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Abstract 

Magnetoencephalography (MEG) is a functional neuroimaging method which 

measures the magnetic fields produced by neural communication in the brain. 

Specifically, the fields induced by dendritic current flow in assemblies of 

pyramidal neurons. Because these magnetic fields are generated directly by 

brain electrophysiology, and are mostly unperturbed by the skull, MEG data 

are rich in spatial and temporal information. This thesis is chiefly concerned 

with interpreting these data in a way that produces useful results whilst 

minimising bias. 

Hidden Markov modelling (HMM) is a robust statistical method which has been 

applied to fields as diverse as speech recognition and financial market 

prediction. It parses data into a number of ‘hidden states’, each with their own 

unique characteristics, in an unsupervised way. Because it is data-driven, it can 

create a model unique to each participant’s brain activity and specific to each 

task. In addition, the HMM framework itself is flexible so it can be applied to 

both sensor and source-space data and can be applied to multiple channels 

(multivariate) or to a single time course (univariate). Choice of an observation 

model allows states to be characterised by amplitude, spatial, or spectral 

content depending on the research question. 

The aim of this thesis is to apply hidden Markov modelling (HMM) to whole-

head MEG data to identify repeated patterns of transient neural activity 

occurring throughout the brain. Once these patterns were identified, the 

interaction between these short ‘bursts’ of activity across the cortex was 

established which provided a unique measure of functional connectivity.  

Three studies were undertaken: 

The role of transient spectral bursts in MEG functional connectivity: In recent 

years, the smoothly varying neural oscillations often studied in MEG (such as 

those trial-averaged responses in the traditional neurophysiological (such as 

alpha/beta) frequency bands) have been shown to be made up of single-trial 

high-amplitude ‘bursts’ of activity. These bursts can be observed in the beta 
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frequency band and are therefore often referred to as beta bursts. In this 

study, a novel time-delay embedded HMM was used to identify bursts in 

broadband data based on their spectral content for MEG data from 66 healthy 

adult participants. The burst amplitude, duration and frequency of occurrence 

were characterised across the cortex in resting state data, and in a motor task 

the classic movement-related beta desynchronisation and post movement 

beta rebound were shown to be made up of changes in burst occurrence. A 

novel functional connectivity metric was then introduced based on the 

coincidence of bursts from distal brain regions, allowing the known beta band 

functional connectome to be reproduced. Bursts coincident across spatially 

separate brain regions were also shown to correspond to periods of 

heightened coherence, lending evidence to the communication by coherence 

(Fries 2005, 2015) hypothesis.  

Post-stimulus responses across the cortex: During a motor task, both primary 

(during stimulation) and post stimulus responses (PSR) can be observed. These 

are well characterised in the literature, but little is known about their 

functional significance. The PSR in particular is modified in a range of seemingly 

unrelated neurological conditions with variable symptoms, such as 

schizophrenia (Robson et al. 2016), autism spectrum disorder (Gaetz et al. 

2020) and multiple sclerosis (Barratt et al. 2017), indicating that the PSR is a 

fundamental neurophysiological process, the disturbance of which has 

implications on both healthy and pathological brain function. This work 

therefore tested the hypothesis that the PSR is present across the cortex. MEG 

data were acquired and analysed from two experiments with 15 healthy adult 

volunteers each – the first was a right-hand grip task with visual feedback, the 

second involved passive left visual field stimulation. Both experiments varied 

stimulus duration (2s, 5s and 10s) with a 30s rest-period between trials to allow 

characterisation of the full PSR. A univariate 3-state time-delay-embedded 

hidden Markov model (HMM) was used to characterise the spatial 

distributions of the primary and PSR across the cortex for both tasks. Results 

showed that for both tasks, the primary response state was more bilateral over 
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the sensorimotor or visual areas (depending on task) where the PSR state was 

more unilateral and confined to the contralateral sensorimotor or visual areas 

(again, dependant on task). A state coincidence metric was then used to 

investigate the integration of the primary and PSR states across brain regions 

as a measure of task-related functional connectivity. 

Hidden Markov modelling of the interictal brain: Epilepsy is a highly 

heterogeneous disease with variations in the temporal morphology and 

localisation of epileptiform activity across patients. Unsupervised machine 

learning techniques like the HMM allow us to take into account this variability 

and ensure that every model is tailored to each individual. In this work, a 

multivariate time-delay embedded HMM was used to identify brain states 

based on their spatial and spectral properties in sensor-level MEG data 

acquired as part of standard clinical care for patients at the Children’s Hospital 

of Philadelphia. State allocations were used together with a linearly 

constrained minimum variance (LCMV) beamformer to produce a 3D map of 

state variance, hence localising probable epileptogenic foci. Clinical MEG 

epilepsy data are routinely analysed by excess kurtosis mapping (EKM) and so 

the performance of the HMM was assessed against this for three patient 

groups, each with increasingly complex epilepsy manifestation (10 patients in 

total). The difference in localization of epileptogenic foci for the two methods 

was 7 ± 2mm (mean ± SD over all 10 patients); and 94 ± 13% of EKM temporal 

markers were matched by an HMM state visit. It is therefore clear that this 

method localizes epileptogenic areas in agreement with EKM and in patients 

with more than one focus the HMM provides additional information about the 

relationship between them.  
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Chapter 1 

Introduction 

In-vivo brain imaging is an invaluable tool for understanding both healthy and 

pathological brain function. Broadly, these techniques can be divided into two 

categories: structural neuroimaging methods such as magnetic resonance 

imaging (MRI) or X-ray computed tomography (CT), and functional 

neuroimaging methods such as magneto/electroencephalography (M/EEG) 

and functional MRI (fMRI). It is the second category to which this thesis 

belongs. Structural imaging helps us to establish where different structures 

reside in the brain. In contrast, functional neuroimaging helps us to establish 

what each structure does and its role in relation to the rest of the brain and 

body. Indeed, in the case of medical diagnostics, there are some diseases 

where there are no obvious structural abnormalities but there is significant 

divergence from healthy brain function. 

1.1 Functional Neuroimaging 
The fundamental units of brain function are neurons – single cells which 

transmit information between one another and to the rest of the body in the 

form of electrical potentials and chemical synapses. The human brain 

comprises 86 billion neurons (Azevedo et al. 2009) which must coordinate in 

such a way that regions of the cortex can become specialised for a particular 

function  (for example, the precentral cortex specialises in motor control), and 

those specialised cortical regions must also coordinate with one another (for 

example, the visual and motor cortices must communicate for effective hand-

eye coordination). It is the messages that these neurons transmit to one 

another through electrical potentials along dendrites and axons, or via the 

movement of chemical neurotransmitters across synapses (the junction 

between two neurons) which we wish to capture with functional 

neuroimaging. There are a number of imaging modalities, each with their own 

pros and cons, which will be discussed in the rest of this section.  
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1.1.1 Invasive measures of brain function 
The functional neuroimaging method with the greatest spatial (millimetres) 

and temporal (milliseconds) resolution is intracranial EEG (iEEG), including 

both electrocorticography (ECoG) where a large part of the skull is removed 

(craniotomy) and an electrode grid is placed in the subdural space, and 

stereotaxic EEG (sEEG) which uses depth electrodes placed in the brain 

through small boreholes in the skull. In the case of sEEG, each depth electrode 

has approximately 10-14 recording contacts, so by placing electrodes deep into 

the cortex, it is possible to directly intercept the electrical currents produced 

by populations of neurons surrounding each contact. However, there are a 

number of limitations to human iEEG recordings, the first is that these methods 

are highly invasive and are therefore reserved only for patients suitable for 

brain surgery or experimental animals. This in itself presents more difficulties: 

because data are only from pathological brains the comparison with healthy 

brain function (which is of interest in this thesis) is likely to be compromised. 

The placement of electrodes will also be decided by clinical need, which often 

favours placement in the temporal lobe compared with other brain locations 

(Parvizi and Kastner 2018). Animal models prove exceptionally useful; 

however, it is questionable whether the complex aetiology of a human mental 

health condition can be faithfully reproduced in an animal. Another limitation 

of iEEG is the sparse sampling of brain activity - placing enough iEEG electrodes 

to cover the entire cortex would be clinically impossible.  

It is therefore beneficial to consider neuroimaging methods which are non-

invasive (to allow study of healthy human brains) and which operate on a 

macroscopic scale so that whole-brain activity can be recorded. 

1.1.2 Non-invasive measures of brain function 
The oldest and perhaps most widespread method is scalp EEG, first 

demonstrated by Hans Berger in 1929 (Berger 1929). This is a direct measure 

of brain function, where the electric potentials generated by the synchronous 

firing of many thousands of neurons in the brain are detectable on the scalp 

by measuring the potential difference between scalp-mounted electrodes. To 
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make electrical contact, the scalp must be cleaned, and gently abraded before 

conductive gel is used to stick the electrodes down. The technology is relatively 

inexpensive and is used internationally for diagnosis of neurological conditions 

such as epilepsy. Despite its high temporal resolution (similar to iEEG), the 

spatial resolution of EEG is greatly hampered because the spatial signature of 

electrical potentials is distorted by the poor electrical conductivity of the skull, 

making it difficult to localise the source of measured signals.  

In comparison to EEG, MEG (Cohen 1972) measures the magnetic fields 

generated by the same neuronal activity, but has much greater spatial 

resolution because the magnetic fields induced by current flow in neuronal 

assemblies are relatively unimpeded by the presence of the skull. This makes 

it much easier to reconstruct the source of MEG signals. Because MEG is also 

a direct measure of cerebral activity, the temporal resolution is equivalent to 

iEEG.  Most commercial MEG systems are based on magnetic field sensors 

which operate at cryogenic temperatures. This makes them expensive to buy 

and maintain as sensors must be kept in a dewar of liquid helium. However, a 

new generation of MEG systems are being developed with sensors which 

operate at room temperature (Boto et al. 2017), potentially bringing the 

maintenance costs down and allowing sensors to be placed on the scalp in a 

wearable helmet (this is particularly important for children or patients who 

struggle to sit still).   

The three imaging modalities introduced so far directly measure the 

electrophysiological component of brain function, rather than the 

neurochemical element. Neurotransmitters, such as gamma aminobutyric acid 

(GABA) and glutamate regulate the firing of neurons through inhibition and 

excitation respectively – in other words, GABA reduces the likelihood of a 

neuron firing an action potential and glutamate increases the likelihood.  

Nuclear magnetic resonance (NMR) spectroscopy can be used to image the 

concentration levels of these neurotransmitters in voxels of the brain, thus 

serving as another direct measure of brain function. Proton functional 

magnetic resonance spectroscopy (1H-fMRS) (Prichard et al. 1991) allows the 
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time-evolution of the concentration levels of these neurotransmitters to be 

measured in relation to a task with temporal resolution of less than a minute 

(Stanley and Raz 2018). Although the temporal and spatial resolution of 1H-

fMRS is coarser than other neuroimaging methods, its unique contribution to 

understanding the role of key metabolites facilitating brain function cannot be 

overstated. 

1.1.3 Indirect measures of brain function 
In studies where temporal resolution is not critical and access to direct 

electrophysiology and/or neurochemistry is not required, other non-invasive 

neuroimaging methods can be used. This section introduces indirect functional 

brain imaging methods which detect the downstream effects of neural activity 

(like blood flow) and have lower temporal resolution than M/EEG but generally 

excellent spatial resolution. 

The neuroimaging methods in this section all exploit the fact that metabolic 

demand increases in parts of the brain which are active, meaning that glucose 

and oxygen must be delivered to support the cellular processes that mediate 

brain function (and which produce the bioelectromagnetic fields measurable 

with EEG and MEG). This changing metabolism is tightly coupled, spatially, to 

active assemblies of cells, allowing the precise mapping of active cortex. 

However, the increase in blood flow facilitating the increased metabolic 

demand occurs after the neurons have begun firing, resulting in low temporal 

resolution. 

There is a difference in the magnetic susceptibility of oxygenated 

(diamagnetic) and deoxygenated blood (paramagnetic) which can be 

measured with MRI. Functional MRI (Ogawa et al. 1990) exploits this, using the 

oxygen level of the blood as an endogenous contrast agent – by acquiring 

multiple images over short timescales the evolution of the blood oxygen level 

dependant (BOLD) response can be measured with high spatial resolution. 

Positron emission tomography (PET) (Ter-Pogossian et al. 1975) is another 

common neuroimaging method whereby a participant is injected with a 



15 
 

radioactive tracer which travels in the blood to the brain, highlighting locations 

with increased blood flow or energy uptake (which increase following 

activation of neurons). The radioactive tracer then decays into a more stable 

isotope through emission of a positron which annihilates on contact with an 

electron in the surrounding tissue. This annihilation produces two gamma 

photons, travelling in opposite directions (with 180⁰ between them) which are 

then detected by gamma cameras surrounding the patient. Analysis of the two 

photons using back projection reconstruction allows the location of the 

annihilation event to be calculated, thus highlighting regions of the brain which 

are active. PET is a core tool for cancer management but the exposure to 

radiation from the tracer means that this method is rarely used for healthy 

research participants. 

Functional near infrared spectroscopy (fNIRS) (Jöbsis 1977) is an optical 

imaging method that exploits the fact that near infrared light can be detected 

through the scalp using scalp-mounted optodes. There is a difference in the 

characteristic absorption spectra of oxygenated and deoxygenated 

haemoglobin which means that shining near infrared light through the scalp 

and detecting the reflected light as it reaches the optodes allows us to map the 

blood oxygenation, and therefore blood flow across the cortex. However, this 

technique has poor spatial resolution due to the scattering of light in the media 

between cerebral blood vessels and the scalp-mounted optodes as well as 

poor temporal resolution.  

1.2 Thesis Aim 
The aim of this thesis is to develop and apply new methods which capitalise 

on the spatial and temporal dynamics of functional neuroimaging data to 

allow better understanding of whole-brain function on a millisecond time 

scale.  

It is therefore important that the imaging modality of choice operates on a 

scale that covers the whole brain and is non-invasive to allow investigation of 

healthy adult research participants. The spatial and temporal resolution must 

also be great enough to distinguish the neuronal activity arising in different 
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cortical areas and across different frequency bands. Of the numerous 

functional imaging methods available, MEG covers all bases by being both non-

invasive and a direct measure of neuronal activity, as well as combining good 

temporal resolution with good spatial resolution. For these reasons MEG is the 

imaging modality of choice for this thesis. 

Figure 1.1: The approximate spatial and temporal resolutions of each of the functional 
neuroimaging methods introduced in this chapter. 

1.2.1 Data Interpretation 
Once MEG has been identified as the most appropriate non-invasive functional 

neuroimaging method for understanding whole-brain function on a 

millisecond timescale, and the immediate challenge of building a system 

sensitive enough to detect the minute magnetic fields produced by the brain 

has been overcome, the challenge then becomes interpreting these data which 

are so rich in spatial and spectral content.   

Classical MEG analysis techniques often involve projecting data into source 

space by means of a spatial filter, followed by frequency filtering, Hilbert 

transforming and trial-averaging. This helps us to identify neural responses 

induced by a stimulus in a known frequency band of interest. However 

established this technique may be, there is inherent bias in the way the data 
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are analysed which can cause us to miss key information. For example, analysis 

of single-trial data shows that the smoothly varying oscillatory responses we 

are used to observing are in fact made up of punctate bursts of activity (Shin 

et al. 2017; Sherman et al. 2016; Jones 2016; Little et al. 2019). See Figure 1.2.  

Figure 1.2: By examining single-trial data (ii), it is clear that the classical trial-averaged 
beta band (13-30Hz) response (i) is made up of transient bursts in the beta frequency 
band. The colour plots here are time-frequency spectrograms with time on the x-axis 
and frequency on the y-axis. Figure adapted from (Shin et al. 2017). 

These bursts of activity are altered in neurological diseases (Tinkhauser et al. 

2017; Rier et al. 2021; Gascoyne et al. 2021) and have been shown to mediate 

long-range resting state functional connectivity (Seedat et al. 2020). They 

therefore play an important role in understanding both healthy and 

pathological brain function and were previously unstudied because data were 

not often considered at a single-trial level. A similar bias exists when 

investigating the frequency content of a signal - the data are often filtered into 

one of the common neurophysiologic frequency bands despite the fact that 

waveform shapes at a single trial level have complex spectral content.  

A possible solution to this problem could be to employ a data-driven machine 

learning algorithm which deals with raw data and identifies relevant patterns 
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and similarities without the need to prespecify a frequency band of interest. 

There are a multitude of techniques to choose from, and the most appropriate 

must be sought. First, the method should deal with timeseries data because 

such is the nature of MEG data. The next decision is whether to use a 

supervised or unsupervised machine learning approach.  

Supervised machine learning requires a training dataset with labels assigned 

to it. The algorithm then learns patterns associated with each of the labels so 

that it can allocate a label to completely new data. This is useful in classification 

cases where there is a single sought-after result. For example, classifying 

patients with or without Alzheimer’s disease based purely on a structural MRI 

of their brain. Unsupervised machine learning approaches are useful for 

exploratory investigations, where the exact outcome is unknown (it cannot 

necessarily be labelled), and we only wish to glean information from the 

patterns which the algorithm identifies. The latter is the approach that this 

thesis takes.  

Hidden Markov modelling (HMM) is one such unsupervised machine learning 

approach – timeseries data are used as input, and the output is a series of 

hidden states where each state represents a different pattern of activity in the 

MEG data. One of the key benefits of using an HMM is that it is a flexible 

framework – by changing the observation model the state definitions can be 

changed from one which differentiates states based on their amplitude, to one 

that is based on their spectral content for example. And the input data can be 

both univariate (such as a single time course from a single MEG virtual 

electrode) or multivariate (characterising states based on multiple MEG 

channels which can be useful for mapping the spatial pattern of state activity).  

It is for these reasons that HMMs have been applied to MEG data in recent 

years with some success. For example, identification of the timepoints 

associated with individual HMM states allowed Woolrich et al. to develop a 

temporally adaptive beamformer to aid in MEG source localisation (Woolrich 

et al. 2013). This was followed by investigations into functional connectivity 

(Baker et al. 2014; Vidaurre et al. 2018) and has also helped to disentangle the 
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complex MEG signals surrounding neurological diseases such as Parkinson’s 

(Heideman et al. 2020) and schizophrenia (Gascoyne et al. 2021). This thesis 

uses variations of the HMM to identify transient bursts of neuronal activity in 

both healthy adult MEG data, and in data from paediatric patients with 

epilepsy. 

1.3 Thesis Layout 
First, a detailed theory of MEG is introduced in Chapter 2. This begins with a 

description of the biological origins of the MEG signal, including the physics 

underpinning neurotransmission and the types of neurons involved. The 

effects measurable with MEG are then introduced: evoked and induced 

responses, followed by functional connectivity. The final part of this chapter 

covers the hardware required for MEG data acquisition and the way in which 

the different components of a MEG system integrate. 

The theory behind MEG data analysis is introduced in Chapter 3. In the first 

part of this chapter, the mathematics behind source localisation is covered 

including solutions to the forward and inverse problems. Then a thorough 

introduction to HMMs and their application to MEG research is addressed. 

Chapter 4 is the first experimental chapter and is about the detection of beta 

bursts in regions across the cortex. First a method for detecting beta bursts 

using an HMM is introduced which is compared with existing techniques. This 

method is then applied to both resting state and visuomotor task data. It is 

then shown that the well-characterised resting state functional connectivity 

matrices can be derived using a measure of burst overlap.  

The same burst detection algorithm is applied in Chapter 5 to two experiments 

with the aim of characterising the post-stimulus response and its distribution 

across the cortex. This is done for both a passive visual task and a motor task 

with visual feedback. Data acquisition is described, as well as the impact of the 

COVID-19 pandemic on this lab-based work.  

In Chapter 6 the HMM framework is applied to sensor-space MEG data from 

10 paediatric epilepsy patients with the aim of localising interictal activity. 
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There are three patient groups, each with increasingly complex epilepsy and 

the performance of the HMM is compared with excess kurtosis mapping (a 

technique used in some clinical MEG settings around the world).  

A reflection and conclusion of the work presented in this thesis is given in 

Chapter 7. 
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Chapter 2 

Magnetoencephalography 

Magnetoencephalography (MEG) is the measurement of extra cranial 

magnetic fields induced by current flow in neuronal assemblies in the brain. By 

applying mathematical models to these measured fields, we are able to infer 

changes in neuronal current flow throughout cognition. This offers a direct but 

non-invasive measurement of neuronal activity and provides insight into the 

functional significance of individual brain regions as well as the way the brain 

coordinates activity between regions.  

This chapter is split into three parts. Section 2.1 will describe the 

neurophysiology underpinning the generation of MEG signals. The resulting 

macroscopic measurable effects will then be introduced in Section 2.2, and the 

final part of this chapter (Section 2.3) will describe the technology used to 

acquire these data. 

2.1 MEG Signal Generation 
The human brain is made up of billions of neurons, and together with the spinal 

cord it forms the central nervous system. A single neuron can be thought of as 

a fundamental unit of the nervous system – a type of highly specialised 

biological wire, allowing information to be carried from every part of the body 

to the brain and back again, integrating the central and peripheral nervous 

systems. It is the current flow, generated by the creation and transmission of 

potential differences in the neurons of the brain, which induces the magnetic 

fields measurable outside the head in MEG. 

This section will describe the biology underpinning MEG signal generation and 

the physics of neurotransmission. 

2.1.1 Neurons 
Neurons are a fascinating sub-group of animal cells with the ability to conduct 

electrical activity from one part of the body to another. There are many types 

of neurons and each comprise many parts, but there are four key components: 
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the soma (or cell body), the dendrites, axon, and myelin sheath. A diagram of 

a single neuron is shown in Figure 2.1. 

 

Figure 2.1: A simplified diagram of a neuron showing the cell body and dendrites which 
largely make up the grey matter of the cerebral cortex, and the axon covered in a 
myelin sheath which largely makes up the white matter in the central nervous system. 
Figure adapted from (Heidelberger et al. 2004). 

Information is passed from cell to cell via the synapse. The synapse is the gap 

between cells across which neurotransmitters (chemicals which regulate cell 

membrane permeability) relay information. The incoming signal from the axon 

of the presynaptic cell terminates at the synaptic cleft (the gap between the 

cells). In pyramidal neurons most of the excitatory inputs are received at the 

synapse on dendritic spines which are present in large numbers (Heidelberger 

et al. 2004). 

2.1.2 The Synapse 
When a nerve impulse reaches the presynaptic terminal of a neuron it is 

accompanied by an influx of calcium ions into the intracellular fluid. This 

triggers the migration of synaptic vesicles towards the presynaptic membrane 

where they fuse with the membrane and release a chemical neurotransmitter 

into the synaptic cleft. This neurotransmitter then binds to receptor molecules 

on the postsynaptic membrane, allowing ion-specific membrane channels to 

open. Most synaptic inputs are received by the dendrites of the recipient cell 

and the flow of sodium ions into the cytoplasm produces an excitatory post-
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synaptic potential which travels towards the soma. Both excitatory and 

inhibitory inputs (dependant on the flow of ions into and out of the cell at the 

synapse) can arrive at the soma and the sum of these will determine whether 

an action potential1 ‘fires’ along the axon of the neuron. 

 

Figure 2.2: A nerve impulse arrives at a synapse, triggering the release of 
neurotransmitter into the synaptic cleft. The neurotransmitter binds to receptor 
molecules on the postsynaptic membrane allowing sodium ions to enter the cytoplasm 
and triggering a post-synaptic potential. 

The post-synaptic potential comprises an intracellular primary current and an 

extracellular volume current. The primary current lasts approximately 10ms 

and travels towards the soma. The ions in the extracellular space flow towards 

the area of repolarisation after the primary current has passed, resulting in 

current flow in the opposite direction to the primary current, towards the 

synapse. This is referred to as the volume current and is dependent on the 

conductivity of the extracellular tissue. 

 

 

 

 
1 Action potentials are described in detail in section 2.1.3 
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Figure 2.3: The postsynaptic potential in the dendrites of neurons is made up of an 
intracellular primary current and an extracellular volume current. Figure adapted from 
(Vrba 2000). 

The contributions of both the primary and volume currents to the measurable 

MEG signals are considered in Chapter 3, where it is shown that the impact of 

the volume current is negligible.  

2.1.3 Neurotransmission 
The flow of neurotransmitters across a synapse allows information to be 

shared between neurons, but the transmission of information within a single 

neuron (the longest of these in the human body can be up to one meter 

(Fletcher and Theriot 2004)) must be fast and efficient. This section describes 

the action potential, sometimes referred to as a nerve impulse.  

Every cell has a ‘resting potential’ characterised by the presence of positively 

and negatively charged ions in the intracellular and extracellular fluid as well 

as the relative membrane permeabilities of these ions. This potential 

difference across cell membranes forms the basis of electrical conduction in 

neurons. When the post-synaptic currents described in the previous section 

flow along the dendrites of the neuron and arrive at the soma, they combine 

to produce an overall intracellular potential. It is only when the potential at 

the axon hillock (the portion of the cell body adjacent to the axon) reaches a 

firing threshold of approximately -55mV that an action potential is initiated.  
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An action potential is a series of rapid changes in the local membrane 

potential. The resting potential of a neuron is -70mV and is largely caused by 

the passive diffusion of positive potassium ions (𝐾+) out of the cell along a 

concentration gradient. When a nerve impulse arrives at a particular location 

on the axon, the local membrane permeability changes to allow positive 

sodium ions (𝑁𝑎+) to flow into the cell. This process is called depolarisation 

and results in a positive membrane potential of +35mV. Once this potential is 

reached, the sodium channels in the cell membrane close and an increased 

number of potassium channels open. This allows more potassium to flow out 

of the cell and, after a brief period of hyperpolarisation, returns the membrane 

potential to -70mV. Part of this repolarisation phase involves sodium and 

potassium ions being actively pumped, against their concentration gradients, 

out of and into the cell respectively. This process is demonstrated in Figure 2.4. 

The adjacent part of the axon then undergoes the same process thus allowing 

the action potential to travel along the length of the axon. It is worth noting 

that the brief period of hyperpolarisation prevents the action potential from 

travelling in both directions along the axon, allowing directionality of nerve 

impulses. 

 

Figure 2.4: The membrane potential and ion permeabilities during the resting, 
depolarisation, and repolarisation phases of an action potential. 
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We therefore have two possible generators of the magnetic fields which are 

measurable outside of the head: action potentials and post-synaptic 

potentials. Action potentials last around 1ms and can be approximated as two 

current dipoles pointing in opposite directions. The depolarisation edge of the 

action potential is modelled as a single dipole in the direction of propagation 

along the axon and the repolarisation edge as a dipole oriented towards the 

soma. This is the same as approximating the action potential as a quadrupolar 

current. In comparison, the post-synaptic potential lasts approximately 10ms 

and can be modelled as a dipole. The magnetic field produced by these 

currents is dependent on distance and drops off more quickly for the 

quadrupolar field (
1

𝑟3 compared with the 
1

𝑟2 of a dipolar field). This, combined 

with the fact that post-synaptic potentials last longer than actional potentials, 

leads us to believe that the signals measurable outside of the head by MEG are 

a superposition of the magnetic fields induced by many thousands of individual 

postsynaptic potentials occurring in the dendrites of neurons.  

2.1.4 Types of Neurons 
The neurons in the brain are highly specialised and can be difficult to separate 

into distinct types; they have different functions, arise in specific locations, use 

various neurotransmitters, and have particular dendritic geometries. It is this 

latter characteristic that we are most interested in, given that the signals we 

measure in MEG arise in the dendrites of neurons. We can therefore categorise 

neurons into two types; these are stellate cells and pyramidal cells, shown 

alongside one another in Figure 2.5. In stellate cells the dendrites radiate from 

the soma in all directions while the dendrites of a pyramidal neuron are 

oriented in a common direction. 
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Figure 2.5: Reconstructions of a pyramidal cell (A) and a stellate cell (B). The dendrites 
of a pyramidal cell largely point in the same direction whereas the dendrites of a 
stellate cell have a roughly symmetric geometry, pointing in every direction. Figure 
adapted from (Churchill et al. 2004). 

When many stellate neurons fire in synchrony, the variable orientation of the 

dendrites leads to field cancellation and hence a loss in the total measurable 

signal. Conversely, when many pyramidal neurons fire in synchrony, the signal 

is amplified because the dendrites are oriented in a common direction. The 

microscopic origin of the MEG signal is therefore likely to be the post-synaptic 

potentials in the dendrites of pyramidal neurons and approximately 10,000-

50,000 pyramidal cells must be simultaneously active before the macroscopic 

signal can be detected (Murakami and Okada 2006). 

2.2 Measurable Effects 
The signals produced by these large populations of neurons, which are 

detected outside of the head, involve complex layers of information which 

must be untangled if we are to understand the mechanisms underlying both 

healthy and pathological brain function. Because of the millisecond temporal 

resolution of EEG and MEG, these data are rich in spectral information and 

have been studied over the last century with a variety of methods, allowing us 

to extract different types of brain activity. Measurable neuroelectric effects fall 

roughly into four categories: spontaneous rhythms, evoked effects, induced 

responses, and functional connectivity. 
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2.2.1 Spontaneous Rhythms 
Following work in animals conducted by Richard Caton (Caton 1875), in 1929 

Hans Berger used EEG to discover the first of a number of ‘spontaneous 

rhythms’ in the human brain, that is rhythms produced by the brain not related 

to any external stimulus. Berger referred to this oscillatory signal in the 

frequency range 8-13Hz as alpha activity and found that its amplitude is 

modulated by opening and closing one’s eyes (Berger 1929). Further 

classifications of frequency bands of interest occurred organically over the 

following decades and we now refer to them as delta (0.2 to 3.5Hz), theta (4 

to 7.5Hz), alpha (8 to 13Hz), beta (14 to 30Hz) and gamma (30 to 90Hz) (Lopes 

da Silva 2013). The neural activity falling into each of these frequency bands is 

often strongest in certain brain regions and related to a specific brain function.  

For example, beta oscillations have the highest amplitude over the 

sensorimotor cortex and are modulated by motor tasks. An increase in beta 

activity is also associated with the disruption of these motor networks in 

diseases such as Parkinson’s where symptom severity correlates with beta 

amplitude (Tinkhauser et al. 2017).  

In fact, oscillatory activity is observed on all neurophysiological scales – from 

the microscopic activity of a single neuron, through the mesoscopic 

synchronised activity of neuronal ensembles, and the macroscopic oscillations 

correlated between distal brain regions. But it can be confusing to refer to 

these spontaneous rhythms as oscillations because pure alpha or beta 

oscillations do not exist in isolation, instead the neural activity contains 

spectral peaks in any of the above-mentioned frequency ranges. It is therefore 

important to keep in mind the underlying waveform shape when describing 

this oscillatory activity, because although parsing the data into frequency 

bands of interest is useful for narrowing the scope of the problem and has shed 

light on the way the brain works, very different waveform shapes can yield 

near-identical spectra as shown by Jones in 2016 (Figure 2.6). 
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Figure 2.6: Different underlying waveforms (ii) can yield very similar spectra (i), in this 
case all peaking at a frequency of 22Hz. The waveforms are (a) three cycles of a 22Hz 
sine wave, (b) an inverted Ricker wavelet, and (c) a single deflection. Their 
corresponding time-frequency spectrograms are shown in (ai), (bi) and (ci) 
respectively. The implication on the functional significance of these different 
underlying waveform shapes must be considered when analysing data in the 
frequency domain. Figure from (Jones 2016). 

In much the same way, the interaction between distinct frequency bands of 

neuronal activity, so-called cross-frequency coupling, especially between theta 

and gamma oscillations, may simply be a result of fast transitions in waveforms 

(Kramer, Tort, and Kopell 2008). If this is the case, then such cross-frequency 

coupling does not tell us something about the interaction between functionally 

distinct neural processes, but rather about the temporal morphology of the 

brain activity. This is a subtlety which must be considered when interpreting 

the functional significance of spontaneous rhythms. 

2.2.2 Evoked Effects 
Evoked responses occur when an external stimulus is introduced, and the 

activity is both time and phase-locked. This means that any positive or negative 

peaks in the neural activity occur at the same time (relative to stimulus 

presentation) over multiple trials, so that averaging over trials yields a clear 

waveform shape (having averaged out any spurious non-time locked effects).  
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Following Hans Berger’s 1929 publication, Adrian and Matthews further 

studied alpha oscillations (termed the ‘Berger Rhythm’) and not only repeated 

the results of Hans Berger but also identified a characteristic evoked potential 

in the occipital cortex produced by a flickering light source (Adrian and 

Matthews 1934). The visual evoked response is now clearly understood and 

variations in its morphology  can be indicative of a number of diseases affecting 

visual pathways, visual cortex or retina (Creel 2019). Chapter 6 of this thesis is 

concerned with data from a visual experiment; however, we will not be 

studying the evoked effect, but rather the induced response to a visual 

stimulus. 

2.2.3 Induced Responses 
A change in the spontaneous rhythms caused by an external stimulus is known 

as an induced response. These are time-locked but not phase-locked to the 

stimulus presentation which means that averaging over many trials will 

attenuate the signal, rather than emphasise it (as would be the case for an 

evoked effect); this is because the peaks and troughs of the waveform induced 

by the stimulus do not line up across trials. To study an induced response, the 

data are first frequency-filtered into the band of interest. The amplitude 

envelope of this frequency-specific signal is then calculated, and it is this that 

is averaged over many trials to reveal the change in oscillatory power relative 

to stimulus presentation. 

A well characterised induced response is that of the post-movement beta 

rebound (PMBR). Following the cessation of a motor task (such as a button-

press or finger abduction), there is a short increase in the amplitude of beta 

activity in the contralateral motor cortex which gradually returns to baseline. 

This increase in beta activity is also known as an event related synchronisation 

(ERS). In contrast during the movement an event related desynchronisation 

(ERD) of the beta activity occurs. The functional significance of this PMBR in 

healthy people is under debate, but it is altered in a number of neurological 

disorders such as schizophrenia (Robson et al. 2016; Gascoyne et al. 2021), 

autism spectrum disorder (Gaetz et al. 2020), mild traumatic brain injury (Rier 
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et al. 2021), and multiple sclerosis (Barratt et al. 2017), where the severity of 

illness correlates with the deviation of the PMBR from normal. It has also been 

shown that these relationships to neurological disorders are unique to the 

PMBR and aren’t seen with respect to the ERD. This idea that the PMBR is a 

unique brain response is investigated more in Chapter 5.  

In recent years, these induced responses are being increasingly analysed on a 

single trial level, rather than averaging over many trials. This is because what 

would appear to be a sustained oscillation in trial-averaged data is actually 

made up of transient ‘bursts’ of activity (Shin et al. 2017) - where the timings, 

durations, frequencies of occurrence and amplitudes of these bursts provide 

further information about the fundamental neural processes involved in 

cognition. See Chapters 4 and 6 for experimental work in understanding the 

role of burst activity in resting state data and in response to simple visual, 

motor, and combined visuomotor tasks.  

Many of the neuroelectric effects considered in this thesis will be induced 

responses to a stimulus (either motor or visual). However, a large portion of 

this work also studies resting state functional connectivity (relationships 

between spontaneous neural activity originating at different cortical 

locations). 

2.2.4 Functional Connectivity 
The brain constitutes many different cortical areas, each with their own 

functional significance, and each made up of large populations of neurons 

firing in synchrony. These brain regions not only coordinate activity between 

the many thousands of neurons they comprise, but also activity between 

disparate brain locations, so that an efficient and coordinated response to 

external stimuli might be affected.  

Coordinated activity between different areas of the brain – functional 

connectivity - can be captured using a variety of techniques. One such method 

posits that the optimal window for transfer of information between brain 

regions is when their electrical potentials peak at the same time, or in other 
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words their oscillations are in phase. This is the ‘communication by coherence’ 

hypothesis (Fries 2005); the oscillations from different cortical locations share 

windows for input and output of information when they are coherent. There 

are a number of phase-based connectivity metrics including phase coherence 

(Mormann et al. 2000), imaginary coherence (Nolte et al. 2004), phase-lag 

index (Stam, Nolte, and Daffertshofer 2007) and phase difference derivative 

(PDD) (Breakspear and Williams 2003).  

Phase Difference Derivative (PDD) 
One of the benefits of PDD is that it produces a time course of phase coherence 

allowing us to identify the moments in time when connectivity is maximal. It 

involves first calculating the instantaneous phase of a ‘seed’ and ‘test’ signal, 

𝜃1 and 𝜃2 respectively, and then subtracting them to get the phase difference,  

𝜑1,2(𝑡) = 𝜃1(𝑡) − 𝜃2(𝑡),    (2.1) 

where 𝜑1,2  represents phase difference. The derivative of this phase 

difference then allows us to assess the stability of the phase relationship: 

where the PDD values are close to zero, the phase difference is constant, and 

the coherence is high 

𝑑𝜑1,2(𝑡)

𝑑𝑡
≈ 0.     (2.2) 

Similarly, where the PDD values are high, the phase difference between the 

two signals is rapidly changing and the coherence is low. These values can then 

be negatively transformed using  

𝑥𝑛𝑒𝑤 = 𝑒−|𝑥|,     (2.3) 

so that a high value is consistent with high coherence. 

Amplitude Envelope Correlation (AEC) 
Another key measure of functional connectivity is amplitude envelope 

correlation (AEC). In this case, it is the amplitude, rather than the phase of the 

signal, which implies a functional connection between distal regions of the 

brain. In fact, network structures calculated via AEC in resting state MEG match 
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frequently observed functional magnetic resonance imaging (fMRI) resting 

state networks (Brookes, Woolrich, et al. 2011; Hipp et al. 2012). 

For every brain location, MEG data are first filtered into a frequency band of 

interest to give, 𝑞̂(𝑡). The analytic signal, 𝑧̂(𝑡), is then derived as 

𝑧̂(𝑡) = 𝑞̂(𝑡) + 𝑖𝐻[𝑞̂(𝑡)],    (2.4) 

where 𝐻 is the Hilbert transform. The Hilbert transform is the convolution of 

𝑞̂(𝑡) with the function ℎ(𝑡) =
1

𝜋𝑡
 so that  

𝐻[𝑞̂(𝑡)] =  
1

𝜋
𝑃 ∫

𝑞̂(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
,        (2.5) 

where 𝑃 is the Cauchy principal value which accounts for the singularity when 

when 𝑡 = 𝜏. 

 The amplitude envelope of this signal is then given by 

𝐸[𝑞̂(𝑡)] = √(𝑞̂(𝑡))2 + (𝐻[𝑞̂(𝑡)])2.    (2.6) 

The resulting data are often down sampled to ~1Hz yielding a slow amplitude 

time course for each brain region. For every pair of regions, the Pearson’s 

correlation coefficient, 𝑟𝐸1𝐸2
, is computed as a measure of the connectivity 

strength between brain areas. AEC is typically represented in matrix format.  

𝑟𝐸1𝐸2
=

∑ (𝐸1𝑖
−𝐸1̅̅̅̅ )(𝐸2𝑖

−𝐸2̅̅̅̅ )𝑛
𝑖=1

√∑ (𝐸1𝑖
−𝐸1̅̅̅̅ )2𝑛

𝑖=1 √∑ (𝐸2𝑖
−𝐸2̅̅̅̅ )2𝑛

𝑖=1

    (2.7) 

where 𝐸1  and 𝐸2  are the slow amplitude time courses for any two distinct 

regions and 𝐸1
̅̅ ̅ and 𝐸2

̅̅ ̅ are their corresponding mean values. 

In this thesis, I will use both AEC and PDD to validate my own novel connectivity 

metric based on beta bursting events, see Chapter 4. I will show that it is in fact 

the ‘bursts’ of activity mentioned in Section 2.2.3 above, which provide 

optimal windows of both high amplitude and high phase coherence for 

transfer of information between brain regions, thus unifying these two 

established methods. 
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Throughout this section we have assumed that functional connectivity is 

derived from true brain activity (with no signal leakage). However, due to the 

nature of the inverse problem, it is impossible to infer the activity at one 

location in the brain without it being contaminated by activity from another 

brain region. This can manifest as a zero-phase-lag correlation between 

regions which is not due to coordinated brain activity, rather it is a limitation 

of our imaging capabilities. This problem is addressed in detail in Section 3.2.7. 

2.3 MEG Data Acquisition 
The first MEG recordings using a single channel SQUID2 system were made by 

David Cohen in 1972, and like Berger, his predecessor, he measured 

spontaneous alpha oscillations which were modulated by opening and closing 

of the eyes (Cohen 1972). Given that MEG signals originating from the brain 

are on the order of tens to hundreds of femtoTesla (fT) which is vanishingly 

small when compared to the Earth’s magnetic field (tens of microTesla), this 

was no mean feat.  

Figure 2.7: The first MEG signals recorded using a single channel SQUID system 
mounted inside a magnetically shielded room. Figure adapted from (Cohen 1972). 

 
2 See Section 2.3.1 
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The most common commercially available MEG systems today boast arrays of 

hundreds of sensors, but the hardware used for field measurement has 

changed very little. This section will describe the theory underpinning signal 

detection. 

Another key component of MEG data acquisition is effective shielding and 

interference reduction from both external and internal sources of magnetic 

fields not originating from the brain. These include the Earth’s static magnetic 

field, as mentioned above, as well as the fields produced by electronic 

equipment, cars and even other biological magnetic fields (with the human 

heart producing fields at hundreds of picoTesla and lung particles producing 

nanoTesla fields) (Vrba 2000). This will be covered in Section 2.3.2. 

2.3.1 SQUIDs 
Until recently 3 , most commercially available MEG systems used arrays of 

superconducting quantum interference devices (SQUIDs) to measure the 

magnetic fields produced by the brain. This section describes the physics 

underpinning SQUIDs and how they are incorporated into a large multichannel 

array. 

Superconductivity 
To understand how a SQUID works, we must first understand 

superconductivity. As a metal is cooled, its resistance falls gradually until it 

reaches a non-zero value at 0K. However, in the case of a superconductor, the 

resistance of the metal will abruptly drop to 0Ω at a critical temperature, 𝑇𝑐, 

forming a perfect conductor (Onnes 1911).  

In 1957, Bardeen, Cooper and Schrieffer put forward a theory to explain this 

counterintuitive phenomenon; today it is referred to as BCS theory. As an 

electron moves through a conductor it will temporarily distort the crystal 

lattice structure, forming a “wake” of positive charge close to the electron. If a 

 
3 Large arrays of optically pumped magnetometer (OPM) systems are now being used in a 
research environment and are expected to supersede conventional SQUID based systems 
because sensors can be placed much closer to the head for improved signal to noise ratio 
and because they have a lower maintenance cost as liquid helium is not required for cooling. 
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neighbouring electron is close by, it will be attracted towards this area of 

positive charge and the two electrons will bind together to form a ‘Cooper 

Pair’. It seems unlikely that two like-charged particles would be bound 

together in this way but the attraction to the region of positive charge is 

greater than the repellent Coulomb force, which is reduced by the effect of 

nearby electrons (sometimes referred to as the screened Coulomb 

interaction). The distance between electrons in a pair is known as the 

coherence length and is dependent on the conductor material but is on the 

order of 100nm (Bardeen, Cooper, and Schrieffer 1957). 

Since these Cooper pairs are bound pairs of electrons with opposite spin, they 

exhibit bosonic properties – namely, many pairs can exist in the same quantum 

state. As more pairs fall into the same state, the binding energy within the pairs 

increases, making superconductivity a cooperative phenomenon. It is the 

condensation of these Cooper pairs into a ground state at temperatures below 

the critical temperature which produces the effect of superconductivity 

(Bardeen, Cooper, and Schrieffer 1957). The thermal energy required to break 

a Cooper pair in this condensate state is 3.5𝑘𝐵𝑇𝐶  where 𝑘𝐵 is the Boltzmann 

constant and 𝑇𝐶  is the critical temperature of the conductor. 

The individual wavefunctions of the Cooper pairs constructively interfere so 

that we can describe the whole ensemble with a single canonical 

wavefunction, 

𝜓(𝒓) = 𝜓0𝑒𝑖𝒌.𝒓,     (2.8) 

where 𝜓0 is the ground state of the Cooper pairs, 𝒓 is the position (or centre 

of mass) of the two electrons and 𝒌 is the wave vector of the condensate.  

Relating Superconductivity with Magnetic Field Measurements 
Superconductors can be classified into two types by their interaction with 

applied magnetic fields. Screening currents flowing on the surface of a 

superconductor produce an equal and opposite magnetic field to an applied 

one, which means that the field inside the superconductor is zero; this is 

known as the Meissner effect (Meissner and Ochsenfeld 1933).  This effect is 
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seen below a critical applied field, 𝐵𝐶, which is dependent on temperature. In 

type I superconductors, this transition is abrupt at 𝐵𝐶 . In type II 

superconductors, there is a transition period where magnetic flux partially 

penetrates the material at a lower critical field 𝐵𝐶1, and the superconducting 

nature (zero resistance) persists until an upper critical field 𝐵𝐶2 is reached – at 

which point there is complete flux penetration. Because of the ability to retain 

superconducting properties at higher fields, type II superconductors are 

generally used in SQUID magnetometers. 

Figure 2.8: Below a critical field, 𝐵𝐶, the Meissner effect means that magnetic flux is 
expelled by the superconductor. This is due to screening currents flowing on the 
superconductor surface. Figure adapted from (Hook and Hall 1974). 

Now we will consider a superconducting ring and the mathematics relating the 

behaviour of its macroscopic wavefunction with the magnetic flux passing 

through the loop (Hook and Hall 1974; Feynman, Leighton, and Sands 1963; 

London 1948): 

Figure 2.9: A closed loop Γ in the body of a superconducting ring. Figure adapted from 
(Feynman, Leighton, and Sands 1963). 

The local current density, 𝒋(𝒓), associated with the canonical wavefunction is  
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𝒋(𝒓) =
𝑖ℏ𝑒

2𝑚
(𝜓∗∇𝜓 − 𝜓∇𝜓∗) −

2𝑒2

𝑚
𝜓∗𝜓𝑨,   (2.9) 

where ℏ  is the reduced Planck constant, 𝑒  is the electron charge, 𝑚  is the 

electron mass and 𝑨 is the magnetic vector potential.  This equation satisfies 

the conservation of probability when 𝜓  satisfies the time-dependent 

Schrodinger equation, and can be derived by considering the relationship 

between the momentum and velocity vectors for a particle (Appendix C (Hook 

and Hall 1974)).  

By taking the most general form of Equation 2.8, 𝜓(𝒓) = |𝜓0|𝑒𝑖𝜃(𝒓) , and 

inserting this into Equation 2.9, we get 

𝒋(𝒓) =
𝑖ℏ𝑒

2𝑚
(𝜓0𝑒−𝑖𝜃(𝑒𝑖𝜃∇𝜓0 + 𝑖𝜓0𝑒𝑖𝜃∇θ) − 𝜓0𝑒𝑖𝜃(𝑒−𝑖𝜃∇𝜓0 − 𝑖𝜓0𝑒−𝑖𝜃∇θ))

−
2𝑒2

𝑚
|𝜓(𝒓)|𝟐𝑨 

        =
𝑖ℏ𝑒

2𝑚
(2𝑖|𝜓(𝒓)|𝟐∇θ) −

2𝑒2

𝑚
|𝜓(𝒓)|𝟐𝑨 

        =
−𝑒

𝑚
|𝜓(𝒓)|𝟐(ℏ∇𝜃 + 2𝑒𝑨).               (2.10) 

We can then assume that the current density far from the surface (within the 

body of the superconductor) is zero, 𝒋 = 0, due to the Meissner effect4 and 

Equation 2.10 simplifies to  

ℏ∇𝜃 = −2𝑒𝑨.     (2.11) 

Now, integrating around the closed loop, Γ, of the superconducting ring 

produces 

ℏ ∮ ∇𝜃 ∙ 𝑑𝒍 = −2𝑒 ∮ 𝑨 ∙ 𝑑𝒍     (2.12) 

and since the line integral of 𝑨 around a loop is equal to the flux, Φ, through 

the loop,  

ℏ ∮ ∇𝜃 ∙ 𝑑𝒍 = −2𝑒Φ.     (2.13) 

 
4 The Meissner effect can be described by the London equation (London 1948). 
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Considering the superconducting ring again, we can solve the left-hand side 

of Equation 2.13. At any point on the ring, there can only be one value of the 

wavefunction, 𝜓(𝒓), so the change in 𝜃 from the start to the end of the loop, 

Δ𝜃, must be 2𝜋𝑛. Therefore 

2𝜋𝑛ℏ = −2𝑒Φ     (2.14) 

which shows that the flux through a closed loop is quantised. The flux 

quantum, Φ0 = ℎ 2𝑒⁄ , has a value of 2.07 × 10−15Wb. 

The Josephson Effect 
In 1962, Josephson measured a current caused by the tunnelling of Cooper 

pairs across a junction (created by an oxide layer) in a superconductor 

(Josephson 1962). This is similar to the tunnelling of electrons into a potential 

barrier. On either side of the barrier, the superconductors have wavefunctions 

𝜓1 = |𝜓1|𝑒𝑖𝜃1  and 𝜓2 = |𝜓2|𝑒𝑖𝜃2 . Provided that both superconductors are 

made from the same material and are at the same temperature, |𝜓1| will equal 

|𝜓2|, but because they are not in contact their phases will be different, 𝜃1 ≠

𝜃2. However, if the oxide layer is thin enough, these superconductors are said 

to be weakly coupled. This means that they are in enough contact so that the 

lowest energy state has 𝜃1 = 𝜃2, but by applying a small current through the 

junction (or a potential difference across it), we can generate a phase 

difference.  

Inside the oxide layer, the canonical wavefunction becomes a superposition of 

the two decaying wavefunctions, 

𝜓 = √
𝑛𝑠

2
(𝑒𝑖𝜃1−𝐾(𝑥+𝑑 2⁄ ) + 𝑒𝑖𝜃2+𝐾(𝑥−𝑑 2⁄ )),  (2.15) 

as shown in Figure 2.10. This assumes that the contributions from both 𝜓1 

and 𝜓2 are negligible by the time they reach the other side of the barrier. 

Note that 𝐾−1is the characteristic decay length of the barrier, and 𝑛𝑠 is the 
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number of electrons per unit volume (this is divided by 2 to account for there 

being 2 electrons per Cooper pair).  

Figure 2.10: A Josephson junction comprises two superconductors separated by an 
oxide layer. Cooper pairs can tunnel into this barrier as shown by the exponential 
decay of the wavefunctions from both superconductors 1 and 2.  Figure from (Hook 
and Hall 1974). 

We can then substitute the wavefunction from Equation 2.15 into Equation 

2.9 where 𝑨 = 0 as before, to find the Cooper pair current density through 

the barrier, 

𝑗 =
𝑖𝑒ℏ𝑛𝑠

2𝑚
𝐾𝑒−𝐾𝑑(−𝑒𝑖(𝜃1−𝜃2) + 𝑒𝑖(𝜃2−𝜃1)) = 𝑗0 sin 𝛿.  (2.16) 

Here, 𝛿 is the difference between 𝜃1 and 𝜃2 across the barrier and the 

maximum current density in the oxide layer is 𝑗0 = 𝑒ℏ𝑛𝑠𝐾𝑒−𝐾𝑑 𝑚⁄ , 

corresponding to a phase difference of 𝜋 2⁄ . This relationship between 

current flow and phase is known as the Josephson equation, and the flow of 

Cooper pairs through the junction is called the DC Josephson effect 

(Josephson 1962). 
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Quantum Interference 
By connecting two Josephson junctions in parallel, quantum interference 

effects between the currents flowing through each of the junctions can be 

measured (Jaklevic et al. 1964). This is directly analogous to the interference 

patterns measured in double slit electron beam interference experiments. 

Figure 2.11: Two Josephson junctions connected in parallel produce quantum 
interference effects relating the current, 𝐽𝑡𝑜𝑡𝑎𝑙, through the system to the flux passing 
through the loop. This superconducting quantum interference device (SQUID) allows 
us to make highly accurate measurements of minute neuromagnetic fields. Figure 
from (Feynman, Leighton, and Sands 1963). 

Let us consider a superconducting ring as before, but this time it is broken in 

two places by a Josephson junction, as shown in Figure 2.11. The total current, 

𝐽𝑡𝑜𝑡𝑎𝑙, flowing from point 𝑃 to 𝑄 will be the sum of the currents flowing in both 

the upper and lower branches of the loop, with junctions 𝑎 and 𝑏 respectively. 

Because these currents begin and end at the same points, their phase 

differences from 𝑃  to 𝑄  must be the same. The total phase difference will 

therefore be a sum of the phase differences across the junction, either 𝛿𝑎 or  

𝛿𝑏, and that over the path. We can use Equation 2.11 to write down the phase 

difference over the two paths first separately, 

Δ𝜃𝑃𝑄 = 𝛿𝑎 −
2𝑒

ℏ
∫ 𝑨 ∙ 𝑑𝒍

𝑄,𝑣𝑖𝑎 𝑎

𝑃
  

Δ𝜃𝑃𝑄 = 𝛿𝑏 −
2𝑒

ℏ
∫ 𝑨 ∙ 𝑑𝒍

𝑄,𝑣𝑖𝑎 𝑏

𝑃
, 

and then together since Δ𝜃𝑃𝑄 must be the same, 
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𝛿𝑏 − 𝛿𝑎 =
−2𝑒

ℏ
∮ 𝑨 ∙ 𝑑𝒍 =

−2𝑒

ℏ
Φ.    (2.17) 

Adding the two line integrals together produces the closed loop integral 

around Γ as before, so now the phase difference depends on the magnetic flux 

through the loop. We can write the phase differences relative to a 𝛿0, 

𝛿𝑎 = 𝛿0 +
𝑒

ℏ
Φ and 𝛿𝑏 = 𝛿0 −

𝑒

ℏ
Φ, 

and then the total current is 

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝐽𝑎 + 𝐽𝑏 = 𝐽0 (sin (𝛿0 −
𝑒Φ

ℏ
) + sin (𝛿0 +

𝑒Φ

ℏ
))    

= 2𝐽0 sin(𝛿0) cos (
𝑒Φ

ℏ
).   (2.18) 

Irrespective of the value of 𝛿0, sin(𝛿0) cannot be larger than 1. Therefore, the 

maximum current through the system is 

𝐽𝑚𝑎𝑥 = 2𝐽0 |cos (
𝑒Φ

ℏ
)|,    (2.19) 

varying periodically as a function of the magnetic flux through the loop. Since 

Φ  is an integer multiple of the tiny flux quantum, the output current is 

sensitive to minute changes in magnetic field. A loop with two Josephson 

junctions, and an area of 1cm2  will have a maximum and minimum critical 

current separated by just 10−11T (Hook and Hall 1974).  

SQUID Operation 
This quantum interference, where current through the system is modulated by 

an applied magnetic field is the basis for using SQUIDs as magnetometers. In 

most available MEG systems today, these SQUIDs operate at low temperatures 

(4.2K) and consist of a superconducting ring split by two Josephson junctions. 

A magnetic flux flowing through this ring results in a measurable voltage drop 

across the Josephson junctions (Zimmerman, Thiene, and Harding 1970).  

To reduce the effects of noise on the SQUID measurements, the SQUIDs are 

placed further away from the head, and are inductively linked to a pick-up coil 

close to the head surface, see Figure 2.12A. A constant bias current is applied 

to the SQUID which is inductively linked to both the pick-up coil and a feedback 
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system. When a neuromagnetic field passes through the pick-up coil it 

produces a current which in turn creates a secondary magnetic field. This 

secondary field creates a magnetic flux through the SQUID ring and a voltage 

drop is detected. 

Figure 2.12: SQUID operation, with a schematic diagram of the sensor circuitry (A). A 
pick-up coil detects the neuromagnetic field (𝐵𝑁) and is inductively linked (𝐵𝑆) to the 
SQUID loop. The magnetic flux through this loop results in a voltage drop which is 
balanced by a feedback system (𝐵𝐹). The measured variable is the voltage output of 
the feedback system. (B) When the constant bias current, 𝐼𝐵, exceeds a critical value, 
the flux-voltage transfer function is sinusoidal. 

When the constant bias current exceeds a critical value, the voltage is a 

sinusoidal function of magnetic flux which means that many values of magnetic 

flux correspond to the same voltage, see Figure 2.12B. This ambiguity can be 

solved using a negative feedback system - an inductively linked circuit which 

produces an equal and opposite field to the signal coil so that the total flux 

through the SQUID ring is kept at a known constant value. This constant value 

is known as the ‘lock point’ and is at the steepest part of the function, when 

𝑑𝑉 𝑑Φ⁄  is at its maximum value. It is therefore the voltage produced by the 

feedback system, needed to balance the flux through the SQUID loop, which is 

used as a measure of neuromagnetic field. SQUIDs operating in this way have 

a high sensitivity with a noise floor < 10 fT √Hz⁄ , a bandwidth of several kHz 

and a dynamic range on the order of nT. 
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The low operating temperature of SQUIDs require them to be kept submerged 

in a dewar of liquid helium. An insulating vacuum is therefore used to protect 

the scanning participant and operator, this places the coils several centimetres 

from the head surface (Figure 2.13B). 

Figure 2.13: MEG hardware. (A) Variations in pick-up coil design. The axial 
gradiometer measures a net current proportional to the field gradient (A iii) and helps 
to reduce interference from field sources at some distance from the sensor. (B) The 
relative positions of the MEG hardware inside the dewar. Figures adapted from (Vrba 
and Robinson 2001).  
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2.3.2 Noise Reduction  
Both hardware and software components of the MEG system can be used to 

effectively reduce interference from sources of magnetic field other than the 

brain.  

Figure 2.14: Magnetic fields which occlude MEG signals. These include both 
environmental field sources such as those produced by common lab equipment or 
nearby traffic, and biomagnetic fields produced by the research participant’s other 
organs like their heart and eyes. Figure adapted from (Vrba 2000). 

Hardwired Gradiometers 
The design of the pick-up coil plays a large role in reducing interference from 

magnetic field sources far from the sensor (Figure 2.13A). The simplest coil 

design is a single loop magnetometer. A magnetic field creates a flux through 

the loop which in turn induces a current in the coupling coil, inductively 

coupling the pick-up coil with the SQUID. However, the pick-up coil will 

inevitably detect a combination of neuromagnetic field and noise from the 

environment. Given that the pick-up coil will only be several centimetres from 

the head, and that sources of magnetic interference will be much further away, 

a pick-up coil which is sensitive to near fields is desirable. This can be achieved 

with a hardwired gradiometer, and in fact the SQUID MEG systems used to 

acquire data in this thesis employ axial gradiometers which consist of two 

oppositely wound coils separated by a short distance. It is the difference in 

current induced in these two coils which is consequently measured. Since 

magnetic field drops off with distance, r, as 1 𝑟2⁄ , the difference in field will be 
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much greater for close field sources than for distant interference sources. This 

is demonstrated in Figure 2.13A(iii). 

Magnetically Shielded Rooms 
Placing the MEG system in the centre of a magnetically shielded room (MSR) 

creates a magnetically quiet environment in which to conduct experiments. 

These rooms are generally built from layers of copper and mu-metal, where 

the mu-metal shields low frequency fields (0 to 10Hz) and the Eddy currents in 

the highly conductive copper layers provide attenuation of higher frequency 

fields (greater than 10Hz) (Vrba 2000).  

The effectiveness of a magnetic shield can be calculated as the shielding factor 

𝑆𝐹 =
|𝐵0|

|𝐵𝑆|
 

where 𝐵0  is the magnitude of the field at a given point, and 𝐵𝑆  is the 

magnitude of the field at the same point after the shielding has been installed. 

Therefore, larger values for the shielding factor correspond to greater 

shielding, whereas values close to one correspond to little or no shielding. 

Low frequency magnetic fields, less than 10Hz, are often referred to as DC 

fields and are largely shielded through a process called flux shunting. At a 

boundary between two materials with different relative permeabilities, such 

as mu-metal (with 𝜇𝑟 > 80,000 (Jiles 1998)) and air (𝜇𝑟 ≈ 1), both Ampère’s 

law and Gauss’s law must be obeyed. In other words, the tangential 

component of the magnetic field, 𝑯, must be continuous across the interface, 

and the normal component of the field, 𝑩, must also be continuous where 𝑩 =

𝜇0𝜇𝑟𝑯 inside the material and 𝑩 = 𝜇0𝑯 in the air (Hoburg 1995). This results 

in the field on the air side of the interface being pulled towards the material 

almost perpendicular to the surface, then shunted through the material almost 

parallel to its surface, and released on the other side (Celozzi, Araneo, and 

Lovat 2008) as shown in Figure 2.15B. 
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Figure 2.15: Passive magnetic shielding mechanisms include Eddy current cancellation 
(A) and flux shunting (B). Figure adapted from (Celozzi, Araneo, and Lovat 2008).  

High frequency magnetic fields, greater than 10Hz and often referred to as AC 

fields, are largely shielded by Eddy current cancellation which is why a highly 

conductive material is chosen (such as copper). Provided the magnetic field is 

time-varying, 𝑩(𝑡), and the conductivity of the material, 𝜎, is high, there is an 

induced electric field 𝑬(𝑡), according to Faraday’s law 

∇ × 𝐸(𝑡) = −
𝜕𝑩(𝑡)

𝜕𝑡
. 

The induced electric current density creates a magnetic field opposing the 

incident field, forcing it to be repelled and to run parallel to the surface of the 

shielding material (Celozzi, Araneo, and Lovat 2008). The induced current 

density decays exponentially into the material, with a characteristic decay 

length equal to the skin depth, 𝛿. For an AC source with angular frequency 𝜔 =

2𝜋𝑓, the skin depth can be calculated as in (Hoburg 1995), 

𝛿 = √
2

𝜔𝜇0𝜇𝑟𝜎
. 

In copper, for example, where 𝜇𝑟 ≈ 1, the skin depth at 60Hz frequency is 

8.5mm. Intuitively, one might expect to have shielding thickness greater than 

the skin depth for maximal shielding. However, this is not the case because 

using a shielding thickness much larger than the skin depth allows current 

loops to circulate through the shield, inducing flux densities inside the shielded 

area. For this reason, a good shielding factor can be achieved with shield 

thicknesses less than the skin depth. 
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Synthetic Gradiometers 
Synthetic gradiometry follows this same principle of measuring field gradient 

to remove the contributions from interference sources far from the brain. In 

this case the difference in field is measured between a set of reference sensors 

(labelled ‘Refs’ in Figure 2.13B) and the pick-up coils surrounding the head.  

The hardwired axial gradiometers in the SQUID MEG systems used for this 

thesis, as shown in Figure 2.13A, are first order gradiometers. Second order 

gradiometers can be built from two hardware first order gradiometers by 

calculating the displacement between individual gradiometer centres. This 

process of creating synthetic gradiometers can be expanded to higher orders 

and the CTF MEG system in Nottingham allows one to apply up to third order 

gradiometers.  

These third order synthetic gradiometers may be applied during data 

acquisition or later during analysis. 

Active Noise Cancellation 
Reference sensors placed close to the head measure the background fields at 

this location (these are different to the reference sensors inside the dewar of 

liquid helium in a SQUID MEG system). An array of large biplanar coils 

surrounding the subject can then actively cancel out the measured field by 

applying an equal and opposite field. When used in conjunction with a 

magnetically shielded room, this field nulling technique can reduce 

background fields to less than 0.5nT (Holmes et al. 2018). Although this 

technique is not often used in a conventional SQUID MEG laboratory, it has 

become crucial in the development of new OPM-based MEG systems where 

the operation of the sensors requires near-zero background field (Holmes et 

al. 2018). 

2.3.3 Experimental Procedure 
Prior to scanning any participant, both safety and consent forms must be 

completed. Despite MEG being a passive scan, the safety form is important 

because the functional MEG data are typically mapped onto a structural MRI 

of the individual’s brain. Due to the large magnetic field participants are 
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exposed to in an MRI scanner (≥ 3T), any metal inside the participant and 

within the vicinity of their head would make them unsuitable for scanning. 

Similarly, pacemakers and other implants are a contraindication of MRI.  

The MEG laboratory consists of a control room, containing the SQUID 

electronics and the acquisition and stimulus presentation computers, as well 

as the MEG system housed inside a magnetically shielded room, see Figure 

2.16. A participant is positioned with their head in the helmet of the MEG 

dewar and can be seated or supine. Fiducial coils are placed on the participant 

at the nasion and right and left preauricular points to allow for head 

localisation (so the position of the coils relative to the sensors is known) and 

coregistration of the MEG functional data with MRI structural data at a later 

stage. These coils can be energised throughout the experiment to track head 

motion relative to sensors, or at the beginning and end of an experimental run. 

The participant must remain completely still throughout the experiment and a 

motion tolerance limit can be set to ensure this is the case. Because the boiloff 

of the liquid helium in the dewar carries a small risk of asphyxiation, an oxygen 

alarm is placed inside the shielded room with the participant. The door to the 

MSR is then closed and the participant can be communicated with via an 

intercom and video monitoring system.  
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Data are processed by the SQUID electronics before being sent to the 

acquisition computer. The stimulus computer is used to interact with the 

participant and can project visual, auditory and tactile stimuli, as well as 

acquire behavioural measures from the participant (using, for example, 

button-press responses or an eye tracker). The exact timings of stimulus 

presentation and participant responses can be passed to the acquisition 

computer to place temporal markers within the MEG data.  

Figure 2.16: The MEG lab. The participant is scanned seated or supine in the MSR with 
their head inside the helmet of the dewar. The scanner operator can communicate 
with them via an intercom and a range of stimuli can be presented. This set-up allows 
both neurophysiological and behavioural data to be acquired during an experiment. 
Figure adapted from (Vrba 2000).   

Some of the data in this thesis were acquired during the COVID-19 pandemic 

and as such the experimental procedure was altered to reduce the risk of a 

participant or scanner operator contracting the virus. These precautions are 

described in greater detail in Chapter 5. 

The data analysed in this thesis were acquired in two different settings: the 

CTF-MEG lab in the Sir Peter Mansfield Imaging Centre at Nottingham 

(Chapters 4 and 5), and the CTF-MEG lab in the Children’s Hospital of 

Philadelphia USA (Chapter 6).  
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2.3.4 Coregistration with a structural MRI 
It is possible to map functional MEG data onto a structural MRI scan so that 

the source of the MEG signal can be localised (this process will be described in 

detail in Chapter 3). For the greatest spatial accuracy of source localisation, the 

position of the participant’s brain relative to the MEG sensors should be 

known.   

The first step is to track the location of the head inside a CTF-MEG system using 

three coils, each placed at a fiducial location (the nasion and left and right 

preauricular points). These coils are energised at non-physiologic frequencies 

so their positions inside the MEG helmet can be found.  The location of those 

same coils must then be found relative to the participant’s MRI. There are 

various ways of doing this and owing to the fact that the data used in this thesis 

were acquired in different labs and at different times, three different 

coregistration methods were employed. 

Polhemus head digitisation 
For the data used in Chapter 4 a Polhemus FASTRACK digitiser (Polhemus, 

Colchester, VT, USA) was used to create a 3D representation of the surface of 

each participant’s head along with the relative fiducial coil locations. This 

involves seating the participant in front of a transmitter box and placing a 

receiver on top of their head. Then a stylus, whose position is known relative 

to the receiver, is used to draw the surface of the head and face. An anatomical 

T1 -weighted MRI is acquired using an MPRAGE sequence at an isotropic 

resolution of 1mm3. Note that this MRI must be acquired after the MEG scan 

because of long-lived tissue magnetisation effects at high fields. A surface 

matching algorithm then maps this 3D head digitisation to the scalp surface 

extracted from the participant’s MRI using an iterative closest point algorithm 

(Besl and McKay 1992).  The position of the fiducial coils is therefore known 

relative to the MRI, allowing complete coregistration of the MEG sensors with 

the brain.  
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Skanect head digitisation 
During the COVID-19 pandemic, the decision was made to switch from using 

the Polhemus digitiser (which requires close contact with a participant for 

roughly 10 minutes) to an optical imaging system which could be used at a 

distance to reduce the risk of virus transmission. A Structure Sensor camera 

(Occipital Inc., San Francisco, CA, USA) was used, together with an iPad 

operating Structure Sensor Skanect software to produce a 3D model of each 

participant’s head. It does this by using an infrared laser projector to place dots 

on the surfaces in its field of view which are then detected by an infrared 

camera to determine the shape and distance of any objects. A visible light 

camera is also used so that colour can be mapped onto the 3D shape. The 

acquisition takes approximately 3 minutes.  

First, green stickers are placed on the fiducial coils so that a colour threshold 

can be used to determine the coil positions relative to the head surface. A 

swimming cap is then used to flatten down any hair so that a true head shape 

is obtained, and the Skanect image is taken. An MRI is acquired exactly as 

described in the previous section, and the head surface from the Skanect is 

matched with the scalp surface extracted from the MRI using the same surface 

matching algorithm.  

MRI contrast markers 
Because the data in Chapter 6 were acquired in a hospital setting, the MEG 

scan and MRI were done in the same session. The coregistration procedure is 

then greatly simplified: first a pen is used to mark the location of the MEG 

fiducial coils on the skin so that after the MEG scan, patients can make their 

way to the MRI where contrast markers are placed at those same fiducial 

points. This completes the coregistration of the fiducial markers from the MRI 

and MEG enabling spatial mapping of the MEG sensors to brain anatomy.  

Summary 
The first part of this chapter described the microscopic origins of the MEG 

signal, from the basic biology of a neuron to the chemical and electrical 

exchanges underpinning neurotransmission. We have learned that it is the 
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post-synaptic potentials in the dendrites of tens of thousands of pyramidal 

neurons in the cortex which result in measurable MEG activity. From this 

signal, depending on the type of experiment and the way the data are 

analysed, several measurable effects can be derived. These include 

spontaneous rhythms, evoked responses, induced effects, and functional 

connectivity. The latter part of the chapter detailed MEG data acquisition using 

conventional SQUID sensors. The experimental procedure was described as 

well as coregistration with an MRI and the noise reduction techniques allowing 

us to measure the magnetic fields induced by current flow in the brain despite 

surrounding sources of magnetic noise being many orders of magnitude larger. 

The next chapter will cover the analysis of MEG data. This includes 

mathematical models for transforming sensor data into a 3D source space so 

that we can estimate the location of MEG sources inside the brain, as well as 

the theory underpinning hidden Markov modelling. 
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Chapter 3 

MEG Data Analysis 

Large sensor arrays and high temporal resolution means that MEG data are 

rich in spatial, temporal and spectral information. In the first instance, the 

neuromagnetic fields from all brain regions superpose meaning that the same 

sensors can detect fields from multiple regions. These sensor-level data are 

extremely useful, yielding topographic plots of neural activity in a similar 

fashion to those used in most EEG systems.  However, by exploiting the large 

number of sensors surrounding the head, and with the use of mathematical 

models, it is possible to reconstruct the source signal at each location in the 

brain. The first two sections of this chapter are concerned with source 

reconstruction.  

In the first section, a model of the field measured at the sensors for a known 

source location and signal amplitude is proposed. Section 3.2 uses this 

‘forward’ model, together with the measured MEG data to solve the ‘inverse’ 

problem using a technique called beamforming. This produces an estimate of 

the neuromagnetic signal arising at each brain location.  

The final part of this chapter, Section 3.3, describes the theory behind hidden 

Markov modelling - a statistical timeseries analysis which uncovers recurrent 

patterns of activity in data and is applied to MEG throughout this thesis. 

3.1 The Forward Problem 
Before we can localise the source of the magnetic fields measured at the MEG 

sensors, we must first understand what the magnetic field would look like (at 

the sensors) from a known current distribution in the brain. This is known as 

the MEG forward problem. 

3.1.1 Estimating the Lead Fields 
Any consideration of electromagnetism must begin with Maxwell’s equations. 

These equations form the basis of classical electromagnetism and by bringing 
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them together, Maxwell described the occurrence of magnetism, electricity, 

and light in a single unified theory (Maxwell 1873). 

Gauss’ law for electricity  

∇ ∙ 𝑬 =
𝜌

𝜀
      (3.1) 

Gauss’ law for magnetism 

∇ ∙ 𝑩 = 0      (3.2) 

Faraday’s law of induction 

∇ × 𝑬 = −
𝜕𝑩

𝜕𝑡
      (3.3) 

Ampère’s law 

∇ × 𝑩 = 𝜇0 (𝑱 +
𝜕𝑬

𝜕𝑡
)     (3.4) 

Here, 𝑬 and 𝑩 are the electric and magnetic fields respectively, 𝜌 is the charge 

density, 𝑡  is time, and 𝜀  and 𝜇  are the permittivity and permeability of a 

medium respectively. Note that the permeability of tissue in the head can be 

assumed to be that of free space, 𝜇0 . 𝑱  is the total current density. Since 

neuroelectromagnetic fields vary in time at low frequencies (<100Hz) they can 

be described as quasi-static (i.e. 𝜕𝑥 𝜕𝑡⁄ = 0) (Hämäläinen et al. 1993) and the 

last two Maxwell equations can be expressed thus 

∇ × 𝑬 = 0      (3.5) 

∇ × 𝑩 = 𝜇0𝑱.      (3.6) 

In 1987, Sarvas applied basic mathematical concepts to model both the 

biomagnetic forward and inverse problems. The following maths is based on 

his calculations (Sarvas 1987).   Using the Biot-Savart law, the magnetic field 

𝑩(𝒓), measured at a location 𝒓 is 

𝑩(𝒓)  =  
𝜇0

4𝜋
𝑱(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3
𝑑𝑣′,    (3.7) 

where 𝒓′ is a location inside volume 𝐺, and 𝑑𝑣′ is a volume element. Recall 

from Chapter 2 that the total current density is made up of both a primary 

current, 𝑱𝑝, (inside the dendrites of pyramidal neurons) and a volume current, 

𝑱𝑣, made up of the displaced ions outside of the neuron in the extracellular 
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space flowing towards the area of repolarisation. Here we will consider the 

contributions of both current sources 

𝑱 = 𝑱𝑝 + 𝑱𝑣.     (3.8) 

Since the volume current is an ohmic current (charge carriers in a conducting 

medium responding to changes in the local electric field), it can be written as 

𝑱𝑣 = 𝜎𝑬  where 𝜎  is the conductivity of tissue which we will assume to be 

uniform inside 𝐺. Since the electric field and electric potentials are related by 

𝑬 = −∇𝑽, we can substitute the total current density into Equation 3.7 to give 

𝑩(𝒓) =
𝜇0

4𝜋
(𝑱𝑝(𝒓′) − 𝜎∇𝑉(𝒓′)) ×

𝒓−𝒓′

|𝒓−𝒓′|3 𝑑𝑣′     

=
𝜇0

4𝜋
𝑱𝑝(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3 𝑑𝑣′ −
𝜇0𝜎

4𝜋
∇𝑉(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3 𝑑𝑣′,   (3.9) 

where 𝑉 is the electric potential and we now have a separate term for the 

primary and volume current contributions.  

Now, by focussing on the volume current term specifically, 

𝑩𝑣(𝒓) = −
𝜇0𝜎

4𝜋
∇𝑉(𝒓′) ×

𝒓 − 𝒓′

|𝒓 − 𝒓′|3
𝑑𝑣′, 

and by using the vector identity ∇𝑎 × ∇𝑏 = ∇ × (𝑎∇𝑏), where ∇𝑎 = ∇𝑉 and 

∇𝑏 = 𝒓 − 𝒓′ |𝒓 − 𝒓′|3⁄ , we can express the volume current thus 

𝑩𝑣(𝒓) = −
𝜇0𝜎

4𝜋
∇ × 𝑉(𝒓′)

𝒓−𝒓′

|𝒓−𝒓′|3
𝑑𝑣′.   (3.10) 

Next, we recall the generalised Stokes’ theorem, linking the volume integral to 

a surface integral: 

𝛻 × 𝑨 dv′ = 𝒏 × 𝑨 ds
    (3.11) 

where 𝒏 is a vector normal to the surface element, 𝑑𝑠, pointing away from the 

volume centre. This allows us to express the volume currents mathematically 
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as if they were flowing on a conductive surface. This bears no semblance to 

reality but is a useful mathematical formalism, 

𝑩𝑣(𝒓) =
−𝜇0

4𝜋
𝑉(𝒓′)𝒏(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3 𝑑𝑠.   (3.12) 

Now including the primary current term as 𝑩0, the magnetic field induced by 

current flow within the dendrites of the neurons, the total magnetic field 

produced by this current density is 

𝑩(𝒓) = 𝑩0(𝒓) −
𝜇0𝜎

4𝜋
𝑉(𝒓′)𝒏(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3 𝑑𝑠.  (3.13) 

This useful interpretation of volume currents as surface currents flowing on 

the boundary between regions with different conductivities was introduced by 

Geselowitz in 1970 when he addressed the interpretation of 

magnetocardiogram results (Geselowitz 1970). It is for this reason that 

Equation 3.13 is referred to as the Geselowitz formula. 

3.1.2 Single Sphere Model 
It is at this point that we introduce a head model to address the forward 

problem. The simplest model of the head is as a spherical conductor with 

volume 𝐺, surface 𝑆 and uniform conductivity 𝜎 as shown in Figure 3.1. We 

also assume that the MEG system only detects radial components of the 

magnetic field5.  

 
5 In most conventional cryogenic MEG systems, the sensors are arranged around the head 
and measure along one axis, but they are not radial to a sphere and so, even with this 
assumption, a vector expression for field is needed.  New OPM-MEG systems have the 
capability of making triaxial measurements which should improve spatial filtering accuracy 
(Brookes, Boto et al. 2021). 
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Figure 3.1: A diagram of the single sphere head model. The head is modelled as a 
homogeneous conductor with volume 𝐺, bounded by spherical surface 𝑆. The fields 
produced by a single dipole with magnitude and direction 𝑸, and detected at a sensor 
with position 𝒓 from the origin of the sphere, are described by the Sarvas equation 
(Equation 3.28). 

Taking this into consideration, Equation 3.13 becomes 

𝐵𝑟(𝒓) = 𝑩(𝒓) ∙ 𝒆𝒓         

𝐵𝑟(𝒓) =  
𝜇0

4𝜋
𝑱𝑝(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3
∙ 𝒆𝒓𝑑𝑣′ −

𝜇0𝜎

4𝜋
𝑉(𝒓′)𝒏(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3
∙ 𝒆𝒓𝑑𝑠. 

(3.14) 

Now, we can simplify this equation by analysing just the volume current term 

which is 

𝒏(𝒓)′ × (𝒓 − 𝒓′) ∙ 𝒆𝒓 = (𝒏(𝒓′) × 𝒓 − 𝒏(𝒓′) × 𝒓′) ∙ 𝒆𝒓.  (3.15) 

Since the cross product of parallel vectors is zero, 𝒏(𝒓′) × 𝒓′ = 0, and the dot 

product of perpendicular vectors is zero, (𝒏(𝒓′) × 𝒓) ∙ 𝒆𝒓 = 0 . This term 

therefore vanishes, removing the contribution from the volume currents 

altogether! We see that 

𝐵𝑟(𝒓) =  
𝜇0

4𝜋
𝑱𝑝(𝒓′) ×

𝒓−𝒓′

|𝒓−𝒓′|3
∙ 𝒆𝒓𝑑𝑣′ .  (3.16) 

Importantly, this means that 𝐵𝑟 is not dependent on tissue conductivity. 

So far, we have assumed that the current is evenly distributed throughout the 

volume 𝐺, now we will consider the current from a dipole which exists at a 

single point, 𝒓𝑸, within the volume. We can therefore write  
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𝑱𝑝(𝒓′) = 𝑸𝛿(𝒓′ − 𝒓𝑸),    (3.17) 

where 𝑸 is the magnitude and direction of the current dipole and 𝛿(𝒓) is the 

Dirac delta function. Equation 3.16 then becomes  

𝐵𝑟(𝒓) =  
𝜇0

4𝜋
𝑸𝛿(𝒓′ − 𝒓𝑸) ×

𝒓−𝒓′

|𝒓−𝒓′|3 ∙ 𝒆𝒓𝑑𝑣′  (3.18) 

and the remaining integral can be simplified since 

∫ 𝛿(𝑥)𝑑𝑥 = {
0,      𝑥 ≠ 0
 1,      𝑥 = 1

∞

−∞

 

so that Equation 3.18 becomes 

𝐵𝑟(𝒓) =  
𝜇0

4𝜋
𝑸 ×

𝒓−𝒓𝑸

|𝒓−𝒓𝑸|
3 ∙ 𝒆𝒓𝑑𝑣′   (3.19) 

when 𝒓′ = 𝒓𝑸. Because the sensors are not radially oriented to a sphere we 

must also calculate the non-radial components of the field outside of the 

spherical conductor using Maxwell’s equations (Equation 3.6). Since current 

density 𝑱  is zero outside of volume 𝐺 , ∇ × 𝑩 = 0. This means that we can 

express the magnetic field in terms of a magnetic scalar potential (which we 

will call 𝑈), 

𝑩(𝒓) = −𝜇0∇𝑈(𝒓).     (3.20) 

To find an expression for 𝑈(𝒓) we fix 𝒓 outside of 𝑮 and consider a line integral 

along the radius of 𝑮, 𝒓 + 𝑡𝒆𝒓, where 0 ≤ 𝑡 ≤ ∞. Since U vanishes at infinity, 

𝑈(𝒓) = − ∫ ∇𝑈(𝒓 + 𝑡𝒆𝒓) ∙ 𝒆𝒓𝑑𝑡
∞

0
.    (3.21) 

Using Equation 3.20 

𝑈(𝒓) =
1

𝜇0
∫ 𝐵𝑟(𝒓 + 𝑡𝒆𝒓) ∙ 𝒆𝒓𝑑𝑡

∞

0
,    (3.22) 

and substituting in the expression for 𝐵𝑟 from Equation 3.19 produces 

𝑈(𝒓) =  
1

4𝜋
𝑸 × (𝒓 − 𝒓𝑸) ∙ 𝒆𝒓 ∫

𝑑𝑡

|𝒓+𝑡𝒆𝒓−𝒓𝑸|
3

∞

0
.   (3.23) 

Solving this integral produces the result 
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𝑈(𝒓) = −
1

4𝜋

𝑸×𝒓𝑸∙𝒓

𝐹
     (3.24) 

where 𝐹 = |𝒂|(|𝒓||𝒂| + |𝒓|2 − 𝒓𝑸 ∙ 𝒓) and 𝒂 = 𝒓 − 𝒓𝑸. Using Equations 3.20 

and 3.24 we obtain the Sarvas equation (Sarvas 1987) which is the general 

solution for the single sphere model: 

𝑩(𝒓) =
𝜇0

4𝜋𝐹2
(𝐹𝑸 × 𝒓𝑸 − 𝑸 × 𝒓𝑸 ∙ 𝒓∇𝐹)   (3.25) 

where ∇𝐹 = (
|𝒂|2

|𝒓|
+

𝒂

|𝒂|
∙ 𝒓 + 2|𝒂| + 2|𝒓|) 𝒓 − (|𝒂| + 2|𝒓| +

𝒂

|𝒂|
∙ 𝒓) 𝒓𝑸 . This 

equation tells us that radially oriented sources in a spherical conductor cannot 

be detected because their component of the magnetic field vanishes. 

However, a study completed in 2002 showed that source depth rather than 

orientation is the main factor compromising MEG sensitivity and most 

neuronal ensembles have detectable tangential components (Hillebrand and 

Barnes 2002).  

3.1.3 Alternative Head Models 
The approximation of the head as a single sphere produces a useful estimate 

for the forward model. However, it is an oversimplification of head geometry 

and is therefore inadequate for regions of the brain which deviate the most 

from a spherical shape (for example, the frontal and fronto-temporal areas) 

(Hämäläinen and Sarvas 1989). To overcome this problem, much work has 

been done to extract realistic head models from the anatomical MRIs of 

research participants with multiple layers of homogeneous conductivity 

separated by boundaries (Hämäläinen and Sarvas 1989; Meijs et al. 1987), with 

the forward problem being solved numerically using the Geselowitz formula. 

The most accurate model to-date is a three shell boundary element model 

(BEM), where the brain, skull and scalp make up each layer (Stenroos, Hunold, 

and Haueisen 2014). However, these models are computationally expensive so 

an alternative head model based on multiple overlapping spheres was 

introduced (Huang, Mosher, and Leahy 1999) with a fraction of the 

computational cost and improved accuracy compared with a single sphere.  
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In this method, for each individual MEG sensor a local sphere is fitted to the 

curvature of the skull closest to the sensor. The head shape is then modelled 

as a set of overlapping spheres, see Figure 3.2, which is more realistic than a 

single sphere. 

Figure 3.2: A diagram explaining the multiple local spheres head model from (Huang, 
Mosher, and Leahy 1999). A local sphere is fitted for each sensor and the complete set 
of spheres forms a more geometrically accurate model of the head than a single sphere 
approximation.  

Although this makes sense intuitively, the bigger problem is defining which 

parts of the skull are ‘local’ to each sensor. We could define a tiny part of the 

skull immediately beneath the sensor as local, or at the other extreme the 

whole skull could be defined as ‘local’ which would result in the same single-

sphere model depicted in Figure 3.1. Huang et al. solved this problem by first 

choosing an initial estimate for the sphere centre and radius, and then 

minimising the cost function based on the difference between the secondary 

currents arising from a realistic mesh of the innermost skull surface and the 

local sphere.  

A multiple local spheres model was used throughout this thesis because of its 

improved accuracy compared with the single sphere model and improved 

computational speed compared with a BEM. However, it is worth noting that 

increased computing power is now more readily available, so boundary 

element methods are becoming more popular, especially as software such as 

FieldTrip mean it can be readily implemented. This makes it likely that future 

studies will utilise these. 
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3.2 The Inverse Problem 
Now that we have a good mathematical foundation for the forward model, we 

can use this to estimate the spatial and temporal signatures of the neuronal 

sources which produce the magnetic fields measured by our MEG sensors, 

often referred to as the biomagnetic inverse problem.  

3.2.1 A Generative Model of Sources 
A generative model of sources posits that the magnetic fields measured at the 

sensors are the superposition of all the fields produced by all locations in the 

brain. This can be written mathematically as 

𝒃(𝑡) = 𝒍𝜽𝑞𝜽(𝑡)𝑑𝑉    (3.26)
 

where 𝒃 is an N-element vector, each element of which corresponds to a MEG 

sensor measuring the superposition of all the fields generated by dipoles 

across the whole brain volume, 𝑽. Mapping these dipoles to the measured 

fields are the forward fields, 𝒍𝜽 for a dipole with unit strength and with position 

and orientation determined by 𝜽 (i.e., 𝜽 = [𝒓′, 𝛿] where 𝒓′ is a vector location 

within 𝑽 and 𝛿 relates to orientation). Note that the lead fields and the source 

orientation are assumed to be time independent. It is only the dipole strength 

𝑞𝜽(𝑡) which varies with time, t. 

By parsing the brain into a discrete number of voxels (M), and by assuming that 

there is only one dipole per voxel, we can write this as a sum 

𝒃(𝑡) = ∑ 𝒍𝜽𝑚
𝑞𝜽𝑚

(𝑡)𝑀
𝑚=1 ,   (3.27) 

or in matrix formalism  

𝒃(𝑡)  =  𝑳 ∙ 𝒒(𝑡),     (3.28) 

where 𝒃 is still an N-element column vector (N being the total number of MEG 

sensors), 𝑳 is an 𝑁 × 𝑀 lead field matrix, and 𝒒 is an 𝑀 × 1 matrix containing 

the instantaneous dipole strengths, so the columns of 𝑳 give the contribution 

of each dipole to all sensors and the rows of 𝑳 give the dipoles that contribute 

to the signal at a single sensor. 
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Intuitively, the inverse problem can be solved by inverting our generative 

model to obtain 𝒒𝜽𝑚
(𝑡). This would seem simple given that we know our 

measured fields, 𝒃(𝑡) , and our lead field matrix, 𝑳 , based on the forward 

model. However, the inverse problem is mathematically ill-posed. This means 

that it is theoretically impossible to solve. From a simple physics point of view, 

this is because an infinite number of current distributions could result in the 

same measured fields. This is, in part, due to field cancellation from 

overlapping source fields, as well as the presence of ‘silent sources’ such as 

radially oriented dipoles or closed loops. Mathematically speaking, there are 

many more potential source locations than MEG sensors - since 𝑀 ≫ 𝑁, 𝑳 is 

not square, and even if it was the linear dependence between the columns of 

𝑳 mean that 𝑳−1 is impossible to compute. 

It is, however, possible to estimate a solution to the biomagnetic inverse 

problem under a specific set of assumptions which construct the inverse 

solution. This can be done a number of ways, methods include minimum norm 

estimation (Hämäläinen and Ilmoniemi 1994), equivalent current dipole 

models (Brenner et al. 1978; Tuomisto et al. 1983) and linearly constrained 

minimum variance (LCMV) beamformers (Van Veen et al. 1997). Each of these 

methods enlist their own assumptions which can be explored in more detail in 

(Hämäläinen et al. 1993; Mosher, Baillet, and Leahy 2003; Hillebrand and 

Barnes 2002). Because of its proficiency at reconstructing spontaneous 

(oscillatory) activity, and its ability to minimise biomagnetic and environmental 

interference sources, the method used in this thesis is LCMV beamforming. 

3.2.2 Beamforming 
The beamformer is a type of spatial filter which assigns a weighting to each 

MEG sensor in such a way that the combination of all sensors and their 

associated weights produces an estimate of source strength at every location 

in the brain. This can be represented as 

𝒒̂𝜽(𝑡) = 𝑾𝜽
𝑇𝒃(𝑡)     (3.29) 
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where 𝒒̂𝜽 is the source strength estimate at location and orientation 𝜽, and 

the weights, 𝑾𝜽 , are an 𝑁 × 1 matrix applied to the sensor measurements 

𝒃(𝑡) from all 𝑁 MEG sensors.  

Figure 3.3: A schematic diagram describing how beamformer source reconstruction 
works. The brain is split into 𝑀 voxels, and the signal at each location 𝑞̂𝜃 is the sum 
over 𝑁 MEG sensor measurements. The contribution from each sensor is determined 
by a set of weights. The different weightings for each MEG sensor are represented here 
by varying shades of colour and an example reconstructed time course is presented 
(bottom). 

The weights are chosen so that the signal at a particular location is retained, 

but the contribution of signals from the rest of the brain (and surrounding 

environment) are minimised. This is done using variance minimisation 

min
𝑾𝜽

|〈𝒒̂𝜽
2(𝑡)〉|  subject to 𝑾𝜽

𝑇𝒍𝜽 = 1,  (3.30) 

where the angular brackets represent the expectation value. The variance is 

minimised subject to the linear constraint that at 𝜽, the weights (transposed) 

multiplied by the lead fields specific to that location and orientation, 𝒍𝜽 , 

remains at 1, which makes sense given that the lead fields are fitted to a unit 

dipole. Equation 3.30 can be solved thus (Van Veen et al. 1997) 

𝑾𝜽
𝑇 =

𝒍𝜽
𝑇𝑪−1

𝒍𝜽
𝑇𝑪−1𝒍𝜽

      (3.31) 

where 𝑪 = 〈𝒃(𝑡)𝒃(𝑡)𝑇〉  and the brackets 〈𝑥〉  indicate the temporal 

expectation value; in practice this is approximated by the data covariance 
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between channels (producing an 𝑁 × 𝑁  matrix). A single element of the 

covariance matrix is calculated as 

𝐶𝑖,𝑗 =
1

𝑃
∑ 𝑏𝑖(𝑡𝑝)𝑏𝑗(𝑡𝑝)𝑃

𝑝=1 ,    (3.32) 

which means that the 𝑖, 𝑗𝑡ℎ  element of the matrix contains the covariance 

between data measured at channels 𝑖 and 𝑗. 𝑃 is the total number of points in 

the time window in which covariance is calculated. To calculate the 

beamformer weights we must invert the covariance matrix. However, in 

practice, when 𝑪 is close to singular, the matrix must first be regularised. This 

is typically achieved using the Tikhonov method so that 

𝑪𝑟 = 𝑪 + 𝜇Σ ,    (3.33) 

where 𝑪𝑟 is the regularised matrix, 𝜇 is the regularisation parameter and Σ is 

approximated as the identity matrix, 𝐼.  

An implicit assumption of the beamformer is that spatially separate sources 

are not temporally correlated. This is because two distal sources which are 

temporally correlated would produce two dipolar fields outside the head, 

which would then be measurable at the MEG sensors. Since the lead fields are 

modelled on a single unit dipole, those spatially separate but correlated 

sources would be minimised according to equation 3.30. 

3.2.3 Source Orientation 
Both the location and orientation of the dipolar source will greatly impact on 

the measured signals. We have represented the source location and 

orientation throughout these calculations in the vector 𝜽, but we have not yet 

calculated it. This is done by finding the orientation which produces the 

maximum signal-to-noise ratio (SNR) using an exhaustive search. This involves 

calculating the SNR for every possible dipole orientation and then selecting the 

orientation with the maximum value. Intuitively this seems like a 

computationally intensive step, but because our MEG sensors are unable to 

measure radially-oriented dipoles (see Section 3.1.2) we can restrict our search 
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to angles azimuthal to the brain surface. A pseudo-Z-statistic, 𝑝𝑠𝑍 , is 

calculated for each location, 𝑟, and azimuthal angle, 𝜑, so that 

𝑝𝑠𝑍𝑟,𝜑 =
𝑊𝑟,𝜑

𝑇 𝐶𝑊𝑟,𝜑

𝑊𝑟,𝜑
𝑇 Σ𝑊𝑟,𝜑

𝑇 .     (3.34) 

The orientation 𝜑 is then extracted from the maximum value of 𝑝𝑍𝑟,𝜑. 

3.2.4 Depth Correction 
A peculiarity of beamforming is that the source amplitudes are greatest at the 

centre of the brain. This is because the L2 norm of the lead fields falls towards 

the centre of the brain (because of the increased distance from MEG sensors), 

therefore increasing the norm of the beamformer weights for those deeper 

sources (Mosher, Baillet, and Leahy 2003). This artificial skewing of the data 

towards deeper sources can be counteracted by normalising the result to 

produce a pseudo-Z-statistic ( 𝑝𝑠𝑍 ). Introducing a normalisation factor to 

Equation 3.29 gives us 

𝒒̂𝑝𝑠𝑍 =
𝑾𝑇

√𝑾𝑇𝑾
𝒃(𝑡),     (3.35) 

where 𝑞̂𝑝𝑠𝑍 is the new estimate of the data with arbitrary units (rather than 

units of Am) because it has been normalised. By substituting Equation 3.31 for 

𝑾𝑇 into Equation 3.35, the final source estimate can be given by 

𝒒̂𝑝𝑠𝑍 =
𝒍𝜽

𝑇𝑪−1

√𝒍𝜽
𝑇𝑪−2𝒍𝜽

𝒃(𝑡).     (3.36) 

This pseudo-Z-statistic can then be applied to each voxel sequentially, resulting 

in a statistical 3D image of source strength over the whole brain. 

3.2.5 Beamformer Artefact Rejection 
The beamformer acts as a statistical ‘lens’ focussing on one location and 

minimising the contribution from all other locations (both inside the brain or 

outside of it). This means the beamformer acts as an effective artefact 

rejection method (Brookes, Hale, et al. 2011). This is especially useful for 

sources inside or close to the head because the contribution from fields 

produced far from the head are already minimised by using gradiometers (see 
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Section 2.3.2). Ocular and muscle artefacts are reduced, and the contribution 

from other brain areas is also minimised (Sekihara, Hild, and Nagarajan 2006).  

Activity related to the participant’s heartbeat is also effectively removed, 

whether that is the magnetocardiogram (O'Neill, Barratt, et al. 2015) or the 

ballistocardiogram (Brookes, Mullinger, et al. 2008). 

3.2.6 Parcellation 
Specific anatomical regions of the brain are responsible for different functions, 

for example the occipital lobe is largely associated with visual processing and 

the postcentral gyrus is where sensory information is registered. In some 

studies, we are more interested in how these larger brain regions interact with 

a task or with one another than we are in each voxel of the brain individually. 

This is of particular importance when calculating functional connectivity – 

dividing the cortex into larger regions requires significantly less time and 

computational power than voxel to voxel connectivity.  It is therefore 

important to have a consistent way of splitting the brain into functionally 

relevant parcellations.  

A Standard Brain 
When we are comparing the localisation results from multiple participants in 

a study, it is important to place the results in a standard space before group 

analyses can be carried out. There are different standard templates to 

compare one’s results to, but arguably the most well-known and utilised 

standard is the MNI152 which is the average of structural MRI images from 152 

healthy young adults, composed by the Montreal Neurological Institute as part 

of the International Consortium for Brain Mapping (ICBM) (Mazziotta et al. 

2001). Aligning any brain to this standard provides an objective way of defining 

coordinates which does not rely on the subjective description of anatomical 

location (Jenkinson and Chappell 2018). Ideally a standard brain would be used 

to define our parcellations, however, the natural variation in cortical features 
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across 152 people means that the average brain lacks the clear spatial 

definition needed to split the brain into useful regions (see Figure 3.4).  

Figure 3.4: The MNI152 standard brain was composed by the Montreal Neurological 
institute and is the average over 152 MRIs from young healthy adults. It provides a 
standard space for comparing functional activity localisations. The process of 
averaging has removed fine detail from the standard, so it is not suitable for 
delineating parcellations. 

To get around this problem, a high-resolution single-subject brain can be used 

to define the parcellations which can then be transformed into standard space 

so that comparison between regions from different subjects is possible. This 

method is used to define the Automated Anatomical Labelling (AAL) atlas 

(Tzourio-Mazoyer et al. 2002) which was the parcellation method of choice for 

this thesis.  

AAL Atlas 
This atlas is based on the MNI single subject brain from a healthy young adult 

male whose brain was scanned 27 times using a T1-weighted gradient echo 

sequence at 1mm3  resolution. Tzourio-Mazoyer and colleagues tracked the 

sulci using a 3D surface rendering and manually drew them onto the render 

(see Figure 3.5A). Regions of interest in 2D space were then identified manually 

followed by a nearest-neighbours connectivity algorithm which joined the 

regions of interest across slices to produce 90 3D anatomical volumes of 

interest (45 in each hemisphere). The 2D regions of interest are shown in 

Figure 3.5B. The MNI single subject brain was then linearly transformed into 

the MNI152 space, thus providing an atlas mapping out functionally useful 

regions in a standard space (Tzourio-Mazoyer et al. 2002). 
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Figure 3.5: The AAL atlas was created by manual segmentation of the sulci (A) and 
regions of interest (B) on the MNI single subject brain. The lateral and parasagittal 
medial view of the sulci are shown in A(i) and A(ii) respectively. The 2D regions of 
interest for 4 different axial slices is shown in (B), the number in the bottom right 
corner indicates the stereotaxic z-coordinate in mm. This atlas can then be aligned 
with the MNI152 brain so it can be used in standard space to parcellate other single-
subject brains. Figure adapted from (Tzourio-Mazoyer et al. 2002). 

This method of parcellation has several advantages over the Talairach atlas 

(Talairach and Tournoux 1988), which was previously the atlas of choice. First, 

the Talairach atlas is based on the post-mortem examination of a sixty-year-

old female brain. Because of its age, the brain showed some cortical atrophy. 

Only the left hemisphere was examined so the right hemisphere is assumed to 

be a mirror image. There is also no MRI counterpart to this brain making it 

difficult to align to as a standard. There will also be clear differences between 

an ex-vivo brain and a healthy in-vivo one (like the AAL atlas).  

The AAL atlas is typically used in MEG for defining cortical regions for 

functional connectivity analyses (Tewarie et al. 2014; Brookes et al. 2016; 

Dauwan et al. 2019) where it has yielded useful results. However, there are 

limitations to this atlas. For example, it is based on the manual segmentation 

of a single subject’s brain and does not consider the inevitable differences 

between healthy brains. It is also segmented based solely on anatomical 

landmarks rather than including information about function and connectivity 

like the Human Connectome Project Multimodal Parcellation atlas does 
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(Glasser et al. 2016) which yields greater functional separation of regions (Tait 

et al. 2020).  

Application 
In Chapters 4 and 5, the source space data are parcellated according to the AAL 

atlas. This was done by first taking the MNI152 brain and transforming it to a 

single subject’s brain using a linear image registration tool (FLIRT) (Jenkinson 

and Smith 2001; Jenkinson et al. 2002). Using the same transform, the AAL 

atlas was then overlaid onto the subject’s brain and a subject-specific mask 

was created for each region. The voxel location of the centre of mass of each 

region was calculated and it was this coordinate that was passed to the 

beamformer. A subset of the 90 available AAL regions was used, excluding 

deep regions which MEG does not capture well (78 regions in total, see Table 

3.1). Beamformer weights were estimated for each centroid yielding 78 source 

time courses per person. By completing this process for each subject, the 

results could be compared across subjects for a single brain region. 

Region no. Description Region no. Description 

1 Rectus_L 40 Rectus_R 

2 Olfactory_L 41 Olfactory_R 

3 Frontal_Sup_Orb_L 42 Frontal_Sup_Orb_R 

4 Frontal_Med_Orb_L 43 Frontal_Med_Orb_R 

5 Frontal_Mid_Orb_L 44 Frontal_Mid_Orb_R 

6 Frontal_Inf_Orb_L 45 Frontal_Inf_Orb_R 

7 Frontal_Sup_L 46 Frontal_Sup_R 

8 Frontal_Mid_L 47 Frontal_Mid_R 

9 Frontal_Inf_Oper_L 48 Frontal_Inf_Oper_R 

10 Frontal_Inf_Tri_L 49 Frontal_Inf_Tri_R 

11 Frontal_Sup_Medial_L 50 Frontal_Sup_Medial_R 

12 Supp_Motor_Area_L 51 Supp_Motor_Area_R 

13 Paracentral_Lobule_L 52 Paracentral_Lobule_R 

14 Precentral_L 53 Precentral_R 
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15 Rolandic_Oper_L 54 Rolandic_Oper_R 

16 Postcentral_L 55 Postcentral_P 

17 Parietal_Sup_L 56 Parietal_Sup_R 

18 Parietal_Inf_L 57 Parietal_Inf_R 

19 SupraMarginal_L 58 SupraMarginal_R 

20 Angular_L 59 Angular_R 

21 Precuneous_L 60 Precuneous_R 

22 Occipital_Sup_L 61 Occipital_Sup_R 

23 Occipital_Mid_L 62 Occipital_Mid_R 

24 Occipital_Inf_L 63 Occipital_Inf_R 

25 Calcarine_L 64 Calcarine_R 

26 Cuneus_L 65 Cuneus_R 

27 Lingual_L 66 Lingual_R 

28 Fusiform_L 67 Fusiform_R 

29 Heschl_L 68 Heschl_R 

30 Temporal_Sup_L 69 Temporal_Sup_R 

31 Temporal_Mid_L 70 Temporal_Mid_R 

32 Temporal_Inf_L 71 Temporal_Inf_R 

33 Temporal_Pole_Sup_L 72 Temporal_Pole_Sup_R 

34 Temporal_Pole_Mid_L 73 Temporal_Pole_Mid_R 

35 ParaHippocampal_L 74 ParaHippocampal_R 

36 Cingulum_Ant_L 75 Cingulum_Ant_R 

37 Cingulum_Mid_L 76 Cingulum_Mid_R 

38 Cingulum_Post_L 77 Cingulum_Post_R 

39 Insula_L 78 Insula_R 

Table 3.1: The subset of AAL regions used throughout this thesis. Table adapted from 
(Hunt et al. 2016). 

3.2.7 Leakage correction 
Because of the nature of the inverse problem, it is challenging to estimate a 

source at one location in the brain without it being contaminated by signals 

arising at a spatially separate brain location. This is often referred to as signal 

‘leakage’ and manifests as a zero-phase-lag correlation between distal brain 
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regions. It is particularly important to reduce the effects of leakage between 

brain regions in functional connectivity analyses (see Section 2.2.4) where the 

correlation between estimated time courses implies coordination – we need 

to be sure that any correlation is due to true connectivity and not an artefact 

caused by signal leakage. 

Mathematically, the signal leakage problem is described succinctly in (O'Neill, 

Barratt, et al. 2015), and is outlined here. First, consider a true source 𝒒1 at 

position 𝒓1  which is completely independent of source 𝒒2  at position 𝒓2 . 

Because they are independent, the covariance between the sources is zero: 

1

𝑃
𝒒1𝒒2

𝑇 = 0,     (3.37) 

where 𝑃 is the total number of time points and both 𝒒1 and 𝒒2 are vectors of 

size 1 × 𝑃. Assuming that there are no other sources inside the brain, the MEG 

measurements 𝒃 would be given by 

𝒃 = 𝒍1𝒒1 + 𝒍2𝒒2 + 𝒆     (3.38) 

Where 𝒍1 and 𝒍2  are the lead field vectors for brain locations 𝒓1  and 𝒓2 

respectively and 𝒆 is the sensor noise. Beamforming gives an estimate 𝒒̂1 =

𝒘1
𝑇𝒃 where 𝒘1are the beamformer weights for position 𝒓1. Substituting in the 

expression for 𝒃 from Equation 3.38 gives 

𝒒̂1 = 𝒘1
𝑇𝒍1𝒒1 + 𝒘1

𝑇𝒍2𝒒2 = 𝒒1 + 𝒘1
𝑇𝒍2𝒒2,   (3.39) 

because of the linear constraint 𝒘1
𝑇𝒍1 = 1. Similarly, 𝒒̂2 = 𝒒2 + 𝒘2

𝑇𝒍1𝒒1. 

The covariance can then be recomputed with the estimated time courses,  

𝑠 =
1

𝑃
𝒒̂1𝒒̂2

𝑇 ,     (3.40) 

and values for 𝒒̂1 and 𝒒̂2 can be substituted in from Equation 3.39. This results 

in  

𝑠 =
1

𝑃
(𝒒1𝒒2

𝑇 + 𝒘2
𝑇𝒍1𝒒1𝒒1

𝑇 + 𝒘1
𝑇𝒍2𝒒2𝒒2

𝑇 + 𝒘1
𝑇𝒍2𝒒2𝒘2

𝑇𝒍1𝒒1
𝑇), 
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but because the sources are independent (Equation 3.37), the first and final 

terms equal zero and the remaining covariance between the beamformer 

estimated time courses are caused by signal leakage. Given that cov(𝑋, 𝑋) =

var(𝑋), this can be rewritten as 

𝑠 = 𝒘2
𝑇𝒍1𝑣1 + 𝒘1

𝑇𝒍2𝑣2,    (3.41) 

where 𝑣1  and 𝑣2  are the variances of 𝒒1 and 𝒒2  respectively. This equation 

means that the signal leakage is only zero when both 𝒘2
𝑇𝒍1  and 𝒘1

𝑇𝒍2  equal 

zero, which is the case when the weights from source 1 and forward field 

vector from source 2 are orthogonal (and vice versa). 

There are a number of leakage correction methods currently in use, but all of 

them seek to remove zero-lag correlations between regions of interest 

(Brookes, Woolrich, and Barnes 2012; Colclough et al. 2015; Hipp et al. 2012; 

Nolte et al. 2004; Stam, Nolte, and Daffertshofer 2007). This is because signal 

leakage is a linear effect, only introducing false correlations at zero phase lag. 

Because this thesis investigates the effects across all brain regions (and their 

connections with each other), symmetric orthogonalisation (Colclough et al. 

2015) was used for leakage correction. This multivariate approach is not biased 

by the order in which leakage correction is done, nor is there any need for a 

seed region.  

Symmetric orthogonalisation works in two steps: first the closest set of 

orthonormal timeseries are found, then the amplitude and orientation of 

these vectors are altered iteratively until they converge on a solution closest 

to the original (uncorrected vectors). This is depicted graphically in Figure 3.6. 

The mathematics underpinning this method can be found in (Everson 1997; 

Löwdin 1950; Colclough et al. 2015) but briefly, for a set of 𝑛  regions of 

interest, containing 𝑃 time samples, a matrix of the time courses, 𝒁, can be 

given by 

𝒁 = {𝒛1, 𝒛2, ⋯ , 𝒛𝑛} ∈ ℝ𝑃×𝑛, 𝑃 ≥ 𝑛.    (3.42) 
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We seek the corrected time courses, 𝑿 , such that the Frobenius norm is 

minimised 

𝜖 = ‖𝒁 − 𝑿‖𝐹
2 = 𝑡𝑟𝑎𝑐𝑒[(𝒁 − 𝑿)𝑇(𝒁 − 𝑿)].    (3.43) 

By constraining 𝑿 to contain only orthogonal vectors, it can be expressed as 

𝑿 = 𝑶𝑫  where 𝑶𝑇𝑶 = 𝑰𝑛  and 𝑰𝑛 is the 𝑛 × 𝑛  identity matrix. 𝑫 is diagonal 

and 𝑿𝑇𝑿 = 𝑫2. This can be substituted into Equation 3.43 so that 

𝜖 = 𝑡𝑟𝑎𝑐𝑒[𝒁𝑇𝒁] − 2𝑡𝑟𝑎𝑐𝑒[𝒁𝑇𝑶𝑫] + 𝑡𝑟𝑎𝑐𝑒[𝑫2].   (3.44) 

If 𝑫  is known and 𝒁  is full-rank, then 𝜖  is minimised by maximising 

𝑡𝑟𝑎𝑐𝑒[𝒁𝑇𝑶𝑫]. This can be done using the singular value decomposition of 𝒁𝑫. 

The vector magnitudes are then iterated until convergence.  

Figure 3.6: A graphical representation of the symmetric orthogonalisation process. The 
original vectors represent 𝒁, the uncorrected regional time courses. The nearest set of 
orthonormal vectors is found, and the magnitude and direction of the orthogonal 
vectors is iterated until convergence when the set of orthogonal vectors closest to the 
original data are found. Figure adapted from (Colclough et al. 2015). 
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3.3 Hidden Markov Modelling 
Hidden Markov models (HMMs) are a useful mathematical framework, and 

have been used to model data from different fields of study including finance 

and market prediction (Hassan and Nath 2005; Mamon and Elliott 2014), 

speech recognition (Rabiner 1989), brain computer interfacing (Obermaier et 

al. 2001; McCormick, Ma, and Coleman 2010) and biomedical imaging (Rezek 

and Roberts 2005). This is, in part, due to their simplicity and flexibility. 

Variations in model parameters such as the number of states, the type of 

observation model and the pre-processing of the data prior to model 

inference, all allow adaptations of the model to specific scientific questions 

whilst providing a single framework to link, for example, different imaging 

modalities together. 

In recent years, HMMs have gained traction as a technique for modelling the 

electrophysiological data produced by neurons in the brain. In 2005, Rezek and 

Roberts produced a mathematically rigorous framework for application of 

HMMs to biological signals including an EEG sleep study (Rezek and Roberts 

2005). This was followed by Woolrich et al. who applied the model directly to 

MEG data and was able to segment the data into a number of states. 

Interestingly, the identified state time windows were on the order of ~100ms, 

equivalent to those observed in transient EEG microstates. These were then 

used to create a temporally-adaptive beamformer whose covariance matrix 

was calculated using only time windows when a given state was active 

(Woolrich et al. 2013). The model was soon extended to the study of functional 

connectivity in MEG data, this time identifying the default mode network (a 

network which has long been studied using fMRI) and observing its interaction 

with other transient brain states (Baker et al. 2014). More complex HMMs with 

observation models based on multivariate autoregression and time-delay 

embedding have identified states based on their spectral content and used 

them to investigate whole-brain dynamic networks (Quinn et al. 2018; 

Vidaurre et al. 2018; Vidaurre et al. 2016).  
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It should be said that the HMM is not proposed as a genuine neurobiological 

model, but rather a useful way to interpret the data. It would be illogical to 

assume that the brain obeys the Markov property – that the state of the whole 

brain (or even a single anatomical region of the brain) at time t is dependant 

only on the state it was in at time t-1. A cumulative effect over many preceding 

time points seems much more likely (a matter which is explored in more detail 

in Section 3.3.3 below). However, in much the same way that ICA can be used 

to extract useful information from brain data, the HMM is able to segment the 

data in an unsupervised manner, linking together spatial and temporal 

patterns of activity which recur throughout a given dataset. 

The various HMMs implemented in this thesis are based on the HMM toolbox 

created by the team at the Oxford centre for Human Brain Activity (OHBA), and 

the following mathematics describes the theoretical basis of the model 

implementation. Useful reading includes (Rabiner 1989), (Rezek and Roberts 

2005) and OHBA’s GitHub HMM-MAR wiki.  

3.3.1 Model Concept 
Markov Chains 
Markov chains are a useful way to describe, mathematically, the relationship 

between variables. In the simplest case we would have just two variables, for 

example, let us assume that an awake research participant can be in two states 

– they either have their eyes open, or they have their eyes closed. These states 

are mutually exclusive and there is no intermediate state. This can be 

represented by a diagram, as shown in Figure 3.7. The probability of 

transitioning from one state to the other (and of staying in the same state at 

the next time point) is given by the number next to each transition arrow. The 

sum of the transition probabilities from any given state is equal to one. The so-

called Markov property of this chain is that the state of the participant at 

timepoint t depends only on the state they were in at the timepoint t-1. 

Mathematically this is 

 𝑃(𝑥𝑡|𝑥1 𝑥2 𝑥3 … 𝑥𝑡−1) = 𝑃(𝑥𝑡| 𝑥𝑡−1),   (3.45) 

https://github.com/OHBA-analysis/HMM-MAR/wiki
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which means that the sequence of states leading up to time t are irrelevant 

save the point at t-1. As Markov chains become more complex with a greater 

number of states, it is helpful to express the transition probabilities in a matrix, 

𝐴 = {𝑎𝑖𝑗} = [
0.6 0.4
0.3 0.7

],    (3.46) 

where a single element, 𝑎𝑖𝑗 , describes the probability of transitioning from 

state 𝑖 to state 𝑗. 

Figure 3.7: A graphical representation of a simple Markov chain. There are two states, 
‘eyes open’ and ‘eyes closed’, with a fixed probability of transitioning between states 
(or remaining in the same state) shown by the arrows. For example, the probability of 
transitioning to an ‘eyes closed’ state from an ‘eyes open’ one is 0.4. This can also be 
seen in the transition probability matrix on the right. The Markov property means that 
the state which the model is in at time point 𝑡 depends only on the state at time point 
𝑡 − 1. 

Hidden Markov Models 
The Markov chain can be extended to include a set of ‘hidden’ states which are 

not directly discernible, but they govern the sequence of observable data. For 

example, if we take the research participant from our Markov chain example 

and place them in another room so that we can’t see if their eyes are open or 

closed, we can infer their state by observing their MEG data; we are most likely 

to see an increase in alpha activity if their eyes are closed, and we are likely to 

see a reduction in alpha if their eyes are open. The likelihood of observing an 

increase or decrease in alpha activity, given that the participant is in one of the 
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hidden states, can be captured in an emission probability matrix. This is shown 

in Figure 3.8.  

Figure 3.8: A graphical representation of a hidden Markov model. This is an extension 
of the Markov chain where the hidden states (eyes open, eyes closed) govern a 
sequence of observable data (an increase or decrease in alpha activity). The transition 
probabilities remain as before, but now we must also consider emission probabilities 
(orange). These describe the probability of observing a result from a particular state. 
For example, if the participant is in an ‘eyes closed’ state, there is a 0.9 chance of 
observing an increase in alpha activity. 

The Markov chain has remained the same (the sequence of states is still 

governed by the Markov property (Equation 3.45) and a transition probability 

matrix) but the model has been extended to include the probabilities of 

observing a result. These emission probabilities can also be written in matrix 

form, 

𝐵 = {𝑏𝑖,𝑗} = [
0.8 0.2
0.1 0.9

],    (3.47) 

where each element of the vector, 𝑏𝑖,𝑗 , corresponds to the likelihood of 

observing result 𝑗 when in state 𝑖. 
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This model can be used to calculate the probability of any sequence of events 

occurring. An example sequence is given in Figure 3.9. 

Figure 3.9: An example sequence of events. The probability of transitioning between 
states (𝑥) is given by matrix A. The probability of observing either an increase or 
decrease in alpha activity (𝑦), given that we are in a particular state, is given by matrix 
B. 

The probability of these events occurring, 𝑃𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒, is the joint probability of 

the observation and state sequences. This is just a product of six terms, 

𝑃𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑃(𝑥0 = 𝑜𝑝𝑒𝑛)𝑃(𝑦0 =  𝛼𝑑𝑜𝑤𝑛 | 𝑥0 = 𝑜𝑝𝑒𝑛)𝑃(𝑥1 =

𝑐𝑙𝑜𝑠𝑒𝑑 | 𝑥0 = 𝑜𝑝𝑒𝑛)𝑃(𝑦1 =  𝛼𝑢𝑝 | 𝑥1 = 𝑐𝑙𝑜𝑠𝑒𝑑)𝑃(𝑥2 = 𝑐𝑙𝑜𝑠𝑒𝑑 | 𝑥1 =

𝑐𝑙𝑜𝑠𝑒𝑑)𝑃(𝑦2 =  𝛼𝑢𝑝 | 𝑥2 = 𝑐𝑙𝑜𝑠𝑒𝑑),      

 (3.48) 

where the probabilities highlighted in blue can be taken directly from the 

transition probability matrix and those highlighted in orange can be taken 

directly from the emission probability matrix. However, we don’t yet have a 

value for the initial probability – that of being in an ‘eyes open’ state at time 

point 0.  

The initial state probabilities are an inherent property of the model and are 

sometimes referred to as the stationary distribution. The stationary 

distribution vector, 𝜋0, can be calculated as the normalised left eigenvector of 

the transition probability matrix,  

𝜋0𝐴 = 𝜋0,     (3.49) 
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and element 𝜋0𝑖
 represents the proportion of time the model spends in state 

𝑖 . Note that the elements of 𝜋0  must sum to 1 because they represent a 

probability distribution. For our example the stationary distribution turns out 

to be 

𝜋0 = [0.43    0.57].     (3.50) 

In keeping with the literature, the full transition probability matrix will now be 

referred to as 𝜋, rather than 𝐴, and the initial state probabilities as 𝜋0. Using 

these values, the probability of the sequence occurring can be calculated as 

𝑃𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 0.43 × 0.8 × 0.4 × 0.9 × 0.7 × 0.9 = 0.078. 

It is therefore mathematically simple to calculate the probability of any given 

sequence of events occurring, with the general form of Equation 3.48 being 

𝑃(𝑋, 𝑌) = 𝑃(𝑥0) ∏ 𝑃(𝑥𝑡|𝑥𝑡−1)𝑃(𝑦𝑡|𝑥𝑡)𝑇
𝑡=1 ,   (3.51) 

as described by (Rezek and Roberts 2005). Here 𝑋  and 𝑌  are the state and 

observation sequences respectively, with total duration 𝑇  time points. 

Equation 3.51 requires us to know the sequence of hidden states, but by their 

very nature they are hidden, and so we must infer the most likely underlying 

state sequence using only the observed brain data. The simplest (and most 

computationally intensive) method for working this out would be to compute 

the probability for every permutation of state sequence, given the observed 

brain data (alpha activity) sequence, and find the most likely. Mathematically 

this is just 

argmax
𝑋=𝑥1,𝑥2,…,𝑥𝑛

𝑃(𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 | 𝑌 = 𝑦1, 𝑦2, … , 𝑦𝑛).  (3.52) 

3.3.2 Model Inference 
The simple but complete model presented in the previous section (Figure 3.8) 

has allowed us to explore the concept of a hidden Markov model, with a full 

description of the transition and emission probabilities.  

However, the purpose of this thesis is to use a hidden Markov model to 

uncover patterns in functional brain data which tell us something new about 
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the way in which the brain works. In this case, the model is unknown – there 

is no predetermined set of states, transition, or emission probabilities. The 

only observables we have are the MEG data which we must use to infer the 

entirety of the model. This section describes how variational Bayes inference 

is used to compute the most likely model of brain activity. 

Bayes’ Theorem 
Statistics do not exist in a vacuum; there is always some context in which we 

observe the likelihood of something happening. Thomas Bayes sought to 

incorporate this context, or prior information, into the calculation of 

probability (Bayes 1763). The following maths is an intuitive derivation of 

Bayes’ theorem. 

We can consider the probability of observing two events, A or B. The 

probability of observing A, 𝑃(𝐴), is just the subset of outcomes in which A is 

true, divided by the set of all outcomes. The same can be said of 𝑃(𝐵). These 

events can also both occur at the same time, 𝑃(𝐴 𝑎𝑛𝑑 𝐵) , shown by the 

shaded intersection (𝐴 ∩ 𝐵) in Figure 3.10A.  

Figure 3.10: There is a probability of observing events A or B. These probabilities can 
be represented as a subset of all possible outcomes. The blue circle represents the 
subset of all outcomes in which A is observed, 𝑃(𝐴) , likewise the orange circle 
represents the probability of observing B, 𝑃(𝐵). However, these events do not occur 
in isolation, and it is possible to calculate the probability of both events occurring (𝐴 ∩
𝐵, shaded in grey). 

There are several ways to calculate 𝑃(𝐴 𝑎𝑛𝑑 𝐵). For example, it is the subset 

of all outcomes where both A and B are true (shaded area), divided by the set 

of all outcomes. But it is also a subset of the outcomes where A is true (Figure 

3.10B lower left) and a subset of the outcomes where B is true (Figure 3.10B 
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upper right). This allows us to write two equations: the probability of observing 

A given that B is true, 

𝑃(𝐴|𝐵) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐵)
,     (3.53) 

and the probability of observing B given that A is true, 

𝑃(𝐵|𝐴) =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃(𝐴)
.     (3.54) 

By substituting Equation 3.54 into 3.53, 

𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴),   (3.55) 

which can be rearranged to produce Bayes’ theorem 

𝑃(𝐴|𝐵) =
𝑃(𝐴)𝑃(𝐵|𝐴)

𝑃(𝐵)
.     (3.56) 

All we have done is to use our prior knowledge about an event occurring to 

shrink the set of possible outcomes, yielding a probability value which is more 

relevant to the context in which the event occurs.  

This theorem can be used to systematically update our beliefs. In an 

experiment it is useful to know the probability of a hypothesis (𝐻) being true, 

given the observed evidence (𝐸). Using Bayes theorem this is just 

𝑃(𝐻|𝐸) =
𝑃(𝐻)𝑃(𝐸|𝐻)

𝑃(𝐸)
,    (3.57) 

where the posterior distribution, 𝑃(𝐻|𝐸), is the belief about the hypothesis 

after seeing the evidence. 𝑃(𝐻) is often referred to as the prior which is the 

belief or context in which our probabilities are calculated, and 𝑃(𝐸|𝐻) is the 

likelihood of observing the evidence given that the hypothesis is true. Each 

time new evidence is introduced, the hypothesis is updated. In fact, the core 

of Bayes’ theorem is that the evidence should not determine our beliefs about 

a system, but it should update them. 

In the context of optimising the parameters of our HMM, the hypothesis is an 

initial estimate of the model, and the evidence is the observed MEG data which 

inform and update the posterior probability of the model. 
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Variational Learning 
It is often the case that the probability distribution we are attempting to 

characterise is complex and mathematically intractable. This is certainly the 

case when calculating the most likely posterior distribution of a model of the 

human brain. The solution is to use a variational framework to approximate 

the Bayesian posterior densities. The following mathematics for using 

variational Bayes inference in the field of biosignal analysis are described in 

detail in (Rezek and Roberts 2005). 

In variational learning, the distance between the actual (intractable) 

distribution 𝑃, and an approximate (tractable) distribution 𝑄, is minimised.  

Figure 3.11: An illustration of variational inference which aims to minimise the 
distance between an intractable distribution, P, and a simpler, approximate 
distribution Q, which in this case is Gaussian. 

The distance metric used is the Kullback-Leibler divergence, sometimes 

referred to as the variational free energy in the field of statistical physics, 

which is given by the integral, 

ℱ = ∫ 𝑄(𝐻) log
𝑄(𝐻)

𝑃(𝐻|𝑉)
𝑑𝑋 + log 𝑃(𝑉).   (3.58) 

Distributions 𝑃  and 𝑄  are functions of all hidden variables, 𝐻  (model 

parameters and hidden states) conditioned on the observations 𝑉 (MEG data).  

Assuming that the HMM has 𝐾  states with hidden state variables 𝑋 =

{𝑥0, … , 𝑥𝑇} for 𝑇  time points, and observations 𝑌 = {𝑦1, … , 𝑦𝑇} (MEG data), 

the full true posterior probability of the model is 

𝑃(𝑌, 𝑋, 𝜃, 𝜋) = 𝑃(𝑥0|𝜋0) ∏ 𝑃(𝑥𝑡|𝑥𝑡−1, 𝜋)𝑃(𝑦𝑡|𝑥𝑡 , 𝜃)𝑃(𝜃)𝑃(𝜋)𝑡   (3.59) 
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where 𝜋  are the transition probabilities, 𝜃  are the model parameters, and 

𝑃(𝜃) and 𝑃(𝜋) are non-informative priors (Woolrich et al. 2013; Rezek and 

Roberts 2005). Since this is a fully probabilistic model, the observation model 

linking the hidden states with the observed data is a continuous distribution. 

For example, this could be a Gaussian distribution as shown in Figure 3.12. The 

choice of observation model characterises the relationship between the 

hidden states and the data and so different models will be appropriate for 

different purposes. 

Figure 3.12: A schematic diagram of a hidden Markov model where the hidden states, 
𝑥𝑡  are linked to the observed values 𝑦𝑡  via an observation model. In this case the 
observation model is Gaussian, and each state is characterised by the model 
parameters (i.e., a specific mean and standard deviation value per state). 

A sensible choice of observation model for application to MEG data is a 

multivariate normal distribution (MVN), as was used in (Woolrich et al. 2013; 

Baker et al. 2014). For state 𝑘 this is  

𝑃(𝑦𝑡|𝑥𝑡 = 𝑘, 𝜃) ~ 𝑀𝑉𝑁(𝜇𝑘, Σ𝑘),   (3.60) 

with the parameter set 𝜃𝑘 = {𝜇𝑘, Σ𝑘 }, where 𝜇𝑘 is a 𝐾 × 1 mean vector and 

Σ𝑘 is a 𝐾 × 𝐾 covariance matrix.  

Now that we have the full true posterior distribution of the model, a sensible 

approximation (𝑄-distribution) must be produced; first we use the mean field 

assumption  

𝑄(𝐻) = ∏ 𝑄(𝐻𝑖),𝑇
𝑖=1   ∫ 𝑄(𝐻𝑖)𝑑𝐻𝑖 = 1   (3.61) 

which means that the 𝑄-distribution factorises over all hidden variables, with 

the constraint that the distributions integrate to unity (as they represent 

probabilities). It is then possible to partition the subset of hidden state 
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variables further to include both the model parameters (𝜃 = {𝜃1, … , 𝜃𝑀}) and 

hidden state variables ( 𝑆 = {𝑆0, … , 𝑆𝑇}).  This allows us to write the 𝑄 -

distribution as a simple chain structure 

𝑄(𝐻) ≜ 𝑄(𝑆)𝑄(𝜃) = 𝑄(𝑆0) ∏ 𝑄(𝑆𝑡|𝑆𝑡−1) ∏ 𝑄(𝜃𝑗)𝑀
𝑗=1

𝑇
𝑡=1   (3.62) 

which is mathematically tractable, and for which exact update equations can 

be derived (Rezek and Roberts 2005; Haft, Hofmann, and Tresp 1999).  With 

each update, the distance between the two distributions is minimised, and this 

is continued until convergence is reached. 

Note that the priors are chosen to be conjugate distributions which means that 

a prior Gaussian density will produce a posterior Gaussian density (Woolrich et 

al. 2013). The conjugate distributions chosen for the observation models used 

in this thesis are outlined below, but for the initial and transition state 

probabilities, a Dirichlet density was used. 

3.3.3 Model Application 
The model was applied using the MATLAB toolbox created by the Oxford 

Centre for Human Brain Activity, which can be found here 

https://github.com/OHBA-analysis/HMM-MAR.  

The HMM is a powerful tool for unsupervised segmentation of data into 

specific states which are revisited many times throughout the course of a 

single MEG scan. It can also be used to select patterns of task-related brain 

activity without the need for prespecifying a baseline or rest period. However, 

the vast number of model parameters which can be selected prior to model 

inference can produce its own challenge: the user must understand how to 

tailor the model to each scientific problem to produce any meaningful results. 

This section outlines some of the most important parameters to consider. 

Observation models 
The choice of observation model is arguably the most important model 

consideration; it determines the relationship between the hidden states and 

the observed data, and therefore establishes the whole structure of the model. 

In the preceding chapter, a Gaussian model was described, and this is indeed 

https://github.com/OHBA-analysis/HMM-MAR
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the simplest observation distribution. One can increase the level of complexity 

by introducing a multivariate normal distribution. The parameter set used to 

define this observation model is simply the mean and variance of the data, 

which means that each state characterises the power content of the signal. 

This makes the model better suited to amplitude envelope (Hilbert envelope) 

data in a prescribed frequency band where it is the amplitude modulation 

which is most interesting; for example, when studying data from a motor task 

which has been filtered into the beta band.  

The observation model used throughout this thesis was the time-delay 

embedded (TDE) model. This was first introduced by (Vidaurre et al. 2018) and 

allows one to characterise each hidden state by the frequency content of the 

raw data (not the amplitude envelope of the signal). It builds the model by 

computing the autocovariance of the data over several ‘embedded lags’ or 

time-steps surrounding time point 𝑡. The size of the time window (the number 

of lags) will act almost as a lens – shorter time windows will naturally bias the 

model towards higher frequency components whereas longer time windows 

will focus the state characteristics on lower frequencies so there is still a choice 

to be made about the broader frequency band of interest. However, each state 

has a unique spectrum associated with it allowing us to distinguish between, 

for example, an alpha and a beta state. One of the key advantages of the time-

delay embedding is that it builds context into the model. The Markov property 

means that the state in which the model is found depends only on the very last 

time point, which is an unlikely mode of operation for the brain as a whole. It 

is much more likely that the brain integrates previous information to update 

its forward model, or beliefs about the world. Using the TDE-HMM means that 

each state is defined by the interaction of time point 𝑡 with the surrounding 

time points – this builds up an autocovariance matrix for each state. The model 

still obeys the Markov property because the current state only depends on the 

preceding state, but the state observation models now include information 

about the timepoints surrounding each state visit. This model is appropriate 

when the exact frequency of interest is unknown, when you would like to 
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model the interaction between states characterised by different frequencies, 

or when identifying transient states expected to have a specific neural spectral 

profile (such as beta bursts, see Chapter 4). 

Number of states 
Pre-specification of the number of states is required to compute the HMM, this 

is because the model will almost always favour more states as a way of 

minimising the free energy (Kullback-Leibler divergence) of the model. 

However, an infinite number of states would lead to severe overfitting and so 

an appropriate number should be selected by the user. 

Rather than assuming that there is a correct number of states, a suitable way 

of framing the question would be “What is an informative number of states?”. 

If increasing the number of states does not yield any more information 

regarding your scientific question, then the extra states are redundant. It is 

good practice at the beginning of each project to run the model inference 

several times with different numbers of states to determine the most 

informative model output.  

Model Input 
Another component of the HMM which requires careful consideration is the 

data used for model inference - any timeseries data can be fed into the HMM 

inference function and the best-fitting model to describe those data will be 

produced.  

First, the model inference can be done at sensor level or in source space 

(beamformed) data. Then the number of channels must be considered. A 

univariate (single channel) model would be appropriate when there is only one 

location of interest, for example from a peak virtual electrode time course, or 

from a single brain parcel. When the research question involves the whole 

brain, a multivariate model may be more appropriate. In this case, the spatial 

properties of the states are modelled as well as those features of the 

observation model (such as power or spectral content). However, because the 

temporal and spatial characteristics of the state are combined in a single 
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model, it becomes impossible to separate out those two elements at a later 

stage (this is important for the work reported in Chapters 4 and 5).  

The data should also be pre-processed in manner which makes the model 

more informative. First the data should be frequency filtered into a band of 

interest – this could be a specific neurophysiological frequency range such as 

8-13Hz alpha activity, or it could be a broader band such as 1-48Hz which 

includes most of the interesting neurophysiologic frequencies (except high 

gamma activity) but stops short of including powerline noise (50Hz, UK). The 

data should then be down sampled so that the frequencies of interest cover 

the bulk of the Nyquist range (for example, data filtered 1-48Hz should be 

down sampled to ~100Hz) for the most efficient model inference. If the data 

are sensor-level, then removing obvious artefacts (ECG, ocular) from the data 

prior to model inference is sensible. Having said that, the HMM acts as a useful 

artefact rejection method in itself, often identifying a ‘heartbeat state’ in the 

data which can simply be discarded at a further analysis stage.  

Model Output 
The model output (specific to the HMM-MAR toolbox) includes a structure 

containing information about the most probable state parameters. For a 

Gaussian observation model this would simply be 𝜃𝑘 = {𝜇𝑘, Σ𝑘 }  from 

Equation 3.60, and for the TDE model this would be an autocovariance matrix 

per state. The model also outputs state probability time courses. These are the 

instantaneous probabilities of being in each state at any given time point. It is 

also possible to decode the model to produce the most likely sequence of 

hidden states over the whole timeseries (Viterbi path (Rabiner 1989)), 

however this was not useful for the projects in this thesis. It was more 

informative to know the likelihood of being in any given state at a single given 

timepoint. 

Summary 
The first two sections of this chapter were chiefly concerned with source 

reconstruction – that is transforming sensor space data into source space 

through the use of a spatial filter. This involves first creating a ‘forward model’ 
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describing the magnetic fields which would be observable at the MEG sensors 

given a known current distribution inside the head. This model is then used, 

together with a beamformer to estimate a solution to the inverse problem 

(that is recreating the source of the magnetic fields measured at the sensors). 

The theory behind brain parcellation and leakage correction was also 

described. The final part of this chapter introduced hidden Markov modelling; 

the statistical model used throughout the rest of this thesis for detecting 

recurrent transient spectral events in MEG data. This was accompanied by a 

discussion of the various model parameters and when it is appropriate to use 

them for answering a certain research question. The hope is that this will prove 

to be useful for future students wishing to utilise this model in their research.  
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Chapter 4 

The Role of Transient Spectral Bursts in 
Functional Connectivity 

This first experimental chapter investigates transient bursts of activity, 

observable with MEG, in both resting state and task data for healthy adult 

volunteers. The data were acquired by a previous student and all analyses were 

completed by me. This work has been published in Neuroimage (Seedat et al. 

2020) and has been presented at national (MEG-UK 2019) and international 

conferences (OHBM 2019). 

Neural oscillations dominate electrophysiological measures of macroscopic 

brain activity, and fluctuations in these rhythms offer an insightful window on 

cortical excitation, inhibition, and connectivity. However, in recent years the 

‘classical’ picture of smoothly varying oscillations has been challenged by the 

idea that many ‘oscillations’ may actually be formed from the recurrence of 

punctate high-amplitude bursts in activity, whose spectral composition 

intersects the traditionally defined frequency ranges (such as alpha or beta 

band). This finding offers a new interpretation of measurable brain activity, 

however neither the methodological means to detect bursts, nor their link to 

other findings (such as connectivity) have been settled. Here, a new approach 

to detecting bursts in MEG data is implemented; a time-delay embedded 

Hidden Markov Model (HMM) is used to delineate single-region bursts which 

are in agreement with existing techniques. However, unlike existing 

techniques, the HMM looks for specific spectral patterns in time course data. 

Burst characteristics are also investigated – namely, the distribution of burst 

duration, frequency of occurrence and amplitude across the cortex in resting 

state MEG data. During a motor task, the movement related beta decrease 

(MRBD) and post movement beta rebound (PMBR) are shown to be driven by 

changes in burst occurrence. Finally, this work shows that the beta band 

functional connectome can be derived using a simple measure of burst 

overlap, and that coincident bursts in separate regions correspond to a period 
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of heightened coherence. In summary, this work introduces a new 

methodology for burst identification and connectivity analysis which will be 

important for future investigations of neural oscillations. 

4.1 Introduction 
Neural oscillations comprise rhythmic fluctuations in electrical potential 

observed across neuronal assemblies, as described in Chapter 2.2. A vast body 

of work suggests that an increase in the amplitude of ‘low’ frequency (such as 

alpha (8-13 Hz) and beta (13-30 Hz) band) oscillations is a marker of increased 

functional inhibition whereas increased high frequency (gamma (30+ Hz) band) 

amplitude is a marker of excitation (Pfurtscheller and Lopes da Silva 1999). 

Modulation of neural oscillations during both simple sensory and cognitive 

tasks are some of the most robust measurements in brain imaging – for 

example, ballistic finger movements generate a drop in beta amplitude during 

movement (the movement related beta decrease (MRBD)), followed by a 

transient increase in amplitude (above baseline) upon movement cessation 

(the post movement beta rebound (PMBR)) (Jurkiewicz et al. 2006). Whilst the 

functional significance of these effects is unknown, their importance is 

underlined by several demonstrations of abnormalities across a number of 

disorders including developmental conditions (e.g. autism (Buard et al. 2018)), 

severe psychoses (e.g. schizophrenia (Robson et al. 2016)), and 

neurodegenerative disorders (e.g. Parkinson’s disease (Gross et al. 2001)). 

Some light on the role of beta oscillations has been shed by pharmacological 

manipulation; for example, several studies have shown that alteration of GABA 

levels results in changes in beta modulation (Muthukumaraswamy et al. 2013). 

Further studies have shown a direct link between GABA concentration and 

beta amplitude (Gaetz et al. 2011). Such studies support a hypothesis that beta 

oscillations are related to inhibition. However, other studies have suggested 

that they are related to long range connectivity between distal brain regions 

(Engel et al. 2013), with demonstrations of large-scale spatio-temporal 

correlations in oscillatory envelopes measured across the cortex (Brookes, 

Woolrich, et al. 2011; Hipp et al. 2012). Precisely how the inhibitory 
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modulation of oscillatory amplitude helps to drive connectivity remains 

unknown. 

Recent work has begun to change the way that the research community thinks 

about oscillations, particularly in the beta band (van Ede et al. 2018). The 

‘classical’ picture is that the brain generates an ongoing oscillation whose 

amplitude varies over time depending on the task being undertaken. The 

MRBD was thought of as a drop in oscillatory amplitude, whilst the PMBR 

represents a smooth increase in amplitude above the resting level. However, 

this picture was largely a result of time and/or trial averaging. More recent 

studies (Jones 2016; Sherman et al. 2016; Shin et al. 2017) looking at 

unaveraged beta oscillations, both at rest and during tasks, have shown that 

rather than a smooth oscillation, the beta rhythm is actually formed from the 

recurrence of discrete and punctate events; each event can be thought of as a 

very short (a few hundred milliseconds) burst of activity. These ‘beta bursts’ 

occur with a characteristic probability, which is altered by a task. For example, 

during movement execution the probability of a beta bursts becomes lower; 

during the PMBR that probability becomes higher (Little et al. 2019). This 

means that, when summed over large numbers of trials, bursts combine to give 

the impression of a smooth decrease, followed by an increase in oscillatory 

amplitude (the MRBD and PMBR). Interestingly, (Little et al. 2019) have shown 

behavioural relevance of bursts by demonstrating that the timing of the last 

burst, prior to movement, predicts movement onset time. The classical view 

of event related synchronisation and desynchronization is, therefore, likely 

inadequate. This, in turn, has significant implications across a range of nascent 

neuroscientific findings, including the application to a clinical setting 

(Tinkhauser et al. 2017), the inhibition hypothesis, and the interpretation of 

electrophysiological functional connectivity (Engel et al. 2013). This means that 

much work needs to be done to understand mechanisms and implications. For 

example, the methodological means to detect single-region bursts is not 

settled, with most studies choosing an empirically-derived thresholding of beta 

band limited data. However, it’s likely that bursts are not limited to the beta 
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band, and a model driven, broad band approach which, in addition to 

identifying bursts, can also characterise their spectral content would provide 

an important step forward.  

The role of neural oscillations in functional connectivity is based primarily on 

the concept of ‘communication by coherence’ (Fries 2005, 2015). The premise 

is that if neural oscillations in two separate brain regions are in phase, then 

this provides periods of mutually high electrical potential, which offer optimal 

windows for the transfer of action potentials, and hence information. In resting 

state data, brain regions that are highly connected would therefore be 

hypothesised to exhibit high coherence, and this has proven to be the case 

with a number of studies showing phase-locking between regions (Engel et al. 

2013; Vidaurre et al. 2018). However, other studies have suggested that 

temporal correlation between the amplitudes of neural oscillations also offers 

a means to measure connectivity. For example, Brookes et al. (Brookes, Hale, 

et al. 2011) and Hipp et al. (Hipp et al. 2012) independently showed that some 

resting state networks commonly observed in functional magnetic resonance 

imaging (fMRI), could also be observed in MEG by correlating the envelopes of 

beta band oscillations. More recent studies (Colclough et al. 2016; Liuzzi et al. 

2017) have shown that whilst network measures made using coherence and 

amplitude envelope correlation can be similar, in individual subjects amplitude 

metrics are typically more repeatable. Moreover, there is now growing 

evidence that within-network functional connectivity is underpinned by 

coordinated neuronal dynamics that fluctuate on a very rapid (in the order of 

100ms) timescale (Baker et al. 2014). This implies that burst-like activity might 

be driving network coordination. However, no-one has specifically probed the 

extent to which bursts drive functional connectivity, and assessment of how 

these bursts temporally coincide across regions might offer a novel means to 

measure and interpret functional connectivity.  

In this study, in a subject cohort of resting state and task positive MEG data, 

the role of bursts in mediating connectivity is assessed. In the first part of this 

chapter, a method is introduced to detect single-region transient bursts in 
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source localised MEG data. This method, which is based upon the premise of a 

Hidden Markov Model (Baker et al. 2014; Vidaurre et al. 2016; Woolrich et al. 

2013; Quinn et al. 2018; Vidaurre et al. 2018) offers an unsupervised and 

objective means to identify bursts in broadband (univariate) data. To ensure 

that the full spectral profile of these bursts is captured, the model is not 

constrained to the beta band. Instead, transient spectral bursts are detected 

within a broad frequency range (1 to 48Hz) and findings are compared to a 

‘classical’ beta burst framework. Following this, the role of these bursts in 

functional connectivity is assessed. Specifically, this hypothesis is tested: the 

beta band electrophysiological connectome can be derived based upon an 

analysis of coincident bursts. 

4.2 Methods 
Data were acquired by a previous student as part of the United Kingdom MEG 

partnership programme and have been published previously (Hunt et al. 2019). 

75 subjects took part in the study, which was approved by the University of 

Nottingham Medical School Research Ethics Committee. 

4.2.1 Paradigms and data acquisition 
All MEG data were acquired using a 275-channel CTF MEG system, at a 

sampling rate of 1,200 Hz. The system was operated inside a three layer 

magnetically shielded room (MSR) and in third order synthetic gradiometer 

formulation to reduce the effects of external interference. All subjects were 

seated. Data were acquired during two separate paradigms: 

Resting state: Five minutes of resting state MEG data were acquired; the 

subject was asked to sit with their eyes-open, and ‘think of nothing in 

particular’. A fixation cross was displayed (by projection through a waveguide 

in the MSR) on a back projection screen which was placed approximately 40 

cm in front of the subject to give them something to focus on during data 

acquisition.   

Visuo-motor task: The task comprised presentation of a visual stimulus – a 

high contrast vertical square wave grating – for a jittered interval of 1.5s to 2s. 
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Upon cessation of visual stimulation, the participant was asked to make a 

single right index finger abduction. Fifty trials employed a short inter trial 

interval (ITI) of 4 seconds, and a further 50 trials employed a longer ITI of 8 

seconds. As the PMBR has been shown to last in excess of 6 seconds (Fry et al. 

2016; Pfurtscheller and Lopes da Silva 1999; Pakenham et al. 2020) only the 

long ITI trials are analysed in the current work. 

All subjects also underwent an anatomical MRI scan, using a  Philips 7T Achieva 

MRI scanner (Philips) running a phase sensitive inversion recovery (PSIR) 

sequence (field of view: 240 × 216 × 16mm3, 0.8mm isotropic resolution). To 

co-register MEG functional data to MRI structural data, a 3D head digitisation 

was obtained.  Prior to MEG acquisition, three coils were placed at fiducial 

locations on the head (the nasion and pre-auricular points). The locations of 

these coils, relative to the subjects scalp and face surface were digitised 

(Polhemus Inc.). The equivalent head surface was extracted from the 

anatomical MRI scan and a surface matching algorithm was employed to 

compute the locations of the fiducial markers relative to the MRI (hence the 

brain anatomy). The coils were energised during MEG recording to localise 

their position inside the MEG helmet; this was done continuously throughout 

data acquisition. Knowledge of the location of the fiducial markers inside the 

MEG helmet enabled complete coregistration of the MEG sensor geometry to 

brain anatomy. It also allowed motion tracking of the subject’s head. 

Following acquisition, data were inspected visually; 9 subjects were removed 

from the resting state paradigm and 12 were removed from the visuo-motor 

paradigm either due to movement (>5 mm) or artifacts in the data. This left a 

total of 66 (age 38 ± 12; 35 female) and 63 (age 38 ± 12; 34 female) subjects 

for the resting and visuomotor paradigms respectively. 

4.2.2 Source localisation 
The cortex was parcellated into 78 regions according to the automated 

anatomical labelling (AAL) atlas (Tzourio-Mazoyer et al. 2002), as described in 

Chapter 3.2.6. The brain was divided into voxels (4mm cubic grid) and the voxel 

location at the centre of mass of each parcellation was then passed to a scalar 
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linearly constrained minimum variance (LCMV) beamformer. The data 

covariance was computed within a 1–150Hz frequency window and a time 

window spanning the whole experiment (Brookes, Vrba, et al. 2008). 

Regularisation was applied to the covariance matrix using the Tikhonov 

method with a regularisation parameter equal to 5% of the maximum 

eigenvalue of the unregularised covariance matrix. The forward model was 

based upon a dipole approximation (Sarvas 1987) and a multiple local sphere 

head model (Huang, Mosher, and Leahy 1999) . Dipole orientation was 

determined by rotating the dipole in the tangential plane and finding the 

orientation which gave the highest SNR. This process, which has been used 

previously (Brookes et al. 2018), resulted in a single regional time course of 

activity for each of the 78 parcels in the AAL atlas. These time courses were 

then frequency filtered between 1 and 48Hz, and temporally down-sampled to 

a sampling rate of 100Hz. Symmetric orthogonalisation was used to reduce the 

effect of spatial leakage (Colclough et al. 2015). 

4.2.3 Hidden Markov model implementation 
A hidden Markov model was employed for detection of single-region beta 

bursts. Each regional time course was treated independently and a univariate 

3-state Time-Delay-Embedded (TDE) HMM (Vidaurre et al. 2018) was inferred. 

This choice of observation model means that each state is characterised by a 

different autocovariance pattern defined over a specified time window 

(duration 230ms). These state autocovariance patterns contain the spectral 

information of the signal when that state is active. Given that most of the 

literature suggests bursts exist in the beta neurophysiological frequency band, 

it makes sense to characterise states by their spectral content. However, the 

full 1-48Hz data were passed to the HMM so the bursts were not constrained 

to the beta band and any cross-frequency bursting could be detected. 

Model inference used a variational Bayesian method which seeks to minimise 

the free energy of the system (as described in Section 3.3.2). For each separate 

regional time course, 3 states were assumed (though if insufficient evidence 

for a third state existed, the model was able to collapse to 2 states). Although 
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the rest of this paper relates to this 3-state model, results from a 6-state and a 

10-state model can be found in Appendix A. The output of the model was 

therefore a set of 3 state time courses, each representing the probability of a 

region’s time course existing in a specified state, at any given time point. The 

correlation was then measured between these state probability time courses 

and the amplitude envelope of beta oscillations in the same brain region 

(estimated by applying a (Morlet) wavelet transform to the regional time 

course and extracting those values corresponding to the 13-30Hz frequency 

band to derive the instantaneous envelope). The state whose probability time 

course correlated highest with the beta amplitude envelope was taken to 

represent the ‘transient spectral burst state’. This burst probability time course 

(which reflects the inherent uncertainty in the model) was then binarised; 

where the instantaneous probability of being in the burst state was greater 

than two thirds, it was assumed the state had been entered and that a burst 

had begun. (In post-hoc analyses a threshold probability of ½ was also tested.)  

This is an improvement over a traditional, heuristic approach (thresholding the 

beta envelope) in two ways. First, the burst identification is not based purely 

on the amplitude time course of an a-priori specified frequency band, but on a 

generative model of bursting across a broader frequency range. This allowed 

the full spectral profile of bursts to be considered without assuming that the 

only interesting part of their spectrum falls within the beta band. Second, the 

thresholding is more principled, being based on the probability of being in a 

burst state. 

4.2.4 Burst parameters and comparison to established 
methods 
Having applied the HMM, the characteristics of the state visits (i.e., the bursts), 

and how they vary across brain regions was examined. To this end the binary 

time courses associated with the burst state, alongside the regional time 

course data, were used to determine four burst ‘features’: 

Burst duration: The time that a region spent in the burst state, on each visit.  
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Burst amplitude: The maximum value of the beta envelope during each visit 

to the burst state. 

Frequency of occurrence: The number of visits to the burst state normalised 

by time.  

Burst interval: The length of time between visits to the burst state. 

Each of these values was measured independently for each region and subject, 

then the values were averaged over subjects and plotted as a function of 

cortical location (AAL region). For resting state data, these values were 

recorded as a time average over the entire 5-minute resting state recording. 

For the visuo-motor task data, they were measured in three windows; during 

the MRBD, the PMBR, and a ‘rest’ period at the end of each trial. These 

windows were taken, approximately, to be 0 - 1 s (MRBD), 1 – 3 s (PMBR) and 

4 – 7 s (rest) relative to the offset of the grating, however they were also 

allowed to modulate, independently for each trial, according to when the 

bursts actually occurred; when a burst fell at the edge of a time-window, the 

window was extended to include that burst. Similarly, the MRBD window was 

extended to capture the time between the edge of the window and the 

occurrence of a subsequent (or previous) burst. These burst-modulated time 

windows are shown alongside the results for completeness. For each subject, 

this procedure resulted in 16 measurements (4 burst parameters, each 

measured in the resting state and in 3 separate task windows). A Wilcoxon 

non-parametric rank sum test was used to statistically test for a difference in 

burst parameters between the resting state and the task. To correct for 

multiple comparisons, the Bonferroni correction was applied: because three 

tests were computed (one for each window - MRBD, PMBR and rest) for each 

of the four burst parameters, the significance threshold was divided by twelve 

and reduced from 0.05 to a corrected value of 0.0042. 

The results from the HMM derived broad-band (1-48Hz) bursts were compared 

to a more conventional beta band thresholding approach, to test the extent to 

which the HMM was identifying the same bursts as the established method. 

To this end, using the mean corrected beta (13-30Hz) envelope of a single 
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region (left sensory cortex) from the resting state data, three different 

thresholds were applied (1.5, 2.5 and 3 times the standard deviation 

(measured independently for each subject)) to produce a binary time course 

showing periods of high beta amplitude (the thresholded beta bursts). The 

percentage of overlapping bursts picked up by both the HMM and thresholding 

techniques were then quantified; the percentage picked up by the HMM only, 

and the percentage picked up by thresholding only. These values were 

measured independently for each subject and averaged over subjects. The 

broad-band nature of this HMM implementation also enabled characterisation 

of the spectral properties of the bursts in both the resting state and visuo-

motor task data. This was done using a state-specific multitaper analysis 

(Vidaurre et al. 2016), resulting in a single spectrum for each state and each 

subject, in each location in the brain. Spectra were averaged and plotted 

alongside the standard error over subjects. 

4.2.5 Functional connectivity 
To measure functional connectivity, relationships between all possible pairs of 

regional time courses from the 78 AAL regions were assessed; this method 

results in 3003 measures of inter-regional functional connectivity. Two 

different methods were used: 

Amplitude envelope correlation (AEC): AEC (Brookes, Woolrich, et al. 2011; 

Hipp et al. 2012; de Pasquale et al. 2010) is a well characterised connectivity 

measure in which the Pearson correlation between oscillatory envelopes is 

computed, see Chapter 2.2.4. Here, AEC was calculated in the theta (4-8 Hz), 

alpha (8-13 Hz), beta (13-30 Hz), low gamma (30-48 Hz) and high gamma (48-

70 Hz) bands. Following frequency filtering, the envelope was calculated using 

a Hilbert transform and temporally down sampled to 1s. AEC was measured 

between all pairs of brain regions to yield a (78 x 78 element) matrix. These 

were generated independently for each subject. 

Burst coincidence: In accordance with our hypothesis, it was crucial to 

establish whether the AEC connectivity matrix could be reproduced by simply 

considering the likelihood of transient spectral bursts co-occurring in spatially 
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separate brain locations. To calculate this, for any one pair of AAL regions, the 

binary time courses were extracted (the outputs of the HMM) for the burst 

state in each region and the Jaccard index was calculated. This index measures 

the intersection over the union (and hence the similarity) between two binary 

time courses; larger values indicate greater burst coincidence. This was 

computed for all possible region pairs and averaged across subjects. Jaccard 

indices were then transformed to pseudo-z-statistics by subtracting the mean 

and dividing by the standard deviation (across the whole matrix). 

It should be pointed out that AEC and burst coincidence are, to a degree, 

related. Specifically, if we assume bursts are periods of high amplitude beta 

oscillations then the burst time courses should mirror, to an extent, the 

amplitude envelope. However, a significant amount of information from the 

envelope itself has been removed by generating the binary time courses. 

Therefore, we might assume that if the burst coincidence and the AEC derived 

connectomes are in strong agreement, then AEC is mainly driven by coincident 

bursts as distinct from lower amplitude coherent fluctuations.  

To assess the relationship between AEC and burst coincidence, an element-by-

element scatter plot was produced and a linear correlation was measured 

between the burst coincidence matrix (which recall is measured in the broad 

band (1-48Hz)) and the AEC matrices, derived in the theta, alpha, beta, low and 

high gamma bands. To assess how these correlation values compared to a null 

hypothesis, a pseudo-matrix approach was used (Tewarie et al. 2016; Hunt et 

al. 2016). First, an eigenvalue decomposition of the burst coincidence matrix 

was performed. Each eigenvector was then randomised using a phase-based 

technique. Post-randomisation reconstruction yielded a pseudo-matrix, 

similar in structure to the genuine matrix, but not reflecting genuine functional 

connectivity. Comparison of the correlation between real and pseudo-matrices 

revealed the statistical significance of the relationship. This was done using a 

non-parametric Wilcoxon rank-sum test between real and pseudo-correlation 

values obtained for each subject.  
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To further investigate the contribution of bursts to AEC, the AEC matrix (in the 

beta band) was recalculated having removed the periods of time during which 

the coincident bursts occurred – if bursts drive the AEC measure, then the AEC 

values should be significantly diminished when the bursts were removed. The 

change in AEC values was quantified (average across the whole matrix) as well 

as the correlation with the coincident burst matrix. 

Finally, to test whether coincident bursts were also representative of time 

windows of high coherence (phase-locking) between regions, 6 exemplar 

(interhemispheric) connections were selected across the left and right 

precentral, postcentral, occipital, parietal and frontal cortices (see Figure 4.5 

for exact locations). These were denoted the ‘seed’ and ‘test’ regions. For the 

6 connections, all the coincident bursts in both regions were found and, within 

a time window centred on the midpoint of each of the overlapping bursts, the 

phase difference derivative (PDD) was measured (Breakspear and Williams 

2003; Tewarie et al. 2019). PDD is a measure that captures the stability of 

phase relationships between time courses: first the instantaneous phase of the 

seed and test signals is computed and the difference between them calculated, 

then the phase difference is differentiated. This method is described in detail 

in Chapter 2.2.4. The result is a time course of coherence between regions. 

Here, PDD was measured in the ±0.5s time window (relative to burst centre) 

for all coincident bursts, and averaged over bursts. This produced an average 

time course of changing coherence throughout a coincident burst. Note that 

PDD was used, as distinct from simpler (and more direct) measures of phase 

locking (such as coherence) because it yields a time course measure 

throughout the burst duration. To contrast this with a control condition, PDD 

was also calculated for ‘non-coincident’ bursts by using the same time window 

(±0.5s), surrounding an equivalent number of bursts that occurred in the seed 

region, but without a coincident burst in the test region. Higher coherence was 

expected for coincident bursts compared to non-coincident bursts. These 

measurements were generated for all subjects, and our hypothesis was tested 

using a non-parametric Wilcoxon rank-sum test.   
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4.3 Results 
The results are spread across three sections. The first describes the detection 

of bursts in resting state data, this is followed by an analysis of the burst 

metrics during a visuomotor task. The final section demonstrates the role of 

bursts in resting state connectivity.  

4.3.1 Identification of bursts in resting state data using the 
HMM 
Figure 4.1 shows, qualitatively, a comparison between a simple thresholding 

technique (Figure 4.1A), and the HMM (Figure 4.1B) for identifying bursts. The 

probability time course (blue), and the binarised state time course (red), for 

the burst state, are shown (overlaid) in Figure 4.1C. A snapshot of 20s of data 

extracted from the left somatosensory cortex from a single subject is shown. 

Figure 4.1D shows a time-frequency spectrogram (derived from a continuous 

(Morlet) wavelet transform) of the same data segment, for comparison. Note 

that despite being applied to broad-band data, the HMM identifies bursts of 

high amplitude oscillations which are plainly visible in the time-frequency 

decomposition and also identified using the thresholding technique. However 

rather than simply using the amplitude envelope, the HMM makes use of the 

richer information contained in the waveform shape to identify bursts. Figure 

4.1E shows the spectrum of oscillatory frequencies associated with each of the 

three identified states for this single subject. The burst state was identified as 

state 2, which in this case peaks in the beta band, but is accompanied by a large 

alpha band component. 

The HMM and thresholding techniques are further compared, across all 66 

subjects, in Figures 4.1F and G. Figure 4.1F shows the percentage of HMM 

bursts which were matched by thresholded bursts, for three different values 

of threshold. As would be expected, this percentage drops with increasing 

threshold, but for a low threshold (1.5 times the standard deviation of the 

envelope) the vast majority (>90%) of HMM-identified bursts were 

accompanied by a period of above threshold beta amplitude, suggesting that 

the HMM is a viable way to find punctate periods of high amplitude beta 
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envelope. Similarly, Figure 4.1G shows the percentage of threshold bursts, 

which were matched by the HMM. Here, again as would be expected, the 

percentage increases with threshold, and for a high threshold (3 times the 

standard deviation) >70% of threshold bursts were also found by the HMM. 

These statistics suggest that there is agreement between the two methods. 

However as noted above, the HMM identification of bursts is based on a model 

of richer spectral content across a broader frequency range, rather than 

amplitude in a predefined frequency band; and further, the thresholding in the 

HMM is more principled, by being based on the probability of being in a burst 

state (which has a marked tendency to have values either very close to 0.0 or 

very close to 1.0). This is demonstrated by a comparison between two different 

probability threshold values as shown in Figures 4.1F and G. Changing this 

probability value from two thirds to a half makes no significant impact. 
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Figure 4.1: Burst detection using the TDE-HMM in resting state data. A) Beta 
amplitude envelope with bursts (in red) identified using a simple threshold technique 
(2.5 times the standard deviation). B) Broadband (1-48 Hz) data with bursts (again in 
red) identified using the HMM. C) Probability time course for the burst state (blue) with 
binarisation overlaid (red). D) Time frequency decomposition of the data, generated 
using a wavelet transform. Note that A-D show 20 s of data from a single 
representative subject. E) Spectra, showing the component frequencies of the three 
states identified by the HMM from the same single subject. The state most closely 
correlated with the beta envelope (and hence identified as the beta burst state) is state 
2 (red).  F) The percentage of HMM identified bursts that were matched by the 
threshold technique, plotted as a function of threshold itself. Two different probability 
thresholds on the HMM (two thirds and a half) are shown in blue and red respectively. 
G) The percentage of bursts identified by the threshold technique and matched by the 
HMM. The error bars in F) and G) show the standard error over participants. 

Figure 4.2 shows the properties (duration, amplitude, frequency of 

occurrence, and interval time) of the HMM identified bursts as a function of 

cortical location, in the resting state. The upper (brain) plots show the mean 

burst parameters across subjects. The lower (line) plots show the same thing 

but include error bars to enable visualisation of the variation in burst 

parameters across subjects (note that in general, the variation across subjects 

is small compared to the regional variation). Generally, the parietal, occipital 

and temporal regions generate fewer bursts of longer duration compared to 

the frontal regions, which tend to generate more bursts of shorter duration. 

Consistent with the known role of beta in the sensorimotor system, the highest 
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amplitude bursts appear in the primary sensorimotor cortices with the lowest 

amplitudes in the frontal regions. Interestingly, the time between bursts is also 

longest in the sensorimotor cortices. On average, the burst durations were 

found to be of the order 300ms. However, this is also a function of model 

parameters (see Appendix A). 
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Figure 4.2: Resting state burst statistics. Averaged burst duration, frequency of occurrence, amplitude and interval time across the cortex. The brain plots show 
the mean values as a function of AAL region. The line plots show the same information, but the error bars allow visualisation of standard error in each 
measurement across subjects.
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4.3.2 Burst dynamics during a visuomotor task 
Figure 4.3 shows the results of the HMM burst analysis of the visuomotor task 

data. Figure 4.3A shows the difference in burst frequency between a window 

encapsulating the beta rebound (1s to 3s relative to visual stimulus offset 

(modulated, on a trial-by-trial basis, by neighbouring bursts)), and a window 

capturing the MRBD (0s to 1s (also modulated by neighbouring bursts)). The 

spatial signature is clear with a peak centred on the contralateral primary 

sensorimotor area as would be expected. Plots 4.3B to 4.3E relate to this peak 

region. Figure 4.3B shows a raster plot of the binary time course for the burst 

state, extracted from the left primary sensory cortex. The x-axis represents 

time, and the y-axis represents trials. All subjects have been concatenated 

(vertically) and time zero corresponds to the offset of visual stimulation. As 

shown, the burst state displays a greater likelihood of occurrence during the 

PMBR window compared to rest, whilst in the MRBD window, the burst state 

is less likely to occur. These relationships are formalised in Figure 4.3C which 

show the burst parameters in the three windows associated with the task, as 

well as in the resting state data. Note here that the distribution represents all 

bursts in all subjects; the black line shows the mean value, and the red line 

denotes the median. In agreement with the raster plot and previous results 

(Little et al. 2019), a marked drop in burst frequency is seen during the MRBD 

compared to the PMBR (or indeed rest and resting state). As would be 

expected, decreased burst count is accompanied by decreased duration and 

increased interval between bursts during the MRBD. Interestingly, there is 

relatively little change in the burst amplitude in the three different windows of 

the task. There are also substantial differences between the bursts occurring 

in resting state and the bursts occurring in the visuomotor task data. The bursts 

detected in the rest window of the visuomotor task are significantly longer 

than bursts occurring in the resting state; there are also fewer of them, with a 

shorter interval time. Figure 4.3D shows the average frequency spectrum of 

the burst state across subjects in both the resting state and task data – note 

the pan-spectral nature of these bursts. Note also the difference between the 

two spectra; the spectral content which characterises the bursts appears to 
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change with task. Figure 4.3E shows the burst-modulated time windows for all 

trials over all participants. 

Figure 4.3: HMM-identified bursts during a visuomotor task. A) Image showing the 
difference in the frequency of burst occurrence between the PMBR and MRBD 
windows. Notice that, as expected, the greatest difference in burst frequency is in the 
left sensorimotor cortex. B) Raster-plot showing the occurrences of the burst state for 
all trials in all subjects. C) Violin plots showing differences in burst parameters 
(duration, frequency, amplitude, and interval time) in the three separate task 
windows, and in resting state (RSTST) data. The stars above the violin plots indicate a 
significant difference (with a corrected p-value<0.05) in burst parameters when 
compared with resting state. D) mean spectrum of the burst state, averaged over 
subjects, for both resting state (left) and task data (right). The shaded area indicates 
the standard error over subjects. E) Burst-modulated time windows for the 3 task 
conditions, extended to include all bursts which fall on the edge of the specified 
windows. These windows are shown in white and were used in the assessment of burst 
parameters. Panels B, C, D and E relate to the left sensory cortex. 
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4.3.3 Transient spectral bursts and their role in functional 
connectivity 
In Figure 4.4 burst coincidence is compared with AEC as a means of 

investigating the whole brain resting state functional connectome. Figure 4.4A 

shows the result of AEC analysis applied to beta band data. The matrix shows 

all-to-all functional connectivity (averaged across subjects), whilst the brain 

shows the strongest 20% of connections; the colour and width of the lines 

represent the magnitude of individual connections (that is, the envelope 

correlation values between regions) whilst the radius of the black circles 

represents connectivity strength between that region and the rest of the brain. 

As would be expected from previous studies (for example, (Hunt et al. 2016)), 

connectivity measured in the beta band is strongest in the sensorimotor, 

posterior parietal and visual areas. Figure 4.4B shows the results of the 

coincident burst analysis. The elements of the matrix represent a measure of 

burst coincidence (estimated using the (pseudo z-transformed) Jaccard index) 

between AAL regions. The brain plot shows the top 17% of inter-regional 

coincidence values. There is a clear similarity between the beta AEC and 

broadband coincident burst results, and this is shown quantitatively in Figure 

4.4C. The bar plot shows correlation between connectivity methods (burst 

coincidence and AEC) for all frequency bands (error bar shows standard error 

across subjects). An example of this correlation for the averaged matrix is also 

shown. The dotted line shows correlation between the burst matrix and 

pseudo-matrices derived from eigenvector phase randomisation; all bands 

demonstrated correlation beyond chance. The result shows clearly that similar 

information can be derived from AEC and coincident bursts, with the strongest 

similarity in the beta band. Figure 4.4D shows AEC calculated in envelope data 

with bursts removed. Note that the colour scale has reduced by a factor of ten 

when compared with the original AEC matrix (Figure 4.4A). The left panel of 

Figure 4.4D shows the beta band AEC matrix and the scatter plot on the right 

shows AEC values, calculated with and without bursts removed, plotted 

against each other. Note that whilst some structure remains, the amplitude of 

the connectivity values is markedly diminished compared to Figure 4.4A, 
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highlighting the fact that much of the connectivity information is contained 

within the bursts. Quantitatively, the AEC values were reduced from 0.146 ± 

0.009 to 0.0036 ± 0.0004 as an average over the whole matrix – a reduction of 

97.5%. The correlation with burst coincidence was altered from 0.33 ± 0.02 to 

0.076 ± 0.009. Given that burst coincidence makes up a fraction of the data 

(for example, 10.52% of the time course in sensorimotor cortex at resting 

state) but explains more than 90% of the correlation in the AEC matrix, it is 

clear that bursts play an important role in driving functional connectivity. 

Finally, Figure 4.5 shows resting state PDD, measured as a function of time in 

a -0.5s to +0.5s time window relative to the centre of coincident (blue) and 

non-coincident (orange) bursts. The figure shows 6 example connections; left-

right motor cortex (A), left-right sensory cortex (B), left-right superior parietal 

cortex (C), left-right visual cortex (D), left-right inferior frontal cortex (E) and 

left-right orbitofrontal cortex (F). As shown, in the motor, sensory, visual and 

parietal cortices a coincident burst reveals an increase in broadband 

coherence between regions, which is not mirrored by non-coincident bursts, 

with a significant difference (p<0.05) measured in the visual and parietal 

cortices. This effect was not seen in the frontal cortex. These results support 

the hypothesis that transient spectral bursts, coincident between regions, 

offer a means to support network connectivity via a brief period of coherent 

oscillatory activity.  
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Figure 4.4: Comparison of AEC and coincident bursts in resting state functional connectivity. A)  Beta band AEC averaged over 66 subjects. The matrix shows 
all-to-all AEC measurements whereas the brain plot shows the 20 % of strongest connections. The thickness and colour of the lines denotes the strength of 
connectivity, and the circles denote connectivity strength between that region and the rest of the brain (the sum in one direction of the matrix). B) Burst 
coincidence (estimated using the Jaccard index in the broad (1-48Hz) band and transformed to a pseudo z-statistic). Again, the matrix shows all-to-all 
connections, and the brain plot shows the highest 17% of connections measured. Note similarity between (A) and (B). C) Correlation between the connectome 
measured using coincident bursts, and AEC measured in all frequency bands. The bar chart shows average values, and the error bars show standard error over 
subjects. The dotted red lines indicate the ‘null correlation’ values that would be obtained if the structure of the coincident burst matrix were in fact random. 
The stars indicate where there is a significant difference (p<0.05) between the ‘null correlation’ and actual correlation values. The scatter plot shows the 
correlation for the beta band case. D) The matrix shows AEC calculated in beta band data with all bursts removed. Note the different colour scale. The scatter 
plot shows elements of the matrix in (A) plotted against elements of the matrix in (D).   
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Figure 4.5: Coherence underlying coincident bursts in the resting state. In all 6 plots, 
phase difference derivative between two spatially separate brain regions is plotted as 
a function of time in the -0.5 s to +0.5 s window relative to the centre of a transient 
spectral burst. The blue lines represent the case where bursts were coincident between 
regions. The orange line represents the equivalent case for non-coincident bursts. The 
shaded area represents standard error across subjects. 6 example connections are 
shown; left right motor (A) sensory (B) parietal (C) visual (D) and frontal (E-F) cortices. 
Brain regions are shown inset. 

4.4 Discussion 
Recent work has shown that neural “oscillations” are generated, at least in 

part, via a summation of a set of punctate high amplitude “bursts” whose 

fundamental frequencies intersect with the traditional neurophysiological 

frequency bands. This new finding has paved the way for a new mechanistic 

interpretation of the role played by “oscillations” in cognition. However, this 

work is in its infancy, and even the methodological means to detect bursts is 

not settled. To date, most studies have employed a simple thresholding of 

band limited data, but this treats individual bands in isolation without 

reference to a broader pan-spectral picture of bursts. In addition, there has 

been no consensus reached on the threshold used. For example recent studies 



113 
 

have used: 2 standard deviations on the mean (Lundqvist et al. 2016); 6 times 

the median (Shin et al. 2017); and the 98th percentile (Sherman et al. 2016). 

Because of this, a more principled and broad band approach to detect bursts 

would be useful.  

In previous work, the HMM has been used on multi-region (i.e. multivariate) 

brain data to reveal visits to short-lived transient brain states with spatially and 

spectrally distinct patterns (Quinn et al. 2018; Vidaurre et al. 2018). Here, we 

showed that the HMM also offers a useful means to detect spectral bursts in 

single-region (i.e. univariate) data, as an alternative to the simple thresholding 

approach. Importantly, our use of a time-delay embedded HMM, where state 

characteristics are based upon data autocovariance, means that bursts are 

identified by the temporal morphology of the signal over a broader frequency 

range. This is distinct from a simple thresholding technique where only the 

amplitude of the signal within a prespecified frequency range is taken into 

account. The new method therefore allows for the complete spectral content 

of bursts to be elucidated. In fact, the bursts identified by the HMM were not 

confined to the beta band, but demonstrate a spectrally-specific shape that 

includes a prominent alpha peak. This was the case even when the HMM was 

asked to derive a higher number of states (see Appendix A).  

Despite the differences there was still agreement between the HMM and the 

simple thresholding method, with >90% of the HMM identified bursts being 

mirrored by a period of high beta amplitude (>1.5 standard deviations from 

the mean). Additionally, when choosing a suitably high threshold (3 standard 

deviations from the mean), >70% of the bursts identified by the threshold 

technique were also found by the HMM. This shows that the transient spectral 

bursts identified by our HMM are (in the vast majority of cases) equivalent to 

the traditional beta bursts. This is of significant importance for future studies 

where, we argue, “beta bursts” should be treated as spectral events that span 

multiple frequency bands. 

In the resting state we see marked variation of burst parameters with cortical 

region. Generally, the highest burst frequency, and shortest duration was in 
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the frontal regions; the lowest frequencies occurred across the parietal, 

temporal and occipital regions. This finding could suggest a fundamentally 

different functional role of bursts in the frontal areas, but could equivalently 

suggest that the MEG signal in these regions simply has lower signal to noise 

ratio (likely resulting from the distance between the MEG sensors and the 

brain). Indeed, the latter hypothesis is supported by a number of findings that 

beta band power is highest in parietal, occipital and temporal regions. The 

highest amplitude bursts were found in the sensorimotor regions; this is 

consistent with the known role of beta in the sensorimotor system. 

Interestingly the longest duration bursts are observed in the occipital lobe. 

Whilst the reason for this is unclear, it could relate to the broad band nature 

of our HMM implementation – recall here that the HMM was applied in the 1-

48Hz frequency band, and the burst state spectra clearly covers both the alpha 

and beta bands. This is because bursts in the occipital cortex are weighted 

towards an alpha dominance whereas bursts in the sensorimotor cortex are 

weighted towards beta (see Appendix A).  

Our task positive data, shown in Figure 4.3, were in agreement with previous 

findings (Little et al. 2019). During movement, we observe a drop in the 

frequency of bursts; their duration is decreased, and the interval between 

bursts increased, compared to both the resting phase of the visuomotor task, 

and the true resting state. Conversely, during the beta rebound, as expected 

we see a marked increase in burst frequency, and also an increase in duration, 

with the time between bursts decreasing relative to rest, and resting state. 

Figures 4.3C and D show significant differences between the bursts detected 

in resting state and those in the rest period of the task data. It is likely that this 

is due to the relatively short inter-trial interval of 8s since recent work has 

shown that it takes an average of 11s for activity to return to baseline 

(Pakenham et al. 2020). Interestingly, although the mean burst amplitude was 

greater during the beta rebound, this increase was relatively small compared 

to the large standard deviation of burst amplitudes potentially suggesting that 

burst amplitude is relatively stable, and that it is burst frequency and duration 
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that are most affected by task performance. This finding agrees with previous 

work based upon a thresholding approach, and so provides further validation 

of the HMM as a means to detect bursting in MEG data.  

Our connectivity findings show that the electrophysiological connectome, 

derived using amplitude envelope correlation, can also be generated by using 

a simple measure of the temporal coincidence of bursts. Whilst similarity 

between burst coincidence (calculated in the broad band) and AEC was 

apparent for a number of frequency bands, it was strongest for the beta band. 

The beta band connectome has garnered significant interest in recent years 

due to i) the resemblance of beta networks to the canonical resting state 

networks observed in fMRI (Brookes, Woolrich, et al. 2011; Hipp et al. 2012), 

ii) the ability to estimate dynamic spectro-temporal changes in network 

connectivity (O'Neill, Bauer, et al. 2015; O'Neill et al. 2018), and iii) synergies 

between electrophysiological and structural data (Hunt et al. 2016). However, 

an implicit assumption in much of this work was that the oscillatory amplitude 

varied smoothly over time and correlations in this smooth variation drives 

connectivity. While there is evidence that the amplitude envelope of 

oscillations in the resting state is related to transient, bursting amplitude 

changes from previous HMM work (Baker et al. 2014), the extent to which 

single-region transient spectral bursts dominate functional connectivity has 

not previously been investigated.  

Here we have shown that, by only taking into account the periods when the 

single-region bursts from two spatially separate regions overlap, the same 

static functional connectome emerges. In other words, the known beta 

connectome can be considered to be driven by coincident bursts. This is 

further supported by the fact that when periods of identified bursts are 

removed from an AEC calculation we see a reduction in average AEC values of 

97.5%. There is a link between coincident bursts and AEC; high values of AEC 

are generated by coherent fluctuations in the beta envelope. Given that the 

HMM nominally pulls out bursts of high beta amplitude, the application of the 

HMM effectively binarises the beta envelope, with periods of high amplitude 
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set to one and low amplitude set to zero. Finding the burst overlap effectively 

amounts to correlating the binarised beta envelopes and therefore it is 

perhaps not surprising that there is a link between burst overlap and AEC. 

However, the binarisation removes much of the information content of the 

envelope - the burst state only accounts for a fraction of the total recording 

(e.g. 10.52% of the time course in sensorimotor cortex in the resting state 

accounts for overlapping bursts). The fact that we can get practically the same 

information from a simple burst analysis suggests that AEC is predominantly 

driven by bursts, rather than for example, coherent but low amplitude 

fluctuations which have been lost by the binarisation. However, this said, given 

that some structure remains in the AEC derived matrix even when bursts have 

been largely removed suggests that bursts are not solely responsible for the 

observed connectome.  

The final figure shows that when coincident bursts occur, they provide a short 

period during which the underlying ‘oscillations’ from the two regions involved 

are likely to be more coherent. This is consistent with the findings of (Engel et 

al. 2013), in which resting networks in MEG were shown to be well 

characterised by visits to short-lived transient brain states, each with spatially 

distinct patterns of oscillatory power and coherence in specific frequency 

bands. This obviously lends itself to the communication by coherence 

hypothesis – that the brain organises its oscillations in such a way as to provide 

temporally coincident windows of mutually high electrical potential within 

which we might expect passage of action potentials, and hence information 

(Fries 2015). Bringing together this finding with other work it is tempting to 

speculate that coincident bursts offer a means for a broad brain network to 

provide some inhibitory influence on a specific region, such as the motor 

cortex; the more frequent the bursts, the more inhibition that region receives. 

This finding of short periods of coherence also offers some explanation of 

previous methodological findings. In general it has been shown that amplitude 

envelope correlation offers a more robust way to measure functional 

connectivity compared to coherence – at least in individual subjects (Colclough 
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et al. 2016; Liuzzi et al. 2017). This study shows that bursts represent punctate 

events, occurring on average once per second in the resting state, which are 

coherent between regions. This means that over all time (for example, in a 

300s resting state recording), we will only see coherence for a very small 

fraction of that time. It follows that estimated coherence over an entire 

recording would therefore represent a less reliable measure. Conversely in the 

amplitude envelope correlation case, it’s the beta bursting compared to rest 

which drives the connectivity measure, and therefore it benefits from both the 

periods of coherence (with a high beta envelope) and periods of no coherence 

with a lower envelope.  

There are a number of limitations to the current approach which should be 

understood. First, the HMM requires several parameter choices; these include 

the selection of the number of states, the length of the window used to 

compute the autocovariance matrices (which characterise each state), and the 

threshold on the probability time courses to select which state is “active”. It 

should be noted that parameter choices are typically needed in all analysis 

approaches. Nonetheless, the HMM output is reasonably robust to changing 

the number of states (see Appendix A, Figure A1): the burst state spectrum 

remains constant regardless of whether the model employs 3, 6 or 10 states. 

Also, the spatial signatures of burst frequency, duration, amplitude, and 

interval remain qualitatively similar regardless of the choice. However, 

quantitatively the burst duration, frequency and interval times all change 

significantly when switching from 3 to 6 to 10 states. This is likely due to the 

mutual exclusivity assumption made by the model – but also means that burst 

properties are subjective, depending on parameter choice. The length of the 

window used to define the autocovariance matrices was 230ms; this value 

depends on the frequency resolution one wishes to capture. For example, 

making the window shorter focusses it on higher frequency components 

(Vidaurre et al. 2018). So here again, a subjective choice is required dependant 

on the question being asked. The value of the probability threshold is however 

less subjective since, as shown in Figure 4.1, the probabilities are relatively 
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binarised anyway. These limitations on parameter choice should be considered 

carefully in future studies using this technique. 

Aside from parameter choice, one of the key assumptions made by the HMM 

is that the states are mutually exclusive. This means that the model is unable 

to cope with the co-occurrence of multiple states. This is not intended to 

represent the true physiological nature of brain activity. Rather, that this 

assumption and this method provides a useful description of brain activity. 

Despite this simplification, the binarised burst time courses enable derivation 

of the electrophysiological connectome which is in good agreement with that 

derived via AEC. Of course, the “true” connectome (an underlying ground 

truth) remains unknown. However, it is known that AEC has significant 

correlation with the resting state networks that are measured using functional 

magnetic resonance imaging (Hipp et al. 2012; Brookes, Woolrich, et al. 2011). 

Given the vast literature showing the critical role played by these networks in 

supporting healthy brain function, and their breakdown in a wide variety of 

disorders, it is reasonable to consider this as a useful description of the 

connectome. The fact that these network connectivities can now be 

understood in the context of transient spectral electrophysiological bursts, will 

represent an important step in our understanding of how those networks are 

mediated. 

4.5 Conclusion 
This work has demonstrated that the time-delay-embedded HMM offers a new 

way to interrogate MEG data, delineating oscillatory bursts which are in good 

agreement with the simple thresholding techniques used in the literature. 

However, unlike arbitrary thresholding approaches applied to oscillatory 

amplitudes in a single frequency band, here the HMM has been used to look 

for specific morphological (spectral) patterns in single-region time course data; 

in this way it provides an objective means to derive transient spectral bursts 

with a meaningful threshold in broadband data. The distribution of bursts 

changes across the cortex, with the lowest burst frequencies, highest 

amplitudes, and highest durations in the parietal, occipital and temporal lobes. 
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Analysis of task data was in good agreement with previous work in showing 

that the ‘classical’ MRBD corresponds to a lower burst frequency, and shorter 

burst duration whereas the PMBR corresponds to a higher burst frequency, 

and longer duration. Finally, the well-known beta connectome, which is 

typically calculated using amplitude envelope correlation, can also be derived 

by a simple measure of burst overlap. Further analysis suggested that when 

bursts are coincident, they facilitate a period of phase locking which likely 

encourages communication by coherence. In summary, this study offers a new 

methodology for both burst identification and connectivity analysis, which will 

be important for future MEG investigations of neural oscillations and their 

perturbation by disease. 

The following chapter employs this method of burst identification in two basic 

neuroscience experiments – an entirely passive visual experiment and a grip 

force task which encouraged integration between the visual cortex and motor 

output via visual feedback. The HMM burst-detection framework is then 

applied, producing a comprehensive analysis of the role of the post-stimulus 

response and its distribution across the cortex. 
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Chapter 5 

The Post-Stimulus Response Across the Cortex 

Following the characterisation of transient bursts of activity in resting state 

data and their role in connectivity, the same model was applied to task data. 

This was briefly touched upon in Chapter 4 where it was shown that these same 

bursts make up the post-movement beta rebound in a finger abduction task. In 

this chapter, different tasks are introduced to identify and characterise task-

related states across the whole cortex – a primary response state and a post-

stimulus response state.  

The primary aim of this work is to identify if distinct neuronal processes are 

present in the post-stimulus period compared with the primary response 

period using an HMM. The secondary aim is to use the resulting HMM states 

to reveal how the connectivity of different brain regions is altered between the 

primary response and the post-stimulus response (PSR) states. Data were 

analysed from two different experiments – the first was a ‘grip-force’ 

experiment which was primarily a sensorimotor task with visual feedback 

where participants held a bar in their right hand and exerted a grip-force on it 

when cued. The second was an entirely passive visual experiment. Using the 

HMM, the spatial distributions of the primary and post-stimulus responses 

were characterised across the cortex for both tasks using state probability 

maps.  

For the grip-force task the PSR was greatest in the contralateral motor cortex 

and bilateral over the visual cortex, reflecting the visual feedback component 

of the task. In contrast, the primary response state was bilateral over 

sensorimotor areas, extending into the parietal cortex. A similar result was 

obtained for the visual experiment, the PSR was confined to the contralateral 

visual region and the primary response was more bilateral over visual cortex. 

The difference in the spatial distributions of the primary and PSR provides 

evidence that they are distinct neuronal processes. A classical (filtered 
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amplitude envelope) analysis of the visual data showed that the PSR is not 

modulated by stimulus duration, implying that it is primarily modulated by task 

difficulty. For those regions that exhibit the responses of interest, connectivity 

was calculated. This allowed us to gain a new understanding of the task-

dependant relationship between brain locations and how it alters between 

primary response and post-stimulus response neuronal mechanisms. A 

strength of the HMM is that it allows PSRs to be identified across the cortex 

regardless of the frequency content of the signal (data aren’t prefiltered into 

a classic neurophysiologic frequency band).   

5.1 Introduction 
The neuronal response to a basic sensory stimulus can be separated into at 

least two phases; the primary response (during the task) and the post-stimulus 

response (PSR, immediately following task cessation). The most well-

characterised PSR is the post-movement beta rebound (PMBR) which is an 

increase in beta (13-30Hz) amplitude (above baseline) upon movement 

cessation and follows the movement related beta desynchronisation (MRBD) 

which occurs during the task. The PMBR has been studied extensively in the 

healthy population (e.g. (Jurkiewicz et al. 2006)) and is shown to be modified 

in a range of neurological diseases including schizophrenia (Robson et al. 

2016), autism spectrum disorder (Gaetz et al. 2020), and multiple sclerosis 

(Barratt et al. 2017). The significance of this PSR in a range of seemingly 

unrelated neurological conditions which manifest in such variable symptoms 

indicates that it is a fundamental neurological process, the disturbance of 

which has implications on both healthy and pathological brain function. Not 

only does the PMBR have potential as a biomarker for disease diagnosis, it is 

clear that further investigation of this phenomenon is also needed to 

understand the dynamics of healthy brain function. 

To understand the role of the PSR, we must first be able to modulate it in a 

controlled and predictable manner. In 2016, Fry et al. used a wrist flexion 

paradigm to show that a higher force output results in a PMBR with a greater 

amplitude, and that the duration of the PSR may depend on stimulus duration 
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or task difficulty (Fry et al. 2016). This was investigated further by Pakenham 

et al. who showed, using a grip-force experiment, that the amplitude of the 

PMBR changes with grip duration (Pakenham et al. 2020). As part of their 

study, they employed a multivariate HMM to discover a bilateral sensory-

motor brain state with a probability time course exhibiting the same temporal 

dynamics as the PMBR (this state was more likely to be active in the period 

immediately after stimulus cessation). However, their work also showed that 

two other states displaying the same beta rebound phenomenon were 

distributed over other cortical areas, lending credence to the idea that the 

post-stimulus rebound is a more general mechanism through which regions of 

the brain coordinate activity. This is a hypothesis supported by (Tewarie et al. 

2019) and (Hipp et al. 2012) which show that long range functional 

connectivity is mediated by beta band oscillations. A functional connectome 

can also be derived from the same ‘bursts’ that make up the PMBR (Seedat et 

al. 2020; Little et al. 2019) as described in Chapter 4.  

Given that these bursts of activity at a single-trial level make up the trial-

averaged PMBR in a finger abduction task (Sherman et al. 2016; Seedat et al. 

2020), it is unsurprising that they can be linked to task performance (Little et 

al. 2019; Shin et al. 2017) and neurological diseases in the same way that the 

beta PSR is. For example, longer duration, higher amplitude beta bursts are 

correlated with symptom severity in Parkinson’s disease (Tinkhauser et al. 

2017) and the amplitude, duration and number of bursts is altered in 

established schizophrenia patients when compared with healthy control 

subjects (Gascoyne et al. 2021). 

By contrast, the MRBD (primary response) is relatively unaffected by task 

parameters such as force output (Fry et al. 2016) or speed of force 

development (Stancák Jr. and Pfurtscheller 1995). However, the beta 

desynchronisation associated with motor tasks begins before the movement 

is undertaken, during a planning and preparation stage. It is during this time 

window that the MRBD can be systematically modulated by task parameters. 

For example, in the period immediately before movement execution, the 
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reduction in beta power is proportional to the uncertainty of movement 

direction (Tzagarakis et al. 2010). The fact that the MRBD and PMBR are altered 

by different task parameters, coupled with the fact that they localise to 

different cortical areas (Jurkiewicz et al. 2006; Fry et al. 2016; Stancák Jr. and 

Pfurtscheller 1995), supports the idea that they are two distinct functional 

processes which should be investigated each in their own right. 

One theory posits that the MRBD (primary response) is a “cortical gate” which 

temporarily “switches off” the beta oscillations responsible for resting long-

range connectivity to allow local neurons to process information during a task 

(Brookes et al. 2015). The following PSR is then thought to be an active 

inhibitory process which drives reintegration of the brain regions involved in 

stimulus processing – in other words, it acts as a “stop” sign once the stimulus 

is removed to bring excited brain regions back to baseline (Mullinger et al. 

2017). Whilst focus has been on beta band responses when investigating PSRs 

to date, the beta band response will act in concert with neuronal responses in 

other frequency bands, indeed the interaction with theta, alpha and gamma 

band activity is well documented. For example, in 2017 Chung et al. showed 

that neural oscillations in the theta, alpha and beta frequency bands 

coordinate when executing upper limb movement (Chung et al. 2017), and in 

imagined motor actions frontal beta activity has been shown to couple with 

occipito-parietal gamma oscillations (de Lange et al. 2008). In eyes-closed 

resting state data, gamma power (30-70Hz) is phase-locked to posterior alpha 

(8-13Hz) activity (Osipova, Hermes, and Jensen 2008); in a burst-based 

interpretation of these results, one might reasonably posit that single-trial 

bursts are in fact made up of both alpha and gamma spectral components, 

possibly with a characteristic waveform. Furthermore, PSRs have been clearly 

observed in the 8-13Hz frequency band both in motor and visual cortex 

(Mullinger et al. 2017; Mullinger et al. 2013) suggesting that constraining 

analysis to specific frequency bands is limiting. If this is the case, then several 

brain regions recruited during the task should exhibit a pan-spectral neuronal 

signature during the stimulus period, which we hypothesize will be unique in 
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different brain regions which have different functional roles. Then, during the 

PSR, a different neuronal signature will be present which is hypothesized as 

necessary to re-establish the long-range connectivity known to be present at 

rest (Brookes, Woolrich, et al. 2011; Hipp et al. 2012; Tewarie et al. 2019; 

Seedat et al. 2020; Engel et al. 2013). Therefore, our hypothesis is that this 

post-stimulus activity will be functionally connected to re-establish resting 

state networks. Further, we hypothesize that the HMM, as implemented in 

Chapter 4, is a method well-suited to identifying a primary and PSR state in 

different cortical regions (each characterised by neural activity with region-

specific spectral content) and that this can be used to investigate how 

connectivity alters between these states. 

In this chapter grip-force data from (Pakenham et al. 2020) and an entirely 

passive visual experiment were used to characterise the PSR across the cortex. 

The same univariate hidden Markov model described in Chapter 4 was used, 

with new state selection criteria employed to identify the primary and post-

stimulus states. This information was then used to characterise the spatial 

pattern of activity across the cortex and to derive the functional connectivity 

of these two separate phenomena. The aim of this work was to answer the 

questions: where are PSRs seen across the cortex and how do these regions 

interact with one another? 

5.2 Methods 
The data used in this chapter are from two different experiments; a grip-force 

experiment with data acquired by a previous student and a visual experiment 

with data which I acquired myself. Data acquisition was unavoidably impacted 

by the COVID-19 pandemic and for this reason I have included a section 

describing the work done to mitigate its effect. 

5.2.1 Mitigating the Impact of the COVID-19 Pandemic 
On March 11th, 2020, Dr Tedros Adhanom Ghebreyesus, the Director-General 

of the World Health Organisation, declared that the outbreak of virus COVID-

19 was officially classified as a pandemic. This announcement was shortly 

followed by “work from home” orders by the University of Nottingham on 
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March 16th, and the UK government officiated a nationwide lockdown on 

March 26th.  Access to laboratories for experimental work (other than those 

experiments relating to the research of COVID-19) was withdrawn for the 

duration of the spring-summer 2020 and, given that pilot data had just been 

acquired for the visual experiment with the aim of starting experiments 

proper, closure of the lab undoubtedly impacted this study. 

To mitigate the impact of the lab closure, the analysis pipeline was built before 

data were acquired. This was possible partly because there were pilot data, 

and partly because the structure of the experiment, by design, was similar to 

one conducted by a previous PhD student. The resulting comprehensive data 

analysis pipeline enabled analysis of visual data as soon as the lab reopened, 

and the data were collected. 

So that scanning could commence as soon as COVID-19 restrictions were 

relaxed, it was important to get the lab ready and the correct paperwork in 

place to meet new health and safety regulations. For this reason, it was 

necessary to work alone in the lab on several occasions during the summer to 

program the visual experiment on the stimulus computer and to ensure the 

triggers, eye tracker, projector, and other pieces of equipment worked. I also 

revised the lab’s standard operating procedures and risk assessments ensure 

they complied with COVID safety regulations. This involved organising 

meetings with colleagues so that everyone’s needs were met, and all pieces of 

equipment were considered. Appropriate personal protective equipment 

(PPE) was introduced (face masks, visors, gloves, and aprons) along with 

rigorous cleaning procedures and limiting contact with research participants. 

One of the ways in which close contact with research participants was reduced 

was to introduce an optical imaging system for head digitisation (structure IO 

camera (Occipital Inc., San Fransisco, CA, USA) coupled to an Apple iPad 

operating Skanect software) to the CTF-MEG lab at Nottingham. This 

procedure is already used in Nottingham’s OPM-MEG lab (Hill et al. 2020) and 

replaces the Polhemus 3D head digitisation equipment (Polhemus, Colchester, 
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VT, USA) which requires physical contact with the participant for 

approximately ten minutes. 

Other COVID-19-related safety procedures included the participant 

completing a safety questionnaire to ensure that they had no COVID-19 

symptoms in the days leading up to their scan. There was also a maximum 

room occupancy in place and doors and windows were opened to allow 

circulation of fresh air. Where more than one researcher was working in the 

lab (as was the case for the visual experiment), one person was designated to 

work with the participant (placing them correctly in the scanner and 

completing the 3D head digitisation) and the other was assigned to the MEG 

control station. This limited the number of people the participant was in close 

contact with and the number of people touching any given surface, reducing 

the risk of spreading infection. 

5.2.2 Grip-Force Experiment 
These data were acquired by a previous student and have been published 

(Pakenham et al. 2020). In total, 15 participants were recruited (10 female; 

age: 27 ± 3 years (mean ± standard deviation)), all of them self-reported as 

being right-handed and gave written informed consent. Electromyography 

(EMG) and MEG were acquired simultaneously in all patients. Ethics 

permission was obtained from the University of Nottingham Medical School 

Research Ethics Committee.  

The experiment involved patients holding a grip-force bar (Current Designs, 

Philadelphia, USA) in their right hand while they lay supine in the MEG scanner. 

The grip-force bar was attached to a fingerless glove so that participants could 

relax their hands completely between trials without dropping it (Figure 5.1A). 

A visual stimulus was presented to the participant which showed a target 

profile of force output -  the force measured by the grip-force bar was overlaid 

on the target in real time so that the participant received constant visual 

feedback and could adjust their grip accordingly (Figure 5.1B). The target 

profile appeared 2s before the grip started and persisted for 0.5s after the grip 

was released, and each grip was either 2, 5 or 10s in duration. The force output 
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was not modulated for the trials, only the duration. To determine the target 

force, participants were asked to exert their maximum grip-force on the bar 

for 1-2s (maximum voluntary force, MVF). This was repeated twice with a 15s 

rest period between each grip. The average for each of these grips was found 

(over a 200ms epoch) and compared with baseline (400ms taken at the end of 

the MVF recording). The MVF was taken to be the maximum average value 

from any of those three grips. The target force was then set at 30% of the MVF. 

Each trial consisted of a grip (for either 2, 5 or 10s) with 30s rest between 

contractions to allow the PMBR to return to baseline. During the rest period a 

fixation cross was presented on the screen and participants were asked to 

remain still and to relax their hands completely. There were 15 trials for each 

grip duration in a single run (45 trials in total), and two runs were acquired 

during the experiment with a 15-minute break between them. At the 

beginning and end of each run muscle fatigue was measured by two 3s-long 

100% MVF target profiles with a 30s rest between them. The layout of each 

run is shown in Figure 5.1C.  

Figure 5.1: Experimental design for the grip-force task. Participants held a grip bar 
with their right hand (A) and when prompted by a visual cue, they applied a force to 
the bar. This allowed them to trace a square wave (lasting either 2, 5 or 10s) with their 
right-hand grip (B). In a single experimental run, there were multiple trials (a mixture 
of 2, 5 and 10s grip durations arranged in a pseudo-random order), each followed by 
a 30s rest period. Figure taken from (Pakenham et al. 2020). 

The data were acquired on a 275-channel CTF MEG system (CTF, Coquitlam, 

BC, Canada) operating in 3rd order synthetic gradiometer configuration at a 
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sample rate of 600Hz (see Section 2.3). Before scanning, coils were placed at 

the participant’s fiducial locations: nasion, left and right preauricular points. 

These coils were energised at the beginning and end of the experiment so that 

the position of the head relative to the MEG sensor geometry could be 

localised. This meant any head movement during the experiment could be 

noted. The head surface was also digitised using a Polhemus Digitrack 

(Polhemus, Colchester, VT, USA) which produced a 3D scalp surface complete 

with fiducial locations. This was then matched with the scalp surface extracted 

from a T1-weighted anatomical MRI of the head, allowing coregistration of the 

brain position within the MEG scanner. The MRI was acquired with a 1mm 

isotropic MPRAGE sequence on either a 3T or 7T Philips Achieva MRI scanner. 

To monitor the onset and offset of muscle contractions in the right forearm 

related to the task and during the rest period, electromyography was used. 

This involved placing Ag/AgCl electrodes (EasyCap GmbH, Germany) in a 

bipolar configuration over the forearm extensor bundle (channel 1) and the 

forearm flexor bundle (channel 2). The read-out from these electrodes was 

sent through an ExG amplifier (Brain Products GmbH, Germany) to BrainVision 

Recorder (v1.1). A sample rate of 1000Hz was used with an operation 

frequency band of 0.016-250Hz. A marker was placed at the start of the 

experiment to synchronise the EMG recordings with the MEG data acquisition. 

5.2.3 Visual Experiment 
This experiment was performed by me, including paradigm design and coding, 

all lab preparations, data acquisition. 

Data were acquired in 15 healthy volunteers (7 female) with average age 26 ±

5 years (mean ± standard deviation). All participants self-reported as right-

handed and gave written informed consent. On the day of scanning two 

experiments were undertaken – a visual experiment (reported in this chapter) 

and an n-back experiment. The n-back experiment forms part of another 

student’s thesis and will not be reported here. Two runs of each experiment 

were completed, and to ensure that the order of experiments had no bearing 

on the results, the order of experiments was varied between subjects. Ethics 
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permission was granted for both experiments by the University of Nottingham 

Medical School Research Ethics Committee. 

The experimental paradigm was similar in structure to the grip-force study, 

except in this case the stimulus was entirely passive so that any modulation in 

the PSR amplitude or duration would be due to the stimulus duration and not 

task difficulty. Participants sat upright in the MEG scanner and looked at a 

fixation point in the centre of a screen. Each trial consisted of a visual stimulus 

(lasting either 2, 5 or 10s) in the left visual hemifield followed by a 30s rest 

period to allow post-stimulus activity to return to baseline. There were 15 trials 

of each stimulus duration presented in a pseudo-random order, so in total 

there were 45 trials per run (see Figure 5.2B). The visual stimulus itself was a 

circular grating with concentric rings moving towards their centre (see Figure 

5.2A). This stimulus is known for eliciting a strong visual gamma response but 

during our pilot experiments it also produced a strong alpha response which 

was observed by (Tan, Gross, and Uhlhaas 2016; Hoogenboom et al. 2005), 

making it a suitable visual stimulus for our purposes. To reduce the likelihood 

of an after effect a Michelson contrast of 1/3 was used. A single experimental 

run lasted approximately 27 minutes.  

Figure 5.2: Experimental design for the visual experiment. Participants looked at a red 
fixation dot in the centre of a grey screen for the duration of the experiment. A circular 
grating with concentric rings moving towards their centre appeared in the left visual 
hemifield periodically (A). The stimulus was presented for a duration of either 2, 5 or 
10s (in a pseudo-random order) and there was a 30s rest period between each stimulus 
(B). 

Given that the participant was asked to sit in a darkened room and stare at a 

fixation point for almost half an hour at a time, it was important to make sure 

they did not fall asleep. An eye tracker (Eyelink, Ottawa, Canada) was used 

which interfaced with the MEG electronics so that it was possible to remove 
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any data segments where the participant appeared to fall asleep (eyes closed 

for longer than 3s).  

MEG data were acquired using a 275-channel CTF system (CTF, Coquitlam, BC, 

Canada) operating in 3rd order synthetic gradiometer configuration and with a 

sample rate of 600Hz. Triggers were placed in the MEG data for each stimulus 

on/offset. Fiducial coils were placed on the participant’s nasion and left and 

right preauricular points, these were energised at the beginning and end of the 

experiment so that the head could be localised within the scanner helmet and 

to measure any head movement during the experiment. All participants also 

had a T1-weighted MRI using a 1mm isotropic MPRAGE sequence on a 3T 

Philips Achieva scanner in a separate scanning session (never immediately 

before MEG data acquisition). A 3-D head digitisation was acquired with a 

Structure IO camera and Skanect software as described in Sections 2.3.4 and 

5.2.1. 

5.2.4 Data Analysis 
For the visual experiment, first a more ‘classical’ analysis approach was used 

to investigate the response profile to the stimulus both in the primary and 

post-stimulus periods. This form of analysis had already been performed for 

the grip-force data (Pakenham et al. 2020). Following this, both experiments 

were analysed using a parcel-wise HMM to identify regions where task-related 

modulation occurred.  

Data pre-processing 
In order to map the MEG sensor geometry to each participant’s brain anatomy, 

the 3D head digitisation (from either the Polhemus or the Skanect) was 

mapped onto the scalp surface formed from the MRI. Knowledge of the fiducial 

coil location relative to the brain (from the 3D digitisation) and relative to the 

MEG sensors (by energising the coils inside the MEG helmet) allowed 

coregistration of the brain anatomy with the MEG sensors.  

The MEG data were then chopped into trials relative to stimulus offset (the 

exact timing of the grip offset was determined from the EMG traces, see 

(Pakenham et al. 2020) for further details) and all trials were bandpass filtered 
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1-150Hz and visually inspected for artefacts (such as those related to SQUID 

resets or ocular and muscle artefact). Those trials with artefacts were removed 

from further analyses. All data were then concatenated (across all stimulus 

durations) and an LCMV beamformer (Robinson and Vrba 1998; Van Veen et 

al. 1997; Van Veen and Buckley 1988) was used for source localisation.  

Source localisation 
The participant’s brain was extracted from their MRI using a brain extraction 

tool (BET) (Smith 2002) and was divided into a 4mm cubic grid of voxels. Then 

a covariance matrix was computed using all of the pre-processed data 

(concatenated across all stimulus durations); it was regularised with a 5% 

regularisation value using the Tikhonov method. A multiple local sphere head 

model (Huang, Mosher, and Leahy 1999), with a dipole approximation (Sarvas 

1987), was used for the forward model and the dipole orientation in the 

tangential plane which produced the highest SNR was used. The covariance 

matrix, together with the forward model, was used to generate a time course 

of neurophysiological activity for each voxel. 

Initial visual data analyses 
Since the response to visual stimuli is strongest in the alpha frequency band, 

the source localisation was carried out as described above except that the data 

were first filtered 8-13Hz and then the covariance matrix estimation was made 

(using data from all stimulus durations). This was then used, together with the 

forward model described above, to produce the beamformer weights. Instead 

of using these to generate time courses of activity at each voxel, they were 

used to estimate the location of the voxel with the greatest change in activity 

between the stimulus and post-stimulus periods.  

An ‘active’ window was defined in the period 0-2s from stimulus onset 

(primary response window) and an active covariance matrix ( 𝐶𝑎 ) was 

estimated with data from this time window (from all stimulus durations). A 

post-stimulus window was also defined, this time in the period 0.5-2.5s from 

stimulus off, and a post-stimulus covariance matrix (𝐶𝑝) was estimated. For 

each voxel, a pseudo-T-statistic (𝑃𝑠𝑇) was calculated as 
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𝑃𝑠𝑇 =  
(𝑾𝜽′𝑪𝑎𝑾𝜽) − (𝑾𝜽′𝑪𝑝𝑾𝜽)

2𝑾𝜽′𝑪𝑝𝑾𝜽
, 

where 𝑾𝜽  are the beamformer weights at location and orientation 𝜽. This 

resulted in a statistical image of the whole brain where the peak 𝑃𝑠𝑇 value 

corresponded to the maximal difference between primary and PSRs.  

The time course of activity from the peak voxel was then derived (with a 

covariance matrix estimated using data filtered 1-150Hz). Data were then 

filtered 8-13Hz and Hilbert transformed to produce an amplitude envelope 

time course of alpha activity for every trial. This time course was then averaged 

over trials to produce an induced response per participant. Pakenham et al. 

showed that the PSR can be incorrectly analysed using a short rest period as 

the neuronal responses have not returned to true baseline. This study sought 

to replicate that finding with the visual data. A baseline window typical of MEG 

experiments (5-7s post-stimulus) was used, as was a ‘true’ baseline of 15-23s 

after stimulus off, akin to the baseline used in Pakenham et al. These baseline-

corrected time courses were then averaged over participants to produce a 

single time course of alpha activity for each stimulus duration.  

A repeated measures ANOVA was then used to interpret the results to see if 

there was any statistical difference between the rest period and post-stimulus 

window, and to see if there was any difference in rebound amplitude between 

the stimulus durations. The difference between the primary response and the 

rest period was also tested using the repeated measures ANOVA, as was the 

difference in primary response between stimulus durations. 

Hidden Markov modelling 
For each participant, the down-sampled (4mm resolution) brain was  

parcellated according to the Automated Anatomical Labelling (AAL) atlas 

(Tzourio-Mazoyer et al. 2002) to produce 78 functionally-specific brain regions. 

First, a linear image registration tool (FLIRT (Jenkinson et al. 2002; Jenkinson 

and Smith 2001)) was used to calculate the transform from the 4-mm MNI152 
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brain6 to the participant’s brain, and then the same transform was applied to 

the MNI152-aligned AAL regions (and their centroids) to produce subject-

specific parcellations. The voxel time courses were then computed for the 

centre of mass of each parcellation, producing a single time course of activity 

for each of the 78 AAL regions. Symmetric orthogonalisation was then applied 

to reduce the effect of signal leakage as described in Section 3.2.7 (Colclough 

et al. 2015). 

For each of the 78 brain regions a univariate, 3-state, time-delay embedded 

HMM was employed (directly analogous to the model used in Chapter 4) using 

the HMM-MAR toolbox. The parcellated data were first down-sampled to 

100Hz and then frequency filtered into a broad band (1-48Hz) so that the 

model could characterise states based on the spectral content across a range 

of physiological frequency bands (theta, alpha, beta, low gamma). This was 

made possible by using a time-delay embedded observation model (Vidaurre 

et al. 2018) where each state is defined by an autocovariance pattern over a 

230ms time window – this pattern contains the spectral information.  

Because this model is data-driven, a more accurate model is likely to arise 

when more data are used for model inference. For this reason, the down-

sampled and frequency filtered data for a single brain region were 

concatenated over all participants and then passed to the model inference - a 

variational Bayesian inference method which minimised the free energy of the 

system was used. Where there was insufficient evidence for three states, the 

model was able to collapse into fewer. States were assumed to be mutually 

exclusive. The output of the HMM was a time course for each of the three 

states describing the probability of the state being active at any one point in 

time. This model inference was completed for each brain region separately 

resulting in 3 state probability time courses per region. 

 
6 Montreal Neurological Institute standard brain averaged over 152 healthy adults, see 
Section 3.2.6 
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State selection 
Each of the three state time courses were thresholded at two thirds probability 

to produce a binarised time course of state activity. The binary state time 

courses were then chopped back into trials for each of the three stimulus 

durations (2, 5 or 10s) and arranged in a raster plot (see Figure 5.3A for the 2s 

grip-force raster plots over all subjects). By averaging over trials, the 

probability of entering the state at each timepoint was established (Figure 

5.3B). These state time courses were then normalised (divided by their 

maximum probability) and baseline corrected with a 20-24s post-stimulus 

baseline (Figure 5.3C). The state most likely to be entered during the stimulus 

was selected as the primary response state, and likewise the PSR state was the 

one most likely to be entered into from either 1-5s (grip-force exp.) or 2-4s 

(visual exp.) after stimulus off.  
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Figure 5.3: Primary and PSR state selection. For each of the three states, a raster plot 
of state activation (for all trials in all subjects) was obtained (panel A shows this for 
states 1, 2 and 3 from left to right). The average over trials created a time course of 
state activation probability (B), which was then normalised and baseline corrected to 
create a time course of state activation in panel C. For the stimulus window, the 
difference from baseline was calculated and the state with the greatest state 
activation was selected as the primary response state (state 2 in this case). Similarly, 
the PSR state was the one most likely to be entered in the time window immediately 
after stimulus cessation (state 1 in this case). The strength of the response is indicated 
by the arrows in panel C. In all cases the solid red line indicates stimulus offset. These 
plots relate to the 2s grip-force stimulus. 

State activation maps 
To understand the spatial distribution of these phenomena (both primary and 

post-stimulus) the strength of the response was calculated for each brain 

region. This was taken as the difference from baseline (20-24s from stimulus 

off) in the normalised state activation time courses from Figure 5.3C. This 

approach was chosen because a region with no modulation in brain activity 
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related to the stimulus, would also show no modulation in the state activation 

time courses (such as state 3 in Figure 5.3C). Therefore the difference value 

would be very small, reflecting the lack of task-related modulation. 

State Spectra 
Because the HMM state identification is data-driven and is inferred using 

broadband (1-48Hz) data, the spectral content of the primary and post-

stimulus states was allowed to vary across brain regions – this makes sense 

because different frequency bands dominate in different cortical areas, and 

therefore task related activity across the cortex is likely to vary in its spectral 

content. A state-specific multitaper analysis (Vidaurre et al. 2016) was used to 

investigate this variation in primary and PSR state spectra, yielding a spectrum 

for each state, brain region and task. 

State connectivity 
In Chapter 4, the resting state connectome was recreated using only a 

coincident burst metric. Here we extended the same method to investigate 

coordinated activity between regions exhibiting either a primary or PSR.  

First the binarised state time courses for the primary and PSR states were 

extracted for each brain region. These time courses were then windowed so 

that only the ‘bursts’ of activity during the relevant time window were used in 

the connectivity calculation7: 

• Primary response window was from 4s to 0s preceding stimulus offset. 

• PSR window was from 1-5s (grip-force expt.) or 2-4s (visual expt.) after 

stimulus offset. 

The Jaccard index was then computed for every pair of regions as a measure 

of similarity between binary time courses (where each time course is 

concatenated over all participants). This resulted in a single connectivity matrix 

over all subjects for the primary and PSR states.  

 
7 Connectivity was also calculated using state visits across the whole experiment. Results for 
this are shown in Appendix B. 
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To ensure that these connectivity matrices were meaningful (and not 

measuring the overlap between randomly-occurring bursts unrelated to the 

task), brain regions with no task-related modulation were excluded from the 

analysis. These regions were identified by first calculating the probability of 

entering either the primary or PSR states (those same values used to create 

the state activation maps) and then calculating the standard deviation in the 

relevant time window. Where the probability was less than the standard 

deviation, the region was disregarded. For the remaining regions, the state 

allocations were checked to see if the primary and PSR states were ever 

selected as the same. 

5.3 Results 
The results are split into two sections, the first discussing the grip-force 

experiment and the second discussing the visual experiment. 

5.3.1 Grip-Force Stimulus Results 
During the pre-processing stage one participant was removed from further 

analysis because of hand movements during the rest period (identified using 

EMG) so results are presented from the remaining 14 subjects. After bad trials 

were removed there were an average of 13 ± 2, 13 ± 2, and 12 ± 3 (mean ± 

standard deviation over all subjects and runs) trials remaining for the 2, 5 and 

10s stimulus durations respectively.  

The state activation maps for the grip-force experiment are shown in Figure 

5.4 for both the primary and PSRs. Interestingly, the two phenomena exhibit 

different patterns of activity across the cortex. The primary response is 

strongest over the sensorimotor areas, extending into the parietal cortex and 

is near-symmetrical over hemispheres. In contrast, the likelihood of entering 

the PSR state is greatest over the contralateral sensorimotor area and bilateral 

visual regions. This strong visual component was initially surprising but is likely 

to be a result of the continuous visual feedback throughout the task – 

participants were able to see their grip-force overlaid on the target profile (see 

Figure 5.1). This analysis shows that coordinating the visual feedback with their 

motor output produces a clear PSR in both areas (Figure 5.4B). Given that the 
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motor component of the task only recruited their right hand, and the visual 

component of the task was presented to them in both visual hemifields, it also 

makes sense that the visual PSR is bilateral whereas the motor PSR is more 

unilateral. What is perhaps surprising is that there is very little post-stimulus 

activity identified by the HMM analysis in the ipsilateral sensorimotor areas 

where one might expect to see some activity with a reduced amplitude (as 

previously reported for a simple right index finger abduction task (Jurkiewicz 

et al. 2006)).  

Figure 5.4: Spatial maps showing the distributions of the primary and PSR states across 
the cortex for the grip-force task. The likelihood of entering the primary response state 
is greatest over the sensorimotor areas, extending into the parietal cortex (panel A). 
The likelihood of entering a post-stimulus state (B) is greatest in the contralateral 
sensorimotor area and bilateral over the visual cortex. 

The variation in state spectra is shown in Figure 5.5 for all 78 brain regions, 

where each region is represented by a different coloured line. The overall PSD 

for the PSR state (Figure 5.5B) is greater than the primary response state 

(Figure 5.5B). It also includes a larger alpha component, and for some regions 
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a beta component. These peaks are likely to reflect the visual feedback and 

motor components of the task respectively.   

Figure 5.5: The spectral content of the primary (A) and PSR (B) states is shown here for 
all 78 brain regions. There is some variation across cortical locations. The primary 
response state has markedly lower PSD values which are dominant in the theta band 
with some regions incorporating an alpha component. The PSR state also has a theta 
peak, but most sensors also include an alpha and beta component. 

For the connectivity analysis, regions in the brain which did not show a clear 

stimulus and/or PSR to the task were excluded (dark blue areas of the 

connectivity matrix (Figure 5.6, left panel) and grey areas of the brain (Figure 

5.6, right panel)). Of the remaining regions, the primary and post-stimulus 

responses never occupied the same state. The burst-wise connectivity analyses 

of the primary and PSRs for those regions where a clear response was seen are 

shown in Figure 5.6. The bursts of activity for the primary response state are 

most likely to be coincident between the left and right sensorimotor regions. 

By averaging the connectivity matrix in one direction, the overall connectivity 

of each region was established, and showed that the contralateral 

sensorimotor area has the greatest overall primary response connectivity to 

the rest of the brain (Figure 5.6A, right). 

In contrast, the PSR state visits are coincident between visual hemispheres and 

contralateral sensorimotor areas (Figure 5.6B). The region of the brain where 

the connectivity to the rest of the brain was the strongest was the right mid-

occipital gyrus (Figure 5.6B, right). There is little evidence for a bilateral 
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sensorimotor network in the PSR, which is perhaps unsurprising given that the 

ipsilateral motor areas did not exhibit clear post-stimulus activity (Figure 5.4B).
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Figure 5.6: State connectivity maps for the grip-force task. Panel A shows that the primary response state exhibits clear left-right connectivity over the 
sensorimotor areas. The Jaccard connectivity metric for all pairs of regions is shown on the left. The top 5% of connections from this matrix is plotted in the 
middle, and on the right the sum over the matrix in one dimension produces a measure of the overall connectivity per region. The brain region exhibiting the 
highest average connectivity was the left sensory cortex with Jaccard index 0.43 ± 0.06 (mean ± std over regions). The connectivity for the PSR state is shown 
in panel B – there is connectivity within the contralateral sensorimotor areas and between the left and right visual areas implying that the visual feedback 
component of the task evokes a rebound-type response across both hemispheres. The region with the highest average connectivity was the right mid-occipital 
cortex with Jaccard index 0.31 ± 0.03 (mean ± std over regions). Note that the dark blue stripes in the connectivity matrix and grey areas of the brain in the 
right-hand plots are due to regions being excluded from connectivity analyses because there was no evidence of task-related activity. Note the difference in 
scales used between panels A and B.
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5.3.2 Visual Stimulus Results 
The data from two participants were removed from further analysis. For one 

of these participants the 3D head digitisation did not save correctly so there 

was no way to reliably coregister the participant’s brain with the MEG sensor 

geometry. For the other participant less than half of the data were acquired 

because of technical issues in the lab during the scanning session. The results 

are therefore from the remaining 13 subjects. 

After bad trials were identified (those with SQUID resets, ocular or muscle 

artefacts) and removed, there were on average 14 ± 1 (mean ± standard 

deviation) trials left for each of the 2, 5 and 10s stimulus durations. 

Classical analysis 
The alpha time course, averaged over participants, for each of the stimulus 

durations is shown in Figure 5.7. There is a clear primary response (with a 

significant difference from rest (p < 0.005, RM-ANOVA)) regardless of the 

definition of the control window. However, there is only a significant 

difference between the post-stimulus and control windows when a 

conventional rest period of 5-7s is used (p = 0.017, RM-ANOVA). Interestingly, 

when a “true” baseline is used (15-23s from stimulus off), there is no significant 

difference between the two windows (p = 0.261, RM-ANOVA). This bias is not 

carried through into the HMM analysis because the model inference uses data 

from the entire experiment and does not require a specified baseline. 

Regardless of the baseline used, there is no difference in the PSR amplitude 

between stimulus durations (p = 0.324, RM-ANOVA, for the 5-7s baseline; p = 

0.68, RM-ANOVA, for the 15-23s baseline). Interestingly from Figure 5.6 there 

is also no clear modulation of post-stimulus rebound duration with stimulus 

duration. For the primary response, there is a significant difference between 

the 10s and 2s stimulus durations (p = 0.012, RM-ANOVA) when a 5-7s baseline 

is used, but there is no significant difference between stimulus durations when 

a 15-23s baseline is used. 
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Figure 5.7: The effect of changing the baseline on the visual PSR. Both A and B show 
the average amplitude envelope of alpha oscillations from the peak virtual electrode 
in the visual cortex for each of the stimulus durations. The shaded area accompanying 
each time course is the standard error over participants. When using the conventional 
baseline window of 5-7s from stimulus off there is a measurable PSR but no significant 
difference in amplitude between stimulus lengths (A). The post-stimulus window is not 
significantly different from rest when a true baseline of 15-23s post-stimulus is used 
(B). 

HMM analysis 
The spatial distribution of the primary and PSR states are shown in Figure 5.8. 

There is a bilateral pattern of activity across visual regions for the primary 

response state (Figure 5.8A), matching the bilateral response from the grip-

force task. The strongest response was in the contralateral primary visual 

cortex. There is very little activity across the rest of the brain which makes 

sense given that this was a passive visual experiment and therefore not 

cognitively demanding. In contrast the PSR is clearly confined to the 

contralateral visual cortex. This mirrors the unilateral post-stimulus state 

result from the grip-force task. The pattern of activity across the cortex is 

clearly different for the primary and PSRs across two different experiments; in 
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both cases there is a clear bilateral/unilateral pattern of activity for the 

primary/post-stimulus responses, respectively. 

Figure 5.8: The spatial distribution of the primary and PSR states for the visual 
experiment.  The primary response is bilateral over the visual cortex (panel A) whereas 
the PSR is confined to the contralateral visual regions (panel B). 

Both the primary and PSR states show clear theta and alpha frequency 

components (Figure 5.9). Each coloured line represents the spectrum from one 

of the 78 AAL brain regions, and the variation in spectral content over regions 

is expected because only a relatively small number of brain regions exhibited 

task-related activity. 

Figure 5.9: The variation in spectral content of the primary and PSR states across brain 
regions is shown in panels A and B respectively. Both states exhibit large variation 
across brain regions, with a small number of locations showing both a theta and alpha 
component.  

For the connectivity analyses, regions with no evidence of a task-related 

response were removed and the results are shown in Figure 5.10. Of the 
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remaining regions, the primary and post-stimulus responses never occupied 

the same state. The primary response state coincidence across regions was 

greatest bilaterally across the lateral visual areas, whereas the PSR state 

coincidence was more focussed on the primary visual areas in the contralateral 

cortex. The strongest connection to the rest of the regions showing a primary 

response was in the right inferior temporal cortex (Jaccard index 0.35 ± 0.05, 

mean ± std over regions) whilst for the PSR it was in the right mid-occipital 

cortex (Jaccard index 0.35 ± 0.02, mean ± std over regions). It is interesting to 

note that whilst the PSR was generally more localised (Figure 5.8 panel B) this 

did not result in a weaker connectivity.  Note that the strongest connectivity 

values do not necessarily correspond to those regions with the greatest 

likelihood of entering the primary or post-stimulus states.
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Figure 5.10: State connectivity maps for the visual experiment. Panel A shows that the primary response state exhibits clear left-right connectivity over occipital 
areas. The Jaccard connectivity metric for all pairs of regions is shown on the left. The top 15% of connections from this matrix is plotted in the middle, and on 
the right the sum over the matrix in one dimension produces a measure of the overall connectivity per region. The brain region exhibiting the highest average 
connectivity was the right inferior temporal cortex with Jaccard index 0.35 ± 0.05 (mean ± std over regions). The connectivity for the PSR state is shown in 
panel B – there connectivity is confined to the contralateral visual areas. The region with the highest average connectivity was the right mid-occipital cortex 
with Jaccard index 0.35 ± 0.02 (mean ± std over regions). Note that the dark blue stripes in the connectivity matrix and grey areas of the brain in the right-
hand plots are due to regions being excluded from connectivity analyses because there was no evidence of task-related activity.
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5.4 Discussion 

5.4.1 Classical analysis 
This work follows a number of studies attempting to understand both primary 

and post-stimulus responses by modulating them through experimental tasks, 

most notably (for example, (Pakenham et al. 2020; Fry et al. 2016)). These 

studies concluded that the PSR could be modulated by either the task duration 

or difficulty. In this work, by implementing an entirely passive visual 

experiment with varied stimulus durations, we were able to show that the PSR 

amplitude is not modulated by duration. This task also provided no evidence 

that the stimulus duration affected the duration of the PSR in agreement with 

(Pakenham et al. 2020).  Therefore, these results provide more evidence 

supporting the hypothesis that post-stimulus amplitude is modulated by task 

difficulty. It is still unclear from this experiment what caused the modulation 

in post-stimulus duration which was observed in the rate force development 

task previously investigated (Fry et al. 2016).  

The result of the classical analysis of the visual data replicates findings from 

(Pakenham et al. 2020) showing that a short inter-trial interval can alter the 

interpretation of the PSR. In this case the PSR could only be discerned with a 

5-7s baseline as opposed to the true baseline of 15-23s. This feeds into the 

ongoing uncertainty of defining baseline and when the brain is “at rest”. From 

Figure 5.7 it appears that the brain reaches a more stable state from 10s after 

stimulus cessation with all traces then relatively stable with similar apparent 

variance. However, that then raises the question of whether the longer 

stimulus duration has in this case caused a bi-phasic PSR with a post-stimulus 

rebound and then under-swing, which warrants further investigation. What 

these results show is that different baseline choices can change the results of 

traditional analyses significantly, with baselines established in literature 

potentially being too close to the stimulus window. Careful consideration of 

the length of a rest window is therefore imperative for future studies. 

However, an alternative approach will be to move analysis to other data driven 
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methods. For example, since data from the whole experiment are used for 

hidden Markov model inference, there is no need to define a baseline, 

therefore eliminating this bias from analysis using the HMM. 

5.4.2 HMM analysis 
The HMM analysis used in this study follows the multivariate analysis of these 

data in (Pakenham et al. 2020) and the work done in Chapter 4 (Seedat et al. 

2020) to create a model which allows us to tease apart the temporal 

relationship between regions and identify ‘bursts’ of activity at a single trial 

level which are related to the task. The time-delay embedded observation 

model allowed states to be defined by their spectral content, and the fact that 

the model inference was done on broadband (1-48Hz) filtered data meant that 

a pan-spectral picture of connectivity could emerge (with different regions 

exhibiting different spectral peaks). The advantage of this analysis approach 

over the one used in Pakenham et al. was that there was no requirement for 

the stimulus (or post-stimulus) state to have the same spectral content across 

different brain regions allowing a less constrained interrogation of the brain 

regions exhibiting a response. It follows that the interaction between different 

brain regions (with different spectral peaks) was similarly less restricted than 

the analysis performed by Pakenham et al. This was important to understand 

more about the functional role of PSRs across the cortex. 

The HMM analyses of the grip-force and visual experiments show that both 

the primary and PSRs are observed across the cortex in a number of brain 

regions used to engage in the task. The spatial maps showing the likelihood of 

any given brain region entering the primary or post-stimulus states (Figures 5.4 

and 5.8) as well as their connectivity profiles (Figures 5.6 and 5.10) provides 

new evidence supporting the hypothesis that the primary and PSRs are a result 

of different cognitive processes. This is because, in the same task, very 

different brain regions are recruited for each of these processes and there are 

two distinct spectral signatures which are found for the primary response state 

and post-stimulus state in regions where both are observed. It is also intriguing 

to see that the primary response state is bilateral across both hemispheres of 
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the brain with strong connectivity between them (panel A, Figs. 5.6 and 5.10) 

and that the PSR is very much unilateral and confined to the contralateral 

cortex (panel B, Figs. 5.6 and 5.10). This pattern is seen consistently across two 

different tasks.  

The findings presented here for the connectivity between regions in different 

time windows are somewhat in contrast to previous work using alternative 

analysis strategies and to our hypotheses. Previously, connectivity between 

sensorimotor hemispheres, for example in the beta band, has reduced during 

the stimulus period, increased in the post-stimulus period, and then returned 

to resting levels of connectivity (O'Neill et al. 2017; Brovelli et al. 2017; Tewarie 

et al. 2019). However, the previous work has been generally constrained to a 

specific frequency band, typically the beta band. Beta band synchronisation is 

well known to decrease during the stimulus, but it is not suggested that the 

brain is not active during the stimulus. Furthermore, it is unclear when 

studying only the beta band if the connectivity has been reduced purely by a 

reduction in signal to noise cause by the decreased signal amplitude. 

Therefore, the lack of connectivity of the primary motor cortex with the rest 

of the brain when interrogating only specific frequency bands is unlikely to give 

the full picture of the brain dynamics at work. The HMM potentially allows a 

method which captures the brain entering different phases of activity in 

different time windows and brain regions without being constrained as to 

precisely what the activity is (i.e., it’s spectral content) thus giving us a more 

holistic picture of the brain function and network connectivity. Alternatively, it 

is possible that the stimulus state identified with the HMM is a signature of the 

brain doing nothing due to pan-spectral desynchronisation (or there being 

insufficient signal to noise to detect what it is doing). However, even if this is 

the case the HMM is detecting all the regions which enter this “nothing” state 

and how the activity (or lack thereof) in these areas overlaps. 

5.4.3 HMM state interpretation 
Both a strength and limitation of this method is that it is based purely on the 

probability of entering a state in a given task window. This makes it incredibly 
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flexible as these data do not need to belong to a specific neurophysiologic 

frequency band, nor do they have to be confined to the desynchronisation and 

rebound phenomena we are used to observing. State visits simply need to 

occur in the time windows during and immediately after a stimulus. Inevitably 

this raises the question about what exactly is happening at each of these 

spatial locations. The HMM in this case is simply acting as a marker, 

highlighting regions of interest where a change in the probability of entering a 

state occurs within the time window of interest. Further analysis of these 

regions and the bursts of activity occurring in them is required to gain a fuller 

understanding of the biophysical meaning of the state which has been 

identified. This could be something as simple as extracting a time course from 

the regions of interest and producing an amplitude envelope of activity (as was 

done in Figure 5.7), or it could be to extract information about the duration 

and frequency of state visits and the amplitude of oscillations when the data 

are in a given state (analogous to the burst statistics in Chapter 4, Figure 4.2).  

5.4.4 The impact of state durations on connectivity 
To understand more about the connectivity patterns which were observed 

using the HMM in this study and what was driving this connectivity we 

investigated the relationship between the duration of state visits and the 

strength of connectivity for both the primary response and PSR states for both 

tasks. The duration of the state visits was longer for the primary response state 

(Figure 5.11) than for the post-stimulus state for both tasks. Interestingly in 

both states there was considerable variation in mean duration of state visits 

over brain regions compared with the resting state data considered in Chapter 

4, as shown by Figure 5.12. This is interesting because the HMM inference 

process was almost identical for the two chapters, indicating fundamentally 

shorter bursts of activity in the absence of a task compared with either of the 

task-related states which were identified. The variation in state visit durations 

between brain regions is likely to reflect cognitive function as it is credible that 

some brain regions need to say in their “task” or “post-stimulus” state longer 

than others to ensure the task is executed correctly. Furthermore, it is also 
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conceivable in a resting state (Fig 5.12) that the brain activity is fluctuating 

rapidly, so staying in any one state for a long period is not required.  

Perhaps unsurprisingly the state durations are correlated with the connectivity 

measures used here. This makes sense intuitively – those regions with long 

state visits exhibit larger connectivity values because they are more likely to 

have bursts coincident with other brain regions. This may indicate that the PSR 

state is more meaningful with connectivity values driven by shorter targeted 

bursts of activity, compared with the primary response state whose 

connectivity may be more driven by state durations. However, for both the 

primary response and PSR state there is clearly a strong correlation between 

the state duration and the connectivity value for a given region. Further 

investigation into the characteristics and timings of the primary and PSR state 

visits is needed to draw any concrete conclusions.  
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Figure 5.11: State durations correlate with Jaccard index for both the primary response 
state and the post-stimulus response state across both tasks. Note that the primary 
response state visits are generally longer than the PSR state visits. Regions with little 
evidence for a primary or PSR state have been removed as described in Section 5.2.4. 

Figure 5.12: Burst state durations correlate with Jaccard index (connectivity value) for 
the resting state data presented in Chapter 4. State durations are shorter than those 
from the grip-force or visual experiments presented in this chapter.  
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5.4.5 Future work 
Application of this HMM approach or similar models to a more complex task 

which recruits higher order brain networks may produce further evidence of a 

PSR across the cortex. In fact, alongside the data acquired for the visual 

experiment, data were collected for an n-back paradigm. It will be interesting 

to see how the primary and PSRs are distributed across the cortex and how 

they are modulated by task difficulty. Given the hypothesis that the PSR is a 

top-down (feedback) process and that a greater post-stimulus amplitude is 

expected when a mistake is made requiring a larger update to the forward 

model to improve performance of subsequent trials (Fry et al. 2016; Koelewijn 

et al. 2008), it is likely that the number or duration of post-stimulus state visits 

increases to reflect this. This idea of the PSR being required to update a 

forward model may also explain why the PSR to the visual stimulus is smaller 

as their was no active aspect to this task and therefore little need to update 

and change performance. However, further work is still required to prove this 

hypothesis of the functional role of the PSR. 

Something that has not been explored yet is clustering, based on the temporal 

characteristics of when the state is active in different brain regions, or 

directionality of primary or PSR ‘bursts’ (state visits) in the connectivity results. 

Current analysis provides information with regards to all connections between 

all regions, but it is highly likely, based on other analyses (Vidaurre et al. 2018; 

Baker et al. 2014; Quinn et al. 2018; O'Neill et al. 2017; Tewarie et al. 2019; 

Brovelli et al. 2017) that during the stimulus and post-stimulus states we might 

be identifying more than one network. We hypothesize that some regions will 

be more highly connected in one network and other regions in another. These 

networks may then also interact hence, they may all exhibit a post-stimulus 

state but may not be part of the same network, even if they exhibit similar 

overall connectivity values in Figures 5.6 and 5.10. Directionality of 

connections could provide us with useful information about burst propagation 

and shed more light on the mechanisms (at a single-trial level) underpinning 

the canonical brain networks observed in both fMRI (Biswal et al. 1995; Fox 
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and Raichle 2007) and through amplitude envelope correlation of MEG data 

(Brookes, Woolrich, et al. 2011; Hipp et al. 2012). One hypothesis might be that 

bursts arise in the contralateral motor/visual area and propagate to connected 

regions during the stimulus period but that they arise in higher cognitive areas 

and feedback to the contralateral primary sensory areas in the post-stimulus 

period. Further work using this HMM analysis framework is needed to develop 

this concept.  

5.5 Conclusion 
These experiments and analyses show that the primary and PSRs are 

observable across the cortex in two different tasks. The PSR is not modulated 

by the duration of visual stimulus, making it likely that task difficulty alters the 

amplitude of the PSR. This agrees with the predictive coding model. The HMM 

analysis showed that the primary and PSRs are observed in different spatial 

locations, have unique spectral properties, and have different profiles of 

connectivity. Together, these findings strongly suggest they must reflect 

different cognitive processes and likely have different functional roles.  
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Chapter 6 

Hidden Markov Modelling of the Interictal 
Brain 

 

For Laylah 

 

In Chapters 4 and 5, the hidden Markov model was used to identify transient 

neuronal activity in the brains of healthy adult volunteers. It was able to 

provide useful information relating to the timing and location of spectrally 

specific bursts, shedding light on the mechanisms underlying healthy brain 

function. In this final thesis chapter, the HMM has been extended to a 

paediatric epilepsy patient cohort – their unique patterns of epileptiform 

activity can be characterised by their location and spectral content, and in fact, 

trained neurophysiologists identify these distinctive patterns by eye. Therefore, 

the hypothesis for this chapter is that the HMM will be able to automatically 

identify patterns of epileptiform activity unique to each patient. This work has 

been submitted to Human Brain Mapping for peer review. 

Epilepsy is a highly heterogeneous neurological disorder with variable 

aetiology, manifestation, and response to treatment. It is imperative that new 

models of epileptiform brain activity account for this variability, to identify 

individual needs and allow clinicians to curate tailored treatments. Here, we 

use a hidden Markov model (HMM) to create a unique statistical model of 

interictal brain activity for 10 paediatric patients. We use 

magnetoencephalography (MEG) data acquired as part of standard clinical 

care for patients at the Children’s Hospital of Philadelphia. These data are 

routinely analysed using excess kurtosis mapping (EKM), however, as cases 

become more complex (extreme multifocal and/or polymorphic activity), they 

become harder to interpret with EKM. We assessed the performance of the 

HMM against EKM for three patient groups, with increasingly complicated 
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presentation. The difference in localization of epileptogenic foci for the two 

methods was 7 ± 2mm (mean ± SD over all 10 patients); and 94 ± 13% of EKM 

temporal markers were matched by an HMM state visit. The HMM localizes 

epileptogenic areas (in agreement with EKM) and provides additional 

information about the relationship between those areas. A key advantage over 

current methods is that the HMM is a data-driven model, so the output is 

tuned to each individual. Finally, the model output is intuitive, allowing a user 

(clinician) to review the result and manually select the HMM epileptiform 

state, offering multiple advantages over previous methods and allowing for 

broader implementation of MEG epileptiform analysis in surgical decision 

making for patients with intractable epilepsy. 

6.1 Introduction 
Epilepsy is a neurological disorder affecting approximately 50 million people 

worldwide (Beghi, Giussani, and Collaborators 2019). It is characterized 

clinically by the occurrence of seizures which are generated by abnormal 

electrical cellular discharges in the brain. Epilepsy falls broadly into two 

categories: focal (originating from a single location in the brain) or generalized 

(originating diffusely throughout the cortex). In patients with focal epilepsy, 

there can be a single focus or multiple discrete foci that generate seizures.  For 

many patients, anti-epileptic medications can control both the severity and 

frequency of seizures. However, approximately 30% of patients with epilepsy 

do not respond completely to medications (Mohan et al. 2018) and for these 

patients, surgical resection of affected brain tissue is a viable treatment. 

However, this necessitates extensive pre-surgical planning to accurately locate 

the affected brain area(s) prior to resection. 

Current evaluation of pharmaco-resistant epilepsy is accomplished using 

electroencephalography (EEG) (which measures electrical activity in the brain 

via assessment of electrical potentials at the scalp) alongside clinical factors 

and structural assessment using magnetic resonance imaging (MRI). This may 

be augmented by the nuclear medicine techniques of positron emission 

tomography (PET) and especially ictal (during seizure) single photon emission 
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computed tomography (SPECT). If candidate epileptogenic locations are 

identified via imaging, a more invasive intracranial EEG (iEEG) is often initiated 

where electrodes are placed on the brain surface or within the grey matter. 

This allows electrophysiological assessment with optimal sensitivity and spatial 

accuracy, prior to surgery. Despite this extensive surgical planning, fewer than 

50% of patients are seizure free 5 years post-surgery, with this number 

dropping to 38% at 10 years post-surgery (Mohan et al. 2018). It is therefore 

clear that a greater understanding of this heterogeneous disease, as well as 

improvements in clinical evaluation are required to improve patient outcome. 

MEG measures the magnetic fields induced by neuronal current flow. Unlike 

the electric potentials measured by EEG, magnetic fields are relatively 

unaffected by the high resistivity of the skull, resulting in less spatial distortion 

of MEG compared with EEG signals, and thus improved resolution. MEG is used 

in a growing number of clinical settings, particularly in epilepsy. Not only does 

MEG provide additional information about the location of the epileptogenic 

zone (Stefan et al. 2011; Agirre-Arrizubieta et al. 2014; Murakami et al. 2016; 

Nissen et al. 2016; Gofshteyn et al. 2019), it can also be used to distinguish 

epileptogenic regions from eloquent cortex (Kim, Chung, and Hwang 2013). 

Most importantly, a recent study by Rampp et al showed, in 1000 patients, that 

presurgical MEG increases the chances of a patient achieving seizure freedom 

post-surgery (Rampp et al. 2019).  

MEG therefore has significant promise for assessment of patients with 

epilepsy, and the recent introduction of new technologies to capture the 

neuromagnetic field offer even higher spatial resolution, better sensitivity, and 

improved practicality, at lower cost (Boto et al. 2018; Hill et al. 2020; Boto et 

al. 2021). This means that MEG could become more established as the 

technique of choice for epilepsy evaluation. However, the detection of 

epileptogenic activity in MEG data remains a significant challenge. Recording 

data during a seizure is difficult due to uncontrolled patient movement, and 

for this reason most MEG recordings are limited to interictal (between seizure) 

assessment (although see e.g. (Tang et al. 2003)). Interictal events – sharply 
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contoured atypical signals (known as epileptiform activity, i.e. spikes, sharps 

etc.) are observable in resting MEG (and EEG) data and are generally assumed 

to originate from seizure onset zones, meaning that spatially mapping their 

origin offers useful information on the location of epileptogenic cortex. 

However, detecting such events can be challenging for two reasons. Firstly, 

events are sporadic and unpredictable and, in some patients, rare. Thus, 

capturing an event can sometimes be a challenge without lengthy recording 

sessions. Even when events do occur, it can take significant time for a 

neurophysiologist to identify them (manually) in a MEG recording due to the 

high channel density relative to clinical EEG.  

Second, the temporal morphology of epileptogenic activity can vary markedly 

between patients; some produce spikes with/or without slow wave activity, 

which varies dramatically in amplitude. Other patients generate polymorphic 

bursts of “sharp wave” activity characterized by high temporal frequency 

signatures. In some individuals, the epileptic pattern repeats (like a template), 

in others it differs on each occurrence. This makes automatic detection 

algorithms challenging.  

There are two commonly used analysis methods for localization of interictal 

activity, equivalent current dipole (ECD) fitting and excess kurtosis mapping 

(EKM). In ECD, interictal spikes are inspected visually (Bagić et al. 2011). Once 

identified at the sensor level, a current dipole model is used to approximate 

the measured magnetic field just prior to, or at the peak of, the spike; by letting 

the origin of the modelled dipole vary spatially, and then selecting the point at 

which the model best fits the measured field, it becomes possible to localize 

the brain region generating the spike (Ebersole 1997; Wheless et al. 1999). This 

technique works reasonably well in cases where high amplitude spikes are 

observed in isolation but is often not useful in cases where interictal activity 

includes polymorphic bursts. In addition, multi-focal epilepsies are a challenge 

since ECD requires a-priori estimation of the number of active regions.  

By contrast, EKM (Robinson et al. 2004; Schwartz et al. 2010; Gaetz et al. 2015) 

is an automatic method which assumes only that the epileptiform signals of 
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interest are sharply contoured (relative to the typically rhythmic background 

MEG signals). Kurtosis is a measure of the shape of a statistical distribution; in 

cases of abnormal activity (for example, if a dataset has large spikes), it’s 

statistical distribution includes a large “tail” and thus begins to look non-

Gaussian; this is quantified by increased kurtosis (also known as the 4th 

moment of the distribution). By application of a kurtosis algorithm to MEG 

signals extracted from multiple brain locations, it becomes possible to localize 

areas generating abnormal activity. In addition, EKM doesn’t require a-priori 

estimation of the number of epileptogenic regions. Further, it is not limited to 

spikes, but can be used to assess any atypical activity, provided it has high 

kurtosis.  However, excess kurtosis also has limitations; it has low sensitivity to 

low amplitude polymorphic activity. Also, counterintuitively, in cases with 

rapidly occurring high amplitude spikes, excess kurtosis has diminished 

sensitivity, because the kurtotic signals are so common they begin to represent 

the mean. For these reasons, neither ECD nor EKM are a perfect solution to 

analysis of MEG data in epilepsy, and other methods, which can accurately and 

automatically identify epileptiform activity, map its spatial origins, and (in 

multifocal epilepsy) characterize relationships between regions, would be 

useful.   

Hidden Markov Modelling (HMM) has gained traction in recent years as a 

method to elucidate complex neural dynamics in MEG data (Quinn et al. 2018; 

Vidaurre et al. 2018; Higgins et al. 2021). The method works by detection of 

repeated patterns of activity (known as states) in MEG data; patterns can be 

characterized based on a number of features, including amplitude, channel 

covariance, and spectral properties. In the present work, we aimed to test a 

hypothesis that an HMM could be used to identify, in time and space, 

epileptiform activity. We further aimed to show that, in at least some patients, 

this method would offer more information than the established EKM 

technique. In what follows, the data processing pipeline is described, and its 

application to MEG data acquired in multiple different patient groups, ranging 

from ‘simple’ cases with focal spike-and-wave (SW) epileptiform activity for a 
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single locus, to more complex cases with multifocal epileptiform activity 

exhibiting polymorphic bursts from multiple loci. 

6.2 Methods 
MEG data were acquired at the Children’s Hospital of Philadelphia (CHOP) as 

part of standard clinical practice. They were then anonymised and sent to me 

to apply the HMM analysis. Clinicians and scientists (most notably William 

Gaetz) from CHOP helped me to interpret the results.  

6.2.1 Patient identification and data collection 
This study was determined by the IRB to have exempt status as it constituted 

secondary analysis of data captured for clinical purposes under the NIH 

common rule (Jan 2019). All research subjects were collected as part of clinical 

care at the Children’s Hospital of Philadelphia.  Data from ten paediatric 

patients undergoing presurgical epilepsy evaluation between the ages of 11 

months and 17 years (median 8.18 years, see Table 1), were utilized in the 

study. There were 2 female and 8 male patients. Nine of the 10 had focal 

epilepsy with or without impaired awareness, and one (Patient 6) had epilepsy 

with combined focal and generalized features. Six patients had right focal 

epileptiform discharges while 4 had left focal epileptiform discharges. Most 

focal discharges were in the frontal or temporal regions with one patient 

(Patient 8) with central localization and one patient with both frontal and 

posterior temporal discharges (Patient 6). When known, aetiology was 

primarily confirmed or suspected structural abnormality (such as focal cortical 

dysplasia), with one patient (Patient 1) with confirmed genetic aetiology and 2 

patients with, as yet unknown aetiology.
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Table 6.1. Patient characteristics. 
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Multiple 2-minute recordings were acquired using a CTF 275-channel MEG 

system operating in third order synthetic gradiometer configuration. (The 

number of acquired datasets ranged from 15 to 29; mean = 17.8). Data were 

acquired at a sample rate of 1200Hz. In all cases patients were scanned supine. 

Of the 10 patients, 6 were scanned whilst sedated using general anaesthesia.  

Prior to data acquisition, three head position indicator (HPI) coils were 

attached to fiducial points on the head. During recording, these coils were 

energized (at non-physiologic AC frequencies) to allow continuous localization 

of their position relative to the MEG sensor array. All MEG scans were followed 

by an anatomical MRI during which MRI contrast markers were placed at the 

same fiducial points on the head. Coregistration of the MEG and MRI fiducial 

locations thus enabled complete spatial mapping of the MEG array relative to 

individual brain anatomy. This coregistration, in turn, allowed generation of 

functional images showing the cortical origins of epileptiform activity. 

Patients were then grouped into one of three MEG categories; 4 had focal 

epilepsy generating interictal spike and wave activity; 2 had focal epilepsy with 

only polymorphic bursts, and the final 4 had multi-focal epilepsy with 

polymorphic bursts. These categories were determined by visual inspection of 

the MEG data (using EKM). 

6.2.2 Data Processing 
Following MEG acquisition, data were visually analysed and any 2-minute runs 

containing obvious interference or segments where patient motion exceeded 

1 cm were removed from further analysis. Since some patients have infrequent 

interictal activity, all data were checked by a MEG expert to ensure they 

contained epileptiform activity and runs which did not were subsequently 

discarded. This left an average of 11 runs per subject. Our HMM-based method 

of mapping epileptiform activity comprised a two-step process (See Figure 1): 

In step one, the HMM was applied to channel level MEG data to identify time 

periods in which interictal epileptiform activity occurred. In Step two, a 

beamformer was used to localize the brain regions generating the activity 

identified by the HMM. These two steps are described in detail below.
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Figure 6.1: Schematic representation of the HMM-based process to identify epileptogenic activity. A multi-variate time delay embedded HMM was used to 
identify 5 states, each state characterized by its mean, covariance (across channels), and spectral content. A beamformer was used, along with temporal state 
allocations, to generate images of state activity across the cortex and a time course of activity from the peak voxel. This allowed us to identify an epilepsy 
state and a map of epileptogenic cortex.



6.2.3 Hidden Markov Modelling 
To find spatio-temporal patterns corresponding to epileptogenic activity, we 

applied a multi-variate, 5-state, time delay embedded HMM, in channel space. 

An HMM assumes that a series of recurring mutually exclusive ‘hidden’ states 

governs the MEG data, such that every point in time is associated with one of 

the states. The sequence is assumed to be Markovian (in other words, the state 

active at time point, t, only depends on that active at time point t-1). An 

observation model links the HMM state to the observed values in the MEG 

data.  

The HMM has been described extensively in previous papers (Vidaurre et al. 

2018; Baker et al. 2014) and a complete mathematical description is given in 

Section 3.3. Briefly, in its simplest form, a HMM would describe each state 

using a multi-variate distribution; in other words, a mean (for all channels) and 

covariance (across channels). The 5 distributions that best described the data 

would be derived, and the probability of each data-point belonging to a specific 

state would be calculated. The number of states is defined a-priori and model 

inference would learn the sequence of states, from the observed data.  

Here, we employed a more complex model which also allowed time-delay 

embedding (Vidaurre et al. 2018), adding information on autocovariance 

(defined over a specified time window (duration 70ms)). These state 

autocovariance patterns contain the spectral content of the signal. 

Consequentially, a single state is defined based upon signal variance, 

covariance across channels, and spectral content. This model had the potential 

to characterise both spike and wave activity and polymorphic bursts; in the 

former case the (typically high) amplitude of a spike, with a full width at half 

maximum of approximately 70ms, coupled with its distinct spectral content 

would characterise the state and differentiate it from ongoing “normal” 

activity. In the latter case, since polymorphic bursts are associated with 

“sharps” (high frequency activity) we again reasoned that distinct spectral 

content would define a state.  
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Prior to application of the HMM, the data used for the model inference 

(comprising 266-channel sensor space MEG data) were bandpass filtered 

between 20Hz and 70Hz (to match the standard EKM pipeline used by the 

Children’s Hospital of Philadelphia – see also below), notch filtered at 60Hz (to 

remove mains frequency artifacts), temporally down sampled to 150Hz, time-

embedded using 70ms lags and a principal component analysis used to reduce 

the data to 50 components (to allow for faster model inference). Note that 

each 2-minute clinical run was considered separately, just as the EKM data 

were. The model inference itself was undertaken using a variational Bayesian 

method which seeks to minimise the free energy of the system.  We computed 

5-states; for each state, in addition to an observation model, we obtained a 

time course of the probability that the state is active. These time courses were 

thresholded at two thirds, thus generating a binary time course delineating 

when the state was “active”. From the time courses, we also obtained a state-

transition-matrix – a 5 x 5 matrix of probabilities defining the temporal 

relationship between states (for example, element 2,1 in the matrix would 

represent the probability that state 1 followed state 2). This approach might 

offer useful information in cases with multi-focal epileptiform activity where 

one source consistently precedes the other. 

6.2.4 Beamforming 
Following application of the HMM (in sensor space), a linearly constrained 

minimum variance (LCMV) beamformer (Robinson and Vrba 1998) was used to 

localize the spatial signature of each state in the brain. The brain was divided 

into a regular 4mm grid of voxels, and each voxel time course was defined as 

a weighted sum of sensor measures. The beamformer weights were defined 

using a data covariance matrix calculated in the 20-70 Hz frequency band, and 

a time window spanning the entire recording. To maximize spatial resolution, 

no regularization was applied (Brookes, Mullinger, et al. 2008). The forward 

field was calculated using a current dipole approximation and a multiple local 

sphere volume conductor model. The beamforming parameters (frequency 
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filters and time windows for covariance estimation and regularization, as well 

as the choice of forward model) were selected to match the EKM method. 

This resulted in a time course estimate of electrophysiological activity for each 

voxel location. To generate a functional map showing the spatial signature of 

each state, we frequency filtered the voxel time courses between 20 Hz and 

70 Hz and then imposed the binary state time course to calculate the signal 

variance when the state was active, and the signal variance when the state was 

inactive. We then calculated the ratio, for every voxel in the brain, to delineate 

the brain regions which elicit changes in variance when the state switches on. 

In addition to the spatial maps, we also used the beamformer to derive a time 

course of electrophysiological activity at the peak location defined by the 

spatial map. Beamformer weights were defined as above but using covariance 

calculated in the 1-150Hz band, and a single time course showing 1-150 Hz 

activity extracted.  

Having derived a spatial map and time course of activity for each of the 5 

states, these were visually inspected by a single MEG-Epilepsy expert (W.G.). 

Those states whose time courses showed epileptiform activity when the state 

was active were identified, and the spatial localization was noted for each run. 

These were termed the “epileptiform state(s)”.  

6.2.5 Comparison to existing methods 
We compared the results of our HMM, to the more established EKM 

technique.  We selected EKM for this comparison because of its advantages 

over ECD (Hall et al. 2018) and its use in large pediatric cohorts (Gofshteyn et 

al. 2019). To ensure that a standard EKM pipeline was followed, we used 

commercial software developed by CTF (Coquitlam, BC, Canada) known as 

SAM(g2), and the established pipeline used clinically by the epilepsy team at 

the Children’s Hospital of Philadelphia (Schwartz et al. 2010). 

Prior to the application of EKM, all data were filtered 20-70Hz. In the SAM(g2) 

implementation, the brain was divided into a regular grid of 5 mm voxels and 

a scalar beamformer (equivalent to that described above) used to reconstruct 
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electrophysiological signals at each voxel. A kurtosis value was then computed 

for the time course at every voxel, and voxels with a kurtosis value greater than 

0.5 were marked as peaks (Schwartz et al. 2010; Gofshteyn et al. 2019). Having 

found the spatial locations of interest, 1-150Hz time courses were analysed 

and temporal markers were placed at any point where the peak-to-RMS ratio 

exceeded 6 (Gofshteyn et al. 2019). This automated algorithm provided an 

estimate of both the regions and the time points which were likely generators 

of epileptic activity. Following this, data were inspected visually by a single 

expert experienced in identification of epileptic activity, to determine whether 

the abnormalities found by the algorithm were genuinely related to epilepsy, 

or were generated by sources of no interest with high kurtosis (e.g. ocular or 

muscle artefact). Temporal markers unrelated to epileptic activity were 

disregarded.  

Following EKM, two separate measures were derived to quantitatively 

compare the output of the HMM and EKM mapping: 

1. Spatial correspondence: Peak locations identified by the HMM (i.e. 

those regions whose variance increased when the HMM derived 

epilepsy state was entered) were compared to peak locations in 

kurtosis. Euclidean distance was measured between these peaks.  

2. Temporal coincidence: All the time points identified by the EKM 

pipeline as containing epileptic activity were inspected to 

determine the number which were temporally coincident with an 

occurrence of the epilepsy state. Here temporal coincidence was 

defined as within 73ms of the EKM marker (i.e. the approximate 

duration of a single spike). Note that, the addition of a small 

amount of time around the EKM derived marker can mean that a 

single EKM marker is matched by more than one occurrence of the 

HMM epilepsy state; consequently, counterintuitively, values can 

exceed 100%.  
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All of the above (HMM, EKM, and their comparison) was applied to each 2-

minute run, in each subject, separately. This meant 119 runs in total over 10 

subjects. 

6.3 Results 
Case study results for each of the three patient groups are shown here. For 

detailed analysis of all patients, please see Appendix C.  

6.3.1 Focal spike and wave case 

Figure 6.2: Epilepsy case 1 – patient 1; focal, spike and wave: A) The left-hand side 
shows the spatial signature of the epileptiform state as defined by the HMM. The right-
hand side shows the spatial profile of EKM. Both maps were thresholded for 
visualization. B) Upper plot shows a beamformer derived time course from the peak 
location identified by the HMM with red regions showing occurrences of the HMM 
derived epilepsy state. The lower plot shows the equivalent time course from the peak 
in kurtosis. Dashed lines in the lower plot show time points of epileptogenic activity 
identified by EKM. C) Quantitative analysis over 12 runs from this subject. Left hand 
side shows temporal coincidence of EKM identified markers with the epilepsy state. 
Right-hand side shows spatial correspondence. Dashed line and blue shading shows 
the mean and standard deviation of the measure over all 12 2-minute runs in this 
subject.   

Results for a single representative focal epilepsy patient are shown in Figure 

6.2. Panel A shows the spatial signature of epileptogenic cortex, identified by 
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the HMM (left) and EKM (right). These data are taken from a single run. Panel 

B shows example time course segments taken from the peak voxel in the HMM 

map (upper trace) and the EKM map (lower trace) (note the similarity between 

traces due to the close spatial correspondence of the peak source locations 

identified by each method). In the upper (HMM) trace, the time points at which 

the epilepsy state was active are shown in red. In the lower (EKM) trace, the 

timepoints identified as containing epileptiform activity are shown by the 

dotted line. Note the close temporal correspondence (at least for this small 

segment of data). These results are quantified in Panel C; the left-hand bar 

chart shows the percentage of manually verified EKM markers that fell within 

the occurrence of the epileptiform state (this is our temporal coincidence 

metric). The right-hand bar chart shows the Euclidean distance between the 

peak from the HMM, and the peak from the EKM. In both cases, the separate 

bars represent different 2-minute runs in the same subject.  

The patient exhibited frequent, large amplitude spikes, with some slow wave 

activity. Spatial correspondence was 4 ± 1 mm (mean and standard deviation 

over 12 2-minute runs) and 97 ± 4% of EKM-identified epileptic events were 

matched in time by the occurrence of the epileptiform state. Over all of the 

datasets, the HMM epilepsy state was active for 5.4 ± 0.8% of the time.  

Three further cases of patients with focal epilepsy with spike and wave are 

shown in Appendix C (Figures C1, C2 and C3), all with excellent agreement 

between the HMM and EKM. In these cases, spatial correspondence was 6 ± 

2mm, 9 ± 5mm, and 15 ± 3mm, and the temporal correspondence was 102 ± 

8%, 100 ± 1%, and 96 ± 5%. In general, these support our hypothesis that the 

HMM performs similarly to EKM in enabling the identification of epileptiform 

activity in time and space, at least in patients with focal spike and wave 

epileptiform activity. Spatiotemporal correspondence was high in all cases and 

data showed good correspondence across many runs, for each subject.  
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6.3.2 Focal epilepsy with polymorphic activity 

Figure 6.3: Epilepsy case 2 – patient 5; focal, polymorphic bursts: A) left: HMM derived 
map. Right: EKM derived map. Both thresholded for visualization. B) Upper: 
beamformer time course from the HMM peak; Lower: equivalent time course from the 
EKM peak. Dashed lines show time points of epileptogenic activity identified by EKM. 
Red regions show occurrences of the epilepsy state. C) Left: temporal coincidence of 
EKM markers with the epilepsy state. Right: spatial correspondence. 

Case 2 (Figure 6.3) shows MEG data acquired in a patient with focal epilepsy, 

but without typical spikes in the MEG trace (Figure 6.3B). The patient’s resting 

MEG data exhibited occasional polymorphic bursts of sharply contoured 

activity, which (unlike spikes) change their temporal morphology on each 

occurrence. Such data are not amenable to conventional ECD source analysis, 

however here we see that both the HMM and EKM generate a focal 

localization of the epileptogenic zone with excellent spatial agreement 

between the two methods. On average across 15 2-minute recordings, the 

spatial discrepancy between the HMM and EKM peak location was 5 ± 2mm. 

In addition, the temporal coincidence of the epilepsy HMM state and the EKM 

derived markers was 106 ± 7%. The percentage of time when the HMM 

epilepsy state was active was 6 ± 3% (average and standard deviation over all 
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runs). A second case of focal epilepsy with polymorphic bursts is given in 

Appendix C (Figure C4); results again were similar with a spatial 

correspondence of 5 ± 3mm and temporal correspondence of 113 ± 14%. 

6.3.3 Multifocal epilepsy with polymorphic activity 
The above results show relatively straightforward cases of focal epilepsy, 

where abnormal epileptiform activity arises from a single location in the brain. 

However, in more complex cases, abnormal activity can occur from more than 

one location (often simultaneously), and in such cases the challenge becomes 

determining where these multiple regions are, how they are related, and if 

possible, which region serves as the driver of an epileptiform network causing 

other areas to exhibit epileptiform activity. 

Case 3 is a patient with multi-focal epilepsy; in total 15 datasets were acquired 

in this individual, results from a single representative run are shown in Figure 

6.4. In this instance, two separate states were found to generate polymorphic 

epileptiform activity (shown in Figure 6.4B). The corresponding spatial maps 

show foci in left temporal and left frontal lobes. Interestingly, examination of 

state transition probabilities demonstrated that state 1 (left temporal) had an 

89% likelihood of being preceded in time by state 4 (left frontal); in other 

words, a polymorphic burst in the frontal lobe was almost always followed by 

a polymorphic burst in the temporal lobe. Potentially, this suggests that the 

frontal lobe region is the driving signal and root cause of the epileptiform 

activity observed in the temporal lobe.  

Across all 15 runs in this same subject, 10/15 allowed identification of 2 

epilepsy states (including the run shown in Figure 4); 3/15 runs had 3 epilepsy 

states, and 2 runs had just 1 epilepsy state. Of the 13 datasets with more than 

one epilepsy state, 9/13 had a clear transition from the frontal to the temporal 

locations (transition probability 84 ± 9%; mean and standard deviation across 

these 9 runs). The other 4 had no clear transitions between states. The 

percentage of time which the states were active was 3 ± 1 % and 4 ± 1 % for 

the temporal and frontal epilepsy states respectively. 
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Figure 6.4: Epilepsy case 3 – patient 10; multi-focal, polymorphic bursts: A) upper: 
HMM derived map from state 1. lower: HMM derived map from state 4. B) Upper: 
beamformer time course from the HMM peak for state 1; Lower: equivalent time 
course from the HMM peak for state 4. Note both states show epileptiform activity. C) 
State transition matrix. Elements represent the probability of a transition between 
states; e.g. element (2, 1) would represent the probability of a transition from state 2 
to state 1; element (1, 2) would represent the probability of a transition from state 1 
to state 2. Panels A-C show the result from a single representative run. The average 
spatial and temporal correspondence between methods is shown in D with 78 ± 18% 
of EKM markers matched by an HMM state visit and an average Euclidian distance of 
8 ± 3mm between peaks. The amount of time spent in the epilepsy state was 3 ± 1% 
of the total time. 

We also compared the results shown in Figure 6.4 to the output of our EKM 

algorithm. EKM generated a single map which also had peaks in frontal and 

temporal lobe. On average (across 15 runs) the mean spatial correspondence 

for the frontal lobe peak was 8 ± 3mm and the equivalent distance for the 

temporal lobe peak was 7 ± 4mm, once again implying spatial correspondence 

between the HMM and EKM. This is impressive given the challenges posed by 
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such a complicated case to each of these methods. It is worth noting that 

although the EKM method places temporal markers in the data to help 

neurophysiologists assess whether a spike in one part of the brain precedes a 

spike in another area, the HMM provides additional information about the 

temporal relationship between the two brain locations using the state 

transition probabilities. Furthermore, the HMM uses all of the state data to 

estimate transitions, something which becomes particularly important in cases 

without clear spikes. 

Figure 6.5: Epilepsy case 4 – patient 9; multi-focal, polymorphic bursts: A) a single run 
in which multiple brain locations, determined to be generating epileptiform activity, 
have been identified in the same state.  B) a different run in the same patient where 
the HMM has split the candidate brain regions across states. Spatial maps were 
thresholded for visualization.  C) the temporal (left) and spatial (right) match between 
the HMM and EKM. 76 ± 21% of EKM markers were matched by an HMM state visit 
and the average Euclidian distance between HMM peaks and the corresponding EKM 
peak was 6 ± 2mm. The total time spent in an epilepsy state was 16 ± 6% of the total 
time. 

Case 4 (Figure 6.5) was another multi-focal epilepsy patient with a previous 

tissue resection in the frontal lobe. An EKM analysis showed two locations with 

elevated kurtosis, one close to the previous left frontal resection, and the 

second in right parietal cortex. Initially, the parietal activity had been dismissed 

as sharply contoured mu rhythm. However, the HMM showed that, in 6/13 
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datasets, a single HMM state described the activity in both brain locations. In 

other words, the state variance was high in both locations at the same time, 

implying that the activity (whilst of unclear clinical significance) is, in fact 

related. This is the case for the data shown in Figure 5A, which depicts the two 

separate locations in a single map and associated time courses from the two 

peaks. However, in a further 6/13 datasets the activity was parsed into two 

states (shown for dataset 2 in B as an orange and blue state). In the remaining 

dataset there was only the activity from the parietal location, with no apparent 

activity close to the resection zone. Two further cases of multi-focal epilepsy 

are presented in Appendix C, Figures C5 and C6. In both cases, results similar 

to those shown in Figures 6.4 and 6.5 were generated. 

6.3.4 Group results 
For each of the three patient groups, the average spatial and temporal 

correspondence between the two methods was found over subjects and this 

is shown in Table 2. There was good agreement between the two methods for 

all three groups (this is especially encouraging given the complexity of the 

multifocal patients), with less than a centimeter discrepancy between the peak 

locations. There was more variation in the temporal coincidence metric which 

is likely to be because there were much fewer EKM markers in the multifocal 

polymorphic data because the amplitude of the virtual electrode data rarely 

exceeded the threshold needed for marker placement. This meant that if the 

HMM missed a single marker, it resulted in a much-reduced percentage 

coincidence. 

Table 6.2. Group results 
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6.4 Discussion 
Epilepsy is a debilitating disorder in which both symptoms and treatments 

differ markedly across patients. In some cases where pharmacological 

intervention fails to control seizures, patients become candidates for surgery 

in which affected regions are resected. For many patients, such intervention 

offers seizure freedom (and thus a marked improvement in quality of life). 

However, success greatly depends on pre-surgical planning to accurately 

identify the epileptogenic region(s) and the current clinical pathway (involving 

EEG, MRI and iEEG) is not always successful in identifying candidate regions for 

resection (or indeed implantation of the iEEG). Consequently, improvements 

to this pathway could pave the way to enabling more patients to become 

eligible for surgery and might offer improved outcomes for those who do have 

surgery. 

Recent work has demonstrated that MEG has a significant role to play in the 

management and treatment of epilepsy patients, offering high precision 

mapping of epileptogenic and eloquent cortex (Kim, Chung, and Hwang 2013; 

Schwartz et al. 2010). However, the current methods for analysis of MEG data 

are limited. ECD – still the most widely used technique – is unsuited to multi-

focal epilepsies, and cases where temporal morphology of interictal events 

fails to include isolated high amplitude spikes. Some of the limitations of ECD 

are lifted via the use of kurtosis-based techniques, however these too offer 

limited sensitivity; they only respond to activity that is characterized by non-

Gaussianity, and in multi-focal cases, EKM provides limited information about 

the relationship between brain regions, meaning identified brain areas can be 

discarded due to a lack of evidence that they are involved in an epileptic brain 

network. Consequently, there is room for more adaptable processing pipelines 

to analyse MEG data in epilepsy patients. 

In this work, we have demonstrated that an HMM is a promising technique to 

localize epileptiform activity in both time and space. The HMM has been used 

increasingly in the analysis of MEG data in recent years, to elucidate the 

complex spatio-temporal dynamics of brain networks (Woolrich et al. 2013; 
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Baker et al. 2014; Vidaurre et al. 2018; Seedat et al. 2020). Here we show that, 

by seeking short segments of data with unique spatio-spectral characteristics, 

the HMM provides a useful platform for automatic detection of epileptiform 

activity. Importantly, the HMM doesn’t rely on a single data characteristic such 

as high amplitude spikes, or a non-Gaussian statistical distribution. In addition, 

activity doesn’t have to repeat in time (like a template). Rather, the HMM 

employs spectral characterisation so that morphological features of the data 

can vary on every occurrence of the epilepsy state. Consequently, as we have 

demonstrated, it can adapt to the heterogeneity of the disorder; the same 

algorithm will find spike and waves, sharps, or polymorphic bursts with equal 

efficiency. The flexible, data-driven approach of the HMM lends itself naturally 

to personalised medicine, where the output of the model will be specific to 

each patient. 

We compared the output of our HMM to the established EKM technique 

(which is embedded in a number of clinical pathways for epilepsy across 

multiple centres). Spatial agreement was within 8 ± 3 mm (average and 

standard deviation across all subjects and runs in all three patient groups), 

showing that epileptic foci could be identified using the HMM with high spatial 

acuity. Temporal agreement was also reasonable, with an average of 94 ± 13% 

(over all subjects in all patient groups) of epileptiform events detected by the 

standard EKM pipeline matched by the occurrence of the epileptiform state, 

identified by our new HMM pipeline. Importantly, whilst the HMM looks for a 

specific spatio-spectral pattern, the EKM pipeline is only able to find the timing 

of epileptic bursts via the use of a threshold: specifically, the EKM algorithm 

looks for peaks whose amplitude is larger than some arbitrary threshold (6) 

multiplied by the RMS amplitude. Thus, epileptiform activity with lower 

amplitude is likely to be missed by this overly simplified technique. The HMM 

on the other hand relies on the occurrence of a specific multivariate spatio-

spectral pattern. Consequently, it is less likely to miss epileptiform bursts. 

The HMM has demonstrated advantages when looking at multi-focal epilepsy 

cases. In such complex cases, ECD is limited since one must make an a-priori 
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decision on the number of active foci. EKM is better, since it allows imaging of 

multiple regions, and the manual comparison of kurtosis markers can identify 

whether one sharply contoured event from one location consistently precedes 

another. Similarly, the HMM can identify multiple epileptiform foci but 

provides more information regarding the temporal relationship between the 

identified regions. Specifically, where multiple foci appear within a single state, 

then those regions, by definition are related temporally, in other words, the 

regions are “active” together. This was seen in epilepsy case 4 (Figure 6.5) in 

which (in 6/13 cases) an epileptogenic focus close to an area of resected tissue 

in the frontal lobe appeared alongside a second peak in parietal cortex. The 

signals from the second peak were not recognisably epileptiform and thus had 

initially been dismissed, however the fact that the activity generated increases 

in variance in synchrony with the peak close to the resection zone indicates 

that it is likely a part of the epileptic network causing the frontal activity. Thus, 

simply by virtue of the epileptic state containing two peaks, we gain more 

information than we would with an equivalent image acquired using EKM. 

Similarly in case 3 (Figure 6.4), We discovered two states containing 

epileptiform activity. In this case, each state contained only one region. 

However, the states demonstrated a temporal dependence according to the 

transition probability matrix; specifically, a burst of activity in temporal lobe 

was almost always preceded by a similar burst in frontal lobe. This again is an 

example of how the additional information afforded by the HMM might be 

used to provide valuable information about an epileptic network. In sum, the 

evidence presented here not only demonstrates localization of epileptiform 

activity, but also points the way to how the underlying mathematical 

framework of the HMM can offer more information beyond that gained from 

existing approaches. 

There are a number of possible extensions to the present methodology which 

should be considered. First, the current version of the model operates on 

sensor space data, and localization is achieved using a beamformer. It is 

theoretically possible to apply the beamformer first, and then the HMM in 
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source space, and indeed this may offer additional information, for example 

on the connectivity between epileptic foci in multi-focal cases. However, it is 

also significantly more computationally demanding since the HMM must be 

run on many thousands of (voxel based) signals rather than a few hundred 

channels. This was found to be impractical, and whilst brain parcellation offers 

a means to reduce dimensionality, it also reduces spatial specificity which is of 

key importance in this application. Furthermore, the epileptic focus may not 

lie exactly within one anatomical region but may be split across regions posing 

additional challenges in using a method of parcellation for the analysis.  Thus, 

we feel the method presented is the most practical currently, but the use of 

better computing may ultimately offer the opportunity to expand it. In 

addition, although we have applied our method to MEG data, application to 

EEG data or concurrent EEG/MEG data would likely also be valuable. In the 

former case, the limitations surrounding the spatial resolution of EEG would 

mean it likely that one would get low spatial specificity, but nevertheless the 

HMM might offer a useful means to automatically identify time points in EEG 

data which contain interictal events. The advent of wearable MEG systems (Hill 

et al. 2019; Boto et al. 2019) may also make ambulatory MEG a real possibility. 

In this case one would no longer have to rely on short 2-minute runs, but much 

longer datasets could be analysed. The increased amount of data would 

undoubtedly create a more accurate model which could help to overcome the 

variations in HMM output over multiple runs. Finally, whilst in this paper we 

concentrate mainly on spikes, sharps and polymorphic bursts, there are other 

forms of atypical signalling (for example, fast ripples (>200Hz) and slowing (1-

4Hz)) which are also consistently observed in patients with epilepsy. Unlike 

ECD or EKM methods, HMM could readily be extended to focus on these 

spectral features. 

6.5 Conclusion 
In conclusion, the HMM offers an alternative to ECD and EKM for identifying 

and localizing epileptiform activity in the human brain. In 10 subjects we found 

good spatial agreement between methods, with the HMM able to provide 
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localisation which matched, within a few mm, that from EKM. Moreover, we 

found that the HMM ostensibly offers more information about epileptiform 

activity generated at multiple locations. As the use of MEG continues to grow 

in epilepsy, particularly given the advent of new, cheaper, and more practical 

MEG systems, clinical pathways should look to employ the HMM, and related 

techniques, as a means for spatiotemporal mapping of epileptogenic cortex. 
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Chapter 7 

Conclusion 

Throughout this thesis, hidden Markov modelling has been used to identify 

features in MEG data that would otherwise have been missed using traditional 

analysis pipelines. The HMM was employed in three different scenarios – two 

contributed to our understanding of the healthy adult brain, and the final 

chapter provided information about the epileptiform activity in the brains of 

paediatric patients.  

7.1 Overview 
In Chapter 4, the HMM identified pan-spectral bursts which were previously 

thought to be confined to the beta band. This highlights a key strength of the 

time-delay embedded HMM; it is able to characterise states based on their 

spectral content without prespecifying the frequency band of interest a-priori. 

Waveform shapes, in unaveraged data that comprise multiple frequency 

components, are captured in their entirety. The interaction of the whole 

waveform with, for example, the behavioural outcomes of a task, is more 

relevant for the understanding of brain function, than splitting that waveform 

into its frequency components and then correlating task outcomes with each 

component separately. Interestingly, the frequency content of the bursts 

changed with task, with the resting state bursts having a more prominent alpha 

component than those bursts identified in a simple visuomotor task. The latter 

half of Chapter 4 showed that the known resting state functional connectome 

could be reproduced using a coincident burst metric, implying that 

connectivity is driven by bursts, which make up only a fraction of the MEG 

signal. Bursts also offer a unification of two different functional connectivity 

metrics, one based on oscillatory amplitude (amplitude envelope correlation) 

and one based on oscillatory phase (phase difference derivative). Our work 

suggests that coincident bursts are in phase, offering windows of maximal 

coherence, when non-coincident bursts are not.  
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This burst detection model was then extended to two cognitive tasks in 

Chapter 5 with a difference in the state selection criteria – states were now 

characterised by the time windows in which they were most likely to occur 

relative to the task. This allowed a primary and a post-stimulus state to be 

identified independently for each region of the brain, leading to spatial maps 

of the probability of entering either state. One of the key strengths of this 

method was that the PSR in different regions of the brain did not need to 

conform to a specific frequency band, which is important because different 

frequencies are dominant in different cortical areas. In the visual task, both the 

primary and post-stimulus responses were confined to the visual cortex but 

with the distinction that the PSR was unilateral, and the primary response was 

bilateral. This finding was corroborated by the grip-force results – this time the 

responses were seen in the sensorimotor areas as well as the visual cortex, but 

the PSR was mostly unilateral, and the primary response was bilateral. It would 

be interesting to see if this pattern persists across different cognitive tasks. It 

is also worth noting that neither the amplitude nor duration of the PSR was 

modulated by the length of stimulus presentation in the (entirely passive) 

visual experiment. This provides evidence that the PSR is in fact modulated by 

task difficulty.  

Chapter 6 extended the HMM analysis to clinical data from paediatric epilepsy 

patients. These patients were grouped according to the complexity of their 

epilepsy and a sensor level HMM was used to parse the data into five states. 

The time windows for state activation were then used together with an LCMV 

beamformer to create 3-D maps of state variance across the whole brain. 

Importantly, the epilepsy state was not selected automatically – all state maps 

and virtual electrode time courses were available for inspection by the user so 

that the most relevant state(s) could be selected manually. This is because the 

aim of this project was to produce a viable tool to aid clinicians who will 

undoubtedly want to check the output of any machine learning algorithm. The 

HMM identified an epileptic focus in every patient which was in agreement 

with the kurtosis mapping method used currently in clinical settings. In one of 
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the most complex patients with multifocal epilepsy exhibiting polymorphic 

activity, the HMM identified two epilepsy states, one for each focus. The 

relationship between those states was then investigated and there was a clear 

transition from one of the epilepsy states to the other, implying the direction 

of propagation of epileptiform activity. This was information which could not 

have been found with the established kurtosis mapping method. Crucially, in 

Chapter 6, the data-driven nature of the HMM allowed models of brain activity 

to be inferred which were specific to each patient. 

7.2 Future Work 
There is a quote, often attributed to Aristotle, which says “The more you know, 

the more you know you don’t know.” which is apt because this thesis has 

raised more questions than it has answered. 

Regarding bursts and functional connectivity, it would be fascinating to know 

whether there is a directionality associated with those bursts which are 

coincident but found in spatially separate regions – do bursts from one region 

lag those from the other?  In the case of resting state functional connectivity, 

in a brain region with the highest frequency of bursts, they only make up 

roughly 10% of the time course. The question then follows: what is the other 

90% of neuronal activity if it does little to contribute towards connectivity with 

the rest of the brain? This question may be explored with further models, 

perhaps an HMM applied to the remaining non-burst data. 

Post-stimulus responses are robust phenomena which are altered by 

pathology and therefore have the potential to form a biomarker for a number 

of neurological diseases. However, to use them in this way, we must first 

understand how they are altered by cognitive tasks. The traditional way in 

which the primary and post-stimulus responses are identified (by frequency 

filtering and envelope averaging over trials) misses key information – namely 

the fact that these phenomena are made up of punctate ‘bursts’ of activity on 

the single trial level. New analysis tools, like the HMM, allow these phenomena 

to be studied in greater detail, and in a way that minimises bias (because states 

are not constrained to a predefined frequency band). There is also much more 
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to be learned about the primary and post-stimulus states identified in the 

visual and grip-force tasks in Chapter 5. The HMM identified regions where 

these neural signatures exist but the primary and post-stimulus state 

characteristics should be further investigated. This would help us to 

understand how the activity in both differs, in terms of spectral content, state 

durations or signal amplitude. 

In the case of paediatric epilepsy, the HMM was able to identify an 

epileptogenic focus in all ten patients. This is impressive and implies its viability 

as a clinical method, but it is difficult to verify such techniques against a “gold 

standard” when no gold standard exists. The closest we can get would be to 

conduct a longitudinal study on epilepsy patients who undergo surgical 

resection and to compare the results of the surgery with the results of the 

HMM to confirm the ground truth focus of the epilepsy.  It would also be 

important to include a larger number of patients to confirm statistical 

significance.  

7.3 Closing remarks 
MEG recording is arguably the most sensitive means to measure human brain 

function, offering rich spatial, spectral, and temporal content which is only 

matched by invasive recordings. However, such cutting-edge technology 

requires cutting-edge analysis to interpret the data, and machine learning will 

allow us to do this, as this thesis has shown with hidden Markov modelling. 

The scope of the questions which can be answered with such a simple, yet 

flexible model, is impressive: from detection of neuronal signatures which 

underly healthy functional connectivity, to those which are modulated by 

cognitive tasks, and those electrophysiological signatures associated with 

pathology. Interpreting single-trial waveform shapes in the data used to be 

labour intensive but can now be done with unsupervised machine learning, 

helping us to interpret the data whilst minimising bias. In a clinical setting, 

because the models are data-driven, and therefore unique to each patient, this 

will surely help pave the way towards personalised medicine.  
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The world of brain imaging has seen multiple paradigm-shifts in recent 

decades; the advent of functional imaging, the realisation that patterns exist 

in functional data, even in the absence of a task, and the understanding of how 

brain networks are disrupted in disorders, to name a few. It is tempting to 

speculate that machine learning will inspire the next big shift in thinking, as we 

move away from classical analyses and towards techniques which can fully 

exploit the rich tapestry of information that neuroimaging provides. The 

human brain, with its network of approximately 86 billion neurons, remains 

perhaps the most complex puzzle in science, but neuroimaging, combined with 

techniques like the HMM, are beginning to allow us to assemble some of the 

pieces.  
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Appendix A 

Panel A of Figure A1 shows the spatial signature of burst duration, frequency, 

amplitude, and interval time, when the HMM is required to derive 6 states, 

instead of 3. Figure A1B shows the derived spectrum of the burst state for 3, 6 

and 10 states. Comparison of this with Figure 4.2 in the Chapter 4 shows that, 

qualitatively, the spatial signatures of duration, frequency, amplitude, and 

interval time are largely consistent regardless of the number of states selected. 

Similarly, the spectrum of the burst state does not change markedly. However, 

quantitative inspection of the burst duration, frequency and interval time 

shows a significant change; for example, in left sensory cortex, burst duration 

dropped from 300ms to 200ms when moving to six states from 3. This is likely 

to be a result of the mutual exclusivity of states assumption in the HMM itself; 

that is, the same amount of time must be split among more states, so a 

particular state can separate into different ones as the number of states is 

increased from a low number to a higher one, with only subtle differences 

between them. This limitation is therefore analogous to the choice of 

threshold in the more commonly used thresholding approaches to burst 

detection – in other words, the higher the threshold, the shorter the burst. 

Here, bursts will tend to be shorter if a larger number of states is selected. 

However, an important point is that whilst bursts become notionally shorter, 

their spectral content remains the same – meaning that states do not split 
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across frequencies. This important point demonstrates the robust pan-spectral 

nature of burst content regardless of parameter selection.   

Figure A1: The effect of changing the number of states on burst characterisation. Four 
different burst properties are shown in (A): burst duration, frequency of occurrence, 
relative amplitude, and the time between bursts. The brain plots show the group-
averaged results for bursts detected using 6 states in our model. These are compared 
directly with the 3-state burst output in the scatter plots below where the blue and 
black points show the 3 and 6 state outputs respectively. The error bars show the 
standard error over participants. B) The group-averaged burst-state spectra, 
computed using the multitaper, for bursts detected with a 3 (blue), 6 (orange), and 10-
state (green) model. The spectra are shown for the left sensory and left visual cortices. 
Note that the spectra are remarkably similar, showing that the HMM consistently finds 
the same burst state with the same spectral content despite having changed the 
number of states modelled. The bursts in the sensory cortex have a more prominent 
beta peak than the visual cortex which is weighted more towards alpha.  

Although this demonstrates a consistency in the model output, regardless of 

the number of states inferred, the method also relies on the selection of the 

burst state: this was the state with the highest correlation between its 

probability time course, and the amplitude of beta oscillations. Given that the 

increase in the number of states makes the burst durations shorter (see Figure 
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A1), one might reasonably expect that the burst state is splitting into two or 

more states. This would result in more than one state with a high correlation 

with the beta envelope. Therefore, more than one state might be needed to 

describe the full range of beta activity for a model inferring a larger number of 

states. 

To investigate whether this was indeed the case, the correlation was calculated 

between the probability time course and the beta envelope for each state in 

the 3, 6 and 10-state models. This was done for all subjects in two brain regions 

– the left sensory cortex (where higher beta activity is expected) and the left 

orbitofrontal cortex (where little beta activity is expected). The states were 

sorted by their correlation strength with the amplitude of beta oscillations in 

that region, so state 1 was consistently the burst state, and state 2 was the 

next-most correlated state, and so on. The average correlation value for each 

state (over all subjects) is shown in Figure A2. In each case there is a clear state 

with a larger correlation value than the others, regardless of the number of 

states inferred by the model. 
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Figure A2: The correlation of each state with the beta envelope. For each of the three 
models (3, 6 and 10-state), the burst state was selected as the one with the largest 
correlation between its probability time course and the amplitude of beta oscillations. 
The average correlation value for each of the states (over all subjects) is shown here 
for two regions, the left sensory and the left orbitofrontal cortices. The first bar in each 
group represents the burst state; the second bar represents the next-most correlated 
state and so on. The error bars show the standard error over subjects. There is a clear 
single state which correlates best with the beta envelope in each case, indicating that 
the burst state is robust to changes in the number of states inferred by the model.   
  



189 
 

Appendix B 

It is usual practice to investigate task-related connectivity in time windows of 

interest (such as the primary or post-stimulus windows or using a sliding 

window approach) (Brovelli et al. 2017; O'Neill et al. 2017; Tewarie et al. 2019). 

Given that the connectivity effects we aimed to measure were in the primary 

and post-stimulus time periods, those time windows were used when 

calculating the state-related Jaccard index connectivity in the main body of 

Chapter 5 (see Section 5.2.4). However, given that the timing of the state visits 

was crucial to their definition, the connectivity matrices should also be 

reproducible using all state visits (even those occurring outside of the relevant 

time window). The Jaccard index was therefore calculated for both the primary 

response and the PSR state over all time. The results for the grip-force 

experiment are shown in Figure B1. Although the connectivity values 

themselves are generally smaller than those from the windowed connectivity 

results, the general pattern of connectivity across the brain is maintained. This 

indicates that the timing of the state visits is meaningful throughout the entire 

experiment. Having said that, the region exhibiting the highest average 

connectivity for the primary response state has changed from the left sensory 

cortex to the right supramarginal gyrus. This is not wholly unsurprising because 

the supramarginal gyrus interprets tactile sensory data and the position of 

limbs in space. Both things will be important in the grip-force task where a 

visual cue is being coordinated with a motor response in the right hand. The 

fact that the peak location is now in the ipsilateral hemisphere is more 

surprising but could be explained by the strong left-right connectivity in the 
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primary response. The region with the highest average connectivity for the PSR 

remains the right mid-occipital gyrus.  

Figure B1: State connectivity maps for the grip-force experiment. The Jaccard index 
was calculated between every pair of regions using state visits from the whole 
experiment (not those state visits constrained to a particular time window).  The 
primary response state connectivity is shown in panel A and the post-stimulus 
response state connectivity is shown in panel B. From left to right the figures shown 
the Jaccard connectivity matrix, a plot of the top 5% (primary response) and 20% of 
connections (PSR), and the average connectivity of each region (created by averaging 
over the connectivity matrix in one direction). The region with the highest average 
connectivity for the primary response is the right supramarginal gyrus with Jaccard 
index 0.33 ± 0.06 (mean ± std over regions), for the PSR it is the right mid-occipital 
gyrus with Jaccard index 0.24 ± 0.05 (mean ± std over regions). 
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These results are corroborated by those from the visual experiment (see Figure 

B2). The overall pattern of connectivity over the cortex remains unchanged but 

the Jaccard index values themselves have reduced. The regions with the 

greatest average connectivity remain the same for both the primary and post-

stimulus states, right inferior temporal cortex and right mid-occipital gyrus 

respectively. 

Figure B2: State connectivity maps for the visual experiment using coincidence from 
all state visits across the whole experiment, not just the time windows of interest. 
Panel A shows the results for the primary response state with the Jaccard matrix (left), 
top 15% of connections displayed on a brain (middle), and average connectivity for 
each region (right). The brain region with the highest average Jaccard index was the 
right inferior temporal gyrus (0.31 ± 0.07, mean ± std over regions). Panel B shows the 
result for the PSR. The most connected region was the right mid-occipital gyrus with 
average Jaccard index 0.31 ± 0.02 (mean ± std over regions). 
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Appendix C 

Results for the remaining 6 epilepsy patients are shown in this section. 

Figure C1: Patient 2 - focal, spike and wave: The HMM and EKM localize epileptogenic 
cortex in the right frontal lobe as shown by the spatial maps in panel A. The time course 
of neural activity from the peak voxel is shown in B with the HMM state activations 
shown in red and the EKM markers as dotted lines. The spatial and temporal 
correspondence between the techniques are quantified in panel C with 6 ± 2mm 
between peak locations and 102 ± 8% of EKM markers matched by a HMM state visit. 
The average length of time spent in the epilepsy state was just 4 ± 2% (average and 
SD over runs) of the total time. Note that more than one state visit to a single kurtosis 
marker will occasionally yield values >100%. 
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Figure C2: Patient 3 - focal, spike and wave: Panel A shows spatial maps highlighting 
the location of epileptogenic cortex using the HMM (left) and EKM (right). The time 
course of activity from the peak locations are shown in B for the HMM (upper) and 
EKM (lower). The HMM state visits are highlighted in red, and the EKM markers are 
shown as black dotted lines. There is good spatial and temporal agreement between 
techniques (C) with 100 ± 1% of kurtosis markers being matched by an HMM state visit 
and 9 ± 5mm between peak locations (average and SD over runs). For this patient, the 
epilepsy state was active for 3.3 ± 0.5% of the total time. 
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Figure C3: Patient 4 - focal, spike and wave: There is good spatial agreement between 
the two methods for this patient as shown in panel A (qualitatively) and quantitatively 
in panel C (right). There was on average 3.9 ± 0.3mm between the peak locations. The 
time course of activity from the peak locations for both techniques is shown in panel 
B. HMM state visits are highlighted in red, and the dotted lines are temporal markers 
from the EKM method. There is also excellent temporal match between the two 
methods with 96 ± 5% of kurtosis markers matched by an HMM state visit (C, left). The 
epilepsy state was active for 10.4 ± 0.4% of the total time. 
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Figure C4: Patient 6 - focal, polymorphic: Interictal activity arising from the left frontal 
lobe was identified by both the HMM and EKM methods (A). The virtual depth 
electrode time course extracted from the peak voxel for both methods is shown in B 
with HMM state visits highlighted in red and kurtosis markers shown as dotted lines. 
On average over the five runs, 113 ± 14% of kurtosis markers were matched by an 
HMM state visit. Note that values greater than 100 are caused by multiple HMM state 
visits matching with a single kurtosis marker. The distance between the spatial 
localisations for the two methods was 5 ± 3mm. The HMM state was active for 1.1 ± 
0.4% of the total time. 
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Figure C5: Figure S5: Patient 7 - multifocal, polymorphic: There was a single HMM 
epilepsy state associated with each dataset (run) which localized to either the right 
temporal lobe (A) or the left frontal area (B). Time courses of activity from the peak of 
those spatial maps is shown in C with the temporal lobe exhibiting some sharp activity 
(Ci) and the frontal areas exhibiting spikes. HMM state visits are highlighted in red. 
The EKM method identified both the right temporal lobe and left frontal lobe activity 
in datasets where both were present but the HMM did not. In the two datasets with 
left frontal activity the HMM failed to identify the temporal lobe activity (so is 
outperformed by the EKM). This is likely to be because there was a heartbeat-related 
state which localized to the same location, possibly occluding the epileptiform signal 
in this case. Using ICA to remove the heartbeat from the data prior to analyses may 
remedy this in the future. However, for those peak locations that were identified by 
the HMM, the Euclidian difference between them and the corresponding EKM peak 
location was 9 ± 7mm (average and SD over runs). The number of EKM markers 
matched by an HMM state visit was 81 ± 37%, with the HMM state active for 5 ± 5% 
of the total time. So there was still good agreement between methods. 



197 
 

Figure C6: Patient 8 - multifocal, polymorphic: There was good agreement between 
methods for the spatial localization (see the maps for HMM (A, left) and EKM (A, right)) 
with an average distance between HMM and EKM peaks of 11 ± 2mm. The virtual 
depth electrode time courses for each method are shown in B with HMM state visits 
highlighted in red and EKM markers as dashed lines. The temporal match was also 
good with 88 ± 15% of EKM markers matched by an HMM state visit. The HMM state 
was active for 7 ± 3% of the total time. 
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