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Abstract

Mobile devices have become an increasingly ubiquitous part of our everyday

life, which are not only used for basic communication. Nowadays, the need

for mobile services arises from a broad range of requirements include both

single app usage (e.g., check on the weather) and complex task completion

(such as planning vacation) which may lead to lengthy operations within

distinct apps. Understanding how users interact with apps could provide

us great signals for profiling users and help service providers/app develop-

ers/smartphone manufacturers to improve user experience and retention.

Therefore, in this thesis, we present work towards inferring user needs and

tasks from their app usage interactions.

Firstly, we aim to better understand users’ behaviour on using one par-

ticular app under different contexts. There have been many researchers

proposed models for recommending the app user would use next proac-

tively. However, less work has been conducted to enhance the app usage

prediction when a new user comes whose information is insufficient for

learning. Additionally, besides predicting which app users would use, we

aim to further investigate if the app dwell time could also be modelled

based on various user characteristics and contextual information. By con-

ducting the comprehensive analysis and experiments, we demonstrate that

users’ next app and the time spent could be effectively predicted at the
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same time.

Other than effectively serving the individual apps that correspond to users’

simple needs, we aim to further understand the high-level tasks within

users’ minds while engaging with different apps. We focus on identifying

and characterizing tasks from app usage behaviour and then leveraging the

extracted task information for improving mobile services. We first present

an automatic method that accurately determines mobile tasks from users’

app usage logs based on a set of features. Given the extracted tasks, we

further investigate if there are common patterns that exist among all the

complex mobile tasks. Finally, we demonstrate that the extracted task

information could benefit user profiling in demographics prediction and

next task prediction, especially when compared to the traditional app-

based methods.

To summarize, in this thesis, we conduct a more comprehensive study on

modelling users app usage behaviour. Additionally, we propose to set the

stage for evaluating mobile apps usage, not on a per-app basis, but on the

basis of users’ tasks. Finally, we provide the initial steps in shaping future

research on investigating whether and how the extracted tasks could be

applied for improving mobile services.
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Chapter 1

Introduction

Mobile devices nowadays have become indispensable personal gadgets to

support our activities in almost every aspect of our lives [138]. The usage of

mobile devices has extended from basic communication needs, e.g. sending

SMS and making calls, to many high-level needs that cover almost every

aspect of our daily life, e.g., playing games, getting turn-by-turn directions,

and accessing news, books, weather, and more [25]. Such needs are mainly

supported by mobile applications (apps) which are specifically designed

software programs to run on mobile devices like smartphones and tablets.

Since the advent of the iPhone in early 2007, users could experience the

functionality of pocket-sized mobile devices. Then the mobile devices and

the associated various mobile apps are becoming increasingly ubiquitous in

our daily life. Nowadays, it is estimated that there are roughly 2 billion

smartphone users in the market. Until the first quarter of 2019, Apple’s

app store had 1.8 million applications and Google’s Android market also

had around 2.1 million applications [206]. While these apps are used, data

logs are typically generated and recorded forming a rich data source of the

users’ behaviours.
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Understanding app usage behaviours is important since it can benefit both

mobile users and app makers. For smartphone users, existing studies show

that the number of used apps in each user’s smartphone ranges from 10 to

more than 90, with a median value of about 50 [45]. This large number

makes finding a specific app on one’s smartphone a non-straightforward

task. In particular, as a fundamental interaction with a high frequency of

occurrences, it should be made really simple and efficient for an individual

to perform. What’s more, apps used and the usage pattern can effectively

convey lots of personal information. For many people, the mobile apps have

been the first thing they checked after getting up and also the last item they

viewed before going to sleep. Users install and use apps depending on their

needs, interests, habits, etc. This has the potential to provide us with a

new lens to better profile users, which could help the service providers/app

developers/smartphone manufacturers to provide more satisfying services

for improving user experience and retention.

The general app usage patterns have been comprehensively investigated in

early works. By leveraging the large-scale app usage dataset, researchers

[16, 191] observed the general app usage frequency changed during the day,

which grew from 6 am and reached its first peak around 11 am and were

most active during the evening (7 pm to 9 pm). Specifically, they also dis-

covered the temporal pattern while specific app usage, e.g., news apps are

most popular in the morning and games apps are at night, but communi-

cation apps dominate through most of the day. However, only the general

pattern analysis is not enough for providing users’ with satisfying mobile

services. Given the huge amount of various apps installed on users’ mobile

devices, it is often tedious for users to find the proper app they want to ac-

cess immediately. Then many researchers tried to recommend the app user

is going to open proactively by generating the next app prediction mod-
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els [8]. These works are mainly conducted for modelling users’ behaviour

on choosing one particular app under different contexts [203, 135, 157, 72].

Specifically, besides the important temporal features, they leveraged a wide

range of contextual information in a smartphone, including the GPS loca-

tion, battery, phone settings, accelerometer, latest used app, number of

apps launched, etc, and a supervised machine learning model to make per-

sonalized app usage predictions [157, 99, 8]. With the knowledge of the

most likely next app to be used, both the battery energy consumption and

app searching time can be planned in advance and optimized.

Besides predicting the next app users aim to access, if we could know how

much time the user would spend while interacting with this app, the app

developers or operating systems can further manage the delivery of corre-

sponding contents or services to the end-user by matching their engagement

demands. For example, the media apps, like video and news apps, could

recommend videos and news with specific lengths based on the predicted

time spent to improve user experience. For now, minimal research has

been done for analysing mobile app dwell time from a large-scale dataset,

let alone modelling users’ app dwell time under different contexts. Only

the basic aggregated statics on app usage time was reported, e.g, Falaki et

al. [45] found that 90% of app usage sessions would be less than 6 min-

utes and Xu et al. [191] reported that the majority of total network access

time for all apps is from 10 seconds to 1 hour for each subscriber in one

week. How to effectively predict how long users would stay with an app

in different contexts is still an open research question. For example, do

the mobile usage contexts (e.g., time of day) in which users access mobile

apps impact their dwell time? Answers to such questions could help mo-

bile operating systems and publishers to optimize advertising and service

placement. Therefore, to conduct more comprehensive study for inferring
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users’ app usage needs is the first theme of this thesis. Different from the

previous researches, the app usage needs we consider in this thesis is not

just which app user want to access, we also take the time user aim to spend

on apps into consideration.

Despite the usefulness for inferring users’ app usage needs, however, a sur-

vey [25] of mining smartphone data for app usage prediction and recom-

mendations carried out in 2017, indicated that the existing approaches for

mining smartphone usage data are mostly at its early stage of the syntactic

level. There is also a need to interpret human behaviours from app usage

data at a higher semantic level, where they stated that the interesting

semantic meanings can be the high-level activities performed at different

scenarios. For example, to complete a task with a higher semantic level

intention like dining out with friends, the user needs to chat with his/her

friends on WhatsApp firstly, access Yelp to look for restaurants and book

a table. He/she then copies the restaurant address from Yelp to Google

Maps to check where the restaurant is, and books a ride on Uber later.

This series of app interactions all aim to support the same task for dining

out with friends. However, modern mobile devices only effectively serve

the individual apps that correspond to simple needs, e.g., weather check-

ing, users get little or no help when their needs transcend the boundary

of a single mobile app. Additionally, in the survey of user profiling from

their use of smartphone applications [206], the researchers also stated that

the existing techniques used for user representation and modelling based

on app usage behaviour are rather straightforward, such as simply using

app lists or app usage records as features, without considering the rela-

tionship between apps or the correlation between apps and users. More

sophisticated methods should be used in future research to generate user

profiling based on app usage sequences, which include more semantic and
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sequential information. Therefore, other than understanding the specific

app usage needs, in the second part of the thesis, we aim to further study

the high-level tasks users aim to complete while engaging with a series of

app usage.

Tasks, which are defined as pieces of work, ranging in scope from specific

(e.g., sending an email) to broad (e.g., planning a vacation), are central to

all aspects of information access and use [60]. In the context of web search,

a search task is defined as a set of queries corresponding to a particular

high-level information need, and the queries are not necessarily the same or

even similar [78, 86, 61]. For example, the queries “cheap flight” and “hotel

booking” may come from the same goal: vacation plan, but they have no

words in common [61]. The mobile task we aim to extract from apps usage

behaviour has the similar definition as search tasks, where a sequence of

app usage is considered as part of a coherent mobile task if they collec-

tively try to achieve a certain goal, as the “Dining Out” task mentioned

above. For now, the problem of user task understanding still remains an

important problem in modern era mobile app usage. Within the existing

research, a primary mechanism for segmenting logged app usage streams is

session-based, where short inactivity timeouts (30 or 45 seconds) between

user actions are applied as a means to demarcate session boundaries [171].

However, the mobile tasks as we illustrated above with users’ high-level

intentions may span multiple sessions and involve different apps, where the

empirically-set short timeout threshold may not be a valid criterion. With

this in mind, we investigate how to infer mobile tasks from app usage logs

in the second part of this thesis.

Identifying mobile tasks properly could enable app developers, mobile sys-

tem designers and device manufacturers to better understand user interac-

tions and gauge their satisfaction. Accurate representation of tasks could
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be used to provide users with better app suggestions, offer improved person-

alization, provide better recommendations, and improve user experience.

Nowadays, task intelligence has been leveraged in a broad range of appli-

cation scenarios with software and services we use every day, e.g., search

systems, digital assistants, and productivity applications [60]. Mehrotra

et al. [120] proposed a task context embedding architecture to learn the

representation of queries by leveraging the task context information from

historical search logs. They demonstrated that the task information could

provide better context for information retrieval (IR) systems to learn from.

Zhang et al. [205] proposed task-based recommendation to offer cross-site

heterogenous item recommendations on a Web-scale, which could meet

users’ potential demands better. After extracting tasks from users’ app

usage log data, how could we leverage the mobile task information for im-

proving user profiling and providing more satisfying services to users then

become the last theme of this thesis.

In this thesis, we address three themes concerning users’ needs and tasks

within app usage behaviour. In the first part of the thesis, we mainly focus

on inferring users’ specific needs which could be satisfied by single apps.

In the second part of this thesis, we study methods for understanding and

characterizing users’ app usage behaviour in the task space. We develop

models for identifying tasks from app usage logs and characterizing the

extracted tasks. In the last part of this thesis, we focus on leveraging the

tasks information in various applications.

In the next section, we outline the research in this thesis and the questions

that are answered within it.
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1.1. RESEARCH OUTLINE & QUESTIONS

Figure 1.1: Overview of the thesis (the Part I, II, and III state the main
content this thesis).

1.1 Research Outline & Questions

The thesis focuses on understanding and characterizing users’ needs and

tasks from the logged app usage data and leveraging the knowledge learned

for enhanced mobile services/applications. An overview of all the research

conducted in this thesis is shown in Figure 1.1. The work and research

questions can be split mainly into three parts: (1) Inferring users’ app usage

needs (2) Extracting and characterising mobile tasks (3) Leveraging mobile

task information. Specifically, we attempt to answer three big research

questions (RQ) within each part of this thesis:

RQ1. How could we improve the methods for inferring users’ needs on

single apps, especially when compared to the existing models?

RQ2. Other than the traditional approach for modelling users’ behaviour

based on specific apps, could we measure users’ app usage behaviour within

task space?

RQ3. How could we leverage the extracted tasks information in different

applications for improving mobile services?
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Part I: Understanding App Usage Behaviour

Within the problem for predicting the next app user would access, the ex-

isting models are mainly based on personalized mechanism [163, 98, 72,

157, 8, 203], where most of them were conducted based on a small number

of users (less than 50) within a long period individual’s data. However, the

personalized prediction model can be very sensitive to the data available

and might not perform well for new users. This is generally referred to as

the cold-start problem, which has not been well studied within the previous

works. One potential method to alleviate this issue is by finding cohorts

of users who share common attributes or experiences with the current user

(e.g., demographics, same habit or interests) [195]. Then given a new user,

we can leverage the behaviour of other members in the same cohort(s) to

enhance app usage prediction. Therefore, to improve the next app predic-

tion specifically in alleviating the cold-start issue, we design and conduct

experiments to answer the following questions:

RQ 1.1: how could we model users’ cohorts based on users’ characteristics

and logs readily available for mobile app usage?

RQ 1.2: could we employ signals from users who are similar along one or

more dimensions, i.e., those in the same cohort for improving the prediction

performance, especially for alleviating the cold-start problem?

After answering the above questions, we would be able to infer users’ needs

on the next app effectively no matter the sufficient data of individuals are

available or not. However, only predict which app users would use is not

enough for providing more satisfying services to users. We should also be

able to infer how long users would stay while engaging with apps. Real-

world mobile app usage behaviour is a complex phenomenon driven by a

number of competing factors. For example, a user might be more likely
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to engage with certain mobile apps at specific times: John might be more

likely to engage with game apps for a longer time at night after work. User

characteristics could also make a difference: female users may spend longer

time with shopping apps than male users [143]. However, despite that

the averaged total time spent on different app categories were reported in

[16, 191, 94], there is little research comprehensively analyzed and modeled

the dwell time of mobile apps. So we aim to answer that:

RQ 1.3: What are the factors (user characteristics and contexts) that

influence the app dwell time?

In answering the question above, we first find that app dwell time is much

dependent on the app content itself. For example, checking the weather

app is always shorter than playing games. Therefore, it is meaningless to

only predict how long a user will stay regardless of which app the user is

engaging. Given the inter-dependency between an app and app dwell time,

we then aim to address a novel app usage prediction problem:

RQ 1.4: Can we predict which app the user will use next and how long

the user will stay on this app simultaneously?

Next app prediction is characterised as the willingness to use an app,

whereas engagement (dwell time) is the usage pattern after accessing the

app. In this thesis, we consider which app the user will use and how long

the user will stay with this app an aggregated measure of users’ app usage

behaviour.

Part II: Extracting and Characterizing Mobile Tasks

Users’ mobile needs span a broad spectrum, which not only include the

simple needs, such as weather information checking, can mostly be satisfied

via a single app; but also include the tasks that need to access a series of
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apps, collect, filter, and synthesize information from multiple sources, e.g.,

plan to dine out with friends. After improving existing methods on inferring

users’ app usage needs, which could be simply satisfied via single apps, we

turn to another key problem in this thesis, which is to infer users’ tasks

from their app usage behaviour.

Definition: A set of app usage is considered as part of a coherent mobile

task if they collectively try to achieve a certain goal. [166]

In the context of web search, there have been many attempts to identify

tasks from query logs, relying on a notion of the timeout, lexical charac-

teristics [178] (e.g., number of common words), and topic [69] (e.g., queries

expressing car interests: “Honda”, “Nissan”, and “Ford”). However, how to

identify tasks within mobile app usage logs and what features are effective

have not been studied. The biggest challenge in identifying mobile tasks is

that the apps do not include abundant information as for search queries.

Additionally, most of the app usage logs do not provide detailed behaviour

information within the apps due to privacy issues. Therefore, a detailed

study of the frequency and patterns of real user app usage logs forming

mobile tasks manually labelled by annotators is conducted. Then we aim

to answer the following research questions:

RQ 2.1: What kind of features can be used effectively to identify mobile

tasks from app usage logs?

RQ 2.2: Can we formulate the task identification as a supervised learn-

ing problem, which could predict the app usage belong to the same task

automatically?

In addressing the above questions, we propose a list of features that move

beyond timeouts and demonstrate that they can be used effectively to iden-
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tify mobile tasks. However, the laboratory study of mobile tasks is still

limited. Besides only shedding lights on the basic statistics of mobile tasks

(e.g., number of apps used within a task), we aim to further understand

characteristics of mobile tasks in the wild and uncover the common pat-

terns of tasks users aim to complete. By performing the proposed task

identification model on a large-scale dataset of app usage logs, which is

collected from Verizon Media’s Flurry mobile analytics platform, consist-

ing of millions of logs from thousands of users, we aim to gain insights from

a large spectrum of mobile tasks.

Definition: The complex mobile tasks are the mobile tasks that have more

than two different apps involved [167].

Since the complex mobile tasks are more time-consuming and difficult for

users to complete, to better improve the current mobile systems and appli-

cations, especially in supporting task continuation and task completion, we

specifically focus on characterising the complex mobile tasks users aimed to

complete with cross-app and multi-topic usage patterns on smartphones.

To characterise and depict the common patterns of all complex mobile

tasks, we aim to address the following research questions:

RQ 2.3: How to characterize complex mobile tasks based on different

attributes?

RQ 2.4: Could we uncover the common patterns that exist in complex

mobile tasks by dividing them into natural groups that reflect salient pat-

terns?

We first characterize the complex tasks from three aspects: task context,

task complexity, and task content. Then the unsupervised learning ap-

proach is employed to derive generic profiles of all complex mobile tasks
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based on the extracted characteristics. Given the clustering results, we

create the taxonomy for mapping users’ complex tasks into different types

ranging from “social media browsing” to “dining out” and “family entertain-

ments”.

Part III: Leveraging Mobile Task Information

After addressing the above questions regarding the task identification and

characterization, we are able to extract all mobile tasks from users’ app us-

age logs automatically, and further assign a type for each complex task. We

then aim to investigate how the extracted mobile task information could

be leveraged in various applications. Firstly, the mined knowledge about

user tasks from log activity data reveals more detailed user intentions and

behaviour patterns, which could provide unique signals for user-centric op-

timization. In the existing research, app interests are traditionally used in

constructing mobile user representation, specifically aims at demographics

prediction. By leveraging the extracted task information, we aim to answer

that:

RQ 3.1: could we represent users not only based on app interests (used

apps), but also on tasks, or task types?

RQ 3.2: would the task-based user representation methods benefit demo-

graphics prediction?

In answering the above questions, we find that tasks have become a more

accurate unit to capture users’ goal and behaviour insights, especially when

compared to apps. So besides the classic next app prediction problem, we

propose to further investigate if we could predict which task user aim to

conduct next. With improved speech recognition and information retrieval

systems, users are increasingly relying on intelligent assistants (IAs) on
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mobile devices to complete their tasks. We believe that if we could know

the specific complex task user would conduct in advance, the IAs would

work better for tracking the task progress and supporting task completion.

For example, under the “Dining Out” task context, if the user only booked

the table of the restaurant without checking the navigation or traffic status,

the system could push notifications or suggestions to remind users to call

a taxi in advance due to the rush hours for having dinner. With this in

mind, we aim to further tackle the problem:

RQ 3.3: Could we predict what the next complex task is by measuring

users’ app usage behaviour within the task space?

This is similar to the next app prediction problem [218, 41, 8], but at the

level of task.

1.2 Main Contributions

In this section, we summarize the main contributions of this thesis. Our

contributions come in the form of analysis, model and empirical contribu-

tions.

C1. We demonstrate that the cohort modelling method can effectively

enhance the next app category prediction problem, especially in al-

leviating the user cold-start issues when a limited amount of user

interaction data is available.

C2. We conduct the first empirical analysis of mobile app engagement

based on dwell time with a large-scale data set collected from thou-

sands of users. By investigating this large scale dataset, we present

insights on what information could be indicative factors for inferring
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users’ app dwell time. Specifically, we consider the influential fac-

tors from two aspects: user characteristics (e.g., age, gender, device

type, historical preferences) and context (e.g., hour, weekday, last

used app, periodic pattern).

C3. Our research investigates a novel problem on simultaneously predict-

ing which app the user will use and how long the user will stay

on that app. We propose three different joint learning strategies

to solve the novel prediction problem, including sequential, stacking

and boosting-based joint models, where the boosting strategy per-

forms best.

C4. We are the first to formally define mobile tasks and formulate the

automatic identification of mobile tasks as two supervised machine

learning problems. We propose a list of features that move beyond

timeouts and demonstrate that they can be used effectively to identify

mobile tasks effectively, which include similarity features for extract-

ing common characteristics and log sequence features for capturing

semantic relatedness between apps. Our research is an important first

step in modelling mobile app usage from the task perspective, which

sets the stage for evaluating mobile services, not on a per-app basis,

but the basis of user tasks.

C5. We are the first to conduct a comprehensive quantitative study on

characterizing complex tasks based on the large-scale commercial mo-

bile app usage logs. A generic mobile app navigation model is pro-

posed to present an accurate picture of the micro-level interactions

within this analysis, including how users revisit and switch between

different apps.

C6. We propose an unsupervised learning framework to derive generic
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profiles of complex mobile tasks. We provide evidence that there

actually exist 17 common tasks with 47 sub-tasks, which could be

identified solely from their salient properties. Those tasks range from

information check, micro documentation work to family entertain-

ment.

C7. We demonstrate that the user representation learned in a task con-

strained context perform better than the traditionally used app-based

representation. The first comprehensive analysis is conducted to re-

veal the effectiveness of mobile tasks for inferring users’ demographics

when compared to user modelling solely based on apps independently.

We propose to leverage various embedding and hierarchical attention

neural architecture for learning the distributed semantic representa-

tion of apps and tasks used by a user, which could then be applied

to enhance the demographics prediction.

C8. We show that the task types (based on the clustering results in

C6) could be used for measuring users’ app usage behaviour and

demonstrate that the task-based representation of users’ app usage

behaviour could improve the complex task prediction on smartphones

significantly. By modelling users’ behaviour only in app space, users’

superior intentions could not be well understood.

1.3 Thesis Overview

In this section, we provide an overview of this thesis. We finish this section

with reading directions.

The first chapter, to which this section belongs, gives an introduction to

the subject of this thesis. This chapter also provides an overview of the
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research questions, the contributions and origins of the work. Chapter 2

then introduces the background and related work for all the following six

research chapters. The core of this thesis consists of three parts.

In Part I of this thesis, we study users’ app usage behaviour for inferring

users’ app usage needs. In Chapter 3, we focus on predicting the next

app category user would use based on the cohort information and show

that the cohort-based approach can significantly alleviate the cold-start

problem, achieving strong predictive performance even with the limited

amount of user interactions. A comprehensive overview of correlations

between different user/context features and app dwell time is provided in

Chapter 4. Based on the comprehensive analysis of users’ app dwell time,

we further propose several joint prediction models (sequential, stacking,

and boosting) for solving a novel app engagement prediction problem –

how to predict the next app and how long the user will stay on this app

simultaneously?

In Part II of this thesis, we mainly focus on inferring users’ tasks from their

app usage logs and characterizing the extracted tasks. In Chapter 5, we

present a method that accurately determines mobile tasks from users’ app

usage logs. We show that a set of temporal, similarity and log sequence

features used in combination can effectively predict mobile tasks instead

of using the traditional time threshold. Since the complex mobile tasks

users aimed to complete with cross-app and multi-topic usage patterns on

smartphones could play a more important role in improving the current

mobile systems and applications in supporting task continuation and task

completion. We then focus on characterizing the complex mobile tasks in

Chapter 6.

Part III of this thesis revolves around leveraging the extracted task infor-
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mation in different applications. Chapter 7 discusses various embedding

and deep learning models which leverages task context to learn user repre-

sentations and validate that task-based user representation with advanced

neural models could effectively improve the performance of demographics

prediction. In Chapter 8, we validate that the task-based representation of

users’ app usage behaviour could improve the complex task prediction on

smartphones significantly.

Lastly, Chapter 9 concludes the thesis by discussing the main findings,

implications for each research question and presents the future work that

could be carried out.

Readers familiar with the background on mobile apps can skip the corre-

sponding sections of Chapter 2 and glance through the task-related parts to

develop a better understanding of the background needed for the proposed

models. Part III assumes a basic understanding of tasks and in particular,

a basic understanding of the task extraction technique.

1.4 Origins

We list for each research chapter the publications on which it is based.

For each publication, we mention the role of each co-author. The thesis is

based on in total 2 journal and 3 conference papers.

• The Chapter 3 is based on What and How long: Prediction of Mobile

App Engagement [168], to appear on ACM Transactions on Informa-

tion Systems (TOIS) 2021 by Tian, Zhou and Pelleg. Tian imple-

mented the analysis components and performed the experiments. All

authors contributed to the text.
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• The Chapter 4 is based on Cohort Modeling Based App Category

Usage Prediction [165], published at 28th ACM Conference on User

Modeling, Adaptation and Personalization (UMAP 2020) by Tian,

Zhou, Lalmas, Liu and Pelleg. Tian performed the experiments and

analysis while all authors contributed to the text.

• The Chapter 5 is based on Identifying Tasks from Mobile App Usage

Patterns [166], published at 43rd International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval (SIGIR

2020) by Tian, Zhou, Lalmas, and Pelleg. Tian performed the exper-

iments and implemented the models. All authors contributed to the

text.

• The Chapter 6 and Chapter 8 are based on Characterization and

Prediction of Mobile Tasks, which is currently under review by the

ACM Transactions on Information Systems (TOIS). It is an exten-

sion work of Identifying Tasks from Mobile App Usage Patterns [166].

Tian implemented the analysis and performed experiments. All au-

thors contributed to the text.

• The Chapter 7 is based on Inferring Users’ Demographics From Mo-

bile Tasks, which is currently under review by the ACM International

Conference on Web Search and Data Mining (WSDM 2022). Tian

implemented the models, performed the analysis and experiments.

All authors contributed to the text.
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Chapter 2

Background

In this chapter, we introduce the background and the most relevant prior

works to this thesis. Therefore, we aim to cover three major parts: (1)

understanding apps usage behaviour; (2) understanding tasks; (3) under-

standing mobile users based on app usage behaviour. Within the entire

literature review, we mainly focus on the works that are most relevant

while briefly discussing the broad background. We recommend readers re-

fer to other relevant books or surveys [25, 155, 206] if more details are

needed.

2.1 Understanding App Usage Behaviour

A mobile application, also referred to as a mobile app or simply an app, is a

type of software application designed to run on a mobile device, which can

be a smartphone, tablet, or even a watch. Apps are generally downloaded

from app stores, which are a type of digital distribution platform. The

three biggest app stores are Google Play [57] for Android, App Store [6] for

iOS, and Microsoft Store [123] for Windows 10. There are 2.87 million apps
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available for download on the Google Play Store. The Apple App Store

has 1.96 million apps available for download [14]. The popular categories

of mobile apps range from games, social networking, utilities, business,

food&drink, music, sports, travel to education, etc [56]. The existing stud-

ies show that the number of installed apps in each user’s smartphone ranges

from 10 to more than 90, with a median value of about 50 [45]. The average

smartphone owner uses 10 apps per day and 30 apps each month [14]. It

was recently reported that mobile apps are expected to generate over 935

billion dollars in revenue by 2023 [14]. Having a better understanding of

mobile app usage could be helpful to provide users with better personalized

services and recommendations. If the companies and businesses want to

compete and claim their share of this multi-billion dollar industry, they

also need to have a better understanding of exactly how people are using

mobile apps.

In this section, we review previous work in detail on app usage pattern

analysis and how to model users’ app usage behaviour aims at predicting

their future behaviour.

2.1.1 App Usage Pattern Analysis

2.1.1.1 Large-scale descriptive analysis.

Early works focused on conducting large-scale descriptive analysis of gen-

eral patterns within app usage behaviour [54, 191, 16]. The AppAware

project [54] showed end-users “which apps are hot” by aggregating world-

wide occurrences of app installation events. However, since AppAware only

gathers the installation, update, and uninstallation of an app, the system is

not aware of the actual usage of a specific app. Xu et al. [191] are the first
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attempt in addressing the lack of how, where and when smartphone apps

are used at the population scale. They comprehensively investigated the

diverse usage patterns of smartphone apps via network measurements from

a national level tier-1 cellular network provider in the United States. They

identified traffic from distinct marketplace apps based on HTTP signatures

and present aggregate results on their spatial and temporal prevalence, lo-

cality, and correlation. Other than identifying users’ app usage behaviour

from the interpretation of HTTP signatures, Bohemer et al. [16] conducted

a large-scale app usage behaviour based on the logged information, which

was from over 4,100 users of Android-powered mobile devices. They col-

lected the app data by a tool AppSensor, which was implemented as a

background service within Android and was installed by end users. Both

Bohemer et al. [16] and Xu et al. [191] discovered the temporal pattern

of app usage, e.g., news apps are most popular in the morning and games

are at night, but communication apps dominate through most of the day.

Furthermore, communication apps are almost always the first used upon a

device’s waking from sleep. They also found that, in general, the app usage

frequency changed during the day, which grew from 6 am and reached its

first peak around 11 am, and were most active during the evening (7 pm

to 9 pm). Additionally, they observed that some apps have a high like-

lihood of co-occurrence on smartphones – that is, when a user uses one

app, he or she is also likely to use another one. For example, a Browser is

opened quite frequently following the use of a News app. The connection

between Lifestyle and Shopping apps is also quite strong, with Lifestyle

apps frequently leading the user to enter into a Shopping App.

With mobile shopping surging in popularity, people are spending ever more

money on digital purchases through their mobile devices. Kooti et al.

[85] then analyzed a large data set consisting of more than 776M digital
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purchases made on Apple mobile devices that include songs, apps, and

in-app purchases. They found that 61% of all the spending is on in-app

purchases and that the top 1% of users are responsible for 59% of all the

spending. These big spenders are more likely to be male and older, and

less likely to be from the US.

2.1.1.2 Small-scale behaviour analysis.

Other than the large-scale descriptive analysis of app usage, later researchers

mostly focused on conducting the small-scale study to uncover more de-

tailed app usage behaviour from various aspects.

Pielot et al. [141] reported an in-situ study involving 15 mobile phones

users, where they collected one-week real-world notifications through a

smartphone logging application. They found that users have to deal with

63.5 notifications on average per day, mostly from messengers and email.

Whether the phone is in silent mode or not, notifications were typically

viewed within minutes. Their findings implied that reducing interruptions

and deferring notifications may work in a professional context. Ferreira et

al. [46] conducted a 3-week study by collecting app usage data from 21

participants to explore how they manage their time interacting with the

apps. They showed that approximately 40% of app launches last less than

15 seconds and happen most frequently when the user is at home and alone.

They defined these events as app micro-usage: brief bursts of interaction

with apps. Jones et al. [79] presented a revisitation analysis of smartphone

app use. This analysis was based on app launch logs from 165 users within

three months. Their analysis revealed distinct clusters of applications and

users which share similar revisitation patterns.

Except from only focusing on analyzing specific app usage patterns, several
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works were conducted for uncovering the correlations between app usage

and other services/events. Carrascal et al. [26] tried to explore why certain

interactions between apps usage and mobile search occur. They reported on

a 2-week, mixed-method study involving 18 Android Users. They showed

that when people engage with mobile search they tend to interact with

more mobile apps and for longer dwell time. Additionally, they found

that certain categories of apps are used more intensely along with mobile

search, e.g., Shopping & Retail and Entertainment apps were all used more

intensively when people engaged with mobile search, both in terms of app

launches and duration of app usage. Furthermore, Van et al. [172] studied

how app usage behaviour was disrupted by major events. For example, a

significant increase in news and finance app usage was observed after the

EU referendum vote in the UK, and an increase in the news during the

Wimbledon final was also discovered.

2.1.2 App Usage Behaviour Prediction

While the studies above have successfully explored mobile app usage, they

do not provide a clear answer as to how to practically leverage the findings

in order to support improved app usage behaviour prediction.

2.1.2.1 Next App Prediction

Explicit and implicit features. Within the prior works, app usage pre-

diction mostly refers to the problem of predicting the next app that will be

used for a given user and at a given time [25]. Existing next app prediction

literature is mostly conducted around 2012 to 2013 since it is becoming

harder to find an app on one’s smartphone due to the increasing number
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of apps available and installed on smartphones. The next app prediction

models are built during this period are mostly based on two types of fea-

tures, explicit and implicit features [131, 99, 216], with various predictive

modelling methodologies. The explicit features are the readily available

information extracted from the phone, include (1) location and other data

sources that can imply locations or any forms of data can be translated

into locations [136, 202, 216]. E.g., GPS, WiFi access points (APs) and

cell tower IDs, etc. (2) time [100, 196], e.g., hour of the day, day of the

week. (3) phone settings, e.g., ring volume, silent mode, vibrate mode,

airplane mode, etc. As stated in [72] phone setting features can be used to

effectively filter out unlikely app candidates in the given circumstances. (4)

phone status, e.g., battery level, screen brightness, phone movement and

phone carrying position identified based on accelerometer and proximity

sensor readings, etc. The implicit features instead refer to the subtle de-

rived app statistics, which require feature engineering and data modelling.

For example, they can be the distribution of app usage duration, the prob-

ability of each app being the first to be used, the correlation statistics of

app usage sequences, etc.

Some researchers proposed the next app prediction models only based on

explicit features. Yu et al. [202] proposed the Latent Dirichlet Allocation

(LDA) based personalized context-aware app recommendation approach

by leveraging individual user’s contextual information, including day of

the week, period of a day (i.e., morning, noon, afternoon, evening, and

night), hour of the day, profile type, and location. While some researchers

proposed to predict the next app user would access based on modelling the

implicit features. Tan et al. [163] and Liao et al. [98] all tried to predict the

next app based on mined temporal profiles for each app. Tan et al. [163]

treated users’ app usage patterns as periodic time series cycles and predict
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the app will be used based on a prediction algorithm with fixed cycle length.

Liao et al [100] investigated three implicit app usage features from the apps

usage trace to determine the top k apps with the highest usage probability,

which are a global feature, a temporal feature and a periodicity feature.

The global feature was defined as the probabilities of the apps being used,

which was aggregated over all available temporal periods. The temporal

feature is useful for those apps regularly used at a specific time, e.g., the

user usually set an alarm at around 23:00. The periodical feature is useful

for those apps that have a significant period, e.g., the user checks email

around every 3 hours. Zou et al. [218] proposed three Bayes models on

next app prediction, which only relied on the last one or two apps user

accessed before. They also pointed out that the latest used app and time

are more effective than location and other context information in the next

app prediction.

Most of the next app prediction models are proposed by combining both

the explicit and implicit features [157, 72, 196, 203, 8]. Shin et al. [157]

leveraged a wide range of contextual information in a smartphone, includ-

ing the GPS location, time, battery, phone settings, accelerometer, latest

used app, number of apps launched, etc, to make personalized app pre-

dictions based on naïve Bayes model. Liao et al. [99] adopted the KNN

(K-Nearest Neighbors) classification model to predict the next app through

the proposed personalized feature selection algorithm. They claimed that

they need to use different sets of features to predict their app usage. They

extracted explicit features from hardware sensors, including data from en-

vironmental sensors: time, location, wifi-signal; device sensors: space, free

ram and battery levels; personal sensors: acceleration, speed and head-

ing. They then estimated the distribution of transition probability among

apps and design an Apps Usage Graph to model both app usage order and
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transition intervals for extracting the implicit feature. Yan et al. [196] pro-

posed to consider the app session triggers, like the usage possibility of SMS,

Phone and Web Browser before user accessing each app, and combined it

with time and location features to predict the next app. Baeza et al. [8]

combined various explicit features and implicit features in a parallelized

Tree Augmented Naive Bayes [50] (i.e., PTAN) for next app prediction.

The used explicit features include location features like latitude, longitude,

GPS accuracy, location semantics (either home or work), time-based fea-

tures, and phone status features such as the status of charging and audio

cable connection. The implicit features were a set of temporally adjacent

app usage information.

Modern next app prediction models. After 2017, instead of relying

on various features for app usage modelling, more advanced models are

proposed to predict the next app. Yu et al. [201] developed a technique

that leveraged transfer learning to predict which apps are most popular

and estimated the whole usage distribution only based on the Point of

Interest (POI) information of that particular location. They stated that

their model outperformed by about 25.7% over the existing state-of-the-

art approaches. With the deep learning approaches becoming increasingly

popular, some researchers proposed different neural models for predicting

the next app, including DNN [207] and LSTM [193], etc. Zhao et al. [207]

proposed the AppUsage2Vec method, which measured the contribution of

each app to the target app by introducing an app-attention mechanism.

The user personalized characteristics in app usage are learned by a module

of dual-DNN (Deep Neural Network) [89]. Furthermore, they encoded the

top-k supervised information in the loss function for training the model to

predict the app most likely to be used next. Xu et al. [193] proposed a

generic prediction model based on Long Short-term Memory (LSTM) to
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covert the temporal-sequence dependency and contextual information into

a unified feature representation for next app prediction and stated that it

outperforms other models.

2.1.2.2 Other App Usage Behaviour Prediction

Besides predicting the next app user would access immediately, some previ-

ous attempts have been made to predict the app installation [105], attention-

based app engagement [113] and spending in apps [85], etc.

Liu et al. [105] took the initiative to analyze a very large app manage-

ment log, which covers 5 months of 17 million anonymized users’ detailed

downloading, updating, and uninstallation activities. They presented a sur-

prising finding that the metrics commonly used to rank apps in app stores

do not truly reflect the users’ real attitudes. They identified behavioural

patterns that could be regarded as indicators of users’ preferences on apps,

which can be integrated by machine learning algorithms for predicting the

ratio of positive ratings of the apps. Mathur et al. [113] tried to model and

predict users’ attention-based engagements (two levels: focused attention

and felt involvement) in the context of smartphones. They conducted the

work based on physiological measures (headset readings) within 10 par-

ticipants to detect engagement of a usage session using a Random Forest

classifier. Their research only focused on inferring the general engagement

under mobile context, which has no works regarding which app users are

currently using. Kooti et al. [85] tried to model the in-app purchasing

behaviour in multiple steps. They trained a classifier to predict whether

the user will make a purchase from a new app or continue purchasing from

the existing app. Based on the outcome of the previous step, they also

attempted to predict the exact app, new or existing, from which the next
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purchase will come. Their results uncovered new insights into spending

habits in the mobile digital marketplace.

2.2 Understanding Tasks

From the prior works in understanding users’ app usage behaviour above,

we can find that the current mobile devices and existing research works

only focus on how to effectively serve the individual apps that correspond

to users’ simple needs, e.g., weather checking, users get little or no help

when their needs transcend the boundary of a single mobile app with a

high-level task in mind. We now turn to present the prior works related

to another theme of this thesis: understanding tasks based on users’ app

usage interactions. Tasks, which are defined as pieces of work, ranging

in scope from specific (e.g., checking weather) to broad (e.g., planning

a vacation), are central to all aspects of information access and use [60].

Helping users complete tasks is crucial for a number of applications, such as

search systems, digital assistants, and productivity applications. App usage

logs have been extensively studied to generate insights that would improve

mobile user experience. However, the problem of user task understanding

is still an important problem, which hasn’t been well studied in the modern

era mobile app usage.

2.2.1 Mobile sessions v.s. mobile tasks.

The mobile “task” we define in our thesis is more similar to the so-called

“task” in search context [78, 86, 61], which consist of a set of apps (queries)

corresponding to a particular high-level intention, and the apps (queries)

are not necessarily the same or even similar. For example, Whatsapp, Yelp,
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GoogleMap and Uber apps from different functionalities would be engaged

to support the same task for “dining out with friends”. For now, little

research has explored methods to understand and identify mobile tasks

based on app usage logs, let alone to support users in task continuation

and task completion.

Within the context of mobile app usage, mobile sessions first allow us to

look beyond individual apps, preserve semantic associations between apps

usage and maintain the context of user activity. Some researchers also

regarded a mobile session as a “task” initially while conducting the re-

search [171]. Strategies for session identification from mobile log data have

been extensively studied. A smartphone usage session is commonly defined

based on a threshold value of potential idle or standby time between apps

usage. Carrascal et al. [26, 16] defined a session as an interaction sequence

without turning off the display for more than 30 seconds. Also common

is the definition of a phone usage session based on active screen usage,

which considers the time between the screen on and screen off as one ses-

sion [64]. Since most of the studies applied different arbitrary thresholds

in their session analysis, where the assumption of session segmentation was

not empirically validated, Van Berkel et al. [171] conducted a systematic

assessment of smartphone usage gaps. They proposed various metrics re-

lated to usage sessions and evaluate various machine learning approaches

to classify gaps in usage. They built a Constant Classifier that takes as

input a constant threshold T (in milliseconds) and classifies a usage ses-

sion as a continuous session if the time attribute is less than T, or as a

new session otherwise. They finally stated that solely relying on the use

of phone standby time analysis to classify smartphone usage gaps is not

reliable. But if a researcher insists on using a constant arbitrary threshold,

they encouraged to consider using a 45-second threshold for segmenting
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app usage streams into sessions (best accuracy: 68%). Rather than ses-

sions, our work aims to study the method for extracting tasks from app

usage logs, which could organize logs based on high-level user intentions

as the search tasks. The task with the same user high-level intention may

span multiple sessions and involve different apps, where the empirically-set

short timeout threshold may not be a valid criterion [171].

2.2.2 Task based Intelligence

After extracting tasks from users’ log data [178], their attributes such as

priority [127], duration [183], task context [22], task taxonomies and de-

pendencies [103, 77] could all be inferred and then further deployed in a

broad range of application scenarios with software and services we use ev-

ery day. In this section, we review task intelligence leveraged in search,

recommendation, and personalization.

Some researchers studied how to leverage the task context information for

query suggestion [24] and ranking documents in Web search [189]. The

context of a search query often provides a search engine with meaningful

hints for answering the current query better. Mehrotra et al. [120] proposed

a task context embedding architecture to learn the representation of queries

by leveraging the task context information from historical search logs. They

demonstrated that the task information could provide better context for

information retrieval (IR) systems to learn from.

Tasks are also leveraged for providing more satisfying recommendations

[205, 169]. Zhang et al. [205] proposed task-based recommendation to offer

cross-site heterogenous item recommendations on a Web-scale, which could

meet users’ potential demands better. For example, the user may turn to
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Amazon for the dress worn by an actress after watching a video on Youtube.

They also stated that task-based recommendation would be one of the key

components to the next generation of universal web-scale recommendation

engines. Recently, intelligent assistants are becoming increasingly popular.

They can serve various purposes from entertainment (e.g. playing music),

home automation to work management (e.g., timers, reminders). Trippas

et al. [169] investigated the task duration, continuity and regularity, which

allow them to provide design recommendations for how intelligent assistants

could support work tasks, both on-demand and proactively.

Both White et al. [182] and Mehrotra et al. [121] showed that tasks can

indeed be used for improving personalization. White et al. [182] proposed

an enhancing personalized search system by mining and modelling task be-

haviour. They mainly focused on solving the challenge for unseen queries

and for new search scenarios. They indicated that building richer models of

users’ current and historic search tasks can help improve the likelihood of

finding relevant content and enhance the relevance and coverage of person-

alization methods. They described a method whereby they mined historic

search-engine logs to find other users performing similar tasks to the cur-

rent user and leverage their on-task behaviour to identify Web pages to

promote in the current ranking. Later, Mehrotra et al. [121] introduced a

task-based user modelling approach for behaviour targeting, where users

are represented by their actions over a task space. Specifically, given a web

search log, they extracted search tasks performed by users and then con-

structed a user-task association matrix. They borrowed insights from Col-

laborative Filtering [152] to learn a low-dimensional factor model wherein

the interests/preferences of a user are determined by a small number of

latent factors. They evaluated the performance of their proposed approach

on Collaborative Query Recommendation where the goal is to recommend
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queries to a user based on queries issued by similar users. The experiment

results showed that the proposed task-based user modelling approach per-

formed better than the bag-of-words (query) based representation, which

demonstrated that search tasks can serve as potent user modelling tools.

Users increasingly prefer to complete tasks with mobile devices in their

daily life. In this thesis, we not only propose the task identification model

based on app usage. Additionally, we go beyond task extraction and present

novel applications of leveraging mobile task information in different appli-

cations, including user modelling and complex task prediction.

2.3 Profiling Mobile Users

Profiling smartphone users well is the key to improving mobile user experi-

ences. It can help us to improve mobile devices, applications, and services,

e.g., targeted advertisements and personalized recommendations, etc. In

this section, we review the related studies in the literature for profiling

users from apps usage patterns on smartphones. A large volume of app

data could be collected, such as what apps are installed on smartphones,

how apps are used, and the basic information of apps, e.g, app categories,

app descriptions, and app reviews. The app data used in the existing mo-

bile user profiling method could be roughly divided into three classes: (1)

installed app list (2) app usage records (3) app metadata.

Installed app list. Users decide to install apps depending on their needs,

preferences and tastes. Thus, the apps that a user has installed intuitively

could be good indicators of their needs and interests. What’s more, the

list of apps installed on a smartphone is relatively more accessible. Many

previous studies have shown that installed app lists could reflect users’
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needs or tastes to a certain degree. Zhao et al. [208] stated that they

are the first work to explore mining user attributes from installed app

lists. They developed an attribute-specific representation to describe user

characteristics and then modelled the relationship between a user attribute

and an app list. Their approach achieved the average equal error rate

of 16.4% for 12 predefined user attributes, including phone price and size

preference, and 10 underlying user attributes reflected by niche app, e.g.,

movie fan, beauty shopping, own a car or not, etc. Xu et al. [192] provided

an approach for user profiling based on readily available information like

a user’s snapshot of app installation. They indicated that by leveraging

their approach, demographics and personality traits become predictable for

everyone who uses a smartphone without the pains of answering a survey.

However, by installing an app, the user may simply want to try the app

out, and may never use it again. According to the statistics in [150], only

10% of apps were used 80% of the time, suggesting that a lot of apps are

downloaded but not used regularly. Even for the same app, its usage can

be different across users like frequency and intensity. Thus to make it more

accurate in profiling user characteristics, app usage records are used, which

could report the way how users interact with apps, such as when an app is

launched or killed, how long and how often it is used.

App usage records. Compared with installed app lists, there is temporal

context, i.e., time information, accompanied with the app usage records,

recording when one user uses which apps. Zhao et al. [209] discovered

382 distinct kinds of users from more than 10,000 individuals by clustering

users who are represented based on the average usage weight of each app

category in different time periods. They named the users as night commu-

nicators, screen checkers, evening learners and young parents, etc. They

also showed that the way users engage with their apps is related to their
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demographics. Jones et al. [79] identified three distinct clusters of users

based on their app revisitation patterns: checkers who exhibit brief but

quick revisit patterns, waiters who are split between short-medium revisi-

tation and long revisitation, and responsives who exhibit sometimes brief

and sometimes long revisit patterns.

App metadata. App metadata refers to the basic information of apps

including icons, the description that introduces an app function, the cat-

egory that one app belongs to, reviews (comments), and the number of

downloads, etc. App metadata could help us understand one app and fur-

ther infer why one user installs or uses it. App metadata could usually be

crawled from app store websites, such as Google Play [55]. Compared to

installed app lists and app usage records, app metadata always suffers the

issue of sparsity, e.g., only very few apps can receive useful feedback from

users [101] and the description of some apps is rather limited, consisting of

just a few words reviews [51]. So researchers suggest combining other types

of app data together, such as installed app lists or app usage records, to

compensate for the sparsity of the app metadata. Seneviratne et al. [154]

showed that by representing users based on the features extracted from

installed app list, app costs, app distribution in different categories, and

tf-idf weights within app descriptions, etc, user’s gender, a demographic

attribute that is frequently used in targeted advertising, can be instantly

predicted with an accuracy around 70%.
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Understanding App Usage
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Chapter 3

Cohort Modeling based App

Category Usage Prediction

We start the Part I of this thesis, aiming to better understand users’ app

usage behaviour, especially for improving the existing methods on app us-

age behaviour prediction. In this chapter, we start our investigations by

studying how to enhance the behaviour prediction for new users when in-

sufficient information is available for learning. We propose to use cohorts

modelling method for enhancing the prediction. This chapter addresses our

research questions RQ 1.1 and RQ 1.2, as specified in Section 1.1.

RQ 1.1: how could we model users’ cohorts based on users’ characteristics

and logs readily available for mobile app usage?

RQ 1.2: could we employ signals from users who are similar along one or

more dimensions, i.e., those in the same cohort for improving the prediction

performance, especially for alleviating the cold-start problem?

Various stakeholders in the mobile industry [126, 10] are keen to under-

stand how users interact with different apps, including phone operators,
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manufacturers, advertising companies, and service providers. It has been

shown in the past that many contextual features, such as time, location,

last used app and other device signals, can be used to predict app us-

age [163, 98, 72, 157, 8]. Personalization of app usage prediction has been

investigated in many prior studies [163, 98, 72, 157, 8], which is typically

learned by using an individual’s data. The ability to tailor prediction results

to a particular individual enables a wealth of opportunity to better satisfy

their particular needs. Personalized models are typically learned from ob-

served usage behavior and context information (such as temporal/periodic

pattern and sensor signals), which are either used directly [157, 8] or con-

verted into a different representation (e.g., graph) to build models and

improve personalization tasks [99, 218].

Despite the value of personalized models, one drawback is that they require

lots of user historical interaction information to become effective. Every

time a new user comes, a new prediction model needs to be trained for

a period until it can predict users app usage correctly. The personalized

prediction model can be very sensitive to the data available and might

not perform well for new users. This is generally referred to as the cold-

start problem. One way to alleviate this problem is by finding cohorts of

users who share common attributes or experiences with the current user.

Given a user, we can leverage the app usage behavior of other members

of their cohort(s) to enhance prediction by providing signals if insufficient

information is available for this user.

Modeling aggregate user behavior in existing online behaviour prediction

approaches is commonly performed with collaborative filtering (CF) tech-

niques [49], where groups of similar users (based on factors such as liking

the same item [148] or previous used apps [131]) has been shown to work

well. However, CF only exploits usage history information and explicit user
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rating feedback, ignoring the context information when people use various

apps.

In this chapter, different from CF, we propose using cohorts to enhance

app category usage prediction by exploiting various dimensions, including

contexts, user characteristics and user interactions. Our method creates

predefined cohorts covering three aspects: demographics (e.g., age, gen-

der), psychographics (e.g., interests, way of living) and behavioral patterns

(e.g., engagement frequency, revisitation patterns). Rather than limiting

ourselves to these pre-defined sets, we also propose cohorts modeling meth-

ods that assign users to a combination of cohorts. We demonstrate through

extensive experiments with a large-scale app usage log data that our cohort

modeling methods can yield significant improvements over a personalized

prediction model.

Finally we demonstrate that compared to existing approaches, our pro-

posed cohort modeling method can significantly alleviate the cold-start

problem, as it can achieve strong predictive performance for new users,

even with limited amount of user interactions available. Moreover, users’

interpretable cohort information can provide more transparency and ex-

pose the reasoning behind the prediction, which has been shown to be

useful in improving the effectiveness of such recommendations [204]. Note

that we do not directly compare our proposed approach with CF in this

work given it is difficult to model all the dimensions we consider into the

CF framework. Rather, our main focus is to demonstrate the effectiveness

of our cohort-based approach, compared to personalized models, especially

for the cold-start scenario. To our knowledge, we are the first to exten-

sively utilize users’ cohort information in predicting large-scale mobile app

category usage.
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The remainder of this chapter is organized as follows. Section 3.1 provides

some background. Section 3.2 introduces the large-scale dataset used in our

study, which is also leveraged in the following chapters. Section 3.3 presents

our approaches for extracting informative and interpretable user cohorts

based on different aspects of users’ characteristics and app usage behaviors.

In Section 3.4, we introduce our approach of using cohort modelling for the

purpose of app category usage prediction. Section 3.5 details experiments

carried out to the proposed prediction problem, including demonstrate the

effectiveness in alleviating the user cold-start problem. Finally, Section 3.6

outlines our conclusion.

3.1 Related Work

Most of the previous research work on app usage prediction (exact app or

app category) is based on both the temporal patterns and sensor signals

collected, and only the personalized prediction model is explored (refer to

Section 2.1.2.1) [163, 98, 100, 72, 157, 8, 196]. In those works, the number of

participants is small or from one social community (e.g. college students),

where the cold-start problem hasn’t be well studied. In this chapter, we

propose to predict users’ app category usage based on cohorts and show

that this method help in alleviating the user cold-start problem.

A basic design consideration for next-app predictive modeling is whether

we should learn a generic model based on multiple users’ data or a person-

alized model based on each user’s data. The majority of existing next app

prediction models as we list above [157, 202, 163, 72, 218, 99] are relying

on the personalized mechanism since most studies are conducted based on

a small number of users (less than 50) within a long period. As for per-
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sonalized models, they are typically learned by using an individual’s data.

With sufficient data for model training, personalized models were reported

to have better accuracy than the generic models [157]. However, training a

personalized model often encounters cold-start and data sparseness issues,

especially at beginning of data collection for an individual. Cold start

here refers to the frequent scenario that at the beginning of data collection

for each individual, there is typically insufficient data to train a personal-

ized model for immediate interpretation of his/her live smartphone data

feeds accurately. The underlying assumption for the generic model is that

a group of users share common app usage patterns in a similar context.

Do et al. [41] trained both generic and personalized models based on all

the users’ data. Their experimental results showed that the generic mod-

els performed well against personalized models especially when each user’s

training data was very small such as for a duration of less than 3 weeks.

In the previous research, Collaborative filtering algorithm (CF) [1, 159] was

used to find people with similar interests and leverage their activities and

preferences to provide relevant recommendations. However, the app usage

prediction problem differs from traditional collaborative filtering settings,

such as the Netflix rating prediction problem, in many aspects. First, user

interaction with items such as apps is brief and repetitive in nature, whereas

items like movies and books are usually watched/read once. Second, the

user feedback of app usage is inherently implicit in the form of item clicks,

as opposed to explicit feedback like ratings or comments. Additionally, app

usage has a temporal ordering of clicks within sessions. Lastly and most

importantly, app usage prediction must be made available dynamically as

the user interacts with the system. The cold-start problem also exists in

CF recommendation systems [214, 151, 102, 34] and Natarajan et al [131]

tried to solve it by clustering users based on their (sparse) one-step item
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transition probabilities.

For profiling mobile users, besides the demographics, e.g. age and gen-

der, some researchers looked at modeling smartphone users based on their

app usage behaviour. Jones et al. [79] identified three distinct clusters of

users based on their app revisitation patterns: checkers who exhibit brief

but quick revisit patterns, waiters who are split between short-medium re-

visitations and long revisitations, and responsives who exhibit sometimes

brief and sometimes long revisit patterns. Zhao et al. [209] identified 382

distinct kinds of users from more than 10,000 individuals. In their work,

users are represented by the average usage weight of each app category in

different time periods. Furthermore, Li et al. [93] reported how the choice

of mobile device models impact app selection, revealing the significance of

device models on app usage.

To summarize, although many studies have been conducted on mobile app

usage prediction and mobile user modeling, no existing works have been

conducted on modeling the user cohort for the purpose of app category

usage prediction. In addition, less research has been undertaken on the user

cold-start problem. In this chapter, we aim to investigate whether users’

app category usage behaviour can be predicted based on users’ cohorts

information. If yes, we then further validate that if the proposed framework

can help the user cold-start issue.

For simplicity, we will often refer to app usage to mean app category usage

in the rest of this chapter, unless otherwise stated.
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Table 3.1: Top 10 popular app categories.

App Categories %Logs App Function Examples

productivity 28.6% mail, calendar, notepad
social 10.6% SNS, dating
tools 8.3% caculator, screen lock, light
communication 6.8% SMS, IM, free video calls
entertainment 5.1% TV player, streaming video
utilities 3.3% network, cleaner
sports 3.1% live sports, sports news
music 2.7% music player
lifestyle 2.5% diary, discount, recipe
arcade 2.4% games

3.2 Flurry Dataset

In this section, we introduce the dataset used in our study, which is collected

from Flurry mobile analytics platform, a library that mobile developers

integrate into their apps to measure app usage and allow in-app advertising.

We collected a sample of logs from a week in March 2017 of more than 1.3

million logs with over 9K different apps and 12K users from the United

States. Each log consists of the user’s general app usage information, such

as demographics, timestamp, app category, app id and time spent. Each

app belongs to one of 45 categories ranging from social, communication to

business, etc. Table 3.1 shows the most popular app categories and their

proportions in all the logs, where the app categories are consistent with

the Google Play App taxonomy [56]. Generally, users are more likely to

interact with app categories like productivity, social, tools, communication,

and entertainment apps nowadays. We also illustrate several examples of

the most popular functionalities of the corresponding apps within each

category. Table 3.2 shows various statistics of our dataset. Either Android

or iOS operates the devices. 51.8% of app users are female, and most logs

(over 70%) are generated by users between 25 and 54 years old 1. Since the
1Users have been classified into five age ranges in our dataset: 13-17,18-24,25-34,35-54

and 55+.
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Table 3.2: Overall statistics of the dataset.

OS %Logs %Users Device %Logs %Users

android 78.0% 57.5% Phone 94.3% 90.0%
ios 22.0% 42.5% Tablet 5.7% 10.0%

Age %Logs %Users Gender %Logs %Users

13-17 5.7% 9.0% female 44.1% 51.8%
18-24 13.9% 18.4% male 55.9% 48.2%
25-34 32.2% 30.3%
35-54 43.2% 36.5%
55+ 5.0% 5.8%

dataset is also leveraged in the following chapters, we refer to the Flurry

dataset to mean the same dataset presented here in the rest of the thesis.

3.3 Cohort Modeling

One goal of this section is to extract informative and interpretable user

cohorts based on different aspects of users’ characteristics and app usage

behaviors. The cohorts are used to draw “portraits” of users, which we

believe will help predicting app category usage. A user cohort is a group

of people who share common characteristics or experiences within a de-

fined time-span. From previous work, three major dimensions have been

used to classify users [59]: demographics, psychographics and behavioral.

Demographics is the most popular dimension; it includes age, gender, oc-

cupation, education, religion, race, and location. Psychographics brings a

better understanding of the users as a person by measuring psychological

aspects, such as the way of living (lifestyle), interests and opinions [217].

Finally, the behavioral dimension focuses on the actual behavior of users,

and includes spending/consumption habits, session frequency, usage rate,

and loyalty status. In this work, we use these three dimensions to develop

user cohorts based in a one-week time window. The taxonomy of user
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cohorts is detailed in Table 3.3.

3.3.1 Demographics

The first user cohort is based on user demographics. In our case, these

are age, gender, and operating systems. Some studies have shown that

age and gender have an important impact on how users use apps on their

smartphones [209]. For example, male users may be more engaged with

sports apps and female users use more shopping apps. We group users into

two gender cohorts: male and female, and five age cohorts: 13-17, 18-24, 25-

34, 35-54 and 55+. Li et al. [93] reported how the choice of device models

can impact the adoption of app stores, app selection and abandonment,

online time, and data plan usage. Their work revealed the significance

of device models against app usage, and suggest taking into account the

device models as an essential factor in app recommendation tasks. We use

operating system and group users into three cohorts accordingly: Android,

iOS, and others.

3.3.2 Psychographics

Besides demographics, the psychological characteristics of a user, such as

specific needs, preferences, and interests may also be a strong driver of

app usage. For example, a young man interested in cooking may tend to

use more recipe apps even if this category of apps is not broadly popular

within his demographic group. Such differences between individuals and

the communities to which they belong might be reflected in app usage.

Thus, considering the psychographics of users may provide important in-

sights in predicting app usage. We define user cohorts from three aspects
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3.3. COHORT MODELING

of users’ psychographics (see Table 3.3): interests, the way of living, and

communities.

Interests Users’ specific interests may be indicative of future intent on app

usage. For example, users who love sports might potentially access sports

apps and consume more sports-related content than others. Therefore, it

is important to consider users’ interests when predicting app usage. To

group users based on their app preferences, keeping the most popular app

categories for each user based on their historical app access frequency is a

straightforward way of doing this. However, previous researchers [94, 139]

have found that the app popularity distribution follows Zipf’s law, which

indicates that only a few apps have high installation/usage whereas many

apps have low installation/usage. Users grouped by their absolutely top

app categories may lead to a skewed distribution meaning that most users

may be classified into a few cohorts, mostly highly popular apps, such as

social-networking, productivity, and communication.

Other than selecting the absolutely top app categories, we employ another

strategy to select the relatively most popular app categories for each user

by normalizing across all users. This strategy can properly represent users’

app category preferences as well as keeping users’ specific preference char-

acteristics. Specifically, the top k apps for user u are selected based on the

popularity score P (a, u) for each app a, which is calculated based on usage

frequency of that app category for user u and the usage frequency of the

corresponding app category for all users:

P (a, u) =
f(a, u)∑

ui∈U
f(a, ui)

(3.1)

where app a ∈ A, and A is the set of all the app categories engaged by u.

f(a, u) represents the usage frequency of the app category a for user u in
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3.3. COHORT MODELING

a given period while U is the set of all users. Given this popularity score

P (a, u), we can select the top k app categories to represent the interests of

user u. Through this normalization, the “niche” popular app categories are

used for representing that user.

Table 3.4: Description of the cohorts generated based on different selected
app category sets (% User Identified: percentage of users are uniquely
identified by the selected app categories; # Cohorts: number of cohorts
generated; Avg. # of Users: average number of users in each cohort; Std:
standard deviation of the number of users in each cohort.)

Interests Rep. % User Identified # Cohort Avg. # of Users Std.
Absolutely Top 1 0% 45 65 142.67
Absolutely Top 2 4.0% 364 8 18.62
Absolutely Top 3 18.5% 961 3 5.01
Relatively Top 1 0% 45 62 37.82
Relatively Top 2 4.7% 582 5 5.21
Relatively Top 3 33.5% 1522 2 1.71

Selecting appropriate k for the top k app categories can be also crucial

for the user representation. Consistent with prior results [181, 170, 8], we

find that if we deem k as the number of all the app categories used by

that user, 77.3% of the users can be uniquely identified (i.e., each of those

users belongs to a user cohort that consists of exactly that one user). To

empirically evaluate this, we present the results of the cohorts generated

by varying k from 1 to 3, as shown in Table 3.4. We can observe that by

selecting k equal to 3, most of the user cohorts consists of only 2-3 users

whereas many users can be uniquely identified (i.e., many cohorts only

consist of exactly one user). Therefore, we enumerate different interests

representation, setting k ≤ 3 in the rest of the work.

Way of Living We focus on when a user gets up or goes to bed, and how

actively the user uses the phone during the night (midnight to 6 AM).

Get-up & Bed time. Murnane et al. [128] found that users’ smartphone

app usage patterns vary for individuals with different body clock types. In
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3.3. COHORT MODELING

this work, we focus on when a user gets up or goes to bed [209] identified

the get-up time and bed time by the charge cycle of smartphone batteries;

however, this information is not available in our dataset. Following a similar

methodology to [212], we assume that the users start to “stop” using the

phone before getting to sleep and pick up the phone when they get up.

If there is an idle time of phone usage for longer than 4 hours at night

(i.e., the idle time starts between 8 PM and 5 AM; ends between 4 AM and

1 PM), we identify it as the sleeping time. We then use the timestamp of

the start and end of this sleeping time respectively as the “go-to-bed” time

Tb and “get-up” time Tg.

Nocturnal Phone Usage. This measures how actively a user uses the phone

during the night. Following the methodology in [212], the total duration

of all the active periods of app usage during night time (between midnight

and 6 AM) Dn is computed as the feature for representing nocturnal phone

usage.

After obtaining those variables (go-to-bed time Tb, get-up time Tg and

nocturnal usage duration Dn), we need to further group them into user

cohorts. We are particularly interested in those traits that make the users

different from others. Following from [212], we first normalize those discrete

features using z-score. By assuming those features follow the Gaussian

distributions, we then calculate the mean and standard deviation for each

of those features. As shown in prior work [212], those features far away

from the mean of the feature with more than one standard deviation (std)

can be utilized for representing the special user traits. Therefore, as shown

in Table 3.3, for each “way of living” feature, a pair of semantic labels is

generated for two ends of the feature distribution, i.e., lying outside of the

interval of (mean ± std). For example, based on the distribution of get-up

time Tg for all users, if a user gets up within the time period of mean ± std,
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3.3. COHORT MODELING

we will label his/her cohort as “normal”. Otherwise, we will label him/her

as “later-riser” if the user gets up later than the timestamp of “mean+std”

and as “early-bird” if he/she gets up earlier than the timestamp of “mean-

std”.

Communities Several studies have clustered users into different commu-

nities based on their temporal app usage patterns. For example, Zhao et

al. [209] identified 382 distinct kinds of users using their clustering method

based on the usage frequency of different app categories during specific time

periods. Within their proposed clustering method, they identified differ-

ent types of users and ultimately label them with a community label, such

as night communicators, evening learners and car lovers. Different from

interests described in Section 3.3.2, the communities capture the more

fine-grained temporal app usage patterns.

In our work, we utilize the same methodology to assign each user to different

communities. Based on our dataset, each user is represented by a vector Cv

of 45 (categories) × 4 (time periods) × 2 (weekends and workdays) for a to-

tal of 360 dimensions. By applying the best performing k-means-MeanShift

hybrid clustering algorithm described in [209], we obtain a total of 114 ±

7 clusters.2 This k-means-MeanShift clustering algorithm combines the

benefits of multiple standard clustering algorithms, is computationally fea-

sible, and finally is able to automatically determine the ultimate number

of clusters. We find that our clustering results are similar to the findings

in [209] that many meaningful communities exist in our clusters, such as

night communicators, evening TV watchers and weekend morning gamers.
2Since we use 5-fold cross validation in our performance evaluation, different number

of clusters are generated in different folds.
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3.3.3 Behavioural

The third dimension is based on behavioral patterns. We consider two

aspects of users’ behavioral characteristics, which we show in Table 3.3:

engagement and revisitation.

Engagement Within the context of web browsing, Lehmann et al. [92]

created five types of user groups based on their frequency of visiting the

site over a month: tourists, interested, average, active and VIP users. They

identified that the proportion of specific types of users based on their en-

gagement will be different across websites. In this work, we also hypothe-

size that users with different engagement levels may behave differently in

terms of app usage. Additionally, we measure not only users’ engagement

in terms of how frequently they access apps, but also the more fine-grained

total time spent (i.e., total dwell time). The latter represents the total

duration of users accessing mobile apps in the given period.

Following the five-level engagement level definition in [92], we propose the

following strategy for defining users’ engagement cohorts based on their

mobile app behavior patterns. We group users into five different engage-

ment cohorts of duration and frequency, respectively, by using the quantiles

at 20%, 40%, 60%, 80% and 100% as the breakpoints, resulting in those

five cohorts: tourists, interested, average, active and VIP.

Revisitation Jones et al. [79] present a revisitation analysis of smart-

phone use. They propose that users could be clustered into three different

types based on their revisitation patterns, where a revisitation curve for

a particular user is constructed by considering the in-between duration

in launching any app on their phone. They grouped the users based on

the revisitation curves into three user cohorts: checkers (users exhibiting
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brief revisit patterns lightly skewed towards fast revisitation of less than

4 hours), waiters (users exhibiting longer revisit patterns longer than 16

hours), and responsives (users exhibiting a hybrid of brief and long revisit

patterns).

Following [79], we use an exponential scale for revisit interval bins, which

are 1, 2, 4, 8, 16 and 32 minutes; 1, 2, 4, 8, 16, 32 hours (i.e., 1.3 days), 64

hours (i.e., 2.6 days), 128 hours (i.e., 5.3 days), and above (i.e., >5.3 days).

A revisitation curve characterizes a user by its 15-dimensional vector Rv,

where each dimension corresponds to the frequency of revisits within the

corresponding bin. These curves are like a “signature” of users’ behavior in

launching mobile apps. We iteratively apply k-means for a varying number

of clusters and use within-groups sum of squares to plot the variations as

a function of the different number of clusters. We then pick the “elbow”

of the curve as the optimal number k of clusters. Based on this simple k-

means method, we identify a substantial trichotomy of user cohorts within

their revisitation patterns: checkers (which accounts for 39.6% of users),

waiters (13.5%) and responsives (46.8%).

3.4 App Category Usage Prediction

In this section, we introduce our approach of using cohort modeling for

the purpose of app category usage prediction. We start by formalizing the

prediction problem, and then discuss how to assign the cohort information

when a new user comes. To assign users into cohorts of different granularity,

we also describe how we build combined user cohorts. Finally, we evaluate

the performance of the proposed prediction method, including for the user

cold-start problem.
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3.4.1 Problem Formulation

In our work, we aim to predict the app category a new user will use based

on their cohort information. Our aim is to overcome the data sparsity issue

and to guarantee efficient real-time prediction. Each user can be charac-

terized by his/her cohort information, i.e., demographics, psychographics,

and behavioral patterns. For each user, given the current time (time of

day and day of week) and his/her cohorts information, we want to predict

the app category he/she will use. This prediction task can be formalized

as a multi-class prediction problem. There are K = |A| classes for this

prediction task, where A is the set of all app categories in the dataset.

The app category usage prediction problem is formally defined as

follows: Given a list of app categories {a1, a2, ..., ai}, the users’ cohorts

information C and temporal context T , the problem of app usage prediction

is to find an app category â that has the highest probability of being used

under C and T . Specifically, we aim to solve:

â = argmax
ai∈A

P (ai|C, T )

3.4.2 User Cohorts Assignment for New Users

Since the user cohort based approach aims at addressing the user cold-start

problem, we split the training and test set based on users instead of log

entries. In the training set, the users are assigned to the specific cohorts

based on their usage logs. For example, the community cohorts are gen-

erated based on the clustering results of users in the training set. During

the test stage, for all test users whom have not been seen by the system

before, we assign those users to existing cohorts in the training set and
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then proceed to the prediction task. During the assignment process, we

need to compare the new users with all “old” users in the vector space, so

we first introduce the representative vectors for representing users’ cohorts

information as vectors. For scalar based cohort: e.g., demographics, the

representative vector refers to the one-hot encoded vector of the categor-

ical scalar. For cluster-based cohorts: e.g., community and revisitation,

the representative vector is the vector used in clustering. We then propose

three assignment approaches to assign the test/new users to the most ac-

curate cohort within all the different cohorts taxonomies as described in

Section 3.3.

Nearest centroid classifier (NCC) If we want to determine which ex-

isting cohort a new user belongs to, the straightforward way is to find the

nearest cohort. Therefore, we propose to use the nearest centroid clas-

sifier [185] as the first assignment methodology, which is a classification

model in machine learning that assigns observations to the class of samples

whose centroid is closest to the observation. In our scenario, given exist-

ing users’ representative vectors {(−→x 1, y1), ..., (
−→x n, yn)} with cohort labels

yi ∈ Y , we compute the per-cohort vectors:

−→µl =
1

|Cl|
∑
i∈Cl

−→x i

where Cl is the set of indices of samples belonging to cohort label l ∈ Y ;

the assignment function for the cohort label assigned to a new user
−→
x′ is:

ŷ = argmin
l∈Y

∥−→µl −
−→
x′∥

K-nearest neighbor classifier (KNNC) The second approach is to

apply the k-nearest neighbor (KNN) [47] rule, which is one of the most
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straightforward non-parametric techniques in pattern classification. The

basic idea of k-nearest neighbor classifier is: an object is classified by a

plurality vote of its neighbors, with the object being assigned to the class

most common among its k nearest neighbors. Here we set k =
√
n, where

n is the amount of unique cohort labels. Similar to NCC, representative

vectors are used when calculating the distance between two users. More

specifically, given a new user x′ and a similarity metric d based on Eu-

clidean distance, KNN classifier performs the following two steps: (1) It

runs through the whole training set computing d between the new user x′

and each user in the training set. We state the k users in the training set

that are nearest to x′ as the set C. (2) It then estimates the conditional

probability for each cohort label, that is, the fraction of users in C with

that given cohort label:

ŷ = argmax
j∈Y

P (y = j|X = x′) =
1

k

∑
i∈C

I(y(i) = j)

where I(x) is the indicator function which evaluates to 1 when the argument

x is true and 0 otherwise. Finally, the new user x′ gets assigned to the

cohort label with the highest probability.

Classifiers trained based on the existing cluster labels (RF) Given

the NCC assignment, some of the labels will be assigned based on the cen-

troids of clustered results. However, assigning new points based on distance

in a clustering algorithm is complex because the results of a clustering al-

gorithm may be imperfect; they only present a snapshot of a (hopefully

good) segmentation within the current data. With more data coming in,

the cluster may change. Therefore to make the assignment more robust

given a particular clustering segmentation, we can train an additional clas-

sifier where the resulting clusters are treated as different classes. In that
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Figure 3.1: Structured representative vector of combined user cohorts:
combining age, gender and operation system groups would potentially re-
sult in 30 different cohorts.

way, we can account more intuitively for the non-robustness of the cluster-

ing labels. Besides, as we expect the clustering to reflect “some structure”,

it is a cheap and straightforward way to encapsulate that structure. Follow-

ing this, the classifier learns P (c|x) based on users’ representative vectors

and corresponding cluster labels. When a new user x′ appears, we can

directly predict which class the new user belongs to instead of assigning

him/her based on distance or neighbors. So here, we propose to use an ad-

ditional classifier based on the Random Forest algorithm, which is efficient

in assigning the cohort label to new users:

ŷ = argmax
c∈Y

P (c|x′)

3.4.3 Combination of Multiple User Cohorts

Besides predicting users’ next app category solely based on one type of

cohorts, we also want to consider multiple types of cohorts together. For

example, as shown in Figure 3.1, a combined cohort with different types of

demographic cohort features could be generated to describe a user. This

combined cohort would have 30 different labels since there are potential 30
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different compositions based on age, gender, and operating system cohort

labels. For instance, we can observe one of the combined cohorts in Fig-

ure 3.1: “Android male user cohorts aged 25-34”. It is possible to generate

a new cohort based on a combination of any cohort dimensions listed in

Table 3.3.

The cohort assignment for new users within these combined cohorts follow

the same methodologies described in Section 3.4.2. The representative

vectors x are updated by concatenating the original vectors xi of each

selected cohort:

x = [x1, x2, ..., xi], i ∈ Sc

where Sc is the set of selected cohorts to be combined. Figure 3.1 illustrates

the generation of such new representative vector.

3.5 Experimental Results

In this section, we firstly empirically demonstrate how our proposed cohorts

can be used to improve the prediction of users’ app category usage. Sec-

ondly, we investigate whether our proposed approach can help addressing

the user cold-start issue when compared with other prediction mechanisms.

3.5.1 Experimental Setup

We apply 5-fold cross-validation to evaluate each model. At each time, we

split all the users into training, validation and test set: the logs of three-

fold of the users are used as the training set, one-fold is validation set and

the remaining one-fold users are used as the test set.
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Table 3.5: Measurements of next app category prediction based on different
cohorts information. All the results are statistical significant (p < 0.01)
using the two tailed t-test compared to the temporal context only baseline.
Bold scores state the best performance in each cohort.

User Cohorts # Cohorts Assignment
Measurements

acc pre rec F1

Context Baseline

Hour + Weekday - - 0.416 0.173 0.416 0.244

I. Single Cohort

(a). Demographics

Age 5 - 0.441 0.197 0.441 0.272
Gender 2 - 0.443 0.197 0.443 0.272
Operating system (OS) 3 - 0.447 0.234 0.447 0.291

(b). Psychographics

Interests: Top1-Absolutely 45 - 0.686 0.666 0.686 0.665
Interests: Top2-Absolutely 364 NCC 0.559 0.515 0.559 0.496
Interests: Top3-Absolutely 961 KNNC 0.467 0.387 0.467 0.362
Interests: Top1-Relatively 45 - 0.555 0.528 0.555 0.510
Interests: Top2-Relatively 582 NCC 0.547 0.494 0.574 0.485
Interests: Top3-Relatively 1522 KNNC 0.418 0.393 0.418 0.402

Way of Living: Sleep Time 3 - 0.440 0.203 0.440 0.270
Way of Living: Get-up Time 3 - 0.439 0.206 0.440 0.271
Way of Living: Nocturnal 3 - 0.443 0.197 0.443 0.272

Communities 115 NCC 0.572 0.550 0.572 0.517

(c). Behavioural

Time Spent 5 - 0.444 0.222 0.444 0.286
Frequency 5 - 0.444 0.222 0.444 0.286

Revisitation Pattern 3 NCC 0.444 0.219 0.444 0.283

II. Combinatory Cohort

(d). Demographics

Age + OperatingSys 15 NCC 0.443 0.255 0.443 0.298
Gender + OperatingSys 6 NCC 0.447 0.240 0.447 0.291
Age + Gender 10 NCC 0.436 0.206 0.436 0.271
Age + Gender + OperatingSys 20 NCC 0.436 0.255 0.436 0.298

(e). Psychographics

Getup + Nocturnal 6 NCC 0.437 0.236 0.437 0.280
Sleep + Get-up + Nocturnal 17 NCC 0.431 0.248 0.431 0.291

Top1-Absolute + Community 363 NCC 0.682 0.662 0.682 0.660
Top1-Absolute + Nocturnal 80 NCC 0.681 0.661 0.681 0.659
Top1-Relative + Community 489 NCC 0.577 0.565 0.577 0.543
Top2-Absolute + Community 1034 KNNC 0.572 0.529 0.572 0.514
Top1-Relative +Nocturnal 88 NC 0.548 0.519 0.548 0.505

(f). Behavioural

Time Spent + Revisitation 12 NCC 0.439 0.244 0.439 0.295
Frequency + Revisitation 12 NCC 0.439 0.244 0.439 0.294

(g). Across Taxonomies

Age + OS + Revisitation 69 NCC 0.430 0.290 0.430 0.329
Age + OS + Time Spent 96 NCC 0.426 0.292 0.426 0.332
Age + OS + Top1-Absolute +
Time Spent

649 NCC 0.600 0.552 0.600 0.565
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3.5.2 App Usage Prediction

Our goal is to predict which app category the user will use next. We use a

set of state-of-the-art algorithms to build models for our prediction prob-

lem: (1) XGBoost (XGB) [30], as an example of ensemble learning method;

(2) K Nearest Neighbours (KNN) [33], as an example of the non-parametric

method for classification; (3) L2-regularized Logistic Regression(LR) [62],

as an example of linear classifier. The parameters in each model, e.g., K in

KNN, the number of used trees, the maximum depth of the trees and the

learning rate are tuned on the validation sets.

The features include the user cohorts and the temporal context (different

hours of a day and days of a week). Additionally, we use the prediction

model only based on context features as our benchmark, which takes all

the users as they are “the same” (from one cohort). We report four metrics

with 5-fold cross-validation: accuracy (acc), precision (pre), recall (rec),

and F1-measure (F1). We test the prediction performance of the proposed

user cohorts based on each cohort taxonomy individually and then when

combined. We consider several combinations.

Table 3.5 presents the results. For the combined user cohorts (Table 3.5.II),

since there are a large number of compositions across different cohort tax-

onomies, we only report the results of the top performing combinations,

on which we test the combinations among any two, three or four different

cohorts. Note that we also only report those combinations for which we

observe a performance boost compared to using any individual cohort fea-

ture. For the different cohort assignment methods we employ for new users

(see Section 3.4.2), we only report the one with the best performance.3

3We use ‘-’ in Table 3.5 to denote such scenario when there is no single winner for
the three assignment approaches (i.e., all those methods result in the identical cohort
assignment).
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Firstly, we find that compared to the context-only baseline approach, all

the cohort based models achieve better performance on all metrics; all those

improvements are found to be statistically significant (p < 0.01) through

a two-tailed t-test. This demonstrates that not surprisingly, incorporating

user characteristics on top of the temporal context help to improve app

category usage prediction.

Secondly, we investigate more specifically the gains obtained by the single

cohort models (Table 3.5a-c). We can observe that in general the psycho-

graphic cohort models (Table 3.5b) perform better than the demographic

(Table 3.5a) and behavioural (Table 3.5c) cohort models by a large margin.

When looking at the psychographic cohort models, we can find that the user

interests cohort based on the “absolutely top 1 app category”, and “com-

munities” are the best predictive models. This indicates that users that

have common interests or belong to the same communities may behave

more similarly in their app usage behavior, which is not only constrained

to their past, but also their future app usage. However, compared to the

baseline, we observe only marginal improvements on the “way of living”

(Table 3.5b), behavioral (Table 3.5c) and demographic (Table 3.5a) cohort

models. This is not surprising as most of those models contain only a small

number of cohorts (3-5) and are not sufficiently discriminative.

Finally, when examining the combined cohorts (Table 3.5d-g), we find that

they generally perform better than when using any one of them respec-

tively. For example, all of the “way of living” cohorts outperform any of

them when individually used. When combining demographics and revisita-

tion behaviour patterns (Table 3.5g), we observe an increase of 10% perfor-

mance improvement, compared to using demographics only (Table 3.5d).

However, it is worth noting that combining “interests” with any other co-

horts (Table 3.5e) would result in only marginal improvements and some-
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times even inferior performance. This implies that enriching the cohorts

with additional information might not always necessarily help. Another in-

teresting observation is that most of the time, the simple Nearest Centroid

Classifier (NCC) cohort assignment approach outperforms KNCC and RF

approaches.

3.5.3 User Cold-Start Problem

In this section, we focus on analyzing whether the cohort-based prediction

model can help solving the user cold-start problem. We adopt the best

performing cohort model (see Table 3.5) for the rest of the experiments.

The baseline approaches we compare against are both personalized and

population-based prediction models. Although there are many personal-

ized models (see Section 2.1.2.1), some of them are not applicable because

they use additional information. We select CPD [163], EWMA [163], and

BN [218] as our comparative baselines for personalized models as they can

be used with our dataset. CPD (Cumulative Probability Distribution)

computes the probabilities of each used app in all the specific time slots

based on historical app usage time series for that user, and selects the app

with the highest probability at the prediction time based on its time slot.

EWMA (Exponentially Weighted Moving Average) replaces the cumulative

probability in CPD with exponentially weighted moving average [75] so that

the newer data points have higher influence in the prediction. BN [218] is

a Bayesian Network model that relies on both app usage and time context

and calculates a linear combination of the user’s last used app and the sec-

ond last used app for the final prediction. Regarding the population-based

prediction models, following [41], we generate the baseline model based on

our available predictive features and utilize random forest to combine all
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Figure 3.2: Performance comparison among different prediction models
with limited amount of historical user logs. Three personalized baseline
models: CPD [163], EWMA [163] and BN [218], one population-based
(generic) baseline model [41] and our proposed cohort model.

those features for the next app category prediction. We combine a set of

extensive features that could be extracted from our dataset, which include

hour, weekday, last used apps, historical popularity of users’ app usage in

different time windows, one hour, one day and all history, and periodicity

(intervals between app usage) [100].

To explore whether the user cohorts based methodology perform better
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especially for new users (for which there are limited interaction data), we

randomly select 20% of the users in our dataset, and use them to simulate

the new users by increasing the number of interaction data (logs) available

we consider for each user. Specifically, we extract different amount of logs

from 5 to 50 for each user to simulate various severity of the cold-start prob-

lem. We hypothesize that models that handle well the cold-start problem

tend to perform competitively even with very limited amount of user logs.

Figure 3.2 presents the prediction performances of all baseline models and

our proposed cohort-based prediction model, given different amount of his-

torical logs available for the test users (x-axis). The results are averaged

across all the test users. Firstly, we can observe in Figure 3.2a that when

the amount of user interactions is limited, all personalized models perform

worse (accuracy is below 35%) than the population baseline models and the

cohort models. CPD is the worst for the personalized model when there are

logs, followed by EWMA and BN. However, both population and cohort

models can achieve over 50% accuracy even with the limited amount of

historical user data. Secondly, we observe from Figure3.2b that only the

cohort-based model achieves over 90% of the best accuracy when only 10

entry logs are considered. The performance steadily increases as more and

more logs are available. This demonstrates that our proposed user cohort

based model outperforms both the personalized models and the generic

model for the user cold-start problem.

3.6 Conclusion

In this chapter, our goal is to identify meaningful user cohorts informa-

tion to help with the app category usage prediction problem. We show
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that besides personalized prediction approaches, users’ app category usage

behavior can be predicted based on cohorts information. Based on our pro-

posed taxonomies of user cohorts modelling, we find that psychographics

(interests and community) perform best. Additionally, we identify that our

proposed user cohorts based prediction outperforms both the personalized

and population-based models on the user cold-start problem.

Through our study, we demonstrate the value of cohorts, especially for new

users. This is promising as cohorts information could be used not only on

their own but also in combination with other signals as they become more

present. For a new user without much interaction data, general cohorts

information such as interests or community could be collected, e.g., a user

could label themselves as car lovers or young parents. Users’ app category

usage could be predicted with relatively high accuracy using this basic

cohort information. The cohort labels can also be utilized to explain the

prediction model, enabling the recommendation to be more transparent

and interpretable [204]. After improving the existing app usage prediction

methods, especially for solving the cold-start issue for new users, we are

able to infer users’ preference on the next app no matter the users have

sufficient data or not. In the next chapter, we further aim to understand

how long user will stay with apps.

Lastly, we need to acknowledge that there are several limitations of this

work, which we would like to address in future work. Firstly, our dataset

only consists of relatively short-term app usage and it would be interesting

to study signals that could relate to long-term characterizations of user

cohorts. Secondly, we mainly focus on next mobile app category prediction

in our work. Our method is general while it is worthwhile extending this

to further investigate our cohort-based methods on next app prediction [8].

Finally, the cohort taxonomy we define in our work is only a first step
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proof-of-concept, and can be refined with more fine-grained cohorts when

relevant interaction or user profile information become available.
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Chapter 4

What and How long: Prediction

of Mobile App Engagement

After solving the cold-start problem in app usage prediction for new users

by leveraging the cohort-modelling approaches in the previous chapter, we

now would be able to infer users’ needs on “what” app users would use

effectively no matter the sufficient data of individuals are available or not.

However, only predict the next app user would use is not enough for provid-

ing more satisfying services to users. In this chapter, we further investigate

if we could predict “how long” user would stay with an app and then in-

vestigate a novel app engagement prediction problem, where we consider

which app user will use and how long the user will stay with this app an

aggregated measure of users’ app usage behaviour. This chapter addresses

our research questions RQ 1.3 and RQ 1.4, as specified in Section 1.1.

Properly monitoring user engagement is one of the key ingredients of suc-

cess to improve user experience and retention. Users are generally engaged

with an app when they appreciate the mobile app content to which they

have given their attention. One way user engagement has been measured
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Figure 4.1: Overview of the next app and app dwell time prediction.

at a large scale is by tracking how long users spend with content, e.g., the

time spent on a webpage. Studies on user engagement in the contexts of

desktop-based systems [173] and websites [39, 200] have shown that simple

metrics such as dwell time are meaningful and robust in modelling user

engagement. More importantly, these studies have shown that with an

awareness of engagement, users’ experience with a system can be substan-

tially improved which in turn leads to user growth, user retention, and

increasing revenue streams.

However, even many past works in mobile computing have investigated how

individuals download, install and use different apps on their mobile devices

[203, 135, 157, 72], to our knowledge, few studies have examined how to

effectively predict how long users would stay with a mobile app. Real-world

mobile app usage behaviour is a complex phenomenon driven by a number

of competing factors. Game apps, in general, have a higher probability to

be used for a long period, whereas weather app is, not surprisingly, shorter.

Intuitively, there are certain times in a day when a user might be more likely

to engage with certain mobile apps: John might be more likely to engage

with game apps for a longer time at night after work. User characteristics
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could also make a difference: female users may spend longer time with

shopping apps than male users [143]. Despite that the averaged total time

spent on different app categories were reported in [16, 191, 94], there is little

research that comprehensively analyzes the dwell time of mobile apps. This

motivates the research question (RQ 1.3):

• What are the factors (user characteristics and contexts) that influence

the dwell time a user spends on an app?

As far as we know, there have been many works conducted for modelling

users’ behaviour on choosing one particular app under different contexts.

However, they do not describe how users engage with that app. Attention

is a scarce resource in the modern world. For instance, a user may become

immersed in the video watching or quickly abandon it – the distinction of

which will be clear if we know how much time the user spent interacting

with this app given different contexts. Next app prediction is characterised

as the willingness to use an app, whereas engagement is the usage pattern

after accessing the app. Though most researchers have focused on mea-

suring which app user will use [99, 100, 8, 193], the engagement of apps

is still not well understood. Hence, we consider which app user will use

and the engagement level of how long the user will stay with this app an

aggregated measure of users’ app usage behaviour. Furthermore, app en-

gagement (dwell time) is much dependent on the app content itself. As we

mentioned above, checking the weather app is always shorter than playing

games. So it is meaningless to predict how long a user will stay regardless

of which app user is engaging. Given the inter-dependency between an

app and app dwell time, we aim to predict the next app as well as app

engagement (dwell time) as shown in Figure 4.1, which is another research

question (RQ 1.4) we seek to answer:
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• Can we simultaneously predict which app user will use next and how

long the user will stay on this app?

Answers to these questions have a profound impact on the success of an

app, as engagement awareness can radically improve users’ experience with

digital services [149].

To answer RQ 1.3, we first demonstrate how different factors affect users’

app dwell time by presenting the first population-level analysis of how dif-

ferent contexts affect the app usage duration. The analysis is based on a

large-scale mobile app usage dataset with more than 1.3 million logs from

over 9k unique apps and 12k users, The data was collected from Flurry

mobile analytics platform (Flurry dataset introduced in Section 3.2) over

a period of one week. Specifically, we consider the influential factors from

two aspects: user characteristics (e.g., age, gender, device type, historical

preferences) and context (e.g., hour, weekday, last used app, periodic pat-

tern). We find that, for example, users between 20 and 40 years old are

more likely to have a shorter dwell time than teenagers and older people.

Both the demographics and device type have an influence on how long user

stay with mobile apps. Furthermore, we also establish that the app dwell

time differs significantly across different time in a day. More importantly,

we observe that users’ app dwell time maintains periodic patterns and fol-

lows historical trends. For example, some users spend a similar length of

time to regularly check the shopping apps every day (i.e., after every 24

hours). Additionally, users have different historical engagement habits on

their app usage duration. For example, some users always prefer staying

long on social apps, while others tend to only check for a short while.

Based on the comprehensive analysis of users’ app dwell time, we are able to

conduct the study of how users’ app dwell time can be inferred from these
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features. We then set to answer RQ 1.4 – how to predict the next app

and how long the user will stay on this app simultaneously? Based on past

work on next app prediction [99, 100, 8], we propose several joint predic-

tion models (sequential, stacking, and boosting) for such app engagement

prediction, whereas the dwell time is represented as discrete levels (light,

medium, and intensive) defined based on different app categories. Addi-

tionally, different from personalized models in prior work [99, 100, 8], our

models leverage the community-behaviour patterns by extracting predictive

features from the entire user population.

To the best of our knowledge, this is the first empirical study on infer-

ring predictive features at the scale of millions of logs for app dwell time,

assessing how user characteristics and context features impact the dwell

time with a mobile app. Our proposed predictive models are empirically

validated to be effective for this novel task.

The rest of this chapter is organized as follows. We first review the related

work in Section 4.1. Section 4.2 presents fundamental analysis that demon-

strates the characteristics of the data for conducting our study. Section 4.3

introduces all the features we extracted from our dataset and provides

insights on how these features could impact app dwell time prediction.

Section 4.4 presents our methodology for predicting the next app and app

dwell time simultaneously, and we propose three joint prediction strate-

gies to solve this problem. We then show the experimental results of our

proposed models and analyze the effectiveness of different models in Sec-

tion 4.5. We discuss the implications and potential limitations of this work

in Section 4.6 and conclude in Section 4.7.
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4.1 Related Work

4.1.1 Engagement Measurements

Approaches to measuring user engagement of online services can be di-

vided into three main groups: (a) self-reported engagement, (b) cognitive

engagement, and (c) online behaviour metrics [92]. In the first group (a),

questionnaires and interviews are used to elicit user engagement attributes

or to create user reports and to evaluate engagement [83]. The second

type of approach (b) uses task-based methods and physiological measures

to evaluate the cognitive engagement (e.g., facial expressions, vocal tone,

and heart rate) using tools such as eye-tracking [43], heart rate monitor-

ing, brain readings from headset [113], swipe on the screen [134] and mouse

tracking [71]. However, these two types of methods have known drawbacks,

e.g., reliance on user subjectivity of the self-reported engagement, and only

be able to measure a small number of user interactions of the cognitive

engagement.

The third type of approach (c), adopted by the web-analytics community,

has been studying user engagement through online behaviour metrics that

assess users’ depth of engagement within a site, e.g., the time spent on

a webpage. Studies on user engagement in the contexts of desktop-based

systems [173] and websites [39, 200] have shown that simple metrics such as

dwell time are meaningful and robust in modelling user engagement. For

example, the time spent on a resource has been validated as an effective

metric for measuring user engagement in the context of web search [2, 12],

and recommendation tasks [198]. Kelly et al. [80, 49] consider dwelling

times as an indicator of page relevance or user satisfaction during search

engine interactions. Yi et al. [198] recommend designing dwell time based
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user engagement metrics and claim that this would enable them to ex-

tract better user engagement signals for training recommendation systems

thereby optimizing for long term user satisfaction.

Therefore, we also propose to use the metric of time spent on mobile apps

(dwell time) as our user engagement metrics within a large-scale dataset.

For now, minimal research has been done for modelling mobile app dwell

time from a large-scale dataset; only the basic aggregated statics on app

usage time was reported. Falaki et al. [45] found that 90% of app usage

sessions would be less than 6 minutes and Xu et al. [191] reported that

the majority of total network access time for all apps is from 10 seconds

to 1 hour for each subscriber in one week. Li et al. [94] reported usage

time for different app categories in total and found that communication

apps account for 49% cellar time against all apps. Böhmer [16] found that

the Libraries & Demos apps (default Updater, Google Services Framework,

etc.) have the longest average usage time from opening to closing. How-

ever, these summarized basic statistics of app usage time can not provide

an in-depth understanding of what factors could influence the dwell time

user spend on an app and whether we could predict how long user would

stay with an app. In our work, we conduct the first empirical analysis of

dwell time during app usage based on a large-scale data set collected from

thousands of users; and we are the first to assess how different kinds of

features (e.g., demographics, device type, hour of day, and last used app)

impact the mobile app dwell time.

4.1.2 Dwell Time Prediction

Much research work has been conducted on predicting which app user will

use (a.k.a. next app prediction introduced in Section 2.1.2.1). However, as
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far as we know, no research has been done for predicting how long users

will stay with an app. In this chapter, by leveraging a large-scale data

set of users’ app usage logs, we could be able to model users’ engagement

(dwell time) within specific apps by exploiting user characteristics, tempo-

ral context, and short/long-term behavioural patterns. Most importantly,

we investigate the challenges of simultaneously predicting which app user

will use and how long the user will stay with this app.

Although no research has been conducted on the app dwell time prediction,

some researchers investigated the dwell time modelling and prediction in

other areas, e.g., session-based recommendation (SBR) systems [15, 215,

179], videos watching [188], news and non-news pages reading [153, 66],

and media streaming [175].

The SBR tasks aim to predict the next click/buying/dwell time based on

users’ interactions in a session, e.g., buying one item after viewing several

products (within a commerce site). They stated that dwell time should

be used as a proxy to user satisfaction of the clicked result since clicked

through or not is not enough to identify the satisfaction of the user. In

their scenario, researchers aim to predict which link/product user would

click among a list of recommended similar results (under specific search

query). Additionally, they assumed that the longer user stays with the

clicked result, the more satisfied the user will be with the result. However,

in our dwell time prediction problem, a user would use an app occasionally

with no recommendation context, and the longer user stays with this app

does not directly mean the user is satisfied with it or not. The dwell time

may be affected by the specific app (e.g., a weather app or game app), or

whether the user accessed it during commuting or at night while they have

more leisure time. Therefore, predicting how long a user will stay with an

app is to predict the usage pattern while using the app. It would allow
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the service provider to optimize the user experience along with its business

goals, the apps can be tuned to be more exploratory or exploitative based

on the expected length of the usage. The SBR tasks can be solved by

item-to-item and matrix factorization methods [63, 129], Markov Decision

Process (MDP) based technique [164]. Recently, deep learning methods,

Recurrent Neural Networks (RNN) have emerged as powerful methods of

modelling sequential data in SBR [15, 215, 179].

The dwell time modelling of the other online services, like video watching

[188], news/non-news page reading [153, 66], and media streaming [175]

have more similar characteristics of apps usage, i.e. how long user would

stay could be affected by the category of the content or the original length

of the video or news. Additionally, the underlying motivation for dwell

time prediction of these services is also the same as our work. They con-

sider popularity and engagement as different measures of online behaviour.

Although popularity describes the human behaviour of choosing one par-

ticular item, it does not describe how users would engage with this item.

i.e., popularity is characterized as the willingness to click a video, whereas

engagement is the video watching pattern after clicking. By knowing how

long user would stay, we could be able to provide users with more satis-

fying content/services that increase long term user engagement and as a

side-benefit. It also allows the service providers to optimize the user expe-

rience along with its business goals. Wu et al. [188] conducted a large-scale

measurement study of engagement on 5.3 million videos over a two-month

period and measured a set of engagement metrics (e.g., watch time, watch

percentage) for online videos. They predicted dwell time from video con-

text, topics, and channel reputation, etc. Seki et al. [153] and Homma et

al. [66] all clarified the characteristics of relationships between dwell time

on news/non-news pages reading in order to discover which features are

73



4.1. RELATED WORK

effective for predicting the dwell time, including (1) Dwell time by Device:

desktops and mobies; (2) Dwell time by access time; (3) Dwell time by if

users visited from inside or outside the site; (4) Dwell time by click and

non-click: if the user clicked links in the page; (5) Dwell time by scroll

depth. Vasiloudis et al. [175] explored the prediction of session length in

a mobile-focused music streaming service. They predicted the length of a

session using contextual and user-based features including gender, age, sub-

scription status, device, network type, duration of the user’s last session,

and time elapsed since the last session.

Given the task similarity between these engagement prediction studies and

our focus (app engagement prediction), we selected two of them [175, 188]

with the most features that could be extracted from our dataset as the

baselines for comparing the performance of our proposed model regarding

the app engagement prediction. We all have similar engagement charac-

teristics and the motivation for engagement prediction, e.g., the dwell time

is originally correlated with the content category and more exploratory or

exploitative service could be provided based on the expected length of the

usage.

In summary, for the traditional next app prediction task, we selected four

models from previous works that could be fitted to our dataset as baselines,

include three works [163, 157, 218] based on the temporal pattern and

contextual features and one recent work based on neural approach (LSTM)

[193]. For the joint prediction problem of predicting the next app and

engagement level together, since there is no existing similar joint prediction

work (app dwell time has a high dependency on which app user is engaging),

we added those two recent works [175, 188] for predicting dwell time as

baselines. The only difference is they solely predict how long a user will

stay based on the specific item, without predicting on which item the user
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Figure 4.2: Visualisation of app usage logs and the corresponding app usage
duration marked in blue. Five minutes of inactivity is used for segmenting
mobile sessions.

will engage with. In order to make them comparable baselines to our

work, we assumed the ground truth of the next app is known for those

two prior works [188, 175] and leveraged them specifically for predicting

engagement of the known next app. This demonstrates the upper bound

of those approaches (oracle performance) regarding the joint prediction

problem.

4.2 Data Context

Our study is based on the Flurry dataset. Besides the general statistics

introduced in Section 3.2, in this section, we present more fundamental

analysis that demonstrates the characteristics of the data for conducting

our study.

Following previous work [26], we consider a five-minute range of inactivity

as the signal of ending a session as shown in Figure 4.2. If the user leaves an

app but revisits any app within 5 minutes the session continues; otherwise,

the session ends. In our work, we aim to predict which app the user will

use next and how long the user will stay with that app. The app usage

duration we aim to predict is calculated as follows (as shown in Figure 4.2):

we aggregate the consecutive app usage duration of the same app within
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Figure 4.3: Overall average app usage duration for different app categories
(different colors shown in the figure is only used to distinguish the different
app categories).

each session. The app usage duration can be also referred to as app dwell

time. We adopt this definition as the unit of our analysis for the rest of

the thesis. Note that we only consider user-triggered events; i.e. we do not

include events that are triggered by background refresh when conducting

our analysis. To reduce bias from users with a low level of engagement,

we restricted our sample to those users who interacted with apps from at

least five different categories. All the data was anonymized by removing

all personally identifiable data prior to processing.
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Figure 4.4: PDF and CDF of app usage duration across all apps

4.2.1 Distributions of App Usage Duration

We start by presenting the average app usage duration for different app

categories in Figure 4.3, which ranges from less than 1 minute to over

10 minutes. We find that users always spend longer time when they are

engaging with some app categories for relaxation, such as comics and games

apps (i.e., card, word, puzzle, and board). It also states that different

app categories initially have different lengths of app usage duration, e.g.,

game apps have a much longer duration than communication apps. On

average for all the app categories, our users’ app dwell time lasted about
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Figure 4.5: App usage patterns across a day.

2.5 minutes. In Figure 4.4, we show the probability density function (PDF)

and cumulative distribution function (CDF) of app usage duration. We can

find that most of the app usage (93.7%) is less than 10 minutes and 80%

of them only last less than 2 minutes.

We then look at how users engage with their apps throughout the day.

Figure 4.5 plots the scaled amount of sessions (using min-max normaliza-

tion) and average app usage duration each hour. We can find that the total

app usage (in terms of session amount) is at its maximum in the afternoon

and evening, peaking at around 7 PM. This aligns with findings reported

in [172, 16]. Figure 4.5 also shows the average app dwell time regarding

the different hours of the day. Generally, the average app usage duration

across the day is between 2 minutes and 3 minutes. The duration increases

after 6 PM and drops after 1 AM. This might be due to people have more

leisure time during the non-working hours. We indeed find that the app

categories associated with longer duration at late night are game and tool

(system cleaner/VPN) apps.
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4.2.2 Engagement Level Definition

To evaluate the performance of app usage duration prediction more in-

tuitively, we propose to represent the time length of each duration as a

discrete value, i.e., we classify the app usage duration into three engage-

ment levels: light, medium, and intensive. Additionally, as we have found

in Figure 4.3 that different app categories initially have different lengths

of app usage duration, so it may not be reasonable to label the engage-

ment levels without differentiating app categories. Specifically, to assign

the corresponding engagement level of each app usage duration: (1) we

first calculate the quantiles (33% and 67%) of the duration for different

app categories respectively; (2) then we assign the level label to each du-

ration based on their corresponding app category quantiles. For example,

the 33% and 67% quantiles of weather apps are 6 seconds and 23 seconds

respectively. If the current usage duration of the weather app is 10 sec-

onds, then its engagement level is medium. For the game apps whose 33%

and 67% quantiles are 1.3 minutes and 5.4 minutes respectively. When a

game app usage duration is longer than 5.4 minutes, its engagement level

is intensive.

4.3 Inferring Users’ App Dwell Time

To model the app engagement accurately, we need to uncover what infor-

mation could be indicative factors for users’ app dwell time. This is the

main focus of this section.
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Table 4.1: Top 5 app categories with the biggest gender effects – the higher
the gender effect is, the bigger difference exists in the app usage duration
between male and female users. The gender group G1 has longer app usage
duration.

App Category Gender Group G1 Gender Effect

widgets female 3.30
medical female 2.54
entertainment female 2.10
communication female 1.64
shopping female 1.63

App Category Gender Group G1 Gender Effect

casino male 1.81
video male 1.64
health-and-fitness male 1.60
finance male 1.30
navigation male 1.27

4.3.1 User and Device Characteristics

User Demographics Prior studies [209, 154, 85] have shown that demo-

graphics (age and gender) have a significant impact on how users select

apps or make in-app purchases on their smartphones. However, little is

known about the correlation between users’ demographic information and

the time spent when using an app. Establishing such a relationship is the

main focus of this subsection. By analyzing our user mobile app usage

data, we demonstrate that on average, the app usage duration for female

users is 2.8 minutes, which is longer than the male users who spent 2.2

minutes. To show the general pattern of usage duration across all apps,

Figure 4.6a presents the CDF of app usage duration for both the male and

female users. We find that the duration distributions are similar between

male and female users.

To investigate the effect of age, we demonstrate in Figure 4.6b that age

affects app usage duration more significantly. Users between 25 and 54

years spend less time while engaging with apps than those who are teenagers
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Figure 4.6: Effect of gender and age on app usage duration.
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or seniors. This scenario is consistent with results from the previous user

studies [46, 141]. Ferreira et al. [46] pointed out that micro-usage (less

than 15 seconds) is popular across their participants aged between 22 and

40 years old. Pielot et al. [141] found that their participants (aged between

24 and 43 years old) need to deal with the large volume of notifications

coming from personal communication due to high social expectations and

the exchange of time-critical information.

Besides these findings of general patterns across all apps, we hypothesize

that the impacts of demographics would vary across different app cate-

gories. Therefore, we further explore if users’ app usage duration with

each app category would be affected by their demographics. To measure

the impacts brought by users with different genders in a more generalized

manner, we calculate the gender effect for each app category of the two

genders. First, for each app category Ca, we calculate the average app

usage duration of female and male users respectively, i.e., D(Ca, Gi) where

Gi ∈ {male, female}. Secondly we calculate the gender effect, GE(Ca),

for each app category Ca as:

GE(Ca) =
D(Ca, G1)

D(Ca, G2)

where GE(Ca) measures the gender effect of the app category Ca. The

higher the effect is, the bigger difference exists in the app usage duration

of the male and female users within this app category. The gender group

in the numerator has a longer dwell time on this app category. Table 4.1

shows the top 5 app categories with the highest gender effects. We can find

the female users have a longer app usage duration than male users with

apps like widgets, medical, entertainment, communication, and shopping.

On the other side, male users stay longer with the casino, video, health-
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Table 4.2: Top 5 app categories with the biggest age effects – the higher the
age effect is, the bigger difference exists in the app usage duration between
users with different age. The age group Ai has longer app usage duration
when compared with other users.

App Category Age Group Ai Age Effects App Category Age Group Ai Age Effects

shopping 13-17 2.75 widgets 18-24 2.35
entertainment 13-17 1.81 entertainment 18-24 2.20
social 13-17 1.28 business 18-24 1.65
photography 13-17 1.27 tools 18-24 1.41
sports 13-17 1.24 adventure 18-24 1.41

App Category Age Group Ai Age Effects App Category Age Group Ai Age Effects

food-and-drink 25-34 1.59 lifestyle 35-54 1.29
video 25-34 1.30 casino 35-54 1.27
medical 25-34 1.30 word 35-54 1.23
music 25-34 1.29 travel 35-54 1.22
transportation 25-34 1.27 action 35-54 1.21

App Category Age Group Ai Age Effects

productivity 55+ 2.16
entertainment 55+ 2.11
board 55+ 2.00
puzzle 55+ 1.90
books 55+ 1.88

and-fitness, finance, and navigation apps.

Similarly, we calculate the age effect brought by different users on the app

dwell time. Since there are five age groups in our dataset, we choose the

average app usage duration of all users as the reference value to calculate

the age effect. Therefore, for each app category Ca, we calculate the av-

erage duration of users belonged to different age groups respectively, i.e.,

D(Ca, Ai) where Ai ∈ {13-17, 18-24, 25-34, 35-54, 55+}. Then we calculate

the age effect, AG(Ca), for each app category Ca as:

AG(Ca) =
D(Ca, Ai)

D(Ca, A)

which measures the age effect of the app category Ca. A represents the

users across all ages who have engaged with the app category Ca. The

higher the effect is, the bigger difference exists in the app usage duration of

the users with corresponding ages Ai. The age group in the numerator has
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a longer dwell time on this app category when compared with other users.

Table 4.2 shows the app categories with top age effects. It is interesting

to find that teenage users have a longer duration in the shopping apps.

Users between 25 and 34 prefer to stay longer with the food-and-drink

apps than other users. It is not surprising to find that the older users over

55, will spend a much longer time when using the apps of entertainment,

games (board/puzzle), and books apps since they have more spare time.

For the longer time spent in productivity apps, this may result from that

old users are not as efficient in the operations with the productivity apps

(e.g., Microsoft Office, file managers).

Device Li et al. [93] ever analyzed the influence brought by different mo-

bile device models on users’ online time and they found that users rely

less on the cellular network as the price of the device model increases.

However, there has been no empirical research conducted for the impacts

on dwell time with different apps brought by device characteristics. In

this section, we compare app usage duration across different device types.

There are mainly two different types of devices in our dataset: tablet and

phone. We use the similar methodology of calculating the gender effect

for each app category to calculate the device effect with the two device

types. First, for each app category Ca, we calculate the average usage du-

ration of phone users and tablet users respectively, i.e., D(Ca, Ti) where

Ti ∈ {phone, tablet}. Secondly, we calculate the device effect, for each app

category Ca as:

DTE(Ca) =
D(Ca, T1)

D(Ca, T2)

The higher the device effect DTE(Ca) is, the bigger difference exists in the

app usage duration of the users with different device types. Table 4.3 shows

the app categories with the most significant difference across the different

devices. We can find that the tablet users have a longer dwell time on
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Table 4.3: Top 5 app categories with the biggest device effects – the higher
the device effect is, the bigger difference exists in the app usage duration
between the phone and tablet users. The users with device type T1 have
longer app usage duration.

App Category Device Type T1 Device Effects

productivity tablet 4.95
books tablet 3.29
business tablet 3.00
board tablet 2.91
travel tablet 2.82

App Category Device Type T1 Device Effects

navigation phone 8.04
shopping phone 6.02
weather phone 1.29
family phone 1.22
personalization phone 1.19
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Figure 4.7: Temporal patterns of average app usage duration for different
app categories.

productivity, books, business, board, and travel apps. On the other hand,

phone users have a longer dwell time with navigation, shopping, weather,

family, and personalization apps.
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4.3.2 Temporal Patterns

The temporal usage pattern is always an essential factor for inferring which

app user will use, where we usually model the possibility of using different

apps at a specific time [72, 157, 98]. From our descriptive analysis in

Figure 4.5, we can find that the average app usage duration with all app

categories across a day is about 2 to 3 minutes, and no sharp fluctuations

exist. We use the index of dispersion [35] as a normalized measure of the

dispersion for the app usage duration distribution across a day, which is

defined as the ratio of the variance σ2 to the mean µ: D = σ2

µ
. In general,

the index of dispersion for all apps is 0.043. To validate that whether the

temporal pattern varies on different app categories, we further explore the

index of dispersion of the app usage duration across a day for different

app categories respectively. Table 4.4 shows the app categories with the

smallest and biggest index of dispersion in app usage duration. We can find

that the usage duration of most game apps will be significantly different

across a day. However, for some functional apps like productivity, tools,

utilities, and photography, whenever the user accesses them, the app usage

duration does not change much. Figure 4.7 illustrates the distribution of

average usage duration across a day for several app categories, where we

can find that besides the different variances, the temporal patterns could

be significantly different with various app categories (each app category

has its own specific temporal pattern). For example, comics apps have a

longer usage duration around 4 AM; the usage duration of racing apps is

peaking around 3 AM; longer time is spent in adventure apps around 8 PM

and 1 AM.
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Table 4.4: Index of dispersion of average app usage duration distribution
across a day.

App Category Index of Dispersion App Category Index of Dispersion

tools 0.02 comics 4.18
productivity 0.02 adventure (game) 3.86
utilities 0.02 strategy (game) 2.51
music 0.04 racing (game) 2.05
photography 0.05 family 1.59
news 0.06 transportation 1.35
widgets 0.07 medical 1.03

4.3.3 Short-term context

4.3.3.1 Last Used App

Previous studies identified that some apps were often used together [94, 191,

16]. For example, Li et al. [94] showed that some apps are installed together,

whereas other studies [191, 16] found that some genres of apps are highly

likely to be accessed sequentially. Therefore, we aim to explore whether

the last used app could also impact the next app usage duration. To avoid

the biases of the original differences of app usage duration across different

app categories and measure the impacts more intuitively, we quantify the

app usage duration into the corresponding engagement level defined as in

Sec 4.2.2. Figure 4.8 shows several examples for illustrating the different

patterns between specific last apps and the engagement levels of next apps.

Each cell in the table represents the transition probability Pij from the last

used app ai to the next app aj at a given engagement level eaj . By having

Pij for all the three engagement levels, we calculate its standard deviation

as σi
j. This represents the extent of how much the last app ai would have

very different transition probabilities on different engagement levels of the

next app aj. The higher σi
j, the more likely the last app ai would result in a

specific engagement level of the next app aj. For a given app aj, we average

σi
j across all the last used apps ai as σj =

∑
i=1..N σi

j/N , where N is the
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Figure 4.8: Correlation between last used app and the next app’s engage-
ment level (discrete representation of app usage duration: light, medium
and intensive). The darker color means higher probabilities that the next
app will be engaged with the corresponding engagement level.

amount of unique last used apps. For all the apps, the σj ranges between

0.11 and 0.32, whereas the median is 0.15. For the apps with higher σj, i.e.,

shopping apps (σj ≈ 0.32) and video apps (σj ≈ 0.29), the last used app

could lead them to be used with specific engagement level (intensive for

shopping and light for video). For example, for the video apps (as shown

in Figure 4.8b), if they are used after using navigation apps, the time spent

on the video app is much more likely to be short. This could be explained

by users who are on their commute to work. After checking the navigation,

users may need to wait for the bus or subways, so they could have time

for enjoying a short video. Additionally, we also show the app categories

with average σj and lower σj, i.e., food-and-drink apps (σj ≈ 0.16) and
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family apps (σj ≈ 0.11), whereas the last used app could not impact the

engagement level of next app usage significantly. For example, no matter

which app is used before the family apps (as shown in Figure 4.8d), the

time spent on the family apps do not differ much.

4.3.3.2 Last Engagement Level

Besides the last used app, we hypothesize that the time spent on the last

app (last engagement level) could also impact how long the user will stay

with this app. To focus solely on the impact of the last engagement level,

rather than the impact of last used app, we calculate the transition proba-

bility between the engagement levels of the last and next usage within the

same app. We find four typical patterns across all different app categories.

We illustrate these correlation patterns between the last and next engage-

ment levels in Figure 4.9. Across all 45 app categories, 37.8% (17/45) of

them follow the pattern of maintaining a higher probability that the next

engagement level is as same as the last engagement level (i.e., higher prob-

ability in the diagonal of the heatmap), such as the books apps shown in

Figure 4.9a. Besides this common pattern, we also find that 44.4% (20/45)

of the app categories have a bidirectional (increasing/decreasing) trend

with the closest level, like the food-and-drink apps (i.e., engagement level

transition between medium and intensive). The last common pattern is

illustrated by comics apps, 13.3% (6/45) of app categories have a similar

transition probability across all levels. The remaining pattern is illustrated

by travel apps, where no other app categories have similar patterns with

them. We can find that there is an apparent increasing trend between en-

gagement level light and medium for travel apps, which could state that

users may be more likely to get addicted to planning for a vacation within

a travel app.
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Figure 4.9: Transition probability of the last engagement level and next
engagement level of the same app usage. The darker color means higher
probability.

4.3.4 Long-term Context

4.3.4.1 Periodic Pattern

Some apps are used repeatedly after every specific period. For example,

users may check the mail apps every hour or play with a game app every 3

hours [98, 163]. To validate whether the periodic pattern also exists in the

app dwell time (i.e., after a specific interval, users may stay with an app

again for the similar length of time as before that interval), we first quantify

the interval between the two accesses of the same app at the hour level, e.g.,

28 min ≈ 0 hour, 1.6 hours ≈ 2 hours. We then generate the histogram of

interval time length with different engagement levels respectively for each
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Figure 4.10: Two typical interval time distribution with different engage-
ment levels (we limit the x-axis to 50 hours since over 98% intervals are
shorter than 50 hours): (a) General trend illustrated by weather apps:
the shorter interval between two accesses, the less time is spent with the
next usage; (b) Specific daily periodic pattern illustrated by shopping apps:
similar length of time is spent on the same shopping app after a specific
interval (i.e., 24-hour).

app category. Two typical patterns are found among all the app categories,

which are shown in Figure 4.10. Figure 4.10a denotes the interval time

length distribution of weather apps, which represents the general trend

that a set of most other app categories will obey, i.e., the shorter interval

between two accesses of the same app, the less time (engagement level:

light) user will spend within the next usage of this app.

However, as shown in Figure 4.10b (i.e., the shopping apps), the other

typical pattern demonstrates that the less time between two accesses, the

more likely the second app access will also result in a longer time stay (en-

gagement level: intensive) on the app. This may be because when users are

going to buy something, they will browse/revisit the shopping apps multi-

ple times with short breaks (break for checking other information or chat

with friends for asking advice) and finally place the order. Additionally, we

find that there is a peak around the interval of 24 hours for the engagement

level of light/medium for shopping apps. This states that users prefer to
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Figure 4.11: Historical pattern with app engagement levels.

spend a similar length of time to regularly check the shopping apps every

day (i.e., after every 24 hours), probably for checking the updated discount

or product information. This pattern could also be observed with books

apps.

4.3.4.2 Historical Interest Pattern

Users’ historical interests may be indicative of future intent. For example,

users who love sports might potentially access sports apps and consume
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more sports-related content than others. Therefore it is important to ex-

amine the long-term interest patterns of different users. To clarify that if

users also have the historical habit for the app dwell time on different app

categories, we select three users whose top three preferred (based on usage

frequencies) app categories are all the same, which are productivity, wid-

gets, and social apps. We then illustrate the histogram of their historical

engagement levels within these three app categories in Figure 4.11. We can

find that User A prefers to stay longer (engagement level: intensive) within

the widgets apps but spend less time (engagement level: light) with social

apps than others. Differently, User B has a longer app usage duration (en-

gagement level: intensive) with social apps. Therefore, even for the users

with the same historical app preferences, their engagement habits would

be different. In a summary, different users may have their own specific

historical engagement patterns on app dwell time for various apps.

4.4 App Usage and Engagement Prediction

Based on the statistical analysis in Section 4.3 of app usage duration, we

further focus on answering the important question: could we predict which

app user will use and how long the user will stay on this app simultane-

ously? In this section, we start by formulating the next app usage and app

dwell time prediction problem, followed by presenting several joint learning

strategies for solving these two prediction problems simultaneously.

4.4.1 Problem Formulation

For the next app prediction, many previous researchers have extracted the

predictive features and proposed methods to solve it [72, 157, 218, 196].
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Similar to Ricardo et al. [8], we model the prediction of the next app

as a supervised classification problem. For the novel prediction problem

proposed in our work, which is to infer users’ app dwell time, we also

model it as a multi-class classification problem and the continuous dwell

time (app usage duration) is represented as the discrete engagement levels

illustrated in Section 4.2.2. More specifically, given the current context c

and a user u, we need to predict which app a the user u will use next and

the engagement level e (light/medium/intensive) for measuring how long

the user will stay with this app. We formulate our prediction problem as

quaternion, i.e., {c, u, a, e}. In contrast to a traditional next app usage

prediction formulation as a∗ = argmaxaF(a|c, u), we formulate the joint

learning task for predicting next app and engagement level as follows:

(a, e)∗ = argmax
a,e

F((a, e)|c, u). (4.1)

Note that the a is in the condition for e since the engagement level is defined

based on their corresponding app a (Section 4.2.2).

4.4.2 Joint Learning Prediction Model

We propose three methods to solve the prediction problem formulated in

Section 4.4.1: sequential based model (Section 4.4.2.1), stacking based

model (Section 4.4.2.2) and boosting based model (Section 4.4.2.3).

4.4.2.1 Sequential based Joint Prediction

The most straightforward method for solving this joint learning problem

is to perform these two prediction problems (next app and engagement

level prediction) sequentially. It is undoubted that the next app usage
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Figure 4.12: Overview of three joint learning strategies: (1) Sequential
based joint prediction; (2) Stacking based joint prediction adds a "meta"-
classifier to the final stage after we have the prediction results of next app
and engagement level sequentially; (3) Boosting based joint prediction has
an "error-correction" of next app prediction in the second step for learning
of engagement level prediction.
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prediction is a key issue to the joint learning task. If a predicted app is not

the one user will use next, the engagement level prediction might become

meaningless. Therefore, we first apply a supervised next app prediction

model to measure which app user will use next:

a∗ = argmax
a

P (a|c, u). (4.2)

Since the engagement level is dependent on which app the user will use

next, therefore, another supervised learning model is applied to infer which

engagement level the user will have given the predicted app user will use:

e∗ = argmax
e

P (e|a, c, u). (4.3)

Therefore, the sequential based joint prediction could be formulated as

follows:

(a, e)∗ = argmax
a,e

P (a|c, u)P (e|a, c, u). (4.4)

As shown in Figure 4.12 (in the green circle), in this sequential-based joint

prediction strategy, a next app prediction model is needed to find the proper

app a∗ user will use and then an engagement level prediction model is

needed to infer the engagement level e∗ based on a∗. However, the predicted

app a∗ is not guaranteed to be the right app; moreover, if the app is not the

user will use next, the inferred engagement level based on this app would

become meaningless. To this end, we propose two other joint learning

methods for predicting these two problems more effectively.
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4.4.2.2 Stacking based Joint Prediction

Stacking [162] is an ensemble learning technique that combines multiple

classification or regression models via a meta-classifier or a meta-regressor.

The base-level models are trained based on a complete training set, then

the meta-model is trained on the outputs of the base level models as fea-

tures. So the main idea for our stacking based joint prediction model is

to add a "meta"-classifier to the final stage after we got the prediction re-

sults on app and engagement level respectively from the sequential based

model (Section 4.4.2.1). Then we may improve the performance by adding

this "meta-correction" step at the end of the prediction. In our scenario,

the stacking consists of two levels which are base learner as level-0 and

stacking model leaner as level-1, as shown in Figure 4.12 (in the orange

circle). So the base learners (level-0) are composed of the next app usage

prediction model (Eq. (4.2)) and engagement level prediction model (Eq.

(4.3)), which are the same as in sequential based joint prediction shown in

Figure 4.12. The outputs of each of the sequential classifiers (a′ and e′)

are collected to create a new dataset. Then the new dataset is used for

stacking model learner (level-1) to provide the final output (a∗ and e∗). In

this way, the predicted classifications from the two base classifiers at level-0

can be used as input variables into a meta-classifier as a stacking model

learner, which will attempt to learn from the data on how to combine the

predictions from the base models to achieve the best classification accuracy.

The stacking based joint prediction in our scenario could be formulated as:

(a, e)′ = argmax
a,e

P (a|c, u)P (e|a, c, u), (4.5)

(a, e)∗ = argmax
a,e

P ((a, e)|(a, e)′). (4.6)
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Figure 4.13: Boosting based Joint Prediction

4.4.2.3 Boosting based Joint Prediction Model

Boosting [42] is another ensemble method for improving the prediction

model of any given learning algorithms. The idea of boosting is to train

weak learners sequentially, each trying to correct its predecessor. According

to this idea, we aim to fit our two learners (next app and engagement level)

iteratively such that the training of the model at a given step depends on the

models fitted at the previous steps. Then we can improve the predictions

from our first learner of app prediction by adding the "error-correction"
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prediction in the second learner of engagement level prediction. This is

shown in Figure 4.12 (in the blue circle).

We firstly introduce how boosting method works in the supervised learn-

ing problem. For a given data set with n samples and m features D =

{(x, y)}(|D| = n, x ∈ Rm), the goal is to find an approximation F̂(x) to

a function F(x) that minimizes the expected value of some specified loss

function L(y,F(x)). The boosting method assumes a real-valued y and

seeks an approximation in the form of a weighted sum of K additive func-

tions (called base/weak learners) hk(x):

F̂(x) =
K∑
k=1

γkhk(x). (4.7)

So the model tries to find an approximation F(x) that minimizes the loss

function L, and the model is updated as follows.

γk = argmin
γ

n∑
i=1

L(yi,Fk−1(xi) + γhk(xi)). (4.8)

To be specific, in our scenario, the dataset D include features x = (c, u)

and label y = (a, e). We have two (K = 2) base learners in our prediction,

where h1(x) is the next app usage learner and h2(x) is the engagement level

leaner. The steps for applying the boosting method in our scenario are as

shown in Figure 4.13 in details:

1. Fit a model to the data, h1(xi) = P (ai|ci, ui) for predicting the next

app ai.

2. Compute the pseudo-residuals between the current predicted app a′i

and the ground truth of finalized results: app with the correspond-

ing engagement level together (ai, ei). Since the engagement level is
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Algorithm 1: Boosting based Joint Training
SectionetAlgoLined Input: Training data
D = {xi = (ci, ui), yi = (ai, ei)}ni=1.

Output: Boosting based joint classifier
F(x) = F((a, e)|c, u) =

∑K
k=1 γkhk(x).

Step 1: Initialize the model with next app prediction
Learn h1(xi) = P (ai|ci, ui) based on D.
Step 2: Improve the predictions from next app prediction by
adding "error-correction" prediction in the second learner of
engagement level prediction.

1. Compute so-called pseudo-residuals: ri = yi − h1(xi).
2. Fit the second learner h2(xi) to pseudo-residuals. Train it using
the training set {(xi, ri)}ni=1.

3. Compute multiplier γ by solving the following one-dimensional
optimization problem: γ = argmin

∑n
i=1 L(yi,F1(xi) + γh2(xi)).

Step 3: Update the model:
F(xi) = F1(xi) + γh2(xi).

defined based on different app categories, additionally, to avoid the

sparsity issue caused by using a specific app in comparison, we calcu-

late the "residual" of app prediction results within the app category

level. The app category and engagement level are all represented

by one-hot vectors and concatenated together during the "residual"

calculation as shown in Figure 4.13.

3. Then we fit a model to the residuals, h2(xi) = yi−h1(xi) = ri. As the

boosting based joint prediction process shown in Figure 4.13, if the

first learner output the right predicted app, then the "residual" for

the second learner to learn is still only the engagement level (ri = ei).

On the other side, if the first learner output a wrong predicted app,

then the residual for the second learner to learn is not only about the

engagement level, it also needs to correct the previous results on app

prediction.

4. Update the new model F(xi) = F1(xi)+γh2(xi). Since the "residual"

is calculated based on app category level, the finalized output of app
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prediction results is also on the category level. We will introduce how

to infer the specific app from the predicted app category based on our

next app prediction model in Section 4.4.3.

The boosting joint prediction algorithm is shown in Alg. 1. Finally, the

boosting based joint prediction could be formulated as:

(a, e)∗ = γ1h1(x) + γ2h2(x)

= a′ + r

= a′ + [ar, e]

= argmax
a

P (a|c, u) + argmax
r

P ([ar, e]|a′, c, u),

(4.9)

where r is the "pseudo-residuals" when comparing the current predicted

app with the ground truth (next app and engagement level), and ar is the

difference between the first time predicted app a′ and the target app a.

4.4.3 Estimating Components within Joint Prediction

Strategies

After introducing the three strategies for building the joint prediction

model, we can find that the next app prediction and engagement level

prediction are two main components for all three strategies. Furthermore,

some of these components could be reusable across different strategies, e.g.,

the next app prediction of sequential-based strategy could also be used by

stacking and boosting based strategies at the first stage of app prediction

as shown in Figure 4.12. In the following sections, we discuss how to con-

struct these two components, i.e., the next app prediction (Eq. (4.2)) and
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engagement level prediction (Eq. (4.3)), adaptively for each strategy with

our proposed predictive features.

4.4.3.1 Next App Usage Prediction

Many previous researchers [218, 72, 8] have proposed different methodolo-

gies to solve the next app usage prediction problem based on personalized

mechanism. Additionally, some researchers [41, 207] indicated that the

generic (user-independent) model can improve the predictive performance

of personalized models when the data is not sufficient. A generic model is

trained using data from all available users. Inspired by the work of [41],

which achieved the best performance by combining the generic model with

the personalized model together, we also propose a hybrid next app predic-

tion model with generic and personalized models combined. When building

a generic model, the main challenge lies in the fact that the dimensional-

ity of context and output varies depending on all of the users. To learn a

generic model and apply it for a given user, generic features and output are

needed. In our work, the engagement level is defined based on different app

categories. Additionally, the "residual" calculating in boosting based joint

prediction strategy (Figure. 4.13) is also based on app category. Therefore,

to ensure the generalization of the generic model and to benefit the further

prediction of engagement level, the output of the generic model corresponds

to the app category. We infer the specific app user will use based on the

user’s personalized logs given the predicted app category. Specifically, our

proposed hybrid next app prediction model could be formulated as the
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following function:

a∗ = argmax
a

P (a|c, u)

= argmax
a
{Pg(ac|c, u)Pp(a|c, u), a ∈ ac},

(4.10)

where Pg(ac|c, u) is the probability that user u will use app category ac

based on our generic app category prediction model; and Pp(a|c, u) is the

probability that user u will use the app a based on their own personalized

app prediction model and we will limit the a to the apps belonged to the

predicted app category ac. It means we firstly get the app category ac user

will use based on all users’ logs and then further rank the apps belonging

to this app category based on the personalized logs of user u. Through

this way, we can have the intermediate output of the app category, which

could be used for benefiting the later engagement level prediction. What is

more, this generic category-level prediction model could alleviate the cold-

start problems with new apps/users resulted from user-specific prediction

models, which may be trained on a limited quantity of logs.

For the generic app category prediction model, we extracted all the features

that have correlation with app usage patterns, which have been validated

by previous works [41, 207] and also available in our dataset (Section 4.2):

User characteristics (age, gender, country, device type, operation system)

[209, 85, 93], temporal features (hour of day, day of week) [72, 157, 98],

historical preferences [41], last one/two apps used [218] and periodic fea-

tures [163, 98, 100]. To enrich our predictive features, we further expand

users’ characteristics by adding their total app usage duration, total app

usage frequency, and unique app amount as user characteristic features.

To ensure the generalization of the generic model, users’ historical pref-

erences are represented based on the total access frequency of each app
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category. Moreover, we also add users’ app preferences on the last day, the

last hour and the last session to expand the context features. In summary,

we extracted 14 features related to app usage patterns from 4 aspects: user

characteristics, temporal features, short-term context features, and long-

term context features. All the features used for next app prediction are

described in Table 4.5. Then the personalized next app prediction model

is generated based on the predictive features proposed in previous works

[157, 218, 8]: hour of day, day of weekday, most recently used apps (the

last one/two apps), and periodic feature.

Table 4.5: All the features used in our next app prediction model related
to users characteristics and context

Feature
Type

Feature Description

User

Age* Users’ age group: 13-17, 18-24, 25-34, 35-54 and 55+
Gender* Users’ gender: male and female
Device Type* Users’ device type: phone and tablet
Total App Usage Duration* Users’ total app usage duration for all apps
Total App Usage Frequency* Users’ total access frequency for all apps
Total Unique App Amount* The amount of unique apps the user has accessed

Context

Temporal Features
Hour of the Day* Different hours of a day: 0 - 23
Day of the Week* Different days of a week: Monday to Sunday
Short-term Context Features
App Preference in the Last Day Access frequency of each app category in the last day
App Preference in the Last Hour Access frequency of each app category in the last hour
App Preference in the Last Ses-
sion

Access frequency of each app category in the last session

Last Used App* The last used app in the same session
Last Used Two Apps The last used two apps in the same session
Long-term context Features
Periodic Feature Time intervals between the current time and the last

usage of each app category
Historical App Preference Total access frequency for each app category

*: The features marked with * are the common predictive features also used in app engagement level
prediction.

4.4.3.2 App Engagement Level Prediction

In this subsection, we further explore the app engagement level prediction

models that could fit in the different joint prediction strategies. As we

mentioned before, we model the novel prediction problem of app engage-

ment level as a multi-class classification problem, where the engagement
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level is defined based on different app categories. In the sequential based

joint prediction strategy (Section 4.4.2.1) and the level-0 classifiers of the

stacking based joint prediction strategy (Section 4.4.2.2), the engagement

level prediction model could be trained for each app category respectively

(Figure 4.12). For example, if we have predicted that the user will use

the news app a∗ next, we just select the classifier which has been trained

specifically based on the logs of using news apps. Then we use this classifier

to predict the engagement level. So the engagement level prediction model

for sequential-based and stacking-based joint learning strategies could be

formulated as:

e∗ = argmax
e

P (e|a, c, u)

= argmax
e
{Pac(e|c, u), a∗ ∈ ac},

(4.11)

where ac is the corresponding app category of the predicted app a∗ based

on the next app prediction model. It states that we select the engagement

level classifier exactly based on the prediction results coming from the next

app prediction results. For each app category, we extract the predictive

features based on the analysis in Section 4.3: demographic features, device

features, hour of day, day of week, last used app, last engagement level, last

engagement level of the same app category, periodic feature and historical

engagement level feature. Besides the common user characteristic features

and some of the context features that have been listed in Table 4.5, we

describe the additional features for the app engagement level prediction

model in Table 4.6. These features are all established to have impacts on

users’ app dwell time in Section 4.3, and we will further analyze the feature

importance in the following experimental results section Section 4.5.4.1.

Different from the engagement level prediction model P (e|a, c, u) in se-

quential (Eq. (4.4)) and stacking (Eq. (4.5)) based strategies, the boosting
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strategy need to infer the "residual" with P (r|a, c, u) (Eq. (4.11)) and

then sum it to the first app prediction result for getting the finalized app

and engagement level together. During this process, the next app user

will use would be re-inferred during the engagement level prediction, we

cannot select a specific classifier based on the first predicted app. There-

fore the engagement level prediction model of the boosting-based strategy

can only be constructed as a generic model which could be applied to all

apps instead of a specific app category. Specifically, the first predicted

app a′ from the next app prediction model would be treated as an input

feature in the following engagement level prediction, which is represented

as a one-hot vector as shown in Figure 4.13. Additionally, to ensure the

generalization of the input in the engagement level prediction model within

boosting-based joint prediction, all the predictive features will also need to

be expanded for representing the behaviour pattern coming from all the

different app categories (e.g., the feature of historical engagement level for

predicted app category need to be extended to historical engagement level

for all different app categories). In this model, no matter which app cat-

egory is predicted to be used next, the same engagement level prediction

model will be applied. Since the finalized app and engagement level would

be inferred together within the boosting strategy, the formulation of en-

gagement level prediction could not be decomposed, which has been shown

in Section 4.4.2.3.

4.5 Experimental Results

In this section, we measure the performance of our proposed prediction

models (Section 4.4). Experiments are conducted on a real-world app usage

log data (Section 4.2). We use 70% of the data for each user as training
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Table 4.6: Additional features used in our app engagement level prediction
models related to user characteristics and context

Feature
Type

Feature Description

Context

Short-term Context Features
Last Engagement Level The last engagement level of all app categories
Last Engagement Level of Pre-
dicted App Category

The last engagement level of the usage on predicted
app category

Long-term Context Features
Periodic Feature Time intervals since the last use of all app categories
Periodic Feature of Predicted
App Category

Time intervals since the last use of predicted app cat-
egory

Historical Engagement Levels Historical sum of engagement levels for all app cate-
gories

Historical Engagement Levels
of Predicted App Category

Historical count of each engagement level for pre-
dicted app categories

data and the remaining 30% as test data. We first evaluate the perfor-

mance of our proposed prediction model on the classic prediction problem,

predicting the next app (Section 4.4.3.1). Then the three joint learning

strategies for predicting the next app and engagement level simultaneously

(Section 4.4.2) are thoroughly evaluated from different perspectives.

4.5.1 Evaluation

In our proposed prediction models, we measure the performance of all pre-

diction problems based on four metrics: accuracy, precision, recall and F1

score: The accuracy in our problem is defined as the fraction of correctly

classified samples; The precision is defined as the ratio:

tp

(tp+ fp)
, (4.12)

where tp is the number of true positives and fp the number of false posi-

tives. The precision is intuitively the ability of the classifier not to label as

positive a sample that is negative. The recall is the ratio:

tp

tp+ fn
, (4.13)
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where fn is the number of false negatives. The recall is intuitively the

ability of the classifier to find all the positive samples; The F1 score can

be interpreted as a weighted average of the precision and recall, where an

F1 score reaches its best value at 1 and worst score at 0. The relative

contribution of precision and recall to the F1 score is equal. The formula

for the F1 score is:

F1 = 2 ∗ precision ∗ accuracy
precision+ accuracy

. (4.14)

Please note that in our multi-class case, all the precision, recall, and F1

scores are the weighted averages of scores for each class. In order to account

for label imbalance, metrics are calculated for each label, and their averages

are weighted by support (the number of true instances for each label).

For the next app prediction results, we will count the item as correctly

predicted when the predicted app is exactly the same as the ground truth

app. While evaluating the joint prediction problem (both next app and

engagement level), a correctly classified sample indicates that both the

predicted app and predicted engagement level are correct. If either of the

prediction is wrong, it will not be counted as a correct classification.

4.5.2 Baselines

4.5.2.1 Next App Usage Prediction

In order to comprehensively measure the performance of our proposed

hybrid next app prediction model (Section 4.4.3.1), we compare it with

state-of-the-art counterparts. Based on the available sources of evidence in

our dataset, we first select the two common baseline methodologies: MFU
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(Most Frequently Used) and MRU (Most Recently Used) [157, 194, 218].

We then tested additional three methodologies from previous works which

conducted the next app prediction by combining app usage history and con-

texts in a unified manner: SVM+Context [157], CPD [163] and BN [218].

Recently, the neural approaches are popular in solving the time sequence

problems, we also investigated the performance of app usage prediction

based on LSTM [193] as the baseline:

• MFU : the predicted app is the most frequently used app.

• MRU : the predicted app is the most recently used app.

• SVM+Context : Shin et al. [157] used a SVM classifier [13] and con-

text information (i.e., day of week, hour of day, last used app and

time since last app usage) to predict the next app user will use.

• CPD : Tan, et al. [163] proposed a prediction framework: Prediction

Algorithm with Fixed Cycle Length (PAFCL). They hypothesized

that each application has different usage probabilities in the different

time slots of a cycle. CPD (Cumulative Probability Distribution) is

the method used to choose applications with higher probability as the

candidates based on computing the probabilities of each used app in

the specific time slot.

• BN : Zou et al. [218] proposed a Bayes Network (BN) model which is

a linear combination of p(an = A|an−1 = An−1) (based on last used

app An−1) and p(an = A|an−2 = An−2) (second last used app An−2).

• LSTM : Xu et al. [193] proposed a generic prediction model based on

Long Short-term Memory (LSTM), which is an enhancement of the

recurrent neural network (RNN) model. The proposed model con-
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verts the temporal-sequence dependency and contextual information

into a unified feature representation for the next app prediction.

4.5.2.2 Next App and Engagement Level Joint Prediction

Since we are the first work proposed to predict which app user will use and

how long the user will stay on that app simultaneously, where the time

spent has a high dependency with which app user is engaging, no previous

related work could be identified as our baseline methodologies. Therefore,

we propose the baselines from two kinds of approaches. Firstly, by fol-

lowing the classic baselines (MFU and MRU) in the next app prediction

problem, we present two naive prediction methods as the baselines for our

proposed joint prediction problem. Secondly, two recent works on dwell

time prediction of online services (e.g., video [188] and media streaming

[175]) are selected as baselines. Similar to our work, how long a user stays

with an item in these services originally have associations with the content

category, and could also be affected by user characteristics and contextual

features. The only difference is that they solely predict how long a user

will stay based on the specific item, whereas no prediction on which item

the user will engage is required. In order to make them comparable base-

lines, we assumed the ground truth of the next app is known and leveraged

those two prior works [175, 188] for predicting engagement (dwell time) of

the oracle app. This demonstrates the upper bound of those approaches

(oracle performance) within the joint prediction task.

• MFU : In our joint prediction problem, we discuss the usage frequency

of the two fields together: the next app and engagement level. Then

the MFU baseline states that every time we recommend the tuple

(a, e) as the app a and engagement level e based on the popularity of
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the tuples.

• MRU : Similar to the MRU in next app prediction, we hypothesize

that a correlation between two sequential tuples of app and engage-

ment level may exist. For example, a user may always like to access

the weather app for 10 seconds and then access the news app for

5 minutes. Therefore we generate a correlation-based baseline ap-

proach for our joint prediction problem, which aims to predict the

next app and engagement level based on the correlation between two

sequential tuples (a′, e′) and (a, e). We first calculate all the transi-

tion probabilities from one tuple to another. When we know the last

usage tuple is (a′, e′), we could recommend the tuple (a, e) that has

the highest probability to be used next.

• CSP : Wu et al. [188] conducted a large-scale measurement study of

engagement on videos. They predicted engagement from video con-

text, topics, and channel reputation, etc. They used linear regression

with L2-regularization to predict engagement metrics and state that

the Channel Specific Predictor (CSP) performs best, which is to train

a separate predictor for each channel instead of using the shared pre-

dictor. To fit into our scenario, we generate the same CSP for each

app category with their proposed features available in our dataset

(e.g., the one-hot encoding of category, mean number of daily usage,

mean, std and five points summary of past engagement (dwell time),

etc.). The performance of the joint prediction problem is reported

based on the oracle app and the predicted dwell time (which would

be transformed to engagement levels according to our definition in

Sec. 4.2.2.)

• Aggregated : Vasiloudis et al. [175] presented the first analysis of ses-

sion length in a mobile-focused online service (i.e. music streaming

111



4.5. EXPERIMENTAL RESULTS

service). They showed that the time length of sessions can differ

significantly between users. They used gradient boosted trees with

appropriate objectives to predict the length of a session using con-

textual and user-based features. Their experiment results showed

that the aggregated model trained with all the data performed bet-

ter than the personalized models trained on each user’s data. To

fit into our prediction problem, we also trained the aggregated model

based on all data with their proposed features available in our dataset

(e.g., gender, age, device, duration of the user’s last session and time

elapsed since the last session, etc.). As we mentioned before, the

performance of the joint prediction problem is reported based on the

oracle app and the predicted dwell time (which would be transformed

to engagement levels according to our definition in Sec. 4.2.2).

4.5.3 Hybrid Next App Prediction Model

Our analysis starts with the hybrid next app prediction results given it

is the unified component leveraged by all the three different joint learning

strategies. It is used at the first step for inferring the next app user will use

before predicting its engagement level (Figure 4.12). Table 4.7 shows the

performance of baseline methodologies and our proposed hybrid next app

prediction model. We test our model with a set of state-of-the-art clas-

sification models, including Random Forests [20], L2-regularized Logistic

Regression [67], K Nearest Neighbours [33] and Support Vector Machines

[21]. These models construct different prediction functions for the data

from different aspects, and they can provide more robust results for our

prediction. Since our proposed hybrid next app prediction model (Sec-

tion 4.4.3.1) involves the prediction results of two predictive components
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Table 4.7: Performance comparison of next app prediction models (∗ indi-
cates statistically significant (p≤0.01) using two-tailed T-test when com-
pared our hybrid next app prediction model to the best baseline model
(LSTM). Bold scores state the best performance in different measurements.

Method Measurement
Accuracy Precision Recall F1

MFU 0.486 0.489 0.486 0.486
MRU 0.518 0.521 0.518 0.518
CPD [163] 0.424 0.419 0.424 0.369
BN [218] 0.453 0.483 0.453 0.467
SVM+Context [157] 0.606 0.563 0.606 0.572
LSTM [193] 0.525 0.660 0.525 0.576

Our Hybrid Model 0.640∗ 0.607∗ 0.640∗ 0.613∗

(Eq. (4.13)), we select the best classifiers for both of them within the

hybrid model, which combines the results of generic app category predic-

tion with Random Forest classifier and the results of personalized next app

prediction with SVM classifier.

From Table 4.7, we can find that our proposed hybrid next app predic-

tion model could significantly improve the performance of the best base-

line model (LSTM) by 6.4% on the F1 measure. The worse performance

of LSTM is expected since it could not incorporate any user characteris-

tics and contexts (e.g., access time, device type, etc.) during the predic-

tion. While our proposed hybrid next app prediction model not only takes

the user characteristics and contextual information into consideration but

also learn from users’ common patterns to overcome important sources of

prediction errors resulting from insufficient training data. It also states

that through the use of community similarity and common usage patterns

learned based on different app categories, we can improve the next app us-

age prediction by identifying the generic usage patterns present in similar

users - rather than relying solely on the specific app usage patterns. This

is also consistent with the findings from previous studies [41, 207] which

claim that the generic model can improve the predictive performance of
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models solely based on individual’s logs. Therefore, our proposed hybrid

next app prediction model is adopted to apply to further engagement level

prediction for different joint learning strategies.

4.5.4 Next App Usage and App Engagement Level

Joint Prediction Strategies

We first evaluate how different models perform for solving our proposed

joint prediction problem: which app user will use next and how long the

user will stay with this app? Then we further investigate the predictive

ability of features in the two prediction problems respectively and the pre-

diction effectiveness of our proposed different joint prediction strategies.

As mentioned, our hybrid next app prediction model is applied to the

first stage prediction on the next app for all the joint learning strategies

(Figure 4.12). For the prediction of engagement level, the predicted app

will be represented in different ways based on different joint prediction

strategies. For the sequential and stacking based joint model, the predicted

app will be used to select the specific engagement level classifier with the

corresponding app category (Eq. (4.14)). For the boosting based joint

model, the predicted app coming from the first stage of next app prediction

could only be treated as the input feature for the next step prediction of

engagement level (Eq. (4.12)). Table 4.8 shows the ultimate performance

of different joint prediction strategies and all baselines.

We can find that all our proposed joint prediction models are better than

the two classic baselines: MFU and MRU. For another two baselines, we

can observe that even we assumed the ground truth of the next app is

known, the upper bound performance of these approaches could not beat
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Table 4.8: Performance comparison of joint learning prediction models (∗
indicates statistically significant (p≤0.01) using two-tailed T-test compared
to the best baseline (CSP)). Bold scores state the best performance in
different measurements.

Model Measurement
Accuracy Precision Recall F1

MFU 0.286 0.286 0.286 0.286
MRU 0.308 0.307 0.308 0.308
Aggregated [175] ▷ 0.347 0.742 0.347 0.448
CSP [188] ▷ 0.339 0.729 0.339 0.467

Sequential 0.375∗ 0.382∗ 0.375∗ 0.369∗
Stacking 0.374∗ 0.381∗ 0.374∗ 0.365∗
Boosting 0.485∗ 0.483∗ 0.485∗ 0.483∗

▷: We assumed the ground truth of the next app is known
and leveraged these baselines for predicting engagement (dwell
time) of the oracle app. The performance reported in table
demonstrates the upper bound of those approaches (oracle per-
formance) regarding the joint prediction problem.

our proposed best joint prediction model based on boosting strategy. To

be specific, it states that we assume the predicted app is exactly the same

as the ground truth and only evaluate the engagement level prediction per-

formance, these baselines have performed worse than our boosting-based

joint prediction model. It mostly because they didn’t model the engage-

ment with comprehensive characteristics as our proposed model, where we

take the user characteristics, short/long-term usage patterns all into con-

sideration. Therefore, if the next app prediction task is added, the worse

performance of the joint prediction problem should also be expected for

these baselines. Among all the three proposed joint prediction strategies,

stacking and boosting based strategies are two advanced approaches origi-

nally proposed to improve the performance with the most straightforward

strategy, sequential based strategy. However, we find that the stacking

based strategy does not improve the performance when compared with the

benchmark sequential based strategy. This might be due to that, in our

scenario, the base learners within stacking are not trained for the same

target (we have two different prediction tasks: app and engagement level)
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where the stacking principles do not apply. On the other hand, the boosting

strategy works best compared to all other joint models. It respectively out-

performs the baseline models over 56% and the sequential/stacking models

about 31% on F1 measure. We mainly focus on investigating the boosting

and sequential strategies in the later sections about how boosting helps

in the joint prediction. Firstly, besides the overall performance reported

in Table 4.8, we look into the detailed prediction results. It demonstrates

that the accuracy of next app prediction and engagement level prediction

respectively are: 64% (app) and 58.6% (engagement level) for sequential

strategy, 85.6% (app) and 56.7% (engagement level) for boosting strategy,

where the accuracy of engagement level is calculated only based on the

data with right predicted apps. So we can find that the improvement of

overall performance for boosting strategy is mainly because of the “error-

correction” step which corrects the app prediction results.

In the following sections, we will first analyze the feature importance within

the two prediction problems respectively, especially focus on exploring the

predictive ability of the newly proposed features. Then we will dig into how

is the effectiveness of boosting based strategy compared to the sequential

based strategy.

4.5.4.1 Feature Analysis

The sequential based strategy is implemented by conducting the app pre-

diction and the engagement level prediction sequentially, where the app

prediction is absolutely independent with the further engagement level pre-

diction. Therefore, we discuss the analysis of the most impactful features

for those two tasks respectively. The next app prediction within the se-

quential strategy is implemented as same as our proposed hybrid next app
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Table 4.9: Feature importance (MDI) of app category prediction.

Feature Feature Type Importance (MDI)
Total_App_Usage_Frequency User 0.023
Hour Temporal 0.011
Periodic_Feature Long-term 0.011
Total_App_Usage_Duration User 0.010
Historical_App_Preference Long-term 0.005
Total_Unique_App_Amount User 0.005
Age User 0.004
App_Preference_Last_Day Short-term 0.003
Weekday Temporal 0.002
Gender User 0.002
App_Preference_Last_Hour Short-term 0.002
Device_Type User 0.001
App_Preference_Last_Session Short-term 0.001

prediction model, which would infer what app category the user will use

and then select the specific app given this predicted app category. To make

the comparison more intuitively, we conduct the analysis within the app

category level. As we mentioned above, the random forest is selected as the

best classifier for the app category prediction problem. The random forest

can be used to rank features by their importance in the classifier, which

provides useful insights about the discriminative power of the features in

the considered problem setting. Mean Impurity Decrease (MDI) is the

most common way to obtain feature importance from random trees [20]. It

is computed by averaging across all the trees in the forest the amount of

impurity removed by each feature while traversing down the tree, weighted

by the proportion of samples that reached that node during training. Using

this method, we obtained the feature importance for all features in the app

category prediction, as listed in Table 4.9.

We find that besides the critical temporal feature hour, the most impor-

tant categories of features are mostly user and long-term context features.

Compared to user characteristics features such as demographics and de-

vices, the total usage (frequency, duration, and unique app amount) main-

tain higher impacts on the next app category prediction. The hour of day
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Table 4.10: Top feature weights (standardized coefficients ≥ 0.001) for
logistic regression model of engagement level prediction. ∗ indicates p-
value ≤ 0.001 using Chi-Squared test.

Feature Feature Type Weight
Historical_Level_Light∗ Long-term 0.571
Historical_Level_Medium∗ Long-term 0.197
Total_App_Usage_Duration∗ User 0.175
Historical_Level_Intensive∗ Long-term 0.112
Periodic_Feature∗ Long-term 0.070
Age∗ User 0.032
Last_Used_App∗ Short-term 0.019
Hour∗ Temporal 0.008
Weekday Temporal 0.002
Last_Engagement_Level∗ Short-term 0.001

feature has been used to identify the salient pattern within app usage be-

haviour in many previous works [72, 157, 98], e.g. the user usually set

an alarm at around 23:00. The popularity of app usage (historical app

preference) is also a famous feature that has been established by previous

works [100, 41]. Additionally, our finding of the periodic pattern is consis-

tent with the previous works on next app prediction, where the periodic

patterns have been identified as the effective feature for inferring the app

usage pattern [163, 98, 100]. Liao et al. [100] also stated that the periodical

usage feature is the most difficult one to be substituted by other features.

The engagement level prediction is the novel problem proposed in our work

and we extracted many different predictive features from user&device char-

acteristics, temporal pattern, and short/long-term context (Section 4.3) to

infer how long the user will stay with an app. Similarly, since the en-

gagement level prediction within the sequential strategy can be studied

separately, we discuss the impacts brought by different features for engage-

ment level prediction within the sequential based strategy. We opt to build

a classifier for predicting users’ engagement with three levels: light, Medium

and Intensive. Hence, the problem of modelling user engagement turns into

a multi-class classification problem. Similar to the next app prediction, we
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test and empirically compare the performance of a wide range of classifi-

cation techniques, including Random Forests (RF), L2-regularized Logistic

Regression (LR), K Nearest Neighbours (KNN), and Support Vector Ma-

chines (SVM), for predicting the app engagement level, where the Logistic

Regression classifier performs best.

Then we examine the contribution of each feature based on the feature

coefficients in the logistic regression model. To compare the importance of

different features, we divide each numeric variable by two times its stan-

dard deviation [53]. Through this way, the resulting coefficients are di-

rectly comparable for both binary variables (e.g., categorical dummy vari-

able) and numerical features. Table 4.10 reports the top feature weights

(standardized coefficients ≥ 0.001) of the Logistic Regression model for the

engagement level prediction. We can find that most of the top features

are originated from the long-term context features: historical engagement

level preference and periodic pattern. It is not surprising that the histor-

ical pattern has more influence on how long a user will stay with an app.

If the user always prefers to play games for a longer time, then he may

still spend more time in the game app this time. The periodic feature has

more impacts on users’ engagement level than the temporal context, hour,

and weekday. This demonstrates that no matter when the user uses this

app, the time since the last use of this app is more important for inferring

how long the user will engage with this app. Additionally, the last used

app has more impacts on predicting the engagement level compared to all

short-term context features. This could provide more insights for the app

developers to recommend the contents of different time lengths according

to the last used app to improve the user experience. Another finding is

that we observe age is the most important signal among all demographics

and device characteristics when inferring the app usage duration.
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4.5.4.2 How Effective are Boosting-based vs. Sequential-based

Strategies?

We have shown the boosting based strategy outperforms the benchmark

sequential based strategy by the performance margin of 31% on the F1

measure. Therefore we further conduct some error analysis to understand

the underlying reasons.

Firstly, for the novel prediction problem on engagement level, the sequential

and boosting based strategies achieve similar performance, which are 58.6%

and 56.7% respectively on accuracy. It demonstrates that even the boosting

based strategy gets better overall performance in our joint prediction prob-

lem, it cannot improve the engagement level prediction results. We further

analyze the prediction ability on app engagement level prediction with our

proposed sequential strategy. We select only the engagement level predic-

tion results when the next app is correctly predicted. Figure 4.14 shows the

confusion matrix of the app engagement level prediction results. For the

wrongly predicted results of all engagement levels, we can find that they

have higher probabilities to be predicted into the adjacent level. For ex-

ample, for the intensive engagement level, 19% of them are misclassified as

a medium level, which covers about 95% of the wrongly predicted results.

Similarly, for the light engagement level, 25% of them are misclassified as

a medium level, which is higher than those that are misclassified as inten-

sive. The engagement level prediction results of boosting based strategy

also get a similar confusion matrix as shown in Figure 4.14. We now focus

on exploring how boosting is more effective in the next app prediction as

follows.

For the next app prediction, we have reported that the boosting based

strategy improves the accuracy from 64% to 85.6%, which is resulted from
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Figure 4.14: The confusion matrix of our prediction model on the engage-
ment level. Darker color means higher probability.

the “error-correction” step. We then compare the app prediction results of

sequential based and boosting based strategies. For the sequential based

strategy, we found that the incorrect results are mainly generated from

three reasons:

(a) Global popularity. We find that for 66.7% (30/45) of the app cate-

gories, the top category they were misclassified as is productivity. For ex-

ample, 37.4% of widgets apps are wrongly predicted as productivity, 31,7%

of medical apps are wrongly predicted as productivity, and 27.2% of trans-

portation apps are also wrongly predicted as productivity. This could be

easily explained since the productivity apps have the highest global popu-

larity among all the app categories. It results in our generic app category

classifier inferring that the user has a higher probability to use the produc-

tivity apps given all users’ data. By analysing these cases, we find that the

boosting strategy resolves most of the issues resulted from global popular-

ity. For example, 25.4% of widgets apps and 12.8% of transportation apps

are corrected by boosting from being misclassified into the productivity

apps. This is because that the prediction model in the boosting step does

not involve the global popularity of app categories. Since the “pseudo-

residuals” (Figure 4.13) are applied as the ground truth, this makes the
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Table 4.11: Illustration of Case Studies in Next App Prediction

Error
Reason
Type

Predicted
Result

Ground
Truth

Correction
while
Boosting

Correction/Uncorrection
Reason

Global
Popularity

productivity widgets,
medical,
transporta-
tion

widgets,
medical,
transporta-
tion

The “pesudo-residuals” are ap-
plied as ground truth in boosting
makes the model less impacted by
the global popularity of app cat-
egories within the dataset.

Short Us-
age Inter-
val

card casino casino Additional information are pro-
vided by the engagement fea-
tures added in the boosting strat-
egy. Last engagement of casino is
longer than the card app, so these
cases are corrected from card to
casino.

arcade adventure No No additional information could
be provided based on engage-
ment.

Similar
App Usage
Frequency

lifestyle food-and-
drinks

food-and-
drinks

Boosting helps when the engage-
ment pattern provides additional
information. Specifically, the re-
sults are corrected by boosting
since the historical engagement
pattern of food-and-drink apps
usage of this user is longer than
lifestyle apps.

health-and-
fitness

medical No None of them are corrected by
boosting since no difference exists
in the historical engagement pat-
tern of these two apps of the user.

model more sensitive for predicting users’ app usage based on the context

and user characteristics, rather than the global popularity of app categories

within the dataset.

(b) Short usage interval. Another important factor that accounts for

the misclassification within the sequential based strategy is the time inter-

val (periodic feature) between app usage. We observe that for those users

whose historical app preference deviates from an average user (e.g., produc-

tivity is not the top preferred app), the periodic feature (time since the last

usage) would have stronger impacts. For example, 30.8% of the adventure

apps are wrongly predicted as arcade apps given the time from the last

usage of arcade app is short. Since the model learned that the shorter the
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time interval, the higher probability the same app would be used again. In

these cases, even the adventure has a higher usage frequency in the user’s

historical app usage pattern, it would be wrongly predicted as arcade since

arcade has a higher probability to be re-accessed in a short period of time.

(c) Similar app usage frequency. The third major reason for the mis-

classified cases is that when two app categories are all recently used with

a similar frequency, the one with the higher personalized historical us-

age frequency would be selected. For example, 11.4% of medical apps are

wrongly predicted as health-and-fitness apps because that the medical app

and health-and-fitness app are always used in the same session, the health-

and-fitness app is predicted as the result since it has higher popularity

within the user’s historical app usage pattern.

For the latter two error analysis in the sequential based strategy (described

above as (b) and (c)), we find that the boosting strategy only helps some

of the cases when the engagement information could provide additional

insights. For example, among the wrongly predicted 30.8% adventure apps,

only 5% of adventure apps are corrected from arcade by boosting since

the last engagement level of adventure is longer than arcade. For those

cases without this additional information from engagement, they are still

wrongly predicted. However, for some specific cases, e.g., 7.8% of casino

apps are predicted as card apps for the same reason as adventure&arcade

apps, but all of these 7.8% cases are corrected to casino with boosting.

This is because for all the cases the last engagement of casino is longer

than the card app. Similarly, for the cases which are wrongly predicted

because they have similar recent usage patterns, the boosting only helps

when the engagement pattern provides additional info. For example, 3.7%

of food-and-drink apps are corrected by boosting from lifestyle apps. This

is because the historical engagement pattern of food-and-drink apps usage
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of this user is longer than lifestyle apps. However, for the 11.4% wrongly

predicted medical apps, none of them is corrected by boosting since no

difference exists in the historical engagement level pattern of these two

apps.

To make the benefits brought by boosting strategy clearer, we also added

a summary table of the case studies as Table 4.11, where we can find

the corresponding reasons about why some of the cases are corrected by

boosting but some others are not.

4.6 Discussion

In this chapter, we explored the factors that affect users’ app dwell time

from users’ app usage logs and show evidence that the next app and how

long the user will stay on this app could be predicted simultaneously. First,

to answer the research question RQ 1.3, we take a systematic approach to

uncover the dependency of users’ app usage duration on user characteris-

tics and context features based on a large-scale dataset. We then showed

that the features related to users’ historical engagement pattern and pe-

riodic usage pattern are good predictors of how long users will stay with

an app. To solve another research question RQ 1.4, we propose three dif-

ferent joint prediction strategies and demonstrate that the boosting based

strategy performs the best. We further conduct the error analysis on the

boosting strategy compared to the benchmark sequential based strategy.

Based on the analysis, we find that besides the benefits brought by the

“pseudo-residuals” within the boosting principle, the engagement features

also provide additional insights to help infer which app user will use. These

findings inspire us that we should think of adding more engagement related
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features when predicting the next app. As below, We discuss how our find-

ings can be applied to future mobile systems and applications, the limi-

tations in our study and the differences between personalized and general

engagement prediction.

4.6.1 Implications

Firstly, the model proposed in our work can be applied for more tailored

engagement-aware recommendations on mobile phones. As the operating

system has access to all the features used for training the next app and app

engagement models in this work, it is uniquely suited to predict a user’s

likely next app usage and engagement level under the current context. By

doing so, the operating system can manage the delivery of content and

services to the end-user by matching their engagement demands with the

predicted engagement levels of the user. For instance, an app that shows

mobile advertisements require high engagement from the end-users and can

ask the app provider to push its content to the user when he/she is likely

to be highly engaged. The media apps, like video and news apps, could

recommend more satisfactory content based on the predicted engagement

level of users to improve user experience.

Recently, there is an active area of research for the timely delivery of no-

tifications on mobile devices. Researchers have primarily focused on un-

derstanding the receptivity of mobile notifications [117] and predicting op-

portune moments to deliver notifications in order to optimize metrics such

as response time [137]. While response time is indeed a useful metric to

optimize for, they do not capture how much engagement the user will show

towards the notification. The primary purpose of a notification is to at-

tract user attention and increase the possibility of user engagement with
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the notification content. As such, we believe that the models and features

we explored in this work can also be incorporated in designing an effective

notification delivery mechanism.

4.6.2 Limitations

Although we have explored several meaningful features that could be ap-

plied in benefiting users’ app engagement (dwell time) prediction, we must

acknowledge the limitations of the dataset used in our study. Firstly, similar

to all other real-world app usage datasets, the app popularity distribution

follows Zipf’s law [94, 139], which indicates that only a few apps have high

installation/usage whereas many apps have low installation/usage. But

doing a balanced prediction would not fit the realistic evaluation settings,

which would bring the bias of the users/contexts to be selected. To handle

this imbalance issue within app categories while evaluation, we measure

the performance of all prediction problems based on four metrics: accu-

racy, precision, recall and f1. All the metrics are calculated for each label,

and their averages are weighted by support (the number of true instances

for each label). We also conducted case studies to explore the prediction

results based on different app categories. Additionally, our dataset might

not be representative of the entire population of mobile users, as the users

and apps are only coming from the apps registered in this library. This

means that not all the apps usage behaviour of users could be tracked and

there may be a selection bias in the subset of users being studied. While

this might occur to some extent, given the scale of our dataset (with over

1.3 million logs), we believe our data would still provide useful insights, and

our predictive models are the best models so far, effective for most users.

Lastly, the predictive features we extracted can be further enriched. Other
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features that precisely characterize users’ app engagement behaviours could

be further explored, such as the location, wifi access status, battery, device

mode setting (e.g., silent), illumination, screen, and blue-tooth. In this

chapter, our main aim is to validate that how long a user will stay with

an app could be modelled based on the user characteristics and context

features. We would like to further explore additional features and models

for improvements in our future work.

Despite these limitations, we believe our proposed framework is the first-

of-its-kind study to examine, and model the mobile app engagement purely

based on features derived from users’ app usage logs. We also hope that

the framework, models, and insights developed in this chapter can bring

clarity and guidance to aid future mobile system developers in designing

better, and engagement-aware user experience.

4.6.3 Personalized V.S. General Engagement Predic-

tion

We know that the performance of the personalized model could be highly

impacted by whether there is sufficient data for training or not. In this

work, we are interested in relatively short-term user app engagement pat-

terns. Therefore, we collect app usage data from all users for a week. Due

to the nature of the data, it might be more difficult to acquire sufficient

per-user patterns, which is also validated by our experiment results regard-

ing the next app prediction (i.e. personalized model could not outperform

our proposed hybrid model). When the long-term data is available, the

personalized approach might be more suitable and achieve better perfor-

mance. We leave the exploration of the personalized model for app usage

prediction in our future work. In terms of the app engagement level (dwell
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time) prediction, we introduce the engagement levels according to differ-

ent app categories for handling users’ different consumption behaviour on

different contents. Hence our engagement level prediction results do not di-

rectly translate to user-specific engagement. Additionally, we believe that

defining and measuring aggregate engagement is also useful for content pro-

ducers, e.g., video producers on Youtube. The content providers often do

not target a specific user, but a large number of audience. Other than pre-

dicting how long user will stay on the app, we also want to provide content

producers with a new set of tools to create engaging content and forecast

user behaviour. For future work, we would measure users’ engagement

at the personalized level as complementary to the aggregated engagement

study, especially when we have more sufficient training data for individuals.

It would help the mobile apps to provide more fine-grained services to a

specific user based on the more accurate expected time length.

4.7 Conclusion

In this chapter, we propose to predict both users’ next app and the engage-

ment level at the same time. For the first time - to the best of our knowl-

edge - a comprehensive analysis of users’ app dwell time is conducted based

on the large-scale commercial mobile logs, especially focusing on inferring

the correlations between different predictive features and users’ app usage

duration. We find that the users’ historical engagement pattern, periodic

behaviour pattern, and the recent usage pattern have more impacts when

inferring users’ app dwell time. To solve our joint prediction problem on

the next app and app engagement level, we propose three strategies, where

the boosting based joint prediction model works best. Our experimental

results demonstrate that users’ next app and engagement level could be ef-
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fectively predicted at the same time, and our proposed prediction method

outperforms all baseline experiments by a large margin. This work can

help for providing more satisfying services to users for improving users’

experience on mobile devices.

Here we summarize the app usage behaviour understanding part of this

thesis (Part I). By proposing different approaches for modelling mobile

users based on cohorts and conducting various experiments, we enhance

the app usage prediction especially for alleviating the cold-start issue for

new users. Furthermore, besides only inferring “what” app the user prefers

to use next, we also explore “how long” user will stay with an app. We

conduct the first empirical analysis of mobile app engagement based on

dwell time and investigate a novel problem on simultaneously predicting

which app user will use and how long the user will stay on that app. We

conclude from above studies, we now have a better understanding of mobile

users’ behaviour on specific apps, especially when compared to the existing

approaches and models. However, nowadays, users’ mobile needs could

not be simply satisfied only via a single app. To provide more satisfying

services for supporting users’ high-level tasks, e.g., dining out with friends,

we aim to move on to the next part aims at understanding the mobile tasks

based on users’ app usage interactions (Part II).
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Extraction and Characterization

of Mobile Tasks
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Chapter 5

Identifying Tasks from Mobile

App Usage Patterns

Part I of this thesis we presented above aims to better understand users’

behaviour within single apps. However, users’ mobile needs could span a

broad spectrum, not only include the simple needs, such as weather infor-

mation checking, which can mostly be satisfied via a single app; but also

the needs to access a series of apps, collect, filter, and synthesize infor-

mation from multiple sources for solving a complex task, e.g., planning a

vacation. Therefore, we now turn to another part of this thesis, which is

to identify and characterise tasks based on users’ app usage behaviour. In

this chapter, we start our investigation by a detailed study of mobile tasks

manually labeled by annotators based on the real user app usage logs. This

chapter addresses our research questions RQ 2.1 and RQ 2.2, as specified

in Section 1.1.

RQ 2.1: What kind of features can be used effectively to identify mobile

tasks from app usage logs?
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Table 5.1: An example of mobile task: plan to dine out with friends.

Timestamp App SessionID TaskID Task Description
18 Jan. 2014 17:49:45 WhatsApp 1 1 Dining with friends
18 Jan. 2014 17:50:10 Yelp 1 1
18 Jan. 2014 17:52:15 WhatsApp 2 1
18 Jan. 2014 17:57:10 Music 3 2 listen to music
18 Jan. 2014 18:04:22 Facebook 4 3 Social
18 Jan. 2014 18:05:01 Instagram 4 3
18 Jan. 2014 18:10:50 Yelp 5 1
18 Jan. 2014 18:11:10 Google Maps 5 1
18 Jan. 2014 18:11:43 Uber 5 1
18 Jan. 2014 18:13:54 WhatsApp 6 1

RQ 2.2: Can we formulate the task identification as a supervised learn-

ing problem, which could predict the app usage belong to the same task

automatically?

Helping users complete tasks [60] is crucial for a number of applications,

such as search systems, digital assistants, and productivity applications.

However, little research has explored methods to understand and identify

mobile tasks, let alone to support users in task continuation and task com-

pletion. A primary mechanism for segmenting logged app usage streams is

session-based, where short inactivity timeouts (30 or 45 seconds) between

user actions are applied as a means to demarcate session boundaries [171].

However, tasks with users’ high-level intentions may span multiple sessions

and involve different apps, where the empirically-set short timeout thresh-

old may not be a valid criterion.

Consider a hypothetical example of a mobile task of a single user shown in

Table 5.1. The logs are automatically segmented into sessions (defined as

a series of consecutive app usage without standby over a time threshold)

using the 45-second inactivity threshold [171]. They are then manually

annotated into tasks with the corresponding task ID. We can observe that

Task 1 crosses four sessions and it is interleaved with Task 2 and Task 3.

To plan dinner with friends, the user first chats with friends on WhatsApp,
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and then access Yelp to look for restaurants and book a table. The user may

switch between Yelp and WhatsApp to get confirmation with friends about

which restaurant they prefer to go to. Finally, the user copies the restaurant

address from Yelp to Google Maps to check where the restaurant is, and

then book a ride on Uber. This series of log activities suggest that these

interactions belong to the same task, spanning across multiple sessions

and that not all apps are used consecutively (interleaved with other tasks).

During these types of complex mobile tasks, users always need to access and

switch between different apps frequently, as well as searching and editing a

similar text more than once. If we could understand users’ tasks in advance,

these redundant operations could be optimized. Furthermore, if we were

able to accurately identify sets of app usage with the same intent, we will

be in a better position to evaluate the performance of mobile services from

the user’s point of view.

To this end, we annotated week-long app usage logs of 20 users into tasks.

We report on the properties of these annotated mobile tasks, learning that

22.6% of all the tasks are interleaved and 19.7% of tasks contain multiple

different apps. This suggests that mobile task extraction is not a trivial

problem. We then built classifiers to identify task boundaries between

each sequential pair of app usage, as well as arbitrary pairs of logs that

correspond to the same task, despite being interleaved with apps usage

from other tasks. Last, we discussed the implications of our proposed

automatic task segmentation approach.

The remainder of this chapter is organized as follows. Related work is

reviewed in Section 5.1. In Section 5.2, we formally define mobile tasks and

present the way we manually annotated the mobile tasks. In Section 5.3,

we propose a set of predictive features and evaluate the performance of two

set of supervised classification models on both task boundary detection and
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same-task identification. We conclude this chapter in Section 5.4.

5.1 Related Work

In the context of web search, there have been many attempts to segment

and define tasks, relying on a notion of timeout, lexical characteristics [178],

and topic [69]. Many of them used the idea of a “timeout” cutoff between

queries to bound tasks, i.e. 30 minutes [28, 24, 189]. As the timeout features

only make sense between consecutive queries, these approaches cannot de-

tect interleaved tasks, which are prevalent in real-life query logs. Some

approaches [17, 36, 78] consider lexical cues and treat queries, titles, and

snippets of clicked URLs as bag-of-words, and use some string similarity

metrics (e.g., Levenstein edit distance, n-gram Jaccard) to measure the

similarity between queries. However, Huang et al. [70] later pointed out

that many queries relating to the same task are dissimilar in their sur-

face form but instead are related at the topic level (e.g., queries expressing

car interests: “honda”, “nissan”, and “ford”). Features that aim to capture

topical relatedness have been proposed by [69] and [109] to improve the

accuracy of task identification.

As we discussed above, many works have been done for task identification

in search [78, 86, 178, 69]; however, how to identify tasks within mobile app

usage and what features are effective have not been studied. To extract

a ground-truth of mobile tasks (Section 5.2.3), we follow the annotation

procedure of search tasks shown in Table 5.2. The biggest challenge in

identifying mobile tasks is that the apps do not include abundant informa-

tion as for search queries. Additionally, most of the app usage logs do not

provide detailed behavior information within the apps due to privacy issues.
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5.2. MOBILE TASKS

Nonetheless, an essential characteristic of mobile apps is that most of them

are created for satisfying the specific needs of users, e.g., weather apps for

displaying weather information and map apps for helping users in naviga-

tion. Therefore, even if we cannot audit internal interactions within apps,

the app description information includes information about the function of

the app. We extract the app description information to help annotators in

judging mobile tasks.

Another challenge of mobile task identifying is that we have less support

information for verifying if two operations are serving one task. In the

search tasks, even if the queries have fewer words, some common informa-

tion can be found in the searched results (clicked URLs); this can help in

determining whether two queries related to the same information needs.

Going back to our cases, we also measure other supportive operations to

help identify mobile tasks, e.g., whether two apps are frequently switched

back and forth within a short period of time. In Section 5.3.2, we show that

the traditional temporal features combined with our proposed novel app-

log features, e.g. similarity features extracting lexical characteristics and

log sequence features capturing topic relatedness, can be used to classify

app streams into task structure.

5.2 Mobile Tasks

We formally define mobile tasks and formulate the automatic identifica-

tion of mobile tasks as two supervised machine learning tasks. We then

present the way we manually annotated the mobile tasks, which generate

the ground-truth of our supervised learning. Lastly, we perform an analysis

on the annotated tasks.
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5.2. MOBILE TASKS

5.2.1 Task Definition

App usage log records mobile app interaction behaviours from a set of

different users U = {u1, u2, ..., uN}. It stores a sequence of app usage Ln =

{(an1 , tn1 ), (an2 , tn2 )..., (anM , tnM)} from user un, where tni is the corresponding

timestamp when using app ani .

Definition 5.1 (SESSION Sn
t ) Given user un’s app usage logs Ln and a

fixed time-out threshold τ , a session Sn
t is a set of consecutive app usage

from Ln, such that ∀(ani , tni ) ∈ Sn
t , (anj , t

n
j ) ∈ Sn

t , (anl , t
n
l ) /∈ Sn

t , |tni − tnj | ≤

τcut and |tni − tnl | > τcut.

The definition of session implies that {Sn
t }Tt=1 is a set of disjoint partitions

of app usage logs Ln, such that ∀i ̸= j, Sn
i ∩ Sn

j = ∅ and Ln =
⋃

i S
n
i .

Typical time-out threshold τcut in the context of mobile apps is set to be

a short period, i.e., 30 [16, 26] or 45 seconds [171]. We adopt in the rest

of the thesis the threshold τcut = 45 seconds to segment app sequences

into sessions, following the recommendation from the systematic analysis

conducted in [171]. A session, for us, is just a slice of user time. Other

definitions (which conflict themselves) involve an absence of periods of in-

activity [16, 26], or app used between unlocking and locking the phone [79];

ours does not, since we want to account for tasks, defined below, and use

inactivity as a predictor, rather than as a definition.

Definition 5.2 (TASK T n
k ) Given user un’s app usage logs Ln, a mobile

task T n
k is a maximum subset maxTn

k ∈Ln |T n
k | of logs in Ln, such that all the

app usage in T n
k correspond to a particular need.

This definition of mobile task indicates that {T n
k }Kk=1 is also a set of disjoint

partitions of app usage sequence Ln : ∀j ̸= k, T n
j ∩T n

k = ∅ and Ln =
⋃

k T
n
k .
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5.2. MOBILE TASKS

However, each T n
k is not confined to a particular session Sn

t segmented only

based on time threshold; instead, one mobile task can contain multiple

sessions, even if they are not consecutive. A mobile task can be thought

of as a group of related apps to accomplish a single discrete task. As the

example shown in Table 5.1, all the app usages of Whatsapp, Yelp, Google

Maps and Uber may span across multiple sessions that are not consecutive.

However, they belong to the same task of “planning to have dinner with

friends”.

5.2.2 Formulation for Supervised Task Learning

5.2.2.1 Task Boundary Detection

If tasks are not interleaved, as assumed in previous work [171], it suffices

to find a boundary between one task and the next. To do this we can look

at each sequential pair of app usage and ask whether this pair straddles a

boundary. Thus we look at task boundary detection. Each pair of sequential

app usage from a user’s log is a possible boundary between tasks. We seek

to take each such pair and decide whether the pair crosses a boundary

between tasks. Formally we consider the task:

{⟨(ani , tni ), (anj , tnj )⟩ : (tni < tnj )
∧

(ank : tni < tnk < tnj )} → {0, 1}

where tni is timestamp of app usage ani ; ⟨(ani , tni ), (anj , tnj )⟩ represents any

consecutive app usage pair; {0, 1} represents a binary variable whereas

0 and 1, respectively, indicate non-boundary and boundary. This task

boundary detection was traditionally addressed using timeouts [171].
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5.2. MOBILE TASKS

5.2.2.2 Same-task Identification

No previous work has addressed interleaved tasks when measuring users’

mobile app usage behaviours. Therefore another supervised learning prob-

lem is proposed to cover all kinds of tasks identification, no matter whether

they are interleaved or not. In this scenario, we must consider all possible

pairs of apps usage, and consider whether the pair of apps usage come from

the same task. Correctly performing this task will allow interleaved tasks

to be identified. We call this same-task identification. We seek to learn a

classifier to take a pair of app usage logs and map it to 1 if they are from

the same task, and 0 if they are from different tasks. We consider all pairs

of app usage logs ⟨(ani , tni ), (anj , tnj )⟩ such that ani was accessed before anj :

{⟨(ani , tni ), (anj , tnj )⟩ : tni < tnj } → {0, 1}

where tni is the timestamp of app usage log ani ; here ⟨(ani , tni ), (anj , tnj )⟩ rep-

resents any possible app usage pairs.

5.2.3 Mobile Task Annotation

To acquire a ground-truth of mobile task labels for the supervised learning

tasks (Section 5.2.2), we conduct a mobile task annotation crowd-sourcing

study. We sample the app usage logs for such annotation from the publicly

available UbiqLog dataset1 [147, 146], where participants were required to

install the lifelogging app UbiqLog on their phones from November 2013

to January 2014. We select 20 users randomly, for which five-day of app

usage logs are collected, including anonymized user ID, app package ID and

corresponding timestamps. Furthermore, to help the annotators obtain a
1UbiqLog: https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+lifelogging)
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5.2. MOBILE TASKS

Figure 5.1: Screenshot of the annotation page on MTurk (same task id "7"
should be assigned to the three app usage logs in the red rectangle if they
belong to the same task).

good understanding of each app, we crawled additional information, such

as app title, genre, description, icon and the URL of the app on Google

Play.2 Some statistics of this dataset are shown in Table 5.3.

Crowdsourced assessments have been commonly used to obtain labeled

data [184, 119]. To identify mobile tasks, three annotators were recruited

from Amazon Mechanical Turk [5], which is a crowdsourcing website for

businesses (known as Requesters) to hire remotely located “crowd workers”

for performing discrete on-demand tasks that computers are currently un-

able to do. No personally identifiable information was collected. Only an

anonymized ID is used to identify the different annotators.

Since no research has been done for exploring the methods of understand-

ing and identifying mobile tasks, most of our annotation procedures follow
2We can trace back an app on Google Play by using the app package ID - the unique

identifier, e.g., com.yahoo.mobile.client.android.weather is the Yahoo Weather app.
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5.2. MOBILE TASKS

the prior work on search task annotation [78, 86]. A detailed guideline was

presented to the assessors, describing in general what a mobile task is (refor-

mulated from Section 5.2.1) and showing several examples demonstrating

what constitutes a mobile task. A sequence of app usage is considered as

part of a coherent mobile task if they collectively try to achieve a certain

goal. One such example of a mobile task is: a user may check the date

with the Calendar app when replying/sending an email via the Email app.

In this task, the interval between the access of Calendar and that of Email

app is very short (e.g., 10 seconds). In addition, the user switches back

and forth between these two apps. Therefore, these app usages should be

grouped into one task since they work for the same aim – finishing writ-

ing the same email (with time information). To ensure the quality of the

assessment results, we apply a series of quality control mechanisms. We

create a set of “trap hits” to detect whether the assessors made assessments

that are consistent with those we know the answer. All the assessments

from assessors who fail a number of “trap hits” were removed.

The annotation page presented to the assessors is shown in Figure 5.1,

including the app usage information such as timestamp, app icon, and

app name. To provide relevant information to the assessors, we provided

the URLs directed to the corresponding app info on Google Play, where

the assessor could browse the detailed description of app functionalities,

screenshots and user comments of this app. Each assessor was asked to

select a Task ID number from the drop-down menu to label an app usage,

and each app usage log belonged to the same task was labeled with the

unique same task ID as shown in Figure 5.1. The annotators were also

asked to optionally write a short description for each task. We measured

the inter-annotator agreement using Cohen’s Kappa [48] as previous studies

that focused on the search task annotation [86, 119]. The same set of
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5.2. MOBILE TASKS

Table 5.3: Statistics of the dataset for annotation

#User #Log App/User Log/User
20 3558 22.3 ± 8.3 177.9± 63.7

Table 5.4: Statistics of the annotated mobile tasks

All Tasks
#Task #Task/User
1414 46.8±38.6

#Single-log Task #Multi-log Task
717 (50.7%) 697 (49.3%)

Multi-log Task
#Logs/Task #Apps/Task

4.1±3.7 1.7±1.3
#Same-app Task #Multi-app Task

418 (29.6%) 279 (19.7%)
#Interleaved Task #Interleaved Task/User

320 (22.6%) 12.1±11
#Multi-app Task/User Task Duration

9.1±7.7 22±84.3 (min)

logs was annotated by three assessors and we measured the inter-rater

agreement. Following [178], we randomly select all the logs from a subset

of users (2 out of 20) and instructed three annotators to assess all those

logs. Through this strategy, we can exploit the assessments on this subset

of user logs to calculate the Kappa among annotators. A Kappa value of

0 implies that any annotator agreement is due to chance, whereas a kappa

value of 1 implies perfect agreement. In our data, the Kappa values for

the three pairs of annotators were 0.69, 0.65, and 0.71, which, according

to [87], represent the substantial agreement. This partially demonstrates

the internal validity of our annotation method.

5.2.4 Patterns of Mobile Tasks

After aggregating the three assessors’ annotations, we ultimately obtain a

collection of 1414 tasks annotated out of 20 users’ app usage logs. The

statistics of those annotated tasks are shown in Table 5.4. We observe that

firstly, 49.3% of the mobile tasks require users to visit apps for more than

once (multi-log task, 49.3%), which consists of both same-app task (users
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5.3. TASK IDENTIFICATION

visit the same app more than once, 29.6%) and multi-app task (users visit

more than one app, 19.7%). An example of such same-app task is: a user

accessed the Clock app for four times at 6:00, 6:05, 6:35 and 7:05 in the

morning. The four alarm clocks wake the user up and provide small nap

intervals. Additionally, an example of multi-app task is: a user switched

between Calendar and Email app as mentioned in Section 5.2.3.

We can also observe that among all these annotated tasks, 22.6% of them

are interleaved, which means that not all apps within one task are consec-

utively accessed. For example, the user may perform the task of playing

games, interleaved by the task of chatting with friends in between. All the

above task patterns demonstrate the need for moving beyond single once

app usage and extracting high-level mobile tasks. In particular, when we

look into those multi-log tasks, they on average span across 4.1 logs, with

1.7 apps accessed and last 22 minutes. These indicate that cross-log and

cross-app mobile task extraction are not trivial problems.

5.3 Task Identification

We evaluate the performance of a set of predictive features (Section 5.3.1)

using two set of supervised classification models (Section 5.3.2) on both

task boundary detection and same-task identification.

5.3.1 Predictive Features

We describe the features we use in our experiments to classify tasks. We

experimented with 14 features related to app usage patterns covering three

aspects: temporal, similarity and log sequence. Table 5.5 provides an
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5.3. TASK IDENTIFICATION

overview of the features.

5.3.1.1 Temporal Features

While timeouts alone have been commonly used as predictors of session

boundaries, they may help in identifying task boundaries and especially

when used with other features. To measure the temporal characteristics

of two apps usage, inspired by the study on search task identification [78],

we generate three forms of temporal features: binary_interval, time_diff

and sequential_status. For a given log pair, both binary_interval and

time_diff features capture the duration of the interval between this log

pair, where the longer the duration, the less likely this log pair would be

part of the same task. Specifically, the binary_interval represents whether

the inter-log interval exceeds a threshold (e.g. 10s, 1min, 5min, etc.) while

time_diff concentrates on the exact inter-log time in seconds. Thirdly,

the sequential_log feature is used to represent if two app usage logs are

sequential in time, with no instance of other log entries3 (apps); potentially

indicating that these two log entries originate from the same task.

5.3.1.2 Similarity Features

A previous study [191] found that apps in the same or similar genre are more

likely to be used together. Furthermore, users were found to often browse

multiple similar apps to compare and obtain complementary information

to accomplish their mobile tasks [187]. To quantify the similarity between

any pairs of apps, the broad category or the detailed description of the app

can be used. As shown in Table 5.5, first, we use the feature same_cate to
3This sequential_log feature does not apply to task boundary detection given all the

log entry pairs are sequential in this setting.
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identify if two apps originate from the same broad app category (e.g., shop-

ping and music). To capture a more nuanced similarity between apps, we

exploit the app descriptions and leverage four textual similarity measures:

common_w, tfidf_cosine, jaccard_coeff and word_embed_sim, as defined

in Table 5.5. These four similarity measures of any log entry pairs are cal-

culated based on their corresponding app description crawled from Google

Play, with all stop words filtered out. The former three measures are based

on traditional lexical similarity whereas the word_embed_sim approach

utilizes the semantic similarity based on the word embedding representa-

tions of the app descriptions. The word embedding vectors are based on

GloVe vectors trained on Common Crawl [4]. The sentence representation

is simply an average of the word embedding representations of all the words

in the sentence.

5.3.1.3 Log Sequence Features

Sometimes tasks may contain pairs of apps that are logistically related but

do not share common terms in their description. For example, “Yelp” and

“Google Maps” may be used to carry one task, planning a dinner with

friends; but both apps have no common functions and are not from the

same app category. To capture such relationship between pairs of apps

⟨an1 , an2 ⟩, we introduce six features based on leveraging historical app usage

data:

• PMI : Pointwise Mutual Information(PMI) [32] is a measure of correla-

tion defined as:

I(x, y) = log
P (x, y)

p(x)p(y)

The numerator is the probability of co-occurrence of the events x

and y; the denominator is the probability of each event occurring
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independently. In our scenario, the higher the PMI between two

apps, the higher the possibility that these two apps will co-occur in

the same session. To calculate the PMI of any app pair ⟨an1 , an2 ⟩,

the app probabilities P (an1 ) and P (an2 ) are estimated by counting the

number of observations of an1 and an2 across all the app usage sessions,

and normalizing by N , which is the number of sessions. The joint

probability, P (an1 , a
n
2 ), is estimated by counting the number of times

that an1 and an2 co-occurred in the same session, normalizing by N.

• pa12 : p(an1→an2 )

maxan
j
p(an1→anj )

is the normalized probability that an2 is used right

after an1 within the same session [78]. It is used to measure whether

two apps are always used successively.

• switch_state: captures users’ switching between two apps. For any log

pair ⟨an1 , an2 ⟩, switch_state is 1 if an2 was used right before ⟨an1 , an2 ⟩

in the same session. This represents an in-session user interaction of

an2 → an1 → an2 , which indicates that the user un switches back and

forth on an2 within the same session. Otherwise, switch_state is 0.

• switch_prob: f(an1→an2→an1 )

f(an1→an2 )
is the probability that a switch between an1

and an2 happens when accessed sequentially.

• peos_a2 : since often people finish a task before turning off for the

day [78], “last app usage of the day” might be a useful indicator

of the last app used in a task. Following from [78], we generate the

feature peos_a2 to capture the probability that an2 is the last used

app based on aggregating app usage logs of all users before midnight.

• no_dist : represent the number of app usage logs (distance) between an1

and an2 [178]. This feature only applies to those arbitrary app usage

log pairs for the same-task identification.
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5.3.2 Predictive Models

Given our predictive features, we introduce a set of state-of-the-art algo-

rithms to build models for the two classification problems: task boundary

detection and same-task identification. We compare four widely used clas-

sifiers: (1) L2-regularized Logistic Regression (LR) [62], as an example of

linear classifier; (2) K Nearest Neighbours (KNN) [33], as an example of

a non-parametric method for classification; (3) Support Vector Machines

(SVM) with Radial Basis Functions kernel [174] as an example of a non-

linear classifier; and (4) XGBoost [29], as an example of a state-of-the-art

ensemble learning. These models construct different prediction functions

for the data from different aspects. Rather than training a personalized

classifier for each user, we make our classifiers generic so that they can be

applied across all users.

5.3.3 Metrics and Baselines

Four metrics are used to measure the performance of our proposed clas-

sification models: accuracy (Acc.), precision (Pre.), recall (Rec.) and F-

measure (F-mea.). We measure the performance of each method by split-

ting the data based on users with 5-fold cross validation (80% users’ logs

for training and 20% users’ logs for testing).

Next, we construct a set of baselines to compare against our proposed

approach. Since no prior research was conducted on mobile task identifica-

tion, we adopt models used in search task identification [144, 86, 78] as our

baselines. These models are based on either timeout or similarity between

queries. To compare with methodologies using a timeout, we use both

a thirty-minute threshold [144], as well as time thresholds learned using
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cross-validation. To adapt the similarity-based approaches, we follow [86],

which utilizes logistic regression to learn a model using only Levenshtein

edit distance between the current (given) query and all previous queries.

This is a reasonable baseline under the assumption that an intelligently-

chosen threshold applied to the dissimilarity between two queries could

provide an accurate prediction of whether two queries related to the same

task. In our task identification problem, the Levenshtein distance is cal-

culated based on app descriptions instead of queries. Additionally, Jones

et al. [78] use a strong baseline commonw+ prisma+ time to identify the

search tasks, where the commonw identifies the number of words in com-

mon and prisma is the cosine distance between vectors derived from the

first 50 search results for the query terms. Since we are using apps instead

of queries, commonw is replaced by identifying if two apps belong to the

same category, whereas prisma is replaced by calculating the cosine dis-

tance between vectors derived from the app descriptions. Lastly, we also use

the mobile session segmentation method with a 45-second threshold [171]

as a benchmark, where a session is considered as a task.

5.3.4 Experimental Results

We evaluate the classifiers for task boundary detection as well as identify-

ing whether arbitrary pairs of logs belonging to the same task. Table 5.6

reports the performances of these models with different baselines and fea-

ture sets. Only results for the logistic regression classifier are reported in

Table 5.6 since it outperforms other classifiers, as we show in Table 5.7.

The comparative rankings of models that utilize different feature sets are

similar across the different predictive models (Section 5.3.2). From Ta-

ble 5.6, we can observe that in general, when we combine all three types of
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Table 5.6: Performance comparison of different feature sets based on Lo-
gistic Regression (5-fold cross validation) for task boundary detection and
same-task identification. ∗ indicates statistically significant (p ≤ 0.05) us-
ing two-tailed T-test compared to the F-measure of best baseline. Bold
scores state the best performance in each prediction task.

Task Boundary Detection Measurements
Acc Pre Rec F-mea

Baselines

Search Threshold (30min) [144] 0.56 0.33 0.81 0.47
Learned Time Threshold 0.52 0.55 0.83 0.62
Trained Levenshtein distance [86] 0.63 0.61 0.74 0.66
commonw+prisma+time [78] 0.80 0.74 0.94 0.82
Mobile Session Threshold (45s) [171] 0.44 0.37 0.80 0.51

Proposed Features

Temporal (T) 0.63 0.66 0.65 0.64
Similarity (S) 0.80 0.75 0.92 0.82
Temporal + Similarity (T+S) 0.80 0.75 0.92 0.83
Sequence (LS) 0.87∗ 0.86∗ 0.88∗ 0.87∗
Temporal+Similarity+Sequence (T+S+LS) 0.89∗ 0.88∗ 0.91∗ 0.89∗

Same-task Identification Measurements
Acc Pre Rec F-mea

Baselines

Search Threshold (30min) [144] 0.77 0.85 0.85 0.85
Learned Time Threshold 0.78 0.78 1.00 0.87
Trained Levenshtein distance [86] 0.74 0.74 1.00 0.84
commonw+prisma+time [78] 0.78 0.78 1.00 0.87
Mobile Session Threshold (45s) [171] 0.73 0.74 0.99 0.84

Proposed Features

Temporal (T) 0.74 0.74 1.00 0.84
Similarity (S) 0.74 0.74 1.00 0.84
Temporal+Similarity (T+S) 0.78 0.78 0.98 0.86
Sequence (LS) 0.80∗ 0.78∗ 1.00∗ 0.88∗
Temporal+Similarity+Sequence (T+S+LS) 0.82∗ 0.82∗ 0.97∗ 0.89∗

Table 5.7: Overview of the performance for different classifiers with the
best performing feature sets (5-fold cross validation).

Classifiers Measurements
Acc Pre Rec F-mea

Task Boundary Detection

KNN: All Feature Sets (T+S+LS) 0.75 0.69 0.92 0.78
SVM: All Feature Sets (T+S+LS) 0.63 0.60 0.88 0.70
XGBoost: All Feature Sets (T+S+LS) 0.89 0.87 0.90 0.88
LR: All Feature Sets (T+S+LS) 0.89 0.88 0.91 0.89

Same-task Identification

KNN: All Feature Sets (T+S+LS) 0.75 0.76 0.90 0.82
SVM: All Feature Sets (T+S+LS) 0.76 0.76 0.99 0.85
XGBoost: All Feature Sets (T+S+LS) 0.80 0.78 1.00 0.88
LR: All Feature Sets (T+S+LS) 0.82 0.82 0.97 0.89
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5.3. TASK IDENTIFICATION

features we achieve the best results for both task boundary detection and

same-task identification, outperforming all baselines.

When examining solely on task boundary detection, our model exploiting

all feature sets achieves the highest F-measure score of 0.89. This is when

temporal features are used in conjunction with similarity and log sequence

features. This means that time interval, similarity and sequential rela-

tionships between apps are complementary, and should all be taken into

consideration to detect task boundary. When a set of features is used on its

own, log sequence features work best, whereas temporal features perform

poorly. Comparing against the baseline approaches, despite its relatively

poor performance, our proposed temporal features still outperform the best

time-based baseline (Learned Time Threshold with F-mea = 0.62). These

results demonstrate that solely using the time interval between two app

usage (e.g., Mobile Session Threshold [171]) is not sufficient to indicate

that a task has been completed, as assumed in prior studies [171]. We find

similar trends for same-task identification. Note that due to the nature

of this problem, our training and test data are more biased: the majority

of app usage pairs do not belong to the same task. This is the reason

why most of the baseline models achieve relatively high performance (with

F-measure at around 0.8). Compared to those adapted baselines, models

that incorporate log sequence features perform significantly better. When

comparing different classifiers, as shown in Table 5.7, we find that the

differences are relatively small while the LR classifier performs the best,

followed by XGBoost.
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5.3. TASK IDENTIFICATION

5.3.5 Feature Importance

We showed above that by using a combination of three types of features,

we could get the best performance for both task boundary detection and

same-task identification based on the logistic regression classifier. In this

section, we examine the contribution of each individual feature based on

the feature coefficients in their corresponding logistic regression models.

To compare the importance of different features, we divide each numeric

variable by two times its standard deviation [53]. This way, the resulting

coefficients are directly comparable for both binary variables (e.g., categor-

ical dummy variable) and numerical features. Table 5.8 summarized the

feature weights for task boundary detection and same-task identification

problems, respectively. It is not surprising that time_diff (inter-log time

in seconds) is among the strongest signals for both problems. The longer

the time interval, the less likely the app usage pair relates to the same

task. For the task boundary detection, most of the similarity features re-

ceive higher importance weights. This indicates that similar apps that are

sequentially used are likely to relate to the same task. This is especially

true given the large percentage of same-app tasks (29.6%), i.e., users access

the same app multiple times sequentially. By contrast, for the same-task

identification problem, the log sequence features, especially no_dist and

PMI, receive higher weights. This indicates that, for any arbitrary pair of

app usage, co-occurrence based features are more predictive, compared to

temporal and similarity-based features. Not surprisingly, if the two app

usage log entries are proximate in time (time_diff ) and more semantically

similar to each other (word_embed_sim), they are more likely to belong

to the same task. Interestingly, when the app pair is both temporally and

semantically similar, these two log entries are more likely to form a task
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if they are more “distant” (i.e., there are more apps in between, captured

by no_dist). This implies that those tasks are commonly interleaved with

other tasks. Furthermore, we find that the binary_interval (120 min) has

more influence on same-task identification than task boundary detection.

For any arbitrary pair of app usage, if the interval time is longer than two

hours, this pair is less likely to belong to the same task. For the similarity

features, the semantic-based feature word_embed_sim contributes more to

the same-task identification than task boundary detection.

5.4 Conclusion

No previous study has analyzed or addressed the automatic identification

of mobile tasks. In this chapter, we present a method that accurately de-

termines mobile tasks from users’ app usage logs. We showed that a set

of temporal, similarity and log sequence features used in combination can

effectively predict mobile tasks. When used independently, log sequence

features, which capture the hidden relationship between apps perform best.

Our proposed method to identify tasks outperform all baselines, even when

they are interleaved. We also showed that matching any pairs of logs into

one same task is a harder problem, compared to determining task bound-

aries. This suggests that it may be better to first identify task boundaries,

and then extract app usage of specific tasks from the identified task seg-

ments.

The model proposed in this chapter sets the stage for evaluating mobile

apps and services, not on a per-app basis, but the basis of user tasks. To

improve user experience by providing more satisfying services in supporting

task continuation and task completion, we need to have more understand-
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ing of mobile tasks at the population level, especially for those complex

tasks users aimed to complete with more than one app. Therefore, we fur-

ther follow up on the work presented in this chapter by focusing on the

characterizing of complex mobile tasks in the next chapter.
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Chapter 6

Characterization and Clustering

of Complex Mobile Tasks

In the previous chapter, by manually annotating mobile tasks from a small

dataset (Section 5.2.3), we shed lights on some important characteristics of

mobile tasks. However, the laboratory study of mobile tasks is still limited.

To gain further understanding, mapping large-scale app usage logs to tasks

is required. Specifically, learning more about the complex mobile tasks 1

users aimed to complete with cross-app and multi-topic usage patterns on

smartphones could help us improve the current mobile systems and applica-

tions in supporting task continuation and task completion more effectively.

However, there still lacks an accurate picture of how users engage with

multiple apps during a task, let alone an in-depth understanding of the

underlying high-level user intentions. Therefore, this chapter addresses our

research questions RQ 2.3 and RQ 2.4, as specified in Section 1.1.
1Referring to [103], which stated that a search task involving searching one kind of in-

formation as low complexity, two or more information as moderate and high complexity,
we define the complex mobile tasks as the tasks that have more than two apps involved.
We use complex task interchangeably with multi/cross-app tasks for the whole thesis.

156



Figure 6.1: An example of mobile tasks: the cross-app tasks 3, 7 and 9 are
the complex tasks we aim to understand in this chapter.

RQ 2.3: How to characterize complex mobile tasks based on different

attributes?

RQ 2.4: Could we uncover the common patterns exist in complex mobile

tasks by dividing them into natural groups that reflect salient patterns?

The Flurry dataset introduced in Section 3.2 is used for conducting the

in-breadth understanding of complex mobile tasks. Given the best task

boundary detection approach (Table 5.6) proposed in Chapter 5, the app

usage logs could first be separated based on the detected boundaries; we

then only keep those tasks with at least two different apps (i.e., complex

tasks) for our further analysis. We first conduct a comprehensive quantita-

tive study on characterizing the complex tasks based on the Flurry dataset.

A generic mobile app navigation model is proposed to present an accurate

picture for the micro-level interactions within this analysis, including how

users revisit and switch between different apps.

Afterwards, we further investigate if there are common patterns that exist

among the complex mobile tasks. As shown in figure 6.1, we can observe

that the complex tasks are ever-changing corresponding to the different
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apps involved. However, if we look at the higher-level common intentions

behind these complex tasks, we can find that Task 3 and Task 9 are all

related to doing micro-works on smartphones. Knowing and understand-

ing the common usage patterns/types and recurrent complex tasks could

help us to understand the users’ needs, better interpret their feedback, and

capture the requirements. So besides identifying the specific complex tasks

users conducted, we also want to infer the common types behind those

complex tasks. An unsupervised learning framework is proposed to cluster

all the complex tasks into different groups based on their extracted charac-

teristics. By clustering the complex tasks based on the extracted character-

istics, we provide evidence that there actually exist 17 common tasks with

47 sub-tasks, which could be identified solely from their salient properties.

Those tasks range from information check, micro documentation work and

family entertainments. Our proposed unsupervised learning framework is

rigorously validated through a wide set of metrics and statistical measures.

The remainder of this chapter is organized as follows. In Section 6.1, we

characterize the mobile complex tasks from three aspects: task context,

task complexity, and task content based on the proposed app-stream navi-

gation model. In section 6.2, we employ the unsupervised learning approach

to derive generic profiles of these complex mobile tasks. We conclude this

chapter in Section 6.3.

6.1 Characterization Approach: App-stream

Navigation Model

Given the available features we could extract from our app usage logs,

we propose to characterize the mobile complex tasks from three aspects:
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task context, task complexity, and task content. For the task context, the

hour of day and day of week would be used to indicate when the task

happens. In the search tasks, the number of queries, amount of websites

visited and completion time are always used to measure the task complexity

[103, 104]. Similarly, we also propose to use the number of apps/app cate-

gories involved, the number of app transitions and task completion time to

measure our mobile task complexity. For the task content, it should include

what tasks are about and how tasks are completed [97]. To characterize

the task content, besides the basic topics of this task, e.g. app categories

involved, we propose to capture the relationships among the apps accessed

sequentially for measuring how tasks are completed. For example, such

important characteristics include the “switch” interaction, which captures

how users switch between two apps frequently to accomplish some complex

tasks [26]. The different roles played by each app in the task is also worth-

while to pursue. For example, the “hub app”, which users always revisit

after interacting with other apps in a task, may provide more hints on the

user intents. For most app usage logs, user interactions are ordered by

timestamps and the accessed apps as shown in Figure 6.2a. To capture

these types of navigation and provide additional insights on the metrics

that measure task content, we introduce an app-stream navigation model

in this chapter.

Similar to the Labelled Transition System (LTS) for modeling user navi-

gation in visiting the websites [176], which uses the click-stream model to

capture user actions, the app-stream is understood to consist of a series of

accesses of apps in a complex task. The user simply opens an app, then

leaves that app after some interactions and then visits another app. The

transition will be labelled a ϕ− transition: we interpret the user to under-

take a transition p
ϕ−→ q from app p to app q. We are now able to define an
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(a) App Usage Logs

(b) App-stream Navigation Model

Figure 6.2: App-stream Navigation Model (Hub App: Whatsapp; Dom-
inant App: Yelp; App Switch: Whatsapp -> Yelp -> Whatsapp; Task
Completion Time: 10 min)

LTS describing the app-stream. Let AS = (Σ,Λ) be a labelled transition

system describing app-stream with Σ: The set of states comprising all apps

in the task, along with two start (⊤) and ending (⊥) states; Λ: This is the

set of actions ϕ the user can take.

6.1.1 Transition Types

To capture the micro-interaction, such as switching apps back and forth

within the task, we differentiate some transitions in our LTS. These tran-

sition labels are:
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Opening a new app (τ): A user can choose to open a new app (an app that

has not been visited by the user in this task) from the current state.

Going back to the last app (σ): A user accesses (revisits) the last app a

that she/he just visited prior to the current app b ( a ̸= b ).

Going back to in-task visited app (β): A user accesses the app that has

been visited previously in this task, but it is not the last app (revisitations

that exclude the App Switch).

All the transition types are illustrated in Figure 6.2b with the Task 7 for

booking lunch in Figure 6.1. We define the transition between WhatsApp

and Yelp, which could be tracked by σ transitions, as App Switch be-

haviours.

6.1.2 Hub Apps

In each complex task, we also want to extract the apps, “hub app”, which

user always go back to in a task. This could help us identify whether

there are specific apps - or even specific publishers - that are particularly

effective at attracting and engaging switching between other apps. For

instance, users may check the calendar app while replying email, where

the email app is the “central” app users are interacting with. Consumers

typically generate a greater amount of β or σ transitions to the “hub”

app, continually revisiting the “hub” after briefly accessing other apps. We

use Hs score to extract the “hub app” from each task, where Hs is the

summation on frequency of σ and β transitions in the same task of each

app. And the “hub app” H_A will be extracted to be the app that has

highest Hs in the task, which is defined as follows:

Hs = |{ aϕ | aϕ = σ or β}| (6.1)
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H_A = { a | Hs (a) = max (Hs (ai) , ...., Hs (an)) , ai ∈ Σ} (6.2)

Since the tasks with no revisiting transitions will be regarded as tasks in

which no “hub app” exists, Hs(a) must be greater than 0. If there are

multiple “hub apps” with the same highest Hs, we extract all of them as

the “hub apps” of this task. In the example illustrated in Figure 6.2b, the

“hub app” is WhatsApp, since the WhatsApp has the highest Hs score,

which is 2.

6.1.3 Dominant Apps

Besides measuring the revisited frequency, the time spent on each app

within a task should also be taken into consideration. We focus on dis-

tinguishing the time spent patterns by identifying if one app usage always

occupied most of the time or multiple apps are uniformly used within a

complex task. We then extract the app that occupied more than 50% of

the total duration of a complex task as the “dominant app”, e.g., the “Yelp”

app in the lunch booking task (Figure 6.2b).

In summary, we characterize all the complex mobile tasks from three facets

as shown in Table 6.1: context, complexity, and content. Each facet is

measured based on different features, which could be extracted from the

app usage logs given our proposed app-stream navigation model. In the last

column, we illustrate the values of all the features by the task in Figure 6.2b.

In the following sections, we uncover the various characteristics of complex

tasks based on our proposed app-stream navigation model and the large-

scale Flurry dataset (Section 3.2).
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Table 6.1: Characteristics of complex mobile tasks captured in this study.

Facets Features Values (illustrated by the task in
Figure 6.2b)

Context Hour of day 12
Day of week Saturday

Complexity

Number of unique apps 4
Number of unique app categories 4
Number of app transitions 5
Task completion time 10 min

Content*

Apps involved Communication, Food-and-Drink,
Navigation, Transportation

Hub app Communication
Dominant app Food-and-Drink
First app Communication
App Switch Communication -> Food-and-Drink

-> Communication

*: the task content is measured based on the app category level to avoid the sparsity
issue.

6.1.4 Characteristics of Complex Mobile Tasks

Since the temporal distribution (task context) of complex tasks follow the

general temporal pattern of app usage, which grew from 6 am and reached

its first peak around 11 am, and were most active during the evening (7

pm to 9 pm) [191, 94], we mainly display the characteristics of task com-

plexity and task content in this section. More specific temporal patterns

corresponding to the different complex tasks are explored in Section 6.2.

6.1.5 Task Complexity

We extract four features for capturing the complexity of mobile tasks: app

amount, app category amount, number of app transitions and task com-

pletion time. The CDF (Cumulative Distribution Function) of them are

plotted in Figure 6.3, where we can find that mostly there are fewer than

four different apps/app categories involved in the complex tasks with fewer

than eight times of app transitions. Additionally, 90% of the complex tasks

could be completed in 20 minutes.
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Figure 6.3: CDF of app amount, app category amount, number of app
transition, and task completion time in complex tasks.

App Transitions. Other than the number of apps/app categories in-

volved and total time spent, which have been used as the traditional statis-

tics to characterize an app usage session previously [16], we introduce a

new feature of mobile tasks to capture the characteristics of apps accessed,

app transition, based on our proposed app-stream navigation model. Given

a task, the app-stream is a time-ordered list of apps accessed by the user

within this task; app transition is defined as the transition between any

two sequential different apps in this app-stream. To further explore the

correlation between the number of app transitions and the two other gen-
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Table 6.2: Distribution of app transition types.

Transition Type % Transitions

Open a new app (τ) 71%
Switch to the last app (σ) 26.7%
Access the previous app (β) 2.3%

eral metrics (app amount involved and task completion time), we calculate

the Pearson coefficient between them. We find that no correlation exists be-

tween the number of app transitions and task completion time (ρ = 0.041),

which means that more times of transitions between apps does not indicate

longer time spent; a weak positive correlation exists between the number

of distinct apps used and the number of app transitions (ρ = 0.297), which

indicates that more apps involved could lead more potential app transitions

among them.

Table 6.2 shows the distribution of transition types in all complex tasks.

We can find that over 30% of the transitions in complex tasks are about

accessing the apps visited before in the same task. Interestingly, the tran-

sition type σ, switch between two apps, occupies most of the revisitation

behaviour. Thus we may hypothesize that most of the time, users revisit

the previous apps to resume the previous unfinished tasks. We will further

analyze the app switch in the followings.

6.1.6 Task Content.

Hub Apps: Do hub apps always exist in complex tasks? What

kinds of apps have higher probabilities to become hub apps? With

the definition of “hub app”, we extract all the hub apps for each complex

task. We find that the “hub app” exists in about 35.3% of complex tasks.

Table 6.3 shows popular hub app categories which are the ones with higher
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probabilities Ph to become “hub app” when compared to the others:

Ph(a) =
Fh(a)

F (a)
, (6.3)

where F (a) means the frequency of complex tasks that have app category

a involved, Fh(a) indicates that frequency of the complex tasks that have

app category a served as the hub app. We can find that the app categories,

like productivity, personalization, social and games are relatively popular

hub apps. Therefore, the mobile operating system may improve the app

recommendation services by promoting these hub apps on the top of the

suggested ranking list or in the quick tab bar when users want to revisit pre-

vious apps (double press the home button in iOS). This can facilitate users’

access to their interested apps more efficiently when completing complex

mobile tasks.

Table 6.3: Popular hub/dominant/first app categories in complex tasks.

Hub Prob. Ph Dominant Prob. Pd First Prob. Pf

productivity 0.14 casino 0.61 navigation 0.50
personalization 0.13 social 0.59 comics 0.50
comics 0.12 card 0.57 books 0.45
music 0.12 puzzle 0.57 utilities 0.44
social 0.11 games 0.56 games 0.44
games 0.11 word 0.55 news 0.42
transportation 0.10 family 0.54 lifestyle 0.42
tools 0.10 arcade 0.52 music 0.42
books 0.09 video 0.52 food-and-drinks 0.41
utilities 0.08 board 0.52 weather 0.41

Dominant Apps: Is there an app always occupied most of the time

in each complex task? What kinds of apps have higher probabili-

ties to be the dominant apps? To identify if the dominant app exists,

we first extract all the app categories which have the longest time spent in

each complex task. We find that 95% of the complex tasks are conducted

based on one dominant app category (which occupies more than 50% of the

time in a task). This suggests that even users are engaging with multiple
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apps together, most of the time they will only engage with a specific app

category rather than spending time evenly on different app categories. To

find the app categories that are more likely to become the dominant app

in each complex task, we extract the top app categories with the highest

probability Pd to become the dominant app category in Table 6.3. The Pd

is calculated in the similar way of Ph:

Pd(a) =
Fd(a)

F (a)
, (6.4)

where F (a) means the frequency of complex tasks that have app category

a involved, Fd(a) indicates that frequency of the complex tasks that have

app category a works as the dominant app. We find that the social, game

and video apps are much more likely to become the dominant app category,

e.g., casino, social, card, puzzle, games and video, etc. Additionally, the less

overlap between these popular dominant apps and hub apps in Table 6.3

also inspires us that the apps users always visited in a complex task may

not be the one with most of time spent.

First Apps: What kinds of apps are always the first app in com-

plex tasks? Within the search tasks, researchers [125] found that the first

query plays an important role in inferring the task types. Therefore, under

our mobile task scenarios, we also want to explore the apps that have a

higher possibility to act as the first app and if it could bring any insights for

the whole task. We first calculate the probability that if an app category

occurs in a complex task, how likely it is the first app user visits in this

task by:

Pf (a) =
Ff (a)

F (a)
, (6.5)

where Ff (a) indicates the frequency of complex tasks that have app cate-

gory a works as the first app. The results are shown in Table 6.3. We can
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Table 6.4: Popular app categories involved in switch (A->B->A).

Popular A in
App Switch

Probability Psa Popular B in
App Switch

Probability psb

health-and-fitness 0.31 widgets 0.32
personalization 0.27 health-and-fitness 0.32
productivity 0.23 transportation 0.24
tools 0.19 personalization 0.21
music 0.18 communication 0.21
social 0.18 tools 0.18
transportation 0.17 catalogs 0.18
communication 0.15 music 0.16
word 0.13 productivity 0.15
sports 0.13 sports 0.15

find that the navigation, comics, books, utilities and games apps are more

likely than other app categories to trigger a complex task.

How likely does the “first app” become the “hub app” /“dominant

app” in a complex task? Furthermore, we want to explore whether

the first app accessed by users is also the “hub app” or “dominant app”

in each complex task. We then observe that for the tasks that have “hub

apps”, over 95% of the cases, the first app is the same as the “hub app”; for

the tasks that have the “dominant apps”, 57% of them have the first app

as same as the dominant app. Therefore we may hypothesize that when

users have a focus while interacting within the complex mobile tasks, they

are more likely to start the task by that focus, the hub app. Meanwhile,

when predicting which app is the hub app within the current complex task,

the first app user accessed could be a good initial choice for the real-time

recommendation.

App Switch: is “app switch” as same as app co-occurrence? Un-

derstanding the switch interaction is important as it has more significant

implications. For example, if Facebook Messenger sees that people fre-

quently switch back and forth to launch Uber to hire a car, then Facebook

Messenger might want to consider integrating Uber (i.e. a riding service)
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Table 6.5: Popular app switches (A->B->A).

Popular App Switch Probability Psw

health-and-fitness -> productivity -> health-and-fitness 0.66
productivity -> health-and-fitness-> productivity 0.66
education->education->education 0.59
productivity -> personalization -> productivity 0.57
personalization -> productivity -> personalization 0.53
transportation -> communication -> transportation 0.51
productivity -> widgets -> productivity 0.50
productivity -> communication -> productivity 0.45
personalization -> tools -> personalization 0.45
music -> social -> music 0.41

into their own app. Therefore, the switch is important to be taken into

consideration for task mining, task-multiplicity and co-marketing partner-

ships between apps. Some previous works [16, 187] have reported the co-

occurrence of two apps in an app sequence. To identify the differences

between the switch and co-occurrence between two apps, we compare the

frequency distributions of switch and co-occurrences of all the app pairs

that appeared in the same complex task with Kolmogorov-Smirnov test

and find that, indeed, there is a significant difference in these two en-

gagement patterns (p-value<0.01). This implies that only simply counting

co-occurrences is not sufficient to capture the switch behaviours between

apps (as there are directional patterns within the app transitions). Mod-

elling complex tasks and their applications require incorporating more fine-

grained interactions.

App Switch: What kinds of apps have higher probabilities to be

involved in “app switch”? Table 6.4 displays the apps with higher prob-

abilities to be involved in the app switch when compared with other apps.

Since there are two positions in an app switch (A->B->A), we calculate

the probabilities for apps that would be involved in these two positions A
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and B respectively as Psa and Psb:

Psa =
Fsa(a)

F (a)
, (6.6)

Psb =
Fsb(a)

F (a)
, (6.7)

where the F (a) is the frequency of complex tasks that have app category a

involved. Then Fsa(a) and Fsb(a) indicate the frequency of complex tasks

that have app category a involved in an app switch in the position A and B

respectively. We can observe that when users access the apps such as the

health-and-fitness app, they will be more likely (31%) to switch to other

apps and then back to these apps again. It is also interesting to observe

that users are more likely to switch to widget apps (e.g. notification comes

when engaging with other apps). Additionally, we also find that the popular

apps accessed in the two positions (A and B) of the switch (A->B->A) are

similar (e.g. health-and-fitness app). This may imply that most of the

times, these apps may need more co-operations with other apps to help

users finish their tasks on mobile devices. We are also interested in the

probability that when two apps are visited sequentially (A and B), how

likely a σ transition (back to A) will occur next. We extract the most

popular app switches in the complex tasks in Table 6.5 by ranking the

probability Psw:

Psw(a, b) =
Fsw(a, b)

F (a, b)
, (6.8)

where F (a, b) means the frequency of complex tasks that have app category

a and app category b sequentially accessed. Then Fsw(a, b) represents the

frequency of complex tasks that after accessing app category a and b, the

user also switch back to a. These popular app switches could provide app

developers with more insights into app designs for improving user experi-

ences. For example, from the popular switches between health-and-fitness
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and productivity, we find that when users access the health-and-fitness and

productivity sequentially, i.e. checking email during doing exercises, users

have a higher probability to switch between them. These findings may

help the app developers to add additional functions to their apps, like mail

bulletin in fitness apps.

6.2 Complex Task Clustering

By analyzing the characteristics of complex tasks from a large-scale dataset,

we have gained insights of a large spectrum of complex tasks. In this sec-

tion, we aim to understand the complex tasks by uncovering whether there

are common patterns that exist in them based on our extracted charac-

teristics of the tasks. The main objective of this analysis is to divide the

complex tasks into natural groups that reflect salient patterns. It can cre-

ate the taxonomy for mapping users’ complex tasks into different types,

which could help to provide more satisfying mobile services to users. To

this end, we employed unsupervised learning to derive generic profiles of

these complex mobile tasks.

6.2.1 Clustering Approach

6.2.1.1 Complex Task Representation in Clustering.

Based on the characteristics of complex tasks extracted in Section 6.1, we

represent each complex task using the features listed in Table 6.6 for a to-

tal of 231 dimensions. Therefore, each complex task could be represented

with three types of features: context, complexity and content. Specifically,

they consist of the hour of the day and day of the week the task happened,
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distinct app categories amount, distinct apps amount, number of app tran-

sitions, task duration, app categories involved, hub app category, first app

category, switch app categories, and dominant app category within the

task. Take the task in Figure 6.2b as an example, the task representation

based on its characteristics could depict this specific complex task as it hap-

pened at 12 p.m. on Saturday; it had 4 distinct apps with 4 app categories,

which were Communication, Food-and-Drink, Navigation and Transporta-

tion; it was started by Communication apps usage; it lasted for 10 minutes

and dominated by Food-and-Drink apps for 50% of the total task duration.

Besides, users have 5 times of app transitions, whereas mostly transitions

are about revisiting the hub app — Communication. The switch between

Communication and Food-and-Drink apps also existed within this complex

task.

6.2.1.2 Clustering Algorithms

Given that there is no ground truth for how many different kinds of complex

tasks exist, the outcome of a clustering process is not (always) determin-

istic and may result in a different partitioning of the data, depending on

the specific criteria used (e.g. the number of clusters and type of cluster-

ing algorithm). Furthermore, we do not know a-priori which clustering

algorithm and configuration settings will perform better for the examined

domain, so we aim to opt for several representative options. More specifi-

cally, we considered centroid-, hierarchical-, and density-based algorithms.

Additionally, features we used for complex tasks clustering comprise both

numeric (e.g., number of distinct apps, task duration, etc.) and categorical

(e.g., hub app category, switch app categories, etc.) features. However,

most of the popular clustering algorithms are developed for pure numeric

data (for example K-means [110]) since the default “similarity” measures
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for grouping data points into clusters is Euclidean distance, which is only

suitable for numeric values.

To avoid the common pitfall of resorting to a single clustering algorithm

that may not be able to produce proper partitions and also overcome

the issues for mixed data types features, we select the clustering algo-

rithm that could be applied to mixed data types for each of the centroid-,

hierarchical- and density-based algorithms [3]. Centroid-based clustering

algorithms drive the notion of similarity by the closeness of a data point

to the centroid of the clusters. These algorithms run iteratively to find the

local optima and the number of clusters required in advance. Within the

centroid-based clustering algorithms, K-prototypes [74, 73] is an extension

of K-means for clustering large data sets with mixed numeric and categori-

cal values, whereas new representations of cluster centres and a new defini-

tion of distance between a data point and a cluster centre are proposed for

mixed datasets (i.e., cluster centres are represented by mean values for nu-

meric features and mode values for categorical features). Hierarchical-based

clustering algorithms work by forming an initial pair of clusters and then

recursively consider whether it is worth splitting/merging each one further;

this type of clustering algorithms can be represented as a binary tree (i.e.,

dendrogram). To deal with the mixed data types in clustering, Philip and

Ottaway [140] use Gower’s similarity measure [58] to compute the similarity

matrix for features in the hierarchical agglomerative clustering. Gower’s

similarity measure computes the similarity by dividing features into two

subsets: one for categorical features and the other for numeric features.

Density-based clustering algorithms search the data space for areas of the

varied density of data points in the data space. They isolate various density

regions and assign the data points within these regions in the same clus-

ter. Liu et al. [106] propose a density-based clustering algorithm for mixed
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Table 6.7: Summary of Clustering Algorithm Parameters

Category Algorithm Parameters Value
Centroid K-prototype[74, 73] Clusters [2,30]
Hierarchical Agglomerative [140] Clusters [2,30]

Linkage Type ward, complete, aver-
age

Affinity gower’s distance
Density DBSCAN[106] Neighborhood size [1e-3, 2e-3, 3e-3, 4e-3,

5e-3, 1e-2, 2e-2, 3e-2,
4e-2, 5e-2]

Min samples [5, 10, 50, 100, 300]

datasets. The authors extend DBSCAN [44] algorithm, where entropy is

used to compute the distance measure for mixed datasets. Table 6.7 shows

the clustering algorithms and the ranges of values we used to parameter-

ize them. The set of clustering algorithms × their parameter settings (see

Table 6.7) results in 217 possible clustering configurations.

6.2.2 Clustering Evaluation

In order to evaluate the quality of the clustering results from the different

configurations used, the internal validation measures often reflect the com-

pactness, the connectedness and the separation of the cluster partitions

[107], especially when there is no ground truth of the clustering results.

Zhao et al. [209] stated that although metrics for measuring clustering

performance exist (e.g., Dunn’s index [114]), they can not penalize both

for complexity and non-uniform distribution of data points across clusters.

Therefore, Shannon’s entropy [142] is used to reward the clustering per-

formance in their work. They defined a clustering performance (cp) score

by weighing four factors. The first and second factors are used to reward

the clustering performance using two well-known metrics: Shannon’s en-

tropy (E) and Dunn’s index. The third and the fourth factors are for

penalizing clustering results: since they used the k-means-MeanShift hy-
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brid clustering method, so they penalize the results that do not improve

over k-means results where the number of final clusters from MeanShift

is close to the number of clusters found by K-means; they also penalize

the results with non-uniform distribution of items across clusters: partic-

ularly those in which the biggest cluster contains most of the items in the

dataset. Since our features for clustering is mixed data types and we opt

to use multiple clustering algorithms for meta-evaluation, we are not able

to use the hybrid clustering method they proposed. Therefore, we removed

the third factor in their cp score equation, which is specifically defined for

their k-means-MeanShift hybrid method. We use the following cp score for

measuring the clustering performance of different clustering algorithms:

cp = 0.3E + 0.23D + 0.23
N − n

N
. (6.9)

The probability used for calculating Shannon’s entropy (E) score is the

normalized number of tasks in each cluster. Thus, entropy assigns a high

value to clustering results that have a uniform distribution of tasks across

clusters. Dunn’s index (D), on the other hand, is the internal validity that

measures the compactness and separation of the clusters obtained. The last

factor is for penalizing clustering results that the biggest cluster contains

most of the tasks in the dataset, where N is the number of items input to

clustering, n is the number of items in the biggest cluster after clustering.

By combining these three factors, we guarantee that the resulting clusters

are compact, well separated and the number of tasks in the biggest clusters

is well distributed (i.e., a single cluster does not contain most of the tasks).

By using the cp score in Eq. 6.9, and trying all the configurations of clus-

tering algorithms in Table 6.7, we obtained the best clustering algorithm

with the highest cp score, which is the hierarchical agglomerative cluster-
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6.2. COMPLEX TASK CLUSTERING

Table 6.8: Meta-evaluating Results of Clustering Algorithms

Category Algorithm Config. cp score

Centroid K-prototype K = 30 0.403
K = 26 0.386
K = 23 0.299

Hierarchical Agglomerative K = 17, Linkage = Complete 0.474
K = 30, Linkage = Complete 0.448
K = 16, Linkage = Complete 0.444

Density DBSCAN Neighborhood size = 3e-2, min
samples = 5

0.265

Neighborhood size = 3e-2, min
samples = 10

0.265

Neighborhood size = 1e-2, min
samples = 300

0.118

ing algorithm result in 17 clusters with complete linkage type. We need to

note that, since the three factors E, D and N−n
N

have different scales based

on our clustering results (e.g., E ∈ (0, 3.8) and D ∈ (0.05, 0.3)), we scale

each of them by the Z-score method to obtain the normalized results. We

also list the top-ranked results of each category of algorithms with their

corresponding configurations respectively in Table 6.8. We can find that

the hierarchical- and centroid-based clustering algorithms perform better

than the density-based algorithm for our task.

6.2.3 Cluster Analysis

Ultimately, we obtained 17 clusters (types of complex tasks) based on

the best performing Hierarchical Agglomerative clustering algorithm (Ta-

ble 6.8). Figure 6.4a shows the distribution of clusters with respect to its

number of data points (i.e., tasks). As we can see, there are 7 clusters

consisting of more than 5% of data points. The biggest cluster constitutes

27% of data points. For most of the features related to task complexity

(numeric), we display the average value of the corresponding feature for

the data points of each cluster in Figure 6.4b - Figure 6.4d. We can find
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Figure 6.4: Basic statistics of 17 common clusters (color shown in the
figures is only used to distinguish different clusters).
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that the values of most complexity features are strikingly similar across all

the clusters (e.g., the number of apps/transitions), which makes it hard

to visually distinguish them. More differences exist in the task completion

time of all clusters, where we can observe that the bigger clusters with more

data points are mostly with shorter task completion time. To appropriately

describe the differences among the clusters, especially with those categor-

ical features (which cannot be aggregated based on the mean value), we

performed a pattern selection step to find the most salient pattern which

could distinguish a given cluster from all the others. Then we analyze the

clusters based on those selected salient patterns.

6.2.3.1 Salient Pattern Criteria

To better understand the clusters created by our method, we need to se-

lect a few salient patterns that could represent the characteristics of each

cluster. In general, we want to find the distinctive patterns that could

distinguish the cluster from the others. To identify these distinctive char-

acteristics, we use two selection strategies according to the different feature

types: (1) mean±2std for complexity and content features; (2) paired t-test

p value for context features.

• mean±2std (complexity and content features): The characteristic of

a cluster is a special quality or trait that makes it different from

others. Thus, one’s characteristics usually are not very close to the

average of all the clusters. For each complexity and content feature,

we assume that the probability distribution of feature values follow

the Gaussian distribution. Then for each cluster, we aim to focus on

those features with values far away from mean of the feature (more

than two standard deviations (std)), i.e. lying outside the interval of
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6.2. COMPLEX TASK CLUSTERING

mean±2std [212], which may be good recognizable characteristics for

the cluster.

For a numeric feature F , we firstly normalize all the values by Z-score

and then get the interval of mean±2std from the normalized feature

value of tasks of all clusters directly. Then we compare the mean

feature value of each cluster to the general distribution of this feature

for identifying if it is a salient feature of this cluster (i.e., falling in or

out of the interval of mean±2std). For example, if the feature F is

task duration (D) and the average task duration of Cluster 1 is 1.6

minutes which is shorter than mean-2std of all clusters, then the task

duration of 1.6 minutes will be selected as a salient characteristic for

representing Cluster 1. Otherwise, if the task duration of a cluster i

falls in the interval of mean±2std, it will not be selected to be shown

as a salient pattern feature for representing this cluster, which means

this cluster has the normal task duration, similar to all other clusters.

For a categorical feature F , since we cannot get the distribution of

the feature value directly, we model the distribution as the fraction

of this categorical feature value appears in each cluster. For example,

when the feature F is hub app category (Ha), i.e., Social apps, we will

first get the fraction it appears as a hub app in each cluster. E.g., the

Social apps have 100 times as the hub apps in all the clusters, which

include 12 times (12%) in Cluster 2, 67 times (67%) in Cluster 4, 10

times (10%) in Cluster 5, 8 times (8%) in Cluster 7 and 3 times (3%)

in Cluster 11. Then we normalize this fraction distribution across

all the clusters and find that the hub app category Social is a salient

pattern for Cluster 4 since its normalized fraction value is bigger than

mean+2std of fraction distribution for all the clusters.

• paired t-test p-value (context features): The temporal (hour and
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weekday) feature is a special case which is kind of the mix of numeric

and categorical since even they are discrete values, they are also or-

dered. We firstly get the hour/day frequency distribution (Min-Max

scaled) of all tasks as the general pattern of all clusters. Then for

each Cluster i, we also get the hour/day frequency distribution (Min-

Max scaled) of this cluster. Lastly, we compare the distribution of

each Cluster i to the general distribution based on the paired t-test to

identify if it could be selected as a salient pattern of Cluster i. When

its distribution is significantly different from the general distribution

(p-value < 0.001), the hour/weekday temporal pattern of the Cluster

i is selected as a salient pattern.

6.2.3.2 Analyzing Clusters based on Selected Salient Character-

istics.

In this section, we examine the characteristics of each cluster based on the

selected salient patterns. Since the finalized best clustering algorithm for

our problem is hierarchical agglomerative clustering, we are able to further

split the 17 clusters into 47 sub-clusters (which gets the best cp score with

the number of clusters under the limits of 50) to dig into the detailed

characteristics of the big clusters. We show the salient patterns of each

cluster in Table 6.9 - 6.12. Before we analyze the clusters, we need to note

that, firstly, the clusters are organized according to how many data points

(tasks) are in them, with Cluster 1 (C1) representing the biggest cluster.

Secondly, due to the limited space, we only list the top one or two values

of each salient pattern in Table 6.9 - 6.12, which are selected based on the

criteria defined in Section 6.2.3.1; the symbol “-” means there is no salient

pattern for this feature of this cluster. Lastly, since the number of app
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ng
w

hi
le

pl
ay

in
g

ac
-

ti
on

ga
m

es
.

C
30

(0
.5

%
)

In
fo

R
eq

ui
re

m
en

t
w

hi
le

M
ob

ile
M

ee
t-

in
g

bu
si

ne
ss

bu
si

ne
ss

bu
si

ne
ss

->
tr

av
el

->
bu

si
ne

ss
,

bu
si

ne
ss

->
pr

od
uc

ti
vi

ty
-

>
bu

si
ne

ss

bu
si

ne
ss

->
tr

av
el

-
>

bu
si

ne
ss

,
bu

si
ne

ss
->

to
ol

s

-
-

In
fo

ne
ed

ed
du

ri
ng

m
ob

ile
m

ee
ti

ng
,

e.
g.

,
ch

ec
k

do
cu

m
en

ta
ti

on
or

bo
ok

fli
gh

ts
.

C
32

(0
.4

%
)

R
ac

in
g

G
am

es
w

it
h

In
fo

C
he

ck

ra
ci

ng
ra

ci
ng

ra
ci

ng
->

w
id

ge
ts

->
ra

ci
ng

ra
ci

ng
->

w
id

ge
ts

->
ra

ci
ng

,
ra

ci
ng

->
w

ea
th

er
-

P
:6

pm
-

9
pm

N
P

:
11

am
-

4
pm

In
fo

ch
ec

k
w

hi
le

pl
ay

in
g

ra
ci

ng
ga

m
es

.

C
36

(0
.3

%
)

P
ho

to
gr

ap
hy

w
it

h
D

is
cu

ss
io

n
an

d
Sh

ar
in

g

ph
ot

og
ra

ph
y

-
ph

ot
og

ra
ph

y-
>

pe
rs

on
al

iz
at

io
n-

>
ph

ot
og

ra
ph

y,
ph

ot
og

ra
ph

y-
>

co
m

m
un

ic
at

io
n-

>
ph

ot
og

ra
ph

y

ph
ot

og
ra

ph
y-

>
co

m
m

un
ic

at
io

n-
>

ph
ot

og
ra

ph
y,

ph
og

ot
ra

ph
y-

>
pe

rs
on

al
iz

at
io

n-
>

ph
ot

og
ra

ph
y

-
P

:
9

am
,

1
pm

an
d

7
pm

D
is

cu
ss

or
sh

ar
e

ph
ot

os
w

it
h

fr
ie

nd
s

w
hi

le
ed

it
in

g.

C
40

(0
.1

%
)

Sh
or

tl
y

In
te

rr
up

te
d

by
N

ot
ifi

ca
ti

on
s

w
id

ge
ts

-
w

id
ge

ts
->

so
ci

al
->

w
id

ge
ts

,
w

id
ge

ts
->

co
m

m
un

ic
at

io
n-

>
w

id
ge

ts

w
id

ge
ts

->
so

ci
al

->
w

id
ge

ts
,

w
id

ge
ts

->
co

m
m

un
ic

at
io

n-
>

w
id

ge
ts

2.
4

m
in

⊖
P

:3
pm

In
te

rr
up

te
d

by
th

e
po

p-
up

no
ti

fic
at

io
ns

an
d

pr
oc

ee
d

to
ch

ec
k

th
e

so
ci

al
m

ed
ia

or
co

m
m

un
ic

at
io

n
ap

ps
in

a
sh

or
t
ti

m
e.

C
42

(0
.1

%
)

R
ef

er
en

ce
In

fo
Su

p-
po

rt
ed

Ta
sk

s

re
fe

re
nc

e
-

-
re

fe
re

nc
e-

>
pr

od
uc

ti
vi

ty
,

re
fe

re
nc

e-
>

he
al

th
P

:
7

am
an

d
10

pm
C

he
ck

th
e

di
ct

io
na

ry
fo

r
so

m
e

un
co

m
-

m
on

ly
us

ed
in

fo
rm

at
io

n
w

hi
le

en
ga

gi
ng

(l
ea

rn
in

g)
w

it
h

ot
he

r
A

pp
s.

C
44

(0
.1

%
)

Tr
av

el
R

el
at

ed
In

fo
C

he
ck

tr
av

el
-

tr
av

el
->

so
ci

al
->

tr
av

el
,

tr
av

el
->

pr
od

uc
ti

vi
ty

->
tr

av
el

tr
av

el
->

pr
od

uc
ti

vi
ty

-
>

tr
av

el
,

tr
av

el
->

so
ci

al
->

tr
av

el

-
P

:
7

am
an

d
13

pm
In

fo
ch

ec
k

du
ri

ng
tr

av
el

lin
g

or
pl

an
ni

ng
fo

r
tr

av
el

.

C
45

(0
.0

%
)

-
-

-
-

19
.8

m
in

⊕
-

C
4

(8
.3

%
)

C
om

m
un

ic
at

io
n

Su
p-

po
rt

ed
Ta

sk
s

C
3

(6
.1

%
)

A
ux

ili
ar

ie
s

N
ee

de
d

C
om

m
un

ic
at

io
n

co
m

m
un

ic
at

io
n

co
m

m
un

ic
at

io
n

co
m

m
un

ic
at

io
n-

>
w

ea
th

er
-

>
co

m
m

un
ic

at
io

n,
co

m
m

un
ic

at
io

n-
>

to
ol

s-
>

co
m

m
un

ic
at

io
n

co
m

m
un

ic
at

io
n-

>
to

ol
s-

>
co

m
m

un
ic

at
io

n,
co

m
m

un
ic

at
io

n-
>

so
ci

al
-

>
co

m
m

un
ic

at
io

n

-
-

So
m

e
au

xi
lia

ri
es

ar
e

ne
ed

ed
w

hi
le

co
m

-
m

un
ic

at
io

n
w

it
h

fr
ie

nd
s

(e
.g

.
ch

ec
k

w
ea

th
er

w
hi

le
di

sc
us

si
ng

th
e

pl
an

fo
r

an
ou

ti
ng

).

C
19

(1
.2

%
)

C
ar

d
G

am
es

w
it

h
C

om
m

un
ic

at
io

n

ca
rd

ca
rd

ca
rd

->
co

m
m

un
ic

at
io

n-
>

ca
rd

ca
rd

->
co

m
m

un
ic

at
io

n-
>

ca
rd

,
ca

rd
->

co
m

m
un

ic
at

io
n

14
.9

m
in

⊕
-

In
te

ns
e

ca
rd

ga
m

es
pl

ay
in

g
w

it
h

fr
ie

nd
s.

C
22

(1
.1

%
)

Sh
op

pi
ng

D
is

cu
s-

si
on

sh
op

pi
ng

sh
op

pi
ng

sh
op

pi
ng

->
co

m
m

un
ic

at
io

n-
>

sh
op

pi
ng

sh
op

pi
ng

->
co

m
m

un
ic

at
io

n-
>

sh
op

pi
ng

,
sh

op
pi

ng
->

co
m

m
un

ic
at

io
n

-
P

:1
2

pm
an

d
10

pm
-

0
am

H
av

e
so

m
e

di
sc

us
si

on
s

w
it

h
fr

ie
nd

s
w

hi
le

on
lin

e
sh

op
pi

ng
.

*:
th

is
cl

us
te

r
ha

s
m

or
e

ap
p

am
ou

nt
s/

ap
p

ca
te

go
ri

es
/a

pp
tr

an
si

ti
on

s.
⊖

:
th

is
cl

us
te

r
ha

s
re

la
ti

ve
ly

sh
or

te
r

ta
sk

co
m

pl
et

io
n

ti
m

e
(d

ur
at

io
n)

,w
hi

ch
fa

lls
in

to
th

e
ra

ng
e
>

m
ea
n
+
2s
td

w
it

hi
n

th
e

du
ra

ti
on

di
st

ri
bu

ti
on

of
al

lt
as

ks
.

⊕
:

th
is

cl
us

te
r

ha
s

re
la

ti
ve

ly
lo

ng
er

ta
sk

co
m

pl
et

io
n

ti
m

e
(d

ur
at

io
n)

,w
hi

ch
fa

lls
in

to
th

e
ra

ng
e
<

m
ea
n
−
2s
td

w
it

hi
n

th
e

du
ra

ti
on

di
st

ri
bu

ti
on

of
al

lt
as

ks
.

P
:p

op
ul

ar
ti

m
e

ra
ng

e
of

th
is

cl
us

te
r

co
m

pa
re

d
w

it
h

av
er

ag
ed

te
m

po
ra

ld
is

tr
ib

ut
io

n
of

al
lt

as
ks

.
N

P
:u

np
op

ul
ar

ti
m

e
ra

ng
e

of
th

is
cl

us
te

r
co

m
pa

re
d

w
it

h
av

er
ag

ed
te

m
po

ra
ld

is
tr

ib
ut

io
n

of
al

lt
as

ks
.
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6.2. COMPLEX TASK CLUSTERING

Ta
bl

e
6.

11
:

Sa
lie

nt
ch

ar
ac

te
ri

st
ic

s
(D

is
ti

nc
ti

ve
H

ub
,D

om
in

an
t,

Sw
it

ch
,S

eq
ue

nc
e,

D
ur

at
io

n
an

d
Te

m
po

ra
lP

at
te

rn
)

of
cl

us
te

rs
:

P
ar

t
II

I

C
lu

st
er

#
17

S
u
b
cl

u
st

er
#

47
H

u
b

D
om

in
an

t
S
w

it
ch

S
eq

u
en

ce
D

u
ra

ti
on

T
em

p
or

al
T
as

k
D

es
cr

ip
ti

on
C

ri
te

ri
a

m
ea

n±
2s
td

m
ea

n±
2s
td

m
ea

n±
2s
td

m
ea

n±
2s
td

m
ea

n±
2s
td

p-
va

lu
e<

0.
00

1
C

5
(8

.1
%

)
M

ul
ti

pl
e

G
am

es
P

la
yi

ng
C

7
(3

.7
%

)
A

rc
ad

e
G

am
es

D
om

in
at

ed
E

nt
er

ta
in

m
en

t

-
ar

ca
de

-
ar

ca
de

->
en

te
rt

ai
nm

en
t,

ar
ca

de
->

sp
or

ts
-

-
P

la
yi

ng
A

rc
ad

e
ga

m
es

an
d

ot
he

r
ga

m
es

to
ge

th
er

.

C
8

(3
.5

%
)

M
ul

ti
pl

e
Sp

or
ts

G
am

es
sp

or
ts

sp
or

ts
sp

or
ts

->
sp

or
ts

->
sp

or
ts

,
sp

or
ts

->
ar

ca
de

->
sp

or
ts

sp
or

ts
->

sp
or

ts
,

sp
or

ts
->

ar
ca

de
-

N
P

:6
am

-
12

pm
P

la
yi

ng
sp

or
ts

an
d

ar
ca

de
ga

m
es

to
ge

th
er

.

C
33

(0
.3

%
)

Fa
m

ily
E

nt
er

ta
in

m
en

t
fa

m
ily

fa
m

ily
fa

m
ily

->
ar

ca
de

->
fa

m
ily

,
fa

m
ily

->
ca

su
al

->
fa

m
ily

fa
m

ily
->

en
te

rt
ai

nm
en

t,
fa

m
ily

->
ar

ca
de

->
fa

m
ily

-
P

:6
pm

-8
pm

N
P

:9
pm

-
10

am
Fa

m
ily

fu
n

ti
m

e
w

it
h

ga
m

es
an

d
T

V
s.

C
34

(0
.3

%
)

M
or

ni
ng

M
ul

ti
pl

e
G

am
es

ar
ca

de
-

ar
ca

de
->

si
m

ul
at

io
n-

>
ar

ca
de

,
ar

ca
de

->
sp

or
ts

->
ar

ca
de

ar
ca

de
->

ar
ca

de
->

ar
ca

de
,

ar
ca

de
->

en
te

rt
ai

nm
en

t-
>

ar
ca

de

-
P

:8
am

-
2

pm
N

P
:a

ft
er

no
on

an
d

ev
en

in
g

P
la

yi
ng

m
ul

ti
pl

e
ga

m
es

du
ri

ng
m

or
ni

ng
ti

m
e.

C
37

(0
.2

%
)

C
as

ua
la

nd
A

rc
ad

e
G

am
es

ca
su

al
ca

su
al

ca
su

al
->

ar
ca

de
->

ca
su

al
,

ar
ca

de
->

ca
su

al
->

ar
ca

de
ca

su
al

->
ar

ca
de

,
ca

su
al

->
ca

rd
-

P
:1

am
an

d
3

pm
P

la
yi

ng
ca

su
al

an
d

ar
ca

de
ga

m
es

to
ge

th
er

.

C
6

(6
.3

%
)

So
ci

al
iz

in
g

In
vo

lv
ed

w
it

h
O

th
er

s
an

d
M

us
ic

C
4

(5
.4

%
)

O
th

er
s

A
pp

s
w

it
h

So
ci

al
iz

-
in

g

ot
he

rs
ot

he
rs

ot
he

rs
->

so
ci

al
->

ot
he

rs
,

ot
he

rs
->

m
us

ic
->

ot
he

rs
ot

he
rs

->
so

ci
al

,
so

ci
al

->
ot

he
rs

->
so

ci
al

-
>

ot
he

rs
,

ot
he

rs
->

so
ci

al
->

ot
he

rs

-
P

:8
pm

-1
1

pm
N

P
:9

am
-

7p
m

In
te

rl
ea

ve
d

by
so

ci
al

iz
in

g
or

m
u-

si
c

bu
t
m

ai
nl

y
en

ga
ge

w
it

h
ot

he
rs

A
pp

s
at

ni
gh

t.

C
23

(0
.8

%
)

M
us

ic
w

it
h

So
ci

al
iz

in
g

an
d

O
th

er
s

m
us

ic
m

us
ic

m
us

ic
->

so
ci

al
->

m
us

ic
,

m
us

ic
->

ot
he

rs
->

m
us

ic
m

us
ic

->
so

ci
al

->
m

us
ic

,
m

us
ic

->
ot

he
rs

->
m

us
ic

-
P

:1
am

-3
am

N
P

:1
0

am
-

3p
m

In
te

rl
ea

ve
d

by
so

ci
al

iz
in

g
or

ot
h-

er
s
bu

tm
ai

nl
y

en
ga

ge
w

it
h

lis
te

n-
in

g
to

th
e

m
us

ic
at

la
te

ni
gh

t.

C
7

(5
.5

%
)

C
om

pl
ex

To
ol

s
U

sa
ge

C
6

(3
.7

%
)

To
ol

s
C

oo
pe

ra
ti

on
-

-
-

to
ol

s-
>

to
ol

s,
to

ol
s-

>
ut

ili
ti

es
-

-
So

m
e

ta
sk

s
ne

ed
to

us
e

m
ul

ti
pl

e
to

ol
s

to
co

m
pl

et
e,

e.
g.

us
e

C
al

cu
-

la
to

r
an

d
re

co
rd

th
e

re
su

lt
s

in
th

e
N

ot
es

.

C
15

(1
.8

%
)

M
ob

ile
Se

tt
in

gs
pe

rs
on

al
iz

at
io

n
pe

rs
on

al
iz

at
io

n
pe

rs
on

al
iz

at
io

n-
>

to
ol

s-
>

pe
rs

on
al

iz
at

io
n,

pe
rs

on
al

iz
at

io
n-

>
so

ci
al

-
>

pe
rs

on
al

iz
at

io
n

pe
rs

on
al

iz
at

io
n-

>
to

ol
s-

>
pe

rs
on

al
iz

at
io

n,
pe

rs
on

al
iz

at
io

n-
>

to
ol

s

-
P

:1
1

am
an

d
7-

8
pm

N
P

:1
2

pm
-

6
pm

M
an

ag
e

m
ob

ile
se

tt
in

gs
w

it
h

to
ol

s.

C
8

(4
%

)
D

oc
/P

ho
to

/V
id

eo
E

di
t-

in
g

C
11

(2
.2

%
)

M
ic

ro
D

oc
um

en
ta

ti
on

W
or

k
-

to
ol

s
to

ol
s-

>
pr

od
uc

ti
vi

ty
->

to
ol

s,
pr

od
uc

ti
vi

ty
->

to
ol

s-
>

pr
od

uc
ti

vi
ty

co
m

m
un

ic
at

io
n-

>
pr

od
uc

ti
vi

ty
->

to
ol

s-
>

pr
od

uc
ti

vi
ty

,
pr

od
uc

ti
vi

ty
->

to
ol

s-
>

pr
od

uc
ti

vi
ty

->
to

ol
s-

>
pr

od
uc

ti
vi

ty

2.
3

m
in

⊖
-

R
ep

ly
em

ai
l

or
ed

it
do

cu
m

en
ts

w
it

h
co

m
m

un
ic

at
io

n
an

d
au

xi
l-

ia
ry

to
ol

s.

C
16

(1
.8

%
)

V
id

eo
/P

ho
to

E
di

ti
ng

to
ol

s,
ut

ili
ti

es
-

to
ol

s<
->

ph
ot

og
ra

ph
y-

>
to

ol
s

to
ol

s-
>

ph
ot

og
ra

ph
y-

>
to

ol
s,

to
ol

s-
>

vi
de

o-
>

to
ol

s

-
-

E
di

t
ph

ot
os

or
vi

de
os

w
it

h
au

xi
l-

ia
ry

to
ol

s.

C
9

(3
.7

%
)

N
ew

s
R

ea
di

ng
C

10
(2

.6
%

)
M

ul
ti

pl
e

N
ew

s
So

ur
ce

B
ro

w
si

ng

ne
w

s
ne

w
s

ne
w

s-
>

ne
w

s-
>

ne
w

s,
ne

w
s-

>
co

m
m

un
ic

at
io

n-
>

ne
w

s

ne
w

s-
>

ne
w

s,
ne

w
s-

>
co

m
m

un
ic

at
io

n
-

-
B

ro
w

se
ne

w
s

fr
om

m
ul

ti
pl

e
pl

at
-

fo
rm

s.

C
20

(1
.1

%
)

R
ed

ir
ec

t
to

N
ew

s
-

-
pr

od
uc

ti
vi

ty
->

ne
w

s-
>

pr
od

uc
ti

vi
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6.2. COMPLEX TASK CLUSTERING

categories/apps/transitions (feature Nac, Na, and Nat) are similar for most

of clusters (as shown in Figure 6.4), we do not show them separately and

only mark the clusters with salient values of these features with “∗” on the

cluster name in Table 6.9-6.12. Based on the distinctive characteristics (i.e.,

hub app category, dominant app category, switch units and sequences, etc.)

of each cluster, we also summarize each cluster with a task label under the

cluster number (e.g., we label the biggest Cluster 12 as “Multiple Updated

Info Check”) and a task description in the last column.

From Table 6.9-6.12, we can observe that there exist several common trends

of complex mobile tasks from the 47 clusters characteristics:

• Gathering the real-time information every now and then. From the

top-ranked clusters (C1 and C3), we can find that gathering the lat-

est information and updates is a great demand for mobile users to

conduct complex tasks. Almost one-third of the complex tasks are

performed since users tend to browse multiple information sources to-

gether on smartphones to obtain the latest information (C1). These

tasks are all very short, lasting only about 1.6 min, during which

users may try to skim the latest mails (productivity), stock (finance)

and weather information sequentially. Additionally, other than gath-

ering information from multiple sources in one go, this information

gathering behaviour also occurs while users are intensively engaging

(i.e., the hub and dominant app of the task is the same app) with

another app (C3). Examples include: checking news while watch-

ing TVs (C3-5), checking the navigation and weather information

before going outside for running/cycling (C3-18) and checking flight
2Since we have clusters with two kinds of granularities, we use the form of C# to

refer the original clusters (17 in total), e.g., C2; we use the form of C#-# to refer to
the sub-clusters (47 in total), e.g., C2-9, where the first number is the original cluster
number (C2) and the second number is the sub-cluster number (C9).
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6.2. COMPLEX TASK CLUSTERING

tickets during online meetings (C3-30). Furthermore, most of these

information-gathering complex tasks have no specific temporal pat-

tern, which means users usually perform those types of tasks every

now and then.

• Social or communication dominated complex tasks are popular. It is

widely known that social networking and messaging apps are popular

on smartphones [45, 16, 40]. We find that these apps are not only

popular for independent usage, they are also engaged in conjunction

with multiple other apps together, occupying about 30% of the com-

plex tasks (C2, C4, C6, C13, and C16). We observe that users would

intensively browse social networking apps (C2) or communicate with

friends (C4). For the social networking dominated complex tasks,

most of them are performed because users tend to browse multiple

social networking apps together. For the communication dominated

complex tasks, other apps are mostly involved as the auxiliaries to

facilitate the discussion (e.g., info search). These kinds of social or

communication oriented complex tasks could happen all day, which

have no specific temporal patterns. Besides, social apps are usually

engaged with other apps during specific times, e.g., browsing social

media apps while listening to music during the night (C6), checking

the social networking apps while watching TV during the evening and

night (C13-28). Communication apps are also frequently used within

many types of other apps as a supportive channel, e.g., communicat-

ing with friends for making shopping decisions (C4-22), playing cards

(C4-19) or discussing some complex topics (C16).

• Different forms of game playing with different game types. There

are three different kinds of game-playing dominated complex tasks

(C5, C10, and C14), which account for 11.4% of the complex tasks.
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6.2. COMPLEX TASK CLUSTERING

Firstly, for Arcade, Sports and Casual games, users prefer to engage

with them in addition to other different games together (C5). For

Puzzle games, users mostly only focus on the same category of puzzle

games, but auxiliaries are always needed to figure out the puzzle

(C10). Similarly, for word and board games, users prefer to only

engage with the same kinds of games, but for a longer period of time

(C14). Additionally, for all of these game-playing dominated complex

tasks, they mostly have specific temporal patterns, e.g., intensive

(long-time) word/board game-playing usually happen during night

time (C14).

• Micro-work tasks at any time. Smartphones are more likely to be used

as a “pocket mobile computer” nowadays, whereas diverse tool/util-

ity apps are installed for helping users to complete micro-work tasks.

However, many tools and utility apps are designed only with func-

tionalities that focus on a single dimension. Some complex tasks

are conducted given cooperation between multiple tool apps are re-

quired when completing the micro-work tasks (C7-6), e.g., calculation

with note-taking (with Calculator and Notes app). Taking notes on

different information sources (C15) are also usually performed. Ad-

ditionally, users may also use multiple tool apps to complete more

advanced personalized mobile settings (e.g., task management) (C7-

15). Other than those basic tool cooperation oriented complex tasks,

users increasingly prefer to use the smartphone for conducting quick

documentation works (C8-11), e.g., replying to email or editing doc-

uments (with auxiliary tools) while communicating with colleagues.

Editing the videos and photos with auxiliary tools on smartphones

(C8-16) is also a growing trend. Most of these micro-work complex

tasks have no specific temporal patterns, which means users would
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conduct them at any time.

• Media reading from multiple sources. The last common pattern for

generating complex tasks is media reading. We can observe that,

even with one media format, users prefer to engage with multiple

sources together, e.g, reading news from multiple different news plat-

forms (C9), engaging with multiple lifestyle apps (C11) and watching

videos from different video sites or switch between video and TV

sites (C12). Furthermore, it is interesting to find that different from

the engagement pattern of video sites, while watching TVs, users

would focus on one TV app and did not switch between different TV

sources. However, they will be distracted by social media or message

notifications (C13).

Our clustering results shed lights on fine-grained patterns of how users

perform common complex mobile tasks in the wild.

6.3 Discussion and Conclusion

Users increasingly prefer to complete tasks with mobile devices in their

daily life. While modern mobile devices only effectively serve many of the

individual apps that correspond to simple mobile needs, users get little or

no help when their needs transcend the boundary of a single mobile app.

In this chapter, by employing the automatic identification of mobile tasks

(chapter 5) in a large-scale dataset, we focus on understanding the complex

tasks which are more time-consuming and difficult for users to complete.

The complex tasks are characterized from three aspects, including context,

content and complexity. Given the extracted characteristics for represent-

ing complex tasks, we show evidence that there actually exist several dif-
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ferentiable groups of complex tasks, which could be identified solely from

their salient properties. It provides us with a fine-grained picture of the

common complex mobile tasks users perform in the wild.

6.3.1 Implications

Currently, the cognitive burden of keeping track of complex mobile tasks

is placed on the user. The tasks with high-level intentions that span across

multiple apps/services should be taken into consideration. Smartphone

manufacturers, app developers and anyone who impact the way how apps

are engaged on phones, which apps are used and how people select apps to

execute, should no longer treat apps independently. Based on the mobile

tasks we observed, we elaborate on the implications of our research as

below.

Smartphone manufacturers can build smartphones with operating systems

that could provide an intelligent switching interface towards improving the

user experience. As we have discovered in our work, mobile users have

common requirements for engaging with multiple apps together, thereby

creating a need for an efficient app switching mechanism. If the switching

interface can be improved by absorbing the concept of shared intents in

within app switching as well as optimizing the layout design to support

navigation between recently used apps, there should be a possibility to

enhance the efficiency and user experience for both the workflow and frag-

mented attention usage on the smartphone. In our work, we have found

that some apps have higher possibilities to serve as the “hub” app (has the

highest possibility to be switched back to) during a complex task (Sec-

tion 6.1.2). This feature can be taken into consideration when predicting

which app will be switched to next, rather than always popping up the app
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most recently used. Additionally, the “hub” app, as the communication app

in C4 (Communication Supported Tasks), could be set as the background

or positioned within the central view port when designing the layout of the

switch panel.

Screen management apps could help users manage their apps in a more

efficient way based on the typical complex tasks found in this chapter.

Rather than managing apps solely based on their categories, they can be

organized based on tasks, taking into account users’ contextual informa-

tion (e.g., time and location). For example, the C10-39 (Intense Puzzle

Games with Auxiliaries) always has a higher possibility to happen in the

evening. Therefore, the puzzle and notepad, which are originally from two

app categories, could be placed closer for ease of access during this time.

Furthermore, app developers should also be thinking about improving their

services in terms of co-operations with other apps, which is important to

be taken into consideration for co-marketing partnerships between apps.

For example, we find that users prefer to switch between communication

and card apps in C4-19 (Card Games with Communication). App devel-

opers may want to add an additional function to their card apps, like a

communication bulletin, or messages pop-up. Additionally, the app devel-

opers should also improve their services by making it easy to complete any

mobile tasks in a single app, which means the design of applications should

be self-sufficient. For example, we find that users prefer to access mail,

finance, news and weather apps sequentially when doing the morning reg-

ular check (C1 - Multiple Updated Info Check). The app developers may

need to think about designing an information integration app for helping

users obtain the information more efficiently. Some interesting patterns of

different information sources could also be aggregated before showing to

users, e.g., the relationship between the trend of the stock market and the
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latest news.

Here we summarize the task understanding part of this thesis (Part II).

In this part, we are the first to propose the study for understanding users’

app usage behaviour within the task space and we provide a comprehen-

sive picture of mobile tasks from identifying, analyzing and clustering tasks.

Since the extracted tasks from log activity data reveal more detailed inten-

tions and behaviour patterns for mobile users, especially when compared

with independent apps, we believe that the mined knowledge of tasks could

be leveraged in different scenarios for improving mobile services and user

experience. Therefore, we aim to investigate whether and how the task in-

formation could be leveraged in different applications in the following part

(Part III).
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Part III

Leveraging Mobile Task

Information
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Chapter 7

Inferring Users’ Demographics

from Mobile Tasks

Part II of this thesis we described above aims to extract and character-

ize mobile tasks based on users’ app usage behaviour. We then aim to

investigate how the extracted mobile task information could be leveraged

for improving different applications. In the existing research, app interests

are traditionally used in constructing mobile user representation, specifi-

cally aims at demographics prediction. In this chapter, by leveraging the

extracted task information, we aim to validate that if the task-based user

representation, which reveals more detailed user intentions and behaviour

patterns, could bring additional insights in demographics prediction. We

aim to answer the research questions RQ 3.1 and RQ 3.2, as specified in

Section 1.1.

RQ 3.1: could we represent users not only based on app interests (used

apps), but also on tasks, or task types?

RQ 3.2: would the task-based user representation methods benefit demo-
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graphics prediction?

Demographic attributes have been demonstrated as important information

in personalization [68], web search [180] and advertisement targeting [96],

which can help learning models to infer users’ interests and hence improve

the performance of applications and services. For example, with the gender

information of online users, the advertisers can display dress Ads to female

users and shaver Ads to male users. Without the demographic information

of users advertisers may show retirement insurance Ads to a teenager user

and lipstick Ads to male user, which may be not effective. Additionally,

demographic segmentation is the most common type of market segmenta-

tion strategy since the basic demographics offer the most common and easy

information to interpret statistics that can be used to group entire popu-

lations [11]. For example, demographic information is easy to be obtained

from many government-maintained census data (available to the public)

and free online survey tools, which makes it a great way to monitor soci-

etal trends and shifts over time as the data categories and criteria rarely

change. Identifying trends can help brands to track, monitor and analyse

the customer journey, and can also help make market predictions for the

future, for the benefit of both the brand and the consumer.

Predicting demographics from mobile apps have been studied for several

years in both data mining and mobile computing fields [19, 199, 130, 213,

95, 133, 210]. However, the techniques used for mobile user representation

and modeling are rather straightforward, such as simply using app lists as

features [154, 111], without considering more detailed semantic relationship

between apps. Tasks have steadily emerged as a more accurate unit to

capture users’ goal and behavioural insights [60]. Researchers in the web

search area have validated that accurate task representations (i.e., “search

tasks” – consist of a set of queries corresponding to a particular high-level
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information need, and the queries are not necessarily the same or even

similar) could be useful in aptly placing the user in the task-subtask space

and enable systems to contextually target the user, provide them better

query suggestions, personalization, recommendations and help in gauging

satisfaction [52, 120, 118].

In this chapter, by leveraging the best-performing task identification model

(task boundary detection) proposed in the Chapter 5, we are able to map

large-scale app usage logs (Flurry dataset introduced in Section 3.2) to

mobile tasks, which consisting of millions of mobile logs from over 10,000

users. Based on the extracted tasks, we observed that even users engaged

with similar apps, the different tasks conducted can provide additional

insights for distinguishing users’ demographics. For instance, within the

tasks conducted for taking notes while reading news, where users mostly

focus on searching the specific information from reading news, the amount

of female users involved is significantly bigger than male users. Differently,

within the task for browsing news from multiple resources or users may

always be redirected to news reading from other resources, e.g., redirect

from email/docs (productivity) or communication apps, the involved male

users are significantly more than the female users. Therefore, we believe

that tasks play an important role in understanding user’s needs and can be

leveraged to develop better representations of users’ characteristics. Ad-

ditionally, similar to each app could be assigned to an app category, we

could also map each extracted specific task into a task category based on

the clustering framework proposed in Chapter 6. Finally, by exploring the

different approaches (straightforward, embedding-based and neural-based

methods) for generating users’ representation based on the traditional ap-

p/app category and proposed task/task category units, we validate that

the task-based approach performs best for inferring users’ representation,
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which could effectively improve the performance of gender and age group

prediction when compared to all other baseline methods. By demonstrat-

ing the task-based user profiling method could work better in demographics

prediction, especially when compared with the traditional app-based user

representation, we provided the initial steps in shaping future research on

investigating whether and how the extracted tasks could be applied for

improving mobile user profiling. We believe that task-based applications

could be well developed in the future for providing users with more ad-

vanced and satisfying services in different scenarios.

The remainder of this chapter is organized as follows. Section 7.1 discusses

the prior work. We present the app and task preferences of users in different

age/gender group with the category level in Section 7.2. In Section 7.3,

we present the different methods to generate user representation aims at

demographics prediction. Details of the experiment set-up and results are

reported in Section 7.4. In Section 7.5, we discuss the ethical ramifications

of our work. We conclude the work in Section 7.6.

7.1 Prior Work

Existing methods for demographic prediction are usually based on popular

apps used, number of apps in different app categories, costs in apps, and

app description [19, 199, 130, 213, 154, 95, 111, 133, 210], with different

machine learning techniques. Table 7.1 presents the summary of these

previous works on demographics prediction for mobile users.

We can find that a major portion of existing work has investigated user

representation using app or app category units as the fundamental focus

of demographics prediction. Only one recent work [210] proposed to infer
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users’ demographics based on Doc2Vec [88] method, where the relation-

ships between apps are considered in generating the user representation.

They treated each user as a document and each app as a word. The user

representation vector is obtained when the user and app vectors are up-

dated until convergence and then is fed to the classifiers (e.g., GBDT, LR,

SVM and DNN) for demographics prediction directly. In our work, we

focus on leveraging the semantic information and correlation between app

usage instead of treating apps independently. Other than the app and app

categories, new units like tasks and task categories would be involved for

modelling users. We hypothesize that the mobile tasks which contain more

detailed app usage patterns would be more accurate for capturing users’

characteristics and benefit the demographics prediction.

In this chapter, we model mobile users based on task representations, which

could include both the apps information and the semantic meaning among

app usage to provide more detailed user characteristics implied. Wu et

al. [186] proposed to apply a hierarchical neural-based network in learning

more enhanced user representation and validated that it can effectively

improve the performance of demographics prediction. In our work, we

adopt such state-of-the-art models for learning user representation in the

context of mobile apps. We hypothesized that different tasks have different

informativeness for demographics. Instead of combining all tasks from the

same user into a long vector for user representation, we experiment with

models that automatically extract key features for demographics prediction.

Adapting such models for mobile apps are not trivial given we try to model

the app, task and user within the model.
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7.2 Demographic Differences in App Usage Be-

haviour

The demographic differences in terms of popularity in apps usage have been

explored by previous works, e.g., the top preferred apps for female/male

users [211, 111]. In this section, besides exploring the app preferences of

users in different age/gender group, we further analyse the demographic

differences in complex mobile tasks within the app usage behaviour. The

analysis and experiements conducted in this chapter is based on the Flurry

dataset introduced in Section 3.2.

7.2.1 App Category Preference

More female users are found in apps that improve their health

and lifestyles than male users, while more males are involved in

apps with more professional functionalities than female users. In

order to discover the gender differences in app category preference, we cal-

culated the distribution of female and male users for 45 app categories

respectively based on our dataset, e.g., for the set of users U who used

the food-and-drink apps, we calculate the percentage of how many female

(Uf ) and male (Um) users exist in them by Pf =
|Uf |
|U | and Pm = |Um|

|U | .

Then we display the app categories with the highest percentage (Pf or Pm)

in Table 7.2, which means they are mostly preferred by the users in spe-

cific gender group. We can find that, within the apps to improve health

and make users enjoy their lives, like food-and-drinks, medical, health-and-

fitness, video, music and lifestyle apps, etc., more female users are found

than male users. While within the that have more professional function-

alities or skills, e.g., personalization (mobile setting) tools, transportation,
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Table 7.2: Top 10 app categories preferred by each gender group.

App Category % Female Users App Category % Male Users

food-and-drink 78.2% strategy 74.0%
word 77.4% sports 72.5%
medical 74.5% personalization 67.0%
health-and-fitness 73.3% tools 65.3%
casino 71.4% adventure 65.2%
board 70.9% transportation 64.9%
video 64.7% business 63.5%
music 64.6% action 63.4%
education 64.1% news 63.1%
lifestyle 59.5% arcade 60.3%

business and news, etc., male users are relatively more than female users.

Additionally, different kinds of games also show different statistics of male

and female users, e.g., within the games of word, casino, and board, female

users are more than male users, but within the strategy, adventure, action

and arcade games, male users are more involved than female users.

Younger (<24) users are found more than other users in games

and music. New workers (25-34) are found more than other users

in transportation, shopping, lifestyle and communication apps.

Middle-age users (35-54) are more involved in functional apps.

Order users (55+) are more involved in card, board, and word

games. Similarly, to discover the age differences in app category pref-

erence, we calculated the percentage of different age group users for 45

app categories respectively based on our dataset. The top app categories

preferred by each age group are reported in Table 7.3.

We can find that within the music and game apps, younger (13 - 24) users

are significantly more than users in other age groups. Other than that,

within the apps for learning (i.e., education apps), teenagers (13 - 18) are

found more than other users. For the apps like food-and-drink, video and

social apps, more users between 18 and 24 years old are found since these

apps might be more helpful when they have just entered the college/univer-
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Table 7.3: Top 5 app categories preferred by each age group.

App Category % 13-17 App Category % 18-24 App Category % 25-34

board 20.8% role-playing 36.2% comics 54.8%
music 19.7% food-and-drink 30.5% transportation 50.5%
games 19.5% video 28.4% shopping 44.9%
education 16.5% music 28.3% lifestyle 41.0%
word 16.2% social 26.1% communication 40.9%

App Category % 35-54 App Category % 55+

adventure 59.1% casino 22.7%
tools 50.7% card 20.8%
news 50.1% board 18.8%
widgets 50.1% word 16.2%
family 49.2% weather 14.3%

sities. Users between 25 and 34, who are mostly the newcomers just stepped

into their career and started to earn money by themselves, are found more

than other users in the apps like transportation, shopping, lifestyle and

communication apps, which all work for their daily life. The distribution

of users in functional apps (e.g., tools, news, widgets) shows that users

between 35 and 54 are the most. Within the apps for playing card, board,

and word games, older users (55+) are found significantly more than other

users, which may be because they have more spare time for leisure life.

7.2.2 Discriminatory Complex Task Categories

We then explore the demographic differences in mobile tasks. We run

the best-performing task identification model (task boundary detection

proposed in Chapter 5) on the app usage logs to extract all the apps

usage belonging to the same task, where a classifier based on tempo-

ral, similarity and sequential features is applied to identify task bound-

aries between each sequential pair of app usage. Therefore, the app usage

logs of each user are segmented into different mobile tasks and these ex-

tracted tasks could be classified into two kinds of mobile tasks: single-

app tasks (e.g., spotify->spotify) and complex (multi-app) tasks (e.g.,
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facebook->messenger->facebook), whereas each complex task involve at

least two different apps. Since the demographic differences among single-

app tasks are actually as same as the app preferences, we only focus on

analysing the demographic differences in the complex tasks within this sec-

tion.

However, most of the complex tasks are only conducted by users for once

or twice, it would be too sparse for inferring users’ demographic differences

if each specific complex task is considered. In chapter 6, we have stated

that the complex mobile tasks can be grouped into different categories

based on our proposed clustering approach within various task characteris-

tic, e.g., number of distinct apps or app categories, task duration, hour of

day, day of week, hub app, dominant app and switch patterns, etc. There-

fore, by leveraging our task clustering approach, we are able to map all

our extracted complex tasks into different task categories (i.e. 44 clusters

(clusters with popularity less than 0.05% are removed)), which can be used

for avoiding the sparsity issue while inferring users’ demographics based on

specific tasks directly. For example, the specific complex tasks could be

social->social, social->social->social and social->communication->social,

since these tasks have similar task characteristics (e.g., task duration are

all around 5 min, the hub and dominant apps within the task are all social

apps, etc.), they could all be assigned to the same task category “Social

Media Browsing” (C2). Table 7.4 present all the complex tasks ranked by

their popularity with the corresponding characteristics, where the popu-

lar app sequences are selected based on the relative frequency across all

clusters.

To analyze the demographics differences among different complex task cat-

egories, we extract the discriminatory power [122] of each complex task

category. Indeed, the more discriminatory a task category is, the bigger
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7.2. DEMOGRAPHIC DIFFERENCES IN APP USAGE BEHAVIOUR

differences exist in the user distribution of this task category when com-

pared with the original user distribution in the dataset. It helps differenti-

ating user’s age or gender. In [122], the chi-square is used to calculate the

discriminatory power since it provides a quantitative measure for determin-

ing if the distribution of observations (frequencies) has a relationship with

the distribution of expected frequencies. Assuming that we are given a set

of task categories conducted by the users within demographic labels (e.g.,

male v.s. female), we make use of the well-established chi-square test to

compute the discriminatory power of a given task category based on:

χ2 =
∑

[
(O − E)2

E
]

where O = observed frequency (users in this task category); E = expected

frequency (users in the whole dataset).

Table 7.4 shows the chi-square of users’ age/gender distribution for each

task category and the standardized residual of each age/gender group,

where we mark the top-ranked (i.e., top 10 for gender and top 5 for age)

user group for each task category as blue. The unstandarized residual is

the simple difference of the observed and expected values R = O − E.

The standardized residual [156] is found by dividing the difference of the

observed and expected values by the square root of the expected value

Rs =
O−E√

E
. We report the standarized residual since it can be interpreted

as a standard score for providing information about which user group con-

tributes to a significant Chi-square regardless of the total amount of users

in the task category. So the bigger the standardized residual is, the more

users in this age/gender group exist in the task category. We can find that:

Given the distribution of users in different tasks, more female

users are found in game or entertainment complex tasks while
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7.2. DEMOGRAPHIC DIFFERENCES IN APP USAGE BEHAVIOUR

male users are more than female users in the complex tasks for

information gathering. Additionally, the users with adjacent age

would be found more than other users in some specific tasks. From

the Table 7.4, we can observe that the top preferred complex tasks are

mainly about entertainment and relaxation, e.g., Info Check while Playing

Games (C21), Long Time Word Games Playing (C24), Relaxation with

Multiple Lifestyle App (C14), Music with Socializing (C23) and Switch

between Multiple Videos/TV (C17). within the complex tasks like Multiple

Updated Info Check (C1), Social Media Browsing (C2), Communication

Needs Other Auxiliaries (C3), Multiple News Source Browsing (C8) and

Redirect to News Reading (C20), male users involved are more than female

users. When referring to the users in different age group, we find that the

adjacent age groups would share similar task categories. For example,

the news and weather related complex tasks, i.e., Multiple News Source

Browsing (C10) and Weather Oriented Info Check (C13), all have the older

users (55+) and middle-aged users (35 - 54) as the biggest age groups.

The social and communication related complex tasks, i.e., Social Media

Browsing (C2) and Interrupted Social Media Browsing (C9), have more

18 - 24 and 25 - 34 users than other user groups. The complex tasks like

Switch between Multiple Lifestyle App (C17) and Music with Socializing

(C23) have the most youth users (13 - 17 and 18 -24).

Besides the app categories (Table 7.2 and 7.3), the complex task

categories could provide additional information for inferring users’

demographics. For example, games, utilities, news, tools, and navigation

apps are all involved in the top-ranked complex task categories for female

users (C12, C18, C21,C38 and C39), but none of them are listed in the

top app categories (Table 7.2). Some of them are even the top-ranked app

categories for male users, e.g., news and tools. It may result from that
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using these apps independently is the usage style more attractive to fe-

male users, but some specific complex tasks (i.e., Notes Taking with Info

Resources (C38)) are more likely to enable female users engage with apps

collaboratively. Similarly, the communication, entertainment and social

apps related complex tasks (C2, C3, C7, and C28) which have more male

users involved are also not within their top-ranked app categories. The

communication apps are not listed in the most popular app categories for

users over 55, but appear in their top-ranked complex tasks (C19). These

all indicate that tasks with more detailed app interaction patterns could

provide additional insights when inferring users’ demographics when com-

pared to the traditional app preference.

The complex tasks, even with the same app categories involved,

could help us distinguish users from different age or gender groups.

For example, news apps are involved in the top complex tasks for both fe-

male and male users, but more female users are found in the task to take

some notes while reading news or focus on searching specific information

from reading news (C38). Differently, male users are found be more than

female users in the tasks for browsing news from multiple resources (C10)

or be redirected to news reading from other resources (C20), e.g., redirect

from email/docs (productivity) or communication. Within the tasks for

watching TV/videos, more female users are found in the task to switch be-

tween multiple video sites or TVs (C17), but more male users are involved

in the task to check social networking while watching TV (C28). These ob-

servations all indicate that complex tasks even with similar apps involved

can help us infer users’ demographics. Similar cases also exist in users of

different age groups, e.g, both Communication Needs Auxiliaries (C3) and

Complex Communication Topic Needs Auxiliaries (C41) are tasks mainly

about communication, but they can still be used to distinguish the users

207



7.3. USER REPRESENTATION BASED ON APP USAGE
BEHAVIOURS

in the two different age ranges (i.e., 25 - 34 and 18 - 24) since the tasks

provide more detailed interaction patterns, i.e. C41 have more switches

between apps and longer task completion time than C3.

7.3 User Representation based on App Usage

Behaviours

In this section, we present the different methods to generate user represen-

tation aims at demographics prediction. The goal of generating the user

representation is to classify a user u into a demographic category y (e.g.,

an age group in age prediction and a gender category in gender prediction)

based on the apps usage logs generated by this user, i.e., [a1, a2, ..., aN ],

where N is the number of apps usage logs and these logs are sorted by

their timestamps. Each app a belongs to an app category ac, such as the

app “Instagram” belongs to “Social” category. As mentioned in the section

above, each app usage aN could also be mapped to a task t and the task t

could be assigned in one of the task categories tc. We introduce both the

existing approaches for modeling users based on apps/app categories and

the proposed approaches that get tasks and task categories involved while

inferring users representations.

7.3.1 Benchmark

Many previous works have intuitively exploited the apps used by users to

represent each user for predicting user attributes [154, 111, 133, 210]. In

detail, they took each app as a dimension and represent each user as an app-

based vector (e.g., binary “bag-of-apps” vector [111]). For the app-based
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representation vector, if all the apps are used to build the user representa-

tion, the user vector will be dramatically long. So they proposed different

strategies to reduce the dimensionality of app-based representation vectors:

(1) Filter the top apps based on user engagement (apps installed by at least

10% of the users [111]) or apps with the top usage frequency (i.e., top 1000

[133] and top 500 [210]). (2) employs the Truncated Singular Value Decom-

position (TSVD). Malmi et al. [111] set the number of dimensions equal to

the number of app categories in their dataset and use the SVD components

directly as the feature for user representation. (3) aggregates the apps to

category level: Malmi et al. [111] and Seneviratne et al. [154] all used the

number of apps in each app category to generate the user representation

vector. (4) Other than the user representation only based on app or app

categories, Zhao et al. [210] introduced the temporal feature for generating

user representation. They represented each user using the top 500 apps and

their usage percentage in four different time periods (i.e., night (0:01 am

to 6:00), morning (6:01 to 12:00), afternoon (12:01 to 18:00), and evening

(18:01 to 0:00)).

Currently, techniques used for mobile user representation and modeling

are rather straightforward, such as simply using app lists or app usage

frequency as features, without considering the correlation or semantic re-

lationship (hidden insights) between apps. As we mentioned above, tasks

have been increasingly used as a more accurate unit for representing users’

behaviour [166]. The mobile task would consist of a set of apps usage

corresponding to a particular high-level intention and the apps are not

necessarily the same or even similar. Therefore, in this work, we propose

to represent users not only on a per-app basis, but on the basis of tasks. We

originally set the benchmark method for generating task-based user repre-

sentation as same as the app-based method, which is to take each task as a
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dimension and represent each user as an task-based vector. However, since

the tasks have more serious sparsity issue than apps, the task categories are

mainly used for generating the user representation. Furthermore, to avoid

the app information loss in coarse-grained task categories, we concatenate

best-performing baseline method from app or app category based vector

with the task category based vector together for generating the benchmark

method of task involved user representation.

7.3.2 Embedding based Representation

We have the assumption that the apps occurring in a similar context tend to

have similar characters, as well as words and sentences [124], where a word

embedding is a learned representation for text where words that have the

same meaning have a similar representation. In our app usage scenario,

if we learned the app embedding, the camera app representation should

be closer to the gallery app and we should not treat them independently.

Therefore, instead of simply concatenating all independent apps/app cate-

gories and tasks vectors together, we further propose to use the embedding

based app/task vector for generating the user representation.

Zhao et al. [210] proposed to apply Doc2Vec [88] to model the app usage

sequence for learning the user representation. Doc2Vec predicts the next

word by exploring a paragraph and a word sequence in a given context in

the paragraph. More specifically, every word is mapped to a unique vector,

as well as each paragraph. Word vectors are averaged, concatenated, or

summed as a feature vector that is concatenated with the paragraph vector

for predicting the next word. Taking the analogy to word and document

modeling, they treated each user as a document and each app as a word, to

model the app usage sequence. During the training procedure, user and app
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vectors are updated until convergence, where the user representation vector

is obtained to feed the classifiers for demographic directly. In our work, we

propose to leverage the classic Word2Vec [124] framework directly, and we

name it as the “App2Vec” method in our work. We used the Continuous Bag

of Word (CBOW) method for training the App2Vec model with different

window size. In the CBOW architecture, the model predicts the current

app from a window of surrounding context apps based on a two-layer neural

networks. Afterwards, the user representation is generated based on the

mean of all the embedding vectors of apps he/she has used before.

Neither in Word2Vec nor Doc2Vec, the model predicts the current word

from a window of surrounding context apps, where the order of apps does

not influence the prediction. We hypothesize that the sequential and con-

textual information of app usage are all meaningful for user representation.

So lastly, we further propose to learn the task embedding vector which can

take the sequential information within the app usage into consideration for

generating the user representation vector. By leveraging the seq2seq archi-

tecture [31], which is originally proposed to generate sequences of words

by predicting the next word while considering the entire sequence, we are

able to encode the app usage sequence within each app usage sequence

within a task based on the context vector C. This vector is suitable for

the representation of tasks because it is originally designed to summarize

all the encoded information, which represents a semantic summary of the

input sequence. Specifically, we learn the task vector based on the context

vector C with the same setting as Lee et al.[91], where they proposed to use

of a variant of the conventional seq2seq architecture for learning the app

sequence representation that receives an app usage sequence as the input

of the encoder and generates the same app usage sequence in the decoder.

In our scenario, we extract the app sequences based on the task identifica-
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tion model as the input and output of the seq2seq model. We name this

method as “Task2Vec”. Finally, the user representation vector is generated

by averaging the vectors of tasks he/she has conducted.

7.3.3 Neural based Representation

The embedding based method has tried to improve the user representation

from learning the semantic information within the app usage, but they are

still based on the straightforward aggregation method for inferring users’

representation, i.e., average/sum of app/task vectors. In this section, we

introduce several deep learning methods for inferring users’ representation

specifically aims for demographics prediction since we hypothesize that they

would be more efficient to automatically find out the key features/patterns

that are more predictive but less intuitive, including CNN [82], LSTM

[65], Hierarchical Attention Network (HAN) [197] and Hierarchical User

Representation with Attention (HURA) [186].

Both CNN and LSTM have been applied in solving the text classification

problems, e.g., sentiment classification [82, 145]. A document/sentence

is usually a combination of words or word sequence, then the CNN and

LSTM are trained to learn the representation of the document/sentence

aims for sentiment classification based on the input of concatenated word

embeddings (Word2Vec). The text analysis method based on CNN can

obtain important features of text through pooling but it is difficult to obtain

contextual information. The LSTM can obtain context information but the

order of words will lead to bias. In our scenario, the app usage sequence

of each user could be treated as the word sequence of each document. So

we tried to test on both of CNN and LSTM for solving our demographics

prediction problem, where both app embeddings (i.e. App2Vec) and task
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embeddings (i.e. Task2Vec) are used as the input.

Furthermore, we provide another two hierarchical structure based deep

learning methods to infer users’ representation with the combination of

both apps and tasks: Hierarchical Attention Network (HAN) [197] and Hi-

erarchical User Representation with Attention (HURA) [186]. The HAN

is originally designed to obtain a better representation of documents by

incorporating knowledge of document structure for text classification than

the common deep learning methods of CNN and LSTM. It aimed to cap-

ture two basic insights about document structure. Since documents have a

hierarchical structure (words form sentences, sentences form a document),

they likewise constructed a document representation by first building rep-

resentations of sentences and then aggregating those sentences into a docu-

ment representation. Second, to capture the patterns that different words

and sentences in a documents are differentially informative, their model

included two levels of attention mechanisms [9, 190] - one at the word level

and one at the sentence level - that let the model to pay more or less

attention to individual words and sentences when constructing the repre-

sentation of the document. Therefore, by adopting the HAN architecture,

we are also able to model the users based on the two-layer hierarchical

structure of attention mechanisms, which are apps from tasks and tasks

from a user. Specifically, we focus on user demographics prediction in this

work. Assume that a user has L tasks ti and each task contains Mi apps.

aim with m ∈ [1,M ] represents the apps in the ith task. The HAN model

projects the raw user into a vector representation, on which we build a

classifier to perform user demographics prediction. We then present how

we build the user level vector progressively from app vectors by using the

hierarchical structure as shown in Fig. 7.1.

App Encoder Given a task with apps aim, m ∈ [1,M ], we first embed the
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Figure 7.1: Hierarchical Attention Network (HAN) for demographics pre-
diction based on both app and task units.

apps to vectors through an embedding matrix We, xij = Weaij. Then a

bidirectional GRU [9] is used to obtain an annotation for a given app aim by

concatenating the forward hidden state
−→
h im =

−−−→
GRU(xim) and backward

hidden state
←−
h im

←−−−
GRU(xim), i.e., him = [

−→
h im,

←−
h im].

App Attention Not all apps contribute equally to the representation of

the user characteristics. Hence, attention mechanism is applied to extract

such apps that are more important to meaning of the task and aggregate the

representation of those informative apps to form a task vector. Specifically,

uim = tanh(Wahim + ba), (7.1)

αim =
exp(uu

ima)∑
m exp(uu

ima)
, (7.2)
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ti =
∑
m

αimhim. (7.3)

Task Encoder Given the task vectors ti, we can get a user vector in a

similar way by applying a bidirectional GRU to encode the tasks: hi =

[
−→
h i,
←−
h i], where

−→
h i =

−−−→
GRU(ti) and

←−
h i =

←−−−
GRU(ti). hi summarized the

neighbor tasks around a task i but still focus on task i.

Task Attention To reward tasks that are clues to correctly classify a

user, attention mechanism is used again and a task level context vector ut

is introduced to measure the importance of tasks. This yields:

ui = tanh(Wthi + bt), (7.4)

αi =
exp(uu

i t)∑
i exp(u

u
i t)

, (7.5)

v =
∑
i

αihi (7.6)

where v is the user vector that summarizes all the information of tasks con-

ducted by the user. Then it can be used as features for user classification:

p = softmax(Wcv + bc) (7.7)

Lastly, other than HAN, we also applied HURA for building user represen-

tation based on the hierarchical structure of apps and tasks. The HURA

was inspired by HAN, which is proposed to predict users’ gender and age

from their search queries [186]. The general hierarchical structure of HURA

model is similar to HAN, which also learned a representation vector for each

search query from words using a word encoder and a word-level attention

network to select important words. Then it learned a representation vector
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for each user based on the representations of his/her search queries using

a query encoder and a query-level attention network to select informative

search queries for demographic prediction. The biggest difference of HURA

when compared to HAN is that they use CNN instead of GRU for captur-

ing the local context of words and search queries. They stated that CNN is

more appropriate for learning query representation and user representation

since search queries are quite different from sentences, where a search query

is usually a combination of several keywords, rather than a complete sen-

tence. To test that if our tasks composed of apps usage are more similar to

queries composed of several keywords, we also leverage HURA for inferring

user representation aims at demographics prediction.

7.4 Experiments

7.4.1 Experimental Settings

In our experiments, the app embeddings were trained based on all the app

usage logs in the training data using the word2vec1 tool. The embedding

dimension is 300 for App2Vec, CNN (App2Vec), and LSTM (App2Vec)

and the window size is 4. The hidden dimension of the context vector in

Task2Vec is 100. So the input embedding dimension for CNN (Task2Vec)

and LSTM (Task2Vec) is also 100. For the two hierarchical structure based

networks, the window sizes of app-level CNN and task-level CNN in HURA

are both 3, and the number of filters in these CNN networks is 300. In

HAN, the GRU dimension is 50. In this case, a combination of forward

and backward GRU gives us 100 dimensions for app/task annotation. The

app/task context vectors also have a dimension of 100. For all the neural-
1https://radimrehurek.com/gensim/models/word2vec.html
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based methods, Adam [84] was used as the optimizer for model training.

The batch size was set to be 128. Dropout technique [158] was used to

mitigate overfitting and was applied to CNN layers. The dropout rate

was set to 0.2. Early stopping strategy [27] was also used. If the loss

of validation data does not decline after 10 epochs, then the training will

be terminated. For all the approaches, the training, validation and test

data are split based on users, i.e., 70%, 10% and 20% of users are used

for training, validation and testing. All the hyperparameters were selected

according to the validation data. Each experiment was repeated 10 times

independently and average results were reported.

7.4.2 Baselines

The existing approaches for demographics prediction of mobile users [154,

111, 133, 210] are compared as the baselines in our work. We ran all

the baselines with their proposed best-performing classifiers and parameter

settings:

• Bag-of-Apps (BoA) [111]: Binary vector with each app as a dimen-

sion.

• Bag-of-Top-Apps (BoTA) [111, 133, 210]: Filter the top apps based

on user engagement (apps installed by at least 10% of the users [111])

or apps with the top usage frequency (i.e., top 1000 [133] and top 2000

[210]).

• TSVD of Bag-of-Apps (TSVD BoA) [111]: Malmi et al. [111] set the

number of dimensions equal to the number of app categories in their

dataset and use the SVD components directly as the feature for user

representation.
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• Number of Apps in each App Category (NAAC) [111, 154]: Malmi et

al. [111] and Seneviratne et al. [154] all used the number of apps in

each app category to generate the user representation vector.

• Temporal App/App Category Usage Frequency (TAUF / TACUF)

[210]: Zhao et al. [210] introduced the temporal feature for generat-

ing user representation. They represented each user using the top 500

apps and their usage percentage in four different time periods (i.e.,

night (0:01 am to 6:00), morning (6:01 to 12:00), afternoon (12:01

to 18:00), and evening (18:01 to 0:00)). Additionally, they further

explored app categories to represent each user for demographic pre-

diction. They represented each user’s app usage using the categories

and usage percentage in different hours.

• Doc2Vec [210] : Zhao et al. [210] proposed to apply Doc2Vec [88] to

model the app usage sequence for learning the user representation in

demographics prediction.

7.4.3 Experimental Results

In this section, we evaluate the performance of demographics prediction

based on user representation learned from apps and tasks with baseline

methods and our proposed approaches. As reported in Table 3.2, we have

two genders (i.e., male and female) and five age groups (i.e. 13 - 17, 18 -

24, 25 - 34, 35 - 54 and 55+) in total, where users do not have an even dis-

tribution across all the age groups. We used the accuracy, macro-averaged

f1 score as evaluation metrics. The results are summarized in Table 7.5.

For all the baseline methods, they are mainly conducted by classifying

users into different groups based on interacted app or app categories with
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Table 7.5: Overview of demographics prediction results: F1 are macro-
averaged scores (bold ones are the best performing models).

Method Age Gender
Accuracy F1 Accuracy F1

Baselines

BoA [111] 0.523 0.461 0.710 0.710
BoTA (2000) [210] 0.523 0.460 0.700 0.700
TSVD BoA [111] 0.512 0.439 0.677 0.677
NAAC [111, 154] 0.433 0.354 0.700 0.700
TAUF [210] 0.485 0.413 0.686 0.686
TACUF [210] 0.426 0.302 0.680 0.680
Doc2Vec [210] 0.427 0.282 0.660 0.659

Our Approaches

Without Tasks

App2Vec 0.543 0.470 0.714 0.715
CNN (App2Vec) 0.545 0.467 0.722 0.722
LSTM (App2Vec) 0.520 0.461 0.708 0.709

With Tasks

Bag-of-TaskCategory 0.411 0.424 0.686 0.686
Bag-of-App-TaskCategory 0.525 0.471 0.722 0.722
Task2Vec 0.526 0.467 0.711 0.709
CNN (Task2Vec) 0.526 0.450 0.727 0.727
LSTM (Task2Vec) 0.528 0.468 0.693 0.695
HAN (Two Layer: App-Task) 0.552 0.488 0.720 0.720
HURA (Two Layer: App-Task) 0.518 0.461 0.742 0.742

a machine learning classifier (e.g., SVM, Random Forest, and Logistic Re-

gression as summarized in Table 7.1). When there are different settings

with the same baseline approach, e.g., different ways to select top apps for

Bag-of-Top-Apps (BoTA), we only report the setting with the best perfor-

mance. Among all the baselines, we can find that the Bag-of-Apps (BoA)

performs best in both age and gender prediction, which is also consistent

with the previous results in [111, 210]. For our proposed approaches with-

out tasks information involved, we can find that App2Vec method performs

better than all the baselines in both age and gender prediction since it not

only keeps the specific app details but also captures the complex seman-

tics and contexts of apps usage. For the CNN and LSTM with App2Vec

as input embeddings, only CNN outperforms the original App2Vec in the

gender prediction, which may state that the local context within app usage

learned by CNN is more important in gender prediction. As mentioned in
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Section 7.3.1, the benchmark method with tasks involved is to concatenate

best-performing baseline method with the task category based vector to-

gether, which is displayed as the Bag-of-App-TaskCategory in Table 7.5.

We can find that it outperforms the best baseline method , Bag-of-Apps

(BoA), both in age and gender prediction, which indicates that the tasks,

even in a coarse-grained task category level representation can bring ad-

ditional benefits in users’ demographics prediction. We further test the

performance when only the task category is used for generating the user

representation (Bag-of-TaskCategory). We observe that the performance

for age prediction is much improved (about 20%) when it is compared with

the baseline methods where only app categories are taken into considera-

tion (NAAC[111, 154] and TACUF [210]). It states that task categories

could cover more detailed user characteristics which especially benefit the

age prediction.

Lastly, the HAN and HURA perform best in age and gender prediction

respectively when compared to all other methods. They are both neural-

based approaches that leveraged the hierarchical structure of apps from

tasks and tasks from a user. Instead of CNN and LSTM, where all the

apps/tasks of the same user are concatenated together as a long text for

building user representation, the hierarchical neural models could be more

effective for capturing the complex relationships between apps, apps to

tasks and tasks to users. In addition, they incorporate both app-level and

task-level attention networks into the approach to attend differently to

different apps and tasks based on their contributions to demographic pre-

diction task. From the prediction results, we can find that HAN performs

best in age prediction, and HURA performs best in gender prediction. It

may be because that, in the HAN method, bidirectional GRU is used to

learn task representation from apps and learn user representation from
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tasks where the sequential information of apps and tasks can be more cap-

tured. Differently, CNN is used in HURA for learning the task and user

representations, where the sequential information would not be learned as

in HAN. Therefore, we can also summarize that the sequential information

within the apps and tasks would be more important in inferring users’ age

than gender.

7.4.4 Case Study

In this section, we conducted several case studies to further explore whether

tasks could bring more benefits when learning user representations for de-

mographics prediction. We have several observations. First, some male

users have apps similar to female users. Thus, predicting users’ gender

only based on their apps is very challenging. For example, the apps used by

one male user are food-and-drink, social, productivity, lifestyle and video,

where three of them are all top apps preferred by females (Table 7.2). So

it’s not surprising that the app-based method (both BoA and App2Vec) all

predict this user as female. But the HURA predicted the gender correctly

since it captured the male characteristics by learning from the tasks the

user usually conducted, i.e., social->social, which is a salient task cate-

gory (C2) for male users list in Table 7.4. Second, users in adjacent age

groups originally have similar app preferences, especially for the users in

13-17 and 18-24. For example, one user used apps like games, video, en-

tertainment, arcade, health-and-fitness, productivity, and music. We can

find that games and music apps are preferred by users in 13-17, video and

music apps are the top preferred apps for users in 18-24. So it’s also hard

to infer users’ age only based on their used apps. The BoA and App2Vec

all predicted this user as 18-24, but he is actually from the age group of
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13-17. The HAN predicted the age correctly since the user prefer to con-

duct the tasks about Info Check while Playing Games (C21) (Table 7.4),

e.g., games->productivity, games->social->games. Third, many users only

have the general common apps which have no significant preference in any

age group, e.g., productivity, utilities, others, sports, personalization and

food-and-drinks. For these users, only the task-based approach could pre-

dict their age correctly by extracting the additional information from tasks

they conducted. Thus, these case studies validate that the motivations of

our approach are reasonable and the user representation learned from the

task-based hierarchical neural approaches are more effective in predicting

demographics, especially when compared to the models that only take the

apps into consideration.

7.5 Ethical Discussion

Businesses often tried to collect or infer demographic information about

customers to help them understand who is buying their products. But

when businesses tried to market their products and services to the groups

that are most likely to buy them, advertisements also help perpetuate soci-

etal stereotypes, which may have crossed an ethical boundary. For example,

advertisements that feature women cleaning in an attempt to sell cleaning

products perpetuate the stereotype that women are responsible for house-

keeping. Determining how we should use user profiles to create effective

advertising without perpetuating stereotypes or creating advertisements

that may be offensive to some populations is also an ethical dilemma that

businesses must face.

Nowadays, there is a tendency to believe that dealing with a machine rather
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than with a human is more objective and rational, and is free of biases

[7, 108]. However, many previous studies have found that machine learn-

ing algorithms tend to reproduce human biases [18, 23, 161]. For example,

“historical” data were always used to train the algorithm so that algorithms

can “learn” the patterns. This poses the risk of reproducing and amplifying

the biases already present in our society and in our databases. For instance,

gender stereotypes in algorithms were trained on Google News [18], where

the algorithms tended to associate nouns such as “brilliant”, “architect”, and

“great”, more often with the word “he”, whereas they frequently associated

the words “mom”, “housewife”, and “princess” with the word “she”. Evidence

of gender bias has also been found in algorithms of online communities that

affect labor markets [115]. It was reported that LinkedIn reflected a gender

bias, with an algorithm suggesting male names (e.g. Stephen Williams)

when searching for female candidates (e.g., Stephanie Williams) [37]. Po-

tential gender bias was also identified in the automated-job alerts where

one user reported finding that changing the gender on the job platform

from female to male resulted in better-qualified and better-paid job offers

[112].

As we are the first work conducted for demonstrating the benefits brought

by mobile tasks in improving user profiling, demographic information was

leveraged to validate the improvements as it’s more consistent across dif-

ferent systems and more common information to represent the entire pop-

ulation. However, in the decision to create and bring algorithms to market,

the ethics of likely outcomes must be considered—especially to see its po-

tential for harm, and where there is a risk of perpetuating existing biases or

making protected groups more vulnerable to existing societal inequalities.

There have been many researchers who worked on how to reduce consumer

harm within algorithmic bias [90]. The procedures that are commonly used
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in the social sciences to study human behaviour and cognition (i.e., con-

trolled experiments; correspondence testing procedure) can be successfully

applied to audit the fairness of algorithms [112]. To minimise the harm

of use of the demographic information under the mobile task context, we

will explore how to involve controlled experiments, independent review and

other remedies to assure that the task-based recommendation system works

fairly in future work. We also strongly suggest the operators of the algo-

rithms continue to play a role in identifying and correcting biased outcomes

long after an algorithm is developed, tested, and launched.

7.6 Conclusions

In this chapter, we study an interesting and challenging problem, i.e., pre-

dicting the demographics of mobile users based on their tasks extracted

from app usage logs. We analyse the additional insights brought by tasks

when compared to the independent apps. We propose different approaches

for measuring users app usage behaviour with both apps and tasks. Finally,

two hierarchical neural models are validated for inferring better user rep-

resentations aims at gender and age group prediction respectively. They

are able to first use an app encoder to learn the representation of tasks

from apps, and then use a task encoder to learn user representation from

tasks. Additionally, we also incorporated both the app-level and task-level

attention networks to select and highlight the important apps and tasks

to learn more informative user representation for demographic prediction.

Experiments results based on the real-world large-scale dataset show that

the mobile task based user modelling approaches could effectively improve

the performance of gender and age group prediction when compared to all

the baseline methods.
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From this study, we validate that task is a more accurate unit to capture

users’ characteristics and behaviour insights, especially when compared to

apps. While thinking back to the traditional next app prediction problem,

we believe that if we could know the specific task user aim to conduct

instead of only the app user would access in advance, we would work bet-

ter for providing more satisfying services to users, especially for tracking

the task progress and supporting task completion. Therefore, in the next

chapter, we further investigate the next task prediction problem.
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Chapter 8

Complex Task Prediction

In the previous chapter, we focused on validating the benefits brought

by tasks while profiling users in demographics prediction, where tasks

would capture more users’ characteristics and behaviour insights than apps.

Nowadays, users are increasingly relying on intelligent assistants (IAs)

within mobile devices to complete their tasks. We believe that if we could

know not only the single app user would access, but also the specific com-

plex task user would conduct in advance, the IAs would work better for

tracking the task progress and supporting task completion. For the exam-

ple of "Dining Out" task, if we only measure users’ app usage behaviour,

the IAs may only be able to predict that user would like to use a single

food app, but have no ability to make the seamless integration with dif-

ferent related apps (navigation and transportation, etc.). So this chapter

addresses our research question RQ 3.3, as specified in Section 1.1:

RQ 3.3: Could we predict what the next complex task is by measuring

users’ app usage behaviour within task space?

It is well known that intelligent systems should help people get tasks done
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Figure 8.1: Illustration of complex task prediction based on different mea-
surements.

- task-aware recommendation and assistance are the critical areas that re-

quire task information inferred from user behaviours. By knowing the spe-

cific complex task user would engage in, the IAs could be able to track the

task progress and task completion. Under the "Dining Out" task context,

if the user only booked the table of the restaurant without checking the

navigation or traffic status, the IAs could push notifications or suggestions

to remind users to call a taxi in advance due to the rush hours for having

dinner.

To clarify the complex task prediction problem, we illustrate the experi-

mental process as shown in Figure 8.1. Firstly, based on the task boundary

identification model proposed in Chapter 5, we can identify all the tasks

based on users’ app usage logs. All these extracted tasks could be classified

into two kinds of mobile tasks: single-app tasks and multi-app (complex)

tasks, whereas each complex task could be labelled with a specific task

type (i.e., 47 sub-clusters) based on the clustering results in Chapter 6

given its characteristics, e.g., "Dining Out" (C3-26) and "Video Watching"
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8.1. METHOD

(C12-17). We then only focus on proposing models for the new problem

of predicting the next complex tasks users will perform, given predicting

single-app tasks would be equivalent to the next app prediction problem.

The remainder of this chapter is organized as follows. In Section 8.1, we

present the formulation and method for the next task prediction problem.

Experimental results are detailed in Section 8.2. We conclude the work in

Section 8.3.

8.1 Method

The goal of the complex task prediction is to infer the detailed type of

the task, i.e. 47 sub-clusters labels (Section 6.2.3.2). Therefore, the pre-

diction could be modelled as a multi-class classification problem of 47

types within the complex task space T . The complex task predic-

tion problem is formally defined as follows: given the app usage logs

L = {(a1, t1), (a2, t2), ..., (ai, ti)} (where ti is the corresponding timestamp

when using app ai) used before the prediction time and temporal context

C (hour of day and day of week), the problem of complex task prediction

is to find a task T̂ that has the highest probability of being used under C.

Specifically, we aim to solve:

T̂ = argmax
Tj∈T

P (Tj|L,C)

Since there are no previous works conducted for complex mobile task pre-

diction, we first propose two common baselines used by the previous next

app prediction studies [157, 194, 218]: MFU (most frequently used) and

MRU (most recently used). Specifically, the MFU indicates that the pre-

dicted task type is the most frequently used task. The MRU means the
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8.1. METHOD

predicted task type is the most recently used task.

For adapting the other app usage prediction models as the baseline models

to our complex task prediction problem, we need to note the sparsity issue

encountered by the complex tasks. As shown in Table 5.3, only 20% of

users’ tasks could be identified as complex tasks, so a user may only con-

duct a specific type of complex task for once within all his/her historical

app usage behaviour (especially when regarding our week-long dataset).

Therefore, many of the personalized app usage prediction models could

not be applied to our complex task prediction problem, especially for those

which leverage the periodic pattern [100, 163] and context patterns [218].

We then select a generic app usage prediction model (by leveraging all

users’ logs) proposed by Do et al. [41] as another baseline approach. They

extracted the predictive feature based on the historical count of app-view-

events of different apps that are used at least once a week by the user, and

also time-of-day and day-of-week to represent the temporal context. In our

problem, since we have a relatively larger scale dataset with more than 9K

different apps, to ensure the generalization of the generic prediction model,

we replaced the apps with app categories for building the feature vector,

while the output of the generic model corresponds to the different types

of complex tasks. Finally, given the task identification model and our pro-

posed clustering framework, we are able to map user’s app usage logs into

different tasks and propose to extract the predictive feature based on the

task unit. Specifically, we propose to generate the predictive features by

three different aggregation approaches based on users’ historically engaged

complex tasks:

1. Binary Feature: binary vector to indicate the appearance of different

complex task types;
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2. Frequency Feature: vector of bag-of-task to indicate the times users

engaged with all the different complex task types;

3. Distribution Feature: vector of the probability distribution to indicate

the frequency distribution (sum to 1) users have engaged with all the

different complex task types.

Other than these features for modelling users’ historical app usage be-

haviours based on complex tasks, we also keep the temporal context fea-

tures: the hour of day and day of the week while doing the prediction. Be-

sides the features only based on complex tasks modelling, we also propose

to extract the predictive features based on app categories with different

aggregation methods since they could monitor all the app usage behaviour

of users and can be compared to the complex tasks representations. Ad-

ditionally, the hybrid predictive features that include both app category-

and task-based representations are also evaluated.

To summarize, to further compare the performance for measuring users’ app

usage logs with different units for complex task prediction, we propose to

extract the predictive features based on three different units: app category,

complex task, and the combination with both of them. As shown in the

Table at the bottom of Figure 8.1, where we can observe the differences

for measuring user’s historical logs with different units. For example, when

predicting the complex task "Dining Out", no complex tasks have been

performed previously, if we measure user’s historical behaviour based on

complex task units, no information could be used for the prediction. When

it comes to the next prediction for "Video Watching", there is one complex

task that has been conducted before. Different from the app category

measurement, multiple apps usages (communication, food-and-drinks and

navigation) would be merged into one complex task representation ("Dining
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8.2. EXPERIMENTAL RESULTS

Out") for modelling the user’s historical behaviour and then be used for

the prediction.

8.2 Experimental Results

We conduct the traditional machine learning classification experiments

based on our extracted predictive features and the ground truth (i.e., 47

types of complex tasks). We apply the 10-fold cross-validation to eval-

uate each model. At each time, we split all the users into training and

test set: the logs of 9-fold of the users are used as the training set, and

the remaining 1-fold users’ logs are used as the test set. We use a set of

state-of-the-art algorithms to build models for our prediction problem: (1)

Random Forest (RF) [20], as an example of ensemble learning method; (2)

K Nearest Neighbours (KNN) [33], as an example of the non-parametric

method for classification; (3) L2-regularized Logistic Regression (LR) [62],

as an example of the linear classifier. We report four metrics with 10-fold

cross-validation: accuracy (acc), precision (pre), recall (rec), and F1 score

(F1).

Table 8.1 reports the performances of baselines and different measurement

unit representations with different feature extraction methods. We mainly

report the results for the logistic regression classifier in Table 8.1 since

it outperforms other classifiers, as we show in Table 8.2. Firstly we can

find that all the representation methods that have task signals involved

outperform all the baselines. While for the app category based representa-

tion, only the distribution method performs better. When comparing the

different measurements between app category and task, we can find that

task-based representation improves the F1 score by about 4.2% than the
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8.3. CONCLUSION AND DISCUSSION

Table 8.2: Performance comparison for complex task type prediction results
based on different classifiers. We only report the best aggregation approach
for each classifier.

Classifier Acc. Pre. Rec. F1

App-category-based Representation (A)

RF (Freq.) 0.436 0.627 0.436 0.500
KNN (Freq.) 0.375 0.466 0.375 0.406
LR (Dist.) 0.408 0.803 0.408 0.525

Task-based Representation (T)

RF (Dist.) 0.456 0.578 0.456 0.499
KNN (Freq.) 0.408 0.507 0.408 0.440
LR (Dist.) 0.441 0.795 0.441 0.547

Hybrid Representation (A+T)

RF (Dist.) 0.472 0.654 0.472 0.535
KNN (Dist.) 0.391 0.526 0.391 0.437
LR (Dist.) 0.473 0.772 0.473 0.572

app category prediction when singly used. The best overall representation

is modelling the historical logs by both complex tasks and app categories,

which could improve the best baseline by about 16.5%. Additionally, we

can find that the best aggregation approach to generate the predictive fea-

ture is the distribution probability of different tasks types/app categories

for predicting the complex task.

8.3 Conclusion and Discussion

To summarize, our experiment results validate that the task-based repre-

sentation of users’ app usage behaviour could improve the complex task

prediction on smartphones significantly, especially when compared to the

traditional measurement based on app category units. It indicates that

no matter what kind of task-based applications need to be explored, for

knowing which complex task users aims to conduct, both app usage and

task signals should be taken into consideration for modelling users’ be-
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haviour. Otherwise, users’ superior intentions of tasks could not be well

understood. We need to note that, the improvements of leveraging task rep-

resentation are not as huge as we expected when comparing the task and

app category-based representation. This is mostly because the complex

tasks only occupied less than 20% of tasks (Table 5.3) among all the users’

app usage tasks, while 80% of users’ behaviour could be caught by the app

category measurement. Therefore, the more serious cold-start issue would

be encountered by task representations when conducting the prediction. As

the example shown in Figure 8.1, when predicting the "Dining Out" task,

there are no complex tasks that have been performed by the user before, so

the predictive features based on task representation could not provide any

information. Additionally, this is also partially due to the nature of our

data collected. Since we only utilized one-week app usage logs, it might

be more difficult to acquire sufficient complex tasks for each user. When

the long-term data is available, the sparsity issue of complex tasks could

be alleviated, whereas the performance based on task measurement could

be further boosted.

By knowing which task the user aims to perform in advance, the intelli-

gent assistants (IAs) could automatically help users organize tasks across

domains or apps given a user’s request expressed at the level of tasks. To

be specific, upon knowing the task “Dining Out”, the IA should recom-

mend popular restaurants by browsing Yelp (even with multiple similar

food apps together), then book the table and report the navigation accord-

ing to Google Maps for the one chosen by the user. Optimized transporta-

tion method and estimated time spent also need to be recommended to

the user based on the real-time traffic status. Finally, IA could also be

able to send the detailed information of booked restaurant, table number,

time, or car number of the taxi to the user’s messages box or display them
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on the home. Instead of only recommending which app users would use

next, tasks should be understood by IAs, especially for those tasks across

multiple apps, which are time-consuming and difficult for users. In other

areas, researchers have argued for decades that information retrieval (IR)

systems should help people get tasks done. For the mobile search, Carrascal

et al. [26] highlighted that tasks are more important than individual mobile

app usage. They found that the categories of apps used before and after

a mobile search, as well as complex switching between apps and search,

point to an overarching theme of task completion. So if we could infer

which task the user is going to perform, the mobile search could preempt

these behaviours and offer more proactive search experiences. Essentially

supporting users in task continuation and task completion. For example,

when the task of "Multiple Updated Info Check" has been detected, the

user aims to collect all the latest information from different sources, not a

specific app. Even the user only engaged with a finance app just now, if

they searched "USPS", we should know that he/she probably wants to get

the latest tracking information under the task context rather than recom-

mendations of post services. We leave the validation on benefits brought

by task-based modelling of app usage behaviour in mobile search as our

future work when the search data could be collected.

Here we summarize the task-based application part of this thesis (Part III).

In part III of this thesis, we firstly demonstrate the task-based user profil-

ing method could work better in demographics prediction, especially when

compared with the traditional app-based user representation. Secondly, we

further validate that by measuring users’ app usage behaviour within the

task space, we would be able to predict which task users aim to conduct

next. Since we are the first work to propose understanding users’ tasks

based on their app usage behaviour, within both of these two studies, we
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8.3. CONCLUSION AND DISCUSSION

aim to provide the initial steps in shaping future research on investigating

whether and how the extracted tasks could be applied for improving mobile

services. We believe that task-based applications could be well developed

in the future for providing users with more advanced and satisfying ser-

vices in different scenarios. In the following chapter, we draw conclusions

from all research chapters and present our main findings and directions for

future work.
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Chapter 9

Conclusion & Future Work

In this thesis, we present work towards inferring users’ needs and tasks

from their app usage interactions, which could help the operating system

and app developers deliver more satisfying content and services to the end-

user. Firstly, for improving the existing models on inferring users’ app usage

needs, more comprehensive studies are conducted. We investigate how to

alleviate the cold-start issue for app usage prediction problem. Specifically,

when new users come, who do not have much data to be learned, how could

we still infer their app usage needs effectively. Furthermore, other than the

only predicting the next app user would use, we also try to model how long

the user would stay with this app and propose to predict both which app

user would use and app dwell time simultaneously. Secondly, while modern

mobile devices only effectively serve the individual apps that correspond to

simple needs, e.g., weather checking, users get little or no help when their

needs transcend the boundary of a single mobile app. We aim to further

understand the high-level intention with more semantic meaning within

users’ minds while engaging with different apps. Traditionally, the logged

app usage streams could be segmented into different sessions based on the
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short inactivity timeouts (30 or 45 seconds). However, users’ tasks with

their high-level intentions may span multiple sessions and involve different

apps, where the empirically-set short timeout threshold may not be a valid

criterion, e.g., dining out, vacation plan. So we investigate the methods for

identifying tasks from users’ app usage interactions and characterizing the

extracted tasks for better understanding users’ high-level intentions. Lastly,

given the extracted tasks, we also try to leverage the task information

in different applications for validating the benefits brought by tasks in

providing more satisfying services and improving the user experience. For

now, little research has explored methods to understand and identify mobile

tasks, let alone to support users with more satisfying services and content,

especially in task continuation and task completion.

The six research chapters in our thesis addressed the challenges of inferring

user needs and tasks from app usage interactions as follows by answering

three big research questions:

RQ1. How could we improve the methods for inferring users’ needs on

single apps, especially when compared to the existing models?

RQ2. Other than the traditional approach for modelling users’ behaviour

based on specific apps, could we measure users’ app usage behaviour within

task space?

RQ3. How could we leverage the extracted tasks information in different

applications for improving mobile services?

Firstly, we aim to infer users’ needs that could be satisfied by single apps

from Chapter 3 to 4 (Part I), which especially for improving the existing

methods on app usage prediction (RQ 1). In particular, in Chapter 3,

we demonstrate that the cohort information could be utilized for next app
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category prediction, especially on alleviating the user cold-start problem.

In Chapter 4, we explore the factors that affect users’ app dwell time from

user characteristics and various context information. We show evidence

that the next app and how long the user will stay on this app could be

predicted simultaneously.

Secondly, we aim to investigate how to identify tasks from users’ app usage

behaviour and characterize the extracted tasks for uncovering the common

patterns among tasks in the wild (RQ 2) from Chapter 5 to 6 (Part II).

In particular, in Chapter 5, we propose to set the stage for evaluating

mobile apps usage, not on a per-app basis, but on the basis of user tasks.

We first propose a method that accurately determines mobile tasks from

users’ app usage logs. We showed that a set of temporal, similarity and log

sequence features used in combination can effectively predict mobile tasks.

In Chapter 6, the automatic identification of mobile tasks proposed in

Chapter 5 is employed in a large-scale dataset, where we try to understand

the mobile tasks that exist in a wide range of smartphone usage. Given the

extracted characteristics for representing complex tasks, we show evidence

that there actually exist several differentiable groups of complex tasks,

which could be identified solely from their salient properties.

Lastly, we aim to demonstrate that the extracted task information could

be leveraged in various applications (RQ 3) from Chapter 7 to 8 (Part III).

In Chapter 7, we demonstrate that mobile task based user modelling ap-

proaches could effectively improve the performance of gender and age group

prediction, especially when compared to the traditional user representation

based on app interests. In Chapter 8, we further validate that tasks are

more accurate units to capture users’ goal and behavioural insights for

predicting the next complex task user will perform.
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9.1. SUMMARY OF MAIN FINDINGS

Below, we provide a more detailed summary of the contributions and results

of our research, and answer the research questions set out at the beginning

of this thesis (Section 1.1). In Section 9.2, we discuss the ethical and privacy

concerns for machine-learning and algorithmic decision-making systems.

We conclude with an outlook on future research directions in Section 9.3.

9.1 Summary of Main Findings

The main objective of this thesis is to infer users’ needs and tasks from their

app usage interactions and then leverage the learned knowledge to enhance

current mobile services for improving user experience. We summarize the

main findings as follows.

9.1.1 Understanding App Usage Behaviour

There have been many works conducted on modelling users’ app usage

behaviour, especially focused on predicting which app users will use next

[163, 98, 72, 157, 8, 203]. We start our work by investigating how could

we leverage the cohort information for alleviating the cold-start problem

when new users come. In Chapter 3, we design and conduct experiments

to answer the following questions:

RQ 1.1: how could we model users’ cohorts based on users’ characteristics

and logs readily available for mobile app usage?

RQ 1.2: could we employ signals from users who are similar along one or

more dimensions, i.e., those in the same cohort for improving the prediction

performance, especially for alleviating the cold-start problem?
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Through our study, we demonstrate the value of cohorts, especially for

new users. We firstly establish a comprehensive taxonomy to generate

cohorts using logs readily available for mobile app usage from three aspects:

demographics, psychographics, and behavioural patterns. We demonstrate

that modelling user interests within these cohorts can enhance state-of-the-

art app category usage prediction methods, leading to significant gains in

the prediction performance. Additionally, our proposed cohort modelling

method can effectively alleviate the user cold-start issues, especially when

compared with the personalized prediction models. For a new user without

much interaction data, general cohorts information such as interests or

community could be collected, e.g., a user could label themselves as car

lovers or young parents. Users’ next app category usage could be predicted

with relatively high accuracy using this basic cohort information. The

cohort labels can also be utilized to explain the prediction model, enabling

the recommendation to be more transparent and interpretable.

After answering the questions above, we could be able to predict the app

preferred by users no matter they are new coming or not. Then in Chapter

4, we aim to further investigate that besides predicting which app users

would use, if we can also model how long users would stay with apps. In-

tuitively, game apps, in general, have a higher probability to be used for

a long period, whereas weather app is, not surprisingly, shorter. So we

then state that it’s not meaningful to only predict how long a user will

stay regardless of which app user is engaging. Therefore we conduct com-

prehensive analysis and propose several strategies to answer the following

questions:

RQ 1.3: What are the factors (user characteristics and contexts) that

influence the app dwell time?
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RQ 1.4: Can we predict which app users will use next and how long the

user will stay on this app simultaneously?

To answer the research question RQ 1.3, we take a systematic approach to

uncover the dependency of users’ app usage duration on user characteristics

(e.g., demographics) and context features (e.g., hours of the day, historical

habit, last used app, etc.) based on a large-scale dataset. We show that the

features related to the users’ historical pattern, periodic behaviour pattern,

and the recent usage pattern have more impacts when inferring users’ app

dwell time. For example, for the periodic pattern, a user prefers to spend

a similar length of time to regularly check the shopping apps every day

(i.e., after every 24 hours), probably for checking the updated discount

or product information. This pattern could also be observed with books

apps. Given the predictive factors we extracted for modelling app dwell

time, we then propose three different joint prediction strategies: sequential,

stacking and boosting, to solve another research question RQ 1.4, where

the experimental results show that the boosting based strategy performs

the best. We demonstrate that users’ next app and the time spent could

be effectively predicted at the same time.

9.1.2 Extracting and Characterizing Mobile Tasks

After conducting more comprehensive study for improving existing research

on inferring users’ app usage behaviour, we aim to further explore if we

could infer users’ tasks where users’ needs may transcend the boundary of

a single mobile app. Existing mobile systems handle mostly simple user

needs, where a single app is taken as the unit of interaction. To understand

users’ expectations and to provide context-aware services, it is important to

model users’ interactions in the task space. No previous study has analyzed
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or addressed the automatic identification of mobile tasks. In Chapter 5,

by conducting a small-scale user study based on users’ annotated tasks, we

aim to answer the following research questions:

RQ 2.1: What kind of features can be used effectively to identify mobile

tasks from app usage logs?

RQ 2.2: Can we formulate the task identification as a supervised learn-

ing problem, which could predict the app usage belong to the same task

automatically?

To answer these questions above, we propose and evaluate a method for

the automated segmentation of users’ app usage logs into task units. We

focus on two problems: (i) given a sequential pair of app usage logs, iden-

tify if there exists a task boundary, and (ii) given any pair of two app

usage logs, identify if they belong to the same task. We model these as

classification problems that use features from three aspects of app usage

patterns: temporal, similarity, and log sequence. We show that these fea-

tures used in combination can effectively predict mobile tasks. When used

independently, log sequence features, which capture the hidden semantic re-

lationship between apps perform best. The log sequence features cover the

patterns such as if two apps are always used successively within the same

session and the probability that a switch between two apps happens when

accessed sequentially. Based on our proposed task identification models,

we are able to map the large-scale app usage logs into task space automat-

ically, which sets the stage for evaluating mobile apps and services, not on

a per-app basis, but on the basis of user tasks.

After establishing the important first step in modelling mobile app usage

from the task perspective within a small-scale study, in Chapter 6, we

further aim to understand mobile tasks in the wild, especially focus on the
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complex mobile tasks which get multiple different apps involved since they

are more time-consuming and difficult for users to complete:

RQ 2.3: How to characterize complex mobile tasks based on different

attributes?

RQ 2.4: Could we uncover the common patterns that exist in complex

mobile tasks by dividing them into natural groups that reflect salient pat-

terns?

For characterizing complex mobile tasks based on the large-scale commer-

cial mobile app usage logs, a generic mobile app navigation model is firstly

proposed to present an accurate picture for the micro-level interactions

within this analysis, including how users revisit and switch between differ-

ent apps. Then given the available features we could extract from the logs

and the proposed navigation model, we analyze all mobile complex tasks

from three aspects: task context (e.g. hours of the day), task complexity

(e.g., number of different apps, task duration), and task content (e.g., app

categories involved, switch between apps). To further uncover the common

patterns that exist in all complex tasks based on the extracted character-

istics, we employ the unsupervised learning approach to divide them into

natural groups that reflect salient patterns. We observe that users gen-

erally perform 17 common tasks with 47 sub-tasks, ranging from “social

media browsing" to “dining out" and “family entertainments". It provides

us with a more fine-grained picture of the common complex mobile tasks

users perform in the wild.
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9.1.3 Leveraging Mobile Task Information

Based on our proposed mobile task identification model (Chapter 5) and

the complex task clustering framework (Chapter 6), we are able to extract

all complex mobile tasks from users’ app usage logs, and also assign each

task into a task type. We then intend to explore how the extracted task

information could be leveraged in providing more satisfying services and

improving user experience. Mobile user profiling is traditionally based on

app interests, such as simply using app lists as features to predict the users’

demographics. In Chapter 7, to apply the benefits brought by tasks, which

can cover more detailed behaviour patterns and intentions while engaging

with different apps, we aim to answer the following questions:

RQ 3.1: could we represent users not only based on app interests (used

apps), but also on tasks, or task types?

RQ 3.2: would the task-based user representation methods benefit demo-

graphics prediction?

We firstly analyse the additional insights brought by tasks when compared

to apps for distinguishing users in different ages and genders. We find

that tasks could better capture the heterogeneity in user information and

help us in modelling users. Then we propose different approaches for infer-

ring users’ representation both based on apps/app categories and task/task

types. We finally demonstrate that the mobile user representation based

on tasks with advanced neural models could effectively improve the perfor-

mance of gender and age group prediction, especially when compared with

the app-based user representation methods.

The experiment results of task-based user representation indicate that tasks

have become a more accurate unit to capture users’ goal and behaviour in-
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sights, especially when compared to apps. Besides the traditional next app

prediction problem, we believe that predicting which task the user would

conduct next should be more important for improving mobile services. For

the "Dining Out" task, if we only model users’ behaviour based on inde-

pendent apps, the mobile system may only be able to recommend a single

food app to users, but have no ability to make the seamless integration

with different related apps (navigation and transportation, etc.) under the

task context. Therefore, in Chapter 8, we further aim to answer that:

RQ 3.3: Could we predict what the next complex task is by measuring

users’ app usage behaviour within task space?

Given the complex task clustering framework (Chapter 6), we are able

to extract complex mobile tasks from users’ app usage logs and assign a

task type label to each complex task. We model the next complex task

as a multi-class classification problem of 47 types (i.e., number of clusters)

within the complex task space. We generate the predictive features by

three different aggregation approaches based on users’ historically engaged

app categories and complex tasks. We then validate that the task-based

representation of users’ app usage behaviour could improve the complex

task prediction on smartphones significantly.

Both of the task-based applications introduced above all provide prelimi-

nary steps in shaping future research on investigating whether and how the

task information could be leveraged into different scenarios. More future

work could be conducted by leveraging our task extraction and character-

ization methods.
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9.2 Discussion on Ethical and Privacy Con-

cerns for Artificial Intelligence (AI) Sys-

tems

Nowadays, more and more sectors increasingly turned to AI systems and

machine learning algorithms to automate simple and complex decision-

making processes [90]. The availability of massive data sets also made it

easy to derive new insights through computers, and the algorithms have

become more sophisticated and pervasive tools for automated decision-

making [132]. As discussed in Section 7.5, previous research has shown

that algorithms can exhibit and even amplify gender bias. While machine-

learning algorithms enable companies to realize new efficiencies, in the case

of self-learning systems, feeding biased data to self-learning systems can

lead to unintended and sometimes dangerous outcomes [116]. For example,

a racist machine that switched from tweeting that “humans are super cool”

to praising Hitler and spewing out misogynistic remarks was created by Mi-

crosoft when they tried to converse with millennials via a chatbot plugged

into Twitter famously created [38]. And this scary conclusion to a one-day

experiment resulted from a very straightforward rule about machine learn-

ing, which learned exactly what the model was taught. Additionally, the

harmful results would also be generated when the model was trained based

on incomplete data. A machine-learning system1 that makes recommen-

dations for criminal sentencing, was proving imperfect at predicting which

people are likely to re-offend, which is because the training model includes

race as an input parameter, but not more extensive data points like past

arrests. Nowadays, researchers are becoming more aware of the biases that

these applications can contain and are attempting to address them. A tax-
1Correctional Offender Management Profiling for Alternative Sanctions (COMPAS)
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onomy for fairness definitions has been defined by the machine learning

researchers in order to avoid the existing bias in AI systems [116]. In our

future research, we will also work on improving our mobile task based AI

systems in terms of mitigating the bias and unfairness.

Additionally, reams of data from mobile phones and other online devices

expand the volume, variety, and velocity of information about every facet of

our lives and put privacy into the spotlight as a global public policy issue.

As artificial intelligence evolves, it magnifies the ability to use personal

information in ways that can intrude on privacy interests by raising analysis

of personal information to new levels of power and speed [81]. Even the

use of extensive personal data has been governed by modern data privacy

guidelines, such as the EU’s General Data Protection Regulation (GDPR)

[177], where GDPR sets a specific requirement called data minimization,

which means that organizations can collect only data that is necessary, how

to address use personal information in artificial intelligence systems is still

an open research question. In our study, all the data used were anonymized

by removing all personally identifiable data prior to processing. It is a

temptation to leverage data without thinking about the human cost, impact

and outputs. As data modellers and algorithm designers, we always need to

consider privacy, provenance, as well as the impact of each potential use and

design. In our future work, more diverse representation in implementation

and oversight will be further explored for protecting users’ privacy.

9.3 Future Work

Users increasingly prefer to complete tasks with mobile devices in their

daily life. In this thesis, we argue that modern mobile devices only effec-
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tively serve many of the individual apps that correspond to simple mobile

needs, users get little or no help when their needs transcend the boundary

of a single mobile app. The tasks with high-level intentions especially for

those span across multiple apps/services should be taken into considera-

tion for providing more satisfying services to users. Specifically, this opens

up many interesting and important directions for future work. We discuss

each direction below.

9.3.1 Task enhanced Mobile Search

Future mobile search experiences should take tasks into account. Some

researchers have investigated how to leverage task context information for

query suggestion [24, 120] and ranking documents [189] in Web search.

They validated that task information could provide better context for in-

formation retrieval (IR) systems to learn from. Different from the tra-

ditional IR on desktop, where their task context information could be ex-

tracted from search logs, Carrascal et al. [26] have stated that mobile search

queries are mostly related to the apps used before and after. In this the-

sis, we have proposed the task identification model and a task clustering

framework which could extract tasks from app usage logs automatically

and further group them into different categories with the semantic label

assigned. Furthermore, we also proposed the task prediction model which

could also provide task context for future search. So how to leverage the

mobile task context extracted from app usage for improving mobile search

should be explored in future work.

Firstly, given the task extracted from apps used before a search, the mobile

system could offer more proactive search experiences under the task context

and essentially supporting users in task continuation and task completion.
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A task context embedding architecture to learn the representation of queries

by leveraging the task context information from historical app usage and

search logs could be explored. For example, when the task of "Multiple

Updated Info Check" has been learned, the user aims to collect all the

latest information from different sources, not a specific app. Even the user

only engaged with a finance app just now and has no search actions before,

if he searched "USPS", we should know that he/she probably wants to get

the latest tracking information under the current task context rather than

recommendations of the most popular post services.

Additionally, the task-based approach for addressing unseen queries and

new search scenarios should also be explored. Personalized search systems

always rely on being able to find pertinent information in that user’s search

history, which can be challenging for unseen queries and new search scenar-

ios. It would be a more serious problem in mobile search since most queries

may be resulted from apps usage, not the historical search behaviour [26].

By leveraging the task information extracted from the app usage logs, we

can build richer models of users’ current and historical context which may

help improve the likelihood of finding relevant content and enhance the

relevance and coverage of personalization methods. The historical tasks

extracted could be mined to find other users performing similar tasks to

the current user and leverage their on-task behaviour to identify Web pages

to promote in the current searched results ranking. The validation of ben-

efits brought by task-based modelling of app usage behaviour in mobile

search could be explored in future work when the mobile search data is

also available.
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9.3.2 Task Supported Intelligent Assistants (IAs)

Understanding users’ behaviours in the task space is an essential part to

improve the intelligent agent services (e.g., Siri, Google Now and Microsoft

Cortana) on mobile devices in the future. Such systems should make use

of a plethora of signals including user’s interactions and contextual infor-

mation to provide assistance by making recommendations and performing

actions. However, as stated by [160], current IAs tend to be limited to spe-

cific apps. Their experiments showed that understanding high-level tasks

allows the agent to actively suggest relevant apps, which helps users pursue

particular goals and reduces the cost of users’ self-management. Further-

more, with improved speech recognition systems, more and more users are

increasingly relying on such digital assistants to fulfil their request given a

user’s request expressed, in language, at the level of tasks. Upon receiving

“can you help me book a table in May Restaurant at 7:00 p.m. and send

me the directions to get there?”, the IA should open the OpenTable Reser-

vations app for booking the table and then open the GoogleMaps to get

the directions to that restaurant, finally display the direction on the home

screen or send it to users’ messages box. By doing so, we could potentially

simplify the process of launching apps one by one, which is time-consuming

and difficult for users, especially for elders and ones with (visual) disabili-

ties.

By leveraging the task identification, clustering and prediction methods

proposed in this thesis, we are able to extract and predict the high-level

tasks users aim to conduct while engaging with the mobile devices. How-

ever, how to map the extracted tasks to the language level of tasks and a

series of operations/services provided to users interactively should be in-

vestigated in the future. The most straightforward way for mapping the
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extracted tasks to language expression would be using some string simi-

larity metrics (e.g., Levenstein edit distance, n-gram Jaccard) to measure

the similarity between task labels and users’ expressions. Additionally, as

we also proposed some embedding architecture to represent the semantic

meaning within tasks, i.e., Task2Vec (Chapter 7), more natural language

processing (NLP) knowledge could be leveraged for learning the similarity

between users’ expression and tasks extracted. Then for mapping the task

to a set of operations that need to be conducted by IAs automatically, we

actually have provided many hints from the bottom-up perspective, i.e.,

by knowing which hub app, dominant app, and switch patterns, have been

covered within a task, we could assign a task label to them. So how to map

the task to operations within a top-down manner (i.e., knowing the task

and then mapping the task to recommended operations) could be further

explored in the future.

9.3.3 Implication on Future Data and Technologies

9.3.3.1 Data

In general, training data for machine learning projects has to be represen-

tative of the real world. However, data bias can occur in a range of areas,

from human reporting and selection bias to algorithmic and interpretation

bias. Similar to all other real-world app usage datasets, the dataset used in

our study was also limited in representing the entire population of mobile

users. As the users and apps were only coming from the apps registered in

a specific library, it means that not all the apps usage behaviour of users

could be tracked and there may be a selection bias in the subset of users

being studied. While this might occur to some extent, given the scale of

our dataset (with over 1.3 million logs), we believe our data would still
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provide useful insights, and our predictive models are the best models so

far, effective for most users.

As more representative and larger datasets would be collected, we gen-

erated a webpage for sharing the detailed annotation procedure and the

annotated data as reference for helping the researchers validate our work

in the future. All the information, including full instructions of annotation

guidelines, how labellers will be filtered, the design of the annotation page

on Amazon Mechanical Turk and analysed statistics of annotated results,

can be accessed at https://mobile-task-annotation.github.io/. A more rep-

resentative dataset and improved annotation processes not only boost the

accuracy of the model, but can also alleviate the issues of ethics, fairness,

and inclusion. We strongly suggest that future researchers keep working

on handling the dataset to avoid bias where possible.

9.3.3.2 Technologies

In this section, we take the emerging split-screen feature on mobile devices

as an example to discuss how the changes in technologies might affect future

work in our related research areas. Besides having more space to view the

apps, the trend for bigger screens on mobile devices also opens up the

possibility to open more than one app in split-screen mode. On Android,

the split-screen mode has become a native feature that allows users to view

two apps side by side on the phone screen [76]. It not only allows users to

open more than one app simultaneously but also enables those apps to run

simultaneously in some cases.

The split-screen mode and our proposed complex mobile tasks complement

each other. For instance, a user might open up a finance-related app such

as a spreadsheet or bank app and then open up a calculator or another
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finance app. All of the information that might be needed to set up a

budget or check balances can, effectively, be open and on-screen at once.

This task has been reflected as the complex task C7-6 Tool Cooperation in

Section 6.2.3.2. Within the split-screen mode, users just need to navigate

each as they normally would but without alternating between different apps

through the Recent Apps view. For another example, a user might open

up a YouTube video or some other media app on their smartphone. If a

text message or other message comes in, they can then use the split-screen

tool to respond in a larger format than the notifications shade allows for,

all while continuing to watch or listen. This task has also been reflected

in the complex task C13-31 TV Watching with Communication within

Section 6.2.3.2.

With the increasing development of split-screen feature and other technolo-

gies for helping users engage with more than one app at the same time,

how to infer users’ needs and tasks, in particular those complex tasks with

at least two apps involved, will not only be based on the app usage logs,

more touch screen gestures (e.g., scroll down/up and zoom in/out) and

more fine-grained interaction patterns should be taken into consideration.

Specifically, the switch and revisit patterns among app usage were origi-

nally important features for identifying mobile tasks since apps need to be

accessed sequentially for completing the task. However, as the interaction

method with apps changed according to the split-screen mode, where the

information of two apps can be shown to the users at the same time with-

out switching between them, researchers and developers should pay more

attention on how to measure users’ app usage behaviour in different ap-

proaches instead of only based on the sequence of apps usage, additional

features for understanding users’ app usage behaviour should be further

explored under the new interactive mobile environment.
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