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Abstract

The existing domestic urban built environment contributes significantly to the environ-

mental issues facing the international community. Whole house energy retrofits per-

formed on this stock are a key tool for the mitigation of greenhouse gas emissions. As

such, researchers have built a set of bottom-up retrofit adoption models to understand,

model, and predict household energy use and retrofit decisions in this space. However,

the existing methods are limited in their ability to estimate complex decisions for large

housing stocks due to computational restraints of optimisation. While machine learning

has been applied to the problem of retrofit optimisation for performance improvements,

the methods still scale poorly when applied to bottom-up agent-based models due to

the large number of heterogeneous problems to be solved. This thesis aims to advance

this toolset by extending state of the art data science approaches to domestic retrofit

decision modelling across urban housing stocks.

The major contribution focuses on a transparent method of obtaining rapid predictions

for near-optimal energy retrofit solutions using deep neural network models. This process

is referred to as surrogate optimisation due to the surrogate modelling techniques used

to achieve it. The models are trained on a sample of near-optimal solutions generated

using traditional surrogate energy models paired with optimisation techniques to obtain

a data set of retrofit decisions for model training. This allows for rapid estimation

of retrofit decisions based on both the physical characteristics of the dwelling and the

social characteristics of the households that would not be computationally feasible using

existing methods.

This process is initially limited to the single objective of net present value to model

rational and self-interested agents. The process is then extended to a multi-objective

problem by considering net carbon emissions savings. This allows manipulation of the

objective function to expose the household emissions valuation, which represents the

marginal financial value a household places on each ton of carbon. By training the

surrogate optimiser with these values, it was possible to both generate Pareto Fronts

and target a specific carbon value held by a household, a characteristic that is both

measurable and simple to understand. An agent-based model was constructed using the
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survey data derived decision model with the household carbon value trained surrogate

optimiser. This allowed the consideration of scenarios and policy at a scale and level of

detail which, without this research, would have been unfeasible with the computational

resources used. After demonstrating the surrogate optimisation technique we perform a

novel analysis of Best-Worst Scaling survey data in an attempt to understand household

decisions better, ultimately resulting in a retrofit decision trigger model based on the

responses. The more realistic trigger model was used in conjunction with the surrogate

optimiser, capturing more realistic investment decisions.
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Chapter 1

Introduction

1.1 Motivation

There is significant scientific consensus that anthropogenic greenhouse gas emissions are

leading to climate change [2, 3, 4]. The UK government has committed to a deadline

of 2050 for net-zero emissions [5]. Domestic dwellings account for over a third of the

national energy demand and approximately a quarter of total CO2 emissions in the

UK, with the majority of this energy demand being used for electric or gas based space

heating [6, 7]. While significant progress has been made in the design of new buildings for

efficient heat generation and retention, most of the existing stock will still be occupied

by the UK government’s deadline of 2050. Meeting this target will require strategies

to transform the existing building stock with near-optimal combinations of different

energy saving measures, known throughout this work as Whole House Retrofit Solutions

(WHRS). In addition, to measure the effects of potential policies, as well as optimise

any parameters they may introduce, high-quality retrofit adoption models are required.

While there exists a range of tools to analyse the impact and adoption of retrofit solu-

tions in the existing stock, there are a number of issues with existing methods. Top-down

building stock models are inflexible, based on aggregate trends, and are often dependent

on rigid historical data, which leaves little room for detailed analysis of either input pa-

rameter changes or granular model outputs. Bottom-up retrofit adoption models benefit

from significantly finer control over the simulation inputs, however, this increased level

of detail comes with significant computational costs. This is particularly difficult when

considering the heterogeneous nature of physical dwellings and the household decision

1



CHAPTER 1. INTRODUCTION 2

makers who occupy them, as the selection of a WHRS would normally be performed for

each dwelling by an expert assessor who would select a near-optimal WHRS to propose

to the decision makers, based on their preferences. This process can be replaced with an

optimisation procedure using both the physical and social properties of the household

to model the decisions that could be made, but performing this detailed optimisation

procedure for every dwelling across large building stocks is not computationally feasible.

The computational complexity introduced when using bottom-up modelling approaches

can be considered in terms of a simulation possibility frontier. This is a visual repre-

sentation of a conceptual problem: the trade-off between the level of detail within a

simulation model and the technical feasibility of that model. As the quantity or com-

plexity of phenomena captured within a given model grows, bringing it closer to the

near-infinite complexity of reality, the technical feasibility of building and running the

model diminishes. This is shown by the bounding curve in Figure 1.1 and captures the

difficulty of bottom-up modelling approaches which involve complex operations, such as

the large scale retrofit adoption modelling of a building stock.

Expansion of the simulation possibilities curve, as demonstrated by the dashed line, is

to be expected over time, as Moore’s law continues to drive the improvement of available

computing capacity. However, the boundaries of feasible simulation can also be extended

by improvements in modelling methodology which are able to capture a higher level of

detail and/or diminish the computational cost of capturing given phenomena. The

methodological contributions made in this thesis attempt to explore new simulation

methods which are able to capture additional levels of detail while maintaining the

technical feasibility of large scale models by integrating machine learning and novel

agent-decision models into bottom-up agent-based models. These contributions will be

made in the domain of WHRS-adoption modelling.
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Figure 1.1: Simulation possibility frontier - the boundary of descriptiveness and technical
feasibility combinations at a given moment in time.

1.2 Research Aim

The research question of this thesis is: How can Data Science techniques be used

to expand the simulation possibility frontier, allowing for more descriptive bottom-up,

large-scale energy retrofit adoption models while maintaining the technical feasibility

of the simulation, in the context of an agent-based simulation of urban energy retrofit

models?

The research aim is the statement formulation of this question: To expand the simu-

lation possibility frontier using the Computer Science toolkit, to allow more descriptive

bottom-up large-scale retrofit decision modelling without impacting the technical feasi-

bility of the model.
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1.3 Contribution Statements

In order to address the research aim and answer the research question stated above, the

following contributions have been made throughout the course of the work presented

in this thesis. It is put forward that the satisfactory demonstration of these contri-

butions will answer the research question and demonstrate an original and significant

contribution to knowledge.

Contribution 1 - To the best knowledge of the author, this thesis is the first to sys-

tematically investigate the integration of Surrogate Optimisation (SO) into an

Agent-Based Model (ABM) to analyse energy retrofit adoption in urban housing

stock. The integration of the SO technique into an ABM allows for increasingly

rational, self-interested agents to be simulated at a scale that would otherwise be

infeasible by allowing computationally cheap optimisations. The investigation in

this thesis considers the implementation challenges, performance, and drawbacks

of this method of ABM analysis.

Contribution 2 - To the best knowledge of the author, this thesis is the first to sys-

tematically investigate the extension of the principle of multi-objective Surrogate

Optimisation for the analysis of domestic urban energy retrofit potential that in-

cludes a measure of households’ Willingness to Pay for carbon mitigation. This

has allowed for the conception of the ABMs created for Contribution 1 to relax

the assumption of self-interest by considering environmentally conscious agents.

Contribution 3 - To the best knowledge of the author, this thesis is the first to combine

a data-driven retrofit trigger model with a Surrogate Optimisation method. The

decision trigger model takes survey data from participants to determine when

retrofit adoptions are likely to be considered, as modelled in Contribution 2. This

allows for models which conceptualise and include heterogeneous decision factors

while maintaining intelligent and preference driven retrofit evaluations.

1.4 Publications

• Hey, J., Siebers, P., Ozcan, E., Nathanail, P., Robinson, D. “Surrogate Optimi-

sation of Energy Retrofits in Domestic Building Stocks using Household Carbon

Valuations” Journal of Building Performance Simulation (Under review)
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• Hey, J., Siebers, P., Ozcan, E., Nathanail, P., Robinson, D. “Surrogate Optimisa-

tion of Housing Stock Retrofits using Deep Neural Networks” Building Simulation

and Optimization 2020

• Siebers, P., Zhi, E.L., Figueredo, G., Hey, J. “An Innovative Approach to Multi-

Method Integrated Assessment Modelling of Global Climate Change” Journal of

Artificial Societies and Social Simulation 2020

1.5 Thesis Structure

Chapter 1 introduces the motivation and context of this thesis, lays out the broad re-

search aim and the contributions presented in order to achieve the research aim.

Chapter 2 provides the context required to understand the work performed for the

reader unfamiliar with the concepts involved. This will include discussions of agent-

based modelling, machine learning, optimisation techniques and relevant areas of the

built environment. While this will require reference to the literature on a broad range

of topics, this will exclude areas most relevant to the specific contributions of this work,

which will be addressed in Chapter 3.

Chapter 3 involves the presentation and discussion of the most relevant literature to

highlight the context and contributions made to the fields involved. This includes a

discussion of existing methods to evaluate the energy use and retrofit adoption of existing

buildings and building stocks. The limitations and drawbacks of existing techniques are

highlighted in Section 3.4, which identifies explicitly the research gap that this thesis

attempts to fill.

Chapter 4 explains the approach taken to solving the research aim. This includes a broad

description of the research methods which will be carried out in Chapters 5, 6 and 7

as well as a discussion and investigation of the primary data set to which these methods

will be applied. Given the methodological contributions of this thesis, which are detailed

more rigorously in later sections, only a top-down view of the methods will be discussed

in this chapter. Specific implementation details, such as model selection and parameter

tuning, are presented alongside the results of each method in their related chapter.

Chapter 5 lays out the creation of a single-objective surrogate optimiser to capture the

behaviour of environmentally indifferent rational agents. These agents attempt to max-

imise the economic return from a retrofit investment. The Surrogate Energy Performance



CHAPTER 1. INTRODUCTION 6

Model (SEPM) and Genetic Algorithm (GA), both of which are used throughout the

research, are also introduced and evaluated here as preliminary steps.

Chapter 6 expands the surrogate optimisation technique to capture the behaviour of

environmentally conscious agents with a model of environmental contributions using

multi-objective optimisation. Agents are instantiated with carbon valuations represent-

ing their willingness to pay per ton of carbon mitigated, which is used to form an

objective function to perform optimisation. Carbon valuations are sampled to create a

set of Pareto fronts describing near-optimal solution sets for each household, which are

then used alongside the carbon valuations to train a set of preference aware surrogate

optimiser models.

Chapter 7 investigates how to relax the stricter decision model assumptions made up to

this point by introducing a pilot survey data. This includes estimating the significance of

retrofit decision triggers among participants and then pair these to the attributes of the

synthetic population, capturing the retrofit decision process in a higher level of detail.

This trigger model is combined with the Surrogate Optimiser introduced in Chapter 6

to create a detailed and computationally inexpensive retrofit adoption ABM.

Chapter 8 consists of two sections to complete the thesis. The first section summarises

the work conducted, highlighting the contributions, and discusses their significance. The

limitations and points for future work are also laid out here. The final section contains

concluding remarks, giving some overview of the purpose, aims and achievements of the

presented work.



Chapter 2

Background

This chapter will serve to provide the background information required to understand

and contextualise the contributions found in later chapters. Given the interdisciplinary

nature of the research, some areas in which contributions are not made are still highly

relevant and covered within this section. This chapter will also explain and formalise

some common language and practices used when building and reporting different types of

models present throughout the work, especially where different disciplines use identical

or similar language for different concepts. This chapter is supplemented by a discussion

of the most relevant literature found in Chapter 3, which will identify the gaps in the

existing literature and highlight the areas of literary contribution.

2.1 Modelling and Simulation

2.1.1 What is Modelling?

We will define a model as a man-made construction attempting to imitate aspects of

a target system. This definition is quite broad, allowing it to encompass all types of

model to be considered in this thesis, and will allow us to identify: what the target

system is, the aspects of it that we will be imitating, the degree to which we will imitate

them, and which aspects we are not imitating, whenever a new model is introduced. It

is possible, and I believe important, to do this for any well-understood model. Consider

the example of a mannequin designed for displaying clothes in a shop window. Here,

the target system is of the clothes worn by the potential buyer, imitated by the clothes

7
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on the plastic model. This is simulated by the approximate size and shape of the model

being of standard human proportions, making clothes rest on the model in a similar way

as they may on a person. However, many aspects of the target system are unmet. The

size and shape of the model, while representative, are very unlikely to match the exact

characteristics of the buyer. The model does not move. It lacks hands and feet. The

texture of the skin is smooth and synthetic. In these ways and countless others, the

model deviates from the target system. Some deviations, such as its inability to act and

think for itself, are not relevant to the purpose of the model. Other deviations, like the

representatives of the model to a given shopper, do impact the effectiveness of the model,

but in a way that is either impractical or impossible to imitate. There are also some

deviations, such as the rigidity of the mannequin which deviate from the target system

but are desirable properties of the model, as this rigidity allows for any clothes applied

to remain in place for long periods of time. It is also worth noting that in this example

the model is the mannequin itself, and does not include the clothes that it may currently

be wearing, as this would be an instance of using the model to perform a simulation.

2.1.2 What is Simulation?

We will define simulation to be the use of a model to understand or predict the behaviour

of the target system. This is done by observing the model in its imitations of the target

system. We can consider simulation to therefore be the active, in contrast to the model

which is the passive. Taking our mannequin as the model, for example, our simulation

would be to dress the model in clothes and observe how they appear. Here we can

see one of the aspects of simulation: parameter variation. We are able to experiment

with our model by simulating a variety of different clothing combinations. When we

discuss simulation, it is therefore important to discuss these parameters: the scenarios

we place on our model which influence the observed outcome. Some, like the choice

of clothes, may be the primary factors of interest that we vary with experimentation.

Others, like the lighting in the room or the pose of the mannequin, which do influence

our observations, may need to be held constant with their choices justified. We must

therefore ensure, when discussing a specific simulation that we understand both the

explicit experimental factors and the less obvious environmental assumptions put in

place during that experiment.
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2.1.3 Modelling and Simulation Paradigms

Given our extremely broad definition of modelling, it is important to be more specific

in describing the subsets of models that we will be focusing on. There are many ways

to build models of a target system, and there is little benefit in considering them all.

Instead, we will first discuss the difference between top-down and bottom-up approaches

to modelling complex systems. We will then look at the use of agents to build bottom-

up models, followed by a discussion of statistical models. Statistical models will be

examined in more depth in Section 2.2, as they are a core component of machine learning

techniques.

2.1.3.a Top-down vs Bottom-up Approaches

Top-down approaches attempt to capture the entire system’s behaviours broadly using

aggregated values. A top-down approach to modelling heating energy use in a city may,

for example, use an aggregate of the historical demand. A growth rate could be applied,

based on the expected rate of building new dwellings, expected changes in technology,

decarbonisation of the grid, etc. The individual buildings themselves would not be

considered, and may not be required for the simulation desired. The limitations of top-

down modelling come from the level of detail that certain phenomena can be captured

in, as there is significant abstraction and loss of detail when using aggregates.

Bottom-up approaches, in contrast, attempt to capture the behaviour of the target

system by breaking it up into smaller sub-components to be modelled separately. The

behaviour of these components are then aggregated to measure the behaviour of the

entire system. This can allow for the inclusion of behaviours or interactions that are not

modelled by the top-down approach. Let us consider a bottom-up approach to modelling

heating energy demand in a city. The modeller can individually model the demand used

in each building based on the individual characteristics of that dwelling, the number

of people in the dwelling, and other heterogeneous details that are known to influence

energy demand. When aggregated for all dwellings, this should give the demand for the

building stock as a whole. The challenges of bottom-up approaches begins to become

apparent here, as a significant amount of data about the sub-components that make

up the model may be missing. While there are methods to overcome these, they often

require the introduction of error through the assumptions made.

The main advantage of bottom-up approaches is the additional level of detail that can be

captured by using disaggregated analysis. These approaches expose those low-level phe-
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nomena to the modeller as a source of experimentation and analysis. In our hypothetical

energy use model, for example, a bottom-up approach may allow us to identify which

buildings or types of buildings are more likely to contribute to energy demand, allowing

policy makers to design more targeted measures based on details that are obscured in

top-down approaches.

A key disadvantage of bottom-up approaches is the computational complexity in run-

ning them. In the best case, where sub-components do not interact significantly, they

scale linearly with the number of sub-components. Even in this case, the number of

heterogeneous components may be large or the modelling complex [8]. If these compo-

nents interact, then the complexity will increase exponentially, rendering larger systems

infeasible to model as they scale.

Given these approaches can be used to model the same target systems we would expect

them to yield comparable results, although in practice there has been a gap [9]. This

suggests errors in one or both of the approaches when building models. Which approach

is more error prone is context dependent. Top-down models may introduce errors by

excluding low-level phenomena that are captured in bottom-up approaches. In contrast,

bottom-up models introduce more detailed phenomena and often many more parameters,

each of which could be prone to its own error. We used a method of reconciling the two

approaches when developing a hybrid integrated climate assessment model. We added

a more bottom-up approach to an existing top-down model, but validated the outputs

against the top-down model [10]. Once validated, the additional parameters exposed

by the bottom-up approach can be adjusted to achieve the more detailed analysis that

bottom-up approaches grant.

Top-down and bottom-up approaches are not necessarily mutually exclusive or rigidly

defined paradigms. Models can be considered as existing on a spectrum with no model

being purely bottom-up or top-down in nature, but rather capturing more or less detail

about the sub-components included. Sometimes these models are referred to as hybrid

models. Consider our example of a bottom-up energy demand model: the households are

modelled heterogeneously, but we may be using a top-down approach when considering

certain behaviours. We are likely to model the households’ behaviour rather than each

individual member. Due to the near infinite complexity of the target system, at some

stage modellers are obliged to draw a line and begin using aggregated or simplified

behavioural mechanics. Hybrid modelling techniques may also include procedures such

as sampling, in which sub-components of a larger system are sampled, modelled in a

detailed, bottom-up manner, then extrapolated, in an attempt to understand the entire

systems. Housing stock models of this type are discussed in Section 3.2.
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2.1.4 Agent-Based Models

Agent-Based Models (ABM) are a bottom-up approach to modelling, performed by

capturing the simplest fundamental behaviours and encoding them into agents as part of

a system. The advantages of ABMs are three-fold: they allow for emergent phenomena;

they are a natural way to describe a system; they are flexible [11]. Emergent phenomena

in ABMs occur when a relatively simple set of rules between agents results in more

complex observable behaviour. The phenomena may be more complex than can be

captured in a top-down manner, allowing observations that are otherwise difficult to

measure or model. ABMs are useful for geographic models where the location of agents in

physical space is relevant [12]. There is sometimes confusion about the difference between

Multi-Agent Systems (MAS) and ABMs [13]. This confusion is perhaps unsurprising,

as they both implement multiple interacting agents which fit the classifications laid

out above. However, for the sake of consistency in this thesis, we will consider ABMs

those which rely on a large number of (relatively simple) interacting agents in a system

designed to represent the real world. In contrast, MAS rely on a smaller number of

agents, often in a more abstract domain.

Before going any further, it is important to determine the properties of an agent, so

as to identify when and when not, we are considering an ABM. Russell and Norvig’s

definition of agents is anything that can be viewed as perceiving its environment through

sensors and acting upon that environment through effectors [14, p.31]. This broad

definition encompasses humans, software agents, simulation agents, and robotic agents

whilst excluding anything we would consider evidently not an agent. This makes it a

beneficial working definition. Given that we may observe seemingly disparate types of

agents falling under this definition, there is utility in considering some classifications of

agents so that we are mindful when designing or discussing that which we believe to be

an agent.

Russell and Norvig [14] begin their agent classification process by identifying four agent

types based on the nature of their environmental interactions, although additional be-

havioural profiles have since appeared in the literature. The first agent type introduced

is reflex agents. Reflex agents are designed with a direct mapping between their ob-

served environmental state and the actions they are to take. The second agent type,

reflex agents with state, uses not just the observation of the environment but also an in-

ternal recording of state to determine state-action mappings. The final two agent classes

are goal-based agents and utility-based agents. Goal-based agents are given a desired

state for the world, instead of the direct mapping between states and actions of previous

types, and take action in an attempt to close the gap between the current world state
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and the desired one. Utility-based agents are something of an extension to these, with

the designer assigning utility to positive states of the world and disutility for negative

ones. This allows for conflicting objectives to be balanced and for the issue of partial

rewards for incomplete goals. As with any such classification system, there are potential

flaws that can be identified in these types. One could argue, for example, that goal and

utility agents must, in order to ultimately act, have a direct mapping between state and

action and therefore are simply more complex versions of reflex agents. It could also

be argued that reflex agents have a goal that has been predetermined by the designer.

Nonetheless, these classifications can be useful for agent design and even for determining

if the sub-components of a system are indeed agents.

2.1.5 Microsimulation

The definition of agents laid out above is quite broad, with any entity that observes

and acts on its environment being considered to have agency. There have been classi-

fication of modelling methods which draw a distinction between agent-based modelling

and microsimulation. Microsimulation models are associated with one-directional im-

pact of policy interactions, while agent-based models focus on emergent behaviour from

more complex inter-agent relationships [15]. The line between agent-based models and

microsimulation is also not always fixed, with some examples of hybrid models that

contain features distinctive to both definitions [16]. Given the objectives laid out in

this thesis, the distinction between agent-based and microsimiulation models is not of

primary significance, as the focus is on increasing the scale and intelligence of decisions

made by agents, findings which will hold regardless of whether the agents are interacting

with other agents or acting independently in response to policymaker decisions.

2.1.6 Mathematical Models

q = −k · T2 − T1

L
(2.1)

Equation 2.1: Mathematical model of a thermal flux (q) through a surface of thickness
L, a thermal conductivity of k, and a temperature differential of T2-T1.

A mathematical model attempts to capture the behaviour of the target system in terms

of closed-form mathematical expressions. These models can be constructed from obser-

vation or derived from theoretical models of the working of a target system. An example

of such a model would be a model of thermal conductivity shown in Equation 2.1. This
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mathematical model can be used to calculate the rate of conductive heat flow through a

surface, one of the many elements that make up building energy simulations discussed in

Section 2.3.4. Indeed, it is common for larger simulation models to be constructed either

entirely or partially of closed-form mathematical models which are then run together to

perform simulations. This is most evident in system dynamics models, which are de-

fined in terms of stocks of attributes and the flows between them, which are expressed as

rates of change. Using feedback loops to link these mathematical components, complex

non-linear stateful systems can be simulated over time [17].

Analytical models are a form of mathematical model constructed from observations

of data. Generally, the structure of the model is chosen by the modeller, based on

observations of data or an understanding of the target system. The data observations

are then used to fit the models using a form of optimisation algorithm to find the most

appropriate parameters. These analytical models are the basis for supervised machine

learning, discussed in Section 2.2. This can be most clearly seen in linear regression

models, discussed in Section 2.2.2.a, as the closed-form expression is explicitly defined in

a linear form, compared with models such as neural networks which are less transparent.

2.2 Machine Learning

Machine Learning (ML) has been used as a somewhat nebulous term for a broad range

of techniques used in computer and data science. The field relies heavily on statistics, as

many techniques rely on the automated construction and use of statistical models using

data [18]. Introductory texts generally contrast machine learning techniques against

traditional algorithmic problem solving used in computing [19]. While algorithms are

used to generate the models used in ML applications, they are generic and can be

applied to disparate problems by providing different data on which to train them. The

algorithms used in machine learning are often further divided into categories depending

on the nature of the data or processing which occurs:

• Supervised learning relies on a data set with known labels which can be used to

fit a model. Examples include classification algorithms and regression models.

• Unsupervised learning attempts to detect patterns in unlabeled data. Examples

include clustering algorithms and automated anomaly detection.

• Semi-Supervised learning relies on using a combination of labelled and unlabelled

data to form a better model than just using one or the other alone.



CHAPTER 2. BACKGROUND 14

• Reinforcement learning attempts to train an agent to devise a strategy to maximise

a reward function within an environment.

The first class of machine learning techniques, supervised learning, requires a training

data set in which the input and output data is known. This is a particularly robust

method of training as, unlike in unsupervised methods, a test set and validation set

can be retained before training, giving an indication of the performance of the model.

These techniques are popular for classification and regression problems using methods

which will be discussed in Sections 2.2.1 and 2.2.2. When talking about supervised

learning models, it is worth breaking down the data into the input features and the

target features. The input features, sometimes referred to as independent variables, are

provided to the model at both training, testing, and deployment stages and contain the

information used by the model to make predictions. The target feature(s), sometimes

known as dependent variables, are the desired predictions of the model. At the training,

validation, and test stages, these are known to the system and referred to as labels.

When the model is deployed, only the input data is known and the model is used to

predict the target feature(s). When discussing supervised learning models in this thesis

we will identify the input and target features explicitly.

The second class of machine learning techniques, unsupervised learning, attempt to ex-

tract meaning from data without the use of known output labels. One common problem

set involves clustering, which groups relevant data points together based on some prox-

imity measurement learned by the algorithms. The clusters can either be analysed by

the modeller to extract meaning, or used as input for a further model or decision algo-

rithm. Both of these uses of clustering are explored in Chapter 7, and a discussion of

clustering algorithms are explored in Section 2.2.4.

The third class of machine learning methods are semi-supervised techniques. These

are hybrid methods that combine a labelled training set with an unlabelled data set

in an attempt to achieve better performance than either of the techniques used alone.

These algorithms are often adapted from supervised or unsupervised methods, using

the additional data to supplement the algorithm in some way. These techniques can be

very useful when obtaining labelled data is difficult or impossible, however, they will

not be considered much in this thesis. This is because additional training data can be

generated through simulation where needed. A very thorough discussion of the theory

and application of semi-supervised learning can be found in [20].

The final class of ML techniques, reinforcement learning, would appear to be a natural

match for an ABM as they involve learning through interactions with a dynamic envi-
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ronment. Indeed, this is a popular technique that has been used to grant more intelligent

behaviour to utility and goal-based agents [21]. It is because of the popularity of these

methods that we have largely excluded them from the scope of this thesis, as they are

already well adapted to adding certain behaviour types into ABMs.

2.2.1 Classification Models

Classification models are a class of supervised machine learning techniques designed

to identify label(s) associated with given input data. An example of a classification

problem is the automation of spam email detection in which the input features would

be the contents of the email (alongside any metadata available), and the target feature

would be a boolean label identifying the email as spam or not spam. This type of model

will be used when determining the insulation materials suitable for a given application

in Chapters 5 and 6, as these materials take on discrete classes. There are a variety

of methods for performing classification. We will consider a range of the most relevant

methods to the research below.

Decision trees create a rule set to break the training data down into smaller and smaller

subsets until each point can be classified based on the rules. This method is particularly

powerful in capturing nonlinear relationships: bifurcated data sets or data with more

outliers, that could impact other models more severely. Decision trees also benefit from

being human readable, providing some insight into the most discriminatory rules. Ran-

dom forests are an extension of decision trees in which a collection of different trees are

initially trained. In deployment, the modal class from the forest is used, making this a

form of ensemble classifier. This attempts to solve the overfitting problem that can arise

from decision trees.

Binary logistic regression (also known as logit) is a classification method adapted from

statistical regression models of the type discussed in Section 2.2.2.a. While regression

models are normally more suitable for continuous target features, logit regression is

adapted to using binary labels for training. This type of model is useful when wishing to

extract insight as the coefficients are proportional to the significance of the independent

variable. We use this as both an exploratory and predictive modelling technique in

Chapter 7 when analysing the contributing factors of binary decisions made by survey

respondents. It is also possible to use standard regression techniques for classification if

classes can be determined by the binning of continuous variables. A regression model to

predict household income, for example, could naturally be used to classify low income

households with a given income threshold.
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Support vector machine classification uses a kernel function to transform data into a

higher dimension, then bisects it using hyper-planes which minimise the separation mar-

gin between classes. The same transformations are performed on novel data, with the

trained hyper-planes used to determine the class of the new data. This technique per-

forms well with high-dimensional data and it is suited to situations where small sample

sizes are necessary, although can struggle with noisy data where classes are less clearly

defined [22].

The K Nearest Neighbors (KNN) algorithm is a simple but effective algorithm that can

be used for both regression and classification tasks. Being non-parametric, it does not

rely on knowledge of an underlying distribution and is, therefore, less likely to train bias

should assumptions of the distribution be incorrect [23]. When predicting with KNN,

an unclassified input is compared with k’s (a parameter of the algorithm) closest values

in the training set and assigned the class of the plurality of those neighbour’s classes.

The definition of closeness is important for this algorithm and may require careful pre-

processing to ensure that the values are normalised and that irrelevant or highly noisy

features are removed to prevent distortion. Dimensionality reduction techniques, such

as principal component analysis, are helpful with dealing with some of these problems

[24].

2.2.2 Regression Models

In contrast to classification, in which discrete labels are applied to data, the target feature

of regression models is continuous. This makes them suitable for modelling many real-

world systems, such as predicting income. Where models require continuous outputs,

a regression model will be used in this work. This includes the SEPM implemented in

Chapter 5, which is used to predict the energy demand of a property with a given set of

dwelling attributes.

2.2.2.a Linear Regression

yi = β0 + β1xi1 + β2xi2 + ...+ βpxip + ϵi (2.2)

Equation 2.2: Multiple linear regression with p explanatory variables.

Linear regression is an attempt to fit data into an analytical form demonstrated in

Equation 2.2, where the target feature of a given observation (yi) is modelled as a linear
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combination of the products of p’s explanatory features (xip) and a coefficient (βip), as

well as an error term (ϵ). The error term represents the distance between the model’s

estimated value for the target feature and the true value. The process of training a linear

regression model is to optimise the coefficient variables (βp) in order to minimise a loss

function, typically the sum of the squared of the error terms in the training set.

This model formulation has some key advantages, not just in the relatively cheap com-

putational cost of construction, but also in the transparency of the trained model. Once

trained, the coefficients make it clear how much each explanatory variable contributes

to the model and they are often used to provide insight into the significance of these

variables on the target system.

There are some issues with linear regression formulations, mostly based on the assump-

tions required for the model to fit well with this method. If the target system is not

linear then the model is likely to fit poorly, with coefficients giving little insight into

its workings and high error. There exist variants of linear regression models that at-

tempt to handle non-linearity by adding polynomial terms that still combine linearly to

form a model. Linear regression models also assume homoscedasticity, meaning that the

variance of the errors remains constant across the entire domain, a property that must

be tested for an accounted for if present. It is also important that variables used in

linear regression are not correlated with each other, either directly or through a missing

latent variable. These forms of under-specified model result in biased models spurious

coefficients, and therefore linear regression model’s require careful specification to ensure

they are reliable.

2.2.3 Artificial Neural Networks

Schmidhuber (2015) [25] reviews the history of Artificial Neural Networks (ANN), noting

that the concept dates back to as early as the 1800s. The technique uses artificial

neurons designed to trigger under certain conditions, which can be used to map inputs

to outputs by linking neurons into a network. The neurons are arranged in layers, with

input neurons activated in correspondence to the input data (which may be training

data, test data, or data from the target system). The input neurons are then connected

to a hidden layer of the network via weighted connections. This hidden layer of neurons

then connects to the final output layer with another set of weighted connections. These

final layers can be adapted to perform either classification or regression by altering the

activation function of the final layer.
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Neural networks are trained by adjusting the weights of connectors between layers. The

standard technique for network training relies on a set of processes called backpropa-

gation and gradient descent. The network is initialised with untrained weights and the

training data is run through the network. The network outputs are compared to the

labels and the amount of error (defined by a loss function). Gradient descent is the

method of adjusting the weights of the connections in the network to reduce the size of

the error. Backpropagation is the process of working backward through the network to

calculate the gradient by which weights within the network should be adjusted. This

gradient descent through backpropagation is performed iteratively, in an attempt to re-

duce the loss function of the network. It is possible to overfit neural networks, reducing

their predictive capability when presented with unseen data. To detect overfitting, a

validation stage can be included, which uses separate validation data during training to

measure the errors on unseen data. This allows the modeller to end training when the

performance of the model begins to suffer from overfitting.

A Deep Neural Network (DNN) extends the ANN principle through the inclusion of mul-

tiple hidden layers, creating greater separation between the input and output neurons,

resulting in a larger set of weightings and more paths through the network. The theo-

retical purpose of these additional neurons is the ability to break the input features into

more complex, discovered features that can then be acted upon. This includes positive

performance when data comes from a complex or heterogeneous distribution, in contrast

to the weakness of models like linear regression, as discussed in Section 2.2.2.a. The

additional layers allow, for example, a different route to be taken through the network

for differing building types, which can result in more intelligent mappings from different

input types.

Adding depth to ANNs was considered in the 1960s and 1970s but did not become

practical for use until after the development of backpropagation as well as hardware

improvements [25]. By the 2000s ANNs of various types began to outperform other

methods in domains such as image classification, speech recognition, and many other

applications. As we will discuss in Chapter 3, this method has recently gained traction

for surrogate modelling in the built environment literature.

DNNs have a selection of hyperparameters chosen by the modeller in order to build

well-performing models. Where hyperparameters are selected through this research, we

will identify the choice and, where necessary, provide justification for that particular

parameter. This can be done by the selection of sensible defaults that work well for

similar problems or through a hyperparameter tuning process that includes training

multiple models and comparing the results.
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One important hyperparameter when training a DNN is the structure of the network

itself. While the input and output layers are likely determined by the shape of the data

being handled, the number and size of the hidden layers must be selected. The optimal

configuration is highly dependent on the problem domain, with problems like image

recognition benefiting from a large number of layers on neurons, often with complex

structures like convolutional layers. Lower dimension classification problems, on the

other hand, generally require fewer total neurons. While some intuition can be used to

determine the optimal network structure, based on an understanding of the underlying

features or dimensions of the problem, it is often necessary to discover a well-functioning

structure through a tuning process. When it is necessary to do so in this thesis, a starting

point will be taken from similar problems in the literature, and then a range of structures

will be tested and their performance compared.

Figure 2.1: Comparison of Rectified Linear Unit (ReLU), hyperbolic tangent (tanh),
and Sigmoid activation functions.

The activation function defines the non-linear firing of a given neuron based on the

inputs. There are various properties of activation functions that have effects on the

network. Non-linearity is important as networks with linear activation functions are

equivalent to single-layer networks, mitigating many of the benefits of this choice. Pop-

ular activation functions include the Rectified Linear Unit (ReLU), the Sigmoid function,

and the hyperbolic tangent (tanh) function. These functions, as shown in Figure 2.1, are

both non-linear and differentiable, making them suitable for DNNs trained with back-
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propogation. The effectiveness of a given activation function will depend on the problem

and may need to be tested. While the Sigmoid and tanh functions were traditionally

more popular, ReLU has been found to perform well in tasks with a large number of

neurons such as signal processing [26]. As neurons with ReLU activation can be fully

deactivated for all x < 0, they are less computationally expensive to train, allowing for

larger networks with more sophisticated pathways.

2.2.4 Clustering Techniques

Clustering techniques are unsupervised methods of grouping data points based on some

metric of similarity. This can be done with the intention of learning something of value

through cluster analysis or used to give structure to data for the purpose of further

processing. Clustering has many parallels to classification (discussed in Section 2.2.1),

with the primary difference that while classes are initially provided as labels in training

data, clusters are not defined or provided but rather generated as part of the process.

The unsupervised nature of clustering, where there are no training labels to evaluate

model performance, means that different metrics must be developed both to guide clus-

ter formation and to analyse the quality of a terminated clustering process. Well-formed

clusters yield two key properties. First, points within a cluster are similar (compact

clusters). Secondly, points from different clusters are dissimilar (distinct clusters). Mea-

sures of these two fundamental properties can help evaluate the cluster quality and help

validate the number of clusters. If, for example, the clusters discovered are compact but

not highly distinct, this may be an indication that there are too many clusters.

There are several methods of creating and assigning clusters. The k-means clustering

algorithm, initially laid out by J. MacQueen [27], takes the expected number of clusters

(k) as an input parameter. Centroids are selected by an initialisation procedure, either

by randomly assigning all points to a cluster or by selecting existing points at random

to act as initial centroids. All points are then assigned to the closest centroid. The

algorithm then iterates between recalculating centroids and reassigning points to the

closest centroid, until the assignments no longer vary between iterations.

Fuzzy clustering methods differ from standard methods in one key way. Instead of

attempting to assign a cluster to each point, these algorithms apply a degree of member-

ship to each data point. The most common method for fuzzy clustering is the c-means

algorithm as an adaptation of k-means clustering, which relaxes the constraint that

cluster membership be binary and mutually exclusive [28, 29]. Interpretation of these
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fuzzy values is a common point of discussion. Fuzzy memberships of a given data point

are not required to sum to one, making a probabilistic interpretation flawed. Instead,

fuzzy membership can be considered the degree of membership a given point has to a

given cluster, with 1 representing perfect point membership and 0 representing complete

dissimilarity from a given cluster.

2.3 Optimisation

Optimisation is the search for the minimum (or maximum) value of a given function, as

well as the inputs required to achieve that value. A generic form of this can be found for-

malised in Equation 2.3 which aims to minimise f with respect to x and y while satisfying

a constraint, which in this case is a function of both input variables. Given the nature

of this work, we will refer to the input variables of optimisation as decision variables,

so as to differentiate them from the other input variables of an optimisation process,

which are not always decision variables1. When performing optimisation problems in

this thesis, they will be formalised like this to the extent possible; although complex

optimisations may have black-box functions which cannot be laid out fully, or long, and

sometimes unclear, sets of constraint functions that require shortening or simplifying.

In the example, we have decision variables x and y. The combinations of x and y can

be referred to as the search space, solution space, or input space. When dealing with a

constrained problem, we may also discuss the feasible solution/input space, which is the

combinations of x and y which satisfy the constraint g(x, y) ≥ ϵ. When dealing with real

values, the search space may be of infinite size. For combinatorial problems, the search

space size is likely to be calculable and, when performing optimisations in this research,

this will be done where relevant.

In this example, f(x, y) is a generic function of two arbitrary decision variables, usually

referred to as the objective (or cost) function. In reality, the system attempting to be

optimised may be very complex, with a large number of decision variables, multiple ob-

jectives, and possibly uncertainty in outcome. In this thesis, the objective function value

of a candidate solution is likely to be measured through a simulation run. Optimising

based on simulations requires consideration of a few additional factors. If the simulation

is stochastic, then a single evaluation is insufficient to determine the validity of a given

solution. This can be resolved through repetition and statistical tests to state confidently

1Consider a building energy simulation, for example. The insulation thickness of a building may be
a decision variable but the simulation has many other input variables over which we are not optimising.
These non-optimised variables shall be referred to as input variables, but not decision variables.
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that one solution outperforms another. Simulations are also likely to be time-consuming,

often making the application of any exhaustive optimisation approaches infeasible for

large search spaces. The simulations dealt with in this work are of this type, taking

a long time, even in a single run, for the evaluation of a candidate solution, and they

cannot be modelled or approximated analytically either. As a result, optimisation tech-

niques falling into the (meta)heuristic category are preferred, to obtain a near-optimal

solution within a reasonable amount of time as discussed in Section 2.3.1.

min f(x, y)

s.t. g(x, y) ≥ ϵ

x ∈ R
y ∈ R

(2.3)

Equation 2.3: Generic optimisation problem with two input variables and a single con-
straint.

2.3.1 Heuristic Optimisation Techniques

While some analytical functions can be solved to obtain a proven optimal value or

searched exhaustively to determine a global optimum, there are many instances of com-

plex systems in which this is not possible. These problems can be of enormous complexity

when the search space (number and variability of inputs/decision variables) is very large

and the objective function relating inputs to outputs is complex, disorderly, or com-

putationally expensive. When an exhaustive search is deemed infeasible, optimisation

heuristics can be used. Heuristics are a rule of thumb method that aims at finding a

local optimal or near-optimal solution. Heuristics are problem dependent and must be

tailored to the problem domain at hand.

Metaheuristics are also used in optimisation, which are general-purpose high-level opti-

misation/search algorithms that also require tailoring to the given domain [30]. Sörensen

and Glover [30] classify metaheuristics into three groups: population-based, local search,

and constructive approaches. Examples of local search metaheuristics, which construct

solutions and then perform alterations upon them, include tabu search and simulated

annealing. Constructive approaches, such as large neighbourhood search, create solu-

tions from partial solutions, rather than altering complete solutions as would be done

in local variations. A Genetic Algorithm is a very well-known example of a population-

based metaheuristic, keeping a number of potential solutions under consideration at any

one time. While the high-level guidelines that a metaheuristic optimisation employs
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are not domain specific, most have their own set of parameters that require tuning for

best performance in a given search space. These metaheuristic parameters are referred

to as hyperparameters to differentiate them from the parameters of the domain setting

explored.

In broad terms, metaheuristics attempt to balance the exploitation of promising solu-

tions with the exploration of a broader search space. Highly exploitative techniques are

often faster to find local optima, but may miss better performing local optima due to

a narrower search space [31]. In contrast, more exploitative techniques inspect a wider

range of the search space but may take longer to converge to a near-optimal solution,

if they are able to do so at all. These conflicting principles are sometimes referred to

as diversification vs intensification, exploration vs exploitation, or breadth vs depth.

The process of designing an effective metaheuristic includes designing algorithmic com-

ponents with appropriate parameter settings, balancing these conflicting principles of

exploration and exploitation during the search process.

Due to the heuristic nature of these algorithms, it is not guaranteed that globally optimal

solutions will be found in all cases. The same algorithm may find different solutions

each time it runs, due to stochastic elements. As such, we refer to solutions found from

heuristic optimisation as ’near-optimal’ as they provide no guarantee of global optimality.

This also requires care when comparing an algorithms’ performance, or even different

parameter settings on the same technique. This can be overcome with repetition of the

algorithm and comparison of the distribution of solutions generated.

2.3.1.a Hill Climbing with Local Search

Hill climbing is a greedy algorithm that performs a local search around a point in the

solution space, adopting those which result in the best performance before continuing

the local search. This method depends upon a domain-relevant heuristic of locality to

allow for the exploration of neighbourhood solutions. Hill climbing can quickly resolve

to a local optimum in a given region of the search space but can suffer from being too

greedy by failing to take minor downhill steps that may result in converging on a better

local optimum, located in a different region. There exist some variations that attempt

to resolve this issue, such as repeat hill climbing which attempts to initialise from a

broader range of locations across the search space to improve the chances of locating

a near-optimal solution; or stochastic hill climbing, which adds random moves to the

uphill steps, allowing for some exploration of the search space.
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2.3.1.b Simulated Annealing

Simulated Annealing is a metaheuristic designed to imitate a process from metallurgy

that involves the controlled raising and lowering of temperature [32]. It is similar to

hill climbing but using a simulated system temperature to control which random local

searches take place, with solutions being accepted provided they perform better than

the current system temperature. During hot periods, this allows for exploration of a

broader set of solutions but as the system cools, according to a cooling schedule, the

search becomes greedier in an attempt to exploit the breadth achieved during the hot

period. The cooling schedule usually contains a set of model hyperparameters which

state of the art techniques automate in an attempt to increase the speed of convergence

and quality of solutions [33].

2.3.1.c Genetic Algorithms

Genetic Algorithms (GAs) are a metaheuristic inspired by natural selection and genetics

[34]. The process involves codifying the search space of solutions into a genome/chromosome,

traditionally a string of binary digits - although this can be done with a variety of tech-

niques. A random population of candidate solutions, consisting of chromosomes, are

initialised and their performance in the search space tested based on the given objective

function, referred to as fitness function. In each generation, the best performing individ-

uals with the best fitness values are favored for reproduction and mutation. Depending

on the implementation, mutation may include splicing successful genes together, ap-

plying minor mutations that make small perturbations, or major mutations that make

large perturbations in the chromosomes. This way new individuals are produced, then

a replacement scheme is applied to decide which individuals survive to the next gener-

ation. Poorly performing genes are expected to disappear from the specimen pool each

evolutionary cycle through the replacement. This evolutionary cycle continues until the

termination criteria are satisfied. A generic overview of a GA can be found in Section

2.2. Genetic algorithms show improvement over generations but, by applying mutations

and keeping a variety of solutions in the pool, they attempt to avoid the premature

convergence that occurs with greedy methods.

The core stages and components of a GA are as follows:

1. Create an Initial Population: An initial set of candidate solutions are created using

a method, often randomly selected.
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Figure 2.2: Process flow diagram of a generic GA.

2. Fitness Evaluation: This involves the scoring of candidate solutions in the popu-

lation, based on the objective/fitness function.

3. Mate Selection: This is a method of selecting which candidate solutions will act as

mates in producing the next generation of candidate solutions. Mate selection usu-

ally takes the fitness of the candidate solutions in a given generation into account,

in an attempt to create pressure towards optima. It may still have a mechanism

for maintaining solution diversity.

4. Reproduction with Crossover: This involves a strategy of generating new solutions

based on the performance of existing solutions. Crossover involves a method of

combining multiple (usually 2) solutions/individuals to form a new solution.

5. Mutation: This stage involves making minor local changes to the genes of a newly

created solution(s)/individual(s). This adds a degree of local search around solu-

tions.

6. Replacement: This involves selecting which members of the prior/new generation

will continue onto the next. Replacement strategies can balance exploitation (se-

lecting high scoring solutions) and exploration (leaving some poorer performing

solutions).

Where a GA is used in this thesis, the strategies used will be discussed and justified

when relevant. These optimisation parameters are referred to as hyperparameters or

settings. Specific strategies may come with their own sets of hyperparameters, such as

the tournament size when using a tournament mate selection strategy. Given the large

number of hyperparameters and the stochastic nature of heuristic techniques (which

require repetition and analysis of alternate combination settings), hyperparameter tuning

can itself become computationally expensive.
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2.3.2 Optimisation with Multiple Objectives

While optimising a single objective with respect to a set of decision variables is sometimes

desirable, many real world problems require several different and competing objectives

to be handled simultaneously, formalised generically in Equation 2.4 which shows a

problem with two objective functions. Consider for example a building energy retrofit

optimisation in which a homeowner wants to minimise the cost of a retrofit but also

minimise the carbon emissions of the property. These objectives are in opposition, as

the homeowner could minimise cost by not installing a retrofit at all but in doing so

they would not reduce emissions either. Similarly, minimising total emissions is likely

to be one of the costliest interventions. It quickly becomes clear that multi-objective

optimisation problems do not usually have a single solution, but rather, a set of trade-off

solutions from which the decision-maker must make a selection based on their preferences

between alternate objectives.

min{f1(x, y), f2(x, y)}
s.t. g(x, y) ≥ ϵ

x ∈ R
y ∈ R

(2.4)

Equation 2.4: Generic multi-objective optimisation problem with two objectives, two
decision variables and a single constraint.

Methods attempting to resolve multi-objective problems fall into two broad categories,

a priori and a posteriori methods. A priori methods require knowledge of the decision

maker’s preferences at the time of optimisation. This allows the selection of a solution

that best fits the preference provided. A priori methods often involve scalarising: using

the preference information to form a single-objective function which can be optimised

using traditional methods. Scalarising can be done through utility functions that map

objective values directly to a preference measure, or through a simpler linear combination

of the objective values (with or without weighting).

In contrast, a posteriori methods are those in which the preference of the decision maker

is unknown at the time of optimisation. A posteriori refers to the ability to apply

preference data after the optimisation is complete, allowing the stakeholder to make a

decision from a range of alternate optimal solutions. As such a posteriori methods do

not produce a single solution but rather a range of alternative solutions for stakeholders

to choose from and so, in a sense, these methods do not solve optimisation problems but

rather condense the decision space into more refined solutions. The standard metric for
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Figure 2.3: Pareto front shown for a generic optimisation with two minimising objectives.

which decisions are outputted from a posteriori methods is based on solution domination

and Pareto efficiency.

Solution X is said to dominate solution Y if all objective values obtained from X are

preferable to all objective values obtained from Y. A solution is Pareto optimal (or Pareto

efficient) if no other solution dominates it, meaning that for all other solutions there exists

at least one objective value in which the Pareto solution performs better. These solution

types are shown graphically in Figure 2.3, which shows a generic optimisation with two

minimising objectives. Any solutions found below the Pareto Front are infeasible, as

feasible candidate solutions below a candidate front will themselves be Pareto efficient

and thus form part of the front.

The reason that Pareto efficiency is vital to a posteriori methods is that, if a presented

solution is Pareto optimal, then there exists a possible set of preferences that make that

solution preferred. In contrast, if a solution is not Pareto optimal, then there exists at

least one solution that would be preferable to a stakeholder regardless of their preferences.

By attempting to seek Pareto optimal solutions, a posteriori methods attempt to list all

of the solutions that may be preferred by a stakeholder while omitting all which would

never be preferred. A set of Pareto efficient points is referred to as a Pareto Front, since,
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when objective values are plotted visually, Pareto solutions form a front between the

dominated solution space and impossible-to-reach objective combinations.

There exist a range of methods for obtaining the Pareto Fronts for a priori methods.

They can be broken down into two main categories. The first category of methods re-

peatedly scalarises the problem to generate an optimal solution for different possible

preference sets, combining the found solutions into a front. These methods systemat-

ically divide the preference space and perform local Pareto optimisations at different

points. Popular scalarisation methods include constraint-based methods, which system-

atically apply constrained optimisations to obtain constrained optimisation points, then

recombine them (filtering out any dominated solutions) to form a front [35, 36]. The

second category of optimisation methods attempts to generate and maintain an entire

front of potential solutions at once, such as genetic algorithms. Algorithms that adapt

GAs, such as the popular NSGA-II, attempt to maintain and improve on a whole front

of solutions by ensuring non-dominated solutions are retained and guided towards op-

tima, while dominated solutions are given lower priority [37]. This exploits the same

optimisation advantages as a traditional GA and can generally obtain a front faster

than repeat scalarization methods [38]. The downside of these solution-pool approaches

is that, compared with repeat scalarization methods, they provide fewer guarantees of

front diversity (as this is stochastic and controlled by the dynamic GA process).

2.3.3 Relationship between Machine Learning and Optimisation

Given that both machine learning methods and optimisation are prominent tools used in

this thesis, it is worth considering how they relate to each other conceptually. Generally

speaking, the training process of a supervised machine learning method is an attempt

to optimise the parameters of a given model in order to minimise the loss. In this

sense, the training process is an optimisation procedure where the decision variables are

the model parameters and the loss is the optimal value. Training attempts to fit the

parameters to best predict the desired outcome of the model. This does not, however,

mean that the trained model is performing optimisation when predicting for unseen data

(although it may be). Instead, predicting the target attribute, given the input attributes

provided, which may differ greatly from the optimal prediction of a given stakeholder.

This, therefore, depends both on what the model is trained to do (the loss function)

and the objectives of the model user. A regression model trained to predict the heating

demand for a building is optimally trained to make that prediction, but the stakeholder

using the model is likely to desire a reduced energy expenditure. As such, the prediction

is not an optimisation.
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2.3.4 Building Energy Simulation

A more methodology-oriented discussion of building energy simulation is provided in

Section 4.6.1, which focuses on the necessary practical components of the energy sim-

ulation software used in this thesis. Here we will discuss the fundamental concepts at

play when simulating a building to ascertain the heating energy demand.

The primary energy use factors in buildings are heating, cooling, ventilation, lighting

and plugs, and process loads [39]. It should be noted that not all of these concepts will

be considered within the scope of this thesis, with factors like cooling omitted in all but

discussion due to the current physical and socio-economic climate of the chosen case

study. The primary focus of this research is on heating demand - the energy required

to meet the heating schedule of a given building state. The primary building energy

simulation tool used in this work is EnergyPlus. This software package has been funded

by the U.S Department of Energy and managed by the U.S National Renewable Energy

Laboratory [40]. It is one of the most feature-rich packages for simulation of individual

buildings [39]. EnergyPlus is generally used for single-building energy simulations. Other

tools, such as CitySim, are designed to simulate a larger area of buildings at once [41].

This is useful for instances where building interactions are significant, such as the shading

of high profile buildings affecting lower profile buildings around it. Given the low-rise

nature of the data set selected for this work, and the extra computational complexity of

this scene-based simulation, the atomic simulation approach of EnergyPlus was used.

EnergyPlus simulations are defined in terms of an Input Data File (IDF), as well as

an input data dictionary, and a weather file for the location of the building. The IDF

contains the necessary components that define a building. The core components include

thermal zones, areas for which the simulation monitors and calculates the thermal prop-

erties of surfaces that have thermal properties such as thermal resistance, reflectance,

and capacitance. Surfaces are typically walls, doors and roofs, with windows making

up a special case of glazed surfaces. In order to perform simulations, IDFs are con-

structed and altered based on building properties, a process we explain in more detail

in Section 4.6.1.

The occupancy of a building, meaning the humans that exist inside the physical environ-

ment, can influence the energy demand in several ways. The most abstract method of

capturing occupancy behaviour is through heating setpoints and scheduling. This cap-

tures the interactions between occupants and the control systems within the building in

a predetermined manner. There are ways to capture more sophisticated occupancy be-

haviour using co-simulation. In EnergyPlus, this can be done using the functional mock-
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up unit, which provides a runtime interface for external applications to observe and alter

the built environment state, in line with simulation rules defined by the modeller [42].

This can be used for more dynamic behavioural elements, such as dynamic changes to

a heating setpoint in response to thermal comfort, complex window behaviours of more

precise control of electrical appliances. The approach outlined above, of setpoint and

schedule based occupancy modelling, is used in this research due to the amount of data

required to perform co-simulation accurately, as well as the performance constraints it

imposes since it captures general heating control behaviour.

2.4 Decision Modelling and Social Simulation

2.4.1 Economic Models of Behaviour

The traditional microeconomic approach to modelling decisions begins with rational

choice theory: modelling humans as rational agents who attempt to maximise their own

self-interested goals through their action selection. These goals can be abstracted to

the notion of utility, which is an attempt to capture the preferences of the rational eco-

nomic agent numerically. The concept of utility is somewhat nebulous, encompassing a

general sense of positive well-being from consumption that the agent prefers (increases

utility) or a sense of disutility from consumption or actions the agent does not prefer

(decreases utility). While utility cannot be directly measured, actions taken by individu-

als reveal preferences in given scenarios. These revealed preferences allow researchers to

approximate the utility of given actions when compared with others. Analysis can also

be performed by hypothesising utility functions based on real-world behaviour, survey

data, or theoretical models, which can then be used to make behavioural predictions.

The notion that a rational agent will always act to maximise utility faces several the-

oretical hurdles. One issue with utility maximisation as a decision model is the notion

of uncertainty. Consider a choice such as a selection between buying a lottery ticket or

placing the equivalent value into a savings account; the most rational of those decisions

is not immediately clear. If the lottery ticket was a winning ticket, then it would be

rational to purchase it; whereas, a losing ticket would be an irrational purchase. This is

overcome by the introduction of expected utility theory [43]. This expands on the stan-

dard rational-choice model by allowing for probabilistic outcomes, with utilities from

given scenarios being weighted by the probability of that scenario occurring.

Under the theory of expected utility, it is possible to measure the degree of risk aversion
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by observing the choices made when decision makers are offered differing possibilities.

Risk-averse individuals will select choices with higher probabilities of positive outcomes,

while those with risk-seeking preferences may avoid scenarios with expected high positive

outcomes due to their aversion to potential loss. The advantage of using risk aversion

metrics is that it can be measured experimentally in laboratory settings, a topic which

is well discussed by Harrison and Elisabet (2008) [44]. However, there is significant dif-

ficulty in determining risk attitudes accurately, as simple framing effects (such as the

difference between a gain or a loss of the same amount) influence risk attitudes mea-

surably [45]. A meta-analysis investigating the framing effects of 136 risk studies was

performed by Kühberger (1998) [46]. While they found that framing effects were mea-

surable, they were only small-to-moderate which suggests some transitivity of measured

risk attitudes between frames. Individual models for predicting risk attitude have been

used when modelling synthetic decision makers in agent-based models, despite the fact

that getting accurate coefficients of risk aversion can be difficult even using participants

in a lab [47, 48, 49]. However, measures of risk aversion purely derived from expected

utility theory have been criticised due to the inconsistencies that appear from experi-

mental data, with some suggesting alternative models that are less rigidly tied to utility

[50].

2.4.2 Public Goods Games

Public goods games are highly relevant to climate modelling. This field of experimental

and behavioural economics is concerned with what economists consider public goods,

which have two key characteristics:

1. Non-rivalrous. Once produced, the consumption of the good does not reduce the

availability of the good to others.

2. Non-excludable. Once produced, it is not possible or feasible to selectively deny

access to the good.

Examples of public goods include national defense and law enforcement, as these systems

being in place benefit the entire population. An unpolluted environment is also a public

good, as it benefits everyone without detriment to others’ ability to do so (non-rivalrous)

and which cannot be selectively denied to individuals (non-excludable). In traditional

economic theory, public goods result in market failure through the free rider problem.

This occurs because an individual reaps the benefit of the public good regardless of their

contribution towards it, which is unpreventable due to its non-excludability. Considering
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an environmental issue like reducing emissions, a household benefits from the effort that

all other households put into reducing their emissions, regardless of their own contribu-

tion to the initiative. This fact, coupled with the reality that the marginal benefit that

a single household can contribute to an emissions reduction initiative is small relative to

total emissions, can result in a free riding problem where households do not engage with

the issue of emission reduction as they believe their contribution makes no difference.

The results of the public goods games carried out by economists appear to confirm this

market failure. In the most basic version of the game, each participant (i) is endowed

with an initial sum of money (epsiloni). They are able to contribute a proportion (ci)

of this money towards a public good P using their endowment, which 4 other players

may also contribute to. This results on a public good spending of P =
∑5

i=1 ci. The

sum received by participants at the end of the experiments is (ei − ci) + MP . For all

0.2 < M < 1 the socially optimal solution is for full contribution to the public good,

while the profit maximising Nash equilibrium is no contribution to the public good.

A typical game to model a phenomenon such as environmental emissions would be a

repeated public goods game, whereby participants can observe the contributions made

by others between rounds before determining their future contributions. Experimental

results show that in single shot games there is a positive contribution to the public good,

but that in repeat games participants converge towards free riding [51].

The modelling of altruistic decisions, such as contribution to public goods, is something

that appears at odds with the traditional notion of a self-interested rational agent con-

sidered in classic economics. As such, altruism has been studied by both experimental

and behavioural economics in an attempt to model its behaviour pattern within a ra-

tional framework. To comply with general utility theory, an agent who is witnessed to

forego personal consumption to perform an act of altruism must achieve greater utility

from the act of altruism than they do from the foregone consumption. The ’warm glow’

theory, for example, suggests that positive utility is gained when doing something per-

ceived as virtuous and this has been linked to public goods contributions [52]. There is

also evidence of public good contribution on the grounds of conditional cooperation, in

which participants are likely to contribute to a public good if they observe or perceive

others as doing so [53].

2.4.3 Investment Decision Modelling

When considering a retrofit as a form of investment, there is a wide range of tools that

can be used to evaluate them. The investment decisions in the scope of this research,
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namely retrofits installed on buildings, are generally categorised by a large upfront cost

which is offset by future energy bill savings for the lifecycle of the retrofit. One simple but

highly effective investment decision metric to model this formulation is Net Present Value

(NPV). NPV, as shown in Equation 2.5, is the current value of a flow of future returns

(Rt at time t), from initial investment C0, and discounted in a compounding manner by

a rate i. As such, near payments are valued more highly than future payments. The

discount rate applied to calculate NPV can be conceptualised in several different ways.

In financial calculations, it usually represents the value of interest that near payments are

able to earn compared with temporally distant ones, capturing some of the opportunity

cost of any value tied up in future payments. It can also be considered as an offset

for expected future inflation, as the spending power of payments will be reduced when

inflation occurs.

NPV is established as a viable decision tool in the investment and adoption literature

[54, 55, 56]. One advantage of NPV is that its unit is present-value currency, making

it easy for decision makers to understand. This is a valuable property when construct-

ing preference calculations as it allows comparison to other preferences if they can be

expressed financially, as we do in Chapter 6 with consumer’s willingness to pay. In gen-

eral, a rational agent wishing to maximise financial gains will make any decision with

a positive NPV, provided the discounting rate is accurately calculated and the decision

does not impose opportunity costs. In reality, opportunity costs are often present, with

some financially beneficial decisions precluding other, more beneficial ones.

NPV = C0 −
n∑

t=0

Rt

(1 + i)t
(2.5)

Equation 2.5: Net Present Value for an investment of C0, returns of R at time t and a
discount rate of i.

One valid criticism of NPV as an investment decision metric is the inability to accurately

capture opportunity costs. NPV calculations do not account well for factors like future

changes in technology, thus failing to account for some possible opportunity costs that

can be captured by inaction [57]. Consider a simple scenario in which a positive NPV

retrofit solution is installed, only for a new technology to be released during the lifespan

of the installation. Even though the initial installation was of positive NPV, a rational

agent without perfect foresight would perform worse than an irrational one who only

acted after the technology came to market.

While NPV is a good decision metric, there are some other good metrics to consider when

evaluating an investment decision. Return On Investment (ROI), shown in Equation
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2.6, represents the return of a given investment as a proportion of the costs incurred.

The return, Rl should be expressed in present value, with appropriate discounting, and

accounting for ongoing costs. This form of representation may be preferable when initial

funds are constrained, as a decision maker may opt for a lower-cost investment with a

higher rate of return, even if the NPV is lower. The conceptual importance of this metric

depends on how well opportunity costs are captured in the NPV, as a rational agent

should still prioritise the highest NPV alternative, even with lower returns, provided

the NPV captures the liquidity costs and discounting of the investment appropriately.

Consider, for example, a small investment with a lifecycle cost of £1000 and lifecycle

returns of £1100, compared with a larger and mutually exclusive investment of £10,000
returning £10,500. The ROI of the small investment obtains an ROI of 10% and an

NPV of £100, compared with 5% and £500 of the larger investment. Provided the

NPV calculation includes the cost of borrowing (discounted correctly) and the larger

investment bears no additional risk, then the larger investment is preferable despite its

lower ROI.

ROI =
Rl − Cl

Cl
(2.6)

Equation 2.6: Return on investment with a lifecycle cost of Cl and lifecycle return of Rl.



Chapter 3

Related Works

This chapter will discuss the literature most closely relating to this research, identifying

and critiquing the existing tools for analysis of energy retrofits in urban building stocks.

Section 3.1 discusses the methods for evaluating the performance and optimising of

domestic dwellings in isolation. This is then extended to the methods for evaluating and

optimising the retrofits of entire building stocks in Section 3.2. Section 3.2.2 includes

some discussion of the decision models required to predict the actions of those making

retrofit choices. This is explored in more detail in Section 3.3 which examines the use of

Willingness to Pay (WTP) for contributions in environmental decision models. Finally, a

discussion of the research gap identified across the literature can be found in Section 3.4.

3.1 Energy Performance Modelling and Optimisation

There exist a variety of tools used by researchers and practitioners in evaluating the

energy performance of domestic dwellings. Some of these tools have been integrated

into optimisation procedures which allow for the evaluation and efficient improvement

of performance. This section will provide an overview of these methods. The scope

of the methods in this section will generally be limited to individual dwellings, with a

discussion of methods for evaluating and optimising entire building stocks performed in

Section 3.2.

35
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3.1.1 Building Performance Evaluation

Building Performance Evaluation and Certification (BPEC) tools are a category of pro-

cedures for determining and classifying the performance of dwellings’ energy demand

and carbon emissions. The most common BPEC tool used and required by government

departments for energy and environmental assessment of dwellings in the UK is the Stan-

dard Energy Procedure (SAP) [58]. This methodology is used in official procedures such

as the generation of energy performance certificates, calculating emissions for stamp

duty exemptions, and to ensure building regulation compliance. While we will focus

mostly on the UK’s SAP methodology, as it relates most closely to the building stocks

considered, different countries operate using different BPEC procedures. The United

States uses a home energy score system, which integrates more simulation tools (such

as EnergyPlus) rather than relying on analytical modelling techniques [59].

The SAP model is analytical in nature and was designed by BREgroup, a certification

and standards body [60]. The documentation of the most recent model, updated in 2012

can be found on their website [61]. The methodology is designed as a standard for easy

comparison between heterogeneous dwellings and, as such, standardised assumptions of

occupancy are made. This is desirable for processes such as building regulations, which

may be required before any occupancy information is available.

One flaw identified in the traditional SAP methodology was the data requirements.

While uses, such as regulatory compliance at the planning stage, are likely to have access

to complete building data, stock assessments may be working with significantly more

limited inputs. In response to this problem, the Reduced Standard Energy Procedure

(RdSAP) was developed, reducing the data requirements and thus the level of detail of

the assessments, making this methodology more suitable for modelling existing buildings.

In many ways, analytical BPEC tools such as SAP are well suited to building stock

modelling of the sort performed in this research. These mathematical models are gener-

ally computationally cheap to perform, compared with full simulation procedures. The

models, particularly those such as RdSAP which are designed for existing buildings, re-

quire relatively little data so as to allow assessment of existing buildings without access

to architectural designs or details that are unavailable to a casual assessor.

However, while the SAP and other standardised analytical models are generally com-

putationally cheap compared with full simulation models, their fixed form comes at the

cost of reduced flexibility. The types of model inputs for the analytical models are fixed

during construction with assumptions, such as occupancy details, set as defaults. This
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is a desirable property for standardised models, as it minimises the information required

about these inputs and allows for a fair comparison between the intrinsic properties

of dwellings. Still, this makes the models inflexible and introduces known error from

under-specification. It can also mean some important components are missing from the

analysis. This is addressed by Kelly et al. (2012) [62], who critiqued the prior version

of the SAP in their recommendations for the expansion of the previous SAP method-

ology. This was due to missing components such as fuel sources with varying levels of

decarbonisation. It could be difficult, for example, to model a decarbonising grid sce-

nario using the SAP methodology. In contrast, simulation-based assessment relies on

fewer assumptions, allowing the modeller to specify input variables of interest while still

permitting the use of defaults.

The relative inflexibility of constructed analytical BPEC procedures can be detrimental

to some applications, such as building stock modelling, when the initial model was

designed for a different purpose. While models like the RdSAP were specifically designed

to require less data than the SAP in order to model existing stock, the model design

is based on the assumption that the assessor would be able to access and assess the

property from the inside, measuring the areas of various architectural properties on site.

This assumed data collection method is suitable for several intended purposes, such as

evaluating the performance of a rental property but may not be well suited to simulation

and optimisation of an entire building stock in which researchers are unable to enter

individual dwellings for data collection. In this instance, simulation-driven surrogate

models give the researcher more flexibility, as unavailable input variables can be avoided

during model construction. This may result in an under-specified model, compared with

the constructed analytical alternative, but allows simulation in lieu of certain inputs.

While the analytical BPEC methodologies such as the SAP and the RdSAP may lack the

flexibility desired for building stock analysis and optimisation, the models themselves

may be useful in this research. The SAP can be considered a grey-box modelling method,

as they are less transparent than full energy simulation techniques but the effect of input

changes is clear from the mathematical form of the model. As such, the relative impor-

tance of given inputs can be compared with data-driven Surrogate Energy Performance

Models (SEPMs) as a form of model verification. If, for example, the most significant

input variables from the SAP methodology are shown as insignificant in a trained SEPM,

it may indicate issues with the data-driven model. These models may also be useful for

guiding and justifying design decisions when creating data-driven SEPMs. The SAP

methodology, for example, uses separate thermal zones for living and non-living areas,

which is determined to be a good representative approximation for domestic dwellings

[60]. It may therefore be desirable to replicate this property as a standard assumption
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when designing a simulation framework for a SEPM.

It is worth considering, conceptually, the difference between constructed analytical mod-

els such as the SAP and the data-driven SEPMs of the type discussed in Section 3.1.2.

While the SAP is designed for a particular purpose by experts, the model design is still

driven and calibrated by using both real-world and simulated data. To use the modelling

terminology established in Section 2.1: the SAP is a general model that, when filled with

building-specific input data, can be used to simulate the target system (the individual

dwelling in question). In this sense, it fulfills the same purpose of capturing the energy

demand of a given domestic dwelling, as the SEPMs discussed in Section 3.1.2 and used

throughout this research.

3.1.2 Surrogate Energy Performance Models

Surrogate modelling, also known as meta-modelling or response surface modelling, is the

use of a faster but less accurate model to replace a slow process [63, 64]. This process

can be understood as a model for which the target system is another model, one which

is infeasible to construct or run. Surrogate modelling is generally done for the speed and

resource benefits of the surrogate model over the original simulation model but there may

also be advantages in the reduction of data requirements compared with a more rigid

target model. While the target system of the surrogate model will be another model, the

ultimate target system is therefore the same as the original model. A surrogate model

targeting a building energy simulation model is, therefore, ultimately targeting the real-

world building that the researcher desires to simulate. This method does introduce

an extra source of error between the surrogate model and the ultimate target system.

However, one advantage of surrogate modelling is the ability to run the target model to

understand the exact magnitude and distribution of the introduced error, a process of

validation that may not be possible against the ultimate target system.

Building energy simulation, the attempt to capture the underlying energy processes

affecting a building in a high level of detail, as described in Section 2.3.4, can be com-

putationally infeasible in scenarios such as optimisation loops where many repetitions

are required. This is exacerbated in bottom-up building stock analysis, as these opti-

misations are required for a large number of buildings in a stock. The use of Surrogate

Energy Performance Models (SEPMs) to reduce the computational cost of simulation

stages is a common method in sustainable building design [65]. SEPMs are surrogate

models which attempt to capture the behaviour of models from which they are trained.

Due to the availability of the original model, and therefore the ability to generate the
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required training data, supervised learning techniques are well suited to these tasks. A

background discussion of this family of techniques can be found in Section 2.2.

The importance of using a surrogate model for this process lies in speed. The opti-

misation process is slow, for example, Aijazi (2017) [66] notes that the 7000 iterations

required to optimise each building in their model would have required approximately five

days of computing time (with approximately 1 minute per simulation). Using a trained

surrogate model framework the iterations were orders of magnitude quicker (just 0.0006

seconds per cycle), allowing for an optimisation time of just 4 minutes. In later work,

the author’s framework was expanded, allowing for calibration of urban building energy

models 500 times faster than using non-surrogate methods with more reliable degrees of

accuracy [67].

Surrogate modelling can be performed with a variety of different ML techniques. Tserani-

dis, Brown, and Mueller (2018) [68] compared six surrogate modelling techniques. The

artificial neural network based surrogate model was found to minimise error across both

case studies and performance metrics. They also found Kriging regression performed

well, with random forest and radial basis function models under-performing by the error

metrics used. The largest scale SEPM we have seen to date was presented by Edwards

et al. (2017) [69] who trained a Deep Neural Network (DNN) surrogate using a big data

approach, achieving high levels of accuracy at hourly precision with errors of less than

5%. This level of precision is often unnecessary, with total energy demand calculations

being sufficient to analyse the impact of most retrofit installations, which they were able

to calculate with errors of just 0.07%, at a greatly reduced computational time compared

with traditional energy simulation.

One of the key details in SEMP design is the selection and relative weighting of parame-

ters and model construction. Tian et al. (2015) [70] highlight this when they performed

an exploratory study of university campus buildings to ascertain which key factors are

correlated to energy usage. They implemented both linear and non-parametric regres-

sion models, finding that in this case the linear model had the best predictive accuracy.

The variables they investigated included attributes such as the area and height of the

building, the amount of glazing on each side of the building, and the duration and den-

sity of building occupation. They found the most significant predictive factors in their

analysis were wall insulation, occupant density, and roof insulation.

When trying to improve the speed-to-accuracy trade-off inherent in SEPMs, Wester-

mann and Evins (2021) [71] used a hybrid approach by training a SEPM with variance

inference. As predictions come paired with a predicted uncertainty of the prediction

itself, they were able to perform slower, high-fidelity simulations only in instances where
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the model predictions were expected to render the most error. In doing so, they reduced

the error by up to 30% on the highest error samples. This is an example of integration

between statistical and engineering models for energy performance evaluation.

There is relatively little literature attempting to integrate intelligent human behaviour

into SEPMs, although there have been some attempts that focus on setpoint based

evaluation. Wate et al. (2020) [72] demonstrate a novel surrogate model framework that

emulates a stochastic building performance simulator, trained using EnergyPlus and co-

simulated with the Multi-Agent Stochastic Simulation platform NoMASS, to simulate

occupants’ behaviours. The authors build a pair of surrogate models for the mean and

variance of annual energy use and utilise these to decompose the impact of different

sources of uncertainty. They found that in a simple mono-zone office building, the

uncertainty in insulation thickness on heating demand dominated stochastic elements of

human behaviour, but that the opposite was true in predicting cooling demand, where

occupants’ stochasticity dominated.

3.1.3 Optimisation using Surrogate Models

A common use of SEPMs is integration with an optimisation method. Due to the

potentially large number of function calls required for optimisation, the use of a surrogate

greatly reduces the computational cost. This is the most common method of optimisation

using SEPMs, as well as the most common use of SEPMs found in the literature.

This method of surrogate modelling based optimisation is agnostic to the specific sur-

rogate modelling technique, optimisation algorithm, and objective values. For example,

Magnier and Haghighat (2010) [73] used an ANN-based surrogate model paired with a

multi-objective GA for optimisation. The flexibility of DNNs combined has made them

a popular surrogate modelling and optimisation technique for objective value estima-

tion, with another good example by Ascione et al. (2017) [74] who evaluate cost, energy

savings and thermal discomfort of solutions using trained DNNs. They designed the

system to be generic and applicable to any building type, although it was not targeted

towards whole stock modelling.

Prada et al. (2018) [75] provide an analysis of the performance of different surrogate

modelling techniques in the context of optimisation. They used a GA with alternate

surrogate models, comparing results to a brute force optimisation to determine the

efficacy of alternative methods. They confirmed the practice as an acceptable way of

optimising, with the majority of Pareto solutions identified by simulating only 3%-8%
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of the solution space for training.

Waibel et al. (2019) [76] performed an extensive investigation of the optimisation tech-

niques applied to building energy optimisation. They did not find any algorithms that

outperformed the others on all fronts, with standard meta-heuristics such as genetic

algorithms performing well. They also investigated some model-based methods of the

type discussed in Section 3.1.5. While there are minor performance differences for the

different optimisation methods, varying depending on the computational budget and spe-

cific problem specification, all of the black-box optimisation methods tested performed

competitively, although parameter tuning was found to be of significant importance.

Background information surrounding some of the optimisation methods considered can

be found in Section 2.3.

Sharif and Hammad (2019) [77] use an adapted version of the optimisation with sur-

rogate modelling method by generating a sample of Pareto fronts using traditional

simulation-based multi-objective optimisation techniques. They use a three objective

function method by training two ANNs: one which pairs the energy consumption against

lifecycle cost, and another against lifecycle assessment. This demonstrates a capacity for

extending the technique into further dimensions, although the scalability of this method

as the number of objectives is increased is not clear. Their approach is novel, using only

non-dominated solutions to train the data set, reducing the generality of the model in

order to increase efficiency. This trade-off is also true in feature selection, as the model

is designed to be used on a single building per model rather than a stock-based ap-

proach. While more expensive computationally than training an energy-focused SEPM,

this method allows for more nuanced objective values such as building specific lifecycle

analysis which may not be as simple to model as energy performance.

The popularity of ML and surrogate models in energy performance modelling has en-

couraged recent attempts to provide open source tooling. Westermann et al. (2021) [78]

provide and document a toolset developed in Python that contains a pipeline for the

development of SEPMs. The platform BESOS (Building and Energy Simulation, Op-

timization and Surrogate Modelling) utilises EnergyPlus for building simulations, ML

libraries for surrogate model formulation, and meta-heuristic approaches (such as genetic

algorithms) for optimisation. While these elements have been used in other work, the

combination of these tools into an open source platform, as well as the data structures

and design principles implemented for users, mitigates some of the domain knowledge

required to perform this research.

A general review of the use of surrogate modelling in sustainable building design can

be found in Westermann and Evins (2021) [79]. They assessed 57 surrogate modelling
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papers, finding that the most popular simulation tool was EnergyPlus, which is used to

perform the initial energy simulations for SEPM training. While they identified eighteen

uses of surrogate models for optimisation, they found most focused on optimisation

of single buildings. This often involved training surrogate models with local scope;

they cannot be generalised to other buildings or building types. While linear regression

models were most popular across all the studies reviewed, ANNs were used more often

for the purpose of optimisation. They only highlight one study which focuses on a

generalised built-building surrogate model which could be suitable for optimisation of

multiple buildings [80].

The most generalised and relevant use of surrogate models for retrofit analysis is pre-

sented by Ascione et al. (2017) [80]. The model was generalised using geometric sum-

mary features, such as the floor area, number of floors, and glazing ratios. An ANN-based

model was chosen due to the increased generalisability granted compared with, for ex-

ample, linear regression models. Nonetheless, the researchers found that the highest

level of accuracy was kept by training separate models for the existing stock, compared

with the retrofit stock. Retrofit analysis options used in the study were kept relatively

simple, with specific retrofit decision rules applied to the entire stock, compared with

an optimisation procedure. This paper uses a surrogate model for bottom-up Housing

Stock Energy Model (HSEM) of the type discussed in Section 3.2.

3.1.4 Surrogate Optimisation

There have been some recent attempts at developing pre-trained predictors of near-

optimal retrofit solutions, referred to in this thesis as surrogate optimisation. The target

system for these models is not just the energy performance of the building, as is the case

in SEPM, but also the optimisation and decision process that is used in the selection

of the final energy retrofit. This is done to further reduce the computational cost of

obtaining a retrofit solution for a given stakeholder’s preferences. While standard op-

timisation procedures used in conjunction with SEPMs are suitable for the evaluation

of individual buildings, optimising an entire stock of buildings controlled by heteroge-

neous stakeholders, as discussed in Section 3.2, may be too computationally expensive.

Surrogate Optimisation could be a suitable technique for this task, although very little

literature could be found with this application.

A single objective whole-city surrogate optimisation was attempted by Hey et al. (2020)

[81]1, who trained a SO on a sample of buildings in Nottingham city in order to predict

1This work was published as part of the research presented in this thesis.
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Net Present Value (NPV)-optimised solutions for the remaining stock. A financially vi-

able solution was identified for 16.7% of the whole building stock compared with 19.2%

of the training sample, suggesting 87% of buildings with a viable solution were identi-

fied. Predicted solutions performed 11% worse than the sample solutions, making the

significant computational savings of the approach a trade-off with solution quality.

In 2021, Thrampoulidis et al. (2021) [82] presented a hybrid classification and regression

model to predict near-optimal retrofits using cost and emissions objectives. Their classi-

fication model used preset wall, window, and roof insulation settings to perform binary

classification, reducing the complexity of the problem compared with a regression or

multiple-classification technique. However, they focused on a wider range of energy sup-

ply methods, including renewable sources and energy storage. Their method generates a

fixed-length Pareto front by first generating a solution that maximises a single objective

value, then making sequential calls to a model in which the output of the previous stage

is used as input for the next. This method is efficient for generating a front of known

size but obfuscates the underlying trade-off required to move from one point on the

front to the next. Their work found surrogate optimisation to be a convenient balance

between computational cost and accuracy, as well as potentially being more accessible

for non-experts to use due to the diminished data requirements of the trained model

compared with traditional retrofit optimisation approaches.

3.1.5 Model-Based Methods for Optimisation

There exist model-based optimisation methods which attempt to construct a surrogate

model of the fitness landscape during the optimisation process, in order to converge more

efficiently to the optimum solution [83]. There is active research in the area of combi-

natorial optimisation, which attempts to apply deep learning to capture patterns in a

given solution space to perform optimisations [84]. These methods are quite promising

and have been proposed as alternatives to more common metaheuristic approaches such

as GA optimisation [85]. There is some concern however that while they converge on

solutions quickly, they are more susceptible to getting stuck in local minima, suggesting

insufficient diversification [76]. While deploying a similar concept to surrogate optimi-

sation discussed in Section 3.1.4, these algorithms are trained in real-time to optimise a

specific objective function, in contrast to a pre-trained model, to achieve fast optimisa-

tion predictions on genetic buildings for heterogeneous stakeholders from a data set by

training using a metaheuristic approach.



CHAPTER 3. RELATED WORKS 44

3.2 Housing Stock Energy Models

Housing Stock Energy Models (HSEMs) represent an attempt to model the energy be-

haviour of an entire stock of buildings, which may range from an entire national stock to

smaller regions, cities or districts [86, 87, 88]. Building stock analysis can be approached

from either a top-down, bottom-up or a hybrid perspective [86, 89, 87, 90]. These general

modelling paradigms are discussed in Section 2.1.3.

Swan and Ugursal (2009) [86] review and classify a range of national and regional HSEM

techniques. They identify the advantages and drawbacks of top-down and bottom-up

modelling methodologies. They also subdivide bottom-up techniques into statistical and

engineering focused methodologies. The statistical approaches involve modelling individ-

ual households/archetypes using statistical modelling techniques derived from historical

data [91]. While these techniques give more granularity than top-down approaches,

they still suffer from a reliance on existing historical energy consumption data and may

limit occupancy behaviour modelling to that which has been recorded and observed.

In contrast, bottom-up engineering approaches allow simulation of new technologies and

different models of occupancy behaviour, yet they come with their own challenges, in the

form of building specific data requirements and high computational cost [86, p. 1833].

Lee and Yao (2013) [92] discuss top-down and bottom-up approaches in the context

of new energy technology adoption. They advocate a bottom-up, particularly agent-

based model due to the higher resolution and level of detail that can be included in

these models. They constructed a demonstrative ABM of retrofits, although retrofit

options were limited to boolean representations: each measure was either installed or

not installed. This led to only 32 different combinations of retrofit installation, making

optimisation of each dwelling trivial. As such, when they highlight the drawbacks of

the agent-based approach, they focused mostly on relating it to the availability of data

rather than the computational cost. However, this boolean representation of installation

measures resulted in limited details about the dwellings at hand, as the nature of the

retrofits to be installed were so simplified.

Hall and Buckley (2016) [87] reviewed and classify general energy system models found

in the literature between 2008 and 2016. Their categorisation procedure indicated that

while bottom-up models were common for energy supply modelling, the energy demand

from buildings’ models they identified generally relied on top-down techniques. Although

their review was generally focused more on broader energy system models, making a

bottom-up analysis less feasible (as the built environment represents only a small com-

ponent of the system studied).
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One popular method used to create HSEMs is to pair analytical physical models with

statistically assigned housing stock data, scaling up results to represent the whole stock.

An example of such a model is the Cambridge Housing Model, which combines the SAP

methodology discussed in Section 3.1.1 with building data from the English housing

survey [93]. A sample of dwellings is generated using the survey data, cleaned and eval-

uated using the SAP methodology and then extrapolated to the remaining population

of dwellings. This method benefits from the speed advantages of analytical models but

suffers from the combined inflexibility of the expert-derived physical models as well as

the drawbacks of sampling and extrapolation [88].

Sousa et al. (2017) [88] reviewed 29 national scales and found that the tools being

utilised by researchers are “limited in their scope and employ simplistic models that

limit their utility”. To combat this, they developed EnHub [94], a transparent and

modular platform for the analysis of national housing stocks. This, initially UK-focused

solution, uses a hybrid of top-down and bottom-up methodologies by both clustering and

sampling the building stock to form archetypes, before extrapolating up to the entire

stock. They first identified a set of archetypes by data mining and reducing samples from

the English Housing Survey (EHS) data set. A total of 64 geometric archetypes were

identified, which were further supplemented with semantic attributes such as age and

tenure to ensure the most statistically relevant properties extracted from the data were

captured in the samples. Using a Latin Hyper-Cube sampling technique on these iden-

tified variable combinations, the data set was reduced from the original 14,951 to 1,016

total archetypes. Next, the researchers developed a modular simulation framework to

dynamically generate EnergyPlus Input Data Files (IDFs). Their simulation framework

followed the BREDEM structure used in the SAP methodology and discussed in Sec-

tion 3.1.1. Analysis of the national building stock was extrapolated from the simulated

performance of the archetypes. The researchers performed some basic retrofit scenarios

by considering the uptake of a relatively limited set of retrofit options. They included

a set of 8 retrofit policies and applied them in two behavioural scenarios: A perfect up-

take scenario that captured the saving potential in the stock, and a conditional uptake

scenario that attempted to emulate some investment decision components by controlling

for the technical and economic feasibility of a given retrofit.

Another example of a bottom-up approach based on sampling and upscaling is presented

by Amstalden et al. (2007) [95]. They constructed a bottom-up model of the Swiss resi-

dential building stock to investigate the retrofit potential within the stock. They used a

discounted cash flow model to calculate the financial returns of retrofits and to act as a

single-objective decision model when determining their application. They only included

four pre-selected WHRS combinations for analysis rather than performing an optimisa-
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tion procedure on individual dwellings. While this made their method computationally

feasible, the choice of retrofit for each dwelling was very limited.

There have been relatively few uses of Surrogate Energy Performance Models (SEPMs),

of the type discussed in Section 3.1.2, for bottom-up building stock modelling. Melo et

al. (2014) [96] performed a feasibility study examining the use of an ANN for surrogate

modelling of the urban scale building stock in Florianópolis, Brazil. Their SEPM was

trained using EnergyPlus simulations. Their analysis considered the effect of optimising

building-shell characteristics but analysed retrofits purely from an energy performance

perspective and did not come across the scaling issues that occur when performing full

optimisations on each residence. Mastucci et al. (2014) [97] use a linear regression

model to evaluate the energy demand impact of four pre-selected retrofit bundles on

the city of Rotterdam. This limited choice of WHRS combinations again demonstrates

the computational complexity of performing retrofit optimisation at this scale, with the

authors instead selecting a small number of fixed measures to be applied.

3.2.1 Urban Building Energy Modelling

Urban Building Energy Models (UBEMs) are HSEMs focused on the urban scale. Sola

et al. (2018) [98] reviewed the UBEM tools available in 2018 with a focus on bottom-up

modelling approaches. Simulation tools such as EnergyPlus are used for modular, single

buildings or small district simulations in work such as Huber’s (2011) [99]. Although

this seems to have only been done when examining smaller regions or in hybrid method-

ologies which extrapolate from archetypes. This is generally modelled by extrapolating

archetypes to an entire city. When considering the impact of retrofits, models rely on

limited and pre-selected WHRS combinations rather than performing an optimisation

procedure [98, 97, 95]. This is due to the computational cost of WHRS optimisation at

this scale of housing stock.

There are some simulation modelling tools specifically designed to simulate building

energy usage in urban environments. To represent the geometric data, City GML (Ge-

ography Markup Language) was proposed [100]. This allows for a common language in

the development and sharing of city models [101]. City GML is also used as an input to

urban scale energy simulation tools such as City Sim [41]. Work has been done to gen-

erate City GML from open public data sets to allow for dynamic urban stock modelling

[102, 103].

Issermann et al. demonstrate an UBEM in which templates are used and manipulated
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to create EnergyPlus input files based on available building data [104]. This bottom-up

modelling approach is supported by a functional mock-up interface to allow for urban

scale simulation using EnergyPlus, which is designed for smaller scale simulation proce-

dures. However, the energy model was limited to a residential block of 5,736 buildings,

likely due to the computational constraints found with bottom-up simulation modelling,

making this methodology alone unsuitable for optimisation of large scale stocks.

While the simulation of individual buildings can be feasible in UBEM design, the use

of archetypes and extrapolation is also common. Pasichnyi et al. (2019) [105] discuss

and present a method of archetype formation in the urban setting, using Stockholm as a

case study. The use of archetypes for upscaling energy performance calculations allowed

the assessment of seven retrofit packages on a stock of 5,532 dwellings. However, their

energy assessment was performed on the basis of energy performance certificates rather

than physical models, limiting the fidelity of outputs to those which are available in the

data set. The evaluation also relied on the use of pre-selected retrofit packages rather

than performing a WHRS procedure for the selected dwellings.

3.2.2 Retrofit Decision Models

Modelling the performance of a building with a given retrofit is only one aspect of retrofit

modelling. It is necessary to select a retrofit solution from all the possible retrofits that

could be performed. Much of the literature surrounding domestic retrofit optimisation is

concerned with optimisation of the retrofit choice against easily quantifiable objectives

such as Return On Investment (ROI), thermal comfort, or environmental impact. While

it is possible to optimise for a single objective, it is more usual to perform a multi-

objective optimisation of the type discussed in Section 2.3.2. Often single building

retrofits are presented a posteriori as a Pareto front of viable solutions that can be

offered to a decision maker to judge. However, the presentation of a range of equally

viable solutions for each residence is not always desirable, as it does not allow researchers

to make predictions of the actual behaviour of a building or building stock.

To solve the problem of retrofit selection, researchers can use a decision model. The

target system that decision models attempt to emulate is that of the real world decision

maker that would decide which, if any, retrofit should be installed on a given dwelling.

It should be noted that not all research that does this will refer to a decision model in

those terms but, for the purposes of evaluating the literature, any method which selects a

single retrofit solution in the way that a real-world decision maker would, will be referred

to as such.
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While there are decision models in use by researchers, it should also be noted that

another related set of methods are often referred to as decision models, although they

are more often referred to as decision support frameworks, in the literature. These are

prescriptive frameworks are designed as tools to aid real decision makers in selecting

retrofit solutions. Examples of decision support frameworks can be found in Menassa

and Baer (2014) [106], Hong et al. (2014) [107], Pazouki, Rezaie and Bozorgi-Amiri

(2021) [108], and Duah and Syal (2016) [109]. These prescriptive methods attempt to

influence or improve the decisions made rather than to emulate how a real decision maker

may, in the absence of the framework, make a decision. It is possible for a prescriptive

method of this type to be used descriptively, although in doing so the researcher makes

the assumption that decision makers will be using the prescriptive model, or a close

equivalent, in guiding their decision.

3.2.2.a Optimisation Based Decision Models

One method of retrofit decision modelling is to perform an optimisation. While a pos-

teriori multi-objective optimisation methods are unsuitable, as they require a decision

maker to select from the solution range. These methods have been used as part of

decision support frameworks, as they provide stakeholders with an intelligently pruned

selection of solutions along a broad range of retrofit attributes [108]. It would be possible

to pair an a posteriori optimisation method with a second decision model, to first find

a set of Pareto solutions and then select them, but no attempts to apply this method

to building stock energy retrofits were found. While a posteriori multi-objective opti-

misation techniques alone do not solve the decision problem, it is possible to use single

objective optimisation and a priori methods to obtain a solution.

As discussed in Section 2.3.2, multi-objective optimisation methods can be scalarised by

providing preference information that can be used to balance alternative objectives into a

single value, allowing for single-objective optimisation to be performed. When scalarising

using an objective function, the function and its parameters can be conceptualised as the

model of the decision maker, as it captures their preferences. These scalarised, objective-

function based decision models create utility-based agents, discussed in Section 2.1.4.

Asymmetric agents, with different utility function parameters, are suitable to represent

the preferences of a wide range of decision makers, as they may be found in domestic

building stock.

A similar method of scalarising the optimisation problem is to select a criterion that

already compounds several key criteria, such as the lifecycle cost or NPV. Chiara and
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Bragolusi (2018) [110] performed a systematic review of the valuation techniques used

in retrofit literature. Common techniques included lifecycle cost, NPV, and lifecycle

greenhouse gas emissions. The values selected demonstrate one of the large drawbacks of

scalarisation techniques for decision modelling. Scalarisation can be done with minimal

knowledge of stakeholder preferences when objectives are of the same type, such as

financial values which can be converted into present-financial value using a discount

rate. However, objectives of a different type, such as carbon emissions and financial

return, require preference information for scalarisation with an objective function.

There has also been some criticism of using scalarisation techniques for retrofit decision

making. This stems from the significant uncertainties present at the decision point of

retrofit choice and the conceptual confusions caused by atomising a multifaceted problem

into a single unit of value. Some advocate for less emphasis on numerical decision support

tools and greater understanding of the cognitive decision making process when presenting

retrofit options [111].

3.2.2.b Rule Based Decision Models

One solution, particularly popular in HSEMs, where the evaluation of individual dwellings

is too computationally expensive, is to use rule based decision models. These can be

considered analogous to reflex agents of the type considered in Section 2.1.4, acting in

a predetermined way to specific environmental conditions. An example of rule based

retrofit decision models, applied to housing stock, can be found in Sousa et al. (2018)

[94]. Researchers implemented two rule based decision models; in the perfect uptake

scenario, all dwellings were retrofitted into the most efficient form. In the conditional

uptake scenario, retrofits rules were constrained by practical and financial limitations.

The use of rule based analysis is common as a method of evaluating retrofit poten-

tial when computational constraints prevent optimisation, and is found in other work

discussed in this chapter [112, 105].

When obtaining an Energy Performance Certificate (EPC) in the UK, a recommendation

report is provided alongside the analysis of existing performance [113]. This report

follows a simple rule based decision process wherein properties lacking a certain feature

(double glazing, low energy lighting, etc.) are recommended that feature if the dwelling

is suitable. In this sense, the recommendations could be considered more like minimum

standards to which dwellings hope to conform to. Given that EPCs are produced using

an RdSAP energy performance model, these recommendations also include an estimated

payback period based on estimates of energy savings. In this sense, the inclusion of only
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cost effective measures extends this decision model to approximate a purely rational one,

with only positive economic returns considered.

Khayatian et al. (2017) [114] used a classification model for label prediction of a ML

model. However, training is based on observations from an energy certificate-based data

set, resulting in a rule based decision model. In this sense, the ML model attempts to

generalise the existing rule based decision model to uncertified dwellings. While this is

useful in obtaining decision predictions, the quality of the predictions is capped by the

underlying decision model used on the training set, which is generally low resolution and

based on brief assessments.

3.2.2.c Analytical Decision Models

Analytical decision models are generally derived from experimental survey results. Where

these pertain to Willingness To Pay (WTP) for carbon mitigation, they are discussed

in Section 3.3. However, many of these models are simply designed to either predict

or describe the decisions empirically without an underlying utility model and shall be

discussed here.

One common methodology for analytical, empirical decision models is to break down the

decision into two parts. Firstly, a model to determine when a decision maker is likely

to be triggered to consider installing a retrofit. Secondly, a second model is created to

evaluate the attributes of the retrofit to determine which particular retrofit will be in-

stalled. It has also been found that expert advice is a significant factor in both triggering

a retrofit decision, and the type of decision made [115]. Decisions have also been found

to be influenced by ownership type [116], and socio-demographic makeup [117].

While these decision models are generally based on hypothetical responses by survey

participants, Michelsen and Madlener (2014) [117] surveyed approximately 3000 ran-

domly selected homeowners who received BAFA grant for residential heating systems

adoption; respondents had been pre-selected for already making a real energy technol-

ogy adoption decision. In doing so they were able to isolate the drivers for adoption in

both newly built and existing dwellings. While new construction energy decisions were

more likely to be driven by environmental considerations, such as dependence on fossil

fuels, existing building retrofits were driven by the physical properties of the dwelling or

the socio-demographic attributes of the decision maker.

There is relatively little retrofit decision model literature relating specifically to the UK.
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However, Adan and Fuerst (2015) [118] present a decision model for UK retrofit adoption

rooted in microeconomic theory. Instead of using a decision experiment, the researchers

use house price data and regionally aggregated retrofit uptake data to build an empirical

model of retrofit adoption. The model is based on microeconomic principles and places

significant weight on economic factors such as ROI. However, the authors note that the

aggregate data on investment decisions is a significant limiting factor in this form of

empirical modelling, leaving much of the model construction to future work.

3.2.2.d Alternative Decision Models

While considering retrofits using investment modelling is discussed in some of the scalarised

optimisation approaches, it is often captured in values such as NPV or lifecycle cost.

This is taken further by Ashuri et al. (2011) [119], who use a sophisticated investment

analysis framework as a proposed retrofit decision model. The framework combines an

energy model with other sub-models to capture retail energy prices, as well as the in-

vestment and regulatory environments that may influence investment decisions. This

sophisticated modelling is likely to be more applicable to non-domestic decision makers,

however, given the data requirements for evaluating retrofit decisions this way.

Guerrero et al. (2019) [120] present a fuel source transition model using an agent-based

social simulation approach. They use a form of bounded agent rationality, including

social influence, to model the installation of insulation and a household’s transition from

natural gas to gas-free heating methods.

Liang et al. (2016) [121] investigate retrofit decisions using a game theory approach,

allowing them to analyse the differences between the incentives faced by owners and

occupiers. Their analysis determined that reluctance in retrofit installations is often

related to the uncertainty of outcomes and the split incentives faced between owners

and occupiers of a given property.

While the scope of retrofit decision modelling has been kept to the individual level, there

are some cases where domestic dwelling retrofit decisions are made on mass in the case

of social housing. Decision modelling of social housing is quite different, with factors

such as economies of scale changing the nature of the problem when compared with

individual retrofits. While these decisions are outside the scope of this work, Swan et

al. (2013) [122] provide a good example of how such decisions are made.
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3.2.3 Building Stock Retrofit Adoption Models

HSEMs model the energy use of housing stocks and retrofit decision models can be

used to evaluate the likelihood and propensity of a given household to install an energy

retrofit; When these are combined they can form housing stock retrofit adoption models

(HSRAMs) capable of modelling how the fabric of the buildings in a given stock may

change, under certain conditions.

Wang et al. (2018) [112] present a bottom-up retrofit adoption tool designed to evaluate

the adoption potential of energy retrofits in Switzerland. Their method, named CESAR

(Combined Energy Simulation And Retrofitting), relied on individual EnergyPlus sim-

ulations for the HSEM component. This is computationally expensive compared with

alternatives but grants higher accuracy, level of detail and control compared with sur-

rogate methods. This energy demand model was paired with a retrofit model which

assigned a retrofit statistically, based on an externally provided retrofitting scenario. In

this sense, the decision model itself is exogenous, with the uptake scenario determined

by the modeller based on historical trends or target uptake levels, rather than on the

properties of the decision maker themselves. This study is useful for evaluating the effect

of different uptake scenarios but does require the use of an external model, or expert

domain knowledge to generate the uptake scenarios. The scale of the analysis is also

limited by the computational cost in simulation requirement, with the largest case study

presented limited to a neighbourhood of 227 buildings.

There have been some agent-based retrofit adoption models. The most detailed ABM of

this type found in the literature is presented by Nageli et al. (2020) [123], who introduce

an ABM for energy retrofits including a bounded rational decision model. They pair

their decision model with a simulation based HSEM to evaluate the impact of retrofit

decisions. Agent decisions are initially triggered by events such as existing property

features becoming obsolete. The choice of retrofit installations is based on the investment

and maintenance cost of the retrofits, the cost of energy and the agent’s WTP. They

used representative building agents based on archetypes to achieve scalability, reducing

the capacity for heterogeneity and high spatial resolution. The model also foregoes a full

optimisation procedure, instead of relying on a small set of potential retrofit solutions

selected by the modellers.

The highest resolution retrofit adoption model found was presented by Yang et al. (2022)

[124], who was capable of modelling individual buildings using GIS data. However, the

resolution of the retrofit installations themselves was very low, with only two scenarios

considered. The scenarios were presented only in terms of the performance they achieved,
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not by the measures that were required to meet those standards. While the model is

sufficient to determine the impact of the ’conventional’ or ’net zero’ standards targeted,

no optimisation was performed to ascertain the best performing set of retrofit measures

at the level of individual dwellings.

To conclude, existing HSEMs can broadly be broken into top-down and bottom-up

methodologies. While top-down models give a good view of general trends and out-

puts of the entire system, they suffer from low resolution (the inability to investigate

sub-components) and can be rigid due to their reliance on historical data. Bottom-up

methodologies, such as building energy simulations, can provide significantly more gran-

ularity and control to researchers, as well as permitting flexibility such as integration

of behavioural or technological components that are not possible using top-down ap-

proaches. However, the technical feasibility of modelling entire building stocks using

this methodology diminishes with larger building stocks. This is particularly problem-

atic when attempting to perform an optimisation on the stock, in contrast to simply

measuring the energy use, as the optimisation procedure may take many iterations. In

all the research discovered to date, modelling has required a compromise through either a

sampling and upscaling approach based on archetypes or a very limited range of WHRSs

that are applied to the entire stock, rather than performing an optimisation [125, 126].

3.3 Carbon Offset and Willingness to Pay

In the field of environmental economics, it is common to model the environment as a

public good [127]. The mechanism through which socially responsible consumers interact

with public goods, voluntary contributions, are introduced well by Brekke et al. (2003)

[128]. Background information on public goods is provided in Section 2.4.2. While early

experimental data on public good contributions showed that, particularly in large groups,

contributions were low [129], there is a range of circumstances in which contributions

are frequent, such as under social pressure or with institutional intervention [130, 131].

We can consider these contributions towards emissions mitigation in terms of the Will-

ingness To Pay (WTP) for a ton of emissions mitigated. WTP is a core concept in mi-

croeconomics, behavioural economics, welfare economics, and environmental economics.

WTP attempts to capture the maximum amount that a person would pay for something

and can be used to allow comparison or evaluation of unobtainable or conceptual goods

[132]. This makes the concept useful in environmental economics, as researchers can

quantify the value that, for example, unpolluted air might have to a community based

on their WTP to prevent the pollution [133]. This is an attempt to quantify the value
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for something that is not traditionally traded, either because it is infeasible to create

a market for, or because, like carbon emissions, it is the byproduct of other market

activity.

We focus on WTP as a non-market valuation measure of environmental goods/services

due to its applicability to individual household utility functions. It is also relatively

achievable measurably and, therefore, has the capacity to be integrated into retrofit

decision models. There are, however, a range of other non-market valuation methods

which may be used by governmental cost-benefit analyses. As well as consumer WTP

methods, these include hedonic pricing models, and travel cost models for public good

consumption [134]. The applicability of these methods varies depending on the environ-

mental consideration; house price valuations are often used in hedonic modelling, which

can capture non-market amenities such as countryside views. Travel cost models are

often used for valuations of public amenities like fishing lakes, as the value placed on

these otherwise free services can be calculated based on the costs consumers are willing

to incur to visit them. An overview of these non-market valuation methods and best

practices can be found in Champ et al. (2003) [134], Bishop and Boyle (2018) [135], and

Bateman and Kling (2020) [136] respectively.

3.3.1 Measurement of Willingness to Pay

Measurement methodologies of Willingness to Pay (WTP) can be broadly divided based

on two key characteristics [137]. Firstly, methods differ on whether they measure WTP

directly or indirectly. Direct methods ask participants transparently what the maximum

they would pay for a given quantity of a good or service would be; while indirect methods

generally offer a choice of alternatives to the product, whereby the researchers can derive

the WTP from the observed decision. Secondly, methods differ on whether they collect

actual or hypothetical WTP. Actual WTP involves real choices that affect the partici-

pant, either by making them actually pay for a given product or by directly aligning the

incentives of the experiment with decisions in the real world. In contrast, hypothetical

methods simply pose questions to participants without any real consequences for the

choices made [138].

There is significant discussion in the literature about the implications of experimental

design choices made when using WTP. Hypothetical design choices benefit from easier

survey design and implementation, allowing for questions to be included in larger surveys

such as the World Values Survey [139]. The large sample size, international scope, and

larger question set in this design allow for statistical analysis that would be infeasible
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with the practical limitations of incentive-aligned designs [133]. However, some evidence

suggests the consumers are more price-sensitive in both real purchasing and incentive-

aligned experimental designs than when answering hypothetical questions [137]. This

suggests that respondents may indicate higher WTP values when surveyed than in real

scenarios where they face similar choices. Nonetheless, some research has indicated little

or no measurable difference between hypothetical and actual survey responses [140].

When considering direct versus indirect WTP measurement, there are some further

considerations. While direct measurement, using an open-ended question methodology,

benefits both researchers and participants through simple and easy to understand design,

there are some drawbacks [136]. Direct measurement risks several cognitive biases that

appear when participants are asked to evaluate numerically. These include the anchoring

effect, in which participants are prone to ’anchor’ close to other numerical values to which

they were recently exposed [141]. These biases are particularly likely to appear when

facing unfamiliar topics [142]. This is likely to make direct numerical assessment an

ineffective tool for deriving WTP estimations of WHRSs emissions offset.

A common indirect method of deriving WTP estimations is discrete choice experiments

in which participants are offered a range of alternate proposals with different characteris-

tics from which researchers can later estimate the significance of each factor. Statistical

techniques such as linear regression can be used to determine the impact of each attribute

[143], as well as mitigating some of the methodological drawbacks of direct choice ap-

proaches. A good summary of the advantages and best practices of performing discrete

choice experiments can be found in Hauber et al. (2016) [144].

3.3.2 Willingness to Pay for Carbon Offset

The use of WTP is suitable for specific environmental amenities such as fishing lakes,

or for conceptual components such as a given level of air quality, which is desirable

for these localised policies with a specific environmental goal in mind. However, when

considering greenhouse gas emissions, the method has been applied to the causal factor

directly, measuring the value placed on offsetting or mitigating a given quantity of carbon

emissions.

There have been some attempts to calculate the WTP per ton of carbon offset in differ-

ent settings. Before exploring the most related works in this area, there is some mixed

terminology used in the literature that require clarification, specifically the terms miti-

gation, offset, and capture. Carbon mitigation will, for the purposes of this work, refer
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to methods, such as retrofits of existing buildings, which prevent future emissions that

would otherwise, in lieu of the measures, have occurred. Carbon capture is a term for

the capture and eventual storage of carbon emissions from industrial sources, making it

a specific form of carbon mitigation. Carbon offset is a more generic term and refers

to both mitigation and carbon capture, as well as techniques such as reforestation and

afforestation, which are designed to actively reduce environmental carbon, instead of

just the emission of it.

MacKerron et al. (2009) [145] used a discrete choice experiment to ascertain WTP for

emissions offset of passenger airline flights. The derived WTP per tCO2e ranged from

£10.16 to £38.35 with a mean of £24.26. The most significant contributing factor in

offset decisions was certification of the offset, which nearly doubled the derived WTP.

Values were negatively affected by the price of the offset and were lower for male than

female participants. It is worth noting that the results were only gathered for positive

market participants, so this average excludes the proportion of the population who would

be unwilling to offset carbon at all. The authors noted that “some caution should be

exercised in generalising from the results” [145, p. 1376], as they believed that the

sensitivity of WTP derivations may be such that the results may not be robust enough

to survive even a change in flight duration, let alone a shift in domain from air travel to

the built environment.

Rotaris et al. (2020) [146] performed a similar discrete choice experiment to determine

the WTP of 1,228 Italian airline passengers, determining a similar carbon value of be-

tween €12 and €38 per tCO2e. Streimikiene et al. (2019) [147] perform a review of

WTP studies and comment on the wide range of factors that influence WTP, includ-

ing income, gender, and country of origin, while also noting that “pro-environmental

lifestyles are related to higher levels of WTP for energy conservation equipment” [147,

p. 1480].

While WTP values derived from airline markets have been more widely studied, the

universality of the findings may be questioned. Historically, there has been a dearth of

literature relating to WTP for carbon offset in the domain of energy retrofits. Some

decision model survey designs, discussed in Section 3.2.2, omitted the measurement

of WTP to instead focus on non-price factors. Research, such as that of Achtnicht

and Madlener (2014) [115] for example, focus on investment triggers and demographic

indicators instead of WTP per tCO2e. While there are few direct WTP derivations found

in retrofit decision experiments in the literature, some decision models have discussed or

framed their results in these terms.

Banfi et al. (2006) [148] performed a hypothetical discrete choice experiment among
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residential tenants and property owners in Switzerland. They investigated the demand

and WTP for several energy retrofit options, including window and wall insulation at

varying levels. No information was provided to participants in terms of tCO2e saved,

an unreasonable expectation as performance models for the participants’ dwellings were

unavailable. Therefore, while WTP was derived for each retrofit option, these were

independent of the qualitative energy performance of the choices. Participants had the

greatest hypothetical WTP for new windows, amounting to 13% of their property value

compared with the lowest WTP of just 1% to improve standard insulated windows to

enhanced insulation.

Adan and Fuerst (2015) [118] present a microeconomic model that incorporates WTP

for carbon offset. They consider the WTP for a given retrofit in terms of the finan-

cial returns, alongside a weighted coefficient accounting for the ’social cost’ of energy

use. This value is presented as quite nebulous, encapsulating any non-internalised ex-

ternalities associated with energy usage. Their conceptualisation is based on a rational

economic agent and as such these costs require internalising with a Pigovian tax on

emissions [118, p.8].

When it comes to contributions in practice, a 2017 industry report on voluntary carbon

offset markets shows an average carbon price of $3/tCO2e, although this varied signifi-

cantly depending on the type of mitigation project and the project location [149]. The

annual quantity of carbon offsetting is also highly volatile, an indication of an immature

market. It is worth noting that these real-world carbon offset prices are significantly

lower than reported WTP from consumer studies, possibly indicating a gap between

reported and actual decisions. This could also be explained by the high variance in

offset prices, indicating consumer willingness to mitigate is much higher than found in

industry settings.

3.3.3 Use of Willingness to Pay in Agent-Based Models

Behavioural theories such as those stated above can be found in various ABMs. For

example, Andrews et al. (2011) [150] create a utility function for building users that

accounts for the warm glow utility received when environmental choices are made. This

inclusion of altruistic preferences fell short of fully implemented warm glow theory by the

deliberate choice of the modellers, who noted the difficulty of measuring the parameters

required to do so. Instead, they used a linear weighting on the disutility caused by cost to

others of environmentally harmful action, representing a ’purer’ form of altruism than

warm glow, and a more traditional approach. Silvia et al. (2016) [151] acknowledge
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the notion of ’warm glow’ environmentalism in their discussion of agent design, but

decide against a utility-based approach to altruism, using instead a flowchart decision

process that simply assesses the abstract ’environmentalism’ of a consumer. The use

of social proofing is also common in agent-based models. For example, Snape (2016)

[152] modelled the adoption of heat pump installations in the UK using a social model

whereby the number of neighbours who adopted the technology influenced adoption

rate, although his reasoning was based on domain-specific surveys of adoption rather

than based in behavioural science. In their study, Snape acknowledges the apparent

lack of behavioural models during a review of agent learning, saying that “[n]otably

absent from this discussion of learning algorithms are ... Models based on psychological

models beyond pure reinforcement” [153, p.74]. This shows an acknowledgement of a gap

for a development framework that focuses on this principle. Rai & Henry (2016) [154]

present an excellent overview of how ABMs can be designed for considering consumer

energy choices, even recommending the need for chaining formal behavioural rules from

the literature to govern agent behaviour. While this review of the ABM process is of

high quality, it falls short of being a procedural development process for integrating

behavioural components into ABMs, leaving the potential for a more formal framework.

3.4 The Research Gap

Given the interdisciplinary nature of this research, the gap in the literature lies in the

integration and application of ML, optimisation, and agent modelling techniques to the

physical engineering models used in the existing retrofit evaluation and adoption tools.

Section 3.1 identifies the approaches used to model the energy performance and retrofit

potential of urban scale building stocks. While there are a variety of techniques for

evaluation of the heating demand for these building stocks, they are generally limited in

their ability to model the adoption of energy retrofits across the stock. Two particular

limits of these modelling methods have been highlighted:

One limitation of existing methods is that the computational cost of bottom-up mod-

elling techniques is, at the scale of an entire building stock, too large to be feasible.

This is due to the requirement to perform a large number of optimisation sub-problems.

Some building stock retrofit evaluation methods use ML models to overcome this lim-

itation, referred to as Surrogate Energy Performance Models (SEPMs), which allow

rapid evaluation of an individual building’s performance. However, this technique is too

computationally expensive to be used at the scale of large housing stock. Instead of per-

forming WHRSs optimisation, modellers generally pre-select a small set of WHRSs to be
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applied to the entire stock to evaluate impact, resulting in models that do not capture

the WHRSs that would be installed by following a bespoke assessment of the unique

dwelling. The technique of constructing a surrogate model that encompasses both the

inner SEPM evaluation and the outer optimisation-based decision model, referred to as

Surrogate Optimisation (SO), has the potential to rectify this issue by predicting near-

optimal WHRSs at a significantly reduced computational cost. However, the method is

still in its infancy. The only existing example to be found has limited integration with

retrofit decision models, as explained in Section 3.1.4 [82].

The second limitation of retrofit adoption models lies in the use of decision models.

Retrofit decision models, which are analytical models designed to capture the behaviour

of retrofit decision makers, have been attempted in the literature. However, there are

relatively few as discussed in Section 3.2.2. While some models attempt to calculate the

WTP for a given retrofit or feature, as described in Section 3.3, none are presented in

terms of transparent measures of environmentalism, such as WTP per ton of greenhouse

gas emissions mitigated. There have been some studies in other fields, most notably

voluntary carbon offset in the airline industry, which investigate environmental decisions

in this framing. This problem formulation would allow the construction of decision

models based on voluntary contributions to public goods, as described in background

Section 2.4.2. This allows for multi-objective optimisation-based modelling of uptake

among rational and environmentally conscious agents. This has not been found in the

literature, either in traditional adoption methodologies or combined with SO techniques.

To conclude, there is a gap in the literature for a high-speed residential building stock

retrofit adoption modelling methodology, based on the SO method, which can be inte-

grated into WTP-based retrofit decision models. This novel combination of ML with

agent-based decision models would allow for a higher level of detail in modelling than

is currently technically feasible in housing stock energy models for retrofit adoption. A

proposal for how to reframe the retrofit decision models in this way and integrate the

model into a trained SO is put forward in Chapter 4, then implemented and explored in

later chapters.



Chapter 4

Methodology

It was established in Section 3.4 that there is a gap in the literature for a method

of computationally feasible retrofit adoption modelling with integrated environmentally

conscious agent decision modelling. In order to fill this gap, a machine learning approach

will be taken, based on integrating a Surrogate Energy Performance Model (SEPM), an

optimisation process and different models of agent utility. This method, which is referred

to in this work as Surrogate Optimisation (SO), will then be integrated into an agent

based retrofit adoption model. These sub-components, and their scopes, are shown

in Figure 4.1. As the contribution is methodological in nature, specific implementation

Figure 4.1: Venn diagram showing the interaction of scope between the sub-components
of the final retrofit adoption model method.
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details of the research will be introduced alongside the results presented in later chapters.

The purpose of this chapter is, therefore, to provide a high level description of the stages

of SO, as well as to introduce the data and software tools to be used throughout the

research.

Section 4.1 describes the methodological approach to the agents used in this research,

including a high level description of how the decision models used will be formed, from

a theoretical perspective. Section 4.2 describes the methodological steps involved in the

construction and training of the Surrogate Energy Performance Models (SEPMs) used

in this research. Section 4.3 follows on from this, discussing how the SEPMs will be

integrated with optimisation processes to obtain near-optimal retrofit solutions for indi-

vidual buildings. Section 4.4 lays out the approach for training a Surrogate Optimiser,

based on a data set of values generated using the SEPM based optimiser combined with

the different decision models of interest. Section 4.5 will introduce and investigate the

primary building data set used throughout the research. Finally, Section 4.6 will describe

the software tools used, including the EnergyPlus based simulation framework used for

the simulation based energy evaluation stages.

4.1 Rationality of Agents

One key component of building stock retrofit adoption modelling is the retrofit decision

model. The ways that researchers have approached these models is discussed in Sec-

tion 3.2.2, with approaches ranging broadly depending on the intended purpose, scope

and level of detail of the research conducted. Through this work, the decision model

will be framed in terms of agent decisions and, therefore, the models that contain them

will be referred to as agent-based models, the background for which are discussed in

Section 2.1.4. Generally, the agents used will be a form of utility-based agent, with an

objective function made up of different attributes that contribute to their decisions. Dif-

ferent assumptions about behaviour will be implemented, justified and at times relaxed

to increase the complexity of decisions.

4.1.1 Purely Rational Agents

The notion of rationality and rational choice is quite broad but we will use a broad

definition of an agent taking actions that, to the best of their knowledge, maximise a

given goal that they have [155]. This places rational agents in agreement with both goal-
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based and utility agents discussed in the agent-based simulation field in Section 2.1.4.

However, this broad definition of rationality can be narrowed to a classical microeconomic

consideration of a self-interested agent, which we will refer to as purely rational. The

purely rational agent is only willing to consider the benefit they themselves receive from

a given decision.

NPV = C0 −
n∑

t=0

Rt

(1 + i)t
(4.1)

Equation 4.1: Net Present Value for an investment of C0, returns of R at time t and a
discount rate of i.

The advantage of a rational framing that combines rational choice and utility theory is

the ability to scalarise the problem into a single-objective optimisation problem with a

utility function, as discussed in Section 2.3.2. To construct an objective function for a

purely rational agent we take the Net Present Value (NPV) of the energy bill savings

made over the period of the investment, less the cost of the retrofit. A background

discussion of NPV can be found in Section 2.4.3 and the formula is presented in Equa-

tion 4.1. NPV is established as a viable decision tool in the investment and adoption

literature [54, 55, 56]. It has been criticised for not accounting well for future changes

in technology and thus failing to account for some possible opportunity costs that can

be captured by waiting [57].

One of the key features of the NPV is the discount rate. Conceptually, the discount

rate attempts to capture the opportunity costs and inflation that occur between now

and future income. While there are different methods of discounting future value, the

general standard is a flat compounding discount rate, signified by i in Equation 4.1.

In this research, an approximation of the UK’s risk-free rate of return is used for the

discount rate, which will be discussed during implementation.

NPV was selected as the objective function for purely rational agents for several reasons.

As discussed in Section 3.2.2, NPV or some close equivalent, such as lifecycle costs, make

frequent appearances in retrofit analysis tools. These are particularly common metrics

when considering decision frameworks or more institutional decision makers due to the

measurable and clear financial nature of the objective. Another advantage of NPV is

that it captures both the upfront financial cost of the investment, the ongoing costs, and

the ongoing benefits in a single value, which can be expressed in present value currency

terms. This allows for a very simple decision model, as a rational agent would take any

free choice with a positive NPV (if the alternative choice is nothing).
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There are alternative scalarisation techniques that could be considered, instead of NPV.

Sometimes LifeCycle Cost (LCC) is considered in the literature, although typically this

is used as a secondary objective when accounting for other financial or comfort consid-

erations. Some references to LCC are actually net LCC and factor energy cost savings

into the modelling, making them functionally equivalent to NPV. An alternative, per-

haps more economically sound but significantly less feasible performance metric may

be expected utility. In contrast to NPV, which just discounts future values at a flat,

compounding rate, expected utility attempts to also capture the difference in utility that

a given cost or saving will have due to other factors in an individual’s life. Expected

utility theory would include, for example, an income effect, whereby savings are more

beneficial, and costs more harmful, to an individual with a lower income. This is due

to the core economic concept of diminishing marginal utility. These factors will be con-

sidered outside of scope as they add a level of complexity, and data requirement, about

decision makers which is not just unavailable but possibly immeasurable. However, with

some assumptions about the agents, which will later be relaxed, NPV based investment

decisions can be aligned with expected utility theory.

In order to consider NPV to be the decision metric of purely rational agents, some

assumptions must be made. A list of these initial assumptions can be found below,

followed by a discussion or justification. Further assumptions, scope limitations, and

conceptual modelling will be introduced elsewhere. When discussing the strength of

an assumption, strong assumptions can be considered those which abstract significantly

from reality and require the most justification. In contrast, weak assumptions only

deviate slightly from the real-world system and are, therefore, less likely to introduce

error.

List of assumptions made:

1. Agents are self-interested and ignore environmental impact.

2. The installation can be purchased outright or finance is available at discount rate.

3. Future savings and costs can be predicted or provided to the decision makers before

installation.

4. Thermal comfort is achieved through setpoint and scheduling alone.

Assumption 1 has already been discussed: that agents are only self-interested. This

will be relaxed when modelling environmentally conscious agents as discussed in Sec-

tion 4.1.2, and potentially relaxed further when considering agents as uninformed deci-

sion makers in Section 4.1.3.
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Assumption 2 is only an assumption insofar as we use a positive NPV as an entire de-

cision model. Where we use the NPV objective in conjunction with a trigger model, for

example, then this assumption is relaxed. This can therefore be considered an assump-

tion only of the most optimistic, retrofit potential models, as opposed to more grounded

retrofit adoption models for which this assumption alone would be too strong.

Assumption 3 assumes a high degree on information available to decision makers. A

decision model based on optimising NPV assumes both that the NPV of any given

retrofit can be calculated for a given installation of a given dwelling, but also that the

value is being optimised by the decision maker. In practice, this is really modelling two

separate processes. The optimisation, or a close approximation of it, would be performed

by an expert from a retrofit installer. The near-optimal solution, along with the salient

information, would then be presented to the property owner or decision maker when

making a quote.

Assumption 4 relates to the significance of thermal comfort to the decision maker. This

assumption can be broken down further to first assume that overheating, the propensity

of the temperature in a dwelling to become unreasonably warm, is not a primary deci-

sion factor. Given the weather profile in the UK, which is the scope of this problem,

this assumption is fairly weak. However, as global climates change this could be more

significant in the future. The second part of this assumption is that the heating systems

in dwellings are sufficient to meet the demand required by the heating setpoint, in a

timely manner. To account for this assumption, it will be made clear that estimates are

made for heating energy demand, rather than energy use. This accounts for deviations

between the energy required for a system to achieve a setpoint, compared with what the

system is capable of outputting. This will, however, be controlled for during simulations

by capping the heating output capacity to a reasonable level, weakening this assumption

further.

4.1.2 Environmentally Conscious Agents

While modelling rational agents may be useful, particularly if we wanted to consider a

base case adoption scenario where only financially viable retrofits are performed, it is

lacking in several ways. It is observable in both experimental and real-world settings

that individuals will act altruistically in an attempt to contribute to the environment.

The background of this phenomenon is discussed in terms of public goods games in

Section 2.4.2. The prior research relating to the measurement and modelling of agents

who are willing to pay for a reduction in carbon emissions was reviewed in Section 3.3.
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U = f(v+, e−) (4.2)

Equation 4.2: Generic utility function, with the NPV (v) of the investment increasing
utility, and personal carbon emissions (e) decreasing utility.

Relaxing the assumption, based on evidence that consumers are willing to forego some

personal financial gain in order to contribute to emissions reduction, will change the

objective function that rational agents are attempting to optimise. Generically, we can

consider a utility function, shown in 4.2, which is positively impacted by NPV (v) and

negatively impacted by the environmental emissions (e). While this relaxation alone

is uncontroversial, it is the nature and formation of the utility function that is highly

contested within the literature. This will require us to make some assumptions about

agent behaviour in order to model them. As discussed in Section 2.4.2 there are several

theories as to the behavioural principles that drive these environmental contributions

with which the chosen utility function must be in agreement.

LCS =

t=p∑
t=1

et − E0 (4.3)

Equation 4.3: Lifecycle Carbon Saving (LCS) calculation.

Before presenting candidate utility functions for environmentally conscious agents, it

may be beneficial to consider two types of decisions that are to be made and reframe our

discussion of environmental decisions in light of energy retrofits. In the same way that

we used NPV to scalarise the financial impact of a given retrofit investment, we can use

Lifecycle Carbon Savings (LCS) to represent the GHG emissions of a given investment.

LCS is represented by Equation 4.3. The value of emissions saving, et, will depend mostly

upon the energy saving properties of the retrofit. It will also be impacted by fuel type,

as the emissions for gas and electric energy generation differ. The lifetime embodied

carbon is represented by E0 and considers the cost of manufacturing, transporting and

disposing of building materials used in the retrofit. LCS can be considered the GHG

emissions equivalent of NPV, with the key difference being the lack of discounting. The

use of carbon discounting was considered to weigh near emissions more heavily than

future emissions but was not implemented as it was not a common methodology found

in similar research.
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U = f(v+, e−) = v + γs (4.4)

Equation 4.4: Linear utility function, with the NPV (v) of the investment increasing
utility, and LCS increasing utility by γ per ton of emissions saving. CO2e.

The agent’s utility for a retrofit solution is shown in Equation 4.4, with the household’s

carbon valuation expressed as gamma. Given the gamma is expressed in £/tCO2e,

the utility can be expressed in present value financial terms, allowing a direct trade-off

between the terms. This carbon valuation, gamma, represents the WTP for carbon

mitigation. In a linear model, this is also the coefficient of marginal utility with respect

to emissions mitigation.

The driver for this value can be seen as the personal or social components that motivate

households to be carbon conscious and could be driven by a combination of altruism,

social pressures, or self-preservation. This utility curve formation is generally agnostic

to the underlying cause of the contribution, only accounting for the fact that the climate

contribution has value, instead of the underlying cause of the value.

The proposed utility function is linear in both financial and carbon consumption. This

contradicts a general tenet of many utility functions, diminishing marginal utility. This

property gives utility curves a concave shape, which is a useful element in many forms of

analysis. This assumption is relaxed for two reasons. When relating to general economic

consumption, diminishing marginal utility is caused by the income effect: as income rises,

the utility benefit of additional income diminishes. It can be relaxed when considering

the NPV from retrofit investments due to the relatively small size of the financial benefit,

and due to the long time period over which it is spread. This allows us to use a point

approximation of utility, as the size of the income effect is small.

The strength of the assumption of constant marginal utility from carbon emissions re-

duction depends on the underlying cause for the public good contribution. A model

for pure altruism is likely to result in small but linear marginal utility. Socially driven

conspicuous altruism may lead to drastically diminishing marginal utility from carbon

mitigation (as the appearance of mitigation dominates the volume of emissions reduced).

However, the linear framing has some major benefits, mostly in the ability to directly

survey the financial equivalence of a given degree of emission saving, something which

can be ascertained more readily than a convex curve. This assumption can also be

justified similarly to that used for the NPV. Given the long time span of the retrofit,
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it is likely that emissions offsets are small relative to the total carbon footprint of the

household when factoring in travel, food, and transportation of consumer goods.

4.1.3 Uninformed Agents

Another concept pertaining to agent rationality that is important to capture is that

of imperfect information. It is reasonable to assume that agents performing a retrofit

optimisation are doing so with the help of a professional and are therefore aware of both

the availability of retrofit options and the impact that those installations are expected

to have on their dwellings. However, it would not be reasonable to assume that all

household agents are aware, a priori, that there may exist positively performing WHRSs

to be installed. To rectify this, a trigger model is to be used in conjunction with the

optimisation procedures to determine when agents will choose to evaluate the retrofit

potential of their dwelling. Trigger models are found in various related works, including

several HSEMs described in Section 3.2.

The nature of the trigger model used will vary throughout the work. Chapters 5 and

6 will use a homogeneous and endogenously provided probability that a given agent

will be triggered over a certain time period. This is a top-down approach to modelling

triggers, relying on observation of a real-world aggregate value (the number of retrofit

evaluations that occur per year) and applying it across the agent set. The focus of

Chapter 7 will be on replacing the trigger model with a more sophisticated bottom-up

approach. This will be done using survey data to determine the relative importance of

different potential triggers as perceived by a set of household archetypes. The absolute

probability of each trigger leading to a retrofit evaluation will then be calibrated using

the exogenously provided base rate. While still relying on a base rate for calibration,

this will allow for heterogeneous household archetypes as well as a bottom-up design

that will allow altering of the occurrence rates of potential triggers to allow for more

detailed scenarios to be modelled. The methodology behind this process will be laid out

in more detail in Section7.3.1.

4.2 Surrogate Energy Performance Modelling

The methods for evaluation of the energy performance of dwellings, including potential

retrofits applied to those properties, are discussed in Section 3.1.1. While there are some

analytical models available, the flexibility and accuracy of simulation modelling were
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Figure 4.2: Generic and high level overview of the SEPM training process

found to be a common method. A background discussion of building energy simulation

was provided in Section 2.3.4. While it was found that simulation modelling carries

many advantages over rigid analytical models, it also carries a significantly increased

computational cost. This computational cost can be overcome with the use of Surrogate

Energy Performance Models (SEPMs), a technique that has been used to leverage the

advantages of simulation modelling while mitigating the computation costs. A discussion

of related works which use SEPMs can be found in Section 3.1.2.

A generic and high level flow chart showing the basic components of a SEPM is shown

in Figure 4.2. The concept behind the surrogate model is quite simple, generating a

training set using the simulation software. This training set is used in conjunction

with a ML algorithm, typically a regression model, capable of estimating continuous

objective values of the type discussed in Section 2.2.2. In practice, each stage of surrogate

model formation requires careful consideration such as simulation model construction,

selection of modelling technique, model features, and training hyperparameters. These

implementation steps will be discussed in more detail in Section 5.2.4 when the primary

SEPM is trained and used for energy evaluation.

The primary benefit of using a SEPM, compared with direct energy simulation, is the

speed of making predictions using trained models. This allows for increased computa-

tional feasibility when performing retrofit optimisations, as discussed in Section 4.3.

An import process in SEPM training is modelling method selection. When evaluating the

related literature (Section 3.1.2), there were a variety of modelling techniques used. The
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most common method was linear based regression, but more recent work, and work that

focused on optimisation was focused more towards Artificial Neural Networks (ANNs),

including Deep Neural Networks (DNNs) [79]. This is likely due to the flexibility of DNNs

in modelling a more varied set of non-linear inputs, such as building archetypes, as input

features. However, while the modelling technique is likely to be important, it has been

found that a broad set of techniques can be suitable for SEPM applications, dependent

on the specific problem but without a specific algorithm dominating the problem domain

[76].

An important process in SEPM training is feature selection. The initial feature selection

stage involves collecting potentially valuable model features using domain knowledge, as

well as insights from SEPMs in the literature. This is likely to include direct properties,

such as the heating setpoint, derived features such as floor space, glazing ratios (of

different parts of the building), and details of the retrofit status of the building. These

features will be discussed in more detail at the implementation stage.

After initial feature selection, backwards elimination of feature selection will be used

to remove any poorly performing or unnecessary features. This stage can both increase

accuracy and reduce the complexity and data demands of a model. A statistical test will

be performed on input features, eliminating the most poorly performing ones until the

elimination of any remaining feature reduces model accuracy in a statistically significant

way [156]. The details of this test, and the features eliminated, will be identified at the

implementation stage.

Another important part of SEPM construction is to determine the target values of the

model. While all SEPMs will evaluate the energy performance of the building, there are

several target metrics that could be considered. Although most examples in the literature

focused on energy [75, 72, 71], there were also models for thermal discomfort and cost

[74]. Given the utility functions of decision makers discussed in 4.1, the annual heating

energy demand is likely to be a sufficient objective value from the surrogate model, with

the cost and carbon emissions savings calculated with post-processing outside of the

model.

Given the continuous nature of the annual heating energy demand, expressed in giga-

joules (GJ) or kilowatt hours (kWh), selected models will be regression models, the

background for which are discussed in Section 2.2.2. When evaluating the performance

of these models, continuous evaluation metrics will be presented, including the coeffi-

cient of determination (r2). The r2 value represents the proportion of the variance in

the target value which is explained by the input variables of the model, with a value of

one representing a perfect model. This metric is highly relevant in evaluating the model
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performance [157]. However, r2 has a flaw, as overspecified models are not punished

and so r2 values can be improved by adding random and uncorrelated variables into the

model, a problem which is mitigated by the use of the adjusted r2 metric, which reduces

in value as additional model variables are added [158]. As such, adjusted r2 values will

be presented with regression model results. While r2 is a useful summary statistic, it is

presented as a fraction of the variance of the target value. Metrics such as Root Mean

Square Error (RMSE) and Mean Absolute Error (MAE) present the error in model units,

giving a better intuitive understanding of the size of the errors introduced by the model.

Where possible, the distribution of these errors will also be presented and visualised in

the research, demonstrating the model performance across the range of relevant values.

The choice to use a SEPM, as opposed to an expert-derived analytical model (such as

BREDEN [60]) was due to the flexibility of simulation based models. As discussed in

Section 3.1.1, there is some conceptual equivalence between trained SEPMs and expert

derived analytical models. The trained models are analytical in nature and so benefit

from fast evaluation speed. Similarly, expert derived analytical models will be highly

data driven, and are likely to have been guided by the simulation in their construction.

The main advantages of SEPM come from the existence of the simulation framework used

to train it and from the flexibility in the derivation of the model. The existing simulation

framework allows for the error of the SEPM to be known precisely, compared with the

simulated building. This gives a measurable degree of error compared with analytical

models which are more opaque. Similarly, the simulation framework gives flexibility to

SEPM data requirements, allowing for feature engineering based on the available data,

rather than having to work to the data expectations of the original model designers.

Even models like RdSAP, which were designed to lower the data requirements compared

with the full SAP, expected practitioners to have some level of access to the property to

acquire the necessary input data [62].

4.3 Optimisation using Surrogate Energy Performance Mod-

els

It is often desirable, when performing building stock models, to perform an optimisation

as part of a decision model. This is the case for decisions made by the utility-based

agents discussed in Section 4.1, who are attempting to make decisions that optimise

their personal utility, as determined by the performance and other properties of a given

retrofit. Optimisation of a single building’s energy retrofit potential can be a computa-

tionally complex task, as discussed in Section 3.1. When attempting to optimise a whole
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Figure 4.3: Generic and high level overview of Optimisation using meta-heuristic opti-
misation loops with Surrogate Energy Performance Models.

building stock, the complexity increases at least linearly, making the computational bur-

den of the task significant. The use of SEPMs in optimisation, which is generically

described, at a high level, in Figure 4.3 allows for more rapid evaluation of potential

solutions, reducing the computational cost of optimisation significantly. As discussed in

Section 3.1, this method is still insufficiently fast to allow for large scale evaluation of

an entire building stock, with most related works optimising single buildings or small

stocks such as a neighbourhood.

The process of optimisation with a SEPM involves two key stages. The first stage was

outlined in Section 4.2 and involves the use of simulation software to prepare a data

set for the training of the SEPM. The second stage is the embedding of this SEPM

as an evaluation method inside a metaheuristic optimisation process. The process is

conceptually agnostic to the optimisation metaheuristic chosen, although given SEPM

based optimisation is designed to increase evaluation time, there will be greater bene-

fits in optimisation scenarios that require a larger number of function evaluations. A

background discussion of optimisation, including heuristic optimisation, can be found in

Section 2.3. The choice of optimisation method, its hyperparameters, and performance

will be discussed at the implementation stage, which can be found in Section 5.3.
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One drawback of using SEPM based optimisation methods is the introduction of error

between the simulation model and the SEPM. While this is the case for any form of

model, it may be exacerbated in optimisation if the errors are not evenly distributed, re-

sulting in over-representation of solutions in spaces that are more error prone. Consider,

for example, a SEPM that reports good accuracy on average, but is prone to overesti-

mate the energy savings of highly insulated window panels. This may not present as a

significant problem during SEPM training, as the average error is low and these panels

are rare in the data set of existing buildings. However, this could lead to a large number

of optimisation solutions containing these panels which, in a simulation based optimisa-

tion would not be common. This highlights the importance of examining not just the

average error of the SEPM but also performing analysis of the distribution of errors and

the sensitivity of the model to different input changes.

4.4 Surrogate Optimisation

The process of Surrogate Optimisation (SO), using a data set of near-optimal retrofit so-

lutions to create a predictor of retrofit solutions, is laid out generically in Figure 4.4. The

limited examples of this method found in the literature are laid out in Section 3.1.4. This

process is referred to in this work as surrogate optimisation due to the similarity with

the surrogate modelling technique which is expanded upon as part of its construction.

This can be seen by the entire subsumption of Figure 4.3 in the SO method overview,

as the SEPM based optimisation method is used to form the data set for SO training.

The model selection process here is likely to be dependent on the nature of the retrofit so-

lutions estimated. This research will consider both discrete and continuous formulations

of retrofit components, as both the materials used and the thickness of said materials are

to be selected by retrofit decision makers. As such, model selection will require the ability

to perform regression and classification predictions. This can be done by using separate

modelling techniques or by post-processing predictions. Binning can coerce continuous

values into discrete ones, while discrete values can already be expressed continuously.

The feature’s available for the SO model will be similar to those available in the SEPM,

given that the SEPM is used in the energy analysis performed in the prior optimisa-

tion stage. As was shown in Figure 4.1, However, the SO model also encapsulates the

retrofit decision model, and therefore the assumptions of agent rationality discussed in

Section 4.1. In the case of rational agents, whose objective is to maximise the NPV

of the investment decision, features of the investment scenario are, at the point of SO

training, either locked into the model or to be included as features. In the case of envi-
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Figure 4.4: Generic and high level overview of Surrogate Optimiser training process.

ronmentally conscious agents, model features will also include properties of the retrofit

decision agents and will include their marginal WTP for carbon reduction, as discussed

in Section 4.1.2.

When considering the purpose of the SO method, it is worth considering whether the

approach laid out thus far is sensible. Given we are dealing with agent decisions, a

reinforcement learning approach of the type considered in Section 2.2 would be more

appropriate. However, reinforcement learning focuses on sequential and bidirectional

interactions with a given environment. The process itself is not a replacement for op-

timisation techniques of the type discussed in Section 4.3 and would result in training

agents with a specific goal based on their characteristics, rather than a generalised pat-
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tern for how an entire population of agents would make decisions based on the rules

provided.

A methodological comparison can be drawn between SO and model based methods for

optimisation, discussed in Section 3.1.5. Both use similar tools: constructing a model of

an underlying solution space for the purpose of predicting near-optimal solution, there

are some differences. Model based methods are used as optimisation metaheuristics of the

type discussed in Section 2.3, used to generate approximations of a specific optimisation

problem to expedite the search for a near-optimal solution. In contrast, SO uses a

data set of a priori near-optimal solutions alongside features of the decision model the

optimisation depends upon, to predict solutions that real-world decision makers would

use. This allows for the rapid evaluation of the behaviour of heterogeneous agents which

would otherwise require individual optimisation procedures.

4.5 Building Data Set

One of the primary data sets used in this research pertained to 95,500 dwellings in the

city of Nottingham, UK. A GIS visualisation of the data set can be seen in Figure 4.5,

demonstrating the scale of the data, the location of buildings in physical space and the

archetype labels applied. The complete set of features in the building data set, with a

brief description of each, can be found in Section A.1 of the Appendix.

Some of the pre-processing stages required to create the database were performed prior

to this research by members of the research team, the details of which can be found

in Julian et al. (2019) [103]. These included archetype generation, dis-aggregation

and attribution of properties from the English Housing Survey (EHS) using stochastic

assignment from a cumulative density function. These were combined with processing

of physical attributes from OS map data.

4.5.1 Total area

The total area value, calculated by multiplying the footprint area by the number of

stories, will be a key summary statistic, particularly in the construction of the surrogate

energy performance model later. It is also a value with the most outliers detected in

Section 4.5.3, so we will examine the distribution of values in greater detail here. The

distribution of the data, which can be seen most clearly in Figure 4.7, is bi-modal with
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Figure 4.5: GIS visualisation of the building data set, with a small portion highlighted
to show archetype allocation.
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a long right tail, indicating two main dwelling size clusters as well as a small number of

very large dwellings. These large dwellings are likely to fall into either errors (buildings

that are incorrectly calculated due to imperfect labelling) or buildings out of scope

such as blocks of flats or large historical buildings. These will be discussed more in

Section 4.5.2. These anomalous or out of scope values account for some of the right tail,

although some can be accounted for by the limits on the left tail, since there is a hard

lower limit on properly size (which cannot be negative) but also a solid practical limit to

what can constitute a residential dwelling. The bi-modal data is also largely explained

when breaking the data down into the building archetypes which compose it, which

are generally uni-modal as shown in Figure 4.6. This also shows the importance of the

archetype distinctions, as when construction models of the heterogeneous population

of building types, we must ensure our models are able to account for these different

underlying distributions.

4.5.2 Data Cleaning

Some initial data cleaning was performed on the data set described up to this point.

There were broadly 3 main drivers to each cleaning operation that was carried out:

• Error correction

• Scope management

• Data transformations

When using data allocated from a CDF, the notion of error is somewhat interesting.

As values are statistically assigned, we may only expect them to be correct on average,

with errors cancelling but not actually incorrect. These assigned variables are also not

susceptible to outliers in the same sense that collected data may be, as any highly

divergent values are drawn from a defined CDF. However, some values in the data set,

particularly relating to building features or archetype categorisation, are more likely to

be errors that require removal. The most common errors found were due to buildings

that were categorised in a way that severely altered their features, such as assigning a

single building TOID to an entire row of terraced housing, giving it an infeasible size and

shape for a single dwelling. The inverse was also noted, with the accidental assignment

of residential building categories to TOID objects like bus shelters, which are too small

to conceivably be residential properties. These errors, lying at the extremes are easier

to identify with the methods discussed in Section 4.5.3.
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Figure 4.6: Histograms of Total Area stratified by building archetype.
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Some errors, which do not result in anomalous features, are significantly more difficult to

identify. For example, incorrectly labelling a terraced house as semi-detached. However,

these errors are likely to be less significant.

When it comes to scope management, there were more decisions to be made at the

data cleaning stage. While the scope had already been limited to residential properties

only, it was also decided to remove any flats and mixed-use dwellings from the data set

for the entire course of the research. The reasons for this decision fall into practical

and theoretical categories. From a practical perspective, there is no data available

for internal partitions within the blocks of flats which appear in the data set. This

cannot be accurately estimated from the available footprint data. The errors arising

from this uncertainty would compound given the higher level of thermal interaction

between flats compared with other dwelling types, due to an increased number of shared

surface interactions. When also considering the prominence of unheated communal areas

in this dwelling type, the level of uncertainty in the data was deemed too high for

the generalised model attempted. An additional, more theoretically driven reason for

omitting this dwelling type was a hypothesis that the decision making process was likely

to be different for this property type, with a larger number of short-term tenants as

well as single-owners in large blocks, the retrofit decision landscape was likely to be very

different and with a more corporate mindset focused with a greater focus on economies

of scale. While a worthwhile area of study, it exists outside of the household level scope

maintained throughout this work.

The data transformations relate to the pre-processing techniques that improve model

performance. The importance of these techniques depends on the model selected, and

the specific transformation or set of transformations used can be discovered during the

model tuning stage of a model creation process. As such, these will be discussed through-

out the thesis when relevant. They include techniques such as min-max normalisation,

standardisation, principle component analysis, and feature selection.

4.5.3 Standard score anomaly detection

zi =
xi − µ

σ
(4.5)

Equation 4.5: Standard score formula, where xi is the value of an observation, µ is the
mean and σ is the standard deviation.
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Figure 4.7: Histograms of Total Area with different outlier removal techniques.

The standard score, sometimes referred to as z-score, reports the number of standard

deviations that a data point lies from the mean, as shown in Equation 4.5. This is one

method of detecting outliers by creating a z-score threshold above points that will be

removed as anomalous. There is, however, a flaw in blindly applying this technique to

our data as certain building properties are drawn from different distributions depending

on the archetype. In our raw data, for example, the mean area of a terraced bungalow

is 58 m2 while large detached houses had a mean floor area of 246 m2. Both of these

archetype means differ significantly from the overall population mean of 99 m2. In fact,

if you apply a z-score elimination of outliers to the entire population, the upper threshold

value (with z <= 3) would be 213 m2, below the median value of large detached houses.

This would result in over half of this archetype being removed from the data set. As such,

we have evaluated data points based on a categorical z-score: adjusted for the attributes

of each building’s archetype. To see the impact of this adjustment, see Figure 4.7 which

compares histograms of total area with different elimination strategies.
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Figure 4.8: Results of polygon simplification algorithm on building osgb1000022745085.

4.5.4 Polygon simplification

A process of simplification was performed on the polygons at the pre-processing stage.

Given that buildings are defined in 2 dimensional polygons, certain architectural detail-

ing, such as curved walls, are represented in the original data set with a large number

of small polygons to create the curve. This is inefficient for simulation, data storage,

and IDF processing. These tiny polygons also cause issues for the placement of glazed

surfaces and any derived values such as average wall size.

The GRASS vector module v.generalize [159] was used to simplify shapefiles, using the

Douglas-Peucker algorithm [160] with a tolerance value of 0.5m. This parameter value

was chosen to result in minimal changes whilst dealing with the more unusual buildings,

resulting in a relatively small number of polygon changes (4.1%). The effect of this

simplification can be seen in Figure 4.8, which shows an example of a larger and more

complex dwelling that is simplified without changing the fundamental structure. In

this case, the footprint polygon was reduced from 117 to 26 edges. This is an extreme

example of simplification, with a mean edge reduction of 9.2 in the subset of simplified

buildings.
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4.6 Toolsets

4.6.1 EnergyPlus Framework

As discussed in Section 2.3.4, the energy simulation software used in this work is Ener-

gyPlus. In order to run an EnergyPlus simulation, the software must be provided with

three files. The EnergyPlus Weather (EPW) file, the Input Data Dictionary (IDD), and

the Input Data File (IDF).

The first data file required for EnergyPlus is the IDD, which defines the components

that can be used in the software. This file is used in the development and extension of

EnergyPlus and was not altered in the process of this research.

The EPW file contains the necessary meteorological data to simulate the energy per-

formance of the building. The data was sourced from the Met Office weather centre

located in Watnall (station id 03354), approximately 10 kilometres from the centre of

Nottingham [161] and generated using the UKCP09 tool [162]. Using a weather station

outside of the centre is reasonable as the scope of buildings included in the data set

includes many dwellings from the suburbs. Given the omission of flats from the sample

set (which are more common properties in the city centre), this suburban weather data

is likely to correspond more closely to the buildings simulated than central data.

The final file used in running EnergyPlus, the Input Data File (IDF), defines all of the

attributes of the building itself, as well as simulation settings and heating schedules. Ob-

jects defined in the IDF are generally named, with the name acting as a unique identifier

when referenced elsewhere. IDF manipulation was the primary method of specifying

and updating buildings to be simulated in this research. The python module eppy was

used to manipulate the IDFs pragmatically throughout this work [163]. Recently, a spe-

cialised open source tool has been released that provides an interface to perform energy

simulations pragmatically [78]. This platform uses a similar method of IDF manipula-

tion to the one used in this work, also using the eppy library to configure simulation

settings. However, it was not available publicly when this research was underway.

A wall or roof is defined in the IDF as a building surface. Building Surfaces are defined

by their construction (the layers or materials that make them up) as well as their position

both in terms of physical coordinates and thermal zone membership. These relationships,

and the relevant properties making them up, are shown in Figure 4.9. Surfaces are

modelled like planes, defined by their vertices coordinates, with the thickness of the
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Figure 4.9: Attributes and relationships in EnergyPlus building surfaces.

third dimension derived from the properties of the construction making it up, which is

further determined by the layer and material definitions in a hierarchical definition of

properties. This is convenient for considering retrofits, as a retrofit can be performed on

the model by substituting the construction name for an alternate construction without

manipulating the physical dimensions of the surface.

Thermal zones are key to the granularity of the simulation process, as they are modelled

as homogeneous with temperature loads averaged across them. When performing this

work, thermal zones were assigned to each floor in a structure. This has been shown

to provide a reasonable level of simulation accuracy [164] and will, for most households,

approximate the living and sleeping zones used in the BREDEN method [60]. Physical

attributes of a building, such as walls, floors, and ceilings, are assigned a thermal zone

based on their geographic location. Thermal zones are also managed by their own heating

system and can be assigned a schedule and setpoint.

Heating schedules represent the periods of time when a given heating system is active

in a thermal zone. These are defined in the IDF and can be defined in terms of time,

day, month and year. The heating setpoint defines the target temperature of a given

zone and, while the schedule is active, the heating components in the zone will target

it. The heating schedules and setpoints can be considered the only human behaviour

modelled in the energy simulation stage of this research. While there are methods of

integrating more sophisticated human behaviour modelling at this stage, such as window

controlling behaviour, they are omitted from the scope of this work. This is partly a

simplification, and partly because the objective function, heating energy demand, is

likely to be minimally affected by window controlling behaviour.

The process of constructing IDF templates from the building data set, described in

Section 4.5, required extrapolation. The two dimensional building footprints from the

data set were projected into three dimensions using the eave and ridge heights. These

structures were then divided internally using the number of floors, each of which was

assigned a thermal zone. With a single thermal zone per floor, internal walls (the
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Figure 4.10: Sequence diagram showing a high level description of simulation of a single
dwelling.

dimensions of which are unknown) were removed from the model scope. Windows were

assigned to the building in accordance with the glazing ratio of a given side of the

dwelling. Party walls of terrace houses are assumed adiabatic, based on the principle

that temperature differences will be small and unknown when simulating individually.

This also avoids any solar gains incorrectly attributed to the wall, precluding the need

for adding shading objects to the simulation scene.

Control software, written in Python, was used to run the EnergyPlus simulation. The

stages of energy evaluation for a non-retrofitted building are shown in 4.10. Later, when

retrofits are performed, the base building IDF is altered in line with a given retrofit.

The sampling and selection of individual retrofits, as well as the components within the

scope to be retrofit, will be discussed when introducing the SEPM data set generation

process in Chapter 5.

In order to efficiently construct IDFs for given buildings, a template containing the entire

set of construction materials required in both the initial building stock and in the retrofit

building versions was constructed. This allows the construction of surfaces using only

the construction name required for a given value. The templates are filled using the

controller, which performs the necessary extrapolations, geometric transformations, and

simulation settings changes required to create a valid input file.
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After the EnergyPlus simulation has been run, a set of output files are generated, re-

porting both on the results of the simulation and some metadata about the simulation

process. Given the objective value used to train the SEPM will be annual heating en-

ergy demand, this value will be extracted and stored from simulation runs. The wall

clock time, in seconds, taken to run the simulation will also be recorded in order to

allow for speed comparisons and to allow some verification that simulations are run

correctly. When simulations failed, usually due to an issue with the IDF, error reports

are generated by EnergyPlus. Throughout the process of the research, all identified er-

rors generated at this stage were corrected and the simulations re-run to ensure that no

systematic bias in generated results was carried forward to the SEPM training.

Simulations were performed atomically, each considering a potential state of a single

domestic dwelling, and thus excluding any shading effects, deemed reasonable given the

low-rise nature of the data set used (average eave height 5.50m). As such, several Ener-

gyPlus simulations can be run in parallel, with a single physical core assigned to each.

Simulations were run using shell commands issued from the Python based supervisor

program. Given the independent nature of the simulations, the output of the system

grows linearly with the number of computer cores assigned, provided sufficient memory

is available. System operations such as disk access were dominated by the simulation

time for a given building, and so are not blocking.

4.6.2 Software Libraries

The primary development language used in this research was Python, as it benefits from a

wide ecosystem of libraries to perform numerical and ML operations. There is also some

evidence that python results in faster development time [165, 166]. Numerical operations

and data pre-processing were performed using the Numpy and Pandas libraries. While

Python is sometimes criticised for slow performance, Numpy uses an implementation

in C with static typing and efficient memory management to perform operations up to

120 times faster than the equivalent speed in Python, rendering performance differences

minimal compared with other languages [167]. This allows the developer to benefit from

the features and ecosystem of Python while gaining the speed and performance benefits of

lower level languages. Pandas is built on top of the Numpy data structures and provides

additional functionality to allow convenient storage and processing of multidimensional

and labelled data of heterogeneous types [168].

The Python ecosystem also includes a wide range of actively developed ML libraries.

Keras and Tensorflow libraries were used for neural network formation, as well as some
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pre-processing tasks. The Keras Tuner library was used for hyperparameter tuning and

model selection tasks. The Sci-kit learn library was used for other modelling tools,

regression analysis and performance evaluation. The Matplotlib and Seaborn libraries

were used for graphical visualisation.

As well as using Eppy [163] for Energyplus transformations, shapely [169] and geopandas

[170] were used for geospatial transformations and data type support. Some visualisa-

tions were performed in qGIS [171] was used for some visualisation tasks, as well as for

polygon simplification during pre-processing.

While Python and its ecosystem were used predominantly in this research, other statistics-

focused libraries such as R and MATLAB would have been similarly suitable, with small

advantages and disadvantages. The small speed and efficiency differences that may exist

between software choices will be insignificant in the scale of speed differences achieved

by the use of surrogate modelling itself, compared with the traditional approaches, and

is therefore insignificant to the research.



Chapter 5

Modelling Purely Rational

Agents Using Single-Objective

Surrogate Optimisation

“He who would learn to fly one

day must first learn to stand and

walk and run and climb and

dance; one cannot fly into

flying.”

Friedrich Nietzsche

This chapter will lay out the implementation and results of constructing a retrofit adop-

tion model using a Surrogate Optimiser (SO) for rational, self-interested agents. The

target system of the model will be the transformation, over time, of the residential build-

ing stock of the city of Nottingham. The construction of an initial Surrogate Energy

Performance Model (SEPM) for energy demand evaluation is discussed and evaluated

in Section 5.2. The process of optimisation using the SEPM combined with a Genetic

Algorithm (GA) is laid out in 5.3. The optimisation data set is used to train the SO in

Section 5.4, with the performance analysed against an unseen test set. Section 5.5 then

applies the SO to the remaining test set and evaluates the quality and diversity of the

predictions made before introducing a simple agent-based retrofit adoption model to see

how the building stock may change over time. Section 5.6 will close with some points of

discussion relating to the findings of the chapter and the utility of the method at this

86
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stage.

The initial model scope discussed in this chapter will assume rational and self-interested

agents. The assumptions and methodological justifications of investigating agents of

this type were discussed in Section 4.1. The assumption of self-interest in agents will be

relaxed in Chapter 6 when extending the principle to multiple objectives.

5.1 Model Scope

When discussing model scope it is also worth considering the sub-components of the

entire analysis, as there is a degree of modality among sub-components that make up

the entire retrofit adoption model which is run in Section 5.5. However, when one

sub-component is constructed from another, for example, when simulation models are

used to train the SEPM, the assumptions, simplifications, and level of detail that make

up the initial component are inherited. The interaction between these scopes is shown

in Figure 5.1, which shows the outer scope comprised of the retrofit adoption model

subsuming the attributes of other components used. This is demonstrated in Figure 5.2

which shows the stages of the process that must be revisited should a change in modelling

scenario occur after the final analysis. The two key decision points occur during the

simulation of energy demand (stage 2 in the diagram) at which point many of the

assumptions of physical properties relating to the simulations are fixed. The second

decision point occurs when performing the optimisation process, referred to as stage 4

in Figure 5.2.

Examples of assumptions or model inputs fixed after simulation stage:

• Retrofit options and their properties (e.g. insulation types, technology, thermostat

types)

• Behavioural model for households (e.g. heating setpoints, heating schedules, win-

dow opening models)

• The output metric (e.g. heating demand, cooling demand, appliance models)

Examples of assumptions or model inputs fixed after Optimisation stage:

• Objective Values For agents (e.g. financial, environmental, multi-objective)
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• Fuel price model

• Costs of different retrofit solutions (e.g. materials, labour, maintenance)

• Interest and discounting rates

These input parameters, modelling decisions, and assumptions become fixed at the point

of evaluation (either in the simulation or optimisation stages). This holds for any encom-

passing scope that those output data are used in. This is to say that these exogenous vari-

ables become fixed assumptions for each given scenario after the simulation/optimisation

stage in which they are used. While scenario analysis can be performed on these input

variables/settings, or the later modelling stages be adjusted to create transparency of

these inputs, they cannot be altered after the relevant stage without requiring recalcu-

lation and running of all later stages. These model parameters will be described for the

simulation and optimisation procedures in Section 5.2 and Section 5.3 respectively.

Figure 5.1: Venn Diagram showing the interaction between the scope and assumptions
of sub-components.
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Figure 5.2: High level description of the method.

5.2 Surrogate Energy Performance Model Training

As discussed in 4.2, a SEPM will be used for energy evaluation in this research. In

this section, the SEPM training process will be described, then the results presented.

Given the objective value is the annual heating energy demand, expressed in gigajoules

(GJ), a regression model is required for the analysis. While linear regression models

were commonly used for this task in the past, recently Artificial Neural Networks (ANN)

have become popular for the increased flexibility they offer, as discussed in Section 3.1.2.

The process of training the ANN-based SEPM used in this study, including sampling,

parameter tuning and evaluation are discussed in this section.

5.2.1 Retrofit choice selection

In order to analyse the retrofit decisions, a possible set of retrofit options must be con-

sidered. While there is often a focus on newer technologies in some research, a consensus

among experts suggests that leading-edge technologies are less effective than simple phys-

ical retrofits such as wall and roof insulation [122]. When only considering heating energy

demand, appliance modelling can also be unnecessary, as waste heat from appliances can

be deducted from heating demand during scheduled heating periods [94]. As such, the

retrofit choices in this initial exploration of the SO methodology will be kept limited to

different physical methods, excluding smart appliances, automated shading, and other

technological solutions that are still in relative infancy. This will include internal wall

insulation, external wall insulation (such as cladding), window glazing thickness, and
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loft insulation. Various materials and thicknesses of these materials will be considered.

The retrofit options chosen are presented in Table 5.1. The insulation thickness ranges

were chosen to include the optimal thicknesses of the chosen materials under different

conditions found across the retrofit literature [172, 173]. The thickness ranges were kept

wide to account for the environmental benefits, which may exceed the economic ones

[174]. This is likely to be considered more by the environmentally-conscious agents mod-

elled in Chapter 6. Details of the physical embodied carbon properties of the insulation

material included are presented in Table 5.2.

The heating system of dwellings will be considered to allow for both gas-based central

heating systems and electric convection heaters. These are the two most common heat

sources, representing 86% and 8% of national dwellings, respectively [175]. Retrofitting

of either of these systems will be included within the scope of this research. While it is

expected that NPV-optimising consumers would only consider retrofitting a gas central

heating system, the inverse retrofit will also be considered. In a decarbonising grid

scenario, it is possible that extremely emissions-sensitive households may consider an

electrical retrofit from gas heating, as under the right scenario settings this may reduce

net emissions.

The raw number of retrofit combinations possible for this optimisation problem is 18,000,000.

This is a relatively small scale combinatorial optimisation problem when performed in

isolation, however, each dwelling has unique characteristics which make them distinct

problems. These asymmetries are reflected not just in the size and geometry of the

dwellings but also in the existing fabric features (such as partially insulated buildings)

which result in different objective function values. Households’ carbon preferences will

also play a role in altering objective function outcomes when environmentally conscious

agents are considered. It is also worth noting that each solution evaluation requires

an energy performance evaluation for a given building state, requiring the use of either

energy simulation or a trained SEPM.

Component Gene Name Possible Values

External Wall Insulation Material EWI mat Uninsulated, XPS, EPS, PIR
Internal Wall Insulation Material IWI mat Uninsulated, XPS, EPS, PIR
External Wall Insulation Thickness EWI thick 30mm - 150mm in increments of 5mm
Internal Wall Insulation Thickness IWI thick 30mm - 150 mm in increments of 5mm
Heating Method Heating Electric, Gas Central Heating
Roof Insulation Material Roof Mat None, Mineral Wool
Roof Insulation Thickness Roof thick 50mm - 400mm in increments of 25mm
Glazing Type Glazing Single Glazing, Double Glazing, Triple Glazing

Table 5.1: Description of possible retrofit components.



CHAPTER 5. SURROGATE OPTIMISATION: PURELY RATIONAL AGENTS 91

Material Name
Thermal Conductivity

(W/mK)
Density
(kg/mˆ3)

Emboddied Emissions
(kgC02e/mˆ3)

Sources

Expanded Polystyrene
(EPS)

0.029 29 3.29 [176], [177]

Extruded Polystyrene
(XPS)

0.035 24 3.43 [176], [177]

Polyisocyanurate
(PIR)

0.025 24 5.4 [176], [178]

Mineral Wool 0.04 20 1.12 [176], [177]

Table 5.2: Insulation material properties.

5.2.2 Data Set Generation Using EnergyPlus

The first stage of SEPM training requires the generation of a data set of energy perfor-

mance results using the higher fidelity simulation technique, in this case, EnergyPlus. A

detailed description of how EnergyPlus templates were generated and run can be found

in Section 4.6.1, and a high level description of this data generation process is shown in

Figure 5.3.

A random sampling method, with replacement, was used to obtain buildings from the

data set to ensure a representative sample was selected. Replacement was used as the

sample building can be retrofit many different ways and so multiple instances of the same

building are not redundant in increasing sample diversity. An alternative method, Latin

hyper-cube sampling, was also implemented. This form of stratified sampling subdivides

the population into equally probable subsets before selecting a single random point from

each subset [179]. However, the requirement for a known sample size and the need for

an additional parameter was found prohibitive during model development. Given the

relatively large sample size used and the relatively dense population data, naive random

sampling was deemed sufficient. The final training set sample size was determined by

the model performance gains which were beginning to diminish significantly at this size,

as discussed in Section 5.2.4.

After the selection of a building from the data set, a random set of retrofit solutions

were selected and applied. Each retrofit was selected independently for each building

to ensure a diverse and representative set. Retrofits were applied by first constructing

an EnergyPlus IDF of the building, then adjusting the appropriate physical components

as discussed in Section 4.6.1. Simulations were then run and the energy demand was

recorded. Verification was performed by monitoring the EnergyPlus output error files
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Figure 5.3: High level description of the EnergyPlus data generation stage.

(eplusout.err), with the detection of any errors with a severity rating above warning

resulting in program termination and debugging.

5.2.3 EnergyPlus Simulation Results

The purpose of running the EnergyPlus simulations is to generate a data set for SEPM

training. The validity of these simulations, which is to say the closeness of the outcomes

of the models to the target systems they represent, is of relatively minor importance for

the methodological study provided the complexity of the simulation system it presents.
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This is especially true as both the physical simulation process itself and the generation of

SEPMs from its results are well established as valid in the literature (See Section 3.1.1.

As such, a simple statistical validation technique was used to ensure the distribution of

simulation results broadly matched the distribution of heating demand values found for

alternative sources.

The median national space heating energy consumption in the UK was reported at

10,118 kWh per household in 2019, an equivalent of 107 kWh per m2 [180]. These

average values are slightly higher than the simulated, non-retrofitted simulation values

of the urban building stock sample of 10,030.8 kWh per household and 103.8 kWh per

m2. Given the national figures were generated from a nationwide sampling methodology

rather than a bottom-up simulation methodology, this variation in median outcomes of

approximately 1% and 3% in per dwelling and per unit area energy usage was deemed to

be within an acceptable margin. The distribution of heating energy demand values is in

line with the most recent whole stock energy distribution data found, although the data

is from an older 2009 survey in which the median energy consumption was higher [181].

The distribution of existing stock annual heating energy demand is shown in Figure 5.4.

Figure 5.4: Distribution of simulated household space heating energy demand
(kWh/year).
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5.2.4 Surrogate Energy Performance Model Training

Figure 5.5: SEPM training process using the energy performance data set.

5.2.5 Model Hyperparameters

The model training parameters were tuned using a grid search method, with 20 repe-

titions per settings combination, scored using the mean r2. The grid settings can be

found in Table 5.4. The selection of model hyperparameters for the grid search was

taken and adapted from ANN-based SEPMs found in related works, which are discussed

in Section 3.1.2. Some of these were adapted to match the shape of the training data

used. It should be noted that while the ANN was tuned, the performance of the model

was only minimally affected by the hyperparameter section process, and although most

parameters produced a statistically significant difference in model performance with the

samples used, the absolute difference in performance is minimal due to the high perfor-

mance of this model. This is likely due to the relatively large sample size combined with

the inclusion of grid settings which had been found to perform well in related works. An

Ordinary Least Squares (OLS) analysis on the Root Mean Square Error (RMSE) of the

sample of trained models is shown in Table 5.3.
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Dep. Variable: rmse R-squared: 0.133
Model: OLS Adj. R-squared: 0.123
Method: Least Squares F-statistic: 12.68
Date: Fri, 26 Nov 2021 Prob (F-statistic): 1.79e-11
Time: 07:06:30 Log-Likelihood: -50.149
No. Observations: 418 AIC: 112.3
Df Residuals: 412 BIC: 136.5
Df Model: 5

coef std err t P> |t| [0.025 0.975]

const 1.3714 0.028 49.271 0.000 1.317 1.426
network [128, 64, 32] -0.1194 0.041 -2.902 0.004 -0.200 -0.039
network [16] 0.1648 0.041 4.037 0.000 0.085 0.245
batch size 8 -0.1268 0.038 -3.343 0.001 -0.201 -0.052
batch size 16 -0.1876 0.038 -4.945 0.000 -0.262 -0.113
batch size 32 -0.1958 0.038 -5.163 0.000 -0.270 -0.121

Omnibus: 269.175 Durbin-Watson: 2.171
Prob(Omnibus): 0.000 Jarque-Bera (JB): 2945.978
Skew: 2.629 Prob(JB): 0.00
Kurtosis: 14.895 Cond. No. 4.85

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Table 5.3: Results of OLS analysis on parameter sweep of SEPM model after iterative
removing statistically insignificant effects (p¡0.05).

The loss function, used to evaluate the model during training, was least squared errors

(L2) as this is preferred for models not containing a large number of outliers. The

Rectified Linear Unit (ReLU) activation function was used on all layers to provide the

desired non-linearity in the neural network training. The Adam optimisation function

was selected as a fast, out of the box training function, precluding the requirement

for manual learning rate selection [182]. These fixed settings were selected as sensible

defaults to reduce the parameter tuning space and correspond to standard choices in

the literature for ANN-based SEPMs [73, 74, 82]. To determine the number of desired

training epochs, the validation loss was measured against the training loss to ensure no

major divergence. As can be seen in Figure 5.6, there is little evidence of over-fitting with

training and validation loss converging and the variance of validation loss diminishing

approximately 500 epochs. As such, the maximum training epochs was set to 1,000,

with an early stopping procedure implemented. Training was automatically stopped if

validation loss stalled below 0.0001 over a patience of 50 epochs.
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The selection of network topologies for grid search was based on adapting the successful

topologies used in related works (see Section 3.1.2) and adapted to input parameter size

[183, 81, 96, 184]. Both the number of layers and the number of nodes in each layer

were altered to test for changes in model performance. The best performing network

topology comprised three hidden layers of decreasing size (128, 64, 32). The increase in

performance compared with other topologies was small (-0.12 RMSE) but statistically

significant at the 1% level. In comparison, the worst performing topology was a single

layer of 16 nodes, indicating that the additional network nodes and layers were useful to

model training.

The pre-processing methods selected for grid search were normalisation, standardisation

and logarithmic transformation. The purpose of pre-processing continuous input vari-

ables is to remove scale effects. Having some inputs, such as total area, with values of

several hundred, which other variables such as glazing ration (expressed as decimals)

can lead to inefficient training and a loss of accuracy. This scaling effect can be miti-

gated by pre-processing methods. Normalisation forces all values into a scale between

zero and one using min-max scaling, standardisation converts values in a sample to be

expressed in terms of the number of standard deviations that value lies from the mean

of the sample, and logarithmic transformation places input variables on a logarithmic

scale, reducing the impact of scale without completely removing it. The choice between

these pre-processing methods was statistically insignificant during the parameter tuning

grid search.

Setting Grid Values

Model Type Regression

Pre-proccessing Normalisation, Logarithmic, Standardisation

1/ 16, 32, 64
Hidden Layers 2/ [64, 32], [32, 64]

3/ [64,32, 16], [128, 64, 32], [32, 64, 128]

Activation Function ReLU

Loss Function L2 Loss

Batch Size 16, 32, 64

Training Function Adam

Table 5.4: Description of SEPM hyperparameters. Grid search parameters are separated
by commas.
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5.2.6 Sample Size

Given the SEPM training set is generated using a simulation procedure, the upper limit

for sample generation is bound by the computational time for simulation and model

training, rather than real-world data constraints. As such, the effect of training set size

on model performance was tested to determine an appropriate trade-off between model

performance and computational time. The sample size was incremented in small inter-

vals of 500 between 0 and 10,000, after which it was incremented in intervals of 5,000 up

to a total of 140,000. Model training was repeated 20 times per sample size, for a total

of 920 evaluated models. The effect of sample size on the model’s r2 value are shown

in Figure 5.7. An assessment of the performance data revealed a diminishing return on

sample size, with even small training sets of 5,000 producing a mean r2 value of 0.988,

increasing to 0.995 for the largest sample sizes. The diminishing nature of the perfor-

mance returned was demonstrated visually by fitting a trend line of the form y log(x)

through the points, with the sample sizes stratified to those below 5,000 and those above

to distinguish the effect between small and very large samples. A Pearson correlation

coefficient of 0.416 (p<0.01) confirmed a positive correlation between sample size and

model performance across the range. This held when smaller sample sizes (n<20,000)

were excluded from the sample, with a correlation coefficient of 0.361 (p<0.01), showing

that the performance continued to increase, albeit at a decreased rate, across the range.

Given the positive but diminishing returns to sample sizes, a large sample of 140,000

was used for models in later stages of the research, while smaller samples sizes were used

in parameter tuning experiments in which model training time represented significant

computational cost.

Figure 5.6: The effect of the number of training epochs on training and validation loss.
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Figure 5.7: The effect of training set size on SEPM performance. Trend line fitted using
y log(x) linear regression.

5.2.7 Feature Selection

Alongside the candidate features from the initial data set, some aggregate geometric

features are derived from the EnergyPlus models. These included the front, back and side

glazing ratios of the building, the floor area, the number of stories, and the orientation of

the property. Household details such as the temperature setpoint and heating schedule

were also included as key behavioural variables, which are known to have a significant

impact on energy demand [183]. Details about common SEPM features and their relative

significance can be found in the related works of Section 3.1.2

A backwards feature selection process was performed, with features eliminated from the

model systematically and the model retrained. A sample of 50 models was trained for

each removed variable, and a Student’s t-test was performed on the RMSE to determine

if the model performed worse with a given variable removed. The results of the final

composite features are shown in Table 5.5. Given they are required for the optimisation

process and they represent a large number of important features, the inputs correspond-

ing to model retrofits themselves were excluded from the backwards feature selection

process. The selected features are generally related to the physical properties of the

building, with the most significant physical feature being the total area of the building,

followed by the wall area and wall type. The least practically significant physical feature

in terms of additional error was the glazing area of the building. This could be due
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to the relatively low glazing ratio of the urban domestic stock compared with retail or

commercial buildings where glazed façades are more common.

Removed Attribute Mean RMSE (GJ) Mean r2 Mean Absolute Error (GJ)

None 1.162693 0.990426 0.690875
GlazeArea 1.204369 0.989328 0.719256
rTYPOLOGY 1.213802 0.989360 0.728794
Storeys 1.217752 0.989376 0.725345
BHA relh2 1.230255 0.988999 0.704932
crAGE 1.235229 0.988668 0.740531
crTYPE 1.287131 0.988020 0.764233
WType 1.355030 0.987092 0.797539
WallArea 1.446104 0.984717 0.864996
TotalArea 2.920386 0.939051 1.807114

Table 5.5: Results of backwards feature selection during SEPM training shows remaining
features have statistically significant effect on model RMSE when removed.

5.2.8 SEPM Results

The final model, which will be used going forward at the optimisation stage, was ini-

tialised with random weights and was trained using a batch size of 32 for 247 epochs

before being stopped automatically due to a stalling validation loss. The model was

trained using 70% of the data, with the remaining 30% split evenly between validation

and test sets from an entire sample size of 140,000. The RMSE was 0.864 GJ while the

adjusted r2 was 0.995. The mean absolute percentage error of the trained model when

applied to the test data was 1.59%. These metrics indicate a well performing model in

aggregate. A scatter plot showing the simulated annual energy use against the SEPM

prediction is shown in Figure 5.8, demonstrating relatively few outliers. The slight fan-

ning out of values indicates an increase in the magnitude and variance in error for higher

demand buildings, although this effect is not large.

An analysis of the SEPM residuals indicated that they were normally distributed. This

can be seen in Figure 5.9 and was confirmed using a Shapiro-Wilk test (p < 0.01). The

distribution of errors is important for the optimisation process, as a biased SEPM may

lead to, for example, overestimation of non-retrofitted building energy demand which

would lead to overestimation of retrofit benefits. As such, the errors of the individual

retrofit solutions were analysed and can be seen for the insulation materials in Figure 5.10

and for the different thicknesses in 5.11. There is no indication that the magnitude or
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distribution of errors varied across the range of possible retrofit solutions, allowing the

model to be deployed in performance analysis of the retrofit measures modelled.

Figure 5.8: Scatter plot of simulated annual heating demand against the SEPM predic-
tions of the test set.

Figure 5.9: Histogram of SEPM test set residuals, showing a normal distribution.
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Figure 5.10: Box plot of the retrofit insulation materials impact on the SEPM residuals,
showing no significant heteroskedasticity.
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Figure 5.11: Box plot of the retrofit insulation thickness impact on the SEPM residuals,
showing no significant heteroskedasticity.
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5.3 Single-Objective Optimisation using a Genetic Algo-

rithm

The methodology of optimisation using SEPMs is discussed in Section 4.3, with related

work found in Section 3.1. A GA was used to obtain the required set of near-optimal

solutions.

5.3.1 Candidate Evaluation

5.3.1.a Agent Design

The objective function used for the self-interested agents, the NPV of the investments,

can be found in Equation 5.1. The decision model for agents of this type, given the

assumptions laid out in Section 4.1, is quite simple. First, WHRSs for the dwelling

are optimised with respect to NPV. If the NPV-maximising solution has a positive

NPV, then the agent is better off installing the retrofit than not. This decision model is

slightly different to the full retrofit adoption model, as these agents have already decided

to evaluate possible retrofit solutions. The full retrofit adoption model will consider the

rate of solution evaluation over time, as well as account for triggers and constraints that

cause or prevent the installation of a retrofit by different households.

NPV = C0 −
n∑

t=0

Rt

(1 + i)t
(5.1)

Equation 5.1: NPV for an investment of C0, returns of R at time t and a discount rate
of i.

As a metric of evaluation used by the rational and self-interested agents considered,

NPV is quite simple in principle. However, the process of evaluating candidate solutions

requires several stages of calculation. A description of the evaluation process, including

the parameters of the relevant models, is shown in Figure 5.12. The SEPM is initially

called to ascertain the baseline energy demands for a given dwelling. The model is then

called once per candidate evaluation, using the candidate solution building properties,

to determine the change in energy demand compared with the initial building state. The

savings and cost models, which are outlined below, then assess the initial and ongoing

financial information required to calculate the NPV used to score solutions.
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Figure 5.12: Description of a candidate solution’s NPV calculation including exogenous
variables.

5.3.1.b Financial Cost Model

The installation cost of retrofits was calculated based on the intervention chosen. The

cost model implemented decomposed retrofit costs into material and labour. Insulation

was costed on a cost per m2 rate, while glazing and gas boilers were costed on a per unit

basis. Material costs were sourced using a range of commercial material providers with

some interpolation where a material thickness was not available from a given supplier

[185, 186, 187, 188]. Full retrofit costing tables are laid out in Section A.2.1 of the

Appendix.

Costs are calculated for each component individually and summed to obtain the total

cost, without accounting for possible economies of installation scale (e.g. from simulta-

neous retrofit of a row of terraced housing). This is justified given the household scope

of the adoption model, excluding housing associations and city councils that are able

to access such economies. When interviewed by researchers for the department of busi-

ness, energy and industrial strategy, installers reported no significant scale economies in
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domestic retrofits for glazing, wall or boiler retrofits [1].

Installation costs are also modelled as averages per m2 for a given material type of

thickness or per unit for glazing/boiler components. These averages attempt to capture,

in the labour component, additional confounding cost factors such as detailing require-

ments or reparation of thermal bridges created. The costing model is designed to be

modular, allowing for more granular costing models should more granular building data

become available, or if they are required for a certain use case. The inputs can also be

considered parameters instead of fixed values, allowing for analysis based on forecast

cost scenarios.

Retrofit
Type

Material
Name

Labour
Cost

Model Mat. Cost Validation Cost Validation Loss
Min Max Min Mid Max Min Mid Max

EWI XPS 100 114.50 127.88 116 148 180 1.50 -26.81 52.12
EWI EPS 100 111.67 120 116 148 180 4.33 -32.17 60
EWI PIR 100 112.99 120.58 116 148 180 3.01 -31.22 59.42
IWI XPS 85 96.67 105 95 117.5 140 -1.67 -16.67 35
IWI EPS 85 97.99 105.58 95 117.5 140 -2.99 -15.72 34.42
IWI PIR 85 97.99 105.58 95 117.5 140 -2.99 -15.72 34.42
Roof Mineral Wool 30 33.26 46.09 20 30 40 -13.26 9.67 -6.09
Heating Gas Heating 3,000 3,000 3,000 2700 3250 3,800 -300 -250 800
Glazing Single N/A N/A N/A N/A N/A N/A N/A N/A N/A
Glazing Double 50 375 375 300 475 650 -75 -100 275
Glazing Triple 50 475 475 300 475 650 -175 0 175

Table 5.6: Validation source [1]. Values are in GBP (£) per m2 for insulation, per
window for glazing, and per dwelling for heating.

The financial costs model was validated against the costs assumptions laid out by the

retrofit cost report from the Department of Business, Energy and Industrial Strategy

[1]. It was decided to use a labour-and-materials based cost model, instead of relying

on externally aggregated figures, to give the modeller additional control over model

parameters. This allows for scenario analysis such as a labour shortage or material

subsidies for the purposes of a retrofit that would not be possible using scaled aggregates.

The results of the validation are shown in 5.6, demonstrating that the model provided

reasonable estimates for the lower to mid-tier cost estimates but performed poorly in

capturing the high-end of the scale. This is likely due to the survey-based methodology

used in the aggregate cost reports, which is likely to be skewed at the extremes due

to anomalous features in a minority of dwellings. This is shown by the significant cost

variance present in the survey reports and acknowledged in the methodological notes.
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5.3.1.c Financial Savings Model

The financial savings of the retrofits considered are derived from either energy savings,

which result in reduced fuel consumption, or a change in fuel source from a more ex-

pensive to a cheaper supply. The NPV of savings (S) in a dual fuel dwelling over the

lifecycle of a retrofit can be calculated as shown in Equation 5.2, with fet representing

the reduction in the demand for electricity at time t (with t = 0 representing the cur-

rent year), per the projected price per unit of electricity at time t. fg and pg similarly

represent the fall in gas demand as a result of the retrofit, and the projected price of gas

at time t.

S =
N∑
t=0

fetpet + fgtpgt
(1 + r)t

(5.2)

Equation 5.2: NPV of Energy Savings over N years with a discount rate of r. The price
of electricity and gas in year t given as pet and pgt. The change in demand (for year t)
of electricity and gas as a result of the retrofit as fet and fgt.

Variable i represents the discount rate. This rate was set to approximate the risk-free

rate of return in the UK, with 0.5% used in baseline scenarios. While historically this

has been above 2% [189], recent yields have plateaued to below 1% [190]. The exact

discounting rate used would depend on the interests of the modeller and the framing

desired. Risk-free rates of return were used to model relatively rational agents acting in

a liquid economy. If the modeller is dealing with highly risk-averse populations or in an

economy with low liquidity, such as after the 2008 financial crisis, a higher discounting

rate may be considered. It would also be possible to apply heterogeneous discounting

rates for different agents based on their preferences. However, this is considered outside

of the scope of this research as the data is unavailable and the option does not relate to

the research question at hand.

Fuel prices were sourced from the BRE group, the division responsible for the SAP

methodology used across government departments [191]1. However, given that only

current fuel prices are provided, a method of determining future fuel prices is both

necessary and desirable for the analysis of the financial performance of a given energy-

saving retrofit. In this implementation, an inflation rate of 3% was applied annually

1The rdSAP energy prices from January 2020 were used for the majority of this research. However,
rdSAP values have not significantly changed above inflation over the period of study.
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for fuel prices to approximately follow the recent SAP price trends. However, this

approach is exogenous and more sophisticated fuel pricing models could easily be applied

if necessary. The modular fuel price model could also allow for extreme scenarios such

as a carbon tax which, under a decarbonising electricity grid, may result in the costs of

electricity falling below gas in some cases.

5.3.2 Genetic Algorithm Design

A Genetic Algorithm (GA) was used for the optimisation procedure in this work. As

discussed in Sections 3.1 and 3.2.3, GAs are a popular and robust choice for problems in

these domains and have commonly been combined with SEPMs for evaluation. The op-

timisation stage can be performed using any meta-heuristic, provided the near-optimal

retrofit solutions represent decisions made by the households modelled in the optimisa-

tion decision stage. A background discussion of GAs and their components can be found

in Section 2.3 alongside a description of alternative optimisation meta-heuristics.

In order to tune the GA settings, a parameter grid experiment was performed. The list

of settings can be seen in Table 5.7. The results of this parameter experiment will be

discussed in this section and the aggregate results can be found in Section A.2.2 of the

Appendix. The tuning was performed on a sample of 300 buildings selected using random

initial building sampling with a grid size of 144 variable combinations. The optimisation

was replicated 30 times for each building-setting combination for a total of 1,296,000

optimisation runs. The mean NPV of the replications was used as a performance metric,

with the variance of NPV values also recorded to determine the consistency of a given

setting’s performance. A description of the settings tested, alongside the final selection

based on the settings’ experimentation, can be found below.

Setting Values

Stopping Condition Max Calls
Max Calls 500

Mutation Method Uniform, Random
Mate Selection Method Tournament

Tournament Size 2
Recombination Method 2 Point, Uniform
Replacement Method Pure Elitist, Soft Elitist

Mutation Rate 5%, 10%
Objective Function NPV
Population Size 8, 16, 32

Table 5.7: Settings grid used for Genetic Algorithm parameter tuning grid.
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Figure 5.13: Flow chart of tournament selection process with a tournament size 2.

Mates were selected using a tournament mate selection method, as this was found in

the literature to be a robust choice for optimisation when using a surrogate model [192,

193, 194]. The tournament selection process involves the selection of n solutions from

the solution pool at random. These solutions then compete, with the best performing

selected for reproduction. This is repeated to obtain the second parent. A flow chart of

this process can be seen in Figure 5.13 using a tournament size of two. Tournaments of

size two were used with replacement, meaning a solution could reproduce multiple times

per generation.

Figure 5.14: Demonstration of 2 point and Uniform combination methods.

The recombination method, sometimes referred to as crossover, determines how two

selected parents are recombined to create offspring. A uniform recombination strategy

applies a binary mask to the length of the genome, selecting each gene with equal
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probability from one parent of the other. This creates two children by applying the

bit flipped inverse mask for the second offspring. In contrast, a 2 point recombination

method selects two locations within the parent genes, cutting them and splicing them

at those points into two offspring. A diagram demonstrating the effect of the different

combination methods is shown in Figure 5.14. The result of the parameter experiment

showed that the selection of the recombination method was not significant, a finding in

common with related literature [193]. However, average performance was slightly higher

using 2 point recombination, and the variance of the 2 point recombination method was

also lower, suggesting more consistent performance.

The mutation method is responsible for altering child genes, increasing the diversity of

solutions in the set and giving the chance to escape local maxima. Mutations occur

at a given probability, the mutation rate, which is applied independently to each gene

in the population. The random mutation method implemented replaces prior values of

mutating genes with a random integer in the valid range. In contrast, the uniform muta-

tion method performs a local change, increasing or decreasing the gene value by one and,

therefore, causes less diversity in the gene pool. The more exploratory random-mutation

method performed best, resulting in a higher mean NPV and lower NPV variance. Mu-

tations were also directed away from dominated spaces to reduce computational speed;

for example, replacing existing insulation with thinner substitutes was not considered

viable.

The stopping condition was set to a maximum number of function calls, which was set

to 500 retrofit evaluations. An additional stopping condition was in place if the quality

of the best performing solution does not improve by a given relative tolerance level over

the course of a number of stall generations. When optimising real solutions the tolerance

level was set to 5e-5 and the stall generations were fixed to 6 to detect when the solutions

had reached a local maximum.

The replacement method determines which solutions from the parent and child genera-

tions are replaced before the next mate selection phase. An elitist replacement strategy

ensures that focus is placed on the best performing solutions, adding selective pressure.

Two alternative elitist candidate strategies were tested. The pure elitist setting involved

the selection of the best performing solutions from both the parent and child genera-

tion, with the worst performing half replaced. This method places significant selective

pressure. In the soft elitist setting, only the single best performing parent is selected,

with the rest of the parents replaced by the child population. This strategy maintains

a greater diversity of solutions while potentially sacrificing convergence speed. The best

performing strategy was the pure elitism method, although the difference was not large,

as shown in Section A.2.2 of the Appendix.
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The population size represents the number of solutions retained after each replacement

procedure occurs, representing the size of each generation. Original population sizes

were determined proportionally to the size of the genome length as 8, 16 and 32 as small

population sizes have been found to perform well on similar problems [193]. The initial

genome found that population size the most significant setting from the grid search,

with populations of 32 and more resulting in better mean performance and smaller per-

formance variance. Given the beneficial impact of increased population size, a second

parameter tuning experiment was performed with increasing population sizes. The other

settings were fixed to their determined values to reduce the number of repetitions re-

quired. The performance increased until a population size of 48, at which point the mean

NPV of solutions plateaued. As such, population sizes of 48 were used, as this minimised

the wall clock optimisation time over the larger population size while maintaining the

same solution quality.

5.3.3 Genetic Algorithm Optimisation Results

The results of the traditional optimisation process, as well as being interesting as a

sample of the population of the stock, also represent the input data for the SO used

in Section 5.4. As such, the data will be investigated and visualised for the detection

of patterns. Solutions will be referred to as WHRSs, which are solutions that have a

positive utility (in this case, NPV) when implemented on a given building. Solutions

are specific to the properties of the building in question and are comprised of one or

more of the retrofit installations options discussed in Section 5.2.1. A sample of 10,000

buildings was used to gain insight into the distribution of the stock and for training in

later stages.

An important note regarding the results of the optimisation stage is that the results are

specific to the optimisation scenario parameters as well as any assumptions and simpli-

fications made in the model design. While the physical properties of the retrofits are

dependent on the SEPM results, and so are essentially fixed at this stage, the impact

of those physical properties changes on the objective function and, therefore, optimal

installations are input parameters that have been laid out. Given the NPV objective

function, the most significant parameters are likely to be the costs of the retrofit installa-

tions, the prices of fuel sources, and the discounting rate, as these make up the primary

components of the NPV calculation for a given energy saving.

The proportion of the stock sample for which an NPV-positive WHRS was 37.4%. The

average WHRS investment was £7,112, with an average NPV of £5,148, indicating total



CHAPTER 5. SURROGATE OPTIMISATION: PURELY RATIONAL AGENTS 111

Figure 5.15: Process flow of the retrofit optimisation process.

present-value energy bill savings of £12,260 over the lifecycle of the installation. The

average annualised ROI was 2.86%, although this figure already includes any opportunity

cost conceptualised into the discount rate, resulting in higher real returns. The majority

(79.28%) of WHRSs were single measures, indicating that a fair few of the dwellings’

retrofits could profitably be installed with multiple measures for the scenario parameters

used. However, 18.8% of the WHRSs did include two measures and in 1.7% it was

found that three were optimal, showing the value of finding WHRS combinations rather
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than examining each potential measure in isolation. The average net lifecycle emissions

reduction was 28.31 tCO2e
2.

Wall insulation was the most popular optimal installation, with 27.5% of all buildings

finding a WHRS which included wall insulation, 73.22% of all the retrofits found. This is

likely due to the low rates of additional wall insulation in the base stock, with only 2.96%

of the existing stock having any additional wall insulation3. In comparison, 90.5% of the

existing stock had some form of loft/roof insulation already, leaving less potential for

dramatic retrofits. Given the relatively high cost of wall insulation, the average WHRS

investment was highest when this measure was included, averaging £8,771 per WHRS.

The average return was also lower, with the NPV averaging £3,099, and an effective

annualised ROI of 1.41%. This low ROI is likely to make this retrofit more sensitive to

discounting, as highly discounted future energy bills are less likely to make a positive

net return on a high initial investment. However, the significant financial investments in

these retrofits do result in large energy reductions, averaging 4,988.1 kWh/year and a

net lifecycle emissions reduction of 36.07 tCO2e. The majority of optimal wall insulation

retrofits under these optimisation scenario settings were internal installations of Polyiso-

cyanurate (PIR), with the remainder being expanded Expanded Polystyrene (EPS). The

dominance of internal installations when NPV optimising is unsurprising in this case, as

the costs are higher when placing equivalent physical materials due to additional labour

costs associated with external wall insulation.

The breakdown of wall insulation installations showed that two story terrace houses

were over represented in the sample of WHRSs compared with the population (19.2% vs

6.3%). This is to be expected, as the adiabatic walls modelled for internal terrace housing

means that the total area of insulation required is significantly reduced, keeping costs

down while representing a majority of the heat loss. Weight is added to this hypothesis

by the under-representation of fully detached houses, which made up 13.6% of the stock

but only 7.1% of the WHRSs with wall insulation, indicating that the additional surface

area of an insulation-requiring wall reduces the probability of an optimal wall insulation

retrofit.

The cumulative distribution of optimal wall insulation thicknesses can be found in Fig-

ure 5.16. The distribution of wall thicknesses is more even than that of roof installations,

suggesting the material costs were not dominated by labour costs alone. The Pearson

correlation coefficient (ρ) was used to inspect the attributes associated with insulation

thickness among the subset of WHRSs of this kind. The same finding was observed

here: buildings with a larger total wall area to be insulated were correlated with thinner

2Details of how lifecycle emissions savings are calculated are presented in Chapter 6.
3Excluding cavity wall insulation, which was present in 48.6% of the stock.



CHAPTER 5. SURROGATE OPTIMISATION: PURELY RATIONAL AGENTS 113

retrofit installations (ρ = −0.32). The glazing ratio of a building was also negatively

correlated with optimal wall insulation thickness (ρ = −0.29), indicating that heavily

glazed buildings are suited to thinner wall insulation. This is a fairly intuitive finding,

as higher glazing ratios indicate a smaller proportion of heat is lost through the walls.

The second most common measure found in WHRSs was roof insulation, with 9.61%

of the sample stock and 25.6% of the WHRSs including some degree of roof insulation.

These were common co-retrofits, with 49.58% of these measures being part of a multi-

measure WHRS. A key difference between wall and roof retrofits, in this case, is the

significantly high prevalence of roof insulation within the existing stock. Indeed, the

majority (79%) of the existing stock have more than the minimum thickness of roof

insulation already installed, making the retrofit quite costly for a measure that only

increases the thickness of the insulation of an existing area. Indeed, all of the roof

insulation measures discovered were applied to buildings that either had no existing

insulation or which had the minimum (30mm). While only this subset of the stock

benefited from an installation, these WHRSs did obtain a mean NPV of £3,800 from

an investment of £6,236 to achieve an annualised ROI of 2.44%. This coincided with

a mean energy saving of 5006.52 kWh/year and a lifecycle emissions reduction of 29.01

Tons of C02e.

The cumulative distribution of optimal roof insulation thicknesses can be found in Fig-

ure 5.16. Unlike the wall insulation thicknesses, which were observed to be more evenly

distributed, the roof thicknesses were clustered around the extremes. In 50% of the so-

lutions, it was found that a minimal installation of 75mm would be optimal and in 19%

of the WHRSs, it was found that the maximum thickness of 400mm would be optimal,

with the remaining 31% distributed between these two values. One possible cause for

these polarised optimal solutions is the nature of the cost model combined with the at-

tributes of the houses being retrofitted. The majority of roof retrofits were performed on

buildings with no existing roof insulation, with the remainder on retrofits with minimal

thickness installations. When no roof insulation is present, a significant proportion of

heat loss occurs through the roof and so even the installation of minimal roof insula-

tion provides a significant benefit. However, there are diminishing returns to additional

thickness on a roof with existing insulation, evidenced by the under-representation of

these buildings in the WHRSs sample. Therefore, some dwellings will benefit from any

kind of insulation, while those with existing insulation will only benefit from significant

thickness increases. This hypothesis is borne out in the data, as all of the retrofits on

dwellings with existing roof insulation increased their insulation to the maximum level.

Naturally, all minimal installations are buildings with no existing roof insulation.

Heating fuel source retrofits had the highest NPV return of any retrofit when installed,
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Figure 5.16: Cumulative distribution function of insulation-optimal wall and roof thick-
nesses.

with a transition from electric to gas heating resulting in an average NPV return of

£42,000, which represents a significant ROI of 38%. However, these retrofits were only

optimal in 2.29% of dwellings, given these measures were only available to electrically

heated houses which made up the minority of the initial stock. It is also generally true

that larger and higher energy use dwellings are less likely to be electrically heated, so the

subset of dwellings that are large enough to recoup the investment in gas heating systems

are likely to already be heated using that fuel source. As such, only 6.1% of the WHRSs

included a heating system. None of the solutions involved retrofitting electric heating

over gas central heating, which is unsurprising in the NPV-maximising scenario given the

relative cost of electric heating is significantly higher than gas. The majority (84.72%)

of heating installations were single-measure retrofits, with no other measures included.

Due to the estimated decarbonisation of the grid during the lifecycle of the installations,

these WHRSs were the only set to result in increased net emissions, averaging 10.37

tCO2e of additional emissions.

Glazing was the least common retrofit in the sample, with only 6.52% of solutions in-

cluding a glazing installation and 17.35% of the WHRSs including a glazing retrofit.

Interestingly, 59.75% of glazing retrofits occurred alongside other retrofits instead of

alone, making glazing the most commonly co-retrofit installation. This is likely due to

the relatively low cost of installation compared with other options, which can be seen

by the clustering of glazing retrofits at the lower end of the investment cost axis in

Figure 5.17. The mean WHRS investment including glazing retrofits was £6,990 and
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resulted in mean energy savings of 4,930 kWh/year and a mean reduction in lifecycle

emissions of 28.5 tCO2e. These WHRSs returned an NPV of £3,270, resulting in an

annualised return on investment of approximately 1.87%. When investigating the types

of dwellings that found optimal glazing retrofits, the majority (86%) were initially single

glazed with the remainder being double glazed dwellings. This is unsurprising, as single

glazed properties receive the greatest benefit from additional glazing thickness. The

population of WHRSs with optimal glazing installation also had a higher than baseline

glazed area (30.46m2 vs 27.33m2) but a smaller average number of windows (5.30 vs

5.93). This indicates that dwellings with larger average window sizes were more likely

to be good candidates for glazing installations. This is in line with expectations, as

a labour and materials cost model penalises additional installations compared with in-

stalling more windows with a larger area. This is also the likely cause of the retrofit

choices, with the vast majority of glazing retrofits being the installation of triple glazing

as seen in Figure 5.17. Given the relatively small marginal cost of triple glazing com-

pared to double glazing, solutions in which a glazing retrofit was viable tended to find

the energy savings of the additional thickness exceeded the additional cost.
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Figure 5.17: Scatter plots of the investment costs against energy savings per m2 of floor
space, coloured by the retrofit installation performed.
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5.4 Single-Objective Surrogate Optimisation

The optimisation output generates a near-optimal retrofit per building optimised; this

optimised state is highly dependent on the input building’s initial state. To create a

predictive Surrogate Optimiser (SO) (shown in Figure 5.18) a set of ANNs were trained.

The sample of 10,000 profitable retrofits discussed in Section 5.3.3 represents the data

set of solutions available for SO training, test and validation.

Some of the metrics used for model evaluation in this section have been used previously

for the regression problem laid out in Section 5.2, such as the coefficient of determination

(r2), Root Means Square Error (RMSE) and Mean Absolute Error (MAE). However,

this is the first classification problem introduced and so additional evaluation metrics are

required to summarise the performance of classification models. Accuracy represents the

number of correct predictions divided by the total number of predictions made. Precision

represents the number of correct predictions over the total number of predictions for a

given class. Poor precision indicated a large number of members of other classes are being

mislabelled to the class at hand. Recall represents the percentage of correct predictions

of a class over the number of actual members of that class in the data set. Poor recall

on a class suggests that many true members of that class were mislabelled by the model.

The final metric used in this section, the F1 score, is the harmonic mean of precision

and recall: The product of precision and recall over the sum of precision and recall.

This gives a metric that punishes models in which either precision or recall are poor.

The advantage of using F1 score alongside accuracy is particularly stark when using

unbalanced classes, as these models could achieve reasonable accuracy by predicting

the modal class by default [195]. The F1 score will identify models with this issue

more starkly than accuracy measurements. When evaluating multi-class problems these

metrics can be presented in a weighted average format which calculates the metric for

each class label, then provides a weighted average based on the frequency of that label

in the test set.

5.4.1 Model Hyperparameter Tuning

The SO training varies from the SEPM described in Section 5.2.4 in a few key ways.

Firstly, instead of training a single regression model, a set of different models need to

be trained through both classification and regression due to the disparate data types of

the target values. Multi-class classification models are required to estimate the desired

material types while regression models are better suited to the continuous insulation
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thickness values under consideration. Within the models themselves, the types of pattern

the model is attempting to learn will also vary. This was identified in Section 5.3.3, where

it was observed that the characteristics of buildings with different measures differed

considerably. Another difference between SEPM training and SO training is that these

models are significantly newer, and as such, there is limited literature to provide sensible

defaults or parameter ranges to explore.

Given the challenges provided by the hyperparameter tuning of the SO, an automated

tuning mechanism was applied to the SO training workflow. The Keras-Tuner module

was used to systematically sweep the hyperparameter space for the purpose of model

training [196]. This allowed the hyperparameters of each model to be tuned without the

requirement for an exhaustive grid search or manual intervention each time the models

change. This second feature, removing the need for manual oversight, is likely to be

particularly important as any changes to the underlying optimisation parameters may

significantly impact the nature of a given problem. The hyperparameter tuning algo-

rithm used for hyperparameter optimisation was Hyperband, a hyperparameter tuning

algorithm that simultaneously trains a population of models and terminates poorly per-

forming candidates early to allocate resources to high-performing candidates [197]. This

algorithm was chosen for the resource efficiency of the tuning process which, given the

conceptualisation of SO as a modelling workflow coming with the necessity to retrain

and re-tune the model without the requirement of domain knowledge, is an important

property.

The list of hyperparameter settings explored can be seen in Table 5.8. As with the

SEPM training discussed in Section 5.2.4, the pre-processing procedures and training

batch sizes were added to the parameter search space. Additionally, a higher degree

of freedom was applied to the layer parameters, allowing 1-7 layers of sizes between

8 and 256 neurons to be selected by the hyperparameter tuning process. This higher

freedom in layer selection is necessary as there are significantly fewer published models in

this application compared with SEPMs and as such, there is less certainty about which

network architectures would be considered sensible defaults to attempt. The Keras-

Tuner implementation of Hyperband was implemented, with a max epochs parameter of

100 and a branching factor of 2, resulting in 359 trials per model [196]. Validation loss,

as specified in Table 5.8 was used for the tuner’s optimisation objective and a validation

set of 2,000 buildings was used. An early stopping procedure stalled a given model’s

training if the validation loss stalled below 0.0001 over a patience of 10 epochs.

The results of the parameter tuning are specific to the training set and scenario presented

and varied fairly significantly between the models. One common factor across all of the

trained hyperparameters was the faster learning rate of 0.01, the same as the ’sensible
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default’ used for SEPM training. Given that this result was found to be robust across

multiple re-runs of the parameter tuning procedure, it can safely be set to a default value

to reduce the search space during re-runs. The other hyperparameters varied between

the models, with the most significant variance being the network structure. As may be

expected, the problems that we would anticipate to be the easiest from the discussion

in Section 5.3.3, generally resulted in a smaller number of layers which were themselves

smaller. In contrast, the more challenging problems such as the roof thickness regression

model benefited from the full 5 layers (each layer exceeding 200 neurons), the largest of

the networks.

Setting Regression Models Classification Models

Loss Function L2 (Least Square Errors) Categorical Crossentropy

Last Layer Activation Linear Softmax

Pre-proccessing Normalisation, Logarithmic, Standardisation

Number of Layers 1 - 7 (Steps of 1)

Neurons Per Layer 8-256 (Steps of 8)

Activation Function ReLU

Learning Rate 0.01, 0.001, 0.0001

Training Function Adam (alpha=0.001, beta1=0.9, beta2=0.999 and epsilon=10E-8)

Table 5.8: Description of SO hyperparameter ranges used for tuning.

5.4.2 Sample Size

In order to test the effect of the training set sample size on model performance, models

were trained using a sample size varying from 500 to the full 10,000 set. Models were

trained using their corresponding tuned hyperparameters, determined from the tuning

stage. A total of 20 repetitions were performed for each sample size to account for the

stochastic model training procedure. Given the 8 measures which comprise a potential

WHRS, a total of 3,040 models were trained.

The effect of sample size on trained model performance can be seen in Figure 5.19.

It should be noted that the performance metric evaluated for the classification models,

weighted f-1 score, increases with model performance while the RMSE used for regression

performance decreases as the model improves. It can be seen that all models, with the

possible exception of the EWI material classification, improve as a greater sample size

of near-optimal WHRSs is used to train them. EWI material classification is likely an

exception to this due to the small number of samples found in the training data set,

as discussed in Section 5.3.3, which renders model performance evaluation subject to

more stochasticity due to its sparsity in the training and subsequent test set. The other
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models noticeably increased in performance with additional sample size, although the

diminishing returns that were experienced, as seen in the curved y log(x), best fit lines

plotted over the results.

Figure 5.18: Process flow for training the Surrogate Optimiser.
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Figure 5.19: Effect of sample size on SO performance, showing diminishing but positive
improvements between 500 and 10,000 training sets.

5.4.3 Surrogate Optimiser Results

Glazing retrofits were the least common installation, as discussed in Section 5.3.3. This

provided the smallest training sample with only 600 WHRSs in the 10,000 buildings sam-

ple, leaving 9,400 in which no retrofit was performed. Additionally, this measure was

most commonly a co-retrofit, with approximately 60% of these retrofits occurring along-

side another measure. This makes false-positive retrofit classifications more difficult to
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Figure 5.20: Confusion matrices (top) and Actual vs Predicted scatter plots (bottom)
of Surrogate Optimiser training set (N = 2060).

spot, as the WHRS may still achieve a positive NPV even in instances where the glazing

retrofit is not beneficial. Despite these challenges, glazing classification performance was

good. The confusion matrix for glazing classification is shown in the top right of Fig-

ure 5.20, with the gene values of 0, 1 and 2 representing single, double and triple glazing

values. The double glazing class, most of which are preexisting and therefore represent

no retrofit, performed very well, with an F1 score of 0.99, indicating that most of this

class was correctly classified. The single and triple glazing classes are of most interest,

however, as these represented the bulk of retrofit installations found. Single glazing ob-

tained a precision of 0.89 and recall of 0.78 while triple glazing obtained precision and

recall scores of 0.89 and 0.83 respectively. These values indicate that approximately 17%

of profitable triple glazing retrofits are being missed while 22% of single glaze proper-

ties, for which a glazing retrofit is not profitable, are being inappropriately designated

a retrofit. Given that 40% of glazing retrofits are single retrofit measures, for which

misapplied retrofits can be cheaply identified, this leaves 13.2% of dwellings that are

optimally single glazed being sub-optimally retrofitted. However, since this represents

only 2% of the sample, even across the entire city data set of 95,500 dwellings the total

expected number of errors would be around 250.

Roof insulation retrofit predictions were made somewhat challenging by the clustering
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of thicknesses at distinct but key values as opposed to the more continuous distribution

of IWI insulation thicknesses. This was discussed in Section 5.3.3 and was visualised in

Figure 5.16. This poses a challenge, as a regression model in which many results are

polarised at the extremes of the possible range may result in more drastic errors. This is

observed to some extent in the results of the roof insulation thickness model, shown at

the bottom right of Figure 5.20 by the horizontal line across the top of the scatter plot.

This line of points represents maximum actual optimised thicknesses that the model

has incorrectly predicted to be sub-maximal. Despite some errors, particularly at the

extremes of the model, the overall performance of the regression model is good. An

adjusted r2 score of 0.82 indicates that the majority of the variance of the predicted

insulation thickness is explained by the model inputs. The residuals, which are shown in

Figure 5.21, appear to be normally distributed and centred around 0. This distribution

hypothesis was not rejected, with a Kolmogorov–Smirnov test for normality at a 5%

significance level. The MAE of the predictions is 8.3mm, although the RMSE is 24.1mm

due to the disproportionate size of some of the errors made. These values are encour-

aging, as the values are to be coerced back into discrete thicknesses when considering

which retrofit measure to install, with thicknesses differing by 25mm which is larger than

both the MAE and the RMSE. When these regression values are converted back to the

thickness gene values used for the optimisation stage, it is possible to evaluate the model

as a classification procedure. When considering these classes, the roof thickness model

scores an accuracy of 0.88 and a weighted F1 score of 0.91, indicating good classification

performance across classes. Where the thickness is misclassified, it was often by only a

single thickness class. A confusion matrix of roof thicknesses coerced back into classes

can be seen in Figure A.1 of Appendix A.3.

Wall insulation retrofits were classified separately for EWI and IWI materials, although

as stated in Section 5.3.3 the majority of installations in this scenario were IWI, with

only a small minority of WHRSs containing an EWI, most of which are preexisting in

the stock. This can be seen in the confusion matrix and thickness plot at the centre

of Figure 5.20, which demonstrates that a small number of optimal EWI installations

are identified well by the model, and the thicknesses are also predicted accurately. As

EWI installations will become more prevalent in Chapter 6, the model has been retained

for completeness. Should the modelling parameters used in Section 5.3 change, this

essentially dormant model would again be required.

In contrast to the sparse EWI installations, IWI installations were the most abundant

in the optimisation data set. The most common installation material in this scenario

was polyisocyanurate (PIR), represented by class 3 in the top left confusion matrix

of Figure 5.20. The SO was accurately able to identify almost all of the solutions
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which included a WHRS, although due to the heavily unbalanced classes the small

number of WHRSs which required alternative materials were incorrectly classified as

PIR installations. It is possible, however, that the small number of these installations

indicate an error at the previous stage (optimisation). It is also worth noting that these

misclassified IWI material retrofits were always classified to PIR installations as opposed

to no installation at all (signified by class 0 in the confusion matrix), showing the model

was able to accurately identify all IWI retrofits even when the material was classified

incorrectly.

The thickness of optimal IWI installations was predicted using a separate regression

model. Unlike the roof insulation thickness, which was clustered at specific points,

the optimal wall insulation thicknesses were more evenly distributed across the possible

range as discussed in Section 5.3.3 and visualised in Figure 5.16. The regression model

performed well, achieving an r2 of 0.951, a MAE of 4.03mm, and a RMSE of 8.85mm.

Figure 5.20 shows a scatter plot of actual optimised thicknesses plotted against predic-

tions, with most points sitting close to the line of equality. The residuals of the model are

shown in Figure 5.21 and appear to be normally distributed and centred around 0. This

distribution hypothesis was not rejected with a Kolmogorov–Smirnov test for normality

at a 5% significance level. While the regression results are promising, the discrete IWI

thicknesses differ by just 5mm, and so when values are coerced back into classes some

of the predictions are classified incorrectly. The model’s classification accuracy of 0.78

is good, however, and this is paired with a weighted average F1 score of 0.76, indicating

good levels of recall and precision across classes. Where thickness classes are incorrect,

the error is typically within one ordinal class, indicating the magnitude of the error is

only small. A confusion matrix of IWI thicknesses coerced back into classes can be seen

in Figure A.1 of Appendix A.3.
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Figure 5.21: Histogram of wall and roof insulation thickness residuals from Surrogate
Optimiser predictions.

5.5 Application of Single-Objective Surrogate Optimiser

The Surrogate Optimiser (SO) performance, evaluated in Section 5.4.3, showed that the

input features carried sufficient data to make Whole House Retrofit Solutions (WHRSs)

with an acceptable level of accuracy. The next step is to apply the SO to untrained

data to analyse the proportion of the stock that was not used for training and static

testing. The SO will be applied in two ways. In Section 5.5.1, a static analysis of

retrofit potential will be performed by applying the SO to the entire building data set

and analysing the results. In Section 5.5.2, the SO will be integrated into a simple

Agent-Based Model (ABM), which will be introduced with the intention to expand its

functionality to environmentally conscious agents in Chapter 6.

5.5.1 Static Whole Stock Analysis

A static evaluation of the building stock involves predicting the near-optimal WHRSs

for all buildings in the data set. The predicted solutions can then be evaluated us-

ing the same NPV model that was used in Section 5.3 to create the initial sample of

near-optimal solutions. This allows a comparison between the sample of traditionally

optimised WHRSs and those predicted by the SO on the unknown solutions. This can

be considered analogous to the upscaling procedure common in archetype-based housing

stock models discussed in Section 3.2 of the related works. However, given the pro-
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cedure uses the discovered features of the ANN for retrofit predictions, there may be

differences between the traditionally optimised sample and the predictions of the whole

population. In this sense, the whole stock evaluation procedure is an additional process

of performance testing for the SO as well as an evaluation of the potential within the

whole stock.

The procedure for evaluation of WHRS-performance was the same as that used in the

GA. Initial energy demand was calculated using the SEPM introduced in Section 5.2.

The SO was then used to predict WHRSs for the entire building stock based on each

dwelling’s features. These retrofits were then applied to the dwellings and new energy

demand was calculated using the SEPM again. The cost and savings models were applied

based on the retrofit solution and energy savings for each dwelling, then the NPV was

calculated using the discount rate. In total, this requires 3 calls to DNN models per

building and a single call to the financial models for each dwelling in the data set, a

significant computational saving over the original optimisation procedure. Indeed, the

total wall time required to perform this evaluation on the 95,500 dwellings stock is

approximately 30 seconds, including loading the required data into memory.

5.5.1.a Negative NPV Solutions

Prior to discussing the quality of the full set of solutions, it is worth discussing a par-

ticular subset of predicted solutions: those for which the NPV was negative. Given

that not performing a retrofit was always a valid decision at the GA optimisation stage,

none of the optimal solutions had negative NPVs. Not performing an installation has an

intrinsic NPV of zero which therefore always dominates negatively performing solutions

among this breed of self-interested rational agents. However, 1.79% of the sample were

predicted as negatively scoring retrofit solutions. Given these retrofits can be scored in

a computationally cheap manner, these misapplied retrofits are simple to identify and

remove. However, there is potential to miss some true retrofits by discarding these solu-

tions, as it is possible that a positive NPV solution exists but was not correctly identified.

The mean NPV of these failed solutions was £-1,305.70 from an average investment of

£5,842.75. The average energy saving of these retrofits was only 15.6 kWh/m2 com-

pared with 54.5 kWh/m2 of the positive NPV WHRSs, indicating that these retrofits

performed significantly worse than expected by the model. This is also reflected in en-

ergy savings over investment cost, with failed retrofits obtaining energy savings of 0.435

kWh per pound while positively performing installations saved 0.70 kWh per pound of

investment.
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Vu0 =
−NV P

LCS
(5.3)

Equation 5.3: The minimum indifference carbon value is the negative ratio of NPV and
LCS.

While all of the solutions with negative NPV would be rejected by the self-interested

agent decision model used in this chapter, it is worth considering how environmentally

conscious agents may consider them. The scatter plot in Figure 5.22 shows the NPV

and net carbon emissions savings of these rejected retrofit predictions. While it can

be seen that some predictions perform extremely poorly, with both low NPV and little

environmental impact, there are a significant number of solutions on the right-hand side

of the graph. These have a small negative NPV but significant lifecycle CO2e savings.

While we SO is limited at present to environmentally indifferent agents, it is possible to

consider how environmentally conscious decision makers would need to be to consider

these solutions. To calculate this, we can use the minimum indifference carbon value: the

minimum financial value the agent must place on each tCO2e for them to be indifferent

between that solution and inaction. The formula for minimum indifference carbon value

is shown in Equation 5.3. The distribution of the minimum indifference carbon values of

these solutions is shown in Figure 5.22 and demonstrates that many of these solutions,

which are not valid with rational agents, would become feasible with agents who have

even a small environmental preference.

Figure 5.22: Scatter plot of NPV and LCS of negatively performing retrofit predictions
(left) and a histogram of their corresponding minimum indifference carbon values (right).
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5.5.1.b Positive NPV Solutions

GA Optimised Sample SO Predictions

Sample Size 10,000 95,500

Percentage of Dwellings with WHRSs 37.40% 37.02%

Percentage of Co-retrofits 20.72% 20.34%

Average WHRS Investment Cost £7,112.00 £7,259.00
Average WHRS Net Present Value £5,148.00 £4,797.00
Average Carbon Saving (tCO2e) 28.31 28.85

Average ROI 2.86% 2.64%

Dwellings with Glazing Retrofits 6.52% 5.54%

Dwellings with Wall Insulation Retrofits 27.50% 28.02%

Dwellings with Roof Insulation Retrofits 9.61% 9.58%

Table 5.9: Comparison between a Genetic Algorithm optimised sample and the Surrogate
Optimiser predictions of whole stock.

After considering the minority solutions erroneously predicted by the SO, the positively

scoring solutions can be examined. At this stage in the analysis, the solutions identified

above were removed, with the dwellings added to the subset of properties for which no

positively scoring solutions were discovered. The resulting data set of positive solutions

can now be analysed and, importantly, compared with the sample of traditionally opti-

mised WHRSs discussed in Section 5.3.3. Table 5.9 compares some key statistics from

the optimised sample discovered by the GA, alongside the batch of predicted solutions

created by the SO. The comparison of results shows that for most elements the SO

predictions mirrored the GA sample quite closely. The total proportion of WHRSs rep-

resenting 37.4% of the GA sample and 37% of the SO predictions, indicating that the

vast majority of WHRSs present in the underlying stock have been identified. There is

some difference in the nature of the solutions discovered though, with the SO sample

requiring a slightly higher investment of £7,259 compared with £7,112 required by the

GA, which also corresponds to a reduced average NPV (£4,797 to £5,148). This slight

tendency of SO predictions to over-invest did manifest an increase in lifecycle emissions

savings (28.85tCO2e to 28.31tCO2e) which indicates that the over-investment was in

environmentally-friendly measures and also corresponded to net energy savings. When

considering the breakdown of different retrofit types, the number of WHRSs with roof

insulation mirrored the GA sample very closely, while IWI measures were slightly over-

represented and glazing installations slightly under-predicted (See Table 5.9). The SO

was also efficient at identifying co-retrofit solutions, with a similar proportion predicted

in the whole stock as were found in the GA sample (20.72% to 20.34%). It should be

considered, however, that the co-retrofit WHRSs represent a potential area of hidden er-

rors, as an effective retrofit paired with an inefficient one is harder to identify compared
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with an inefficient retrofit on its own, such as those discussed in Section 5.5.1.a.

The thicknesses of the predicted retrofits can be seen in Figure 5.23. These distributions

mirror those identified by the GA sample which was shown in Figure 5.16. As with the

prior distributions, the roof insulation thicknesses cluster around the upper and lower

ends while the wall insulation thicknesses are more evenly distributed across the available

thickness range. The main difference in distribution is the slight reduction in maximal

thickness roof installations, an expected result given the misclassification of some of these

thickness classes observed in the SO training data discussed in Section 5.4.3. However,

these errors were often by only a small number of classes, and this can be observed in

the corresponding increase in the final two thicknesses classes.

Figure 5.23: Cumulative distribution of predicted optimal insulation thicknesses.

5.5.2 Dynamic Analysis with an Agent-Based Model

While the static analysis of retrofit potential in the entire city data set is of interest,

similar aggregate values can be obtained using more traditional sampling and upscaling

techniques. One of the key benefits of a SO approach is the ability to predict a retrofit

decision for specific households in real-time. To demonstrate this, the SO trained in

Section 5.4 will be integrated into a very simple Agent-Based Model (ABM) to observe

how the stock may adapt over time.

The model introduced in this section will be a simplistic one which will be expanded

in Chapter 6 to capture more complex behaviours relating to an agent’s individual car-

bon preferences. In a sense, the agents at this stage are heterogeneous: They are all
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attempting to maximise their NPV in considering a retrofit. However, each agent is

faced with a different problem as all of the dwellings in the building data set are unique.

Performing retrofit evaluations at the scale of an entire city using the optimisation pro-

cedures performed in Section 5.3 would be infeasible, as the computational time required

to optimise and evaluate each dwelling would be significant.

5.5.2.a ABM Design

The ABM design at this stage is kept very simple. The main parameter introduced is the

evaluation rate, which represents the probability that a given agent will evaluate their

dwelling’s retrofit potential within a given year. Agents who do decide to evaluate their

dwelling for retrofit have a WHRS predicted by the SO, which is then scored and then

installed if the NPV is positive and rejected if the retrofit does not provide a positive

lifetime value. This simple agent-decision model is visualised in Figure 5.24.

Three scenarios will be performed with different evaluation rates. These have been

conceptualised in terms of outreach campaigns. In the baseline scenario, an evaluation

rate of 1% will be used and will be compared to a standard outreach program that

achieves an evaluation rate of 1.5%, and a significant outreach program that achieves

an evaluation rate of 2%. These programs can be conceptualised in terms of marketing

campaigns by government departments, retrofit installers, or other events that cause

increased desire for households to evaluate their dwelling’s retrofit potential.

Figure 5.24: Flowchart with a high level description of the decision process each dwelling
undergoes during each time period. The evaluation rate is represented by a float called
eval rate.
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5.5.2.b ABM Results

The ABM was run for a period of 25 years, with each scenario repeated 100 times in

order to gauge the level of output variance. The results of the model are visualised as a

series of time-series plots of key aggregate outcomes in Figure 5.25. As would be expected

from the design of the model and the relative lack of dynamic components, the outcomes

are generally proportional to the relative evaluation rate of the scenario at hand. There

are some points of interest, however. The scatter plots, which plot each year of each

repetition of the scenarios, show the level of variance in the underlying selections, with

the NPV showing significantly more variance than the investment costs within each year.

The variance of the NPV is such that the best performing years of the baseline scenario

outperform the worst years of the outreach scenarios. Nonetheless, the total number of

retrofits is significantly higher when outreach programs are in place. While this model

is largely demonstrative, there are some results to consider. Consider, for example,

how much should be invested into each outreach campaign by a government that was

interested in stimulating the economy through increased infrastructure investment. The

average annual investment in the baseline scenario is £2.7 million compared with £4.0
million and £5.4 million in the outreach and significant outreach scenarios respectively.

Knowing that each level of outreach would return a £1.3 million increase in investment,

as well as knowing the distribution of investment spending from the stochastic runs of

the model, could aid in policy decision making when planning these scenarios.
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Figure 5.25: Time series plots of 300 ABM simulations showing the effect of retrofit
outreach programs are significant. Cumulative plots show the annualised mean.
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5.6 Discussion

The following section highlights and expands upon some points from the research thus

far that warrant further discussion. A particular focus will be placed on those points of

discussion that are specific to the problem of self-interested and purely rational decision

makers outlined in this chapter, with general discussions on the SO technique relegated

to the general discussion in Chapter 8.

5.6.1 The benefits of Surrogate Optimisation

A question could be posed at this stage regarding what the benefits of Surrogate Opti-

misation as presented in this chapter are over alternative urban-scale retrofit modelling

techniques. The framing of the benefits depend upon the technique to which they are

compared, and so they will be broken down and comparisons made.

Top-down modelling methods were discussed in Section 2.1.3.a and 3.2. Unlike bottom-

up approaches, such as a SO which investigates individual sub-problems that make up

a large system before aggregating them to measure whole-system behaviour, top-down

models operate only on the aggregate behaviour. This can be done with the application

of statistical or theoretical models that attempt to capture the aggregated behaviours

without requiring or providing the granularity that bottom-up approaches utilise. These

models are generally more computationally feasible, as they do not require individual

evaluation of each dwelling, however, they have significant drawbacks over top-down

approaches too. One key drawback is the lack of granularity in the results. The 95,500

buildings examined in this chapter are all unique and, after optimisation, the attributes

of the properties and their retrofit potential are evaluated individually. This allows an

examination of which dwellings or types of dwellings apply which retrofit, the nature

of those retrofit measures, and the individual benefits those dwellings receive. This

contrasts with much of the related works, which applied only a small and pre-selected

set of solutions to all dwellings regardless of their properties. A second major advantage

of the bottom-up SO approach is the level of control granted to modellers in controlling

the simulation. Chapter 6 will take advantage of the bottom-up nature of the SO by

instantiating households with individual preferences that affect their retrofit decisions,

something that is not possible in top-down approaches which do not model individual

agents and therefore cannot emulate their heterogeneity.

While top-down models have major disadvantages compared with the SO approach, we
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could compare the approach instead to what we shall term a pure bottom-up approach.

This procedure involves applying the same or similar optimisation process as was used

in Section 5.3 to individually discover the optimal retrofit for a given dwelling using

traditional optimisation procedures. This method is feasible for small stocks, as was

demonstrated by our collection of 10,000 sample retrofits for SO training. However, this

approach is very computationally costly with each sample retrofit taking approximately

30 cpu seconds to obtain4. This equates to approximately 800 cpu hours to perform a

single optimisation run on the entire stock. While this is not impossible, it is infeasible

for procedures that require frequent re-running or evaluation, such as during a stochastic

ABM. This problem is exacerbated when heterogeneous decision makers are introduced,

as this prevents a calculate, store and retrieve approach that could be used when decisions

are made from a single objective. The infeasibility of this pure optimisation approach

increases with the size of the stock, as the simulation of the national building stock of

the UK’s approximately 24 million domestic dwellings would take 200,000 cpu hours for

a single optimisation run [198].

While the pure bottom-up approach of simulating and optimising each dwelling grows

infeasible as stock size and the number of repetitions required grows, there are alter-

native bottom-up approaches against which to compare the SO method. The most

comparable of these is the process of sampling, archetyping, optimising and upscaling.

A good example of this methodology is the EnHub platform [94], which uses a data

mining approach to form archetypes for simulation before extrapolating those results

to the entire stock. This method is significantly more computationally feasible than a

pure bottom-up approach but does also face significant drawbacks. The responsibility

of forming archetypes lies on the modeller, requiring significant research time as well

as domain knowledge to form and sample properly. Also, while these approaches allow

for some heterogeneity, they still rely on representative dwellings for given archetypes,

reducing the granularity of the model and the diversity of outcomes. Consider the diver-

sity of outcomes visualised in Figure 5.17 of Chapter 5.3.3 being forced into a small and

discrete number of archetypes. This would also limit the heterogeneity of agents in any

ABMs formed due to archetype constraints. It is worth discussing how these techniques

compare to the SO methodology, which relies on the trained model to identify which

underlying features of dwellings contribute to a given WHRS’s optimality and for mak-

ing predictions based on the patterns discovered. In this sense, the upscaling procedure

performed can be considered a higher resolution and automated version of the upscaling

that is manually performed with an archetype measure. The increased resolution and

automation are both key advantages, removing the requirement of significant domain

knowledge in the application as well as allowing individual modelling of households,

4On a workstation running an AMD Ryzen 9 3900X with 16GB of RAM.
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granting more control. A key downside of the SO approach is the loss of interpretability

compared with constructing archetypes manually, as the underlying data patterns are

hidden within a black box model. This requires additional research to understand or

interpret the models themselves.

5.6.2 The Assumption of Pure Rationality

Pure rationality, as we have defined it for the purposes of this chapter, means that house-

hold agents seek out WHRSs which optimise their personal financial returns, measured

in this case by the NPV of the investment. Given the intention to relax this assumption

in Chapter 6, the purpose of constructing these types of agents may be questioned, par-

ticularly as it can be observed that individuals do care about environmental concerns in

an empirically measurable way [134, 145, 147]. One reason to consider purely rational

agents was as a proof of concept for a smaller part of what will become a more com-

plex problem. The restriction of the objective function keeps the scope of the model

down and allows for an initial prototype to be examined in isolation. Another reason

to consider purely rational agents is that it is an appropriate model for some of the

population. While there are many environmentally conscious households, there are also

decision makers for whom ROI is the key factor.

5.6.3 Model Assumptions and Parameters

When discussing the practice of modelling and simulation in Section 2.1.1, models were

considered in terms of target systems with the behaviour of the model mirroring, in

some way, the behaviour of the system they were targeting. A variety of different models

were introduced in this chapter. The EnergyPlus simulation models were designed to

capture the energy demand behaviour of specific buildings. The SEPM took those initial

energy models as its target system, attempting to capture the model’s behaviour in a less

computationally expensive manner. The optimisation procedure introduced an objective

function calculation of NPV that is in itself a financial model, attempting to capture

the costs and benefits of a given installation under the circumstances presented. The

optimisation process, as well as encapsulating the financial and energy models required

to evaluate solutions, can be considered a model too as it attempts to capture real-

world behaviour: a purely rational agent attempting to install the best retrofit for their

objective.

It is clear that there are a significant number of models used in this procedure. In
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Section 2.1.1 a mannequin was introduced as an example of a model, with the purpose of

demonstrating how given clothes would look on a living human. This was our distinction

between a model and a simulation, as it was only when the clothes were applied to the

model that the purpose of a simulation is fulfilled, and the choice of clothes has a

significant impact on the outcome. This is also true with all the models introduced in

this chapter. Where models have been introduced, parameters and assumptions baked

into the modelling have been explained but it is important to highlight that the results

are valid only under those parameters and assumptions. This is also why this method is

presented in terms of the method and model construction workflow, instead of the results

of a given set of input parameters. Consider, for example, that a supply chain issue

caused the price of a given construction material to increase significantly. This would

impact the financial model that makes up the objective function of the optimisation

stage, requiring retraining of the SO and revaluation of the potential within the stock.

Considering this method as a computation workflow, as opposed to the construction

of a specific parameterised model, has implications at a few stages. Over-tuning the

models for a given scenario’s parameters is likely to be a waste of resources, as the

hyperparameters and optimisation settings tuned are likely to need changing again when

the scenario parameters are adjusted. The SO model selection presented in Section 5.4

could have included the removal of the rare or unused classes during model training

to provide a small boost to model accuracy, however, this would come at the cost of

generalisability. As will be seen in Chapter 6, when the parameters of the objective

function model are changed, the classes that could have been removed here become

useful or sometimes dominant. Another consideration of framing the method in terms

of a workflow is the important fact that modellers or stakeholders using the workflow

are aware of which parameter changes have the largest effects on computational cost. At

the first stage, the EnergyPlus simulation models will have the largest impact in terms

of model reconstruction, while parameters in the outer retrofit adoption model are the

least costly. A high-level view of these stages and the retraining required to achieve

them can be obtained by looking back to Figure 5.2.

5.6.4 Optimisation Problem Complexity

The complexity of the chosen optimisation problem is worth noting here. The optimisa-

tion problem itself was a combination of eight components varying from binary (in the

case of heating) to 25 discrete thicknesses of IWI and EWI insulation. The total uncon-

strained optimisation search space was 1,800,000, making the problem significantly too

substantial to solve at run time for each dwelling during a dynamic agent-based model of
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the type discussed in Section 5.5. It is worth noting, however, that for a given scenario

setting, the range of feasible solutions does become significantly reduced due to the cost-

benefit return of certain measures under any given scenario. As was seen in the scenario

presented in this chapter and discussed in Section 5.3.3, the installation of EWI was

generally (although not completely) dominated by IWI installations. This essentially

removed EWI from major consideration when training the SO and therefore reduced the

problem’s effective complexity to 67,200 feasible solutions. It would have been possible

to remove those attributes and perform the optimisation procedures again. However, the

attributes were left in and the SO was trained including them in this section for a few

reasons. Firstly, the SO method laid out in Chapter 4 and implemented in this chapter

should be considered a computational workflow and the outcomes depend significantly

on the choice of simulation parameters, such as the cost of labour and materials. It

should be possible to adjust these elements without having to redesign the workflow

itself, as doing so is labour intensive for a modeller as well as requiring potential domain

knowledge. Automating the workflow also allows more extensive experiments to be car-

ried out, as the stages can be re-run using data derived or altered programmatically at

runtime without requiring human input.



Chapter 6

Modelling Environmentally

Conscious Agents Using

Multi-Objective Surrogate

Optimisation

“There are no solutions, there

are only trade-offs; and you try

to get the best trade-off you can

get, that’s all you can hope for.”

Thomas Sowell

This chapter will extend the Surrogate Optimiser (SO) methodology outlined in Chap-

ter 4 and implemented for self-interested agents in Chapter 5 by extending the objective

function for agent retrofit decisions to include a measure of environmentalism. This

is in order to acknowledge and account for the observed tendency of individuals to be

willing to pay to reduce their own greenhouse gas emissions, the evidence for which was

discussed in Section 3.3 of the related works. This extension of the SO method will im-

prove the descriptiveness of the model to capture observed aspects of reality and allow

the analysis of policies that attempt to encourage environmentalism within a population.

The structure of the chapter will be as follows. Section 6.1 will explain how emissions

have been implemented into the workflow, including embodied emissions, lifecycle costs,

138
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and models of national grid decarbonisation which make up the Lifecycle Carbon Savings

(LCS) model. Section 6.2 will then explain how the Genetic Algorithm implemented in

Section 5.3 was adapted to generate the solutions for agents of heterogeneous preferences,

followed by the results of this process on a sample of households. Section 6.3 will then

explain the process of training the multi-objective SO using that sample and evaluate its

performance against an unseen test set. Section 6.4 will then expand the simple agent-

based model introduced in Section 5.5 to take advantage of the transparent measure of

household environmentalism integrated into the SO models to evaluate the performance

of a simple government campaign to boost households’ environmentalism. Section 6.5

will conclude the chapter with some points of discussion relating to the ideas raised.

It will be noted that there are some similarities between the chapter outline above and the

structure of 5. This is unsurprising, as the expansion of the SO into multiple objectives to

account for environmentally conscious agents will follow the same methodological beats

as the single-objective SO did. It should be noted, however, that the energy simulation

and subsequent SEPM that were implemented and trained in the previous chapter are

used in this method unchanged. This is because the underlying energy performance

of buildings is unchanged by the economic and social forces that influence the retrofit

decision makers. Any reader wishing to understand the method used for calculating

energy use this chapter should therefore refer back to Section 5.2.

6.1 Implementing Emissions

The two core components that make up the emissions profile of a dwelling are the em-

bodied emissions and the operational emissions. The embodied emissions represent the

emissions required to implement the retrofit through the manufacture, transportation

and disposal of the materials and byproducts of the retrofit installation, while the op-

erational emissions refer to the emissions produced from the dwelling as it is used over

time [199]. In this instance, operational emissions are produced from the fuel sources

required to meet the heating demand of dwellings. In the case of gas, this occurs at the

point of use, while electrical energy is generated in a variety of different forms which are

combined to form the national grid.

Given the phenomenon of interest is the greenhouse effect, understood as the impact

of certain environmental emissions on the global temperature profile, we have used an

equivalency measure for emissions throughout the research. Emissions have been con-

verted into tonnes of carbon dioxide equivalent (tCO2e). This converts non-carbon

gasses with a greenhouse effect to give a single unit measurement of the effects and it
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is a common and accepted universal emissions measure used by researchers and govern-

ments to evaluate the environmental impact of greenhouse gas emissions [200, 201, 202].

It should be noted, therefore, that the environmental impact considered in this chapter

is only limited to the effect of emissions as it pertains to carbon-equivalent units and

does not factor in environmental concerns such as clean water, particulate emissions, or

biodiversity, which should be considered out of the scope of this research. This is con-

sidered a reasonable limitation, however, as the retrofit measures under consideration

are not generally associated with significant causes of localised pollution of these kinds.

LCS =

t=p∑
t=1

et − E0 (6.1)

Equation 6.1: Lifecycle Carbon Saving (LCS) calculation.

Lifecycle Carbon Saving (LCS) is represented by Equation 6.1. The value of emissions-

saving in year t, et, will depend mostly upon the energy saving properties of the retrofit

and was discussed in Section 6.1.2. It will also be impacted by fuel type, as we model

a decarbonising grid resulting in decaying emissions contributions from electric heating

methods over time. The lifetime embodied carbon is represented by E0 and considers

the cost of manufacturing, transporting, and disposing of building materials used in a

given WHRS. This can be considered a non-discounted emissions equivalent of the NPV

calculated and is expressed in tCO2e.

6.1.1 Emissions Cost Model

Embodied emissions represent the emissions required to install a given retrofit through

the materials and services required to install it [203]. The inclusion of embodied carbon

was deemed important as low carbon buildings tend to embody a greater share of whole

lifecycle carbon in their construction, despite lower emissions overall [204]. This is

particularly important when considering retrofits to existing stock that is not at the end

of its life, as this carbon cost can be mitigated entirely through inaction. Embodied

emissions values were taken from the Inventory of Carbon and Energy (ICE) database

where available, with interpolation used to obtain missing material thicknesses [177].

The approach to measuring the emissions impact in this research has been to, wherever

possible, use lifecycle emissions values for the given installations. This mirrors the

approach used in the financial modelling with the exception that no discounting rate
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has been placed on future emissions. When referring to lifecycle emissions for a given

installation, this refers to the carbon not just required to manufacture the material but

also to transport, dispose and install it.

As well as improving the accuracy of any carbon savings values, the inclusion of embod-

ied carbon is conceptually important for the optimisation stage. Without embodied car-

bon calculation, the emissions reduction objective would become unbounded and agents

wishing to minimise emissions would always install the maximum insulatory measures

regardless of their diminishing energy mitigation returns. The inclusion of embodied

emissions creates a tipping point at which the marginal emissions reduction from energy

insulation is exceeded by the embodied carbon from additional thickness. This bounds

the optimisation problem and therefore makes it solvable.

6.1.2 Emissions Mitigation Model

S =
N∑
t=0

fetcet + fgtcg (6.2)

Equation 6.2: Lifecycle carbon reduction over N years. The net emissions per unit of
electricity in year t given as cet and the net emissions of natural gas are assumed fixed
at cg. The change in demand (for year t) of electricity and gas as a result of the retrofit
as fet and fgt.

Emissions mitigation is the gross reduction in greenhouse gas (GHG) emissions as a

result of a given WHRS. In this instance, all reductions in emissions will be due to a

fall in operational emissions as the net embodied carbon of a preexisting building can be

considered zero at the point of decision. Within the modelling scope, these operational

emissions can be reduced in two ways: a reduction in energy use, or a change in energy

fuel source to a lower emission producing source. This is represented in Equation 6.2

which represents the annualised emissions mitigation of a given WHRS over a period of

N years. This calculation is similar to the cost-savings calculation used in the financial

model, with the primary difference being the lack of discounting of future emissions

compared with present emissions. The rate of GHG emissions from natural gas fuel

sources is set at a fixed rate, while the electrical grid is assumed to vary based on a grid

decarbonisation model to capture the reduction in expected emissions over the period
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of interest as the national electrical grid decarbonises.

6.1.2.a Grid Decarbonisation Rate

r = 1− ct
c0

1
t

(6.3)

Equation 6.3: Decarbonisation rate required to achieve CO2 levels of ct after t years.
An inversion of the compound annual growth-rate formula.

It is the stated policy of the UK government to decarbonise the UK power grid by the

year 2050 [205]. Therefore when considering the carbon emissions of power from the

grid, a decay factor was considered to ensure the full benefits of the decarbonised grid

are factored in. This also means that optimisations under these scenarios have an a

priori assumption that the national grid will meet its policy statements. To calculate

the required decarbonisation rate, the formula in Equation 6.3 is used. Given 2018

carbon levels (c0) of 0.309 kg/kWh [6], falling below 0.001 kg/kWh (ct) by 2050 (t =

32) the required annual reduction must be 16.4%1. The decarbonisation rate is highly

relevant when considering extremely carbon averse households, as when observing a

highly decarbonising grid they would be more likely to consider using more expensive

electric heating even when gas central heating is available.

6.2 Multi-Objective Optimisation using a Genetic Algo-

rithm

6.2.1 Objective Function

In order to incorporate the environmentally conscious agents, Lifecycle Carbon Saving

(LCS) was added to the agent utility function. There were two primary objective values

considered during the scoring stage of the GA. LCS represents the CO2e saved by en-

ergy demand mitigation, less the embodied carbon cost of the retrofit. Both objectives

consider lifetime values, including transportation, labour, and, where relevant, disposal

1Using a reduction rate formula, a value of 0 would not be achieved in a finite time period, so 0.001kg
was used as an approximation.
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of the materials used, as seemingly beneficial retrofits can become unfeasible if other

lifecycle costs are considered. Where applicable lifecycle maintenance costs were rolled

into upfront costs with appropriate discounting applied. While the assessment of the

benefits of a retrofit assume it will be operated for its full lifespan, there is no conceptual

reason that a second retrofit could not be applied during this period given the initial

installation is a sunk cost.

The household utility for a retrofit solution is shown in Equation 6.4, with the household’s

carbon valuation expressed as v. Given that v is expressed in £/tCO2e, the utility can

be expressed in financial terms, allowing a direct trade-off between the terms. This

carbon valuation, v, represents the Willingness To Pay (WTP) for carbon mitigation

and is discussed in terms of the Household’s Carbon Valuation (HCV). The driver for

this value can be seen as the personal or social components that motivate households to

be carbon-conscious and could be driven by a combination of altruism, social pressures,

or self-preservation. A discussion of the conceptualisation of HCV can be found in

Section 6.5.1

U = µNPV + vLCS (6.4)

Equation 6.4: Utility function used in optimisation, with v representing Household Car-
bon Valuation (HCV). µ is set to 0 for a LCS-maximising objective but is otherwise 1.

Vu0 =
−NV P

LCS
(6.5)

Equation 6.5: Minimum indifference carbon value.

Equation 6.5 shows the minimum indifference carbon value. This is the minimum carbon

value required for a household to be indifferent between inaction (their existing building

state) and a given retrofit solution. If a household’s individual carbon value exceeds this

threshold, and the WHRS has a positive LCS, a utility-maximising household would

benefit from adopting the solution. This value has some useful properties, being both

unique for Pareto solutions and monotonically increasing on a concave Pareto front.

It should be noted that the minimum indifference carbon value differs from the HCV

considered at the point of optimisation. To see this, consider that in positive NPV

solutions which also have positive LCS (a subset that makes up the majority of the

WHRSs observed in Section 5.3.3) the minimum indifference carbon valuation is negative
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despite being acceptable to an NPV-maximising household with a HCV of £0/tCO2e.

6.2.2 Pareto Front Generation

Pareto fronts represent the subset of all possible solutions for which there exists no other

solution that performs better on all objectives. A background discussion of this concept

was presented in Section 2.3.2. In the case of the two objective optimisation problems

under consideration, this means that if a WHRS is part of the Pareto front then no

other solution exists that has both a greater NPV and LCS. In order to train the SO,

a representative set of HCV-linked Pareto fronts was required. Pareto solutions were

generated by altering the HCV provided to the objective function. HCV bounds were

generated by using a NPV-and-LCS-only objective to find the extreme points of the

front. A grid search was then performed between these bounds and a local search was

performed around the identified solutions. An example of the type of front generated by

this method is shown in Figure 6.1. Using this front generation technique, in contrast

to a multi-objective GA method, provides a one-to-one relationship between the HCV

and optimised solutions for preference-aware SO training.

6.2.3 Results

Using random sampling, a total sample of 2,635 buildings were selected to be optimised,

from which a total of 45,175 WHRSs were discovered, resulting in an average Pareto

front size of 17.1 solutions. The sample size was dictated by a given computational

budget2. This section will investigate the nature and distribution of WHRSs found,

both to better understand the preferences of environmentally conscious agents from this

sample and to investigate the training set to be carried forward into SO training.

In order to analyse the WHRSs generated they will be broken down into three scenarios.

The Max NPV scenario mirrors the problem discussed in Chapter 5, with HCV set to

£0/tCO2e to capture the decisions of purely self-interested agents. The inverse scenario

of this, Max LCS, represents solutions for which µ in objective function 6.4 is set to 0 and

agents attempt to maximise LCS regardless of the financial implications. And solutions

between these two scenarios will be considered part of the Mixed Criteria scenario. These

solutions have a µ of 1 and a positive HCV (v) and represent all households who place

a positive value on carbon mitigation while remaining interested in the financial returns

those WHRSs yield.

2400 cpu hours were assigned to this instance of WHRSs discovery.
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Figure 6.1: Sample of Pareto fronts generated with the environmentally conscious ob-
jective function and the Genetic Algorithm.

An initial investigation into some representative fronts will give an idea of the nature of

the WHRS discovered. Figure 6.2 shows a typical Pareto front from a sample dwelling.

Solutions can be seen clustered around general intervention type combinations, with

local non-dominated alternate solutions resulting from gradual variation in insulation

thickness. In this instance, the positive NPV solutions were only all single-measure IWI

installations, although it was observed in Section 5.3.3 that a variety of WHRSs could be

discovered for different dwellings even when restricted to profitable combinations. The

next cluster of discovered solutions was the installation of triple glazing alongside the

IWI, followed by the addition of supplementary roof insulation, then by the replacement

of EWI with IWI at higher carbon valuations. There is variation in the nature of the

fronts as the characteristics of each building differ significantly. In the dwelling with

the TOID: osgb1000022680516 for example, which can be seen at the bottom left of

Figure 6.1, there exists a set of solutions with significantly negative NPV. These are

WHRSs in which the heating system is converted from gas to electric in order to capitalise

on the decarbonising electrical grid discussed in Section 6.1.2. This is the inverse of

the transition observed in many NPV-maximising solutions in which electrically heated
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dwellings converted their energy generation to gas due to the significant fuel cost savings.

It should be noted that this transition is very costly, with a minimum indifference carbon

value of £1300/tCO2e in this instance. This is well outside of the generally discovered

WTP for emissions mitigation and these solutions were generally only found in the Max

LCS scenarios.

Figure 6.2: Sample Pareto front coloured by retrofit installation.

A breakdown of the entire sample of WHRSs demonstrates that the trends observed in

the representative front can be seen across the rest of the samples. The solution trade-

offs between the two objectives are plotted in Figure 6.4 which is coloured in accordance

with the retrofit measures installed. As noted above, the most extreme solutions are

made up of fuel source retrofits, with electric-to-gas resulting in a high NPV but low

or negative LCS while gas-to-electric causes the opposite trend. This demonstrates that

the grid decarbonisation is significant enough for heavily carbon-averse households to

eschew the cost advantages of gas fuel in order to reduce emissions in this case. The

same wall insulation trend observed for the representative front was also seen across the

sample, with IWI resulting in a higher NPV due to its lower cost but EWI dominating the

LCS-focused solutions. This is perhaps unsurprising given the higher cost but additional

insulating effects of EWI. The glazing follows similar trends, with double glazing popular

in WHRSs focused on NPV while triple glazing is more common in solutions with a lower

or negative NPV but a higher LCS.

The distribution of optimal thickness of insulation types varies between scenarios, as

can be seen in Figure 6.4. The Max NPV scenario distribution mirrors that discussed

in the previous chapter, with a fairly even distribution of wall insulation and clusters of
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roof insulation towards the extreme ends. The Max LCS scenario finds maximum roof

insulation thickness to be universally optimal, indicating that the embodied carbon of the

insulation is more than offset by the resultant energy savings. In contrast, approximately

30% of wall insulation installations in the Max LCS scenario are sub-maximal, indicating

more significantly diminishing returns on the embodied carbon as thickness increases. As

would be expected, the mixed criteria scenario is an intermediate distribution between

the Max NPV and Max LCS scenarios, with a more even insulation thickness distribution

than the LCS-maximising solutions but a steeper and more right skewed distribution of

both wall and roof thicknesses than the NPV-maximising solutions. This effect is more

significant for roof than wall insulation, adding evidence that more emissions-focused

agents will focus more on maximal roof installations while seeking sub-maximal wall

insulation.
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Figure 6.3: Entire sample of 45,175 WHRSs trade-offs coloured by retrofit measure.
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Figure 6.4: Distribution of insulation thicknesses broken down by scenario.
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6.3 Multi-Objective Surrogate Optimisation

At this stage, the Pareto fronts for 2,635 dwellings have been discovered for a total of

45,175 WHRSs; These solutions are dependent on both the initial state of the building

and the carbon preferences of the household that are used to generate them. The same

fundamental method described in Section 4.4 and implemented in Section 5.4 was used

to train the set of predictive ANNs that comprise the SO, with the addition of the HCV

as an input feature to account for the environmental preferences of households.

6.3.1 Model Training

The hyperparameter tuning procedure was generally the same as described in Sec-

tion 5.4.1. However, some of the elements were adjusted based on initial observation

of training outcomes. The Hyperband algorithm used for single-objective SO parameter

tuning was found to be too aggressive in selecting models which performed well initially

but were insufficiently complex to capture the impact of HCV on model predictions and

would therefore perform poorly. To compensate for this, a Bayesian optimisation algo-

rithm was implemented for parameter tuning instead. This algorithm applies a Gaussian

process, calculating a prior distribution, performing model training and updating the

posterior based on the results [206]. This optimises hyperparameters efficiently while

avoiding some of the early over-fitting problems experienced using Hyperband. The

range of hyperparameters over which the models searched can be seen in Table 6.1.

Setting Regression Models Classification Models

Loss Function L2 (Least Square Errors) Categorical Crossentropy

Last Layer Activation Linear Softmax

Pre-proccessing Normalisation, Logarithmic, Standardisation

Number of Layers 1 - 7 (Steps of 1)

Neurons Per Layer 8-256 (Steps of 8)

Activation Function ReLU

Learning Rate 0.01, 0.001, 0.0001

Training Function Adam (alpha=0.001, beta1=0.9, beta2=0.999, epsilon=10E-8)

Table 6.1: Description of SO hyperparameters used for tuning.

Generally, the models were trained using 80% of the whole data set, with 10% retained

for testing, and 10% for validation. However, in order to ensure the input data was

balanced and matched the application of the trained model, the IWI and EWI thickness

models were trained only on the data set of WHRSs for which an installation of this
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type was made. This was to ensure the significant number of zero valued thicknesses

that comprise the entire set did not bias the model during training. The classification

models were trained on the entire set, ensuring that correct classification would result

in subsequently correct thicknesses.

6.3.2 Feature Analysis

In order to ensure that the carbon value used to derive the choice of retrofit prediction,

an important feature if the value is to be meaningfully applied to agents in predicting

decisions, a form of feature analysis is required. SHAP (SHapley Additive exPlanations)

is a form of additive feature analysis first introduced by Lundberg and Lee in 2017 [207].

This game theory approach considers a weighted power set of feature combinations to

calculate the impact of each feature on the predictions made by a model. Larger SHAP

values associated with a feature indicate that the inclusion of that feature has a larger

impact on the predictions of the model. A good primer on the SHAP method can be

found here [208]. The SHAP python implementation was used to obtain mean SHAP

values [209].

The SHAP values are computationally expensive to gather and as such a sample of 500

dwellings were used to calculate the significance of each feature on each model. The

results showing the most contributing features to each model are shown in Figure 6.5.

The mean absolute SHAP values have been used to gather the magnitude of impact on

the model, although the values are not plotted as the relative significance of features is

of interest rather than an interpretation of the absolute SHAP values.

The level of influence that each feature brought upon the model varied between the

measures over which the optimisation occurred. There are some expected trends in

the data, with HCV being a more prominent feature in the measures that varied most

over the Pareto fronts seen in Section 6.2.3. IWI material selection, for example, saw

variance across the Pareto front from PIR for low HCV households, then to EPS, and

finally to None as EWI installations were priorities by highly environmentally conscious

households. This is reflected in the significant influence of HCV on the classification

of those particular materials, as seen in Figure 6.5. Across all the models, HCV is a

significant feature, ranging from the single most contributing factor to the 5th, indicating

the models are highly influenced by the preferences of individual households.

Examining the most significant features of the individual models increases the inter-

pretability of the ANN models and allows for some degree of validation. It is reassuring
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for example that the total area, wall area, and initial energy use are significant features

in determining an appropriate IWI or EWI material, as these are the most significant

contributing factors to both the cost and energy models that make up the underlying

optimisation problem. Interestingly, the wall type is a more significant feature in IWI

selection than in EWI selection. When considering the sample of near-optimal retrofits

used for training this makes intuitive sense, as the IWI material sample set draws from

the lower HCVs and, therefore, higher NPV seeking preferences. In this case, the exist-

ing wall type would contribute a lot to the profitability of the installation, as insulated

cavity walls provide significantly less heat loss than solid walls, making the additional

IWI less effective. This explains why the presence of solid walls negatively impacts

the model’s propensity to predict IWI insulation. This factor is less significant when

modelling EWI, as the training set of WHRSs which included EWI is from the more

environmentally conscious side of the Pareto front and as such, the minor difference

in marginal benefit that wall type yields is less significant than the presence of other

thermal properties of the house such as the roof and glazing properties.

Examining the feature significance of the glazing prediction model indicates that the

most significant properties are, as may be expected, the glazing ratio of the building as

well as the initial state of the building’s glazing. Interestingly the side glazing ratio was

brought forward as a significant feature during training despite other properties such as

total glazed area or wall area. This may be because using the side glazing ratio was more

efficient for approximation during training than the more general values and provided

more consistency across different sizes and topologies of dwellings.

The wall insulation thickness models, both IWI and EWI, were heavily dependent on

initial energy use as a key predictive feature. The HCV was the 4th and 5th most

significant feature respectively, indicating the models are responsive to the preferences

of the agents at hand. It could be asked whether the relative insignificance of this feature

is cause for concern, compared with some of the other models. However, the training

set of wall thicknesses only included those WHRSs for which insulation of that type was

installed. Given that the IWI and EWI classification models were significantly HCV

dependent, it is intuitive that the feature is of less relative importance as the training

set is essentially pre-selected based on a very HCV dependent attribute (the chosen

insulation type). This hypothesis is consistent with the features of significance found in

the roof insulation thickness model; outputs are significantly more sensitive to the HCV

feature as the presence of some roof insulation is significantly less sensitive to HCV.

This was observed in Section 5.3.3 where even NPV-focused solutions (where HCV is

set to 0) would prioritise some level of roof insulation. This means the roof insulation

thickness model training data was not pre-screened based on HCV sensitive criteria and
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subsequently this feature is of much higher importance.

6.3.3 Surrogate Optimiser Results

A test set of 4,637 WHRSs was used to measure the performance of the trained SO

models. The results of the classification models can be seen in the confusion matrices

of Figure 6.6, a histogram of regression residuals of the thickness models can be seen in

Figure 6.8, and a cumulative density function of the predicted thicknesses against the test

data set distribution is shown in Figure 6.7. This section will discuss the performance

of these models individually.

The model classification of IWI material installations performed well, with a weighted

F1 and accuracy score of 0.90. The worst performing classification was of XPS installa-

tion, with a recall of 0.71 and a precision of 0.75. The similarity between the precision

and recall values indicates a similar level of false positives and false negatives, which can

be seen in the confusion matrix in Figure 6.6. Classification errors were also balanced

between the classes, with a proportional number of misclassifications between XPS and

PIR compared with XPS and None. The EWI classification model also performed well,

with an accuracy of 0.89 and a weighted F1 score of 0.87, indicating generally good

performance. The PIR classification in the model performed poorly due to the signifi-

cant imbalance of the classes. However, the absolute number of errors was quite small.

Additionally, the misclassified PIR values are generally classified as XPS, which will be

a significantly smaller source of final score error compared with them being assigned

to None. It is therefore clear that while the model is unable to distinguish sufficiently

between the two alternative materials, it is sufficient to perform a binary classification

to determine where some form of insulation is required.

The glazing classification performance is good, with an accuracy and weighted F1 score

of 0.91 and 0.92 respectively. Most observations fall into either double or triple glazing

and this is represented in the errors, which are fairly evenly distributed between false

positives and false negatives in double glazing predictions as shown in Figure 6.6. Given

the larger support for triple glazing, this resulted in poorer metrics for double glazing of

0.88 and 0.85 for precision and recall respectively.

The fuel source classification model performed well, correctly classifying 285 of the 295

instances of gas to electric conversion in the test set with only a single instance of a gas

fuel source dwelling being incorrectly classified as electric. The remainder of dwellings

were correctly classified as optimally utilising gas for heating, generally preferred due to
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the significantly lower economic cost. This was one of the best performing classification

models, likely due to the significant HCV required under this scenario for the fuel type

switch to increase utility due to the significant cost differences making only the most

LCS-focused solutions candidates for the model. The quality of these classifications was

represented in an accuracy of 0.98 and a weighted F1 score of 0.99.

The classification scores are similar to those achieved in the single-objective SO problem

presented in Section 5.4.3. The regression problems also performed well, although the

MAE was slightly higher than in the NPV-maximising case due to the increased prob-

lem complexity. The IWI thickness model resulted in a MAE of 8.4mm, slightly larger

than the discretised thickness class sizes which were spaced 5mm apart. Nonetheless,

the modal error band is still 0mm, as shown in Figure 6.8, which shows the distribu-

tion of regression residuals. The final distribution of IWI predictions maps closely to

those in the test data set, making the model suitable for the desired upscaling tasks.

The distributions of the regression model predictions are plotted against the test set in

Figure 6.7. The EWI thickness model performs slightly better with a MAE of 7.8mm

which again represents slightly more than the size of a single class range when coerced

back into discrete class values. The roof thickness model performs worse in absolute

terms with a model MAE of 10.3mm, however, the roof thicknesses occur over a wider

range and with wider class bins of 15mm and so the mean error falls below the width of

a single class. The IWI, EWI, and roof insulation thickness models obtained r2 scores

of 0.76, 0.83, and 0.88 respectively, indicating that in all cases a significant proportion

of the output variance is explained by the model.
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Figure 6.5: SHAP values indicating the significance of different features to model pre-
dictions.
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Figure 6.6: Confusion matrix of classification predictions.
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Figure 6.7: Cumulative density functions of actual and predicted insulation thicknesses.
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Figure 6.8: Histograms of regression residuals for thickness predictions.
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6.4 Agent-Based Model of Retrofit Adoption using Multi-

Objective Surrogate Optimisation

In order to demonstrate the benefits of adding Household Carbon Valuation (HCV) as

a transparent measure of environmentalism into the SO, the ABM used in Section 5.5

has been extended. The illustrative ABM allows the modeller to assess the impact of

a local government campaigning for climate awareness on the quantity and quality of

retrofits within the city. This section will first layout changes to the model design which

allow transparent integration of HCV into the model. In the results section, the results

of several experiments will be presented to both observe the impact of incorporating

environmental agents and evaluate the effect of variation in the model parameters.

6.4.1 Model Design

In the model, agents are endowed with a HCV of vi ∼ U(0, 50) drawn uniformly be-

tween 0 and 50. The government agent in the model runs a campaign to boost the

environmental awareness of each household that is influenced. The rate of influence on

the households will be referred to as the penetration rate p, and refers to the probabil-

ity that a given household will be influenced within a given year. If influenced by an

environmental campaign, the HCV of the household is increased by n ∼ U(0, 15). The

pre and post campaign effect on emissions valuations represent approximations of the

mean and variance of WTP for mitigation found in carbon valuation studies [145, 146].

However, they should be considered parameters that may need localising or adjusting

based on the modeller’s expectation of the target system.

As with the original model presented in Section 5.5, agents evaluate their retrofit options

at a probability e per year. The household’s near-optimal retrofit solutions are gener-

ated using the trained SO and scored as described in Figure 6.10. Solutions bearing

positive utility are then installed within the model. The modelling scenarios give the

local government two approaches to influence retrofits: increasing the intensity of envi-

ronmental campaigning, and direct outreach to encourage the consideration of retrofits

among households (through means such as payback finance structures, working with

installers, and contacting households, which are abstracted into the evaluation rate).

The state diagram representations of the agents are shown in Figure 6.9. With a domestic

building stock of 95,500 dwellings, the outreach scenarios require an average of 47,750

optimisations per 25-year simulated run, representing a large computational cost that
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Figure 6.9: State chart representation of agents.

could become prohibitive using traditional optimisation approaches.

6.4.2 ABM Results

Scenario Evaluation Rate (e) Campaign Penetration Rate (p)

Baseline 0.01 0

Small Campaign 0.01 0.05

Small Campaign with Outreach 0.02 0.05

Significant Campaign 0.01 0.1

Significant Campaign with Outreach 0.02 0.1

Table 6.2: Intervention scenarios for illustrative ABM.

The scenarios modelled are shown in Table 6.2, combine the outreach principle discussed

in Section 5.5 alongside the newly introduced campaign model penetration rate to create

a small set of scenarios to evaluate initially.

The ABM utilised the ability of a trained SO to quickly evaluate the entire building

stock of the city of Nottingham. The ABM was replicated 100 times per scenario. As

shown in Figure 6.11, the campaigning to increase the HCV of households increased the
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Figure 6.10: Process flow for generating and scoring retrofit solutions using the trained
Surrogate Optimiser.
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LCS of retrofit decisions made over time. The types of retrofits installed differed in the

campaign scenarios, as shown in Figure 6.12, with increased campaigning resulting in

a preference for more emissions-friendly retrofit options. This resulted in an average

LCS of 25.51tC02e per retrofit in the significant campaign scenario, contrasting with

25.21tC02e in the baseline (p < 0.01). This came at the cost of a reduction in NPV from

£7,696 to £7,429, showing a willingness of households with higher HCV to trade-off

financial value for more environmental retrofits. In total, a significant campaign reduced

net lifecycle emissions by 13.7ktC02e without the outreach program and 16.7ktC02e
when outreach was included. The number of positive utility retrofits was also higher

under campaign scenarios, with average increases of 2.9% and 6.3% for the small and

significant campaigns respectively. This indicates the installation of marginal retrofits

which would not have been viable for financial reasons alone. While the effects are small

on the household level (due to the relatively moderate changes in HCV) they show that

on the urban scale the increased emissions awareness can have significant impacts over

a long period. In this scenario, the evaluation rate of households, influenced by the

outreach campaign, had the most significant effect on the total carbon reduction. This

suggests that attempts to engage households to trigger WHRSs evaluation should be a

priority ahead of campaigning to increase their carbon valuation directly. However, the

combined approach yielded the greatest reduction in total emissions.

6.4.2.a Penetration Rate Effect

Given the penetration rate (p) is expressed as the probability that a given household

will be influenced by a campaign in a given year, the number of households affected

can be expressed as a continuous value between 0 and 1. In order to evaluate the effect

of the campaign’s penetration, the evaluation rate was fixed to 0.02 (modelled as an

outreach scenario in the previous experiment) and a parameter grid of penetration rates

was performed, varying from 0.0 to 1.0 in increments of 0.1 to evaluate a full range of

scenarios. Each scenario was repeated 100 times to account for the stochasticity of the

model.

The results of the penetration rate experiment are plotted in a series of time series plots

in Figure 6.13. As the campaign effects are cumulative over time, the scenarios are

initially similar before diverging as the simulated time continues. The total number of

retrofits installed increases with the penetration rate, in line with the intuition that more

environmentally conscious agents have a higher propensity to install retrofits compared

with self-interested agents. While this increase in WHRS installations results in higher

annual investment, the total NPV of retrofits installed per year falls at higher campaign
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Figure 6.11: Lifecycle emissions savings of simulated retrofit decisions over time.

Figure 6.12: Average NPV and LCS of retrofits in the Agent-Based Model under different
scenarios.
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penetration rates, indicating a propensity to select retrofits with a lower or negative NPV

in order to improve the environmental objectives. The total impact of a campaign with

full penetration (p = 1) results in a cumulative GHG emissions saving of 486.7ktCO2e

over the 25 year run (averaged over 100 repetitions) compared with just 447.4 ktCO2e

when the campaign’s penetration rate was 0. This indicates a maximum 39.5kt reduction

in total LCS over the 25 year period of modelling should a campaign prove maximally

effective in reaching households under an outreach scenario of 2% annual evaluation.
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Figure 6.13: The effect over time of different campaign penetration rate scenarios on the
total number of retrofits (top left), annual retrofit investment (top right), annual Net
Present Value of installations (bottom left), and cumulative Lifecycle Carbon Savings
(bottom right).
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6.5 Discussion

6.5.1 Conceptualisation of Household Carbon Value

The primary addition of this chapter was the attribute of Household Carbon Value

(HCV), which represents the value that a household is willing and able to pay per ton

of CO2e that a retrofit is able to mitigate. It was observed that introducing this value

made households willing to select WHRSs that are less than NPV-maximising in order

to improve this secondary objective. While this notion of WTP is generally understood

in a descriptive sense, it is worth discussing what the value captures about an agent’s

behaviour conceptually. Specifically, why might households be willing to forego financial

returns in order to contribute to an improved global climate, which would be considered

a public good. Section 2.4.2 of the background chapter laid out the public good game

formulation in which participants have been observed to make voluntary contributions

under certain conditions even when this conflicts with the Nash equilibrium predicted

for the game.

The contributions could be seen as a form of pure altruism, in which participants are

genuinely concerned about the impact of their carbon footprint as it related to the global

climate. There are likely some issues with this conceptualisation from a rational-choice

perspective, as the global climate is extremely large, and the emissions made from a

single household will have a minute overall impact. Nonetheless, this is often the reason

reported and often aligns with the stated intent of households. Another form of altruism

to consider would be impure altruism or “warm glow” theory [52]. This would be a form

of positive emotion experienced by making an altruistic decision. The good feeling of

being environmental provides a positive utility similar to that which would be achieved

by consumption of a good or service of the same value provided by the foregone NPV. The

difference between pure and impure altruism here relates to the actual impact compared

with the perceived benefit, as impure altruism is based on the agent’s perception of

their actions, rather than the result. In order to integrate a distinction between pure

and impure sources of altruism, future work could consider omitting hidden carbon

costs (such as embodied carbon) from decisions made by impure altruists, as agents

are unlikely to be aware of the impacts of such elements. Other theories of altruism

stem from social causes. A primary social cause of altruism would be the notion of

conditional cooperation, a well established driver of public good contributions [210, 53].

This would apply to instances in which households contribute to the environment on

the understanding that other households would also do so, contributing to the greater

good. In a conditional cooperation scenario, the perception of others’ behaviour will
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be a key driving force behind a household’s WTP. There has been evidence presented

that conditional cooperation is a dominant model in predicting environmental behaviour

[211].

Ultimately, the HCV used in this chapter was deliberately designed to be agnostic to

the underlying cause of public good contributions. There are likely to be multiple and

varied reasons for the underlying environmentalism observed in household decisions. The

prediction of this WTP on an individual household level and the root causes and models

for exactly how it can change over time are outside of the scope of this research.

6.5.2 The Value of Surrogate Modelling

The stated goal of implementing a Surrogate Optimiser (SO) in this chapter was to

increase the level of detail possible within a bottom-up WHRS-adoption model while

keeping the model technically feasible. The introduction of environmentally conscious

agents allowed households with heterogeneous environmental preferences and unique

dwellings to be modelled individually at a large scale. It is worth considering whether

the use of the SO procedure was able to improve the technical feasibility of the model

compared with a traditional optimisation approach. A total of 45,175 WHRSs were used

to train the SO, representing front values for 2,635 distinct dwellings. A single ABM

run with an evaluation rate of 1% and a run period of 25 years would require 23,875

retrofit optimisations in expectation. Given the SO training time is negligible compared

with generating a large set of optimisations, any modeller wishing to perform more

than two ABM runs would benefit from the SO methodology when considering the raw

computational cost. This is likely to be in most cases, as running just two instances of a

stochastic ABM with multiple parameters of interest is unlikely. This finding holds even

when considering there may be some repetition of dwellings selected across simulation

runs, as even when the same dwellings are selected, the environmental preferences of

the household are unlikely to be constant across runs, requiring the re-performance of

the optimisation procedure. Given there is some loss of accuracy when using predictions

rather than performing traditional optimisation for each dwelling, there may be cases

where modellers still choose to use traditional approaches. However, this is likely to limit

the scale of the modelling possible. The ABM runs presented in Chapter 6.4 require a

total of 17,906,250 optimisation predictions3 in total, which would make the simulation

extremely computationally costly if full optimisation were required for each sub-problem.

3This value is in expectation, as the absolute number is stochastic.
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6.5.3 Breaking Down Retrofit Decision Stages

The retrofit decision model presented so far, in the form of the ABM, is made up of three

distinct stages. Initially, the household is triggered to consider a retrofit, modelled by

a simple stochastic evaluation rate in Section 6.4. After being triggered, the household

then needs to determine the nature of the retrofit that best suits their physical property

and their household preferences. This optimisation problem has been delegated to the

SO to provide a computationally cheap prediction of a WHRS given these properties in

lieu of performing a full optimisation procedure, which does not scale when evaluating

a large number of households and dwellings. The final element in the retrofit decision

procedure is whether the agent installs the WHRS produced by the model, which will

occur if the performance of the model, evaluated by the SEPM, financial and emissions

models results in positive net utility given the household’s environmental preferences.

These stages can be summarised as:

1. Trigger Stage: The household is triggered to consider a WHRS. Up to this point,

this occurs stochastically with a fixed probability based on an exogenously provided

base rate of retrofit evaluation.

2. Selection Stage: The household discovered the best WHRSs based on their dwelling’s

properties and their environmental preferences. This is predicted by the SO.

3. Evaluation Stage: The household evaluates the best WHRSs to determine if the

resultant NPV and emissions savings yield a positive utility based on their en-

vironmental preferences. The SEPM, financial cost, financial savings, emissions

cost and emissions savings models are used to obtain objective values, which are

evaluated with the household’s utility function. Positive utility retrofit solutions

are installed.

These three stages make up the decision model as used in this chapter. While the

selection and evaluation stages have been the main focus of the models constructed thus

far, the deconstruction of the decision process into these stages gives additional power

to the modeller to add levels of detail for individual agents. The evaluation stage, for

example, could add additional constraints that prevent the household from installing a

retrofit even if it yields a positive utility. These could be based on the availability of

necessary finance, their levels of risk aversion or subjective components such as the level

of perceived disruption that installing the retrofit may bear.

While these post-selection alterations at the evaluation stage yield interesting potential
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for future work, the trigger stage is also of interest. The use of a base rate for triggering

retrofit evaluation is an example of a top-down modelling approach, as the observation

of an aggregated trend is being applied to individuals with no power to distinguish

between their heterogeneous attributes. Chapter 7 will focus on extending the retrofit

trigger model to encompass a greater level of detail using survey responses and individual

responses to different triggers.



Chapter 7

Retrofit Trigger Modelling

I have the simplest tastes. I am

always satisfied with the best.

Oscar Wilde

The retrofit adoption models presented in Chapters 5 and 6 can be broken down into

three discrete stages. The first stage is for the household to be triggered to evaluate

the possibility of installing a retrofit. In the prior model, a simple statistical trigger

model was used based on the probability that a household will consider their retrofit

potential in a given year. The second stage, the selection of the optimal retrofit for

a household’s preferences, was achieved with the use of the Surrogate Optimisation

procedure laid out in the previous chapters. The final stage, evaluation of the optimal

retrofit to determine if it is preferable to the status quo, was performed with the use of the

Surrogate Energy Performance Model combined with the financial and emissions models

described in Sections 5.2, 5.3.1, and 6.1.2 respectively. This chapter will investigate

the replacement of the simple homogeneous trigger model of the first stage with a data

driven model which accounts for heterogeneous agent responses to possible external

retrofit triggers. The model will be designed and calibrated using data from a pilot

survey conducted during the period of research.

NOTE: The pilot study presented in this chapter was conducted as part of a larger

project, with members of that project making key decisions regarding the experimental

design. While I was consulted prior to the experiment design phase, the majority of this

was carried out by other members of the team. My contribution to this research was

170
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primarily in the processing and application of the results.

7.1 Survey Design

7.1.1 Best Worst Scaling

Best worst scaling (BWS) is a methodology which provides a list of options to partici-

pants who are asked to select the best and the worst option. There are typically three

types (or ’cases’) of BWS labelled simple Case 1, Case 2 and Case 3 [212]. Case 1 is the

simplest case and was used in the design of the survey analysed in this section. Case 1

survey design provides high level ’object’ style questions, relying on the participant to

select an option based on their holistic understanding of the properties of the object at

hand. This is in contrast to Case 2 and 3 which ask the participant to rank attributes

of the object from which the experimenter can determine the underlying causes of given

preferences. An example of a Case 1 question may be to ask participants whether they

prefer to install a solar panel or additional insulation. A Case 2 version of this ques-

tion may ask participants if they prefer to generate electricity to be used in their home

or reduce the total amount of electricity required. Surveys can be extended to Case

3 by providing additional attributes within each question, for example, the cost and

disruption levels associated with each individual installation.

The use of Case 1 BWS design in this survey had some advantages. In particular, it

greatly decreases the number of questions required of participants, requiring a minimum

of one question per object class [213, 214]. This keeps the time required to conduct

the survey low and increases the number of topics and areas that can be studied. In

this instance, only two questions from the survey were required to cast insight into the

types of information that influence potential decision makers. The downside of this lower

fidelity approach, however, is the detail of the data driven models that can be derived

from them. With only two data points per participant per question, it is not possible to

derive the entire preference set for a given individual. It is also not possible to determine

which characteristics of the object drive a given choice, unlike in the Case 2 and 3 designs.

Nonetheless, it has been empirically demonstrated (although not formally proven) that

the best minus worst scores are linearly related to the fully constructed conditional logit

models constructed from more complete data sets [213].
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7.1.2 Pilot Survey Implementation

The pilot survey was conducted under the grant title “RCUK Innovation Fellowship in

UK Housing Stock Decarbonisation” (Ref ES/S001670/1). This grant was sponsored by

the Economic and Social Research Council (ESRC)

The survey was commissioned by Energy Systems Catapult1, acting as sub-contractor

to the University of Sheffield. This was compliant with the ethics board policy of the

University of Sheffield by using an authorised sub-contractor who provided robustly

anonymised data. No identifiable data was handled by members of the research group.

7.1.3 Survey Questions

Two questions relevant to this research were posed during the pilot survey. The first

question related to the significance of possible information sources which could influence

participants. The second question is related to factors that may trigger the participant

to consider adopting a WHRS. The question was worded as follows for both:

When thinking about investing in a home improvement, which of the follow-

ing things would have the MOST and the LEAST influence on your decision.

Please select one answer for MOST and one answer for LEAST.

The possible information sources are shown in Table 7.1 and the possible sources of

triggers can be seen in Table 7.2. Due to the long form descriptions used in these

questions, the visualisations in this chapter may use the answer code (indicated in the

tables references) as a stand-in for the full description.

As well as the questions of interest, demographic information was collected regarding

participants. Demographic information was collected regarding the following attributes

of the participants, their current household, and property:

• Property type footnote

• Property age

1Address: 7th Floor, Cannon House, The Priory Queensway, Birmingham, B4 6BS E-mail: procure-
ment@es.catapult.org.uk Telephone: +44 121 203 3700. Legal: Ian Jones / Ian.Jones@es.catapult.org.uk.
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Code Description

1 An expert from energy company or social organisation
2 Colleagues (e.g. work, school, college)
3 Entertainment media (e.g. radio, tv programmes, documentaries)
4 Family
5 Friends
6 Internet ads
7 Mailbox, leaflets, and brochures
8 Neighbours
9 News (tv, radio, online, or newspaper)
10 Social media
11 Street ads (e.g. billboards, bus shelters, and phoneboxes)

Table 7.1: Information source BWS choices and their corresponding codes.

Code Description

1 Building a property extension
2 Your boiler breaks down
3 Full renovation/New “fixer upper” project – before you move in
4 When gas boilers become obsolete
5 A massive discount / clearance sale

Table 7.2: Trigger BWS choices and their corresponding codes.

• Property heating method

• Number of bedrooms in the property

• Household size (number of people who live at the property)

• The presence of anyone under 70 living in the dwelling

• The presence of anyone over 70 living in the dwelling

• The maximum level of education undertaken by the participant

• Year of the participant’s birth

• Whether the household’s disposable income exceeds £900 per month

These demographic details were chosen not just to comply with participant anonymity

requirements but also for their direct mapping to fields present in the English Housing
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Survey (EHS). Given the EHS was used as part of the disaggregated data set discussed

in Section 4.5, many of these fields directly mirror those available for the agents in our

simulated version of Nottingham.

7.1.4 Survey Sample

The pilot survey was answered by 1,138 online participants. Examining the responses

of participants to demographic questions can demonstrate see that the sample of survey

respondents is generally similar to the whole city data set used in previous chapters.

This is shown in Table 7.3. It should be noted that some missing values were present

in the survey results while the disaggregation method removed these from the Notting-

ham buildings data set, which may result in higher proportions in certain city data set

characteristics as these percentages will sum to 100.
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Attribute Attribute Value Survey Respondents City Data Set

Household Size

1 member 4.0% 5.1%
2 members 11.9% 14.2%
3 members 24.3% 28.9%
4 members 30.1% 28.2%
5 members 19.7% 17.3%

6 or more members 7.5% 6.3%

Property Type

Semi-Detached 19.3% 31.5%
Mid-Terrace 15.7% 27.1%

End of Terrace 13.5% 17.5%
Detached 12.9% 13.9%

Flat 33.1% 0.0%
Bungalow 4.5% 7.6%
Other 1.0% 2.4%

Under 16s?
TRUE 20.1% 24.3%
FALSE 74.5% 75.7%

Over 70s?
TRUE 27.7% 25.9%
FALSE 70.1% 74.1%

Education

Higher (e.g. Bachelors Degree) 43.5% 42.9%
Sixth Form/College (e.g. A-levels) 24.6% 26.1%
Secondary school (e.g. GCSEs) 17.7% 18.1%
Postgraduate (e.g. Masters) 11.3% 11.0%

Primary school 1.1% 1.4%
No formal schooling 0.4% 0.5%

Bedrooms

1 3.7% NA
2 15.3% NA
3 38.0% NA
4 32.2% NA
5 9.5% NA

Disposable Income
Less than £900 50% NA
More than £900 49% NA

Table 7.3: Summary of demographic data shows survey was generally similar to city
data.
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7.2 Data Exploration

7.2.1 Best Worst Scaling Metrics

In order to evaluate and explore the BWS data visually, there are certain metrics that

we can use to grant good interpretations. Initially, an examination of the raw best and

worst counts for each response can provide a general understanding of the responses to

different options. The next metric, best minus worst, simply subtracts the number of

times an object was selected as the worst from the number of times it was selected as

the best. This value is useful in providing a simple single value for each object and has

been found to correlate highly with more sophisticated measures of each preference such

as the results of conditional logit models applied to each question [213]. The downside of

this approach is that it can be hard to distinguish choices that are highly controversial

(and therefore have a large number of likes and dislikes) from values that are simply

considered insignificant and therefore have a small number of both. Another useful

BWS metric is best over worst, the ratio of best to worst selections for each choice

option. While still susceptible to the same potential scaling effect, these ratios can give

a good understanding of scenarios where a strong preference for one option over the other

is present, even in cases where the absolute number of choices was not large. The final

metric we will consider is relative importance. This value takes the difference between

best and worst responses and normalises them to the number of responses of the most

popular choice. This results in a value between 0 and 1 of the significance of the object

at hand, proportional to the most preferred option. This has the benefit of being linearly

related to the utilities calculated by a full preference score model [213] as well as taking

ratio values between 0 and 1, which will be useful properties for the construction of the

trigger model in Section 7.3.1.

Some other techniques to analyse the BWS results include clustering, a form of unsu-

pervised ML which attempts to discover similarities between respondents which may

provide insight into underlying patterns in the data. This has the potential for discover-

ing additional archetypes by finding similarity across features that may not be obvious

even to domain experts. An example of using clustering on BWS data can be seen in

Auger et al. (2007) [215]. Another method of analysing results involves the construction

of a conditional logit model, which can be used to find utility value coefficients for each

possible choice. However, this generally requires more than a single question for each

participant, relying on a series of questions to determine the ordered rankings of those

options not selected as the single best or worst from within the set.
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7.2.2 Information Source Responses

The key BWS metrics relating to the significance of different information sources can

be seen in Figure 7.1. To interpret the option code in the diagram, refer back to Ta-

ble 7.1 which contains the full descriptions as they were provided to participants. The

results demonstrate that the most significant information source is perceived to be ex-

pert opinion. This result is robust among all the metrics considered. The least reliable

source of information was perceived to be internet ads, with other forms of ads, such

as leaflets or street ads also being viewed negatively. Opinions of family and colleagues

were the highest rated social sources of information, which should be considered by any

modeller looking to construct an influence model based on social network interactions.

Friends and neighbours, on the other hand, were not seen as high quality information

sources regarding WHRSs. The only other choice for which ’best’ answers outnumbered

’least’ answers included entertainment media, with more participants rating this source

(including radio, tv programmes, and documentaries) as higher rather than lower.

7.2.3 Triggers Responses

The key BWS metrics relating to the significance of different WHRS evaluation triggers

can be seen in Figure 7.1. To interpret the option code in the diagram, refer back to

Table 7.2 which contains the full descriptions as they were provided to participants. The

most significant trigger by all metrics was the adding of a property extension, with over

300 respondents recording this as the most significant trigger compared with less than

150 marking it the least. Opinions were more divided on triggers than with information

sources, yet, boiler breakdowns received a significant but nearly equal number of best

and worst responses. The least significant triggers were perceived to be large discounts

and gas boiler obsolescence, although with relative importance scores of 0.53 and 0.47

respectively, there is still a reasonable level of significance applied to these triggers.

These values will also be broken down by household archetype in Section 7.3.1, which

will show that the preference order of triggers differs among the different categories of

respondents.
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Figure 7.1: Key BWS metrics relating to the information source question.
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Figure 7.2: Key BWS metrics relating to trigger questions.



CHAPTER 7. RETROFIT TRIGGER MODELLING 180

7.3 Designing a Trigger Model with Best Worst Scaling

Data

7.3.1 Trigger Model Design

In Section 7.2 the relative importance of different potential retrofit evaluation triggers

was calculated. Using a base evaluation rate similar to that used in the ABM design of

Sections 5.5 and 6.4, it is possible to create a probabilistic model which is tailored to

the stated preferences from our BWS results.

Consider first that if there was only a single trigger, the probability of a retrofit evaluation

occurring, labelled as P(r), is the product of the probability of that trigger occurring,

P(t), and the probability of a retrofit evaluation given that trigger.

P (r) = P (r|t) ∗ P (t) (7.1)

When this is extended to multiple triggers, the probability of any given trigger occurring

(P (ti)) is the complement of the probability of no events triggering a retrofit:

P (r) = 1−
∏

1− (P (r|ti) ∗ P (ti)) (7.2)

While the absolute values of P (r|ti) cannot be gleaned from the BWS, we do know the

relative importance of each trigger to survey participants using the scaled best minus

worst values. If we consider the most significant trigger, t0, and the rest of the triggers

to have a relative importance score of σi then the probability of participants considering

a retrofit can be expressed as a linear combination of the most significant factor:

P (r|ti) = σiP (r|t0) (7.3)
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Substituting these values into Equation 7.3.1 allows the expression of the base retrofit

probability in terms of only the probability of each trigger and the probability of in-

stalling a retrofit given the most significant trigger occurs. If the base retrofit proba-

bility and the probability of each trigger are taken as inputs, this allows us to solve for

the remaining values: the probability of installing a retrofit given a specific trigger has

occurred.

P (r) = 1−
∏

(1− σi ∗ (P (r|t0) ∗ P (ti))) (7.4)

7.3.2 Trigger Model Training

Initially, we will use the entire BWS data set to train a retrofit evaluation trigger model.

This will result in a homogeneous agent design, with all agents reacting equally to a given

trigger. In order to calibrate the conditional probabilities of the proposed triggers for

the model design proposed above two main sets of parameters are required. Initially, the

base rate of retrofit installations is required. This is the number of retrofits evaluations

expected to occur in a given year independent of what triggers those retrofit evaluations.

Luckily this is a parameter we have worked with before and represents the evaluation

rate discussed in Sections 5.5 and 6.4. The same base evaluation rate of 1% will be

used in this section for consistency with these previous sections. This also ensures that

the underlying number of retrofits will, at present, remain unchanged. The remaining

parameters, which are shown in Table 7.5, are the probabilities these events occur in a

given year.

The selection of the annualised probabilities of given triggers is an exercise in data collec-

tion combined with model conceptualisation. The estimated probability of building an

extension was based on the 2021 planning permission data provided by Nottingham City

Council [216]. The average probability of a boiler breaking down was calculated based

on the annualised expected lifecycle of a boiler, adjusted to account for the proportion

of dwellings in which a boiler is found. The probability of a renovation before moving

in was based on the average rate of relocation rate of approximately 7% per year in

England among homeowners [217]. The final base probabilities required some additional

conceptualisation. Given that gas boilers have no yet become obsolete, this event is not

contributing to the base rate of installations that contribute to the model. As such, the

probability has been set to zero. This will still allow the effect on retrofit probability to
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Code Trigger P(Trigger) Relative Importance P(Retrofit|Trigger)

1 Building an extension 0.02 1.000 0.099
2 Boiler breaks down 0.04 0.646 0.064
3 Renovation before moving in 0.07 0.785 0.078
4 Gas boiler obsolescence 0.00 0.465 0.046
5 Large discount 0.00 0.532 0.053

Table 7.4: Trigger model for homogeneous agents with a base retrofit evaluation rate of
0.01.

be calculated, as the relative importance of the event, should it occur, has been ascer-

tained from the BWS responses. In this case, the conditional probability should be that

if households begin to perceive gas boilers as becoming obsolete, how likely would they

be to consider a WHRS evaluation. A similar approach has been taken with the ’large

discount’ trigger. It has been conceptualised as a particularly large discount (possibly

driven by government subsidies, tax cuts, or changes to the market) that are not in place

when the base rate occurs. This allows for the consideration of a discount that occurs

as an exogenous policy position in the ABM. It should be noted though that a discount

would affect the optimisation parameters under consideration and require the retraining

of the SO in order to evaluate the optimal retrofit installations under the new financial

model.

The outcome of the trigger model’s training can be seen in Section 7.4. The P(Retrofit|Trigger)
columns are the calculated conditional probabilities that can be interpreted as the prob-

ability that a household will evaluate retrofit potential given that a specific trigger has

occurred. For example, the most significant trigger, building an extension, will lead to

an evaluation of retrofit potential 9.9% of the time, while a household perceiving gas

boilers to be obsolete will only lead to a retrofit evaluation in 4.6% of cases.

7.3.3 Modelling Heterogeneous Agents Using Household Archetypes

The base trigger model discussed above makes the strong assumption that retrofit trig-

gers affect all agents equally. It is possible to stratify the BWS data to construct a

heterogeneous trigger model by breaking respondents down into household archetypes.

Given the availability of data across both the Nottingham city housing data set and

the BWS demographic data, it is possible to break households down into stereotypes

that depend on both the age of the primary household breadwinners and the presence

of dependent children. Splitting the BWS data into these archetypes produces decision

model parameters shown in Table 7.5.
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Trigger Household Archetype Rel. Importance P(Retrofit|Trigger)

1 couple, no dependent child(ren) under 60 1.000 0.086
2 couple, no dependent child(ren) under 60 0.848 0.073
3 couple, no dependent child(ren) under 60 0.904 0.077
4 couple, no dependent child(ren) under 60 0.411 0.035
5 couple, no dependent child(ren) under 60 0.580 0.050
1 lone parent with dependent child(ren) 0.987 0.090
2 lone parent with dependent child(ren) 1.000 0.091
3 lone parent with dependent child(ren) 0.725 0.066
4 lone parent with dependent child(ren) 0.517 0.047
5 lone parent with dependent child(ren) 0.957 0.087
1 couple with dependent child(ren) 1.000 0.106
2 couple with dependent child(ren) 0.563 0.060
3 couple with dependent child(ren) 0.740 0.079
4 couple with dependent child(ren) 0.454 0.048
5 couple with dependent child(ren) 0.462 0.049
1 other 0.577 0.061
2 other 0.333 0.035
3 other 1.000 0.106
4 other 0.183 0.019
5 other 0.333 0.035
1 couple, no dependent child(ren) aged 60 or over 0.452 0.057
2 couple, no dependent child(ren) aged 60 or over 1.000 0.126
3 couple, no dependent child(ren) aged 60 or over 0.436 0.055
4 couple, no dependent child(ren) aged 60 or over 0.350 0.044
5 couple, no dependent child(ren) aged 60 or over 0.655 0.083

Table 7.5: Trigger model for heterogeneous household archetypes.

As can be seen from Table 7.5, the different archetypes manifest significant differences

in the relative importance each one places on given triggers. This results in significant

deviations in the probability of a retrofit evaluation when a trigger occurs. Couples

aged over 60, for example, are significantly less likely to consider a retrofit installation

when building an extension with a conditional probability of only 5.7% compared with

9.9% in the homogeneous trigger model above. Lone parents with dependent children

appear to be the most price sensitive demographic as they are the most influenced by the

possibility of a large discount/sale with a 0.957 relative importance. Differences in these

calculated conditional probabilities will result in disparate outcomes across archetypes

when underlying circumstances change within the ABM.
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Figure 7.3: Flow chart of the retrofit decision model using the calibrated trigger model.

7.3.4 Integrating the Archetype Trigger Model into an ABM

Given the overlap between the demographic data collected during the BWS survey and

the EHS data used to generate the Nottingham buildings’ data set used for the ABMs

up to this point, it is straightforward to map household archetypes onto the decision

model archetypes discussed above. The archetype-specific trigger models described above

can then be used to observe how households will respond to different changes in the

prevalence of retrofit triggers.

A flow chart showing how the trigger model described integrates into the ABM can be

seen in Figure 7.3. As the trigger model is modular, much of the decision model used

in Section 6.4 is unchanged. The method of predicting WHRSs using the integrated

SO as well as the scoring procedure of retrofits has remained the same. However, the

initial decision to evaluate is now triggered based on the underlying probability that the

triggers occur, combined with that agent’s conditional probability of evaluating retrofit

potential once the trigger occurs. This adds additional heterogeneity to the ABM, as

now not only is each dwelling being uniquely modelled, but the agents also have different

propensity to perform retrofit evaluations based on their archetype.

7.3.4.a Modelling Perceived Obsolescence

With the introduction of heterogeneous household trigger models it is possible to model

the impact of certain scenarios that would not have been possible in earlier iterations
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of the ABM presented in Sections 5.5 and 6.4. Consider, for example, the obsolescence

trigger, which occurs when a given household perceives their gas boiler to have become

obsolete. With the heterogeneous trigger model in place, it is possible to model the

impact of different obsolescence scenarios on both the overall uptake of retrofits as well

as a breakdown of how each demographic is impacted.

Given the rate of perceived gas boiler obsolescence is unknown, a set of scenarios using a

simple linear obsolescence model will be used for demonstrative purposes. The model will

apply an obsolescence rate which leads to increasing perceived obsolescence each year.

The low obsolescence scenario will assume an obsolescence rate of 0.5% per year, while

the rapid obsolescence model will assume a rate of 1%. The experiment was repeated

5 times for each scenario. No government campaigns affecting the evaluation rate were

simulated to ensure that the effects seen were a result of the obsolescence model’s effect

on the emergent evaluation rate. Environmental awareness campaigns, as discussed in

Section 6.4, were included to raise HCVs after their decision to install a retrofit had

been triggered. The penetration rate of these campaigns was set at 10%.

The results of the obsolescence scenarios can be seen in Figure 7.4, which shows the

impact of the different obsolescence models on different household archetypes. Results

are presented in terms of retrofit rates (the number of retrofits per dwelling per year)

to control for the different provenances of household archetypes. An initial feature of

interest is that the baseline retrofit rates differ between archetypes despite the base

evaluation rate used for calibrating their trigger model does not differ. This is caused

by differences in the initial states of the dwellings, resulting in different provenances of

positive utility retrofit across archetypes. Investigating the effect of the obsolescence

models, it can be seen that the largest impact of higher obsolescence scenarios is on lone

parents with dependent children. Among this archetype, the fast obsolescence scenario

resulted in almost twice as many annual retrofit installations over the time period com-

pared with the baseline. In contrast, the group making up the ’other’ archetype faced

the least impact from perceived obsolescence, an expected result given the low relative

importance score of 0.183 for this retrofit amongst the BWS sample. It is notable that

even these conservative estimates for perceived obsolescence rates result in significant

boosts in retrofit installation rates.
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Figure 7.4: Increases in perceived obsolescence resulted in different effect sizes across
household archetypes.
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7.4 Discussion

7.4.1 Integration of information source data into ABM

While the survey responses relating to information sources was analysed in this model,

the trigger model constructed and integrated into the ABM was reliant only on the

BWS data relating to potential retrofit triggers. Constructing a social influence model

to evaluate the level of environmentalism among households is out of scope for this

research and would likely require significantly more data collection phases. However, the

information source answers in 7.2 do give some indication as to what such a model would

look like as well as what the most significant components would be. In order to integrate

this with the SO constructed in Section 6.3, the target feature of an environmentalism

model would be the WTP per ton of emissions mitigation. In order to obtain data

using this survey methodology, a Case 2 or Case 3 BWS model would be required.

These methods breakdown the features of given retrofit choices, such as the cost, energy

saving, and emissions mitigated and allow the modeller to calculate the marginal utility

associated with each unit of each attribute. Doing so would enable the construction

of a utility function of the form discussed in Chapter 6 on an individual level for each

participant. Clustering could then be used to assign utility values to the simulated

households based on their similarity to members of the surveyed group.

As well as a static utility model, the influence of social pressures could be integrated into

an information source model. The data presented in this chapter indicates that more

value is placed on the opinions of experts, colleagues, and family with less being placed

on forms of paid advertising, neighbours, and friends. These values could be used for

the calibration of a dynamic social model which captures these interactions.

7.4.2 Relaxation of trigger model assumptions

The trigger model discussed in this section is reliant on some assumptions discussed dur-

ing its design. It relies, for example, on a known base rate of retrofit evaluation triggers

in order to calibrate the trigger model. Additionally, triggers are modelled as random

and independently occurring events with a fixed distribution. The triggers discussed

in the survey were also considered the dominant causes of retrofit evaluation, with the

excluded triggers assumed to contribute minimally to the total retrofit evaluation rates.

It is worth considering the conditions under which these assumptions could be removed

in future work or with more data availability.
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A key assumption in the trigger model design was that of a known base rate of retrofit.

This was required in order to calibrate the model using the relative importance of the

different triggers obtained from the BWS data. This assumption could be relaxed with

the introduction of a more thorough BWS survey, which would allow the absolute utility

coefficients to be calculated, rather than relying on relative values [218]. This would

allow the modeller to derive the retrofit evaluation rate endogenously based on the

trigger frequencies rather than relying on an exogenous rate used for model calibration.

Such a survey design would require asking respondents significantly more questions, as

well as gathering more significant demographic information to ensure responses can be

calculated at an individual rather than archetypal resolution.

Another assumption used in implementing the trigger model was that the prevalence

of potential triggers were both independent and could be modelled as simple distribu-

tions. While there is no significant methodological issue with this, the relaxation of the

assumption could grant additional control to modellers to construct more granular mod-

els. Consider for example the trigger which occurs when a household moves dwelling.

In this chapter, moving was modelled as an independent random variable occurring at a

fixed annual probability. Modellers with a particular interest in the relationship between

the housing market and the adoption of WHRSs could instead use a more sophisticated

dwelling-moving model, such as an agent-based approach in which all households con-

sider moving based on observations such as their personal finances, the job market, house

prices, and interest rates. The model is agnostic to the cause of the move, making this

extension straightforward to add once the relocation model has been constructed.

A final assumption that is worth considering is the presence of other, unconsidered trig-

gers in the model. One of the restrictive aspects of any BWS question design is the

requirement for options to fit into predetermined categories selected by the modeller. In

the design of the survey in this chapter, potential triggers were selected after survey-

ing the literature as well as consulting with industry experts to ensure that the most

significant triggers were added. However, there is still relatively little understanding of

all the factors that drive domestic WHRS-adoption, leaving the potential for missing

triggers, and neglecting any decisions that do not have an obvious or relevant trigger.

This problem is confounded by the self-reporting nature of BWS surveys, as a trigger

that is perceived as significant by an individual may not actually be the most significant

when faced with real-world decisions [219].



Chapter 8

Discussion and Conclusion

8.1 Summary and Discussion of Conducted Work

The main chapters relating to the contributions made in this work, Chapters 5, 6 and 7,

were accompanied with discussion sections relating to the specific concepts introduced

within those chapters, including some limitations and potential for future work. This

section will attempt to summarise these, as well as add some general points of discussion

not included in those sections. This is because these further points of discussion apply

more generally than the scope of the given chapter, such as an overview of this research’s

contribution, or they relied upon context that was not in place until later chapters.

8.1.1 Single-Objective Surrogate Optimisation

Chapter 5 explored the framing of agents as rational and self-interested actors. This al-

lowed for a utility function made up of a single objective, Net Present Value (NPV),

which represented the lifecycle financial returns of the model. The single-objective

retrofit optimisation was performed with the prior intention to extend the process to

two objectives at a later stage but it required many preliminary steps of conceptual

modelling and data collection which would extend to the full multiple objectives in later

chapters.

The preliminary stages required to construct the single-objective SO were quite signif-

icant. A process for constructing energy simulation models from the available data set

189
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resulted in a distribution of simulated energy demand values matching those recorded

in the real data set. The SEPM constructed from the simulated energy demand data

set was of very good quality, with small and normally distributed errors. This SEPM

was then used alongside a financial model to predict the NPV of any given WHRS, a

form of evaluation that could be integrated into a GA to obtain a large and represen-

tative set of WHRSs. This set of WHRSs was used to construct a single-objective SO,

using a combination of classification and regression neural network models. The single-

objective SO constructed in this work performed well, with well-performing classification

and regression metrics that reflected a reasonable level of accuracy. The SO was able

to identify the majority of WHRSs within the stock, with only a small reduction in the

mean NPV compared with the test sample. Due to the speed of the SO compared with

the traditional optimisation procedure, it was possible to run a stochastic ABM with

many repetitions without significant computational time or cost.

This work was significant in laying the preliminary modelling stages necessary to expand

the technique to include environmentally-conscious agents. Many of the conceptualisa-

tions, assumptions, and simplifications made at this stage were carried through to later

stages. While later work was focused on the non-financial aspects of WHRS-adoption,

it is important to note that financial and energy savings are key factors in retrofit de-

cisions, so a single-factor analysis focused on these components was deemed important.

The purely rational model is also a good point of comparison when evaluating the multi-

objective problem later, as these agents can be considered a special case of environmental

agents who have a carbon valuation of 0£/tCO2e. Whilst the agent decision models used

at this stage were more rigid in their assumptions than in later chapters, the trained

SO provided value independently of those assumptions. The ability to identify which

dwellings are most likely to have WHRSs of positive NPV with spacial resolution to the

single dwelling is a powerful tool in and of itself. The speed with which the SO is able to

predict these NPVs makes the problem highly scalable, limited only by the availability

of feature data to make predictions for a given building. Given the data sources used,

the process could be applied to anywhere with OS map data, which encompasses the

entire UK.

The solutions found during this procedure were only found in a subset of the possible

solution space. When considering wall insulation, for example, rational agents were only

selecting internal wall insulation due to its lower financial cost when compared with

external insulation. This reduced optimisation space is context-specific, however, and a

change in the inputs to the financial cost model could result in inverting this outcome

or result in mixed outcomes where the decision of external or internal insulation is

more contextual. Indeed, when environmental agents were introduced, even with the
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same financial cost model, a mixed scenario occurred whereby the choice of internal vs

external insulation placement was dependent on the HCV of the household.

Whilst the work on rational agents was considered in terms of single objectives, it is worth

noting that NPV is really a composite objective that takes into account the lifecycle costs

and savings provided by the retrofit. This process of taking multiple objectives and

coercing them into a single value, scalarisation, allowed the problem to be approached

as if it were a single objective. This is not entirely dissimilar to the utility function

scalarisation used in Chapter 6, although the weightings between cost and savings were,

after accounting for discounting, fixed. This means that although there were multiple

objectives scalarised to create a single-objective function, all agents had identical utility

functions and can therefore be considered homogeneous with respect to their decision

models. The heterogeneity in this section of work was obtained purely through the

physical and economic properties of the WHRSs applied to the unique dwellings, rather

than from the environmental preferences of the agents.

8.1.2 Multi-Objective Surrogate Optimisation

Extending the method to account for multiple objectives allowed relaxation of the as-

sumption that households were only interested in the financial return granted by a

WHRS. Given the literature discussed in Section 3.3, it is clear that decision makers are

conscious of the environmental benefits of their actions and are willing to make finan-

cial trade-offs to account for them. The utility model used to measure the impact of

environmental preferences was chosen to be agnostic to the underlying cause of environ-

mentalism. This was because there is conflicting evidence on what the actual cause of

environmentally-conscious behaviour is: pure altruism, an instinct for self-preservation,

or a ’warm glow’ that is felt when people perceive their actions to be virtuous. Rather

than attempting to account for these conflicting root causes, the model relied on the prin-

ciple of Willingness to Pay (WTP) per ton of emissions mitigation. Using this metric,

the emissions cost and savings models were constructed to evaluate the environmental

impact of each WHRS.

The integration of an environmental objective function into the process flow required

some adaptations at the optimisation and SO stages. Instead of using a multi-objective

adaptation of the GA, utility functions were used to scalarise and locate individual

solutions with known HCVs. This process kept the HCV associated with Pareto solutions

transparent, allowing them to be used as input features when training the multi-objective

SO. The trained SO could then be provided with the details of a dwelling alongside
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the HCV to predict a WHRS suitable for the physical and social properties of the

solution. The multi-objective SO had reduced performance metrics compared its single-

objective counterpart, but was still generally of good quality. The glazing prediction

was typically the worst-performing. This is was unsurprising, as it was the component

that the traditional optimisation process was the least able to reliably identify. Given

this was used as the SO training set, it reflects a messier underlying system rather than

an incorrectly constructed model. The multi-objective SO was then integrated into an

ABM in order to model the effect of campaigns targeting household environmentalism.

A model predicting building-specific WHRSs at this scale, especially covering heteroge-

neous environmental preferences, would not have been possible with the existing methods

discovered in the literature. At this stage, several aspects of the ABM were still quite

rudimentary. While the SO was able to provide high quality predictions for which retrofit

households with a given environmental preference would install, little effort was placed

on determining which households would initially consider installing a retrofit. The trig-

ger model introduced at this stage involved a simple probability that households would

evaluate retrofits in a given year. This method of modelling triggers is not necessarily

flawed, as ultimately it does imitate the behaviour of households in a general sense: ev-

ery year some households, independent of the reason, will choose to consider a WHRS.

This trigger model is, however, limited in resolution in two key ways. Firstly, using an

aggregate probability makes it difficult to predict which households are more likely to

consider WHRSs, failing to account for the fact that due to different underlying causes

some household archetypes are likely to consider retrofits at different rates, or due to

different causes. Secondly, the low resolution of this trigger model limits the capacity of

modellers to run certain experiments relating to retrofit triggers. Consider, for example,

an experiment that wished to predict the effect of a subsidy that reduced the cost of

a given set of WHRS components. Such an experiment could be run by retraining the

SO with new cost data to determine the influence of the sale on the quantity of WHRSs

installed at a given evaluation rate, but the effect of the sale on the evaluation rate itself

would need to be provided exogenously by the modeller.

Expanding the optimisation objective, and thus a whole front of solutions for each

dwelling had the additional effect of diversifying the solution outcomes to encompass

more of the possible solution space. However, there were some possible solutions, such

as internal wall insulation made of EPS, which were still not found in any Pareto op-

timal WHRS. This raises the question as to whether the material should be removed

from prior stages to simplify the optimisation process and reduce the number of unused

features in models found later in the process. The decision was made not to do this, as

the methodology described in Chapter 4 is designed as a computational workflow to be
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performed iteratively and with some independence from the input values at any given

stage. In the same way that the distribution of found solutions expanded when the as-

sumption of rationality was lifted, we may expect a portion of the feasible solution space

to become relevant again should inputs of the cost or emissions model were to change

the underlying problem.

8.1.3 Retrofit Trigger Model

In order to combat the limitations of a simplistic retrofit evaluation, the trigger model

discussed in Chapter 7, laid out a more sophisticated approach. Using BWS data col-

lected from a pilot survey, the relative importance of different retrofit triggers was calcu-

lated. A model was calibrated using these values, combined with an exogenous base rate

of retrofit evaluations. This ensured that the overall evaluation rate would mirror that of

prior simulations whilst freeing the modeller to perform experiments relating to the un-

derlying triggers. The BWS and housing data were both split into matching archetypes

to account for heterogeneous agent triggers. There were significant differences in the rel-

ative importance of different triggers among groups. The archetype-based trigger model

was then integrated into the ABM design, which was simple, due to the modular nature

of the ABM. A demonstrative experiment was conducted, in which households began to

perceive their current gas boiler as obsolete at increasing rates, resulting in diverging

WHRS-outcomes across groups that would not have been observed in previous itera-

tions of the model. It was found that couples with dependent children were the most

responsive demographic to boiler obsolescence scenarios.

At this stage, households differed in both their environmental preferences and their

responses to different external triggers occurring, as well as having unique dwellings

with differing environmental and economic retrofit properties. This level of detail could

not have been achieved at this stage using methods found in the literature. Sample

and upscale approaches would not be able to model individual agents at such a level

of detail, while traditional agent-based approaches were not technically feasible at the

urban scale.
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8.2 Limitations and Future Work

8.2.1 Energy Simulation Scope

As with all research, the scope of the work conducted has been limited to ensure feasi-

bility within the time and resources available. One example of scope limitation within

this research was the range of WHRS components considered, with solutions focused on

wall, roof, and window insulation, as well as fuel sources. The most significant scope

exclusion is likely that of innovative or generative retrofits: photovoltaics, wind sources,

and heat pumps. These were excluded partly due to the complexity of integrating the

complex dynamic power supply within the EnergyPlus framework, such as the required

energy storage or dynamic feed-in pricing. The scope of the research was also limited

with respect to material type, reducing the list to the three most common retrofit ma-

terials, to reduce the complexity of the optimisation problem, as well as ensure good

data availability. Nonetheless, the process is easily adaptable, allowing for the addition

of arbitrary materials (including hypothetical materials not yet in production). New

materials can be incorporated by adding the data of their physical properties into the

simulation and SEPM model, and details of their material and installation costs to the

financial model. To extend this to the multi-objective case, the emissions model would

also require data on the lifecycle emissions of a given material.

Another limit of the research conducted is in the modelling of human behaviour within

the dwelling. Household behaviour is modelled using a simple heating setpoint and

schedule, which is sufficient to capture the energy demand of a dwelling under normal

conditions. However, more sophisticated energy demand models account for real-time

interactions between the householders and their built environment, accounting for be-

haviours such as opening windows, the use of blinds, and the changing of temperature

setpoints based on perceived thermal comfort. While these behaviours have been ob-

served to account for some variance in energy demand, they were infeasible to include

when dealing with the scale of the problem addressed by this research. The neces-

sary data to model such behaviours was not available and capturing such elements in

the SEPM would require significant further research. Additionally, such behaviours are

likely to make the most difference when measuring cooling energy demand. Cooling

was also excluded from the scope of this research as domestic cooling in the UK is very

uncommon and the additional complexity added to all stages of modelling would have

only accounted for a small number of dwellings for which overheating is a problem.

Future work could extend the simulation scope with the introduction of more sophisti-
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cated physical and behavioural modelling techniques. The implementation of additional

physical components such as heat pumps or battery storage is likely to be more of an

engineering problem than a matter relating to further research. In contrast, the imple-

mentation of behavioural components into the model is likely to be more challenging, as

capturing these behaviours for the SEPM and SO input features is likely to be a chal-

lenge. Nonetheless, it is likely to be a necessary step in modelling hotter climates where

cooling demand, air flow, and overheating, represent significant parts of a household’s

energy use.

8.2.2 Stochastic and Risk Aware Modelling

One practical limitation of the methods used in this research was the use of determinis-

tic models that did not account for uncertainty. Consider the financial cost model, for

example, which takes as input the properties of a dwelling and a proposed WHRS and

outputs the cost of installing the solution. The model outputs an absolute value based

on the expected costs of labour and materials to perform the WHRS. In the real-world

system, however, there would be a degree of uncertainty, resulting in a range of possi-

ble costs depending on random factors as well as unknown details about the dwelling.

Consider, for example, a dwelling may have a previously unknown damp problem that

must be resolved before internal wall insulation can be installed. This would influence

the cost of installation but cannot be fully accounted for in the financial cost model. To

some extent, this property could be considered desirable, as the household making the

decision would also be unaware of the additional cost. In this sense, using a determin-

istic expected value is close to the decision metric available to households themselves.

This does not account for risk-aversion, as particularly risk-averse households may ra-

tionally avoid positive NPV solutions. In other places, this component is accounted for,

such as the discount rate applied to future returns, which will account for a degree of

risk-aversion within households. While the inclusion of stochastic or risk-aware models

could add additional resolution to the procedure, it is worth noting that without high

quality data on the risk aversion levels of households, this inclusion would not necessarily

change the aggregate findings of the model. In a sense, using simulated risk aversion

would simply add noise around the expected value models which were implemented.

While the choice to use deterministic models was justified, there is potential for future

work in investigating how stochastic or risk-aware models could be integrated into the

framework. Of particular interest would be whether the aggregated results do indeed

differ from a deterministic model based on expected values. Some modelling methods,

particularly Bayesian approaches, can allow for non-deterministic or risk-aware modelling
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and could be substituted in place of the existing methods. However, the availability of

data is likely to be a significant stumbling block, as there are no large scale real-world

data sets relating to the distribution of costs and savings which could easily be used

for model training and validation. Where data is available, it is often aggregated and

presented in wide ranges, as was seen in the validation data laid out in Section 5.3.1.b.

8.2.3 Optimisation Validation

Another limitation of the research conducted was the ability to externally validate some

of the later stages of research. Where the target system of a given model was an external

phenomenon, such as the energy demand simulations or cost model, sources of external

data were obtained to ensure the models sufficiently replicated the behaviour of the

system under examination. However, some of the stages, such as the SEPM, were only

validated against the previous stage. Conceptually, this is acceptable, as the target

system of each of these higher-level models is only made up of the sub-models that make

it up. Consider the optimisation stage, for example. While the optimisation procedure

is made up of validated sub-models, lack of data availability prevents the validation of

optimal WHRSs against real models. As such, the SO was only validated against the

optimisation data that was used to train it. This validation against simulated data

is necessary, and it was ensured that both validation and test data were separated

from training data to ensure model performance was accurately reflected. Nonetheless,

validation against simulated data only may hide incorrect assumptions of other forms of

error introduced at these stages. It would therefore be a potential area of future work

to attempt to validate the retrofit decision model against real-world decisions made.

Should the required data never become available, a survey methodology attempting to

validate against theoretical decisions could provide some additional validity.

8.2.4 Household Carbon Valuations

The addition of HCV into the retrofit decision model provided a transparent and measur-

able indicator of household environmental preferences which was backed both empirically

and theoretically, as laid out in Section 3.3. However, the use of WTP-based measures

does come with some drawbacks and limitations. While there is WTP data available was

used to estimate HCVs assigned during the ABM, the estimates vary quite significantly

across domains and applications. While WTP is measurable, estimating values for spe-

cific households based on their characteristics presents a challenge. In this study, a simple

stochastic allocation of HCVs was used, with all household values being drawn from the
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same distribution. There is potential for future work to construct more sophisticated

models for the prediction of households’ WTP. Such research could case two or three

BWS surveys that would allow for the calculation of utility function coefficients which

could be paired with relevant socio-demographic information to allow archetype-based

allocation of HCV similarly to how the trigger model was constructed in Chapter 7.

8.2.5 Objective Function Design

While Chapter 6 extended a household’s objective function to include a measure of envi-

ronmentalism and further captured the heterogeneous behaviours of agents by modelling

different responsiveness to changes in external triggers (Chapter 7), the number of vari-

ables taken into account when evaluating retrofit decisions is still limited. There are

other factors, such as the level of disruption caused during installations, which are not

currently accounted for in the model. While these factors are likely to be significantly

less important than the economic and environmental impacts of the WHRSs, their omis-

sion will account for some error. If we consider for example the bias for internal wall

insulation among agents with low HCVs, this was driven by the lower cost of internal

wall insulation. However, the installation of internal insulation is more disruptive than

external insulation, and factoring this element in may result in more agents selecting ex-

ternal installations, even when faced with a higher cost. The omission of this factor was

intended to keep the scope of the research feasible. Future work could focus on methods

of accounting for these other objectives, using either an adapted objective function or

by using a pre or post optimisation method such as a trigger model.

8.3 Concluding Remarks

Domestic dwellings account for over a third of the national energy demand and approx-

imately a quarter of total CO2 emissions in the UK, with the majority of this energy

demand being used for electric or gas based space heating [220, 7]. While significant

progress has been made in the design of new buildings for efficient heat generation and

retention, most of the existing stock will still be occupied by the UK government’s dead-

line of 2050 for net zero emissions [5]. Meeting this target will require strategies to

transform the existing building stock with Whole House Retrofit Solutions (WHRSs).

To analyse such policies, an increased emphasis should be placed on robust tools for

modelling and optimising the policy decisions such as tax rate, public engagement, and

methods of outreach. However, detailed dynamic analysis of building stock retrofit adop-
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tion is difficult, as not only do the physical properties of each dwelling differ, but each

household has heterogeneous preferences in selecting a WHRS to meet their objectives.

Existing methods for modelling the adoption of WHRSs have several limitations. Top-

down approaches are able to scale well, but their reliance on aggregate values and his-

torical data makes them rigid, with limited capacity to view emergent behaviours or

model scenarios that have not occurred historically. The resolution of these methods is

also low, with modellers only able to observe aggregate behaviours, making it difficult

to account for and measure the heterogeneity of households and their dwellings. The

use of bottom-up modelling approaches rectified many of these problems, allowing the

simulation of individual components from which aggregate values can be derived. How-

ever, such methods do not scale well due to the requirement to perform optimisation-

based sub-problems which are too computationally costly to perform across an entire

building stock. Some mixed approaches have been used in the literature, dividing the

stock into a limited number of archetypes. These archetypes are used as representative

dwelling-household combinations which are then upscaled to estimate the rest of the

stock. These methods benefit from many of the bottom-up modelling approaches while

remaining technically feasible, however, they do so at the cost of reducing the granularity

of the model significantly as each household must conform to one of a limited number of

selected archetypes, limiting the degree of heterogeneity. As the number of archetypes

is derived from the combination of attributes of interest, modellers are required to keep

the number of household attributes small to limit archetype numbers. The final hybrid

approach found in the literature is the use of predictive machine learning models to

replace the resource intensive sub-components of bottom-up modelling, expanding its

feasibility. While this has been explored thoroughly when estimating energy demand,

with a process tool referred to as a Surrogate Energy Performance Model (SEPM), very

little research had been conducted into predictive models to replace the optimisation

sub-component, a process referred to in this work as Surrogate Optimisation (SO). The

only example found in the literature had not been applied to bottom-up retrofit adop-

tion modelling, and was limited in the capacity for WHRSs-adoption modelling by the

prediction of fixed-size and opaque Pareto fronts.

In order to tackle the research gap for technically feasible retrofit decision models with

high resolution heterogeneous agents, the following research aim was constructed:

To expand the simulation possibility frontier using the Computer Science toolkit, to allow

more descriptive bottom-up large-scale retrofit decision modelling without impacting the

technical feasibility of the model.

Where the simulation possibility frontier represents the trade-offs that modellers must



CHAPTER 8. DISCUSSION AND CONCLUSION 199

make between the technical feasibility of a simulation and the level of detail that sim-

ulation includes. In order to achieve this aim, several statements were laid out in the

introduction which corresponded to significant contributions that this work intended to

make to the literature. These contribution statements are repeated below, with reference

to the chapter where the work to achieve them was primarily presented.

Contribution 1 - To the best knowledge of the author, this thesis is the first to system-

atically investigate the integration of Surrogate Optimisation into an Agent-Based

Model to analyse energy retrofit adoption in urban housing stock. The integration

of the SO technique into an ABM allows for increasingly rational, self-interested

agents to be simulated at a scale that would otherwise be infeasible by allowing

computationally cheap optimisations. The investigation in this thesis considers the

implementation challenges, performance, and drawbacks of this method of ABM

analysis. The work pertaining to this contribution was laid out in Chapter 5.

Contribution 2 - To the best knowledge of the author, this thesis is the first to sys-

tematically investigate the extension of the principle of multi-objective Surrogate

Optimisation for the analysis of domestic urban energy retrofit potential that in-

cludes a measure of households’ Willingness to Pay for carbon mitigation. This

has allowed for the conception of the ABMs created for Contribution 1 to relax the

assumption of self-interest by considering environmentally conscious agents. The

work pertaining to this contribution was laid out in Chapter 6.

Contribution 3 - To the best knowledge of the author, this thesis is the first to combine

a data-driven retrofit trigger model with a Surrogate Optimisation method. The

decision trigger model takes survey data from participants to determine when

retrofit adoptions are likely to be considered, as modelled in Contribution 2. This

allows for models which conceptualise and include heterogeneous decision factors

while maintaining intelligent and preference driven retrofit evaluations. The work

pertaining to this contribution was laid out in Chapter 7.

While the contributions made in this work expand the feasibility and level of detail pos-

sible for urban scale WHRS-adoption modelling, it also opens up interesting avenues for

possible future work. Much of this work can be considered in terms of the limitations

or assumptions which could be lifted with extended work. This includes pushing out

the scope and level of detail contained at the simulation, optimisation, or ABM stages

of modelling, including features such as dynamic occupancy models, additional agent

objectives, or extended HCV modelling. Additionally, future work could look to exter-

nally validate the retrofit decision model against real-world decisions, either by seeking
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to compile a data set of decisions made in the field or by using extended decision surveys

which capture the impact of different factors on hypothetical decisions.
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Additional Data

A.1 Building Data Set

Table A.1: Description of initial attributes of building data set.

Field Name Description Example Notes

HSP
Heating Setpoint

(Degrees Celsius)
21

Assigned Normal

Distribution

N(20.5, 2.5)

CurNCH Nottingham City Homes True Boolean

RIR Room in Roof FALSE
True for 1̃1%

of Dwellings

hhType Household Type
Lone Parent with

Dependent Child

TOID
Unique Topographic Identifier

(Ordinance Survey)
osgb1000005074832

Primary Key

in the Data Set

xStoreys Number of Stories 2

BHA relhma Relative Ridge Heights (Meters) 7.4
Ground to Peak

of Roof

BHA relh2 Relative Eave Heights (Meters) 5.7
Ground to Bottom

of Roof

ECS Heating Type (from ECS) Boiler

WType Wall Type Cavity Cavity, Solid, or Other

201



APPENDIX A. ADDITIONAL DATA 202

Occupants
Estimated Number of

Occupants at the Property
2

Mean: 2.3

Std. Deviation: 1.3

BldgUse Building Usage Residential

Residential,

Vacant,

or Mixed

TotalArea Total Floor Area (Meters Squared) 78.31
Defined as

footprint∗nstories

WallMat
Base Material Used in Wall

(if known)
Brick

WIns Window Frame Insulation TRUE Boolean

EWR form Built Form of Building Terraced

Detached,

Semi-detached,

Mid-terraced,

end-terraced

geometry
Geometric Definition of Building

Footprint Using Coordinates

Shapely

Polygon

Shapely Python

Geometry Object

WallGML
Reference to the GML

Definition of Wall Construction
id wall 5

Existing Construction

(Based on EHS)

RoofGML
Reference to the GML

Definition of Roof Construction
id roof 1

Existing Construction

(Based on EHS)

GlazGML
Reference to the GML

Definition of Glazing type
id glazing 4

Existing Construction

(Based on EHS)

FrontGR Glazing Ratio of Front of Building 20 Expressed as %

BackGR Glazing Ratio of Back of Building 10 Expressed as %

SideGR Glazing Ratio of Side of Building 15 Expressed as %

crAGE DESC Description of Age Classifier 1914-1945
9 in Total Including

Non-residential Label

crAGE
Integer Representation

of Age Classifier
1 1-9

LoftIns Amount of Loft Insulation Present 100-150mm

4 Categories

Ranging from

0-150mm+

crTYPE DES Building Archetype Bungalow (Detached)

crTYPE
Integer Representation

of Building Archetype
2 13 Unique Types

InfilRate Estimated Infiltration Rate 0.52 Air Changes per Hour

LSOA
Lower Layer Super

Output Area (ONS)
Nottingham 021A
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MSOA Middle Layer Super Output Area Nottingham 021

WardName
Administrative Ward

the Property Belongs to
Clifton North

oacode Census Output Area (OA) Code E00070449

A.2 Optimisation Parameters

A.2.1 Cost Model Data

Type Material Thickness(mm) Material Cost Labour Cost Notes

EWI XPS 30 £14.50 £100.00 Per square meter

EWI XPS 35 £15.45 £100.00 Per square meter

EWI XPS 40 £16.41 £100.00 Per square meter

EWI XPS 45 £17.36 £100.00 Per square meter

EWI XPS 50 £18.32 £100.00 Per square meter

EWI XPS 55 £19.28 £100.00 Per square meter

EWI XPS 60 £20.23 £100.00 Per square meter

EWI XPS 65 £21.19 £100.00 Per square meter

EWI XPS 70 £22.14 £100.00 Per square meter

EWI XPS 75 £23.10 £100.00 Per square meter

EWI XPS 80 £24.06 £100.00 Per square meter

EWI XPS 85 £25.01 £100.00 Per square meter

EWI XPS 90 £25.97 £100.00 Per square meter

EWI XPS 95 £26.92 £100.00 Per square meter

EWI XPS 100 £27.88 £100.00 Per square meter

EWI XPS 105 £28.84 £100.00 Per square meter

EWI XPS 110 £29.79 £100.00 Per square meter

EWI XPS 115 £30.75 £100.00 Per square meter

EWI XPS 120 £31.70 £100.00 Per square meter

EWI XPS 125 £32.66 £100.00 Per square meter

EWI XPS 130 £33.62 £100.00 Per square meter

EWI XPS 135 £34.57 £100.00 Per square meter

EWI XPS 140 £35.53 £100.00 Per square meter

EWI XPS 145 £36.48 £100.00 Per square meter

EWI XPS 150 £37.44 £100.00 Per square meter
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Type Material Thickness(mm) Material Cost Labour Cost Notes

EWI EPS 30 £11.67 £100.00 Per square meter

EWI EPS 35 £12.27 £100.00 Per square meter

EWI EPS 40 £12.86 £100.00 Per square meter

EWI EPS 45 £13.46 £100.00 Per square meter

EWI EPS 50 £14.05 £100.00 Per square meter

EWI EPS 55 £14.65 £100.00 Per square meter

EWI EPS 60 £15.24 £100.00 Per square meter

EWI EPS 65 £15.84 £100.00 Per square meter

EWI EPS 70 £16.43 £100.00 Per square meter

EWI EPS 75 £17.03 £100.00 Per square meter

EWI EPS 80 £17.62 £100.00 Per square meter

EWI EPS 85 £18.22 £100.00 Per square meter

EWI EPS 90 £18.81 £100.00 Per square meter

EWI EPS 95 £19.41 £100.00 Per square meter

EWI EPS 100 £20.00 £100.00 Per square meter

EWI EPS 105 £20.60 £100.00 Per square meter

EWI EPS 110 £21.19 £100.00 Per square meter

EWI EPS 115 £21.79 £100.00 Per square meter

EWI EPS 120 £22.38 £100.00 Per square meter

EWI EPS 125 £22.98 £100.00 Per square meter

EWI EPS 130 £23.57 £100.00 Per square meter

EWI EPS 135 £24.17 £100.00 Per square meter

EWI EPS 140 £24.76 £100.00 Per square meter

EWI EPS 145 £25.36 £100.00 Per square meter

EWI EPS 150 £25.100 £100.00 Per square meter

EWI PIR 30 £12.99 £100.00 Per square meter

EWI PIR 35 £13.43 £100.00 Per square meter

EWI PIR 40 £13.87 £100.00 Per square meter

EWI PIR 45 £14.31 £100.00 Per square meter

EWI PIR 50 £14.76 £100.00 Per square meter

EWI PIR 55 £15.20 £100.00 Per square meter

EWI PIR 60 £15.64 £100.00 Per square meter

EWI PIR 65 £16.08 £100.00 Per square meter

EWI PIR 70 £16.53 £100.00 Per square meter

EWI PIR 75 £16.97 £100.00 Per square meter

EWI PIR 80 £17.41 £100.00 Per square meter

EWI PIR 85 £17.86 £100.00 Per square meter
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Type Material Thickness(mm) Material Cost Labour Cost Notes

EWI PIR 90 £18.30 £100.00 Per square meter

EWI PIR 95 £18.74 £100.00 Per square meter

EWI PIR 100 £19.18 £100.00 Per square meter

EWI PIR 105 £19.63 £100.00 Per square meter

EWI PIR 110 £20.07 £100.00 Per square meter

EWI PIR 115 £20.51 £100.00 Per square meter

EWI PIR 120 £20.100 £100.00 Per square meter

EWI PIR 125 £21.40 £100.00 Per square meter

EWI PIR 130 £21.84 £100.00 Per square meter

EWI PIR 135 £22.28 £100.00 Per square meter

EWI PIR 140 £22.73 £100.00 Per square meter

EWI PIR 145 £23.17 £100.00 Per square meter

EWI PIR 150 £23.61 £100.00 Per square meter

Roof Mineral Wool 50 £3.26 £100.00 Per square meter

Roof Mineral Wool 75 £4.86 £100.00 Per square meter

Roof Mineral Wool 100 £6.47 £100.00 Per square meter

Roof Mineral Wool 125 £8.07 £100.00 Per square meter

Roof Mineral Wool 150 £9.67 £100.00 Per square meter

Roof Mineral Wool 175 £11.28 £100.00 Per square meter

Roof Mineral Wool 200 £12.88 £100.00 Per square meter

Roof Mineral Wool 225 £14.48 £100.00 Per square meter

Roof Mineral Wool 250 £16.09 £100.00 Per square meter

Roof Mineral Wool 275 £17.69 £100.00 Per square meter

Roof Mineral Wool 300 £19.29 £100.00 Per square meter

Roof Mineral Wool 325 £20.89 £100.00 Per square meter

Roof Mineral Wool 350 £22.50 £100.00 Per square meter

Roof Mineral Wool 375 £24.10 £100.00 Per square meter

Roof Mineral Wool 400 £25.70 £100.00 Per square meter

IWI XPS 30 £19.26 £85.00 Per square meter

IWI XPS 35 £20.21 £85.00 Per square meter

IWI XPS 40 £21.17 £85.00 Per square meter

IWI XPS 45 £22.12 £85.00 Per square meter

IWI XPS 50 £23.08 £85.00 Per square meter

IWI XPS 55 £24.04 £85.00 Per square meter

IWI XPS 60 £24.99 £85.00 Per square meter

IWI XPS 65 £25.100 £85.00 Per square meter

IWI XPS 70 £26.90 £85.00 Per square meter
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Type Material Thickness(mm) Material Cost Labour Cost Notes

IWI XPS 75 £27.86 £85.00 Per square meter

IWI XPS 80 £28.82 £85.00 Per square meter

IWI XPS 85 £29.77 £85.00 Per square meter

IWI XPS 90 £30.73 £85.00 Per square meter

IWI XPS 95 £31.68 £85.00 Per square meter

IWI XPS 100 £32.64 £85.00 Per square meter

IWI XPS 105 £33.60 £85.00 Per square meter

IWI XPS 110 £34.55 £85.00 Per square meter

IWI XPS 115 £35.51 £85.00 Per square meter

IWI XPS 120 £36.46 £85.00 Per square meter

IWI XPS 125 £37.42 £85.00 Per square meter

IWI XPS 130 £38.38 £85.00 Per square meter

IWI XPS 135 £39.33 £85.00 Per square meter

IWI XPS 140 £40.29 £85.00 Per square meter

IWI XPS 145 £41.24 £85.00 Per square meter

IWI XPS 150 £42.20 £85.00 Per square meter

IWI EPS 30 £16.43 £85.00 Per square meter

IWI EPS 35 £17.03 £85.00 Per square meter

IWI EPS 40 £17.62 £85.00 Per square meter

IWI EPS 45 £18.22 £85.00 Per square meter

IWI EPS 50 £18.81 £85.00 Per square meter

IWI EPS 55 £19.41 £85.00 Per square meter

IWI EPS 60 £20.00 £85.00 Per square meter

IWI EPS 65 £20.60 £85.00 Per square meter

IWI EPS 70 £21.19 £85.00 Per square meter

IWI EPS 75 £21.79 £85.00 Per square meter

IWI EPS 80 £22.38 £85.00 Per square meter

IWI EPS 85 £22.98 £85.00 Per square meter

IWI EPS 90 £23.57 £85.00 Per square meter

IWI EPS 95 £24.17 £85.00 Per square meter

IWI EPS 100 £24.76 £85.00 Per square meter

IWI EPS 105 £25.36 £85.00 Per square meter

IWI EPS 110 £25.10 £85.00 Per square meter

IWI EPS 115 £26.55 £85.00 Per square meter

IWI EPS 120 £27.14 £85.00 Per square meter

IWI EPS 125 £27.74 £85.00 Per square meter

IWI EPS 130 £28.33 £85.00 Per square meter
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Type Material Thickness(mm) Material Cost Labour Cost Notes

IWI EPS 135 £28.93 £85.00 Per square meter

IWI EPS 140 £29.52 £85.00 Per square meter

IWI EPS 145 £30.12 £85.00 Per square meter

IWI EPS 150 £30.71 £85.00 Per square meter

IWI PIR 30 £17.75 £85.00 Per square meter

IWI PIR 35 £18.19 £85.00 Per square meter

IWI PIR 40 £18.63 £85.00 Per square meter

IWI PIR 45 £19.07 £85.00 Per square meter

IWI PIR 50 £19.52 £85.00 Per square meter

IWI PIR 55 £19.96 £85.00 Per square meter

IWI PIR 60 £20.40 £85.00 Per square meter

IWI PIR 65 £20.84 £85.00 Per square meter

IWI PIR 70 £21.29 £85.00 Per square meter

IWI PIR 75 £21.73 £85.00 Per square meter

IWI PIR 80 £22.17 £85.00 Per square meter

IWI PIR 85 £22.62 £85.00 Per square meter

IWI PIR 90 £23.06 £85.00 Per square meter

IWI PIR 95 £23.50 £85.00 Per square meter

IWI PIR 100 £23.94 £85.00 Per square meter

IWI PIR 105 £24.39 £85.00 Per square meter

IWI PIR 110 £24.83 £85.00 Per square meter

IWI PIR 115 £25.27 £85.00 Per square meter

IWI PIR 120 £25.71 £85.00 Per square meter

IWI PIR 125 £26.16 £85.00 Per square meter

IWI PIR 130 £26.60 £85.00 Per square meter

IWI PIR 135 £27.04 £85.00 Per square meter

IWI PIR 140 £27.49 £85.00 Per square meter

IWI PIR 145 £27.93 £85.00 Per square meter

IWI PIR 150 £28.37 £85.00 Per square meter

Heating Electric Heating N/A £200.00 £- Per Heating Zone

Heating Gas Heating N/A £1,000.00 £2,000.00 Per Installation

Glazing Single Glazing N/A £- £- Excluded (Retrofit)

Glazing Double Glazing N/A £325.00 £100.00 Per Window

Glazing Triple Glazing N/A £425.00 £100.00 Per Window
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A.2.2 Genetic Algorithm Tuning

Table A.3: GA tuning results for NPV-maximising objective.

Mean
NPV

NPV
Variance

Opt
Time (s)

Mutation
Method

Recombination
Method

Replacement
Method

Mutation
Rate

Pop
Size

3948.99 52098 1.92 RANDOM 2 POINT PURE ELITE 0.10 32

3948.96 64793 1.93 RANDOM UNIFORM PURE ELITE 0.10 32

3948.95 89811 1.90 RANDOM 2 POINT PURE ELITE 0.05 32

3948.95 88791 1.90 RANDOM UNIFORM PURE ELITE 0.05 32

3948.95 127511 1.95 UNIFORM UNIFORM PURE ELITE 0.10 32

3948.89 141529 1.95 UNIFORM 2 POINT PURE ELITE 0.05 32

3948.86 95667 2.15 RANDOM 2 POINT SOFT ELITE 0.05 32

3948.78 123401 2.14 UNIFORM 2 POINT SOFT ELITE 0.10 32

3948.77 130700 1.94 UNIFORM UNIFORM PURE ELITE 0.05 32

3948.76 126096 1.97 UNIFORM 2 POINT PURE ELITE 0.10 32

3948.50 68144 2.14 RANDOM 2 POINT SOFT ELITE 0.10 32

3948.25 77376 2.18 RANDOM UNIFORM SOFT ELITE 0.10 32

3948.18 173949 2.03 UNIFORM 2 POINT SOFT ELITE 0.05 32

3948.06 161521 1.15 RANDOM 2 POINT PURE ELITE 0.10 16

3947.90 190432 1.18 RANDOM UNIFORM PURE ELITE 0.10 16

3947.86 87762 2.14 RANDOM UNIFORM SOFT ELITE 0.05 32

3947.52 122772 2.13 UNIFORM UNIFORM SOFT ELITE 0.10 32

3947.36 520873 1.17 UNIFORM UNIFORM PURE ELITE 0.10 16

3947.33 273904 1.13 RANDOM 2 POINT PURE ELITE 0.05 16

3947.07 209531 1.34 RANDOM 2 POINT SOFT ELITE 0.10 16

3946.91 533635 1.22 UNIFORM 2 POINT PURE ELITE 0.10 16

3946.85 381169 1.14 RANDOM UNIFORM PURE ELITE 0.05 16

3946.51 650612 1.14 UNIFORM 2 POINT PURE ELITE 0.05 16

3946.47 242629 1.37 RANDOM UNIFORM SOFT ELITE 0.10 16

3946.39 146410 2.06 UNIFORM UNIFORM SOFT ELITE 0.05 32

3946.25 322628 1.28 RANDOM UNIFORM SOFT ELITE 0.05 16

3945.37 377354 1.25 RANDOM 2 POINT SOFT ELITE 0.05 16

3943.86 535633 1.29 UNIFORM 2 POINT SOFT ELITE 0.10 16

3943.68 549545 1.15 UNIFORM UNIFORM PURE ELITE 0.05 16

3941.04 442749 1.27 UNIFORM UNIFORM SOFT ELITE 0.10 16

3940.10 850229 0.77 RANDOM 2 POINT PURE ELITE 0.10 8

3939.98 606333 1.20 UNIFORM 2 POINT SOFT ELITE 0.05 16

3939.92 721621 0.76 RANDOM UNIFORM PURE ELITE 0.10 8

3938.61 608375 1.23 UNIFORM UNIFORM SOFT ELITE 0.05 16

3937.11 1212386 0.83 RANDOM 2 POINT SOFT ELITE 0.10 8

3934.92 1246482 0.71 RANDOM UNIFORM PURE ELITE 0.05 8

3933.30 834979 0.82 RANDOM UNIFORM SOFT ELITE 0.10 8

3932.89 1200359 0.73 RANDOM 2 POINT PURE ELITE 0.05 8

3930.30 1535799 0.71 UNIFORM UNIFORM PURE ELITE 0.10 8

3927.97 1628791 0.74 UNIFORM 2 POINT PURE ELITE 0.10 8

3926.51 1368350 0.77 RANDOM 2 POINT SOFT ELITE 0.05 8

3925.56 1083287 0.76 RANDOM UNIFORM SOFT ELITE 0.05 8

3917.79 1698322 0.76 UNIFORM UNIFORM SOFT ELITE 0.10 8

3917.41 1768710 0.80 UNIFORM 2 POINT SOFT ELITE 0.10 8

3917.20 1731973 0.73 UNIFORM 2 POINT PURE ELITE 0.05 8

3912.30 1829741 0.69 UNIFORM UNIFORM PURE ELITE 0.05 8
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A.3 Additional Surrogate Optimiser Results

Figure A.1: Confusion matrix of single-objective Surrogate Optimiser roof insulation
thickness results coerced back into thickness classes.

Figure A.2: Confusion matrix of single-objective Surrogate Optimiser IWI insulation
thickness results coerced back into thickness classes.
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Surrogate Optimisation of Housing Stock Retrofits using Deep Neural Networks.

In Proceedings of the 5th IBPSA-England Conference on Building Simulation and

Optimization (Virtual), 2020.

https://doi.org/10.1016/J.BUILDENV.2009.08.016
https://doi.org/10.1016/J.BUILDENV.2009.08.016
https://doi.org/10.1016/j.enbuild.2017.04.069
https://doi.org/10.1016/j.apenergy.2018.04.129
https://doi.org/10.1016/j.apenergy.2018.04.129
https://doi.org/10.1016/J.ENBUILD.2019.01.048
https://doi.org/10.1016/j.jobe.2019.100790
https://doi.org/10.21105/joss.02677
https://doi.org/10.21105/joss.02677
https://doi.org/10.1016/J.ENBUILD.2019.05.057
https://doi.org/10.1016/J.ENBUILD.2019.05.057
https://doi.org/10.1016/J.ENERGY.2016.10.126


REFERENCES 219

[82] Emmanouil Thrampoulidis, Georgios Mavromatidis, Aurelien Lucchi, and Kristina

Orehounig. A machine learning-based surrogate model to approximate optimal

building retrofit solutions. Applied Energy, 281:116024, 1 2021. doi:10.1016/j.

apenergy.2020.116024.

[83] Alberto Costa, Giacomo Nannicini, A Costa, Eth Zurich, and G Nannicini.

RBFOpt: an open-source library for black-box optimization with costly func-

tion evaluations. Mathematical Programming Computation, 10:597–629, 2018.

doi:10.5281/zenodo.597767.

[84] J. R. Caldwell, R. A. Watson, C. Thies, and J. D. Knowles. Deep Optimisation:

Solving Combinatorial Optimisation Problems using Deep Neural Networks. arXiv,

11 2018. URL: https://arxiv.org/abs/1811.00784v1.

[85] Thomas Wortmann. Genetic evolution vs. function approximation: Benchmarking

algorithms for architectural design optimization. Journal of Computational Design

and Engineering, 6:414–428, 2018. doi:10.1016/j.jcde.2018.09.001.

[86] Lukas G. Swan and V. Ismet Ugursal. Modeling of end-use energy consumption in

the residential sector: A review of modeling techniques. Renewable and Sustainable

Energy Reviews, 13(8):1819–1835, 10 2009. doi:10.1016/J.RSER.2008.09.033.

[87] Lisa M.H. Hall and Alastair R. Buckley. A review of energy systems models in

the UK: Prevalent usage and categorisation. Applied Energy, 169:607–628, 5 2016.

doi:10.1016/J.APENERGY.2016.02.044.

[88] Gustavo Sousa, Benjamin M. Jones, Parham A. Mirzaei, and Darren Robinson. A

review and critique of UK housing stock energy models, modelling approaches and

data sources. Energy and Buildings, 151:66–80, 9 2017. doi:10.1016/j.enbuild.

2017.06.043.

[89] M. Kavgic, A. Mavrogianni, D. Mumovic, A. Summerfield, Z. Stevanovic, and

M. Djurovic-Petrovic. A review of bottom-up building stock models for energy

consumption in the residential sector. Building and Environment, 45(7):1683–1697,

7 2010. doi:10.1016/j.buildenv.2010.01.021.

[90] J. Langevin, J. L. Reyna, S. Ebrahimigharehbaghi, N. Sandberg, P. Fennell,
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