimate of the dune changes.  
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The COSI-Corr technique faces some challenges in the co-registration of the satellite 

images due to several factors; limitations in the characteristics of the optical image 

sensors, variation in the spacecraft altitude during the image collection, and errors in the 

used digital elevation model in addition to inaccurate resampling of the images. All of these 

affect the accuracy of the measurement (Leprince et al. 2007). Although COSI-Corr shows 

high ability in the detection of ground deformation, it only detects this displacement 

horizontally. 

2.2.4 Radar Remote Sensing Techniques (SAR) 

With the recent development and increase in the number of orbiting radar satellites, earth 

observation monitoring techniques have seen a wide development over the last decade. 

Radar is an active remote sensing technique that uses the microwave bands of the 

electromagnetic spectrum (e.g. L band, C band and X band) to form images of surfaces 

(Tempfli et al. 2009). The main advantages of radar sensors are that they can record data 

day and night and also under various environmental conditions, as the radar waves can 

penetrate the clouds (Sinha et al. 2015), and that gives a variety of measurement options 

when it comes to modelling environmental phenomena.  

The measurement mechanism of Synthetic Aperture Radar (SAR) depends on the phase 

differences between the transmitted and backscattered waves from the reflecting objects 

in sequential images. By knowing the phase difference and the speed of transmission, the 

movement of objects can be identified in relation to the source of the radiation (Zhou et 

al. 2009). Figure 2.14 shows a geometric model of SAR system.  

 

Figure 2.14. A geometric model for SAR system, (Zhou et al. 2009). 



35 

 

SAR images are formed based on the received echoes from each emitted pulse in the 

azimuth direction, where these echoes are arranged by their transmission and receiving 

time, generating the slant range resolution. The slant range is the distance between the 

antenna and the ground pixel. As the radar sensor moves, its antenna location changes 

and receives different returned pulses from different features. The ground pixel size is 

determined based on the cross track resolution and the along track resolution (Zhou et al. 

2009).   

The recorded information on the radar images includes: the amplitude; where it shows the 

capacity of each ground pixel on the terrain in reflecting an amount of energy; and the 

phase, which records the history of the signal from emission to its return and known as 

the single look complex (SLC) (Zhou et al. 2009). Figure 2.15 shows the relationship 

among the amplitude, phase and wavelength of the radar signal. Equation 2.2 shows the 

computation of the phase return of a single scatterer, (Zhou et al. 2009). 

 

Figure 2.15. Relationship among the amplitude, phase and wavelength of a radar signal. 

𝜑 = 2𝑅𝑝2𝜋/𝜆 + 𝜑𝑠𝑐𝑎𝑡            Equation (2.2) 

Where 𝜑 is the phase, 𝑅𝑝 is the range between radar and the point on the ground, 𝜆 is the 

radar signal wavelength, and 𝜑𝑠𝑐𝑎𝑡 is the scattering phase. 
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The radar signal can be transmitted and received horizontally or vertically, which is known 

as the polarization (Tempfli et al. 2009). Different polarizations (i.e. HH, VV, HV or VH) 

form different radar images, where each type of these images has a specific purpose and 

use (Blumberg, 1998, Balzter, 2001). Figure 2.16 shows information about the different 

radar bands that are used for sensing by SAR platforms, (Tempfli et al. 2009). 

 

Figure 2.16. Radar bands on the microwave spectrum. 

One of the most developed radar techniques is the interferometric synthetic aperture radar 

technique (InSAR) (Zhou et al. 2009). It uses two images taken from different locations, 

different incidence angles or at different times to generate differences of phase for each 

pixel in an image which is known as interferogram (Zhou et al. 2009). Interferograms are 

used to generate the topography of the landscape, in addition to subsequently estimating 

its amount of displacement. This displacement is represented in lines of equal phase that 

appear on the interferogram and are known as fringes. It represent the amount of 

movement and it is counted from a reference point where the displacement is known to 

be zero (Zhou et al. 2009). Figure 2.17 shows radar sensor capturing two different InSAR 

images, (Chang et al. 2011). 

 

Figure 2.17. A Radar sensor capturing two different InSAR Images. 
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Where Z(y) is the topographical height, h is the satellite altitude, λ is the wavelength of 

radar wave, B is the baseline length, θ is the angle of view, and 𝛼 is the angle of 

inclination. 

There are some factors that affect InSAR interferograms such as atmospheric conditions 

Δ𝜑𝑎𝑡𝑚 (Tempfli et al. 2009), the distance between the antenna and the ground pixel (Zhou 

et al. 2009), surface topography (Osmanoğlu et al. 2016), the dielectric properties of the 

ground surface Δ𝜑𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 and the system noise (Zhou et al. 2009). However, there are 

many techniques that can be applied to remove all these noises and distortions in the data 

collected by radar sensors, in order to distinguish the amount of deformation.  Equation 

2.3 shows the form of two registered phase images. 

∆𝜑 =
4𝜋

𝜆
 Δ𝐷0 +

4𝜋

𝜆

𝐻Β⊥

𝑅 sin 𝜃
+

4𝜋

𝜆
𝐵∥ + Δ𝜑𝑎𝑡𝑚 + Δ𝜑𝑑𝑖𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + Δ𝜑𝑝𝑛 + 2𝑛𝜋        Equation (3.3) 

Where ∆𝜑, is the phase difference between two registered phase images, Δ𝐷0 is the line-

of-sight (LOS) displacement, 𝜆 is the wavelength of the SAR system, Β⊥ 𝑎𝑛𝑑  𝐵∥ are the 

vertical and parallel components of the baseline orbit separation of the SAR image pair, H 

is the height of a pixel above a reference surface, R is the slant range between the ground 

pixel and the antenna of the master image, 𝜃 is the local incidence angle, Δ𝜑𝑝𝑛 is phase 

noise, 2𝑛𝜋 is the ambiguity associated with phase wrapping (Zhou et al. 2009).  

Several satellite radar missions have been launched into space for the purpose of 

modelling and monitoring the changes on the earth's surface and for monitoring different 

environmental phenomena. Table 2.4 shows some information on the available radar 

satellites (Massonnet and Feigl, 1998, Zhou et al. 2009). 

Table 2.4. Information on the available radar satellite missions. 

Satellite  Mission  Data 

Acquisition  

Interval 

(days) 

Wavelength(cm) 

Band  

Spatial 

Resolution(m) 

Data 

Availability 

ERS1  

 

1991-

2000 

3,5, 168 5.66cm (C) along-track ≤ 30 

m, cross-track ≤ 

26.3 m 

Free Access  

ERS2 1995- 

2011 

35 5.66cm (C) along-track ≤ 30 

m, cross-track ≤ 

26.3 m 

Free Access 

ENVISAT/ASAR 2002- 

2012 

35  5.63cm (C) 30m x 30m Free Access 

RADARSAT-1 1995-

2013 

24 5.66cm (C) 9m x (8,9)m Limited Data 

Access 

SRTM 2000 N/A 5.6cm (C) 30m  

90m 

Free Access 

to its 
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products 

(DTM) 

JERS-1 1992-

1997 

44 23.5cm (L) 18m (range) x 

18m (azimuth, 3 

looks) 

Limited Data 

Access 

TerraSAR-X 2007- 

Present 

11 3.125cm (X) 2m x (1.5-3.5)m Limited Data 

Access 

Sentinel-A1 2014-

Present 

12 (C) 20 x 5 m Free Access 

Sentinel-B1 2016- 

Present 

12 (C) 20 x 5 m Free Access 

COSMO-

skyMed, 1,2,3,4 

2007-

present 

5 (X) 1 x 1 m Limited Data 

Access 

 

Several data access services provide a free download of SAR data. Table 2.5 shows 

available data access services to SAR data.  

Table 2.5. Data Access Services of SAR Data 

Data Access Service Provider SAR data  

USGS United States Geological Survey SRTM (i.e. End product DEM) 

EOLI-SA ENVISat and ERS 

Copernicus Open Access Hub  Sentinel-1  

Alaska Satellite Facility (ASF) Sentinel-1 Data, ERS1/2, ALOS, 

JERS-1, RADARSAT-1, AIRSAR, 

UAVSAR, SIR-C 

 

For the last decades researchers have been using InSAR for modelling the ground surface 

deformation of the earth (Zhou et al. 2009, Chen et al. 2000), changes in forests canopy 

(Balzter et al. 2007, Deutscher et al. 2013), estimation of biomass (Sinha et al. 2015), 

water level changes (Kim et al. 2009), and detecting land subsidence (Tosi et al. 2015, 

Fan et al. 2011). In addition, the technique has been used for the application of estimating 

the volume of ice lands (Maghsoudia et al. 2013). InSAR technique has been used 

significantly to monitor the impact of different geohazard events such as floods (Refice et 

al. 2014), volcanos (Pedersen and Sigmundsson, 2006), landslides (Tantianuparp et al. 

2013) and earthquakes (Massonnet and Feigl, 1998, Suresh and Yarrakula, 2020), where 

the technique provides an early warning system. 
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Time series analysis is applied to InSAR data for monitoring and modelling the 

displacement of a specific phenomenon over a certain period (Osmanoğlu et al. 2016). 

Many algorithms have been developed for time series analysis of InSAR data, such as the 

coherent pixels technique (CPT), Delft persistent scatterer interferometry (DePSI), 

interferometric point target analysis (IPTA), permanent scatterer InSAR (PSInSARTM), 

persistent scatterer pairs (PSP), quasi persistent scatterers (QPS), small baseline subset 

(SBAS), stable points network (SPN), SqueeSAR, and Stanford method for persistent 

scatterers (StaMPS) (Osmanoğlu et al. 2016).  

All these algorithms produce a near continuous record of displacement by connecting 

wrapped phase measurements. In other words, producing an unwrapped phase time series 

of InSAR phase measurements explains the amount of deformation over a certain period. 

However, there is no optimal algorithm that can be applied for monitoring the deformation 

in all cases, which makes the development of algorithms for time series analysis of InSAR 

data an area of active research.  

2.2.4.1 InSAR application in detecting sand dunes movement  

In 1998, a NASA report was published to distinguish desert dune forms by polarimetric 

synthetic aperture radar (SAR) (Blumberg, 1998). The report reflected SAR observations 

of desert dune fields in North America, Bolivia and Australia where AIRSAR was used and 

in Namibia using SIR-C/X-SAR. It also reviewed the use of polarimetric and multi-

wavelength SAR and reflected on the advantages of the various combinations. The report 

stated that SAR data are considered very useful for dunes mapping, as it has the ability 

to control the illumination parameters (i.e. look angle, wavelength and polarization) 

(Blumberg, 1998). Moreover, the SAR responses to surface roughness make it a useful 

technique for mapping dunes forms. The report showed that using longer wavelengths 

(i.e. P-band 68cm and L-band 24cm) has advantages over using shorter wavelengths (i.e. 

C-band 5.6cm) by providing better contrast. In addition, it stated that the co-polarized 

channels (i.e. HH and VV) are considered the best for modelling dune forms and 

differentiating between dune types, while the cross-polarized channels (i.e. HV and VH) 

could be used for providing information about vegetation which is needed for 

discriminating between active and inactive dunes (Blumberg, 1998). 

InSAR has been used for the application of estimating the volume of sand dunes using 

very high frequency VHF and Ka radar bands, where they can penetrate the sand soil and 

provide the underlying terrain topography (Maghsoudia et al. 2013, Nashashibi et al. 

2011). 
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In 2011, a group of researchers used Differential Interferometric Synthetic Aperture Radar 

(DInSAR) techniques to monitor the desert height changes due to sandstorms in Beijing 

(Chang et al. 2011). They applied a series of procedures (i.e. image configuration, 

correction of the earth flattening, phase unwrapping and geocoding) on a pair of 

descending EnviSat ASAR images acquired on January 20 and October 26 of 2004, to 

monitor the changes in the Hunshandake Sandy Land. They detected a deformation 

ranging between -160 to +120 cm with height increase in most of the study area and a 

few locations with height decrease in other parts. They concluded that DInSAR is an 

important technique for detecting changes in the height of deserts. Moreover, it can be 

used as a tool for modelling sandstorm erosion and deposition. The long time interval 

between the two InSAR images (280 days) has resulted in some distortions.  

Other research looked into the use of coherence maps generated by the InSAR technique 

to analyse the dynamics of sand dunes on the southern coast of Israel (Havivi et al. 2018). 

High-resolution TerraSAR-X (TSX) radar images of the period between February and July 

2012 were used with metrological data (i.e. wind and rainfall records).  

They stated that coherence maps show the stability of individual dunes as a function of 

time. Moreover, they found that dunes' crests are more stable than windward slopes and 

the degree of stability depends on the distance of dunes from the sea. This study suggests 

that InSAR decorrelation can be used for sand dunes characterization studies.  

An automated procedure was developed to quantify the dune dynamics for isolated 

barchan dunes using C band InSAR satellite images (Delgado Blasco et al. 2020). The 

method uses an adaptive parametric thresholding algorithm and geospatial analysis tools 

to compute the dune movement. This has been applied to monitor the movement of 

barchan dunes in Mauritania and Egypt. The measured dune migration rate was 2-6 

m/year in the NNW-SSE direction and 11-20 m/year NNE-SSW for Egypt and Mauritania 

dunes fields, respectively. This result has been validated manually using optical imagery 

from Google earth, where agreement between both results was observed. 

(Song et al. 2020) used the InSAR temporal decorrelation model to study dune stability 

by distinguishing the surface changes in sand dunes over time. They constructed a 

temporal decorrelation model that combined thermal and spatial decorrelation for dune 

areas and validated that model using the sand drift potential and precipitation. The 

evaluation of the model revealed that temporal decorrelation of InSAR can characterise 

the activity of the dunes.  
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(Kim et al. 2020) developed an interferometric synthetic aperture radar time series 

approach to defining the ongoing aeolian erosion in the Gobi Desert. The mapping scheme 

uses pairs of Sentinel 1 InSAR images to generate phase coherences for a period of time 

and the means of principle component analysis for the extraction of the topographic 

persistence, indicative of surface erosions. The technique is suggested for mapping land 

erosion dust sources/sand seas; therefore, it will contribute to tackling desertification.  

(Manzoni et al. 2021) developed a temporal stability index to characterize the level of 

stability for a target point in the desert. It also provides an assessment mitigation plan for 

the protection of habitat environments from sand movement impact. The method suggests 

the synthetic aperture radar (SAR) coherent methods and long-time series SAR images 

contribute to the sand mitigation measures. In addition, the SAR coherence is considered 

suitable for the detection and evaluation of sand dune movement. 

2.2.5 Airborne LiDAR (Light Detection and Ranging) 

Airborne light detection and ranging (LiDAR) or laser scanning is an active remote sensing 

technique in the application of modelling the surface of the earth (Wehr and Lohr, 1999, 

Juha Hyyppä, 2009, Jaboyedoff et al. 2012, Gallay, 2013, Maltamo et al. 2014, Okyay et 

al. 2019). The Airborne LiDAR system consists of a Global Navigation Satellite System 

(GNSS) receiver and inertial measuring unit (IMU) for the determination of the position 

and a laser system which emits and receives the transmitted and backscattered light 

pluses (Wehr and Lohr, 1999). The principle of Airborne LiDAR uses the time of flight 

between the transmitted and backscattered laser pulses to measure the distance between 

the LiDAR sensor and the reflecting surface (Wehr and Lohr, 1999). This distance is 

calculated using the following equation: 

𝐷 = 𝑐(
𝑡

2
)                               Equation (2.4) 

D is the distance between the sensor transmitter and the reflecting object, c is the speed 

of light and t is the time of flight between the transmitted and backscattered laser pulses. 

The terrain topography is computed using the measured distance (D) for each point and 

the GNSS and IMU data are used to determine the exact location and altitude of the aircraft 

at the time of exposure. The height of flight determines the width of the scanned area 

(Gallay, 2013). The airborne LiDAR point clouds can be used to generate digital elevation 

models (DEM) of the observed surface. This can be achieved by using different filtering 

approaches to distinguish the LiDAR points into ground and feature points. 

The accuracy of Airborne LiDAR data depends mainly on the positioning and orientation 

accuracies of the GNSS and IMU (Hodgson and Bresnahan, 2004; Gallay, 2013), (Wehr 

and Lohr, 1999), in addition to the surface reflection, terrain slope, atmospheric conditions 
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and the density of vegetation cover (Gallay, 2013). This accuracy has increased with the 

latest advancement in the GNSS and IMU positioning techniques. 

 

This technique can provide data day/night and under different weather conditions (Gallay, 

2013). It also has several advantages over the conventional techniques where it maps the 

earth's surface and provides very dense and accurate three dimensional spatial data 

generated over a short period of time (Woolard and Colby, 2002). In addition, it has the 

capability of penetrating small gaps in the canopy, which allows the user to render the 

topography and morphological changes (Kraus and Pfeifer, 1998, Thomas et al. 2006, 

Okyay et al. 2019). 

Airborne LiDAR data has been used widely for monitoring coastal changes: sediment 

volumetric changes (Meridith et al. 1999), shorelines (Stockdonf et al. 2002, Caudle et al. 

2019), coast morphology (Saye et al. 2005, Middleton et al. 2013, Grünthal et al. 2014, 

Julge et al. 2014, Le Mauff et al. 2018), and vegetation growth on coastal dunes (Frati et 

al. 2021). The application of using airborne LiDAR for monitoring coastal areas 

demonstrated the capabilities of the technique in providing dense and accurate 3D data 

for large areas along the coast. It has also shown that analysing airborne LiDAR 

multitemporal data can support the risk assessment for coastal erosion management. This 

can be delivered in many forms by analysing the changes in the profile of the beach and 

the dunes alongside the coast, and by providing volumetric changes analysis that show 

areas with deposition and erosion along the coast. 

There are several case studies where Airborne LiDAR has been used for the detection of 

changes in desert dunes (Solazzo et al. 2018, Dong et al. 2021, Reitz et al. 2010, Baitis 

et al. 2014). We address in detail a case study that involved the development of an 

automated method that uses multi-temporal LiDAR DEMs. An automated approach, Pairs 

of Source and Target Points (PSTP), is developed for the detection of dune migration 

direction and migration rates using multi-temporal LiDAR data. This approach is 

implemented in a geographical information system (GIS) environment (Dong, 2015). The 

PSTP relies on a theoretical foundation that the sand collapsing events initiated by gravity 

tend to occur in the inclination direction of the slip face of the dunes (Bagnold, 1941; 

Dong, 2015). Therefore, the PSTP works on detecting the migration direction, migration 

rates of the dunes from the centrelines of old slip faces (source lines), and the centrelines 

of the new slip faces (target lines). This is implemented in three major steps to obtain the 

direction, distance and rate of migration for each targeted point: (1) extracting the slip 

face centrelines from the LiDAR DEMs; (2) processing the source and target lines where 

thousands of random points (source points, target points) are generated along the source 

and target lines; (3) identifying the source and target points, by searching for the nearest 

source point for each target point and calculating the angels and distances between pairs 
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of source and target points. Any source point that did not find a target point will be 

considered unmatched and will be removed from the target feature layer (Dong, 2015). 

Figure 2.18 illustrates the workflow of the automated measurement of sand dunes using 

the PSTP approach.  

 

Figure 2.18. Workflow of the automated measurement of sand dunes using PSTP approach, 

(Dong, 2015). 

PSTP is used to detect the migration direction and migration rates of the dunes in the 

White Sand Dune Field in New Mexico (USA) applied on two LiDAR DEMs with 1m x 1m 

cell size acquired on the 24th of January 2009 and the 6th of June 2010, a year and a half 

later. The results show a dominant direction for the dunes migration ranging between 225 

degrees to 285 degrees, with a migration rate ranging between 4-7 m/year.  

Some challenges can occur when using PSTP which are related to the dune formation and 

the temporal resolution of the LiDAR DEMs, where source points are mistakenly identified 

closest to target points. Also, care must be taken when using PSTP for fast moving dunes 

(Dong, 2015). The PSTP approach has been mainly applied for the detection of migration 

of desert dunes. Applying this approach to coastal areas would be quite challenging, where 

the dune system is complex and connected and the identification of the source and target 

centrelines would be significantly difficult. This is an area of research that is worthy of a 

thorough investigation.  
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Some of the limitations of Airborne LiDAR is that it is considered expensive compared to 

optical and radar sensing techniques, especially when surveying large areas multiple 

times. This means that the application of using this technology for detecting the movement 

of sand dunes in desert areas is less effective.  

2.3 Conclusion 

In conclusion, this chapter provides a comprehensive background on dune morphology 

and the factors that control the dune movement process. Various remote sensing 

techniques were investigated from previous research conducted to monitor the movement 

of sand dunes. This demonstrated the capabilities of each technique in accurately detecting 

the movement of sand dunes and the advantage of remote sensing techniques over 

conventional land surveying techniques. It identified significant limitations of the 

conventional techniques; sand traps and land surveying techniques related to time 

consuming and data collection process, and the complexity of monitoring large inaccessible 

sand areas. It also highlighted the capabilities of remote sensing technologies as a 

supportive tool for risk assessment for environmental projects. 

There are a few automated techniques for monitoring sand dunes, therefore the first 

objective of this research aims to develop an automated framework that uses multi-

temporal optical images for monitoring sand dunes. Moreover, the use of pixel offset 

applied on SAR images has not been used before for monitoring sand dunes, therefore, 

this research investigates for the first time the capabilities of this technique.  

It is observed from the literature that most researchers working on modelling sand 

encroachment focused their work only on detecting the horizontal component of the dunes 

(horizontal movement) and they disregarded the fact that sand dunes move in the vertical 

component as well. Therefore, one of the objectives of this research is to understand the 

vertical movement of the dunes. In addition, it is also observed that most research use 

images with a large temporal gap (i.e. months, years) which does not detect the small 

movement that can occur between these acquisition dates. Thus, in this research, high 

temporal resolution images were used, to ensure much more accurate detection of the 

movement of the dunes.  
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3 CHAPTER 3: MULTI-TEMPORAL OPTICAL SATELLITE IMAGES FOR 

MONITORING SAND MOVEMENT USING MACHINE LEARNING 

AND GOOGLE EARTH ENGINE  

This chapter investigates the application of optical satellite images for the detection of 

sand dune movement. It addresses the first objective of the research with a developed 

framework that applies machine learning classifiers on multi-temporal optical images to 

detect the horizontal changes in sand dune land cover in northern Sudan. It also shows 

how to compute the displacement and direction of movement for individual sand dunes. 

As an optimization step, the developed framework has been semi-automated using Google 

Earth Engine (GEE) to enable the processing of multi-temporal satellite images in pursuit 

of this objective. 

3.1 Background  

3.1.1 Sand Dust Storms in Sudan  

Sand dust storms are considered to be the main environmental natural hazard in arid and 

semi-arid regions (Wang, 2015). The Northern Hemisphere is considered the dominant 

natural mineral dust source and is known as the ‘Afro-Asian Dust Belt’ (Kok et al. 2012). 

A published report by the United Nations Environment Programme (UNEP) stated that 

there are many places over the world that are considered dust sources, and the coastal 

region of northeast Sudan is one of them (Shepherd et al. 2016). Moreover, the Saharan 

desert is considered the major global dust source where major dust events are witnessed 

in the Northern and Western parts of Africa (Kok et al. 2012, Shepherd et al. 2016), Figure 

3.1. This has a significant impact on the land cover dynamics in affected regions; however, 

the sand dust storm impacts can extend further to affect areas thousands of kilometres 

away (Shepherd et al. 2016).  

 

Figure 3.1. Global dust potential map. Source: DTF (2013). 
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Table 3.1 shows some of the environmental impacts of sand dust deposition (Shepherd et 

al. 2016). 

Table 3.1. Sand dust deposition environmental impacts. 

Advantages Disadvantages 

• Work as a fertilizer providing 

nutrients to ocean surface waters 

and forests. 

• Enhances precipitation where it acts 

as droplet nuclei. 

• Escalates drought. 

• Soil loss and degradation. 

• Damaging effects on coral reefs. 

• Economic impacts (crop damages, 

livestock mortality, and 

infrastructure damages). 

• Human health problems. 

 

In northern Sudan, dust storms are locally known as “Haboob”. They tend to occur during 

both winter and autumn seasons, where gusty winds have a significant impact on sand 

dunes drifting. Sudan faces 17 to 20 sand storms regularly every year (Munro et al. 2012). 

Figure 3.2 shows a massive dust storm over Sudan captured from space by the Moderate 

Resolution Imaging Spectroradiometer (MODIS) on the 12th of August 2017, 

https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2017-08-17.  Figure 3.3 

shows a ground view of a dust storm that hit the capital of Sudan, Khartoum, (Britton, 

2016). 

 

Figure 3.2. Dust Storm over Sudan crossing the Red Sea acquired by MODIS on 12 August 

2017. 

https://modis.gsfc.nasa.gov/gallery/individual.php?db_date=2017-08-17
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Figure 3.3. A dust storm hit the capital of Sudan, Khartoum. 

Monitoring the impact of dust storms requires an understanding of the movement of the 

dunes on the ground, detecting the land cover changes and assessing the environmental 

impacts and factors that control this relationship. 

3.1.2 Study Area  

The study area is part of the Nubian Desert located in the Northern state of Sudan between 

latitudes 18◦00’00”-19◦00’00” N and longitudes 30◦30’00”-31◦10’00” E, and it is bordered 

by the city of Ed Dabba to the south and Dongola city to the North. It covers an area of 

about 10,180 km2 with five distinct types of land cover (i.e. sand, vegetation, water, urban 

and rocks or bare land) where the most dominant land cover types are sand and rocky 

areas (Figure 3.4). This region receives very low rainfall with precipitation of about 12 mm 

annually, which explains the significant experienced drought (Zhang et al. 2012). The 

habitable areas are located on the banks of the River Nile, where the local population 

depends on agricultural crops and farming as their main source of income (Figure 3.4, c).  

This study area was selected because it contains individual sand dunes and integrated 

sand dune fields. Moreover, it is a representative study area for monitoring sand 

movement in the arid and semi-arid regions of Sudan, where sand dunes are a dominant 

land cover type. It also contains agricultural projects, irrigation canals, river banks, and 

archaeological sites (i.e. Affad, Old Dongola, Kawa), which emphasises the need to 

investigate the impact of sand movement on rural communities and a variety of 

infrastructures. 
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Figure 3.4. Study Area in the Northern state of Sudan. (a) Location of the study area and 

the main cities and villages scattered along the River Nile banks (b) key map showing 

Sudan’s states and the extent of the study area, (c) a zoomed-in image showing the five 

distinguished land cover types (sand, vegetation, water, urban and rocky) near Old 

Dongola city.  

3.1.3 Land Cover Change Detection  

Due to the significant global climate change impact and human interventions, monitoring 

land cover changes has become an essential supporting tool for sustainability development 

and risk assessment for environmental studies. In concept, change detection in remote 

sensing refers to identifying the changes between sequential image acquisitions covering 

the same location  (Singh, 1989). Change detection studies provide valuable information 

on the area of change, rate of change, and spatial distribution of change types, in addition 

to assessing the accuracy of the change detection results (Lu et al. 2004). 

The detection of land cover changes has been applied for various environmental and earth 

observation applications, such as measuring the damage caused by a flood or a hurricane 

(Klemas, 2015), monitoring forest fires (Langner et al. 2007), agricultural crop assessment 

(El Hajj et al. 2009), drought management (Karakani et al. 2021), assessing the impact 

of geohazards (e.g. earthquakes, volcanos, landslides…etc.) (Hervás et al. 2003, Ishihara 

and Tadono, 2017, Kadavi and Lee, 2018). Hence, detecting changes in land cover is a 

powerful geospatial tool that can support policy makers to assess and mitigate 

environmental hazards.   
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For decades, environmental and earth observation scientists have been developing 

different remote sensing techniques that use optical satellite images to detect and monitor 

land cover changes. Examples of these techniques are image differencing, normalized 

difference vegetation index and image classification applied to sequential images to 

provide a measurable and statistical description of the changes, Table 3.2, (Lu et al. 2004). 

Table 3.2. Most common used change detection techniques (after D. Lu et al. 2004). 

Technique Characteristics Advantages Disadvantages 

Image differencing Applies pixel by pixel 

subtraction between 

first date image and 

second date image 

Simple 

implementation, easy 

interpretation of the 

results 

Providing a change 

matrix is not 

applicable 

Vegetation index 

differencing 

Produces vegetation 

index, subtracts the 

second date from 

the first date 

vegetation index 

Emphasizes 

differences in the 

spectral response 

of different 

features and 

reduces impacts 

of topographic 

effects and 

illumination 

Coherence noise 

Post classification 

comparison 

Classifies multi-

temporal images 

into thematic maps, 

followed by a pixel-

by-pixel comparison 

of the classified 

images 

Reduces the impact of 

atmospheric and 

environmental 

differences between 

multi-temporal images; 

produces a full matrix 

of change information 

Requires technical 

expertise to 

produce a 

classification 

product. 

 

In this chapter of the research, the image differencing and image classification methods 

were used to detect the land cover changes, with a special focus on the machine learning 

classification methods.  

3.1.4 Machine Learning Classification Algorithms 

The advancement in computer vision and machine learning algorithms has elevated the 

capabilities of classification of thematic mapping and provided the potential of achieving 

much more accurate classification results. The different classification methods are 

assessed in terms of the accuracy of the classification results, which mainly depends on 

several factors: the spatial resolution of the images, the sensor type, the size of the 

training samples and the employed classification approach (Sheykhmousa et al. 2020). In 

addition, the computational time for the classification process is considered an important 

factor when selecting a classifier.  
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The most widely used machine learning algorithms in remote sensing are the supervised 

classification algorithms; the Random Forest (RF) (Breiman, 2001) and the support vector 

machine (SVM) (Mountrakis et al. 2011) algorithms, due to their higher interpretability 

capabilities and lower computational complexity (Sheykhmousa et al. 2020). In this study, 

a comparison has been made between the random forest classifier and the support vector 

machine classifier in order to select the optimum classifier to perform supervised 

classification on multi-temporal satellite images in GEE.   

The random forest (RF) classifier is an ensemble classifier, which combines several models, 

that uses a group of decision trees to predict and distinguish different classes (Breiman, 

2001). There are two ensemble learning methods that are applied to build the forest trees, 

which are boosting and bagging. Boosting methods build sequential models where each 

model is used to correct the error of the classification in the previous model. However, this 

model generates a problem of overfitting a dataset with insufficient training samples and 

may fail to predict reliably (Sheykhmousa et al. 2020). In contrast, the bagging method 

improves the stability and accuracy of the integrated models and reduces the variance. In 

comparison to boosting, the bagging approach is considered more robust to the overfitting 

problem (Sheykhmousa et al. 2020). The random forest classifier was developed based on 

the bagging approach.  

The random forest generates random multiple decision trees by using a subset of the 

training samples, with two thirds of the training samples being used to train the model 

decision trees while the rest third is used to cross validate the performance of the random 

forest model. This allows different training samples to be selected for each individual tree, 

which results in high variance and low bias and reduces the generalized estimation errors 

(Breiman, 2001). 

The two main parameters in the RF are the number of trees (Ntrees), which is the number 

of decision trees in the ensembled forest, and the number of variables (Mtry), which is the 

number of predictors used to split the tree's nodes to grow the decision trees and assign 

a classification decision (Belgiu and Drăguţ, 2016). Both the number of trees and the 

number of features are user defined and have an impact on the accuracy of the 

classification results, although, theoretical and empirical models suggest that the RF model 

is less sensitive to the number of trees than to the number of predictors (Belgiu and 

Drăguţ, 2016). The outcome of the unclassified input is generated from the ensembled 

decision trees majority voting for the most popular class.  
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The support vector machine (SVM) is a non-parametric statistical classifier that uses 

training samples to define a hyperplane that separates the dataset into different 

predefined classes. The hyperplane works as a decision boundary to minimize the 

misclassification of the datasets (Mountrakis et al. 2011). SVM uses a portion of the 

training samples that lies closet in the feature space to the optimal decision boundary, 

known as support vectors, to maximize the separation boundary or margin between the 

different classes. An iterative process takes place for defining the optimal hyperplane, 

which minimizes the misclassification error (Mountrakis et al. 2011).  

There are three main parameters to define with the SVM: (1) the kernel function that is 

used to distinguish the non-linear decision boundaries in the original data space into linear 

ones in a high dimensional space; (2) the kernel regularization parameter (C), which 

controls the amount of penalty during the optimization of the SVM; and (3) the kernel 

width (gamma), which is the spread of the kernel (Sheykhmousa et al. 2020).   

There are several kernel functions that are used with the SVM, such as the linear kernel, 

polynomial kernel, and the gaussian radial basis function (RBF) (Huang et al. 2002). The 

selection of a specific kernel is reflected significantly in the classification results, and this 

is considered to be one of the major challenges in SVM; deciding which kernel should be 

used for the intended remote sensing application (Huang et al. 2002, Mountrakis et al. 

2011). Figure 3.5 demonstrates a linear support vector machine example with a 

hyperplane distinguishing two different classes with some misclassified pixels, (Mountrakis 

et al. 2011). 

 

Figure 3.5. Linear support vector machine example. A hyperplane distinguishing two 

different classes with some misclassified pixels, (Mountrakis et al. 2011). 
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Table 3.3 highlights the main differences between the random forest and the support 

vector machine algorithms for the application of image classification, (Huang et al. 2002, 

Pal, 2005, Mountrakis et al. 2011, Belgiu and Drăguţ, 2016, Sheykhmousa et al. 2020).  

Table 3.3. Main characteristics of the Random Forest and the support vector machine 

classifiers. 

Method  Random Forest (RF) Support Vector Machine (SVM) 

Performance • Robust and stable 

to noise in the 

training data. 

• It is less sensitive 

to overfitting. 

• Can handle 

categorical data 

and unbalanced 

data. 

• Depends on the suitable kernel 

function. 

• Capability in locating optimal 

separating hyperplanes. 

• Can tackle the high 

dimensionality and limited 

training samples issues. 

• Does not assume frequency 

distribution of data. 

Classification Accuracy • Sensitive to 

outliers in the 

training data. 

• Does not overfit.   

• Kernel models can be sensitive 

to overfitting which limits the 

SVM.  

Processing Speed • Computationally 

efficient. 

• Considered slow when 

comparing training speeds due 

to training data size, the kernel 

parameter setting and the class 

separability. 

 

3.1.5 Cloud Based Computing Service: Google Earth Engine  

Earth observation has historically been limited by the processing power of low-

performance computers, however the emergence of cloud-based computing services such 

as Google Earth Engine (GEE), Sentinel Hub, Open Data Cube (ODC), openEO, JEODPP 

and pipsCloud (Gomes et al. 2020) has opened up the possibility of processing petabyte-

scale remote sensing data. 

Google Earth Engine (GEE) is a cloud based computing platform that allows the processing 

and analysis of large time series satellite imagery and geospatial datasets for the 

application of earth observation monitoring (Gorelick et al. 2017). The GEE platform, 

https://earthengine.google.com/, provides access to different types of remote sensing 

data (e.g. satellite images: Landsat, MODIS, Sentinel 1&2, precipitation data, 

weather…etc.) and a public data archive that includes historical imagery. It allows users 

to visualize and perform planetary-scale geospatial analysis on time series datasets more 

rapidly and accurately, in an interactive environment implemented in the JavaScript code 

editor or via an application programming interface (API) using JavaScript or Python.  

https://earthengine.google.com/
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The use of GEE APIs expands researchers' capabilities to develop more effective geospatial 

tools. Figure 3.6 illustrates the components of the Earth Engine code editor, 

(https://developers.google.com/earth-engine/guides/playground ).  

 

Figure 3.6. Diagram of components of the Earth Engine Code Editor. 

In the past few years, many researchers have used GEE for different remote sensing 

applications such as crop mapping and agricultural monitoring (Amani et al. 2020, 

Shelestov et al. 2017), drought management (Sazib et al. 2018, Khan and Gilani, 2021), 

forest mapping (Johansen et al. 2015), flood assessment and management (Liu et al. 

2018), coastal monitoring (Vos et al. 2019) and volcanic monitoring (Genzano et al. 2020). 

Moreover, it has been widely used for the application of land cover analysis. For instance, 

several workers (Lin et al. 2020, Zurqani et al. 2018, Midekisa et al. 2017, Huang et al. 

2017, Arévalo et al. 2020) performed land cover classification and NDVI analysis to detect 

the long term changes in land cover, in addition to monitoring the degradation of land by 

processing large amounts of continuous satellite images and spatial datasets.  

All these studies demonstrate the capabilities of GEE as a powerful platform for the 

application of large scale environmental and earth observation studies. In this case study, 

GEE has been applied to support the automation of an optical satellite image processing 

framework that uses machine learning to monitor the movement of sand dunes in Northern 

Sudan. 

https://developers.google.com/earth-engine/guides/playground
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3.2 Data and Methodology 

3.2.1 Data 

The Sentinel-2 mission was developed and operated by the European Space Agency with 

the first satellite in the constellation, Sentinel-2A, launched in 2015, and joined by 

Sentinel-2B in 2017. These satellites are orbiting the earth in a sun-synchronous orbit 

providing systematic coverage of all the land and coasts between latitudes 56◦ south and 

83◦ north, with a revisit time of 5 days at the equator (Sentinel, 2015). The sensor on 

board has a multispectral instrument with 13 bands: four visible bands (B1, B2, B3, B4), 

six infrared bands (B5, B6, B7, B8, B8A B9) and three shortwave bands (B10, B11, B12) 

used for various applications, such as land cover change detection, crop mapping and 

marine monitoring...etc. (Sentinel, 2015).  

Sentinel-2 image products are provided to users in two different types: Level-1C (Top-Of-

Atmosphere (TOA) reflectance) or Level-2A (Bottom of atmosphere (BOA) reflectance) 

ortho-rectified images in UTM/WGS84. The Sentinel 2 Level-2A (L2A) multi spectral 

resolution images were used in this case study to perform the image classification and 

change detection analysis. Sentinel 2 images were chosen because they are free to acquire 

and have a higher spatial resolution of 10 m compared to LandSat data which has a 30 m 

spatial resolution. The Sentinel 2 L2A images were processed from the associated Sentinel 

2 Level-1C products using the Sen2Cor processor, which was developed by ESA, and by 

applying scene classification, atmospheric and cirrus corrections (Louis et al. 2016).  

As the Level-2A images became systematically available globally from December 2018, 

hence, the selected study period spans from December 2018 to December 2021, which is 

three years of sequential time series of Sentinel 2 L2A images. Although, the temporal 

resolution between the images is 5 days, applying cloud filters to the dataset to select 

images with low cloud percentage (see section 3.3.2), to reduce miss classification, 

resulted in collecting 110 images and excluding 110 images with a cloud percentage more 

than the determined threshold. Table 3.4 shows the Sentinel 2 L2A image bands 

specifications.  
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Table 3.4. Sentinel 2 L2A bands specifications. 

Name Description Resolution  Wavelength for S2A 

/S2B(nm) 

Band 1 Coastal Aerosols 60 meters 443.9nm / 442.3nm  

Band 2 Blue 10 meters 496.6nm / 492.1nm  

Band 3 Green 10 meters 560nm / 559nm  

Band 4 Red 10 meters 664.5nm / 665nm  

Band 5 Red Edge 1 20 meters 703.9nm / 703.8nm  

Band 6 Red Edge 2 20 meters 740.2nm / 739.1nm  

Band 7 Red Edge 3 20 meters 782.5nm / 779.7nm  

Band 8 NIR 10 meters  835.1nm/ 833nm  

Band 8A Red Edge 4 20 meters 864.8nm / 864nm  

Band 9 Water Vapor 60 meters 945nm / 943.2nm  

Band 11 SWIR 1 20 meters 1613.7nm /1610.4nm  

Band 12 SWIR 2 20 meters 2202.4nm /2185.7nm 

  

3.2.2 Methodology  

3.2.2.1 Sand Encroachment Tool (SET) 

A preliminary step to detect the changes in land cover is to use the image differencing by 

applying it to two sequential images and subtracting the corresponding pixel values to 

distinguish areas that have seen significant land cover changes. This was applied on band 

8, the near Infrared band. However, this does not provide statistics on the displacement 

and the direction of movement. Therefore, an alternative change detection method, image 

classification, has been implemented to detect and calculate the changes in sand dunes 

areas. In this case study, this has been achieved by developing a framework in the ArcGIS 

model builder called ‘Sand Encroachment Tool (SET)’.  

The framework (SET) integrates remote sensing and GIS methods that involve different 

spatial analysis and geo-processing tools to monitor the changes in sand dune land cover, 

by applying a time series analysis to detect the changes in land cover classification, in 

addition to determining the displacement and direction of movement of individual dunes. 

SET uses optical images and depends mainly on the results of the supervised classification.  

The detection of sand movement using the SET framework includes two parts, Figure 3.7, 

and Figure 3.8. The first part focuses on detecting sand cover area changes and generating 

land cover classification maps that demonstrate the changes over time and the spread of 

sand areas. The second part of the tool works on detecting the displacement and the 

direction of movement of specified individual dunes following the classification of sand 

cover areas stage.  
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Figure 3.7. Description of the SET tool input parameters. 
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Figure 3.8. SET framework applied in ArcGIS for land cover classification changes and detecting the displacement and direction of the movement 

of individual dunes. 
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The first step applied in the framework is to clip the satellite images to the study area 

boundary, in order to reduce the processing time and to ensure that all of the analysis is 

applied to the same area extent. Then, the training samples are collected, based on the 

five main land cover types in the study area (i.e. sand, vegetation, water, urban and 

rocky). Table 3.5 shows a description of the land cover classes in the study area.  

Table 3.5. Description of the land cover classes in the study area 

Class Description 

Sand Sand sheets and sand dune areas 

Vegetation Agricultural areas and farms 

Water River Nile water body 

Urban Houses and built-up areas 

Rocky Rocks and bare lands 

 

The training samples were manually collected from seven Sentinel- 2 images collected in 

June and December months of the years 2018-2021 based on visual inspection and were 

validated with the available historical high-resolution images in Google earth from the 

same period.  

The optimum way of obtaining training samples is by collecting ground truth data or 

collecting it from previously generated Thematic maps. This is not usually applicable, 

especially in the case of remote monitoring of desert areas; therefore, the training samples 

were collected by visual inspection.  

One hundred training sample points were collected for each class, in addition to 40 test 

validation points collected to validate the classification results. Figure 3.9 shows the 

distribution location of the training samples and validation samples over the study area, 

where each sample point corresponds to a single pixel. 

The collected training samples were then used to train the classifier by acquiring the 

signature of the image pixels that correspond to each training sample, in order to be used 

to generate classification maps.   

In order to select the optimum machine learning classification method, a comparison 

between the RF and SVM classifiers was conducted. This involved computing the confusion 

matrix, overall accuracy and the Kappa coefficient for the classification of Sentinel-2 L2A 

image collected on the 11th of January 2019. The confusion matrix provides an array that 

contains all the assigned classes in the validation dataset showing the error in the 

classification (Maxwell et al. 2021).  
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Figure 3.9. Distribution location of the training and validation samples collected over the 

study area for image classification. (a) Training samples location map (b) Validation 

samples location map. 

The kappa coefficient is another accuracy indicator that is used to assess the agreement 

between the classification results and the validation samples, Table 3.6, (Landis and Koch, 

1977). 

Kappa statistic = (observed accuracy – chance accuracy)/ (1- chance accuracy).  

Table 3.6. Kappa coefficient values indicator for the agreement between the validation 

data and the classification results. 

Kappa Statistic Strength of Agreement  

<0 No agreement 

0.00-0.20 Slight agreement  

0.21-0.40 Fair agreement  

0.41-0.60 Moderate agreement 

0.61-0.80 Substantial agreement 

0.81-0.99 Almost perfect agreement  

The comparison results demonstrated that the random forest is capable of achieving 

significantly higher accuracy of classification compared to the SVM when using 100 

decision trees and above. Therefore, the Random Forest classifier was used to process the 

time series analysis to detect the land cover changes. 
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The classification maps generated using the Random Forest classifier were validated using 

the test dataset and the confusion matrices and Kappa coefficient were computed to 

statistically determine the accuracy of the classification.  

To determine how significant the sand area has changed over time, the raster classes were 

converted into polygon feature datasets using the ‘Raster to Polygon’ tool. Then the sand 

class was extracted from the classification results, after which the area summation of the 

sand class in each classified image was calculated. This step is the final step of the first 

part of SET and focuses on identifying the changes in land cover that have occurred over 

time.  

The second part of SET is oriented to calculate the displacement and direction of movement 

for individual dunes. This requires selecting individual dunes from the sand class and 

converting those dunes’ polygons into point features using the ‘Feature vertices to points’ 

tool. Then the movement of the individual dunes on different dates is determined by 

calculating the displacement magnitude and the direction of movement using the ‘Near 

analysis’ tool.  

The ‘Near analysis’ tool (Figure 3.10) provides a table that contains the displacement 

magnitude and the near angle between a point from a primary feature (dune) and the 

closest point on a secondary feature (shifted dune), in addition to the near X and near Y 

coordinates of the primary points.  

 

Figure 3.10. Near analysis tool in ArcGIS is used to calculate the displacement between 

shifting dunes. 
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The ‘Near analysis’ tool works on layers of the geodetic coordinate system, therefore, the 

dune points were converted into the geographical coordinates system. The method used 

in the Near analysis tool for the calculation of the near distance and the proximity 

information was geodesic. It provides the near distance in a linear unit (i.e. metres) and 

the near angle within the range of -180◦ to 180◦, with 0° representing the north, 90° to 

the east, 180° (or -180°) to the south, and -90° to the west. The near angle was converted 

into azimuth by adding 180◦ to the near angle field using the field calculator tool to 

compute the azimuth bearing direction values. 

Then the displacement magnitude and azimuth direction are used to generate the bearing 

distance line that connects the two corresponding points and displays the movement of 

the dunes using the ‘Bearing Distance to Line’ tool, Figure 3.11.  

 

Figure 3.11. The bearing distance to line tool used in ArcGIS to create a line feature that 

connects the two corresponding points to display the displacement of the dunes.   

3.2.2.2 Monitoring sand dune movement using Google Earth Engine 

As an automation step, the framework (SET) developed in the ArcGIS model builder has 

been tailored and implemented in Google Earth Engine (GEE) to allow for the automation 

process to be applied to large datasets of multi-temporal satellite images (i.e. 3 sequential 

years of Sentinel-2 image collection). This provided a detailed detection of the changes in 

land cover in the study area, and the sand dunes particularly.  
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GEE provided a powerful tool and access to different remote sensing datasets. For this 

study, the Sentinel-2 L2A was used. The processing was implemented in the GEE code 

editor that uses JavaScript language, (the written code is provided in the Appendix 

chapter). Figure 3.12 shows a diagram that illustrates the main processing stages of 

detecting sand dune movement using GEE.  

 

Figure 3.12. Processing framework implemented in GEE for sand dune monitoring. 

Different built-in functions in the GEE were used to automate the geospatial processing 

steps of SET to detect the movement of sand from time series images. The 

ee.FeatureCollection() was used to import the shapefiles of the study area and applied 

with the geometry() function to define the study area. The study area shapefile has been 

used to define the area to download the Sentinel 2 images and also to mask out the images 

to their extent.  
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To access a time series dataset of Sentinel 2 multi-spectral L2A images the 

ee.ImageCollection() function was used. This function provides access to a stack of 

satellite images that covers the same area.  

The Sentinel 2 images are provided as image tiles and several tiles overlap so that 

determining a path and row won’t work. In other words, overlapped images can be taken 

on the same day representing the same area, which could cause an issue when analysing 

a time series. This issue has been resolved in this study by selecting a point (rio) that is 

only located on one granule, so the accessed images would represent the same granule 

on different dates when selecting only one image for each day.   

To ensure that the collected images are cloud free or have a very low cloud coverage, in 

order to reduce the radiometric distortion in the land cover classification results, a filter 

was applied using the .filterMetadata() function to filter out all the images that have cloud 

percentage more than a threshold of 1%. However, this sometimes results in filtering out 

too many good images that only contain cloud percentages in parts of the image but not 

over the study area. 

A .map() function has been used to loop on and returning clipped images to the study area 

using the .clip() function. 

 

The Map.centerObject() and the Map.addLayer() functions were used to display the output 

results on an interactive map to inspect all the downloaded image dataset. The Sentinel 

image collection to In order to get the actual dates format of the images, which was used 

to plot the time series, the .distinct() function and the .aggregate_array() function were 

used. 
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In order to validate that all the collected images complied with the threshold of the 1% of 

cloud pixel percentage, the .aggregate_stats() function was used. The function provided 

statistics of the cloud pixel coverage for the image collection, Table 3.7.   

Table 3.7. Image collection cloud pixel percentage statistics. 

Cloud Coverage Status Percentage  

Maximum  0.983 

Mean  0.203 

Minimum 0 

Standard Deviation  0.277 

 

The classification of the images was applied on bands (B2, B3, B4 and B8) to clearly 

distinguish between the land cover classes. The random forest and support vector machine 

classifiers were used. The classification result was validated using the training samples by 

computing the confusion matrices and the kappa coefficient.  

 

The ee.Image.pixelArea() function was used to calculate the area of each pixel of the 

classified image. The reducedRegion () function was then applied to calculate the total 

area of the specific class.  

The GEE processing code is provided in the appendix chapter, and it contains a step-by-

step processing guide for monitoring sand dunes using machine learning classifiers in GEE. 

3.3 Results and Discussion  

3.3.1 Sand Area Extent Changes 

Image difference analysis was carried out between two Sentinel 2 images collected on the 

10th of July 2019 and the 15th of February 2020 to distinguish land cover changes in the 

study area. The image difference results show significant changes in the vegetation areas 

as a result of vegetation growth, and in the water channel due to the sediment deposition 

and erosion. Moreover, the sand dune areas have seen significant differences, which 

indicates a continuous movement of the dunes.  
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This process is a preliminary stage to develop a general overview of what sort of changes 

or movement is expected in this region. Figure 3.13 illustrates the image difference 

between the 10th of July 2019 and the 15th of February 2020 applied on band 8 (Near 

Infrared band).  

 

Figure 3.13. Image difference map between 10 July 2019 and 15 February 2020 computed 

from band 8 NIR. 

The image classification has been carried out in Google Earth Engine on a time series of 

images to detect the land cover changes in the study area between December 2018 and 

December 2021. An initial step was performed to validate the accuracy of the classification 

from the random forest and the support vector machine classifiers to select the optimum 

classifier. The validation was performed on an image collected on the 11th of January 2019.  
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Several classification experiments were preformed using the random forest classifier to 

select the ideal parameters.  A different number of trees (10, 50, 100, 150, 200, 250 and 

300) were tested to determine which NTrees values would provide the best accuracy of 

classification. The accuracy of the RF classification has increased when using 100 Ntrees, 

after which further additional increases did not enhance the achieved accuracy. Table 3.8 

shows the random forest classification validation results applied with a different number 

of trees. 

Table 3.8. Random forest classification overall accuracy and kappa coefficient validation 

results when applying different trees numbers. 

Number of Trees Overall Accuracy  Kappa Coefficient 

10 0.935 0.919 

50 0.955 0.943 

100 0.965 0.956 

150 0.965 0.956 

200 0.965 0.956 

250 0.965 0.956 

300 0.965 0.956 

 

The RF confusion matrix showed near perfect agreement between the validation datasets 

and the classification results of all the classes. However, this agreement is only valid for 

the validation datasets and in order to achieve more robust validation, more validation 

sample datasets must be collected and well distributed, covering a larger area of the study 

region. Table 3.9 illustrates the confusion matrices generated to validate the accuracy of 

RF classification. 

Table 3.9. RF Classification confusion matrices obtained from a different number of trees 

in Random Forest.  

RF Number of Trees 

10 50 100 150 200 250 300 

Confusion Matrices 

[37,0,0,0,3] [39,0,0,0,1] [40,0,0,0,0] [40,0,0,0,0] [40,0,0,0,0] [40,0,0,0,0] [40,0,0,0,0] 

[0,39,0,0,1] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] 

[0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] 

[1,2,0,37,0] [0,1,0,39,0] [0,1,0,39,0] [0,1,0,39,0] [0,1,0,39,0] [0,1,0,39,0] [0,1,0,39,0] 

[1,0,1,3,35] [1,0,1,4,34] [1,0,0,4,35] [1,0,0,4,35] [1,0,0,4,35] [1,0,0,4,35] [1,0,0,4,35] 
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On the other hand, several classification trials were performed to determine the impact of 

using different cost parameter values on the SVM classification accuracy. The linear kernel 

was applied on the support vector machine which is a basic simple kernel with one 

dimensional structure. Table 3.10 shows the overall accuracy and kappa coefficient 

validation results obtained from applying different cost parameter values to the SVM 

classifier. Table 3.11 shows the confusion matrices of the SVM using different cost (C) 

parameter values. 

Table 3.10. Support vector machine overall accuracy and kappa coefficient validation 

results obtained by applying different cost parameter values. 

C Parameter Value Overall Accuracy  Kappa Coefficient 

0.2 0.96 0.95 

0.5 0.935 0.9188 

1 0.945 0.931 

2 0.935 0.91875 

3 0.915 0.89375 

4 0.935 0.91875 

5 0.935 0.91875 

Table 3.11. SVM classification confusion matrices obtained using different cost (C) 

parameter values. 

Cost Parameter Values 

0.2 0.5 1 2 3 4 5 

Confusion Matrices 

[40,0,0,0,0] [38,0,0,0,2] [38,0,0,0,2] [38,0,0,0,2] [37,0,0,0,3] [37,0,0,0,3] [38,0,0,0,2] 

[0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] [0,40,0,0,0] 

[0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,39,1,0] [0,0,38,1,1] [0,0,39,1,0] 

[0,2,0,37,1] [0,2,0,37,1] [0,2,0,37,1] [0,1,1,35,3] [0,2,0,36,2] [0,2,0,37,1] [0,1,0,37,2] 

[1,0,1,2,36] [1,0,5,1,33] [1,0,0,4,35] [1,0,1,3,35] [1,0,7,1,31] [1,0,0,4,35] [1,0,0,6,33] 

Although having low values of the C parameter increases the margin of the hyperplane, 

which would allow for more classification to be formed and leads to misclassification (Yang, 

2011), it is observed that the SVM classifier achieved higher classification accuracy when 

using small cost parameter values (i.e. 0.2). This can be related to the overlapping in the 

training samples of land cover classes in the study area. However, there is no defined 

value for the C parameter that achieves the lowest misclassification results, it depends 

mainly on the training dataset. Selecting a kernel type to be used with the support vector 

machine would need more investigation to determine the optimal kernel and parameters 

that provide the best accuracy of classification.  
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Also, the overall accuracy and kappa coefficient have been computed for all the classified 

images using both the random forest and support vector machine. Figure 3.14 shows the 

overall classification accuracy and the kappa coefficient for the random forest and the 

support vector machine for all classified images.  

 

Figure 3.14. Image classification overall accuracy and kappa coefficient for both RF and 

SVM. 

The validation comparison results applied on all the time series images demonstrated that 

both random forest and support vector machine achieved high accuracy of classification 

when applying a cost parameter of 0.2 for SVM and with a number of trees of 100 for the 

random forest. Figure 3.15 and Figure 3.16 show several land cover classification maps 

generated using random forest and support vector machine, respectively.  
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Figure 3.15. Selected land cover classification maps generated using Random Forest 

classifier. 
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Figure 3.16. Selected land cover classification maps generated using Support Vector 

Machine classifier. 

We can clearly see from the classification maps that the dominant land cover types are 

the rocky and sand classes which cover most of the study area. The urban and vegetation 

areas are mainly distributed along the riverbanks as the River Nile is the main source of 

water for irrigation and domestic use. There are some agricultural projects a few 

kilometres from the banks where canals are connected to the Nile for irrigation.  

The pixel’s area summation for each class was computed from the image classification 

results to detect the time series area changes for each land cover class over the study 

period. Figure 3.17 illustrates the time series of land cover classification area changes 

using the random forest and support vector machine classifiers.   
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Figure 3.17. Time series of land cover classification area changes using RF and SVM.  

It can be clearly seen that the rocky and sand classes cover larger areas compared to the 

other classes, with the rocky class having an area ranging between the 4500-6500 km2 

for RF and 3200-6200 km2 for SVM, while the sand class areas range between 3000-4800 

km2 for RF and 3300-5700 km2 for SVM. On the other hand, the vegetation and urban 

classes have an area ranging between 150-350 km2 and 250-600 km2 for RF and 230-450 

km2 and 110-850 km2 for SVM, respectively, while the water class has the lowest land 

cover area ranging between 70-110 km2 for RF and 80-105 km2 for SVM, Figure 3.18.  

The vegetation class areas increase during the growing season (November-March) and 

decrease during the rainfall and seed sowing season (June to September), Figure 3.18. 

The water areas see slight changes due to the water level variation between the autumn 

and summer seasons, and the presence of some islands in the middle of the river channel 

as a result of sediment deposition and a drop in water levels during the summer season, 

which slightly increases the water land cover area.  
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Figure 3.18. Time series of vegetation, water and urban classes area changes using RF and 

SVM. 

The sand classification results show a pattern of significant area changes during the study 

period, Figure 3.19. The sandy areas were observed to increase during the period between 

September to February, ranging between 4000-4800 km2 for RF and 4500-5200 km2 for 

SVM, while the area decreased during the period between March to August, with an area 

ranging between 3300-4200 km2 for RF and 3300-4600 km2 for SVM. 

These class area changes can be related to the changes in the wind’s behaviour. It has 

been reported that in Northern Sudan, near Goled city, the wind has an average wind 

speed ranging between 4m/s to 6m/s with maximum gusts ranging between 14m/s and 

19m/s, while it changes its dominant blowing direction from north north west all year to 

blow from the south/southwest during the autumn season (Munro et al. 2012). This change 

in wind behaviour results in changes to the dynamic area coverage of the dunes.  
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Figure 3.19. Time series of sand class area changes using RF and SVM. 

There is a significant correlation between the increase in the sand class area and the 

decrease in the rocky class area. The Pearson coefficient between the two classes, 

computed from the RF classification results, shows a high negative correlation of (-0.987), 

which means that any increase in the sand class area would mean a significant decrease 

in the rocky class area (Table 3.12). This is also clearly seen in the classification maps, 

Figure 3.15. This correlation is mainly due to the fact that the simple movement of the 

dunes is to the surrounding bare lands. In addition, there is a negative correlation of (-

0.352) between the sand class and water class, due to the variation in the water level near 

the riverbanks.  

A negative correlation is observed between the water class and the vegetation class of -

0.480 as the vegetation areas on the riverbanks are overwhelmed with water during the 

flood season, while it increases during the summer when it is utilized for cropping.  
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Table 3.12. Computed Pearson coefficient for correlation assessment between land cover 

classes for the RF classification results. 

Class Vegetation Water Urban Rocky 

Sand 0.183 -0.352 0.183 -0.987 

Vegetation - -0.480 -0.077 -0.272 

Water -0.480 - 0.171 0.356 

Urban -0.077 0.171 - -0.291 

 
The overlap between the training sample classes leads to misclassification. For instance, 

the interchangeable variation of the seasonality in the vegetation areas results in 

misclassifying some vegetation areas into rocky bare lands during the drying season or 

also occurring between the urban class and the rocky class where both classes have 

significantly close reflectance responses as the urban areas are built on a bare land which 

is part of the rocky class. The latter was clearly observed in the confusion matrices, with 

rocky areas being classified as urban. Figure 3.20 shows a scatterplot of the reflectance 

of the training samples of the five land cover classes applied on image 11 January 2019.  

 

Figure 3.20. A scatterplot of reflectance of the training samples for the five land cover 

classes. 
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3.3.2 Individual Dune Movement Detection 

The individual dune detection SET tool has been used to detect the displacement and 

direction of individual dunes. Firstly, the tool was tested on an individual dune that was 

digitized from two historical high-resolution images in Google Earth, with these two 

archived images having been collected in November 2011 and December 2012. The 

digitized dune features were then converted into dune points that represent the boundary 

of the dunes, after which the displacement and direction of movement were calculated 

using SET in ArcGIS, Figure 3.21.  

 

Figure 3.21. Detected individual dune movement between November 2011 and December 

2012 using SET applied dunes extracted from high resolution images. 

The tool detected a significant movement between November 2011 to December 2012 

with an average displacement of 15 metres and a dominant direction of movement to the 

southwest on the eastern side of the dune, while it detected an average displacement of 

7 metres with a dominant direction of movement to the southeast in the west side of the 

dune. The location of the dune has shifted more than 125 metres toward the southwest 

between 2011 and 2022, i.e. the current location of the dune. Table 3.13 illustrates the 

displacement and direction of the detected sand dune movement between November 2011 

and December 2012.
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Table 3.13. The displacement and direction of the detected sand dune movement between November 2011 and December 2012. 

FID ORIG_X ORIG_Y Near_FID Near Distance Near X Near Y Near Angle Azimuth 

0 30.81574 18.71855 49 8.184 30.81581 18.71851 122.428 302.428 

1 30.81571 18.71853 51 9.544 30.81578 18.71848 129.555 309.555 

2 30.81565 18.71851 54 10.387 30.81568 18.71842 157.512 337.512 

3 30.81558 18.71847 55 9.020 30.81563 18.71840 142.503 322.503 

4 30.81553 18.71843 56 9.000 30.81560 18.71838 124.814 304.814 

5 30.81551 18.71840 57 9.833 30.81558 18.71834 131.127 311.127 

6 30.81548 18.71837 5 10.252 30.81538 18.71836 -93.855 86.145 

7 30.81545 18.71834 5 7.674 30.81538 18.71836 -69.121 110.879 

8 30.81541 18.71832 4 4.184 30.81537 18.71832 -95.329 84.671 

9 30.81541 18.71835 5 3.434 30.81538 18.71836 -74.572 105.428 

10 30.81542 18.71839 6 4.202 30.81540 18.71842 -32.130 147.870 

11 30.81543 18.71847 6 5.823 30.81540 18.71842 -148.025 31.975 

12 30.81544 18.71854 7 2.910 30.81542 18.71855 -61.803 118.197 

13 30.81546 18.71861 8 3.547 30.81544 18.71864 -36.688 143.312 

14 30.81549 18.71869 9 6.172 30.81548 18.71874 -15.658 164.342 

15 30.81554 18.71880 10 3.642 30.81551 18.71880 -95.208 84.792 

16 30.81560 18.71893 12 4.248 30.81558 18.71890 -158.849 21.151 

17 30.81564 18.71899 13 4.591 30.81568 18.71898 105.235 285.235 

18 30.81570 18.71907 14 8.671 30.81578 18.71904 114.262 294.262 

19 30.81576 18.71913 14 9.747 30.81578 18.71904 169.884 349.884 

20 30.81582 18.71916 15 9.853 30.81587 18.71909 145.339 325.339 

21 30.81589 18.71920 16 11.973 30.81593 18.71910 158.543 338.543 

22 30.81596 18.71922 16 14.159 30.81593 18.71910 -168.556 11.444 

23 30.81602 18.71923 17 16.909 30.81597 18.71909 -160.348 19.652 

24 30.81607 18.71923 17 18.555 30.81597 18.71909 -144.530 35.470 

25 30.81611 18.71921 19 18.122 30.81609 18.71904 -173.712 6.288 

26 30.81613 18.71922 19 19.289 30.81609 18.71904 -168.259 11.741 

27 30.81618 18.71920 19 19.651 30.81609 18.71904 -149.671 30.329 

28 30.81623 18.71917 20 19.883 30.81614 18.71901 -152.320 27.680 

29 30.81627 18.71913 20 19.373 30.81614 18.71901 -134.390 45.610 
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FID ORIG_X ORIG_Y Near_FID Near Distance Near X Near Y Near Angle Azimuth 

30 30.81634 18.71907 21 18.837 30.81621 18.71894 -137.349 42.651 

31 30.81638 18.71899 22 17.216 30.81627 18.71887 -136.247 43.753 

32 30.81643 18.71889 23 16.066 30.81630 18.71881 -121.662 58.338 

33 30.81645 18.71883 23 16.053 30.81630 18.71881 -94.065 85.935 

34 30.81650 18.71877 24 16.980 30.81634 18.71872 -108.481 71.519 

35 30.81649 18.71871 24 15.916 30.81634 18.71872 -84.020 95.980 

36 30.81650 18.71846 26 11.324 30.81640 18.71844 -101.603 78.397 

37 30.81650 18.71840 27 10.743 30.81640 18.71836 -110.181 69.819 

38 30.81647 18.71838 27 7.998 30.81640 18.71836 -105.832 74.168 

39 30.81644 18.71835 27 4.815 30.81640 18.71836 -64.882 115.118 

40 30.81643 18.71830 28 2.007 30.81641 18.71829 -119.464 60.536 

41 30.81634 18.71823 32 3.301 30.81637 18.71823 93.737 273.737 

42 30.81632 18.71822 32 6.001 30.81637 18.71823 84.599 264.599 

43 30.81627 18.71821 33 9.365 30.81634 18.71816 128.814 308.814 

44 30.81624 18.71822 33 12.629 30.81634 18.71816 124.040 304.040 

45 30.81621 18.71825 40 15.262 30.81612 18.71814 -141.170 38.830 

46 30.81619 18.71827 42 14.272 30.81605 18.71825 -99.563 80.437 

47 30.81617 18.71834 43 15.248 30.81603 18.71829 -108.794 71.206 

48 30.81615 18.71839 43 16.559 30.81603 18.71829 -130.177 49.823 

49 30.81613 18.71843 44 16.779 30.81598 18.71839 -106.609 73.391 

50 30.81610 18.71848 44 16.057 30.81598 18.71839 -125.185 54.815 

51 30.81607 18.71851 45 16.124 30.81593 18.71846 -112.106 67.894 

52 30.81605 18.71855 45 15.948 30.81593 18.71846 -130.702 49.298 

53 30.81602 18.71861 46 17.235 30.81590 18.71850 -134.819 45.181 

54 30.81599 18.71866 46 19.196 30.81590 18.71850 -153.599 26.401 

55 30.81594 18.71868 47 18.998 30.81587 18.71853 -154.859 25.141 

56 30.81589 18.71867 47 16.202 30.81587 18.71853 -172.231 7.769 

57 30.81586 18.71865 47 13.217 30.81587 18.71853 175.968 355.968 

58 30.81582 18.71861 48 8.972 30.81583 18.71853 173.143 353.143 

59 30.81578 18.71858 49 7.322 30.81581 18.71851 160.615 340.615 

60 30.81574 18.71855 49 8.184 30.81581 18.71851 122.428 302.428 
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The same process was then applied to detect the movement of a group of selected dunes 

generated from two sequential classified images collected on the 30 of May and the 09 of 

July 2020. The selected dunes were converted into polygons without smoothing the cell 

edges of polygons to conform to the exact shape of the extracted classified dunes, Figure 

3.22.  

 

Figure 3.22. A displacement map of a collection of dunes near the city of Goled detected 

using SET, showing an average displacement of 10m with a detected movement in a 

southwest dominant direction. 
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The results show an average displacement of 10 metres and a dominant movement 

direction to the west/southwest. It is also observed that the lowest detected displacement 

is related to the resolution of the used satellite images (i.e. Sentinel 2 with 10 m spatial 

resolution), Table 3.14. This indicates that the spatial resolution of the images plays a 

significant role in the measured displacement detected using SET.  

It can be clearly seen that the tool can distinguish the displacement between the dunes. 

However, due to the complexity of the generated dunes from the classification, different 

points are linked and assigned with incorrect points in the second image. This tool showed 

that detecting the deformation of individual dunes could be provided from moderate 

images, however, the higher the resolution of the images, the better the footprints of the 

individual dunes will get, which consequently would result in increasing the detecting 

capabilities of the SET technique. 

The detected movement of the individual dunes using SET has been assessed by visually 

inspecting and measuring the dunes on the two corresponding images, providing similar 

average displacement. 

In general, the tool performed well in detecting the dune movement. The tool showed 

good competency with the simple movement in a non-complex dune field, and for 

individual dunes with smoothed edges, barchan dunes. However, it is observed that all the 

points in the primary dune point location were assigned to the nearest dune point in the 

secondary location of the dune, though some points were assigned to the same point in 

the secondary dune location, which has resulted in some gaps in the displacement 

calculation.  

The individual dune detection SET tool requires more development for the computation of 

the displacement and direction of movement. This can be achieved by fixing the mixed 

point issue and restricting the distance radius search based on pervious knowledge of the 

expected movement between corresponding points. As the ‘Near analysis’ tool works on 

providing the distance and proximity information between the primary dune point and the 

closest point on the secondary dune, multiple points in the primary dune are mapped to 

one point in the secondary point. This could be resolved by restricting the connection to 

only one point on each dune points dataset.  
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Table 3.14. The displacement and direction of the detected sand dune movement between May 30 and July 7 of 2020. 

FID ORIG_X ORIG_Y Near_FID Near Distance Near X Near Y Near Angle Azimuth 

0 30.81610775 18.71725245 0 0 30.81610775 18.71725245 0 0 

1 30.81591818 18.71725023 1 0 30.81591818 18.71725023 0 0 

2 30.81591586 18.71743086 2 0 30.81591586 18.71743086 0 0 

3 30.81582108 18.71742976 3 0 30.81582108 18.71742976 0 0 

4 30.81581876 18.71761038 4 0 30.81581876 18.71761038 0 0 

5 30.81572398 18.71760928 5 0 30.81572398 18.71760928 0 0 

6 30.81572282 18.71769959 6 0 30.81572282 18.71769959 0 0 

7 30.81553325 18.71769738 7 0 30.81553325 18.71769738 0 0 

8 30.81553441 18.71760707 10 9.997 30.81543962 18.71760596 -90.701 89.29868575 

9 30.81543962 18.71760596 10 0 30.81543962 18.71760596 0 0 

10 30.81544078 18.71751565 10 9.997 30.81543962 18.71760596 -0.701 179.2986573 

11 30.81525122 18.71751344 17 9.997 30.81515643 18.71751233 -90.701 89.29859813 

12 30.81525354 18.71733281 14 0 30.81525354 18.71733281 0 0 

13 30.81515875 18.7173317 15 9.997 30.81506397 18.7173306 -90.701 89.29857499 

14 30.81515411 18.71769296 18 9.997 30.81515295 18.71778327 -0.701 179.2985588 

15 30.8152489 18.71769406 19 9.997 30.81524774 18.71778438 -0.701 179.2985892 

16 30.81524542 18.717965 20 9.997 30.81524425 18.71805532 -0.701 179.2985783 

17 30.8153402 18.71796611 20 14.139 30.81524425 18.71805532 -45.701 134.2986087 

18 30.81533904 18.71805642 20 9.997 30.81524425 18.71805532 -90.701 89.29860674 

19 30.81543382 18.71805753 21 0 30.81543382 18.71805753 0 0 

20 30.81543266 18.71814784 22 0 30.81543266 18.71814784 0 0 

21 30.81562223 18.71815005 22 19.995 30.81543266 18.71814784 -90.701 89.29869435 

22 30.81562107 18.71824037 22 22.355 30.81543266 18.71814784 -117.266 62.73364118 

23 30.81581064 18.71824258 23 9.997 30.8158118 18.71815227 179.299 359.2987532 

24 30.8158118 18.71815227 23 0 30.8158118 18.71815227 0 0 

25 30.81590658 18.71815337 23 9.997 30.8158118 18.71815227 -90.701 89.29878561 

26 30.81590774 18.71806306 25 0 30.81590774 18.71806306 0 0 

27 30.81600253 18.71806416 25 9.997 30.81590774 18.71806306 -90.701 89.29881966 

28 30.81600369 18.71797385 27 0 30.81600369 18.71797385 0 0 

29 30.81609847 18.71797495 27 9.997 30.81600369 18.71797385 -90.701 89.29885371 
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Many experiments have been carried out to detect the rate of sand dune movement. For 

instance, (Abou El-Magd et al. 2013) used optical satellite images and GIS to trace the 

border of the dunes and measure the spatial extension of the sand dune movement in 

Egypt. SET has the advantage of automatically tracking the extent of the dunes to detect 

their movement. Moreover, it detects the movement of the dunes on multiple edge points, 

which will ensure detecting the variation in displacement within the same dune.   

Also, (Dong, 2015) has developed an automated dune migration estimation tool (PSTP) 

using LiDAR time series data, to automatically extract dune slip faces and compute the 

shift rate generated from two DTMs on different dates. This tool has worked quite well in 

detecting the migration rate and direction of the dunes. A future study is recommended 

to compare the capabilities of both the PSTP and SET in the detection of sand dune 

movement.   

3.4 Conclusion 

This chapter investigated the use of optical satellite images and machine learning for 

detecting the movement of sand dunes using a framework that utilizes image processing 

and geospatial analysis tools. The time series changes of the land cover classification have 

been computed to detect the area changes over time; this was conducted using machine 

learning classifiers applied in Google earth engine. A comparison between the random 

forest and support vector machine algorithms was carried out to identify the optimum 

classification method for this study. Both classifiers demonstrated superior capabilities in 

providing high accuracy of classification. This method identified areas at significant risk of 

being overwhelmed by sand.  

Rocky and sand classes cover larger areas compared to the other classes with the rocky 

class having an area ranging between the 4500-6500 km2 for RF and 3200-6200 km2 for 

SVM, while the sand class area ranges between 3000-4800 km2 for RF and 3300-5700 km2 

for SVM. On the other hand, the vegetation and urban classes have an area ranging 

between 150-350 km2 and 250-600 km2 for RF and 230-450 km2 and 110-850 km2 for 

SVM, respectively, while the water class has the lowest land cover area ranging between 

70-110 km2 for RF and 80-105 km2 for SVM. The classification results showed that the 

sand cover displays a pattern of significant area changes, with an area increase during the 

period between September to February ranging between 4000-4800 km2 for RF and for 

4500-5200 km2 SVM, and an area decrease during the period between March to August 

with an area ranging between 3300-4200 km2 for RF and 3300-4600 km2 for SVM. There 

is a significant correlation between the increase in the sand class area and the decrease 

in the rocky class area. 
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The validation comparison results applied on all the time series images demonstrated that 

both random forest and support vector machine achieved high accuracy of classification 

when applying a cost parameter of 0.2 for SVM and with a number of trees of 100 for the 

random forest. 

The SET individual dune detection tool worked more efficiently with the dunes extracted 

from high-resolution images when it faced some challenges with detecting the movement 

of dunes generated from moderate resolution images due to the complex representation 

of the dunes. Also, the detected displacement of the dunes depends highly on the spatial 

resolution of the classified images. This means that higher resolution images can allow for 

the detection of small movements, that can occur daily and even in a shorter time period.  

Although the optical images provided an understanding of the horizontal movement of 

sand dunes, sand dunes move on the vertical component as well and this needs to be 

investigated further in future research; this is reported later in the thesis. 

Using optical images to detect vertical movement needs a lot of work specifically in the 

generation of digital terrain models (DTMs). However, alternative techniques such as the 

InSAR technique might be suitable to detect the vertical displacement of the dunes; this 

requires a thorough investigation that includes simultaneous land surveys to collect ground 

truth data to validate the movement detected by InSAR. 
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4 CHAPTER 4: THE USES OF SAR OFFSET TRACKING FOR 

DETECTING THE MOVEMENT OF SAND DUNES: SUDAN CASE 

STUDY 

4.1 Background  

Synthetic Aperture Radar (SAR) data captured from satellite sensors are widely used for 

earth observation (Zhou et al. 2009), where they have been applied for monitoring the 

changes in forests canopy (Balzter et al. 2007), detecting land subsidence (Tosi et al. 

2015), modelling the deformation of earthquakes (Massonnet and Feigl, 1998), volcanoes 

(Pedersen and Sigmundsson, 2006), landslides (Zhou et al. 2009, Cai et al. 2017) and 

floods (Refice et al. 2014). SAR data have also been used for modelling sand dunes, where 

several case studies were conducted using the interferometric synthetic aperture radar 

(InSAR) technique for mapping desert dunes (Blumberg, 1998), in particular for the 

estimation of the volume (Maghsoudia et al. 2013) and height (Chang et al. 2011) of 

dunes. Additionally, coherence maps generated by InSAR are used to analyse the 

dynamics of sand dune movement (Havivi et al. 2018). However, the InSAR technique 

struggles to measure rapid dune motions due to the coherence loss between repeat SAR 

acquisitions. 

In this study, the SAR offset tracking technique was investigated for detecting the 

movement of sand dunes. This technique determines the offset between pixels of the same 

area that appear in two different SAR images. The accuracy of offset tracking depends on 

the pixel size of the SAR images (Cai et al. 2017), and it is about 1/30th of the image pixel 

size for both range and azimuth directions (Casu et al. 2011), which results from errors in 

the co-registration of the two images (Riveros et al. 2013). In the case of Sentinel 1, this 

is 0.3 m. The main advantage of using offset tracking over Interferometric SAR (InSAR) 

is that it performs better at estimating large displacements beyond the maximum 

detectable InSAR deformation (Pepe and Calò, 2017), and also where coherence is low 

(Strozzi et al. 2002), while avoiding the error-prone unwrapping step used in InSAR for 

the generation of velocity maps (Riveros et al. 2013). Finally, offset tracking can detect 

the movement in both range and azimuth directions which can be used to compute the 

horizontal displacement vectors (Riveros et al. 2013). Offset tracking techniques have 

been applied widely for studying glacier motion in Monacobreen (Strozzi et al. 2002) and 

Argentina (Riveros et al. 2013), for the estimation of landslides (Wang and Jónsson, 2015, 

Wang et al. 2015, Cai et al. 2017), and the deformation monitoring of earthquakes (Wang 

et al. 2015, Wang and Jónsson, 2015), coal mines (Ou et al. 2018) and volcanoes (Casu 

et al. 2011).  
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Pixel offset was used before for the detection of dune motion on Mars applied on optical 

images (Ayoub et al. 2014); however, this is the first study that applies offset tracking on 

SAR images for detecting terrestrial sand dune movement.  

4.2 Study Area 

Sand movement is one of the main environmental phenomena in Sudan that threatens 

livelihoods and rural communities, where sand overwhelms built-up areas, agricultural 

fields, and irrigation canals (Munro et al. 2012, LATIF and ELHAG, el Moghraby et al. 

1987). Moreover, it affects the River Nile by shaping its banks (Munro et al. 2012, Eljack 

et al. 2010).  

Northern Sudan is the most affected region by sand dune movement in Sudan (Munro et 

al. 2012). Epigraphic evidence found in the temple of Taharqo at the Kawa archaeological 

site in Northern Sudan records an inscription of Irike-Amanote, a Kushite King of Meroe, 

showing the clearing of sand from the processional way in the second half of the 5th 

century BC (Munro et al. 2012). This implies that sand movement is an ancient 

environmental phenomenon in Sudan. More recently, this issue has been exacerbated by 

the increasing aridity and spread of the Sahara Desert due to climate change (Thomas and 

Nigam, 2018). 

The region of interest for this study covers an area of approximately 75 km x 75 km in 

Northern Sudan within the Nubian Desert (Figure 4.1), where sand dunes are the dominant 

type of land cover. Three distinct dune fields within the study area were investigated for 

dune motions. Dune field 1 is in a built-up area near houses on the east bank of the River 

Nile at Goled city. In this area, locals use vegetation, such as Prosopis juliflora (mesquite) 

and acacia mellifera (kitr), to stabilize sand from overwhelming their crops and houses 

(Munro et al. 2012). Dune field 2 is a field with a dominant land cover of sand dunes where 

individual dunes can be identified from the rest of the land cover, which consists of barren 

land and small rocks, in addition to a mountainous area on the eastern side. The dunes 

have approximate dimensions of 120 metres wide, 150 metres long and 20 metres high. 

Dune field 3 lies in a mountainous area with small mountains to the east and south (Figure 

4.2). 
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Figure 4.1. Study area in the Nubian Desert, Northern Sudan, with the three dune fields of 

interest; Dune field 1 is affected by vegetation, Dune fields 2 and 3 both have no 

vegetation. (Background image © Sources: Esri, DigitalGlobe, GeoEye, i-cubed, USDA FSA, 

US.) 

 

Figure 4.2. The topography of the study area. 
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4.3 Data and Methods  

4.3.1 Data  

4.3.1.1 SAR images 

Ten Sentinel-1 Level-1 Ground Range Detected (GRD) VV/VH polarised SAR images were 

used for offset tracking to determine the displacement of sand dunes in the study area for 

a period of four months, encompassing a large sand storm that hit Northern Sudan on the 

12th of August 2017 (NASA, 2017). The GRD images have pixel spacing of 10 x 10 m and 

are combined to form nine pairs for the dates between the 4th of June and the 14th of 

October 2017 (Table 4.1). The frequency of the Sentinel-1 acquisitions is 12 days at this 

latitude. GRD images were used instead of single look complex (SLC) data as the pixel 

offset technique available in the Sentinel Application Platform (SNAP) works on GRD 

products and only requires the amplitude information and not the phase. Additionally, the 

GRD products are already projected to the ground range using an Earth ellipsoid model, 

which reduces the processing time. 

Table 4.1. Image pairs used to generate displacement maps for the study area. 

Image Pairs  Primary Image Secondary Image 

Image Pair 1 4 June 2017 16 June 2017 

Image Pair 2 16 June 2017 10 July 2017 

Image Pair 3 10 July 2017 22 July 2017 

Image Pair 4 22 July 2017 3 August 2017 

Image Pair 5 3 August 2017 15 August 2017 

Image Pair 6 15 August 2017 8 September 2017 

Image Pair 7 8 September 2017 20 September 2017 

Image Pair 8 20 September 2017 2 October 2017 

Image Pair 9 2 October 2017 14 October 2017 

 

4.3.1.2 Wind data 

The European Centre for Medium-Range Weather Forecast (ECMWF) provides vector wind 

data for the globe (Dee et al. 2011, C3S, 2017). ERA5 is the fifth generation of ECMWF 

reanalysis data generated by the Copernicus Climate Change Service, modelled using 

archived data from 1950 onwards. This is calculated using a climate–atmosphere model 

and data assimilation system named Integrated Forecasting system-based 4D-Var, which 

provides hourly estimates of atmospheric quantities (Hoffmann et al. 2019). For this study, 

the U (east) and V (north) wind components, in the units of m s-1, were used from the 

ERA5 model provided on an hourly basis at a height of 10 metres above the surface at 

0.25° grid resolution. The wind data resolution is coarse compared to the individual dunes 

within a dune field. It is assumed that most of the sand motion was caused by winds near 

the surface of the sand. U and V wind components were combined to compute the 

horizontal wind speed and wind direction for the period between June-October 2017 

(Figure 4.3).  
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It should be noted that the ERA5 data is a reanalysis product and does not take into 

account the local high-resolution topography and potential vegetation, trees, etc. 

(Hoffmann et al. 2019), which have a significant impact on the local wind speed and 

direction, and the thus on the movement of the dunes.  

 

Figure 4.3. East and north wind components between the 4th of June and the 14th of 

October 2017. 

During the study period, the U wind component varied between east and west but 

predominantly blew from the east, while the V component mostly blew from the south with 

considerable variation in the degree of motion from the north. 
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4.3.2 SAR Pixel Offset Method 

Sentinel-1 GRD images were processed using the Sentinel Application Platform (SNAP) 

provided by the European Space Agency (ESA) and available at http://step.esa.int.  This 

toolbox provides a package of tools for SAR imagery processing, including pixel offset 

tracking. The Sentinel-1 GRD data first need to undergo a pre-processing step before pixel 

offset tracking can be applied. First precise orbit files that contain the information on the 

location of the satellite at the time of acquiring the SAR images were used to co-register 

each individual pair and align the pixels between the secondary image and the primary 

image to within a few tenths of a pixel in range and thousandths of a pixel in azimuth. To 

reduce processing time a crop around the study region was taken from the co-registered 

dataset. Offset tracking was implemented in several sub-steps. First, secondary ground 

control points (GCPs) that correspond to the user specified GCP grid on the primary image 

were computed using normalized cross-correlation. Then, the offset and the movement 

velocity between the primary and secondary GCPs positions were computed. The 

computed velocities of points were compared to the maximum velocity, with the latter 

defined based on previous studies in the same study area where the observed sand drift 

rate was 4.53 m3 per linear metre width per year, observed by sand traps (Munro et al. 

2012); therefore, a maximum velocity of 5 m/day was used to ensure all the movement 

of the dunes was observed on a short temporal period (days). Points with larger values 

were considered outliers. This varies depending on the specified user parameters. A local 

average was applied to valid GCPs. Figure 4.4 illustrates the steps of generating velocity 

maps using SNAP. Table 4.2 shows the offset tracking parameters used to generate the 

velocity maps. 

http://step.esa.int/
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Figure 4.4. The steps of generating velocity maps using SNAP. 

Table 4.2. Offset tracking parameters. 

Parameter Values 

Grid Range and Azimuth Spacing (in meters) 400 × 400 

Total GCP Points 31648 

Registration Window Width and Height 128 × 128 

Cross-Correlation Threshold 0.1 

Average Box Size 5 

Max Velocity (m/d) 5.0 

Radius for Hole Filling 4 

 

A file that contains vector points of the grid GCPs velocities was also generated after 

applying offset tracking. This file contains the GCP’s coordinates, displacement, velocity, 

heading (direction of movement), azimuth shift and slant range shift. These parameters 

were used to characterise the movement of the dunes.  

A sequence of displacement vector maps was generated for the study area to study the 

movement of the dunes and relate this movement to influencing factors. By daisy chaining 

the image pairs, the estimate displacement time series for each pixel was computed. 
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Since buildings are generally not built on moving sand dunes, it is assumed that points 

over built-up areas remain stable and are not displaced by the wind. This allowed a 

threshold of motion to be defined, representing a ‘stable’ displacement threshold. Any 

displacements beyond this level can be attributed to wind-driven motion. 

Therefore, pixels over buildings were selected and the mean displacement and standard 

deviation for each image pair were calculated (Table 4.3). The average displacement 

(0.62±0.46 m) for the studied period was used to distinguish between small and large 

displacements of sand dunes. Figure 4.5 illustrates part of the built-up areas and GCPs 

that fall within them.  

 

Figure 4.5. Displacement GCPs that fall within built-up areas with an average displacement 

of 0.62 m. 
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4.4 Results  

4.4.1 Displacement of Sand Dunes  

On average, the measured dune displacement in each of the nine offset image pairs was 

about 0.7 m, 2.4 m and 2.6 m in dune fields 1, 2 and 3, respectively (Figure S 2), where 

the three dune fields contained, respectively, 52, 49 and 81 dune points. However, there 

is considerable variation between the images. In a single offset image, the average dune 

displacement varies between 0.4-1 m in dune field 1, 1.3-3.5 m in dune field 2, and 1.8-

3.8 m in dune field 3. Since offset images were created using consecutive SAR dates, we 

can temporally combine the offsets from each pair into a displacement time series. The 

east and north displacements for every GCP in each dune field were averaged (Figure S 

3) to give the spatially averaged displacement time series for each dune field (Figure 4.6). 

The cumulative east displacement over the four months study period was 1.8 m, -1.1 m 

and 4.8 m for dune fields 1, 2 and 3, respectively, while the cumulative north displacement 

was 0.7 m, 2.9 m and 4.2 m (Figure 4.6). 

 

Figure 4.6. Spatially averaged east and north displacement time series with respect to the 

first SAR acquisition date (4th June 2017) for dune fields 1, 2 and 3. 

The 0.62 ± 0.46 m threshold used to determine the movement of the dunes was proved 

to be reliable, as the GCPs in the built-up area are stable (Table 4.3). 
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Table 4.3. Displacements of the stable built-up areas. 

Date 

Minimum 

Displacement 

(m) 

Maximum 

Displacement 

(m) 

Mean 

Displacement 

(m) 

Standard 

Deviation 

(m) 

4-16 June 2017 0.34 0.88 0.64 0.15 

16 June-10 July 2017 0.32 0.98 0.64 0.20 

10-22 July 2017 0.52 0.82 0.68 0.08 

22 July 3 August 2017 0.73 1.20 0.94 0.13 

3-15 August 2017 0.04 0.80 0.35 0.18 

15 August-8 Sep 2017 0.23 0.89 0.54 0.18 

8-20 September 2017 0.45 0.77 0.61 0.10 

20 September-2 Oct 2017 0.20 0.60 0.37 0.10 

2-14 October 2017 0.51 1.11 0.82 0.21 

 

4.4.2 Impact of Wind Speed and Direction on Sand Dune Movement  

Wind is the main factor in the movement of sand dunes in deserts (C3S, 2017). In Sudan 

during the Autumn season (July–October), the wind tends to blow from the south (Munro 

et al. 2012). The azimuth of the dominant wind blowing direction for dune fields 1, 2 and 

3 during the studied period was 181, 185 and 187 degrees, with an average wind speed 

of 4.6 m/s, 4.84 m/s and 4.84 m/s, respectively. The southerly wind (Figure 4.7) resulted 

in an average displacement of 0.7 m in dune field 1 and 2.6 m in dune field 3, where both 

dune fields had a dominant movement to the north-east with an azimuth of 56°, while 

dune field 2 had an average displacement of 2.4 m to the north, with an azimuth of 346° 

(Figure S 4).  

 

Figure 4.7. Wind rose maps of blowing wind for (a) dune field 1, (b) dune field 2, and (c) 

dune field 3. 
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The variation in wind components during the Autumn season resulted in drifting sand 

dunes in different directions. The sand dunes in dune field 1 moved in a consistent 

direction, and this was due to the impact of vegetation in controlling the movement (Figure 

4.8), while the sand dunes in dune field 2 were divided into two groups according to their 

motion, which was probably a result of the mountainous topography near the dune field 

(Figure 4.9). Dune field 3 had mostly consistent sand movement affected by its 

mountainous topography (Figure 4.10). This opposite directional movement of the dunes 

in dune fields 2 and 3 might also be due to measurement uncertainty.  

 

Figure 4.8. Displacement maps of dune field 1 for each pair of the SAR images. (a) 

Displacement map between 4th and 16th of June 2017, (b) Displacement map between 

16th of June and 10th of July 2017, (c) Displacement map between 10th and 22nd of July 

2017, (d) Displacement map between 22nd of July and 3rd of August 2017, (e) 

Displacement Map between 3rd and 15th of August 2017, (f) Displacement map between 

15th August and 8th of Sep 2017, (g) Displacement map between 8th and 20th of 

September 2017, (h) Displacement map between 20th of September and 2nd of Oct 2017, 

(i) Displacement map between 2nd and 14th of October 2017. 
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Figure 4.9.  Displacement maps of dune field 2 for each pair of the SAR images. (a-i) are 

the sequence of displacement maps between the 4th of June to the 14th of October 2017. 

 

Figure 4.10. Displacement maps of dune field 3 for each pair of the SAR images. (a-i) are 

the sequence of displacement maps between the 4th of June to the 14th of October 2017. 
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4.4.3 Impact of Vegetation  

A comparison was carried out to further determine the impact of vegetation cover on the 

movement of sand by considering the differences between the displacements of randomly 

selected dune points in the vegetated dune field 1 and the displacements of dune points 

in non-vegetated dune fields 2 and 3 (Figure 4.11). Large displacements were observed 

in the non-vegetated dune fields 2 and 3 with an average displacement of 2.4 and 2.6 m, 

respectively, compared to the average displacement of stable areas of 0.6m, which is 

similar to the stability threshold of 0.62 ± 0.46 m determined for the built-up areas. Dunes 

in the vegetated dune field have a small average displacement of 0.7m, similar to the 

stable area. This clearly shows the impact of vegetation in slowing down the movement of 

sand. This supports Munro et al’s (2012) recommendation of using vegetation for 

stabilizing dunes in agricultural and built-up areas in Sudan.  

 

Figure 4.11. Average displacement of dune fields 1,2 and 3 for randomly selected points 

compared to the stable zone of the built-up areas. 
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4.5 Discussion 

4.5.1 Analysis of Dune Displacement  

Wind blew mostly from the south, pushing the sand towards the north, which is in the 

opposite direction of its normal movement during the Spring and Summer seasons, i.e. to 

the south (Munro et al. 2012). In this section, a discussion is made to reflect on some 

cases of the displacements of dune fields 1, 2 and 3 under normal and gusty wind 

conditions to show the impact of the variation in the influencing factors on the dune 

displacements. 

The first case is under a normal wind condition, just before the start of the autumn season 

in Sudan, in the period between the 4th to the 16th of June 2017 with a wind blowing 

dominantly from the south with an average wind speed of 4.9 m/s. This resulted in an 

average displacement of 0.8 m, 3.5 m and 1.9 m for dune fields 1, 2 and 3, respectively 

(Figure S 2). Dune field 1 had a movement direction towards the north north-east (Figure 

4.8a) which reflects the impact of the dominant wind direction. The movement in dune 

field 2 had two dominant movement directions (Figure 4.9a); the east side of the dune 

field near the borders with the mountain had resulted in a diverted movement to the north-

west, while the west side of the dune field moved in an opposite direction, to the south-

west. This is most likely due to the impact of topography (Figure 4.2) forming a local 

counter-clockwise wind vortex, where the western arm of the vortex has probably 

generated a local wind motion towards the south. These types of localised wind 

phenomenon are not included in the more regional ERA5 wind models, and it requires 

ground observation. Dune field 3 has mountains on its south and east sides (Figure 4.2). 

This had an impact on its movement, which can be clearly seen in the diverted motion 

with a dominant component towards the north-west (Figure 4.10a).  

The second case shows the displacement of the dunes in the period between the 8th to the 

20th of September with a wind blowing dominantly from the south with an average speed 

of 4.9 m/s. However, a northerly gusty wind with an average wind speed of 7.6 m/s 

occurred on the 12th of September. This resulted in an averaged displacement of 0.4 m, 

2.4 m and 3.4 m for dune fields 1, 2 and 3, respectively (Figure S 2). Dune field 1 had a 

movement direction towards the north-east (Figure 4.8g), which reflects the impact of the 

dominant wind direction but also shows the vegetation cover’s impact in stabilising the 

movement of the dunes and potentially preventing the impact of the easterly wind. 

Whereas the movement in dune field 2 had two dominant movement directions (Figure 

4.9g); the east side group of dune points moved to the north while the west side group of 

the dune points moved to the east.  
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This is most likely due to both the impact of the northerly gusty wind on the 12th of 

September and the impact of the strong westerly wind component, which exceeded the 

speed of 5.5 m/s during the period between the 8th to the 20th of September (Figure 4.3). 

Regarding dune field 3, the dune points had a displacement to the north-east (Figure 

4.10g) affected by the northerly gusty wind on the 12th of September and the impact of 

the westerly wind component during the period between the 8th and the 20th of 

September.  

The third case is the displacement of the dunes in dune field 1 between the 16th of June 

and the 10th of July to the south-east, even though the dominant wind direction for the 

period between the 16th of June and the 28th of June was blowing from the south. Two 

north-easterly gusty winds occurred between the 20th to the 22nd of June and between 

the 4th and the 5th of July, which exceeded 9.5 m/s wind speed and resulted in this 

movement (Figure 4.8b). It has to be mentioned here that the time interval between the 

two available SAR images for this offset image is 24 days, a larger temporal interval 

compared to the 12 days for the rest of the pairs. The north cumulative displacement 

continued moving south, reaching the maximum southward displacement in the period 

between the 22nd of July and the 3rd of August 2017 due to the occurrence of several 

northerly/north-easterly gusty winds. Afterwards, the dunes started to move gradually to 

the north (Figure S 3a). 

In general, the displacement time series for dune field 1 (Figure 4.6) show a larger 

cumulative displacement in the east compared to the northern component and this is due 

to the impact of the wall of trees in diverting the movement of the dunes parallel to its 

orientation. Dune field 2 had a larger movement in the north component, while dune field 

3 had the largest movement among the three dune fields in both east and north 

components. 

A correlation analysis was carried out to identify the relationship between the displacement 

of the dunes in the eastward and northward directions and the wind east (U) and north 

(V) components by computing the Pearson correlation coefficient for dune fields 1, 2 and 

3. In general, most of the correlations are positive, which shows that wind direction directly 

affects sand motion, apart from in dune field 1, which could be due to the impact of the 

tree line. Dune field 2 has a poor correlation in the east, probably because of the two 

vortexes seen in the measurements caused by local topography, which are not picked up 

by the coarse wind measurements. The correlations are not perfect, because of the 

variability of the wind gusts and the timing difference between wind and dune 

measurements, Table 4.4, Figure S 5. 
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Table 4.4. Pearson correlation analysis between the average east displacement and U 

wind and between average north displacement and V wind for dune fields 1,2 and 3. 

Dune Field 
Pearson Correlation Coefficient (r) 

E N  

Dune Field 1 0.42 −0.36 

Dune Field 2 0.02 0.30 

Dune Field 3 0.62 0.30 

 

4.5.2 Reflection on Other Studies 

Other studies have shown a clear correlation between the movement of sand dunes and 

the impact of wind, vegetation cover and topography. Munro et al. 2012 and Abuzid 2009, 

found that sand moves interchangeably in different directions and that during the Autumn 

season sand drifts to the north as a result of the southerly wind (Munro et al. 2012, 

Abuzied, 2009). This study showed several variations in the direction of dune movement 

during the Autumn season; however, most of the displacement computed in this study 

showed a dominant movement to the north-east for dune fields 1 and 3, and a movement 

to the north for dune field 2 (Figure S 4). This movement coincides with the dominant 

direction of the wind in the autumn season (southerly wind). Munro et al. 2012, showed 

similar sand drifting during the same season (Munro et al. 2012). However, they also 

reported some southerly sand drifting cases that can also be clearly seen in this present 

study, as a result of the occurrence of several gusty wind episodes blowing from the north.  

The impact of vegetation cover on sand dune motion has been reported in many studies, 

where it reduces the wind speed blowing over the sand dunes (Kok et al. 2012). Vegetation 

cover has been used to control the movement of dunes in deserts (Munro et al. 2012, 

Berte, 2010) and coastal areas and beaches (Koja, 2012, Durán and Moore, 2013). Salih 

et al. 2017 stated that any increase in the vegetation cover results in more stability of the 

sand motion (Salih et al. 2017). 

Additionally, Thomas and Tsoar 1990 stated that vegetation has a significant role in 

slowing down the movement of dunes and that sand dunes which migrate actively are less 

vegetated than those that migrate slowly (Lancaster, 1995). Baoli and Tom 2015 

conducted research on mapping sand dunes from satellite images; however, they excluded 

dune fields with the presence of vegetation cover, as they claimed that it was difficult to 

interpret the behaviour of the dunes due to the uncertainty resulting from vegetation (Liu 

and Coulthard, 2015). However, in this research, the comparison between the vegetated 

dune field 1 with the non-vegetated dune fields 2 and 3 clearly showed the impact of 

vegetation cover in stabilizing the movement of the dunes. Additionally, it affected the 

dune points to the edge of the barrier wall of trees more in dune field 1, where most of 

the dunes were deviated in parallel, which visibly shows the impact of the vegetation.  
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Other studies have reflected on the impact of topography on the movement of the dunes 

(Kok et al. 2012). Suliman 2012 showed in his study on sand dune movement in the north-

west coastal region of Libya that the topography is the most important factor in shaping 

the dunes, while the sand particles are diverted due to the mountainous topography (Koja, 

2012), which is also seen clearly in this study.  

As the detected movement by SAR offset tracking is the horizontal sand dune movement, 

this raises an interesting question that should be firmly answered as to how to detect the 

impact of vertical sand dune motion and what the correlation is between the horizontal 

and vertical movement of sand dunes. Answering this will require further work and 

necessitate the generation of high-resolution digital elevation models.  

4.5.3 Limitations 

The SAR pixel offset technique requires ground truth data to validate its accuracy more 

reliably. However, some limitations can be highlighted here for the images and wind data. 

An important limitation to the use of SAR data to monitor sand dune motion in Sudan is 

the revisit frequency of the Sentinel-1 constellation. This can be minimised by only using 

image pairs that have the smallest temporal (≤24 days) and spatial baselines (≤16m). 

However, large displacements that occur within the satellite revisit time can still cause 

decorrelation and registration errors. The acquisition frequency for Sentinel-1 over Sudan 

is 12 days, which is not good enough to detect the impact of individual wind storms as the 

significantly gusty winds tend to occur during shorter periods (a few days at most) in the 

Autumn season (Munro et al. 2012) (Figure 4.3). This technique might work better for 

detecting coastal sand movement in Europe, where the temporal coverage of Sentinel-1 

images is higher (every 6 days) compared to Sudan and Africa in general.  

One way to overcome this is by using high temporal resolution images acquired by other 

sensors (e.g. TerraSAR-X, RadarSat-2 satellites…etc) (Fallourd et al. 2011).  

The ERA5 modelled wind data does not take into account the local high-resolution 

topography and trees, where its impact was seen in the different dune movement 

behaviours in the three dune fields. This is a limitation of the ERA5 data. However, in this 

study, the DEM used for the analysis provided an understanding of the topography and its 

impact on diverting the movement of sand. The impact of rocky surfaces was reported by 

Bagnold in 1941 (Munro et al. 2012), as in dune fields 2 and 3, where it resulted in higher 

saltation and led to a larger movement, which reflects the impact of topography. Ground 

recording weather stations would be the optimum solution to have accurate measurements 

of the wind data. 
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4.5.4 Regional Impact  

Over the whole study period, large movements were detected in other areas that contain 

sand dunes, which indicates that sand moves fast with an average velocity ranging 

between 0.15 and 0.32 m/day, which was used to identify the most vulnerable areas of 

sand movement in the region (Figure 4.12). Some agricultural projects, villages and parts 

of the roads are affected by this large movement of sand. Therefore, the SAR offset 

tracking technique can provide a risk mapping technique, identifying the areas exposed to 

high degrees of sand drift.  

 

Figure 4.12. Vulnerable areas to sand movement. 
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4.6 Conclusion  

This is the first application of SAR offset tracking in detecting the movement of terrestrial 

sand dunes. In this study, the impacts of the influencing factors (wind speed/direction, 

vegetation and topography) on the dune movement were investigated. The cumulative 

east displacement over the four months study period was 1.8 m, -1.1 m and 4.8 m for 

dune fields 1, 2 and 3, respectively, while the cumulative north displacement was 0.7 m, 

2.9 m and 4.2 m. It was found that vegetation significantly slows down the movement of 

the dunes, with high displacements being observed in the non-vegetated dune fields 2 and 

3, with an average displacement of 2.4 m and 2.6 m, respectively, over a study period of 

four months (4th of June to 14th of October 2017), compared to the average displacement 

of stable areas of 0.62 m. The vegetated dune field 1 had a small average displacement 

of 0.7 m, similar to the stable areas. The pixel offset results showed a positive correlation 

between the wind speed/direction and the dune movement. This impact of the wind cannot 

be separated from the impact of vegetation cover and topography; however, the impact 

of vegetation can be clearly observed when comparing the vegetated dune field 1 and the 

non-vegetated dune fields 2 and 3, while the impact of mountainous topography can be 

observed in dune field 2 and 3, diverting the direction of the movement, mainly near the 

edges of the mountains. 

To achieve a better understanding of the movement of sand dunes, high temporal 

resolution imagery is required in order to detect the small movements that tend to happen 

on a daily basis. Additionally, the land cover characteristics of the dune field have a 

significant impact on the movement of the dunes; therefore, having high-resolution 

accurate DEMs will ensure a better understanding of the impact of topography and 

vegetation cover on the sand dune movement.  

This study identified areas with large sand dune movements that can be considered for 

further investigations and field works. The SAR offset tracking technique can play an 

important role in detecting and modelling sand movement by enabling highly detailed 

monitoring of the sand dune fields. It can also support planning regional projects to combat 

desertification and sand movement.  
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5 CHAPTER 5: MONITORING COASTAL DUNES USING AIRBORNE 

LIDAR DTMS: FORMBY CASE STUDY 

This chapter is based on two published articles that investigated monitoring sand dunes in 

coastal areas. The first article concerns a field survey of Formby coastal dunes where 

terrestrial laser scanner (TLS) and Global navigation satellite system (GNSS) instruments 

were used (Mahmoud, 2021). The second article investigated the activity of Formby sand 

dunes using multi-temporal Airborne LiDAR DTMs (Mahmoud et al. 2021).  

This chapter addresses the third objective of the research, with a developed framework 

that uses multi-temporal Airborne LiDAR DTMs for monitoring the dynamic activity of sand 

dunes, determining how much sand volume has been lost or deposited in the Formby dune 

system as well as determining the rate of change in the elevation of the dunes. In addition, 

it demonstrates a practical investigation of the capabilities of land surveying techniques in 

sand dune monitoring. 

5.1 Background   

Different measuring techniques have been used to detect the dynamics of coastal dunes. 

This has involved the use of Airborne and terrestrial LiDAR techniques, in addition to GNSS 

techniques. Airborne LiDAR or laser scanning is an active remote sensing technique used 

to model the surface of the earth (Wehr and Lohr, 1999, Juha Hyyppä, 2009, Jaboyedoff 

et al. 2012, Gallay, 2013, Maltamo et al. 2014, Okyay et al. 2019). Airborne LiDAR system 

is based on a GNSS receiver and inertial measuring unit (IMU) for the determination of 

the point’s position and a laser system which emits and receives the transmitted and 

backscattered light pluses for the point’s reading (Wehr and Lohr, 1999). It maps the 

earth's surface and provides a very dense and accurate three dimension spatial data set 

generated over a short period of time (Woolard and Colby, 2002). Airborne LiDAR data 

have been used widely for monitoring coastal changes: sediment volumetric changes 

(Meridith et al. 1999), shorelines (Stockdonf et al. 2002, Caudle et al. 2019), coast 

morphology (Saye et al. 2005, Middleton et al. 2013, Grünthal et al. 2014, Julge et al. 

2014, Le Mauff et al. 2018), and vegetation growth on coastal dunes (Frati et al. 2021). 

The more traditional land surveying techniques (GNSS and terrestrial laser scanner) can 

be time consuming when surveying large areas, given the rough terrains of the coastal 

dunes. This limits both the coverage and the frequency of such observations. Airborne 

LiDAR has the advantage of covering large areas in a very short time, whilst also 

maintaining good accuracy of the spatial representation of the dunes. Repeated survey 

acquisitions can be applied for change detection analysis and used to study the morpho-

dynamics of the dunes. However, this generates associated challenges in managing, 

analysing and interpreting large data sets from repeated surveys (Okyay et al. 2019). 
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Coastal sand dunes can be found in most climatic environments (Pye and Tsoar, 2008). In 

England and Wales, coastal sand dunes cover an area of about 200 km2 over 112 different 

sites (Pye et al. 2007). The largest in England is at Formby, along the Sefton coast (Esteves 

et al. 2012). Many studies have been undertaken to understand the coastal changes at 

Formby, investigating the impact of changes in sea water and tidal levels (Gresswell, 1937, 

Pye and Blott, 2008, Pye and Blott, 2016) and storms (Pye and Neal, 1994, Pye and Blott, 

2008, Dissanayake et al. 2015, Pye and Blott, 2016), and determining the morpho-

dynamic and volumetric changes of the coast (Nordstrom et al. 1990, Pye and Neal, 1994, 

Woolard and Colby, 2002, Lymbery et al. 2007, Karunarathna et al. 2018). The dune 

system at Formby is predicted to have been established between 1400 AD and 1600 AD 

(Sefton Metropolitan Borough Council, 2016). Historical data suggests that Formby coast 

has experienced several accretions and erosion episodes over the years (Pye and Blott, 

2016), where the coast has seen significant erosion around 1906 due to a decrease in the 

rate of sand supply (Gresswell, 1937) and also, between 1977 and 1994, due to the 

combined impact of the westerly winds and strong storms (Pye and Neal, 1994). In 1994, 

high tides and strong winds resulted in the erosion of seaward facing frontal dunes (Pye 

and Neal, 1994). Such weather conditions continue to erode the coastlines of Formby and 

shift the sand dunes inland at a rate of 4 meters every year, mostly observed over the last 

decade (Trust, Gresswell, 1937, Trust, 2015).  

With rising global temperatures and sea levels expected to lead to stronger storms (Zhang 

et al. 2004a), coastal erosion and flooding are expected to occur more frequently. 

Moreover, climate change forecasts predict that the next 50 to 100 years will see an 

increase in temperature and precipitation and a slight decrease in wind speed in Wales 

and northwest England, which could lead to the replacement of dune areas with fixed dune 

grassland and scrub, endangering the existence of rare species (Pye et al. 2014). 

Therefore, there is a strong need to understand the dynamic behaviour of the dunes on 

these coasts and how much sand volume is lost or gained to the dune system over time. 

In this case study, we investigate the activity of sand dunes at Formby coast by using a 

time series of high-resolution LiDAR digital terrain models over a period of 21 years. We 

establish how much sand volume has been lost or deposited in the dune system during 

this time period as well as determine the rate of change in elevation of sand dunes at 

Formby. 

5.2 Study Area 

The Formby site is owned by the National Trust and it is part of the Sefton coast that 

covers an area of approximately 20 km2 (Pye et al. 2007). It consists of an evolving sandy 

beach and an inland dune field with frontal, semi-fixed and fixed dunes. 
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In this research, an area of about 1.3 km2 has been investigated with a coastline that 

stretches for about 5 km. The Formby site contains one of the largest and most rapidly 

evolving sand dune systems in England (Trust, 2015). The height of the inland dunes 

ranges from 6m to 28m above mean sea level, while the height of the beach ranges from 

2.7m to 6m. This information is derived from the elevation data of the latest available 

LiDAR DTM acquired in 2020. The study area has been divided into 5 zones A, B, C, D and 

E, which have an area of 0.16 km2, 0.22 km2, 0.11 km2, 0.48 km2 and 0.33 km2 

respectively. This division was based on location along the coast, geomorphological 

characteristics and presence/absence of vegetation (Figure 5.1). Zone B, D and E have a 

significant presence of vegetation. Zone A consists of a narrow dune system while zone C 

has a deep dune system extending up and over Victoria Road.  

 

Figure 5.1. The Formby coast study area, showing the five zone divisions A, B, C, D and E. 

(Background image and GB Boundary layer © EDINA Digimap Ordnance Survey Service, 

projected to the OSGB 1936 British National grid coordinate system). 
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5.3 TLS and GNSS Fieldwork Observations  

For the investigation of the capabilities of land surveying techniques in monitoring sand 

dunes, fieldwork took place on the 10th and 11th of December 2020 and involved three 

persons to cover an area of 240m x 460m of zone C in the study area (Figure 5.1). The 

instruments used in this survey were a Lecia Viva GS 10 GNSS unit, used for the collection 

of GNSS observations on the dunes, in addition to a Leica RTC360 terrestrial laser scanner. 

This TLS has a measuring rate of up to 2 million points per second and an advanced High 

Dynamic Range (HDR) imaging system for coloured 3D point clouds.  The highest 

resolution on the TLS (i.e. a resolution of 3 mm every 10m) was applied with a double 

pass option, to exclude any moving objects (e.g. passing people) from the scans.  

Optimum locations to set up the GNSS base station and the TLS targets were determined 

in the field. Eight targets for the laser scanner were set-up on the top surface of the dunes 

in locations that are visible to the TLS, with A1, A2, A3, A4, B1, B2, B3, and B4 as the TLS 

targets locations on the first and second day of acquisition, respectively. Table 5.1 

illustrates the coordinates of TLS targets locations, projected to the OSGB 1936 British 

National grid coordinate system.  

Table 5.1. TLS targets location coordinates. 

Day 1 Day 2 

TLS 

Id 

Easting 

(m) 

Northing 

(m) 

Ortho. Height 

(m) 

TLS 

Id 

Easting 

(m) 

Northing 

(m) 

Ortho. Height 

(m) 

A1 327368.43 408141.83 19.60 B1 327289.29 408152.00 10.05 

A2 327353.63 408138.21 21.87 B2 327288.86 408158.71 9.88 

A3 327343.99 408141.49 20.88 B3 327287.63 408167.29 9.87 

A4 327340.85 408150.86 19.63 B4 327288.43 408174.62 9.89 

 

These target locations were used in the post processing step to register the TLS scans and 

link them together in the Cyclone software. The GNSS and TLS surveys were carried out 

simultaneously. A GNSS base station was set up in a clear location on top of the dunes. 

This base station is needed to receive the corrections for the GNSS real-time kinematic 

(RTK)-rover observations. The GNSS was configured to the double difference static 

observation technique to collect the base station data, which collected location data every 

second for about 5 hours (the survey time period on each day). After a couple of TLS 

scans, the GNSS was fixed over the TLS targets to observe its location using the RTK-

static method with 5 minutes of observations spent on each location to ensure better 

accuracy of positioning. Figure 5.2 illustrates the location of the GNSS base stations and 

the TLS targets set-ups in the study area.  
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Figure 5.2. GNSS base station and TLS targets set up in the study area. 

The scanning work continued to cover other areas. Since the terrain of the surveyed sand 

dunes is quite bumpy, it was decided to perform the following TLS scans relying only on 

the targetless field registration method imbedded in the TLS, based on the Visual Inertial 

System (VIS) technology. This can quickly link the continuous scans together without the 

need for targets, based on five cameras built into the TLS to track the movement of the 

scanner in relation to prior scans. In addition, extra objects were used to help in the 

alignment of the scans, such as the GNSS storing boxes, fences and signposts (Figure 

5.3). As the TLS targets are in the north part of zone C, the scanner set-ups on the beach 

and middle/south sides of zone C did not use them, due to being not in the visible range 

of the scanner. About 30 TLS scans were carried out each day.  
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Figure 5.3. Extra objects used for the alignment of the TLS scans, (a) GNSS boxes used to 

link TLS scans in the middle of zone C (b) a signpost and GNSS box used on the beach (c) 

fences used in the south part of zone C. 

Simultaneously, the GNSS RTK-rover was used to survey the dunes and the parallel area 

of the beach.  The GNSS was set up to the RTK-Rover mode with a 5-second observation 

time and 1 observation per second with a threshold of 5mm. 177 points were collected on 

the first day and 354 points on the second day. The GNSS observation points were 

collected on the dunes in the best way to reflect the rough terrain of the dunes, while on 

the beach the points were collected every 15m with an interval of 20m between the 

observation lines. Figure 5.4 shows the collection of RTK data on the frontal dunes in the 

north part of the study area. 
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Figure 5.4. Collection of RTK GNSS data on the frontal dunes of the north part of the study 

area at Formby. 

The same observation strategy was followed on the second day, however, this time the 

work started from the beach shoreline parallel to the dune area. Scanning the dunes down 

from the beach gave a different angle of the dunes, which provides the height of the dunes, 

(i.e. up to 20m) but most importantly shows the area that is most vulnerable to coastal 

erosion (Figure 5.5, a). It was observed that the sea water was very close to the dunes 

roughly about 40-50 metres away in the early morning (08:40 AM – low tide at the time 

of the visit), while it retreated back around mid-day (high tide) creating a shore coast that 

stretches for about 250-300m (Figure 5.5, b).  
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Figure 5.5. Formby beach and the frontal dunes, (a) a side view of the frontal dunes, (b) 

sea water receding from the frontal dunes up for about 250-300 m. 

The Leica infinity software was used for post processing of the GNSS data. The base station 

positions’ raw data for days one and two were referenced to the six nearest highly accurate 

network ordnance survey (OS) base stations near Formby at Blackpool (BLAP), 

Giggleswick (GIGG), Manchester (MANR), Daresbury (DARE), St Asaph (ASAP) and Crewe 

(CREW), (Figure 5.6). Table 5.2 illustrates the location coordinates of the OS and GNSS 

receiver base stations.  
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Figure 5.6. Formby base station post processed to the nearest Ordnance Survey base 

stations. 

Table 5.2. OS base stations and GNSS receiver coordinates. 

Station Id Easting (m) Northing (m) Ortho. Height (m) 

GNSS-base-day1 327351.53 408152.33 21.07 

GNSS-base-day2 327306.56 408154.49 18.47 

ASAP 301344.51 373724.04 49.65 

BLAP 331891.99 431672.40 13.72 

CREW 373692.42 355503.07 68.72 

DARE 357455.83 383290.43 36.78 

GIGG 379890.35 464481.97 232.47 

MANR 384509.69 401675.93 79.11 

The RINEX files that contain the precise coordinates and data of these OS base stations 

were downloaded, https://www.ordnancesurvey.co.uk/gps/os-net-rinex-data/, and 

imported into the Leica infinity software to correct the base station (Base1, Base2) at 

Formby. Once the base station location was corrected; the RTK-rover observations were 

simultaneously corrected based on that.  

https://www.ordnancesurvey.co.uk/gps/os-net-rinex-data/
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The accuracy of the base stations is down to 1 cm while the accuracy of the RTK-rover 

observations ranges between 1-2 cm, due to the time spent on each observation (i.e. 

hours on the base station and a few seconds on the RTK-rover observations). 

The point cloud processing software Cyclone was used to process the point cloud data 

collected by the TLS. Standard metrics of the Cyclone software were used, which involves 

a maximum error of 0.015m and a minimum overlap of 20% between the linked set-ups 

selected to restrict the results. Links between set-ups have been created to stitch the point 

cloud data together. Also, links between no consecutive set-ups were made in the north 

part where the TLS targets are visible. Many small bundles were created due to the 

significant challenge for the software to link all the scans together at once.  

The TLS results show that the north part of zone C has higher quality and less bundle error 

within the determined threshold compared to the middle, south and beach areas of zone 

C. This is because the TLS targets are located in the north part of zone C and are visible 

to the scanner in the north side set-ups.  Figure 5.7 shows a plan view of the study area 

point clouds after linking the TLS scans.  

 

Figure 5.7. A plan view of the study area point clouds after linking the TLS scans. 
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The GNSS RTK observations collected in the two days amounted to 531 points. These 

GNSS data show that the dunes in zone C have elevations ranging between 6-20m. It can 

be seen that more GNSS data were collected on the beach outside of the zone C boundary, 

as the beach stretched when the sea water receded during the afternoon. Figure 5.8 shows 

the GNSS RTK collected data and an interpolated elevation model using the inverse 

distance weighted (IDW) interpolation method.  

 

Figure 5.8. GNSS RTK observations, (a) distribution of the collected GNSS RTK 

observations, and (b) interpolation of the GNSS RTK data.  
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This field study demonstrated that there are many challenges when observing sand dunes 

using GNSS and TLS. For instance, the homogenous terrain of the dunes has restricted 

the VIS technology for connecting the different set-ups together. In areas where there are 

distinct features the VIS can be relied on significantly, however, in such cases as sand 

dunes where there are many similarities between features this technology is less capable. 

The result of that is seen in the blue link lines in the post processing stage, (Figure 5.7), 

where the software could not recognize the connection between the overlapped set-ups 

and had to force the clouds to make a match to link the scans.  This has been the case 

especially in the middle and south part of zone C where the TLS targets are not visible to 

the scanner, in addition to these areas being significantly vegetated. The setups on the 

beach area also faced a similar challenge, with the TLS targets not being in the visible 

range of the scanner.  

Moreover, the limitation in the survey time has restricted the optimum way of conducting 

this study and that should ideally have included more targets visible to each new TLS set-

up; this is needed to achieve better accuracy of the registration of the TLS. This process 

is time consuming and can be difficult with the rough terrain of the dunes. In addition, the 

location of the targets would require more time to be observed using the GNSS to 

determine their exact location. 

Different techniques that are more dynamic and can cope with the dune motion are 

recommended to be used to overcome the challenges faced by the TLS and GNSS. This 

includes the use of handheld terrestrial laser scanners, drones and other remote sensing 

techniques. However, this would also come with its challenges, and it would affect the high 

accuracy that can be achieved from the two terrestrial techniques.  

5.4 Airborne LiDAR DTM Analysis 

5.4.1 Data  

A way to overcome the limitations of land surveying techniques in sand dunes monitoring 

is to use the airborne LiDAR technique. In this study, the airborne LiDAR digital terrain 

models (DTMs) acquired by the Environmental Agency and available at 

https://environment.data.gov.uk/, were used with a vertical accuracy of better than +/- 

15cm (Agnecy) and horizontal accuracy of +/- 40cm (Agency). The accuracy of the LiDAR 

data was validated by ground truth points with a vertical accuracy of +/- 0.03m. The LiDAR 

surveys were undertaken in the winter months (Agency). All the available LiDAR DTMs 

that covered the study area between 1999 and 2020 have been used. The used data are 

projected to the OSGB 1936 British National grid coordinate system. Table 5.3 illustrates 

the LiDAR DTMs and their coverage of the study area.  

 

https://environment.data.gov.uk/
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Table 5.3. Formby LiDAR DTMs. 

Date of Acquisition Spatial Resolution 
Vertical 

Accuracy 
Coverage 

1999 2m 0.15m Whole study area 

2000 2m 0.15m Only Zone A, B and C 

2001 2m 
0.15m Only Zone A 

and, partially, Zone B 

2002 2m 0.15m Only Zone A, B and part of Zone C 

2008 25cm 0.15m Whole study area 

2010 1m 0.15m Whole study area 

2013 1m 0.15m Whole study area 

2014 2m 0.15m Whole study area 

2016 1m 0.10m Whole study area 

2017 1m 0.10m Whole study area 

2018 1m 0.10m Whole study area 

2020 1m 0.15m Whole study area 

 

5.4.2 Methodology  

Conservation and monitoring projects are carried out by the local authorities at Formby. 

This involves the use of observation technologies, historical maps and aerial imagery to 

improve the analysis and predictions of the coastal changes (Lymbery et al. 2007). On the 

ground, the establishment of brushwood fences and beach grass planting to the North of 

Lifeboat Road, and wooden fences north of Victoria Road and Freshfield are applied to 

nurture the dune accumulation process (Nordstrom et al. 1990). In the UK, the removal 

of vegetation bushes on dunes is suggested in order to make the dune more hospitable 

for biodiverse natural habitats (Pye et al. 2007). All these measures have an impact on 

the dynamics of the dunes, and there is a strong need to take into consideration 

comprehensive assessments. 

The study area was segmented into beach and dunes by manually digitizing the inflection 

points in the boundary between the beach and the dunes. This allows a much more detailed 

comparison of the dynamics of the coastal dunes at Formby to be drawn. 

A framework has been developed for monitoring the dune changes from time series DTMs 

at all scales: it is based on dune point elevation changes, cross sectional profiles, 

longitudinal profiles, as well as deposition/erosion and volumetric changes for dune field 

elevations. It aims to investigate the activity of sand dunes at Formby coast based on 

raster and vector analysis. To understand the actual changes in Formby dunes the actual 

elevation values of the DTMs were used. R and GIS software (QGIS and ArcGIS) were used 

to analyse the LiDAR data.  
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The framework shown in Figure 5.9 consists of two main steps: (1) raster analysis which 

includes DTM difference analysis, rate of change and regression analysis, deposition and 

erosion analysis; and (2) volumetric analysis, an automated process for vector analysis 

which involves carrying out elevation profile and time series analysis.  

 

Figure 5.9. A framework for LiDAR DTM Analysis. 
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A preliminary step for the raster analysis consists of cropping the DTMs to the study area 

using the ‘extract by mask’ tool in ArcGIS and then calculating the DTM of difference (DoD) 

between a primary DTM (i.e. 1999) and a secondary DTM (i.e. one from 2008-2020) using 

the raster calculator tool. DTMs of 2000, 2001 and 2002 are excluded from all the raster 

analysis steps due to the variation in the area they cover. The DTMs were also resampled 

to 2 m spatial resolution using the bilinear interpolation method, to ensure that the raster 

analysis was executed consistently. The bilinear method calculates the new pixel value by 

computing a weighted distance average of the four nearest input pixel centres (Samadi et 

al. 2014). 

 A linear regression analysis was conducted to determine the rate of change in the 

elevation of the dune points at Formby and to assess the dynamics of the dunes in each 

zone in the study area. The rate of change and regression analysis was computed using 

the ‘curve fit’ tool, which is an ArcMap extension developed by Upper Midwest 

Environmental Sciences Center (UMESC), to perform a linear regression analysis on the 

resampled LiDAR DTMs. The curve fit tool is a computationally intense process, which 

works on the pixel level of the provided DTMs to produce a velocity map showing the rate 

of change in elevation for each pixel within the study area. This provides a statistical 

reference for the dynamic dune elevation changes at Formby, determining the deposition 

and erosion rate of change of the beach and dunes. 

To compute the volumes of the study area each year, the ‘raster surface volume’ tool was 

used in QGIS. The volume is calculated above the mean sea level. The result of this step 

is presented as bar charts drawn in R to show the beach and dune volume changes over 

the years. This was followed by another volumetric analysis using the spatial analysis ‘cut 

and fill’ tool in ArcGIS to calculate the volume erosion and deposition changes. The tool 

calculates the volume changes between corresponding areas in the prior DTM (i.e. 1999) 

and the post DTM inputs (i.e. 2008-2020). The result is a raster with its values showing 

the areas of erosion and deposition in the study area. 

For the vector analysis, 237 east-west profiles were used with a north-south interval of 

20m between every cross section and a sample point every 1m along each cross section. 

These cross sections stretch over the beach and inland areas in a perpendicular direction 

to the shoreline. They provide information about the orientation and slope changes of the 

dunes. An initial step of the vector analysis requires converting the raster DTMs into points 

in ArcGIS using the ‘extract multi values to points’ tool. This tool assigns all the 

corresponding values from all the DTM inputs to the cross-section vector points’ shapefiles. 

This process resulted in 67,400 points on all cross sections. The average length of the 

cross-sections is 185m, 243m, 257m, 398m and 332 in zones A, B, C, D and E respectively. 
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The longitudinal sections provide another view that reflects the south to north movement 

of the dunes due to longshore sand drifts. Two longitudinal section profiles were presented 

to show the impact of the waves and winds in changing the beach, and the south-north 

movement of the dunes. It also illustrated the variation in elevation along the whole beach 

and dunes, which provided a way of comparing the dynamics of the dunes in each zone.  

An elevation point time series analysis is drawn from the cross section vector data points. 

This analysis is separate from the regression results, which show the rate of elevation 

change in each pixel. The elevation point time series analysis is another way of displaying 

the changes in elevation for a single point of interest. Such a type of analysis is suitable 

for any time series application. It has been used here to illustrate the changes in elevation 

for individual points along the beach and dunes at Formby. 

Finally, an automated process has been developed using R to perform the elevation profile 

and time series analysis. The code analysed 237 cross sections profiles, longitudinal 

section profiles and elevation points by generating line charts that illustrate the changes 

in elevation over the study period, providing a detailed interpretation of Formby dune 

dynamics.  

5.4.3 Results 

5.4.3.1 DTM of difference (DoD) 

In this section, an analysis using the available DTMs at Formby was carried out to 

understand the horizontal and vertical changes in the dunes that occurred during the 21 

years study period. The DTM of difference results shows the elevation changes in the study 

area varied between a maximum height decrease of 18m and a maximum increase of 15m 

(Figure 5.10). Progressively increasing erosion is observed in the frontal dunes of zones 

B, C, and D, in addition to the north part of zone A, with an average elevation difference 

raging from -11m to -6m (Figure 5.10). Areas to the east of these frontal dunes have seen 

significant deposition, while the frontal dunes of zone E have seen similar deposition with 

an average elevation difference ranging between 2m and 5m. Inland semi-fixed dunes 

with vegetation presence had minimal elevation differences ranging between -0.2m and 

0.3m. The beach area of zone E has had a slight elevation increase with an elevation 

difference ranging between 0.05m and 0.5m. Figure 5.10 shows the DTM of difference 

maps computed between each year’s DTM and the primary DTM from 1999.  
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Figure 5.10. Formby elevation difference maps. It shows the vertical changes of the dunes 

that occur between each year's DTM and the primary DTM of 1999. DTMs of 2000, 2001 

and 2002 do not cover the whole study area. Progressively increasing erosion is observed 

in the frontal dunes of zones B, C, and D, in addition to the north part of zone A. Areas to 

the east of these frontal dunes have seen significant deposition, while also the frontal dunes 

of zone E have seen similar deposition. 



119 

 

To see detailed year-by-year changes, the DTM difference analysis was carried out on a 

sequential basis. Figure S 6-S 10 show the difference maps for each zone. The high erosion 

of the frontal dunes in zones A, B, C and D in 2014 was a result of the particularly strong 

storms that hit the Formby coast in the winter between December 2013 and February 

2014 (Pye and Blott, 2016). In general, an elevation increase is observed in inland dune 

areas which are due to the eastward migration of beach sand. Areas with a strong presence 

of vegetation remain unchanged, due to the impact of vegetation on stabilizing sand dunes 

(Trust, 2015). The results from the linear regression analysis computed between 1999 and 

2020 illustrate the rate of elevation changes ranging between -0.78 to 0.02 m/year and -

0.92 to 0.73 m/year for the beach and the dunes respectively (Figure 5.11).  

 

Figure 5.11. The rate of elevation changes in the beach and dune areas. Blue colours 

represent the rate of elevation increase while red represents rates of elevation decrease, 

i.e. loss of material. Loss of material on the beach is balanced by increase in inland dunes. 

The rate of elevation changes shows a significant loss in most of the beach areas and some 

parts of the frontal dunes, especially in zone B, C, and D. It also illustrates sand deposition 

in the inner dunes, represented by high rates of elevation increase. The beach in zone E 

has a slight increase in elevation, ranging between 0.01m to 0.08 m/year in most of its 

parts. Areas with the presence of vegetation in all zones, but mostly more towards inland 

zones, generally remain unchanged. 
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5.4.3.2  Volumetric analysis 

The raster surface volume tool in QGIS was used to calculate the volume above mean sea 

level. It is assumed that the subsurface of all of the study area at Formby is sand that has 

developed over the years into dunes in some parts. Figure 5.12 illustrates the volume 

changes in the beach and dunes of Formby over the 21 years of measurement.  

 

Figure 5.12. Volume changes in the beach and dune areas, with a sand volume loss on the 

beach and an increase in the volume of the dunes. It also shows that the volume of the 

entire dune system of Formby has remained unchanged. 

Overall, Formby beach has had a significant volume loss of about 907,000 m3 in 21 years; 

about 500,000 m3 were lost between 1999 and 2008, in addition to more than 160,000 

m3 lost between 2008 and 2013, and 120,000 m3 were lost between 2013 and 2014. Since 

then, the beach has gradually continued losing sand with about 110,000 m3 lost between 

2014 and 2020.   

During the same period, Formby dunes saw a volume increase of about 1,049,000 m3 over 

the 21 years. About 306,000 m3 were deposited in the dunes between 1999 and 2008, 

and about 475,000 m3 were deposited between 2008 and 2013. A sand volume loss of 

about 32,000 m3 occurred between 2013 and 2014, and this is due to the stormy winter 

of 2013-2014, after which the dunes continued to grow again gradually gaining sand with 

about 300,000 m3 gained between 2014 and 2020.  

The total volume of the entire dune system of Formby (beach + dunes) has seen a very 

slight increase of about 130,000 m3 over the 21 years. 

5.4.3.3  Deposition and erosion analysis  

The deposition and erosion analysis provides a detailed map view of the spatial distribution 

of volume changes that occurred in the beach and dune areas over the study period. The 

results (Figure 5.13) show that the beach areas in zone E had an increase in sand volume 

due to sand deposition. This started occurring from 2010 onwards, while the rest of the 

beach areas were losing sand. The erosion of the beach shows that any volume of sand 

lost from the beach is generally not being recovered, which means site managers must 

undertake careful conservation work.  
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Generally, we can see that the dune areas in all zones have had sand deposition (Figure 

5.14). The vegetated dune areas also had sand deposition, even though this deposition is 

considerably lower. It also gives an indication that sand is moving inland. This emphasizes 

the outcome from the volumetric analysis (Figure 5.12), with the beach losing sand while 

the dunes are gaining. Areas classified as “unchanged” were not observed in either the 

beach or the dune's deposition/erosion maps. This indicates that Formby site dune system 

is constantly evolving.  

 

Figure 5.13. Deposition and erosion maps for the beach. It shows the volumetric changes 

and areas of deposition and erosion in the beach of Formby. Zone E has had an increase 

in sand volume due to sand deposition. This started occurring from 2010 onwards, while 

the rest of the beach areas were losing sand. The erosion of the beach shows that any 

volume of sand lost from the beach is generally not being recovered with an increased flux 

of sand into the coastal system. 
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Figure 5.14. Dunes Deposition and Erosion Maps. It shows the volumetric changes and 

areas of deposition and erosion in the dunes of Formby. The dune areas in all zones are 

seeing sand deposition yearly. 

5.4.3.4 Elevation profile analysis 

The beach longitudinal profile is located at a distance of 25m inland from the shoreline, 

while the longitudinal profile over the dunes is located 100m from the shoreline. Both 

profiles contain an elevation point measurement every 20m along the profile. The beach 

longitudinal profile shows that there has been a significant change in the beach elevation, 

with most of the change occurring between 1999 and 2008, with subsidence of 11m, 6m, 

8m and 9m, from zone A, zone B, zone C and zone D respectively (Figure 5.15). While it 

has seen a decrease of about 0.5m between 2008 and 2020. The elevation along zone E 

increased by about 0.5m in 21 years.  
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The longitudinal profile over the dunes shows significant changes in the elevation of the 

inner dunes (Figure 5.15). The irregularity of the dunes’ longitudinal elevation profile 

illustrates the dune's topographical complexity. Generally, the dunes in zone A have 

increased by about 4m. Dunes in zones B, D and the more southerly parts of E tend to 

have higher elevations ranging from 18m to 25m. The dunes in the south part of zone C 

have the lowest height ranging from 8m to 10m and these dunes are seeing significant 

erosion and deposition in the north part with elevation differences of about 6m, while the 

dunes in the south part of zone C have had a slight increase in elevation of about 2m.  

 

Figure 5.15. Beach and Dunes Longitudinal Elevation Profiles. The black line on the map 

figure shows the location of the beach longitudinal profile. The orange line shows the 

location of the profile over the dunes. Most of the elevation changes on the beach 

longitudinal profile occurred between 1999 and 2008. The irregularity of the dune's 

longitudinal elevation profile illustrates the dune's topographical complexity. 

The cross-section profiles, which run perpendicular to the coastline, reveal information 

about the horizontal and vertical movement of the dunes. Figure 5.16 shows selected cross 

sections to reflect the elevation changes along cross sections CS23, CS95, CS120, CS159 

and CS200 in zones A, B, C, D and E respectively. 
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Figure 5.16. Selected Cross Section Profiles and elevation points from Zone A, B, C, D and 

E. The black lines on the map figure show the location of the cross section profiles. The 

coloured lines in each profile represent the DTM acquisition from different years. 

The dune profile changes over time show the horizontal migration of the frontal dunes 

during the measurement period (1999-2020). In zones A, B, C and D the dunes migrated 

about 50m inland, while the frontal dunes in zone E migrated about 10m in the opposite 

direction towards the sea (Figure 5.16). We can also see from CS23 in (Figure 5.16) that 

the dunes had an elevation increase of 5m between 1999 and 2020 in zone A, while dunes 

in CS159 had an increase of about 12m in zone D. The elevation of the inner dunes in 

Zone E remained unchanged while the frontal dunes had an increase of about 5m. This is 

particularly the case in all the vegetated parts of CS23, CS95, CS159, and CS200.  
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Selected points are presented here (Figure 5.17 - P60,P150/CS23, P56,P150/CS95, 

P75,P150/CS120, P60,P200/CS159 and P50,P200/CS200 that represent the elevation 

changes of points on the beach and the dunes from cross sections CS23, CS95, CS120, 

CS159 and CS200 in zone A, B, C, D and E, respectively. The elevation time series of these 

selected points reflect the elevation changes for individual points on the beach and the 

dunes at Formby over the study period.  

 

Figure 5.17. Selected elevation points profiles from zone A, B, C, D and E on the beach and 

the dunes. It shows the elevation time series changes of individual points over the study 

period. 

We can see that there is a significant elevation decrease in the points on the beach, while 

there is an increase in the elevation of the points on the inland dunes; this applies to zone 

A, B, C, and D. In zone E, the elevation of points on both the beach and the dunes are 

slightly increasing.  
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5.4.4 Discussion  

The analysis carried out in this study from the DTM of differences, the volumetric and 

elevation profile analysis provides a view of the dynamics of the dunes at Formby. It can 

be interpreted from the cross-section profiles that the frontal dunes face significant 

horizontal movement compared to inner dunes, this is because frontal dunes are affected 

more directly by waves and winds (Wolf et al. 2011). Interpreting the horizontal movement 

of the inner dunes in a complex dune field is difficult, as all the inner dunes are one joined 

unit; nevertheless, the vertical elevation changes can be easily seen and interpreted. The 

horizontal decrease of the frontal dunes lines is inversely related to the height of the dunes 

(Pye and Tsoar, 2008).  

From profile CS120 in zone C (Figure 5.16) it can be clearly seen that the frontal dunes 

have shifted eastwards by about 50m during the 21 years observation period. This is due 

to the impact of the westerly wind blowing from the sea (Gresswell, 1937), which has 

resulted in this eastward erosion and deposition; this is also seen in CS95 in zone B. This 

horizontal movement is associated with about 4m height increase of the dunes which 

suggests there is a link between the horizontal movement and the height of the dunes. 

This vertical increase in the elevations of the dunes could be due to the vegetation impact 

limiting the eastwards migration of the dunes and acting as a barrier that forces the dunes 

to grow vertically.  

The longitudinal section profiles (Figure 5.15) demonstrate that the Formby beach in zones 

A, B, C and D generally lost a large volume of sand between 1999 and 2008, with minimum 

and maximum elevations ranging between 4m and 16m. This significant material loss 

alerted the authorities in Formby to take action, and they introduced some conservation 

measures, from planting trees to stabilize sand dunes to building fences to trap sand and 

control its movement (Sefton Metropolitan Borough Council, 2016). Also, paths were built 

to manage access to the dunes and to prevent any erosion that could be caused by visitors. 

The volume loss in the beach area and the volume gain in the dunes (Figure 5.12) indicate 

that those two processes are linked; the loss of sand volume from the beach results in an 

increase in sand volume in the dunes. The volume of the whole dune system of Formby 

(beach + dunes) has had an increase of about 130,000 +/- 280,000 m3 over the 21 years, 

which means the total volume of sand in the Formby dune system remained unchanged 

within the bounds of the uncertainty. Therefore, it is interpreted that all the volumetric 

changes were due to sand redistribution within the dune system, with erosion from the 

beach and outer dunes being balanced by deposition in the inner dune areas.  
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Determining the coastline is considered difficult due to the dynamics of sea water and 

tides. For example, at high tide the shoreline of Formby extends only for 40-50 metres 

from the frontal dunes, while at low tide the sea water recedes up to 250-300 meters from 

the frontal dunes. Figure 5.18 shows the effect of low tides on sea water motion at Formby 

coast. The impact of the predominant waves and blowing wind from the west and 

northwest at Formby coast (Wolf et al. 2011); has resulted in forming these eastwardly 

frontal dunes. We can see from the cross section profile analysis (Figure 5.16) the 

recession of the frontal dunes and the extension of the beach by about 50m in zone A, B, 

C and D. 

  

Figure 5.18. The effect of low tides on sea water motion at Formby coast. Around midday 

during the visit, the sea water receded by up to 250-300 meters from the frontal dunes 

(view taken from the top of the frontal dunes on the Formby coast). 

Previous studies showed that the shorelines have shrunk significantly in the last decade 

and erosion of seaward facing frontal dunes occurred due to the westerly winds and strong 

storms (Pye and Neal, 1994). It is found that the highest rate of frontal dune recession is 

in zone B and C as a result of the 2013-2014 Winter storms (Figure 5.16). This has also 

been reported by (Pye and Blott, 2016) with a net recession over the Winter period of 

about 12m, and with a maximum dune toe recession of 20m (Karunarathna et al. 2018). 

Erosion of the frontal dunes near Victoria Road was reported in the early 1900s.  
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This erosion has continued to the present day occurring in the areas surrounding the 

Lifeboat Road up to Fisherman’s Path and the Freshfield/Ainsdale boundary (Sefton 

Metropolitan Borough Council, 2016). The same erosion is continuing in zone B, C and D 

(Figure 5.13). Figure S 11 illustrates further selected cross sections (CS15, CS40, CS55), 

(CS65, CS88, CS100), (CS110, CS117, CS125), (CS135, CS155, CS185), (CS195, CS215, 

CS235) from zone A, B, C, D, and E, respectively, that reflect the profiles changes of the 

beach and dunes between 1999 and 2020 in the north, middle and south sections of each 

zone. CS15 shows a significant dune toe recession in the frontal dunes of about 50m in 

the north section of zone A between 1999 and 2020. This is also seen in the north sections 

(CS65, CS110, CS135) and the middle sections from zone B, C, and D, and also from the 

south sections (CS100, CS125) from zone B and C. CS215 in the middle section of zone E 

shows a build-up of new dunes with a height increase of about 7m, while the old frontal 

dunes shift eastwards by about 50m. CS195 and CS235 on the north and south sections 

of zone E show 10m-20m seaward extension on its frontal dunes. 

Although the longitudinal section profile does not represent the elevation changes in the 

whole study area, but only on the route selected, it reveals valuable information about the 

height differences in each zone and the changes that occurred over time. The beach 

longitudinal profile showed that there have been large changes in the beach elevation with 

a decrease of 12m, 8m, 9m and 10m between 1999 and 2008 in zones A, B, C, and D 

(Figure 5.15). The longitudinal profile over the dunes (Figure 5.15) showed that dunes in 

zones B, D and the more southerly parts of zone E tend to have higher elevations, and 

this pattern appears to be stable over time. This could be due to the presence of vegetation 

in these zones acting as a barrier, stabilizing the eastwards horizontal movement of the 

deposited sand and contributing to the vertical growth of the dunes.  

Coastal sand dune erosion tends to occur during winter, with a loss in sand volume, while 

accretion occurs during the summer period which to some extent balances the sand loss 

during winter (Pye and Blott, 2016). This interpretation of the relationship between the 

beach and the dunes can be supported by analysing previous historic data (e.g. aerial 

imagery, field observation...etc.) to look for similar dune behaviour. Moreover, coastal 

sand dune monitoring campaigns must be undertaken at least twice a year, during the 

winter and summer periods, to fully understand the dynamic of the dunes over different 

weather conditions.  
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5.5 Conclusion  

Coastal dunes are a primary natural flood defence in coastal risk management. The use of 

land surveying techniques is effective for monitoring small sand dune areas and provides 

high accuracy data, however, this field study demonstrated that there are many challenges 

when observing sand dunes using GNSS and TLS. The main limitation is that the data 

collection process is time consuming. Furthermore, the homogenous terrain of the dunes 

has restricted the VIS technology to link the different TLS set-ups. 

The airborne LiDAR study analysed unique LiDAR DTM time series data collected over the 

Formby coast. The findings show that the Formby coast dune system is highly dynamic 

with the redistribution of sand within the system. It has been found that the rate of 

elevation change for the beach and dunes was between -0.79 to 0.08 m/year and -0.91to 

0.73 m/year respectively during the 1999-2020 measurement period. The beach and the 

frontal dunes experienced erosion, but this was balanced by sand accumulation in the 

inner dunes. Areas with the presence of vegetation remained largely unchanged due to 

the impact of vegetation in stabilizing the movement of the dunes. 

Formby beach has seen a significant volume loss of about 907,000 m3 in 21 years' time, 

while the dunes have seen a volume increase of about 1,049,000 m3 over a period of 21 

years. The volume of the entire dune system of Formby (beach + dunes) remained broadly 

unchanged, which indicates that all the volumetric changes happened due to sand 

redistribution within the system, with erosion in the beach and frontal dunes compensated 

by deposition in the inner dune areas. The DTM time series revealed that the Formby 

beach, marked by the frontal edge of the dunes, migrated about 50m inland during the 

measurement period.  

Further investigation into the dune activity at nearby coastal sites is recommended to fully 

understand the dynamic links between dune fields on the northwest coast of England. This 

provides important information for local site managers and planners to preserve the local 

environment, plan interventions and minimize the risks to local infrastructure.  
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6 GENERAL DISCUSSION- A REFLECTION ON THE USES OF 

REMOTE SENSING TECHNIQUES FOR SAND DUNE MONITORING 

6.1 Background 

In this chapter, InSAR and COSI-Corr, another couple of techniques for monitoring sand 

dunes were briefly discussed. This was followed by a discussion, reflecting on the 

capabilities of the remote sensing techniques that have been used in this research. In 

addition, a developed strategy for monitoring sand dunes has been introduced.  

6.2 Sand Dunes Monitoring using DInSAR  

Monitoring the displacement of sand dunes is a challenging task, especially when it comes 

to detecting the vertical movement of the dunes for a continuous period of time. Following 

on from the use of LiDAR and GNSS to detect such movement in Chapter 5, in this chapter 

the differential interferometric synthetic aperture radar technique has been investigated 

to detect the horizontal and vertical movement of the dunes by processing a pair of 

Sentinel-1 single look complex (SLC) SAR images acquired on the 4th and the 16th of June 

2017. These images were captured by Sentinel-1B mission in a descending flight direction 

and an interferometric wide swath (IW) beam mode and a vertical-vertical (VV) and 

vertical-horizontal VH polarization. The InSAR processing was conducted using ESA SNAP 

toolbox to detect the displacement in dune areas near Goled city in Northern Sudan, see 

Figure 3.4, in chapter 3. 

The initial step for InSAR processing in SNAP is to split the Sentinel-1 multi-swath product 

using Sentinel-1 TOPSAR split tool to select the subswath, bursts and polarization required 

for the study area. The sub-swath IW3 with 9 bursts and VV polarization was selected. 

Then, the precise orbit files were applied to provide accurate location of the satellite and 

velocity information. The precise orbit files are made available a few days or weeks after 

the generation of the image products (Ferretti et al. 2007). These precise orbit files refine 

the orbit state vectors provided in the initial metadata of the image product.  

The split Sentinel-1 SLC were then co-registered using the precise orbits of the two images 

and a digital elevation model corresponding to the pixels on the two images of the same 

ground target. The co-registered stack was then used to generate the interferogram 

between the two images, to distinguish the interferometric phase surface deformation in 

the study area, in addition to providing the coherence amplitude image that reveals areas 

with high and low coherence, which indicates the characteristics of the land cover features.  
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The topographic phase was then estimated and subtracted from the interferogram, 

followed by a step of phase noise removal using Goldstein phase filtering to reduce the 

residues and assist and enhance the phase unwrapping accuracy. The phase unwrapping 

is a major step to recover the unambiguous phase data from a 2-D array of phase 

corresponding to the interferometric phase to the topographic height and remove phase 

ambiguity. The phase unwrapping was applied using a plugin in SNAP called SNAPHU, 

https://step.esa.int/main/snap-supported-plugins/snaphu/. Then the phase interferogram 

is used to compute the displacement map. This displacement is provided in the line of 

sight (LOS) of the satellite; therefore, it was converted into vertical displacement using 

the following equation:  

Vertical displacement = (Wavelength * UPI) / (-4 * PI * cos(rad(incident angle))).  

The wavelength of Sentinel-1 sensor is 0.056 metres, the incident angle was averaged to 

47 for the whole sub-swath and UPI is the unwrapped phase interferogram in radians.  

A geometric correction step has lastly been performed using range doppler terrain 

correction to reform the interferogram, coherence and displacement into ground 

coordinates. Figure 6.1 illustrates the processing steps for generating phase displacement 

maps using InSAR in SNAP. 

https://step.esa.int/main/snap-supported-plugins/snaphu/
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Figure 6.1. DInSAR deformation processing using SNAP 

Figure 6.2 show the DInSAR results between 4 and 16 June 2017, phase interferogram, 

the coherence map and the unwrapped phase image. 

Compute Phase Displacement
To compute the displacment between a pair of SAR images

Geometric Correction

Range doppler terrian correction is used to geometricly correct the interferogram

Phase Unwrappeing
Correspond the interferometric phase to the topographic height by removing phase ambiguity 

/SNAPHU

Noise Filtering

Goldstein phase filtering is used to reduce the noise to assist the unwrapping of the interferogram

Topographic Phase Removal
Estimates and subtract topographic phase from the interferogram

Deburst

It removes the gap between the bursts of the swath

Interferogram Formation 

Interferogram generation from the coregistered stacked images

Enhance Spectral Diversity
Performs joint co-registration creating a network of images and estimating the range and azimuth 

offsets

Co-registeration

Correspond pixels on the two images to the same ground target

Apply Orbit Files

It provides accurate satellite position and velocity information 

Sentinel-1 TOPSAR Split

Select the subswath, bursts and polarization required for the study area

Read InSAR Images 

InSAR images are downloaded for the monitoring period, selecting the swath of the study area
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Figure 6.2. The study area DInSAR results between 4th and 16 June 2017. (A) Unwrapped 

phase interferogram, (B) Coherence map, (c) the vertical displacement.  

The phase interferogram result indicates the level of deformation seen during the study 

period. It shows that areas with vegetation, water and sand dunes have seen significant 

changes due to the characteristics of these features in comparison to the urban and bare 

land areas. This also appears on the coherence map, where low coherence is seen in water 

surface, agricultural fields and sand dunes areas, where they appear as black patches 

suggesting significant changes. Urban areas and bare lands tend to appear as white 

patches as they remain stable. The computed phase displacement shows a vertical 

displacement ranging between 0.18 and -0.20 metres, which is considered to be significant 

given the short period of the measurement. This implies that InSAR can detect the changes 

in sand dunes over the period in question. 

The coherence map revealed an interesting land feature, a valley in the south-west of the 

study area, known as Wadi Hower. Wadi Hower was the largest tributary of the river Nile 

that used to flow from Chad in the West to meet the River Nile near Old Dongola city in 

Northern Sudan. Decades ago, this Wadi was severely affected by desertification and was 

overwhelmed by sand to become extinct (Pachur and Kröpelin, 1987). Figure 6.3 shows a 

topographic map of Wadi Hower produced by (Pachur and Kröpelin, 1987) showing 

barchan sand dunes surrounding its banks. 
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Figure 6.3. Topographic map of Wadi Hower in Northern Sudan.  

 

Figure 6.4. DInSAR results for Goled city. 
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From Figure 6.4, we can observe that, in dune fields with low vegetation presence, the 

vertical displacement was found to be less than in the dune fields with high vegetated 

presence; fields located mostly near the river banks. This is the opposite of what was 

detected using SAR pixel tracking where the horizontal movement of dune fields in the 

non-vegetated dune fields was found to be larger compared to the horizontal movement 

of vegetated dune fields, see section 4.4.3 in chapter 4. Accordingly, the presence of 

vegetation reduces the horizontal movement of the dunes, however, on the other hand it 

will contribute to the vertical growth of the dunes as vegetation works as a barrier that 

slows the speed of sand movement but consequently increases accumulation and thus the 

height of the dunes. Therefore, it can be concluded that there is a correlation between the 

horizontal and vertical movements of the dunes. This claim must be further investigated 

and validated using ground truth data to accurately measure the horizontal and vertical 

movement of the dunes in dune fields with different geomorphological characteristics.  

Detecting the vertical displacement of the dunes using only a pair of SAR images has some 

limitations. This is mainly because of the decorrelation between the primary and secondary 

images due to phenological changes in vegetation or rapidly changing land features, such 

as water and dunes (Braun, 2021).  Therefore, reducing the temporal baseline of the pair 

might increase the precision of the detected dune displacement. This movement could 

happen on a daily basis and that means if the time interval is quite large (e.g. a year or 

months) then the resultant interferograms will tend to be ambiguous. This requires more 

investigations, associated with ground data collection for validation.  

Future InSAR research work should investigate the capabilities of different SAR sensors, 

different polarizations, space resolutions, orbit configurations and acquisition modes. Also, 

it should investigate the capabilities of different radar images (e.g. P, L, X bands) in 

distinguishing the activity of the dunes. In addition, automated time series InSAR 

processing tools should be developed.   

6.3 Reflection on the Sand Monitoring Techniques used in this 

Research 

The aim of this research focused on investigating the use of different remote sensing 

techniques for monitoring the movement of sand dunes. It also investigated the limitations 

of conventional measuring techniques such as sand traps and land surveying techniques.  
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This section summarizes the capabilities and limitations of each technique addressing 

several key points: (1) the acquired data; (2) the coverage and spatial distribution of the 

used technique, which provides a good indicator of the suitability and feasibility of the 

technique for detecting sand dune movement in large areas; (3) the sand monitoring 

results, illustrating the changes in sand dunes; (4) the achieved accuracy; and (5) the 

limitation and complexity of implementation of each technique for detecting sand dune 

movement.  

Conventional techniques provide vital information about sand dunes, such as the sand 

particles size, which can be detected by sand traps, in addition to highly accurate ground 

truth data collected by GNSS, total station and levels that can be used for validating the 

monitoring results detected by the remote sensing techniques. However, these 

conventional techniques have significant limitations related to time consuming data 

collection processes and the complexity of monitoring large inaccessible sand areas. 

Additionally, they only provide an approximation of the dune movement, as the data are 

collected for discrete dune locations. Moreover, with few repeated surveys, conventional 

techniques are limited to detecting the movement that occurs within days or hours due to 

the rapid movement of the sand dunes. This can be overcome by applying time series 

analysis using remote sensing techniques, providing continuous observations of the dunes 

over periods of years.  

The multi-temporal optical satellite framework (SET) is used to detect the land cover 

classification changes that relate to the horizontal, areal changes of sand dunes, in addition 

to determining the displacement and direction of movement of individual dunes. The 

achieved accuracy depends on the accuracy of the image classification results, which 

depends mainly on the samples used to train the classifier and the spatial resolution of the 

optical images. This technique is suitable for detecting sand dune movement over large 

areas. It also identifies areas at significant risk of sand encroachment. The cloud coverage 

in optical images represents the main challenge for this technique, as it leads to land cover 

miss-classification, which will affect the detected areal changes of sand.   

The SAR pixel offset technique showed high competency in detecting the horizontal sand 

dune movement. The advantage of this technique is that it can be valuable in areas with 

a high presence of cloud, where optical remote sensing techniques fail to provide accurate 

analysis of the dune changes. As for the previous technique, pixel offset can only detect 

horizontal dune movement. However, it can detect the displacement of the dunes in the 

range and azimuth directions, which can be used to compute the direction of the dune 

movement. 
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Multi-temporal Airborne LiDAR DTMs were used to monitor the dynamic changes of the 

dunes. This technique demonstrated high capability in monitoring sand dunes both 

horizontally and vertically. This technique provides rates of horizontal and vertical dune 

motion in addition to the volumetric changes of the dunes. The achieved accuracy depends 

on the DTM accuracy, which depends on the accuracy of the GNSS positioning technique 

used. The limitation of this technique is that it relies on expensive, repeated airborne 

flights.  

InSAR can detect the vertical movement of the dunes, however, the main limitation of this 

technique is due to the decorrelation and low coherence of the sand reflectance as a result 

of the rapid movement of the dunes. Table 6.1 illustrates a summarization of the 

capabilities and limitations of all of the used sand dune monitoring techniques.  
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Table 6.1. Capabilities and limitations of sand monitoring techniques. 

Technique/Assessing 

Factor 

Acquired Data  Coverage and spatial 

distribution 

Sand Monitoring 

results 

Achieved Accuracy  Limitations/Complexity of 

Processing 

Sand Traps • It collects sand 

particles providing 

information on the 

grain size impact, 

and the rate of 

horizontal or vertical 

movement and its 

direction.  

 

• Low efficiency in 

covering large 

inaccessible areas, 

especially in desert 

areas.  

• Approximate 

estimated rate of 

movement, and 

direction of sand 

movement.  

• Low accuracy 

due to the 

approximate 

detection of sand 

movement due 

to the limited 

number of 

installed traps. 

• Requires ground surveys. 

• Installing sand traps 

require experience and 

knowledge of the direction 

and wind behaviour.  

• Does not measure 

accurately the impact of 

other factors such as 

vegetation and 

topography. 

• Only provides the final 

approximation of the dune 

movement in discrete 

locations and does not 

detect the movement of 

the dunes in the whole 

study area.  

 

GNSS • Provides discrete 

dune points 

collected as 3D 

coordinate data. 

 

• Low efficiency in 

covering large 

areas. 

• GNSS signal might 

face some 

interference losses 

in mountainous 

and heavily 

vegetated dune 

fields.  

 

• Discrete data 

dune points. It 

requires 

repeated surveys 

to detect the 

movement of the 

dunes.  

• High accurate 

collected dune 

points can be 

used to validate 

the remote 

sensing 

techniques’ 

results.  

 

 

 

• Requires ground surveys. 

• Data collection is time 

consuming and requires a 

large workforce, especially 

in desert areas, which is 

not feasible.  
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Technique/Assessing 

Factor 

Acquired Data  Coverage and 

spatial distribution 

Sand Monitoring 

results 

Achieved Accuracy  Limitations/Complexity of 

Processing 

Terrestrial LiDAR • Provides dense 3D 

points cloud data of 

the dunes.  

• Provides intensity 

data that shows the 

reflectance of the 

surface which can be 

used to distinguish 

the activity of the 

dunes. 

 

• Highly dense 

collected dune 

points are provided 

as millions of point 

clouds.  

• Determined by the 

distance of the 

scanner from dune 

features, the closer 

to the scanner the 

more points 

collected. 

• Can be used to 

generate DTMs 

for the dunes. 

However, 

detecting the 

movement of the 

dunes requires 

repeated 

surveys.  

• High accurate 

collected dune 

points can be 

used to validate 

the remote 

sensing 

techniques’ 

results.  

 

• Requires ground surveys. 

• Simple set-up for the 

scanner, however moving 

the TSL is hard due to the 

complex terrain of the 

dunes.  

• The homogenous terrain of 

the dunes restricts the VIS 

technology for linking up 

different TLS set-ups and 

scans. 

• To achieve better accuracy 

in the registration of TLS 

scans, more time must be 

allowed to observe the TLS 

targets using the GNSS, 

which will make the 

technique time consuming. 

• Post processing is 

complicated. 

Optical Images (SET) • Time series sand 

cover changes 

maps.  

• Multi-temporal 

image acquisition 

depends on the 

satellite mission. 

 

• Large spatial 

coverage~ 

(300kmX300km) 

but depends on the 

satellite altitude. 

• Image mosaicking 

would allow for 

covering a large 

region of interest.  

• Time series 

horizontal sand 

cover changes.  

• Detection of 

displacement 

and direction of 

individual dunes.  

• Achieved 

accuracy 

depends on the 

accuracy of the 

classification 

results which 

depends mainly 

on the training 

samples and the 

spatial resolution 

of the images. 

•  No ground surveys are 

required. 

• Requires high performance 

computing capabilities.   

• Clouds present a challenge 

for image classification and 

detecting the changes in 

sand land cover.  
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Technique/Assessing 

Factor 

Acquired Data  Coverage and 

spatial distribution 

Sand Monitoring 

results 

Achieved Accuracy  Limitations/Complexity of 

Processing 

SAR Pixel offset  • Time series sand 

dune displacement 

maps.  

• Multi-temporal 

image acquisition 

depends on the 

satellite mission. 

 

• Large spatial 

coverage~ 

(300kmX300km) 

but depends on 

the satellite 

altitude. 

• Image mosaicking 

would allow for 

covering a large 

region of interest.  

• Detect the 

horizontal 

movement in the 

range and 

azimuth 

directions. 

• Provide the rate 

of sand dune 

horizontal 

changes. 

• Performs better 

at estimating 

large 

displacements 

beyond the 

maximum 

detectable 

deformation. 

• Achieved 

accuracy 

depends on the 

pixel size of the 

SAR images, it is 

about 1/30th of 

the image pixel 

size.  

• No ground surveys are 

required. 

• Requires experience and 

preprocessing to ensure 

the detected dune 

movement results are 

accurate. 

 

InSAR • Time series sand 

dune displacement 

maps. 

• Multi-temporal 

image acquisition 

depends on the 

satellite mission. 

 

• Large spatial 

coverage~ 

(300kmX300km) 

but can vary with 

the satellite 

altitude. 

• Detect the 

vertical 

displacement of 

dunes. 

• Coherence 

images can be 

processed with a 

further technique 

as the optical 

images for 

horizontal 

change 

detection.  

• Achieved 

accuracy 

requires more 

investigations 

that involve 

ground data 

collection and 

validation.   

• No ground surveys are 

required. 

• Detected displacement has 

some limitations due to the 

low coherence of the sand 

reflectance due to the 

rapid movement of the 

dunes. 

• Detecting the horizontal 

displacement requires 

processing ascending and 

descending images which 

further complicates the 

processing. 
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Technique/Assessing 

Factor 

Acquired Data  Coverage and 

spatial distribution 

Sand Monitoring 

results 

Achieved Accuracy  Limitations/Complexity of 

Processing 

Airborne LiDAR • Multi-temporal sand 

dune DTMs.  

• Depends on the 

altitude of the 

aircraft with 

coverage of a few 

kilometres square.  

• Provide the rate 

of horizontal and 

vertical changes. 

• Computations of 

sand volumetric 

changes. 

• Achieved 

accuracy 

depends on the 

DTM accuracy 

which depends 

on the used 

GNSS positioning 

technique.  

• No ground surveys are 

required, however for 

high accuracy of 

LiDAR data, ground 

GNSS base stations 

are required for 

providing accurate 

locations of the 

aircraft.   

• The post processing 

and generation of 

LiDAR DTMs could be 

complex in vegetated 

dune fields, especially 

in coastal areas.  
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6.4 Developed Strategy for Monitoring Sand Dunes  

This section presents a developed strategy for monitoring sand dune movement at 

different dune scales from an individual dune to a complex dune field. The strategy 

provides a defined approach that can be applied for monitoring sand dune movement in 

desert or coastal areas utilizing remote sensing techniques, to ensure consistent time 

series analysis for the detection of small and large sand dune movement that can occur 

on a daily, monthly and annual basis.  

A strategic monitoring plan for sand dunes movement must follow three main 

implementation stages: (1) the detection of sand dunes using different surveying 

techniques, measuring the changes and movement of the dunes; (2) a monitoring stage, 

where time series analysis is applied to distinguish patterns in the dune movement, in 

addition to identifying the impact of the sand movement influencing factors (i.e. wind, 

vegetation, topography, …etc.) and their relationship to the sand movement behaviour; 

and (3), a prediction stage of sand movement, based on previously detected dune 

behaviour and the influencing factors from the monitoring results. Figure 6.5 illustrates 

the implementation stages of a strategic plan for monitoring sand dune movement.  

 

Figure 6.5. Strategy for monitoring sand dune movement. 
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The detection stage of sand dune movement utilizes remote sensing techniques to 

measure the movement of the dunes. Selecting a suitable remote sensing technique or 

type of data can vary from one study area to another, depending on the level of detection 

required, the type of the dunes, the geomorphology of the study area and the data 

availability.  

The level of detection is identified based on the required dune detection scale, varying 

from individual dunes, dune fields, and regional sand movement to dust storms. In 

addition, different dune types (e.g. barchans dunes, linear dunes, sand sheets...etc.) 

would require optimizing different techniques for monitoring. The geomorphology of the 

study area and the landforms has a significant impact on determining the type of data 

(e.g. optical images, Radar, DTMs…etc.) to be used in the detection stage. The data 

availability is a key factor in the monitoring process, as it can limit the choices of 

techniques or the level of temporal and spatial detection of the dunes, which will have an 

impact on the accuracy of the predicted dune movement.  

The detection of sand dune movement would provide statistical information on the rate of 

change, horizontal sand expansion, vertical dune changes and dune volumetric changes. 

The validation of this detected movement is quite an important step to determine the 

accuracy of the technique and precision of the detected movement. This can be achieved 

by using land surveying techniques, planned to detect sand dune movement, to provide 

accurate ground movement coordinated with the detection of the dunes using remote 

sensing techniques.  

The monitoring stage involves applying time series analysis from the detection stage to 

identify patterns in the movement of the dunes over the study period. In this regard, the 

continuity of the remote sensing data provides consistent monitoring results of the dune 

movement behaviour. This is associated with defining the impact of the influencing factors 

on the dune movement activity. This provides measurable knowledge of the dynamic of 

the dunes in the region of interest, in addition to identifying and mapping areas with a 

high risk of sand encroachment.  

The prediction of sand movement is an important factor in controlling the impact of sand 

movement, as understanding the dune movement behaviour and the impact of dune 

movement factors, it will allow for best practice of stabilizing sand dunes using variable 

techniques and that would consequently lead to optimized planning for habitational and 

environmental projects. In addition, the prediction of sand movement would significantly 

affect the socio-economic behaviour of local residents, especially in areas where sand is 

greatly overwhelming houses and agricultural crops.  
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A practical implementation of this strategy was followed in the case studies of this research 

to monitor sand dunes in desert and coastal areas. These case studies focused only on the 

implementation of the detection and monitoring stages. The prediction stage will be 

developed as an extension of this research. 

This strategic plan is a key element for practical investigations for monitoring sand dune 

movement, and for the dune management restoration and stabilization projects. It can be 

applied for monitoring sand movement in both desert and coastal areas.  The practicality 

of this strategy relies mainly on the high capability of the remote sensing techniques in 

providing a consistent measurement of the dunes and its competence in monitoring 

inaccessible dune fields.  
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7 CONCLUSION  

Sand dune movement is considered one of the major environmental issues in arid and 

semi-arid regions threatening livelihood and rural communities. It also contributes to the 

degradation of land causing poverty and food insecurity. On the other hand, coastal dunes 

play an important role in coastal erosion risk management, where they act as a dynamic 

natural sea defence, in addition to providing habitats that enrich coastal biodiversity and 

adding resilience to the ecosystem. Sand movement can be experienced on different 

scales: individual dune movement, dune field changes or in a form of dust storms.  

The aim of this research was to investigate the capabilities of various remote sensing 

techniques (i.e. optical multi-spectral satellite sensors, SAR techniques, airborne LiDAR) 

for detecting and monitoring sand dunes movement and its impact on urban areas, crop 

fields, water bodies, archaeological sites and determining the most vulnerable areas to 

sand dunes encroachment. In addition, it was designed to study the impact of the 

influencing factors that control the movement of the dunes, such as wind speed/direction, 

vegetation, topography and sand supply.  

This research highlighted the capabilities of the remote sensing techniques in addition to 

defining the limitations of using the more traditional land surveying techniques for 

monitoring sand dunes. Based on that analysis, a strategy has been developed for 

monitoring sand dune movement. This strategy consists of three main implementation 

stages: (1) the detection of sand dunes using different surveying techniques measuring 

the changes and movement of the dunes; (2) a monitoring stage, where time series 

analysis is applied to distinguish patterns in the dune movement in addition to identifying 

the impact of the sand movement influencing factors (i.e. wind, vegetation, topography, 

…etc.) and its relationship to the sand movement behaviour; and (3), a prediction stage 

of sand movement based on previously detected dune behaviour and the influencing 

factors from the monitoring results. 

An optimum strategy for monitoring sand dunes must address both the horizontal and 

vertical movement of the dunes. This can be achieved by using multi-temporal Airborne 

LiDAR data sets. However, this technique is expensive and has some challenges in the 

post processing stage. Moreover, it does not address the areal land cover changes of sand 

dunes, which can be detected easily by optical remote sensing techniques. On the 

contrary, the SAR techniques - pixel offset and DInSAR - can distinguish the displacement 

of the dunes in the horizontal and vertical components, respectively, in addition to 

detecting the direction of movement of the dunes. 
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Therefore, selecting the optimum remote sensing technique for sand dune monitoring, 

varies from one study area to another, depending on the level of detection required, the 

type of the dunes, the geomorphology of the study area and the data availability. For 

instance, the availability of Airborne LiDAR datasets is limited in developing countries 

which makes the other remote sensing techniques a more suitable option for monitoring 

sand movement. 

The rapid development of SAR and optical data, and their processing, will have a huge 

impact on the development of advanced techniques for monitoring sand dunes. Moreover, 

the emergence of cloud-based computing services will allow for real time data processing. 

This can be adapted by local authorities, using remote sensing techniques in their 

monitoring and preservation projects on sand dunes. However, this requires developing 

platforms that provide real time analysis based on remote sensing data sets, with a simple 

implementation process, so that non-expert users can easily run the processing, to 

understand the behaviour of the dunes in their dune system.  

The techniques developed in this research have applications beyond monitoring sand 

dunes such as land cover change detection and monitoring landslides and mines.  The SAR 

pixel offset technique is recommended for monitoring land morphology in areas where 

high decorrelation, low coherence, is expected such as in glacial areas, where it can 

estimate large displacements.   

The following sections provide a summary of each remote sensing technique used in this 

research to monitor the movement of sand dunes.  

7.1 Optical Satellite Images 

The first objective of the research has been addressed with a developed automated 

framework (SET) that uses Google Earth Engine and machine learning classifiers applied 

on multi-temporal Sentinel 2 L2A satellite images has been developed to detect the 

changes in the area of sand dunes, in addition to computing the displacement and direction 

of movement for individual sand dunes. Two machine learning classifiers were used in this 

study, the random forest and the support vector machine to monitor the horizontal 

movement of sand dunes in Northern Sudan between December 2018 to December 2021. 

The validation comparison results demonstrated that both random forest and support 

vector machine achieved high accuracy of classification when applying a cost parameter 

of 0.2 for SVM and with a number of trees of 100 for the random forest. 
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The classification results showed that the rocky and sand classes are the dominant land 

cover types in the study area, with the rocky class covering an area ranging between the 

4500-6500 km2 for RF and 3200-6200 km2 for SVM, while the sand class area ranged 

between 3000-4800 km2 for RF and 3300-5700 km2 for SVM. On the other hand, the 

vegetation and urban classes had an area ranging between 150-350 km2 and 250-600 km2 

for RF and 230-450 km2 and 110-850 km2 for SVM, respectively, while the water class had 

the lowest land cover area ranging between 70-110 km2 for RF and 80-105 km2 for SVM. 

The classification results showed that the sand cover displayed a pattern of significant area 

changes, with an area increase during the period between September to February ranging 

between 4000-4800 km2 for RF and for 4500-5200 km2 SVM, and an area decrease during 

the period between March to August with an area ranging between 3300-4200 km2 for RF 

and 3300-4600 km2 for SVM. There is a significant correlation between the increase in the 

area of the sand class and the decrease in the rocky class area. 

On the other hand, the individual dune detection tool was applied to detect the individual 

dune movement in Northern Sudan, near Goled city. The tool detected a significant 

movement for an individual dune digitized from two high resolution images in November 

2011 and December 2012 where it showed an average displacement of 15 metres and a 

dominant movement direction to the southwest on the eastern side of the dune, while it 

detected an average displacement of 7 metres with a dominant movement direction to the 

southeast in the west side of the dune. The location of the dune has shifted in the 

southwest direction by more than 125 metres between 2011 and 2022, the current location 

of the dune. The movement of the same dune was detected using SET from two sequential 

classified images on the 30 of May and the 09 of July 2020. The results showed an average 

displacement of 10 metres and a dominant movement direction to the west/southwest. It 

is also observed that the lowest detected displacement is related to the lower resolution 

of the satellite images used (i.e. Sentinel 2 with 10 m spatial resolution).  

The tool distinguished the displacement of the dunes; however, due to the complexity of 

the generated dunes from the classification, different points are linked and assigned with 

incorrect points in the second image. This tool showed that detecting the deformation of 

individual dunes could be provided from moderate images, but the higher resolution the 

images, the better the footprints of the individual dunes, which consequently would result 

in increasing the detecting capabilities of the technique (SET). The detected movement of 

the individual dunes was assessed by visually inspecting and measuring the dunes on the 

two corresponding images, providing similarly average displacement. 
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7.2 SAR Offset Tracking 

Another remote sensing technique was used to detect the horizontal movement of the 

dunes in the Northern’s Sudan study area, namely SAR offset tracking. This addressed the 

second objective of the research, investigating the capabilities of the SAR Offset Tracking 

technique for detecting horizontal sand dune movement. This is the first application of SAR 

offset tracking in detecting the movement of sand dunes. This technique determines the 

offset between pixels of the same area that appear in two different SAR images. The 

accuracy of offset tracking depends on the pixel size of the SAR images, and it is about 

1/30th of the image pixel size for both range and azimuth directions, which results from 

errors in the co-registration of the two images. 

Ten Sentinel-1 Level-1 Ground Range Detected (GRD) VV/VH polarised SAR images were 

used for offset tracking to determine the displacement of sand dunes in the study area for 

a period of four months. Three distinct dune fields within the study area were investigated 

for dune motion with a vegetated dune field (dune field 1) and two non-vegetated dune 

fields (dune field 2, dune field 3) used to distinguish the impact of vegetation on the 

movement of the dunes in addition to the other influencing factors (i.e. wind 

speed/direction and topography).  

A time series of displacement vector maps were generated by daisy chaining the image 

pairs to estimate the displacement time series for all pixels in the dune fields. The 

cumulative east displacement over the study period was 1.8 m, -1.1 m and 4.8 m for dune 

fields 1, 2 and 3, respectively, while the cumulative north displacement was 0.7 m, 2.9 m 

and 4.2 m. 

The wind behaviour had a significant impact on the movement of the dunes. Dune fields 

1, 2 and 3 had a dominant wind blowing direction of 181, 185 and 187 degrees, with an 

average wind speed of 4.6 m/s, 4.84 m/s and 4.84 m/s, respectively. This southerly wind 

resulted in an average displacement of 0.7 m in dune field 1 and 2.7 m in dune field 3 

with a dominant movement to the north-east and an azimuth of 56°, while dune field 2 

had an average displacement of 2.5 m to the north, with an azimuth of 346°. 

The displacement time series for dune field 1 showed larger movement in the east 

cumulative displacement compared to the northern component and this is due to the 

impact of the wall of trees in diverting the movement of the dunes parallel to its 

orientation. Dune field 2 had a larger movement in the north component, while dune field 

3 had the largest movement among the three dune fields in both east and north 

components. 
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This technique showed high competency in detecting the horizontal sand dune movement, 

with the advantage of detecting the displacement of the dunes in the range and azimuth 

directions, which can be used to compute the direction of the dune movement. It also 

identified areas with large sand dune movement that can be considered for further 

investigations. 

7.3 Airborne LiDAR DTMs  

The third case study investigated the use of Airborne LiDAR data to monitor the dynamics 

of Formby coastal sand dunes in Northwest England over a period of 21 years between 

1999 and 2020. This addresses the third objective of the research with a developed 

framework for monitoring the dune changes from time series of high-resolution DTMs at 

all scales: dune point elevation changes, cross sectional profiles, and longitudinal profiles 

were produced, as well as deposition/erosion and volumetric changes for dune field. The 

study aimed to investigate the activity of the sand dunes at Formby coast by carrying out 

a series of raster and vector analysis. 

It has been found that the rate of elevation change for the beach and dunes was between 

-0.79 to 0.08 m/year and -0.91to 0.73 m/year respectively during the measurement 

period, indicating that the beach and the frontal dunes experienced erosion, while sand 

accumulation was observed in the inner dunes. Areas with presence of vegetation 

remained largely unchanged, emphasizing the impact of vegetation in stabilizing the 

movement of the dunes. 

Formby beach has seen significant volume loss of about 907,000 m3 in 21 years' time, 

while the dunes' volume increased by about 1,049,000 m3. The volume of the entire dune 

system of Formby (beach + dunes) remained broadly unchanged, which indicates that all 

the volumetric changes happened due to sand redistribution within the dune system, with 

erosion in the beach and frontal dunes compensated by deposition in the inner dune areas. 

The DTM time series revealed that the Formby beach, marked by the frontal edge of the 

dunes, migrated horizontally by about 50m inland during the measurement period. In 

addition, it showed Formby coast dune system to be a highly dynamic system with active 

redistribution of sand within the system. 

This technique demonstrated high capability in monitoring sand dunes both horizontally 

and vertically, providing rates of horizontal and vertical dune motion in addition to the 

volumetric changes of the dunes. 
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7.4 DInSAR 

The fourth objective of the research was to investigate the capabilities of Differential 

Interferometric Synthetic Aperture Radar (DInSAR) for detecting the vertical deformation 

of sand dunes. A pair of Sentinel-1 single look complex (SLC) SAR images acquired on the 

4th and the 16th of June 2017 were processed to detect the displacement of the dunes near 

Goled city in Northern Sudan. 

The phase interferogram results gave an indication of the level of deformation seen during 

the study period. Areas with vegetation, water and sand dunes have seen significant 

changes due to the characteristics of these features in comparison to the urban and bare 

land areas. This also appeared on the coherence map, where low coherence was seen in 

water surface, agricultural fields and sand dune areas, where they appeared as black 

patches suggesting significant changes. Urban areas and bare lands were observed as 

white patches as they remained stable. The computed phase displacement showed a 

vertical displacement ranging between 0.18 and -0.20 metres, which is considered to be 

significant given the short period of the measurement. This implies that InSAR can detect 

the changes in sand dunes over the period in question. 

Detecting the vertical displacement of the dunes using only a pair of SAR images has some 

limitations. This is mainly because of the decorrelation between the primary and secondary 

images due to phenological changes in vegetation or rapidly changing land features, such 

as water and dunes. Therefore, reducing the temporal baseline of the pair might increase 

the precision of the detected dune displacement. This requires more investigations, 

associated with ground data collection for validation. 

7.5 Findings and Challenges  

7.5.1 Findings 

1. This research identified significant limitations of the conventional techniques, such 

as sand traps and land surveying techniques, related to time consuming data 

collection process and the complexity of monitoring large inaccessible sand areas. 

2. The classification time series analysis of multi-temporal optical satellite images 

provided a comprehensive detection observation of the areal changes of sand 

dunes. This technique can be used as a preliminary step for investigating the 

activity of sand dunes in large study areas.   

3. The individual dune detection tool (SET) performed very well in detecting individual 

dune movement. The tool showed good competency with simple movement in non-

complex dune fields with smoothed edges and separated dunes. However, it is 

observed that all the points in the primary dune point location were assigned to the 

nearest dune point in the secondary location of the dune, though some points were 
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assigned to the same point in the secondary dune location, which has resulted in 

some gaps in the displacement calculation. 

4. From the sand encroachment tool experiments, it can be understood that using 

higher spatial resolution images would result in better land cover classification, 

distinguishing between the different land cover types, which will have a significant 

impact on precisely measuring the changes of sand dunes over a certain period. 

5. SAR offset tracking computes the two components of the dune displacement in the 

azimuth and range directions allowing the detection of the direction of dune 

displacement. These results can be used to establish a relationship between the 

movement of the dunes and the influencing factors.  

6. Multi-temporal Airborne LiDAR DTMs demonstrated high capability in monitoring 

sand dunes both horizontally and vertically, providing the rate of horizontal and 

vertical dunes in addition to the volumetric changes of the dunes. 

7. Sand movement can occur on daily basis and even over a few hours, therefore high 

temporal resolution data must be used to ensure an accurate monitoring process.  

8. Sand movement can be observed both horizontally and vertically. However, there 

is a limited understanding of the vertical movement of the dunes, with most 

researchers focusing their work only on studying the horizontal movement of the 

dunes. This can be linked to the limited availability of multi-temporal elevation data 

in most desert regions.  

9. Determining the impact of each influencing factor on dune movement requires a 

consistent monitoring process associated with accurately measuring the dynamic 

behaviour of each influencing factor.  

10. The variation in wind components during different weather seasons results in 

drifting sand dunes in different directions. 

11. Vegetation is considered to be an effective stabiliser of dune movement. Areas with 

vegetation have a slower rate of horizontal dune movement, however, on the other 

hand, vegetation contributes to accumulation and hence the vertical growth of the 

dunes. 

12. Topography has a significant impact on diverting and shaping sand dunes.  

13. The remote sensing time series analysis provides risk maps that identify areas 

exposed to high degrees of sand drifting. This is considered an important input for 

decision making, supporting the planning of local and regional projects. 

14. Some researchers mix the desertification and sand movement phenomena when 

interpreting the advancement of the desert. The two phenomena are distinctive, 

though both contribute to the expansion of the desert.  
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7.5.2 Challenges  

1. One of the common challenges when monitoring sand dunes using remote sensing 

techniques is the limited availability of topographical maps needed for validation, 

especially in desert areas. 

2. Digital terrain models are the optimum type of data for monitoring sand dune 

movement as both the horizontal and vertical motion of the dunes can be detected. 

However, the limited availability of these data poses a major challenge. 

3. Generating digital surface models of sand dunes using optical imagery to 

understand the vertical movement of the dunes is a real challenge.  

4. Generating digital elevation models for active sand dunes using InSAR could be a 

challenge due to the rapid changes of the dunes.  

5. The collection of training samples for image classification is also a challenge, 

especially in remote access areas.  

6. The individual dune detection SET tool requires more development for the 

computation of the displacement and direction of movement. This can be achieved 

by fixing the mixed point issue and restricting the distance radius search based on 

pervious knowledge of the expected movement between corresponding points. The 

Near tool works on providing the distance and proximity information between the 

primary dune point and the closest point on the secondary dune, which results in 

multiple points in the primary dune to one point in the secondary point. This could 

be resolved by restricting the connection to only one point on each dune point 

dataset.  

7. Interpreting the horizontal movement of the inner dunes in a connected complex 

dune field is difficult as all the inner dunes are one joined unit; nevertheless, the 

vertical elevation changes can be easily seen and interpreted. 

8. For accurate prediction of the dune movement, the impact of the influencing factors 

must be clearly distinguished, and this is not an easy task.  

9. Distinguishing the impact of sand grain size from remote sensing data requires a 

thorough investigation. 

7.6 Future work and Recommendations 

1. Develop an automated integrated method based on SAR offset tracking time series 

for the detection of horizontal sand movement integrated with DInSAR time series 

to detect the vertical sand dune movement.  

2. Carry out comparative research to investigate the use of SAR and optical pixel 

offset to monitor the horizontal sand dune movement using e.g. COSI-Corr and 

SNAP. 
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3. Investigate different types of SAR images (i.e. P, L, X microwave bands) and 

different modes (i.e. impact of different polarization, impact of incidence angle) to 

optimize the best suitable technique for monitoring sand dune changes. 

4. Investigate the use of historical aerial photographs and drone imagery to monitor 

the movement of sand dunes. This type of data can be valuable in providing a high 

level of detail about the dunes and allows the generation of digital terrain models 

that can be utilized to assess and map the geomorphological changes of the dunes.  

5. Carry out geomorphological analysis to understand the dynamics of the dunes in 

remote inaccessible desert areas, in the Sahara or Rub Elkhali. This can contribute 

to supporting the regional mega projects in northern Africa, distinguishing areas 

vulnerable to sand movement and therefore supporting optimum planning for the 

success of reforestation projects in the region.  

6. Assess projects to determine the impact of sand movement on river channels, 

irrigational canals, crop fields and archaeological sites.  

7. Carry out investigations on other dune fields with different dune characteristics and 

geomorphology (e.g. Namibia dunes, Rub Elkhali dunes, etc.). 

8. With the latest advancement in remote sensing and cloud computing services, there 

is a great opportunity to develop time series analysis geospatial tools that can 

provide real time and accurate observations of the movement of the dunes. This 

can allow also for the development of geoprocessing tools used to update the sand 

sea map of the world.  
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APPENDICES 

 

Figure S 1. Second year poster competition, Engineering research showcase May 2020. 
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Figure S 2. Average displacement for Dune Fields 1,2 and 3 over the study period (four month) for 
each offset image. 

 

 
Figure S 3. East and North cumulative displacement plots for each dune field, SAR offset tracking 
case study. 
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Figure S 4. Displacements Rose for dune fields 1,2 and 3 for the period between 4th June and 14th 
October 2017, SAR offset tracking case study. 
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Figure S 5. Pearson Correlation Analysis for the average East and North displacement compared to 
the average U and V wind, SAR offset tracking case study. 
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Figure S 6. Zone A DTM of Difference (DoD) Maps, Formby case study. 
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Figure S 7. Zone B DTM of Difference (DoD) Maps, Formby case study. 
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Figure S 8. Zone C DTM of Difference (DoD) Maps, Formby case study. 
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Figure S 9. Zone D DTM of Difference (DoD) Maps, Formby case study. 
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Figure S 10. Zone E DTM of Difference (DoD) Maps, Formby case study. 
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Figure S 11. Selected cross sections (CS15, CS40, CS55), (CS65, CS88, CS100), (CS110, CS117, 

CS125), (CS135, CS155, CS185), (CS195, CS215, CS235) from zone A, B, C, D, and E, 
respectively, that reflect the profiles changes of the beach and dunes between 1999 and 2020 in 

the north, middle and south sections of each zone. Formby case study. 
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Multitemporal image classification code written with JavaScript in Google Earth 
Engine to automate sand movement time series analysis processing using 

machine learning in chapter 3:   
 

/////////////////////////////////////////////////////////////////////////// 

// Define the study area 

/////////////////////////////////////////////////////////////////////////// 

var Study_Area = ee.FeatureCollection('projects/ee-

ahmedmahmoud/assets/shapefiles/Study_Area'); 

Study_Area = Study_Area.geometry(); 

Map.centerObject(Study_Area); 

Map.addLayer(Study_Area, {color: 'yellow'}, 'Study_Area'); 

/////////////////////////////////////////////////////////////////////////// 

//Collect the Sentinel 2 Multi spectral instrument L2A images between 

December 2018 to December 2021 

/////////////////////////////////////////////////////////////////////////// 

var SenImageCollection = ee.ImageCollection("COPERNICUS/S2_SR") 

                    .filterBounds(rio) 

                    .filterDate('2018-12-01', '2021-12-31') 

                    .select('B[1-8]') 

                    .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE',1)) 

                    .map(function(image){return image.clip(Study_Area)}); 

print('SenImageCollection', SenImageCollection);  

/////////////////////////////////////////////////////////////////////////// 

// Image Visualizing 

/////////////////////////////////////////////////////////////////////////// 

// Visualzation of a single image 

var listOfimages = SenImageCollection.toList(SenImageCollection.size()); 

Map.addLayer(ee.Image(listOfimages.get(0)), {bands: ['B8', 'B3', 'B2'], 

min: 0, max: 3000}); 

Map.addLayer(ee.Image(listOfimages.get(70)), {bands: ['B8', 'B3', 'B2'], 

min: 0, max: 3000}); 

Map.addLayer(ee.Image(listOfimages.get(100)), {bands: ['B8', 'B3', 'B2'], 

min: 0, max: 3000}); 

// Visualization of all the images  

var listOfimages = SenImageCollection.toList(SenImageCollection.size()); 

var len = listOfimages.size(); 

len.evaluate(function(l) { 

  for (var i=0; i < l; i++) { 

    var image = ee.Image(listOfimages.get(i)); 

    Map.addLayer(image, {bands: ['B4', 'B3', 'B2'], min: 0.0, max: 0.3}, 

'image-'+i.toString()); 

  }  

}); 

/////////////////////////////////////////////////////////////////////////// 

// Get the list of the image acquisition dates 

/////////////////////////////////////////////////////////////////////////// 

var ImageDates = SenImageCollection.map(function(image){ 

    return ee.Feature(null, {'date': image.date().format('YYYY-MM-dd'), 

'id': image.id()}); 

}) 

.distinct('date') 

.aggregate_array('date'); 

print ('ImageDates', ImageDates); 

/////////////////////////////////////////////////////////////////////////// 

// Statistics of the cloud pixel percentage in the image collection  

/////////////////////////////////////////////////////////////////////////// 

var CloudCoverageStats = 

SenImageCollection.aggregate_stats('CLOUDY_PIXEL_PERCENTAGE'); 

print('Cloud Coverage stats:', CloudCoverageStats); 

/////////////////////////////////////////////////////////////////////////// 
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// Visualization parameters for the calssification legend 

/////////////////////////////////////////////////////////////////////////// 

var class_vis = {min:0, max: 4,  

palette:['F7B83F', '146E04', '071AC7', 'A0A0A5','AB6106']}; 

///////////////////////////////////////////////////////////////////////////

////////////////////////// 

// Create RGB visualization images to use as animation frames. 

var rgbVis = SenImageCollection.map(function(image) { 

  return image.visualize(class_vis); 

});   

// Define GIF visualization parameters. 

var gifParams = { 

  'region': Study_Area, 

  'dimensions': 300, 

  'crs': 'EPSG:32636', 

  'framesPerSecond': 5 

}; 

// Render the GIF animation in the console. 

print(ui.Thumbnail(rgbVis, gifParams)); 

/////////////////////////////////////////////////////////////////////////// 

// Merged the training samples into one feature collection 

/////////////////////////////////////////////////////////////////////////// 

var training_samples = SandClass_points.merge(VegetationClass_points) 

                      .merge(WaterClass_points) 

                      .merge(UrbanClass_points).merge(RockyClass_points); 

print('training samples dataset', training_samples); 

var testsamples = SandClass_testpoints 

                  .merge(VegetationClass_testpoints) 

                  .merge(WaterClass_testpoints) 

                  .merge(UrbanClass_testpoints) 

                  .merge(RockyClass_testpoints); 

print('test samples dataset', testsamples);                  

/////////////////////////////////////////////////////////////////////////// 

//Train the Random Forest classifier and classify the image collection  

/////////////////////////////////////////////////////////////////////////// 

var bands = ['B2', 'B3', 'B4', 'B8']; 

function RFclassification(image){ 

  var classification_training_samples = 

image.select(bands).sampleRegions({collection:training_samples, 

    properties: ['landcover'], 

    scale: 10 

}); 

var RFtrained_classifier = 

ee.Classifier.smileRandomForest(100).train(classification_training_samples, 

'landcover', bands); 

var RFclassified_image = 

image.select(bands).classify(RFtrained_classifier); 

return RFclassified_image; 

} 

var RFclassified_imageCollection = 

SenImageCollection.map(RFclassification); 

print('RFclassified_imageCollection', RFclassified_imageCollection); 

var RFclassified_imageCollectionlist = 

RFclassified_imageCollection.toList(RFclassified_imageCollection.size()); 

print('RFclassified_imageCollectionlist', 

RFclassified_imageCollectionlist); 

Map.centerObject(Study_Area, 8); 

Map.addLayer(ee.Image(RFclassified_imageCollectionlist.get(58)), class_vis 

, 'classification0'); 

/////////////////////////////////////////////////////////////////////////// 



166 

 

// Calculate the area for each land cover class from all classification 

images 

// Plot a chart to show the time series for area changes in each class 

/////////////////////////////////////////////////////////////////////////// 

var RFClassareas = RFclassified_imageCollectionlist.map(areaByClass); 

print('RFClassareas', RFClassareas); 

var chart = ui.Chart.feature.byFeature(RFClassareas) 

  .setChartType('LineChart') 

  .setOptions(({ 

    hAxis: { 

      title: 'Date', titleTextStyle: {italic: false, bold: true}}, 

    vAxis: { 

      title: 'Area of Classification (sq km)', titleTextStyle: {italic: 

false, bold: true} 

    }, 

    colors:['AB6106', 'A0A0A5', '071AC7', 'F7B83F', '146E04'] 

    })); 

print(chart); 

// This part of the code (how-to-automate-calculating-area) has been 

modified after (Daniel Wiell, 2020) 

// https://gis.stackexchange.com/users/154371/daniel-wiell?tab=profile 

// https://code.earthengine.google.com/d20512d31f5d46d5d9302000ce86bc28 

// https://gis.stackexchange.com/questions/361464/google-earth-engine-how-

to-automate-calculating-area-for-each-class-for-each-im/361486#361486 

function areaByClass(image) {   

  var classNames = ee.List(['Sand', 'Vegetation', 'Water', 'Urban', 

'Rocky']); 

  var groups = ee.Image.pixelArea().addBands(image) 

    .reduceRegion({  

      reducer: ee.Reducer.sum().group({  

        groupField: 1, groupName: 'Class_id'}),  

      geometry: Study_Area,  

      scale: 10, 

      bestEffort: true}).get('groups'); 

  var areaByClass = ee.Dictionary( 

    ee.List(groups).map(function (AreaDic) { 

    var AreaDic = ee.Dictionary(AreaDic) 

      return [ 

        classNames.get(AreaDic.getNumber('Class_id')), 

        AreaDic.getNumber('sum').divide(1e6) // square km  

      ]; 

      }).flatten()); 

    return ee.Feature(null, areaByClass) 

  } 

/////////////////////////////////////////////////////////////////////////// 

// Create RGB visualization classification images to use as animation 

frames 

/////////////////////////////////////////////////////////////////////////// 

var rgbVis2 = RFclassified_imageCollection.map(function(RFclassified_image) 

{ 

  return RFclassified_image.visualize(class_vis); 

});   

// Define GIF visualization parameters. 

var gifParams2 = { 

  'region': Study_Area, 

  'dimensions': 300, 

  'crs': 'EPSG:32636', 

  'framesPerSecond': 1 

}; 

// Print the GIF URL to the console. 

print(rgbVis2.getVideoThumbURL(gifParams2)); 
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// Render the GIF animation in the console. 

// print(ui.Thumbnail(rgbVis, gifParams)); 

// Define arguments for the getFilmstripThumbURL function parameters. 

var filmArgs = { 

  dimensions: 128, 

  region: Study_Area, 

  crs: 'EPSG:32636' 

  }; 

// Print a URL that will produce a filmstrip when accessed. 

print(rgbVis2.getFilmstripThumbURL(filmArgs)); 

/////////////////////////////////////////////////////////////////////////// 

//Train the RF classifier using the test samples and RF classified results 

for accuracy validation 

// Compute confusion matrix and kappa coefficient to assess the accuracy of 

RF classifier  

// and validate the classification results using the test samples 

// This part of the code is written to validate the classified images 

individually 

/////////////////////////////////////////////////////////////////////////// 

var RFvalidation_test_samples = 

(ee.Image(RFclassified_imageCollectionlist.get(110))).sampleRegions({ 

  collection: testsamples, 

  properties: ['landcover'], 

  scale: 10 

}); 

var RFvalidation_classifier = 

ee.Classifier.smileRandomForest(100).train(RFvalidation_test_samples, 

'landcover'); 

var RFvalidation_image = 

(ee.Image(RFclassified_imageCollectionlist.get(110))).classify(RFvalidation

_classifier); 

print('RF valdiation dataset', RFvalidation_test_samples); 

var RFtestaccuracy = 

RFvalidation_test_samples.errorMatrix('landcover','classification'); 

print('RFvalidation error matrix:', RFtestaccuracy); 

print('RFvalidation overall accuracy:', RFtestaccuracy.accuracy()); 

//Export the RF confusion error matrix  

var RFconfusionmatrix20211231 = ee.Feature(null, 

{matrix:RFtestaccuracy.array()}); 

Export.table.toDrive({ 

  collection: ee.FeatureCollection(RFconfusionmatrix20211231), 

  description: 'RFconfusionmatrix20211231', 

  fileFormat: 'CSV' 

}); 

// Compute the kappa coefficient for RF classification 

var RFkappa = RFtestaccuracy.kappa(); 

print('RFkappa', RFkappa); 

//////////////////////////////////////////////////////////// 

// Export classification maps 

//////////////////////////////////////////////////////////// 

Export.image.toDrive({ 

  image: ee.Image(RFclassified_imageCollectionlist.get(57)), 

  description: 'ClassifiedImage14072020', 

  folder: 'GEE_Exports', 

  region: Study_Area, 

  scale: 10, 

  maxPixels: 1e12 

}); 

/////////////////////////////////////////////////////////////////////////// 

// Export the training samples and test validation datasets  

/////////////////////////////////////////////////////////////////////////// 
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Export.table.toDrive({ 

  collection: training_samples, 

  description: 'training_samples', 

  fileFormat: 'shp' 

}); 

// Export the test samples and test validation data  

Export.table.toDrive({ 

  collection: testsamples, 

  description: 'testsamples', 

  fileFormat: 'shp' 

}); 

///////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////// 

// Classification using the Support Vector Machine 

///////////////////////////////////////////////////////////////////////////

/////////////////////////////////////////////////////////////////////////// 

function classification(image){ 

  var classification_training_samples = 

image.select(bands).sampleRegions({collection:training_samples, 

    properties: ['landcover'], 

    scale: 10 

}); 

var SVMtrained_classifier = ee.Classifier.libsvm({ 

    kernelType: 'LINEAR', 

    gamma: null, 

    cost: 0.2 

}).train(classification_training_samples, 'landcover', bands); 

var SVMclassified_image = 

image.select(bands).classify(SVMtrained_classifier); 

return SVMclassified_image; 

} 

var SVMclassified_imageCollection = SenImageCollection.map(classification); 

print('SVMclassified_imageCollection', SVMclassified_imageCollection); 

var SVMclassified_imageCollectionlist = 

SVMclassified_imageCollection.toList(SVMclassified_imageCollection.size()); 

print('SVMclassified_imageCollectionlist', 

SVMclassified_imageCollectionlist); 

Map.centerObject(Study_Area, 8); 

Map.addLayer(ee.Image(SVMclassified_imageCollectionlist.get(11)), class_vis 

, 'classification11'); 

Map.addLayer(ee.Image(SVMclassified_imageCollectionlist.get(18)), class_vis 

, 'classification18'); 

Map.addLayer(ee.Image(SVMclassified_imageCollectionlist.get(40)), class_vis 

, 'classification40'); 

Map.addLayer(ee.Image(SVMclassified_imageCollectionlist.get(46)), class_vis 

, 'classification46'); 

Map.addLayer(ee.Image(SVMclassified_imageCollectionlist.get(60)), class_vis 

, 'classification60'); 

/////////////////////////////////////////////////////////////////////////// 

// Calculate the area for each land cover class from all classification 

images 

// The output here is a list table that contains the areas sum for each 

class from all the classification images 

// In addition to a line chart that shows the changes over time 

/////////////////////////////////////////////////////////////////////////// 

function classAreaSum(SVMclassified_image){ 

var imagecalssesarea = 

ee.Image.pixelArea().addBands(SVMclassified_image).reduceRegion({ 

  reducer:ee.Reducer.sum().group({ 

    groupField:1, 

    groupName:'Class_id'}), 
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    geometry: Study_Area, 

    scale: 10, 

    bestEffort: true}); 

  return imagecalssesarea; 

} 

var Areaclassified_imagelist = 

SVMclassified_imageCollectionlist.map(classAreaSum); 

print('Area Table in sq.m', Areaclassified_imagelist); 

// Plot a chart to show the time series of area changes in each class 

var Classareas = SVMclassified_imageCollectionlist.map(areaByClass); 

print('Classareas', Classareas); 

var chart = ui.Chart.feature.byFeature(Classareas) 

  .setChartType('LineChart') 

  .setOptions(({ 

    hAxis: { 

      title: 'Date', titleTextStyle: {italic: false, bold: true}}, 

    vAxis: { 

      title: 'Area of Classification (sq km)', titleTextStyle: {italic: 

false, bold: true} 

    }, 

    colors:['AB6106', 'A0A0A5', '071AC7', 'F7B83F', '146E04'] 

    })); 

print(chart); 

function areaByClass(image) {   

  var classNames = ee.List(['Sand', 'Vegetation', 'Water', 'Urban', 

'Rocky']); 

  var groups = ee.Image.pixelArea().addBands(image) 

    .reduceRegion({  

      reducer: ee.Reducer.sum().group({  

        groupField: 1, groupName: 'Class_id'}),  

      geometry: Study_Area,  

      scale: 10, 

      bestEffort: true}).get('groups'); 

  var areaByClass = ee.Dictionary( 

    ee.List(groups).map(function (AreaDic) { 

    var AreaDic = ee.Dictionary(AreaDic) 

      return [ 

        classNames.get(AreaDic.getNumber('Class_id')), 

        AreaDic.getNumber('sum').divide(1e6) // square km  

      ]; 

      }).flatten()); 

    return ee.Feature(null, areaByClass) 

  } 

Export.table.toDrive({ 

  collection: Classareas, 

  description: 'Classareas', 

  fileFormat: 'CSV' 

}); 

///////////////////////////////////////////////////////////// 

// Create RGB visualization images to use as animation frames 

///////////////////////////////////////////////////////////// 

var rgbVis = 

SVMclassified_imageCollection.map(function(SVMclassified_image) { 

  return SVMclassified_image.visualize(class_vis); 

});   

// Define GIF visualization parameters. 

var gifParams = { 

  'region': Study_Area, 

  'dimensions': 300, 

  'crs': 'EPSG:32636', 

  'framesPerSecond': 1 
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}; 

// Print the GIF URL to the console. 

print(rgbVis.getVideoThumbURL(gifParams)); 

// Render the GIF animation in the console. 

// print(ui.Thumbnail(rgbVis, gifParams)); 

// Define arguments for the getFilmstripThumbURL function parameters. 

var filmArgs = { 

  dimensions: 128, 

  region: Study_Area, 

  crs: 'EPSG:32636' 

  }; 

// Print a URL that will produce a filmstrip when accessed. 

print(rgbVis.getFilmstripThumbURL(filmArgs)); 

/////////////////////////////////////////////////////////// 

// Export.table.toDrive({ 

//   collection: AreasSumClassified, 

//   description: 'AreasSumClassified', 

//   fileFormat: 'CSV' 

// }); 

/////////////////////////////////////////////////////////////////////////// 

// Compute confusion matrix and kappa coefficient to assess the accuracy of 

SVM classifier  

// and validate the SVM classification results using test samples 

/////////////////////////////////////////////////////////////////////////// 

var SVMvalidation_test_samples = 

(ee.Image(SVMclassified_imageCollectionlist.get(0))).sampleRegions({ 

  collection: testsamples, 

  properties: ['landcover'], 

  scale: 10 

}); 

//Classify the test samples based on the SVM classified results to check 

the classification accuracy  

var SVMvalidation_classifier = ee.Classifier.libsvm({ 

    kernelType: 'LINEAR', 

    gamma: null, 

    cost: 0.2 

}).train(SVMvalidation_test_samples, 'landcover'); 

var SVMvalidation_image = 

(ee.Image(SVMclassified_imageCollectionlist.get(0))).classify(SVMvalidation

_classifier); 

print('SVM validation dataset', SVMvalidation_test_samples); 

var SVMtestaccuracy = 

SVMvalidation_test_samples.errorMatrix('landcover','classification'); 

print('SVMvalidation error matrix:', SVMtestaccuracy); 

print('SVMvalidation overall accuracy:', SVMtestaccuracy.accuracy()); 

//Export the SVM confusion error matrix  

var SVMconfusionmatrix20211231 = ee.Feature(null, 

{matrix:SVMtestaccuracy.array()}); 

Export.table.toDrive({ 

  collection: ee.FeatureCollection(SVMconfusionmatrix20211231), 

  description: 'SVMconfusionmatrix20211231', 

  fileFormat: 'CSV' 

}); 

// Compute the kappa for the SVM classification 

var SVMkappa = SVMtestaccuracy.kappa(); 

print('SVMkappa', SVMkappa); 

////////////////////////////////////////////////// 

// Calculate image differencing between two dates 

////////////////////////////////////////////////// 

var image1 = (ee.Image(listOfimages.get(19)).select(['B8'])); 

var image2 = (ee.Image(listOfimages.get(38)).select(['B8'])); 
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var imageDiff = image1.subtract(image2); 

print('imageDiff', imageDiff); 

Map.addLayer(imageDiff, {min: 0, max: 3000}); 

//////////////////////////////////////////////////////////// 

// Export SVM classification maps 

/////////////////////////////////////////////////////////// 

Export.image.toDrive({ 

  image: ee.Image(SVMclassified_imageCollectionlist.get(93)), 

  description: 'SVMClassifiedImage10052021', 

  folder: 'GEE_Exports', 

  region: Study_Area, 

  scale: 10, 

  maxPixels: 1e12 

}); 

// //////////////////////////////////////////////////////// 

// // Export image differencing maps 

////////////////////////////////////////////////////////// 

Export.image.toDrive({ 

  image: imageDiff, 

  description: 'ImageDiff10072019_15022019', 

  folder: 'GEE_Exports', 

  region: Study_Area, 

  scale: 10, 

  maxPixels: 1e12 

}); 

//////////////////////////////////////////////////// 

// // Export an image from the image collection 

//////////////////////////////////////////////////// 

Export.image.toDrive({ 

  image: (ee.Image(listOfimages.get(56)).select(['B8','B4','B3','B2'])), 

  description: 'Image09072020', 

  folder: 'GEE_Exports', 

  region: Study_Area, 

  scale: 10, 

  maxPixels: 1e12 

}); 

/////////////////////////////////////////////////////////////////////////// 

// Create RGB visualization for the image collection  

/////////////////////////////////////////////////////////////////////////// 

var rgbVis3 = SenImageCollection.map(function(image){ 

    return image.visualize(class_vis); 

});   

// Define GIF visualization parameters. 

var gifParams3 = { 

  'region': Study_Area, 

  'dimensions': 300, 

  'crs': 'EPSG:32636', 

  'framesPerSecond': 1 

}; 

// Print the GIF URL to the console. 

// print(rgbVis3.getVideoThumbURL(gifParams3)); 

// Render the GIF animation in the console. 

print(ui.Thumbnail(rgbVis3, gifParams3)); 

// Define arguments for the getFilmstripThumbURL function parameters. 

var filmArgs = { 

  dimensions: 128, 

  region: Study_Area, 

  crs: 'EPSG:32636' 

  }; 

// // Print a URL that will produce a filmstrip when accessed. 

// print(rgbVis3.getFilmstripThumbURL(filmArgs)); 
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