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Abstract

A Euclidean path integral over matrix Dirac operators associated to fuzzy spaces
is investigated using analytical and numerical tools of random matrix theory. A
numerical library for handling Monte Carlo integration of fuzzy Dirac operators
is written and tested. The random matrix theory arising from the simplest class
of fuzzy Dirac operators is solved exactly using the theory of Riemann-Hilbert
problems, and the results are confirmed numerically. For higher classes of Dirac
operators, where integration is extended over many Hermitian matrices, various
local minima of the action are found by solving the equations of motion. Among
others, su(2) solutions are shown to exist, and strong evidence is given of their
realization in the asymptotic regime of the random model. Numerical data is
collected in the vicinity of phase transitions occurring in various models, and it
is shown how in certain cases they can be interpreted as transitions between a
commutative and a non-commutative regime. Finally, a link is established between
the action of fuzzy Dirac operators and Yang-Mills matrix models.
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Introduction

The primary focus of this thesis is the numerical simulation of certain random
matrix models arising from the Dirac operators of fuzzy spaces.
Fuzzy spaces are physically-motivated objects rooted in Alain Connes’ theory of
non-commutative geometry [1]. The general idea behind fuzzy spaces is that,
just as non-commutativity between position and momentum marks the separation
between classical and quantum mechanics, extending non-commutativity to space-
time itself might help achieving a fundamental theory of quantum gravity that has
general relativity as its commutative limit.
The details of the mathematical structure of fuzzy spaces and the applications of
non-commutative geometry to physics are left for Chapter 1. To help the discus-
sion one could take a physics-agnostic approach at first and regard the study just
as a collection of random multi-matrix models.
Following this philosophy, consider a random matrix model for a Hermitian finite-
dimensional operator D, called Dirac operator, defined by the partition function:

Z ∝
∫
e−S[D] dD (1)

where S[D] is an action functional of D. Throughout this thesis, S[D] is taken to
be:

S[D] = TrD4 + g2 TrD2 (2)

for g2 < 0. If D were a free, unconstrained Hermitian matrix, an exact solution
to the model would be already available in the famous work by Brezin, Itzykson,
Parisi and Zuber [2]. Importantly however, D has a very precise structure (to be
specified later on) in terms of a certain number of arbitrary Hermitian submatrices
that will be collectively denoted {Mi}. The exact number of these free submatrices
depends on a choice of integer pair (p, q), which in the rest of this thesis will serve
as a proxy for referring to the various models object of study.
The partition function can then be rewritten as:

Z ∝
∫
e−S[Mi]

∏
i

dMi (3)

where dMi this time is the usual measure on Hermitian matrices:

dMi =
∏
a<b

dRe(Mi)ab d Im(Mi)ab
∏
a

dRe(Mi)aa (4)
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and S[Mi] is in general a double-trace potential with quadratic and quartic terms:

S[Mi] =
∑
i,j,k,l

[
aTrMiMjMkMl + b(TrMi)(TrMjMkMl) + c(TrMiMj)(TrMkMl)

]
+ g2

∑
i

[
dTrMiMi + e(TrMi)(TrMi)

]
(5)

for some constants a, b, c, d, e.
To the author’s knowledge there is no literature to date for solving these models
exactly, except for the simplest ones with (p, q) = (1, 0) and (0, 1). With D (and
hence Mi) being finite-dimensional, however, numerical integration using Markov
chain Monte Carlo is possible. Given an observable f(D), the aim of the program
is to calculate numerically expectation values of the form:

〈f〉 =
1

Z

∫
f(D)e−S[D] dD (6)

via their Monte Carlo estimate:

〈f〉 =
1

Z

∫
f(D)e−S[D] dD ≈ 1

N

N∑
i=1

f(Di) (7)

where Di are Dirac operators sampled from the measure:

1

Z
e−S[D] dD. (8)

This should be seen as the simplest way to define a Euclidean path integral over
fuzzy spaces and study them non-perturbatively. Approaches to quantum gravity
involving numerical integration over fluctuating geometries have been attempted
before: notable examples are causal dynamical triangulations [3] [4] and causal
sets [5] [6]. The idea to do so for fuzzy spaces is more recent and only a few
such studies are available at the moment of writing. A brief overview of them is
presented next.

Previous art

The idea to define a Euclidean path integral for fuzzy Dirac operators was put for-
ward by Barrett and Glaser in [7], where the first such numerical study appears.
The authors start from the axiomatic classification of type (p, q) Dirac operators
introduced in [8] to properly define a random matrix model based on fuzzy Dirac
operators. They observe that the Connes-Chamseddine spectral action (see Chap-
ter 1) is not suited for the model because the eigenvalues would just drift off to
infinity, and propose to explore a different action given by the trace of even powers
of the Dirac operator. The first and simplest choice for the action is:

S[D] = TrD2 (9)

where the eigenvalues feel a parabolic potential. The eigenvalue density of the
(1, 0) and (0, 1) Dirac operators, which are random matrix models involving just
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one Hermitian matrix, is solved for analytically, and the results are confirmed by
Metropolis Monte Carlo simulations. Higher types of Dirac operators give rise to
multi-matrix models, and even though all the matrices are decoupled from each
other and follow a Wigner semicircle law [9], the eigenvalue density of the Dirac
operator could not be solved for exactly. The obstruction to that can be seen from
the related problem that, given the eigenvalues of two Hermitian matrices, only a
certain set of inequalities in known for their sum [10]. Monte Carlo simulations
therefore remain the only tool available for the study of higher types even for
the simple quadratic potential. However, the quadratic potential alone does not
appear to be rich enough for the Dirac operators to display some Weyl-law-like
eigenvalue growth [11].
The more interesting case is when a quartic term is included:

S[D] = TrD4 + g2 TrD2 (10)

and the coupling g2 is negative. The potential then has a symmetry-breaking
shape and all the matrices interact non-trivially in fourth order terms. A phase
transition is observed in some of the models, and the spectrum of the Dirac oper-
ator at the phase transition is compared with that of a fuzzy sphere highlighting
their similarity. The paper focuses mostly on the spectrum of the Dirac operator
as a whole, which is the object that carries physical information and therefore the
natural place where physical intuition can guide the exploration. However, the
trace part of some of the submatrices is already identified as the relevant order
parameter for the transitions.
Subsequent work [12] looked in more detail at the (1, 1), (2, 0) and (1, 3) models,
with more precise Monte Carlo data. The (2, 0) model is the simplest one with a
very prominent phase transition, and for that reason it is a good starting point for
understanding higher types, while the (1, 3) model has an intriguing combination
of features: the random model displays a phase transition, and it is the natural
host for a fuzzy sphere of (KO-)dimension 2. Evidence is collected that the phase
transitions are at least second order for matrices of size up to 10× 10.
One of the key observations of the original study was that, by analogy with the
spectrum of commutative Dirac operators, random fuzzy models around phase
transitions might acquire some manifold-like properties. The reason has to do
with the particular scaling of the eigenvalues, whose growth encodes information
about the dimension of the space. This line of thought is pursued in [13], where
tools are developed to make sense of the usual notions of dimension and volume
in the case of fuzzy spaces. The spectral variance is introduced, a variation of the
concept of spectral dimension [14]. The spectral variance is an energy-dependent
measure of the dimension of a space, and it is shown to give reasonable estimates
of the dimension of the fuzzy sphere and fuzzy torus [15].
Alongside these numerical studies, the first fully analytical treatment of the sim-
plest Dirac operator in the quadratic plus quartic potential appeared in the work
of Khalkhali and Pagliaroli [16]. Using the theory outlined in [17], the authors are
able to solve for the density of states of the (1, 0) and (0, 1) Dirac operators. The
method, which will be described in detail in Chapter 4, casts the problem of finding
the equilibrium measure of a random matrix model into solving a Riemann-Hilbert
problem. The theory is generalized to the interacting potential of the quartic ac-
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tion by supplementing the treatment with a saddle point calculation. Ultimately,
the (1, 0) and (0, 1) Dirac operators are shown to behave identically, including
undergoing a phase transition at g2 = −5

√
2/2. The resulting eigenvalue densities

are plotted for various values of the coupling constant, but a numerical study to
support the calculation is not provided.

Structure of the thesis

The objective of this thesis is to develop numerical tools to perform Markov chain
Monte Carlo simulations of fuzzy spaces systematically and efficiently. A wide
range of models is studied, and random matrix theoretical methods are used when-
ever possible to predict or analyze the results. Much emphasis is put on the
submatrices Mi rather than the Dirac operator. Most parts should be generally
accessible to the random matrix theory community, as the physical background
is not necessary to follow the discussion, but the findings are hopefully of some
interest in numerical quantum gravity. Chapters 3 to 6 are original contributions,
as well as the second half of Chapter 2.
What follows is a summary of the content of each chapter.

Chapter 1: Non-commutative Geometry

The first part of Chapter 1 briefly sketches the historical development of non-
commutative geometry and its application to the action of the standard model.
Some technical details are given when necessary, but a more detailed overview of
the subject would be outside the scope of this work. Most of the material is taken
from the comprehensive book by Walter van Suijlekom [18], the original spectral
action paper by Alain Connes and Ali Chamseddine [19], and the review by Daniel
Kastler [20]. See also [21], written in anticipation of the spectral action paper, [22]
for the inclusion of neutrinos, and [23] for a modern treatment in the context of
quantum field theory.
The second half of the chapter is devoted to the definition of fuzzy spaces in terms
of finite real spectral triples as in [8]. The discussion is aimed at giving the general
form of a type (p, q) fuzzy Dirac operator, which is the central object of this thesis.
Every subsequent piece of calculation can be traced back to equation (1.15), which
should be kept in mind at all times.

Chapter 2: Markov chain Monte Carlo

Chapter 2 gives an introduction to Markov chains and the ergodic theorem. Markov
chains are the pillars on which most of the literature in importance sampling
Monte Carlo integration is based, spanning from classical subjects such as non-
perturbative quantum field theory [24] and random matrix models [25], all the way
to modern quantum gravity proposals. The discussion follows closely [26], which
was chosen for its clarity of exposition.
The two relevant Markov chain Monte Carlo algorithms for this thesis, Metropolis
[27] [28] and Hamiltonian [29] Monte Carlo, are first described in general terms
and then adapted to the special case of fuzzy spaces in the second part of the
chapter.
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For Metropolis this involves working out formulas for action differences of the type
S[D]−S[D′], where D and D′ are Dirac operators that differ by a single matrix en-
try. Hamiltonian Monte Carlo instead requires a formula for calculating the whole
action, i.e. powers of traces of the Dirac operator, and for matrix derivatives of
the action.
Terms in the action higher than quadratic order couple together all the degrees of
freedom of the Dirac operator, making the calculation non-trivial. Formulas for
actions with terms of order higher than four are not worked out explicitly, but a
general procedure for doing so is outlined.

Chapter 3: The RFL library

RFL (Random Fuzzy Library), an open source C++ library, was written in order
to facilitate the process of collecting Monte Carlo data for fuzzy Dirac operators.
It collects tools to automatically generate (p, q) Clifford modules and Dirac oper-
ators, and all the Monte Carlo formulas mentioned in the previous chapter.
Chapter 3 introduces the library with small code samples to showcase its function-
alities and a description of some algorithmic choices that were made. Hopefully,
researchers interested in pursuing this line of research in the future will find it a
useful guide.
As the complexity of a library increases it becomes harder and harder to avoid
bugs in the code. However, unit tests can be designed to ensure that the numerics
respect certain theoretical expectations and consequently minimize the risk of un-
wanted behavior. The results of such tests are reported in the second half of the
chapter, the most important being sanity checks regarding the calculation of the
action, action difference, and error scaling in Hamiltonian integration.

Chapter 4: One-matrix models

Type (1, 0) and (0, 1) fuzzy Dirac operators involve a single Hermitian matrix, but
the random matrix theory they give rise to is not a simple one and it had not been
studied analytically until very recently, when Khalkhali and Pagliaroli [16] found
a clever way of solving the models exactly using the theory of Riemann-Hilbert
problems [17].
In Chapter 4 Monte Carlo simulations of the models are performed in order to check
the agreement with the expected theoretical results. Although RFL is capable of
handling these models, it would have introduced a certain avoidable overhead
which is the price to pay for its generality. For this reason, a simpler Metropolis
code was written specifically for this study.
The Monte Carlo simulations are shown to be in disagreement with the results
of [16], more so for the (1, 0) model than the (0, 1). The rest of the chapter is
dedicated to the reconciliation of theory and numerics, which are then shown to
agree to an excellent extent.

Chapter 5: Two-matrix models

Dirac operators with p + q = 2 are studied in Chapter 5. These give rise to
two-matrix models for which an exact analytical solution is not known, nor is
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a general way of achieving it. The leading contribution to solutions with large
negative coupling constant, however, can be found with a relatively straightforward
stationary analysis. Imposing that first order variations of the action vanish results
in a system of scalar and matrix equations that can be solved in particular cases.
All solutions to the stationary equations involving involutory matrices are classified
in the first part of the chapter, and they are shown to be enough to explain the
Monte Carlo data of the (0, 2) and (1, 1) models. The remaining (2, 0) model is
then analyzed more in detail, as the data suggests that the stationary solutions
alone do not account for the full picture.
The first interesting feature of the (2, 0) model is the presence of a phase transition.
What is even more striking, however, is that a secondary phase transition sprouts
from the first one for large enough matrices. Arguments are then given for the
order of the two phase transitions, and a finite-size scaling analysis is attempted.

Chapter 6: Four-matrix models

A step further in complexity, the four distinct four-matrix models coming from
Dirac operators with p+ q = 3 are the subject Chapter 6. Finding exact solutions
does not get any easier in this case, and therefore a stationary equation analysis
is once again the only tool available.
These models have an incredibly rich landscape of stationary solutions. Some sim-
ple scalar solutions are found, as well as solutions involving involutory commuting
matrices. The most interesting aspect, however, is the existence of solutions where
the free matrices arrange themselves into n-dimensional irreducible representations
of su(2), a property shared by the Dirac operator of a fuzzy sphere.
Numerical data is shown for all four models, and the (0, 3) and (3, 0) types are
then analysed in more detail. The (0, 3) model is simulated up to very large nega-
tive values of the coupling constant, where it shows clear signs of being in a su(2)
phase. The (3, 0) model instead undergoes a phase transition which is marked by
scalar and matrix variables trading importance. Arguments are given for the order
of the transition and a finite-size scaling analysis is attempted.

Chapter 7: Miscellaneous topics

Chapter 7 deals with more speculative matters: ideas that were not explored in
detail but have the potential to become future lines of research.
A connection between the action of fuzzy Dirac operators and the action of Yang-
Mills matrix models is discussed, bridging the gap between two apparently unre-
lated matrix models for quantum gravity.
The concept of dual pair is introduced, which captures the way a Dirac operator
with fewer degrees of freedom can help understand the behavior of a more complex
one. This is related to the way the asymptotics of the (0, 2) and (0, 3) give infor-
mation on the small g2 behavior of the (2, 0) and (3, 0) respectively. The idea is
then applied to the (3, 1) and (1, 3) models, which are shown to fit the description
of a dual pair at least partially.
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Chapter 1

Non-Commutative Geometry

1.1 Early days of non-commutative geometry

The birth and development of non-commutative geometry was strongly influenced
by the standard model of particle physics. The critical observation was that the
information on the geodesic distance between two points on a manifold is entirely
contained in a differential operator D. This differential operator is a generalization
of the /∂ = γµ∂µ that appears in the Dirac equation for relativistic fermions, and
it is therefore known today as the Dirac operator.
More precisely, given a Riemannian spin manifold M with Dirac operator DM , the
distance between two points x and y is given by:

d(x, y) = sup
a∈C∞(M)

[
|a(x)− a(y)| : ||[DM , a]|| ≤ 1

]
.

Another intriguing fact is that the dimensionality of the manifold is recovered from
the asymptotic growth of the eigenvalues of DM .
Looking at DM in local coordinates

DM = −iγµ
(
∂µ −

1

4
Γbµaγ

aγb

)
one can see that many common objects of differential geometry are involved in the
structure of a Dirac operator on a manifold. A standard way to build DM given
a manifold is to define the Levi-Civita connection, lift it to a connection on the
spinor bundle, and compose it with Clifford multiplication [18].
The focal point of non-commutative geometry is to abstract away the fundamental
properties of a Dirac operator in order to build it from first principles rather than
known differential-geometric constructs. The axiomatization of Dirac operators
on manifolds culminated in a reconstruction theorem [30] establishing a complete
equivalence between compact Riemannian spin manifolds and an object known as
a commutative spectral triple. A commutative spectral triple is composed of a
commutative algebra A, which is the algebra of smooth functions on the manifold,
a Hilbert space H that carries a representation of A, and a self-adjoint operator
D in H that acts on the elements of A as a derivation.
This line of thought has proven extremely fruitful in that it allows a straight-
forward generalization (which actually predates the full reconstruction theorem)
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with deep implications for the standard model. One can allow the algebra A to be
non-commutative, thus defining a new kind of space that preserves all the usual
geometric data encoded in the Dirac operator, but that has no analogue as a man-
ifold. Moreover, the formalism easily accommodates composite objects formed by
products of spectral triples. Nowadays, it is generally accepted that the geomet-
ric structure of the standard model of particle physics is to be understood within
the non-commutative-geometric framework as an almost-commutative manifold:
a product between an underlying (commutative) space-time manifold and a finite
non-commutative internal space that gives rise to the whole Yang-Mills sector.
Historically the development of non-commutative geometry used the standard
model itself as a guide rather than the familiar setting of commutative manifolds.
Consider the following simple spectral triple:

A = C⊕ C
H = Cn ⊕ Cn

D =

(
0 M∗

M 0

)
(1.1)

where M is a n× n matrix and an element (u, v) ∈ A acts in H as 1u⊗ 1v. One
can write down a Yang-Mills-type action for the spectral triple which turns out to
be (|φ|2− 1)2, where φ is a complex scalar. Recognizing this as the typical double
well potential of the Higgs field opened up the possibility of deriving the bosonic
sector of the standard model on geometrical grounds.
Indeed early attempts in this direction brought Connes and Lott to a prescription
[31] where the full electroweak plus Higgs sector of the standard model was derived
from the algebra C⊕H, with H being the quaternions. The procedure, however,
produced the wrong U(1) hypercharges for the fermions. Rather remarkably, the
problem was solved by appending the chromodynamics sector in the form of ten-
soring the previous electroweak algebra with C ⊕M3(C) [20]. The Connes-Lott
model already contained most of the ingredients of modern non-commutative ge-
ometry. A later addition was the introduction of a real structure J , an anti-linear
operator that gives H the structure of a A-bimodule. Physically, the real structure
represents the charge conjugation operator.
Eventually, the Connes-Lott model would be superseded by a new prescription,
giving jointly the standard model and general relativity: the spectral action prin-
ciple.

1.2 The spectral action

The spectral action principle follows the time-honored tradition of deriving physi-
cal laws from symmetries. General relativity is built around the concept of invari-
ance under coordinate transformations, or diffeomorphism invariance, while the
standard model is defined by local invariance under the group SU(3) × SU(2) ×
U(1). Insofar as a theory of particle physics on curved space-time is consistent,
its group of invariance is the semi-direct product:

G = U o Diff(M) (1.2)
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where U = C∞(M,SU(3)× SU(2)× U(1)). In the language of non-commutative
geometry and spectral triples, these symmetries find a unified description in terms
of algebra automorphisms Aut(A), which seamlessly encompass both diffeomor-
phism invariance and gauge invariance.
The way to obtain jointly gravitation and the standard model is reminiscent of
a Kaluza-Klein theory. One takes the product between a commutative spectral
triple (describing the underlying manifold) and a finite non-commutative internal
space (that carries the Yang-Mills sector). This construction is called an almost-
commutative manifold. For a suitable choice of the almost-commutative manifold,
it is possible to write an action functional that depends on the spectrum of the
Dirac operator and that matches exactly with the Einstein-Hilbert plus Yang-Mills
action in a certain asymptotic limit. To better understand the construction it is
first necessary to introduce the concept of gauge group of the spectral triple (with
the related notion of inner automorphisms) and Morita self-equivalences.
The gauge group of the spectral triple is defined from the normal subgroup Int(A) ⊂
Aut(A) of inner automorphisms of the algebra, which are automorphisms αu of
the type αu(a) = uau∗, with uu∗ = u∗u = 1. Under an inner automorphism, a
Dirac operator D transforms as:

D 7→ UDU∗ (1.3)

where U = uJuJ−1 are identified with the elements of the gauge group. Inner
automorphisms are a purely non-commuative feature, as they are trivial for com-
mutative algebras. The correct internal non-commutative algebra whose inner
automorphisms give the standard model gauge group is:

AF = C⊕H⊕M3(C) (1.4)

although a further restriction on the sign of the determinant for the action of the
gauge group in the Hilbert space (the unimodular condition) is necessary to get the
SU(3) part right. The algebra A of the almost-commutative manifold describing
the standard model on curved space-time is then the tensor product between the
algebra of smooth functions AM and the finite internal algebra AF :

A = AM ⊗AF = C∞(M)⊗
(
C⊕H⊕M3(C)

)
. (1.5)

From (1.3) one can introduce a notion of unitary equivalence between spectral
triples, but in fact it proves useful to consider a generalization of this called Morita
self-equivalence [18]. Under Morita self-equivalences, a Dirac operator D trans-
forms as:

D 7→ Dω = D + ω + JωJ−1 (1.6)

where ω is of the form ω =
∑

i ai[D, bi], with ai, bi ∈ A. This is a generalization
of unitary equivalence because putting ω = u[D, u∗] gives back (1.3).
The spectral action principle requires the physical laws to be a spectral invariant,
i.e. to depend only on the spectrum of the Dirac operator. In this sense unitary
transformations of the type (1.3) describe the same physics. But the relevant Dirac
operator is the more general Dω of (1.6) obtained by perturbing D with Morita
self-equivalences.
It is possible to write both bosonic and fermionic invariants. The simplest bosonic
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invariant is the trace of some function of the Dirac operator:

Sb = Tr f

(
Dω

Λ

)
(1.7)

where Λ is a cutoff parameter that plays the role of a Planck’s length. The first
terms of the heath kernel expansion [32] of (1.7) give the Einstein-Hilbert action
and the action for the Yang-Mills bosons [19], higher terms being suppressed as
inverse powers of Λ. The bosons are identified with the inner perturbations of
(1.6), hence the importance of taking into account Morita self-equivalences. The
couplings between bosons and fermions are given instead by the following fermionic
spectral invariant:

Sf = 〈Jψ,Dωψ〉. (1.8)

It should be noted that the action is written in the Euclidean, as the formalism
makes use of a Hilbert space and therefore it does not accommodate indefinite
inner products. See [33] for a construction that addresses this issue.
Arguably, getting to write (1.7) and (1.8) requires some rather sophisticated math-
ematical machinery whose main features were only just outlined here. What should
be clear, however, is that it all follows from a few simple principles. This indicates
that non-commutative geometry is at the very least close to the real mathematical
structure governing high energy physics.

1.3 Finite real spectral triples and fuzzy spaces

Despite the remarkable success of non-commutative geometry in reproducing the
action of the standard model and gravitation, the framework does not add funda-
mental new physics. It does imply some relations between the coupling constants
(which led to a prediction, albeit inaccurate, of the Higgs’ mass [34]) and it im-
poses restrictions on physics beyond the standard model, but field quantization is
carried out only after the spectral action is unraveled, and the fundamental issues
of quantized gravity are still present. As it often happens, however, looking at a
problem from a different perspective might indicate the way forward.
A striking feature of the spectral triple of the almost-commutative manifold de-
scribed above is the very different nature of the two tensored algebras: the infinite-
dimensional algebra of smooth functions AM on one side, and the finite internal
algebra AF on the other. A possibility worth exploring is to replace the functions
on the manifold with a non-commutative analogue. Such spaces are generally re-
ferred to as fuzzy spaces, of which the fuzzy sphere is the most notable example
[35]. The idea is that the almost-commutative manifold would emerge as an effec-
tive description when integrating out high energies in a purely non-commutative
and finite theory.
The spectral triples associated to fuzzy spaces have been worked out in [8] from
the axioms of non-commutative geometry. Fuzzy spaces are a particular case of
the more general class of finite real spectral triples, whose definition is reported
here.

Definition 1. A finite real spectral triple (A,H, D; Γ, J) consists of:

1. An integer s modulo 8 called the KO-dimension
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s 0 1 2 3 4 5 6 7
ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 1 -1 1 1 1 -1 1

Table 1.1: Signs appearing in the definition of a real spectral triple for each KO-
dimension.

2. A finite dimensional Hilbert space H

3. A ∗-algebra A over R with a faithful representation (H, π)

4. A Hermitian operator D : H → H called the Dirac operator

5. A Hermitian operator Γ : H → H such that Γ2 = 1 called the chirality
operator

6. An anti-unitary operator J : H → H called the real structure

In addition, the above data must satisfy:

1. Γπ(a) = π(a)Γ for all a ∈ A

2. DΓ = −ΓD if s is even, DΓ = ΓD if s is odd

3. J2 = ε, JD = ε′DJ , JΓ = ε′′ΓJ with ε, ε′, ε′′ given in Table 1.1

4. [π(a), Jπ(b)J−1] = 0 for all a, b ∈ A

5. [[D, π(a)], Jπ(b)J−1] = 0 for all a, b ∈ A

This axiomatic structure imposes some restrictions on the general form a Dirac
operator can take, but there is still considerable freedom in a finite real spectral
triple. The specialization to fuzzy spaces is guided by the example of the fuzzy
sphere, for which a Dirac operator was proposed in [36]. The two main require-
ments are for A to be an algebra of matrices, like Mn(R), Mn(C) or Mn

2
(H), and

that there is the action of a Clifford algebra on spinors. The Hilbert space is then
of the form V ⊗Mn(C), where V is the spinor space and A acts as matrix multi-
plication in Mn(C).
Clifford algebras, and in particular their representation in terms of gamma matri-
ces, will be used extensively throughout. When an action will be built for fuzzy
Dirac operators, its structure will be entirely determined by trivial products of
gamma matrices (see Chapter 2, 5 and 6). Following the conventions of [8], con-
sider a diagonal matrix η with p occurrences of +1 and q occurrences of -1 on the
diagonal, and dimension p + q. A (p, q) Clifford module for η is a set of matrices
γ1, . . . , γp+q satisfying:

γaγb + γbγa = 2ηab. (1.9)

This implies that p gamma matrices square to +1, q gamma matrices square to -1,
and different gamma matrices anti-commute with each other. The most common
gamma matrices in the physics literature are the ones with p+ q = 4 appearing in
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the Dirac equation, where an extra matrix γ5 is defined as the ordered product of
γ1 to γ4. The equivalent of γ5 for a general (p, q) Clifford module is the chirality
operator γ, defined as:

γ = i
s(s+1)

2 γ1 . . . γp+q (1.10)

where s = (q − p) mod 8.
When V ' Ck as a vector space is equipped with the standard Hermitian inner
product (·, ·), one can define a real structure for the Clifford Module as an anti-
linear operator C : V → V such that:

1. C2 = ε

2. (Cv,Cw) = (w, v)

3. Cγa = ε′γaC

for the same signs ε, ε′ of Table 1.1.
The stage is now set to give the formal definition of fuzzy space.

Definition 2. Consider a type (p, q) Clifford module V with chirality operator γ,
Hermitian inner product (·, ·) and real structure C. A type (p, q) fuzzy space is a
finite real spectral triple such that:

1. s = (q − p) mod 8

2. A = Mn(R), Mn(C) or Mn
2
(H)

3. H = V ⊗Mn(C) with inner product 〈v ⊗m, v′ ⊗m′〉 := (v, v′) Trm∗m′

4. π(a)(v ⊗m) = v ⊗ am

5. Γ(v ⊗m) = γv ⊗m

6. J(v ⊗m) = Cv ⊗m∗

Notice that the algebra acts naturally as matrix multiplication on the left. The
right action is instead defined using the real structure:

(v ⊗m) / a := Jπ(a)∗J−1(v ⊗m) = v ⊗ma. (1.11)

The axioms for a real spectral triple impose constraints on the form a fuzzy Dirac
operator can take. In general the Dirac operator can be written as:

D = θ + ε′JθJ−1 (1.12)

with θ ∈ End(V )⊗ End(Mn(C)) of the form:

θ =
∑
i

ωi ⊗Xi (1.13)

the ωi being unordered odd products of gamma matrices. Using the commutation
relations between C and the gamma matrices, it follows thatD acts on the elements
of H as:

D(v ⊗m) =
∑
i

ωiv ⊗ (Xim+mX∗i ). (1.14)
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Since D is self-adjoint, ωi and Xi are either both Hermitian or both anti-Hermitian.
Therefore the Hermitian Xi act as anti-commutators, while the anti-Hermitian Xi

act as commutators. The most general Dirac operator for a fuzzy space then can
be written as:

D =
∑
i

αi ⊗ {Hi, ·}+
∑
j

τj ⊗ [Lj, ·] (1.15)

where αi are Hermitian odd products of gamma matrices, τj are anti-Hermitian
odd products of gamma matrices, Hi are Hermitian n × n matrices and Lj are
anti-Hermitian n× n matrices.
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Chapter 2

Markov chain Monte Carlo

2.1 Introduction

Markov chains are a powerful tool for sampling from arbitrarily complicated prob-
ability distributions.
The present work is concerned with the numerical study of random fuzzy spaces,
which boils down to the calculation of expectation values of observables over en-
sembles of Dirac operators:

〈f〉 =
1

Z

∫
f(D)e−S[D] dD (2.1)

where f is an observable, Z is a normalization constant such that 〈1〉 = 1, dD
is the Lebesgue measure on the vector space of Dirac operators, and S[D] is an
action functional. Throughout this work, the action will be taken to be:

S[D] = g2 TrD2 + TrD4 (2.2)

where g2 ∈ R is a coupling constant. Markov chains enter the picture when (2.1)
is replaced by its Monte Carlo estimate:

〈f〉 =
1

Z

∫
f(D)e−S[D] dD =

1

N

N∑
i=1

f(Di) +O

(
1√
N

)
(2.3)

where Di are Dirac operators sampled (using a Markov chain) from the measure:

1

Z
e−S[D] dD. (2.4)

In this chapter a rapid overview of the general theory of Markov chains is pre-
sented, together with two notable Markov chain Monte Carlo algorithms and their
implementation for fuzzy spaces.

2.2 General theory of Markov chains

In the language of Markov chains, we have a system that can be in one of many
possible states Ek (Dirac operators in this case). At each step of the chain, the
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system makes a transition from a state Ej to a state Ek with probability pjk.
If the initial state of the system is Ek0 with probability ak0 , then to a chain
Ek0 → Ek1 → . . .→ Ekn one can associate the probability:

P (Ek0 → Ek1 → . . .→ Ekn) = ak0 pk0k1 . . . pkn−1kn . (2.5)

This is a good definition of probability provided that:

1. ak ≥ 0 ∀k, pjk ≥ 0 ∀j, k;

2.
∑

k ak = 1 (it is always possible to start in some state);

3.
∑

k pjk = 1 ∀j (it is always possible to move from one state to some other
state).

In order to state and interpret the main theorem on which the theory of Markov
chains is based, it is useful to introduce the following notation:

1. the probability of making a transition from state Ej to state Ek in exactly

n steps will be denoted p
(n)
jk ;

2. the probability of the n-th state of the chain being Ek will be denoted a
(n)
k .

Note that a
(n)
k =

∑
j ajp

(n)
jk and it does not depend on the initial state j.

The following two definitions are also required.

Definition 3. A Markov chain is called irreducible if every state can be reached
from every other state, not necessarily in one step.

Definition 4. A state Ek is called periodic if it exists a positive integer t > 1 (the

period) such that p
(n)
kk = 0 unless n is a multiple of t. The state is called aperiodic

otherwise

The importance of Markov chains relies on the following theorem, a proof of which
can be found in [26]:

Theorem 1. Consider an irreducible and aperiodic Markov chain, defined by its
transition probabilities pjk and initial probabilities aj. If there exist uk ≥ 0 such
that

∑
k uk = 1 and uk =

∑
j ujpjk ∀k, then:

uk = lim
n→∞

p
(n)
jk ∀k. (2.6)

The set uk forms a discrete probability distribution called the invariant distri-
bution. The importance of this theorem comes from the following consideration.
The probability of making a transition to a state Ek at the n-th step is a

(n)
k . But,

according to (2.6):

a
(n)
k =

∑
j

ajp
(n)
jk →

∑
j

ajuk = uk. (2.7)

Therefore, for n large enough, the system will find itself in state Ek with probability
uk, regardless of the initial state of the chain.
In importance sampling the invariant distribution uk is known (equation (2.4) in
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this case), and suitable transition probabilities pjk need to be chosen so that uk is
reached. The common strategy is to rewrite the condition uk =

∑
j ujpjk in the

equivalent way: ∑
j

ukpkj =
∑
j

ujpjk ∀k (2.8)

and satisfy a stronger version called detailed balance:

ukpkj = ujpjk ∀j, k. (2.9)

Now factorize the transition probabilities into a proposal part tjk and an ac-
cept/reject part cjk:

pjk = tjkcjk (2.10)

where tjk is the probability of proposing a transition from Ej to Ek, and cjk is the
probability of accepting that transition. If the proposal probabilities are chosen
such that tjk = tkj (there is equal probability of proposing a transition and its
inverse), then the tjk cancel out in the detailed balance equation, which reads:

uk
uj

=
cjk
ckj

∀j, k. (2.11)

The two Markov chain Monte Carlo algorithms presented below (Metropolis and
Hamiltonian) are characterized by the same acceptance probability:

cjk = min

[
1,
uk
uj

]
(2.12)

but they differ in how transitions are proposed.

2.3 The Metropolis algorithm

For concreteness, imagine that the states are parametrized by a finite number of
real parameters (q1, . . . , qN) = q. This will be the case for the matrix models
considered in this thesis, where the parameters are real and imaginary part of
matrix entries. Fix a scale s ∈ R. The proposal part of the Metropolis algorithm
works as follows:

1. pick a parameter qi uniformly at random

2. shift qi by qi + δs, where δs is chosen uniformly at random in [−s, s].

Since both qi and δs are picked uniformly and the interval [−s, s] is symmetric
around zero, there is an equal probability of proposing a move or its inverse.
Therefore, in the language of the previous section, tjk = tkj. If the target invariant
distribution is u = u(q1, . . . , qN), then the accept/reject probability is given by:

min

[
1,
u(. . . qi + δs . . .)

u(. . . qi . . .)

]
. (2.13)

The Metropolis algorithm works for a wide variety of problems, and it is the
algorithm of choice in most exploratory works for its simplicity. However, when
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the parameters are continuous quantities, the Hamiltonian Monte Carlo algorithm
presented next generally performs better.

2.4 The Hamiltonian Monte Carlo algorithm

The first step in Hamiltonian Monte Carlo is to enlarge parameter space by in-
troducing a “conjugate momentum” pi to each parameter qi. The invariant distri-
bution is extended to include the new variables u(q) → u(q,p). By defining the
“Hamiltonian” H(q,p) := − log u(q,p), a state is then evolved along a Hamilto-
nian trajectory by integrating Hamilton’s equations:

dqi
dt

=
∂H

∂pi
(2.14)

dpi
dt

= −∂H
∂qi

(2.15)

where t denotes a fictitious evolution time. This specifies a transition (q(0),p(0))→
(q(t),p(t)) from an initial configuration to a new one. The new configuration is
then accepted with probability:

min[1, exp(H(0)−H(t))] (2.16)

Note that energy is conserved in Hamiltonian dynamics, therefore H(t) = H(0)
and min[1, exp(H(0) −H(t))] = 1. However, numerical integration of Hamilton’s
equations is a non-trivial matter that introduces small errors, therefore in any
concrete implementation H(t) will differ from H(0) by a quantity that depends on
the time discretization parameter of the numerical integrator.
Even taking into account these small deviations, the trajectory of the system in
phase space will nonetheless be fluctuating around hypersurfaces of equal energy.
To correct for this behaviour, the momenta are randomized at the beginning of each
Monte Carlo iteration. If the extended invariant distribution u(q,p) is chosen such
that it factorizes as u(q)v(p), and the momenta are sampled from their distribution
v, then the initial randomization step does not affect the marginal over q.
The complete algorithm goes as follows:

1. sample momenta randomly from v(p);

2. integrate Hamilton’s equations for a time t: (p(0),q(0))→ (p(t),q(t));

3. accept the new configuration with probability min[1, exp(H(0)−H(t))].

Compared to Metropolis, which depends on just one external parameter s, Hamil-
tonian Monte Carlo has at least two, both related to the integration step: the
time discretization ε and the total integration time t. More parameters might en-
ter through the kinetic energy term K(p) := − log v(p), but in the remainder of
this work the kinetic energy will be assumed to be simply K(p) =

∑
i p

2
i /2, which

translates to a Gaussian probability distribution.
The numerical integrator of choice for Hamiltonian dynamics is the leapfrog inte-
grator [betan] [37], which will be discussed briefly here. Together with the kinetic
energy term defined above, consider the potential energy term S(q) := − log u(q),
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so that the Hamiltonian reads H(q,p) = S(q) + K(p). Discretize the total inte-
gration time t in small intervals of duration ε. The evolution from time τ to τ + ε
reads:

pi(τ + ε/2) = pi(τ)− ε

2

∂S(τ)

∂qi
qi(τ + ε) = qi(τ) + εpi(τ + ε/2)

pi(τ + ε) = pi(τ + ε/2)− ε

2

∂S(τ + ε)

∂qi

Therefore the momenta are updated by a half-step, followed by a full update of
the positions, and then another half-step update on the momenta. The procedure
is repeated from τ = 0 to τ = t. The expensive part of the algorithm resides in
the calculation of the gradients ∂S/∂q.
In the next section, two issues regarding Markov chains will be discussed, providing
a qualitative argument as to why Hamiltonian Monte Carlo generally performs
better than Metropolis.

2.5 Thermalization and correlation

Theorem 1, which provides the theoretical foundation of Markov chains, states
that the correct invariant distribution is reached asymptotically in the limit of an
infinite number of iterations. How fast the Markov chain reaches a reasonably
good approximation of the invariant distribution is a problem known as thermal-
ization, in analogy with physical systems reaching a state of thermal equilibrium.
This concept is formalized in terms of the mixing time, defined as the number of
iterations needed so that the invariant distribution and the approximate distribu-
tion are less than 1/4 apart in total variation distance [38].
A related issue is that of correlation. Two states of a Markov chain which are close
in Monte Carlo time are correlated to each other. This is evident in the case of
Metropolis by looking at the algorithm itself. From one iteration to the next, the
two states differ at most by a small shift in one of the parameters. A measure of
how far apart two states need to be in order for them to be uncorrelated is given
by the autocorrelation time [39].
Because of the way move proposals are built, Hamiltonian Monte Carlo mixes
faster and has less correlation compared to Metropolis. A Hamiltonian trajectory
will transport a state along an orbit in phase space, and all the physical param-
eters of the model will be updated at once in a non-trivial way. However small,
correlation is nevertheless still present in Hamiltonian Monte Carlo and needs to
be addressed. This issue will be explored further in Chapter 3.

2.6 Dual averaging

As already mentioned, both Metropolis and Hamiltonian Monte Carlo depend on
a choice of parameters: the scale s for Metropolis and the integration length L and
discretization ε for Hamiltonian Monte Carlo. An optimal choice of parameters
plays a crucial role in the performance of the algorithm. Take the Metropolis scale
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s as an example: too large a scale will result in big jumps with little to no chance
of being accepted, while a scale which is too small will make the system’s random
walk very slow. Ultimately, regardless of the algorithm, the relevant quantity that
links free parameters and performance is the acceptance rate, calculated as the
fraction of moves that are accepted. Parameter tuning should therefore result in
the optimal acceptance rate for the algorithm. This was found to be around 0.23
under rather general assumptions for Metropolis [40] and 0.65 for Hamiltonian
Monte Carlo [37].
Dual averaging [41] is a very efficient algorithm to adaptively tune the Monte
Carlo parameters so that the optimal acceptance rate is reached. It is based on
stochastic optimization with vanishing adaptation [42], and it is a generalization
of an earlier proposal [43].
Suppose x ∈ R is a tunable parameter of a Monte Carlo algorithm (for example
x = log(s) in Metropolis), and Jt describes a statistics at Monte Carlo time t
that one wants to be vanishing (for example Jt can be the difference between
the acceptance rate at time t and the optimal acceptance rate). Consider the
expectation:

j := lim
T→∞

1

T

T∑
t=1

E[Jt(xt)]. (2.17)

Dual averaging defines an updating procedure xt → xt+1 after each Monte Carlo
step in such a way as to ensure that j → 0. The updating rule is split in two steps
(hence the name) by means of an intermediate parameter x̃t:

x̃t+1 = µ−
√
t

γ

1

t+ t0

t∑
i=1

Ji

xt+1 =
1

tκ
x̃t+1 +

(
1− 1

tκ

)
xt (2.18)

where µ, γ, t0 and κ are free parameters of the algorithm, and x1 is set to be x̃1.
The authors in [41] suggest to fix the free parameters in the following way:

µ = log(10) + xini, γ = 0.05, t0 = 10, κ = 0.75. (2.19)

where xini is a reasonable initial guess for the parameter (although any value would
work).

2.7 Metropolis for fuzzy spaces

The rather general notation adopted so far needs now to be specialized to the case
of fuzzy Dirac operators.
Equation (2.4) represents the invariant distribution and Dirac operators are states
of the system.
An explicit parametrization of Dirac operators is the following:

D =
∑
i

ωi ⊗ (Mi ⊗ 1 + εi1⊗MT
i ) (2.20)

24



where ωi are fixed matrices, εi are fixed signs, and the free parameters are the
n × n Hermitian matrices Mi. For Metropolis, it will be convenient to take each
independent matrix entry as the set of coordinates q, so that the proposed moves
are as local as possible. Once a scale s ∈ R is fixed, the Metropolis algorithm
reads:

1. pick uniformly at random a matrix Mx;

2. pick uniformly at random a matrix entry (Mx)IJ ;

3. sample uniformly at random a complex number z such that Re z ∈ [−s, s],
Im z ∈ [−s, s], and then set Im z = 0 if I = J ;

4. propose the move (Mx)IJ → (Mx)IJ + z and (Mx)JI → (Mx)JI + z∗;

5. accept the move with probability min
[
1, e−∆S

]
, where ∆S is the difference

between the new action (the one calculated with the updated matrix entry)
and the old one.

Starting from an arbitrary Dirac operator and repeating this procedure many
times, one is guaranteed to eventually generate Dirac operators correctly dis-
tributed according to (2.4).
The speed of the algorithm plays a crucial role in the possibility of investigating
higher matrix sizes and obtain enough uncorrelated samples. The Metropolis al-
gorithm requires an evaluation of the difference S[D′]− S[D] at each step, where
D is the current Dirac operator and D′ := D + δD is the proposed move from D.
Evaluating this difference is by far the operation that takes up most of the com-
putational time. In previous implementations [7] [12] the values of S[D′] and S[D]
were computed independently, and then subtracted. But if D′ and D differ only
slightly, much simplification can be achieved by computing the difference using
only the relevant data. As the action contains traces of powers of D, the problem
reduces to finding a closed formula for terms of the type Tr[(D′)p−Dp]. A formula
for a generic power p can be written, but several drawbacks will be pointed out
that make it of limited use. Since only quadratic and quartic terms appear in the
action considered here, the cases p = 2 and 4 will then be treated separately, and
very computationally efficient formulas will be written for evaluating ∆S.

2.7.1 A closed formula for generic p

If D′ = D + δD, then (D′)p is formally a sum of all the possible strings of length
p of symbols D and δD. As an example, for p = 2:

(D′)2 = (D + δD)2 = DD +DδD + δDD + δDδD. (2.21)

Therefore (D′)p−Dp is a sum of strings of length p with at least one δD. A string
containing s occurrences of δD is then viewed as a certain number of clusters
δD...δD, the j-th cluster having length kj ≥ 0, followed by a single D. The
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difference (D′)p −Dp then can be written as:

(D′)p −Dp =

p∑
s=1

s∑
k1,..,kp−s=0∑

kj≤s

[(δD)k1D] [(δD)k2D]...[(δD)kp−sD](δD)(s−
∑
kj).

(2.22)
Now, using Eq.(2.20) for the general form of a Dirac operator:

D =
∑
i∈I

ωi ⊗ [Mi, ·]εi :=
∑
i∈I

Ai (2.23)

Eq.(2.22) can be written as:

p∑
s=1

s∑
k1,..,kp−s=0∑

kj≤s

∑
i1,..,ip−s∈I

(δD)k1Ai1 ...(δD)kp−sAip−s(δD)(s−
∑
kj). (2.24)

Writing Eq.(2.24) in terms of the submatrices of D is then a matter of keeping
track of the indices. The final formula is given in Appendix A.1.
This formula, although appealing for its generality, is somewhat unsatisfactory in
a numerical implementation:

1. It contains a variable number of indices on which to sum (1 to p− s). This
corresponds to a variable number of for loops in the code, something which
is not easily obtainable.

2. It hides the structure of the terms, making it hard to understand why taking
the trace yields a real number. This forces the use of complex numbers
instead of real numbers throughout the whole computation, wasting memory
and computational power.

3. It is hard to exploit the properties of gamma matrices, which make many
terms vanish. As a result, a large number of terms is computed just to
obtain zero, again wasting computational power and introducing small errors
(vanishing terms are only approximately zero on a computer).

4. In general, the resulting code is completely obscure, even to the person writ-
ing it.

In the next section, specific formulas for the case p = 2 and p = 4 are presented.
These formulas are much better suited for an actual implementation.

2.7.2 The case p = 2, 4

As the action in (2.2) contains only the second and fourth power of D, these two
cases have been worked out explicitly in order to obtain a simpler formula.
First notice that the quantity of interest is a trace, therefore the cyclicity property
can be used to write:

Tr[(D′)2 −D2] = Tr[ 2DδD + (δD)2 ] (2.25)
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Tr[(D′)4 −D4] = Tr[ 4D3δD + 4D2(δD)2+

+ 2DδDDδD + 4D(δD)3 + (δD)4 ].
(2.26)

In the following, as an example, the term TrD3δD will be computed explicitly.
All the other terms are similar but simpler to compute.
Write D3 and δD in terms of the submatrices ωi and Mi:

δD = ωx ⊗ (mx ⊗ 1 + εx1⊗mT
x ) (2.27)

D3 =
∑
i1,i2,i3

ωi1ωi2ωi3⊗

⊗ ( Mi1Mi2Mi3 ⊗ 1 + εi1εi2εi31⊗MT
i1
MT

i2
MT

i3
+

εi1εi2Mi3 ⊗MT
i1
MT

i2
+ εi3Mi1Mi2 ⊗MT

i3
+

εi2Mi1Mi3 ⊗MT
i2

+ εi2εi3Mi1 ⊗MT
i2
MT

i3
+

εi1Mi2Mi3 ⊗MT
i1

+ εi1εi3Mi2 ⊗MT
i1
MT

i3
).

(2.28)

Multiplying them together and taking the trace yields:

TrD3δD =
∑
i1,i2,i3

Tr(ωi1ωi2ωi3ωx)·

·( n[1 + εi1εi2εi3εx∗] Tr(Mi1Mi2Mi3mx) +

[εi3 + εi1εi2εx∗] Tr(Mi1Mi2mx) TrMi3 +

[εi1εi2 + εi3εx∗] Tr(Mi1Mi2) Tr(Mi3mx) +

[εi1εi2εi3 + εx∗] Tr(Mi1Mi2Mi3) Trmx +

[εi2 + εi1εi3εx∗] Tr(Mi1Mi3mx) TrMi2 +

[εi2εi3 + εi1εx∗] Tr(Mi1mx) Tr(Mi2Mi3) +

[εi1 + εi2εi3εx∗] Tr(Mi2Mi3mx) TrMi1 +

[εi1εi3 + εi2εx∗] Tr(Mi1Mi3) Tr(Mi2mx) )

(2.29)

where ∗ denotes complex conjugation of everything that appears on the right, and
the relation MT = M∗ has been used.
To simplify this expression, notice the following:

1. exchanging the indices i1 ↔ i3 in Eq.(2.29) is equivalent to taking the com-
plex conjugate of the whole expression
=⇒ it is possible to limit the sum to i1 < i3 and take twice the real part;

2. if two indices are the same, say i1 and i3, then i2 = x due to the properties
of the Clifford module: Tr(ωi1ωi2ωi1ωx) ∼ Tr(ωi2ωx) = 0 if i2 6= x
=⇒ the only case which is not accounted for in the previous point is i1 =
i3, i2 = x;

3. when i1 = i3 and i2 = x, each term in Eq.(2.29) is real.

Therefore Eq.(2.29) becomes:

TrD3δD =
∑
i1<i3
i2

2 Re Tr(. . .) +
∑
i1=i3
i2=x

Re Tr(. . .). (2.30)
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This formula already adresses many of the practical problems listed in the previous
section. Further simplification can be achieved if the Metropolis move is local.
The simplest case is when mx has only one non-zero entry (and the one across the
diagonal for hermiticity), in which case mx is written in components as:

(mx)ij = zδiIδjJ + z∗δiJδjI (2.31)

where z is a complex number, δij is the Kronecker delta, and I, J are the indices
of the only non-vanishing entries: (mx)IJ = (mx)

∗
JI = z 6= 0.

The final formulas for p = 2 and p = 4 when mx has the form of Eq.(2.31) are
given in Appendix A.2.

2.8 Hamiltonian Monte Carlo for fuzzy spaces

It is convenient in this case to take the dynamical variables to be the n× n Her-
mitian matrices Mi instead of individual matrix entries. The conjugate momenta
therefore will be themselves n × n Hermitian matrices belonging to a Gaussian
ensemble. The proposed move coming from Hamiltonian evolution will in general
involve an update of every single matrix entry. Therefore, unlike in Metropolis with
local updates, the entire Hamiltonian needs to be recomputed in the accept/reject
step. Moreover, the leapfrog integrator requires to calculate matrix derivatives of
the form:

∂ TrDp

∂Mk

=: ∂k TrDp (2.32)

which need to be defined. Let A ∈ Mn(C) and f : Mn(C)→ C. For the purposes
of this work, the derivative of f with respect to A is defined in components as the
n× n matrix: (

∂f

∂A

)
lm

:=
∂f

∂Aml
. (2.33)

A special case of interest here is:

∂ TrAB

∂A
= B (2.34)

which also allows to calculate:

∂ TrAjB

∂A
= Aj−1B + Aj−2BA+ . . .+BAj−1 (2.35)

using a simple heuristic rule: differentiate with respect to each A matrix after
bringing it to the front by cycling the others to the other side of the trace.
In the following, formulas for ∂k TrD2 and ∂k TrD4 are worked out.

2.8.1 The case TrD2

In the quadratic term the Mi matrices are decoupled:

TrD2 =
∑
i

Trω2
i (2nTrM2

i + 2εi(TrMi)
2). (2.36)
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Taking a derivative with respect to Mk yields:

∂

∂Mk

(∑
i

Trω2
i (2nTrM2

i + 2εi(TrMi)
2)

)
=
∑
i

δik Trω2
i (4nMi + 4εi(TrMi)1)

= 4C (nMk + εk(TrMk)1) (2.37)

where C := Trω2
i is the dimension of the gamma matrices.

2.8.2 The case TrD4

First expand TrD4:

TrD4 =
∑

i1,i2,i3,i4

Tr(ωi1ωi2ωi3ωi4)·(
n[1 + ε ∗] Tr(Mi1Mi2Mi3Mi4) +

εi1 TrMi1 [1 + ε ∗] Tr(Mi2Mi3Mi4) +

εi2 TrMi2 [1 + ε ∗] Tr(Mi1Mi3Mi4) +

εi3 TrMi3 [1 + ε ∗] Tr(Mi1Mi2Mi4) +

εi4 TrMi4 [1 + ε ∗] Tr(Mi1Mi2Mi3) +

εi1εi2 [1 + ε] Tr(Mi1Mi2) Tr(Mi3Mi4) +

εi1εi3 [1 + ε] Tr(Mi1Mi3) Tr(Mi2Mi4) +

εi1εi4 [1 + ε] Tr(Mi1Mi4) Tr(Mi2Mi3)
)

(2.38)

where ∗ denotes complex conjugation of everything that appears on the right, ε is
defined as the product ε ≡ εi1εi2εi3εi4 , and the relation MT = M∗ has been used.
Taking a matrix derivative with respect to Mk results in non-vanishing contribu-
tions when k = i1, k = i2, k = i3 or k = i4:

∂

∂Mk

TrD4 =
∑

i1,i2,i3,i4

Tr(ωi1ωi2ωi3ωi4)·(
δki1A(i1, i2, i3, i4) + δki2A(i2, i3, i4, i1)+

δki3A(i3, i4, i1, i2) + δki4A(i4, i1, i2, i3)
)

(2.39)
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where A(a, b, c, d) is the following n× n matrix:

A(a, b, c, d) ≡ n[1 + ε †]MbMcMd+

εa1[1 + ε ∗] TrMbMcMd+

εb TrMb[1 + ε †]McMd+

εc TrMc[1 + ε †]MbMd+

εd TrMd[1 + ε †]MbMc+

εaεbMb[1 + ε] TrMcMd+

εaεcMc[1 + ε] TrMbMd+

εaεdMd[1 + ε] TrMbMc (2.40)

and † denotes Hermitian conjugation of everything that appears on the right.
Upon relabeling the indices and cycling the ω matrices in the trace, the equation
becomes:

∂

∂Mk

TrD4 = 4
∑

i1,i2,i3,i4

δki1 Tr(ωi1ωi2ωi3ωi4)A(i1, i2, i3, i4)

= 4
∑
i1,i2,i3

Tr(ωkωi1ωi2ωi3)A(k, i1, i2, i3) =: 4
∑
i1,i2,i3

Ak(i1, i2, i3) (2.41)

with Ak(a, b, c) defined as the product Tr(ωkωi1ωi2ωi3)A(k, i1, i2, i3).
The sum can be considerably simplified by grouping together terms based on how
many indices coincide.
First consider the case where all indices are different:∑

i1,i2,i3
ia 6=ib

Ak(i1, i2, i3). (2.42)

A convenient way to rewrite it is to constrain the indices to be in increasing order
i1 < i2 < i3 and write explicitly the permutations that generate the whole sum:∑

i1<i2<i3

(
Ak(i1, i2, i3) +Ak(i2, i1, i3) +Ak(i3, i2, i1)

+Ak(i1, i3, i2) +Ak(i3, i1, i2) +Ak(i2, i3, i1)
)
. (2.43)

Notice that an exchange of indices i1 ↔ i3 is equivalent to taking the Hermitian
conjugate:

Ak(i1, i2, i3)† = Ak(i3, i2, i1) (2.44)

therefore (2.43) becomes:∑
i1<i2<i3

[1 + †]
(
Ak(i1, i2, i3) +Ak(i1, i3, i2) +Ak(i2, i1, i3)

)
. (2.45)
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Finally, notice that if ia = k then the trace over the ω matrices vanishes, therefore
the contribution when all indices are different takes the final form:∑

i1<i2<i3
ia 6=k

[1 + †]
(
Ak(i1, i2, i3) +Ak(i1, i3, i2) +Ak(i2, i1, i3)

)
. (2.46)

Before moving on, let us introduce an algorithm to arrive at (2.45) immediately
by means of a group-theoretical argument that will readily generalize to higher
powers of the Dirac operator. Suppose one has the generic sum of matrices:∑

ia 6=ib

A(i1, . . . in) (2.47)

and suppose that some index exchange ia ↔ ib amounts to a known map (for
example taking the Hermitian conjugate). Denote this map •. Consider now the
symmetric group Sn acting on the indices i1, . . . , in. If the permutations corre-
sponding to the index exchanges that induce • (plus the identical permutation)
form a subgroup H of S4, one can calculate the (left or right) cosets and choose a
representative σ from each. The sum (2.47) can then be written:∑

i1<...<in

[1 + •]
( ∑
σ∈Sn/H

A(σ(i1), . . . , σ(in))
)
. (2.48)

In the explicit case above, n = 3, • = †, H = {(), (13)} and S3/H = {(), (23), (12)}.
Notice that the map does not need to be Hermitian conjugation, as long as the
corresponding permutations form a subgroup of the whole permutation group.
Going back to Eq.(2.41), what is left are terms in which at least two indices are
equal. These are:∑

i1 6=i2

(
Ak(i1, i1, i2) +Ak(i2, i1, i1) +Ak(i1, i2, i1)

)
+
∑
i

Ak(i, i, i). (2.49)

Or more simply, using the properties of the ω matrices and the index exchange
symmetry: ∑

i 6=k

(
[1 + †]Ak(i, i, k) +Ak(i, k, i)

)
+Ak(k, k, k). (2.50)

Putting together (2.41), (2.46) and (2.50), the final formula for ∂k TrD4 reads:

∂

∂Mk

TrD4 = 4

[ ∑
i1<i2<i3
ia 6=k

[1 + †]
(
Ak(i1, i2, i3) +Ak(i1, i3, i2) +Ak(i2, i1, i3)

)

+
∑
i 6=k

(
[1 + †]Ak(i, i, k) +Ak(i, k, i)

)
+Ak(k, k, k)

]
.

(2.51)

The simplified formulas for Ak(i, i, k), Ak(i, k, i) and Ak(k, k, k) are given in Ap-
pendix B.
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2.9 Calculating the action

In the course of the Monte Carlo routines one needs to repeatedly calculate the
value of the action in the accept/reject step. This is especially true for the Hamil-
tonian method, where the degrees of freedom are updated globally and the new
value of the Hamiltonian needs to be recomputed after every trajectory.
Using the same arguments that lead to efficient formulas for ∂k TrD2 and ∂k TrD4,
one can write down a formula for S that only involves the Mi matrices. The per-
formance gain in using such a formula instead of calculating S naively from the
full Dirac operator will be evident in the next chapter when benchmarking the
actual numerical implementation.
The formula (2.36) for TrD2 is already simplified. For TrD4, expand it as in
(2.38) and call the generic term in the sum B:

TrD4 =
∑

i1,i2,i3,i4

B(i1, i2, i3, i4). (2.52)

As before, splitting the terms based on how many indices coincide and using the
properties of the ω matrices, the sum reads:

TrD4 =
∑
ia 6=ib

B(i1, i2, i3, i4) + 2
∑
i1<i2

[
2B(i1, i1, i2, i2) + B(i1, i2, i1, i2)

]
+
∑
i

B(i, i, i, i). (2.53)

The group-theoretical argument used in the previous section allows to simplify the
sum where no index is the same. Consider the symmetric group S4 acting on the
set of indices {i1, i2, i3, i4}. The subgroup of S4 corresponding to the symmetries
of B is D8 = 〈(1, 2, 3, 4), (1, 3)〉, i.e. 4 cyclic permutations (that leave B invariant)
and 4 anti-cyclic permutations (that give the complex conjugate of B). Quotient
out the action of D8 by introducing the prefactor 4[1 +∗] (i.e. 8 Re) and constrain
the sum to i1 < i2 < i3 < i4. The terms left out by this procedure are the terms
obtained by acting on {i1, i2, i3, i4} with a representative from each (left or right)
coset in S4/D8. One choice of representatives is (), (3, 4) and (2, 3), which gives:∑

ia 6=ib

B(i1, i2, i3, i4) =

∑
i1<i2<i3<i4

8 Re
[
B(i1, i2, i3, i4) + B(i1, i2, i4, i3) + B(i1, i3, i2, i4)

]
. (2.54)

The final, computationally efficient formula for TrD4 thus reads:

TrD4 =
∑

i1<i2<i3<i4

8 Re
[
B(i1, i2, i3, i4) + B(i1, i2, i4, i3) + B(i1, i3, i2, i4)

]
+ 2

∑
i1<i2

[
2B(i1, i1, i2, i2) + B(i1, i2, i1, i2)

]
+
∑
i

B(i, i, i, i). (2.55)
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Chapter 3

The RFL library

3.1 Overview

The Random Fuzzy Library (RFL) was written in order to simplify the process
of performing Monte Carlo integration of the random matrix models arising from
Dirac operators of fuzzy spectral triples. The library is written in C++ and relies
on Armadillo [44] for linear algebra operations and GSL [45] for random number
generation.
The main features of the library are:

1. automated generation of Clifford gamma matrices and Dirac operators given
a (p, q) signature;

2. efficient implementation of both Metropolis and Hamiltonian Monte Carlo;

3. automated parameter tuning based on the dual averaging method [41].

The next few sections will expand on the technical details of each of these points.
Although considerable improvements are possible from a software design point
of view, the current state of the library should facilitate the academic study of
random fuzzy spaces. The library is freely available on GitHub at

https://github.com/darcangelomauro/RFL.git

3.2 Clifford modules

Recall from Chapter 1 that given a pair of integers (p, q), a Clifford module is
determined by p Hermitian matrices squaring to +1(

γi
)2

= +1, i = 1, . . . , p

and q anti-Hermitian matrices squaring to -1(
γj
)2

= −1, j = p+ 1, . . . , p+ q

often referred to as gamma matrices. The KO-dimension is defined as

s = q − p mod 8
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and the chirality operator is

γ = i
1
2
s(s+1)γ1 . . . γp+q.

Following [8], it is possible to generate an arbitrary Clifford module by taking
products of simpler ones. Given a Clifford module (p1, q1) with even KO-dimension
s1, gamma matrices {γa1} and chirality operator γ1, and another Clifford module
(p2, q2) with gamma matrices {γa2}, then the following are gamma matrices for a
(p1 + p2, q1 + q2) Clifford module:

γ1
1 ⊗ 1, . . . , γp1+q1

1 ⊗ 1, γ1 ⊗ γ1
2 , . . . , γ1 ⊗ γp2+q2

2

and the product is irreducible if the two modules are. It follows that any (p, q) can
be generated by multiplying enough copies of the (2, 0), (1, 1), (0, 2), (1, 0) and
(0, 1) (with the (1, 0) and (0, 1) on the right, since their KO-dimension is odd).
Based on the construction outlined above, the class Cliff in RFL automatically
builds, given p and q, the corresponding gamma matrices. The following sample
code generates a (3, 2) Clifford module and outputs matrix dimension, gamma
matrices and chirality operator.

#include <iostream>

#include <armadillo>

#include "clifford.hpp"

int main()

{

int p = 3;

int q = 2;

// Create Clifford module C

Cliff C(p,q);

// Print dimension of gamma matrices

std::cout << C.get_dim_gamma() << std::endl;

// Print gamma matrices

for(int i=0; i<p+q; ++i)

std::cout << C.get_gamma(i) << std::endl;

// Print chirality operator

std::cout << C.get_chiral() << std::endl;

}

The gamma matrices are stored as complex matrices of type arma::cx_mat defined
in Armadillo. The way the library constructs Clifford modules is by finding the
decomposition in terms of (2, 0), (1, 1), (0, 2), (1, 0) and (0, 1) modules, and then
multiply them together via overloaded * and *= operators. Therefore C1 and C2

in the code below are the same Clifford module.

#include <armadillo>
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#include "clifford.hpp"

int main()

{

// Create a (4,4) Clifford module via constructor

Cliff C1(4,4);

// Create a (4,4) Clifford module via overloaded product

Cliff B(2,2);

Cliff C2 = B*B;

}

3.3 Dirac operators

The class Cliff is used as a base for Dirac operators. Recall that given a (p, q)
signature, the corresponding Dirac operator has the form:

D =
∑
i

αi ⊗ {Hi, ·}+
∑
j

τj ⊗ [Lj, ·] (3.1)

where αi and Hi are Hermitian, τj and Lj are anti-Hermitian, and {αi, τj} form a
basis for the algebra generated by the (p, q) gamma matrices. In order to build the
Dirac operator from p and q it is therefore necessary to find all linearly independent
products of gamma matrices, which will form the sets {αi} and {τj} based on
Hermiticity. As noted in [8], linearly independent products can be taken to be
all odd (unordered) products of length less or equal to p + q of distinct gamma
matrices.
Normally, to produce these combinations one would use a series of nested for

loops. For example, the code to produce all products of three distinct gamma
matrices would look like the following

for i← 1, p+ q do
for j ← i+ 1, p+ q do

for k ← j + 1, p+ q do
γijk ← γiγjγk

end for
end for

end for

If p + q = 3 or 4, only products of three distinct gamma matrices need to be
generated. If p + q = 5 or 6, products of five gamma matrices also need to be
generated, and so on. This means that the number of nested for loops depends
on p+ q. But in RFL p and q are parameters chosen by the user at runtime, while
for loops are hard-coded. Since there is no way of knowing how many nested
loops one will need beforehand, the nested loops method could not be used (unless
one is willing to impose a restriction on the maximum p+ q, which is also a viable
option).
The way RFL generates all linearly independent products of gamma matrices is
by using an equivalent formulation of the problem: given an alphabet with p + q
letters, produce all unordered strings of odd length k ≤ p+ q with no repetitions.
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Unordered means that two strings are identical if one can be obtained from the
other upon commuting the letters. If the odd length requirement is dropped, then
such strings are in one-to-one correspondence with binary strings of length p+ q.
For example, if the alphabet is {a, b, c, d, e}, the string abe corresponds to 11001
via the following identification:

a b c d e

1 1 0 0 1

The strategy RFL uses to produce the needed products is then to look at the bi-
nary representation of numbers from 0 to 2p+q, pick out those with an odd number
of 1s, and then multiply together the gamma matrices whose index corresponds to
the position of the 1s in the binary string. Therefore in a set of 5 gamma matrices,
the product γ1γ3γ4 is identified with the binary string 10110 (or 22 in decimal).
Once all odd products are generated this way, the Hermitian and anti-Hermitian
ones are counted to know how many H and L matrices are there in the model.
Looking at (3.1), it is clear that a factor of i can be moved from an Lj to the corre-
sponding τj, making both Hermitian. Having to deal with only Hermitian objects
is considerably more convenient from a programming point of view, and therefore
this is the way Dirac operators are represented in RFL. One still needs to keep
track of the fact that what was originally an L (H) matrix appears inside a com-
mutator (anti-commutator). Representing commutators and anti-commutators as
linear operators in Mn(C), i.e. elements of Mn(C)⊗Mn(C), shows how the differ-
ence between an L and an H matrix can be stored in a sign:

[M, ·] = M ⊗ 1− 1⊗MT (3.2)

{M, ·} = M ⊗ 1 + 1⊗MT . (3.3)

Ultimately, this leads to (2.20) as a general formula for a Dirac operator:

D =
∑
i

ωi ⊗ (Mi ⊗ 1 + εi1⊗MT
i ) (3.4)

where ωi and Mi are Hermitian, and εi = ±1 differentiate between commuta-
tors and anti-commutators. The ωi denote collectively what in (3.1) were α or τ
matrices.

3.4 The class Geom24

The rules described so far are implemented in the RFL class Geom24. The class
handles all aspects of the numerical simulation, from the creation of the Dirac
operator to the Monte Carlo algorithms.
The class constructor requires a choice of Clifford module (p, q), the dimension of
the Mi matrices, and a value for the coupling constant g2. The idea is that the
class represents a static picture of the Monte Carlo evolution of the Dirac operator
under the usual action:

S = g2 TrD2 + TrD4. (3.5)
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In the following example, a (2, 0) geometry with 32×32 matrices is instantiated at
the coupling constant value g2 = −3. A Monte Carlo evolution of 104 steps using
the Metropolis algorithm is started, and the value of the action is printed every
100 steps to the standard output stream.

#include <iostream>

#include <gsl/gsl_rng.h>

#include <ctime>

#include <armadillo>

#include "geometry.hpp"

int main()

{

// Initialize the random number generator

gsl_rng* engine = gsl_rng_alloc(gsl_rng_ranlxd1);

gsl_rng_set(engine, time(NULL));

// Clifford module parameters

int p = 2;

int q = 0;

// Matrix algebra dimension

int n = 32;

// Coupling constant value

double g2 = -3;

// Metropolis scale factor

double scale = 0.05;

// Create the Dirac operator

Geom24 G(p, q, n, g2);

// Metropolis simulation

for(int i=0; i<100; ++i)

{

// Metropolis evolution for 100 steps

G.MMC(scale, 100, engine);

// Print the value of the action

G.print_S(std::cout);

}

}

This rather simple example does not take into account a number of subtleties.
From a programming perspective, one would really want a more convenient way
of constructing the class, perhaps taking the input data from a configuration file.
Moreover, in a real simulation there would be a tuning phase, where the optimal
values of parameters like the Metropolis scale factor are found, and a thermaliza-
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tion phase where the geometry reaches equilibrium. The following more complete
example shows how methods within the class itself allow to address these issues.

#include <iostream>

#include <fstream>

#include <ctime>

#include <armadillo>

#include <gsl/gsl_rng.h>

#include "geometry.hpp"

using namespace std;

using namespace arma;

int main()

{

// Initialize the random number generator

gsl_rng* engine = gsl_rng_alloc(gsl_rng_ranlxd1);

gsl_rng_set(engine, time(NULL));

// Open input file

ifstream input;

input.open("input.txt");

// Create geometry from input file

Geom24 G(input);

input.close();

// Open output files

ofstream out_S("example_S.txt");

ofstream out_HL("example_HL.txt");

// Tuning with dual averaging

double tgt = 0.8; // Target acceptance rate

double dt = 0.001; // Initial guess for dt

G.HMC_duav(10, dt, 10000, engine, tgt, "leapfrog");

cout << "dual averaging complete" << endl;

cout << "dual averaged dt: " << dt << endl;

// Thermalization

double acc_rate = G.HMC(10, dt, 10000, engine, "leapfrog");

cout << "thermalization complete" << endl;

cout << "acceptance rate: " << acc_rate << endl;
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// Hamiltonian Monte Carlo simulation

for(int i=1; i<1000; ++i)

{

G.HMC(10, dt, 1000, engine, "leapfrog");

G.print_S(out_S);

G.print_HL(out_HL);

}

out_S.close();

out_HL.close();

}

In this example the class was created from an input file using a specialized con-
structor:

Geom24(std::istream&);

which works with any input stream containing the following data in order: p, q, n, g2.
The tuning phase uses the dual averaging routine to find the optimal value of the
Hamiltonian Monte Carlo parameter dt given a target acceptance rate tgt. The
prototype is:

void HMC_duav(const int& Nt, double& dt, const int& iter,

gsl_rng* engine, const double& tgt,

const std::string& integrator);

where the arguments are: number of integration steps Nt (int), integration step
dt (double), total number of iterations (int), random number generator engine
(gsl rng*), target acceptance rate (double), integration method (string).
The dual averaging routine returns void, but the actual simulation routine has the
acceptance rate as a return value:

// Thermalization

double acc_rate = G.HMC(10, dt, 10000, engine, "leapfrog");

cout << "thermalization complete" << endl;

cout << "acceptance rate: " << acc_rate << endl;

This is a useful sanity check to confirm the correct functioning of the dual averaging
procedure. The prototype of the simulation routine is:

double HMC(const int& Nt, const double& dt, const int& iter,

gsl_rng* engine, const std::string& integrator);

Notice how, compared to HMC_duav, the integration step dt is now declared con-
stant (the dual averaging routine has to change dt to find the optimal one, but
during the actual simulation dt is fixed).
Finally, the simulation phase shows how the current value of the action and the
H and L matrices can be printed to any valid output stream:

ofstream out_S("test_S.txt");

ofstream out_HL("test_HL.txt");
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[...]

G.print_S(out_S);

G.print_HL(out_HL);

3.5 Benchmarks

This section presents the results of various tests performed on the implementation
to check the correct functioning and the performance of the algorithms.

3.5.1 The action

There are two ways of calculating the action, both implemented in RFL. The first
one is to build the full Dirac operator and simply calculate g2 TrD2 + TrD4. This
method will be referred to as brute-force. The second one uses the efficient formulas
(2.36) and (2.55). The brute-force method is by far the easiest to implement
numerically, but the computational overhead is large enough to make it completely
impractical.
If Seff denotes the value of the action given by (2.36) and (2.55) and Sbf denotes the
brute-force value1, a first test aimed at verifying the correct implementation of the
formulas is to compare the two. More precisely, the following relative difference
was averaged over 100 random Dirac operators:

T1 :=
|Seff − Sbf|

Seff

. (3.6)

Since the calculation of Sbf and Seff involve completely different operations, the
test also indirectly verifies that (2.36) and (2.55) themselves are correct.
The test was conducted for matrix dimension 4, 8, 16 and 32 on (2,0), (3,0) and
(4,0) Dirac operators. The results are shown in Table 3.1. The scaling of T1

with n is found to be O(n2), with no difference across the tested (p, q) types. For
completeness, the average order of magnitude of Seff is given in Table 3.2.

n = 4 n = 8 n = 16 n = 32
(2,0) 1.2 · 10−15 4.8 · 10−15 2.0 · 10−14 8.3 · 10−14

(3,0) 9.0 · 10−16 3.1 · 10−15 1.4 · 10−14 5.7 · 10−14

(4,0) 2.2 · 10−15 9.7 · 10−15 3.5 · 10−14 1.5 · 10−13

Table 3.1: Value of T1 averaged over 100 random Dirac operators for various (p, q)
types and matrix sizes.

The second test is aimed at comparing the performance of the two methods by
measuring their raw speed and scaling. The total computation time in milliseconds
of Sbf and Seff for 10 random instances of Dirac operators is shown in Table 3.3 and
Table 3.4 respectively. The test was conducted on the same system under similar
conditions. The matrix multiplication and tensor product routines are the ones

1These two values are mathematically equal, but machine precision introduces small numerical
discrepancies between them
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n = 4 n = 8 n = 16 n = 32
(2,0) 104 105 106 107

(3,0) 104 106 107 108

(4,0) 105 106 108 109

Table 3.2: Average order of magnitude of Seff (and Sbf) for Dirac operators of
various (p, q) types and matrix sizes.

provided by the Armadillo library, without modifications. For Dirac operators
with p + q = 4 and 32 × 32 matrices, the brute-force method takes around 80
seconds to compute the action 10 times. Collecting enough samples in a Monte
Carlo simulation would therefore be impossible without implementing Seff. This
is due mainly to the scaling in n: Sbf scales as O(n4) while Seff scales as O(n2)
(the scalings are given by tensor product and matrix multiplication complexity
respectively).

n = 4 n = 8 n = 16 n = 32
(2,0) 5 52 375 9282
(3,0) 9 61 631 13756
(4,0) 41 193 3343 80688

Table 3.3: Raw computing time of Sbf in milliseconds for 10 random Dirac oper-
ators of various (p, q) types and matrix sizes. The scaling in n is approximately
O(n4).

n = 4 n = 8 n = 16 n = 32
(2,0) 0.8 0.9 3 11
(3,0) 2 2 7 29
(4,0) 3 8 27 105

Table 3.4: Raw computing time of Seff in milliseconds for 10 random Dirac oper-
ators of various (p, q) types and matrix sizes. The scaling in n is approximately
O(n2).

3.5.2 Action difference in Metropolis

The difference in the action when a single entry is updated in one of the matrices
can be calculated efficiently using the formulas given in Appendix A.2. This rep-
resents an important performance gain in Metropolis, where such differences need
to be calculated repeatedly and take up most of the computational time.
Similarly as in the previous section, the action difference ∆Seff calculated with
the formulas of Appendix A.2 was compared numerically with ∆Sbf, the action
difference calculated by computing the action from scratch before and after the
update. Note that the efficient way of computing the whole action was used in
∆Sbf.
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Table 3.5 shows the relative difference:

T2 :=
|∆Seff −∆Sbf|

∆Seff

(3.7)

providing numerical validation to the formulas of Appendix A.2. As before, the
order of magnitude of ∆S is also reported in Table 3.6.

n = 4 n = 8 n = 16 n = 32
(2,0) 2.2 · 10−14 4.9 · 10−14 1.9 · 10−13 1.5 · 10−12

(3,0) 5.9 · 10−14 8.4 · 10−14 2.2 · 10−13 4.6 · 10−12

(4,0) 5.6 · 10−14 9.6 · 10−14 1.1 · 10−12 6.0 · 10−12

Table 3.5: Value of T2 averaged over 100 random Dirac operators for various (p, q)
types and matrix sizes.

n = 4 n = 8 n = 16 n = 32
(2,0) 102 102 103 104

(3,0) 102 103 104 104

(4,0) 103 103 104 104

Table 3.6: Average order of magnitude of ∆Seff (and ∆Sbf) for Dirac operators of
various (p, q) types and matrix sizes.

The raw speed of the two methods is shown in Table 3.7 and 3.8. The scaling is
O(n2) for both. That is to be expected, as their complexity is given only by matrix
multiplication. However, ∆Seff is several times faster to compute. For instance,
for Dirac operators with p + q = 3 it is roughly 1.7 times faster, and more than
3.5 times faster for p + q = 4. Such a speedup could be the difference between a
simulation that runs for a week and a simulation that runs for a month.

n = 16 n = 32 n = 64 n = 128
(2,0) 64 128 562 2166
(3,0) 96 417 1676 6802
(4,0) 463 1775 8626 35183

Table 3.7: Raw computing time of ∆Sbf in milliseconds for 100 random Dirac
operators of various (p, q) types and matrix sizes. The scaling in n is approximately
O(n2).

3.5.3 Leapfrog

The integration algorithm of choice for Hamiltonian dynamics is the leapfrog in-
tegrator, described in Section 2.4. The reason leapfrog works better than other
integrators (like Euler’s method for example) is that it respects important proper-
ties of Hamiltonian dynamics: reversibility and phase space volume preservation.
As shown in [46], if dt is the time discretization step, reversible integrators preserve
the Hamiltonian up to an error that scales as an even power of dt. For leapfrog
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n = 16 n = 32 n = 64 n = 128
(2,0) 25 103 443 1812
(3,0) 56 218 961 3853
(4,0) 124 491 2222 9050

Table 3.8: Raw computing time of ∆Seff in milliseconds for 100 random Dirac
operators of various (p, q) types and matrix sizes. The scaling in n is approximately
O(n2).

the error bound scales as dt2.
Provided that the routine for calculating the Hamiltonian is correct, the best way
to verify that the gradients in the leapfrog have been implemented correctly is to
check that the theoretical error bound is respected. The test was conducted on
Dirac operators of type (2,0), (3,0) and (4,0) and matrix size 8 × 8. The average
energy violation was calculated over 104 Hamiltonian trajectories of fixed total
length L = dt ·Nt = 0.01. To have more control over the simulation time, the total
number of steps Nt was used as a variable instead of dt. One then expects the
energy violation to scale as N−2

t . Figure 3.1 shows the test results with logarithmic
variables. The linear fit gives a slope of -2.02(1), -2.02(1) and -2.07(3) for (2,0),
(3,0) and (4,0) respectively, compatible with the expected quadratic scaling.
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Figure 3.1: Plot of log |∆H| vs logNt for (2,0), (3,0) and (4,0) Dirac operators.
The linear fit gives a slope of -2.02(1), -2.02(1) and -2.07(3) respectively. The
energy violation was averaged over 104 trajectories of fixed length L = 0.01.
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3.5.4 Dual averaging

The tests presented so far gave evidence that the main components of the Monte
Carlo routines in RFL are correctly implemented. The only piece missing before
moving on to actual simulation benchmarks is to verify that the dual averaging
algorithm presented in Section 2.6 works as intended.
A test was conducted on (2,0), (3,0) and (4,0) Dirac operators and matrix size 8×8
to check convergency of the Hamiltonian Monte Carlo acceptance rate towards a
target value arbitrarily set at 0.6. The test is comprised of the following steps:

1. a Dirac operator is initialized in a random configuration;

2. the initial value of dt is set to 10−6, small enough to ensure an acceptance
rate of 1;

3. a certain number of dual averaging iterations are performed, updating the
step size dt;

4. after dual averaging has ended yielding an optimal value for dt, 104 full
Hamiltonian Monte Carlo iterations are performed and the average accep-
tance rate is measured.

Figure 3.2 shows how, even for the more complex (4,0) type, just a few thousand
iterations of the algorithm are sufficient to output a dt that induces an acceptance
rate close to the target one.
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Figure 3.2: Plot of the acceptance rate as a function of the number of dual aver-
aging iterations on dt for (2,0), (3,0) and (4,0) Dirac operators.
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3.5.5 Benchmarking against an exact result

Although not many analytical results are available for the matrix integrals con-
sidered here, there is a non-trivial observable whose expectation value is known
exactly for any geometry and any action polynomial in D. Computing this ob-
servable therefore is a good test for the numerical implementation.
Consider the following integral:∫ ∑

ij

∂

∂Dij

(
Dije

−S[D]
)
dD (3.8)

where the sum is extended over all independent degrees of freedom of the Dirac
operator and S[D] is in general a sum of terms like gp TrDp. Since the integral is
a total divergence, its value is given by the boundary contributions which vanish
because of the exponential.
An explicit calculation of the right-hand side of Eq.(3.8) gives:

0 =

∫ ∑
ij

(
1−

∑
p

gpDij
∂

∂Dij

TrDp

)
e−S[D]dD (3.9)

dividing by the partition function and rearranging the terms:

∑
ij

1 =
1∫
e−S[D]

∫ ∑
ij

(∑
p

gpDij
∂

∂Dij

TrDp

)
e−S[D]dD. (3.10)

The LHS is then the number of degrees of freedom of the Dirac operator, while
the RHS is rewritten using an identity proven in Appendix C:

#d.o.f.(D) =
1∫
e−S[D]

∫ (∑
p

gp pTrDp

)
e−S[D]dD =

〈∑
p

gp p TrDp

〉
.

(3.11)
To estimate the number of degrees of freedom recall that in the decomposition
(2.20) the Mi matrices are all Hermitian, but the ones associated to an εi = −1
are traceless. Therefore #d.o.f.(D) = n2m −m′ where n is the dimension of the
matrices, m is the total number of Mi matrices and m′ is the number of traceless
matrices. For the action considered in this work, the observable reads:

#d.o.f.(D) = 2g2

〈
TrD2

〉
+ 4

〈
TrD4

〉
=: 2g2 〈S2〉+ 4 〈S4〉 . (3.12)

Numerical tests of HMC and Metropolis agree with the prediction (3.12) as shown
in Table 3.9 for (2,0), (3,0) and (4,0) Dirac operators with 22× 22 matrices.

3.5.6 Correlation time

Two samples s1 and s2 extracted with a Markov chain present a certain amount
of correlation, i.e. denoting P (s2) the probability of extracting s2 and P (s2 |
s1) the conditional probability of extracting s2 given that at an earlier step s1

was extracted, one has P (s2 | s1) 6= P (s2). The performance of a Monte Carlo
algorithm is crucially dependent on the ability to extract as many uncorrelated
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Exact Hamiltonian Metropolis
(2,0) 968 969(2) 968(2)
(3,0) 1935 1934(2) 1931(2)
(4,0) 3868 3869(3) 3868(3)

Table 3.9: Expectation value 2g2 〈S2〉+ 4 〈S4〉 calculated for (2,0), (3,0) and (4,0)
Dirac operators and 22×22 matrices with Hamiltonian and Metropolis. The exact
value is reported on the first column.

samples as possible. Taking the Metropolis algorithm as an example, the difference
between two subsequent samples is at most a small displacement in one of the
matrix entries. The two samples will therefore be rather redundant, not adding
much information in the estimation of expectation values.
The concept of correlation can be formalized in the following way. Given an
observable f , define the time-displaced autocorrelation function [39]:

χ(t) =

∫
dt′
(
f(t′)− 〈f〉

)(
f(t′ + t)− 〈f〉

)
. (3.13)

On general grounds, χ(t) is expected to decay exponentially:

χ(t) ∼ e−
t
τ (3.14)

where τ is a typical timescale called the correlation time.
One should consider two samples to be uncorrelated when they are at least 2τ
apart. One way to justify this is to look at the formula for the standard deviation
of the mean. If N uncorrelated samples are collected, the error on an observable
f is:

σ =

√
1

N − 1

[
〈f 2〉 − 〈f〉2

]
∼
√

1

N

[
〈f 2〉 − 〈f〉2

]
(3.15)

for large N . In the presence of correlation between samples, the adjusted formula
reads:

σ =

√
2τ

N

[
〈f 2〉 − 〈f〉2

]
(3.16)

which is to say, the effective number of uncorrelated samples is N/2τ .
The correlation time can be estimated by using a discretized version of (3.13). If
the simulation is comprised of T Monte Carlo steps, then:

χ(t) =
1

T − t

[
T−t∑
t′=0

f(t)f(t+ t′)

]
− 1

(T − t)2

[
T−t∑
t′=0

f(t′)

][
T−t∑
t′=0

f(t+ t′)

]
(3.17)

and τ is estimated by fitting the exponential (3.14). Since the sums are taken up
to T − t, the estimation of χ becomes more and more noisy as t approaches T . For
this reason, one should take T large enough so that the exponential character is
clearly visible over the noise threshold.
A first calculation of the correlation time for Metropolis and Hamiltonian Monte
Carlo algorithms in RFL was performed on (4, 0) Dirac operators with 8× 8 ma-
trices and g2 = −4. The acceptance rate was tuned at 0.8 and 0.2 for Hamiltonian
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and Metropolis respectively. The results are shown in Table 3.10.

τ Time per move
Hamiltonian 1.20(3) 47 ms
Metropolis 1448(4) 0.18 ms

Table 3.10: Correlation time and time per move in milliseconds in Hamiltonian
and Metropolis Monte Carlo for (4,0) Dirac operators with 8 × 8 matrices and
g2 = −4.

As expected two consecutive samples in Metropolis are much more correlated, but
take less time to compute. Even then, the estimated time to collect two uncor-
related samples is 112 ms for Hamiltonian and 521 ms for Metropolis, almost a
five-fold performance increase in favour of the Hamiltonian algorithm.
The difference is even more impressive in the presence of critical points. Type (2,0)
Dirac operators with 32× 32 matrices undergo a second order phase transition at
around g2 = −2.75. In this case the Hamiltonian algorithm collects uncorrelated
samples almost 16 times faster than Metropolis. The results are shown in Table
3.11.

τ Time per move
Hamiltonian 1.0(1) 5.7 ms
Metropolis 901(4) 0.1 ms

Table 3.11: Correlation time and time per move in milliseconds in Hamiltonian
and Metropolis Monte Carlo for (2,0) Dirac operators with 32 × 32 matrices and
g2 = −2.75, where a second order phase transition occurs.

3.5.7 Error analysis

Given N correlated measurements f1, . . . , fN of an observable f , the error on 〈f〉
can be estimated with the formula (3.16) which assumes knowledge (via fitting) of
the autocorrelation time of f . However, if the measurements are grouped in bins
of size n, one could compute N/n separate estimates 〈f〉1, . . . , 〈f〉N/n which will
form a set of uncorrelated measurements for large enough n.
The main computational resource used for the numerical simulations of this thesis
was the University of Nottingham on-premise HPC facility, Augusta. Thanks to
the many CPU cores available on Augusta, several copies of each simulation could
be run in parallel, each copy initialized with a different random seed and therefore
each copy corresponding to an independent Markov chain. The natural binning
given by treating expectation values of each chain as independent samples was
used to avoid the problem of correlation altogether.
Once a certain number of uncorrelated samples is available, a common algo-
rithm for error estimate if the jackknife [39]. Given N uncorrelated measurements
f1, . . . , fN , the jackknife algorithm requires the calculation of N + 1 expectation
values. The first one is simply:

〈f〉 =
1

N

N∑
i=1

fi (3.18)
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and the remaining N are obtained by leaving out each time one of the measure-
ments:

〈f〉j =
f1 + . . . fj−1 + fj+1 + . . . fN

N − 1
. (3.19)

The jackknife estimate of the error on 〈f〉 is then given by:√√√√ N∑
i=1

(〈f〉 − 〈f〉i)2. (3.20)
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Chapter 4

One-matrix models

4.1 Introduction

The simplest Dirac operators are the ones built from (1,0) and (0,1) Clifford mod-
ules. These Dirac operators give rise to random matrix models that involve a single
Hermitian matrix. Many analytical techniques have been developed for random
one-matrix models, as opposed to multi-matrix models which are considerably less
understood. Indeed, the eigenvalue distribution of (1,0) and (0,1) Dirac operators
with quadratic plus quartic potential can be viewed as the solution to a Riemann-
Hilbert problem [17] and solved for exactly. This technique has first been applied
with success in [16], but their results were compromised by small oversights. The
use of Monte Carlo simulations in combination with the Riemann-Hilbert approach
has allowed to improve on the findings of [16] to the extent where the analytical
results are in excellent agreement with the numerics.

4.2 The matrix models

The (1,0) and (0,1) Dirac operators are:

D(1,0) = {H, ·} (4.1)

D(0,1) = [H, ·] (4.2)

where H is a Hermitian n× n matrix.
The action S = g2 TrD2 + TrD4 in terms on the H matrix is:

S(1,0) = 2n(g2 TrH2 + TrH4) + 2g2(TrH)2 + 8 TrH TrH3 + 6(TrH2)2 (4.3)

S(0,1) = 2n(g2 TrH2 + TrH4)− 2g2(TrH)2 − 8 TrH TrH3 + 6(TrH2)2. (4.4)

As in standard random matrix theory one can integrate over unitary transforma-
tions, which amounts to the Vandermonde determinant:∫

e−S[H] dH =

∫
e−S[λ]

∏
i<j

|λi − λj|2 dλ (4.5)
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where λi are the eigenvalues of H. The initial integral over n × n Hermitian
matrices becomes an integral over n real variables with action:

S = 2n
n∑
i=1

[
g2λ

2
i + λ4

i

]
+ 2

n∑
i,j=1

[
± g2λiλj ± 4λiλ

3
j + 3λ2

iλ
2
j

]
−

∑
1≤i<j≤n

2 log |λi− λj|

(4.6)
where ± refers to the (1, 0) and (0, 1) respectively. Or, written in a way that
optimizes calculations on a computer:

S(1,0) = 2
n∑
i=1

[
g2(n+ 1)λ2

i + (n+ 7)λ4
i

]
+ 2

∑
1≤i<j≤n

[
2g2λiλj + 4(λiλ

3
j + λjλ

3
i ) + 6λ2

iλ
2
j − log |λi − λj|

]
(4.7)

S(0,1) = 2(n− 1)
n∑
i=1

[
g2λ

2
i + λ4

i

]
+ 2

∑
1≤i<j≤n

[
− 2g2λiλj − 4(λiλ

3
j + λjλ

3
i ) + 6λ2

iλ
2
j − log |λi − λj|

]
. (4.8)

From the n eigenvalues of H one can easily compute the n2 eigenvalues of D:

λi + λj for D(1,0) (4.9)

λi − λj for D(0,1). (4.10)

4.3 Density of states, existing results

In [16] the density of states for H and D is calculated analytically in the large n
limit for both (1,0) and (0,1), for which the results turn out to be identical. The
existence of a transition between a single-cut and a double-cut phase is proven,
with the critical point being at g2 = −5

√
2/2.

The results are as follows. The density of states for the H matrix in the single-cut
phase supported on [−2a, 2a] is:

Ψ(x) =
1

π
(−4a2 +

1

2a2
+ 4x2)

√
4a2 − x2 (4.11)

with a given as the solution to:

g2 = −24a6 − 9a2 +
1

4a2

which, modulo a sign, has only one real root.
For the double-cut phase supported on [−a,−b] ∪ [b, a], the density of states for
H is:

Ψ(x) =
2

π
|x|
√

(x2 − a2)(b2 − x2) (4.12)
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with:

a2 = −1

5
g2 +

√
2

2

b2 = −1

5
g2 −

√
2

2
.

The density of states ρ for D is calculated as the convolution:

ρ(x) =

∫
Ψ(x∓ y)Ψ(y) dy (4.13)

and, although not solvable analytically, it can be calculated numerically from (4.11)
and (4.12). The first sign of a problem appears in (4.12), which is not properly
normalized. The issue is more serious than it might seem, since the normalization
condition is not imposed a posteriori on the density, but rather it comes from the
theory of Riemann-Hilbert problems itself. Further issues will be uncovered by
simulating the model non-perturbatively with Metropolis Monte Carlo.

4.4 Density of states, numerical results

Monte Carlo simulations give a different picture as the one described in the pre-
vious section.
In the one-cut phase the numerical results seem to resemble the analytical ones,
but for a different value of the coupling constant as Figure 4.1 shows.
In the two-cut phase, the two models behave differently. The spectrum of a typical
H matrix in the (1, 0) ensemble is not symmetric around zero, nor is its support,
breaking the assumptions made in [16]. This asymmetry doesn’t seem to be a
finite-size effect, since there is no appreciable scaling with the matrix size (Figure
4.2). The (0, 1) model is on the other hand symmetric, but again the numerical
and analytical results agree for different values of the coupling constant (Figure
4.3). Moreover, the transition appears to be between g2 = −3.2 and g2 = −3.3 for
the (1, 0), and somewhere between g2 = −5.5 and g2 = −6 for the (0, 1) (Figure
4.4 and 4.5), instead of the predicted g2 ≈ −3.5 for both.

4.5 Asymmetry tests on the (1, 0) model

The typicalH matrix after the phase transition has an asymmetric spectrum that is
very different from the one calculated analytically by [16]. In order to test whether
the asymmetry is a simulation artifact (due, for example, to failed thermalization)
or a real effect, simulations where performed with two types of constraint on the
spectrum.

– Type 1
An infinite potential wall was introduced so that the spectrum is forced to
lie within [−a, a] for some a ∈ R, without necessarily being symmetric.

– Type 2
The spectrum is forced to be symmetric around zero. After a certain time,
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Figure 4.1: Density of states obtained numerically for H (top) and D (bottom) in
the (1, 0) model, n = 1024, at g2 = −3 (purple boxes). The results seem to agree
with the one-cut analytical formula, but calculated at g2 = −1.89 (green line).
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Figure 4.2: Spectrum of a typical H matrix (top) and Dirac operator D (bottom)
in the (1, 0) model for various matrix sizes at g2 = −4.
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Figure 4.3: Density of states obtained numerically for H (top) and D (bottom) in
the (0, 1) model, n = 1024, at g2 = −7 (purple boxes). The results seem to agree
with the two-cut analytical formula, but calculated at g2 = −4.2 (green line).

54



	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

	1.4

	1.6

-2 -1.5 -1 -0.5 	0 	0.5 	1 	1.5 	2

g2=-3
g2=-3.1
g2=-3.2
g2=-3.3
g2=-3.4
g2=-3.5
g2=-3.6
g2=-4

λ

P(λ)

	0

	0.2

	0.4

	0.6

	0.8

	1

	1.2

-3 -2 -1 	0 	1 	2 	3

g2=-3
g2=-3.1
g2=-3.2
g2=-3.3
g2=-3.4
g2=-3.5
g2=-3.6
g2=-4

λ

P(λ)

Figure 4.4: Density of states obtained numerically for H (top) and D (bottom) in
the (1, 0) model, n = 1024, at various values of g2. The one- to two-cut transition
appears at g2 ∈ (−3.2,−3.3) instead of the predicted -3.5.
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appears at g2 ∈ (−5.5,−6) instead of the predicted -3.5.
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the constraint is released to check whether the spectrum relaxes again to-
wards the asymmetric shape.

The results are as follows. When the wall in the first type of constraint cuts part
of the smaller peak, the eigenvalues that have been cut-off just accumulate against
the wall (purple and green line in Figure 4.6). If instead the wall is placed so
that is does not interfere with the smaller peak, no difference is observed with the
unconstrained model (blue and orange line in Figure 4.6).
On the other hand, the second (and stronger) constraint gives a distribution iden-
tical to the (0, 1), as shown in Figure 4.7. Suddenly releasing the constraint makes
the distribution fall back to the asymmetric shape, confirming that that is indeed
the stable vacuum configuration.
The key to understanding the inconsistencies between theory and numerics is to
revisit the Riemann-Hilbert method.
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Figure 4.6: Density of states obtained numerically for H in the (1, 0) model, with
a potential wall in various positions. For comparison, the unconstrained spectrum
is also included. n = 256, g2 = −4.

4.6 Riemann-Hilbert approach to equilibrium mea-

sures

The authors of [16] rely on the method outlined in [17] for finding the equilibrium
measure in the two-cut case, which amounts to solving a Riemann-Hilbert problem.
The method is general enough to be applied to k cuts, although [17] deals with
potentials with no interactions between eigenvalues, as opposed to the present
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Figure 4.7: Density of states obtained numerically for H in the (1, 0) model, with
spectrum forced to be symmetric around zero. For comparison, the spectrum of a
(0, 1) matrix is also included. n = 256 for (1, 0), n = 1024 for (0, 1), g2 = −4.

case.
Riemann-Hilbert problems are slightly more general than what is needed here,
which is called a scalar R-H problem. The statement of the problem goes as
follows. Let Σ be a finite union of disjoint open intervals on R. Given a smooth
function v(z) : Σ→ C, find a complex-valued function m such that:

1. m is analytic in C \ Σ;

2. m+(z) = m−(z)v(z), z ∈ R;

3. m(z)→ 1 as z →∞.

The notation m± indicates the limit of m(z′) for z′ → Σ from above and below
respectively. Notice that whenever a subscript + or − is added to a function, the
argument of that function is automatically real as Σ ⊂ R. Taking the logarithm
in 2. gives:

logm+(z)− logm−(z) = log v(z) (4.14)

whose solution is given by the Plemelj formula:

logm(z) =
1

2πi

∫
Σ

log v(s)

s− z
ds, for z ∈ C \ Σ. (4.15)
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The way an equilibrium measure ψ(x) can be found by solving a scalar R-H prob-
lem is to consider the Borel transform of ψ:

G(z) =
1

iπ

∫
Σ

ψ(y)

y − z
dy (4.16)

where Σ here indicates the support of ψ. To fix the notation, call ai and bi the
extrema of the i-th cut:

Σ =
k⋃
i=1

(ai, bi). (4.17)

Consider

q(z) =
k∏
i=1

(z − ai)(z − bi) (4.18)

and define
√
q(z) such that

√
q(z) ∼ +zk as z → ∞. Notice that

√
q(z)

+
=

−
√
q(z)−. Consider now:

G̃(z) =
G(z)√
q(z)

(4.19)

and write:

G̃+(z)− G̃−(z) =
G+(z) +G−(z)√

q(z)
+

. (4.20)

By the real version of the Sokhotski-Plemelj theorem, G±(x) can be written as a
principal value plus Dirac delta:

G±(x) = lim
ε→0

1

iπ

∫
ψ(y)

y − (x± iε)
dy

=
1

iπ

(
−P.V.

∫
ψ(y)

y − x
dy ± iπ

∫
δ(y − x)ψ(y)dy

)
= iHψ(x)± ψ(x) (4.21)

where Hψ(x) indicates the Hilbert transform of ψ:

Hψ(x) =
1

π
P.V.

∫
Σ

ψ(y)

x− y
dy. (4.22)

Therefore:

G̃+(z)− G̃−(z) = 2i
Hψ(z)√
q(z)

+

(4.23)

defines a scalar R-H problem. Once G(z) is found by solving (4.23) with the
Plemelj formula, it is clear from (4.21) that the equilibrium measure is given by
ReG(x)+.
The discussion so far holds under rather general assumptions and does not make
reference to the specific model one is trying to solve. The last step is to find an
expression for the Hilbert transform of ψ. This is found by setting up a minimiza-
tion problem for the equilibrium measure ψ(x)dx, which will establish a relation
between the Hilbert transform of ψ and the action of the random matrix model.
Consider the action for the (1, 0) and (0, 1) models written in terms of the eigen-
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values:

S = n
n∑
i=1

V (λi) +
n∑

i,j=1

U(λi, λj) +
∑
i 6=j

log |λi − λj|−1. (4.24)

where

V (x) = 2g2x
2 + 2x4 (4.25)

U(x, y) = ±2g2xy ± 8xy3 + 6x2y2. (4.26)

Define the counting measure:

dµn(x) =
1

n

∑
i

δ(λi − x)dx (4.27)

so that the action can be rewritten in the continuum:

S = n2

[∫
V (x)dµn(x) +

∫ ∫
U(x, y)dµn(x)dµn(y) +

∫ ∫
log |x− y|−1dµn(x)dµn(y)

]
.

(4.28)
In the large n limit the assumption is that the equilibrium measure is the unique
measure that minimizes the action, and therefore one is led to the minimization
problem:

inf
µ

[∫
V (x)dµ(x) +

∫ ∫
U(x, y)dµ(x)dµ(y) +

∫ ∫
log |x− y|−1dµ(x)dµ(y)

]
.

(4.29)
By repeating the proof of theorem 6.126 in [17] it follows that, if the equilibrium
measure is assumed to be of the form dµ(x) = ψ(x)dx for a continuous function
ψ with compact support, the minimization problem is equivalent to the existence
of a real constant l such that:

2

∫
log |x− y|−1ψ(y)dy + 2

∫
U(x, y)ψ(y)dy + V (x) ≥ l ∀x ∈ R (4.30)

2

∫
log |x− y|−1ψ(y)dy + 2

∫
U(x, y)ψ(y)dy + V (x) = l {x : ψ(x) ≥ 0} (4.31)

where, importantly, U is used in its symmetrized form:

U(x, y) = ±2g2xy ± 4xy3 ± 4x3y + 6x2y2. (4.32)

To eliminate the constant l from (4.31) one can take a derivative with respect to
x. The U integral is a sum of terms of the form:∫

xjykψ(y)dy. (4.33)

Recalling the definition of the k-th moment mk of a measure:

mk :=

∫
ykψ(y)dy (4.34)
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it is clear that ultimately the U integral is a polynomial in x with coefficients
depending on the moments of ψ:∫

U(x, y)ψ(y)dy = ±2g2m1x± 4m3x± 4m1x
3 + 6m2x

2 (4.35)

and therefore its derivative with respect to x can be calculated in a straightforward
way. The derivative of the logarithmic term, which is actually a weak derivative
in the distributional sense, is proportional to the Hilbert transform of ψ [17]:

2
∂

∂x

∫
log |x− y|−1ψ(y)dy = −2πHψ(x) (4.36)

and therefore (4.31) can be written:

2πHψ(x) = 2 P.V.

∫
Σ

ψ(y)

x− y
dy = 8x3 ± 24m1x

2 + (4g2 + 24m2)x± 4g2m1 ± 8m3

(4.37)
where the RHS is the derivative:

V ′(x) :=
∂

∂x

[
2

∫
U(x, y)ψ(y)dy + V (x)

]
(4.38)

The R-H problem (4.23) is then given in its final form:

G̃+(z)− G̃−(z) =
i
π
V ′(z)√
q(z)

+

. (4.39)

Compare V ′(x) with the one given in [16]:

8x3 + (4g2 + 12m2)x± 2g2m1 ± 8m3. (4.40)

The quadratic term 24m1x
2 is missing because U is not properly symmetrized,

and there is a missing factor of 2 in the terms coming from the double integral in
U . The correct V ′(x) given by (4.37) will fix the incompatibilities found between
the numerical simulations and [16].

4.7 One-cut solution

In the one-cut phase, the numerical simulations show a symmetric eigenvalue den-
sity and no differences between the (1, 0) and (0, 1) models. The analysis in [16]
is therefore valid insofar as the correct V ′(x) is used. If the density function is
supported on [−2a, 2a], then:

ψ(x) =
1

π

(
−4a2 +

1

2a2
+ 4x2

)√
4a2 − x2 (4.41)

with a and the coupling constant g2 related in the following way:

g2 =
1

4a2
− 12a2 − 48a6 (4.42)
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which has a unique real solution:

a2 =
1

4
√

3

(√
F (g2)− 2 +

√
−

√
3g2√

F (g2)− 2
− 4− F (g2)

)
(4.43)

with

F (g2) :=
(32 + 3g2

2)
1
3

2
2
3

. (4.44)

The relation between a and g2 given here agrees very well with the numerics.

4.8 Two-cut solution

The authors in [16] perform the two-cut analysis assuming that the support is
symmetric around zero. The numerical results show how this assumption is too
restrictive, at least for the (1, 0) model. The correct solution can be found by
adapting the approach outlined in [17].
Set up the scalar Riemann-Hilbert problem (4.39), with solution:

G(z) =

√
q(z)

2πi

∫
Σ

i
π
V ′(s)√
q(s)

+

ds

s− z
(4.45)

and V ′(z) given by (4.38). In order to rewrite (4.45), assume that the support is
comprised of exactly two intervals (a1, b1), (a2, b2) (as the numerics suggest) and
consider the integral ∫

C

i
π
V ′(s)√
q(s)

ds

s− z
(4.46)

where C = c1 + . . .+ c16 is shown in Figure 4.8. The branch cuts are indicated by
dashed lines, and c2, c4, c6, c8, c10, c12, c14, c16 lie on the axis even though they
are drawn away from it.
The interior of the contour is simply connected and lies entirely in the domain of
analyticity of V ′/√q, therefore Cauchy’s integral formula can be applied and gives:∫

C

i
π
V ′(s)√
q(s)

ds

s− z
= 2πi

i
π
V ′(z)√
q(z)

. (4.47)

On the other hand, since the contributions of c2 and c16 cancel with the contri-
butions of c8 and c10, when taking the limit for R → ∞ and ε → 0 the integral
evaluates to ∫

C

i
π
V ′(s)√
q(s)

ds

s− z
= 2

∫
Σ

i
π
V ′(s)√
q(s)

+

ds

s− z
+

∫
c

i
π
V ′(s)√
q(s)

ds

s− z
(4.48)

where the first term on the RHS comes from the two clockwise dumbbells (c3 +
c4 + c5 + c6 + c7 and c11 + c12 + c13 + c14 + c15), while c = c1 + c9 is the large circle
of radius R oriented counter-clockwise. Inverting the orientation of c and putting
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Figure 4.8: Integration contour

(4.47) and (4.48) together gives:

2πi
i
π
V ′(z)√
q(z)

+

∫
−c

i
π
V ′(s)√
q(s)

ds

s− z
= 2

∫
Σ

i
π
V ′(s)√
q(s)

+

ds

s− z
(4.49)

and finally, substituting (4.45) in (4.49):

G(z) =
i

2π
V ′(z) +

√
q(z)

4πi

∫
−c

i
π
V ′(s)√
q(s)

ds

s− z
(4.50)

which is equation (6.149) in [17].
The integral in (4.50) can be computed by calculating the residue at infinity:

1

2πi

∫
−c

V ′(s)√
q(s)

ds

s− z
= Ress=∞

(
V ′(s)√
q(s)

1

s− z

)
= −Rest=0

 1

t2
V ′
(

1
t

)√
q
(

1
t

) 1
1
t
− z


(4.51)

A Laurent expansion of the function yields:

V ′
(

1

t

)
1

t2

[(
1

t
− a1

)(
1

t
− a2

)(
1

t
− b1

)(
1

t
− b2

)]− 1
2
(

1

t
− z
)−1

= V ′
(

1

t

)
1

t2

[
1

t4
(1− ta1) (1− ta2) (1− tb1) (1− tb2)

]− 1
2
(

1

t
(1− tz)

)−1

=
∞∑

k,i1,i2,j1,j2=0

zk
(
i1 − 1

2

i1

)(
i2 − 1

2

i2

)(
j1 − 1

2

j1

)(
j2 − 1

2

j2

)
ai11 a

i2
2 b

j1
1 b

j2
2 V ′

(
1

t

)
t1+k+i1+i2+j1+j2

(4.52)
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where convergency of the series is guaranteed by the fact that |t| � 1.
The potential V ′

(
1
t

)
has the general form:

V ′
(

1

t

)
= α

1

t3
+ β

1

t2
+ γ

1

t
+ δ. (4.53)

By power counting, it follows that the only terms with a non-vanishing residue
arise from the quadratic term in V ′ and all indices k, i1, i2, j1, j2 equal to zero,
or from the cubic term and one index among k, i1, i2, j1, j2 equal to 1. Therefore:

1

2πi

∫
−c

V ′(s)√
q(s)

ds

s− z
= −β − α

(
z +

a1 + a2 + b1 + b2

2

)
(4.54)

and (4.50) evaluates to:

G(z) =
i

2π
V ′(z) +

√
q(z)

2πi

[
β + α

(
z +

a1 + a2 + b1 + b2

2

)]
. (4.55)

The distribution ψ(x) is then found as:

ψ(x) = ReG(x)+ (4.56)

which requires some caution when taking the limit of the square root. When
approaching the (a1, b1) cut from above, the arguments of the factors in

√
q(z)

are:

arg(z − a1) = ε

arg(z − b1) = π − ε
arg(z − a2) = π − ε
arg(z − b2) = π − ε

and the square root evaluates to:(
ρa1ρb1ρa2ρb2e

iεei(π−ε)ei(π−ε)ei(π−ε)
) 1

2 ∼ ρe
3
2
iπ = −iρ (4.57)

while instead, when approaching the (a2, b2) cut from above, the arguments are:

arg(z − a1) = ε

arg(z − b1) = ε

arg(z − a2) = ε

arg(z − b2) = π − ε

and the square root evaluates to:(
ρa1ρb1ρa2ρb2e

iεeiεeiεei(π−ε)
) 1

2 ∼ ρei
π
2 = iρ. (4.58)
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In other words, the square root is imaginary and it picks up a sign on the (a1, b1)
cut. Ultimately one finds:

ψ(x) = ReG(x)+ =
1

2π

√
−q(x) cut(x)

[
β + α

(
x+

a1 + a2 + b1 + b2

2

)]
=

1

2π

√
−q(x) cut(x)

[
±24m1 + 8

(
x+

a1 + a2 + b1 + b2

2

)]
(4.59)

where cut(x) = ±1 is defined in the following way:

cut(x) =

{
−1 x ∈ (a1, b1)

+1 x ∈ (a2, b2)
(4.60)

Notice how for a symmetric density (i.e. a1 = −b2, b1 = −a2 and vanishing odd
moments), the formula agrees with [16] if not for a factor of 2. This goes back to
the observation that the density found by [16] in the two-cut case is not properly
normalized, which in turn is a consequence of an overall factor of 2 missing in the
U integral of (4.31).
The two matrix models will now be discussed separately. The (0, 1) model will be
discussed first, as the assumption of a symmetric density simplifies the calculations.
Afterwards, the full asymmetric case for the (1, 0) model is presented.

4.8.1 Symmetric two-cut case: the (0, 1) model

A symmetric density translates to two conditions:

1. the support is assumed to be (−b,−a) ∪ (a, b) for 0 < a < b;

2. all the odd moments vanish.

The density (4.59) therefore reads:

ψ(x) =
4

π
|x|
√
−(x2 − a2)(x2 − b2). (4.61)

Following [17], the relations between g2, a and b are found by imposing the correct
asymptotics for the Borel transform G(z) as z → ∞. There are three equations
to satisfy: ∫

Σ

V ′(s)√
q(s)

+

ds = 0 (4.62)∫
Σ

V ′(s)√
q(s)

+

s ds = 0 (4.63)∫
Σ

V ′(s)√
q(s)

+

s2 ds = −2πi. (4.64)

By using the same contour of Figure 4.8 and noticing that this time no poles are
included in the interior, the integrals reduce once again to calculating residues at
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infinity:

∫
Σ

V ′(s)√
q(s)

+

sk ds =
1

2

∫
−c1

V ′(z)√
q(z)

zk dz = −πiRest=0

 1

t2+k

V ′
(

1
t

)√
q
(

1
t

)
 . (4.65)

A Laurent expansion gives:

1

t2+k

V ′
(

1
t

)√
q
(

1
t

) =
∞∑

i,j=0

(
i− 1

2

i

)(
j − 1

2

j

)
a2ib2j V ′

(
1

t

)
t2i+2j−k (4.66)

and therefore the three conditions (4.62), (4.63) and (4.64) read:

4(a2 + b2) + 4g2 + 24m2 = 0 (4.67)

4g2m1 + 8m3 + 12m1(a2 + b2) = 0 (4.68)

2g2(a2 + b2) + 12m2(a2 + b2) + 2a2b2 + 3(a4 + b4) = 2. (4.69)

Notice that the second equation is automatically satisfied because of vanishing odd
moments. The second moment m2 is correctly computed in [16] as

m2 = −γ
α

(4.70)

with α and γ defined to be the coefficient of the cubic and linear term respectively
in (4.53), which in this case gives1:

m2 = −g2

8
. (4.71)

One is then left with two equations:

a2 + b2 = −g2

4
(4.72)

g2

4
(a2 + b2) +

3

2
(a2 + b2)2 − 2a2b2 = 1. (4.73)

The first one says that a and b can be written as:

a = r cos θ, b = r sin θ (4.74)

for r2 = −g2/4 and some angle θ. Solving the system for θ ultimately gives:

a2 = −g2

8
−
√

2

2
(4.75)

b2 = −g2

8
+

√
2

2
. (4.76)

1The moment m2 is E[TrH2]/n, and it is a recurring feature of random matrix models coming
from fuzzy spectral triples, even higher types like the (2, 0), that this quantity turns out to be
−g2/8 on the stationary solution.
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As a final observation, notice that the extremal value of g2 for which the expression
for a2 makes sense is:

g2 = −4
√

2 (4.77)

which, as confirmed by the numerics, is the critical coupling separating one- and
two-cut solution in the (0, 1) model.

4.8.2 Asymmetric two-cut case: the (1, 0) model

In the absence of symmetry the density (4.59) cannot be simplified further. It is
reported here for convenience:

ψ(x) =
1

2π

√
−q(x) cut(x)

[
24m1 + 8

(
x+

a1 + a2 + b1 + b2

2

)]
. (4.78)

A first test for the validity of (4.78) would be to find the unknown parameters
a1, a2, b1, b2 and m1 by fitting the function to the numerical data. For n = 1024
and g2 = −4, the fit shown in Figure 4.9 gives:

a1 = −1.4770(5)

b1 = −0.949(4)

a2 = 0.1897(8)

b2 = 1.0130(3)

m1 = 0.5022(7) (4.79)

The agreement between the fitted function and the numerical data is excellent.
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Figure 4.9: Fitting the numerical data of a simulation performed with n = 1024
and g2 = −4 gives a good agreement with the density (4.78)

The asymptotics of the Borel transform give conditions relating the support end-
points and the coupling constant, but they are not enough to fix all parameters.
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The three equations are still (4.62), (4.63) and (4.64), but this time there are no
relations a priori among the endpoints in

√
q(s). The Laurent expansion in this

case reads:

1

t2+k

V ′
(

1
t

)√
q
(

1
t

) =
∞∑

i1,i2,j1,j2=0

(
i1 − 1

2

i1

)(
i2 − 1

2

i2

)(
j1 − 1

2

j1

)(
j2 − 1

2

j2

)
ai11 a

i2
2 b

j1
1 b

j2
2 V ′

(
1

t

)
× ti1+i2+j1+j2−k.

(4.80)

The higher k, the more contributions there are to the residue because more index
combinations result in t−1. The worst case arises from the cubic term in V ′ and
k = 2. In this case one needs to find all combinations of i1, i2, j1, j2 such that:

ti1+i2+j1+j2−5 = t−1. (4.81)

It is not hard to see that these correspond to all possible integer partitions of
5 − 1 = 4 of length ≤ 4. They are reported in Appendix D, where partition y of
integer x is denoted C

(x)
(y) . The three equations (4.62), (4.63) and (4.64) then read:

αC(2) + βC(1) + γ = 0 (4.82)

αC(3) + βC(2) + γC(1) + δ = 0 (4.83)

αC(4) + βC(3) + γC(2) + δC(1) = 2 (4.84)

where
C(x) :=

∑
y

C
(x)
(y) . (4.85)

Notice how these equations involve the moments m1, m2 and m3 through the
coefficients β, γ and δ, as well as the endpoints a1, a2, b1 and b2 through the
coefficients C

(x)
(y) , for a total of 7 unknowns.

The moments can be calculated from their definition (4.34) with ψ as in (4.78).
Using once again the same contour technique, the moments turn out to be:

mk = (12m1 + 2(a1 + a2 + b1 + b2)) Rest=0

(
1

tk+2

√
q

(
1

t

))

+ 4 Rest=0

(
1

tk+3

√
q

(
1

t

))
(4.86)

and the corresponding Laurent expansion reads:

1

tp

√
q

(
1

t

)
=

∑
i1,i2,j1,j2

(
1
2

i1

)(
1
2

i2

)(
1
2

j1

)(
1
2

j2

)
(−1)i1+i2+j1+j2 ai11 a

i2
2 b

j1
1 b

j2
2 ti1+i2+j1+j2−p−2

(4.87)
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which shows how the expression becomes rather cumbersome even for low mo-
ments. For m1, for example, p = 3, 4 in (4.87), and therefore the contributions to
the residues come from integer partitions of 4 and 5 with length ≤ 4. As before,
the coefficient are reported in Appendix D to avoid clutter and denoted D

(x)
(y) .

The moments then read:

m1 = − (12m1 + 2(a1 + a2 + b1 + b2))D(4) − 4D(5) (4.88)

m2 = − (12m1 + 2(a1 + a2 + b1 + b2))D(5) − 4D(6) (4.89)

m3 = − (12m1 + 2(a1 + a2 + b1 + b2))D(6) − 4D(7) (4.90)

where
D(x) :=

∑
y

D
(x)
(y) . (4.91)

Equations (4.82), (4.83), (4.84), (4.88), (4.89), (4.90) are ultimately a system of six
equations in seven unknowns. The solution is too hard to find even numerically,
but what one can do to validate the method is to substitute the empirical values
(4.79) and solve the remaining equations in m2 and m3 .
Equation (4.88) simplifies completely to

0 = 0.002± 0.017. (4.92)

Equations (4.82) and (4.89) give two independent estimates of m2:

m2 = 0.5661± 0.0013 (4.93)

m2 = 0.564± 0.019. (4.94)

Equation (4.90) gives an estimate of m3:

m3 = 0.156± 0.022. (4.95)

And finally equations (4.83) and (4.84) can be solved together to give a simulta-
neous estimate of m2 and m3:

m2 = 0.566± 0.006 (4.96)

m3 = 0.153± 0.014. (4.97)

The values are all consistent with each other, which is a good sanity check. A
direct estimate of the moments from the Monte Carlo gives:

m2 = 0.56249± 0.00001 (4.98)

m3 = 0.15490± 0.00002 (4.99)

which are very close to the ones given in (4.93), (4.94), (4.95), (4.96) and (4.97).
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Chapter 5

Two-matrix models

5.1 Two-matrix models

5.1.1 Introduction

The following is a study concerning the classical solutions to the equations of
motion for the two-matrix, two-trace random matrix models arising from Dirac
operators with action S = g2 TrD2 + TrD4. There are three distinct models,
obtained starting from a (p, q) Clifford module where p + q = 2. For this reason
the three models will be referred to as the (2,0), (1,1) and (0,2).
The Clifford gamma matrices are two-dimensional and can be taken to be a pair
of Hermitian or anti-Hermitian Pauli matrices. The corresponding Dirac operator
will contain all linearly independent products of these, but subject to the axioms of
non-commutative geometry [8]. Taking products of gamma matrices will produce
something proportional to either the third Pauli matrix or the identity matrix,
but these are excluded in all three cases because the Dirac operator is required to
anti-commute with the chirality operator, which is proportional to the third Pauli
matrix.
The three Dirac operators ultimately are:

D(2,0) = σ1 ⊗ {m1, ·}+ σ2 ⊗ {m2, ·} (5.1)

D(1,1) = σ1 ⊗ [m1, ·] + σ2 ⊗ {m2, ·} (5.2)

D(0,2) = σ1 ⊗ [m1, ·] + σ2 ⊗ [m2, ·] (5.3)

where m denotes an arbitrary Hermitian matrix.
Commutators and anti-commutators are represented as linear operators in Cn⊗Cn:

{m, ·} = m⊗ 1n + 1n ⊗mT (5.4)

[m, ·] = m⊗ 1n − 1n ⊗mT . (5.5)

Since the only real difference in the three models from a computational perspective
is a sign due to the presence of a commutator or anti-commutator, where possible
they will be treated collectively by storing the sign in a factor ε:

D =
∑
a

σa ⊗
(
ma ⊗ 1n + εa1n ⊗mT

a

)
(5.6)
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where the sum is over the two terms appearing in the Dirac operator.
Finally, where convenient, the whole expression for a commutator or anti-commutator
will be condensed in a single capital letter:

D =
∑
a

σa ⊗Ma. (5.7)

5.1.2 Computing the action

Using the properties of the Pauli matrices, the action is easily computed in all
three models:

S = 2g2 Tr(M2
1 +M2

2 ) + 2 Tr(M4
1 +M4

2 + 4M2
1M

2
2 − 2M1M2M1M2). (5.8)

At this level the three models are equivalent, the difference being hidden in the ε
signs inside the M matrices. Expanding these gives:

S = 4g2

[
nTr(m2

1 +m2
2) + ε1(Trm1)2 + ε2(Trm2)2

]
+ 4n

[
Tr(m4

1 +m4
2) + 4 Trm2

1m
2
2 − 2 Trm1m2m1m2

]
+ 4
[
4ε1 Trm3

1 Trm1 + 4ε2 Trm3
2 Trm2 + 3(Trm2

1)2 + 3(Trm2
2)2
]

+ 16ε1 Trm1m
2
2 Trm1 + 16ε2 Trm2m

2
1 Trm2

+ 8 Trm2
1 Trm2

2 + 16ε1ε2(Trm1m2)2. (5.9)

It is clear from this expression that the models are two-matrix, double-trace ran-
dom matrix models indexed by (ε1, ε2) = (1, 1), (1,−1), (−1,−1).
As it will become clear later, the whole dynamics of the model is driven by the
interplay between trace and traceless part of m1 and m2. If mi = ti1 + vi, with
Tr vi = 0, then the action is:

S = 4g2n
[
n(1 + ε1)t21 + n(1 + ε2)t22 + Tr v2

1 + Tr v2
2

]
+ 16n2

[
(1 + ε1)t41 + (1 + ε2)t42

]
+ 48n

[
(1 + ε1)t21 Tr v2

1 + (1 + ε2)t22 Tr v2
2

]
+ 16n

[
(1 + ε1)t1 Tr v3

1 + (1 + ε2)t2 Tr v3
2

]
+ 16n2(ε1 + ε2 + ε1ε2 + 1)t21t

2
2 + 32n(ε1 + ε2 + ε1ε2 + 1)t1t2 Tr v1v2

+ 16n(1 + ε1)
[
t21 Tr v2

2 + t1 Tr v1v
2
2

]
+ 16n(1 + ε2)

[
t22 Tr v2

1 + t2 Tr v2v
2
1

]
+ 4n(Tr v4

1 + Tr v4
2) + 16nTr v2

1v
2
2 − 8nTr v1v2v1v2

+ 12
[
(Tr v2

1)2 + (Tr v2
2)2
]

+ 8 Tr v2
1 Tr v2

2 + 16ε1ε2(Tr v1v2)2. (5.10)

Note that when εi = −1, all terms involving ti automatically vanish. This is a
consequence of the fact that εi = −1 means that mi appears inside a commutator.
Therefore, as can be seen explicitly in (5.5), its trace decouples from the action.
Without loss of generality, we can then put ti = 0 when εi = −1.
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5.1.3 Stationary equations

The variation of the action induced by an arbitrary variation ti → ti + δti and
vi → vi + δvi reads:

δS =
[
8n2g2(1 + ε1)t1 + 64n2(1 + ε1)t31 + 96n(1 + ε1)t1 Tr v2

1 + 16n(1 + ε1) Tr v3
1

+ 32n(ε1 + ε2 + ε1ε2 + 1)
[
nt1t

2
2 + t2 Tr v1v2

]
+ 16n(1 + ε1)

[
2t1 Tr v2

2 + Tr v1v
2
2

] ]
δt1

+ Tr
[
8ng2v1 + 96n(1 + ε1)t21v1 + 48n(1 + ε1)t1v

2
1 + 16n(1 + ε1)t1v

2
2

+ 32n(ε1 + ε2 + ε1ε2 + 1)t1t2v2 + 16n(1 + ε2)
[
2t22v1 + t2{v1, v2}

]
+ 16nv3

1 + 16n{v1, v
2
2} − 16nv2v1v2 + 48

(
Tr v2

1

)
v1 + 16

(
Tr v2

2

)
v1

+ 32ε1ε2 (Tr v1v2) v2

]
δv1

+ exchange labels 1↔ 2 (5.11)

and imposing δS = 0 for arbitrary δti and δvi gives the stationary equations. This
means putting to zero the coefficients of δti, while the coefficients of δvi can be
in general proportional to the identity. The equations are written explicitly in
the next paragraphs to appreciate the differences and similarities across the three
models

Stationary equations for the (2, 0) model

t1) 16n2g2t1 + 128n2t31 + 192nt1 Tr v2
1 + 32nTr v3

1 + 128n2t1t
2
2

+ 128nt2 Tr v1v2 + 64nt1 Tr v2
2 + 32nTr v1v

2
2 = 0 (5.12)

t2) same as t1 upon exchanging 1↔ 2 (5.13)

v1) 8ng2v1 + 192nt21v1 + 96nt1v
2
1 + 128nt1t2v2 + 32nt1v

2
2 + 64nt22v1

+ 32nt2{v1, v2}+ 16nv3
1 + 16n{v1, v

2
2} − 16nv2v1v2 + 48

(
Tr v2

1

)
v1

+ 16
(
Tr v2

2

)
v1 + 32 (Tr v1v2) v2 ∝ 1 (5.14)

v2) same as v1 upon exchanging 1↔ 2 (5.15)
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Stationary equations for the (1, 1) model

t1) 16n2g2t1 + 128n2t31 + 192nt1 Tr v2
1 + 32nTr v3

1 + 64nt1 Tr v2
2 + 32nTr v1v

2
2 = 0

(5.16)

v1) 8ng2v1 + 192nt21v1 + 96nt1v
2
1 + 32nt1v

2
2 + 16nv3

1 + 16n{v1, v
2
2} − 16nv2v1v2

+ 48
(
Tr v2

1

)
v1 + 16

(
Tr v2

2

)
v1 − 32 (Tr v1v2) v2 ∝ 1 (5.17)

v2) 8ng2v2 + 64nt21v2 + 32nt1{v1, v2}+ 16nv3
2 + 16n{v2, v

2
1} − 16nv1v2v1

+ 48
(
Tr v2

2

)
v2 + 16

(
Tr v2

1

)
v2 − 32 (Tr v1v2) v1 ∝ 1 (5.18)

Stationary equations for the (0, 2) model

v1) 8ng2v1 + 16nv3
1 + 16n{v1, v

2
2} − 16nv2v1v2

+ 48
(
Tr v2

1

)
v1 + 16

(
Tr v2

2

)
v1 + 32 (Tr v1v2) v2 ∝ 1 (5.19)

v2) same as v1 upon exchanging 1↔ 2 (5.20)

Finding values for the scalars tα and the matrices vα that satisfy the stationary
equations amounts to finding the preferred configurations of a purely classical
theory, i.e. a theory where random fluctuations do not play a role. These classical
solutions represent the leading contribution to the full random behaviour, and
for very deep potentials where the fluctuations are suppressed they acquire more
and more importance, but one should keep in mind that the full random model
can differ drastically. In particular, a ubiquitous phenomenon observed in random
matrix models is that of eigenvalue repulsion, which lifts the high degeneracy in
the matrix spectra typically seen in classical solutions.
In what follows, a particular type of stationary solution is completely classified in
all three models, and then the behaviour of the full random theory as probed by
numerical simulations is compared with the classical results.

5.2 Involutory solutions for the (0,2) and (1,1)

models

In this section, the general solution to the stationary equations involving involutory
matrices v1 and v2 is worked out in the (0,2) and (1,1) models. The only assumption
is then:

v2
1 = x21, v2

2 = y21, x, y ∈ R. (5.21)

These solutions are later shown to be enough to explain to a large extent the
behaviour of the full random models. Although a similar analysis can be performed
on the (2,0) model, it is found in that case to be more convenient to reorganize
its degrees of freedom first, and for this reason the (2,0) model will be treated
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separately.

5.2.1 Involutory solutions for the (0, 2) model

The (0, 2) model, being the simplest one, is worked out first.

Proposition 1. All solutions of the stationary equations (5.19) and (5.20) with
v2

1 = x21 and v2
2 = y21, x, y ∈ R obey one of

1. v1 = v2 = 0

2. [v1, v2] = 0, Tr v1v2 = 0, x2 = y2 = − g2
12

3. v1 = ±xv, v2 = ±yv, v2 = 1, x2 + y2 = −g2
8

4. {v1, v2} ∝ 1, [v1, v2] 6= 0, x2 + y2 = −g2
8

Proof. Substituting (5.21) into (5.19) and (5.20) gives:

av1 + bv2 − v2v1v2 ∝ 1 (5.22)

cv2 + bv1 − v1v2v1 ∝ 1 (5.23)

with

a =
g2

2
+ 4x2 + 3y2, b =

2

n
Tr v1v2, c =

g2

2
+ 4y2 + 3x2. (5.24)

Note that every term on the left hand side of (5.22) and (5.23) is traceless, so that
the two equations actually are:

av1 + bv2 = v2v1v2 (5.25)

cv2 + bv1 = v1v2v1. (5.26)

The trivial solutions are:

v1 = v2 = 0

v1 = 0, y2 = −g2

8

v2 = 0, x2 = −g2

8
.

(5.27)

(5.28)

(5.29)

For non-vanishing v1 and v2, multiply (5.25) by v2 on the left and right:

av2v1 + by21 = y2v1v2 (5.30)

av1v2 + by21 = y2v2v1 (5.31)

and similarly for (5.26):

cv1v2 + bx21 = x2v2v1 (5.32)

cv2v1 + bx21 = x2v1v2. (5.33)

Taking (5.30) ± (5.31) and (5.32) ± (5.33) gives a system of four equations equiv-
alent to the original (5.25) and (5.26) where the trace and traceless parts are
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decoupled:

(y2 + a)[v1, v2] = 0 (5.34)

(x2 + c)[v1, v2] = 0 (5.35)

(y2 − a){v1, v2} = 2by21 (5.36)

(x2 − c){v1, v2} = 2bx21. (5.37)

Note that y2 + a = x2 + c, therefore (5.34) and (5.35) describe the same equation.
If b = 0, there are four possibilities:

{v1, v2} = 0, [v1, v2] = 0 (5.38)

{v1, v2} = 0, (y2 + a) = 0 (5.39)

[v1, v2] = 0, (y2 − a) = 0, (x2 − c) = 0 (5.40)

(y2 + a) = 0, (y2 − a) = 0, (x2 − c) = 0 (5.41)

but the first is not possible for non-singular matrices, and the last has no solutions
in x and y. The remaining two read:

{v1, v2} = 0, [v1, v2] 6= 0, x2 + y2 = −g2

8
(5.42)

and

[v1, v2] = 0, Tr v1v2 = 0, x2 = y2 = − g2

12
. (5.43)

If instead b 6= 0 (which is to say Tr v1v2 6= 0), then split {v1, v2} into trace and
traceless part:

{v1, v2} = b1 + r (5.44)

and substitute it into (5.36) and (5.37):

(y2 − a)r = (y2 + a)b1 (5.45)

(x2 − c)r = (x2 + c)b1. (5.46)

Assuming r 6= 0 amounts to (5.41) again, therefore r = 0 and

0 6= {v1, v2} = b1. (5.47)

Equations (5.34) to (5.37) reduce to:

(y2 + a)[v1, v2] = 0 (5.48)

(y2 + a) = 0 (5.49)

which describe two distinct solutions:

{v1, v2} = b1, x2 + y2 = −g2

8
, [v1, v2] = 0 (5.50)
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and

{v1, v2} = b1, x2 + y2 = −g2

8
, [v1, v2] 6= 0. (5.51)

The commutative one, since {v1, v2} = 2v1v2 = b1, requires v1 and v2 to be
proportional to each other (just multiply this last relation by v1 or v2). Therefore
it can be expressed by a single matrix v such that v2 = 1 as:

v1 = ±xv, v2 = ±yv, v2 = 1, x2 + y2 = −g2

8
. (5.52)

Therefore the only solutions for involutory v1 and v2 are (5.27), (5.28), (5.29),
(5.42), (5.43), (5.51), (5.52). Notice how (5.28) and (5.29) can be regarded as a
particular case of (5.52), while (5.42) and (5.51) can be put together in a more
general solution where the anti-commutator is proportional to the identity with
a coefficient that is allowed to vanish, thus completing the proof of Proposition
1.

Solutions of type 3 and 4 in Proposition 1 determine a Clifford algebra generated
by v1 and v2. In principle they could be put together in a more general solution

{v1, v2} ∝ 1, x2 + y2 = −g2

8

but the separation was preferred here as it highlights the fact that the generators
of type 3 span a one-dimensional subspace while the generators of type 4 span a
two-dimensional one.
It is not immediately clear whether type 2 solutions can exist as matrices. To give
a concrete realization, notice that v1 and v2 can be diagonalized simultaneously,
therefore the solution can be rewritten as real vector identities representing the
diagonal of the two matrices. Call the vectors w1 and w2. The involutory property
requires w1 and w2 to contain only ±x and ±y respectively. Tracelessness of v1

and v2 requires the number of plus signs to be the same as the number of minus
signs, and indirectly restricts the matrix dimension to be even. Lastly, Tr v1v2 = 0
requires w1 and w2 to be orthogonal. Satisfying all these properties further restricts
the dimensionality. Without loss of generality, write w2 with all the plus signs first:

wT2 = y (+1, . . . ,+1,−1, . . . ,−1) . (5.53)

Orthogonality then reads:

0 =
n∑
i=1

wi1w
i
2 = y

 n
2∑
i=1

wi1 −
n∑

i=n
2

+1

wi1

 (5.54)

while from tracelessness of v1:

0 =

n
2∑
i=1

wi1 +
n∑

i=n
2

+1

wi1 (5.55)
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therefore w1 splits into two vectors with separately vanishing sum of components,
requiring the total dimension to be a multiple of 4. An alternative construction in
terms of Clifford modules is given in Appendix E.

5.2.2 Involutory solutions for the (1,1) model

Proposition 2. All solutions of the stationary equations (5.16), (5.17) and (5.18)
with v2

1 = x21 and v2
2 = y21, x, y ∈ R obey one of

1. t1 = v1 = v2 = 0

2. t21 = −g2
8
, v1 = v2 = 0

3. x2 = −g2
8
, t1 = v2 = 0

4. y2 = −g2
8
, t1 = v1 = 0

5. t21 = − g2
56
, x2 = − g2

14
, v2 = 0

6. [v1, v2] = 0, Tr v1v2 = 0, t1 = 0, x2 = y2 = − g2
12

7. v1 = ±xv, v2 = ±yv, v2 = 1, t1 = 0, x2 = y2 = −g2
8

8. v1 = ±xv, v2 = ±yv, v2 = 1, t21 = − g2
32
, x2 = − g2

32
, y2 = −3 g2

32

9. {v1, v2} = 0, [v1, v2] 6= 0, t1 = 0, x2 + y2 = −g2
8

Proof. First split the anti-commutator {v1, v2} into its trace and traceless part in
the following way:

{v1, v2} = −b1 + r (5.56)

and then substitute (5.21) into the stationary equations, obtaining:

dt1 = 0 (5.57)

av1 + bv2 = v2v1v2 (5.58)

cv2 + bv1 + 2t1r = v1v2v1 (5.59)

with

a =
g2

2
+ 12t21 + 4x2 + 3y2, b = − 2

n
Tr v1v2,

c =
g2

2
+ 4t21 + 3x2 + 4y2, d =

g2

4
+ 2t21 + 3x2 + y2. (5.60)

Note how the identity terms just cancel with the right hand side of (5.17) and
(5.18), leaving behind only the traceless part. The proof is divided into three
parts for clarity. First the simplest solutions are worked out, where at least one of
the matrices is vanishing. The second part deals with the case t1 = 0, and in the
last one all variables are assumed to be non-vanishing.
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i) Trivial solutions
The simplest solutions are:

t1 = v1 = v2 = 0

t21 = −g2

8
, v1 = v2 = 0

x2 = −g2

8
, t1 = v2 = 0

y2 = −g2

8
, t1 = v1 = 0.

(5.61)

(5.62)

(5.63)

(5.64)

For vanishing v2 and non-vanishing t1 and v1 one has:

t21 = − g2

56
, x2 = − g2

14
, v2 = 0 (5.65)

while vanishing v1 gives (5.62) again.

ii) Solutions with t1 = 0 and v1, v2 6= 0
In this case (5.57) is satisfied, while (5.58) and (5.59) are the same as the (0,2)
model, and therefore equivalent to:

(y2 + a)[v1, v2] = 0 (5.66)

(x2 + c)[v1, v2] = 0 (5.67)

(y2 − a){v1, v2} = 2by21 (5.68)

(x2 − c){v1, v2} = 2bx21 (5.69)

but with b defined with the opposite sign. The case b = 0 then gives the same two
solutions:

t1 = 0, {v1, v2} = 0, [v1, v2] 6= 0, x2 + y2 = −g2

8
(5.70)

and

t1 = 0, [v1, v2] = 0, Tr v1v2 = 0, x2 = y2 = − g2

12
(5.71)

while, if b 6= 0, substituting {v1, v2} = −b1 + r into (5.68) and (5.69) gives:

(y2 − a)r = (3y2 − a)b1 (5.72)

(x2 − c)r = (3x2 − c)b1 (5.73)

that again has no solutions if r 6= 0. Relation (5.47) is then replaced by

0 6= {v1, v2} = −b1 (5.74)
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and (5.66) to (5.69) become:

(y2 + a)[v1, v2] = 0 (5.75)

(x2 + c)[v1, v2] = 0 (5.76)

(3y2 − a) = 0 (5.77)

(3x2 − c) = 0. (5.78)

The last two require

x2 = y2 = −g2

8
(5.79)

which is incompatible with (y2 + a) = 0 (or (x2 + c) = 0, which is the same since
t1 = 0 by assumption), and therefore the only solution reads

t1 = 0, {v1, v2} = −b1, x2 = y2 = −g2

8
, [v1, v2] = 0. (5.80)

As already argued for the (0,2) model, this solution is better written in terms a
single matrix v as:

t1 = 0, v1 = ±xv, v2 = ±yv, v2 = 1, x2 = y2 = −g2

8
(5.81)

but this time (5.63) and (5.64) are not a particular case of (5.81).

iii) Solutions with t1, v1, v2 6= 0
First notice that

[v1, r] = [v2, r] = 0 (5.82)

therefore using the same method of multiplying (5.58) and (5.59) by v2 and v1 on
the left and on the right gives the following system of equations:

d = 0 (5.83)

(y2 + a)[v1, v2] = 0 (5.84)

(x2 + c)[v1, v2] = 0 (5.85)

(y2 − a){v1, v2} = 2by21 (5.86)

(x2 − c){v1, v2} − 4t1v1r = 2bx21. (5.87)

Necessarily [v1, v2] = 0, because otherwise satisfying (5.83), (5.84) and (5.85), i.e.:

d = 0, y2 + a = 0, x2 + c = 0 (5.88)

requires t1 = 0, which contradicts the hypotheses of (iii).
Therefore the system of equations reduces to:

d = 0 (5.89)

(y2 − a)r = (3y2 − a)b1 (5.90)

(x2 − c)r − 8t1x
2v2 − 4t1bv1 = (3x2 − c)b1 (5.91)

where {v1, v2} = 2v1v2 = −b1 + r was used repeatedly until every term was
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manifestly trace or traceless.
If b = 0, then r = 2v1v2 and (5.91) reads

(x2 − c)v1v2 = 4t1x
2v2 (5.92)

and multiplying by v2 on the right brings to either a contradiction with the hy-
potheses of (iii) or to v1 ∝ 1.
If instead b 6= 0, then separating trace and traceless components of (5.89), (5.90)
and (5.91) gives the following system:

d = 0 (5.93)

3y2 − a = 0 (5.94)

3x2 − c = 0 (5.95)

(y2 − a)r = 0 (5.96)

(x2 − c)r = 8t1x
2v2 + 4t1bv1. (5.97)

The subsystem (5.93) to (5.96) however has no solution for r 6= 0, therefore nec-
essarily r = 0. In turn this means that v1 and v2 are proportional to each other
(from 2v1v2 = −b1) and can be written in terms of a single matrix v2 = 1 as
v1 = ±xv and v2 = ±yv. The traceless equations (5.96) and (5.97) then cancel
no matter the relative sign of x and y, and the remaining ones (5.93), (5.94) and
(5.95) give the last solution

v1 = ±xv, v2 = ±yv, v2 = 1, t21 = − g2

32
, x2 = − g2

32
, y2 = −3

g2

32

(5.98)

thus completing the proof of Proposition 2.

5.3 The (2,0) model

5.3.1 Model redefinition

It is possible to perform a change of variables in the (2,0) model that eliminates
redundant degrees of freedom in the following way:

γ± :=
1

2
(σ1 ∓ iσ2) , W := m1 + im2 (5.99)

so that the Dirac operator becomes:

D = γ+ ⊗ {W, ·}+ γ− ⊗ {W †, ·} (5.100)

and the quadratic and quartic pieces of the action are:

TrD2 = 4(nTrWW † + TrW TrW †) (5.101)

TrD4 = 4[nTrWW †WW † + TrW 2 TrW †2 + 2 Tr(WW †)2

+ 2 TrW 2W †TrW † + 2 TrW †2W TrW ]. (5.102)
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This is now a model for an arbitrary complex matrix W . It turns out to be
convenient to split W in trace and traceless part in the following way:

W = eiθ(ρ1 + V ) (5.103)

so that 1
n

TrW = ρeiθ and TrV = 0. Furthermore, split V in its Hermitian and
anti-Hermitian part:

V = A+ iB (5.104)

Since every term in the action contains the same number of W and W †, the global
phase eiθ drops out and the relevant degrees of freedom are the positive number ρ
and the Hermitian traceless matrices A and B. The action reads:

S = 8n2ρ2(g2 + 4ρ2) + 4n
[
(g2 + 24ρ2) TrA2 + (g2 + 8ρ2) TrB2

+ 8ρ(TrA3 + TrAB2) + TrA4 + TrB4 + 4 TrA2B2 − 2 TrABAB
]

+ 4
[
3(TrA2)2 + 3(TrB2)2 + 2 TrA2 TrB2 + 4(TrAB)2

]
. (5.105)

The stationary equations written in these new variables read:

ρ) 16n2ρ(g2 + 8ρ2) + 192nρTrA2 + 64nρTrB2 + 32nTrA3 + 32nTrAB2 = 0
(5.106)

A) 8n(g2 + 24ρ2)A+ 96nρA2 + 32nρB2 + 16nA3 + 16n{B2, A} − 16nBAB

+ 48(TrA2)A+ 16(TrB2)A+ 32(TrAB)B ∝ 1 (5.107)

B) 8n(g2 + 8ρ2)B + 32nρ{A,B}+ 16nB3 + 16n{A2, B} − 16nABA+ 48(TrB2)B

+ 16(TrA2)B + 32(TrAB)A ∝ 1 (5.108)

Notice the asymmetry in the equations for A and B, which highlights the fact that
they are not just v1 and v2 in disguise, but rather some non-trivial combination
of these. Even more strikingly, the equations are formally identical to the ones
for the (1,1) model if one identifies t1 ↔ ρ, v1 ↔ A and v2 ↔ B, except for the
fact that here ρ is non-negative and the TrAB term has the opposite sign. The
same identification when ρ = 0 makes instead the model indistinguishable from
the (0,2).

5.3.2 Involutory solutions for the (2,0) model

Proposition 3. All solutions of the stationary equations (5.106), (5.107) and
(5.108) with A2 = x21 and B2 = y21, x, y ∈ R obey one of

1. ρ = A = B = 0

2. ρ = −g2
8
, A = B = 0

3. ρ2 = − g2
56
, x2 = − g2

14
, B = 0

4. [A,B] = 0, TrAB = 0, ρ = 0, x2 = y2 = − g2
12
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5. A = ±xv, B = ±yv, v2 = 1, ρ = 0, x2 + y2 = −g2
8

6. {A,B} ∝ 1, [A,B] 6= 0, ρ = 0, x2 + y2 = −g2
8

Proof. Upon substituting A = x21, B = y21 and {A,B} = b1 + r into (5.106),
(5.107) and (5.108), the equations read:

dρ = 0 (5.109)

aA+ bB = BAB (5.110)

cB + bA+ 2ρr = ABA (5.111)

with

a =
g2

2
+ 12ρ2 + 4x2 + 3y2, b =

2

n
TrAB,

c =
g2

2
+ 4ρ2 + 3x2 + 4y2, d =

g2

4
+ 2ρ2 + 3x2 + y2. (5.112)

The solutions where at least one matrix is vanishing are the same as part (i) of the
proof of Proposition 2, while for ρ = 0 the proof is formally identical to the one
of Proposition 1. These account for all solutions listed in Proposition 3. What is
left to show is that no solution exists for ρ,A,B 6= 0 simultaneously.
In this case, the same argument used in part (iii) of the proof of Proposition 2
leads necessarily to [A,B] = 0 and b 6= 0, which nevertheless amounts to solving
again the system

d = 0, y2 + a = 0, x2 + c = 0 (5.113)

that has no solution for ρ 6= 0.

5.4 Numerical simulations

The solutions presented so far belong to the classical regime. When the models are
promoted to random matrix models, however, their behaviour can change quite
drastically. It is known for instance that random matrix models display eigenvalue
repulsion effects, while the classical minimum of the action S = g2 TrD2 + TrD4

presents a high eigenvalue degeneracy.
The random models are probed via Monte Carlo simulations. Earlier works [7] [12]
[13] have employed the Metropolis algorithm, while here the Hamiltonian Monte
Carlo algorithm as implemented in the RFL library is used.
Monte Carlo samples are collected from Hamiltonian trajectories with a number
of steps fixed to Nt = 10 and a time discretization dt tuned in such a way as to hit
a target acceptance rate of 80%. Expectation values are calculated as an average
over 10 independent Markov chains each composed of 104 samples, and errors are
calculated using a jackknife routine as explained in Section 3.5.7.
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5.4.1 The random vacuum

The preferred vacuum of the random models can be established numerically by
computing the expectation value of the observables:

1

n
Tr v2

1
on-shell
= x2 (5.114)

1

n
Tr v2

2
on-shell
= y2. (5.115)

Classically, the preferred vacuum corresponds to the global minimum of the action.
The solutions of Proposition 1 give the following value for the action of the (0,2)
model:

1. v1 = v2 = 0

→ S = 0 (5.116)

2. [v1, v2] = 0, Tr v1v2 = 0, x2 = y2 = − g2

12

→ S = −n2 g
2
2

3
(5.117)

3. v1 = ±xv, v2 = ±yv, v2 = 1, x2 + y2 = −g2

8

→ S = −n2 g
2
2

4
(5.118)

4. {v1, v2} ∝ 1, [v1, v2] 6= 0, x2 + y2 = −g2

8

→ S = −n2 g
2
2

4
. (5.119)

Therefore, at a pure classical level, solutions of type 2 are preferred. The numer-
ical results, shown in Figure 5.1, confirm this picture especially for very negative
values of g2. Closer to the origin (Figure 5.2) the potential well is shallower and
the fluctuations around the minimum acquire more importance, causing the ex-
pectation value of the observables to move away from the stationary value. This
phenomenon will be important in the analysis of the (2, 0) model.
The solutions of Proposition 2 give the following value for the action of the (1,1)
model:

1. t1 = v1 = v2 = 0

→ S = 0 (5.120)

2. t21 = −g2

8
, v1 = v2 = 0

→ S = −n2 g
2
2

2
(5.121)
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Figure 5.1: 1/nTr v2
1 (purple) and 1/nTr v2

2 (green) vs coupling constant g2 for
the (0, 2) model and matrix dimension n = 32.
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Figure 5.2: 1/nTr v2
1 (purple) and 1/nTr v2

2 (green) vs coupling constant g2 for
the (0, 2) model and matrix dimension n = 32, close to the origin.
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3. x2 = −g2

8
, t1 = v2 = 0

→ S = −n2 g
2
2

4
(5.122)

4. y2 = −g2

8
, t1 = v1 = 0

→ S = −n2 g
2
2

4
(5.123)

5. t21 = − g2

56
, x2 = − g2

14
, v2 = 0

→ S = −3n2 g
2
2

14
(5.124)

6. [v1, v2] = 0, Tr v1v2 = 0, t1 = 0, x2 = y2 = − g2

12

→ S = −n2 g
2
2

3
(5.125)

7. v1 = ±xv, v2 = ±yv, v2 = 1, t1 = 0, x2 = y2 = −g2

8

→ S = −n2 g
2
2

2
(5.126)

8. v1 = ±xv, v2 = ±yv, v2 = 1, t21 = − g2

32
, x2 = − g2

32
, y2 = −3

g2

32

→ S = −3n2 g
2
2

8
(5.127)

9. {v1, v2} = 0, [v1, v2] 6= 0, t1 = 0, x2 + y2 = −g2

8

→ S = −n2 g
2
2

4
. (5.128)

The minimum is achieved for type 2 and type 7. The results of the numerical
simulations reported in Figure 5.3 clearly show that type 7 is preferred by the
random model for a large range of g2 values. It is worth noting that the oscillations
of the data points in Figure 5.3 is larger than the error bars (the error bars are
smaller than the point markers). Zooming in on t21 for a typical Monte Carlo
simulation uncovers a certain regularity, as can be seen in Figure 5.4. Most points
are either close to zero, or very closely aligned with the line −g2/512 or −g2/2048.
This suggests that the random model has a non-trivial landscape of local minima
close to the true vacuum.
Finally, the solutions of Proposition 3 give the following value for the action of the
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(2,0) model:

1. ρ = A = B = 0

→ S = 0 (5.129)

2. ρ = −g2

8
, A = B = 0

→ S = −n2 g
2
2

2
(5.130)

3. ρ2 = − g2

56
, x2 = − g2

14
, B = 0

→ S = −3n2 g
2
2

14
(5.131)

4. [A,B] = 0, TrAB = 0, ρ = 0, x2 = y2 = − g2

12

→ S = −n2 g
2
2

3
(5.132)

5. A = ±xv, B = ±yv, v2 = 1, ρ = 0, x2 + y2 = −g2

8

→ S = −n2 g
2
2

4
(5.133)

6. {A,B} ∝ 1, [A,B] 6= 0, ρ = 0, x2 + y2 = −g2

8

→ S = −n2 g
2
2

4
. (5.134)

However, its behaviour can only be partially understood by stationary methods,
and some features remain still obscure. The results of the random model are shown
in Figure 5.5. For clarity, the g2 axis will be divided into three regions and the
results discussed separately.

Region I: g2 ∈ (−2.7, 0)
In this region ρ2 lies close to zero and a matrix solution dominates. Fitting
1/nTr (A2 +B2) to a linear function mg2 + q gives:

m = −0.124(1) ≈ −1

8
q = 0.128(3). (5.135)

The fact that the slope is compatible with −1/8 seems to indicate that a type
5 or 6 matrix solution is realized, albeit with a vertical displacement that is not
accounted for at the level of the stationary analysis. It should be noticed, however,
that the observable presents a perfect overlapping with the one of the (0, 2) model
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(Figure 5.6), which seems to suggest that the actual solution is a type 3 deformed
by random fluctuations. Another argument can be made in support of a type 3
solution. A crucial difference between the two solutions is that type 3 implies the
strong relation x2 = y2, while type 5 or 6 allows for every combination of x2 and
y2, as long as their sum is −g2/8. Plotting the Monte Carlo history of the two ob-
servables clearly shows how the strong constraint x2 = y2 is preferred (Figure 5.7).
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Figure 5.5: Expectation value of ρ2 (purple), 1/n (TrA2 + TrB2) (green),
1/nTrA2 (blue) and 1/nTrB2 (yellow) vs the coupling constant g2 in the full
random (2, 0) model for n = 32.

Region II: g2 ∈ (−3.2,−2.7)
Passing from region I to region II, the model undergoes a phase transition where
ρ2 acts as an order parameter. The growth of ρ2 in this region is only roughly
linear, with an estimated slope of −0.151(1) that is perhaps not meaningful at a
quantitative level. Interestingly, the matrix observable 1/n (TrA2 + TrB2) does
not vanish, and instead it plateaus at a value of roughly 0.336.

Region III: g2 ∈ (−∞,−3.2)
The interface between region II and III is marked by a second jump in the order
parameter, which is an interesting phenomenon in and on itself. Qualitatively
the picture is unchanged in this region: ρ2 grows linearly and 1/n (TrA2 + TrB2)
plateaus. This time, however, the data can be taken for very large negative values
of g2, for which the stationary analysis should yield accurate predictions. Fitting
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ρ2 to a linear function mg2 + q gives:

m = −0.125007(2) ≈ −1

8
q = −0.0919(4). (5.136)

The slope agrees with the expected −1/8 of the scalar solution, but the vertical
displacement is not predicted by the stationary analysis. Nor is the non-vanishing
plateau of the matrix observable 1/n (TrA2 + TrB2), estimated to be 0.1791(8).
The data used for the linear fits was taken in a range g2 ∈ [−500,−30].

5.4.2 (2,0) phase diagram

The authors in [7] observed a phase transition in the model, which was further
studied in [12], but the simulations were limited to matrix size n ≤ 10. Simulations
performed on larger matrices uncover an interesting phenomenon where a second
criticality sprouts from the original one and moves away from it as the matrices
are made larger. The critical points are identified with maxima of the variance of
the action Var(S) = 〈S2〉 − 〈S〉2, which is shown in Figure 5.8a and 5.8b. The
splitting appears unequivocal at n = 16, but already n = 14 shows a faint trace
of it. A natural order parameter for the phase transitions is the scalar observable
ρ2, whose variance leads to a similar picture (Figure 5.8c and 5.8d). Plotting the
critical points as a function of g2 and n results in the phase diagram of Figure
5.8e. No example could be found in the literature of a non-trivial phase diagram
involving the matrix dimension.
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Analysis of the first phase transition

The first phase transition is identified with the rightmost peaks of Figure 5.8b and
5.8d. A finite-size scaling analysis is performed and an argument is given for the
order of the transition.
Using standard notation, the critical exponents α, β, γ and ν are defined based
on the behaviour of observables near criticality:

ξ ∼ (g2 − g∗2)−ν (5.137)

n2ρ2 ∼ (g2 − g∗2)β (5.138)

Var(n2ρ2) ∼ (g2 − g∗2)−γ (5.139)

Var(S) ∼ (g2 − g∗2)−α (5.140)

where g∗2 denotes the critical coupling and ξ is the correlation length. The standard
theory of finite-size scaling [39] is usually developed on a lattice, where the corre-
lation length is intuitively understood as the typical size of correlated clusters and
therefore can never exceed the size of the lattice itself. In the context of random
matrix theory the most natural cut-off scale is (some power of) the matrix size
n. The simplest finite-size scaling ansatz is then found by proceeding in complete
analogy with lattice systems and replacing the lattice size with n:

n
β
ν n2ρ2 = f1

(
n

1
ν t
)

(5.141)

n−
γ
ν Var(n2ρ2) = f2

(
n

1
ν t
)

(5.142)

n−
α
ν Var(S) = f3

(
n

1
ν t
)

(5.143)

where t denotes the reduced coupling:

t :=
(g2 − g∗2)

|g∗2|
(5.144)

and f1, f2 and f3 are unknown functions that do not depend on the matrix size.
The strategy is to find the correct values of the critical exponents and critical
coupling that make the rescaled data points taken at different n collapse on the
same curve. Notice how n2ρ2 was used as an order parameter instead of ρ2. This
was dictated by consistency since S is O(n2) while ρ2 does not scale.
A good collapse is obtained with the following values:

α = 1.81 (5.145)

β = −0.87 (5.146)

γ = 1.83 (5.147)

ν = 0.4 (5.148)

g∗2 = −2.75 (5.149)

and the universal functions are shown in Figure 5.9.
A few comments are given here.

1. Although rigorous error estimates on the exponents are not given, the col-
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Figure 5.9: Universal finite-size scaling curves for (a) n2ρ2, (b) Var(n2ρ2) and
(c) Var(S), first phase transition. The estimated critical exponents and critical
coupling are α = 1.81, β = −0.87, γ = 1.83, ν = 0.4, and g∗2 = −2.75.
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lapse is generally rather sensitive to a change is the first decimal digit.

2. The fact that the same value of ν allows to collapse all three observables is
a good consistency check.

3. The negative value of β suggests that the order parameter diverges at criti-
cality, which is rather unusual.

4. The critical exponents saturate to a good approximation Rushbrooke’s in-
equality α + 2β + γ ≥ 2.

5. The set of critical exponents does not seem to belong to a known universality
class.

A diverging correlation length at the critical point is an indication that the phase
transition is second order. A second argument in support of this comes from
analyzing the Monte Carlo history of the action and the order parameter around
criticality. In a first order phase transition the two phases coexist at the critical
point, therefore one would expect to see the observables tunnel back and forth
between two distinct values throughout the simulation. If the transition is second
order, however, the system interpolates smoothly across the critical point from
one phase to the other, and Monte Carlo samples of the observables at criticality
appear uniformly distributed along a range of values. The Monte Carlo history
of S and ρ2 around the phase transition is shown in Figure 5.10 and 5.11, while
Figure 5.12 shows their distribution. The results seem to exclude the possibility
of the transition being first order.

The second phase transition

A puzzling aspect of the second phase transition is that its location does not seem
to converge around any finite value. This poses the question of whether it survives
the large n limit or not. In addition, a finite-size scaling analysis is not possible
since no critical value g∗2 can be found. However, there is good indication that the
transition is first order. Plotting the distribution of S and ρ2 at the critical point
for some fixed n shows two clear maxima (Figure 5.14), indicating coexistence
of two phases. The same phenomenon translates to back and forth tunneling in
Monte Carlo time as already argued in the previous section (Figure 5.13).

5.4.3 Spectral data

Another important source of information comes from looking at the eigenvalue
distribution of the matrices. The analysis will be presented separately for the
three different phases.

Density of states in region I

The typical eigenvalue distribution of A and B for small g2 is described very well
by equation (4.5) in [47]:

P (λ) =
8

π

λ2 + b

c(c+ 4b)

√
c− λ2 (5.150)
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Figure 5.10: Monte Carlo history of S for n = 32 before, during and after the
phase transition.
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Figure 5.11: Monte Carlo history of ρ2 for n = 32 before, during and after the first
phase transition.
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Figure 5.12: Distribution of S (left) and ρ2 (right) across the first phase transition
for n = 32.
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Figure 5.13: Monte Carlo history of S (left) and ρ2 (right) at the second phase
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which is the one-cut solution for a matrix in a simple quartic potential. This
suggests that in this region the two matrices decouple from each other and are
subject to an effective potential of the form:

Seff = (α2 TrA2 + α4 TrA4) + (β2 TrB2 + β4 TrB4). (5.151)

If the distribution is supported on [−a, a], the parameter c is related to a by c = a2.
Fitting (5.150) to A and B at g2 = −1.5 for matrix size n = 32 gives:

A) c = 0.523(2) (5.152)

b = 0.54(2) (5.153)

B) c = 0.523(1) (5.154)

b = 0.53(2) (5.155)

and it is shown in Figure 5.15.
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Figure 5.15: Density of states of A (left) and B (right) at g2 = −1.5 for n = 32,
and theoretical curve (5.150).

Notice how A appears skewed towards the positive peak. In fact, approaching
the first phase transition the asymmetry becomes more and more pronounced,
casting doubts on the validity of (5.150). However, the effect is due to the choice
of variables. The true decoupled matrices are v1 and v2, which preserve the same
shape up until the phase transition. Figure 5.16 shows the fit at g2 = −2.1 for v1

and v2.

Density of states in region II

Crossing the first phase transition, A and B display drastically different be-
haviours. The asymmetry in A develops in a non-trivial two-cut solution with
asymmetric support, while B goes from behaving like a matrix in a quartic po-
tential to an even simpler free semicircle distribution. The description in terms of
v1 and v2 is not so clear anymore, suggesting that A and B better represent the
decoupled degrees of freedom of the model in this region. The crossing is shown
in Figure 5.17.
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Figure 5.16: Density of states of v1 (left) and v2 (right) at g2 = −2.1 for n = 32,
and theoretical curve (5.150).
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The asymmetric density of A resembles the one found for the (1, 0) Dirac operator.
Indeed, the density (4.59) can be fitted to A at g2 = −2.8 with reasonably good
results, as shown in Figure 5.18. The fitted parameters are:

a1 = −1.560(5)

b1 = −1.32(1)

a2 = −0.78(5)

b2 = 0.466(1)

α = 11.0(2)

β = 26.3(3)
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Figure 5.18: Fit of the (1,0) asymmetric density (4.59) to the density of states of
A at g2 = −2.8 in the full random (2, 0) model for n = 32.

Density of states in region III

The second phase transition is understood in terms of spectral data as A losing
the smaller peak and going back to a one-cut distribution, albeit an asymmetric
one (Figure 5.19a), while B does not play any role as it remains a free Gaussian
throughout. In this phase A becomes itself a free Gaussian asymptotically, as
Figure 5.19b, taken at g2 = −36, indicates.
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Figure 5.19: (a) Density of states of A at g2 = −3.06,−3.17,−2.28 for n = 32. (b)
Density of states of A at g2 = −36 and fit to Wigner’s semicircle for n = 32.
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Chapter 6

Four-matrix models

6.1 Four-matrix models

6.1.1 Introduction

The following is a study concerning the classical solutions to the equations of
motion for the four-matrix, two-trace random Dirac operators with action S =
g2 TrD2 + TrD4. There are four distinct models, obtained starting from a (p, q)
Clifford module where p+ q = 3. For this reason the four models will be referred
to as the (3,0), (2,1), (1,2) and (0,3).
The Clifford gamma matrices are two-dimensional and can be taken to be the
Hermitian or anti-Hermitian Pauli matrices. The corresponding Dirac operator
will contain all linearly independent products of these, which means including the
identity.
The Dirac operators ultimately can be written:

D =
3∑

α=0

σα ⊗
(
mα ⊗ 1n + eα1n ⊗mT

α

)
(6.1)

where the m are arbitrary Hermitian matrices, σ0 is the identity 2 × 2 matrix,
σ1,2,3 are the Hermitian Pauli matrices, and the four models are determined by the
values of eα = (e0, e1, e2, e3), which are:

(−1,+1,+1,+1) for (p, q) = (3, 0) (6.2)

(+1,+1,−1,+1) for (p, q) = (2, 1) (6.3)

(−1,+1,−1,−1) for (p, q) = (1, 2) (6.4)

(+1,−1,−1,−1) for (p, q) = (0, 3) (6.5)

Finally, where convenient, the whole expression for a commutator or anti-commutator
will be condensed in a single capital letter:

D =
3∑

α=0

σα ⊗Mα. (6.6)

In the following, Greek indices will run from 0 to 3, while Latin indices from 1 to
3.
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6.1.2 Computing the action

Using the results of Appendix F, the action reads:

S = 2g2 TrM2
α + 2 Tr

[
M4

0 + 2M0MaM0Ma + 4M2
0M

2
a

+ 4iεabc M0MaMbMc + 2M2
aM

2
b −MaMbMaMb

]
(6.7)

where summation over repeated indices is assumed, and M2
a is used as a shorthand

for
∑

aMaMa, not
∑

a,bMaMb.
At this level the four models are equivalent, the difference being hidden in the e
signs inside the M matrices. Expanding these gives:

S = 4g2

[
nTrm2

α + eα(Trmα)2
]

+ 4

[
nTrm4

0 + 4e0 Trm0 Trm3
0 + 3

(
Trm2

0

)2
+ 2nTrm0mam0ma

+ 4nTrm2
0m

2
a + 12ea Trma Trm2

0ma + 12e0 Trm0 Trm2
am0

+ 6 Trm2
0 Trm2

a + 12e0ea (Trm0ma)
2 + 2nTrm2

am
2
b

− nTrmambmamb + 4ea Trma Trm2
bma + Trm2

a Trm2
b + 2eaeb (Trmamb)

2

+ 2iεabc

[
2nTrm0mambmc + 2ea Trma Trm0mbmc + 2e0 Trm0 Trmambmc

]]
.

(6.8)

As in the two-matrix models studied in the previous chapter, it is convenient to
split mα = tα1 + vα, with Tr vα = 0. Then the action reads:

S = 4g2

∑
α

[
n2(1 + eα)t2α + nTr v2

α

]
+ 4

[
4n(1 + e0)

(
nt40 + 3t20 Tr v2

0 + t0 Tr v3
0

)
+ nTr v4

0 + 3
(
Tr v2

0

)2

+
∑
a

[
12n(1 + e0 + ea + e0ea)

(
nt20t

2
a + 2t0ta Tr v0va

)
+ 12n(1 + e0)

(
t20 Tr v2

a + t0 Tr v2
av0

)
+ 12n(1 + ea)

(
t2a Tr v2

0 + ta Tr v2
0va
)

+ 2nTr v0vav0va + 4nTr v2
0v

2
a + 6 Tr v2

0 Tr v2
a + 12e0ea (Tr v0va)

2
]

+
∑
a,b

[
2n(1 + ea + eb + eaeb)

(
nt2at

2
b + 2tatb Tr vavb

)
+ 4n(1 + ea)

(
t2a Tr v2

b + ta Tr v2
bva
)
− nTr vavbvavb + 2nTr v2

av
2
b

+ Tr v2
a Tr v2

b + 2eaeb (Tr vavb)
2
]

+ 4ni
∑
a,b,c

εabc

[
Tr v0vavbvc + (1 + e0)t0 Tr vavbvc + (1 + ea)ta Tr v0vbvc

]]
.

(6.9)
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6.1.3 Stationary equations

From the action, the stationary equations are easily found:

t0) (1 + e0)(g2nt0 + 8nt30 + 12t0 Tr v2
0 + 2 Tr v3

0)

+
∑
a

(1 + e0)(12t0 Tr v2
a + 6 Tr v2

av0)

+
∑
a

(1 + e0 + ea + e0ea)(12nt0t
2
a + 12ta Tr v0va)

+ 2i(1 + e0)
∑
a,b,c

εabc Tr vavbvc = 0 (6.10)

tc) (1 + ec)(g2ntc + 12tc Tr v2
0 + 6 Tr v2

0vc)

+ (1 + e0 + ec + e0ec)(12nt20tc + 12t0 Tr v0vc)

+
∑
a

(1 + ec)(4tc Tr v2
a + 2 Tr v2

avc)

+
∑
a

(1 + ea + ec + eaec)(4nt
2
atc + 4ta Tr vavc)

+ 2i(1 + ec)
∑
a,b

εabc Tr v0vavb = 0 (6.11)

v0) g2v0 + 2v3
0 +

6

n
(Tr v2

0)v0 + (1 + e0)(12t20v0 + 6t0v
2
0)

+
∑
a

[
2vav0va + 2{v2

a, v0}+
6

n
(Tr v2

a)v0 +
12

n
e0ea(Tr v0va)va

+ 6(1 + e0)t0v
2
a + (1 + ea)(12t2av0 + 6ta{v0, va})

]
+ 2i

∑
a,b,c

εabc

[
(1 + ea)tavbvc + vavbvc

]
∝ 1 (6.12)

vc) g2vc + 2v0vcv0 + 2{v2
0, vc}+

6

n
(Tr v2

0)vc

+
12

n
e0ec(Tr v0vc)v0 + (1 + e0)(12t20vc + 6t0{v0, vc})

+
∑
a

[
− 2vavcva + 2{v2

a, vc}+
2

n
(Tr v2

a)vc +
4

n
eaec(Tr vavc)va

+ (1 + ea)(4t
2
avc + 2ta{va, vc}) + 2(1 + ec)tcv

2
a + 4(1 + ea + ec + eaec)tatcva

]
+ 2i

∑
a,b

εabc

[
v0vavb + vav0vb + vavbv0 + 3(1 + e0)t0vavb + (1 + ea)ta[v0, vb]

]
∝ 1

(6.13)

Finding all possible solutions is hard for matrix equations in general. Some special
solutions will be worked out by making simplifying assumptions in line with what
already worked for the two-matrix models. The richness of these higher types,
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however, will also allow for a new ansatz based on su(2) algebra generators, raising
the question of whether fuzzy sphere-like stationary solutions are realized in the
model.

6.2 Solutions involving mainly scalar variables

6.2.1 All-scalar solutions

Solutions involving only the scalar variables are the easiest to work out. When
vα = 0 for all α, the equations reduce to:

t0) (1 + e0)(g2nt0 + 8nt30) +
∑
a

(1 + e0 + ea + e0ea)12nt0t
2
a = 0 (6.14)

tc) (1 + ec)g2ntc + (1 + e0 + ec + e0ec)12nt20tc

+
∑
a

(1 + ea + ec + eaec)4nt
2
atc = 0 (6.15)

The (3,0), (1,2) and (0,3) only have one type of scalar variable (either t0 or tc), and
for this reason there is only one equation with a unique solution which is formally
identical in all three models:

y2 = −g2

8
(6.16)

where

y2 :=
3∑

a=1

t2a (3,0) model (6.17)

y2 := t21 (1,2) model (6.18)

y2 := t20 (0,3) model. (6.19)

The (2,1) is the richer one, being the only model where both t0 and tc may be
non-vanishing. In this case there are three distinct solutions:

1) t0 = 0, t21 + t22 = −g2

8
(6.20)

2) t20 = −g2

8
, t1 = t2 = 0 (6.21)

3) t20 = − g2

32
, t21 + t22 = − g2

32
. (6.22)

6.2.2 Scalar and v20 ∝ 1 solutions

Next are worked out solutions for scalars and v0, in the special case where v2
0 = x21

with 0 6= x ∈ R. This involutory property on v0 is restrictive, but the same strategy
in the two-matrix models led to non-trivial results reproduced by the numerical
simulations.
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The equations in this case reduce to:

t0) (1 + e0)(g2 + 8t20 + 12x2)t0 +
∑
a

(1 + e0 + ea + e0ea)12t0t
2
a = 0 (6.23)

tc) (1 + ec)(g2 + 12x2)tc + (1 + e0 + ec + e0ec)12tct
2
0

+
∑
a

(1 + ea + ec + eaec)4tct
2
a = 0 (6.24)

v0) g2 + 8x2 +
3∑

α=0

(1 + eα)12t2α = 0. (6.25)

Again the (3,0), (1,2) and (0,3) models all reduce to the same formal equations:

y) (g2 + 12x2 + 8y2)y = 0 (6.26)

v0) g2 + 8x2 + 24y2 = 0. (6.27)

with solution

x2 = −g2

8
, y = 0 or x2 = − g2

14
, y2 = − g2

56
. (6.28)

The remaining (2,1) model reduces to (6.26) and (6.27) again if either t0 = 0 or∑
t2a = 0. The extra solution arising here when all variables are non-vanishing is:

x2 = − g2

20
, t20 = − g2

80
,
∑
a6=2

t2a = − g2

80
. (6.29)

6.3 Commuting involutory matrix solutions

One step further in complexity is to assume non-vanishing commuting matrices.
Again imposing the involutory property seems to be the best chance at getting a
non-trivial solution.
The assumptions are as follows:

tα = 0 (6.30)

v2
α = x2

α1, xα ∈ R (6.31)

[vα, vβ] = 0 (6.32)
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where α = 0, 1, 2, 3. The equations for t0 and tc are automatically satisfied, and
the remaining ones read:

v0) g2v0 + 8x2
0v0 +

∑
a

[
12x2

av0 +
12

n
e0ea(Tr v0va)va

]
∝ 1 (6.33)

vc) g2vc + 12x2
0vc +

12

n
e0ec(Tr v0vc)v0 +

∑
a

[
4x2

avc +
4

n
eaec(Tr vavc)va

]
∝ 1.

(6.34)

Notice how all terms are traceless, making the RHS =0. Now multiply the first
equation by v0 and the second by vc. They become:

v0)

(
g2x

2
0 + 8x4

0 + 12x2
0

∑
a

x2
a

)
1 +

12

n

∑
a

e0ea(Tr v0va)v0va = 0 (6.35)

vc)
(
g2x

2
c + 12x2

0x
2
c + 4

∑
a

x2
ax

2
c

)
1 +

12

n
e0ec(Tr v0vc)v0vc

+
4

n

∑
a

eaec(Tr vavc)vavc = 0. (6.36)

Focus on the first one. Since the term proportional to v0va is the only one that
can have a traceless component, the equation can only be satisfied if either:

Tr v0va = 0 or v0va =
Tr v0va
n

1.

Once one alternative is chosen, the same argument applies to the vavc term in the
second equation. Therefore the solutions can be classified by a choice:

Tr vαvβ = 0 or vαvβ =
Tr vαvβ
n

1 α 6= β = 0, . . . , 3. (6.37)

The first is an orthogonality condition on the matrices, while the second expresses
the fact that the two matrices are proportional to each other (multiply by vα and
use commutation and involution). Realizing the orthogonality condition between
more than two matrices can be done in the following way. As noted in the previous
chapter, two 4k × 4k traceless, involutory, commuting and mutually orthogonal
matrices A and B can be written in the diagonalizing basis as:

A ∝
(
12k

−12k

)
, B ∝


1k
−1k

1k
−1k

 (6.38)

This restricts the dimension of the matrices to be a multiple of 4. If one is interested
in N matrices satisfying the same properties, then the same argument can be
applied recursively to each block and one finds that the dimension must be a
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multiple of 2N . So for example for three matrices A,B and C, one finds:

A ∝
(
14k

−14k

)
, B ∝


12k

−12k

12k

−12k



C ∝



1k
−1k

1k
−1k

1k
−1k

1k
−1k


. (6.39)

Imposing one of the two conditions brings to several different combinations in the
various models based on the relative sign eαeβ. As an intermediate step towards
finding solutions, a generalized model will be written down first. Consider the
following signature:

(+1,−1, . . . ,−1,+1, . . . ,+1) (6.40)

where the first sign is associated with the index 0, the negative signs with a dotted
index ċ ∈ J , and the last group of positive signs with an undecorated index
c ∈ I. The number of dotted and normal indices need not be specified. Consider
a generalized version of (6.35) and (6.36):

v0)

(
g2x

2
0 + 8x4

0 + 12x2
0

∑
a∈I

x2
a + 12x2

0

∑
ȧ∈J

x2
ȧ

)
1

+
12

n

∑
a∈I

(Tr v0va)v0va −
12

n

∑
ȧ∈J

(Tr v0vȧ)v0vȧ = 0 (6.41)

vc)
(
g2x

2
c + 12x2

0x
2
c + 4

∑
a∈I

x2
ax

2
c + 4

∑
ȧ∈J

x2
ȧx

2
c

)
1

+
12

n
(Tr v0vc)v0vc +

4

n

∑
a∈I

(Tr vavc)vavc −
4

n

∑
ȧ∈J

(Tr vȧvc)vȧvc = 0 (6.42)

vċ)
(
g2x

2
ċ + 12x2

0x
2
ċ + 4

∑
a∈I

x2
ax

2
ċ + 4

∑
ȧ∈J

x2
ȧx

2
ċ

)
1

− 12

n
(Tr v0vċ)v0vċ −

4

n

∑
a∈I

(Tr vavċ)vavċ +
4

n

∑
ȧ∈J

(Tr vȧvċ)vȧvċ = 0. (6.43)

A choice of (6.37) amounts then to defining the following index sets:

I• = {a ∈ I : v•va ∝ 1}
J• = {ȧ ∈ J : v•vȧ ∝ 1}
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where • = 0, c, ċ. Notice that not all possible combinations are equally valid, since
for example if a1 ∈ Ia2 , then necessarily a2 ∈ Ia1 . The equations read:

v0) x2
0

(
2x2

0 + 3
∑

a∈I−I0

x2
a + 6

∑
a∈I0

x2
a + 3

∑
ȧ∈J−J0

x2
ȧ +

g2

4

)
= 0 (6.44)

vc) x2
c

(
6x2

0 +
∑

a∈I−Ic

x2
a + 2

∑
a∈Ic

x2
a +

∑
ȧ∈J−Jc

x2
ȧ +

g2

4

)
= 0, if c ∈ I0 (6.45)

vc) x2
c

(
3x2

0 +
∑

a∈I−Ic

x2
a + 2

∑
a∈Ic

x2
a +

∑
ȧ∈J−Jc

x2
ȧ +

g2

4

)
= 0, if c /∈ I0 (6.46)

vċ) x2
ċ

( ∑
a∈I−Iċ

x2
a +

∑
ȧ∈J−Jċ

x2
ȧ + 2

∑
ȧ∈Jċ

x2
ȧ +

g2

4

)
= 0, if ċ ∈ J0 (6.47)

vċ) x2
ċ

(
3x2

0 +
∑

a∈I−Iċ

x2
a +

∑
ȧ∈J−Jċ

x2
ȧ + 2

∑
ȧ∈Jċ

x2
ȧ +

g2

4

)
= 0, if ċ /∈ J0. (6.48)

The four original models can be divided in two classes. The (3, 0) and (0, 3) model
have index sets with cardinality |I| = 0 and |J | = 3, while the (2, 1) and (1, 2)
model have |I| = 2 and |J | = 1. Explicit solutions for these two classes are listed
in Appendix G. The trivial case where all variables vanish is omitted as it is always
a solution.

6.4 su(2) solutions

All the solutions presented so far are of limited physical interest. Even involutory
commuting matrices are, in a sense, not much more than scalars. These four-
matrix models, however, are rich enough to host an interesting class of solutions
involving su(2) commutation relations. Such solutions are related to the geometry
of fuzzy spheres [35], and having them emerge as stationary configurations opens
up the possibility of disordered-to-geometric transitions in the phase diagram of
the matrix models. In the simplest case, these solutions arise when v0 = 0 and
tc = 0 for c = 1, 2, 3. This leads to the following equations.

108



(3,0) stationary equations when v0 = 0 and tc = 0 for c = 1, 2, 3

tc) 4
∑
a

Tr v2
avc = 0 (6.49)

v0) 2i
∑
a,b,c

εabcvavbvc ∝ 1 (6.50)

vc) g2vc +
∑
a

[
− 2vavcva + 2{v2

a, vc}+
2

n
(Tr v2

a)vc

]
+
∑
a6=c

4

n
(Tr vavc)va +

4

n
(Tr v2

c )vc ∝ 1 (6.51)

(2,1) stationary equations when v0 = 0 and tc = 0 for c = 1, 2, 3

t0) g2nt0 + 8nt30 + 12t0
∑
a

Tr v2
a + 2i

∑
a,b,c

εabc Tr vavbvc = 0 (6.52)

tc 6=2) 4
∑
a

Tr v2
avc = 0 (6.53)

v0) 12t0
∑
a

v2
a + 2i

∑
a,b,c

εabcvavbvc ∝ 1 (6.54)

vc) g2vc + 24t20vc +
∑
a

[
− 2vavcva + 2{v2

a, vc}+
2

n
(Tr v2

a)vc

]
+
∑
a6=c

eaec
4

n
(Tr vavc)va +

4

n
(Tr v2

c )vc + 12it0
∑
a,b

εabcvavb ∝ 1 (6.55)

(1,2) stationary equations when v0 = 0 and tc = 0 for c = 1, 2, 3

t1) 4
∑
a

Tr v2
av1 = 0 (6.56)

v0) 2i
∑
a,b,c

εabcvavbvc ∝ 1 (6.57)

vc) g2vc +
∑
a

[
− 2vavcva + 2{v2

a, vc}+
2

n
(Tr v2

a)vc

]
+
∑
a6=c

eaec
4

n
(Tr vavc)va +

4

n
(Tr v2

c )vc ∝ 1 (6.58)
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(0,3) stationary equations when v0 = 0 and tc = 0 for c = 1, 2, 3

t0) g2nt0 + 8nt30 + 12t0
∑
a

Tr v2
a + 2i

∑
a,b,c

εabc Tr vavbvc = 0 (6.59)

v0) 12t0
∑
a

v2
a + 2i

∑
a,b,c

εabcvavbvc ∝ 1 (6.60)

vc) g2vc + 24t20vc +
∑
a

[
− 2vavcva + 2{v2

a, vc}+
2

n
(Tr v2

a)vc

]
+
∑
a6=c

4

n
(Tr vavc)va +

4

n
(Tr v2

c )vc + 12it0
∑
a,b

εabcvavb ∝ 1 (6.61)

It is easy to see that upon imposing su(2) commutation relations on the matrices,
and assuming the representation is irreducible, the equations for tc and v0 are
automatically satisfied in all models. This assumption also takes care, by orthog-
onality of the generators, of the only terms where the e signs still appear. The
ansatz for a su(2) solution therefore is:

va = R la, R ∈ R (6.62)

[la, lb] = i
∑
c

εabclc (6.63)∑
a

l2a = C1. (6.64)

Equation (6.63) corresponds to the su(2) condition, while (6.64) requires the rep-
resentation to be irreducible. That means that C is really a known function of n,
corresponding to the value of the quadratic Casimir:

C =
n2 − 1

4
. (6.65)

Upon substituting these relations, the (3,0) model becomes indistinguishable from
the (1,2), while the (0,3) becomes indistinguishable from the (2,1). The two in-
equivalent systems of equations are:

g2 + 2R2 +
16

3
R2C = 0 for (3,0) and (1,2) (6.66)


g2t0 + 8t30 + 12t0R

2C − 2R3C = 0

g2 + 24t20 + 2R2 − 12t0R + 16
3
R2C = 0

for (0,3) and (2,1) (6.67)
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The solution to (6.66) is easily found as:

R2 = − g2

2 + 16
3
C

= −g2

2

3

2n2 + 1
(6.68)

The presence of t0 makes (6.67) hard to solve, and in general there is no common
solution to all four models. However, (6.67) can be solved for fixed n, and the
solutions compared with (6.68).
There are three distinct real solutions to (6.67) for R2 and t20, shown for n = 8 in
Figure 6.1 and 6.2 and denoted R2

(i) and t20(i), i = 1, 2, 3. The unique solution to

(6.66) is also shown as a solid red line in Figure 6.1 and quite remarkably it lies
very close to R2

(1). Since the discrepancy is suppressed in n, (6.68) will be taken

as an approximation to R2
(1).
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Figure 6.1: The three distinct numeri-
cal solutions to (6.67) for R2 (purple,
green and orange markers), and the
unique solution to (6.66) (red line). The
matrix dimension is fixed to n = 8.
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Figure 6.2: The three distinct numeri-
cal solutions to (6.67) for t20. The ma-
trix dimension is fixed to n = 8.

The explicit dependence on n of (6.68) makes R2 an informative observable. On-
shell, it is defined by:

R2 =
1

nC
Tr
∑
a

v2
a (6.69)

or, because of rotational invariance in v1, v2 and v3:

R2 =
3

nC
Tr v2

c , c = 1, 2, 3. (6.70)

Together with (6.68), it leads to the prediction:

1

n
Tr v2

c = −g2

8

n2 − 1

2n2 − 1
≈ − g2

16
, c = 1, 2, 3 (6.71)

for large n. Should (6.71) be the preferred vacuum in any of the models, its
characteristic scaling in n makes it in principle discernible in numerical simulations
from the otherwise similar (G.33).
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6.5 Numerical results

As a first general overview of the numerical results in the full random setting, the
eight variables tα, vα are shown in Figure 6.3 for n = 8. The computational setup
is identical to the one used for the two-matrix models (see Section 5.4).
The most noticeable feature is a change of behaviour happening at around g2 ≈
−3.4. For clarity, the region g2 & −3.4 will be referred to as region I, while
g2 . −3.4 as region II.
In region I the four models are basically indistinguishable, exhibiting what ap-
pears to be a rotational invariance in the vc matrices for c = 1, 2, 3, while the
corresponding scalars stay around zero. After the critical coupling, in region II,
scalars acquire more importance and matrix variables start to split. This is not
true for the (0,3) model however, where there seems to be no change at all through-
out the whole g2 range. Something similar happened in the two-matrix models,
where (2,0) and (0,2) presented the same behaviour until the scalars of the (2,0)
induced a phase transition that was absent in the (0,2).
These observations come in handy in interpreting the data in region I. In gen-
eral any comparison between numerics and stationary solutions is only meaningful
for very large negative values of g2. There, the potential well is deep and oscil-
lations around it are small. This means that data limited to region I is hardly
understandable in terms of stationary solutions. The observations made before,
however, allow one to speculate that, if the (0,3) model realizes any of the station-
ary solutions in region II, that would also be the solution around which all models
fluctuate in region I.
Before moving on to analyze each model in more detail, note that the large fluc-
tuations occurring in region II of Figure 6.3 are not necessarily due to numerical
errors, but rather to a poor choice of variables. For instance the meaningful scalar
quantity to monitor in the (3,0) model is the sum t21 + t22 + t23, rather than each
variable alone. Identifying the relevant variables for each model results in much
more stable plots, as Figure 6.4 shows.

6.5.1 The (0,3) model

As argued in the previous paragraph, understanding the asymptotic behaviour of
the (0,3) model might shed light on the small g2 behaviour of all four models.
The most informative observables for the model are:

1

n
Tr v2

c , c = 1, 2, 3. (6.72)

In region II they dominate over t0 and v0, they present rotational invariance and
to a very good approximation they go as −g2/16.
Good stationary solution candidates are either the su(2) solution (6.71) or the
all-orthogonal commuting involutory solution (G.33). If the commuting solution
is realized then the asymptotics should be −g2/16 regardless of n, while the su(2)
solution has a dimension-dependent correction. Moreover, the su(2) solution gives
a non-vanishing (albeit small) value for t0. Precise enough numerical simulations
at large negative g2 values can establish which vacuum is the preferred one.
Numerical simulations are somewhat difficult in the (0,3) model. There is no
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Figure 6.3: Plots (a) to (d) represent the four scalar variables t0, t1, t2, t3, while (e)
to (h) the four matrix variables n−1 Tr v2

0, n
−1 Tr v2

1, n
−1 Tr v2

2, n
−1 Tr v2

3, vs the
coupling constant g2 in the four models for n = 8. A critical change of behaviour
happens at g2 ≈ −3.4. Less negative values of g2 will be referred to as region I,
while more negative values as region II.
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Figure 6.4: Looking at each of the eight variables tα, vα separately is not neces-
sarily the best way to interpret the data in region II. In some cases the interesting
observable is actually a combination of them. The best setup can be found by
grouping together the spatial indices (1, 2 and 3) according to the model’s sig-
nature. (a) The (3,0) model shows signs of a phase transition where the scalar
variables acquire spherical symmetry while the matrix variables plateau. (b) In
the (2,1) model both scalar and matrix variables maintain a linear dependence
on g2 after the critical coupling. (c) The (1,2) model is always dominated by the
matrix variables, even though there is a change of slope at the transition. (d) The
(0,3) model does not show signs of a transition. The data shown is for n = 8.
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guarantee, as there is in models with even KO-dimension for example, that the
the Dirac operator has a symmetric spectrum around zero. This means that two
inequivalent local minima might be separated by a potential barrier represented by
one (or a few) of the eigenvalues jumping to the opposite well as depicted schemat-
ically in Figure 6.5. If the simulation finds itself in one of the two configurations,
tunneling to the other might be difficult, but nonetheless necessary, in order to
thermalize correctly.

Figure 6.5: Schematic representation of an eigenvalue overcoming the potential
barrier and jumping to the opposite well in an asymmetric spectrum.

Keeping in mind this difficulty, numerical simulations performed for matrices of
dimension n = 10 and 12 in the asymptotic regime of region II fall predominantly
onto the su(2) solution (6.71), with some minor deviations in the form of (G.33)
or other unknown ones. The expectation values reported in Table 6.1 and 6.2 are
the result of four independent Markov chains evolved for each matrix dimension
and each value of the coupling constant.

g2 Chain 1 Chain 2 Chain 3 Chain 4 su(2) −g2/16
-300 18.6703(4) 18.6704(2) 18.6704(3) 18.6704(3) 18.6709 18.75
-150 9.3474(2) 9.3738(2) 9.3344(2) 9.3342(4) 9.3354 9.375
-100 6.2221(3) 6.1415(1) 6.2221(3) 6.2220(2) 6.2236 6.25

Table 6.1: The table shows the expectation value of 1
n

Tr v2
c in a (0,3) model with

matrix dimension n = 10 at g2 = −300,−150 and -100. The first four columns
show the result of four independent Monte Carlo simulations. The last two columns
show the values predicted for the same observable by the su(2) solution and the all-
orthogonal commutative involutory matrix solution. In bold the values compatible
with the su(2) solution.

g2 Chain 1 Chain 2 Chain 3 Chain 4 su(2) −g2/16
-300 18.6946(3) 18.6946(2) 18.6945(2) 18.6946(2) 18.6951 18.75
-150 9.3465(3) 9.3740(3) 9.3465(2) 9.3739(2) 9.3476 9.375
-100 6.2301(2) 6.2301(3) 6.2301(2) 6.2301(3) 6.2317 6.25

Table 6.2: Same data as Table 6.1, but for matrix dimension n = 12.

An even stronger sign of the emergence of a su(2) solution comes from the spectra
of the vc matrices. The generators of an n-dimensional irreducible representation
of su(2) have equally spaced eigenvalues:

λ = j, j − 1, . . . ,−j with j =
n− 1

2
. (6.73)
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In particular, for n = 12:

λ = 5.5, 4.5, . . . ,−4.5,−5.5. (6.74)

A direct comparison can be made with the spectrum of any of the vc matrices,
normalized by a factor of R. Figure 6.6 shows the eigenvalue density of v1/R at
g2 = −300 as an example, where this behaviour is clearly observed. As suggested
in [47], the same plot also shows the spectrum of the commutator:

i[v2, v3] ∝ v1 (6.75)

normalized by R2. Different eigenvalues appear to have different multiplicities.
This artifact is due to the fact that larger eigenvalues are more peaked around
their mean, while eigenvalues closer to zero have a broader distribution. The area
of the histogram, however, is the same at each half-integer position.
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Figure 6.6: Model (0,3), eigenvalue density of v1/R (purple) and i[v2, v3]/R2

(green) for n = 12, g2 = −300. The spectrum is compatible with an su(2) so-
lution.

The same analysis can be performed on the Dirac operator as a whole. When
rescaling v1, v2 and v3 by a factor of R−1 and m0 by a factor of t−1

0 , one expects
the spectrum of a Grosse-Presnajder operator [36], [8]:

λ = ±1, ±2, . . . , ±(n− 1), +n. (6.76)

Notice that the last eigenvalue appears only with the positive sign, thus making the
spectrum asymmetric. The measured spectrum of the rescaled Dirac operator for
n = 12 at g2 = −300 is shown in Figure 6.7. It agrees with the Grosse-Presnajder
spectrum, if not for an overall shift of 3 towards the negative numbers.
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Figure 6.7: Eigenvalue density of the rescaled (0,3) Dirac operator for n = 12 and
g2 = −300. The matrices m1, m2, m3 were rescaled by a factor of R−1, while m0

by a factor of t−1
0 . The histogram was normalized so that the smaller eigenvalues

would appear with multiplicity 1. It resembles the Grosse-Presnajder spectrum,
but shifted by 3 towards the negative side.

6.5.2 The (3,0) model

At the other end of the signature spectrum lies the (3,0) model. In region I the
(3,0) and the (0,3) behave essentially in the same manner, but for a critical value
of the coupling g2 the (3,0) undergoes a phase transition with order parameter:

ρ2 := t21 + t22 + t23. (6.77)

Plotting their Monte Carlo history shows how in region II the three traces act as
coordinates on a two-sphere, ρ being the radius (Figure 6.8).
The transition appears to be second order, as plotting the histogram of ρ2 before,
during and after the phase transition shows how the order parameter does not
jump from one value to the other, but rather it smoothly interpolates between
them (Figure 6.9).
As for the (2,0) phase transition, a finite-size scaling analysis is attempted. De-
noting g∗2 the critical coupling, the ansatz is the following:

n
β
ν ρ2 = f1

(
n

1
ν t
)

(6.78)

n−
γ
ν n3 Var(ρ2) = f2

(
n

1
ν t
)

(6.79)

n−
α
ν n−3 Var(S) = f3

(
n

1
ν t
)

(6.80)
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Figure 6.8: Monte Carlo history of t1, t2 and t3 in region II of the (3,0) model at
g2 = −6, n = 8. The solid orange sphere is a guide for the eyes.
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Figure 6.9: Model (3,0), distribution of ρ2 across the phase transition for n = 14.
The flat density for g2 = −3.54 indicates that the phase transition is second order.
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where t denotes the reduced coupling:

t :=
(g2 − g∗2)

|g∗2|
. (6.81)

Interestingly, the best numerical values [48] for the critical exponents of the 3D
Ising universality class allow to collapse the data fairly well, as shown in Figure
6.10. The estimated critical coupling is g∗2 = −3.54.
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Figure 6.10: Model (3,0), universal finite-size scaling curves for (a) ρ2, (b)
n3 Var(ρ2) and (c) n−3 Var(S). The data is collapsed with the 3D Ising critical
exponents. The estimated critical coupling is g∗2 = −3.54.
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Chapter 7

Miscellaneous topics

7.1 Dirac Operators and Yang-Mills matrix mod-

els

Arguably, the observed dynamical emergence of su(2) Dirac operators is one of the
main outcomes of this work. Other random matrix models have been proposed
in the past that have similar solutions, and they all fall under the general class
of Yang-Mills matrix models [49]. A notable example is the IKKT matrix model
[50].
Surprisingly, fuzzy Dirac operators and Yang-Mills matrix models have more in
common than what might appear at first sight. To highlight the link between the
two, consider a simple bosonic action for a Yang-Mills matrix model:

SYM = −α
∑
a,b

Tr[Xa, Xb]
2 + β

∑
a

TrX2
a , a = 1, 2, 3 (7.1)

where Xa are traceless Hermitian matrices and α, β > 0 are coupling constants.
If β was not assumed to be positive, the action for commuting matrices would be
unbounded from below. Moreover, for non-commuting matrices, [Xa, Xb] = iH for
some Hermitian matrix H, therefore the quartic term picks up a sign when squared,
leading to a converging integral. One could include a cubic Chern-Simons-like term
in the action as in [51]. The argument would follow through without substantial
changes, and therefore for the purposes of this discussion the cubic term will be
omitted.
Now consider the following matrix:

D =
∑
a

σa ⊗Ma, a = 1, 2, 3 (7.2)

where σa are the Pauli matrices and Ma are Hermitian matrices. D has the form
of a (0,3) or (3,0) Dirac operator where the zeroth component is dropped and the
dynamical matrices appear naked instead of inside (anti-)commutators. Take the
usual Dirac operator action

SD = αTrD4 + β TrD2 (7.3)

120



and expand it in terms of the Ma components. A calculation similar to (6.7) leads
to:

SD = −α
∑
a,b

Tr[Ma,Mb]
2 + 2α

∑
a,b

TrM2
aM

2
b + 2β

∑
a

TrM2
a . (7.4)

The similarity between (7.1) and (7.4) is evident, the only difference being an extra
TrM2

aM
2
b term in the Dirac-like action. The effect of this extra piece is to add a∑

aM
2
aMb term to the equations of motion, which quite conveniently forces the

su(2) representation to be irreducible.
This simple calculation shows how the emergence of su(2) solutions in Dirac op-
erators is perhaps not surprising at all, since they can be related so directly to
Yang-Mills matrix models. In a sense, Yang-Mills matrix models describe Dirac
operators without the bimodule structure that gives rise to a left and right action.
It should be noted that the possibility of obtaining a Yang-Mills matrix model
from the action of a single matrix was first pointed out in [52]. The theory of
fuzzy spectral triples had not been worked out at the time, and the proposal re-
mained just an unexplored observation.
It is remarkable how two matrix models with such a drastically different origin
can end up sharing crucial features. Fuzzy Dirac operators stand on the axiomatic
grounds of non-commutative geometry and spectral triples, while Yang-Mills ma-
trix models can be formally obtained by dimensional reduction of Yang-Mills the-
ory to zero dimensions. One could hope that the fortuitous convergence of such
different paths is a sign that the direction is the right one.

7.2 Dual pairs and non-commutative to commu-

tative transition

Looking at the numerical results collected for the p + q = 2 and p + q = 3 types,
an interesting duality starts taking shape.
Consider the p + q = 2 types first, and in particular the (2, 0) and (0, 2) models.
It was shown in Chapter 5 that the random vacuum of the two models for small
values of the coupling constant appears to be the same, and it is dominated by
the two matrix variables v1 and v2. At some critical coupling, however, the (2, 0)
undergoes a phase transition and it settles around a different vacuum which is
instead dominated by the trace degrees of freedom.
Something completely analogous happens between the (0, 3) and (3, 0) models.
Accurate Monte Carlo simulations have confirmed that in the large negative g2

regime, where fluctuations of the random model are suppressed, the (0, 3) Dirac
operator chooses a su(2) vacuum. The numerical data can be traced back up to
small g2 values with no clear deviations in the form of phase transitions (Figure
6.4d), which suggests that the model preserves the su(2) behaviour throughout the
whole range, albeit a very fluctuating one close to the origin where the potential
well is shallow. Also in this case the matrix variables of the (3, 0) and (0, 3) behave
similarly up until the (3, 0) phase transition (Figure 6.3f, 6.3g, 6.3h), suggesting
that the (3, 0) might be a su(2) Dirac operator hidden by large fluctuations for
small g2. This is further supported by looking at the spectrum of the vi matrices
for small g2 in both models. As shown in Figure 7.1, the characteristic peaks of
su(2) generators are clearly visible in both models at g2 = −3, but they are con-
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siderably broader and somewhat displaced from their exact half-integer values.
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Figure 7.1: Eigenvalue density of v1/R in the (0, 3) (purple) and (3, 0) (green)
models for n = 8, g2 = −3. The peaks are broadened and shifted by random
fluctuations, but they are still clearly visible.

Then the phase transition in the model can be seen as a transition from non-
commutative to commutative spherical variables. That is, the (3, 0) model is
characterized by two phases: one where three non-commutative variables (the va
matrices) arrange themselves in a (highly fluctuating) su(2) configuration, and a
second phase where the commutative variables (the ta scalars) act as coordinates
on a sphere.

This motivates the following conjecture on the existence of “dual” pairs among
models with the same p + q, which will be denoted (T,M), with the following
characteristics:

1. T is the element of a dual pair with a majority of anti-commutators in
the Dirac operator (hence trace varaibles), while M is the element with a
majority of commutators.

2. T is dominated in the asymptotic regime by a solution where the traces act
as coordinates on a manifold. The manifold was S1 for the (2, 0) model, and
S2 for the (3, 0) model.

3. The asymptotic manifold can be obtained by solving the equations of motion
of a simplified version of T where the matrix variables are deleted and only
the traces survive.

4. The asymptotic regime of M is dominated by some fuzzy version of the
asymptotic manifold of T .

5. T undergoes a phase transition from the manifold to its fuzzy version.
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7.3 Higher types

Moving up in the ladder of Clifford modules, the next dual pair is given by the
(3, 1) and (1, 3) models. These are random matrix models with eight Hermitian
matrices: two commutators and six anti-commutators for the (3, 1), and vice versa
for the (1, 3). In a compact notation, the Dirac operator reads:

D =
3∑

α=0

(
0 σα ⊗N †α

σα ⊗Nα 0

)
(7.5)

where:

N0 = M
(1)
0 + iM

(2)
0

N1 = M
(1)
1 + iM

(2)
1

N2 = M
(1)
2 + iM

(2)
2

N3 = M
(1)
3 + iM

(2)
3

and

(3, 1) :

{
M

(i)
0 = [m

(i)
0 , ·] for i = 1, 2

M
(i)
a = {m(i)

a , ·} for a = 1, 2, 3 and i = 1, 2

(1, 3) :

{
M

(i)
0 = {m(i)

0 , ·} for i = 1, 2

M
(i)
a = [m

(i)
a , ·] for a = 1, 2, 3 and i = 1, 2

The degrees of freedom are the eight Hermitian matrices m
(i)
α , with α = 0, . . . , 3

and i = 1, 2.
Numerical simulations as well as analytical calculations start to be rather cum-
bersome because of the large number of free matrices, therefore this is an optimal
candidate to test whether the assumptions of the dual pair conjecture can help
ease the treatment.
The first thing to do is to calculate the asymptotic manifold of the (3, 1) model.

Simplify the model by putting m
(1)
0 = m

(2)
0 = 0 and m

(i)
a = t

(i)
a 1 for some real

scalars t
(i)
a , and then define za := t

(1)
a + it

(2)
a ∈ C. The action of the simplified

model reads:

S = 16n2

[
g2

3∑
a=1

|za|2 + 2
3∑

a,b=1

(
2|za|2|zb|2 − z̄2

az
2
b

)]
(7.6)

And the variation to first order is:

δS = 16n2
∑
b

[(
g2zb + 4

∑
a

(
2|za|2zb − z̄bz2

a

))
δz̄b

+

(
g2z̄b + 4

∑
a

(
2|za|2z̄b − zbz̄2

a

))
δzb

]
. (7.7)
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The two equations of motion, coming from putting to zero the coefficient of δz
and δz̄, are one the complex conjugate of the other. Take the first one:

g2zb + 4
∑
a

(
2|za|2zb − z̄bz2

a

)
= 0 (7.8)

multiply by z̄b:

g2|zb|2 + 4
∑
a

(
2|za|2|zb|2 − z̄2

b z
2
a

)
= 0 (7.9)

and divide by 4|zb|2: ∑
a

(
2|za|2 −

z̄2
b z

2
a

|zb|2

)
= −g2

4
. (7.10)

Now switch to polar form za = rae
iθa :∑

a

(
2− e2i(θa−θb)

)
r2
a = −g2

4
(7.11)

and remember that the equation is for fixed b and a = 1, 2, 3. Call b1 and b2 the
two indices different from b, and expand the sum:(

2− e2i(θb1−θb)
)
r2
b1

+
(
2− e2i(θb2−θb)

)
r2
b2

+ r2
b = −g2

4
. (7.12)

Notice that the equation constrains the left-hand side to be real, therefore a set of
solutions is given by:

θb1 − θb = k1π, k1 ∈ Z
θb2 − θb = k2π, k2 ∈ Z (7.13)

and in terms of the complex numbers z1, z2 and z3 this means that either all three
are aligned, or two of them are aligned and the third one is π apart, while the sum
of their radii squared amounts to a constant.
Take the first case, where all three are aligned. The stationary manifold is then
given by the map

ψ : S1 × S2 → S5 ⊂ R6

defined as:

ψ(θ, ρ, σ) = (x, y, z, t, u, v) =
(

cos(θ) cos(ρ) sin(σ), sin(θ) cos(ρ) sin(σ),

cos(θ) sin(ρ) sin(σ), sin(θ) sin(ρ) sin(σ),

cos(θ) cos(σ), sin(θ) cos(σ)
)
. (7.14)

The S1 part corresponds to the freedom in orienting the za numbers, i.e. the θ
angle in za = rae

iθ, while the S2 part corresponds to their absolute values ra acting
as coordinates on a sphere. Numerical evidence suggests that this is indeed the
correct manifold. Figure 7.2 and 7.3 show a comparison of the two inequivalent
projections onto 2D subspaces for uniformly random samples of the map ψ and
for Monte Carlo samples of the trace variables t

(i)
a of the (3, 1) model at g2 = −4

and n = 8. Figure 7.4 shows the surface defined by (x, y, t) with σ = π/2, and
how the corresponding Monte Carlo samples are bounded by it.
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Figure 7.3: Inequivalent 2D projections of Monte Carlo samples of the trace vari-
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a of the (3, 1) model at g2 = −4 and n = 8.
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Figure 7.4: (left) Parametric plot of the surface defined by (x, y, t) in (7.14) with

σ = π/2. (right) Projection onto t
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traces of the (3, 1) model at g2 = −4, n = 8. Modulo fluctuations, the samples
remain bounded by the surface.
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Now consider the (1, 3) model. The fourth point of the dual pair ansatz claims
that the asymptotics of the (1, 3) are described by a fuzzy version of ψ. As it turns
out, it is possible to show that there are stationary su(2) solutions to the (1, 3)
model with an extra S1 degree of freedom, hence at least a partial fuzzification of
ψ.
To see that, write the action of the (1, 3) Dirac operator (7.5) using the results of
Appendix F:

TrD2 = 4
3∑

α=0

TrNαN
†
α (7.15)

TrD4 = 4 Tr

[
N †0N0N

†
0N0

+N †0NaN
†
0Na +N0N

†
aN0N

†
a

+ 2N †0N0N
†
aNa + 2N0N

†
0NaN

†
a

+ 2iεabc

(
N †0NaN

†
bNc +N0N

†
aNbN

†
c

)
+NaN

†
aNbN

†
b +N †aNaN

†
bNb −N †aNbN

†
aNb

]
. (7.16)

Taking inspiration from the way the variables are arranged in the (3, 1) case,
observe that if:

M (1)
α = cos(θ)Mα

M (2)
α = sin(θ)Mα

for some angle θ, then:
Nα = eiθMα.

The dependence on the angle drops out of the action, which then becomes identical
to (6.7), i.e. the action of the (0, 3) Dirac operator that was worked out in Chapter
6, and that was shown to have su(2) solutions. However, in this case the su(2)
generators have an extra global S1 degree of freedom parametrized by θ.

126



Conclusions

Non-commutative fuzzy spaces have emerged as an interesting concept in quan-
tum gravity proposals thanks to the way they naturally incorporate a fundamental
length scale. The axiomatization of fuzzy spaces in the formalism of Alain Connes’
spectral triples allows the construction of a path integral over fuzzy geometries that
takes the form of a random matrix theory for Dirac operators. The purpose of
this thesis was to study the path integral numerically using Markov chain Monte
Carlo methods, and when possible to complement the study with analytical results.

The interesting regime for random matrix theories is in the large n limit, and
for this reason it is crucial for the numerical code to be able to handle in a rea-
sonable amount of time as large a matrix size as possible. The first practical
outcome of this work was the writing of RFL, a C++ numerical library for Monte
Carlo simulation of fuzzy spaces where much emphasis was put into performing
the calculations as efficiently as possible. Researchers interested in writing their
own code might nonetheless find it useful to look at the second half of Chapter 2,
where the formulas are worked out.

For the simplest Dirac operators, the ones with a single free Hermitian matrix,
the theory of Riemann-Hilbert problems has proven to be a powerful tool for
solving the random matrix model exactly. A symmetric one-cut solution for the
density of states was found analytically, as well as a non-necessarily symmetric
two-cut solution. The two-cut solution was written parametrically in terms of its
first moment and the extrema of the support. The system of equations fixing the
value of these parameters could be solved in the symmetrized case, but turned out
to be too hard to solve in general. Self-consistency was checked by plugging in
numerical values obtained by Monte Carlo simulations, confirming the validity of
the equations.

Higher types are less amenable to exact methods. Random matrix models involv-
ing more than one matrix are considerably less studied in the literature. Good
analytical results for Dirac operators with p+q > 1 could be obtained via a station-
ary analysis aimed at finding classical solutions for the models. These are solutions
of the matrix model where the random fluctuations are suppressed, and typically
they are good approximations to the full random vacuum when the potential well
is very deep, which in this case means large negative g2. There is an argument to
disregard classical solutions as completely uninteresting, because they are easily
written in terms of the Dirac operator:

δS = Tr
[
2g2D + 4D3

]
δD = 0 =⇒ 2g2D + 4D3 = 0
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and they are given by a Dirac operator with a highly degenerate spectrum

σ(D) =

{√
−g2

2
, 0,−

√
−g2

2

}
.

However, triviality in the spectrum of D does not necessarily reflect a triviality
in the subcomponents of D. Some of these classical solutions can be for example
su(2) Dirac operators, as shown in Chapter 6, where the submatrices form irre-
ducible representations of su(2). In these cases the interplay between analytics
and numerics is a valuable tool to shed light on the behavior of the models. A
stationary analysis informs the choice of observables, and their numerical expec-
tation values help discriminate between the potential classical solutions.

A complete classification of the stationary solutions for the (0, 2), (1, 1) and (2, 0)
models involving involutory matrices was achieved, and they were shown to ac-
count, up to fluctuations, for the behavior of the (0, 2) and (1, 1). Some exact
results making use of character expansion methods [53] might be of interest for
these models, but they were not pursued. A new phenomenon was observed in
the (2, 0) model, where a single phase transition splits into two separate ones, one
second-order and the other first-order, when the matrix size is large enough. No
mention of such phenomenon could be found in the literature, and it remains un-
explained. A finite-size scaling analysis was performed on the second-order phase
transition, and despite the critical exponents not belonging to a known universal-
ity class, they were shown to saturate Rushbrooke’s inequality.

A stationary analysis was also performed on the (0, 3), (1, 2), (2, 1) and (3, 0) mod-
els, which are random matrix models involving four Hermitian matrices. Some
scalar and involutory solution with commuting matrices were found but, most im-
portantly, su(2) solutions were shown to exist in all four models. These solutions
have very distinctive fingerprints: they follow a precise scaling with the matrix
dimension n, and the spectrum concentrates around half-integer values. Such fin-
gerprints were found in the Monte Carlo data of the (0, 3) model, whose Dirac
operator was shown to resemble asymptotically the Grosse-Presnajder Dirac oper-
ator on the fuzzy sphere, pointing towards the dynamical emergence of structured
fuzzy spaces as a concrete possibility. The (3, 0) model, on the other hand, un-
dergoes a phase transition that marks the separation between two regimes: one
where matrix (hence non-commutative) variables dominate, and one where scalar
(hence commutative) variables dominate. Large negative values of g2 correspond
to the scalar regime, and therefore the asymptotic presence of su(2) matrices could
not be verified. However, su(2) fingerprints in the spectrum of the matrices were
observed far from the asymptotic regime as well. Finally, a finite-size scaling anal-
ysis was performed on the (3, 0) phase transition, giving indication that it might
belong to the 3D Ising universality class.

Building on the way the models interact with each other at each p + q level, a
conjecture was put forward about the existence of pairs of models whose behaviour
is in some sense dual to each other. The idea is related to what happens between
the (3, 0) and the (0, 3), with the former transitioning between a commutative and
non-commutative regime, and the latter exhibiting the non-commutative regime
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asymptotically. Far from being a rigorous framework, the concept of dual pair
should be seen as a heuristic to facilitate the study of higher models. To this
end, the idea was tested on the (1, 3) and (3, 1) models. The commutative regime
of the (3, 1) was shown to be a certain submanifold of S5, that becomes partially
fuzzified in the non-commutative regime in terms of su(2) generators with a global
S1 degree of freedom.

Random matrix models with su(2) solutions are generally associated to the widely-
studied class of Yang-Mills matrix models. A clear connection between fuzzy Dirac
operators and Yang-Mills matrix models was uncovered, showing how the two are
not so dissimilar. The random matrix theory arising from fuzzy Dirac operators
appears to be to some extent a Yang-Mills matrix model augmented with a right
action of the matrix algebra.

129



Bibliography

[1] Alain Connes. Noncommutative Geometry. Academic Press, 1995.
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Appendix A

Metropolis formulas

A.1 Formula for generic p

Using the following notation:

D =
∑
i∈I

ωi ⊗ [Mi, ·]εi (A.1)

δD = ωx ⊗ [mx, ·]εx (A.2)

[M, ·]ε =
1∑
q=0

ε1−qM q ⊗ (MT )1−q (A.3)

where x ∈ I is a fixed index and mx is a random Hermitian matrix, Eq.(2.24)
becomes:

(D′)p −Dp =

p∑
s=1

∑
i1,..,ip−s∈I

s∑
k1,..,kp−s=0∑

kj≤s

s∑
l1,..,lp−s=0
lj≤kj

s−
∑
kj∑

l′=0

1∑
q1,..,qp−s=0

·

[

·

[(
k1

l1

)
. . .

(
kp−s
lp−s

)(
s−

∑
kj

l′

)
(εx)

s−
∑
lj−l′(εi1)

1−q1 . . . (εip−s)
1−qp−s ·

· (ωx)
k1ωi1 . . . (ωx)

kp−sωip−s(ωx)
s−

∑
kj ⊗

(mx)
l1(Mi1)

q1 . . . (mx)
lp−s(Mip−s)

qp−s(mx)
l′ ⊗

(mT
x )k1−l1(MT

i1
)1−q1 . . . (mT

x )kp−s−lp−s(MT
ip−s)

1−qp−s(mT
x )s−

∑
kj−l′

]
. (A.4)

A.2 Formulas for p = 2, 4

Suppose mx has the following form:

(mx)ij = zδiIδjJ + z∗δiJδjI (A.5)
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where z is a complex number, δij is the Kronecker delta, and I, J are the indices
of the only non-vanishing entries: (mx)IJ = (mx)

∗
JI = z 6= 0.

If n is the dimension of the matrix algebra and C is the dimension of the Clifford
module, then for p = 2:

1. if I 6= J :
Tr[(D′)2 −D2] = 4 C n [ 2 Re(z(Mx)JI) + |z|2 ] (A.6)

2. if I = J :

Tr[(D′)2−D2] = 8 C Re(z) [ n ( Re(Mx)II + Re(z) ) + εx(TrMx + Re(z))]
(A.7)

While for p = 4:

1. if I 6= J :

TrD3δD =
∑
i1<i3
i2

2 Re Tr(A[i1, i2, i3, x]) +
∑
i

Re Tr(A[i, x, i, x])

A[i1, i2, i3, x] = Tr(ωi1ωi2ωi3ωx)
[

n[1 + εi1εi2εi3εx∗][(Mi1Mi2Mi3)JIz + (Mi1Mi2Mi3)IJz
∗]+∑

{α,β,γ}

[εγ + εαεβεx∗][(MαMβ)JIz + (MαMβ)IJz
∗]+

[εαεβ + εγεx]2 Re((Mγ)JIz) TrMαMβ)
]

(A.8)

with {α, β, γ} = {i1, i2, i3}, {i1, i3, i2}, {i2, i3, i1}

TrD2(δD)2 =
∑
i

C
[
|z|2[2n((M2

i )II + (M2
i )JJ)+

4εi TrMi((Mi)II + (Mi)JJ)+

4 TrM2
i ] + 16εiεx Re((Mi)JIz)2

]
(A.9)

TrDδDDδD =
∑
i

Tr(ωiωxωiωx)
[
4n(Re((Mi)

2
JIz

2)+

|z|2 Re((Mi)II(Mi)JJ)+

|z|2[4εi TrMi((Mi)II + (Mi)JJ) + 4 TrM2
i ]+

16εiεx Re((Mi)JIz)2
]

(A.10)

TrD(δD)3 = 4C(n+ 6)|z|2 Re((Mx)JIz) (A.11)

Tr(δD)4 = 4C(n+ 6)|z|4 (A.12)
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2. if I = J :

TrD3δD =
∑
i1<i3
i2

2 Re Tr(A[i1, i2, i3, x]) +
∑
i

Re Tr(A[i, x, i, x])

A[i1, i2, i3, x] = Tr(ωi1ωi2ωi3ωx)2 Re z
[

n[1 + εi1εi2εi3εx∗](Mi1Mi2Mi3)II+

[εx + εi1εi2εi3∗] TrMi1Mi2Mi3+∑
{α,β,γ}

[εγ + εαεβεx∗](MαMβ)II TrMγ+

[εαεβ + εγεx](Mγ)II TrMαMβ)
]

(A.13)

with {α, β, γ} = {i1, i2, i3}, {i1, i3, i2}, {i2, i3, i1}

TrD2(δD)2 =
∑
i

C(Re z)2
[
2n(Mi)II + 4εx(M

2
i )II+

4εi(Mi)II TrMi + 4εiεx(Mi)
2
II + 2 TrM2

i

]
(A.14)

TrDδDDδD =
∑
i

Tr(ωiωxωiωx)(Re z)2
[
2n(Mi)II + 4εx(M

2
i )II+

4εi(Mi)II TrMi + 4εiεx(Mi)
2
II + 2 TrM2

i

]
(A.15)

TrD(δD)3 = 16C(Re z)3((n+ 3εx + 3)(Mx)II + εx TrMx) (A.16)

Tr(δD)4 = 32C(n+ 4εx + 3)(Re z)4 (A.17)
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Appendix B

The coefficients Ak

The explicit form of Ak(i, i, k), Ak(i, k, i) and Ak(k, k, k) is given.

Ak(i, i, k) = Tr(ωkωiωiωk)A(k, i, i, k) = CA(k, i, i, k) (B.1)

Ak(i, k, i) = Tr(ωkωiωkωi)A(k, i, k, i) = ±CA(k, i, k, i)

Ak(k, k, k) = Tr(ωkωkωkωk)A(k, k, k, k) = CA(k, k, k, k)

where C is the dimension of the Clifford module and the A matrices are:

A(k, i, i, k) = n[1 + ε †]M2
iMk+

εkI[1 + ε] TrM2
iMk+

2εi TrMi[1 + ε †]MiMk+

2εkεiMi[1 + ε] TrMiMk+

εk TrMk[1 + ε]M2
i +

Mk[1 + ε] TrM2
i (B.2)

A(k, i, k, i) = n[1 + ε]MiMkMi+

εkI[1 + ε] TrM2
iMk+

εi TrMi[1 + ε][1 + †]MiMk+

2εkεiMi[1 + ε] TrMiMk+

εk TrMk[1 + ε]M2
i +

Mk[1 + ε] TrM2
i (B.3)

A(k, k, k, k) = 2nM3
k + 2εkI TrM3

k+

6Mk TrM2
k + 6εkM

2
k TrMk. (B.4)
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Appendix C

Matrix identity

Suppose D is a matrix in which m entries are linearly independent. An arbitrary
entry can then be written as:

Dab =
∑
ij

cijabDij (C.1)

where cijab are coefficients and the sum runs over the independent components. This
is the case for fuzzy Dirac operators.
The following identity will be proven:∑

ij

Dij
∂

∂Dij

TrDp = pTrDp. (C.2)

An explicit calculation gives:∑
ij

Dij
∂

∂Dij

TrDp =
∑
ij

Dij
∂

∂Dij

∑
a1···ap

Da1a2 · · ·Dapa1 =

=
∑
ij

Dij

∑
a1···ap

(
cija1a2Da2a3 · · ·Dapa1 + · · ·+Da1a2 · · ·Dap−1apc

ij
apa1

)
=

=
∑
a1···ap

((∑
ij

cija1a2Dij

)
Da2a3 · · ·Dapa1 + · · ·+Da1a2 · · ·Dap−1ap

(∑
ij

cijapa1Dij

))
=

= p
∑
a1···ap

Da1a2 · · ·Dapa1 = pTrDp (C.3)
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Appendix D

Residues

In what follows, the residues of (4.80) and (4.87) are worked out and denoted C
and D respectively. They correspond to certain integer partitions of length ≤ 4.
For example, the coefficient denoted C

(3)
(2,1) corresponds to the partition 3 = 2 + 1.

C
(4)
(4) =

35

128

(
a4

1 + a4
2 + b4

1 + b4
2

)
C

(4)
(3,1) =

5

32

(
a3

1(a2 + b1 + b2) + a3
2(a1 + b1 + b2) + b3

1(a1 + a2 + b2) + b3
2(a1 + a2 + b1)

)
C

(4)
(2,2) =

9

64

(
a2

1a
2
2 + a2

1b
2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2 + b2

1b
2
2

)
C

(4)
(2,1,1) =

3

32

(
a2

1(a2b1 + a2b2 + b1b2) + a2
2(a1b1 + a1b2 + b1b2)

+ b2
1(a1a2 + a1b2 + a2b2) + b2

2(a1a2 + a1b1 + a2b1)
)

C
(4)
(1,1,1,1) =

1

16
a1a2b1b2

C
(3)
(3) =

5

16

(
a3

1 + a3
2 + b3

1 + b3
2

)
C

(3)
(2,1) =

3

16

(
a2

1(a2 + b1 + b2) + a2
2(a1 + b1 + b2) + b2

1(a1 + a2 + b2) + b2
2(a1 + a2 + b1)

)
C

(3)
(1,1,1) =

1

8

(
a1a2b1 + a1a2b2 + a1b1b2 + a2b1b2

)

C
(2)
(2) =

3

8

(
a2

1 + a2
2 + b2

1 + b2
2

)
C

(2)
(1,1) =

1

4

(
a1a2 + a1b1 + a1b2 + a2b1 + a2b2 + b1b2

)

C
(1)
(1) =

1

2

(
a1 + a2 + b1 + b2

)
C

(0)
(0) = 1
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D
(7)
(7) = − 33

2048

(
a7

1 + a7
2 + b7

1 + b7
2

)
D

(7)
(6,1) =

21

2048

(
a6

1(a2 + b1 + b2) + a6
2(a1 + b1 + b2) + b6

1(a1 + a2 + b2) + b6
2(a1 + a2 + b1)

)
D

(7)
(5,2) =

7

2048

(
a5

1(a2
2 + b2

1 + b2
2) + a5

2(a2
1 + b2

1 + b2
2) + b5

1(a2
1 + a2

2 + b2
2) + b5

2(a2
1 + a2

2 + b2
1)
)

D
(7)
(5,1,1) = − 7

1024

(
a5

1(a2b1 + a2b2 + b1b2) + a5
2(a1b1 + a1b2 + b1b2)

+ b5
1(a1a2 + a1b2 + a2b2) + b5

2(a1a2 + a1b1 + a2b1)
)

D
(7)
(4,3) =

5

2048

(
a4

1(a3
2 + b3

1 + b3
2) + a4

2(a3
1 + b3

1 + b3
2) + b4

1(a3
1 + a3

2 + b3
2) + b4

2(a3
1 + a3

2 + b3
1)
)

D
(7)
(4,2,1) = − 5

2048

(
a4

1

(
a2

2(b1 + b2) + b2
1(a2 + b2) + b2

2(a2 + b1)
)

+ a4
2

(
a2

1(b1 + b2) + b2
1(a1 + b2) + b2

2(a1 + b1)
)

+ b4
1

(
a2

1(a2 + b2) + a2
2(a1 + b2) + b2

2(a1 + a2)
)

+ b4
2

(
a2

1(a2 + b1) + a2
2(a1 + b1) + b2

1(a1 + a2)
))

D
(7)
(4,1,1,1) =

5

1024

(
a4

1a2b1b2 + a1a
4
2b1b2 + a1a2b

4
1b2 + a1a2b1b

4
2

)
D

(7)
(3,3,1) = − 5

512

(
a3

1a
3
2(b1 + b2) + a3

1b
3
1(a2 + b2) + a3

1b
3
2(a2 + b1)

+ a3
2b

3
1(a1 + b2) + a3

2b
3
2(a1 + b1) + b3

1b
3
2(a1 + a2)

)
D

(7)
(3,2,2) = − 1

1024

(
a3

1(a2
2b

2
1 + a2

2b
2
2 + b2

1b
2
2) + a3

2(a2
1b

2
1 + a2

1b
2
2 + b2

1b
2
2)

+ b3
1(a2

1a
2
2 + a2

1b
2
2 + a2

2b
2
2) + b3

2(a2
1a

2
2 + a2

1b
2
1 + a2

2b
2
1)
)

D
(7)
(3,2,1,1) =

1

512

(
a3

1(a2
2b1b2 + a2b

2
1b2 + a2b1b

2
2) + a3

2(a2
1b1b2 + a1b

2
1b2 + a1b1b

2
2)

+ b3
1(a2

1a2b2 + a1a
2
2b2 + a1a2b

2
2) + b3

2(a2
1a2b1 + a1a

2
2b1 + a1a2b

2
1)
)

D
(7)
(2,2,2,1) = − 1

1024

(
a2

1a
2
2b

2
1b2 + a2

1a
2
2b1b

2
2 + a2

1a2b
2
1b

2
2 + a1a

2
2b

2
1b

2
2

)
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D
(6)
(6) = − 21

1024

(
a6

1 + a6
2 + b6

1 + b6
2

)
D

(6)
(5,1) =

7

512

(
a5

1(a2 + b1 + b2) + a5
2(a1 + b1 + b2) + b5

1(a1 + a2 + b2) + b5
2(a1 + a2 + b1)

)
D

(6)
(4,2) =

5

1024

(
a4

1(a2
2 + b2

1 + b2
2) + a4

2(a2
1 + b2

1 + b2
2) + b4

1(a2
1 + a2

2 + b2
2) + b4

2(a2
1 + a2

2 + b2
1)
)

D
(6)
(4,1,1) = − 5

512

(
a4

1(a2b1 + a2b2 + b1b2) + a4
2(a1b1 + a1b2 + b1b2)

+ b4
1(a1a2 + a1b2 + a2b2) + b4

2(a1a2 + a1b1 + a2b1)
)

D
(6)
(3,3) =

1

256

(
a3

1a
3
2 + a3

1b
3
1 + a3

1b
3
2 + a3

2b
3
1 + a3

2b
3
2 + b3

1b
3
2

)
D

(6)
(3,2,1) = − 1

256

(
a3

1

(
a2

2(b1 + b2) + b2
1(a2 + b2) + b2

2(a2 + b1)
)

+ a3
2

(
a2

1(b1 + b2) + b2
1(a1 + b2) + b2

2(a1 + b1)
)

+ b3
1

(
a2

1(a2 + b2) + a2
2(a1 + b2) + b2

2(a1 + a2)
)

+ b3
2

(
a2

1(a2 + b1) + a2
2(a1 + b1) + b2

1(a1 + a2)
))

D
(6)
(3,1,1,1) =

1

128
(a3

1a2b1b2 + a1a
3
2b1b2 + a1a2b

3
1b2 + a1a2b1b

3
2)

D
(6)
(2,2,2) = −1

8

(
a2

1a
2
2b

2
1 + a2

1a
2
2b

2
2 + a2

1b
2
1b

2
2 + a2

2b
2
1b

2
2

)
D

(6)
(2,2,1,1) =

1

256

(
a2

1a
2
2b1b2 + a2

1a2b
2
1b2 + a2

1a2b1b
2
2 + a1a

2
2b

2
1b2 + a1a

2
2b1b

2
2 + a1a2b

2
1b

2
2

)

D
(5)
(5) = − 7

256

(
a5

1 + a5
2 + b5

1 + b5
2

)
D

(5)
(4,1) =

5

256

(
a4

1(a2 + b1 + b2) + a4
2(a1 + b1 + b2) + b4

1(a1 + a2 + b2) + b4
2(a1 + a2 + b1)

)
D

(5)
(3,2) =

1

128

(
a3

1(a2
2 + b2

1 + b2
2) + a3

2(a2
1 + b2

1 + b2
2) + b3

1(a2
1 + a2

2 + b2
2) + b3

2(a2
1 + a2

2 + b2
1)
)

D
(5)
(3,1,1) = − 1

64

(
a3

1(a2b1 + a2b2 + b1b2) + a3
2(a1b1 + a1b2 + b1b2)

+ b3
1(a1a2 + a1b2 + a2b2) + b3

2(a1a2 + a1b1 + a2b1)
)

D
(5)
(2,2,1) = − 1

128

(
a2

1a
2
2(b1 + b2) + a2

1b
2
1(a2 + b2) + a2

1b
2
2(a2 + b1)

+ a2
2b

2
1(a1 + b2) + a2

2b
2
2(a1 + b1) + b2

1b
2
2(a1 + a2)

)
D

(5)
(2,1,1,1) =

1

64
(a2

1a2b1b2 + a1a
2
2b1b2 + a1a2b

2
1b2 + a1a2b1b

2
2)
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D
(4)
(4) = − 5

128

(
a4

1 + a4
2 + b4

1 + b4
2

)
D

(4)
(3,1) =

1

32

(
a3

1(a2 + b1 + b2) + a3
2(a1 + b1 + b2) + b3

1(a1 + a2 + b2) + b3
2(a1 + a2 + b1)

)
D

(4)
(2,2) =

1

64

(
a2

1a
2
2 + a2

1b
2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2 + b2

1b
2
2

)
D

(4)
(2,1,1) = − 1

32

(
a2

1(a2b1 + a2b2 + b1b2) + a2
2(a1b1 + a1b2 + b1b2)

+ b2
1(a1a2 + a1b2 + a2b2) + b2

2(a1a2 + a1b1 + a2b1)
)

D
(4)
(1,1,1,1) =

1

16
a1a2b1b2

143



Appendix E

Matrix solutions from Clifford
modules

In the following, type 2 matrix solutions of Proposition 1 are built using Clifford
modules.
Consider a (p, 0) Clifford module, i.e. a set of p Hermitian matrices γi such that
{γi, γj} = 2δij1. For even p, define v1 to be proportional to an odd product of
gamma matrices:

v1 :=
(
i
|I|−1

2
mod2

)
x
∏
i∈I

γi, I ⊂ {1, . . . , p}, |I| odd, x ∈ R (E.1)

and v2 a linear combination of the same gamma matrices:

v2 :=
∑
i∈I

yiγ
i, yi ∈ R. (E.2)

For concreteness, a simple example would be the following:

p = 4

I = {1, 2, 3}
v1 = ixγ1γ2γ3

v2 = y1γ
1 + y2γ

2 + y3γ
3. (E.3)

Matrices v1 and v2 as in (E.1) and (E.2) satisfy the conditions for a type 2 matrix
solution of Proposition 1 with y2 :=

∑
i y

2
i . The proof goes as follows.

First of all, v1 and v2 have to be traceless and Hermitian. v2 is a linear combination
of Hermitian matrices with real coefficients and it is therefore Hermitian, while for
v1: (

γi1 · · · γi2k+1
)†

= γi2k+1 · · · γi1

= (−1)2kγ2k · · · γ1γi2k+1

= (−1)2k(−1)2k−1 . . . (−1)γ1 · · · γi2k+1

= (−1)kγ1 · · · γi2k+1

= (−1)
|I|−1

2 γ1 · · · γi2k+1
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therefore the i factor in (E.1) compensates for the minus sign.
The tracelessness of v2 follows from:

Tr γi = Tr γiγjγj = −Tr γjγiγj = −Tr γiγjγj = −Tr γi

where the first equality comes from γjγj = 1, the second from the anti-commutation
property and the third from the cyclicity of the trace. To prove it for v1, first no-
tice that for even p one can build a matrix γ (the chirality operator [8]) such that
γ2 = 1 and {γ, γi} = 0 for all i. Therefore:

Tr γ1 · · · γi2k+1 = Tr γ1 · · · γi2k+1γγ = −Tr γγ1 · · · γi2k+1γ = −Tr γ1 · · · γi2k+1γγ

= −Tr γ1 · · · γi2k+1

where again anti-commutation and cyclicity were used.
For the involutory property:

v2
1 = (−1)kx2γ1 · · · γi2k+1γ1 · · · γi2k+1

= (−1)k(−1)2k(−1)2k−1 . . . (−1)x21

= (−1)k(−1)kx21

= x21

v2
2 =

∑
i,j

yiyjγ
iγj

=
∑
i,j

yiyj

(
{γi, γj}+ [γi, γj]

2

)
=
∑
i,j

δijyiyj1 := y21

For the commutation property:

γiγi1 · · · γi2k+1 =
∑
j

δiij(−1)j−1γi1 · · · γij−1γij+1 · · · γi2k+1 (E.4)

γi1 · · · γi2k+1γi =
∑
j

δiij(−1)2k+j−1γi1 · · · γij−1γij+1 · · · γi2k+1 (E.5)

therefore [γi, γi1 · · · γi2k+1 ] = 0 and the conclusion follows by linearity in the first
argument of the commutator.
Lastly, notice that from (E.4) or (E.5) it is clear that Tr v1v2 is a sum of traces of
an even number of gamma matrices, but:

Tr γ1 · · · γ2k = −Tr γ2kγ1 · · · γ2k−1 = −Tr γ1 · · · γ2k

where anti-commutation and cyclicity were used. Therefore Tr v1v2 = 0.
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Appendix F

Products of Pauli matrices

When writing down the action of various Dirac operators, the product of a number
of Pauli matrices is often needed. To this purpose, identify σ0 with the identity
matrix, and denote Pauli matrices and identity collectively as σα, for α = 0, 1, 2, 3.
If adopting the convention that Greek indices run from 0 to 3, while Latin indices
run from 1 to 3, one can write:

σα = δα01 + δαaσa

where sum over repeated indices is intended.
The two-product is also relatively straightforward to write in this notation:

σασβ = δαβ1 + (δα0δβc + δαcδβ0 + iδαaδβbεabc)σc

or, condensing the bracket in a single symbol:

σασβ = δαβ1 + ηαβcσc.

In order to write the three-product (which might be needed for example in the
(0,3) Dirac operator) first compute:

σaσβ = δβ0σa + δβb(δab1 + iεabcσc)

which gives:

σασβσρ = δαβδρ01 + ηαβcδρrσcσr + traceless

= (δαβδρ0 + ηαβcδρrδcr)1 + traceless

= (δαβδρ0 + ηαβcδρc)1 + traceless

= (δαβδρ0 + δα0δβcδρc + δαcδβ0δρc + iδαaδβbδρcεabc)1 + traceless

or, in a more symmetric way:

σασβσρ = (δα0δβ0δρ0 + δα0δβcδρc + δαcδβ0δρc + δαcδβcδρ0

+ iδαaδβbδρcεabc)1 + traceless.

The interpretation is clear: the terms with a non-vanishing trace are the ones in
which all the matrices are the identity, or one is the identity and the other two are
the same Pauli matrix, or all three are Pauli matrices but two of them combine in
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a commutator to give the third one.
Similarly, the four-product expands to:

σασβσρστ = (δαβ1 + ηαβcσc)(δρτ1 + ηρτdσd)

= δαβδρτ1 + ηαβcηρτdσcσd + traceless

= (δαβδρτ + ηαβcηρτdδcd)1 + traceless

= (δαβδρτ + ηαβcηρτc)1 + traceless

=
[
δαβδρτ + δα0δβaδρ0δτa + δα0δβaδρaδτ0 + δαaδβ0δρ0δτa + δαaδβ0δρaδτ0

+ iεabc (δαaδβbδρcδτ0 + δαaδβbδρ0δτc + δαaδβ0δρbδτc + δα0δβaδρbδτc)

− δαaδβbδρrδτt(δarδbt − δatδbr)
]
1 + traceless

=
[
δα0δβ0δρ0δτ0

+ δα0δβaδρ0δτa + δαaδβ0δρaδτ0

+ δα0δβ0δρaδτa + δαaδβaδρ0δτ0 + δα0δβaδρaδτ0 + δαaδβ0δρ0δτa

+ iεabc (δαaδβbδρcδτ0 + δαaδβbδρ0δτc + δαaδβ0δρbδτc + δα0δβaδρbδτc)

+ δαaδβaδρbδτb + δαaδβbδρbδτa − δαaδβbδρaδτb
]
1 + traceless

where again it is easy to see why these are the only terms contributing: the first
line means that all the matrices are the identity; in the second and third line two
are the identity and the other two are the same Pauli matrix; in the fourth line one
matrix is the identity and the other three are Pauli, but two of them combine in a
commutator to give the third one; and in the last line all four are Pauli matrices
combining in pairs to give the identity.
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Appendix G

Commuting involutory matrix
solutions

G.1 The (3, 0) and (0, 3) class: |I| = 0 and |J | = 3

The equations reduce to:

v0) x2
0

(
2x2

0 + 3
∑

ȧ∈J−J0

x2
ȧ +

g2

4

)
= 0 (G.1)

vċ) x2
ċ

( ∑
ȧ∈J−Jċ

x2
ȧ + 2

∑
ȧ∈Jċ

x2
ȧ +

g2

4

)
= 0, if ċ ∈ J0 (G.2)

vċ) x2
ċ

(
3x2

0 +
∑

ȧ∈J−Jċ

x2
ȧ + 2

∑
ȧ∈Jċ

x2
ȧ +

g2

4

)
= 0, if ċ /∈ J0. (G.3)

The solutions will be classified based on the cardinality of J0.
If |J0| = 3 the equations decouple in the variables x2

0 and
∑
x2
ȧ, giving:

x2
0 = −g2

8
,
∑
ȧ∈J

x2
ȧ = 0, or

x2
0 = 0,

∑
ȧ∈J

x2
ȧ = −g2

8
, or

x2
0 = −g2

8
,
∑
ȧ∈J

x2
ȧ = −g2

8
.

(G.4)

(G.5)

(G.6)
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If |J0| = 2 then call c̄ the unique index which is not in J0. The solution is one of
the following:

x2
0 = −g2

8
, x2

c̄ = 0,
∑
ȧ∈J0

x2
ȧ = 0, or

x2
0 = 0, x2

c̄ = −g2

8
,
∑
ȧ∈J0

x2
ȧ = 0, or

x2
0 = 0, x2

c̄ = 0,
∑
ȧ∈J0

x2
ȧ = −g2

8
, or

x2
0 = − g2

20
, x2

c̄ = − g2

20
,
∑
ȧ∈J0

x2
ȧ = 0, or

x2
0 = −g2

8
, x2

c̄ = 0,
∑
ȧ∈J0

x2
ȧ = −g2

8
, or

x2
0 = 0, x2

c̄ = − g2

12
,
∑
ȧ∈J0

x2
ȧ = − g2

12
.

(G.7)

(G.8)

(G.9)

(G.10)

(G.11)

(G.12)

If |J0| = 1, then there are two possibilities. Call ĉ the only index in J0 and c̄1 and
c̄2 the two indices not in J0, then either vc̄1 ⊥ vc̄2 or not. If they are orthogonal,
the solutions are:

x2
0 = −g2

8
, x2

ĉ = x2
c̄1

= x2
c̄2

= 0, or

x2
ĉ = −g2

8
, x2

0 = x2
c̄1

= x2
c̄2

= 0, or

x2
c̄i

= −g2

8
, x2

0 = x2
ĉ = x2

c̄j
= 0

(G.13)

(G.14)

(G.15)

when only one variable is non-vanishing, or:

x2
0 = x2

ĉ = −g2

8
, x2

c̄1
= x2

c̄2
= 0, or

x2
0 = x2

c̄i
= − g2

20
, x2

c̄j
= x2

ĉ = 0, or

x2
0 = x2

ĉ = 0, x2
c̄1

= x2
c̄2

= − g2

12
, or

x2
0 = x2

c̄i
= 0, x2

c̄j
= x2

ĉ = − g2

12

(G.16)

(G.17)

(G.18)

(G.19)

when two variables are non-vanishing, or:

x2
0 = − g2

16
, x2

c̄1
= x2

c̄2
= − g2

48
, x2

ĉ = 0, or

x2
0 = 0, x2

c̄1
= x2

c̄2
= x2

ĉ = − g2

16
, or

x2
0 = − g2

56
, x2

c̄1
= x2

c̄2
= − g2

28
, x2

ĉ = −5
g2

56

(G.20)

(G.21)

(G.22)

when at least three variables are non-vanishing.
If vc̄1 and vc̄2 instead are not orthogonal, the solutions are the same as (G.13) to
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(G.19), except that instead of two separate variables x2
c̄1

and x2
c̄2

, there is a unique
variable x2

c̄1
+ x2

c̄2
.

The last three cases to analyze are when J0 = ∅. Either all three dotted matrices
are proportional to each other, or two of them are proportional and orthogonal to
the remaining one, or all three are orthogonal.
If all three dotted matrices are proportional to each other, the solutions are:

x2
0 = −g2

8
,
∑
ȧ

x2
ȧ = 0, or

x2
0 = 0,

∑
ȧ

x2
ȧ = −g2

8
or

x2
0 =

∑
ȧ

x2
ȧ = − g2

20
.

(G.23)

(G.24)

(G.25)

In the second case, denote c̄1 and c̄2 the indices of the two matrices proportional
to each other, and ĉ the remaining one. The solutions are:

x2
0 = − g2

20
, x2

c̄1
+ x2

c̄2
= − g2

20
, x2

ĉ = 0, or

x2
0 = − g2

20
, x2

c̄1
= x2

c̄2
= 0, x2

ĉ = − g2

20
, or

x2
0 = − g2

16
, x2

c̄1
+ x2

c̄2
= − g2

48
, x2

ĉ = − g2

48

(G.26)

(G.27)

(G.28)

in addition to (G.13) to (G.15).
Lastly, when all matrices are orthogonal to each other, the solutions are:

x2
α = −g2

8
, x2

β = 0 ∀ β 6= α, or

x2
0 = xċi1 = − g2

20
, x2

ċi2
= x2

ċi3
= 0, or

x2
0 = xċi1 = 0, x2

ċi2
= x2

ċi3
= − g2

12
, or

x2
0 = − g2

16
, x2

ċi1
= x2

ċi2
= − g2

48
, x2

ċi3
= 0, or

x2
0 = 0, x2

ċi1
= x2

ċi2
= x2

ċi3
= − g2

16
, or

x2
0 = −5

g2

76
, x2

ċi1
= x2

ċi2
= x2

ċi3
= − g2

76
.

(G.29)

(G.30)

(G.31)

(G.32)

(G.33)

(G.34)

G.2 The (1, 2) and (2, 1) class: |I| = 2 and |J | = 1

The solutions will be classified based on the cardinality of I0 being 2, 1 or 0. For
each alternative, J0 can either be empty or contain the only dotted index. This
brings to eleven different cases in total.
When |I0| = 2 and |J0| = 1, all matrices are proportional to each other. The

150



equation for vċ decouples and the solutions are:

x2
0 = −g2

8
,
∑
a∈I

x2
a = 0, x2

ċ = 0 or − g2

8
, or

x2
0 = 0,

∑
a∈I

x2
a = −g2

8
, x2

ċ = 0 or − g2

8
, or

x2
0 = − g2

32
,
∑
a∈I

x2
a = − g2

32
, x2

ċ = 0 or − g2

8
.

(G.35)

(G.36)

(G.37)

When |I0| = 2 and |J0| = 0, all non-dotted matrices are proportional to each other
and orthogonal to the dotted one. The solutions are:

x2
0 = −g2

8
,
∑
a∈I

x2
a = 0, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = −g2

8
, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = 0, x2

ċ = −g2

8
, or

x2
0 = − g2

32
,
∑
a∈I

x2
a = − g2

32
, x2

ċ = 0, or

x2
0 = − g2

16
,
∑
a∈I

x2
a = 0, x2

ċ = −g2

8
, or

x2
0 = 0,

∑
a∈I

x2
a = − g2

12
, x2

ċ = − g2

12
, or

x2
0 = − g2

32
,
∑
a∈I

x2
a = − g2

24
, x2

ċ = −7
g2

48
.

(G.38)

(G.39)

(G.40)

(G.41)

(G.42)

(G.43)

(G.44)

When |I0| = 1 and |J0| = 1, call c1 the index in I0 and c2 the index in I − I0.
Solutions with one non-vanishing variable are:

x2
0 = −g2

8
, x2

c1
= x2

c2
= x2

ċ = 0, or

x2
ci

= −g2

8
, x2

0 = x2
cj

= x2
ċ = 0, or

x2
ċ = −g2

8
, x2

0 = x2
ci

= 0.

(G.45)

(G.46)

(G.47)
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Solutions with two non-vanishing variables are:

x2
0 = x2

c1
= − g2

32
, x2

c2
= x2

ċ = 0, or

x2
0 = x2

c2
= − g2

20
, x2

c1
= x2

ċ = 0, or

x2
0 = x2

ċ = −g2

8
, x2

c1
= x2

c2
= 0, or

x2
c1

= x2
c2

= − g2

12
, x2

0 = x2
ċ = 0, or

x2
c1

= x2
ċ = −g2

8
, x2

0 = x2
c2

= 0, or

x2
c2

= −g2

8
, x2

ċ = − g2

16
, x2

0 = x2
c1

= 0.

(G.48)

(G.49)

(G.50)

(G.51)

(G.52)

(G.53)

Solutions with more than two non-vanishing variables are:

x2
0 = − g2

32
, x2

c1
= − g2

96
, x2

c2
= − g2

12
, x2

ċ = 0, or

x2
0 = − g2

32
, x2

c1
= − g2

32
, x2

c2
= 0, x2

ċ = −g2

8
, or

x2
0 = − g2

20
, x2

c1
= 0, x2

c2
= − g2

20
, x2

ċ = − g2

10
, or

x2
0 = 0, x2

c1
= x2

c2
= x2

ċ = − g2

12
, or

x2
0 = − g2

32
, x2

c1
= − g2

96
, x2

c2
= − g2

12
, x2

ċ = − g2

12
.

(G.54)

(G.55)

(G.56)

(G.57)

(G.58)

When |I0| = 1 and |J0| = 0, call c1 the index in I0 and c2 the index in I−I0. There
are two possibilities: either vc2 ∝ vċ or not. In the first case (G.45) to (G.49) as
well as (G.51) and (G.54) are still solutions, in addition to:

x2
0 = x2

ċ = − g2

20
, x2

c1
= x2

c2
= 0, or

x2
c1

= x2
ċ = − g2

12
, x2

0 = x2
c2

= 0, or

x2
c2

= x2
ċ = −g2

8
, x2

0 = x2
c1

= 0

(G.59)

(G.60)

(G.61)

and:

x2
0 = − g2

32
, x2

c1
= − g2

96
, x2

c2
= − g2

12
, x2

ċ = 0, or

x2
0 = − g2

32
, x2

c1
= − g2

96
, x2

c2
= 0, x2

ċ = − g2

12
, or

x2
0 = − g2

14
, x2

c1
= 0, x2

c2
= − g2

56
, x2

ċ = − g2

56
, or

x2
0 = 0, x2

c1
= x2

c2
= x2

ċ = − g2

12
, or

x2
0 = − g2

32
, x2

c1
= −3

g2

32
, x2

c2
= −g2

8
, x2

ċ = −g2

8
.

(G.62)

(G.63)

(G.64)

(G.65)

(G.66)

152



If instead vc2 ⊥ vċ, again (G.45) to (G.49) are solutions, as well as (G.51), (G.59),
(G.60), (G.63) and (G.54), in addition to:

x2
c2

= x2
ċ = − g2

12
, x2

0 = x2
c1

= 0, or

x2
0 = − g2

16
, x2

c1
= 0, x2

c2
= − g2

48
, x2

ċ = − g2

48
, or

x2
0 = 0, x2

c1
= x2

c2
= x2

ċ = − g2

16
, or

x2
0 = − g2

32
, x2

c1
= −3

g2

32
, x2

c2
= − g2

16
, x2

ċ = − g2

16
.

(G.67)

(G.68)

(G.69)

(G.70)

When |I0| = 0 and |J0| = 1, either the two non-dotted matrices are proportional
or orthogonal to each other. In the first case the solutions are:

x2
0 = −g2

8
,
∑
a∈I

x2
a = 0, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = −g2

8
, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = 0, x2

ċ = −g2

8
, or

x2
0 = − g2

20
,
∑
a∈I

x2
a = − g2

20
, x2

ċ = 0, or

x2
0 = −g2

8
,
∑
a∈I

x2
a = 0, x2

ċ = −g2

8
, or

x2
0 = 0,

∑
a∈I

x2
a = − g2

12
, x2

ċ = − g2

12
.

(G.71)

(G.72)

(G.73)

(G.74)

(G.75)

(G.76)

While in the second case one has (G.45), (G.46), (G.47) in addition to:

x2
0 = x2

ci
= − g2

20
, x2

cj
= x2

ċ = 0, or

x2
0 = x2

ċ = −g2

8
, x2

c1
= x2

c2
= 0, or

x2
c1

= x2
c2

= − g2

12
, x2

0 = x2
ċ = 0, or

x2
ci

= x2
ċ = − g2

12
, x2

0 = x2
cj

= 0

(G.77)

(G.78)

(G.79)

(G.80)

and:

x2
0 = − g2

16
, x2

c1
= x2

c2
= − g2

48
, x2

ċ = 0, or

x2
0 = 0, x2

c1
= x2

c2
= x2

ċ = − g2

16
, or

x2
0 = − g2

56
, x2

c1
= x2

c2
= − g2

28
, x2

ċ = −5
g2

56
.

(G.81)

(G.82)

(G.83)
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Finally, when |I0| = |J0| = 0, there are four possible cases. When all non-dotted
and dotted matrices are proportional to each other, the solutions are:

x2
0 = −g2

8
,
∑
a∈I

x2
a = 0, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = −g2

8
, x2

ċ = 0, or

x2
0 = 0,

∑
a∈I

x2
a = 0, x2

ċ = −g2

8
, or

x2
0 = − g2

20
,
∑
a∈I

x2
a = − g2

20
, x2

ċ = 0, or

x2
0 = − g2

20
,
∑
a∈I

x2
a = 0, x2

ċ = − g2

20
, or

x2
0 = 0,

∑
a∈I

x2
a = −g2

8
, x2

ċ = −g2

8
, or

x2
0 = − g2

14
,
∑
a∈I

x2
a = − g2

56
, x2

ċ = − g2

56
.

(G.84)

(G.85)

(G.86)

(G.87)

(G.88)

(G.89)

(G.90)

When the non-dotted matrices are proportional to each other and orthogonal to
the dotted matrix, the solutions are (G.84) to (G.88) and:

x2
0 = 0,

∑
a∈I

x2
a = − g2

12
, x2

ċ = − g2

12
, or

x2
0 = − g2

16
,
∑
a∈I

x2
a = − g2

48
, x2

ċ = − g2

48
.

(G.91)

(G.92)

The penultimate case is when the dotted matrix is proportional to one of the non-
dotted matrices, call it vc1 , and orthogonal to the second non-dotted matrix, call
it vc2 . In this case the solutions are (G.45), (G.46), (G.47) in addition to:

x2
0 = x2

ci
= − g2

20
, x2

cj
= x2

ċ = 0, or

x2
0 = x2

ċ = − g2

20
, x2

c1
= x2

c2
= 0, or

x2
c1

= x2
c2

= − g2

12
, x2

0 = x2
ċ = 0, or

x2
c1

= x2
ċ = −g2

8
, x2

0 = x2
c2

= 0, or

x2
c2

= x2
ċ = − g2

12
, x2

0 = x2
c1

= 0

(G.93)

(G.94)

(G.95)

(G.96)

(G.97)
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and:

x2
0 = − g2

16
, x2

c1
= x2

c2
= − g2

48
, x2

ċ = 0, or

x2
0 = − g2

14
, x2

c1
= − g2

56
, x2

c2
= 0, x2

ċ = − g2

56
, or

x2
0 = − g2

16
, x2

c1
= 0, x2

c2
= − g2

48
, x2

ċ = − g2

48
.

(G.98)

(G.99)

(G.100)

The very last case in when all matrices are orthogonal to each other, with solutions
as in (G.29) to (G.34) upon relabeling the matrices.
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