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Abstract 

 
Visual perception in humans is optimised to function in its habitat. When sensory information is 

ambiguous, our prior knowledge and expectations about the habitat biases perception. By 

measuring perceptual biases for ambiguous stimuli, we are able to infer what expectations we 

have about our environment. Recently, Hussain Ismail et al. (2019) found a perceptual bias in 

people living in cities, where ambiguous objects (made of one man-made and one natural 

component images) were more likely to be classified as a man-made object (i.e., manufactured 

objects such as a vehicle or a house) rather than a naturally occurring object (e.g., flower or 

animal). They speculated that this bias may be a result of our expectations to see man-made 

objects more often in our living environment. The aim of this thesis is to examine whether the 

“man-made bias” is susceptible to factors that are known to alter perceptual biases in vision. The 

first experiment examined whether the man-made bias is influenced by presentation duration 

when ambiguous objects (“hybrids”) are directly fixated at. We found that a shorter presentation 

duration (50 ms) that increased the uncertainty of the stimulus increased the magnitude of the 

man-made bias compared to a longer duration (150 ms), in line with predictions of Bayesian 

perception. Experiment 1 also demonstrated that the man-made bias is replicable when object 

classification is measured with an online experiment, using a new collection of object stimuli on 

a new set of participants. Experiment 2 measured the same perceptual bias by presenting hybrids 

in participants’ peripheral vision. Although we found a significant, albeit small, perceptual bias, 

we did not find any effect of stimulus duration on the man-made bias in the periphery. In 

Experiment 3, participants viewed hybrids at fixation, and we measured the effect of background 

scenes on which hybrids were superimposed on. The superordinate semantic category of the 

background scene (man-made or natural) did not affect the magnitude or the direction of the 



   

 

4 

 

man-made bias, indicating that background scenes did not alter the detectability of semantically 

congruent component images in the hybrids. Overall, we show that the man-made bias is 

resistant to changes in presentation duration, visual field in which objects are viewed and the 

semantic congruency of the spatial context.      
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1. Chapter 1 – Background 

 

1.1. Selectivity to low-level and mid-level features 
 

Our visual system can effortlessly and rapidly process perceptual information rather 

accurately from our visual field, despite the transient and inherently noisy input that it receives. 

Humans are adept at navigating and orienting themselves within any environment, be it a busy 

street in a large city or a thick forest path leading to a waterfall. Therefore, it is of ecological 

importance that we perceive the spatial structure of the environment and the typical objects that 

occur in the environment to navigate and interact within such environments successfully.  

The process of visual perception begins when light that is often reflected off from objects in 

our environment falls onto the retina, where photoreceptors convert the light energy into neural 

signals. This signal is transmitted via the lateral geniculate nucleus (LGN) to the cortical areas in 

the brain that process visual information - starting from simple feature processing in the occipital 

regions of the brain (e.g., striate and extrastriate cortices), to higher-level processing in areas 

such as the temporal and parietal cortices (Deyoe et al., 1996; Ferster & Miller 2000; Kaas & 

Krubitzer, 1991). Electrophysiological studies on cats and primates have shown that each of 

these cortical areas is known to process specific aspects of visual information (Hubel & Wiesel, 

1959, 1968). The Lateral geniculate Nucleus (LGN), striate cortex (V1) and extra-striate cortices 

(e.g., V2) are well-known to selectively encode simple visual features such as contrast, spatial 

frequency and orientation of edges (Hubel & Weisel 1962; Sachs et al., 1971). Apart from 

having neurons highly selective to specific features, in early occipital regions (e.g., V1) we can 

also find mechanisms that integrate feature values (such as the orientations of several edges) to 

produce a coherent percept such as the average orientation of a set of edges (Hubel & Wiesel, 
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1965). The integration of feature values occurs through connections of neurons within various 

levels of the occipital regions as well as inter-cortical connections between these regions (Hess et 

al., 2003). 

The external visual field is mapped onto the retina in a one-to-one fashion. Information from 

specific parts of the visual field always trigger neural signals in specific parts of the retina. This 

organisation, known as ‘retinotopic mapping’, is preserved throughout several stages of the early 

visual processing pipeline, such as in the LGN and V1, so that adjacent parts of the visual field 

are represented in adjacent neurons (or neural populations) within the same region (Engel et al., 

1997; Schneider et al., 2004). Beyond V1, towards the higher-level regions such as the V4 and 

the ventral occipital cortex (VO), this mapping is not as fine-tuned as it is in the striate and 

extrastriate cortices (Brewer et al., 2005; Felleman & Van Essen, 1991). In regions where 

retinotopic mapping is observed, neurons or small neural populations respond to visual signals 

coming from unique spatial locations in the visual field, known as “receptive fields”. So, not 

only are these neurons selective to features, but they also respond selectively to specific spatial 

locations. The receptive field of neurons that receive input from the fovea are the smallest, but as 

the eccentricity (angular distance from the fovea) and the neuron location in the cortical 

hierarchy increases, the receptive field size also increases (neurons in higher levels of the 

hierarchy have a larger receptive field) (Engel et al., 1997; Hubel & Wiesel, 1965). Findings 

regarding the changes in receptive field sizes along the cortical hierarchy largely stem from 

single-cell electrophysiology research done on cats and non-human primates (Hubel & Wiesel, 

1961,1968). However, Smith et al. (2001) further supported this organisation with receptive field 

sizes estimated from functional Magnetic Resonance Imaging (fMRI) data obtained from the 

human brain. 
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Classically, visual information is thought to be processed by the different cortical areas in a 

feedforward manner, such that early cortical areas like V1 process rudimentary, low-level 

features like the orientation of edges and subsequently, cortical areas higher up in the hierarchy 

process increasingly complex features such as the global shape and semantic categories 

(Felleman & van Essen,1991; Hochstein & Ahissar, 2002). However, feature processing is not 

strictly a feedforward mechanism as input from the higher levels have been found to modulate 

lower-level processing through feedback connections (Hochstein & Ahissar, 2002; Rao & 

Ballard, 1999). Some evidence for this feedback mechanism comes from studies of perceptual 

learning that show that easier learning occurs at higher cortical levels which subsequently 

facilitate learning at lower levels (Hochstein & Ahissar, 2002).  

1.2. Selectivity to high-level features 
 

In order to examine low-level feature selectivity, studies investigating feature selectivity 

often use simplistic and artificial stimuli such as Gabor patches and dot diagrams. However, the 

stimuli we experience in real life are much more complex and composed of many contours that 

vary in contrast, orientation, and spatial frequency. We perceive structures beyond low-level 

features from these stimuli, such as the shape of an object (i.e., whether it’s a square or a circle). 

We also assign semantic descriptors to these stimuli (e.g., the gender or race of a face, and 

whether an object is animate or inanimate) (Oliva & Torralba, 2001). The cortical areas involved 

in encoding these complex features in humans as well as other primates have been extensively 

studied using functional magnetic resonance imaging (fMRI) over the last few decades. Many 

studies have found multiple cortical regions predominantly implicated in the processing of 

complex features of real-life images. The Fusiform Face Area is one such specialised cortical 

area implicated in selectively processing faces (Kanwisher et al., 1997). Similarly, other 
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specialised brain areas have been discovered, such as the Parahippocampal Place Area that 

selectively encodes scenes, or more specifically layouts of scenes (Epstein & Kanwisher, 1998), 

the lateral occipital cortex that selectively encodes objects such as tools and animals (Grill-

Spector et al., 1998), and even an area in the ventral occipital cortex that responds to selectively 

to buildings (Aguirre et al., 1998). Further, the Lateral Occipital Cortex and the posterior 

fusiform gyrus is implicated in shape recognition and has been found to respond to intact images 

of objects compared to scrambled images (Malach et al., 1995). A recent study found that the 

LOC is also sensitive to the information about interactions between multiple objects (Kim & 

Biederman, 2011).  

1.3.  Objects 
 

At this stage, it is imperative to distinguish between what a “scene” is and what an “object” 

is. Objects can be defined as individual entities that have strict bounding contours (Spelke, 

1990). They are recognisable when seen in isolation and we often directly interact with or act 

upon them, as we navigate in our environment. Scenes contain numerous objects arranged in a 

spatially coherent manner, and often provide a semantically coherent percept of the environment 

around us, within which interaction occurs (Henderson & Hollingsworth, 1999; Oliva & 

Torralba, 2001). For instance, Figure 1.1A shows a collection of objects commonly found in a 

street scene. Figure 1.1B shows an image of an actual street scene, comprising of objects such as 

cars, busses, pedestrians, and buildings. As evident from the two images, a mere collection of 

objects does not make a scene (Biederman, 1972). The particular arrangement of the objects in 

the scene enables us to accurately identify that it is a street scene.  
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FIGURE 1.1 

Example of objects and a scene 

 

       

                        
 
Note. A) A collection of objects that constitute a street scene. B) An image of an actual street 
scene. All images used are obtained under the creative commons license (See Reference for 
image citations). 
 

1.3.1. Models of object perception  
 

Most studies investigating perceptual mechanisms have used 2-dimensional (2D) images 

of objects we encounter, but objects in the real world are almost always 3-dimensional (3D). 

Still, the participants in those studies are able to accurately recognise them. In fact, even in real 

life, the image of 3D objects that fall on our retina is 2D in nature. One of the very puzzling 

questions in the literature of vision science is “How are we able to assign the same semantic 

label to objects regardless of changes in representations (i.e., 3D to 2D), view, size, lighting 

conditions and configuration in space?”. This problem of recognition resistant to variance has 

been fundamental in developing the different models that aim to explain object perception 

(Peissig & Tarr, 2007). Bearing that in mind, the two major types of models of object recognition 

that will be discussed here are the structural-description models and view-based models.  

A) B) 
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The structural-description model of object recognition, which is based on Biederman’s 

(1987) recognition by components model, indicates that complex objects can be broken down 

into component parts made up of basic three-dimensional units such as cones and cylinders, 

known as “Geons”, and information regarding their spatial relations (Marr & Nishihara, 1978, 

Beiderman, 1987). For example, a mug can be thought of as consisting of a one-side open 

cylinder and a curved cylindrical handle attached to the side of it. The relationship between the 

units is important because if that is altered, it could alter the recognition of the object – if the 

curved handle was atop the cylinder, it would be recognised as a bucket rather than a mug. Thus, 

recognition based on this structural description of parts and spatial relations between them 

remains unaffected by most scenarios where the object’s appearance varies (e.g., due to 

viewpoint, lighting conditions). 

 However, some changes, such as turning the mug 90 degrees (causing it to resemble a 

bucket), can affect recognition and result in slower and more inaccurate recognition (Hummel, 

2000; Peissig & Tarr, 2007). It is not always plausible to generate structural descriptions for 

objects especially since the structural descriptions can be altered by different viewpoints, giving 

rise to different descriptions at different instances (Tarr & Pinker, 1989). To resolve this issue, an 

image-based model was developed that posited that objects are recognised based on multiple 

stored ‘views’ in memory (Tarr & Pinker, 1989). This model theorizes that object recognition is 

based on matching objects to image templates of numerous possible views stored in our memory. 

This could explain why recognition of relatively novel objects at different angles may be slow, 

due to the unavailability of a reference template for that novel view. 

1.4.  Scenes (semantic categories and global properties) 
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It is known that a scene comprises of numerous objects. However, the arrangement of the 

objects within a scene provides information regarding the scene and assist in recognition of the 

scene itself and objects within it. Oliva and Torralba (2006) posited that a scene’s coarse spatial 

properties also known as its global image features can estimate the structural and functional 

properties of the scene and enable the recognition of the scene’s gist. Local features of an object 

include the colour or orientation of its edges, whereas global features consist of an averaged, or 

summarised representation of many such local features and/or feature values (Oliva & Torralba, 

2006). For instance, in a forest scene image, the local feature would include edges in a range of 

different orientations, the global feature would comprise of a summary of the distribution of all 

the orientation values, resulting in a predominantly cardinal global orientation configuration 

(Coppola et al., 1998; Oliva & Torralba, 2006). Furthermore, Oliva and Torralba (2001) also 

postulated a few perceptual dimensions by which the spatial properties of scenes can be 

described and categorised semantically. These dimensions include the degree of naturalness, 

openness, roughness, expansion, and ruggedness. One dimension used to describe a scene, and is 

most pertinent to this paper, is the degree of naturalness. The degree of naturalness creates a 

distinction between man-made (i.e., carpentered) and natural scenes (i.e., with very minimal 

human-built structures in it, and mostly naturally occurring objects) based on the prevalence of 

cardinal (vertical and horizontal) orientations and the distribution of spatial frequencies. For 

instance, although both types of scenes generally have a prevalence of cardinal orientations, this 

dominance is more pronounced in man-made as opposed to natural scenes (Coppola et al., 1998).   

Oliva and Torralba (2001) also categorise scenes based on the level of description of the 

environment. Subordinate level of descriptions of scenes involves an analysis and recognition of 

the local structures and objects within a scene (e.g., trees in a forest). Basic level categorisation is 
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comparatively more abstract than the subordinate level and involves assigning categorical labels 

to scenes whose objects often have similar shapes and functions (e.g a forest or street). Lastly, 

the superordinate level of categorisation is the most abstract in terms of description, and scenes 

within a superordinate category has high variability in terms of the objects that occur in them 

(e.g. cities and natural landscapes or indoor and outdoor environments) (Oliva & Torralba, 

2001). In this thesis, we will be distinguishing the scenes used at the superordinate level, i.e. as 

natural and man-made environments.  

1.4.1. Models of scene perception  
 

One of the earliest theories posited to explain the process of scene perception is the scene 

schema model (Biederman, 1981; Friedman, 1979; Henderson, 1992). Biederman (1981) likened 

scene perception to auditory comprehension of sentences. By this comparison, words are 

analogous to objects, and the sentence represents a scene. In order to understand the meaning of 

a sentence, the words and their relationship with other words in the sentence matters. Similarly, 

Biederman (1981) posited that objects within a given scene and its spatial relationship with other 

objects activate schemas (a memory representation of a prototypical scene) that facilitate the 

recognition of the overall scene being perceived. For example, in order to identify a park scene, 

few objects that occur in a prototypical scene of a park such as benches and trees must be present 

to access the schema of a park. The activation of the park schema is said to further facilitate 

recognition of other objects within the scene. Subsequently, violations of the semantic and 

spatial relations between objects can alter the activation of schemas. Biederman (1981) 

postulated a list of violations that govern the detection of objects within scenes. To illustrate one 

such violation, if a fire hydrant is atop a mailbox, this violates the positional relationship 

between the two objects, although they are both objects likely to occur in a street scene. 
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Biederman et al. (1982) provided empirical evidence that these violations can impair 

performance of object recognition within scenes. They presented scenes that contained target 

objects that violated semantic and spatial relationships (such as the position and probability of an 

object to occur in a given scene) and also other cued objects that did not have any violations. 

They found that errors in detecting other target objects that violated expectations of semantic and 

spatial relationships was hindered, as evident from increases error rates and response times. 

However, detection of other cued objects was not hindered. The mean error in detecting the 

object and reaction time of detection increased along with the number of violations. Biederman 

et al. (1982) theorised that the consistency of objects with scenes and their spatial relationships 

aid in activating schemas of scenes, and this subsequently facilitates the detection of a scene’s 

constituent objects.  

Although the scene schema theory has helped question and define the parameters of what 

constitutes a coherent scene instead of a random collection of objects and provides a plausible 

explanation of object detection within a scene, Henderson (1992) argued that since there are 

many ways in which objects in a scene can exist, this would cause difficulty gauging the 

information of the ‘normally’ occurring probability and position of objects to activate a schema. 

Therefore, research gravitates towards a model that suggests that the gist of the scenes are 

encoded even before the objects in the scene are consciously perceived (Rousselet et al., 2003; 

Schyns & Oliva, 1994). 

A scene’s gist provides information of the scene’s superordinate category (e.g., man-

made or natural). The gist can be perceived by encoding the coarse spatial layout of a scene 

(carried by low-spatial frequency information) (Schyns & Oliva, 1994) or by encoding a 

summary of low-level features (Rousselet et al., 2003; VanRullen & Thorpe, 2001), without 
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necessarily having to identify individual objects in the scene. Here, the spatial characteristics of a 

scene enables the activation of the scene schema, rather than the objects within it (Schyns & 

Oliva, 1994). However, this does not imply that low spatial frequency data is always processed 

first, and that high spatial frequency data is always processed later (Ahissar & Hochstein, 1997; 

Hochstein & Ahissar, 2002).   

Rapid serial visual perception tasks (RSVPs) have widely supported the view that gist 

perception occurs rapidly. Such tasks involve flashing a series of scenes for extremely short 

durations and measuring viewers’ accuracy in categorising these scenes (Crouzet & Serre, 2011; 

Joubert et al., 2008; Rousselet et al., 2003). Joubert et al. (2007) showed that participants could 

successfully categorise scenes that were presented for as short as 26ms into superordinate 

categories, i.e., as natural and man-made. Greene and Oliva (2009) presented images of natural 

landscapes, and participants had to categorise the scenes according to their basic categories (e.g., 

as a desert, lake, mountain, ocean) and their global attributes regarding the spatial and functional 

properties of the scene (e.g., naturalness, openness, transience, depth, navigability). They found 

that participants correctly categorised the images when presented for remarkably short durations 

of 19ms for global properties and 30ms for basic properties.  

1.5. Effect of prior knowledge on perceiving low-level / mid-level features  
 

What we ultimately perceive is not simply a product of the encoded stimuli but also our 

conscious interpretation of the inputs we receive (Helmholtz, 1925). The visual input that we 

receive from our environment is inherently ambiguous (Kersten et al., 2004). This ambiguity 

arises when there are multiple possible scenes or objects that can be perceived given the same 

sensory input, or when different sensory inputs result in the same percept, forcing the visual 

system to make guesses (intelligently) about the likeliest possible occurrence (Mamassian et al., 
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2002). Optical illusions allow us to observe this ambiguity more explicitly. For example, the 

famous duck-rabbit illusion where we are able to perceive the drawing as a duck when viewed 

from one angle and a rabbit when viewed from another (Jastrow, 1899). Helmholtz (1925) 

posited that perception could be thought of as an unconscious inference that requires implicit 

knowledge of the environment to infer the properties of the objects and resolve perceptual 

ambiguity. Therefore, perception is widely modelled as a probabilistic inference using the 

Bayesian framework (Kersten et al., 2004; Mamassian et al., 2002). The Bayesian framework 

describes the optimal way of combining sensory information with existing knowledge and 

provides a reliable framework for understanding how we resolve perceptual ambiguity. This 

framework relies on two main components: 1) a prior distribution that represents the 

preferences/expectations we hold for some representations of an object or visual features and the 

contextual information presented along with the sensory input, and 2) a likelihood function that 

accounts for the sensory responses, i.e. how likely we are to detect and perceive the input 

(Mamassian et al., 2002). By combining the priors and the likelihood, the Bayes theorem 

provides a posterior probability distribution enabling the selection and inference of the most 

probable stimulus. The standard deviation of the prior probability distribution dictates the 

magnitude of dependency on the sensory information and the prior. When the standard deviation 

is lower-indicating a strong preference for a particular representation- the reliance on this prior is 

stronger than the sensory information (the likelihood) and it skews the posterior probability 

distribution towards the peak of the prior distribution. When the standard deviation is higher- 

indicating a weaker prior- the reliance on the sensory information increases, shifting the posterior 

probability distribution towards the peak of the likelihood function (Mamassian et al., 2002). 

Although it is rather tricky to experimentally manipulate the standard deviation of a prior 
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directly, we can gauge the dependency of our visual system on priors by altering the amount or 

the quality of sensory input received by our visual system, in other words, changing the 

likelihood function (Stocker & Simoncelli, 2006).  

Priors that seemingly reflect knowledge of the visual environment’s statistical regularities 

has been found to bias perception for a range of visual features. With regards to low-level 

features, Girshick et al. (2011) found that people showed a bias towards perceiving edges of 

near-cardinal orientations as more cardinal (horizontal or vertical) rather than oblique (slant) 

oriented. This bias reflects the implicit knowledge we have of the orientation statistics of the 

environment, which show a prevalence in horizontal and vertically oriented edges compared to 

oblique (slant) edges (Girshick et al., 2011). Similarly, for more complex features such as shape 

perception, it was found that perception tended to bias towards convexity than concavity 

depending on the lighting direction (Stone et al. 2009; Sun & Perona, 1998). They found that 

when the circles presented were illuminated by light coming from the top-left direction, 

participants perceived them as convex. When the light originated from the bottom right, 

participants perceived them as concave circles instead. This illustrates the prior assumption of 

lighting direction that reflects the fact that most light sources, like the sun and artificial lighting, 

are located above us (Mamassian & Goutcher, 2001).  

1.6. Effect of spatial and temporal context on perceiving low-level / mid-level features 
 

On the one hand, prior knowledge refers to the pre-existing information which could be 

implicit and developed due to long term exposure to the environment, such as the preference for 

cardinal orientations (de Valois et al., 1982; Girshick et al., 2011; Li et al., 2003;), or more 

explicit, such as the preferential perception of older and male faces (Watson et al., 2016).  On the 

other hand, “contextual information” can be defined as perceptual inputs that appear 
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simultaneously with (“spatial context”) or immediately preceding (“temporal context”) another 

input that is the target of recognition.   

To quote Schwartz et al. (2007), “No sensory stimulus is an island unto itself; rather, it can 

only properly be interpreted in light of the stimuli that surround it in space and time.” The spatial 

context of an objects refers to the information that surrounds it, such as the layout of the scene, 

other typical objects and their arrangement within a scene (Schwartz et al., 2007). The effect of 

spatial context has been a widely investigated topic within numerous subfields of cognition. A 

well-known study of context effects on memory was conducted by Godden and Baddeley (1975), 

who showed that retrieval of learned words were best when the environmental cues present 

during retrieval were similar to those that were present during encoding, compared to when they 

were dissimilar. Contextual effects are known to occur within and between different sensory 

modalities (e.g., visual, auditory). For example, the McGurk effect is a well-known phenomenon 

that describes how the presence of a visual context alters the perception of sounds (McGurk & 

MacDonald, 1976). McGurk & MacDonald (1976) found that visual stimuli of a person’s lip 

movement that resembled pronouncing a specific syllable impacted the auditory perception of 

another syllable. 

Psychophysicists have explored the effects of context on the perception of low-level features. 

Context effects have been found to affect the perception of orientation, object size and lengths of 

simple stimuli. This has been demonstrated by various optical illusions (for a review see: 

Todorović, 2010). For example, the Müller-Lyer illusion shows that the direction of V-shaped 

flankers on the endpoints of a straight line alters the perceived length of the line such that when 

the two prongs of the ‘V’ are facing outward, the line appears larger than when the prongs face 

inward (like an arrowhead). To quote another example, in the Ebbinghaus illusion, the presence 
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of large or small circles around a target circle affects the perception of the size of the target 

circle. If the flanking circles are small, it causes the target circle to appear larger. In the Zollner 

illusion, parallel lines are perceived to be non-parallel due to the addition of short vertical or 

horizontal lines on the parallel lines. Luminance has also been found to be affected by spatial 

context. For example, two squares of equal luminance presented against darker and lighter 

backgrounds are perceived to have different luminances due to the change in background 

luminance (Gilchrist, 2006).  

As opposed to spatial context, temporal context refers to the information that has been 

available and observed over time. Like the spatial context, the change in information available 

over time can affect the perception of the target stimulus. With regards to the effect of temporal 

context on early visual perception, Gibson and Radner (1937) showed that prolonged exposure to 

a line slightly tilted from vertical subsequently biases the perception of an objectively vertical 

line to appear tilted in the opposite direction. Eagleman et al. (2004) showed that a briefly 

presented flash appears brighter than a nearby patch of light with constant luminance. 

Furthermore, the increase in temporal asynchrony between the onset of the constant luminance 

patch and the brief flash was also found to increase the perceived brightness of the flash, 

indicating that the visual system adapts to the prolonged exposure to a patch of light and alters 

the perception of a new stimulus presented at a later time. 
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2. Chapter 2 - Effect of presentation time in the classification of hybrids 

 

2.1.  Introduction 
 

How perceptual ambiguity is resolved for higher-level features (e.g., semantic categories) 

that we see in different contexts has not been thoroughly investigated. Kersten et al. (2004) posit 

that the resolution of ambiguity within our visual system is Bayesian, where our percept is 

derived from the prior probability and likelihood estimates. Within this framework, when 

features of a visual stimulus become noisy (i.e., when ambiguity increases), the dependency on 

priors increases. Therefore, by manipulating the level of ambiguity of an image, we can gauge 

the extent to which priors play a role in perceiving and classifying images.  

It has been previously established within the literature that animate objects hold an 

advantage over inanimate objects during attentional capture (Delorme et al., 2010; He & Cheung, 

2019; New et al., 2007). For instance, it was found that participants were consistently faster in 

finding animals than man-made objects in visual search tasks (He & Cheung, 2019). Using a 

change detection paradigm, New et al. (2007) measured the time taken and probability of 

detecting the changes in objects (either man-made or natural) when a scene and an alternate 

version of the same scene were presented serially. They found that observers were quicker and 

more likely in detecting changes to animals and other animate objects than inanimate objects in 

scenes. New et al. (2007) explained their findings using the animate monitoring hypothesis. This 

hypothesis states that the category-specific preference to animate over inanimate objects could be 

attributed to the evolutionary and ancestral priorities since animals and other humans were the 

most frequently occurring and most relevant features of the environment and were necessary for 

interactions that facilitate survival.  
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Contradicting the animate monitoring hypothesis, is the expertise hypothesis, which 

states that attentional resources are allocated based on the needs, training, context, and goals that 

develop based on relative ontogenetic importance (New et al., 2007).  According to this 

hypothesis, humans should have developed an attentional preference towards inanimate objects 

such as vehicles and buildings given that the current (and recent past) environment that 

surrounds us contains more man-made objects that we interact with. However, based on their 

findings, New et al. (2007) posit that attentional preference follows the animate monitoring 

hypothesis than the expertise hypothesis. As further support for the animate monitoring 

hypothesis, Calvillo and Hawkins (2016) showed that animate objects still biased attention 

regardless of the threat status of the object. If the animate monitoring hypothesis was based 

largely on the higher perceived threat posed by animals, threatful inanimate objects (such as 

guns) should also be detected as likely as threatful animate objects (such as snakes). However, 

threatful and non-threatful animate objects were found to have a higher detection rate than 

threatful and non-threatful inanimate objects, indicating that animate objects were still more 

likely to be detected regardless of whether the object posed a higher risk of threat or not.  

More recently however, Hussain Ismail et al. (2019) found evidence for a perceptual 

preference for inanimate or man-made objects contrary to the animate monitoring hypothesis. 

They showed participants a series of hybrid images – a complex ambiguous image containing a 

man-made object component (e.g., vehicles) and a naturally occurring object component (e.g., 

animals). They found that observers were more likely to categorize these hybrids as man-made 

images than natural images, eliciting a bias towards man-made objects. Hussain Ismail et al. 

(2019) speculated that this ‘man-made bias’ observed could be caused by the prolonged exposure 

and experience of long-term living in man-made environments.  
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Previous studies have demonstrated that humans have an implicit perceptual preference for 

lines oriented horizontally or vertically (cardinal) over lines oriented at a slant angle (oblique) 

(Girshick et al., 2011). This preference corresponds to the statistical regularities of the 

environment where cardinal edges occur more frequently than oblique edges. Similar biases have 

been found for relatively more complex features such as motion within the visual system, where 

observers tend to underestimate the speed of objects due to a preference for low speeds, resulting 

from prior knowledge that most objects in our environment are not moving or moving at low 

speeds (Stocker & Simoncelli, 2006). At the semantic level of the visual system, gaze direction 

and gender expectations are also shown to be biased (Mareschal et al., 2013; Watson et al., 

2016). For example, a ‘male bias’ was observed where participants were biased towards judging 

androgenous faces as male more often than female and an ‘age bias’ was also observed which 

biased the judgement of age from the faces as being older than their own age (Watson et al., 

2016). Given that valence and social dominance of an individual is crucial for creating first 

impressions of unfamiliar faces (Oosterhof & Todorov, 2008), and the fact that older men in 

societies typically hold socially dominant positions, the ‘male and age bias’ could have 

developed due to frequent representations of older and male faces within the visual system 

(Watson et al., 2016). Hence, the preference to categorise ambiguous images as man-made 

objects falls in line with the expectation of a highly carpentered, urban environment where 

objects that occur most frequently are also manufactured. 

Since perceptual biases have been found for features at various levels within the 

hierarchy of the visual system, low-level feature biases could affect high-level features and 

semantic biases. For instance, adaptation to curved lines caused a bias in perceiving neutral faces 
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as smiling or frowning (Xu et al., 2008). Hussain Ismail et al. (2019) explored the possibility that 

the orientation statistics of the environment could have affected the judgement of hybrid images 

containing a natural and man-made object. It is known that man-made environments more 

frequently feature cardinal edges, observed in buildings, vehicles, and other man-made 

structures. In contrast, natural environments feature similar amounts of cardinal and oblique 

edges, such as in images of trees and mountains. However, they found that the man-made bias 

persisted even after filtering out the dominant cardinal orientations from the man-made 

components in the hybrids, eliminating the possibility that biases to low-level features caused the 

man-made bias.  

In this first study, we set out to replicate the ‘man-made’ bias found by Hussain Ismail et 

al. (2019). Since it was found that the bias was not influenced by the spatial frequency content of 

component images, we predict that the same bias would occur even when hybrids made of 

unfiltered component images are shown to viewers. Since this study will test a fresh group of 

participants with a new set of components images, it will allow us to confirm whether the man-

made bias is indeed a reliably replicable effect. We used a method fairly similar to that used by 

Hussain Ismail et al. (2019) to create hybrids that are ambiguous at the categorical level, with a 

few minor changes to suit the nature of our study (see below). Here, images are created by 

combining images of animals (for the natural component) and vehicles (for the man-made 

component).  

Since this study was conducted during a time where face-to-face participant recruitment 

was not possible due to the COVID-19 pandemic, the method in which we measured the man-

made bias deviates from that used by Hussain Ismail et al. (2019). They measured the bias by 

presenting a range of hybrids that vary in the ratio of visibility between the two (man-made and 
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natural) components of the hybrids. However, when running the experiment online, an accurate 

measure and manipulation of visibility is not possible as images are presented across different 

computer displays that vary in dimensions, resolution, and luminance. Therefore, given that 

Hussain Ismail et al. (2019) already showed that the man-made bias is not affected by differences 

in the visibility of spatial frequency content, we predicted that the bias should still persist even if 

we do not account for differences in low-level visibility between component images. 

Accordingly, we combined unfiltered greyscale component images to create a large set of 

hybrids and measured the proportion of times these hybrids were classified as man-made. If there 

is no bias, the proportion should be close to 50%.   

Further, Hussain Ismail et al. (2019) only used a constant duration of 100 ms for 

presenting the hybrids. Following Bayesian assumptions, we can expect the magnitude of the 

perceptual bias to increase as the hybrid stimulus becomes more uncertain, since the likelihood 

function becomes broader and thus the reliance on prior expectations increase in such cases 

(Mamassian et al., 2002).  However, seemingly anti-Bayesian models of perceptual biases also 

indicate that whether perception is biased towards the prior or away from the prior depends on 

the source of uncertainty about the perceived stimulus, i.e., whether it arises from stimulus noise 

or sensory noise (Wei & Stocker, 2015). Irrespective of the models used in the past to explain 

perceptual biases, it is quite evident that perceptual biases are susceptible to stimulus parameters, 

such as the contrast of the stimulus (e.g., Stocker & Simoncelli, 2006). Following this line of 

research, if the magnitude of the man-made bias would change as a function of the stimulus 

duration (which would inevitably affect the width of likelihood function), it will further 

strengthen the speculation that the man-made arises due to reliance on prior expectations. 

Therefore, in this study, we used two presentation durations, 50 milliseconds (ms) and 150 ms, to 
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investigate the effect of a varied presentation duration on the persistence and magnitude of the 

man-made bias. We assumed that 50 ms would not be too short to recognise the component 

images of the hybrids because past studies have demonstrated that object categorisation can 

occur reliably even at durations shorter than 50 ms (Thorpe et al., 1996; VanRullen & Thorpe, 

2001). 

2.2.  Methods – Experiment 1  
 
Participants 

An a-priori estimate of sample size using the G-Power software (Faul et al., 2007) 

indicated that to obtain a large effect size (Cohen’s d = 0.8, alpha = 0.05, power = 95%), a 

sample size of 19 participants is required for a one-tailed one-sample t-test analysis. We 

estimated the sample size using a large effect size based on the large effect sizes obtained by 

Hussain Ismail et al. (2019). We also aimed to compare the size of the man-made bias between 

the presentation durations of hybrids with a two-tailed paired-sampled t-test. A power analysis 

conducted for this test, with a statistical power of 95% and an alpha value of 0.05, estimated that 

23 participants are required to obtain an effect size of Cohen’s d = 0.8. Accordingly, 23 

participants were recruited and 14 of them were females. Their age ranged between 20 and 25 

years (M = 22.6, SD = 1.46). Through a brief preliminary questionnaire, participants self-

reported having normal or corrected-to-normal vision. Furthermore, they were asked to report all 

the names of the locations (e.g., cities and towns) that they have lived in in the past 10 years of 

their lives to ensure that all our participants have been living in predominantly urban 

environments for at least 10 years. They were given a small monetary reward of 4 Malaysian 

Ringgits for participation. The procedures were approved by University of Nottingham 

Malaysia’s Science and Engineering Research Ethics Committee (SEREC ID: HS280521). 
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Stimuli 

Two-hundred images of man-made objects and 200 images of natural objects were 

collected to create the hybrid stimuli for the experiments. The images were collected from online 

databases such as ImageNet (Deng et al., 2009) and other copyright-free online image databases 

such as Pixabay. The images obtained were man-made (i.e., objects manufactured with human or 

machinery input) and naturally occurring objects (hereafter “natural objects”) that we would 

commonly encounter in outdoor environments. Images from each superordinate category 

(manmade and natural) were further divided into two subcategories according to the visual field 

in which they can be commonly found. Two experimenters (HS and MH) made this allocation 

based on their subjective judgements. For example, an aeroplane (man-made) and a bird (natural) 

were categorized as upper visual field objects as they are commonly found in the upper half of 

the visual field. Similarly, a car (man-made) and a horse (natural) were classified as lower visual 

field objects (Figure 2.1). One of Biederman’s (1981) postulations of relational violations of 

objects within scenes is the violation of positions of objects in scenes. Biederman (1981) showed 

that objects undergoing such violations impaired the detection of other objects within the scene. 

Therefore, to avoid any such confounds within our study, we ensured that only objects from the 

same visual field were combined in the hybrids, depending on where the hybrid is presented, 

e.g., a horse-car hybrid or a plane-bird hybrid. A total of 100 images were collected per visual 

field category and per superordinate category. For the man-made upper visual field category, 

images of passenger planes, helicopters, fighter jet planes, seaplanes and other light aircrafts 

were used. For the man-made lower visual field category, images consisted of bicycles, cars, 

vans, busses, and bikes. For the upper visual field natural category, images of chimpanzees, 
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eagles, hawks, hornbills, vultures, and monkeys were used. For the lower visual field natural 

category, images of rhinoceros, horses, camels, ostriches, and elephants were used (figure 2.1). 

Images were selected such that the target object was not obstructed by any other object present. 

The background of images with such interfering objects was removed using the software GIMP. 

The object images were also cropped to fit within a square that is 300 pixels in width and 300 

pixels in height. 

 

FIGURE 2.1 

Sample stimuli for each category  

 

 

 

 

UPPER VISUAL FIELD, MAN-MADE 

UPPER VISUAL FIELD, NATURAL 

LOWER VISUAL FIELD, MAN-MADE 
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Note. Examples of images used as stimuli for each visual field category (upper and lower) and 

superordinate category (man-made or natural).  

 

Once all the object images were compiled, the images were transformed to grayscale by 

forming a weighted average of the red, green and blue components (0.299𝑅 + 0.587𝐺 + 0.114𝐵; 

Hughes et al., 2014). Next, a validation study was conducted on six participants (2 males); age 

range between 22 & 29 years (M = 24.5, SD = 2.58). This was done to ensure that all the object 

images were unambiguously recognizable as man-made or natural objects when they were 

presented. Each grayscale image was presented for a duration of 150ms at the centre of a 

grayscale screen of dimension 1024 x 768 pixels. The distance between the participant’s eyes 

and the monitor was fixed at 60cm using a headrest. Participants were instructed to press the ‘m’ 

if they recognise the object as a man-made object and ‘z’ if it is a natural object. The order of the 

images presented was random. The validation study yielded an average categorization accuracy 

of 93.75% (SD = 4.22) for man-made objects, 92.83% (SD= 6.93) for natural objects and an 

overall categorisation accuracy of 92.76% (SD = 5.77). Accordingly, we decided to use the 

compiled images as stimuli to create hybrids.  

 

LOWER VISUAL FIELD, NATURAL 
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All hybrids were created on MATLAB (Version R2020b). The image pairs consisting of 

one natural and one man-made object image were randomly selected from the image sets 

according to the visual field category. Henceforth, the man-made and natural images that make 

up the hybrid image will be termed component images. Pixel values (between 0 and 255) of all 

component images were altered to have fixed root-mean square (RMS) contrast. For naturalistic 

images, contrast sensitivity in humans is found to be best predicted by RMS contrast compared 

to its Michelson Contrast (Bex & Makous, 2002). Equating component images for RMS contrast 

only assured that the relative contrast sensitivity between the two component images will be 

similar. However, it must be noted that, since the hybrids are going to be shown in different 

computers, their dimensions in pixels will be scaled, and it may alter the RMS contrast of the 

hybrids as a whole. That aside, a total of 300 unique hybrid images were created for each 

participant. Each hybrid was created such that no two hybrids contained the same image from 

each superordinate image category (Figure 2.2). The 300 images were split to have 150 images 

for each presentation time – 50 ms and 150 ms. The 150 images within each presentation time 

were further divided to have an equal number of hybrids per visual field (75 each).  
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FIGURE 2.2 

Sample hybrid stimuli  

 

         

 

Note. Examples of hybrid image created. A) shows a lower-visual field hybrid where the man-

made and natural components are of objects typically found in the lower visual field. B) shows 

an upper visual field hybrid.  

 

A mask stimulus that is 300 by 300 pixels in dimension was created for each of the 300 

unique hybrid images by phase-scrambling the hybrid image itself. To do so, each hybrid image 

was Fourier transformed to obtain its phase spectrum, to which we added an array of uniformly 

distributed random values between 0 and 1. The altered phase spectrum was combined with the 

hybrid’s original amplitude spectrum and reverse Fourier transformed to create the mask 

stimulus. Masks were used to cease the processing of the hybrid stimuli after the stipulated 

presentation duration and to suppress image aftereffects that could impact performance in 

subsequent trials.  

The screen background was set to be at mid-level grey. The hybrid images and the masks 

were scaled to have a square width of 6cm, irrespective of the computer displays used by the 

A) B) 
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participants. This made sure that, when the participant is seated at a distance of 60 cm from the 

screen, a square with a width of 6 cm subtends 5.7° of visual angle.  

Although the images were created externally on MATLAB for each participant, we used 

Psychopy (v2021.1.4) (Peirce et al., 2019) to create the experimental routine. The experimental 

routine and the uniquely generated stimuli were uploaded to Pavlovia, which is a platform that 

allows participants to use their web browsers and run the experiment online. 

Procedure 

After the observers read and signed the consent form given online, they were sent a 

hyperlink to the experiment hosted on Pavlovia. To ensure that no more than one participant used 

the uniquely generated set of stimuli, they were scheduled to a time slot within which they will 

be able to access the study using the link while the experimenter was available online to 

troubleshoot any errors that the participant might encounter. Participants were told to sit 

comfortably with their laptop’s or desktop monitor’s screen directly ahead of them, 

approximately 60 cm away from their eyes.  

The experiment started with a screen size calibration task where they were required to 

adjust the size of an image of a credit card on the screen to match that of their standard physical 

credit or debit card placed on the screen. Participants used arrow keys in the keyboard to adjust 

the virtual image. To ensure that the calibration was close to perfect, participants were asked to 

measure a white square shown on their screen and ensure that it was 10 cm in width and height. 

If their measurements were beyond 10 ± 0.2 cm, they were instructed to alert the experimenter 

before restarting the calibration task. Once the calibration task was successfully completed, the 

participants were provided with the instructions for the experimental task. They were told that a 

series of images will be briefly presented on their screen and that for each image they should 
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press the “m” key if the man-made object in it was the most visible to them and the “z” key if the 

natural object was the most visible. Each experimental trial started with a white fixation cross 

(size = 0.95°) that was presented at the centre of the screen for 100ms. Following this, a unique 

hybrid image was presented for either 50 or 150ms at the centre of the screen. Immediately after 

the offset of the hybrid, its respective mask image was presented for twice the duration of the 

hybrid (100 or 300ms). The subsequent trial commenced only after a key response was provided 

(Figure 2.3). After 150 trials, halfway through the experiment, they were given a short 5-minutes 

break. Once the experiment ended, they informed the experimenter to ensure that their data was 

saved. The experiment took around 30 minutes to complete.  

 

FIGURE 2.3 

Timeline of progression of a trial in experiment 1 

  

 

 

 

Fixation (100ms) 

Hybrid (50/150ms) 

Mask(100/300ms) 

Key response 
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2.3. Results 
 

Participants’ data were retrieved from Pavlovia’s repository. For each participant, the 

percentage of man-made responses was obtained by dividing the total number of ‘man-made’ 

responses (trials in which participants pressed the ‘m’ key) by the total number of trials per 

presentation duration. This was done separately for each presentation duration.  

A one-tailed one-sample t-test was conducted for each presentation duration to check if a 

man-made bias occurred. The test value was set at 50% with the rationale that if the man-made 

bias is observed, participants should have classified the hybrid as man-made object on more than 

50% of the trials. When the hybrids were presented for 50 ms (M = 65.27, SD = 11.89) a 

significant man-made bias was observed t(22) = 6.16, p < .001 (Cohen’s d = 1.284) . Similarly, 

for the 150 ms presentation duration (M = 56.98, SD = 14.22) there was a significant man-made 

bias too, t(22) = 2.35, p = .014 (Cohen’s d = 0.490).  

 Next, a two-tailed paired-samples t-test was conducted to compare the average 

percentage of man-made responses between the two presentation durations. The average 

percentage of man-made responses at 50 ms (M = 65.27, SD = 11.89) was significantly higher 

than that of 150ms (M = 56.98, SD = 14.22), t(22) = 4.61, p < .001 (Cohen’s d = 0.955). This 

indicates that the man-made bias is larger when the presentation duration is short (see figure 2.4). 
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FIGURE 2.4 

Percentage of man-made responses across stimulus duration 

 

 

Note. The graph shows the mean percentage of man-made responses across all participants for 

each presentation duration (50 and 150ms). Error bars indicate standard error of mean. The 

dashed line represents the 50% test value used, indicating that for both duration conditions, 

participants made more man-made responses than natural responses.  

2.4. Discussion 
 

Our results support our hypothesis that when observers are presented with ambiguous 

hybrid images, classification is largely biased towards its man-made objects components instead 

of its natural object components. This finding successfully replicates the man-made bias found 

by Hussain Ismail et al. (2019) and indicates that the bias persists despite using a different 

experimental design and running the experiment online with a totally new set of object images 
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and a new set of participants. Given that all our participants have spent a significant amount of 

time living in heavily carpentered urban landscapes, the bias corroborates the possible 

expectation to see man-made objects within their environment more frequently than natural 

objects. This finding also goes against the “animate monitoring hypothesis” posited by New et al. 

(2007), who claim that humans have an ancestral bias that causes a shift of attention towards 

perceiving animals and other humans than inanimate objects. If this ancestral and evolutionary 

bias caused the animal component of the hybrid to be preferentially attended towards, 

participants would have reported classifying the hybrid to the natural category more frequently 

than the man-made category. One could argue that the animal components in the hybrids were 

not detectable at the short duration in which we presented our hybrids. However, this argument 

would not hold true because we have strong evidence from the literature showing us that even 

when images are presented for less than 50 ms, people are able to reliably detect the presence of 

animals in images (Delorme et al., 2010; Thorpe et al., 1996). 

A key finding of Experiment 1 is that when hybrids are viewed in our central visual field, 

we find an effect of the hybrid presentation duration on the magnitude of the man-made bias. 

More specifically, the magnitude of the bias was significantly larger at the 50 ms duration 

compared to the 150 ms duration. It is quite obvious that at the 50 ms duration, our hybrid 

stimulus has relatively high uncertainty. Therefore, this finding is in line with previous literature 

showing that as the uncertainty of the stimulus increases, the magnitude of perceptual biases 

increases. This effect has not only been demonstrated for perceptual biases associated with 

fundamental visual features such as orientation (Girshick et al., 2011) and speed of motion 

(Stocker and Simoncelli, 2006), but also for higher-level, meaningful features of everyday 

objects such as gaze direction (Mareschal et al., 2013) and gender and age (Watson et al., 2016) 



   

 

37 

 

of faces. Extending these finding, we report novel results showing that stimulus uncertainty also 

increases the magnitude of a perceptual bias demonstrated in classifying the superordinate 

category of objects. Collectively, these findings favour the Bayesian assumption that as stimulus 

uncertainty increase, likelihood functions for the stimulus feature would widen and we would 

rely more on prior expectations. With regards to our study, as stimulus duration decreased, this 

would have increased the uncertainty associated with the hybrid, which may have then caused 

our participants to rely more on their prior expectations to see man-made objects more often in 

their environment.      

 Although our findings are clear in suggesting an increase in the magnitude of the bias 

with increasing stimulus uncertainty, we cannot be certain about the decisional processes that 

contribute to the man-made bias or the change in its magnitude with shorter stimulus durations. 

While conventional Bayesian models would consider stimulus uncertainties arising from sensory 

and stimulus noise alike, recent models, especially ones that aim to explain perceptual biases 

caused by prior expectations developed with long-term exposure to the environment, distinguish 

between the different sources of uncertainty. For instance, Wei and Stocker (2015) show that 

when uncertainty is caused by stimulus noise (e.g., by degradation), perceptions is biased 

towards the direction of the priors, but when uncertainty arises from sensory noise (e.g., short 

presentation durations) perception is biased away from the priors. However, this prediction 

contradicts with our findings, since increase in sensory noise shifted our bias further towards the 

prior (if there is one). Notably though, while Wei and Stocker (2015) modelled perceptual biases 

with a single unimodal likelihood function, we could also argue that the likelihood function for 

our hybrid stimuli is bimodal -  for instance, if we assume that man-made and natural categories 

are two ends of a higher-level feature representing the superordinate category of objects, for any 
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given hybrid stimulus, we could have one peak near the man-made component and one near the 

natural component, and this leads to a bimodal likelihood function associated with one single 

hybrid stimulus. In such a case, how decisional processes would operate within the Bayesian 

framework is unclear and future studies would need to address this computational issue.       
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3. Chapter 3 – Effect of visual field on the classification of hybrids  

 

3.1. Introduction  
 

In Experiment 1, we confirmed the presence of a man-made bias when hybrids were 

shown in the centre of our visual field (foveal and parafoveal regions), when participants were 

directly fixating at the hybrids. In this experiment, we set out to investigate if the man-made bias 

is persistent in the peripheral visual field as well. One of the roles of peripheral vision is to 

monitor and detect changes within the environment while the central vision is more task focused 

(Li et al., 2021). Therefore, it is of ecological interest that we understand how objects that appear 

in the peripheral visual field is detected and interpreted, and whether prolonged exposure to 

specific environmental settings can affect the perception of objects in the periphery.  

Peripheral vision processes visual inputs that we receive outside the foveal and 

parafoveal regions of the retina. Foveal (central) vision subtends approximately 1.7 degrees of 

visual angle within our visual field (Rosenholtz, 2016). It is known that the fovea is densely 

packed with cone cells which is sensitive to high spatial frequency information and affords 

colour vision. On the other hand, peripheral vision, which covers the rest of the visual field, is 

said to contain mostly rod cells that have a reduced sensitivity to colour and high-spatial 

frequency information and, therefore, provide a relatively impoverished visual experience 

(Rosenholtz, 2016). Poor visual acuity in the periphery is often attributed to the reduced density 

of photoreceptors and retinal ganglion cells in the peripheral vision (Strasburger et al., 2011). 

Additionally, the cortical area allocated to process 1 degree of visual field within the fovea is 

much larger compared to the cortical area allocated to process information received from 1 

degree of visual field in the periphery (Horton & Hoyt, 1991). However, even if we compensate 
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for poor resolution in the periphery by enlarging stimuli, recognising shape and form from 

objects in the periphery is difficult, suggesting that the source of difficulty cannot be limited to 

poor resolution alone (see Strasburger et al., 2011 for a review). 

Due to a number of reasons, including but not limited to reduced spatial resolution in 

peripheral vision, object recognition performance within the peripheral visual field is thought to 

be subpar compared to recognition performance in central vision. Investigations of this 

phenomenon have been done using simple artificial stimuli, such as Gabor patches (Jüttner & 

Rentschler, 2000; Strasburger et al. 1991) as well as with more naturalistic stimuli such as line 

drawings and photographs of objects we encounter in real life (Biederman, 1972; Henderson et 

al., 1989; Thorpe et al., 2001). For example, Thorpe et al. (2001) used images of natural 

photographs presented at various eccentricities from fixation for an extremely short duration 

(28ms) to investigate how naturalistic objects are recognised in the peripheral visual field. Using 

a Go-No-Go task, participants were asked to respond if they saw an animal within the presented 

image of a natural environment. They found that the participants could successfully categorize 

objects presented in the peripheral visual field at the superordinate level, although their accuracy 

decreases and reaction time increased, with increasing eccentricity. Although object recognition 

performance decreased roughly linearly as a function of eccentricity, even when objects are 

presented at an eccentricity of 70.5°, people can reliably classify them above chance (Thorpe et 

al., 2001), demonstrating that object recognition is poor but not absent in the periphery.       

Although past studies have demonstrated that classification of unambiguous objects is 

reliable in the periphery, how we classify ambiguous objects in the periphery is not clear. More 

specifically, we do not know if the man-made bias we (Experiment 1) and Hussain Ismail et al. 

(2019) observed in the fovea would persist when ambiguous hybrid stimuli appear in our 
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periphery. As far as perceptual biases driven by prior expectations are concerned, although there 

is evidence that we can observe these biases in the periphery (Girshick et al., 2011; Stocker and 

Simoncelli, 2006), there are also studies showing that biases for certain perceptual judgements 

driven by prior knowledge may be weaker or even absent in the periphery compared to the fovea. 

For example, Zhaoping (2017) demonstrated that when participants judge the form of ambiguous 

dichoptic signals, their judgements were biased by the expectation that signals to both eyes 

correlate. Although this bias was quite significant in the fovea, it was weak, or rather absent in 

the periphery. Zhaoping’s (2017) findings verified that the bias is caused by top-down feedback, 

and that weak biases in the periphery are a result of week top-down feedback in the periphery. 

Not only do such findings imply that the functional role of central and peripheral vision is 

different, but they also give us a good reason to examine whether the man-made bias, that is 

seemingly driven by our expectations, would persist in the periphery too.     

Accordingly, we presented our participants hybrid images in 6 peripheral locations 

equidistant from fixation. We randomly presented hybrids at one of 6 locations to ensure that 

participants do not direct their attention to a predictable location prior to seeing the hybrid, and 

therefore ruling out any effects of pre-cued attention on hybrid classification. We also presented 

hybrids at two different durations (50 ms and 150 ms) because we found stimulus duration to 

influence the magnitude of the bias in Experiment 1 where hybrids were directly fixated at. Both 

durations at which we presented hybrids were sufficiently shorter to prevent making any eye 

movements to the hybrids. However, there is still some possibility that participants could make 

an eye movement to one of the six hybrid locations before the hybrids appear. In that case, if the 

spatial position they fixate by anticipation overlaps with the hybrid’s position, any man-made 

biases in judgements could be falsely interpreted as a bias that occur in the periphery, when in 
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fact hybrids were viewed in the central visual field. To minimise this possibility, we gave 

participants a secondary task that required paying attention to the colour of a fixation cross that 

appeared immediately before the hybrid, thus preventing eye movements before hybrid onset.  

Lastly, everyday objects are often best detected when they appear in their typical visual field 

(e.g., an airplane in the upper visual field, a chair on the lower visual field; see Kaiser et al., 2019 

for a review). To ensure that any one component image in a hybrid does not have an advantage 

in being detected over the other component due to mismatches in typical visual field, we also 

made sure that only component images typical of the same and specific visual field (upper or 

lower) are paired together to create hybrids.     

3.2. Methods – Experiment 2 
 
Participants 

Following the same sample size estimation in Experiment 1, 23 participants were 

recruited for Experiment 2 as well. Twenty out of the 23 participants from Experiment 1 agreed 

to take part in this experiment too. The remaining three were new participants. There were 15 

females, and the age range was between 20 and 27 years (M = 22.7, SD= 1.75). The new 

participants were also given the questionnaire to report the locations that they have lived for the 

past 10 years to ensure that all our participants were living in urban environments. All 

participants had normal or corrected-to-normal vision and received a compensation of 4 

Malaysian Ringgit for participation. The study was approved by the University of Nottingham 

Malaysia’s Science and Engineering Research Ethics Committee (SEREC ID: HS280521).  

Stimuli and Setup  

Images used for this experiment were taken from the database that was created during 

Experiment 1. To investigate if the man-made bias was present when hybrids were presented in 
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the periphery, 6 locations equidistant from the centre of fixation were selected (Figure 3.1). The 

distance from the centre of the fixation to the centre of the hybrid stimuli was approximately 

5.58°.  Three of the peripheral locations belonged to the upper visual field (i.e., above the 

horizontal meridian where the fixation point was placed) and the three others belonged to the 

lower visual field (i.e., below the horizontal meridian where the fixation pint was placed). The 

hybrids presented at the upper and lower visual field consisted of component images from image 

sets prepared for the upper and the lower visual field, respectively. Akin to Experiment 1, 300 

hybrids were presented in total with the same division of hybrids per presentation duration (50ms 

and 150ms) and visual field category. In addition, 75 images presented at each visual field 

category were equally divided among the three locations, which resulted in 25 hybrids per 

location. The contrasts of the component images were equated the same way using MATLAB as 

described in chapter 2 and the experiment was setup on PsychoPy and was accessible online 

through Pavlovia. Each participant was provided with a link to access the experiment on their 

own computer. Participants were instructed to sit comfortably with the laptop/desktop screen 

placed straight ahead of them, preferably on a table at a distance of 60 cm between their eye and 

the screen.  
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FIGURE 3.1 

Peripheral stimuli positions 

 

 

 

Note. The 6 possible spatial locations equidistant from fixation at which the hybrid images were 

presented. The hybrids presented above the fixation were upper visual field hybrids and those 

presented below the fixation were lower visual field hybrids. 

 

Procedure 

The calibration task from experiment 1 was also used to ensure that the object images 

were presented at a constant size regardless of the participant’s device’s screen size. This 

procedure also ensured that distance to peripheral hybrid locations from fixation were constant 

across participants. Each one of the 300 experimental trials started with a coloured fixation cross 



   

 

45 

 

(“cross 1”; size = 0.95°) that was presented at the centre of the screen for 1 second, and this was 

immediately replaced by a white fixation cross (“cross 2”) that was displayed until the 

participant pressed one of the designated keys. To ensure that the participants’ gaze was fixated 

at the centre of the screen, we randomly varied the colour of cross 1 to be either red or blue 

across the various experimental trials. The hybrids were presented after a short delay of 300 ms 

from the offset of cross 2. This ensured that paying attention to the colour of the fixation cross 

did not make participants miss the hybrid. After the hybrid was shown for 50 ms or 150 ms 

(depending on the experimental condition), participants had to indicate which component of the 

hybrid was the most visible to them. cross 1 was blue, they pressed “m” for a “man-made” 

response and “z” for a “natural” response. If cross 1 was red, they pressed “p” for a “man-made” 

response and “q” for a “natural” response. Cross 2 remained on the screen when participants 

were making a response. Once a response was made, the next trial started after a brief delay of 

300ms (Figure 3.2).   

Participants were given 20 practice trials to familiarize themselves with the different key 

responses they will use in the main task. The images used in the practice trials were never 

repeated during the main trials. Similar to experiment 1, participants were given a break at the 

halfway point during the experimental trials. 
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FIGURE 3.2 

Timeline of a trial in experiment 2 

 

                                                                                                                                              

3.3. Results 
 

Each response given by the participants was only considered valid if they pressed one of 

the keys designated for the colour of the fixation cross (e.g., only “m” or “z” is a valid response 

for a trial starting with the blue fixation). The total number of valid responses out of the total of 

300 trials was calculated for each participant (i.e., both durations combined). The average 

percentage of valid responses across participants was 92.24% (SD = 5.74), with a minimum of 

74.67% and a maximum of 98%. These values indicate that participants performed well in the 

secondary task that was used to minimise eye movements away from fixation. 

Including only the valid responses, the total number of responses for each presentation 

time was calculated. Out of that, the total number of man-made responses was calculated. The 

percentage of man-made responses for each presentation duration was then calculated as the total 

Cross 1 (1000ms) 

Hybrid (50/150ms) 

Mask(100/300ms
) Key response 

Cross 2 (300ms) 
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number of man-made responses divided by the total number of valid responses. A one-tailed 

one-sample t-test conducted for each presentation time indicated that participants classified the 

hybrid as man-made more frequently at 50ms (M = 54.79, SD = 11.11), t(22) = 2.06, p = 0.025 

(Cohen’s d = 0.431) and at 150ms (M = 53.67, SD = 9.28), t(22) = 1.89, p = 0.035 (Cohen’s d = 

0.395) . A paired samples t-test comparing the percentage of man-made responses between the 

two presentation durations showed that categorization performance did not differ significantly 

between the two durations, t(22) = 0.46, p = 0.646 (Cohen’s d = 0.097) (Figure 3.3). 

 The analysis was repeated without removing the invalid responses from each 

participant’s data and a one-tailed one-sample t-test indicated that the hybrids were classified 

more frequently as man-made at 50ms (M = 55.04, SD = 11.39), t(22) = 2.13, p = 0.023 

(Cohen’s d = 0.442) and at 150ms (M = 53.36, SD = 9.40), t(22) = 1.72, p = 0.050 (Cohen’s d =  

0.357). A paired samples t-test indicated that the percentage of man-made responses did not 

differ significantly between the two presentation durations t(22) = 0.70, p = 0.488 (Cohen’s d = 

0.147).  
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FIGURE 3.3 

Percentage man-made responses per stimulus duration  

 

Note.  Mean percentage of man-made responses across all participants for each presentation 

duration when the hybrids were presented in the peripheral visual field. Error bars indicate the 

standard error of mean.   

3.4. Discussion  
 

We found that for both presentation durations, participants showed a bias towards 

classifying the hybrids as man-made. However, the means and the effect sizes indicate that the 

man-made biases observed in Experiment 2 are relatively smaller compared to those observed in 

Experiment 1. One could argue that perhaps some proportion of the man-made bias in 

Experiment 2 may have been lost by excluding data from trials in which an invalid key was 
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pressed. However, the same analyses performed after including invalid responses produced very 

similar results. Therefore, it is clear that the overall magnitude of the man-made bias is smaller in 

the periphery.  

According to the animate monitoring hypothesis, attention is preferentially captured by 

animate than inanimate objects (New et al., 2007). It is possible that preferential attention to 

animate objects is more pronounced in the periphery (especially when covert attention is 

employed), large enough to override the man-made bias to some extent. At this point, this is 

merely a speculation. Moreover, one could easily attribute the reduced bias to a general difficulty 

in recognising the individual components as well as the hybrid as a whole in the periphery. As 

discussed in the introduction section of this chapter, object categorization performance tends to 

be poorer in the periphery compared to the centre (Rosenholtz, 2016; Henderson, 1989; Thorpe, 

2001). There are a number of reasons to expect recognition to be difficult in the periphery, such 

as poor resolution (Strasburger et al. 2011). If recognition is indeed difficult, participants would 

be forced to guess in most cases, and the man-made bias could have been the result of a few 

trials where component images were relatively more visible. One way to address this in the 

future is to account for limitations in the periphery (e.g., poor spatial resolution) when presenting 

hybrids (e.g., by scaling them to account for poor resolution). This would help us narrow down 

the source of the reduced bias in the periphery.  

One other explanation for the reduced bias is that the task demands (of having to switch 

between response key sets) might have increased the difficulty of classifying the hybrid. Around 

10 participants also verbally reported after completing the experiment that they perceived the 

task to be strenuous, even though the percentage of valid responses they made were very high. 

Therefore, it is possible that our participants paid too much attention to the secondary task, to the 
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extent that it impairs their ability to covertly attend to the hybrid, which would then result in 

guesses for most trials. Last possible interpretation is that the effect we observe is independent of 

task difficulty and limitations of peripheral vision. As Zhaoping (2017) demonstrated, the effect 

of prior expectations on sensory interpretations may be weaker in the periphery, thus leading to a 

generally smaller bias.  

Another finding of Experiment 2 is that there was no difference in the magnitude of the 

bias between the two presentation durations, unlike Experiment 1. One potential explanation is 

that biases in both durations were not large enough to capture subtle differences in biases 

between durations, owing to the general difficulties in performing the task. An alternative 

explanation is that task difficulty, caused by limitations in peripheral vision or competition from 

the secondary task, may have influenced the bias in the 50 ms presentation duration than in the 

150 ms duration. It is possible that these additional effects reduced a larger bias that would have 

otherwise been observed with a short presentation duration, consequently resulting in similar 

magnitudes of biases between the two durations.  
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4. Chapter 4 – Effect of background context in classifying hybrids 

 

4.1.  Introduction 
 

Objects that we see in our everyday environments do not often appear in isolation. We 

always see them as an item in a larger meaningful scene. How the scene in which an object is 

embedded affects our ability to recognise the object itself is a topic that has been highly 

investigated in the literature. These effects are conventionally referred to as contextual effects on 

object recognition. One of the factors that cause contextual effects is the semantic congruency 

between the object and the background scene. An example of this semantic congruency would be 

a football player (object) in a football field (scene) or a priest in a church. If a priest appears in a 

football field, or if a footballer appears in a church, they would be example where the object and 

its scene are semantically incongruent.  

Semantic congruency (compared to incongruency) is known to facilitate object 

recognition by increasing the speed of recognition as well as increasing the accuracy 

(Beiderman, 1981; Davenport & Potter 2004; Freidman, 1979; Munekke, 2013). It is important 

to note that the effect of a semantically congruent scene on object recognition is not caused by 

low-level feature similarity or the overlap of shapes between the object and the scene, and it is 

not dependent on whether we pay focused attention to the object or the background scene 

(Munneke et al. 2013). This contextual effect can be explained by the gist processing model and 

scene schema models. The former indicates that a scene’s low-resolution gist is gauged prior to 

identifying objects within the scene (Biederman, 1981). The low-resolution scene information 

provides an expectation for the objects found within the scene, and thus facilitating the 

recognition of objects that match the schema of the given scene (Schyns & Oliva, 1994). 
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Furthermore, it has been found that this semantic congruency between objects and scenes 

affects scene recognition too (Davenport & Potter, 2004; Loschky, 2007; Palmer, 1975). Palmer 

(1975) showed participants line drawings of visual scenes such as a kitchen for 2 seconds and 

subsequently flashed an image of an object for either 20, 40, 60 or 120ms. The objects presented 

after the scene were either appropriate to the context (a loaf of bread), inappropriate but was 

similar in shape to the appropriate object (a mailbox) or a completely different object in terms of 

shape and semantic congruency (a circular drum). Participants were asked to guess the name of 

the object they saw. Palmer (1975) found that the probability that the target object was correctly 

named was highest when the object was appropriate to the context and lowest when the object 

was inappropriate for the context. Davenport and Potter (2004) showed that when the scene and 

object were congruent, participants’ accuracies in naming the object and naming the scene were 

better compared to scenarios where the object and scene were semantically incongruent. This 

indicated that objects and the scene in which they occur mutually influence the ability to 

recognise each other. Bar and Ullman (1996) suggested that the effect of objects on scene 

recognition could be explained by the concept of ‘context frames’. Context frames are 

representation of prototypical scenes stored in our memory which consist of objects that typically 

occur in the scene. During recognition, these objects can activate the prototypical scene in which 

the object typically occurs in and subsequently enables the recognition of other objects that occur 

within the scene. Therefore, when Davenport and Potter (2004) showed participants an image of 

a priest, this activated the prototypical context frame within which a priest usually occurs (i.e. the 

church), thus facilitating the recognition of a church scene.  
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While plenty of studies demonstrate the effect of a scene on an object that is 

unambiguously recognisable when seen in isolation, some studies have also examined the effect 

of the background scene on recognising objects that are rather ambiguous when seen alone. This 

effect of context in resolving object ambiguity on a semantic level of perception has been well 

demonstrated for faces. To quote a real-life example, a photo of a woman crying without the 

background scene would most commonly be classified as experiencing an adverse event. 

However, the context might indicate that she was crying out of joy while experiencing a highly 

positive event, such as meeting her all-time favourite celebrity. Aviezer et al. (2012) 

demonstrated this using a behavioural experiment. In their study, viewer could not discriminate 

the valence between intense positive and negative facial expressions extracted from real-life 

scenarios when they were presented alone. However, they were reliably discriminated when 

presented along with the expresser’s body language.   

As far as objects other than faces are concerned, it remains unclear how the background 

scene would affect their classification. We know from our Experiment 1 and Hussain Ismail et 

al.’s (2019) study that we have a bias to classify ambiguous objects as man-made when they are 

directly fixated. In an attempt to study contextual influences on this man-made bias, we decided 

to examine whether a simultaneously presented background scene (i.e., spatial context) would 

alter the magnitude and/or the direction of the man-made bias when hybrids are viewed at 

fixation. To do this, we manipulated the background context in which ambiguous hybrids 

appeared, at a superordinate level (i.e., using scenes that can be classified as man-made and 

natural). Here, any given scene would be semantically congruent with one component of the 

hybrid but not the other. For instance, a natural scene (e.g., a forest) would be categorically 

consistent with an animal in the hybrid but not a vehicle. In accordance with past studies 
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demonstrating semantic congruency effects on object recognition and studies on faces showing 

the effect of context in resolving ambiguous facial expressions, we hypothesised that the man-

made bias would be larger when the background is man-made compared to natural, since a man-

made scene should facilitate the recognition of the man-made (but not the natural) component in 

the hybrid. If the influence of the background is strong, we can expect the man-made bias to in 

fact reverse (i.e., show a bias for the natural component of the hybrid) when the background is 

natural. Further, we expect effects of the spatial context to be stronger when the hybrid (and the 

background) is shown for a longer duration (150 ms) compared to a shorter duration (50 ms), 

since the man-made bias is stronger at shorter durations when hybrids are directly fixated at.  

We decided to only test two presentation durations (50 and 150 ms) for a number of 

reasons. First, we know that scene gist can be recognised at very brief presentations much shorter 

than 50 ms, even if the scenes are presented in the periphery (Thorpe et al., 2001). Therefore, if 

there is an effect of the background scene’s gist on the hybrid, the durations we present can be 

sufficient to capture those effects. Second, these are the two durations for which we have already 

demonstrated a man-made bias. Given that the man-made bias appears to reduce in magnitude 

with increasing presentation duration (Experiment 1), testing any longer durations may dissipate 

the bias. We specifically wanted to examine the effect of context when the bias is at play. Lastly, 

using longer durations would likely cause exploratory eye movements, which may result in the 

hybrid appearing the participants’ periphery when being classified.   

 

4.2. Methods – Experiment 3 
 
Participants 
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Following sample size estimates for Experiments 1 and 2, we recruited 23 participants 

(14 females), of which 19 participants participated in both experiments 1 and 2. Furthermore, we 

aimed to compare the size of the man-made bias between two presentation durations and two 

background context conditions using a 2x2 repeated measures ANOVA, A power analysis 

conducted for this test with a statistical power of 95% and an alpha value of 0.05, estimated that 

24 participants are required to obtain a large effect size in accordance with Hussain Ismail et al. 

(2019). The participants age ranged between 19 and 27 years (M = 22.43, SD = 1.76).  They had 

normal or corrected-to-normal vision. In a brief questionnaire, they reported the names of the 

locations at which they resided in the past 10 years. This ensured that all our participants have 

been living in urban environments for at least 10 years of their lives. They were given a small 

monetary compensation of RM 4 for participation. The study was approved by the University of 

Nottingham Malaysia’s Science and Engineering Research Ethics Committee (HS280521). 

Stimuli 

Eight videos of man-made outdoor environments and eight videos of natural 

environments were collected from copyright-free sources on the internet. From each video, a 2-

minute clip was extracted. The video clips of man-made environments consisted of first-person 

point of view walking videos of urban streets taken in various countries such as Japan, Malaysia 

and the UK. We attempted to minimise the number of other human beings walking within the 

video to ensure minimum animate objects that would be considered as natural are present in the 

video. The video clips of natural environments consisted of first-person point of view walking 

videos through different forests and natural areas such as paths alongside rivers and waterfall. 

Next, all video clips were processed on MATLAB (Version R2020b), where all the video frames 

were transformed into grayscale. 
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The hybrid stimuli used in this experiment were created from the component image 

repositories used for Experiments 1 and 2. The following steps were performed to create sets of 

hybrid-background composites (i.e., hybrids superimposed on background scenes) that are 

required for Experiment 3.  

Each greyscale video clip we had comprised of a total of 2400 frames. Accordingly, for 

the first step of creating hybrid-background composites, we sampled 16 frames from each clip, 

with mean sampling interval of 150 (𝑆𝐷 = 	±15) frames between successive samples. This 

method was opted instead of a completely random selection of video frames so that consecutive 

frames will not be chosen, ensuring that background images used are as distinct as possible. 

Following this method, we sampled background frames for each participant separately. Next, the 

RMS contrasts of the hybrids’ components images were equated as in Experiments 1 and 2, and 

then superimposed onto each other to create hybrids. Component images for hybrids were 

selected and combined following the same procedure used in Experiment 1. For example, images 

from the upper visual field from man-made and natural categories were randomly selected and 

combined to create hybrids, and similarly, images from the lower visual field categories were 

also combined to create hybrids.  

A cosine window (with the same width and height in pixels as the hybrids) was applied to 

the hybrids as well such that the centre of the window has the maximum weight (i.e., maximum 

transparency), which gradually decreased towards the edge of the window (i.e., making them 

opaque) (Figure 4.1).  Following this, at the centre of the background scene a circular grayscale 

cosine window, the same size as the hybrid, was created such that the centre of the window had a 

100% mid-grey opacity that decreased towards the edges. The hybrid image was then 
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superimposed onto this grayscale window in the background scene by adding the pixel values of 

the hybrid with those of the background frame. When superimposing the hybrid image onto the 

background frame, the hybrid’s outline blends to the background frame without creating an 

artificial-looking edge between the hybrid image and the background. Lastly, phase randomised 

masks of the hybrid-background composites were created using the same phase randomising 

procedure as in experiments 1 and 2.  

 

FIGURE 4.1 

The process of creating a hybrid-background composite. 

 

  

A
) 

B
) 

C
) 
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Note. A) shows the image of a hybrid that has been multiplied by a cosine window. B) shows the 

background scene selected for the composite with a grayscale cosine window at the centre where 

the hybrid is to be superimposed. C) the resulting hybrid-background composite.  

 

A total of 300 hybrid-background composites were created, with 150 unique composites 

for each category of background context (man-made and natural) (Figure 4.2). The 150 

composites were then divided equally between the two presentation durations (50 and 150 ms). 

The images were presented in two blocks according to the category of the background scene, 

such that all the hybrids superimposed onto the natural context were presented in one block of 

trials and the hybrids superimposed on the man-made context were presented in a separate block. 

The order of presenting the blocks was randomised between participants. The presentation times 

were randomised across trials within each block. The hybrid images at the centre had a diameter 

of 6 cm and subtended 5.7 degrees of visual angle, and the background frame and the mask 

image had a width of 25.6 cm and a height of 20.8cm which subtended 10 degrees of visual 

angle. The study follows a 2x2 design where the two independent variables are the context 

categories (Natural and Man-made) and the presentation duration (50 ms and 150 ms). Similar to 

the earlier two experiments, the dependent variable is the percentage of man-made responses. 

Like the previous two studies, the experiment routine was created on PsychoPy 

(v2021.1.4) (Peirce et al., 2019). The stimuli for each participant generated on MATLAB along 

with the experimental routine from PsychoPy was uploaded onto Pavlovia’s repository.  
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FIGURE 4.2  

Examples of hybrid images for each context condition. 

 

         

 

Note. Examples of hybrid images for each context condition. A) a hybrid image embedded onto a 

man-made background scene. B) a hybrid image embedded onto a natural background scene.  

A) 

B) 
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Procedure 

After participants gave their informed consent, they were sent a link to the experiment 

hosted on Pavlovia. Participants were instructed to sit comfortably at a distance of approximately 

60 cm between their eyes and their laptop screen. The experiment started with the screen size 

calibration task where they were required to adjust the size of an image of a credit card on the 

screen to match that of their standard physical credit or debit card placed on the screen (see 

Experiment 1 Methods). Once the calibration task was completed, the participants were provided 

with the instructions for the experimental task. They were given 10 practice trials (5 for each 

context condition) to familiarise themselves with the procedure. The composites used during the 

practice trials did not repeat during the experimental trials. A fixation cross appeared at the 

centre of the screen for 1 second, followed by the hybrid-background composites shown for 

either 50 or 150ms. Immediately after, the phase-scrambled mask appeared for twice the duration 

of the hybrid before returning to the blank mid-grey background. Participants were asked to 

press the key “z’ if the natural object at the centre of the screen was most visible to them and 

“m” if the man-made object was the most visible. They were allowed after the onset of the mask, 

and the trial terminated when a response was made. Between the two experimental blocks, 

participants were encouraged to take a short break for 5 minutes. The experiment took around 30 

minutes to complete in total, and they were debriefed and compensated after completion. 
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FIGURE 4.3 

The timeline of a trial in experiment 3 

 

 

4.3. Results 
 

The percentage of man-made responses for each context condition and each presentation 

duration was calculated. A One-tailed one-sample t-test was done on the percentage of man-

made responses for each of the 4 experimental conditions separately (natural context-50 ms, 

natural context-150 ms, man-made context-50ms, man-made context-150ms), to test whether a 

man-made bias was present in each condition. If the man-made bias is present, the mean across 

all participants should be significantly greater than 50%. As shown in Table 4.1, a significant 

man-made bias was found for all 4 experimental conditions.   

 

 

 

 

 

Fixation 
(100ms) Composite (50/150ms) 

Mask(100/300ms) 

Key response 
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TABLE 4.1 

One-sample t-test result for every context and stimulus duration  

 

 

Note. The mean percentage of hybrids classified as man-made, standard deviation and t-statistic 

for the one sample t-test conducted for each of the four groups. The test value was 50%. MM 

refers to the man-made context, N refers to the natural context.  

 

Next, a repeated-measures ANOVA was conducted to investigate the effect of 

background context and stimulus duration on the percentage of man-made responses. There was 

no significant main effect of background context on the categorisation of hybrids, F(22) = 3.26, p 

= 0.084, although the p-value corresponds to an effect that seems to be approaching significance. 

This indicates that the mean percentage of man-made responses when the background context 

was a natural environment (M = 64.17, SD = 11.24) did not differ significantly from when the 

background context was a man-made environment (M = 68.75, SD = 10.47).  There was also no 

significant main effect of stimulus duration, F(22) = 0.00  p = 0.979, indicating that the mean 

percentage of man-made responses for hybrids presented for 50ms (M = 66.43 , SD = 13.12) did 

not differ from the mean percentage of man-made responses of hybrids that were presented for 

150ms (M = 66.49 , SD = 11.38). The interaction between the background context and the 

Context/ 
stimulus duration (s) 

M (%) SD t - statistic p - value Cohen’s d 

MM/0.05 69.04 12.07 7.56 <.001 1.577 
MM/0.15 68.46 11.30 7.83 <.001 1.637 

N/0.05 63.82 14.17 4.68 <.001 0.975 
N/0.15 64.52 11.46 6.07 <.001 1.267 
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stimulus duration did not yield a significant effect, F(22) = 0.34, p = 0.562. The mean percentage 

of man-made responses for each condition is visualised in figure 4.4.  

 

FIGURE 4.4 

man-made responses per background context and stimulus duration 

 

 

Note.  The mean percentage of hybrids classified as man-made when the background context was 

either man-made (orange bars) or natural (blue bars) and the presentation durations were either 

50 ms or 150 ms. Error bars denote the standard error of the mean. 

 

4.4. Discussion 
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The results showed that participants were more likely to categorise hybrids as man-made 

irrespective of the duration of presentation and the background context in which hybrids were 

superimposed on. Our results did not support the hypothesis that the background context will 

influence the direction or magnitude of the categorisation bias. Participants tended to classify the 

hybrid as a man-made object when the background was a man-made environment as well as a 

natural environment. This main effect seems to be approaching significance, and the means 

indicate that the effect is in the direction we expected, i.e., smaller man-made bias for hybrids in 

a natural context compared to those in a man-made context. However, given that there is no 

statistically significant effect, we prefer to not make any claims based on this effect that is 

approaching significance. Interestingly, the effect of presentation time is also absent, indicating 

that participants categorised hybrids similarly at both presentation durations and that this did not 

affect the persistence of the man-made bias. Although this seemingly contradicts with the 

findings from Experiment 1 (where more man-made responses were made for the 50ms duration 

compared to the 150ms duration), it is important to note that hybrids had no context in 

Experiment 1, making a direct comparison between the experiments difficult. For now, we can 

only conclude that the presence of a scene in the background eliminates the effect of presentation 

duration on the magnitude of the man-made bias. 

As far as the finding regarding the effect of the background context is concerned, one 

possible explanation for it is that the man-made bias is caused by a more deeply rooted 

expectation present in those who have spent a significant portion of their lives in urban 

environments, such that it supersedes the effect of any simultaneously presented context. If this 

was the case, it would be interesting to compare performance on this task with a population that 

has not spent a significant amount of time living in urban environments and instead have lived in 
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naturalistic environments, such as forest-dwelling indigenous communities (e.g., some Orang 

Asli tribes in Malaysia).  

We could also attribute the lack of a difference in the man-made bias (or a weak 

difference) between the two context conditions to an interplay between two opposing effects, one 

low-level and one high-level. A study by Cannon and Fullenkampt (1991) showed that the 

apparent contrast of a uniformly oriented target sinusoidal grating depended on the orientation of 

gratings in an immediately surrounding disk. When the two orientations did not differ the 

apparent of the target was low, whereas when the two orientations differed (e.g., with 60° 

angular separation) the apparent contrast was relatively high. We can extend this to the context 

of our study. Although everyday scenes are often dominated by cardinal orientations, this 

dominance is stronger in man-made scenes (Coppola et al., 1998) and man-made objects 

(Torralba & Oliva, 2003), compared to natural scenes and natural objects, respectively. When 

hybrids are presented in man-made scenes, dominant cardinal orientations in the scene may 

suppress the apparent contrast of the man-made component in the hybrid whose structure is 

largely defined by cardinal orientations. This would reduce the detectability of the man-made 

component, and it would make the participants classify the hybrids more often as natural. When 

this effect occurs in parallel with an opposing high-level effect where man-made scenes would 

facilitate the detectability of the man-made component in the hybrid due their semantic 

congruency, they would cancel each other and leave the man-made bias unchanged (compared to 

a scenario where there is a natural context). One way to rule out low-level effect like the one 

described above is to equate component images for low-level feature visibility as Hussain Ismail 

et al. (2019) did. However, due to the online nature of our experiment, we could not achieve this.       
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More realistically, however, our results can be attributed to experimental limitations as 

the data suggests a very mild and almost significant effect of context on the bias. As the 

experiment was done online, we could not control for a variety of factors that would have been 

otherwise controlled in the lab with in-person experiments. Most importantly, in the absence of a 

controlled, dimly lit and empty environment of a lab, the presence of other man-made objects 

and sounds in the location at which the participants performed the task would have been a source 

of distraction or represented an implicit secondary context. For example, suppose participants 

performed the experimental task at a home office that overlooks a busy road with loud vehicles 

and other buildings. In that case, these sounds and peripheral views may have influenced their 

performance in the task. Such influences can be largely eliminated when experiments are 

conducted in quiet, windowless and dimly lit indoor spaces, so that the only visual stimuli 

participants receive is from the computer screen.  
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5. Chapter 5 - General Discussion  

 

When sensory information received by our visual system is ambiguous, prior knowledge 

and contextual information can bias perception. For instance, a photo of a woman crying without 

the background would most commonly be classified as experiencing a negative event; however, 

the context might indicate that she is crying as she experiences an extremely positive event, such 

as meeting her celebrity (Martinez, 2019). Some perceptual biases have been found to vary along 

with the variation in properties and features of the environment, such as the bias towards 

cardinally oriented lines over oblique lines due to the former’s prevalence within the 

environment (Girshick et al., 2011). The prior knowledge of the regularity of features in the 

environment has also been found to bias object perception. Hussain Ismail et al. (2019) 

demonstrated that humans living in the cities are biased in classifying ambiguous hybrid images 

as man-made objects rather than natural objects. However, as these hybrid images were 

presented in isolation without context, it is unclear whether this bias is caused due to the long-

term exposures to man-made environments and whether this bias can be manipulated in an 

experimental setting by altering the spatial context within which these ambiguous images appear.  

Therefore, in this thesis, we addressed three questions regarding the top-down influences 

of context on the process of resolving perceptual ambiguity by adapting the technique of creating 

ambiguous images containing man-made and natural components called hybrids (Hussain Ismail 

et al., 2019). First, we set out to replicate the man-made bias effect and examine whether altering 

the duration of the presentation of hybrids affects the magnitude of the bias. Second, we 

investigated whether the man-made bias persisted when the location of the hybrids varied within 

the visual field. Lastly, we investigated if the context of a man-made or natural environment can 
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alter the performance in categorising the ambiguous hybrid such that they’re classified more 

frequently as natural objects when the context is a natural environment and man-made objects 

when the context is man-made environments.  

In the first experiment, we replicated the man-made bias using an online experimental 

design, a new image set and participants. This established that the man-made bias as a robust 

phenomenon and provide a basis for the subsequent experiments. Furthermore, we investigated 

the effect of altering presentation duration of the hybrid on the magnitude of the man-made bias. 

According to the Bayesian framework, when more ambiguity is induced into the stimuli (in this 

case by reducing the presentation duration), the perceptual system is known to rely more on prior 

knowledge whilst making perceptual judgments (Mamassian et al., 2002). We found that 

participants showed a man-made bias when the hybrids were presented for 50 and 150ms. The 

magnitude of the bias at 50ms was higher than that at 150ms, suggesting that the magnitude of 

the perceptual biases increases along with the increase in ambiguity of the stimuli due to the 

increased reliance on prior expectations of frequently occurring objects in the environment. The 

results of this experiment also provide against the animate bias that was previously found that 

states that observers more readily shifted their attention towards animate objects than inanimate 

objects (New et al., 2007).  

In the second experiment, we investigate if the man-made bias in the peripheral visual 

field. The common notion is that visual information received from the peripheral vision is low in 

resolution and provides an impoverished visual experience (Rosenholtz, 2016). However, this 

low-resolution visual information has been found to be beneficial for scene gist processing 

(Oliva & Schyns, 1997; Larson & Loschky, 2010). Although performance for object recognition 

in peripheral vision is not perfect, humans are still able to categorise objects into broad 
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categories, such as animal or non-animal (Thorpe et al., 2001; Juttner & Rentschler,2000; 

Biederman, 1991). Furthermore, perceptual biases have also been observed in the periphery 

(Stocker & Simoncelli, 2006), although it remains unclear how and if observers can reliably 

classify ambiguous objects presented in the periphery. To examine whether the man-made bias 

would persist in peripheral vision, we presented hybrid images at 6 peripheral locations, 

equidistant from the centre in the periphery for either 50 or 150ms and found that a man-made 

bias did occur for both presentation durations. However, the magnitude of the bias was very 

small. Furthermore, contrary to the first experiment, we observed no effect of presentation time 

as there was no increase in magnitude observed when the hybrids were presented for 50ms than 

for 150ms. This indicates that the man-made bias persists within the peripheral visual field, 

although the effect sizes indicated that the bias observed was relatively smaller compared to the 

central visual field. In line with Zhaoping’s (2017) finding that the bias towards the judgements 

of ambiguous dichoptic signals were weaker in the periphery than in central vision, one plausible 

explanation for our findings is that the man-made bias is weaker in the periphery than in the 

central visual field. 

Lastly, we investigated the effect of a spatial context on the classification of hybrid 

images. The results from Hussain Ismail et al. (2019) and from the first experiment demonstrated 

that the preference towards categorising ambiguous hybrids as man-made objects occurs possibly 

due to the expectation to see man-made objects within the heavily carpentered environment that 

we live in today. However, it is unclear whether the change in environmental context would 

affect the presence of this bias. The semantic congruency effect and the gist perception theory 

posits that scenes are recognised rapidly before objects are clearly identified, and this gist can 

affect subsequent recognition of objects (Biederman, 1981; Friedman, 1979; Davenport & Potter, 
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2004). Therefore, we investigated whether the presence of a background scene creates a semantic 

expectation of the objects frequently found in certain environments and if this subsequently 

affects the classification of hybrid images. We superimposed hybrid images at the centre of a 

larger background scene that depicted either an outdoor man-made environment, such as a street, 

or a natural environment, such as a jungle trail. We presented these superimposed hybrid-

background composites for either 50 or 150ms. We found that a man-made bias persisted among 

all four experimental conditions (two background context conditions and two presentation 

durations), indicating that participants were more likely to categorise the hybrids as man-made 

irrespective of the duration and context condition. This result did not support our hypothesis that 

the background context will influence the direction of the categorisation bias. Furthermore, there 

was no significant main effect of context or presentation duration. This indicates that the man-

made bias could be caused a more deeply rooted expectation present in the population living in 

urban environments such that the alteration of the immediate spatial context does not affect the 

bias.  

Since the experiments were conducted online, numerous extraneous variables could have 

affected the results that we obtained. Although clear instructions were provided to participants 

regarding the distance they should maintain between themselves and the computer screens, we 

cannot control subconscious head tilts and movements towards or away from the screen during 

the experiment. The placement of their personal computers or laptops at their desk may also be at 

an angle rather than at exact eye level. Furthermore, since the laptop and computer models vary 

across participants, it is hard to control or measure the luminance of the screen and the images, 

which may have affected how participants perceived the hybrid stimuli. Other distractions 

present within the participant’s room may also have introduced significant noise in our data. 
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Therefore, it would be worthwhile to replicate these experiments in a controlled laboratory 

setting to confirm if the results found here are robust or confounded by these extraneous 

variables. 

Apart from the limitations posed by the online nature of the experiments, another factor 

that could have impacted our data is the response bias caused by the use of a 2 alternate-force-

choice task. As participants were required to categorise the hybrid they viewed as either man-

made or natural objects, they might have been forced to select one of the two options regardless 

of whether they could reliably recognise the object. Other studies that investigated the semantic 

congruency effect on non-ambiguous objects used an object recognition paradigm, where 

participants were required to name the object that they perceived (Davenport & Potter, 2004; 

Munekke et al., 2013). A similar paradigm could be employed in future variations of this study 

to ensure that participants are attentive and able to perceive the hybrids accurately.  

Nevertheless, the result from this thesis indicates that the man-made bias is a robust 

effect that is persistent across varying presentation durations, visual field location and context 

conditions. From this, we infer that the man-made bias is caused by long-term exposures to man-

made environments. Such a bias allows us to make perceptual judgements of ambiguous objects 

more accurately within the surroundings that we live in and provides an ecological advantage. 

However, to test if this bias is caused due to long-term exposures to certain environments, further 

studies should be done investigating if a change in temporal context- by varying the length of 

exposure to the different environments- alters the classification of ambiguous objects. It would 

also be interesting to see if this classification bias is modified to suit the environment by 

investigating the performance in populations living in environments that are starkly different to 

urban environments, such as the forest-dwelling indigenous populations.    



   

 

72 

 

References 

 

Aguirre, G. K., Zarahn, E., & D’Esposito, M. (1998). An area within human ventral cortex 

sensitive to “building” stimuli: Evidence and implications. Neuron, 21(2), 373–383. 

https://doi.org/10.1016/S0896-6273(00)80546-2 

Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. 

Nature, 387(6631), 401–406. https://doi.org/10.1038/387401a0 

Anna Nikki (n.d.). Style Classic Vintage Retro Cars Clipart [Clip art]. Pngitem. 

https://www.pngitem.com/middle/mhhhTm_style-classic-vintage-retro-cars-car-clipart-

vintage/ 

ArtsyBee (2017). Building [Clip art]. Pixabay. https://pixabay.com/illustrations/buildings-clip-

art-color-isolated-2933455/ 

Aviezer, H., Trope, Y., & Todorov, A. (2012). Body cues, not facial expressions, discriminate 

between intense positive and negative emotions. Science, 338(6111), 1225–1229.  

Bar, M., & Ullman, S. (1996). Spatial context in recognition. Perception, 25(3), 343–352. 

https://doi.org/10.1068/p250343 

Bex, P. J., & Makous, W. (2002). Spatial frequency, phase, and the contrast of natural images. 

Journal of the Optical Society of America A, 19(6), 1096–1106. 

https://doi.org/10.1364/JOSAA.19.001096 

Biederman, I. (1972). Perceiving real-world scenes. Science, 177(4043), 77–80. 

https://doi.org/10.1126/SCIENCE.177.4043.77 



   

 

73 

 

Biederman, I. (1981). On the Semantics of a Glance at a Scene. In M. Kubovy & J. R. Pomerantz 

(Eds.), Perceptual Organization (pp. 213–253). Routledge. 

https://doi.org/10.4324/9781315512372-8 

Biederman, I. (1987). Recognition-by-Components: A Theory of Human Image Understanding. 

Psychological Review, 94(2), 115–147. https://doi.org/10.1037/0033-295X.94.2.115 

Biederman, I., & Cooper, E. E. (1991). Object recognition and laterality: Null effects. 

Neuropsychologia, 29(7), 685–694. https://doi.org/10.1016/0028-3932(91)90102-E 

Biederman, I., Mezzanotte, R. J., & Rabinowitz, J. C. (1982). Scene perception: Detecting and 

judging objects undergoing relational violations. Cognitive Psychology, 14(2), 143–177. 

Brewer, A. A., Liu, J., Wade, A. R., & Wandell, B. A. (2005). Visual field maps and stimulus 

selectivity in human ventral occipital cortex. Nature Neuroscience, 1102–1109. 

https://doi.org/10.1038/nn1507 

Calvillo, D. P., & Hawkins, W. C. (2016). Animate Objects are Detected More Frequently than 

Inanimate Objects in Inattentional Blindness Tasks Independently of Threat. Journal of 

General Psychology, 143(2), 101–115. https://doi.org/10.1080/00221309.2016.1163249 

Cannon, M. W., & Fullenkampt, S. C. (1991). SPATIAL INTERACTIONS IN APPARENT 

CONTRAST: INHIBITORY EFFECTS AMONG GRATING PATTERNS OF 

DIFFERENT SPATIAL FREQUENCIES, SPATIAL POSITIONS AND ORIENTATIONS. 

Vision Research, 31(11), 1985–1998. 

Clipart-Library (n.d). Tree Cartoon PNG #1835480  

[Clip art]. Clipart-Library. http://clipart-library.com/clipart/rcLoj67Xi.htm 



   

 

74 

 

Coppola, D. M., Purves, H. R., McCoy, A. N., & Purves, D. (1998). The distribution of oriented 

contours in the real world. Proceedings of the National Academy of Sciences, 95(7), 4002–

4006. https://doi.org/10.1073/PNAS.95.7.4002 

Crouzet, S. M. (2011). What are the visual features underlying rapid object recognition? 

Frontiers in Psychology, 2(NOV), 1–15. https://doi.org/10.3389/fpsyg.2011.00326 

Davenport, J. L., & Potter, M. C. (2004). Scene consistency in object and background 

perception. Psychological Science, 15(8), 559–564. https://doi.org/10.1111/j.0956-

7976.2004.00719.x 

de Valois, R. L., Albrecht, D. G., & Thorell, L. G. (1982). Spatial frequency selectivity of cells 

in macaque visual cortex. Vision Research, 22(5), 545–559. https://doi.org/10.1016/0042-

6989(82)90113-4 

Delorme, A., Richard, G., & Fabre-Thorpe, M. (2010). Key visual features for rapid 

categorization of animals in natural scenes. Frontiers in Psychology, 0(JUN), 21. 

https://doi.org/10.3389/FPSYG.2010.00021/BIBTEX 

Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li, & Li Fei-Fei. (2009). ImageNet: A large-scale 

hierarchical image database. IEEE Conference on Computer Vision and Pattern 

Recognition, 248–255. https://doi.org/10.1109/CVPR.2009.5206848 

Deyoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., & 

Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. 

Proceedings of the National Academy of Sciences of the United States of America, 93(6), 

2382–2386. https://doi.org/10.1073/pnas.93.6.2382 

Eagleman, D. M., Jacobson, J. E., & Sejnowski, T. J. (2004). Perceived luminance depends on 

temporal context. Nature, 428(6985), 854–856. https://doi.org/10.1038/NATURE02467 



   

 

75 

 

Engel, S. A., Glover, G. H., & Wandell, B. A. (1997). Retinotopic organization in human visual 

cortex and the spatial precision of functional MRI. Cerebral Cortex, 7(2), 181–192. 

https://doi.org/10.1093/CERCOR/7.2.181 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. 

Nature, 392(6676), 598–601. https://doi.org/10.1038/33402 

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical 

power analysis program for the social, behavioral, and biomedical sciences. Behavior 

Research Methods, 39(2), 175–191. https://doi.org/10.3758/BF03193146 

Felleman, D. J., & van Essen, D. C. (1991). Distributed Hierarchical Processing in the Primate 

Cerebral Cortex. Cerebral Cortex, 1(1), 1–47. https://doi.org/10.1093/cercor/1.1.1 

Ferster, D., & Miller, K. D. (2000). NEURAL MECHANISMS OF ORIENTATION 

SELECTIVITY IN THE VISUAL CORTEX. Annual Review of Neuroscience, 23, 441–471. 

Friedman, A. (1979). Framing pictures: the role of knowledge in automatized encoding and 

memory for gist. Journal of Experimental Psychology. General, 108(3), 316–355. 

https://doi.org/10.1037//0096-3445.108.3.316 

Gibson, J. J., & Radner, M. (1937). Adaptation, after-effect and contrast in the perception of 

tilted lines. Journal of Experimental Psychology, 20(5), 453–467. 

https://doi.org/10.1037/H0059826 

Gilchrist, A. (2006). Seeing Black and White. Seeing Black and White, 1–448. 

https://doi.org/10.1093/ACPROF:OSO/9780195187168.001.0001 

Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: visual orientation 

perception reflects knowledge of environmental statistics. Nature Neuroscience, 14(7), 926–

932. https://doi.org/10.1038/nn.2831 



   

 

76 

 

Godden, D. R., & Baddeley, A. D. (1975). CONTEXT-DEPENDENT MEMORY IN TWO 

NATURAL ENVIRONMENTS: ON LAND AND UNDERWATER. British Journal of 

Psychology, 66(3), 325–331. https://doi.org/10.1111/J.2044-8295.1975.TB01468.X 

Greene, M. R., & Oliva, A. (2009). The Breifest of Glances: The Time Course of Natural Scene 

Understanding. Psychological Science, 20(4), 464–472. 

Grill-Spector, K., Kushnir, T., Hendler, T., Edelman, S., Itzchak, Y., & Malach, R. (1998). A 

sequence of object‐processing stages revealed by fMRI in the human occipital lobe. Human 

Brain Mapping, 6(4), 328. https://doi.org/10.1002/(sici)1097-0193(1998)6:4<316::aid-

hbm9>3.0.co;2-6 

He, C., & Cheung, O. S. (2019). Category selectivity for animals and man-made objects: Beyond 

low- and mid-level visual features. Journal of Vision, 19(12), 22–22. 

https://doi.org/10.1167/19.12.22 

Helmholtz, H. von. (1925). Treatise on Physiological Optics (Southall, J. P. C., Trans). 

Electronic edition (2001): University of Pennsylvania. The Optical Society of America. 

%0Ahttp//psych.upenn.edu/backuslab/helmholtz 

Henderson, J. M. (1992). Object identification in context: the visual processing of natural scenes. 

Canadian Journal of Psychology, 46(3), 319–341. https://doi.org/10.1037/H0084325 

Henderson, J. M., & Hollingworth, A. (1999). HIGH-LEVEL SCENE PERCEPTION. Annual 

Review of Psychology, 50, 243–271. https://doi.org/10.1146/ANNUREV.PSYCH.50.1.243 

Henderson, J. M., Pollatsek, A., & Rayner, K. (1989). Covert visual attention and extrafoveal 

information use during object identification. Perception & Psychophysics 1989 45:3, 45(3), 

196–208. https://doi.org/10.3758/BF03210697 



   

 

77 

 

Hess, R. F., Hayes, A., & Field, D. J. (2003). Contour integration and cortical processing. 

Journal of Physiology, Paris, 97(2–3), 105–119. 

https://doi.org/10.1016/J.JPHYSPARIS.2003.09.013 

Hochstein, S., & Ahissar, M. (2002). View from the Top. Neuron, 36(5), 791–804. 

https://doi.org/10.1016/S0896-6273(02)01091-7 

Horton, J. C., & Hoyt, W. F. (1991). The representation of the visual field in human striate 

cortex. A revision of the classic Holmes map. Archives of Ophthalmology (Chicago, Ill. : 

1960), 109(6), 816–824. https://doi.org/10.1001/ARCHOPHT.1991.01080060080030 

Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate 

cortex. The Journal of Physiology, 148(3), 574–591. 

https://doi.org/10.1113/jphysiol.1959.sp006308 

Hubel, D. H., & Wiesel, T. N. (1961). Integrative action in the cat’s lateral geniculate body. The 

Journal of Physiology, 155(2), 385. https://doi.org/10.1113/JPHYSIOL.1961.SP006635 

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional 

architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106–154. 

https://doi.org/10.1113/JPHYSIOL.1962.SP006837 

Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey 

striate cortex. The Journal of Physiology, 195(1), 215–243. 

https://doi.org/10.1113/JPHYSIOL.1968.SP008455 

Hughes, J. F., van Dam, A., McGuire, M., Foley, J. D., Sklar, D., Feiner, S. K., & Akeley, K. 

(2014). Computer graphics: principles and practice. Pearson Education. 



   

 

78 

 

Hummel, J. E. (2000). Where View-based Theories Break Down: The Role of Structure in Shape 

Perception and Object Recognition. In E. Deitrich & A. Markman (Eds.), Cognitive 

Dynamics: Conceptual Change in Humans and Machines (pp. 157–185). 

Hussain Ismail, A. M., Solomon, J., Hansard, M., & Mareschal, I. (2019). A perceptual bias for 

man-made objects in humans. Proceedings of the Royal Society B. 

J4p4n (2014). Italian Bicycle [Clip art]. Openclipart. 

https://openclipart.org/detail/192023/italian-bicycle 

Jastrow, J. (1899). The mind’s eye. Popular Science Monthly, 54, 299–312. 

Joubert, O. R., Fize, D., Rousselet, G. A., & Fabre-Thorpe, M. (2008). Early interference of 

context congruence on object processing in rapid visual categorization of natural scenes. 

Journal of Vision, 8(13), 1–18. https://doi.org/10.1167/8.13.11 

Jüttner, M., & Rentschler, I. (2000). Scale-invariant superiority of foveal vision in perceptual 

categorization. European Journal of Neuroscience, 12(1), 353–359. 

https://doi.org/10.1046/J.1460-9568.2000.00907.X 

Kaas, J. H., & Krubitzer, L. A. (1991). Organisation of Extrastriate Visual Cortex. In 

Neuroanatomy of Visual Pathways (pp. 302–323). 

Kaiser, D., Quek, G. L., Cichy, R. M., & Peelen, M. v. (2019). Object Vision in a Structured 

World. Trends in Cognitive Sciences, 23(8), 672–685. 

https://doi.org/10.1016/J.TICS.2019.04.013 

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module in 

Human Extrastriate Cortex Specialized for Face Perception. The Journal of Neuroscience, 

17(11), 4302–4311. 



   

 

79 

 

Kersten, D., Mamassian, P., & Yuille, A. (2004). Object perception as Bayesian inference. 

Annual Review of Psychology, 55, 271–304. 

https://doi.org/10.1146/annurev.psych.55.090902.142005 

Kim, J. G., & Biederman, I. (2011). Where Do Objects Become Scenes? Cerebral Cortex, 21(8), 

1738–1746. https://doi.org/10.1093/cercor/bhq240 

Laobc (n.d.). Faceless Woman Walking Clipart [Clip art]. Creazilla. 

https://creazilla.com/nodes/3272509-faceless-woman-walking-clipart 

Li, B., Peterson, M. R., & Freeman, R. D. (2003). Oblique effect: a neural basis in the visual 

cortex. Journal of Neurophysiology, 90(1), 204–217. 

Li, M. S., Abbatecola, C., Petro, L. S., & Muckli, L. (2021). Numerosity Perception in Peripheral 

Vision. Frontiers in Human Neuroscience, 15, 674. 

https://doi.org/10.3389/FNHUM.2021.750417/BIBTEX 

Loschky, L. C., & Larson, A. M. (2010). The natural/man-made distinction is made before basic-

level distinctions in scene gist processing. Visual Cognition, 18(4), 513–536. 

https://doi.org/10.1080/13506280902937606 

Loschky, L. C., Sethi, A., Simons, D. J., Pydimarri, T. N., Ochs, D., & Corbeille, J. L. (2007). 

The Importance of Information Localization in Scene Gist Recognition. Journal of 

Experimental Psychology, 33(6), 1431–1450. https://doi.org/10.1037/0096-1523.33.6.1431 

Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. 

J., Brady, T. J., Rosen, B. R., & Tootell, R. B. (1995). Object-related activity revealed by 

functional magnetic resonance imaging in human occipital cortex. Proceedings of the 

National Academy of Sciences, 92(18), 8135–8139. https://doi.org/10.1073/pnas.92.18.8135 



   

 

80 

 

Mamassian, P., & Goutcher, R. (2001). Prior knowledge on the illumination position. Cognition, 

81(1), B1–B9. https://doi.org/10.1016/S0010-0277(01)00116-0 

Mamassian, P., Landy, M. S., & Laurence, M. T. (2002). Bayesian Modelling of Visual 

Perception -Probabilistic Models of the Brain. In Perception and Neural Function (Issue 

January, pp. 13–36). 

Mareschal, I., Calder, A., & Clifford, C. (2013). Humans have an expectation that gaze is 

directed toward them. Current Biology, 23(8), 717–721. 

Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organization 

of three-dimensional shapes. Proceedings of the Royal Society of London. Series B. 

Biological Sciences, 200(1140), 269–294. https://doi.org/10.1098/RSPB.1978.0020 

Martinez, A. M. (2019). Context may reveal how you feel. Proceedings of the National Academy 

of Sciences of the United States of America, 116(15), 7169–7171. 

https://doi.org/10.1073/pnas.1902661116 

McGurk, H., & MacDonald, J. (1976). Hearing lips and seeing voices. Nature, 264(5588), 746–

748. 

Munneke, J., Brentari, V., & Peelen, M. v. (2013). The influence of scene context on object 

recognition is independent ofattentional focus. Frontiers in Psychology, 4(AUG), 552. 

https://doi.org/10.3389/FPSYG.2013.00552/BIBTEX 

New, J., Cosmides, L., & Tooby, J. (2007). Category-specific attention for animals reflects 

ancestral priorities, not expertise. Proceedings of the National Academy of Sciences, 

104(42), 16598–16603. https://doi.org/10.1073/pnas.0703913104 



   

 

81 

 

Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine edges? Evidence that information 

diagnosticity changes the perception of complex visual stimuli. Cognitive Psychology, 

34(1), 72–107. https://doi.org/10.1006/COGP.1997.0667 

Oliva, A., & Torralba, A. (2001). Modeling the Shape of the Scene: A Holistic Representation of 

the Spatial Envelope. International Journal of Computer Vision 2001 42:3, 42(3), 145–175. 

https://doi.org/10.1023/A:1011139631724 

Oliva, A., & Torralba, A. (2006). Building the gist of a scene: the role of global image features in 

recognition. In Progress in Brain Research (Vol. 155, pp. 23–36). 

https://doi.org/10.1016/S0079-6123(06)55002-2 

Oosterhof, N. N., & Todorov, A. (2008). The functional basis of face evaluation. Proceedings of 

the National Academy of Sciences, 105(32), 11087–11092. 

https://doi.org/10.1073/PNAS.0805664105 

Palmer, T. E. (1975). The effects of contextual scenes on the identification of objects. Memory & 

Cognition, 3(5), 519–526. https://doi.org/10.3758/BF03197524 

Peirce, J., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger, R., Sogo, H., Kastman, E., & 

Lindeløv, J. K. (2019). PsychoPy2: Experiments in behavior made easy. Behavior Research 

Methods, 51(1), 195–203. https://doi.org/10.3758/S13428-018-01193-Y/FIGURES/3 

Peissig, J. J., & Tarr, M. J. (2007). Visual object recognition: do we know more now than we did 

20 years ago? Annual Review of Psychology, 58, 75–96. 

https://doi.org/10.1146/ANNUREV.PSYCH.58.102904.190114 

Rao, R. P. N., & Ballard, D. H. (1999). Predictive coding in the visual cortex:  a functional 

interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–

87. https://doi.org/10.1038/4580 



   

 

82 

 

Rémy, F., Vayssière, N., Pins, D., Boucart, M., & Fabre-Thorpe, M. (2014). Incongruent 

object/context relationships in visual scenes: Where are they processed in the brain? Brain 

and Cognition, 84(1), 34–43. https://doi.org/10.1016/j.bandc.2013.10.008 

Rosenholtz, R. (2016). Capabilities and Limitations of Peripheral Vision. Annual Review of 

Vision Science, 2, 437–457. https://doi.org/10.1146/ANNUREV-VISION-082114-035733 

Rousselet, G. A., Macé, M. J. M., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human 

face? Fast processing in upright and inverted natural scenes. Journal of Vision, 3(6), 440–

455. https://doi.org/10.1167/3.6.5 

Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial-Frequency Channels in Human 

Vision. Journal of the Optical Society of America, 61(9), 1176. 

https://doi.org/10.1364/JOSA.61.001176 

Schneider, K. A., Richter, M. C., & Kastner, S. (2004). Retinotopic Organization and Functional 

Subdivisions of the Human Lateral Geniculate Nucleus: A High-Resolution Functional 

Magnetic Resonance Imaging Study. Journal of Neuroscience, 24(41), 8975–8985. 

https://doi.org/10.1523/JNEUROSCI.2413-04.2004 

Schwartz, O., Hsu, A., & Dayan, P. (2007). Space and time in visual context. Nature Reviews 

Neuroscience, 8(7), 522–535. https://doi.org/10.1038/nrn2155 

Schyns, P. G., & Oliva, A. (1994). From Blobs to Boundary Edges: Evidence for Time- and 

Spatial-Scale-Dependent Scene Recognition. Psychological Science, 5(4), 195–200. 

https://doi.org/10.1111/j.1467-9280.1994.tb00500.x 

See1,Do1,Teach1 (2017). London Street Scene [Photograph]. Flickr. 

https://www.flickr.com/photos/mpaulmd/35625021023 



   

 

83 

 

Smith, A. T., Singh, K. D., Williams, A. L., & Greenlee, M. W. (2001). Estimating receptive 

field size from fMRI data in human striate and extrastriate visual cortex. Cerebral Cortex 

(New York, N.Y. : 1991), 11(12), 1182–1190. https://doi.org/10.1093/CERCOR/11.12.1182 

Spelke, E. S. (1990). Principles of Object Perception. Cognitive Science, 14(1), 29–56. 

https://doi.org/10.1207/S15516709COG1401_3 

Stocker, A. A., & Simoncelli, E. P. (2006). Noise characteristics and prior expectations in human 

visual speed perception. Nature Neuroscience, 9(4), 578–585. 

https://doi.org/10.1038/nn1669 

Stone, J. V., Kerrigan, I. S., & Porrill, J. (2009). Where is the light? Bayesian perceptual priors 

for lighting direction. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 

1797–1804. https://doi.org/10.1098/rspb.2008.1635 

Strasburger, H., Harvey, L. O., & Rentschler, I. (1991). Contrast thresholds for identification of 

numeric characters in direct and eccentric view. Perception & Psychophysics, 49(6), 495–

508. https://doi.org/10.3758/BF03212183 

Strasburger, H., Rentschler, I., & Jüttner, M. (2011). Peripheral vision and pattern recognition: A 

review. Journal of Vision, 11(5), 13–13. https://doi.org/10.1167/11.5.13 

Sun, J., & Perona, P. (1998). Where is the sun? Nature Neuroscience, 1(3), 183–184. 

https://doi.org/10.1038/630 

Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape 

recognition. Cognitive Psychology, 21(2), 233–282. https://doi.org/10.1016/0010-

0285(89)90009-1 

Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. 

Nature , 381(6582), 520–522. https://doi.org/10.1038/381520a0 



   

 

84 

 

Thorpe, S. J., Gegenfurtner, K. R., Fabre-Thorpe, M., & Bülthoff, H. H. (2001). Detection of 

animals in natural images using far peripheral vision. The European Journal of 

Neuroscience, 14(5), 869–876. https://doi.org/10.1046/J.0953-816X.2001.01717.X 

Todorović, D. (2010). Context effects in visual perception and their explanations. Review of 

Psychology, 17(1), 17–32. 

Torralba, A., & Oliva, A. (2003). Statistics of natural image categories. Network: Computation in 

Neural Systems, 14, 391–412. 

VanRullen, R., & Thorpe, S. J. (2001). The time course of visual processing: From early 

perception to decision-making. Journal of Cognitive Neuroscience, 13(4), 454–461. 

https://doi.org/10.1162/08989290152001880 

Watson, T. L., Otsuka, Y., & Clifford, C. W. G. (2016). Who are you expecting? Biases in face 

perception reveal prior expectations for sex and age. Journal of Vision, 16(3), 5. 

https://doi.org/10.1167/16.3.5 

Wei, X. X., & Stocker, A. A. (2015). A Bayesian observer model constrained by efficient coding 

can explain “anti-Bayesian” percepts. Nature Neuroscience 2015 18:10, 18(10), 1509–1517. 

https://doi.org/10.1038/nn.4105 

Xu, H., Dayan, P., Lipkin, R. M., & Qian, N. (2008). Adaptation across the Cortical Hierarchy: 

Low-Level Curve Adaptation Affects High-Level Facial-Expression Judgments. Journal of 

Neuroscience, 28(13), 3374–3383. https://doi.org/10.1523/JNEUROSCI.0182-08.2008 

Zhaoping, L. (2017). Feedback from higher to lower visual areas for visual recognition may be 

weaker in the periphery: Glimpses from the perception of brief dichoptic stimuli. Vision 

Research, 136, 32–49. https://doi.org/10.1016/J.VISRES.2017.05.002 

 


