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Abstract 
 

Wheat yields are stagnating or declining in many regions of the planet, requiring 

efforts to improve the light conversion efficiency, i.e., radiation use efficiency 

(RUE). RUE is a key trait in plant physiology because it links light capture and 

primary metabolism with biomass accumulation and yield. High-throughput 

phenotyping (HTP) was used among a population of field grown wheat with 

variation in RUE and photosynthetic traits to build predictive models of RUE, 

biomass and intercepted photosynthetically active radiation (IPAR). The use of 

remote sensing models predicted RUE with up to 70% accuracy compared to 

ground truth data. Wheat yield can be defined as the product of solar radiation 

intercepted throughout the crop cycle, radiation use efficiency and harvest index. 

Photosynthesis is a central component of RUE but normally measured in the 

upper layers of the canopy where light conditions are saturating. Significant 

relationships were found between light saturated photosynthetic rates measured 

at initiation of booting in the top, middle and bottom layers of the canopy and 

yield. These findings indicate that there is an opportunity for yield improvement 

if we consider the requirements of photosynthesis in the middle and bottom 

layers of wheat canopies where conditions are not light saturating. The study of 

photosynthesis in the field is constrained by low throughput and lack of 

integrative measurements at canopy level. Partial least squares regression 

(PLSR) modelling was used to build predictive models of photosynthetic, 

biophysical and biochemical traits at the top, middle and bottom layers of wheat 

canopies. The combined layer model predictions performed better than 

individual layer predictions. Using HTP allowed us to increase phenotyping 

capacity 30-fold compared to conventional phenotyping methods and our 

models can be used to screen varieties for high and low RUE. There is clear 

consensus in the physiological and breeding communities that improving RUE 

will be key to boost wheat yield. In the previous years of RUE research little has 

been explored on the role of root biomass accumulation and its interaction with 

aboveground biomass accumulation, RUE and yield. Strong positive 

associations were found between above and belowground biomass accumulation 

with RUE and root biomass during the vegetative period, and negative 
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associations between yield components and root biomass accumulation, 

suggesting there is a coordination between roots and shoot in the vegetative 

period to maximize growth. However, if too much energy is invested in root 

biomass this will have an effect in decreasing aboveground biomass during grain 

filling. More research will be needed to explore new hypothesis in the field that 

accounts the effect of root biomass in canopy RUE and yield. 
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Chapter 1 Introduction 

1.1 Crop yield threatened by climate change 

Crop yield and productivity must increase at least at a rate of 2.4% yearly by 

2050 to ensure food security for a population that is growing exponentially and 

avoid famine in developing countries (Tilman et al., 2011). This will not be an 

easy task, considering that the International Panel on Climate Change (IPCC) 

has predicted increases in temperature and extreme events such as heat shocks, 

fires, formation of more powerful storms and hurricanes and the alteration of 

precipitation patterns (IPCC, 2014). This will disrupt biogeochemical cycles as 

previously has been shown for carbon (Reichstein et al., 2013), nitrogen 

(Galloway et al., 2008) and water cycles (Trenberth et al., 2014).  

This disruption of biogeochemical cycles will alter climate patterns, contribute 

to soil erosion and desertification increasing biotic and abiotic stresses for crops 

(Xu, 2016). In addition, CO2 concentration in the atmosphere is increasing at a 

rate of ~2 ppm year-1 and previous studies have suggested that elevated CO2 

concentrations could have the potential to offset environmental stresses through 

increases in photosynthesis and reduction of transpiration (Ainsworth and Long, 

2021; Jägermeyr et al., 2021; Leary et al., 2015; Long et al., 2004). These results 

need further review as recent studies have indicated that beneficial effects of 

CO2 enhancement will be substantially lowered by physiological constraints 

associated with temperature increases, and there is also a need to increase the 

extent of this type of experiment under field conditions (Ainsworth et al., 2008; 

Keenan et al., 2021; Kimball, 2016; Long et al., 2006). 



 

2 

 

In addition to other factors these changes in climate will result in thermally 

driven shorter crop cycles, an acceleration of crop development and earlier 

planting dates which together will cause  

a reduction in the total amount of light intercepted by the crop over its life cycle, 

and in consequence gas exchange and furthermore yield reduction (DaMatta et 

al., 2010; Driedonks et al., 2016; Kromdijk and Long, 2016). This will have 

socio-economic repercussions worldwide but most notoriously in developing 

countries in which the main areas of production of staple crops (wheat, maize 

and rice) are located (Rajaram et al., 1993).  

Wheat (Triticum aestivum L.) is one of the 10 most important staple crops in 

terms of cultivated land and total tonnes of food produced yearly (Table 1.1). Its 

annual production is estimated in ~765 million tons year-1 (FAO, 2021) and 

provides one fifth of total calories consumed by world population (Reynolds et 

al., 2012). In the past 50 years, wheat has had a considerable increase in yield, 

in part because of the Green Revolution where field management practices 

improved, farmers had access to more technology and breeding took a key role 

in crop sciences (Richards, 2000). Wheat genotypes developed during the Green 

Revolution have had an annual increase of ~1% under yield potential conditions 

and ~3% in stressful environments (Reynolds and Borlaug, 2006).  
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Table 1.1. First ten crops in terms of global cultivated land. Presented is the average yield and 

yearly global production. Data are results of 2019 from the Food and Agriculture Organization 

from the United Nations (FAO) database.  

Crop Cultivated land 

(km2) 

Average yield 

(ton ha-1) 

Global production 

(M ton year-1) 

Wheat 2159020 3.55 765.77 

Maize 1972043 5.82 1148.5 

Rice 1620559 4.66 755.47 

Soybean 1205016 2.77 333.67 

Barley 511499 31.08 158.98 

Sorghum 400747 14.45 57.9 

Cotton 386406 21.37 82.59 

Canola 340309 20.72 70.51 

Bean 330662 8.74 28.9 

Millet 316539 8.96 28.37 

 

1.2 Wheat yield progress 

Post-Green Revolution gains for wheat are now estimated to be between 0.5%-

0.8% year-1 (Figure 1.1) but the trend is towards stagnation and, in some cases, 

already decreasing yields in grain weight per hectare (Valluru et al., 2015). 

Previous modelling studies of climate change conditions predict a decline of 

~6% in wheat yield for every °C degree increment in global mean temperature 

(Asseng et al., 2015), thus yield gains could stagnate or even decline in the near 

future (Lobell et al., 2009; Long et al., 2015) representing a threat to world food 

security. 
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Figure 1.1. Average yearly yields from 1961-2019. Trends show that for these four staple crops, 

rice, soybean and wheat yields are not increasing at a sufficient rate to ensure food security. Data 

was retrieved from FAO.  

 

During the Green Revolution, breeding approaches for wheat improvement have 

had a pivotal role in reducing the gap between farm and theoretical yields. The 

physiological traits which received most attention was the proportion of total 

biomass allocated in the grains (harvest index, HI), resistance to diseases such 

as rust, more efficient partitioning of biomass into harvestable organs resulting 

in manipulation of source-sink ratios. Finally, to minimize lodging breeders have 

aimed for thicker stems and shorter plants to reduce the plant centre of gravity 

and make it more responsive to fertilisation. Canopy architecture has been 

another area of development with optimization of the leaf area per unit of ground 

surface (LAI), leaf angle and the preference for genotypes that can stay green for 
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longer periods during growth cycle (Foulkes et al., 2011; Parry et al., 2011; 

Reynolds et al., 2012; Richards, 2000; Valluru et al., 2015).  

On the other hand, in heat and drought environments, the effort is aimed to 

improve water use efficiency (the amount of carbon (C) fixed through 

photosynthesis per molecules of water transpired, WUE). High WUE may be 

associated with lower stomatal conductance (gs), higher canopy temperatures 

and reduced photosynthetic capacity thus making it a trait that needs to be 

studied altogether with other physiological traits to ensure there will be no 

decreases in gas exchange under optimal growth conditions (Araus et al., 2002; 

Fischer et al., 1998; Reynolds et al., 1994).  

Except for the partitioning traits, most agronomic traits are close to theoretical 

optimization, and it has been proposed that one of the best options to further 

increase crop yields (including wheat) will be by improving canopy radiation 

use efficiency and photosynthetic capacity and efficiency (Evans and Lawson, 

2020; Kromdijk and Long, 2016; Lawson et al., 2012; Murchie et al., 2009), but 

recent reviews in the topic have suggested other avenues such as improving 

agronomic N use in crops (Sinclair et al., 2019) as well as including less studied 

plant organs such as spikes, stems and roots to understand its contribution to 

crop yield (Araus et al., 2021). 

 

1.3 Photosynthesis and radiation use efficiency 

More than 90% of biomass produced during a plant lifecycle derives directly 

from photosynthetic products, reason why future genetic progress in crop yield 

needs to focus in increasing the conversion rate of PAR to biomass (Long et al., 
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2006; Murchie et al., 2009). This conversion ratio is known as radiation use 

efficiency (RUE) and can be defined as the efficiency of converting light 

intercepted by the crop into biomass (mass of biomass per units of radiation, g 

MJ-1) (Murchie and Reynolds, 2013). 

One of the first crop scientists who studied this trait was Professor John 

Monteith, with his work he found that RUE is one of the main drivers of yield, 

especially under yield potential conditions, when there are no limitations in 

resource availability (i.e. water and nutrients) and that intercepted rather than 

incident radiation is critical to understand and compare photosynthesis between 

different plant species (Monteith, 1977).  

Yield is a function of the incident radiation (also known as photosynthetic 

photon flux density, PPFD), the fraction of intercepted radiation during the 

growth cycle (ε), RUE and the relationship between grain weight and total crop 

biomass (harvest index, HI) (Monteith, 1977; Reynolds et al., 2009; Murchie 

and Reynolds, 2013; Cabrera-Bosquet et al., 2016). 

The relationship between RUE and yield is expressed in its simplest form in 

equation 1: 

𝑌𝑖𝑒𝑙𝑑 =  ∑ 𝑃𝑃𝐹𝐷𝑖
𝑛
𝑖=1  𝑥  𝜀𝑖 𝑥 𝑅𝑈𝐸𝑖 𝑥 𝐻𝐼              eq. (1) 

where n is the duration of crop growth in days, PPFDi is the incident radiation, 

εi the fraction of incident radiation and RUEi the radiation use efficiency on the 

ith day respectively. 

Yield can be improved by increasing any of the elements in equation 1, since 

traits related to HI such as partitioning of carbohydrates into the spikes or traits 

related to light interception such as leaf area index are close to optimization 
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(Reynolds et al., 2000b), physiologists and breeders need to focus mainly on 

RUE related traits and considering relevant reviews on the topic the most 

important will be increasing the photosynthetic capacity and efficiency, improve 

canopy architecture and increase the duration of light capture through the 

introduction of genotypes with “stay green” (Amthor, 2010; Parry et al., 2011; 

Reynolds et al., 2012; Zhu et al., 2010; Murchie et al., 2018). 

 

1.4 Photosynthesis as a driver for RUE: an overview 

Photosynthesis transforms fixed CO2 into carbohydrates in the chloroplast, a 

cellular organelle present in eukaryote photosynthetic organisms. Chloroplasts 

are key for plant growth and development as they do not just fix carbon; they 

also oversee the synthesis of amino acids, fatty acids, is in charge of immune 

responses against pathogens, synthesis of pigments such as chlorophyll or 

carotenoids and responds to environmental stimuli (Pogson et al., 2015). 

Inside of the chloroplast, there are green pigments called chlorophylls, essential 

for photosynthesis as they allow plants and cyanobacteria to absorb energy from 

sun’s radiation. Chlorophyll absorbs light strongly in the blue (~450-495 nm) 

and red (620-700 nm) while reflecting most of the radiation from the green 

portion of the electromagnetic spectrum, hence leaves green color (Zhen et al., 

2021). 

Thus, for photosynthesis to take place plants need to utilize the portion of the 

electromagnetic spectrum from 400-700 nm although some photosynthesis is 

driven by wavelengths that can be found above or below this range (Zhen et al., 

2021). This area of the electromagnetic spectrum is commonly known as visible 
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spectrum or photosynthetically active radiation (PAR) (Murchie and Reynolds, 

2013; Sinclair and Muchow, 1999).  

Once light energy is absorbed by chlorophyll it is converted in the chloroplast 

into molecules of adenosine triphosphate (ATP) and nicotinamide adenine 

dinucleotide phosphate (NADPH). This is achieved by the electron transfer 

reactions in the thylakoid membrane and the transduction of absorbed energy via 

the chemiosmotic mechanism and ATP synthase (Figure 1.2) (Nobel, 2009). 

ATP and NADPH are then used to fuel the Calvin Benson cycle within the 

stroma of the chloroplast.  

The Calvin Benson cycle incorporates the enzyme Ribulose-1,5-bisphosphate 

carboxylase oxygenase (Rubisco), a key limiting step in photosynthesis due to 

its slow catalytic turnover, its reaction with oxygen which outcompetes CO2 

through photorespiration and its slow activation under light conditions (Bobik 

and Burch-Smith, 2015). The Calvin Benson cycle generates 3-carbon triose 

phosphates used to synthesize hexose sugars which are key for metabolic 

processes fueling growth (Figure 1.2). Hence radiative solar energy is converted 

into chemical components rich in C that accumulate in plant organs through their 

life cycle in form of biomass (Pogson et al., 2015). Furthermore, this 

biochemical process plays a key role in alleviating climate change as 

atmospheric CO2 is stored in plant tissues (IPCC, 2014).  

Photosynthesis is metabolically complex and requires a high level of regulation 

and coordination between leaf cells at all orders of complexity. The 

photorespiratory pathway is an inevitable consequence of Rubisco oxygenation 

of ribulose-1,5-biphosphate (RuBP) and can result in energetic losses which has 
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become a target for photosynthesis engineering in the context of crop 

improvement. Photoprotection refers to a suite of processes that help plants 

avoid photoinactivation of photosystem II and oxidative stress (Murchie and 

Niyogi, 2011). This includes the thermal dissipation of excess excitation energy 

as heat in a process termed non photochemical quenching (NPQ) (Murchie and 

Ruban, 2020). Stomatal morphology and behaviour are another big component 

of photosynthesis. It determines the diffusion of gases into the leaf and restricts 

excessive water loss by coordinating with different organs of the plant (leaves, 

roots) by sensing through hormones if the soil moisture or ambient humidity 

might not be high enough to support the water loss cost of photosynthesis 

(Lambers et al., 2008; Nobel, 2009). 

 

Figure 1.2. Simplified photosynthesis model including light and dark metabolic reactions (i.e. 

light absorption and glucose formation). Symbols represent: A = Antenna molecules, P680 = 

Reaction center of PSII with maximum absorption at 680 nm, Pheo = Pheophytin, QA = Primary 

PSII plastoquinone acceptor, QB = Secondary PSII plastoquinone acceptor, PQ = Plastoquinone, 

PC = Plastocyanin, Fd = Ferredoxin, OEC = Oxygen evolving complex, PGA = 3-

phosphoglycerate, DPGA = Diphosphoglycerate, PGAld = Phosphoglyceraldehyde. Figure from 

Fu et al., 2020. 
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1.5 Canopy development, architecture and structure 

The role of the photosynthetic source in wheat in driving yield is dependent upon 

the stage within the canopy development process (Figure 1.3). Carbohydrate 

accumulation starts from very early growth stages up to senescence of 

photosynthetic tissues. In the early growth stages (tillering to initiation of 

booting) it is essential for the plant to capture as much radiation available as 

possible for rapid growth to form a sufficiently high LAI (3-5) to build up 

carbohydrate reserves to support a sufficiently large reproductive sink and 

anchorage/nutrient acquisition root systems. Post anthesis, the sink size and 

activity become crucial in yield formation, relying on both concurrent 

photosynthesis and the previously accumulated non-structural carbohydrates 

reserves in the stems (Saint Pierre et al., 2010). This is important because abiotic 

stresses during the reproductive process such as heat or drought stress can induce 

spikelet sterility, accelerate leaf senescence rates and cause a reduction in yield 

(Moraga et al., 2022). Post anthesis and during grain filling, wheat spikes sink 

activity shifts the dynamic of canopy photosynthesis, from leaf to spike driven, 

highlighting the importance of spike photosynthesis (Araus et al., 2021; Molero 

and Reynolds, 2020; Sanchez-Bragado et al., 2020).  

In terms of canopy architecture it has been proposed that pre-anthesis a broad-

leaved canopy is preferable to achieve full light interception (~95%) (Reynolds 

et al., 2000b) whereas post-anthesis flag erect leaves are desired as radiation 

penetrates easier through the canopy increasing photosynthesis, therefore 

biomass and yield (Richards et al., 2019). 
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Figure 1.3. Developmental stages in a wheat canopy. During the vegetative stages (emergence-

booting) photosynthetic rates, leaf area and stem elongation are at their peak. In grain filling 

photosynthetic rates are driven by source-sink dynamics caused by the formation of grains, 

photosynthesis by the spikes and bottom layers of the canopy senescence. Panels a) and b) from 

Reynolds et al., 2009; bottom panel from Slafer, 2003.  
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1.6 Options for improving crop photosynthesis 

Leaf photosynthesis can be influenced by many traits which can be divided into 

architectural traits including: leaf angle, curvature, width, length, thickness, 

plant height, and others (Foulkes and Murchie, 2011) and functional traits such 

as chlorophyll content, Rubisco and N content, stomatal and mesophyll 

conductance, adaptation to different light regimes, dissipation of excess heat (i.e. 

non photochemical quenching, NPQ), respiration, water use efficiency (WUE) 

and photosynthetic N use efficiency (PNUE) for photosynthesis, the latter two 

which come at a very high energetic cost for the plant (Hikosaka, 2016; Murchie 

et al., 2018; Evans and Lawson, 2020). These represent physiological processes 

and traits that have been receiving attention from the scientific community 

engaged in photosynthesis improvement to boost crop yield. 

It has long been established that crop RUE operates below its theoretical 

efficiency (Zhu et al., 2008) due to metabolic “losses” that happen at multiple 

scales which results in reduction in energy conversion to biomass (Murchie, 

2017; Reynolds et al., 2012). Then, increasing the photosynthetic capacity of 

wheat canopies will have several implications on many fields of science 

requiring interdisciplinary efforts to fulfill it.  

One option is to increase Rubisco affinity to CO2 and catalytic rate to outcompete 

photorespiration, which reduces photosynthetic efficiency (Sharwood, 2017), 

this could be achieved by exploiting natural variation in Rubisco properties for 

example by studying either ancient races or modern genotypes to predict the 

catalytic variations of Rubisco adaptations under different environments 

(McAusland et al., 2020; Prins et al., 2016). 
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Biotechnological approaches include introducing cyanobacterial CO2 

concentrating mechanisms using bicarbonate transporters and 

microcompartments containing Rubisco called carboxysomes. Furthermore 

reducing the size of Rubisco molecules can drastically diminish the N 

requirement of the plant and increase photosynthetic efficiency (Ort et al., 2015) 

and engineer a photorespiratory bypass pathway in the chloroplast or the 

peroxisome or by oxidizing the glycolate to CO2 in the chloroplast (Peterhansel 

et al., 2013), these strategies have been deemed as an important modification for 

increasing biomass in C3 plants such as rice (Shen et al., 2019), arabidopsis 

(Basler et al., 2016) and camelina (Dalal et al., 2015) but results should be taken 

with caution as these modifications at cellular level depend on the regulation of 

other metabolic pathways in conjunction with photorespiration (Xin et al., 2015). 

Another option to increase photosynthetic capacity and efficiency, is the 

bioengineering of C3 crops with the same carbon concentration mechanisms 

(Kranz like anatomy) used by C4 plants that will allow wheat to use radiation 

more efficiently as currently efficient conversion of solar energy are ~6% for C4 

crops and ~4.6% for C3 crops (Zhu et al., 2010). This could trigger a more 

efficient use of water and nitrogen, as well as reducing the inefficiency of 

photosynthesis due to competition with photorespiration (Long et al., 2015; Ort 

et al., 2015; Sage et al., 2012; Sage and Stata, 2015).  

The duration of light capture is an important characteristic to improve as light 

availability is highly heterogeneous during different timescales (e.g., seconds, 

hours, days, months) and these fluctuations regulate the light quality which 

plants rely on (Murchie and Niyogi, 2011).  
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Plants developed mechanisms to cope with this variability, for example short-

term “memory” light history for changes at seconds or minutes or long-term 

changes in structure and stoichiometry of the leaves (Retkute et al., 2015). Other 

mechanisms that can be exploited are shade tolerance and genotypes that could 

efficiently use the “sun fleck” resource within the canopy (Murchie et al., 2009; 

Murchie and Reynolds, 2013) as it has been found with understory plants 

growing in forest floors that sun flecks can represent up to 60% of total daily 

carbon gains (Niinemets, 2010; Way and Pearcy, 2012). 

For these reasons it has been suggested that the selection of wheat genotypes 

with improved dynamic responses of photosynthesis are important. These 

include NPQ characteristics such as increased NPQ capacity and acceleration of 

the relaxation of NPQ under fluctuating light conditions (Hubbart et al., 2018; 

Kromdijk et al., 2016; Murchie and Lawson, 2013). Furthermore, faster 

regulation of stomatal aperture under dynamic light will help improve 

photosynthetic capacity and efficiency (Lawson and Blatt, 2014), particularly 

now that evidence shows that the responses of photosynthesis and stomatal 

aperture to dynamic light conditions might be mismatched, and the same goes 

for steady state conditions (Vialet-Chabrand et al., 2017) which if synchronized 

could represent an important source of carbon gain for wheat. Moreover, 

reducing the light harvesting antenna size could improve photosynthetic rates, 

for several reasons, possibly to avoid saturation of the photosystem I and II 

complexes but also to improve light distribution within the canopy (Song et al., 

2017; Zhu et al., 2010). 

Canopy architecture is another avenue for wheat yield improvement. LAI values 

have reached its optimum for wheat canopies (values between 3-5), but 
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architecture can still be improved by manipulating leaf width, length and angles 

in respect to their position in the stem. This will help wheat to adapt quicker 

from high to low and vice versa light transitions in short time scales (Murchie, 

2017; Murchie et al., 2018). 

Crop stands with higher LAI and erect leaves have the capacity to intercept more 

light than ones with flat canopies and evidence is showing higher biomass and 

yield (Richards et al., 2019). This phenomenon can be explained thanks to Beer’s 

law, which crop scientists have adapted characterizing canopies to estimate the 

fraction of light absorbed by each stratum of the canopy. In this case erect 

canopies have a lower extinction coefficient, and this means that light will 

distribute homogeneously within the canopy and in the opposite flat canopies 

have a higher extinction coefficient and light will distribute heterogeneously 

through the canopy (Figure 1.4), with the lower layers receiving ~5-10% of 

incident radiation (Cabrera-Bosquet et al., 2016; Mantilla-Perez and Fernandez-

Salas, 2017; Sinclair and Muchow, 1999; Robles-Zazueta et al., 2022). 

To improve yield, canopy architecture needs to be optimised by redistributing 

nitrogen (N) within the canopy at key growth stages: at initiation of booting to 

maximize photosynthetic rates and during grain filling to sustain both spike and 

leaf photosynthesis (Foulkes et al., 2011; Foulkes and Murchie, 2011; Sanchez-

Bragado et al., 2020) and by selecting stay-green genotypes to keep green tissues 

(i.e. physiologically active) close to physiological maturity (Parry et al., 2011; 

Pinto et al., 2016; Thomas and Ougham, 2014). Finally, manipulations of other 

organs of the canopy such as spikes and stems has been addressed recently and 

findings suggest that spikes can play a major role in CO2 uptake as bottom and 

middle layer leaves start to senesce (Sanchez-Bragado et al., 2014; Molero and 
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Reynolds, 2020) and stem photosynthesis might be an important target to 

improve canopy photosynthesis (Simkin et al., 2020). 

If all these goals stated above are achieved and photosynthetic capacity, 

efficiency and stomatal dynamics are improved wheat yields can increase more 

than 50% compared to actual yield rates (Reynolds et al., 2009). 

 

 

Figure 1.4. Diagram depicting the concept of light distribution within a canopy. On the left side 

(darker plants) a floppy wheat canopy is represented where LAI is at optimal values (3-5) and 

there is a high extinction coefficient which reduces the amount of light that penetrates to the 

lower strata of the canopy. In the right side (brighter plants), an erect canopy with smaller LAI 

and upright leaves is represented. A smaller extinction coefficient and higher light penetration 

through the canopy is expected in this type of canopies which are characterized by zones of high 

productivity at the top and medium productivity in the bottom layers with leaves adapted to 

dynamic light conditions and delayed senescence rates. 
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1.7 Plant phenotyping 

A phenotype can be defined as the manifestation of traits that result from the 

interaction between an organism and the environment where it develops (Mahner 

and Kary, 1997).  

From this point of view, we can define plant phenotyping as methodologies used 

to measure physiological or structural traits such as plant growth, resource use 

efficiency, gas exchange, architecture, organ stoichiometry, partitioning of 

assimilates into plant organs and others, at different spatiotemporal scales (from 

organs to canopies and from seconds to years), with an emphasis for non-

invasive technologies (Fiorani and Schurr, 2013) 

To achieve higher yields, phenotyping needs to be improved at the same pace 

genotyping has done in the era of “omics” (Poland et al., 2012), to reduce the 

bottleneck in phenotyping, phenomes and genomes need to be studied at the 

same time scales and accelerate the screening process (Cabrera-Bosquet et al., 

2012; Reynolds and Langridge, 2016; Reynolds et al., 2020; Tester and 

Landridge, 2010).  

Several authors have recently addressed the term “phenomics” (or high-

throughput plant phenotyping, HTP) which can be defined as the use of novel 

methodologies which include —but is not restricted to— remote sensing, 

programming, data mining, ecophysiology and imaging techniques that allow 

phenotyping in a multi-dimensional matrix with different developmental stages 

and environmental scenarios (Araus and Cairns, 2014; Fiorani and Schurr, 2013; 

Furbank and Tester, 2011).  
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Examples of tools used for HTP purposes are manual measurements of 

chlorophyll fluorescence for rapid assessment of photosynthetic parameters such 

as quantum yield or chlorophyll fluorescence responses to dynamic light (Table 

1) (Baker, 2008; Murchie and Lawson, 2013), canopy temperature 

measurements (Flexas et al., 2012) or infrared imaging to relate to gs 

(McAusland et al., 2013). More recently the use of chlorophyll fluorescence and 

sun induced fluorescence (SIF) has been used to estimate canopy photosynthesis 

(Pinto et al., 2020) and field measurements of spectral reflectance have become 

the new gold standard for HTP of traits such as photosynthesis, gs, WUE, 

accumulation of biomass, biochemical and biophysical leaf traits (Cotrozzi and 

Couture, 2020; Garbulsky et al., 2011; Heckmann et al., 2017; Robles-Zazueta 

et al., 2022; Silva-Pérez et al., 2018) and recently RUE and biomass at canopy 

scale (Robles-Zazueta et al., 2021; Tewes and Schellberg, 2018).  

The scales and tools used to monitor crops using remote sensing can vary in price 

and complexity, but the most common ones are unmanned aerial vehicles 

(UAV), phenomobiles, field spectroradiometers and satellites (e.g. MODIS 

Terra, MODIS Aqua, LANDSAT missions, AVHRR). From these tools UAVs, 

phenomobiles and field spectroradiometers combine precision, speed and are 

easy to handle and coupled with a variety of sensors with different spectral 

resolutions (e.g. RGB, NDVI, red edge, near infrared, multi or hyperspectral, 

and thermal) (Sankaran et al., 2015) have become cheaper are paving the way as 

a useful tool in crop phenotyping programs (Araus and Cairns, 2014; Bendig et 

al., 2012). 

These tools work mainly by two different approaches, active sensing and passive 

sensing. Active sensors tools emit a light pulse at different wavelengths of the 
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electromagnetic spectrum (often referred as bands), while passive sensors do not 

emit these pulses. Both active and passive sensors measure the signal that comes 

back after it had interacted with an object (i.e. clouds, vegetation, water, soil, or 

a mix of different objects) (Turner et al., 2003). 

The spectral resolutions of these measurements can vary depending on spectral 

resolution of the instrument, but usually range between 300-2500 nm (Table 

1.2). For example, the most common vegetation index, the normalised difference 

vegetation index (NDVI) which is calculated with the reflectance from the bands 

located in the near infrared and red electromagnetic spectrum (R800-

R680/R800+R680), has been used to study plant growth, canopy greenness, biomass 

dynamics and the amount of absorbed photosynthetically active radiation 

(APAR) (Pask et al., 2013; Tattaris et al., 2016). Other areas of the spectra with 

physiological relevance are the near infrared (700-1100) for photosynthesis and 

biomass accumulation, the shortwave infrared (1300-2500) for biochemical and 

biophysical traits (Robles-Zazueta et al., 2022). 

The use of HTP will be necessary for more accurate and rapid phenotyping of 

large wheat populations in order to speed up screening and increase genetic 

gains, and to upscale physiological traits related to RUE (Furbank et al., 2019). 

This trait is difficult to measure in large populations because it involves 

destructive sampling at different growth stages, requires hard labour and 

resources and in case of harvest sampling error yield data can be compromised. 
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Table 1.2. Most common measured physiological traits in breeding programs. Measurements are divided in conventional methods (low throughput, CM) and novel methods 

(high throughput, HTP). 

 Measurement type Temporal 

resolution 

Spatial resolution Wavelength Applications Knowledge 

frontier 

References 

Trait CM HTP CM HTP CM HTP    

Plant 

biomass, 

yield 

Destructive 

sampling on 

key growth 

stages, yield 

components 

Vegetation indices, 

RGB imagery, Light 

Detection and Radar 

data (LIDAR) 

Low  High Whole 

plants 

Canopy RGB (400-700 

nm), 

Near Infrared 

(NIR) (700-850 

nm), 

Red Edge (680-730 

nm) 

Aboveground 

biomass 

estimation, 

canopy 

greenness, 

growth 

monitoring 

 

Root biomass 

estimation, 

increase the 

accuracy of 

biomass 

estimation, 

estimation of 

yield 

components 

(Cabrera-Bosquet et 

al., 2011; Fiorani and 

Schurr, 2013; Robles-

Zazueta et al., 2021; 

Sankaran et al., 2015; 

Tattaris et al., 2016; 

Ustin and Gamon, 

2010; White et al., 

2012) 

 

 

Canopy 

architecture 

(height, leaf 

structure, 

canopy 

 

 

Manual 

measurements 

using 

measuring 

tape, biomass 

 

 

 

RGB imagery, 

light detection and 

ranging data (LIDAR 

measurements), 

 

 

Low to 

high 

 

 

 

High 

 

 

Whole 

plants, 

canopy 

 

 

 

Whole 

plants,  

canopy 

 

 

RGB (400-700 

nm), 

Near Infrared (NIR) 

(700-850 nm), 

 

 

Aboveground 

biomass, 

resource 

capture by the 

crop (carbon, 

 

 

Estimation of 

RUE using 

remote sensing, 

reconstruction 

of canopies in 

 

 

(Burgess et al., 2017a; 

Burgess et al., 2017b; 

Cabrera-Bosquet et al., 

2016; Hämmerle and 

Höfle, 2016; Müller-
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density, LAI, 

light 

interception),   

RUE 

harvest and 

light 

interception 

measurements,  

measurement 

of leaf width 

and length, 

sceptometer 

multispectral and 

hyperspectral 

imagery, 3D canopy 

reconstruction using 

RGB cameras, 

stereo imaging,  

kinnect sensor 

Hyperspectral 

(300-2500 nm) 

light, nitrogen, 

water), leaf 

length, width 

and angle 

the field to 

estimate light 

interception, 

photosynthesis 

and biomass,  

 

Root 

architecture, 

manipulation of 

canopy 

architecture to 

increase 

resource capture  

Linow et al., 2015; 

Paulus et al., 2014; 

Pound et al., 2017; 

Robles-Zazueta et al., 

2021) 

Phenology: 

Emergence, 

heading, 

flowering, 

senescence, 

greenness 

Visual 

assessment 

using the 

Zadoks 

growth scale, 

use of low-

cost RGB 

cameras 

RGB imagery using 

photogrammetry, 

hyperspectral 

imagery and spectral 

ground data to 

calculate vegetation 

indices related to 

plant greenness and 

senescence 

Medium High Canopy Canopy RGB (400-700 

nm), 

Near Infrared 

(NIR) (700-850 

nm), 

Hyperspectral 

(300-2500 nm) 

Nutrition and 

water 

management, 

pests and 

diseases 

control 

Develop stay-

green genotypes 

to increase 

photosynthesis 

and biomass 

without 

compromising 

other yield 

components, 

(Lopes and Reynolds, 

2012; Pinto et al., 

2016; Sadeghi-Tehran 

et al., 2017) 
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reduction of the 

timeframe 

between booting 

and anthesis 

stages to 

increase yield 

Gas 

exchange 

traits: 

Net CO2 

assimilation, 

stomatal 

conductance, 

transpiration, 

chlorophyll 

fluorescence, 

pigments 

Infrared gas 

analyzer 

(IRGA), 

Leaf 

porometer, 

Canopy 

temperature, 

Canopy 

reflectance, 

Fluorometer 

Sun-Induced 

Fluorescence (SIF), 

Hyperspectral UAV 

and ground data, 

Thermal imagery, 

Scale Invariant 

Feature Transform 

(SIFT) 

Low 

(few 

samples 

at key 

phenolog

ical 

stages) 

to 

medium 

(measure

ments 

every 

week) 

Low 

to 

high 

Organ 

(i.e. 

leaves 

or 

spikes) 

Canopy Chlorophyll 

fluorescence at 760 

nm, 

Hyperspectral 

(300-2500 nm) 

 

Net CO2 

assimilation at 

leaf, canopy  

and ecosystem 

levels, 

circadian 

rhythm in 

plants to see 

how they use 

light during 

the whole day, 

machine 

learning to 

estimate 

photosynthesis 

Integration of 

methods from 

leaves (gas 

exchange) to 

ecosystem (eddy 

covariance and 

satellite data),  

integration 

through 

modelling of 

RUE, NUE and 

WUE  

 

(Babar et al., 2006; 

Baldocchi, 2014; 

Blackburn, 2007; 

Garbulsky et al., 

2011; Guo and 

Trotter, 2004; Li et 

al., 2010; Meroni et 

al., 2009; Ollinger, 

2011; Peñuelas et al., 

2011; Pinto et al., 

2017; Silva-Pérez et 

al., 2018; Tindall et 

al., 2015; Zhu et al., 

2004; Furbank et al., 

2021) 
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1.8 Hypothesis 

1. The main components of RUE are biomass and intercepted radiation by the 

canopy. Based on this we hypothesize that predictive models using reflectance 

data collected at a canopy level will be more accurate than models using 

reflectance data at leaf level due to a better representation of canopy processes.  

2. To improve RUE and yield it has been implied that photosynthetic rates need 

to increase. Canopy architecture plays a role in the distribution of light within 

wheat canopies. We expect genotypes with erect flag leaves and broadened 

middle and bottom leaves to have higher RUE and yield compared to erect 

genotypes which usually have smaller leaf area.  

3. Models derived from rapid measurements of multiple layers of the canopy will 

produce better predictions than models created just with individual leaf layers, 

due to the unknown trait variability caused by a gradient from top to bottom of 

wheat canopies.   

4. Competition between shoot and roots for resources will affect source-sink 

ratios, harvest index and ultimately yield. Therefore, we expect that greater root 

biomass accumulation will have an antagonist effect over aboveground traits, 

especially shoot biomass accumulation, harvest index and yield.  
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1.9 Objectives 

1.9.1 Main objective 

Implement a high-throughput phenotyping approach based on field and remote 

sensing techniques to estimate RUE and photosynthetic traits at leaf and canopy 

scales and understand which canopy layer is more important for yield 

improvement while enabling rapid screening of wheat lines in a large population 

panel (PS Tails) for the purpose of rapid genetic improvement and breeding.  

 

1.9.2 Specific objectives 

1. Measure physiological traits related to RUE and photosynthesis in the 

field at leaf and canopy scale in a high biomass wheat panel under yield 

potential conditions. 

2. Predict RUE, biomass and intercepted PAR with HTP techniques based 

on vegetation indices and partial least squares regressions modelling to 

alleviate the phenotyping bottleneck of these traits.  

3. Define which layer or combination of canopy layers can explain the 

largest variability of RUE and yield to aid in the selection of appropriate 

photosynthetic screening traits. 

4. Build predictive models of photosynthetic, biophysical and biochemical 

traits and explore the use of these predictions as means to select wheat 

genotypes for higher RUE. 

5. Analyse root biomass accumulation and its relationship with 

physiological and agronomical traits to improve our understanding of the 

link between root and shoot physiology and RUE. 
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Abstract 

Wheat yields are stagnating or declining in many regions, requiring efforts to 

improve the light conversion efficiency, i.e. radiation use efficiency (RUE). 

RUE is a key trait in plant physiology because it links light capture and primary 

metabolism with biomass accumulation and yield, but its measurement is time 

consuming and this has limited its use in fundamental research and large scale 

physiological breeding. In this study, high-throughput phenotyping (HTP) 

approaches were used among a population of field grown wheat with variation 

in RUE and photosynthetic traits to build predictive models of RUE, biomass 

and intercepted photosynthetically active radiation (IPAR). Three approaches 

were used: best combination of sensors, canopy vegetation indices and partial 

least square regression. The use of remote sensing models predicted RUE with 

up to 70% accuracy compared to ground truth data. Water indices and NDVI are 

the better options to predict RUE, biomass and IPAR, and indices related to NPQ 

(PRI) and senescence (SIPI) are better predictors for these traits at the vegetative 

and grain filling stages respectively. These models will be instrumental to 

explain canopy processes, improve crop growth, yield modelling, and potentially 

be used to predict RUE in different crops or ecosystems.  

 

Keywords: Radiation Use Efficiency, high-throughput phenotyping, wheat, 

hyperspectral reflectance, vegetation indices, partial least square regression, 

physiological breeding 
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2.1 Introduction 

Staple crop yields must increase by at least at a rate of 2.4% per year to ensure 

food security for a growing population, dietary changes and expanding use of 

biofuels (Foley et al., 2011; Ray et al., 2013). Recent studies suggest that yield 

gains for staple crops are on average 1.2%-1.3% year-1 therefore it will not be 

sufficient to meet 2050 food demands (Ray et al., 2012). Moreover, climate 

change predictions of future environmental conditions suggest crops will be 

subjected to higher temperatures, flooding, drought and shifts in precipitation 

patterns which will affect development, primary metabolic events, biomass 

accumulation and yield (Porter et al., 2014; Asseng et al., 2015; Garatuza-Payan 

et al., 2018). The socio-economic repercussions will be felt worldwide but 

mostly in low-income countries (Rajaram et al., 1993) and the challenge of 

raising staple crop yields is one of the main goals for the scientific community 

in this century (Bailey-Serres et al., 2019).  

 

2.1.1 Avenues for wheat yield improvement 

Wheat (Triticum aestivum L.) is one of the most important staple crops and its 

annual production is estimated to be ~770 million tonnes year-1 (FAOSTAT, 

2020). Physiological approaches for wheat improvement have had a pivotal role 

in reducing the gap between field and theoretical yields. So far, the main 

physiological traits improved in wheat have been reduction in plant height to 

minimize lodging, the partitioning of biomass into the grain and optimisation of 

leaf area index (LAI) (Foulkes et al., 2011; Parry et al., 2011; Reynolds et al., 

2012). It has been proposed that to further increase yield it will be necessary to 



 

28 

 

improve photosynthesis and the conversion rate of photosynthetically active 

radiation (PAR) to biomass by the canopy (Long et al., 2006; Murchie et al., 

2009, 2018; Zhu et al., 2010). This conversion rate is known as radiation use 

efficiency (RUE) and is defined as the biomass (dry weight) generated per unit 

absorbed radiation, (g MJ-1) (Monteith, 1977). 

Under yield potential conditions, yield has been defined as a function of incident 

PAR, the fraction of intercepted radiation during the crop cycle (FPAR, ε), RUE 

and the relation between grain dry weight and aboveground dry biomass (HI) 

(Reynolds et al., 2005). This is expressed in equation 1:  

𝑌𝑖𝑒𝑙𝑑 =  ∫ 𝑃𝐴𝑅𝑖 𝑥 𝐹𝑃𝐴𝑅𝑖  𝑥 𝑅𝑈𝐸𝑡  𝑥
𝑛

𝑖=1
 𝐻𝐼                                eq. (1) 

Where n is the day when a genotype reaches physiological maturity, PARi is the 

incident radiation in the ith day, FPARi the fraction of incident radiation absorbed 

of the ith day, RUEt the radiation use efficiency of the crop cycle and HI the 

harvest index.  

Theoretically yield could be improved by increasing any of the elements from 

equation 1 but since traits related to harvest index and light interception are close 

to optimum, the focus to increase yield should be shifted on improving RUE 

(Amthor, 2010; Zhu et al., 2010; Parry et al., 2011). Due to the complexity of 

RUE being the product of many underlying processes that are sensitive to the 

environment and the fact that measuring it is labour and cost intensive, its 

potential for increasing yield it is not currently exploited in wheat breeding 

programs. Therefore, it is necessary to develop high throughput methods to 

measure and predict RUE for field research and breeding purposes.  
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2.1.2 Importance of radiation use efficiency in the context of yield 

improvement 

The importance of RUE in plant physiology resides in the association of RUE 

and yield, as RUE alone can explain ~40% of its variability and it can help us to 

elucidate the roles of light capture and key plant processes of leaf biochemistry 

that drives biomass and yield (Hubbart et al., 2018; Molero et al., 2019). 

Evidence from FACE experiments suggest that there is room for RUE 

improvement that could be driven by leaf photosynthesis (Ainsworth and Long, 

2005, 2021) and it has been suggested that even small increases in these two 

traits will have a major impact in wheat yield if HI can be maintained to modern 

levels (Parry et al., 2011). In contrast with the negative correlation existing 

between aboveground biomass measured at different growth stages and HI 

(Aisawi et al., 2015; Molero et al., 2019; Sierra-Gonzalez et al., 2021), no 

negative associations were observed between HI and RUE measured in the 

vegetative stages and across the whole crop cycle (Molero et al., 2019). Hence, 

increasing RUE is a promising strategy to achieve further genetic gains in yield 

without penalising HI.  

In order to measure RUE in a crop canopy it is necessary to harvest aboveground 

biomass for at least two points in time, which is time consuming and can 

compromise the accuracy of yield measurements in the remaining plot area. 

Especially if several harvests throughout the crop cycle are needed this becomes 

a big issue for breeding programs. However, this may be solved using non-

invasive phenotyping techniques.  
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2.1.3 Phenotyping of radiation use efficiency and its components 

High-throughput phenotyping (HTTP) refers to the use of novel non-invasive 

techniques to measure physiological and agronomical traits (e.g., plant growth, 

biomass accumulation, gas exchange, canopy architecture, organ stoichiometry, 

grain yield) combining multidisciplinary knowledge that allows plant 

phenotyping at different spatio-temporal (seconds to years) and hierarchical 

scales (cells to canopies) (Furbank and Tester, 2011; Fiorani and Schurr, 2013; 

Tardieu et al., 2017; Araus et al., 2018; Reynolds et al., 2020).  

Optical remote sensing techniques are among the most widely used for HTP. 

This data usually ranges from 350-2500 nm encompassing areas of the visible 

(400-700 nm), near infrared (NIR, 700-1350 nm), red edge (680-730 nm) and 

shortwave infrared (1350-2500 nm) spectrum (Gamon et al., 2019). 

Hyperspectral data have been used mainly in two ways: spectral indices (also 

known as vegetation indices, VI) calculated from relations between reflectance 

at specific wavelengths and physiological traits (Penuelas et al., 1997; 

Blackburn, 1998; Cabrera-Bosquet et al., 2011) and by using the whole spectra 

as an individual data point to predict traits of interest (e.g. leaf N and C content, 

CO2 assimilation, respiration, maximum velocity of Rubisco carboxylation, 

electron transport rate, leaf mass and specific leaf areas) using statistical methods 

such as partial least square regression (PLSR) (Serbin et al., 2014; Yendrek et 

al., 2017; Silva-Pérez et al., 2018; Coast et al., 2019; Fu et al., 2020). The 

advantage of these two approaches is that hundreds or thousands of lines can be 

screened without the need of destructive and time-consuming field sampling. 

Moreover, as HTP technologies become cheaper, crop physiologists and 
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breeders will be able to study complex traits more cost effectively (Reynolds et 

al., 2020). 

Previous studies have predicted yield in wheat and rye (Montesinos-López et al., 

2017; Galán et al., 2020), aboveground biomass in wheat, rice, rye and barley 

(Babar et al., 2006; Gnyp et al., 2014; Marshall and Thenkabail, 2015; Galán et 

al., 2020) and RUE in maize (Tewes and Schellberg, 2018) using optical remote 

sensing approaches, but to date there is not such an effort to predict RUE in the 

field using a HTP physiological breeding approach for wheat. The impact of 

predicting a multicomponent trait like RUE with a HTP approach in field 

conditions would be very high for physiological breeding programs while its full 

implementation would be very feasible in medium term (Furbank et al., 2019; 

Roitsch et al., 2019). 

2.2 Hypothesis 

Our hypothesis is that prediction models using canopy reflectance data will be 

more accurate than models using a different combination of sensors (which 

include leaf reflectance), due to a better representation of canopy processes.  

2.3 Objectives 

The objectives of this study are the prediction of RUE, biomass and intercepted 

PAR (IPAR) with HTP techniques based on vegetation indices and partial least 

squares regression models to define which approach will help more to alleviate 

the phenotyping bottleneck of these traits.  
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2.4 Materials and methods 

2.4.1 Wheat population 

Spring bread wheat cultivars were chosen from the ‘Photosynthesis Respiration 

Tails’ (PS Tails) trial which consisted of 80 genotypes including advanced line 

material coming from the High Biomass Association Panel (HiBAP) from 

CIMMYT. This germplasm is characterized by their high aboveground biomass 

and for containing lines with contrasting RUE expression and has breeding value 

as it represents material that breeders use for their crosses for yield potential (for 

further information of HiBAP see Molero et al., (2019)). For this study a subset 

of 11 genotypes (Table 2.1) was selected based on RUE at the vegetative and 

grain filling stages, yield, HI, flag leaf photosynthesis and plant height to 

consider different levels of productivity and contrasting canopy architecture. 

This selection was made using data available from the 2016/2017 field season at 

CIMMYT’s experimental station (Molero, unpublished data). 

The 11 lines were studied in three consecutive field seasons (2017/2018, 

2018/2019 and 2019/2020 from now on referred to as Y1, Y2 and Y3 

respectively). Experiments were carried out at CIMMYT’s Campo Experimental 

Norman E. Borlaug (CENEB) field station in Ciudad Obregon, Sonora, Mexico 

(27° 23’ 46’’ N, 109° 55’ 42’’ W, 38 mamsl) during the spring wheat growth 

season that encompasses early December-early May. 
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Table 2.1. Reference ID, cross name, average days to initiation of booting (DTInB), days to anthesis (DTA), days to physiological maturity (DTPM), intercepted PAR, 

aboveground biomass and radiation use efficiency measured at different growth stages for the wheat genotypes studied. ~Genotypes studied only in Y2 and Y3. 

ID Cross name DTInB DTA DTPM IPARE40 IPARInB IPARA7 IPARPM BME40 BMInB BMA7 BMPM RUE_E40InB RUE_InBA7 RUE_preGF RUE_GF RUE_Total 

1 
KRICHAUFF~ 

 
60 77 119 224.39 365.82 543.27 833.56 188.47 466.32 978.38 1348.94 1.75 2.91 2.33 1.21 1.61 

2 

W15.92/4/PASTOR//

HXL7573/2*BAU/3/

WBLL1 

 

59 74 113 230.22 359.2 524.44 762.38 217.14 515.19 905.55 1210.31 2.21 2.3 2.11 1.26 1.55 

3 
KUKRI 

 
64 79 117 232.446 405.17 575.98 836.45 196.14 569.52 1075.3 1319.4 2.06 3.08 2.52 1.04 1.62 

4 
MUNAL #1 

 
65 80 116 226.94 406.3 565.17 804.02 199.21 558.62 998.14 1235.51 1.87 2.8 2.27 0.85 1.51 

5 
JANZ~ 

 
60 73 116 229 371.49 534.41 822.75 190.05 497.99 893.31 1260.97 2.08 2.39 2.21 1.41 1.57 

6 
CHEWINK #1 

 
62 80 118 233.53 385.28 567.81 843.43 186.36 517.53 994.67 1319.23 2.02 2.57 2.32 1.12 1.62 

7 
SOKOLL//PUB94.15.

1.12/WBLL1 
60 75 116 232.73 375.19 551.88 833.83 211.96 495.62 943.88 1390.22 1.92 2.58 2.28 1.55 1.77 

8 

PUB94.15.1.12/FRTL/

5/CROC_1/AE.SQUA

RROSA(205)// 

59 74 116 230.92 368.04 538.45 824.21 214.35 551.04 1027.9 1445.18 2.26 2.71 2.56 1.43 1.8 
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BORL95/3/PRL/SAR

A//TSI/VEE#5/4/FRE

T2 

 

9 

C80.1/3*QT4118//KA

UZ/RAYON/3/2*TRC

H/7/CMH79A.955/4/ 

AGA/3/4*SN64/CNO

67//INIA66/5/NAC/6/

RIALTO 

/8/WBLL1*2/KURUK

U 

 

64 80 120 230.75 409 576.06 870.62 205.15 607.09 1127.2 1416.93 2.11 2.77 2.55 1.15 1.68 

10 
QUAIU*2/KINDE 

 
58 74 114 223.5 346.8 522.34 759.87 206.70 517.04 987.58 1345.11 2.35 2.59 2.44 1.37 1.72 

11 
BORLAUG100 

F2014~ 
59 74 115 228 357.51 525.58 791.4 202.45 444.28 953.7 1259.33 1.65 2.86 2.35 1.19 1.57 

 Mean 61 76 116 229.31 377.26 547.76 816.59 201.64 521.84 989.59 1322.83 2.03 2.69 2.36 1.23 1.64 

 H2 0.91 0.92 0.84 0 0.88 0.92 0.76 0 0.48 0.57 0.7 0.23 0 0.25 0.46 0.6 

 G *** *** *** ns *** *** *** ns ms * ** ns ns ns ms * 

 Y *** *** *** *** * *** *** ns ns ns ** * ns ns ns *** 

 GxY *** *** *** ns * ns * ** * ns * ns ns ns ns ms 

BM_E40: biomass 40 days after emergence, BM_InB: biomass at initiation of booting, BM_A7: biomass 7 days after anthesis, BM_PM: biomass at physiological maturity, IPAR_E40: accumulated intercepted PAR 40 

days after emergence, IPAR_InB: accumulated intercepted PAR at initiation of booting, IPAR_A7: accumulated intercepted PAR 7 days after anthesis, IPAR_PM: accumulated intercepted PAR at physiological maturity, 

RUE_E40InB: RUE from the period of 40 days after emergence to initiation of booting calculated with APAR, RUE_InBA7: RUE from the period of initiation of booting to 7 days after anthesis calculated with APAR, 
RUE_preGF: RUE pre grain filling calculated with APAR, RUE_GF: RUE grain filling calculated with APAR, RUE_Total: RUE of the whole crop cycle calculated with APAR. ms: marginally significant (0.1>p>0.05), 
* = significant at p<0.05, ** = significant at p<0.01, *** = significant at p<0.001, ns: not significant. H2 = Heritability, G = Genotype, Y = Environment, GxY = Interaction genotype by environment. 
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2.4.2 Field conditions 

Experimental design was a randomised complete block design with three 

replications in raised beds, two beds per plot (bed width = 0.8 m) and two rows 

per bed (row width = 0.2 m) in 4 m x 1.6 m plots in Y1 (plot area = 6.4 m2). For 

Y2, the same experimental design was used but the number of replications was 

increased to four, and plot length increased to 5 m x 1.6 m, increasing the area 

(plot area = 8 m2).  In Y3, irrigation system was changed to optimise the water 

use and reduce lodging in the experimental station and a drip irrigation system 

was put in place. Randomised complete block design was used with the same 

replications and plot area as Y2 but the plants were sown as six row plots with 

15 cm between rows on the flat with drip irrigation. 

Sowing dates were December 5th 2017, December 6th 2018 and December 18th 

2019 for Y1, Y2 and Y3 respectively. Emergence dates were December 12th 

2017, December 12th 2018 and December 26th 2019 (Y1, Y2 and Y3 

respectively). Harvest dates were May 8th 2018, April 30th 2019 and May 13th 

2020 (Y1, Y2 and Y3 respectively). Seed rate was ~250 g m-2 in the three years. 

Irrigation was applied four times during the crop cycle in approximate 25-day 

intervals (pre sowing, 25, 50, 75, 100 days after emergence). Plants were grown 

under optimal conditions in the field with pests, weed control and fertilisation to 

avoid limitations to yield. In Y1 fertilization was applied in the form of urea (200 

kg N ha-1) 25 days after emergence (DAE). For Y2 fertilization was divided in 

100 kg N ha-1 25 DAE and another 100 kg N ha-1 58 DAE. Finally for Y3, 100 

kg N ha-1 were applied 30 DAE and 50 kg N ha-1 50 DAE; 50 kg P ha-1 were 

applied in the three cycles when the first application of N was made.  
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Phenology was scored according to the Zadoks growth scale for cereals (Zadoks 

et al., 1974). The growth stages recorded were initiation of booting (GS41), 

anthesis (GS65) and physiological maturity (GS87) when 50% of the shoots in 

the plot reached each stage. Meteorological data from a nearby station to the 

experimental site was collected for the whole crop cycle, thermal time and 

accumulated PAR were calculated for the growth stages where biomass was 

collected (Table 2.1). 

 

2.4.3 Ground truth traits 

2.4.3.1 Light interception 

The percentage of light intercepted (LI) was measured using a linear ceptometer 

(AccuPAR LP-80, Decagon Devices, Pullman, WA, USA) at 40 days after 

emergence (canopy closure), GS41 and GS65 + 7 days. Incident, reflected and 

transmitted PAR through the canopy were measured around 11 am-1 pm when 

clear skies and low wind velocity conditions prevailed following phenotyping 

protocols (Pask et al., 2013). The following equation was used to calculate the 

percentage of LI by the canopy: 

𝐿𝐼 (%) =  
𝑃𝐴𝑅𝑖−𝑃𝐴𝑅𝑟−𝑃𝐴𝑅𝑔

𝑃𝐴𝑅𝑖−𝑃𝐴𝑅𝑟
 𝑥 100                                eq. (2) 

where LI (%) is the percentage of light intercepted by the canopy, PARi, PARr 

and PARg are the incident, reflected and transmitted PAR respectively. 

LI (%) was used to estimate the amount of intercepted PAR (IPAR) by the 

canopy in the same growth stages where aboveground biomass was harvested.  
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2.4.3.2 Aboveground biomass 

Aboveground biomass was harvested at four key developmental growth stages: 

canopy closure (40 days after emergence, 40DAE), initiation of booting (GS41), 

initiation of the grain filling period (GS65 + 7 days) and physiological maturity 

(GS87).  

At 40DAE biomass was harvested in 0.4 m2 (25 cm for each bed in the plot) and 

at GS41 and GS65 + 7d biomass was harvested in 0.8 m2 (50 cm for each bed in 

the plot). Biomass harvests were made leaving 25 cm (40 DAE) and 50 cm 

(GS41, GS65 + 7 days) at the northern side of the plots to reduce border effects 

in subsequent harvests. All fresh biomass was weighed and a subsample of 50 

shoots was weighted and dried in an oven at 70 °C for 48 h and dry weight was 

recorded. At GS87, biomass was calculated from the measurement of yield 

components. For every growth stage the aboveground biomass was calculated as 

follows: 

𝐴𝑏𝑜𝑣𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 =  𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 
𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑥 𝐻𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝐴𝑟𝑒𝑎

𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 𝑓𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡
              eq. (3) 

 

2.4.3.3 Radiation use efficiency 

RUE was estimated from the slope of the linear regression between aboveground 

biomass and the corresponding accumulated IPAR during the determined growth 

period (Monteith, 1977). Incoming radiation from a nearby meteorological 

station was used to calculate the accumulated PAR by multiplying irradiance x 

0.45 to convert it to PAR.  

RUE observations in this study are presented for five different growth periods: 

canopy closure to GS41 (RUE_E40InB), GS41 to GS65 + 7d (RUE_InBA7), 
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pre-grain filling stage (40 DAE to GS65 + 7d, RUE_preGF), grain filling stage 

(GS65 + 7d to GS87, RUE_GF) and RUE of the crop cycle which comprises the 

period from canopy closure to physiological maturity (40 DAE to GS87, 

RUE_Total). For RUE_GF and RUE_Total a correction factor was used to 

account for intercepted radiation during the last 25% (in days) of the grain filling 

period when canopy leaves start to senesce based on a light interception model 

(Reynolds et al., 2000b). Calculations were made as follows: 

𝑅𝑈𝐸_𝐸40𝐼𝑛𝐵 =  
(𝐵𝑀 𝐺𝑆41 − 𝐵𝑀 𝐸40)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆41 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐸40)
                   eq. (4) 

𝑅𝑈𝐸_𝐼𝑛𝐵𝐴7 =  
(𝐵𝑀 𝐺𝑆65 + 7𝑑 − 𝐵𝑀 𝐺𝑆41)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅  𝐺𝑆65 + 7𝑑 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆41)
                    eq. (5) 

𝑅𝑈𝐸_𝑝𝑟𝑒𝐺𝐹 =  
(𝐵𝑀 𝐺𝑆65 + 7𝑑 − 𝐵𝑀 𝐸40)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆65 + 7𝑑 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐸40)
                               eq. (6) 

𝑅𝑈𝐸_𝐺𝐹 =  
(𝐵𝑀 𝐺𝑆87 − 𝐵𝑀 𝐺𝑆65 + 7𝑑)

[(𝐷𝑇𝐴 + 25% 𝑔𝑟𝑎𝑖𝑛 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)− (𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆65 + 7𝑑)] + [(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87) − (𝐷𝑇𝐴 + 25% 𝑔𝑟𝑎𝑖𝑛 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)]
          eq. (7)           

𝑅𝑈𝐸_𝑇𝑜𝑡𝑎𝑙 =  
(𝐵𝑀 𝐺𝑆87 − 𝐵𝑀 𝐸40)

𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87 +{(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87) − [(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87) − (𝐷𝑇𝐴 + 25% 𝑔𝑟𝑎𝑖𝑛 𝑓𝑖𝑙𝑙𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)] − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐸40} 
             eq. (8)      

 

2.4.4 Remote sensing measurements 

Remote sensing data was collected above the canopy and throughout the layers 

of the canopy (flag, second and third leaves). Chlorophyll content (SPAD) was 

measured with a SPAD-502 meter (Konika Minolta, Japan), canopy temperature 

(CT) was measured using an infrared thermometer (LT 300, Sixth Sense, USA) 

and Normalized Differenced Vegetation Index (NDVI) was measured using a 

Green Seeker (Trimble, USA) from canopy closure to late grain filling at least 

once a week described by (Pask et al., 2013).  

Hyperspectral reflectance was measured using a field spectroradiometer with a 

spectral range from 350-2500 nm with a 3 nm spectral resolution in the visible-
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near infrared (VNIR) and 10 nm resolution in the shortwave infrared (SWIR) 

spectrum equipped with an optic fibre with a field of view of 25° (ASD Field 

Spec ® 3, Boulder, CO, USA). Reflectance was measured at 0.5 m at the nadir 

of the canopy with a pistol grip (ASD Field Spec ® 3, Boulder, CO, USA) under 

clear sky conditions and when low wind speeds were predominant to make sure 

we were collecting the signal from the canopy instead of soil or vegetation/soil 

mixed signals. Six data points were collected at each plot and then averaged to 

obtain the reflectance of each plot.   

Leaf reflectance was measured using a leaf clip equipped with a halogen bulb as 

light source (ASD Field Spec ® 3, Boulder, CO, USA). Healthy leaves were 

clipped in the middle portion and measurements were taken for flag, second and 

third leaves in one fertile shoot per plot. The first measurement was taken at 

GS41 and the last at GS75. Both canopy and leaf reflectance data were averaged 

to get representative values from the vegetative period (40 DAE to GS55) and 

the grain filling period (GS65 to GS75). Reflectance measurements were made 

between 10 am-2 pm where the Sun is close to its zenith at this latitude.  

 

2.4.5 Data analysis 

Adjusted means from each year were calculated for the ground truth and remote 

sensing traits as well was the predictions from PLSR using the linear model from 

package lme4 (R Core Team, 2016) with the guide user interface META-R v 

6.04 (Alvarado et al., 2020) as follows: 

𝑌𝑖𝑗𝑘 = 𝜇 + Repi + 𝜀𝑖𝑗𝑘                                                                                                    eq. (9) 
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Where Yijk is the ground truth or remote sensing trait, 𝜇 is the mean effect, Repi 

is the effect of the ith replicate, and 𝜀𝑖𝑗𝑘 is the error associated with the ith 

replication. 

If statistically significant differences were not found between genotypes, 

vegetation indices were adjusted with phenology from GS41 for vegetative 

period averages and phenology from GS65 for grain filling period averages as 

covariates. Phenotypic correlations between RUE and remote sensing traits 

(SPAD, CT, NDVI Green Seeker and vegetation indices) were calculated using 

Pearson product-moment correlations and a threshold was established to select 

only VI with statistically significant phenotypic correlations (p<0.05).  

 

2.4.5.1 Vegetation Indices 

After field sampling, average reflectance collected above the canopy and the 

leaves from each plot was processed using View Spec Pro software (Analytical 

Spectral Devices Inc., Boulder, CO, USA). These values were later used to 

calculate different VI available from the literature (Li et al., 2010; Garbulsky et 

al., 2011; Ollinger, 2011; Pask et al., 2013) and Index Database 

(https://www.indexdatabase.de/) using R Studio (R Core Team, 2016). In table 

2 are shown the VI which correlated significantly with RUE, biomass and IPAR, 

and that were used for building the predictive models. 
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Table 2.2. Common remote sensing physiological traits found to correlate with radiation use efficiency, biomass and intercepted PAR during the three field seasons measured 

in this study. Vegetation indices were calculated with data collected with an ASD Field Spec hyperspectral radiometer and when stated Green Seeker sensors, infrared 

thermometer and SPAD meter were also used to collect data. 

Trait Meaning Equation Physiological relevance Reference 

CT 

 

Canopy Temperature 

 

N/A Stomatal conductance, transpiration, root water 

uptake 

 

Reynolds et al., 1994 

 

CRI Carotenoid Reflectance 

Index 

(1/R510)-(1/R550) 

 

Carotenoid content Steddom et al., 2003 

CUR Curvature Index (R675*R690)/R6832 Diurnal variation of chlorophyll fluorescence, 

Fv/Fm 

 

Zarco-Tejada et al., 2000 

EVI Enhanced Vegetation 

Index 

2.5[(R900-R680)/(R900+6*R680-

7.5*R475+1)] 

Photosynthetic capacity, canopy greenness without 

saturation problems 

 

 

Huete et al., 2002 

GI Green Index R554/R677 

 

Canopy greenness, yield 

 

 

Smith et al., 1995 
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GNDVI-1 Green Normalized 

Differenced Vegetation 

Index-1 

R810-

[(R510+R561)/2]/R810+[(R510+R561)/2

] 

Canopy greenness, photosynthetic capacity, N 

status 

 

 

Gitelson and Merzlyak, 

1997 

J 

 

Maximum electron 

transport rate 

 

Partial least square regression modelling Leaf e- transport rate Silva-Pérez et al., 2018 

NDVI Normalized Differenced 

Vegetation Index  

(R800-R680)/(R800+R680) Chlorophyll content, canopy greenness, 

photosynthetic capacity, energy absorption 

 
 

Tucker, 1979 

NDVIGS Normalized Differenced 

Vegetation Index 

measured with a Green 

Seeker sensor 

(R800-R680)/(R800+R680) Chlorophyll content, canopy greenness, 

photosynthetic capacity, energy absorption 

 

 

Tucker, 1979 

NDWI Normalized Differenced 

Water Index 

(R860-R1240)/(R860+R1240) 

 

Canopy water content 

 

Gao, 1996 

NDWI-2 Normalized Differenced 

Water Index-2 

(R970-R850)/(R970+R850) Canopy water content 

 
 

Babar et al., 2006 
 

NDWI-3 Normalized Differenced 

Water Index-3 

(R970-R920)/(R970+R920) 

 

Canopy water content 

 

Babar et al., 2006 
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NDWI-4 Normalized Differenced 

Water Index-4 

(R970-R880)/(R970+R880) 

 

Canopy water content 

 

Babar et al., 2006 

 

 

NPCI Normalized Pigments 

Chlorophyll ratio Index 

(R680-R430)/(R680+R430) 

 

 

 

Canopy water and N status Penuelas et al., 1994 

 

OSAVI Optimized Soil Adjusted 

Vegetation Index 

(1+0.16)(R800-

R670)/(R800+R670+0.16) 

 

Chlorophyll content and canopy greenness 

reducing the effect of soil interference 

 

Daughtry et al., 2000 

PRI Photochemical 

Reflectance Index 

(R531-R570)/(R531+R570) Carotenoid content, xanthopyll cycle, gas 

exchange, non-photochemical quenching 

 

 

Penuelas et al., 1995 

PSSRa Pigment Specific Simple 

Ratio of chlorophyll a 
 

R800/R675 
 

Chlorophyll a content Blackburn, 1998 
 

PSSRb Pigment Specific Simple 

Ratio of chlorophll b 

R800/R650 

 

Chlorophyll b content  
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RARSa Ratio Analysis of 

Reflectance Spectra of 

chlorophyll a 

 

R675/R700 

 

Chlorophyll a content Chapelle et al., 1992 

RARSb Ratio Analysis of 

Reflectance Spectra of 

chlorophyll b 

R675/(R650*R700) 

 

Chlorophyll b content Blackburn, 1998 

RGR Red Green Ratio (R612+R660)/(R510+R560) 

 

Red pigments and chlorophyll content Steddom et al., 2003 

rNDVI Red edge Normalized 

Difference Vegetation 

Index 

(R750-R705)/(R750+R705) 

 

Chlorophyll content, canopy greenness, 

photosynthetic capacity, energy absorption 

 

Sims and Gamon, 2002 

SAVI Soil Adjusted Vegetation 

Index 

[(R800-

R680/R800+R680+0.75)](1+0.75) 

 

Chlorophyll content and canopy greenness without 

soil interference 

 

Huete, 1988 

SIPI-1 Structure Insensitive 

Pigment Index-1 

(R800-R445)/(R800-R680) 

 

Carotenoid and chlorophyll content Penuelas et al., 1995 

SIPI-2 Structure Insensitive 

Pigment Index-2 

(R800-R435)/(R415-R435) 

 

Plant senescence related to stress Pask et al., 2013 

SPAD N/A N/A Plant chlorophyll content 

 

Pask et al., 2013 
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SR-1 Simple Ratio-1 R800/R680 

 

Canopy greenness and chlorophyll content 

 

Sims and Gamon, 2002 

TCARI Transformed Chlorophyll 

Absorption Reflectance 

Index 

3[(R700-R670)-0.2(R700-

R550)](R700/R670) 

Canopy greenness, chlorophyll content, gas 

exchange reducing the effect of soil and non-

photosynthetic components 

 

Haboudane et al., 2002 

TCARI705,750 Transformed Chlorophyll 

Absorption Reflectance 

Index calculated with 

reflectance from 705 and 

750 nm 

3[(R750-R705)-0.2(R750-R550) 

(R750/R705)] 
 

Canopy greenness, chlorophyll content, gas 

exchange reducing the effect of soil and non-

photosynthetic components 

Wu et al., 2008 

 

VARI 

 

Visible Atmospherically 

Resistant Index 

 

 

(R560-R660)/(R560+R660-R459) 

 

 

Canopy coverage 

 

Steddom et al., 2003 

 

Vcmax/Narea 

 

Maximum velocity of 

Rubisco carboxilation/N 

content based on leaf area 

 

Partial least square regression modelling 

 

Photosynthetic N use efficiency 

 

Silva-Pérez et al., 2018 
 

WI Water Index R900/R970 Canopy water content Penuelas et al., 1997 
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2.4.5.2 Partial Least Square Regression 

Averaged reflectance spectral data of each plot collected above the canopy was 

post-processed to remove spurious data in areas of the spectra where negative or 

higher than 1 value were present. Spectral reflectance from 350-1800 nm and 

1951-2450 nm were then used to predict RUE, biomass and IPAR using the 

Principal Component and Partial Least Squares Regression package (pls) in R 

(Mevik and Wehrens, 2007) following the method proposed in (Serbin et al., 

2014). 

While building the models 80% of the dataset was used as training data and 20% 

was used as test data to validate the PLSR models. The number of components 

used in the models was based on the smallest root mean square error in the cross-

validation stage (RMSEP-CV) and smallest prediction of the residual sum of 

squares (PRESS) from the training dataset. After these steps, PLSR modelling 

generates loadings and scores which are used to generate regression coefficients 

and intercepts for each individual wavelength and thus the model can be build 

multiplying those values against each wavelength reflectance value. The 

regression coefficient (R2), the model bias and the relative error of prediction 

were considered to evaluate and compare the models. 

 

2.4.5.3 Linear models 

To build the linear models using the best combination of sensors (bcs) and 

vegetation indices measured above the canopy (cVI), best subset regression was 

used with RUE, biomass and IPAR of the different growth stages as dependent 

variables and the remote sensing traits as independent variables using the 
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software Sigma Plot 13.0 (Systat Software Inc., San Jose, CA, USA). These 

linear models assume an association between the dependent and independent 

variables as follows: 

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3+. . . 𝑏𝑖𝑥𝑖                              eq. (10) 

Where y is the dependent variable, x the independent variable and b the 

regression coefficients.  

To compare the predictive ability of the models presented in this study a set of 

criteria was considered such as the regression coefficient (R2), the variance 

inflation factor (VIF) to avoid multicollinearity between the variables used to 

predict RUE or biomass and the root mean square error (RMSE), calculated as 

follows: 

𝑅𝑀𝑆𝐸 =  √
∑(𝑋𝑖−𝑌𝑖)2

𝑛
                  eq. (11) 

Where Xi are the predicted values, Yi the observed values and n the total number 

of observations.
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2.5 Results 

2.5.1 Accumulated IPAR 

 

Figure 2.1. Intercepted accumulated PAR predictions with the different approaches used. Left 

panels represent predictions using the best combination of sensors (bcs), middle panel are 

predictions using vegetation indices derived from canopy reflectance (cVI) and the right panels 

represent predictions made with partial least square regression (PLSR). 
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IPAR_E40_bcs was predicted using a linear combination of CTvg and 

NDVIGSvg. This model had the best performance of all methods and growth 

stages for this trait with R2 = 0.91 and RMSE of 4.78 MJ m-2. In contrast, 

IPAR_E40_cVI was best predicted using NDWI-3 from the vegetative period 

and model performance was R2 = 0.75 and RMSE of 7.72 MJ m-2. With PLSR 

modelling the lowest R2 = 0.5 and highest prediction error RMSE = 14.49 MJ 

m-2 were found for IPAR_E40 (Figure 2.1).  

IPAR_InB_bcs was predicted using NDVIGSvg and PRIvg measured at the 

canopy level. Model performance was the lowest for this trait with R2 = 0.61 and 

RMSE = 17.93 MJ m-2 (Table 2.3). IPAR_InB_cVI predictions were worse than 

IPAR_InB_bcs, but they were made only using the Optimised Soil Adjusted 

Vegetation Index (OSAVI) from the vegetative period with R2 = 0.33 and RMSE 

= 23.22 MJ m-2. PLSR predictions were poor when the canopy was not fully 

closed, and we hypothesise that this could be due to mixed reflectance from 

leaves and soil affecting IPAR predictions with this method (Figure 2.1). 

IPAR_A7_bcs predictions were made using CTgf, PRIvg, GNDVI-1gf, and 

NDWI-4gf with R2 = 0.86 and RMSE = 17.66 MJ m-2. Two of these remote 

sensing traits are related to canopy water content, transpiration and plant water 

uptake (canopy temperature and NDWI-4) and one is related to LAI and canopy 

greenness (GNDVI-1) (Table 2.3, Figure 2.1). Predictions with cVI were made 

using PRI from the vegetative period and rNDVI from the grain filling period, 

model statistics were R2 = 0.66 and RMSE = 26.31 MJ m-2. PLSR predictions 

were better than cVI with RMSE = 24.99 MJ m-2 and R2 = 0.7 (Figure 2.1). 
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IPAR_PM_bcs and IPAR_PM_cVI predictions were made using the same 

remote sensing traits, PRIvg, SAVIvg and SIPI-1gf, R2 = 0.8 and RMSE = 35.33 

MJ m-2 (Table 3). PLSR predictions at physiological maturity performed the best 

in comparison to the other growth stages for this method with R2 = 0.8 and 

RMSE = 32.94 MJ m-2. IPAR_PM can certainly be predicted by either of the 

three methods proposed here and obtain similar results (Figure 1).  

 

2.5.2 Biomass 

The best estimation of BM_E40_bcs resulted from the linear model using Jmax 

modelled in the third leaf during the vegetative period (JTLvg) with R2 = 0.2 and 

RMSE = 24.53 g m-2, whereas the linear combination of WI, NDVI and SAVI 

from the vegetative growth period resulted in the best estimations for and 

BM_E40_cVI with R2 = 0.17 and RMSE = 25.83 g m-2 (Table 2.3). PLSR 

predictions at this growth stage performed worse compared to the other methods 

with R2 = 0.02 and RMSE = 52.91 g m-2 (Figure 2.2). The use of leaf reflectance 

measurements to predict biomass at this growth stage performed better than 

predictions using canopy reflectance.  

BM_InB_bcs was predicted using a combination of VIs measured above the 

canopy (NDWI-4canvg), flag leaf (GIFLvg) and third leaf (TCARITLvg). The 

model performance was R2 = 0.42 and RMSE = 53.35 g m-2 (Table 2.3, Figure 

2.2). BM_InB_cVI predictions were made with NDWI-4 and TCARI measured 

at the vegetative period (R2 = 0.34, RMSE = 55.8 g m-2). PLSR predictions were 

the worst of the three methods at GS41 having less accuracy and the highest 

error with R2 = 0.19 and RMSE = 82.12 g m-2 (Figure 2.2). 
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BM_A7_bcs was predicted using PRI measured above the canopy during the 

vegetative period and in the flag leaf during the grain filling period (PRIcanvg, 

PRIFLgf). Model performance was R2 = 0.32 and RMSE = 76.92 g m-2 (Figure 

2.2). BM_A7_cVI was predicted using PRI from the vegetative period 

(PRIcanvg). Predictions were less accurate (R2 = 0.18, RMSE = 83.18 g m-2) 

compared to bcs but it was noteworthy that for both linear methods PRI was the 

common index used (Figure 2.2, Table 2.3) and PLSR predictions performed 

worst compared to the other methods (R2 = 0, RMSE = 98.38 g m-2) (Figure 2.2).  
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Figure 2.2. Aboveground biomass predictions with the different approaches used. Left panels 

represent predictions using the best combination of sensors (bcs), middle panel are predictions 

using vegetation indices derived from canopy reflectance (cVI) and the right panels represent 

predictions made with partial least square regression (PLSR). 
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2.5.3 Radiation use efficiency  

 

Figure 2.3. Radiation use efficiency predictions with the different approaches used. Right panels 

represent predictions using the best combination of sensors (bcs), middle panel are predictions 

using vegetation indices with canopy reflectance (cVI) and the left panels represents predictions 

made with partial least square regression (PLSR). 
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BM_PM_bcs predictions were the most accurate of the three methods at 

physiological maturity with R2 = 0.67 and RMSE = 74.39 g m-2 (Table 2.3). 

BM_PM_cVI was predicted using pigment indices, these predictions were the 

least accurate of this growth stage for any method with R2 = 0.28 and RMSE = 

107.96 g m-2. PLSR predictions were more accurate than cVI with R2 = 0.47 and 

RMSE = 100.41 g m-2 (Figure 2.2).  

From 40 days after emergence to initiation of booting (RUE_E40InB_bcs) was 

predicted using water and chlorophyll indices (Table 2.3), predictions with this 

method at this growth stage were less accurate in comparison to the other 

methods R2 = 0.29 and RMSE = 0.46 g MJ-1 (Figure 2.3). RUE_E40InB_cVI 

predictions were the best at this growth stage (R2 = 0.53 and RMSE 0.27 g MJ-

1. Vegetation indices used for this method were related to chlorophyll (PSSRbvg) 

and water content (WIvg). PLSR model performed better than bcs at this growth 

stage (R2 = 0.34, RMSE = 0.31 g MJ-1) (Figure 3), but in general in all the traits 

predicted in this study PLSR modelling produced less accurate results compared 

to bcs or cVI models (Figure 2.3, Table 2.3).   

RUE_InBA7_bcs was predicted using NDWI-3 measured above the canopy, 

EVI and TCARI705 at the third leaf (NDWI-3canvg, EVITLvg, TCARI705TLvg). 

RUE_InBA7_cVI was predicted using NDWI-3 and EVI measured at the 

vegetative period. Both models performed the same with R2 = 0.27 and RMSE 

= 0.37 g MJ-1 (Table 2.3) and were better compared to PLSR estimations R2 = 0 

and RMSE = 0.55 g MJ-1 (Figure 2.3).  

RUE_preGF_bcs was predicted using the chlorophyll content of the third leaf 

measured with a SPAD meter (Table 2.3). The model estimations with this 
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method resulted in poor estimations with R2 = 0.21 and RMSE = 0.21 g MJ-1 

(Figure 2.3) but in return this model is the easiest to build as only uses 

measurements from a sensor very easy to deploy in the field. RUE_preGF_cVI 

model performance was similar to bcs (Table 2.3) with R2 = 0.19 and RMSE = 

0.22 g MJ-1. All RUE predictions with bcs method at the vegetative period 

(RUE_E40InB, RUE_InBA7, RUE_preGF) were predicted with traits related to 

chlorophyll content in the bottom of the canopy. PLSR estimations were the 

worst of the three methods with R2 = 0.02 and RMSE = 0.33 g MJ-1 (Figure 2.3).  

RUE_GF_bcs estimations were the best with R2 = 0.61 and RMSE = 0.23 g MJ-

1 but also was the model that used most variables which can reduce the 

applicability on field conditions (Table 2.3). RUE_GF_cVI estimations were 

outperformed by the bcs model but we found a trend at grain filling where VI 

related to chlorophyll content and gas exchange were used to predict IPAR and 

biomass (Table 2.3). PLSR predictions at grain filling were the worst for any 

model at any given growth stage with R2 = 0 and RMSE = 0.52 g MJ-1 (Figure 

3).  

RUE_Total_bcs predictions were made with NDWI-2 measured above the 

canopy, CUR from the second leaf measured on the vegetative stage, and NPCI 

from the third leaf measured during the grain filling period (NDWI-2canvg, 

CURSLvg, NPCITLgf) (Table 2.3). Our results show the predictions with bcs 

model at physiological maturity were the most accurate of any growth 

stages/methods used (R2 = 0.69, RMSE = 0.11 g MJ-1) for RUE, in comparison 

RUE_Total_cVI had lower accuracy in the predictions but similar RMSE (R2 = 

0.53, RMSE = 0.13 g MJ-1), which indicates that RUE predictions could be done 
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faster just by using VI at the canopy scale and results will not differ much from 

the bcs method.
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Table 2.3.  Models used to predict radiation use efficiency, biomass and PAR interception at the different growth stages measured in this study. Two models are presented for 

each trait, the first is the best combination of sensors (bcs) and the second hyperspectral measurements at the canopy level (cVI). bv = 10 best values from each trait. 

Trait Model R2 Adj. R2 RMSE R2_bv RMSE_bv 

RUE_E40InB 

-9.347 + 12.906WIcanvg – 4.004NDVITLvg – 0.795TCARITLvg 0.46 0.4 0.29 0.02 0.26 

 

-15.443 – 0.0674PSSRb_vg + 16.469WI_vg 

 

0.53 

 

0.5 

 

0.27 

 

0.31 

 

0.28 

RUE_InBA7 

 

-1.791 + 13.247NDWI-3canvg + 4.721EVITLvg + 6.656TCARI705TLvg 

 

0.27 

 

0.19 

 

0.37 

 

0.45 

 

0.28 

 

7.543 + 28.717NDWI-3_vg – 3.123EVI_vg 

 

0.27 

 

0.22 

 

0.36 

 

0.17 

 

0.35 

RUE_preGF 

 

0.47 + 0.0446SPADTLvg 

 

0.21 

 

0.18 

 

0.21 

 

0.53 

 

0.16 

 

19.762 + 0.0389CRI_vg – 22.547NDVI_vg + 10.455NDWI_vg + 53.698PRI_vg 

 

0.19 

 

0.06 

 

0.22 

 

0.01 

 

0.25 

RUE_GF 

 

- 2.523 – 10.05VARIcanvg – 4.661RARSacangf + 16.258SIPI-1TLvg + 1.17GITLgf – 

0.0112JFLgf – 0.0401Vcmax/NareaSLvg 

 

0.61 

 

0.51 

 

0.23 

 

0.55 

 

0.18 

3.886 – 79.296PRI_vg – 0.675GI_gf 0.27 0.22 0.29 0.01 0.36 

RUE_Total 
 

5.972 – 15.681NDWI-2canvg – 5.458CURSLvg + 2.21NPCITLgf 

 

0.69 

 

0.65 

 

0.11 

 

0.85 

 

0.05 
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0.845 + 0.992RGR_gf 

 

0.53 

 

0.51 

 

0.13 

 

0.23 

 

0.15 

BM_E40 

 

294.202 – 0.394JTLvg 

 

0.2 

 

0.17 

 

24.53 

 

0.01 

 

31.07 

 

56.67 + 610.986WI_vg – 844.888NDVI_vg + 308.836SAVI_vg 

 

0.17 

 

0.07 

 

25.83 

 

0.09 

 

31.4 

BM_InB 

 

89.423 – 220.49NDWI-4canvg + 213.15GIFLvg – 344.448TCARITLvg 

 

0.42 

 

0.35 

 

53.35 

 

0.09 

 

56.14 

 

-206.393 – 7575.28NDWI-4_vg + 737.072TCARI_vg 

 

0.34 

 

0.29 

 

55.8 

 

0.03 

 

64.26 

BM_A7 

 

435.468 + 14412.02PRIcanvg + 9039.943PRIFLgf 

 

0.32 

 

0.27 

 

76.92 

 

0.31 

 

85.28 

 

696.304 + 15902.35PRI_vg 

 

0.18 

 

0.15 

 

83.18 

 

0.38 

 

88.51 

BM_PM 

361.694 + 98.526PSSRaFLvg + 106.66RARSbSLvg – 1.52SIPI-2SLvg – 135.394SR-1TLvg 0.67 0.62 74.39 0.38 77.12 

 

674.582 – 44.419CRI_vg + 43.295PSSRa_vg – 2.543SIPI2_vg 

 

0.28 

 

0.2 

 

107.96 

 

0.08 

 

84.68 

IPAR_E40 
 

289.723 – 9.158CTvg + 168.407NDVIGSvg 

 

0.91 

 

0.9 

 

4.78 

 

0.05 

 

4.02 
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80.287 – 2056.97NDWI-3_vg 

 

0.75 

 

0.74 

 

7.72 

 

0.34 

 

6.68 

IPAR_InB 

 

26.039 + 306.267NDVIGSvg + 6808.693PRIcanvg 

 

0.61 

 

0.58 

 

17.93 

 

0.4 

 

17.49 

 

-500.416 + 1051.142OSAVI_vg 

 

0.33 

 

0.31 

 

23.22 

 

0.09 

 

28.59 

IPAR_A7 

 

-875.05 + 36.048CTgf + 6718.306PRIcanvg + 509.163GNDVI-1cangf – 2997.16NDWI-4cangf 

 

0.86 

 

0.84 

 

17.66 

 

0.63 

 

15.57 

 

618.021 + 6935.272PRI_vg – 33.644rNDVI_gf 

 

0.66 

 

0.63 

 

26.31 

 

0.24 

 

29.22 

IPAR_PM 

 

40.181 + 12435.71PRIcanvg + 1050.561SAVIcanvg – 201.546SIPI-1cangf 

 

0.8 

 

0.78 

 

35.33 

 

0.11 

 

28.02 

40.181 + 12435.71PRI_vg + 1050.561SAVI_vg – 201.546SIPI1_gf 0.8 0.78 35.33 0.11 28.02 

Abbreviations: E40InB = 40 days after emergence to initiation of booting period, InBA7 = Initiation of booting to 7 days after anthesis period, preGF = pre grain filling period (40 days after emergence to 7 days after 

anthesis), GF = Grain filling period (7 days after anthesis to physiological maturity), Total = crop cycle, E40  = 40 days after emergence, InB = Initiation of booting, A7 = 7 days after anthesis, PM = Physiological 

maturity, RMSE = Root Mean Square Error, %var = percentage of variability between observed traits and predictions, can = measurement at canopy level, FL = measurement at the flag leaf, SL = measurement at the 

second leaf, TL = measurement at the third leaf.
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2.6 Discussion 

RUE is a key trait that underpins crop productivity due to its close relation with 

photosynthesis, biomass accumulation and yield and it is of great interest in 

breeding for higher yield potential (Murchie et al., 2009; Reynolds et al., 2012; 

Hubbart et al., 2018; Molero et al., 2019; Joynson et al., 2021). However, its 

complex nature caused by the interaction of several physiological processes 

affecting it at different growth stages and the difficulty to screen it in large field 

trials has not allowed physiologists and breeders to fully implement HTP 

approaches to predict it (Furbank et al., 2019). In this study a HTP approach is 

proposed and validated with ground truth data collected during three field growth 

cycles by combining different remote sensing techniques using hyperspectral 

reflectance to calculate vegetation indices and PLSR to develop statistical 

models that provide the flexibility to be tested in large wheat populations in yield 

potential conditions. Eventually this can be extended to populations grown under 

different environmental conditions (e.g. heat, drought and nutrient deficiency 

stresses) or in other important crops such as rice, barley, or rye. 

The implementation of this methodology can reduce drastically the time and 

manual labour needed to measure RUE and its components. Field aboveground 

biomass harvests and ceptometer measurements take time and cost more 

resources than implementing a HTP method to assess RUE components and 

there is an opportunity to reduce the experimental error caused by different 

people sampling in the same experiment. If the data produced with these models 

coupled with UAV imaging plus a pipeline for data extraction and upscaling 

could shift the narrative in physiological breeding as genetic gains for this trait 

are not often seen due to its phenotyping bottleneck.  
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2.6.1 Physiological mechanisms underlying bcs and cVI models 

Our models indicate that at the vegetative period, which encompasses the 

phenological stages from canopy closure to anthesis, two water indices (WI, 

NDWI) and NDVI were used to build models to predict RUE, biomass or IPAR 

(Figure 4). Water indices have been associated with biomass accumulation in 

wheat with very strong phenotypic correlations at the vegetative stages of 

booting and heading (Babar et al., 2006) which is within the period of our 

measurements for the vegetative stage. NDVI is an index that has been related 

to gas exchange capacity, N content, biomass and even yield by using canopy 

greenness as a proxy, as well as indicator of IPAR in the green tissues (termed 

as PARgreen) and this has been reported in several studies for perennial and annual 

plants (Gamon et al., 1995; Hatfield and Prueger, 2010; Tattaris et al., 2016; 

Duan et al., 2017; Hinojo-Hinojo and Goulden, 2020). Water indices are more 

sensitive to variations in LAI than NDVI, this means that during the vegetative 

period where LAI is larger in comparison to the grain filling stage in wheat 

(Calderini et al., 1997), water indices can be a better option than to predict RUE, 

biomass and IPAR than NDVI. 

We suggest to use water indices over NDVI to predict biomass to reduce the 

confounding effects once the canopy closes and NDVI reaches values close to 

0.9, which causes saturation of NDVI. In a physiological-breeding context this 

becomes a problem because during the vegetative stages there are not big 

differences between the phenological development of different wheat genotypes 

and the genotypic differences in NDVI might be negligible due to higher LAI at 

this growth period, while evidence indicate water indices correlate well with 
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biomass and most importantly are able to capture genotypic differences at GS41 

(Babar et al., 2006; Prasad et al., 2009; Gutierrez et al., 2010). 

During the grain filling period (GS65 to GS79) the common VIs to predict RUE 

and its components were PRI and SIPI. The relationship between PRI and RUE 

indicates that if PRI increases RUE will increase as well (higher PRI lower non 

photochemical quenching, NPQ), this implies that there could be a source 

limitation or source-sink co-limitation in these genotypes at grain filling 

(Acreche et al., 2009). PRI has been related to photosynthetic processes such as 

the xanthophyll cycle, NPQ, chlorophyll fluorescence, carotenoids/chlorophyll 

ratio and RUE measured at leaf and ecosystem scales. These photosynthetic 

processes play a key role for fast annual growth plants such as rice and wheat as 

it can increase productivity through biomass accumulation and photosynthetic 

rates by enhancing photoprotection in high-light environments by limiting 

photoinhibition (Hubbart et al., 2018), preventing the over-reduction of PSII and 

regulating the electron transport factors that can help optimise field CO2 

assimilation (Murchie and Ruban, 2020).  
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Figure 2.4. Venn diagram highlighting the correlation between remote sensing traits with 

aboveground biomass (green circle), light interception (yellow circle) and radiation use 

efficiency (red circle) during the vegetative (canopy closure to 7 days after anthesis) and grain 

filling period (7 days after anthesis to physiological maturity). Interactions represent remote 

sensing traits that correlate with various physiological traits. 

 

Regressions of PRI with RUE have been found to be consistent across leaves, 

canopies and ecosystems with R2 ranging from 0.4-0.75 (Garbulsky et al., 2011). 

In wheat, using PRI alone was not enough to predict RUE or light use efficiency 

(LUE) due to drastic reduction in canopy chlorophyll content when the 
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senescence period starts (Wu et al., 2010), but our results show that using PRI 

combined with VI that accounts chlorophyll content (VARI, RARSa, GI) and 

canopy senescence (SIPI) can improve the model predictions as shown in 

RUE_GF_bcs compared to RUE_GF_cVI (Table 3).  

The activation of NPQ causes the reduction of long-term photosynthetic capacity 

particularly in top and middle parts of the canopy in erect genotypes where light 

availability can exceed the needs of photosynthesis. In addition, leaves in the 

lower part of the canopy should have rapid responses to changes in light caused 

by sun position through the day and wind movement (Murchie and Niyogi, 

2011). Efficiently disengaging photoprotective NPQ during changes from high 

to low light is a mechanism that has been demonstrated to increase plant biomass 

up to 20% in tobacco compared to plants without this ability (Kromdijk et al., 

2016). Additionally, slow responses of photosynthesis to increasing light could 

cost up to 21% of CO2 assimilation in wheat (Taylor and Long, 2017).  

Then it will be possible to increase RUE by designing a new wheat ideotype with 

a “smart canopy” for wheat with erect flag leaves to allow light penetration to 

lower (and usually shaded) parts of the canopy and to avoid light saturation, 

similarly to what has been proposed for sorghum canopies (Mantilla-Perez et al., 

2020). Evidence found in wheat canopies indicate that erectophile genotypes can 

have up to 11% higher biomass and 24% higher yields compared to planophile 

genotypes (Richards et al., 2019) therefore, the addition of erectophile genotypes 

and the use of remote sensing models that correlate NPQ and PRI can become 

important in wheat physiological breeding to increase RUE, biomass and yield, 

especially because wheat is grown under contrasting light environments across 

different latitudes which still leaves the door open to optimise these traits. 
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The structural insensitive pigment index (SIPI) is correlated with the chlorophyll 

content and rate of senescence of the canopy. The use of this index in our models 

imply that canopies that can stay greener for longer periods of time will benefit 

from higher biomass and IPAR accumulation and increase RUE rates in the later 

stages of the crop cycle, where remobilisation of nutrients to the grains, optimal 

N distribution through the canopy and yield formation are critical (Foulkes and 

Murchie, 2011; Sinclair and Rufty, 2012). It has been suggested that developing 

canopies which can stay greener for longer periods of time will be one of the 

keystones for yield improvement in future warmer climates (Lopes and 

Reynolds, 2012). Although in this study models fitted better using SIPI instead 

of NDVI or SPAD measurements, which are usually the traits used for stay-

green, this could suggest that VI related to chlorophyll or other pigment content 

could potentially be used interchangeably to score senescence which is closely 

correlated to IPAR (Figure 2.4).  

 

2.6.2 Partial least square regression models 

To our knowledge this is the first study where predictions of RUE, biomass and 

IPAR in field grown wheat are made with PLSR modelling. Previous attempts 

to predict genetic variation in physiological traits with this method have been 

made mostly at leaf scale considering only top of the canopy leaves. Traits such 

as Amax, gs, Vcmax, Jmax, have been predicted successfully with R2 of 0.49, 0.34, 

0.74, 0.7, respectively in spring wheat (Silva-Pérez et al., 2018), Vcmax (R
2 = 

0.89), Jmax (R
2 = 0.93) and N leaf content per mass basis (R2 = 0.89) on aspen 

and cotton (Serbin et al., 2012); Vcmax (R
2 = 0.65), N leaf content (R2 = 0.96) and 

chlorophyll content (R2 = 0.85) in maize (Yendrek et al., 2017), leaf dark 
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respiration (R2 = 0.5-0.63), leaf N content (R2 = 0.91) and LMA (R2 = 0.75) 

(Coast et al., 2019).  

Predictions of traits mentioned above at leaf level were more accurate in 

comparison to our predictions of RUE or biomass where in some cases no 

associations between predictions and observations were found, especially during 

the grain filling period (Figure 2.3, R2 = 0). Our hypothesis for this poor 

performance of PLSR models is that RUE and biomass accumulation are more 

complex physiological processes in the hierarchical scale of yield than gas 

exchange in single leaf layers or organ stoichiometry, as these two might be 

affected by more physiological traits happening within the canopy, plus the 

effects of root physiology, biomass accumulation at different growth stages 

during the crop cycle and mixed signals from different canopy layers and 

vegetation plus soil. Most of the studies have used sunlit leaf measurements from 

the top of the canopy to upscale whole canopy physiological processes assuming 

that top layer is representative of the whole canopy (Gara et al., 2019). This is 

not true, especially in crop canopies where there is a very dynamic light 

environment caused by wind, gaps due to planting methods, poor stand 

establishment, lodging, pest and disease effects or even biomass harvests. The 

dynamic light environment can influence photosynthetic rates from leaves lower 

in the canopy and this could reduce or boost biomass accumulation and therefore 

RUE (Murchie et al., 2018).  

This highlights the importance of using measurements which integrate the whole 

canopy instead of just the sunlit part of the canopy and in future studies the use 

of punctual reflectance measurements instead of averages might result in better 

PLSR predictions for the traits presented in this study. Arguments can be made 
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that measuring leaf reflectance from the different layers of the canopy could be 

used instead of measuring reflectance above the canopy to represent the canopy 

optical properties, but in a HTP physiological breeding context this would take 

much more time in the field than collecting ground truth data, negating the 

benefits of the methods and might not be worth doing as our results show that 

cVI models perform similarly to bcs models in most of the growth stages (Figure 

2.5).  

 

Figure 2.5. Comparison of the approaches to build the models used to predict radiation use 

efficiency in the different growth stages measured in the crop cycle. From left to right: Obs = 

ground truth data, Pred_comb = predictions with the best combination of sensors, 

Predcomp_comb = predictions with the estimated components from the best combination of 

sensors, Pred_can = predictions with vegetation indices calculated from canopy reflectance, 

Predcomp_can = predictions with the estimated components calculated with vegetation indices 

from canopy reflectance, PredPLSR = predictions with partial least squares regression with 

canopy reflectance and PredPLSR_comp = predictions with the estimated components calculated 

with partial least squares regression from canopy reflectance.  
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Models built using VIs from the literature were the most accurate predictors of 

RUE, biomass and IPAR in most of the growth stages (Figure 5). We suggest 

predicting RUE directly instead of estimating it from its components since 

predictions of biomass, IPAR carry their own source of error and then predicting 

RUE from those increases the error prediction further (Table 2.3). Using the 

models built with canopy VIs allowed us to capture the highest accuracy 

predicted values of RUE, biomass and IPAR indicating genotypes that could 

perform the best without increasing measurement time in the field, as measuring 

all the leaves from the canopy could have entailed, underlining the applicability 

of these models in physiological breeding programs.  

 

2.7 Conclusions 

2.7.1 Should we rely on remote sensing for studies of growth analysis? 

This is the first effort to predict RUE in a HTP field based physiological breeding 

context in wheat with data collected across three different crop cycles. The 

approaches to predict RUE and its components showed acceptable level of 

accuracy (53% in the vegetative growth stage, 61% during grain filling and 69% 

considering the whole crop cycle) but we recognize that models can be improved 

by increasing the number of genotypes or including data from different 

environments. The models presented in this study have major implications for 

physiological breeding as improving C fixation through RUE represents the 

baseline to increase crop yields. We acknowledge that using remote sensing 

models cannot fully replace the collection of ground truth data but it can 

considerably reduce the amount of time (i.e. from 3 days of field work and lab 
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sample processing to 45 minutes measuring hyperspectral reflectance in the 

field) and resources spent especially on big trials where hundreds of lines could 

be screened in a matter of hours and be used in QTL or GWAS studies to bridge 

the gap between phenomics and genomics. In addition, the present approach 

could help to predict RUE and biomass in experiments where biomass sampling 

is not possible due to plot size (<1 m) typically used to select plant genetic 

resources in pre-breeding programs. Finally, the models built with data collected 

at leaf and canopy scale in this study can be used to refine C cycle models built 

with satellite imagery data and increase the link between remote sensing 

platforms to understand C cycle dynamics at the regional scale better.  
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Abstract 

Yield (grain weight) can be defined as the product of solar radiation intercepted 

throughout the crop cycle, radiation use efficiency (biomass accumulated per 

unit radiation intercepted, RUE) and harvest index. Photosynthesis is a central 

component of RUE but normally measured in the upper layers of the canopy 

where radiation is highest. Here we hypothesize that measurements made within 

the middle and bottom layers of wheat canopies will be key to understand the 

link between canopy photosynthesis and yield. The objectives of this study were 

to measure photosynthesis throughout the canopy to study the relationship of gas 

exchange with biomass, RUE and yield; and define which layer or combination 

of layers have a higher contribution to grain yield at different growth stages. 

Significant relationships were found between photosynthetic rates measured at 

saturating light (Asat) and yield. Asat at initiation of booting measured at the top 

(R2 = 0.33, p<0.1), middle (R2 = 0.49, p<0.05) and bottom (R2 = 0.44, p<0.05) 

layers of the canopy resulted in positive relationships. When measured 7 days 

after anthesis, the strongest relationship was found between Asat measured in the 

top leaf and yield (R2 = 0.62, p<0.001). These findings indicate that there is an 

opportunity for yield improvement if we consider the requirements of 

photosynthesis in the middle and bottom layers of the canopy where light 

conditions are more dynamic.  

 

Keywords: canopy photosynthesis, leaf photosynthesis, yield improvement, physiological 

breeding, RUE 
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3.1 Introduction 

Wheat (Triticum aestivum L.) is the most widely grown crop worldwide 

accounting for ~30% of all sown area for cereals and ~ 40% of total cereal 

exports at 118 million tonnes (FAO, 2021). Increasing wheat yield is jeopardized 

by shifts in climate patterns which will cause wheat to be subjected to severe 

heat and extreme cold events more often in the largest producing regions of the 

planet (Langridge and Reynolds, 2021). The challenge of increasing wheat yield, 

without increasing cultivation area, coupled with the threats posed by climate 

change represent one of the toughest challenges’ humanity will face this century.   

 

3.1.1 Yield as a product of canopy photosynthesis 

From a physiological standpoint, wheat yield is the product of the photosynthesis 

of the different layers of the canopy, the spikes and stems (Araus et al., 2021). 

Agronomically speaking yield can be defined as the product of radiation 

intercepted throughout the crop cycle, the efficiency of plants to convert 

radiation into biomass (i.e. radiation use efficiency, RUE) and the proportion 

grain weight in regard to biomass weight at physiological maturity (i.e. harvest 

index, HI) under yield potential conditions (Slafer, 2003; Murchie et al., 2009; 

Reynolds et al., 2012).  

Recent reviews have asserted that increasing photosynthesis will be one of the 

best avenues to increase crop yield, including wheat (Horton, 2000; Long et al., 

2004; Murchie et al., 2009, 2018; Zhu et al., 2010; Lawson et al., 2012; Reynolds 

et al., 2012; Faralli and Lawson, 2019; Evans and Lawson, 2020; Furbank et al., 

2020; Simkin et al., 2020; and references therein), because leaf photosynthesis 
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is the primary source for carbohydrate accumulation in plants for most part of 

the growth cycle. However there are not clear indications of the association of 

photosynthesis and yield and empirical evidence has been contradictory (Table 

3.1).  

This could be explained because the majority of studies relating photosynthesis 

with source (biomass, RUE) or sink (yield) traits have mainly focused on short 

term measurements of light saturated photosynthesis in the sunlit layer of the 

canopy, usually the flag leaf in cereals and considering photosynthesis 

measurements only in flag leaves may not allow us to fully exploit both the 

genetic variability and the full phenotypic range of photosynthesis for yield 

improvement (Murchie et al., 2018). Measuring only in flag leaves has been 

justified in the past due to finding of associations between photosynthesis with 

high yielding varieties (Fischer et al., 1998), the lack of automated light sources 

of infrared gas analysers (IRGA) in the past and the low throughput of these 

measurements in the field. The emergence of high-throughput methods and the 

importance of coupling photosynthesis with growth analysis measurements 

justify the measurement of the different canopy layers.  

Furthermore, there is a lack of studies coupling traditional growth analysis 

(relative growth rate, biomass accumulation) with canopy photosynthesis, as 

previous studies have focused mostly on wheat flag leaves (Pinto et al., 2017) or 

occasionally spike photosynthesis (Molero and Reynolds, 2020) but to date no 

study has tried to dissect different leaf layers within the canopy and their 

relationship to yield in field conditions.  
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3.1.2 Photosynthesis and light distribution within canopies 

Yield formation is a product of the integral of photosynthesis from different leaf 

positions within the canopy, each of which are exposed to different micro-

environmental conditions. Canopy photosynthesis models partially consider this 

(e.g. WIMOVAC, APSIM, CAPTS; Casadebaig et al., 2016; Song et al., 2017; 

Wang et al., 2019) and it has long been suggested that photosynthetic traits from 

bottom layers of the canopy could have a large role in improving biomass 

accumulation and yield in wheat and rice (Burgess et al., 2019; Foo et al., 2020; 

Salter et al., 2020). However, our empirical understanding of this function 

beyond models of canopy photosynthesis is very limited.  

Light is extinguished from the top to the bottom of the canopy in an exponential 

fashion which is normally aligned with both N content and leaf photosynthetic 

capacity (Hirose, 2005; Hikosaka, 2016). Lower canopy layers are characterized 

by low irradiance which can be subjected to light levels close to compensation 

point alternating with brief periods of high light availability. High 

photosynthetic productivity could therefore arise from efficient acclimation to 

low light (e.g. low respiration rates) and the efficient exploitation of these 

periods of high light (Kromdijk et al., 2016). Additionally, it has been shown 

that bottom layers of canopies not only support photosynthesis but acts as a N 

sink which can be remobilized to the upper leaves and grains during grain filling 

when light interception in this layer is limited by senescence (Lemaire et al., 

2007) and this has been confirmed by ray tracing modelling coupled to 3D 

canopy reconstructions (Burgess et al., 2016; Townsend et al., 2018). 

It will be important to fully understand the physiological mechanisms of 

adjustment and regulation (acclimation) of wheat photosynthetic machinery to 
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different light levels, temperature and N distribution, factors which can be highly 

heterogeneous within a canopy. One of the most important light adjustment 

mechanisms is the response to sun flecks, which are transitions from low to high 

light conditions in matter of seconds or minutes characterized by an increase of 

direct or diffuse radiation, especially at bottom layers of the canopy (Porcar-

Castell and Palmroth, 2012), and represent an important light resource as they 

can boost photosynthesis rates (Pearcy, 1990; Murchie and Niyogi, 2011) if they 

are sufficiently frequent (Burgess et al., 2018). 

 

3.1.3 Photosynthesis relationship with plant growth 

As mentioned previously, the relationship between gas exchange traits 

(including light saturated photosynthetic CO2 assimilation [Asat], stomatal 

conductance [gs] and dark respiration [Rd]) and yield are inconsistent (Table 

3.1). This may be due to a number of factors including the role of dynamic 

photosynthesis responses, phenology and source-sink interactions. Carmo-Silva 

et al., (2017) found a strong link with HI and yield when flag leaf assimilation 

was measured at 1000 µmol m-2 s-1, which in tropical or subtropical latitudes are 

the upper end of radiation levels expected to be measured in the middle layer of 

wheat canopies, and in comparison, flag leaf Asat did not correlate with HI or 

yield. These results could explain why even though genetic variation in 

photosynthetic capacity has been found under field conditions (Driever et al., 

2014) no consistent relationships are yet to be described in most studies which 

focus only in Asat at the top layer. Even though there have been previous efforts 

of addressing canopy photosynthesis in the field specially with modelling or flux 

chambers (Zhu et al., 2012; Song et al., 2016; Wu et al., 2018) these studies have 
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not explored the importance of each individual leaf layer and their contribution 

to important agronomic traits such as biomass or yield.  

 

3.2 Hypothesis 

It has been stated that the best route to improve RUE and yield photosynthetic 

rates need to increase. Canopy architecture plays a role in the distribution of light 

within wheat canopies. We expect genotypes with erect flag leaves and 

broadened middle and bottom leaves to have higher RUE and yield compared to 

erect genotypes which usually have smaller leaf area. Therefore, we hypothesize 

that photosynthetic rates from the middle and bottom layers of wheat canopies 

will be key to understand the link between canopy photosynthesis, light 

distribution and yield.  

 

3.3 Objectives 

Due to the absence of studies considering different layers of the canopy and the 

lack of understanding of the role of individual wheat canopy layers for biomass 

accumulation, RUE and yield; the objectives of this study were to define which 

layer or combination of canopy layers can explain the variation in biomass, RUE 

and yield to aid in the selection of photosynthetic traits and improve our 

understanding of the interaction between canopy architecture and light 

distribution with yield. 
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Table 3.1. Relationships between gas exchange traits (CO2 assimilation under light saturating conditions [Asat], stomatal conductance [gs] and dark respiration [Rd]) with 

yield, and aboveground biomass. YP: Yield potential, F: Field, AE [CO2]: Atmospheric and elevated [CO2], GC: Growth chamber, DNT: Different N treatments, D: Drought, 

HNT: High night temperature, WW: Well-watered. Where the study did not specifically look for links between Asat, gs or Rd with biomass and/or yield the tool 

WebPlotDigitizer (http://arohatgi.info/WebPlotDigitizer) was used to extract the values and calculate the regression coefficient between the variables. When not specified, the 

photosynthetic measurements were done in the uppermost leaf at the specific growth stage measurement took place.  

Trait Yield Biomass_PM Crop Environment Reference 

Asat r2 = 0.33, p<0.1 (top layer at InB)  

r2 = 0.49, p<0.05 (middle layer InB) 
r2 = 0.44, p<0.05 (bottom layer InB) 

r2 = 0.62, p<0.001 (top layer at A7)  

r2 = 0.07 (middle layer A7) 
r2 = 0.26 (bottom layer A7) 

r2 = 0.3, p<0.1 (canopy InB) 

r2 = 0.19 (canopy A7) 

r2 = 0 (top layer at InB)   

r2 = 0.18 (middle layer InB) 
r2 = 0.07 (bottom layer InB) 

r2 = 0.02 (top layer at A7)  

r2 = 0.25 (middle layer A7) 
r2 = 0.05 (bottom layer A7) 

r2 = 0.23 (canopy InB) 

r2 = 0 (canopy A7) 
 

Wheat YP (F) This study 

r2 = 0.4, p<0.01 

 

r2 = 0.37, p<0.01 Cassava YP (F) El-Sharkawy et al., (1990) 

r2 = 0.35, p<0.01 (panicle initiation WW)  

r2 = 0.86, p<0.01 (mid-development WW)  

r2 = 0.53, p<0.01 (head exertion WW)  
r2 = 0.74, p<0.001 (avg WW) 

r2 = 0.25, p<0.05 (panicle initiation D)  

r2 = 0.44, p<0.01 (mid-development D)  
r2 = 0.13 (head exertion D) 

r2 = 0.5, p<0.001 (avg D) 

r2 = 0.32, p<0.01 (panicle initiation WW) 

r2 = 0.83, p<0.01 (mid-development WW) 

r2 = 0.46, p<0.01 (head exertion WW) 
r2 = 0.67, p<0.001 (avg WW) 

r2 = 0.36, p<0.05 (panicle initiation D) 

r2 = 0.55, p<0.01 (mid-development D) 
r2 = 0.15 (head exertion D) 

r2 = 0.66, p<0.001 (avg D) 

Sorghum YP and D (F) Peng et al., (1991) 

 
r2 = 0 (WW) 

r2 = 0.4, p<0.01 (D) 

 
r2 = 0.01 (WW) 

r2 = 0.53, p<0.01 (D) 

 

 
Wheat 

 
YP and D (F) 

 
Wada et al., (1994) 

r2 = 0.13 (pre-anthesis) 

r2 = 0.84, p<0.001 (post-anthesis) 
 

r2 = 0.25 (pre-anthesis) 

r2 = 0.74, p<0.001 (post-anthesis) 

Wheat YP (F) Gent (1995) 

r2 = 0.85, p<0.05 r2 = 0.07 Wheat YP (F) Fischer et al., (1998) 

 
r2 = 0  Wheat YP (F) Lu et al., (1998) 

 

r2 =0.28, p<0.05 r2 = 0.64, p<0.01 Wheat YP (F) Gutiérrez-Rodríguez et al., (2000) 
 



 

78 

 

r2 =0.73, p<0.01 r2 = 0.36, p<0.01 Wheat YP (F) Reynolds et al., (2000a) 

 
r2 = 0.52, p<0.001 (mid-stem elongation)  

r2 = 0.31, p<0.05 (late stem elongation) 

r2 = 0.19, p<0.1 (heading) 
r2 = 0.44, p<0.01 (anthesis) 

r2 = 0.28, p<0.05 (soft dough)  

r2 = 0.04 (hard dough)  
r2 = 0.3, p<0.05 (cycle average) 

r2 = 0.03 (mid-stem elongation) 

r2 = 0.01 (late stem elongation)  

r2 = 0.13 (heading) 
r2 = 0.01 (anthesis)  

r2 = 0 (soft dough)  

r2 = 0.01 (hard dough) 
r2 = 0.03 (cycle average) 

 

Wheat YP (F) Jiang et al., (2003) 

 r2 = 0.99, p<0.001 (ambient CO2) 
r2 = 0.99, p<0.001 (elevated CO2) 

 

Rice AE [CO2]  Sakai et al., (2006) 

 r2 = 0.04 Wheat YP (F) Chytyk et al., (2011) 

 

r2 = 0.42, p<0.01 (grain filling)  Wheat YP (F) Zheng et al., (2011) 
 

r2 = 0.12   r2 = 0.07 Wheat YP (F) Driever et al., (2014) 

 
 r2 = 0.23 Wheat YP (GC) Pang et al., (2014) 

 

r2 = 0.56, p<0.05 (heading, WW) 
r2 = 0.01 (3 days after anthesis, WW) 

r2 = 0.26 (20 days after anthesis, WW) 

r2 = 0.49 (heading, D) 
r2 = 0 (3 days after anthesis, D) 

r2 = 0.12 (20 days after anthesis, D) 

 

 Wheat YP and D (F) Sun et al., (2014) 
 

r2 = 0.49 (jointing) 

r2 = 0.01 (anthesis) 

r2 = 0.34 (grain filling)  
r2 = 0.23 (average) 

r2 = 0.02 (jointing)  

r2 = 0.15 (anthesis)  

r2 = 0.05 (grain filling)  
r2 = 0.07 (average) 

Wheat YP (F) Chen and Hao (2015) 

     

r2 = 0.38 (WW high N) 
r2 = 0.19 (D high N) 

r2 = 0.42 (WW adequate N) 

r2 = 0 (D adequate N) 

r2 = 0.02 (WW high N) 
r2 = 0.86 (D high N) 

r2 = 0.01 (WW adequate N) 

r2 = 0 (D adequate N) 
 

 

Wheat DNT (GC) Barbour and Kaiser, (2016) 
 

r2 = 0.98 (average) 
r2 = 0.93 (moderate N); r2 = 0.98 (high N) 

r2 = 0.89 (average) 
r2 = 0.86 (moderate N)  

Rice DNT (F) Huang et al., (2016) 
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r2 = 0.92 (high N) 

 
r2 = 0.01 (spike, heading) 

r2 = 0.28 (flag leaf, heading) 

r2 = 0.76 (spike, grain filling)  
r2 = 0.2 (flag leaf, heading)  

r2 = 0.39 (spike, average) 

r2 = 0.24 (flag leaf, average) 

r2 = 0.18 (spike, heading) 

r2 = 0.38 (flag leaf, heading)  

r2 = 0.91 (spike, grain filling)  
r2 = 0.14 (flag leaf, heading)  

r2 = 0.55 (spike, average) 

r2 = 0.26 (flag leaf, average) 
 

Wheat YP (GH) Zhou et al., (2016) 

r2 = 0.75, p<0.001 (pre-anthesis) 

r2 = 0.76, p<0.001 (post-anthesis) 
 

r2 = 0.63, p<0.001 (pre-anthesis) 

r2 = 0.59, p<0.001 (post-anthesis) 
 

Wheat DNT (F) Gaju et al., (2016) 

r2 = 0 (Asat) 
r2 = 0.27, p<0.05 (AQ1000, pre-anthesis) 

r2 = 0.27, p<0.05 (AQ1000, post-anthesis) 

 

r2 = 0 
 

Wheat YP (F) Carmo-Silva et al., (2017) 

r2 = 0.55 (400 ppm CO2) 

r2 = 0.43 (1300 ppm CO2) 

 

r2 = 0.81 (400 ppm CO2) 

r2 = 0.6 (1300 ppm CO2) 

 

Wheat YP (GC) Driever et al., (2017) 

r2 = 0.08 (AQ1800, pre-anthesis) 

r2 = 0.08 (AQ1000, pre-anthesis) 

r2 = 0.08 (AQ500, pre-anthesis)  
r2 = 0.08 (AQ250, pre-anthesis) 

r2 = 0.05 (AQ100, pre-anthesis) 

r2 = 0.03 (AQ1800, post-anthesis) 
r2 = 0.04 (AQ1000, post-anthesis) 

r2 = 0.03 (AQ500, post-anthesis)  

r2 = 0.01 (AQ250, post-anthesis) 
r2 = 0.01 (AQ100, post-anthesis) 

r2 = 0.39 (spike, average) 

r2 = 0.24 (flag leaf, average) 
 

r2 = 0.37, p<0.05  Wheat YP (GH) Pennachi et al., (2018) 

 

r2 = 0.23 (HNT) 

r2 = 0.03 (control) 
 

r2 = 0.27 (HNT) 

r2 = 0.54 (control) 
 

Wheat HNT and YP 

(GC) 

Impa et al., (2019) 

r2 = 0.9, p<0.01  Rice YP (F) Chen et al., (2020) 

 
r2 = 0.12 (spike)  

r2 = 0.17 (flag leaf) 

 

 Wheat YP (F) Molero and Reynolds (2020) 

r2 = 0.64, p<0.05 (spike photosynthesis)  r2 = 0.9, p<0.01 (spike photosynthesis) Wheat YP (GH) Elazab et al., (2021) 
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r2 = 0.36 (flag leaf photosynthesis) r2 = 0.33 (flag leaf photosynthesis) 

 

gs r2 = 0.04 (top layer at InB)  

r2 = 0.05 (middle layer InB) 

r2 = 0 (bottom layer InB) 
r2 = 0.01 (top layer at A7)  

r2 = 0 (middle layer A7) 

r2 = 0.07 (bottom layer A7) 
r2 = 0.04 (canopy InB) 

r2 = 0.01 (canopy A7) 

r2 = 0.05 (top layer at InB)  

r2 = 0.14 (middle layer InB) 

r2 = 0.07 (bottom layer InB) 
r2 = 0.21 (top layer at A7)  

r2 = 0.52, p<0.01 (middle layer A7) 

r2 = 0.21 (bottom layer A7) 
r2 = 0.03 (canopy InB) 

r2 = 0.34, p<0.1 (canopy A7) 

 

Wheat YP (F) This study 

 

 r2 = 0.03 r2 = 0.01 Cassava YP (F) El-Sharkawy et al., (1990) 

 

r2 = 0.85, p<0.001 r2 = 0.01 Wheat  YP (F) Fischer et al., (1998) 
 

r2 = 0.86, p<0.001  Wheat  YP (F) Lu et al., (1998) 

 
r2 =0.28, p<0.05 r2 = 0.58, p<0.01 Wheat  YP (F) Gutiérrez-Rodríguez et al., (2000) 

 

r2 = 0.72, p<0.01 r2 = 0.45, p<0.01 Wheat  YP (F) Reynolds et al., (2000a) 
 

r2 = 0.53, p<0.001 (mid-stem elongation) 

r2 = 0.24, p<0.05 (late stem elongation) 
r2 = 0.27, p<0.05 (heading) 

r2 = 0.26, p<0.05 (anthesis)  

r2 = 0.21 (soft dough) 
r2 = 0.12 (hard dough) 

r2 = 0.27, p<0.05 (cycle average) 

 

r2 = 0.09 (mid-stem elongation)  

r2 = 0.24, p<0.05 (late stem elongation) 
r2 = 0.01 (heading)  

r2 = 0.07 (anthesis)  

r2 = 0 (soft dough) 
r2 = 0.01 (hard dough)  

r2 = 0.07 (cycle average) 

 

Wheat YP (F) Jiang et al., (2003) 

 r2 = 0.25 (jointing) 

r2 = 0 (flowering) 

r2 = 0.01 (grain filling)  

r2 = 0.08 (average) 

 

Wheat YP (F) Chytyk et al., (2011) 

r2 = 0.48, p<0.01  Wheat YP (F) Zheng et al., (2011) 
 

 r2 = 0.78 Wheat YP (F) Pang et al., (2014) 

 
r2 = 0.77, p<0.05 (jointing) 

r2 = 0.08 (anthesis) 
r2 = 0.04 (grain filling)  

r2 = 0.25 (jointing) 

r2 = 0 (anthesis) 
r2 = 0.01 (grain filling)  

Wheat YP (F) Chen and Hao (2015) 
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r2 = 0 (average) 

 

r2 = 0.08 (average) 

 
r2 = 0.01 (WW high N) 

r2 = 0.51 (D high N) 

r2 = 0.78 (WW adequate N) 
r2 = 0 (D adequate N) 

r2 = 0.3 (WW high N) 

r2 = 0.93 (D high N) 

r2 = 0.07 (WW adequate N) 
r2 = 0.01 (D adequate N) 

 

 

Wheat DNT (GC) Barbour and Kaiser (2016) 

 

r2 = 0.39, p<0.05 (pre-anthesis) 

r2 = 0.37, p<0.05 (post-anthesis) 

 

r2 = 0.39, p<0.05 (pre-anthesis) 

r2 = 0.34, p<0.05 (post-anthesis) 

 

Wheat DNT (F) Gaju et al., (2016) 

r2 = 0 r2 = 0 Wheat YP (F) Carmo-Silva et al., (2017) 

 
 r2 = 0.05 (gsQ1800, pre-anthesis) 

r2 = 0.04 (gsQ1000, pre-anthesis) 

r2 = 0.04 (gsQ500, pre-anthesis)  
r2 = 0.04 (gsQ250, pre-anthesis) 

r2 = 0.04 (gsQ100, pre-anthesis) 

r2 = 0.03 (gsQ1800, post-anthesis) 
r2 = 0.03 (gsQ1000, post-anthesis) 

r2 = 0.03 (gsQ500, post-anthesis)  

r2 = 0.03 (gsQ250, post-anthesis) 
r2 = 0.03 (gsQ100, post-anthesis) 

   Pennacchi et al., (2018) 

Rd r2 = 0 r2 = 0.02 Wheat YP (F) Reynolds et al., (2000a) 

 

 r2 = 0.91, p<0.001 (ambient CO2)  
r2 = 0.92, p<0.001 (elevated CO2) 

 

Rice AE [CO2] Sakai et al., (2006) 

 r2 = 0.25 Wheat YP (F) Chytyk et al., (2011) 
 

r2 = 0.05 (spike, heading) 

r2= 0.46 (spike, grain filling)  

r2 = 0.26 (spike, average) 

 

r2 = 0 (spike, heading) 

r2= 0.22 (spike, grain filling) 

r2 = 0.11 (spike, average) 

Wheat YP (F) Zhou et al., (2016) 

r2 = 0.42 (high night temp) 
r2 = 0.4 (control) 

 

r2 = 0.65 (high night temp) 
r2 = 0.44 (control) 

Wheat HNT and YP 
(GC) 

Impa et al., (2016) 

 r2 = 0.69, p<0.05 (spike respiration) 
r2 = 0.45 (flag leaf respiration) 

r2 = 0.62 (spike respiration) 
r2 = 0.07 (flag leaf respiration) 

Wheat YP (GH) Elazab et al., (2021) 
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3.4 Materials and methods 

3.4.1 Field studies 

Eleven spring bread wheat genotypes selected from the Photosynthesis 

Respiration Tails (PS Tails) panel from the International Maize and Wheat 

Improvement Center (CIMMYT) were grown at CIMMYT’s field station 

Campo Experimental Norman E. Borlaug (CENEB) in Ciudad Obregón, Sonora, 

México (27° 23’ 46’’ N, 109° 55’ 42’’ W, 38 mamsl). The genotypes were 

studied in three consecutive field seasons (2017-2018, 2018-2019, 2019-2020, 

referred hereafter as Y1, Y2 and Y3). Eight genotypes were studied in Y1 and 

three genotypes were added for Y2 and Y3. The selection criteria were their 

contrasting RUE expression at vegetative and grain filling stages, grain filling 

flag leaf photosynthesis rates, yield, HI and canopy height. Further information 

of the genotypes used in this study can be found in Robles-Zazueta et al., (2021). 

Mean temperature of the growing season (December-April) for the three years 

was 17.43 °C with average rainfall of 20.27 mm and incident PAR of 8.08 MJ 

m-2.  

 

3.4.2 Experimental design 

A randomised complete block design with three and four replicates per genotype 

with two beds per plot (Y1 and Y2, respectively), and four replicates per 

genotype with six rows one bed plots (Y3) was used. Sowing dates were 

December 5th 2017, December 6th 2018 and December 18th 2019 for Y1, Y2 and 

Y3 respectively. Emergence dates were December 12th 2017, December 12th 

2018 and December 26th 2019 (Y1, Y2 and Y3 respectively). Harvest dates were 
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May 8th 2018, April 30th 2019 and May 13th 2020 (Y1, Y2 and Y3 respectively). 

Seed rate was ~250 g m-2 for the three years. Irrigation was applied four times 

after emergence during the crop cycle in approximate 25-day intervals (pre 

sowing, 25, 50, 75, 100 days after emergence). Plants were grown under optimal 

conditions in the field with pests, weed control and fertilisation to avoid 

limitations to yield. In Y1 fertilization was applied in the form of urea (200 kg 

N ha-1) 25 days after emergence (DAE). For Y2 fertilization was divided in 100 

kg N ha-1 25 DAE and another 100 kg N ha-1 58 DAE. Finally, for Y3 100 kg N 

ha-1 were applied 30 DAE and 50 kg N ha-1 50 DAE; 50 kg P ha-1 were applied 

in the three cycles when the first application of N was made.  

 

3.4.3 Phenology 

Phenological stages were scored visually according to the Zadoks growth scale 

for cereals (Zadoks et al., 1974). Growth stages recorded were canopy closure 

(~40 days after crop emergence, E40), initiation of booting (GS41, InB), heading 

(GS55, H), anthesis (GS65, A) and physiological maturity (GS87, PM).  

 

3.4.4 Canopy architecture 

Canopy height was measured at E40, InB, H, A7 and PM at the south, north and 

middle areas of each bed using a measuring tape attached to a 1.5 m stick, then 

six values per plot were averaged. From H onwards canopy height was measured 

from the base of the stem to the tip of the spike without considering the awns. 

Leaf width and length were measured at InB and A7 with a ruler.  
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At A7 a method was developed to measure leaf angles with respect to the ligule, 

leaf curvature measured at the point where the leaf bends, and distance from the 

stem to the tip of the leaves. Leaf angle and curvature were measured in flag, 

second and third leaves with a protractor and distance from stem to tip of the 

leaves using a ruler. Spike and awn length were measured in six shoots per plot 

following field phenotyping protocols (Pask et al., 2013). 

Light interception (LI) was measured using a ceptometer (AccuPAR LP-80, 

Decagon Devices, Pullman, WA, USA). LI was measured at E40, InB and A7 to 

calculate the light intercepted and extinction coefficient by the canopy. Incident, 

reflected and transmitted PAR through the canopy were measured from 11 am-

1 pm when clear skies and low wind velocity conditions prevailed. The following 

equation was used to calculate the percentage of LI by the canopy: 

𝐿𝐼 (%) =  
𝑃𝐴𝑅𝑖−𝑃𝐴𝑅𝑟−𝑃𝐴𝑅𝑔

𝑃𝐴𝑅𝑖−𝑃𝐴𝑅𝑟
 𝑥 100                eq. (1) 

where LI (%) is the percentage of light intercepted by the canopy, PARi, PARr 

and PARg are the incident, reflected and transmitted PAR respectively.  

Extinction coefficient was calculated based on Beer’s law modified by Monsi 

and Saeki to study plant canopies (Hirose, 2005) as follows: 

𝑘 =  −𝑙𝑛
𝑃𝐴𝑅𝑔
𝑃𝐴𝑅𝑖
𝐿𝐴𝐼

                  eq. (2) 

where ln is the natural logarithm, PARg the transmitted PAR, PARi the incident 

PAR and LAI the leaf area index of the canopy.  

Twelve shoots were randomly selected for biomass partitioning where plant 

organs were separated from stem, green area of flag, second, third and remaining 
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(below third leaf) leaves partitioning at InB and A7. Leaf green areas were 

measured using a leaf area meter (LI 3100C, Licor Biosciences, Lincoln, NE, 

USA). Finally, samples were dried in an oven for 2 days at 70°C, weighed and 

data was used to calculate the leaf area index (LAI) as follows: 

LAI =
Green leaf lamina area

# stems m2
                                                                       eq. (3)                                                                                                    

Finally, at A7, peduncle, internode 2 and 3 length were measured with a ruler in 

the stems from the shoots used for biomass partitioning.   

 

3.4.5 Measurement of source traits 

Aboveground biomass was sampled following Robles-Zazueta et al., (2021). 

Samples of biomass at InB, 7 days after anthesis (A7) and PM were collected. 

Biomass harvests were made in 0.4 m2 (40 days after emergence) and 0.8 m2 

(InB, A7), leaving 25 and 50 cm respectively at the northern side of the plots to 

reduce border effects in subsequent biomass samplings. All fresh biomass was 

weighed, and a subsample of 50 shoots was weighted and dried in an oven at 70 

°C for 48 h, to record dry weight and measure LAI. For biomass at PM, 

calculations were made from the measurement of yield components. For every 

growth stage, the aboveground biomass was calculated according to Pask et al., 

(2013): 

Aboveground biomass =  Subsample DW ×
Total FW × Harvested area

Subsample FW
     eq. (4)                                                    

RUE was estimated from the slope of the linear regression between accumulated 

aboveground biomass and the corresponding accumulated intercepted PAR 

during the determined growth period (Monteith, 1977). Incoming radiation from 
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a nearby meteorological station was used to calculate the accumulated PAR 

multiplying irradiance by 0.45 to convert it to PAR and ceptometer (AccuPAR 

LP-80, Decagon, Pullman, WA, USA) measurements were used to correct the 

accumulated radiation for the fraction of absorbed PAR of each genotype using 

the same approach as Robles-Zazueta et al., (2021). 

Gas exchange was measured with an infrared gas analyzer (IRGA, Licor 6400 

XT, Licor Biosciences, Lincoln, NE, USA) at InB (Y1 and Y2) and A7 (Y1, Y2, 

Y3). Spot measurements (Asat) were made on healthy plants using the leaf 

chamber fluorometer (6400-40 Licor Biosciences, Lincoln, NE, USA) in order 

to replicate environmental conditions from the study site (1800 µmol m-2 s-1 

PAR, 28 °C for block temperature). Leaf chlorophyll content was measured 

using a SPAD-502 meter (Konika Minolta, Japan). 

Measurements were taken in the flag (top of the canopy), second (middle of the 

canopy) and third leaves (bottom of the canopy) in two main shoots per plot as 

indicated in Robles-Zazueta et al., (2022) and then upscaled to canopy level. 

Measurements were performed between 10:00-15:00 as this timeframe has been 

found to maximize the stability and accuracy of the measurements (Evans and 

Santiago, 2014).  

Asat was upscaled to canopy level by multiplying each layer Asat values by its 

corresponding LAI. Asat rates were assumed for all canopy layers due to 

methodological reasons to simplify phenotyping in the field and find if light 

saturating photosynthesis which occurs in different occasions during the day in 

middle and bottom canopy layers can explain the relation with gas exchange and 

yield. 
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In this study, spike and stem photosynthesis was not measured therefore was not 

considered in our estimations of canopy photosynthesis. Calculations were made 

as follows: 

Canopy Photosynthesis = ∑(AsatFL x LAI FL)  + (AsatSL x LAI SL) + (AsatTL x LAI TL)            eq. (5)

      

Where Asat is CO2 assimilation under light saturated conditions (1800 µmol m-2 

s-1 PAR), LAI is leaf area index, and FL, SL, TL are flag leaf, second leaf and 

third leaf respectively.  

Water soluble carbohydrate (WSC) content was measured in stems and spikes 

of 12 randomly selected shoots at A7. Samples were dried in an oven at 70 °C 

for 48 hours and then milled for lab colorimetry analysis following the protocol 

in Pask et al., (2013). 

 

3.4.6 Measurement of sink traits 

When the genotypes reached PM, 50 shoots were randomly harvested from each 

plot and dried in an oven at 70 °C for 48 hours. Then the spikes were threshed 

to separate the grains from the rest of biomass and the harvest index was 

calculated as follows: 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 (𝐻𝐼) =
𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
               eq. (6) 

Yield was sampled in the field using an automated harvest machine (LD 350, 

Wintersteiger AG, Austria) and plot length was measured before yield was 

measured to consider the plot area lost from previous biomass harvests Pask et 

al., (2013). From the yield sample, a subsample was collected to be processed in 
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the lab to measure grain moisture content, calculate the thousand grain weight 

(TGW), number of grains per spike (GSP), grains m-2 (GM2), and afterwards the 

grain weight per spike (GWSP) and the number of spikes m-2 (SM2) was 

calculated. Yield was calculated according to Pask et al., (2013): 

𝑌𝑖𝑒𝑙𝑑 = (
𝑃𝑙𝑜𝑡 𝑦𝑖𝑒𝑙𝑑 (

𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑦𝑖𝑒𝑙𝑑 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒

𝐹𝑟𝑒𝑠ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑦𝑖𝑒𝑙𝑑 𝑠𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒
)+𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡50 𝑠ℎ𝑜𝑜𝑡𝑠

𝐴𝑟𝑒𝑎 ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑
)           eq. (7) 

3.4.7 Statistical analysis 

Bilinear unbiased estimators (BLUEs) were calculated for each trait by analysing 

data collected in the three years using the general linear model with META-R 

v6.04 (Alvarado et al., 2020). Days to GS41 and GS65, were used as covariates 

to correct the physiological traits for phenological variation at the vegetative and 

grain filling periods, respectively only when they were significant. To calculate 

BLUEs the following equation was used:  

𝑌𝑖𝑗𝑘𝑙 = µ +  𝐸𝑛𝑣𝑖  + 𝑅𝑒𝑝𝑗(𝐸𝑛𝑣𝑖) + 𝐺𝑒𝑛𝑙 + 𝐸𝑛𝑣𝑖  𝑥 𝐺𝑒𝑛𝑙 + 𝐶𝑜𝑣 +  𝜀𝑖𝑗𝑘𝑙  eq. (8) 

Where Yijkl is the trait of interest, µ is the mean effect, Envi is the effect of the 

ith environment, Repj is the effect of the jth replicate within the ith environment, 

Genl is the effect of the lth genotype, Envi x Genl are the effects of the ith 

environment and lth genotype interaction, Cov is the effect of the covariate and 

εijkl is the error associated with the environment i, replication j, kth incomplete 

block and lth genotype.  

Broad sense heritability (H2) across the three years was calculated as follows:  

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝑔𝑒
2

𝑛𝐸𝑛𝑣
+

𝜎𝑒
2

(𝑛𝐸𝑛𝑣 𝑥 𝑛𝑟𝑒𝑝𝑠)

               eq. (9) 
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Where 𝜎𝑔
2 is the genotype error variance, 𝜎𝑒

2 is the environment error variance, 

𝜎𝑔𝑒
2  is the genotype x environment interaction error variance, nEnv is the number 

of environments and nreps the number of replicates.  
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3.5 Results 
Table 3.2. Physiological traits measured in the field study at canopy level. Data presented is the mean (standard deviation) from 8 genotypes studied in three years plus 3 more 

genotypes studied two years, minimum, maximum, least significant differences (LSD), coefficient of variation (CV), heritability (H2) and the statistical differences caused by 

genotypes (G), years of data collection (Y) or the interaction between GxY. * = significant at p<0.05, ** = significant at p<0.01, *** = significant at p<0.001, ms = marginally 

significant (0.1>p>0.05), ns = no statistical significance. 

Trait Mean (SD) Minimum Maximum LSD CV H2 G Y GxY 

         Sink 

Yield (g m-2) 622.6 (30.82) 571.53 649.12 51.36 5.31 0.57 * ns ** 

HI 0.47 (0.018) 0.436 0.499 0.02 4.96 0.86 *** *** ns 

TGW (g) 43.11 (1.66) 36.24 47.98 2.88 6.33 0.91 *** *** ns 

GSP (# spike-1) 49.12 (4.37) 38.34 55.53 5.79 12.69 0.84 *** * ns 

GWSP (g spike-1) 2.11 (0.17) 1.39 2.4 0.26 11 0.91 *** * ns 

GM2 (grains m-2) 14604.68 (972.02) 11963.71 16314.09 1777.86 8.13 0.78 *** *** ** 

SM2 (spikes m-2) 303.41 (32.71) 269.4 420.8 40.25 12 0.91 *** * ns 

         Source 

BM_E40 (g m-2) 201.64 (33.92) 186.36 217.15 52.57 16.67 0 ns ns ** 

BM_InB (g m-2) 521.84 (60) 444.28 607.09 98.08 13.4 0.48 ms ns * 

BM_A7 (g m-2) 989.59 (126.72) 893.31 1127.18 137.86 14.23 0.57 * ns ns 

BM_PM (g m-2) 1322.83 (90.55) 1210.31 1445.18 131.68 7.12 0.7 ** ** * 

RUE_preGF (g MJ-1) 2.36 (0.36) 2.111 2.56 0.39 17.26 0.25 ns ns ns 

RUE_GF (g MJ-1) 1.23 (0.5) 0.85 1.55 0.49 41.01 0.46 ms ns ns 

RUE_Total (g MJ-1) 1.64 (0.14) 1.51 1.8 0.19 8.97 0.6 * *** ms 

Canopy Asat_InB (µmol m-2 s-1) 110.26 (24.79) 84.57 130.97 48.92 21.51 0.15 ns ns ns 

Canopy Asat_A7 (µmol m-2 s-1) 90.09 (30.87) 75.55 116.94 35.3 35.59 0.05 ns ns ns 

WSC_stems (g m-2) 122.91 (34.63) 72.31 168.9 64.05 34.04 0.64 ** ns ** 

WSC_spikes (g m-2) 39.24 (12.79) 27.84 49.62 18.74 38.49 0.55 * ns ns 

         Architecture 

Height_E40 (cm) 36.97 (1.65) 34.62 38.87 2.97 4.09 0.72 ** *** ns 

Height_InB (cm) 65.34 (3.41) 60.67 74.39 10.31 4.97 0.36 ns ** *** 

Height_H (cm) 82.74 (3.58) 75.14 89.41 7.97 6.37 0.8 *** *** ns 
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Height_A7 (cm) 99.61 (3.84) 90.64 106.12 10.05 4.25 0.71 ** ns * 

Height_PM (cm) 110.77 (2.06) 100.91 116.99 3.35 1.92 0.94 *** *** ** 

Internode 2 (cm) 21.25 (0.81) 19.82 23.39 1.43 3.63 0.84 *** ns *** 

Internode 3 (cm) 13.77 (0.54) 10.54 15.92 1.08 4.3 0.95 *** *** *** 

Peduncle (cm) 38.42 (1.34) 35.07 42.73 2.84 4.05 0.81 *** *** *** 

Spike (cm) 11.44 (0.4) 9.3 12.94 0.74 3.76 0.94 *** ns *** 

Awns (cm) 6.27 (0.36) 4.84 6.84 0.35 5.92 0.97 *** *** ns 

Shoots_E40 (# m-2) 805.38 (123.45) 710.39 928.65 128.12 16.98 0.74 *** ns ns 

Shoots_InB (# m-2) 534.65 (88.27) 429.91 697.84 91.31 17.77 0.85 *** *** ns 

Shoots_A7 (# m-2) 454.02 (62.92) 373.66 604.8 71.47 16.66 0.88 *** ns ns 

LI_E40 (%) 89.57 (3.78) 87.14 91.28 4.6 4.77 0 ns * ns 

LI_InB (%) 96.4 (1.84) 92.81 98.62 3.51 2.45 0.49 ms ms ns 

LI_A7 (%) 97.7 (0.9) 96.77 98.51 1.2 1.15 0.49 ms ** ns 

LAI_InB 7.04 (1.22) 5.97 8.77 1.73 18.83 0.54 * * ms 

LAI_A7 5.35 (0.84) 4.38 6.23 1.22 19.05 0.41 ms ns ns 

k_InB 0.46 (0.09) 0.38 0.54 0.13 19.95 0.21 ns * * 

k_A7 0.78 (0.15) 0.67 0.91 0.16 16.66 0.56 * ms ns 

         Phenology 

InB (days) 60.77 (0.96) 58.36 64.59 2.17 1.84 0.91 *** *** *** 

H (days) 71.03 (0.92) 68.16 74.83 2.37 1.31 0.92 *** *** *** 

A7 (days) 76.29 (1.15) 73.07 80.27 2.52 1.61 0.92 *** *** *** 

PM (days) 116.4 (1.01) 113.33 119.65 2.4 1.01 0.83 *** *** *** 

HI: harvest index, TGW: thousand grain weight, GSP: grains per spike, GWSP: grain weight per spike, GM2: grains per m-2, SM2: spikes per m-2, LI: light interception, LAI: leaf area index, k: extinction coefficient, 

RUE_preGF: radiation use efficiency from pre grain filling period, RUE_GF: radiation use efficiency from grain filling period, RUE_Total: radiation use efficiency from the whole crop cycle, BM: aboveground biomass, 

WSC: water soluble carbohydrates. 
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Table 3.3. Physiological traits measured in the field study in the different canopy layers. Data presented is the mean from the field experiments from the three years, minimum, 

maximum, least significant differences (LSD), coefficient of variation (CV), heritability (H2) and the statistical differences caused by genotypes (G), years of data collection 

(Y) or the interaction between GxY. * = significant at p<0.05, ** = significant at p<0.01, *** = significant at p<0.001, ms = significant at p<0.1, ns = no statistical significance, 

T = Top layer of the canopy, M = Middle layer of the canopy, B = Bottom layer of the canopy. +Data collected in two years of study. 

Initiation of booting  

 Minimum Mean Maximum LSD CV H2 G Y GxY  

Trait T M B T M B T M B T M B T M B T M B T M B T M B T M B  
Asat 21.1 21.6 12.4 25.6 26.9 15.9 28.6 30.4 19.3 4.98 9.19 8.51 12.91 19.68 25.64 0.37 0.09 0 ns ns ns ns ns ns ns ns ms  

LAI 1.3 1.56 1.54 1.53 1.73 1.75 2.03 2.04 2.05 0.48 0.42 0.33 24.8 19.9 20.1 0.6 0.3 0.5 * ns * * ns ms ms ns ns  

Length 20.73 27.9 30.6 24.12 30.44 32.68 29.23 33.82 36.04 3.23 4.15 3.82 8.2 6.14 6.28 0.9 0.5 0.4 *** ms ns ms ns ns *** *** ***  

Width 1.7 1.44 1.33 1.91 1.62 1.42 2.1 1.73 1.51 0.11 0.12 0.1 5.08 5.17 5.69 0.9 0.7 0.5 *** ** * ns ** ms ns ** ns  

LI 35.93 29.7 6.73 44.9 35.17 10.4 53.31 41.43 14.03 17.8 12.9 7.92 20.3 24.9 53.8 0 0 0 ns ns ns *** *** *** ** ns ns  

SPAD 44.12 46.3 43 45.77 48.12 45.26 49.01 50.5 47.56 3.53 2.31 2.71 5.07 3.89 6.25 0.4 0.7 0.6 ns *** * ns ** * ** ns ns  

7 days after anthesis  

 Minimum Mean Maximum LSD CV H2 G Y GxY  

Trait T M B T M B T M B T M B T M B T M B T M B T M B T M B  

Asat 19.4 12 7.2 22 16.7 10.2 24.5 19.5 13 12.9 19.7 25.6 19 25.1 39.4 0.4 0.7 0.5 ms *** * ** ** ** ns ns ns  
LAI 1.13 1.67 1.75 1.43 2.31 2.14 1.76 2.75 2.54 0.42 0.86 0.78 10.1 23 36 0.6 0.4 0 * ns ns ns *** *** ms ns ns  

Angle+ 43.06 34 45.1 91.95 76.03 75.44 109.4 100.4 94.88 42.8 39.2 59.6 23.1 19.2 30 0.5 0.7 0 * ** ns *** ** ms ** *** ***  

Curvature+ 27.44 27.6 49.1 44.97 63.31 64.69 85.69 90.94 88 69.4 46.3 57.8 74.5 42.6 45.3 0 0.4 0 ns ns ns ms ms ns *** ** ms  
Distance+ 16.06 17.4 19.7 19.35 22.17 22.7 22.01 24.99 25.71 7.35 5.31 5.79 12.9 12.7 18.2 0 0.5 0.2 ns ms ns ns ms ns *** * ns  

Length+ 23.18 28.4 30.7 27.47 31.19 33.34 24.4 29.68 31.65 3.27 2.95 3 9.03 7.86 7.38 0.9 0.6 0.7 *** * ** ns ns ns ns ns ns  

Width+ 1.81 1.53 1.39 2.04 1.68 1.54 1.9 1.54 1.38 0.19 0.22 0.14 5.17 8.06 7.76 0.9 0.6 0.8 *** * ** ns ns ** ms ns ns  

LI 27.68 22.8 7.81 34.8 27.1 9.62 42.62 31.5 14.37 11.7 8.97 6.69 30.2 33.2 59 0.3 0 0 ns ns ns ns ** ns ns ns ns  

SPAD 47.83 47 40.8 50.6 49.3 44.43 53.18 52.11 47.94 2.06 1.91 2.97 4.01 4.18 7.21 0.9 0.9 0.8 *** *** *** *** ns ms ns ns ns  

Asat: photosynthesis rate at light saturating conditions, LAI: leaf area index, LI: percentage of light intercepted, Curvature: leaf curvature where the leaf starts to bend, Distance: distance from stem to tip of the leaf. 
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3.5.1 Agronomic traits 

Grain yield across years was 622.6 ± 30.8 g m-2 and H2 was 0.57 (Table 3.2). 

Yield component traits (HI, TGW, GSP, GM2 and SM2) showed highly 

statistically significant differences among genotypes with high H2 estimates 

(0.78-0.91). RUE during the vegetative period (RUE_preGF) ranged from 2.11-

2.56 g MJ-1 and was higher compared to RUE from grain filling (RUE_GF, 0.85-

1.55 g MJ-1) or RUE encompassing the whole crop cycle (RUE_Total, 1.51-1.8 

g MJ-1). However, H2 estimates for RUE_preGF (0.25) were lower than 

RUE_GF and RUE_Total (0.46 and 0.6, respectively). Differences among 

genotypes were identified for RUE_GF and RUE_Total at p<0.1 and p<0.05, 

respectively (Table 3.2). Aboveground biomass ranged from 201.64 ± 33.92 g 

m-2 in E40 to 1322.83 ± 90.55 g m-2 in PM. The highest variability of any growth 

stage was found at PM, with differences between genotypes and across years 

(p<0.01) but in general the sink traits varied more between genotypes and years 

than the source traits and H2 was increasing along the growth stages, with 

medium to high heritability found at A7 (H2 = 0.57) and PM (H2 = 0.7) (Table 

3.2). 

Differences in canopy architecture, stem and spike architecture were found in all 

growth stages, except for plant height at A7 (Table 3.2). LAI only showed 

genetic variability at canopy (Table 3.2) and layer level at InB (Table 3.3) but 

no differences were found at A7. Similarly, statistically significant differences 

were found in leaf angles measured in the top and middle layers of the canopy 

(Table 3.3). Despite the differences in canopy architecture and light distribution, 

the canopies in all the genotypes studied captured the same amount of light in all 

the growth stages studied (Table 3.2). 
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3.5.2 Leaf and canopy light saturating photosynthesis 

Canopy photosynthetic rates ranged from 84.57 µmol m-2 s-1 to 130.97 µmol m-

2 s-1 at InB and 75.55 µmol m-2 s-1 to 116.94 µmol m-2 s-1 at A7.  No statistically 

significant differences were found (Table 3.2). A similar trend was found for Asat 

from individual layers at InB with no significant differences found between 

genotypes within the canopy layers (Table 3.3). In our study, both canopy and 

layer photosynthesis rates were higher at InB and decreased at A7. At InB the 

highest Asat rates were found in the middle layer (26.91 µmol m-2 s-1) and top 

layer rates were statistically similar (25.58 µmol m-2 s-1) with the lowest Asat 

rates found at the bottom layer (15.95 µmol m-2 s-1). In contrast to InB, at A7 

statistically significant differences were found within layers (middle and 

bottom), with a decreasing trend in Asat rates from top (21.99 µmol m-2 s-1) to 

bottom layers (10.19 µmol m-2 s-1) of the canopy with medium to high H2 

estimates (0.5-0.7) (Table 3.3).  

 

3.5.3 RUE, biomass and yield relation with photosynthesis 

Overall, the relationship between RUE measured in the different growth periods 

and Asat measured at different layers of the canopy was very poor both for Asat 

measured during InB and A7. Asat measured in the top of the canopy at InB only 

correlated slightly significant with RUE_GF (Figure 3.1, top panel). When Asat 

was measured at A7 the relationship with RUE improved (RUE_preGF and top 

Asat, p<0.1; RUE_GF and middle Asat, p<0.1) but still were not statistically 

significant (Figure 3.1, bottom panel).  
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Figure 3.1. Linear regressions between radiation use efficiency (RUE) and the integral of CO2 

assimilation at light saturating conditions (Asat) measured at different layers of the canopy from 

initiation of booting (top panels) and 7 days after anthesis (bottom panels). Black dots: Top of 

the canopy, blue dots: middle of the canopy, grey dots: bottom of the canopy. Lines represent 

significant linear regressions. 

 

When combining different layers of the canopy the relationship between RUE 

and Asat significantly improved compared to using individual layers. 

RUE_preGF correlated significantly with the top + middle layer combination 

(R2 = 0.37, p<0.05) and a marginally significant relationship was found when 

the three canopy layers were considered (R2 = 0.32, p<0.1) (Figure 2, top panel). 

No significant relationships between RUE_GF and RUE_Total with the layer 

Asat combinations measured at InB were observed (Figure 3.2, top panel). 

Different Asat layer combinations measured at A7 correlated better with RUE. 

A significant association between RUE_preGF and Asat was found when top + 

bottom layers were combined (R2 = 0.42, p<0.05), middle + bottom layers with 
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RUE_GF (R2 = 0.42, p<0.05) and top + bottom layers had a marginally 

significant link with RUE_Total (R2 = 0.3, p<0.1) (Figure 3.2, bottom panel).  

 

Figure 3.2. Linear regressions between radiation use efficiency (RUE) and the integral of CO2 

assimilation at light saturating conditions (Asat) measured by combining different layers of the 

canopy in initiation of booting (top panels) and 7 days after anthesis (bottom panels). Black dots: 

Top and middle, blue dots: top and bottom, grey dots: middle and bottom, green dots: top, middle 

and bottom. Lines represent significant linear regressions. 
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Figure 3.3. Linear regressions between aboveground biomass and CO2 assimilation at light 

saturating conditions measured by combining different layers of the canopy in initiation of 

booting (panels 1-4) and 7 days after anthesis (panels 5-8). Black dots: Top and middle, blue 

dots: top and bottom, grey dots: middle and bottom, green dots: top, middle and bottom. Lines 

represent significant linear regressions. 

 



 

98 

 

With the combination of different canopy layers, a marginal significant relation 

was found between biomass and Asat from the top + middle layers at InB (R2 = 

0.33, p<0.1). The combinations of top + middle (R2 = 0.53, p<0.05) and whole 

canopy (R2 = 0.41, p<0.05) resulted in positive associations with biomass at A7 

(Figure 3.3, top panels). For Asat at A7, no significant relationships with biomass 

at any growth stage were found, but when combining different layers, the top + 

bottom and middle + bottom layers with biomass from PM showed a weak 

positive relationship (R2 = 0.25) (Figure 3.3, bottom panels), which was in line 

with the findings for RUE and Asat. 

 

Figure 3.4. Linear regressions between grain yield and CO2 assimilation at light saturating 

conditions at initiation of booting (left panel) and 7 days after anthesis (right panel). Black dots: 

top, blue dots: middle, grey dots: bottom. Lines represent significant linear regressions. 

 

Significant relationships were found between photosynthetic rates both at InB 

and A7 with yield. Asat at InB from the top (R2 = 0.33, p<0.1), middle (R2 = 0.49, 

p<0.05) and bottom (R2 = 0.44, p<0.05) layers of the canopy produced positive 

relationships (Figure 3.4, left panel). The strongest association found in this 
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study was between top Asat at A7 and yield (R2 = 0.62, p<0.001) (Figure 3.4, 

right panel).  

 

Figure 3.5. Linear regressions between grain yield and CO2 assimilation at light saturating 

conditions measured by combining different layers of the canopy in initiation of booting (left 

panel) and 7 days after anthesis (right panel). Black dots: top and middle layer, blue dots: top 

and bottom layer, grey dots: middle and bottom layer. Lines represent significant linear 

regressions. 

 

Using a combination of canopy layers did not improve the relationships found 

compared to the ones established with individual layers neither at InB nor A7. 

Top + middle (R2 = 0.31, p<0.1), middle + bottom (R2 = 0.33, p<0.1) and all the 

canopy layers combined (R2 = 0.3, p<0.1) had a marginally significant 

relationship with yield. Top + bottom layers (R2 = 0.39, p<0.05) was the only 

combination where we found a significant link between yield and Asat from InB 

(Figure 3.5, left panel). For A7, only top + bottom (R2 =0.35, p<0.1) had positive 

relationship with yield (Figure 3.5, right panel).  
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3.6 Discussion 

This is the first study to consider the impact of photosynthesis at discrete layers 

of wheat canopies on biomass, RUE and yield in wheat; as well as the combined 

impact of different layer combinations. This work also explores the reasons why 

there is not a clear consensus in the literature for the presumably necessary 

relationship between photosynthesis and performance traits. Furthermore, 

comparisons between different layer combinations were explored to examine if 

the relationship between these traits with photosynthesis improves and be able 

to suggest which canopy layers could be added for future screening efforts by 

identifying lines with optimised photosynthesis along the canopy.  

Our results suggest that the relationship between yield, biomass and RUE with 

leaf photosynthesis has not been consistent due to the lack of integration of 

different canopy layers and studies that address the role of above and 

belowground respiration and C allocation, the micro-environmental conditions 

in which plants are grown and the different phenological stages where these 

relationships have been studied.  

 

3.6.1 RUE, biomass and yield improvement: why there is a lack of 

consensus? 

Our results indicate that phenology has a great influence on the strength of the 

relationships found between performance traits and photosynthesis. The lack of 

genotypic differences at InB could be explained by the influence of canopy 

architecture as all the studied genotypes intercepted the same amount of light in 

this growth stage because these cultivars are subject to light saturating conditions 
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in the top and possibly middle layer of the canopy. In contrast, at A7 moderate 

H2 and genotypic differences found highlight that photosynthetic rate for middle 

and bottom canopy layers could be added in breeding pipelines to improve yield 

in the future as it complies with the selection criteria of traits to be included in 

pre-breeding programmes (Reynolds et al., 2020). Thus, enhancing canopy 

architecture to optimise light distribution has to be a priority to boost middle and 

bottom layer photosynthetic rates.  

Previous studies that have explored the association between source and sink 

traits with photosynthesis have focused on flag leaves (wheat, rice) or top of the 

canopy leaves (cassava and sorghum) and there is a range of environments (yield 

potential, drought, different N fertilisation rates, glasshouse and growth 

chamber) that influence the source-sink ratios of plants, which adds a 

confounding effect to the study of these relationships.  

In our study, Asat from the middle layer of the canopy both at InB and A7 were 

best associated with genotypic differences in biomass at PM (r2 = 0.18, 0.25, 

respectively) because flag leaves are subjected to light saturating conditions for 

most of the crop cycle. The relationship with biomass in our study is within the 

range of previous studies for sorghum at panicle initiation (r2 = 0.32) (Peng et 

al., 1991), pre-anthesis in wheat (r2 = 0.25) (Gent, 1995), but smaller than the 

relationships presented for wheat grown in the field under drought (Wada et al., 

1994) and heat stress conditions (Gutiérrez-Rodríguez et al., 2000; Reynolds et 

al., 2000a), contrasting N fertilisation regimes (Huang et al., 2016) and wheat 

grown under different N levels at pre and post-anthesis (Gaju et al., 2016).  
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On the other hand, yield and Asat relationship is more established than the 

biomass and Asat relationship (Table 3.1). In our study photosynthetic rates at 

InB in every layer measured had significant relationship with yield (Table 3.1). 

Very strong associations were found in field grown sorghum under drought and 

irrigation especially in the mid-development stage (r2 = 0.86, p<0.01; r2 = 0.83, 

p<0.01, for yield potential and drought, respectively) (Peng et al., 1991) and for 

wheat measured at the vegetative stage differences between the relationships 

under yield potential and drought stress conditions were strongly contrasting (r2 

= 0, r2 = 0.4, p<0.01, respectively) (Wada et al., 1994).  

For most of field trials that previously reported relationships between yield and 

photosynthesis, the strongest relationships were found at grain filling (Gent, 

1995; Fischer et al., 1998; Reynolds et al., 2000a; Zheng et al., 2011; Gaju et al., 

2016), similar to our findings. This evidence suggests that yield improvement in 

wheat has come hand in hand with increments in Asat and gs, because selection 

of new varieties with greater biomass is thought to inadvertently come with 

greater gas exchange rates. This indicates that it will be easier to find wheat 

varieties with higher yield if photosynthetic rates and stomatal conductance are 

high during grain filling.  

In contrast to field trials, when plants were studied in controlled settings the 

strongest relationships were found (Table 3.1). Examples of this findings are rice 

grown under elevated [CO2] (Sakai et al., 2006), wheat grown under drought and 

high N fertilisation rates (Barbour and Kaiser, 2016). Spike photosynthesis in 

wheat grown with optimum irrigation in a glasshouse showed contrastingly 

better relationship with yield (Zhou et al., 2016; Elazab et al., 2021) compared 

to spike photosynthesis measured in the field under yield potential (Molero and 
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Reynolds, 2020); and a similar trend was found for flag leaf Asat and Amax when 

wheat was grown in growth chambers (Driever et al., 2017) versus when the 

same genotypes were studied in the field (Driever et al., 2014). 

From the abovementioned examples it is clear that the range of growing 

conditions plants are subjected have a clear effect on the relationship between 

yield and photosynthesis. Since photosynthetic traits can be environmental, time 

specific and developmental stage dependant (Flood et al., 2016), this needs to be 

considered when screening lines in different environments if yield is to be 

boosted. Plants developing in controlled environments typically have higher 

growth rates, higher leaf N concentration (key for photosynthesis) and smaller 

leaf area which affect the plant source-sink balance (Poorter et al., 2016) and 

could explain the better relationships found in controlled settings compared to 

the field (Table 3.1).  

 

3.6.2 Canopy photosynthesis as a driver of yield improvement 

Our results indicate that preferential improvement in the middle and bottom 

layers of canopy photosynthesis are most likely to boost yield due to the strong 

positive associations between photosynthesis and yield, especially at InB. 

However, given that these results were derived under light saturated conditions 

at all canopy layers, modifications on canopy architecture might be needed to 

improve light penetration through middle and bottom layers (e.g. erect leaves, 

increasing lower internode length, smaller LAI at the top and larger LAI at the 

bottom of the canopy) which can potentially translate to higher plants, but recent 

evidence suggest that is not necessarily the case (Rivera-Amado et al., 2020). 
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It has been suggested that exploiting the genetic variation in biomass (Aisawi et 

al., 2015) and RUE (Joynson et al., 2021) can be an important avenue for yield 

improvement, and furthermore help to understand the genetic basis of 

physiological traits related source (e.g. LAI, partitioning, photosynthesis, 

chlorophyll content within the canopy) and the improvement of yield (Molero et 

al., 2019). Nevertheless, if physiological variables do not show a relationship 

with growth analysis, RUE or yield new physiological traits will not be 

introduced in breeding pipelines.  

In this study we established that including middle and bottom layers of the 

canopy to physiological studies, can help us to find genotypes with higher RUE 

rates, biomass and yield, as relationships of photosynthesis with RUE, biomass 

and yield, and gs with biomass were found (Table 3.1). Recent research has 

found mixed results about yield being source or sink limited, with indications 

that increments in grain filling source capacity including higher LAI and spike 

or leaf photosynthesis will improve yield (Rivera-Amado et al., 2020). On the 

other hand, Quintero et al., (2018) found that increasing the sink size will boost 

wheat yield. These mixed results suggest a source-sink co-limitation of yield; 

therefore, it will be paramount to increase canopy photosynthesis with an 

emphasis on middle and bottom layer at InB to allow plants to have greater 

photoassimilates reserves stored in the stems when remobilization starts at grain 

filling and leaf senescence at the bottom of the canopy diminishes the overall 

photosynthetic rates.  
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3.7 Conclusions 

To our knowledge, this is the first effort to include different layers of the canopy 

to the study of the relationships between source and sink traits with gas 

exchange. Our results indicate that the growth stage where measurements take 

place are crucial to understand better the link between photosynthesis and yield. 

Even though it is highlighted in this study that measuring middle and bottom 

layers of the canopy can help us understand this link, it is noteworthy that flag 

leaf photosynthesis is the preferred method to phenotype gas exchange because 

of its simplicity and the lack of HTP methods. Therefore, the development of 

HTP methods, for example based on optical remote sensing will increase the 

feasibility of including middle and bottom layer phenotyping into breeding 

pipelines for large trial screenings by allowing us to predict gas exchange traits 

quickly as shown by Robles-Zazueta et al., (2022).  

Discrepancies in the literature related to the relationship between photosynthetic 

traits and yield or biomass appear to be related to differences in growing 

conditions that still obscure these relationships. Future studies should consider 

measuring different wheat genotypes in multi-environmental trials coupled with 

high-throughput phenotyping of different canopy layers with modelling 

approaches that consider the addition of spike and stem photosynthesis in at least 

one vegetative and one reproductive stage to catch the variability caused by 

phenology, environmental and management conditions where wheat is grown. 
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Abstract  

To achieve food security, it is necessary to improve radiation use efficiency 

(RUE) and yield through the enhancement of canopy photosynthesis to increase 

the availability of assimilates for the grain, but its study in the field is constrained 

by low throughput and lack of integrative measurements at canopy level. In this 

study, partial least squares regression (PLSR) was used with high-throughput 

phenotyping (HTP) data in spring wheat to build predictive models of 

photosynthetic, biophysical and biochemical traits for the top, middle and 

bottom layers of wheat canopies. The combined layer model predictions 

performed better than individual layer predictions with significance as follows 

for photosynthesis: R2 = 0.48, RMSE = 5.24 µmol m-2 s-1; stomatal conductance: 

R2 = 0.36, RMSE = 0.14 mol m-2 s-1 and transpiration: R2 = 0.39, RMSE = 1.42 

mmol m-2 s-1. The predictions of these traits from PLSR models upscaled to 

canopy level compared to ground truth data were statistically significant at 

initiation of booting (R2 = 0.3, p<0.05; R2 = 0.61, p<0.001; R2 = 0.29, p<0.05) 

and 7 days after anthesis (R2 = 0.15, p<0.05; R2 = 0.65, p<0.001) except for 

transpiration. Using HTP allowed us to increase phenotyping capacity 30-fold 

compared to conventional phenotyping methods. This approach can be adapted 

to screen breeding progeny and genetic resources for RUE and improve our 

understanding of wheat physiology by adding different layers of the canopy to 

physiological modelling. 

 

Keywords: canopy photosynthesis, high-throughput phenotyping, PLSR, physiological 

breeding, RUE, yield improvement 
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4.1 Introduction 

4.1.1 Looking for yield improvement through the photosynthesis lens 

Increasing crop biomass and radiation use efficiency (RUE; dry weight biomass 

produced per unit radiation intercepted) through the enhancement of 

photosynthesis has been presented as one of our best options to improve staple 

crop yields (Evans and Lawson, 2020). Multiple lines of evidence suggest that 

increased photosynthesis would stimulate higher yields and moreover there is 

room for improvement within existing crop systems (Zhu et al., 2010; Slattery 

et al., 2013; Kromdijk et al., 2016; South et al., 2019; Ainsworth and Long, 

2021). 

Most of the yield gains achieved in wheat (Triticum aestivum L.) from the Green 

Revolution came through the provision of the necessary resources for crop 

growth (i.e. water, nutrients, pest control) and the introduction of reduced height 

(Rht) genes to increase harvest index (HI; proportion of biomass allocated in the 

grains) and plant structural integrity thereby making it more responsive to 

irrigation and nutrients while reducing the risk of lodging (Reynolds et al., 2012). 

Currently, pre-breeding efforts in wheat are focused in improving traits such as 

aboveground biomass, light interception, HI and RUE (Molero et al., 2019). 

Some of these traits are close to optimum, HI (close to 0.6) and light interception 

(canopies intercepting ~95% of light), whereas RUE and biomass have a high 

potential for improvement. Therefore, increasing wheat photosynthesis has 

become a primary goal to increase yield (Murchie et al., 2009).  

Biomass and RUE have increased in some wheat lines serendipitously without 

direct selection of RUE or photosynthetic traits. It has been suggested that RUE 



 

109 

 

improvements in wheat needs to be addressed through changes in leaf or spike 

photosynthesis (Carmo-Silva et al., 2017; Molero and Reynolds, 2020; Sanchez-

Bragado et al., 2020) as previous studies have found a significant relationship 

between genetic variation in flag leaf light-saturated photosynthesis rates (Asat) 

and stomatal conductance (gs) with yield (Fischer et al., 1998; Gutiérrez-

Rodrı́guez et al., 2000; Reynolds et al., 2000a; Gaju et al., 2016) and 

aboveground biomass (Reynolds et al., 2000a; Gaju et al., 2016) at pre and post-

anthesis growth stages. However, recent studies have failed to find a clear link 

between single leaf photosynthesis or gs with yield (Driever et al., 2014; Silva-

Pérez et al., 2020).  

In chapter 3, we identified that middle and bottom layers of wheat canopy can 

be a great option to exploit the photosynthetic phenotypic range for yield 

improvement but to fully exploit genetic variation in existing germplasm we 

need to develop high-throughput plant phenotyping (HTP) methods for faster 

assessment of photosynthetic-related traits and also find ways in which 

measurements of leaf or canopy photosynthesis will meaningfully correlate with 

canopy biomass and RUE to accelerate genetic yield gains.  

 

4.1.2 Canopy photosynthesis modelling 

Photosynthesis field research in wheat has been relatively slow in comparison to 

the study of other traits such aboveground biomass accumulation, light 

interception, RUE or leaf and canopy pigment content despite the latter requiring 

heavy manual labour in the field. This is a consequence of several factors that 

hinder accurate and representative estimations of photosynthetic traits under 
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field conditions which are mostly related to the complexity of photosynthesis as 

a trait. These include the time it takes to measure a leaf in the field for maximum 

assimilation rate under light saturating conditions per leaf (Asat, ~15-25 min), the 

impracticality and low throughput techniques for measuring more complex 

photosynthetic traits such as induction, CO2 or light concentration curves (A/Ci, 

A/Q curves), and the confounding effect of crop phenology. Moreover, 

photosynthesis is typically measured in flag leaves which are usually exposed to 

light saturating conditions for most of the day and thus not representing the 

environmental conditions found across the whole canopy (Murchie et al., 2018).   

Photosynthesis research gained a lot of interest after the seminal work from 

Farquhar et al., (1980). Since then methodologies were developed to measure, 

upscale to canopy level (“big leaf” models) and model photosynthesis 

considering mainly sunlit leaves, assuming that its rates would change with light 

intensity, penetration and distribution, N content and leaf angles (Farquhar, 

1989) with this modelling approach being applied in natural ecosystems (De 

Pury and Farquhar, 1997)  and C3 and C4 crop systems upscaling information 

from individual leaves to canopy level (Yin and Struik, 2009; Wu et al., 2019). 

Given that prediction of canopy photosynthesis is improved with knowledge of 

photosynthesis at multiple canopy leaf layers by contemplating resource 

differences in each layer, methodologies emerged to increase the spatio-temporal 

scales over which measurements can be made. Photosynthetic reactions can now 

be measured at cellular, leaf and plant level with low to medium throughput 

phenotyping techniques (Murchie et al., 2018), and at ecosystem scale using 

sensors mounted on micrometerological stations (Baldocchi, 2003) and estimate 

biome photosynthesis using chlorophyll fluorescence information collected from 
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satellite sensors as a proxy of productivity (Farquhar et al., 2001; Parazoo et al., 

2014; Duveiller and Cescatti, 2016; Zhang et al., 2016). Although these are 

exciting methodologies used for photosynthesis research, the latter examples are 

not easy to deploy in wheat breeding programs as hundreds of lines are grown 

in plots placed next to each other and upscaling information from leaves to plots 

can be hard due to the spatial scale mismatch in these methods which can vary 

from mm2 to km2. 

 

4.1.3 High-throughput phenotyping of photosynthetic, biophysical and 

biochemical traits  

There have been various investigations to assess photosynthetic related traits at 

multiple canopy levels such as Asat, RUE, the fraction of absorbed 

photosynthetically active radiation (fAPAR), maximum velocity of Rubisco 

carboxylation (Vcmax), electron transport rate (Jmax), non-photochemical 

quenching (NPQ) and other chlorophyll fluorescence parameters have been 

assessed in glasshouse studies coupled with 3D reconstructions using ray tracing 

modelling in wheat (Townsend et al., 2018), rice (Burgess et al., 2016; Foo et 

al., 2020), maize (Cabrera-Bosquet et al., 2016), pearl millet, bambara groundnut 

(Burgess et al., 2017) and arabidopsis (Retkute et al., 2015) in different canopy 

layers. Under field conditions, Asat measurements have been made with a custom 

made sensor (OCTOflux) which allowed the user to increase the phenotypic 

capabilities ~4-7 times compared to conventional IRGAs (infrared gas analyser) 

by measuring 8 leaves at a time (Salter et al., 2018), Asat measurements made in 

the top and bottom layers of wheat canopies (Salter et al., 2020), modelling with 

light response curves coupled with eddy covariance flux estimations of gross 
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primary productivity (GPP) (Hoyaux et al., 2008) and through image 

spectroscopy used to measure photochemical efficiency in wheat and maize 

(Pinto et al., 2016). 

While these studies have shown that it is possible to estimate canopy 

photosynthesis through modelling, it has usually required laborious and complex 

manual measurements. Some have been used only in controlled environmental 

conditions or have not been tested in a HTP context limiting their use for 

physiological breeding. Additionally, these techniques are hard to deploy in the 

field, especially in breeding programs where hundreds of plots are grown in close 

proximity with limited space to manoeuvre large phenotyping equipment.  

Recently, optical remote sensing techniques have gained attention due to the 

possibility of measuring hundreds or thousands of lines without the need of 

destructive sampling and in a small fraction of time compared to conventional 

phenotyping methods. Spectral data collected in the field has been used to 

calculate spectral indices or the full reflectance signature of an area of the 

electromagnetic spectrum usually ranging from 350 to 2500 nm to predict 

physiological traits at leaf or canopy scales (Ollinger, 2011; Gamon et al., 2019; 

Robles-Zazueta et al., 2021). Among the methods using the full spectral range, 

partial least squares regression (PLSR) modelling has become the gold standard 

for HTP modelling of physiological traits such as leaf Asat, Vcmax, Jmax, dark 

respiration, leaf C, N and chlorophyll content, protein, sugars, leaf mass area and 

specific leaf area (Serbin et al., 2012; Silva-Pérez et al., 2018; Coast et al., 2019; 

Burnett et al., 2021; Furbank et al., 2021). However, most of the studies have 

focused in measurements of sunlit leaves at the top of the canopy, this highlights 

the need for studies that include different layers to integrate the whole canopy.  
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4.2 Hypothesis 

Our hypothesis is that models derived from rapid measurements of multiple 

layers of the canopy will produce better predictions than models created with 

individual leaf layers, due to unknown trait variability caused by a gradient from 

top to bottom of the canopy.  

 

4.3 Objectives 

The objectives of this study are to predict photosynthetic, biophysical and 

biochemical traits using PLSR modelling, to compare the measurements of Asat, 

gs and transpiration with PLSR predictions and to explore the use of these 

predictions as means to select wheat genotypes for higher RUE. 
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4.4 Materials and methods 

4.4.1 Plant material and experimental design 

Spring bread wheat cultivars chosen from the Photosynthesis Respiration Tails 

(PS Tails) panel from the International Maize and Wheat Improvement Center 

(CIMMYT) were grown at CIMMYT’s Campo Experimental Norman E. 

Borlaug (CENEB) field station in Ciudad Obregon, Sonora, Mexico (27° 23’ 

46’’ N, 109° 55’ 42’’ W, 38 mamsl) during the spring wheat growth season that 

encompasses early December-early May. 

A subset of 8 cultivars and advanced lines were studied in year 1 (Y1) and three 

more lines were added years 2 and 3 (Y2, Y3) to have a total of 11 lines. 

Germplasm from this panel is characterized by contrasting RUE expression at 

vegetative and grain filling stages, high aboveground biomass and these lines are 

used for their promising high yield potential.  

The experimental design was a randomised complete block design with three 

replicates in raised beds and two beds per plot (Y1), same experimental design 

but four replications per genotype in Y2 and Y3. Sowing dates were December 

5th 2017, December 6th 2018 and December 18th 2019 for Y1, Y2 and Y3 

respectively. Emergence dates were December 12th 2017, December 12th 2018 

and December 26th 2019 (Y1, Y2 and Y3 respectively). Harvest dates were May 

8th 2018, April 30th 2019 and May 13th 2020 (Y1, Y2 and Y3 respectively). Seed 

rate was ~250 seeds m-2 in the three years. Irrigation was applied four times 

during the crop cycle in approximate 25-day intervals (pre sowing, 25, 50, 75, 

100 days after emergence). Plants were grown under optimal conditions in the 

field with pests, weed control and fertilisation to avoid limitations to yield. In 
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Y1 fertilization was applied in the form of urea (200 kg N ha-1) 25 days after 

emergence (DAE). For Y2 fertilization was divided in 100 kg N ha-1 25 DAE 

and another 100 kg N ha-1 58 DAE. Finally, for Y3 100 kg N ha-1 were applied 

30 DAE and 50 kg N ha-1 50 DAE; 50 kg P ha-1 were applied in the three cycles 

when the first application of N was made.  

Phenology was scored according to the Zadoks growth scale for cereals (Zadoks 

et al., 1974). The growth stages recorded were initiation of booting (GS41, InB), 

anthesis (GS65, A) and physiological maturity (GS87, PM) when 50% of the 

shoots in the plot reached a particular stage. Meteorological data from a nearby 

station to the experimental site were collected for the whole crop cycle and 

accumulated PAR was calculated for the growth stages where biomass was 

collected. 

 

4.4.2 Aboveground biomass and biophysical traits 

Aboveground biomass was sampled following Robles-Zazueta et al., (2021). 

Samples of biomass at InB, A7 and PM were collected. Biomass harvests were 

made in 0.4 m2 (40 days after emergence) and 0.8 m2 (InB, A7), leaving 25 and 

50 cm respectively at the northern side of the plots to reduce border effects in 

subsequent biomass samplings. All fresh biomass was weighed, and a subsample 

of 50 shoots was weighed and dried in an oven at 70 °C for 48 h, to record dry 

weight. For biomass at PM, calculations were made from the measurement of 

yield components. For every growth stage, the aboveground biomass was 

calculated according to Pask et al., (2013): 

Aboveground biomass = Subsample DW ×
Total FW × Harvested area

Subsample FW
       eq. (1) 
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At InB and A7, 12 shoots were randomly selected for biomass partitioning. In 

the lab, plant organs were separated in stems, flag, second, third and remaining 

leaves in GS41 and the same organs plus spikes in GS65 + 7d. After partitioning, 

leaf areas were measured using an area meter (LI 3100C, Licor Biosciences, 

Lincoln, NE, USA). Finally, samples were dried in an oven for 2 days at 70°C, 

weighted and data was used to calculate the leaf area index (LAI), specific leaf 

area (SLA) and leaf mass area (LMA) as follows: 

LAI =
Green leaf lamina area

# stems m2
                                                                         eq. (2)                                                                                              

𝑆𝐿𝐴 =
𝐿𝑒𝑎𝑓 𝑔𝑟𝑒𝑒𝑛 𝑎𝑟𝑒𝑎

𝐿𝑒𝑎𝑓 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠
                    eq. (3) 

𝐿𝑀𝐴 =
𝐿𝑒𝑎𝑓 𝑑𝑟𝑦 𝑚𝑎𝑠𝑠 

𝐿𝑒𝑎𝑓 𝑔𝑟𝑒𝑒𝑛 𝑎𝑟𝑒𝑎 
                   eq. (4) 

 

4.4.3 Radiation use efficiency 

RUE was estimated from the slope of the linear regression between accumulated 

aboveground biomass and the corresponding accumulated intercepted PAR 

during the determined growth period (Monteith, 1977). Incoming radiation from 

a nearby meteorological station was used to estimate the accumulated PAR 

multiplying irradiance by a factor of 0.45 to convert it to PAR and ceptometer 

(AccuPAR LP-80, Decagon, Pullman, WA, USA) readings were used to correct 

the accumulated radiation for the fraction of absorbed PAR by each genotype 

following the same procedure explained in length in chapter 2 (Robles-Zazueta 

et al. 2021). 
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4.4.4 Photosynthetic and chlorophyll measurements 

Spot measurements of Asat, gs, transpiration (E), the maximum efficiency of PSII 

photochemistry under light conditions (Fv’/Fm’) and photosystem II quantum 

yield (ΦPSII) were made using an IRGA (Licor 6400 XT, Licor Biosciences, 

Lincoln, NE, USA) at InB (Y1 and Y2) and A7 (Y1, Y2, Y3) coupled with the 

leaf chamber fluorometer (6400-40 Licor Biosciences, Lincoln, NE, USA). 

Photosynthetic measurements were made at the flag (top of the canopy), second 

(middle of the canopy) and third (bottom of the canopy) leaves in two healthy 

shoots per plot with light conditions set at 1800 µmol m-2 s-1 PAR and leaves 

were acclimated for ~15-20 min until steady state was reached. Chlorophyll 

content was measured using a SPAD-502 meter (Konika Minolta, Japan) in the 

same leaves where photosynthesis was measured (Pask et al., 2013).  

Measurements were performed between 10:00-15:00 as this timeframe has been 

found to maximize the stability and accuracy of the measurements (Evans and 

Santiago, 2014). Then CO2 assimilation (Asat), stomatal conductance (gs) and 

transpiration (E) were upscaled from leaves to canopy level by multiplying each 

individual layer value by the LAI of its corresponding layer. This is an adaptation 

of the protocol for upscaling C and N content proposed by Gara et al., (2019). 

Calculations are shown in equations 5 and 6: 

Canopy Photosynthesis = ∑(AsatFL x LAI FL)  +  (AsatSL x LAI SL) +

 (AsatTL x LAI TL)                             eq. (5) 

 

Canopy Transpiration = ∑(E FL x LAI FL)  +  (E SL x LAI SL)  +

 (E TL x LAI TL)                            eq. (6) 
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Where Asat is CO2 assimilation, E is transpiration, LAI is leaf area index, and 

FL, SL, TL are flag leaf, second leaf and third leaf respectively.  

For gs, an average of the three layers of the canopy was estimated to obtain a gs 

pooled value of the canopy to assess if average gs of any leaf in the canopy 

correlated better with the traits of interest. 

 

4.4.5 Total C and N content 

Flag, second and third leaf samples from each genotype were collected from the 

field to obtain the total C and N content at GS41 and GS65 + 7d in Y1 and Y2. 

Leaf samples were dried in an oven at 70 °C for 48 h, then finely grounded, 

weighted and analysed with the dry combustion Dumas method using an 

elemental analyser (Flash 2000, Thermo Scientific, Waltham, MA, USA). 

 

4.4.6 Leaf hyperspectral reflectance 

Hyperspectral reflectance was collected on the adaxial sides of the same leaves 

were gas exchange data was collected. Measurements were made using a leaf 

clip equipped with a halogen bulb light source (ASD Field Spec® 3, Boulder, 

CO, USA). Reflectance was measured in the flag, second and third leaves at the 

same growth stages as photosynthesis measurements, making sure there were 

not water or dust particles in the leaves to avoid noisy readings and were 

collected between 10:00-15:00. 
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4.4.7 Statistical analysis 

Leaf spectral reflectance (350-2500 nm) collected at the three positions of the 

canopy was used to predict the photosynthetic, biophysical and biochemical 

traits using the PLSR method (Serbin et al., 2012; Serbin et al., 2014) using the 

pls package from R Studio (Mevik and Wehrens, 2007). Before constructing the 

models, outliers of the traits measured were removed (± 3 σ) and the dataset was 

divided for training (70%) and validation (30%). A jackknife resampling test 

with 1000 iterations was done to estimate the variance and model bias. Then the 

number of components used was defined by the smallest root mean square error 

from the cross validation stage (RMSEP CV) in conjunction with the smallest 

prediction of the residual sum squares from the training model. After the 

validation process, regression coefficients and intercepts were generated and 

multiplied by the reflectance value of each individual wavelength to predict the 

abovementioned traits (Serbin et al., 2014; Silva-Pérez et al., 2018).  

The models were built based on two approaches: individual layers and all canopy 

layers combined. The size of the training and validation dataset and statistical 

parameters used to evaluate the models is presented in Table 4.1. Then results 

were compared to define which approach was better to predict the physiological 

traits based on the regression coefficient (R2), root mean square error (RMSE) 

and the model bias (Table 4.1). Furthermore, variable importance in projection 

(VIP) scores for each physiological trait were calculated to define which areas 

of the electromagnetic spectrum carry significant weight for the model 

construction, where values >1 represent areas of higher importance comparted 

to values <1.  
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Table 4.1. Statistical parameters used to build the PLSR models. The lowest RMSEP CV was used to select the ideal 

number of components. NT: Datapoints used for training dataset, NV: Datapoints used for validation dataset, RMSEP 

CV: root mean square error from cross validation, NC: Number of components, R2T: Determination coefficient from test 

model, R2V: Determination coefficient from validation model, RMSE_V: root mean square error from validation, 

Bias_V: Validation model bias. 

Trait Layer NT NV RMSEP 

CV 

(Trait 

units) 

N

C 

R2T R2V RMSE_V 

(Trait 

units) 

Bias_V 

(%) 

Asat 

Top 157 69 4.47 10 0.23 0.11 4.96 -0.78 

Middle 155 67 4.51 11 0.48 0.34 6.6 1.28 

Bottom 146 64 4.65 10 0.16 0.07 5.82 0.54 

Combined 525 198 5.19 15 0.46 0.48 5.24 -0.32 

gs 

Top 155 67 0.14 5 0.11 0.17 0.16 0.004 

Middle 149 64 0.14 5 0.29 0.37 0.15 -0.01 

Bottom 155 69 0.14 5 0.28 0.22 0.15 0.019 

Combined 460 199 0.14 13 0.34 0.36 0.14 0.005 

E 

Top 157 69 1.31 8 0.05 0.15 1.35 0.09 

Middle 155 69 1.45 6 0.34 0.39 1.56 0.54 

Bottom 156 69 1.37 7 0.28 0.37 1.42 0.27 

Combined 471 204 1.26 20 0.39 0.39 1.42 -0.05 

Fv’/Fm’ 

Top 151 66 0.03 12 0.27 0.36 0.04 0.008 

Middle 154 67 0.03 10 0.03 0.18 0.81 -0.81 

Bottom 152 67 0.04 6 0 0.1 0.05 -0.13 

Combined 458 199 0.04 14 0.16 0.17 0.05 -0.003 

ΦPSII 

Top 157 69 0.03 12 0.49 0.29 0.04 0.0037 

Middle 154 64 0.04 8 0.43 0.52 0.04 0.001 

Bottom 145 63 0.03 12 0.26 0.56 0.04 -0.004 

Combined 458 198 0.04 14 0.57 0.57 0.04 -0.003 

SPAD 

Top 150 66 2.08 5 0.61 0.63 2.2 -0.03 

Middle 155 68 1.99 10 0.24 0.24 1.56 0.54 

Bottom 152 69 2.88 3 0.07 0.04 2.79 -0.25 

Combined 460 198 2.4 13 0.47 0.48 2.48 0.217 

Total C 

Top 89 40 1.3 8 0.38 0.3 1.9 -0.922 

Middle 85 39 1.71 1 0.05 0.03 1.86 -0.48 

Bottom 84 37 1.73 3 0.06 0.02 1.95 0.175 

Combined 260 114 0.66 27 0.33 0.35 1.5 0.15 

Total N 

Top 90 40 0.11 20 0 0 0.62 0.093 

Middle 88 39 0.38 6 0.35 0.3 0.56 0.0714 

Bottom 87 38 0.38 9 0.44 0.31 0.53 0.0082 

Combined 266 116 0.44 8 0.3 0.38 0.49 0.008 

SLA 

Top 153 67 3.74 3 0.03 0.17 4.18 0.033 

Middle 122 54 2.92 10 0.11 0.01 3.66 0.354 

Bottom 136 59 3.07 13 0.57 0.63 4.38 -0.241 

Combined 413 178 4.38 6 0.31 0.32 5.23 -0.117 

LMA 

Top 150 65 0.01 3 0.07 0.05 0.01 -0.0013 

Middle 119 52 0.01 2 0.01 0.01 0.01 -0.002 

Bottom 134 60 0 14 0.49 0.56 0.01 -0.0001 

Combined 450 195 0.01 14 0.49 0.46 0.01 -0.0013 

LAI 

Top 149 64 0.34 7 0.02 0.06 0.36 0.078 

Middle 129 57 0.34 4 0.05 0.03 0.42 -0.057 

Bottom 126 56 0.31 7 0.11 0.06 0.47 -0.1916 

Combined 430 186 0.45 13 0.12 0.28 0.44 -0.0241 
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Bilinear unbiased estimators (BLUEs) were calculated for each trait measured 

on the field using the general linear mixed model with META-R v 6.04 

(Alvarado et al., 2020). Physiological traits were adjusted using the days to 

initiation of booting as a covariate for traits measured during the vegetative stage 

and days to anthesis for traits measured during the grain filling stage. For the 

analysis combined across the three years, the following model was used:  

𝑌𝑖𝑗𝑘𝑙 = µ +  𝐸𝑛𝑣𝑖  + 𝑅𝑒𝑝𝑗(𝐸𝑛𝑣𝑖) + 𝐺𝑒𝑛𝑙 + 𝐸𝑛𝑣𝑖  𝑥 𝐺𝑒𝑛𝑙 + 𝐶𝑜𝑣 +  𝜀𝑖𝑗𝑘𝑙                        eq. (7) 

Where Yijkl is the trait of interest, µ is the mean effect, Envi is the effect of the 

ith environment, Repj is the effect of the jth replicate, Genl is the effect of the lth 

genotype, Envi x Genl are the effects of the ith environment and the environment 

x genotype interaction, Cov is the effect of the covariate and εijkl is the error 

associated with the environment i, replication j, kth incomplete block and lth 

genotype. In this study the term environment refers to the individual year where 

data was collected (Y1, Y2 or Y3) therefore three environments were analysed.   

Broad sense heritability (H2) across environments was calculated as follows:  

𝐻2 =
𝜎𝑔

2

𝜎𝑔
2+

𝜎𝑔𝑒
2

𝑛𝐸𝑛𝑣
+

𝜎𝑒
2

(𝑛𝐸𝑛𝑣 𝑥 𝑛𝑟𝑒𝑝𝑠)

                   eq. (8) 

Where 𝜎𝑔
2 is the genotype error variance, 𝜎𝑒

2 is the environment error variance, 

𝜎𝑔𝑒
2  is the genotype x environment interaction error variance, nEnv is the number 

of environments and nreps the number of replicates.  

Finally, in order to compare our estimations of Asat, gs and E with the predictions 

from PLSR models, we used the equations generated from the validation models 

and calculated BLUEs of the predicted Asat, gs, E and LAI to upscale these 

predictions to a canopy level. 
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4.5 Results 

4.5.1 Canopy layer position and phenological effects on photosynthetic 

traits 

Photosynthetic traits were greater in the middle leaf layer of the canopy than the 

top layer in InB and strong statistical differences were found between the middle 

and bottom layers of the canopy, with greater Asat, gs and E rates in the middle 

layer (Table 4.2). With exception of total C content, statistically significant 

differences between layers were found in all the physiological traits measured in 

this study. Similarly, differences between growth stages were strongly 

significant for all the traits. This highlights the importance of considering adding 

data from different phenological stages to build more robust models that could 

predict these traits at any given point in time of the wheat growing season (Table 

4.2).  

Our results showed that genetic variation of the main photosynthetic traits within 

individual leaf layers was not found (Table 4.3), however statistically significant 

differences were found between layers, growth stages, and the interaction layer 

x growth stage (Table 4.2). Additionally, no significant differences were found 

by the genotype x position and genotype x environment x position interactions 

(Table 4.2). Most of the traits showed a lower H2 at InB compared to A7. For 

photosynthetic traits, H2 was higher in the middle layer, except for gs which 

showed the highest H2 at the bottom of the canopy (Table 4.2).  
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4.5.2 Predicting photosynthetic, biophysical and biochemical traits with 

hyperspectral reflectance  

Fv’/Fm’ was the photosynthetic trait with the smallest accuracy prediction of all, 

both for the separated (Top: R2 = 0.36, Middle: R2 = 0.18, Bottom: R2 = 0.1) and 

combined layers approach (R2 = 0.17) (Figure 4.1A and Figure 4.1D, 

respectively). On the other hand, ΦPSII and SPAD predictions were traits with 

a great relation between observations and predictions with both approaches. In 

the case of ΦPSII, the middle and bottom layer of the canopy were crucial to 

improve model accuracy, while the top layer had a smaller regression value 

(Figure 4.1B); this was opposite to SPAD predictions where the top layer of the 

canopy had the highest relationship, therefore the most influence, on model 

accuracy (Figure 4.1C, upper panel). In the case of these three traits, we found 

that the two approaches produced similar regressions between observations and 

predictions, but in the case of Fv’/Fm’ the combined layer approach was better 

(Figure 4.1, bottom panels).  
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Figure 4.1. Validation results of PLSR models predicting Fv’/Fm’ (A), ΦPSII (B) and SPAD (C) 

by separating each layer of the canopy (top panels) and predictions of Fv’/Fm’ (D), ΦPSII (E) 

and SPAD (F) combining all layers of the canopy (black squares). Black dots: top of the canopy, 

blue dots: middle of the canopy, grey dots: bottom of the canopy.  

 

Total C (%) and N (%) predictions were poor compared to the photosynthetic 

traits, possibly due to a smaller sampling size compared to the other traits 

predicted (Table 4.1) and the experimental conditions where N was not a limiting 

factor coupled with low genetic variability as only eleven genotypes were 

studied (Table 4.3), could have had an effect on the low predictions of these two 

traits. The top layer produced best predictions for C content (Figure 4.2A, R2 = 

0.3, RMSE = 1.9), whilst the middle and bottom layers were more important for 

N content predictions (Figure 4.2B, R2 = 0.3, p<0.001 and R2 = 0.31, p<0.001, 

respectively). When all the layers were combined, predictions were better than 

separating the layers for both traits with RMSE of 1.5% and 0.49% for C and N 

prediction, respectively (Figure 4.2A and 4.2B, bottom panels). N content 

decreased from top to bottom of the canopy, but C content was equally 

distributed through the canopy. Both traits had the smallest H2, which suggests 
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these traits are highly dependent on field management, environmental conditions 

and sampling size (Table 4.3).  

 

Figure 4.2. Validation results of PLSR models predicting total carbon (A) and nitrogen (B) 

content by separating each layer of the canopy (top panels) and predictions of total carbon (C) 

and nitrogen (D) combining all layers of the canopy (black squares). Black dots: data collected 

at the top of the canopy, blue dots: data collected at the middle of the canopy, grey dots: data 

collected at the bottom of the canopy.  
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Table 4.2. Mean ± standard deviation values of canopy traits measured in this study. T = Top, M = Middle, B = Bottom represent the layer of the canopy where the 

measurement was taken. * = p<0.05, ** = p<0.01, *** = p<0.001, ms = 0.1>p>0.05, ns = no significance. 

 Initiation of booting 7 days after anthesis         

Trait T M B T M B L GxL EnvxL GxEnvxL GS LxGS GSxEnv LxGSxEnv 

Asat 25.5±3.07 26.9±4.7 15.9±4.12 22±3.96 16.7±3.98 10.1±3.7 *** ns ms ns *** *** ns ns 

gs 0.39±0.12 0.46±0.15 0.34±0.14 0.32±0.09 0.25±0.09 0.15±0.06 *** ns ms ns *** *** ns ns 

E 4.9±1.08 5.57±1.13 4.44±1.29 4.19±0.9 3.42±0.91 2.26±0.85 *** ns ms ns *** *** *** ns 

Fv’/Fm’ 0.47±0.03 0.52±0.03 0.5±0.027 0.52±0.03 0.54±0.03 0.51±0.03 *** ns * ns *** *** *** ns 

ΦPSII 0.31±0.02 0.31±0.037 0.26±0.04 0.25±0.029 0.22±0.029 0.17±0.03 *** ns ns ns *** *** *** ns 

LAI 1.53±0.33 1.73±0.33 1.75±0.34 1.43±0.3 2.31±0.62 2.14±0.54 *** ns *** ns *** *** *** *** 

C 44.5±1.49 44.2±1.61 42.6±1.64 40.4±2.15 41.1±4.16 43.4±5.55 ns ns ms ns *** *** ns ** 

N 4.4±0.34 4.6±0.4 4.2±0.47 4±0.48 3.7±0.64 3.6±0.8 ** ns ns ns *** ns ns ** 

SLA 19.8±3 20.4±2.15 24.2±1.92 17.6±2.27 37.4±5.04 31.9±3.83 *** ns *** ns *** *** *** *** 

LMA 0.05±0.01 0.05±0.005 0.04±0.004 0.06±0.01 0.04±0.004 0.04±0.005 *** ns *** ns *** *** *** *** 

SPAD 45.8±2.16 48.1±1.71 45.3±2.34 50.6±1.93 49.3±2.18 44.4±2.78 *** ns * ns *** *** *** *** 
L: Layer, GxL: Genotype x Layer, EnvxL: Environment x Layer, GxEnvxL: Genotype x Environment x Layer, GS: Growth Stage, LxGS: Layer x Growth Stage, GSxEnv: Growth Stage x Environment, LxGSxEnv: 

Layer x Growth Stage x Environment.
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Table 4.3. Heritability, statistical differences by genotype, environment and the interaction genotype by environment of the measured traits at initiation of booting and 7 days 

after anthesis. * = p<0.05, ** = p<0.01, *** = p<0.001, ms = 0.1>p>0.05, ns = no significance. 

 Initiation of booting 7 days after anthesis 

 H2 G Env GxEnv H2 G Env GxEnv 

Trait T M B T M B T M B T M B T M B T M B T M B T M B 

Asat 0.37 0.09 0 ns ns ns ns ns ns ns ns ms 0.43 0.73 0.54 ms *** * ** ** ** ns ns ns 

gs 0.26 0 0 ns ns ns ns ns ns ns ** * 0.47 0.65 0.73 ms ** ** ** *** ** ** * ns 

E 0 0 0 ns ns ns ns ns ns * ** * 0.47 0.77 0.73 ms *** *** ** ** ** ns ns ns 

Fv’/Fm’ 0.34 0.7 0 ns ** ns * ** ns ns ns ns 0.36 0.26 0.7 ns ns ** ** * ** ns ms * 

ΦPSII 0 0 0 ns ns ns * ** ** ms ms ns 0.69 0.71 0.42 ** ** ms *** *** *** ns ms ns 

LAI 0.56 0.32 0.54 * ns * * ns ms ms ns ns 0.58 0.35 0.03 * ns ns ns *** *** ms ns ns 

C 0 0 0.07 ns ns ns ns ns ns ns * ns 0 0 0 ns ns ns ns ns ns ns ns ns 

N 0.11 0.07 0 ns ns ns * ns ns ns * * 0.51 0 0 ns ns ns ns ns ns ns ms ns 

SLA 0.17 0.62 0.07 ns * ns ** *** *** ns ns ns 0.12 0.33 0 ns ns ns ns *** *** * ns ** 

LMA 0.36 0.76 0.23 ns *** ns ** *** *** * ns ns 0.29 0.1 0.16 ns ns ns ns *** *** ns ns *** 

SPAD 0.36 0.74 0.6 ns *** * ns ** * ** ns ns 0.87 0.86 0.81 *** *** *** *** ns ms ns ns ns 
H2: Heritability, G: Genotype, Env: Environment, GxEnv: Genotype x Environment.
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The bottom layer predictions were more accurate than top and middle layers for 

the biophysical traits. Predictions at the bottom for SLA were R2 = 0.63, 

p<0.001, for LMA were R2 = 0.56, p<0.001, and for LAI were R2 = 0.06, p<0.1 

(Figure 4.3A, 4.3B and 4.3C, respectively). When combining the three layers the 

results were similar for LMA and better for LAI predictions, but in the case of 

SLA the separated layer model produced predictions (Figure 4.3D, 4.3E and 

4.3F, respectively). These results comply with our field observations as narrower 

smaller leaves at the top layer and broader, larger leaves at the middle and bottom 

layers of the canopy were found (Table 4.2). 

 

Figure 4.3. Validation results of PLSR models predicting specific leaf area (SLA) (A), leaf mass 

area (LMA) (B) and leaf area index (LAI) (C) by separating each layer of the canopy (top panels) 

and predictions of SLA (D), LMA (E) and LAI (F) combining all layers (bottom panels, black 

squares). Black dots: data collected at the top of the canopy, blue dots: data collected at the 

middle of the canopy, grey dots: data collected at the bottom of the canopy. 

 

Our results indicate that photosynthetic traits prediction was better using the 

combined layer approach rather than estimating the traits separated (Figure 4.4), 

except for E where the two approaches yielded similar results (Figure 4.4C and 
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Figure 4.4F). Asat predictions from the combined model had RMSE of 5.24 µmol 

m-2 s-1 (Figure 4.4D), gs RMSE of 0.14 mol m-2 s-1 (Figure 4.4E) and 

transpiration RMSE of 1.42 mmol m-2 s-1 (Figure 4.4F). For these three traits the 

middle layer had more importance for model accuracy (Figure 4.4, upper 

panels). 

 

Figure 4.4. Validation results of PLSR models predicting Asat (A), gs (B) and E (C) by separating 

each layer of the canopy (top panels) and predictions of Asat (D), gs (E) and E (F) combining all 

layers (bottom panels, black squares). Black dots: data collected at the top of the canopy, blue 

dots: data collected at the middle of the canopy, grey dots: data collected at the bottom of the 

canopy.  

 

Variable importance in projection (VIP) scores were calculated to find spectrum 

areas with most importance in the model building. We found three main areas 

with greatest importance in the building of the photosynthetic, biophysical and 

biochemical models at 350-369 nm, 527-575 nm and 671-750 nm. These three 

peaks correspond to an area of the spectrum known as visible near infrared 

(VNIR) which has relevance for gas exchange, canopy greenness, water content, 

biophysical and biochemical traits such as the ones from this study. After smaller 
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peaks in the shortwave infrared region (SWIR), spectral wavelengths above 

1436 nm lacked importance for the predictive model building (VIP scores <1) 

(Figure 4.5).  

 

Figure 4.5. Variable importance in projection plot of gas exchange, biochemical and biophysical 

traits of the models built with all the canopy layers combined. Y axis represent the variance 

importance score where values >1 represent wavelengths with greater weight for the model 

predictions. X axis represent the wavelength (nm). Physiological traits are represented by 

different colours in each plot as indicated in the figure legends.  

 

4.5.3 Photosynthetic predictions and their relationship with RUE 

The prediction accuracy for canopy Asat at InB was better (R2 = 0.3, p<0.05) than 

predictions at A7 (R2 = 0.15, p<0.05) (Figure 4.6). Canopy E had a similar trend 

as canopy Asat predictions with better predictions found at InB (R2 = 0.61, 

p<0.001) compared to predictions at A7 (R2 = 0.06) (Figure 4.6). For averaged 

gs, our results showed statistical significant relationships between ground truth 

data and predictions both at InB (R2 = 0.29, p<0.05) and A7 (R2 = 0.65, p<0.001) 

(Figure 4.6). 
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Figure 4.6. Comparison between observations and predictions of canopy assimilation, 

transpiration and stomatal conductance. Black dots represent data from initiation of booting and 

red dots from 7 days after anthesis. Data shown are the observed vs predicted BLUEs in 2 years 

of study (InB, n = 19) and 3 years of study (A7, n = 30). 

 

The positive associations between RUE from canopy closure to InB 

(RUE_E40InB) with predicted canopy Asat from InB (R2 = 0.22, p<0.05) and A7 

(R2 = 0.35, p<0.001) were statistically significant. We found a marginally 

significant association between canopy Asat predictions at A7 and RUE_InBA7 

(R2 = 0.13, p<0.1). No significant relationships were found for RUE_preGF, but 

a link between RUE_GF and canopy Asat A7 was found (R2 = 0.16, p<0.05). 

Finally, the link found between RUE of the whole crop cycle (RUE_Total) and 

canopy Asat predictions was positive and the strongest of any growth stage (R2 = 

0.37, p<0.01 for InB; and R2 = 0.41, p<0.001 for A7) (Figure 4.7).  

Predicted pooled gs at InB correlated significantly with RUE_E40InB (R2 = 

0.12, p<0.05) and RUE_Total (R2 = 0.28, p<0.05). For predictions at A7 

significant relations were found with RUE_InBA7 (R2 = 0.19, p<0.05), 

RUE_preGF (R2 = 0.13, p = 0.05) and RUE_Total (R2 = 0.3, p<0.01). Marginally 

significant associations were also found at RUE_GF (R2 = 0.1, p<0.1) (Figure 

4.8). Finally, for most of the growth stages where RUE and predicted canopy 

Asat and gs were associated these relationships were positive.  
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Figure 4.7. Relationship between radiation use efficiency measured at different growth stages 

and predictions of canopy photosynthesis retrieved using partial least squares regression. Black 

dots represent data from initiation of booting and red dots from 7 days after anthesis. Data shown 

are the observed vs predicted BLUEs in 2 years of study (InB, n = 19) and 3 years of study (A7, 

n = 30). 
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Figure 4.8. Relationship between radiation use efficiency measured at different growth stages 

and predictions of canopy average stomatal conductance retrieved using partial least squares 

regression. Black dots represent data from initiation of booting and red dots from 7 days after 

anthesis.  Data shown are the observed vs predicted BLUEs in 2 years of study (InB, n = 19) and 

3 years of study (A7, n = 30). 
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4.6 Discussion 

Natural variation of photosynthetic traits has not been fully exploited in breeding 

programs, representing a crucial untapped resource fundamental to increase 

wheat yields (Molero and Reynolds 2020). Mainstreaming photosynthetic traits 

into breeding pipelines has been limited by the lack of methods to quantify them 

in a HTP context under field conditions.  

Leaf and canopy hyperspectral reflectance measurements have largely been 

acknowledged as proxies with the potential to quantify different photosynthetic, 

biophysical and biochemical traits at HTP (Silva-Pérez et al., 2018; Ely et al., 

2019; Meacham-Hensold et al., 2020). Previous studies combining spectral 

reflectance and PLSR modelling to predict physiological traits have mostly 

focused on sunlit leaves at the top of the canopy, and thus they may not be 

representative of the whole canopy. In contrast, our models were developed to 

predict physiological traits within the canopy during the vegetative and grain 

filling wheat stages.  

Our approach showed that the best predictions were achieved when the three 

layers of the canopy were combined compared to using individual layers for 

most traits measured. The results in this study add relevance to measurement of 

physiological traits not only in the top layer of wheat canopies but highlight 

middle and bottom layers as they showed higher H2, improved the accuracy of 

the models and can provide robust information to find wheat genotypes that 

could adapt better to light gradients and exploit them in order to increase canopy 

photosynthesis.  
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The use of the leaf clip attached to the field spectroradiometer allowed us to 

perform comfortably measurements at the top and middle layers of the canopy, 

but at the bottom layer measurements became hard to do. Therefore, new 

spectroradiometer alternatives which are lighter and easier to deploy in field 

conditions should be considered to improve bottom layer phenotyping as this is 

still necessary to measure lower parts of the canopy as UAVs are only able to 

collect data from the top layer of the canopy.  

 

4.6.1 Biochemical and biophysical traits 

Compared to previous studies our predictions of %C and %N are the lowest 

reported to date (R2 = 0.35, 0.38 for C and N, respectively) and besides LAI, 

SLA and Fv’/Fm’ these traits also showed low R2 compared to the other traits 

predicted (Table 4.1). We hypothesize that this could be due to the variability of 

these traits within the canopy layers and across growth stages. In particular, 

significant differences between layers, growth stages and the interaction of these 

two factors plus a decreasing trend for %N across both the layers and growth 

stages was found (Table 4.2). In other studies predicting N traits, regressions 

between observations and predictions were very high, including N per leaf mass 

(R2 = 0.7, 0.89, 0.97, 0.91) in wheat, aspen, cotton and temperate forest trees 

(Serbin et al., 2012; Serbin et al., 2014; Silva-Pérez et al., 2018; Coast et al., 

2019). Predictions of %C and %N were high for tobacco (R2 = 0.75, 0.76 

respectively) when a larger portion of the spectra was used (500-2400 nm) 

compared to canopy level (R2 = 0.74, 0.66) hyperspectral camera measurements 

with a smaller spectral range (500-900 nm)  (Meacham-Hensold et al. 2020), for 

the average of predictive models including tomato, cucumber, soybean and 



 

136 

 

poplar (R2 = 0.95, 0.92; Ely et al., 2019) and wheat (R2 = 0.94; Ecarnot et al., 

2013) 

The importance of measuring N content in plant leaves comes from the fact that 

N is defined as an important resource required in large quantities for the 

photosynthetic machinery, and its distribution within plant canopies has often 

been described to follow a gradient (from higher to lower content) in relation to 

the position of the leaf, following the same pattern as light distribution, gradients 

of chlorophyll a:b and Rubisco (Evans 1993; Hikosaka 2016). This distribution 

pattern has an effect on canopy architecture as leaves with high N content are 

characteristic of canopies with higher SLA and this was found in the middle 

layer of the canopy in this study (Table 4.2). Leaves with higher N content tend 

to be thicker and have larger mesophyll surfaces to arrange the chloroplasts, 

remobilize N to the grain and regulate the use of Rubisco (Moreau et al. 2012). 

In general, the N predictions were very poor, especially at high leaf N levels (4-

6%). This can be explained due to the management conditions in our 

experimental site, where full irrigation and high N availability can contribute to 

the relative high N values and lack of genetic variability in the flag leaf, 

additionally the high levels of N in flag leaves might have contributed to the lack 

of genetic variation in Asat amongst genotypes in the top layer of the canopy.  

The results from individual layers and whole canopy predictions indicate that the 

growth stage where measurements are taken is key to build the predictive 

models, in this case A7 predictions being better than InB due to the lack of 

genetic variability at this stage (Table 4.3). The reasons for the lack of variation 

at InB could be the small variation in phenology (6 days variation between the 

most advanced and delayed lines) and the fact that leaves are still accumulating 
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N at InB, compared to A7 where it is likely that leaf N is being remobilized to 

the spikes to fill the grains. This makes the case of accounting the variability 

associated with leaf area and incident radiation of each layer, which affects light 

scattering in the canopy and influences its N content. Furthermore, the models 

to predict N content could improve if the number of genotypes studied is increase 

by adding more genetic variability.  

 

4.6.2 Photosynthesis high-throughput phenotyping  

The prediction accuracy for Asat in this study (R2 = 0.48, RMSE = 5.24) is within 

the range of previous studies in  spring bread wheat (R2 = 0.49, RMSE = 3.93; 

Silva-Pérez et al., 2018), brassica, moricandia and maize (R2 = 0.49, RMSE = 

4.98; R2 = 0.37, RMSE = 4.98; R2 = 0.62, RMSE = 3.64, respectively; Heckmann 

et al., 2017),  and tobacco measured above the canopy (450-900 nm and 450-

1700 nm) and in the top leaf layer (350-2500 nm) (R2 = 0.54, 0.5, 0.56; RMSE 

= 7.77, 8.52, 7.04, respectively; Meacham-Hensold et al., 2020). But they were 

lower compared to reports in tropical trees (R2 = 0.74, RMSE = 2.85; Doughty 

et al., 2011) and wheat grown under different salinity concentrations (R2 = 0.73, 

RMSE = 2.25; El-Hendawy et al., 2019). Including different layers of the canopy 

to our models improved the accuracy of the models compared to only predicting 

the top layer (R2 = 0.11, RMSE = 4.96, Figure 4.1). This solidifies the 

importance of accounting for the variability associated with leaf area, incident 

radiation levels and N content in the canopy, which affects light scattering within 

the canopy thus influencing top, middle and bottom Asat rates.  
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The variation of Asat within canopy layers can be explained by genetic variation 

of canopy architecture found in LAI and SLA (Table 4.2), as light penetrating in 

areas of the canopy where leaves are smaller (and usually erect) will generate 

differences in light quality and quantity in the bottom layers of the canopy where 

large amounts of diffuse radiation and decreased red:far red and blue:red ratios 

compared to the top layers are found (Burgess et al., 2021).  

Stomatal conductance has been predicted previously only in wheat (Silva-Pérez 

et al., 2018; El-Hendawy et al., 2019; Furbank et al., 2021). In spring wheat elite 

and landrace cultivars grown in Northwest Mexico, prediction accuracies for gs 

were the lowest for a set of traits studied (R2 = 0.34, RMSE = 0.15) and had the 

largest associated prediction error (Silva-Pérez et al., 2018). In salt sensitive and 

tolerant genotypes El-Hendawy et al., (2019) found very high associations 

between observations and predictions of gs between genotypes, growing seasons 

and salt tolerance treatments (R2 = 0.75). Furbank et al., (2021) tested different 

methods to predict photosynthetic traits and for gs they found a performance of 

R2 = 0.42 in flag leaves using PLSR models. In our study, gs predictions were 

weaker than Asat predictions (R2 = 0.36, RMSE = 0.14; Table 4.1), and assessing 

this through the different layers of the canopy can help us to understand why that 

is the case.  

Our layer approach shows that there is higher prediction accuracy in the middle 

layer of the canopy, compared to the top and bottom layers, this could be 

explained by the environmental factors affecting gs, such as stomatal responses 

to sun flecks at the top of the canopy, the temperature and vapor pressure deficit 

differential within the canopy layers, wind speed affecting the boundary layer 

especially at the top, relative humidity, leaf water content and CO2 depletion in 
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sunny days. Hence, the lack of studies predicting gs under field conditions and 

future studies should consider the influence of the abovementioned 

environmental factors when building predictive models, a combination between 

PLSR and thermography or the use of deep learning methods (Figure 4.9). 

Chlorophyll content has been used as an important trait to assess photosynthetic 

capacity, the ability of canopies to intercept light and the time wheat can 

maintain photosynthetically active tissues during the crop cycle. SPAD 

measurements have become one of the standard proxies to estimate chlorophyll 

content in the field. Our predictions for SPAD values were lower than ones 

reported in a previous study measuring elite and landrace bread wheat cultivars 

growing under yield potential conditions in the same study site (R2 = 0.63 vs R2 

= 0.82, in flag leaves) (Silva-Pérez et al., 2018). In general, the predictions of 

chlorophyll content ranked very high in terms of accuracy (R2, RMSE) in this 

study compared to other traits a similar trend has been found for tobacco 

(Meacham-Hensold et al., 2020) and tropical tree species (Doughty et al., 2011). 

 

4.6.3 Speeding up physiological breeding 

The use of HTP methods for physiological breeding has increased in popularity, 

particularly the use of field spectroradiometers, hyperspectral cameras mounted 

on UAVs or modified IRGAs which are deployed in glasshouses and field trials 

in conjunction with commercial IRGAs. The use of these technologies can 

reduce dramatically the measurement time, for example, for Asat measurements 

take ~15-25 min per leaf using a commercial IRGA compared to 1 min when 

collecting leaf spectral data (Heckmann et al., 2017), and using custom IRGAs 
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allowed the collection of Asat 4-7 times faster than commercial IRGAs (Salter et 

al., 2018). The use of HTTP in this study allowed us to screen ~50 plots for flag, 

second and third leaves reflectance in ~1 hour compared to only 10 plots using 

two commercial IRGAs during 6 hours of field measurements in a day, thus 

increasing our phenotyping capacity 30-fold. Coupling approaches like the one 

used in our study based on hyperspectral data combined with the modelling of 

performance physiological traits such as biomass and RUE (Robles-Zazueta et 

al., 2021) can boost the phenotyping capacity in large breeding trials, increase 

our understanding of the source-sink relationship and help with the selection of 

genotypes with higher biomass, RUE and yield. 

The relationship found between canopy assimilation predictions and RUE 

observations, could be used for screening RUE in breeding programs and 

coupled with the previous results from Robles-Zazueta et al., (2021) RUE could 

be screened with up to 70% accuracy using vegetation indices. The predictions 

presented in this study could be used to screen lines for extreme high and low 

RUE rates as the positive relationship found between RUE and canopy 

assimilation predictions indicate that the higher predicted values, we expect to 

find higher RUE genotypes.  
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Figure 4.9. Observations of Asat and gs compared to the predictions from the models developed 

in Furbank et al., 2021. Measurements from flag leaves were compared to predictions made with 

flag leaf reflectance from the vegetative and grain filling periods. The modelling was done using 

the web tool Wheat Physiology Predictor (https://plantpredict.shinyapps.io/PredictionShiny/). 

We selected the different methods available in the tool to compare the prediction ability. Methods 

included single task convolutional neural network (black dots), multi-task convolutional neural 

network (red dots), partial least square regression (blue dots) and an ensemble of the three models 

(green dots). Lines represent the linear regression when relationships between ground truth data 

and predictions were statistically significant. 
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4.7 Conclusions 

This is the first study that predicts physiological traits in different layers of the 

canopy by building predictive models with hyperspectral data using PLSR in 

wheat growing under field conditions. We showed that using measurements 

from different canopy layers improves the accuracy of the models. These models 

can be used to study the variation caused by different environmental conditions 

within the canopy and the effect of phenology. Our models were built using an 

extensive dataset from three field campaigns, which provides them robustness, 

enabling their application in future field breeding and pre-breeding trials. 

Furthermore, this modelling approach delivered fair estimations of Asat and gs 

that can be incorporated in breeding pipelines. Using hyperspectral data will 

allow the alleviation of the phenotyping bottleneck and if this approach is 

coupled to faster phenotyping platforms the probabilities to screen genotypes for 

higher yield will increase.  
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Abstract 

There is clear consensus in the physiological and breeding communities that 

improving RUE will be key to boost wheat yield. In the 44 years of previous 

RUE research little has been explored on the role of root traits and its interaction 

with aboveground accumulation, RUE and yield. Roots as heterotrophic tissues 

have a complex relationship with RUE since they consume fixed carbon but in 

return the shoot obtains water and nutrients, influencing aboveground 

physiological processes through complex signalling from the soil-plant 

continuum. In this study above- and belowground traits related to RUE and yield 

were studied to identify the main interactions between roots and aboveground 

RUE. Strong positive associations were found between above and belowground 

biomass accumulation (R2 = 0.91, p<0.001), and RUE and root biomass (R2 = 

0.85, p<0.001) during the vegetative period. On the other hand, negative links 

were found between yield components and root biomass accumulation, 

especially at GS65 with HI (R2 = 0.5, p<0.05). We hypothesize that two 

mechanisms are present in wheat: synergy and cooperation during vegetative 

stages and competition from roots and shoots from grain filling towards 

physiological maturity which suggests that root biomass accumulation will 

depend mostly on phenology and environmental conditions, rather than genetic 

variability. Finally, our results suggests that gsmax or SLA could be used as 

proxies in the field to estimate belowground biomass in a high-throughput 

context.  

Keywords: Radiation use efficiency, aboveground biomass, belowground 

biomass, yield, RUE_below 
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5.1 Introduction 

Staple crop yield improvement will be essential to fulfil food security and the 

avenues to increase yields, especially in cereals have been identified to be closely 

related to the efficiency at which plants can convert radiation into biomass (i.e. 

radiation use efficiency, RUE) (Horton 2000; Reynolds et al., 2000b) which is a 

physiological trait that is closely aligned with leaf photosynthesis, respiration 

and net carbon assimilation (Posch et al., 2019; Joynson et al., 2021). 

 

5.1.1 Brief history of radiation use efficiency research 

RUE is a physiological trait that was brought to crop science attention 44 years 

ago in the seminal work from Monteith (1977). In his work, Professor Monteith 

established the theoretical background for the study of the relationship between 

biomass accumulation and intercepted solar radiation in crops and concluded 

that in average crops grown in the absence of abiotic stresses will have a RUE 

of ~1.4 g MJ-1. After developing the theoretical and methodological principle for 

measurement, the crop science and ecology communities started to pay attention 

to this newly defined trait with potential to improve yield.  

Gallagher and Biscoe (1978) measured aboveground biomass in barley and 

wheat and they found higher RUE values (2.2 g MJ-1) than those proposed by 

Monteith and they emphasized the link between full canopy coverage and large 

leaf area index (LAI) for high RUE rates. Later efforts were made to correct 

previous assumptions that C3 and C4 crop growth rates were similar, and it was 

discovered that C4 plants have a higher relative growth rate than C3 species 

(Monteith, 1978). After these theoretical works, research was focused in 
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understanding what were the interactions of light interception with abiotic 

factors such as irrigation and nitrogen (N) fertilisation rates (Whitfield and 

Smith, 1989), light quality and [CO2] (Bugbee and Salisbury, 1988), the effects 

of shading and N distribution in wheat canopies over grain number and yield 

(Abbate et al., 1995), the response of sink traits and RUE to different plant 

densities (Whaley et al., 2000) or the exploration of source and sink limitations 

to RUE in wheat grown under yield potential conditions (Reynolds et al., 2007).  

Then research started to focus on modelling RUE at leaf level by means of 

remote sensing, especially the development of proxy measurements for 

photosynthesis and light “conversion”. Among these the photochemical 

reflectance index (PRI) received particular attention due to its close relationship 

with leaf pigment composition and chlorophyll fluorescence transitions from 

high to low light conditions or vice versa (Peñuelas et al., 1995) and then 

coupling different spatial scales (leaf-canopy-ecosystem) to increase the reach 

of the predictions to different ecosystems (Garbulsky et al., 2011; Peñuelas et 

al., 2011). RUE research has focused in increasing the high throughput of its 

measurement in the field, as manual biomass harvests and ceptometer 

measurements are expensive and time consuming, efforts have been done to 

predict its components i.e. biomass (Babar et al., 2006; Prasad et al., 2009), 

intercepted photosynthetically active radiation (PAR) through normalised 

differenced vegetation index (NDVI) (Tattaris et al., 2016).  

More recent studies have used 3D light tracing modelling to predict RUE in 

maize grown in controlled conditions (Cabrera-Bosquet et al., 2016), used UAV 

RGB imagery to predict RUE in field-grown maize (Tewes and Schellberg, 

2018) and using a combination of vegetation indices related to chlorophyll, water 
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content and canopy greenness predictions of RUE in wheat grown in the field 

were made (Robles-Zazueta et al., 2021).  

In the years of RUE-related research, very little information has been produced 

about the effect root physiology and belowground biomass accumulation has on 

the efficiency of converting radiation into biomass aboveground. This is 

somewhat curious since roots as heterotrophic tissue have an important 

contribution to make to RUE even if this relationship is complex and little 

understood. They receive and consume fixed carbon but exchange more diverse 

forms of currency: nutrients and water. They also influence aboveground growth 

through complex signalling depending on soil conditions (i.e. low water, N or P 

content) as well as track soil compaction (Pandey et al., 2021). Roots are being 

recognized as key players in yield formation and the identification of traits that 

will aid crops to adapt to climate change (Ahmadi et al., 2014) and new aspects 

of root physiology needs to be accounted for example the role of root exudates 

in the remobilization of nutrients such as P (Wen et al., 2021). 

Some clues suggests that root biomass accumulation might play a key role in the 

mechanisms behind RUE decreasing from the vegetative to the grain filling 

period, as recent evidence suggests that there are not significant reductions in 

source size (Molero et al., 2019) or canopy greenness during early grain filling 

(Robles-Zazueta et al., 2021). In the period between these two growth stages 

under yield potential conditions there is not a clear explanation of the 

mechanisms involved in RUE reduction. To fully understand the components of 

RUE we must dig belowground to look for answers among the root systems. 
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5.1.2 Root phenotyping for wheat improvement 

The study of roots for physiology, ecology, agronomy or breeding purposes has 

been largely constrained by the challenges of measuring processes such as 

growth, nutrient acquisition and remobilisation in the soil environment. This is 

further limited by the difficulty of measuring belowground traits under field 

conditions. Many of the advances in basic root biology and phenotyping have 

come from studying roots outside the soil environment (Morris et al., 2017; 

Pound et al., 2013; Tracy et al., 2010; 2011). The fact that root phenology is not 

coupled to shoot phenology means that is harder to accurately measure metabolic 

processes such as N, P or water uptake with soil conditions varying in matter of 

hours after dry-wetting events due to rain or irrigation (Freschet et al., 2021). 

Regardless of the difficulty of root research, advances in physiology, breeding 

and phenotyping have been made to address which traits should be targeted to 

improve resilience to abiotic stress caused by climate change (Ober et al., 2021).  

Previous studies have focused on modelling the capture of water and N by roots 

in wheat grown in the UK (King et al., 2003) or the effects that faster growing 

root systems will have in improving Australian wheat yields by increasing them 

~0.4 tonnes ha-1 using the Agricultural Production Systems sIMulator (APSIM) 

(Lilley and Kirkegaard, 2011). Other research has focused on the relation 

between different root architecture traits, such as plate spread, depth, dry weight 

root biomass and anchorage strength with lodging and its implications for yield 

improvement (Pinera-Chavez et al., 2016a; Pinera-Chavez et al., 2016b; Dreccer 

et al., 2020) or the strategies roots use to penetrate deeper in the soils with the 

implications of resource acquisition through changing their trajectory by sensing 

soil pores (Atkinson et al., 2020). Furthermore, studies have explored the 
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relation between HI, chlorophyll content and canopy greenness with total root 

length (Wasson et al., 2014), the relationship between canopy temperature and 

belowground dry biomass under heat stress conditions (Lopes and Reynolds, 

2010) and only one study has made comprehensive measurements for root traits 

interacting with shoot traits such as biomass, yield, flowering time and its 

interaction with environmental conditions (Severini et al., 2020). 

Despite the previous efforts to integrate root phenotyping into wheat pre-

breeding platforms, there is a lack of information that connects belowground 

traits such as root dry biomass or the conversion efficiency of PAR interception 

into root biomass, a concept we introduce in this chapter as “RUE_below” with 

photosynthetic traits such as light-saturated photosynthetic rates (Asat), 

maximum stomatal conductance (gsmax), maximum velocity of Rubisco 

carboxylation (Vcmax), electron transport rate (Jmax), triose phosphate utilisation 

(TPU) or agronomic traits such as harvest index (HI), aboveground biomass 

accumulation, RUE and yield.  

 

5.2 Objectives 

The objectives of this study were to study root biomass accumulation and its 

relationship with physiological and agronomic traits to improve our 

understanding of the link between root and shoot biomass accumulation and the 

efficiency of PAR conversion in the context of yield improvement; and explore 

whether the information produced under glasshouse conditions can be 

extrapolated to information collected in field trials. 
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5.3 Materials and methods 

Eight spring bread wheat genotypes from the Photosynthesis Respiration Tails 

(PS Tails) (Table 5.1) panel from the International Maize and Wheat 

Improvement Center (CIMMYT) were grown at University of Nottingham 

Sutton Bonington Campus glasshouse, in Leicestershire, United Kingdom. The 

genotypes were studied for two crop cycles during Summer and Autumn 2018 

and Summer 2019.  

 

5.3.1 Experimental design  

A randomised complete block design with five repetitions per genotype was 

used. Sowing date was July 31st 2018, emergence date August 6th 2018, potting 

date August 21st 2018 and harvest date was December 21st 2018 with one plant 

grown in each 2l pot. Mean temperature in the glasshouse was 17.78 °C, mean 

solar radiation was 4.61 MJ m-2 during this study. Around 700 µmol m-2 s-1 of 

artificial light was supplied for 16 h a day during the experiment. The main tiller 

of each pot was marked in tillering (GS21) in order to perform the aboveground 

physiological measurements.  

Irrigation was applied using an automated dripping system based on 

tensiometers which sensed when the pots started to get dry. Plants were grown 

under optimal conditions in John Innes #2 soil compost with pests and weed 

control, and fertilisation to avoid any biotic or abiotic limitations to yield. 

Fertilisation was applied in the form of urea at stem elongation (80 kg N ha-1) 

and at initiation of booting (80 kg N ha-1). The square design edge rows were 
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wheat variety Paragon in order to reduce border effects and minimise any 

gradient of heat in the glasshouse.  

Phenological stages were scored visually according to the Zadoks growth scale 

for cereals (Zadoks et al., 1974). Growth stages recorded were initiation of 

booting (GS41), anthesis (GS65) and physiological maturity (GS87). These 

growth stages are critical for crop development, as the maximum canopy 

expansion happens at GS41, the start of the grain filling period (GS65) and grain 

ripening (GS87) (Table 5.1).  

 

5.3.2 Canopy architecture 

Canopy height was measured in GS65 and GS87 in the main tiller in each pot 

from the base of the tiller to the tip of the spike using a measuring tape. Leaf 

width and length of the flag, second and third leaves were measured at GS65 

with a ruler, as well as leaf distance from the stem to the tip of the leaves. Leaf 

angles with respect to the ligule and leaf curvature (place where a leaf started to 

bend) were measured using a protractor. Spike, awn length, peduncle and the 

length of internodes two, three and four were measured in the main shoot using 

a ruler.  

At GS65 two replicates of each genotype were selected for biomass partitioning 

and plant organs were separated in stem, leaves and spikes. After measuring 

areas with a planimeter (LI 3100C, Licor Biosciences, Lincoln, NE, USA) 

samples were dried in an oven for 2 days at 70°C, weight and leaf area data were 

used to calculate the leaf area index (LAI) as follows: 

LAI =
Green leaf lamina area

# stems m2
                        eq. (1)                                                                        



 

152 

 

5.3.3 Source 

A second experiment was made in the summer of 2019 with the same genotypes 

studied in the 2018 experiment grown under optimal conditions with the same 

experimental design. Sowing date was June 11th 2019, harvest of biomass at 

GS41 was done in July 20th 2019 and biomass harvests at GS65 in July 29th 2019. 

The objective of the experiment was to make destructive sampling of above and 

belowground biomass at GS41 and GS65. Aboveground biomass harvests were 

done in all the shoots of the 2l pots and belowground biomass was collected after 

finishing aboveground harvests in all the growth stages in five replicates per 

genotype. The samples were rinsed to separate roots from soil and then sieved 

to keep only the roots. Then samples were dried in an oven for 2 days at 70°C, 

calculations for above and belowground biomass were made as follows:  

Above and belowground biomass =
𝐷𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔)

 𝑃𝑜𝑡 𝑎𝑟𝑒𝑎 (𝑚2)
             eq. (2)           

Radiation use efficiency (RUE) from above and belowground was estimated 

according to Robles-Zazueta et al., (2021). Incoming solar radiation collected 

from a meteorological station on campus was used to estimate the accumulated 

PAR throughout the growth cycle using multiplying the incoming radiation by 

0.45 to estimate PAR (MJ m-2), then the value of the linear regression between 

biomass accumulation and PAR was used to estimate RUE_below and 

RUE_above as follows: 

𝑅𝑈𝐸_𝑝𝑟𝑒𝐺𝐹 (𝑎𝑏𝑜𝑣𝑒 𝑎𝑛𝑑 𝑏𝑒𝑙𝑜𝑤)  =  
(𝐵𝑀 𝐺𝑆65 − 𝐵𝑀 𝐺𝑆41)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆65 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆41)
               eq. (3) 

𝑅𝑈𝐸_𝐺𝐹 (𝑎𝑏𝑜𝑣𝑒 𝑎𝑛𝑑 𝑏𝑒𝑙𝑜𝑤)  =  
(𝐵𝑀 𝐺𝑆65 − 𝐵𝑀 𝐺𝑆87)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆65 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87)
                       eq. (4) 

𝑅𝑈𝐸_𝑇𝑜𝑡𝑎𝑙 (𝑎𝑏𝑜𝑣𝑒 𝑎𝑛𝑑 𝑏𝑒𝑙𝑜𝑤)  =  
(𝐵𝑀 𝐺𝑆87 − 𝐵𝑀 𝐺𝑆41)

(𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆87 − 𝐴𝑐𝑐 𝐼𝑃𝐴𝑅 𝐺𝑆41)
                eq. (5) 
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Where BM GS41, BM GS65 and BM GS87 are biomass harvested at initiation 

of booting, anthesis and physiological maturity, respectively. Acc IPAR GS41, 

Acc IPAR GS65 and Acc IPAR GS87 are the accumulated intercepted PAR at 

initiation of booting, anthesis and physiological maturity, respectively.  

Gas exchange traits were measured at GS41 and GS65 using an infrared gas 

analyser (IRGA) (Licor 6400 XT, Licor Biosciences, Lincoln, NE, USA). Light 

and CO2 response curves were measured on the flag leaves of five replicates 

following phenotyping protocols (Evans and Santiago, 2014) and Vcmax, Jmax and 

TPU were calculated using the R package plantecophys (Duursma, 2015). 

Measurements were carried between 10-4 pm to minimise stomatal limitation. 

Leaf chlorophyll content was measured using a SPAD-502 meter (Konika 

Minolta, Japan) as a proxy.  Non-photochemical quenching was measured using 

a MultispeQ (PhotosynQ, East Lansing, MI, USA) which allowed us to do fast 

measurements of NPQ (NPQt) without the need for dark adaptation in the leaves 

(Kuhlgert et al., 2016). Finally, stomatal morphology traits were measured to 

calculate maximum stomatal conductance (gsmax) according to Franks and 

Beerling (2009). Stomatal impressions were collected using transparent nail 

varnish and when dried, adhesive tape was applied in the medium area of adaxial 

and abaxial sides of the main shoot flag leaf where the gas exchange 

measurements were done. Samples were left to dry for 10 minutes and then 

placed on a slide to be examined and imaged using a microscope (Leica DM 

5000 B, Wetzlar, Germany). Stomatal density, stomatal size, pore length, 

peristomatal groove distance, guard cell width and stomatal pore area were 

measured in order to estimate gsmax as follows: 
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𝑔𝑠𝑚𝑎𝑥 =
(𝑑 𝑥 𝐷 𝑥 𝑎𝑚𝑎𝑥)

𝑣[𝑙+(
𝜋

2
) 𝑥 √

𝑎𝑚𝑎𝑥
𝜋

]
                             eq. (6) 

Where d is the diffusivity of water in air (m2 s-1, at 25 °C), D is the stomatal 

density of the measured leaf surface (mm2), l is the pore depth (µm) estimated 

as half the mean guard cell width. Amax is the maximum stomatal pore area 

(µm2) which is calculated as the area of a circle with the diameter corresponding 

to the pore length, v is the molar volume of air (m3 mol-1 at 25 °C) and µ is the 

mathematical constant taken as 3.1416 (Franks and Beerling, 2009). Stomatal 

density was calculated using the following equation:  

𝐷 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑜𝑚𝑎𝑡𝑎

𝑚𝑚2                                               eq. (7) 

 

5.3.4 Sink (reproductive) traits 

When the genotypes reached GS87 in the 2018 experiment, all the shoots from 

each replicate were harvested from each pot and dried in an oven at 70 °C for 48 

hours. Then the spikes were threshed to separate the grains from the rest of 

biomass and the harvest index was calculated as follows: 

𝐻𝑎𝑟𝑣𝑒𝑠𝑡 𝑖𝑛𝑑𝑒𝑥 (𝐻𝐼) =
𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡
                 eq. (8) 

Yield was sampled using a manual harvest machine, and a subsample was 

collected to be processed and calculate the thousand grain weight (TGW), 

number of grains per spike (GSP) and grains m-2 (GM2) using a seed counter, 

grain weight per spike (GWSP) and the number of spikes m-2 (SM2) were 

calculated afterwards. Yield was calculated as follows: 

𝑌𝑖𝑒𝑙𝑑 =
𝐺𝑟𝑎𝑖𝑛 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡# 𝑠ℎ𝑜𝑜𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑝𝑜𝑡

𝑃𝑜𝑡 𝑎𝑟𝑒𝑎 
                          eq. (9) 
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Table 5.1. Reference ID (#), cross name, average days to initiation of booting (DTGS41), days to anthesis (GS65), days 

to physiological maturity (GS87), intercepted PAR (MJ) and thermal time (°C days) measured during the growth cycle 

for the 8 spring bread wheat genotypes studied. H2 = Broad sense heritability, G = Genotypic differences.  

# Cross name DGS41 

(days) 

DGS65 

(days) 

DGS87 

(days) 

PARGS41 

(MJ) 

PARGS65 

(MJ) 

PARGS87

(MJ) 

TTGS41 

(°C days) 

TTGS65 

(°C days) 

TTGS87 

(°C days) 

1 W15.92/4/PAST

OR// 

HXL7573/ 

2*BAU/3/WBLL

1 

 

51 72 127 276.57 353.12 445.54 1020.8 1371.76 2263.83 

2 KUKRI 

 

48 70 125 261.43 346.45 444.29 959.38 1328.7 2241.61 

3 MUNAL #1 

 

49 70 125 262.78 348.38 444 973.49 1338.58 2238.19 

4 CHEWINK #1 

 

47 65 127 254.83 331.86 446.24 932.44 1243.95 2277.19 

5 SOKOLL//PUB9

4.15.1.12/ 

WBLL1 

 

49 67 129 265.3 338.15 447.4 974.31 1285.48 2298.35 

6 PUB94.15.1.12/F

RTL/5/ 

CROC_1/ 

AE.SQUARROS

A (205) 

//BORL95/3/PR

L/ 

SARA// 

TSI/VEE#5/ 

4/FRET2 

 

48 68 127 259.79 340.92 446.11 957.26 1300.63 2277.86 

7 C80.1/3*QT4118

//KAUZ/ 

RAYON/3/ 

2*TRCH/7/ 

CMH79A.955/4/

AGA/3/ 

4*SN64/CNO67/

/ 

INIA66/5/NAC/

6/ 

RIALTO/8/WBL

L1*2/KURUKU 

 

50 71 128 266.83 350.31 446.86 989.72 1345.47 2290.89 

8 QUAIU*2/KIND

E 

 

52 79 130 278.33 374.17 448.89 1028.57 1489.34 2325.66 

 Mean 52 74 127 1021.57 1400.51 2276.7 275.15 356.41 446.16 

 H2 0.96 0.93 0 0.96 0.93 0 0.95 0.9 0 

 G *** *** ns *** *** ns *** *** ns 
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5.4 Results 

5.4.1 Plant architecture 

Significant height differences were found at GS65 (p<0.001) but not at GS87. 

Shoot architecture was similar in all the genotypes as evidenced by internodes 

and peduncle length, however, differences were found in the number of shoots 

per plant (p<0.01) (Table 5.2). Spike length varied from 9.9-10.78 cm and highly 

significant differences were found between the genotypes studied (p<0.001) 

(Table 5.2). Mixed results were found for leaf architecture traits, on one side no 

statistical differences were found for LAI, flag and third leaves angles, and 

leaves curvatures. On the other hand, differences were found across leaf layers 

in the distance from stem to tip of the leaves, length and width (Table 5.2).  

 

5.5.2 Above-, belowground biomass accumulation and radiation use 

efficiency 

Statistically significant differences were found before (p<0.001) and during 

grain filling (p<0.05) but no differences were found when integrating the whole 

growth cycle for RUE aboveground (Table 5.2). In general, RUE aboveground 

is usually higher in glasshouse studies than in field studies due to the larger 

availability of diffuse radiation product of light scattering in the glasshouse 

structure and a lower competition for light due to lower plant densities compared 

to the field, hence a greater amount of light intercepted per plant.  

For RUE_above, the highest rates were found during the grain filling stage, 

while in RUE_below the highest rates were found when integrating the whole 

growth cycle and the lowest values were found during the vegetative period both 
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for above and belowground (Figure 5.1). Similar to RUE_above, statistically 

significant differences were found before and during grain filling (p<0.01) for 

RUE_above, although H2 in this trait was lower compared to its above 

counterpart (Table 5.2), and with the exception of genotype 2 and 7, all the 

cultivars studied showed higher RUE_below when integrating the growth cycle 

(Figure 5.1). For aboveground biomass statistically significant differences were 

found both at GS41 and GS65 (p<0.001) as well as for belowground biomass 

accumulation in the same growth stages (p<0.01) (Table 5.2). 

 

Table 5.2. Agronomic traits measured in this study. Data was collected for 8 genotypes, which were studied extensively 

under field conditions in Robles-Zazueta et al., 2021. sd: standard deviation, LSD: Least significant differences, CV: 

Coefficient of variation, H2: Broad sense heritability, G: Genotypic differences. 

Trait Minimum Mean (sd) Maximum LSD CV H2 G 

Yield 597.44 750.5 (253.79) 920.46 328.45 33.97 0 ns 

HI 0.39 0.46 (0.08) 0.52 0.01 16.11 0.51 ms 

GSP 6.75 11.43 (4.42) 17.72 11.82 55.73 0.38 ns 

GWSP 2.04 2.45 (0.65) 2.68 0.88 27.9 0 ns 

GM2 10415.58 12691.55 (4507.08) 15621.6 6556.13 34.49 0 ns 

SM2 233.4 333.36 (107.42) 433.4 144.66 33.68 0.63 * 

Height_A (cm) 67.76 69.89 (6.93) 78.18 9.26 10.28 0.87 *** 

Height_PM (cm) 81.06 82.11 (6.35) 87.68 9.36 8.85 0.28 ns 

Internode 2 (cm) 17.72 18.65 (2.05) 19.76 2.98 12.41 0 ns 

Internode 3 (cm) 11.16 13.13 (2.8) 14.32 3.9 23.07 0 ns 

Internode 4 (cm) 7.18 8.36 (2.86) 9.86 4.03 37.39 0 ns 

Peduncle length (cm) 31.94 33.49 (4.26) 37.52 7.39 17.13 0.03 ns 

Spike length (cm) 9.9 10.83 (1.33) 10.78 1.96 14.03 0.86 *** 

Awn length (cm) 5.92 6.36 (0.9) 6.66 1.19 14.52 0 ns 

Shoots_GS65 (# m-2) 333.2 459.29 (103.23) 533.4 153.34 25.92 0.7 ** 

LAI_GS65 4.05 4.97 (1.92) 5.97 2.37 36.35 0 ns 

Angle_GS65 (Top) (°) 59 72.24 (33.17) 99.2 42.03 45.16 0.55 ms 

Angle_GS65 (Middle) (°) 40.4 52.69 (22.71) 95 30.49 44.91 0.68 * 

Angle_GS65 (Bottom) (°) 37 51.02 (19.5) 68.6 33.74 51.33 0.11 ns 

Curv_GS65 (Top) (°) 51.8 70.76 (37) 91 48.14 52.81 0.15 ns 

Curv_GS65 (Middle) (°) 47.7 58.31 (23.21) 76.6 33.71 44.87 0 ns 

Curv_GS65 (Bottom) (°) 48.4 59.13 (20.22) 75.4 32.19 42.26 0 ns 

Diststemtip (Top) (cm) 20.28 27.04 (4.88) 28.92 7.29 20.92 0.91 *** 
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Diststemtip (Middle) (cm) 19.44 25.58 (4.87) 26.94 8.9 27.01 0.73 ** 

Diststemtip (Bottom) (cm) 19.94 23.34 (4.32) 24.76 6.43 21.37 0.44 ns 

RUE_above_preGF (g MJ-1) 1.44 1.75 (0.4) 2.41 0.46 18.34 0.78 *** 

RUE_above_GF (g MJ-1) 2.9 3.95 (1.08) 4.95 1.6 26.88 0.52 * 

RUE_above_Total (g MJ-1) 1.91 2.77 (0.89) 3.59 1.3 36.59 0.3 ns 

RUE_below_preGF (g MJ-1) 0.09 0.11 (0.03) 0.16 0.04 26.17 0.68 ** 

RUE_ below _GF (g MJ-1) 0.11 0.12 (0.03) 0.14 0.05 28.15 0 ** 

RUE_below_Total (g MJ-1) 0.08 0.14 (0.11) 0.21 0.15 86.62 0 ns 

Root:Shoot_GS41 0.05 0.07 (0.01) 0.08 0.02 18.74 0.72 * 

Root:Shoot_GS65 0.05 0.06 (0.01) 0.07 0.015 18.33 0.13 ns 

Root:Shoot_GS87 0.03 0.05 (0.02) 0.09 0.06 87.36 0 ns 

AGBM_GS41 (g m-2) 403.73 477.17 (83.47) 642.61 115.33 16.8 0.83 *** 

AGBM_GS65 (g m-2) 493.08 829.5 (34.18) 776.83 266.89 24.55 0.98 *** 

AGBM_GS87 (g m-2) 867.85 1250.89 (402.99) 1622.43 586.46 36.39 0.32 ns 

BGBM_GS41 (g m-2) 24.28 30.56 (7.34) 43.56 11.01 25.05 0.72 ** 

BGBM_GS65 (g m-2) 29.97 42.47 (10.39) 64.89 16.41 26.85 0.69 ** 

BGBM_GS87 (g m-2) 33.75 60.95 (51.09) 95.22 67.68 86.19 0 ns 

RSGP (%) 14.28 16.68 (4.02) 21.24 5.81 27.02 0.17 ns 

CGR_PreGF (g m-2 day-1) 3.63 5.26 (1.33) 6.09 1.99 28.06 0.89 *** 

CGR_GF (g m-2 day-1) 13.89 17.07 (7.99) 24.42 11.4 50.2 0 ns 

CGR_Total (g m-2 day-1) 6.79 9.85 (3.23) 12.85 4.77 37.48 0.26 ns 

SLA_GS65 (m2 kg-1) 13.79 29.31 (17.02) 44.12 25.32 67.05 0.13 ns 

Abbreviations: HI: harvest index, GSP: Grains per spike, GWSP: Grain weight per spike, GM2: Grains m-2, SM2: Spikes 

m-2, Curv: Leaf curvature, Diststemtip: Distance from stem to tip of the leaf, LAI: Leaf area index, Root:Shoot: Root to 

shoot ratio, AGBM: Aboveground biomass, BGBM: Belowground biomass, RSGP: Rapid spike growth period, CGR: 

Crop growth rate, SLA: Specific leaf area, DT: Days to. 

 

 

Figure 5.1. Radiation use efficiency measured above and belowground. Measurements were 

made during the pre grain filling stage (black bars), grain filling (light grey) and considering the 

whole crop cycle (dark grey). Data are mean ± standard error. 
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Heritability in the belowground traits was high for both stages (H2 = 0.72, 0.69, 

respectively) which increases the prospect of incorporating these traits into pre-

breeding pipelines in the near future. The ratio of below to aboveground biomass 

(Root:Shoot) was only statistically significant at GS41 (p<0.05). This ratio was 

maintained during the vegetative and grain filling period but was drastically 

reduced at GS87 (Figure 5.2), which implies that once the plant has sufficient 

root biomass in the vegetative and grain filling periods to acquire resources and 

provide the shoot with mechanical stability against lodging, efforts are shifted to 

produce as much aboveground biomass in order for spikes to have enough access 

to assimilates to fill the grains.  

 

Figure 5.2. Aboveground and belowground biomass measured at anthesis (black bars) and 

physiological maturity (grey bars), and root shoot ratios of the studied genotypes. Data are mean 

± standard deviation. 

 

5.4.3 Leaf photosynthesis 

The photosynthetic traits did not show genetic variation in general at GS41, 

except for gs (p<0.05), transpiration (E) (p<0.05), light compensation and 

saturation points (LCP, LSP) (p<0.05, p<0.01, respectively). On the other hand, 

at GS65 statistically significant genotypic differences were found for Amax, Asat, 
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Jmax, LUE, ΦPSII (p<0.01), gs (p<0.001), E, LCP and LSP (p<0.05) (Table 5.3). 

Asat ranged from 25.22-28.81 µmol m-2 s-1 at GS41 and 25.75-30.5 µmol m-2 s-1 

at GS65, while Amax had greater values, specially at GS65 with a range from 

29.59-37.8 µmol m-2 s-1, and no statistical differences were found for Vcmax or 

dark respiration (Rd) at neither growth stages (Table 5.3).  

The largest Vcmax and Jmax were found in genotype 1 (Figure 3 and 4), both for 

GS41 and GS65 but this did not translate into higher yield or HI, whilst 

belowground biomass at GS87 was the highest for this genotype, suggesting that 

higher Vcmax and Jmax rates could be associated to larger biomass accumulation 

during the crop cycle, with marginally significant phenotypic correlations found 

for these traits (Table 5.5).  
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Table 5.3. Photosynthetic traits measured at initiation of booting and anthesis. LSD: least significant differences, CV: 

coefficient of variation, H2: broad sense heritability, G: genotypic differences, GS_41: Initiation of booting, GS_65: 

Anthesis. 

Trait Minimum Mean (sd) Maximum LSD CV H2 G 

Asat_GS41 (µmol m-2 s-1) 25.22 28.1 (3.78) 28.81 4.76 12.91 0.22 ms 

Asat_GS65 (µmol m-2 s-1) 25.75 27.01 (3.86) 30.5 5.79 15.64 0.73 ** 

Amax_GS41 (µmol m-2 s-1) 26.9 32.38 (5.31) 34.3 6.64 15.65 0.53 ns 

Amax_GS65 (µmol m-2 s-1) 29.59 32.17 (5.02) 37.8 7.53 17.08 0.74 ** 

Vcmax_GS41 (µmol m-2 s-1) 137.41 151.29 (34.98) 186.77 48.77 24.19 0.43 ns 

Vcmax_GS65 (µmol m-2 s-1) 126.08 137.47 (24.18) 166.81 40.89 21.72 0.46 ms 

Jmax_GS41 (µmol m-2 s-1) 227.31 241.84 (30.07) 271.43 44.55 13.82 0.01 ns 

Jmax_GS65 (µmol m-2 s-1) 210.36 226.18 (23.94) 256.57 38.93 12.57 0.74 ** 

Rd_GS41 (µmol m-2 s-1) 1.14 1.7 (0.48) 2.06 0.64 28.87 0.51 ms 

Rd_GS65 (µmol m-2 s-1) 1.05 1.36 (0.45) 1.67 0.67 36.11 0.05 ns 

gs_GS41 (mol m-2 s-1) 0.31 0.44 (0.16) 0.47 0.19 33.18 0.64 * 

gs_GS65 (mol m-2 s-1) 0.33 0.43 (0.13) 0.6 0.18 31.38 0.79 *** 

gsmax_GS65 (mol m-2 s-1) 1.46 1.94 (0.25) 2.01 0.43 14.83 0.5 ns 

E_GS41 (mmol m-2 s-1) 3.83 5.22 (1.31) 6.42 1.95 28.53 0.66 * 

E_GS65 (mmol m-2 s-1) 4.22 5.09 (1.51) 6.62 2.09 31.32 0.66 * 

LCP_GS41 (µmol m-2 s-1) 18.63 23.79 (6.98) 30.01 8.86 28.4 0.58 * 

LCP_GS65 (µmol m-2 s-1) 15.9 18.49 (5.29) 21.21 7.91 31.23 0 ns 

LSP_GS41 (µmol m-2 s-1) 462.53 731.62 (214.97) 908.03 296.74 30.94 0.76 ** 

LSP_GS65 (µmol m-2 s-1) 660.72 832.13 (241.86) 1150.63 334.32 29.34 0.62 * 

TPU_GS41 (µmol m-2 s-1) 14.04 14.86 (1.74) 16.28 2.64 13.12 0 ns 

TPU_GS65 (µmol m-2 s-1) 13.89 14.65 (1.12) 16.07 2.41 9.42 0.29 ns 

iWUE_GS41 (µmol CO2 mmol m-2 s-1 H2O) 70.08 74.99 (27.85) 95.14 40.65 41.36 0 ns 

iWUE_GS65 (µmol CO2 mmol m-2 s-1 H2O) 51.91 67.7 (15.92) 91.94 26.05 28.01 0.56 ms 

WUE_GS41 (µmol CO2 mol m-2 s-1 H2O) 4.68 5.9 (1.66) 8.15 2.78 35.97 0.32 ns 

WUE_GS65 (µmol CO2 mol m-2 s-1 H2O) 4.79 5.59 (1.13) 7.3 1.89 24.75 0.36 ns 

LUE_GS41 (g C mol-1 photons) 0.16 0.19 (0.03) 0.21 0.04 15.67 0.53 ms 

LUE_GS65 (g C mol-1 photons) 0.18 0.19 (0.03) 0.23 0.05 17.06 0.74 ** 

NPQt_GS41 0.89 1.11 (0.22) 1.27 0.31 21.45 0.47 ms 

NPQt_GS65 0.63 0.74 (0.12) 0.83 0.17 18.3 0.09 ns 

Fv'/Fm'_GS41 0.43 0.45 (0.04) 0.47 0.04 7.49 0.11 ns 

Fv'/Fm'_GS65 0.48 0.5 (0.03) 0.52 0.05 8.12 0 ns 

ΦPSII_GS41 0.16 0.18 (0.03) 0.19 0.04 16.85 0 ns 

ΦPSII_GS65 0.16 0.16 (0.03) 0.19 0.04 18.51 0.73 ** 

SPAD_GS41 42.19 43.52 (1.74) 44.58 2.3 4.11 0 ns 

SPAD_GS65 38.85 43.6 (4.36) 46.28 6.18 11 0.34 ns 
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Figure 5.3. CO2 response curves (A/Ci) measured at GS41 and GS65. Different symbols 

represent the genotypes studied. Data are mean ± standard deviation. 

 

In the case of the stomatal traits’ differences were found in abaxial stomatal 

density (p<0.01) as well as the peristomatal groove distance (p<0.001), pore area 

(p<0.01) and gsmax (p<0.05) and the same traits with exception of stomatal 

density which also showed the lowest heritability (H2 = 0) for adaxial traits 

(Table 4). The stomatal traits were the photosynthetic traits with the highest H2 

in this study, this highlights the value of screening gs traits to be added to 

phenotyping programs coupling these measurements with high-throughput 

platforms if they correlate with traits related to yield improvement (Table 5.4).  
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Figure 5.4. Light response curves (A/Q) measured at GS41 and GS65. Different symbols 

represent the genotypes studied. Data are mean ± standard deviation. 

 

5.4.4 Uncovering the link between below and aboveground biomass 

accumulation 

Negative statistically significant relationships were found between HI and 

belowground biomass accumulation at GS65 and GS87 (p<0.05, p<0.1, 

respectively) (Figure 5.5), as well as GSP and RUE_below_preGF suggesting a 

trade-off between grain yield partitioning components and the accumulation of 

root biomass at both vegetative and grain filling stages (Table 5.5). Furthermore, 

strong positive relationships were found between aboveground biomass at GS41 

with belowground biomass at GS41 (p<0.001) and GS65 (p<0.01) (Figure 5.5). 

In the case of RUE, positive associations were found with root biomass at GS41 

(p<0.001) and GS65 (p<0.05) indicating a synergy between the shoot and roots 

during the vegetative stage (Figure 5.5).  
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Table 5.4. Stomatal traits measured at GS65. sd: standard deviation, LSD: Least significant differences, CV: 

Coefficient of variation, H2: Broad sense heritability, G: Genotypic differences, gsmax: maximal stomatal conductance. 

Trait Minimum Mean (sd) Maximum LSD CV H2 G 

Adaxial        

Stomatal density (# mm-2) 67.5 71.19 (8.98) 76.42 13.77 14.05 0 ns 

Stomatal size (µm) 241 411.71 (82.65) 477.38 136.28 22.65 0.54 ms 

Pore length (µm) 25.63 31.9 (4.06) 36.73 6.63 14.22 0.74 * 

Peristomatal groove distance (µm) 15.35 22.84 (2.1) 26.6 3.84 11.52 0.88 *** 

Guard cell width (µm) 4.84 6.66 (0.86) 8.93 2.48 25.46 0.27 ns 

Stomatal pore area (µm-2) 317.68 581.03 (98.33) 686.83 169.91 20.01 0.84 ** 

gsmax (mol m-2 s-1) 1.49 2.06 (0.3) 2.34 0.61 18.72 0.78 * 

Bottom        

Stomatal density (# mm-2) 49.98 61.61 (8.59) 74.25 11.39 13.65 0.73 ** 

Stomatal size (µm) 175.76 426.21 (71.83) 515.17 154.39 23.8 0.34 ns 

Pore length (µm) 22.15 30.63 (3.92) 34.99 6.63 14.22 0.45 ns 

Peristomatal groove distance (µm) 14.86 24.37 (2.05) 27.26 3.75 10.11 0.91 *** 

Guard cell width (µm) 4.18 6.85 (0.71) 7.61 1.65 15.81 0.45 ms 

Stomatal pore area (µm-2) 246.52 597.04 (99.82) 744.26 178.29 19.63 0.83 ** 

gsmax (mol m-2 s-1) 1.16 1.78 (0.22) 2.14 0.42 14.81 0.68 * 

 

 

Figure 5.5. Relation between HI (left panel), aboveground biomass at initiation of booting 

(middle panel) and RUE aboveground at vegetative period (right panel) with belowground 

biomass accumulation at initiation of booting (black dots), anthesis (red dots) and physiological 

maturity (green dots). 
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Statistically significant relations were found between Asat (p<0.01) and gs 

(p<0.05) at GS41 with the Root:Shoot ratio at GS65 meaning larger 

photosynthetic rates from the vegetative period may serve as stores of carbon 

assimilates for future plant growth and are beneficial for larger root and shoot 

accumulation in the later grain filling period.  
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Table 5.5. Phenotypic correlations between belowground traits and aboveground traits measured under controlled environmental conditions. Statistical significance is represented as follows: in bold * = p<0.05, in bold 

** = p<0.01, *** = p<0.001, in italic = 0.1>p>0.05. 

Trait BGBM 

GS41 

BGBM 

GS65 

BGBM 

GS87 

RUE_below 

preGF 

RUE_below 

GF 

RUE_below 

Total 

Root:Shoot 

GS41 

Root:Shoot 

GS65 

Root:Shoot 

GS87 

Yield (g m-2) -0.01 0.24 0.23 0.09 0.28 -0.34 -0.08 0.2 0.23 

HI -0.38 *-0.71 -0.61 -0.11 0.24 -0.5 -0.15 -0.19 **-0.83 

GM2 (grains m-2) 0 0.19 -0.07 0.22 0.56 -0.37 -0.05 -0.08 -0.06 

GSP (# grains) -0.41 -0.33 0.45 *-0.72 -0.51 *0.77 -0.38 -0.06 0.45 

GWSP (g spike-1) -0.29 -0.4 -0.07 -0.38 0.1 0.34 -0.21 0.38 -0.06 

LAI *0.67 0.32 -0.66 *0.77 0.36 *-0.78 *0.73 0.41 -0.65 

SLA (m2 kg-1) 0.57 0.23 -0.66 *0.73 0.17 -0.56 0.62 0.06 -0.65 

Height_GS65 (cm) 0.29 0.34 -0.13 0.36 0.07 -0.23 0.3 -0.25 -0.13 

Height_GS87 (cm) 0.35 0.63 0.33 0.24 0.03 0.04 0.32 0.08 0.34 

FLAngle (°) -0.09 -0.14 0.08 -0.27 -0.23 0.62 -0.05 -0.09 0.09 

SLAngle (°) 0.33 0.51 0.18 0.26 -0.05 0.04 0.28 -0.3 0.19 

TLAngle (°) 0.23 0.15 -0.19 0.31 -0.16 0.03 0.19 *-0.75 -0.18 

FLCurv (°) 0.03 -0.2 -0.52 0.08 0.14 *-0.69 0.15 -0.04 -0.53 

SLCurv (°) 0.09 0.13 0 0 -0.14 0 0.11 -0.5 0 

TLCurv (°) 0.16 0.22 -0.26 0.44 0.34 -0.46 0.12 -0.35 -0.26 

DiststemtipFL (cm) -0.57 -0.29 0.33 -0.59 0.28 0.62 -0.57 0.11 0.34 

DiststemtipSL (cm) -0.24 0.12 0.25 -0.1 0.36 0.15 -0.32 -0.29 0.27 

DiststemtipTL (cm) -0.49 *-0.67 -0.34 -0.45 -0.15 -0.1 -0.42 *-0.79 -0.35 

AGBM_GS41 (g m-2) ***0.95 **0.84 0.07 *0.74 -0.47 0.03 ***0.93 0.09 0.08 

AGBM_GS65 (g m-2) -0.09 0.08 0.23 -0.32 -0.05 0.21 -0.04 -0.06 0.23 

AGBM_GS87 (g m-2) 0.22 0.5 0.33 0.22 0.21 -0.23 0.14 0.35 0.33 
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RUE_above_preGF (g MJ-1) ***0.92 *0.7 -0.08 *0.68 -0.46 -0.05 ***0.95 0.13 -0.08 

RUE_above_GF (g MJ-1) 0.26 -0.11 0.36 0.3 -0.18 0.28 0.46 -0.11 -0.06 

RUE_above_Total (g MJ-1) 0.21 0.49 0.32 0.23 0.23 -0.24 0.14 0.36 0.32 

Asat_GS41 (µmol m-2 s-1) 0.06 0.14 0.07 -0.04 0.49 -0.02 0.11 **0.88 0.08 

Asat_GS65 (µmol m-2 s-1) 0.22 -0.06 -0.57 0.48 0.05 -0.4 0.2 -0.63 -0.56 

gs_GS41 (mol m-2 s-1) 0.44 0.2 -0.34 0.46 0.37 -0.33 0.47 *0.69 -0.33 

gs_GS65 (mol m-2 s-1) 0.35 0.06 -0.48 0.57 -0.12 -0.34 0.31 -0.61 -0.48 

Rd_GS41 (µmol m-2 s-1) 0.39 0.27 -0.22 0.45 0.4 -0.41 0.38 0.55 -0.22 

Rd_GS65 (µmol m-2 s-1) 0.45 -0.11 -0.57 0.33 -0.49 0.43 0.53 -0.3 -0.58 

Vcmax_GS41 (µmol m-2 s-1) 0.04 0.48 0.59 -0.04 -0.11 0.53 -0.04 -0.23 0.59 

Vcmax_GS65 (µmol m-2 s-1) -0.53 -0.49 -0.01 -0.6 0.3 -0.02 -0.46 0.18 -0.01 

Jmax_GS41 (µmol m-2 s-1) -0.28 0.21 *0.83 -0.51 -0.2 0.6 -0.34 0.1 *0.82 

Jmax_GS65 (µmol m-2 s-1) *-0.67 -0.64 -0.01 *-0.76 0.07 0.28 -0.6 -0.27 0 

TPU_GS41 (µmol m-2 s-1) -0.45 -0.1 *0.72 *-0.73 -0.25 0.59 -0.46 0.25 *0.71 

TPU_GS65 (µmol m-2 s-1) -0.58 -0.57 -0.07 -0.59 -0.16 0.17 -0.53 *-0.75 -0.07 

gsmax_GS65 (mol m-2 s-1) 0.12 0.48 0.55 0.25 -0.17 0.33 -0.08 -0.37 0.55 

NPQt_GS41 -0.33 -0.38 -0.37 -0.16 0.56 -0.36 -0.23 0.37 -0.37 

NPQt_GS65 -0.11 0.15 0.09 0.18 0.52 -0.4 -0.19 0.23 0.09 

SPAD_GS41 0.16 0.49 *0.68 -0.11 -0.56 0.64 0.09 -0.3 *0.68 

SPAD_GS65 0.24 0.53 0.22 0.26 0.56 -0.03 0.22 *0.75 0.23 
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5.5 Discussion 

In this study, a comprehensive analysis between aboveground traits and 

belowground agronomic traits was made to understand which are the main 

controls of above and belowground biomass accumulation as well as the effects 

of this interaction on wheat RUE. Our main results showed negative associations 

between HI, GSP and belowground biomass accumulation and RUE_below 

which suggests a trade-off between some yield components involved with 

partitioning to grains and root biomass especially during grain filling. On the 

other hand, a strong link between above and belowground biomass in the 

vegetative period was found this suggests a coordination between above and 

below plant processes to boost growth towards grain filling. 

 

5.5.1 Below- and aboveground trait interactions 

Previous studies have asserted the benefits for improving root traits such as 

elongation, depth, distribution, xylem vessel diameter, root:shoot biomass ratio 

in water-limited environments to improve water acquisition and alleviate shoot 

stress particularly in grain filling (Lilley and Kirkegaard, 2011), as well as angle 

of seminal roots, root plate spread and anchorage strength under yield potential 

conditions in order to make plants more responsive to N and P fertilization and 

provide the shoot with a greater structural strength against lodging (Pinera-

Chavez et al., 2016a; Dreccer et al., 2020). However, to date no studies have 

suggested a connection between root traits (e.g. root biomass dry weight) and 

RUE.  
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Our results suggest there are two main mechanisms for biomass accumulation 

and resource acquisition in wheat. The first mechanism comes from the positive 

correlations between above- and belowground biomass during the vegetative 

period which imply that far from acting in competition, these systems are 

adapted to operate synergistically in the context of leaf and root economic 

spectrums and the plant form and function spectrum (Díaz et al., 2016). Wheat 

as an annual crop follows the trend of “fast-slow” trade-off between highly 

metabolic cost traits such as high leaf or root N concentrations with those 

associated with tissue investment for the long run such as stem and root density, 

leaf mass area (LMA) or specific root length (SRL), therefore it is expected to 

have high N concentrations in roots and leaves of plants with positive 

associations between above and belowground  biomass in order to keep 

the growing demands (Weigelt et al., 2021).  This indicates that at the vegetative 

stage, a wheat plant with higher biomass and LAI will benefit from a larger 

radicular system thanks to the possibility to acquire more water, N and P from 

soils to sustain fast growth, and vice versa a larger shoot benefits the root system 

by providing more access to photoassimilates to meet their metabolic and growth 

needs. It is also possible that a fast-growing root system helps to prevent sink 

limitation of shoot growth. Secondly, during grain filling and towards 

physiological maturity there is a detrimental cost for the plant to have larger root 

systems as these become antagonising with the shoot and the strength of the 

reproductive organs as a dominant sink (Simpson et al., 2020), competing for 

nutrients and water and having a negative effect on yield, HI and GM2.   
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5.5.2 Could belowground biomass explain the variability of aboveground 

RUE? 

Root metabolism has been assessed in different ecosystems and has been found 

to have a large impact in aboveground carbon use, biomass accumulation, 

resource use efficiencies (water, N) and it shows seasonal patterns influenced by 

phenology.  

In our study wheat was grown under yield potential conditions, where irrigation, 

fertilisation and pest control are optimised, therefore a trend was found where 

RUE_above increased from the vegetative to the grain filling period and likewise 

RUE_below showed the same trend. These results are contrasting to what has 

been found for the same genotypes grown under field conditions. It has been 

found that RUE_above diminishes from vegetative to grain filling period, even 

though plants have optimum LAI and their leaves and spikes are still 

photosynthetically active (Molero et al., 2019; Robles-Zazueta et al., 2021). A 

previous study in wheat has found that root traits such as respiration and 

root:shoot ratio were closely related to the plant water status. Furthermore, the 

reduction in root respiration rates and root biomass accumulation was key for 

wheat plants to cope drought stress, and implied that genetic expression of root 

traits is influenced more by the environment rather than genotypic diversity 

(Hong and Feng, 2005).  

This phenomenon could influence the allocation of resources aboveground and 

the resource use efficiency especially radiation and N. We hypothesize that 

under field conditions the relatively greater water stress that wheat is subject 

during grain filling could make the plant to resort for surviving strategies 

including the reduction of the root:shoot ratio in order to cope with drought or 



 

171 

 

heat stresses making the plant less responsive to the availability to certain 

resources including light or N, and focus their attention in water to avoid spike 

sterility therefore causing a reduction in RUE from the vegetative to grain filling 

period.  This could be supported by the theory of plant resource allocation which 

states that plants maximize their growth based on N availability in the soil, and 

it is known that under heat or drought stress less N becomes available due to 

reduced soil moisture which affects N remobilization, roots are less likely to 

utilise it therefore reducing root:shoot ratios (Agren and Franklin, 2003), and 

these abiotic stresses will increase leaf respiration reducing biomass 

accumulation (Vose and Ryan, 2002). 

 

5.5.3 Glasshouse studies to support root field phenotyping  

Even though glasshouse studies should be approached with caution when it 

comes to comparison with field studies (Poorter et al., 2016), especially for 

phenotyping or breeding purposes, the slow throughput of field root phenotyping 

compared to shoot phenotyping (Severini et al., 2020) makes the studies of roots 

in the glasshouse a feasible option to find traits to explore under field conditions 

(Atkinson et al., 2019).  We explored whether the root biomass traits studied 

here could be extrapolated with physiological traits from field studies in the same 

eight genotypes and found negative statistical relationships between yield and 

RUE_below, specific leaf area (SLA) with belowground biomass and gs both at 

GS41 and GS65 with several root traits (Table 5.6). This would support the 

results found at physiological maturity when shoots and roots become 

antagonists (yield, SLA) and how stomata could coordinate with roots through 

signalling to reduce water losses. Moreover, these traits could be used to predict 
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root biomass traits with related aboveground by means of high-throughput 

phenotyping of maximum stomatal conductance (Gibbs et al., 2021) or through 

the prediction of SLA in field trials as presented in chapter 4 of this thesis.  

 

5.6 Conclusions 

In this study above- and belowground traits related to RUE were studied in order 

to understand which traits control it. Our results suggest that there is synergy 

between shoot and root systems during vegetative stages and then shifts to 

antagonistic relationship from grain filling towards maturity as evidenced by the 

negative relationship found between yield components and belowground traits. 

Furthermore, we explored the possibility of implementing root traits in the field 

by analysing its relationship with physiological traits under field conditions and 

traits such as gs and SLA could be used to study root traits in the field indirectly 

by means of high-throughput phenotyping.  
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Chapter 6 General discussion 

Based on our results we can conclude that predicting RUE with models built 

with canopy reflectance is better than using different sensors or measurements 

at leaf level thanks to the faster phenotyping capabilities of using only one sensor 

and the similar prediction accuracy from both approaches applied in Chapter 2. 

Furthermore, due to the influence of canopy architecture, light saturated 

photosynthesis in the middle and bottom layer of the canopy we found an 

association between RUE and yield (Chapter 3) which can be exploited by 

considering the genotypic variation of CIMMYT germplasms in the future to 

improve wheat yield.  

Our hypothesis of Chapter 4 stated that models derived from rapid measurements 

of multiple canopy layers will be better than models built with individual leaf 

layers. In fact, our hypothesis was true especially for photosynthetic traits where 

we found that using top, middle and bottom layers improved the accuracy and 

reduced the error in the models. Likewise, it is noteworthy to mention that these 

models can be improved by increasing the genotypic variability of the dataset or 

adding data collected in different environments or locations. 

Finally in Chapter 5 we explored the relationship between shoot and root 

physiology and how they were affecting RUE. Our hypothesis was proven 

correct as we found that greater root biomass accumulation was coupled with 

smaller aboveground biomass accumulation and smaller HI. Therefore we 

concluded that to improve yield considering roots and shoots there needs to be a 

fine tuning of physiological traits that could become antagonistic to avoid 

penalising yield.  
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6.1 Importance of growth analysis for wheat yield improvement 

Throughout the chapters of this thesis, the importance of increasing wheat yield 

by improving photosynthetic rates in different leaf layers to upgrade canopy 

photosynthesis has been stated. The key physiological trait linking yield with 

photosynthesis and biomass accumulation is RUE. But this trait generally 

includes labour and resource intensive manual measurements of biomass and 

light interception in the field that needs to be sampled at least in two periods of 

time during the growth cycle. In addition, there are methodological 

inconsistencies on how RUE is measured and this depends if its calculations are 

based on intercepted photosynthetically active radiation with data from a 

ceptometer or if its only calculated using incoming solar radiation (Bonhomme, 

2000). This issue should be addressed in future modelling studies to improve the 

accuracy of RUE models. 

Most of the recent studies that study traits that could be key for yield 

improvement in wheat and other crops with emphasis on photosynthetic traits 

have focused their efforts on newly developed phenotyping methods, increasing 

the high-throughput of measurements such as Asat, gs, light intercepted, Fv’/Fm’, 

NPQ or gsmax (Gibbs et al., 2021; McAusland et al., 2019 Salter et al., 2020; 

Silva-Pérez et al., 2018; Townsend et al., 2018). But these previous studies have 

not considered RUE and/or yield in their studies, therefore without the empirical 

evidence of the thought to be straightforward relationship between 

photosynthesis and yield, breeding programmes will hardly give priority to 

photosynthetic traits in their phenotyping pipelines. 

Another trait with high importance in breeding programmes is aboveground 

biomass. Previous studies have identified it as a key trait in the finding of new 
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high yielding cultivars (Aisawi et al., 2015; Molero et al., 2019; Joynson et al., 

2021). Aboveground biomass is used to estimate RUE, therefore we should not 

stop collecting ground truth data when possible, even if HTP methods are 

available to predict it in different growth stages (Babar et al., 2006; Prasad et al., 

2009; Tewes and Schellberg, 2018; Robles-Zazueta et al., 2021). In chapter 2 of 

this thesis, RUE was predicted with 53%, 61% and 69% accuracy in the 

vegetative stage, grain filling stage and whole crop cycle, respectively using 

vegetation indices related to water and chlorophyll content in the leaves as well 

as canopy light interception. Despite the good results from the models, we 

concluded that measurements of aboveground biomass should not be replaced 

entirely by HTP methods and highlighted that if we want to increase our 

understanding of the link between photosynthesis and yield, growth analysis is 

an important piece of the puzzle (Robles-Zazueta et al., 2021), especially 

because this relationship might be environment or location specific.  

The method developed in this thesis could also be used to screen genotypes for 

high biomass and RUE in wheat populations that could be tolerant to heat, 

drought, or nutrient stresses. Although we recognize that aboveground biomass 

and RUE are influenced by the latitude where wheat is grown as it has been 

proven that cloud cover affects the amount of incident radiation as it increases 

the amount of diffuse radiation plants receive as well as altering the R:FR 

especially in the lower parts of the canopy. These abiotic changes also depend 

in the structural composition of the canopy, influenced by architecture (i.e. LAI, 

leaf angles and orientation) (Durand et al., 2021).  

Additionally, the managing conditions will have an effect on canopy architecture 

which will be key for radiation interception, therefore limitations of N, P will 
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affect RUE negatively (Sinclair and Vadez, 2002) as well as water limitations. 

Thus, the next steps should be towards the parameterization of predictive models 

for resource limited environments including genotypic variability from different 

parts of the world to test how RUE of wheat responds to different abiotic stresses. 

Building models that can work on any environment should be a priority for the 

phenotyping community in order to simplify work in the field and reduce the 

phenotyping bottleneck of biomass and RUE in the field.  

 

6.2 Are sunlit leaves from top of the canopy enough to represent whole 

canopy processes? 

Leaf photosynthesis is the primary source of carbohydrates for wheat in most 

part of the growth cycle. The question is, if the main path for plants to grow is 

photosynthesis, why we have not found clear evidence of the relation between 

wheat growth (i.e. biomass accumulation, RUE), wheat yield and 

photosynthesis? 

Previous studies addressing this relationship (Table 3.1, Chapter 3) have mostly 

focused on spot measurements (Asat) under light saturating conditions at the top 

layer of the canopy (usually flag leaves). The justification for this was that in the 

past some studies found associations between flag leaf photosynthesis and yield 

(Fischer et al., 1998; Reynolds et al., 2000). However recent modelling studies 

have identified the importance of bottom layers of the canopy in boosting 

biomass accumulation, and possibly yield in wheat (Townsend et al., 2018; 

Salter et al., 2020) and rice (Foo et al., 2020).  
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The genotypes studied in this work had middle and bottom layer photosynthesis 

explaining larger yield variability than top of the canopy photosynthesis in the 

vegetative stage, which implies that photosynthetic productivity in wheat can be 

a product of canopies acclimating to low light conditions (<1000 µmol m-2 s-1) 

as light intercepted in the middle and bottom layer can be diminished by 20% 

and 77% compared to the top layer, respectively. There is evidence in the 

literature that the efficient exploitation of high light periods can increase plant 

biomass up to 20% in tobacco (Kromdijk et al., 2016) and slow induction 

transitions from low to high light in wheat can reduce up to 21% of maximum 

CO2 assimilation in wheat (Taylor and Long, 2017) indicating the importance of 

canopy architecture. Recent studies have emphasized the role canopy 

architecture for improved canopy photosynthesis by modifying leaf angles to 

improve the light interception and extinction coefficient (Mantilla-Perez et al., 

2017; 2020) for the end-goal of higher aboveground biomass and yield varieties 

(Richards et al., 2019).  

Modifications in canopy architecture will be needed to increase light penetration 

in the middle and bottom layer of wheat canopies to utilize sun flecks to boost 

yield, and modelling suggests that breeding for erect wheat canopies will be the 

best option to exploit dynamic light events such as sunflecks (Burgess et al., 

2021). We suggest that breeders start considering a new wheat ideotype with 

erect flag leaves to increase light penetration towards lower canopy layers with 

a reduced peduncle length and increased third and fourth internodes length to 

optimise canopy architecture without yield by reducing the risk of lodging. 

Future studies need to consider wheat populations studied in different 

environmental conditions (i.e. yield potential, heat, drought and nutrient stress) 
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as well as increase the extent of the study of photosynthetic organs, which has 

mostly been directed to the flag leaf and spikes (Molero and Reynolds, 2020), to 

include different leaf layers plus the spikes and stems (Araus et al., 2021; Simkin 

et al., 2020; Chapter 3). If we increase our understanding of these organ 

photosynthetic rates, we can picture which abiotic factors might have a larger 

effect on photosynthesis at the top, middle and bottom layers of the canopy. 

Finally, besides steady state photosynthesis, recent studies have found evidence 

of genetic variation in photosynthetic rates of leaves exposed to changes from 

low to high light (i.e. photosynthetic induction) which can pave the way for the 

improvement of maximum photosynthetic rates integrated in the whole crop 

cycle (Acevedo-Siaca et al., 2021; Faralli and Lawson, 2019; McAusland et al., 

2020) as plant canopies are subjected to variation of light intensity during scales 

that goes from seconds to months, and it will be important to consider developing 

high-throughput phenotyping techniques to account for this variation in the field 

and study canopy photosynthesis to understand which are the manipulations that 

need to be done to improve yield without compromising source-sink balance.  

 

6.3 Upscaling physiological traits from leaves to canopies 

Using HTP to phenotype complex traits such as gas exchange has become the 

norm in wheat field phenotyping as mentioned in Chapter 1 and 4. The use of 

optical remote sensing tools (spectroradiometers, multi and hyperspectral 

cameras mounted on UAVs) has reduced the phenotyping bottleneck to some 

extent. However, most of this phenotyping technology has been used to measure 

just the top layer of the canopy in the field and in glasshouses/growth chambers.  
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We showed that including the middle and bottom layer of the canopy improved 

the prediction of photosynthetic, biophysical and biochemical traits. Our 

photosynthetic prediction accuracy compared to previous studies from wheat 

(Silva-Pérez et al., 2018; Furbank et al., 2021), having the added value of 

prediction for high and low extreme rates by including the three layers and 

considering the effects of phenological variability.   

The results presented in Chapter 4, will allow the faster phenotyping of 

photosynthetic traits at different canopy layers in vegetative and reproductive 

stages in wheat, and can potentially be used in other cereals such as barley, maize 

or rice. PLSR predictions could be coupled with whole canopy photosynthesis 

IRGA measurements (Song et al., 2016) that includes stems and spikes in order 

to model canopy photosynthesis including those organs as well.  

Moreover, the phenotyping capacity in the field was increased up to 30 times 

more than conventional phenotyping methods for gas exchange, thus justifying 

the use of PLSR models based on leaf reflectance that can work in different years 

and phenological stages. The next frontier will be to have models that can predict 

physiological traits based on plant functional groups (i.e. models for cereals, 

legumes, trees, or dividing them by C3/C4 models).  

 

 

6.4 Roots: the latest frontier for RUE and yield improvement 

Roots are an important system within a plant. In wheat their importance has been 

looked through the lens of resource acquisition (i.e. water and nitrogen) and 

lodging. Virtually no studies have explored the relation between root biomass 
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accumulation with RUE and yield. The results from Chapter 5, indicate that there 

is synergy from the below and aboveground parts of the plant at the vegetative 

stage and a competition relationship from grain filling onwards. Physiologically 

speaking, traits such as stomatal conductance (Gibbs et al., 2021) and specific 

leaf area (PLSR models, Chapter 4) could be used as proxies to predict root 

biomass accumulation in the field by training models collecting ground truth 

data and associate those results with traits related to shoot architecture or gas 

exchange.  

Wheat genotypes with more belowground biomass can acquire more water, N 

and P from soils to sustain peaks of rapid growth and store nutrients in the long 

run. Furthermore, plants with high aboveground biomass and large LAI will 

benefit from larger radicular systems for anchorage, therefore belowground traits 

show that they need to be considered in breeding programs if a boost in yield is 

the goal in the near future.  

Future studies should consider measurements of root respiration coupled to 

canopy photosynthesis as this C flux is an important source of energy loss (Posch 

et al., 2019) in wheat as well as a stress coping mechanism especially under 

drought (Hong and Feng, 2005).  

Ultimately, increased atmospheric CO2 and higher air and soil temperature will 

diminish the allocation of root biomass, as these abiotic stresses have been found 

to reduce photosynthesis and aboveground biomass accumulation (Ainsworth 

and Long, 2021) creating source-sink imbalances that could create issues for the 

plant, including increasing the risk of lodging, reducing the acquisition of 

resources such as N, P or water, increasing soil and root respiration and have an 



 

181 

 

antagonistic effect with photosynthesis, therefore having a negative impact on 

RUE. For this reason, it will be paramount to find wheat genotypes that have 

radicular systems that can cope with these changes without compromising the 

function of the shoot.  

 

6.5 Conclusions  

Global population is set to reach 10 billion by 2050, and one of the greatest 

challenges humanity will face in the 21st Century is the improvement of staple 

crop yields. It has been asserted that photosynthesis is the key trait to meet this 

goal, but other essential physiological measurements are needed to understand 

the link between photosynthesis and yield, i.e. biomass accumulation and RUE. 

These traits are labour intensive and their measurement is prone to errors in the 

field so improving its prediction by means of high-throughput phenotyping is 

the ultimate goal of breeding programmes, as well as the creation of combined 

models from heat, drought and yield potential trials that can predict RUE, 

biomass and other traits to be used in different wheat megaenvironments to find 

new genotypes with higher yield.  
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