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Abstract

Ultra-cold Rydberg ions confined in a linear trap are presented as a possible solution to
some of the major problems causing infidlities currently presented in quantum computing
gates e.g. weak two-body interactions such as magnetic field fluctuations.
The dynamics and intrinsic fidelity of the controlled-Z gate are simulated using the Fock
state |gg, 00〉 (where g and 0 denote the groundstates of the spin and phonon excitations
respectively) of a two-qubit system, where the fidelity of the gate is found to be 0.9999472,
satisfying the fidelity requirement for a scalable quantum computing gate of 0.9999.
The same was done for phonon coherent states of the form |gg, α, α〉, where the displace-
ment operator takes the form D(α) = exp(αa† − α?a). It is shown, to obtain the fidelity
needed for a reliable individual quantum gate of at least 0.97, the maximum value for
alpha is αmax = 0.25; to obtain the fidelity needed for a scalable quantum gate of at least
0.9999, the maximum value for alpha is αmax = 0.0525.
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Chapter 1

Introduction

On 19th February 1946, at a meeting of the National Physics Laboratory in Teddington,
England, Alan Turing, a british mathematician and computer scientist, presented his now
famous research proposal ’A Proposal for the Development in the Mathematics Division
of an Automatic Computing Engine’ [4]. His landmark designs were derived mainly from
the work he undertook at the Government Code & Cypher School (GC&SC) in Bletchely
Park, Buckinghamshire, during the Second World War. Here he developed methods of
breaking codes sent out by the Nazi military and their then famous Enigma machine. His
work during this period of his life directly saved countless lives and resulted in a research
proposal that contained designs for the world’s first computer.

Since Turing’s first proposal, computing has rapidly evolved. Modern computers, still
based upon Turing’s initial ideas, have far more computing power than early designs.
However, despite the advancements in computing, there are still many problems computers
(what will now be called classical computers) cannot solve.

For example, a classical computer is very good at multiplying large prime numbers, but
extremely poor at factoring a large number into its primes [5]. This issue stems from the
way in which a classical computer stores information; the information (be it a picture,
document, or in this case a number) is converted into a string of bits, each bit either
having a value of 0 or 1. Although this process is more involved for increasingly complex
pieces of information, it is straightforward for a number as it can be converted directly
from base 10 to base 2 and stored as binary.

As of the time of submission of this thesis, the lowest running time for the factorisation
of a very large number into its primes can be achieved by the general number field sieve
(GNFS) algorithm [6]. For a given b-bit number n (that is to say, a number ’n’ which
is ’b’ bits long when converted into binary), the GNFS can factorise in time of the order

O(e1.9(lnn)1/3(ln lnn)2/3).

When factorising very large numbers, this time becomes longer than the age of the universe
which is clearly impractical to solve, and although it is not proven, it is expected that there
cannot exist an algorithm, executable on a classical computer, that will be significantly
better than the GNFS [7, 8], and produce a factorisation time of the order O(bk), where
k is any positive integer. A new type of computation is needed.

The fundamental principle of quantum superposition can be used to build this new type of
computer. This principle explains that a quantum state can be represented as the sum of
two or more different quantum states, or conversely, one can ”add” two or more quantum
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states and the result will be an equally valid quantum state [9]. As opposed to a classical
computer, the bits used to store information in this new type of computation are not
limited to the absolute values of either 0 or 1, but because of quantum superposition, can
be a combination of the states |0〉 and |1〉. These quantum bits are called qubits, and the
new type of computer, a quantum computer. We can also use the fundamental principle
of quantum entanglement to entanglement multiple qubits, as they are quantum systems.
Using these two principles, we can make the quantum analogy of classical computing logic
gates.

With a quantum computer, the factorisation of large numbers becomes much simpler
with the use of an algorithm made specifically for quantum computers, Shor’s algo-
rithm [10]. For a quantum computer with a number of entangled qubits of the order
O((lnn)2(ln lnn)(ln ln lnn)), the factorisation time becomes of the order O(b3) [11], much
faster than the GNFS.

There are many other examples of problems, both theoretical and practical, that can
be solved by quantum computing, from increasing the precision of the diagnosis and
distribution of medicines [12], to the prediction of weather patterns [13]. The leaps that
can be made in these fields make part of the motivation for the development of quantum
computers.

Although the benefits of the development of quantum computers is clear, much like clas-
sical computers, there are significant obstacles to overcome. One of these is the issue
of scalability, which has been discussed in this chapter. Quantum systems, particularly
entangled systems, are sensitive to environmental disturbances. Dependant on the sys-
tem, magnetic field, electric field, temperature and even positional disturbances can cause
decoherence, the destruction of quantum entanglement.

As the reduction of the time taken in the factorisation of large numbers given by Shor’s
algorithm is dependant on having a large number of entangled qubits, without the devel-
opment of extremely reliable qubits, resistant to decoherence, Shor’s algorithm (as well
as every other use for quantum computing) will not be realised. These qubits, and the
subsequent quantum gates, must have a very high fidelity ; a measure of a qubits resistance
to the infidelities that cause decoherence.

There are several methods being explored for their potential to realise high fidelity qubits,
such as superconduction [14, 15], or the use of photons in linear optical quantum com-
puting [16]; this thesis focuses on trapped ions, which have long been at the forefront of
innovations in the realm of quantum computing [17]. Many of the proposals for the use of
trapped ions in quantum computing used different methods of entangling the qubits, but
all consisted of ions confined in a linear trap, greatly restricting their positional movement
to one axis [18, 19], taking inspiration and building upon the previous models and the
Sørensen and Mølmer model [17] which was one of the first papers to suggest this kind of
quantum gate.

Various iterations through the years have resulted in the experimental demonstration of
very high fidelity gates [20, 21], resulting in the increase of the fidelity threshold for a
useful quantum gate from 0.97, which was sufficient for a single gate, to 0.9999 [22], as
for large scale, useful quantum computing, very small infidelities in the individual gates
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compound quickly. To achieve this high fidelity threshold, the gates must be capable of
error correction [23], meaning they can correct errors during their own gate operation,
which is analogous to classical computing gates.

The gates must also have a very small gate operation time or a long coherence time [24].
This is one of the clear advantages in the use of Rydberg ions in quantum information
processing; they have very strong dipole-dipole interactions, even over long distances,
which makes interaction and building entanglement between qubits much faster. In turn,
increasing the gate speed will avail less time for the qubits to decohere.

A potential source of infidelity within Rydberg ion gates is the excitation of the vibra-
tional, or phonon modes of the ions. These where purposefully excited in the Sørensen and
Mølmer gate and used to entangle the qubits, however they could be now be a hindrance
to the operation of the gate. This project is focused on answering this question.

In chapter two I will present a brief history of quantum computing. Starting with the
very first theoretical proof of the possibility of quantum computing, using solutions to
Schrodinger’s equation to show the legitimacy of the idea of creating a computer using
quantum systems. Then focusing on the use of trapped atoms/ions in quantum comput-
ing, we will then present the major proposals, and there evolution through the years. The
chapter will describe the advantages of each iteration, and the short-comings that led to
the next version.

Chapter three will consist of the building of the mathematical model that describes the
behaviour of trapped Rydberg ions that would be used in a quantum computer, and
analysing certain characteristics of that behaviour. Starting will a general solution to
Schrodinger’s equation for an atom coupled to a laser field, this solution will be simplified
into the Jaynes-Cummings model where quantum phenomena like Rabi oscillations can
be observed. The dipole-dipole interaction of the Rydberg ions will then be added to the
model in lieu of the next chapter.

Then, in chapter four we will use the full model for two trapped Rydberg ions to evaluate
the efficacy of their use in quantum gates, specifically a controlled-Z gate. The dynamics
of the spin states, phonon states and their effect on the fidelity of the gate will be explored,
during the gate operation.

Finally, the conclusion will be given in chapter five, where we will present, given both
the advantages and disadvantages shown in earlier chapters, whether Rydberg ions are
an efficient enough material for the manufacture of large scale quantum computers.
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Chapter 2

Quantum Computing Background

2.1 Introduction of Quantum Computing

2.1.1 First Proposals of Quantum Computing

A paper by Paul Benioff [25], published in April 1980, gave the first abstract description
of a quantum computer or Turing machine as it was described. The paper generally
describes and proves that for any given Turing machine (the name given to the general
computer described by Alan Turing in one of his first papers [26], but can be used as a
substitute for any classical computer gate), denoted in the paper by Q, and any number of
quantum particles N , there will exist a specific Hamiltonian HN

Q and initial states ΨN
Q (0)

that will satisfy the equation

ΨN
Q (t) = exp(−iHN

Q t)Ψ
N
Q (0).

This equation would then describe the first, second, third and so on, completed step of
the computation of Q.

Being the first real proposal for quantum computation, the discussion is very abstract,
focusing on the proof of concept, rather than any practical applications. However, in 1982,
Benioff expanded on his work with another paper [27] published that year. This paper was
far more practical, focusing on the use of multiple, entangled spin 1/2 particles in a finite
lattice, each completing separate parts of the computation. Several models were derived
for different types of gates, however the significant improvement was the time-independent
models ability to not dissipate energy during the steps of their operation.

2.1.2 First Proposals of Quantum Computing using Trapped
Atoms

One of the first proposals for quantum computing using ultra-cold atoms in a potential
trap was the paper published in 1995 by Cirac and Zoller [1]. They described a series
of atoms confined in a linear trap. This, along with the previous laser cooling, restricts
their movements to very small oscillations in a single direction. Each atom would then
be driven with its own individual laser. By careful selection of the laser frequency, they
show the vibrational normal modes of the ions can be excited, and this collective motion
is used to entangle the ions.
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(a) (b)

Figure 2.1: A simple diagram and level scheme for the Cirac and Zoller gate [1], shown
in (a) and (b) respectively. Figure (a) shows N ions in a linear trap, interacting with
N different laser beams. Figure (b) depicts the method in which the CNOT gate is
actualised, showing the level scheme for only one of the qubits. The computation basis
that makes the qubit is shown in bold (|g〉 and |e0〉), and the other levels do not affect
the computation, but are needed to realise the gate.

When in the Lamb-Dicke (LD) limit, and using sufficiently low laser intensities, the centre-
of-mass (CM) mode can be excited in the atom, when the laser detuning is equal to the
negative of the frequency of the CM mode. Using this, they show the state |g, 0〉n is
unaffected, whereas the states |g, 1〉n and |e, 0〉n, are transformed as

|g, 1〉n → cos(kπ/2) |g, 1〉n − ie
iφsin(kπ/2) |e, 0〉n ,

|e, 0〉n → cos(kπ/2) |e, 0〉n − ie
iφsin(kπ/2) |g, 1〉n ,

where |g〉n and |e〉n represent the ground and excited states of the nth ion respectively
and |0〉 and |1〉 are the CM mode with zero and one phonon respectively. The wave vector
of the applied laser is k and φ is a phase added by the process. This is the case only if the
laser is applied for the specific amount of time t = kπ/(Ωη/

√
N (i.e., using a kπ pulse),

where Ω is the Rabi frequency, η is the LD parameter and N is the total number of atoms.
Using this, Cirac and Zoller detailed a process consisting of three steps (denoted as ’i)’,
’ii)’ and ’iii)’ in Fig. 2.1), that would actualise a controlled-NOT (CNOT) gate.

The transformations described above can be summarised by a unitary evolution operator
that acts on the system, given by

Ûk,q
n (φ) = exp[−ikπ

2
(|eq〉n 〈g| âe

−iφ + h.c.)],

where q is the number of CM mode phonons of the nth ion, â is the CM phonon annihila-
tion operator and everything else is as previously defined. Step ’i)’ in Fig. 2.1 refers to a
π laser pulse of polarisation q = 0 and phase φ = 0 on the mth ion. Step ’ii)’ shows a 2π
laser pulse of of polarisation q = 1 and phase φ = 0 on the nth ion. When considering the
evolution operator for this system, this second pulse, by rotating through the auxiliary
state |e1〉, will change the sign of the |g, 1〉 state. This is also shown by the transformation
equations. The final step ’iii)’ is the same as the first.

Combining these three steps as one total transformation, and defining |±〉 = (|g〉 ±
|e0〉)/

√
2, the entire process of the Cirac and Zoller gate can be summarised as |g〉m |±〉n →

|g〉m |±〉n and |e0〉m |±〉n → |e0〉m |∓〉n, and this is equivalent to a CNOT gate. More

11



information is given on controlled gates in section 4.1

2.2 Quantum Computing using a Geometric Phase

Gate

The gate proposed by Cirac and Zoller was found to be overly sensitive to disturbances,
and also had a very long gate operation time, of the order of 10ms, which proved far too
long to width stand quantum decoherence [28, 29], which typically happens on a time scale
orders of magnitude less. As a result, through the nineties there were many developments
within the field, and by the early 2000s, a common idea for a robust quantum computer
was the geometric phase gate.

In 2003, D. Leibfried co-authored a paper [30] that proposed a gate of this kind using
two qubit-ions. The main proposal was to construct a gate wherein the qubits where
in entangled through phase shifts in position-momentum phase space, making the gate
motional sates of the qubit irrelevant to the operation of the gate.

Using the displacement operator,

D(α) = exp(αa† − α?a),

where a† and a are the creation and annihilation operators respectively, and α = 1/(2z0)[∆z+
i∆p/(mω), where m is the mass of the qubit, ω is the frequency of its harmonic oscil-
lations within the trap, z0 =

√
~/(2mω) is the spread of the oscillator’s ground state

wavefunction, and most importantly, ∆z and ∆p are the displacements in position and
momentum space, respectively, the trap potential restricting positional movement to one
degree of freedom.

The laser would ’push’ the ions along a complete circular path in phase space, returning
them to their initial state, with an added phase equal to φ = A/~, where A is the area
of the circle who’s circumference was traversed in phase space. This idea was generated
from the principle that two sequential displacements will produce a phase factor of the
form

D(α)D(β) = D(α + β)exp(iIm(αβ∗)).

This additional phase, denoted by Im(αβ?), would entangle the qubits, allowing for quan-
tum computation.

This paper claimed an experimentally obtained fidelity of 0.97 with two Be+ ions. This
fidelity value is usually taken as the minimum requirement for scalable quantum computer
(when considering fidelity alone), however the gate’s main improvement was in its gate
speed, which claimed could be quicker for any given fidelity goal.

This was an effort to circumvent the issues mode gates were having at the time, mainly
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susceptibility to magnetic field fluctuations, however this geometric phase gate had its
own issues. It was 2.2% likely to spontaneously emit from from states during the gate
operation, resulting in decoherence. Also, since the laser was used to drive the qubit
along this circular path in phase space, the gate was also sensitive to fluctuations in its
detuning.

2.3 Quantum Computing using Trapped Rydberg Par-

ticles

2.3.1 Rydberg Atoms and Ions

Figure 2.2: A simplified diagram of a Rydberg atom with one electron excited to a Rydberg
state. The valence electron is shown in blue, the remainder of the atom shown in red with
the distance between the electron and centre of the nucleus shown as r = 4πε0n

2~2/e2m,
where n is the principle quantum number of the electron, m is the mass and e the charge
of the electron. The groundstate electrons shield the electron in the excited state from
the electric field of the nucleus, effectively reducing it to a single positive charge from the
reference point of the valence electron, as shown in the figure. The orbitals of electrons
excited to Rydberg states can be approximated as semi-classical Bohr orbits under specific
conditions [2], hence the depiction in the figure. Figure not to scale.

Rydberg atoms are specific type of excited atom, typically an alkali metal or alkali earth
metal (as the valence electrons of these elements have much lower ionisation energies),
where one or more electron has been excited to a very high principal quantum number.
These Rydberg atoms are then defined as Rydberg ions when the overall charge of the
particle is not equal to zero.

Usually only one electron is excited to this high principle quantum number in a Rydberg
particle; this results in the valence electron having a relatively large orbit in compari-
son to the rest of the electrons in the particle, as shown in Fig. 2.2. As a result, the
remaining electrons in their respective ground states shield the nucleus charge from the
valence electron, thus the electric field potential experienced by the valence electron can
be approximated to that experienced by an electron in a hydrogen atom.

Another result of the excitation of the valence electron to a very high principle quantum
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number is the strong electric dipole moment characteristic of Rydberg particles. As shown
in Fig. 2.2, the valence electron in its Rydberg state has a charge of negative one and the
nucleus shielded by the remaining electrons will have an effective charge of plus one (for
a Rydberg atom). The orbital distance of the valence electron is also very large, being
defined as r = 4πε0n

2~2/e2m, where n is the principle quantum number of the electron, m
is the mass and e the charge of the electron. For example, a regular Lithium ion has radius
of approximately 128pm, whereas Rydberg Lithium atom where the valence electron has
n = 127 would have a radius of approximately 1µm. These two properties (namely the
charge of the electron and effective charge of the nucleus, and the orbital distance of the
valence electron) result in Rydberg particles having very strong electric dipole moments.

There are other phenomena of Rydberg particles, such as the strong Coulomb interac-
tion between Rydberg particles, the longevity of Rydberg states and Rydberg blockades.
These, and their uses in quantum computing, will be explained further in the following
sections.

2.3.2 Quantum Computing using Rydberg Atom Blockades

An important phenomena present in Rydberg atoms that is used in their implementation
in quantum gates is the Rydberg blockade effect [31]. Driving the population of the
Rydberg level of a particular atom using a resonant laser has the effect of making the
Rydberg transition of the second qubit highly off-resonant, when within a certain distance,
typically of the order 10ms [32].

CNOT gates are most commonly associated with Rydberg atom gates, and this gate was
first demonstrated using Rydberg atoms by Isenhower in 2010 [33].

The procedure is very similar to that of the Cirac and Zoller gate, where we define one
qubit as the control qubit, and the other as the target qubit. By populating the Rydberg
state of the first control qubit, pulses can be applied to the target qubit, without out it
populating its Rydberg state due to the Rydberg blockade effect. This generates phases
on the qubit, specific to the length of the pulse applied, as explained in section 2.1.2. The
correct combination of pulses can form a CNOT gate.

However, a problem with this kind of gate is mainly twofold; spontaneous emission from
the Rydberg state by the control qubit; then population of the Rydberg state by the target
qubit. The probability of each of these events occurring being P = πΩ2/2V 2, where Ω is
the Rabi frequency and V the Coulomb interaction between the Rydberg states [34].

2.3.3 Quantum Computing using Populated Rydberg States

Entangling the qubit via the Coulomb interaction between the Rydberg states was also
proposed in 2000 by D. Jaksch [31], soon after the Sørensen and Mølmer gate. This model,
as suggested by the title of the article, was focused on improving the gate speed by using
the strong interaction between the Rydberg states to build the entanglement between the
qubits.
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These were found to improve the gate speed, however the resultant gates were extremely
sensitive to the separation of the atoms [35, 36], such that within the dipole-dipole in-
teraction limit (the range of distances where the dipole-dipole interaction is dominant)
there were no significant ranges for the value of the atom separation R with high gate
fidelities. Within the van der Waals limit (where the atom separation is greater than 8m),
these regions could be found when R & 100µm and the principle quantum number of the
Rydberg state was & 200 [37].

2.3.4 Quantum Computing using Trapped Rydberg Ions

The use of Rydberg ions stemmed from the Rydberg atom gate proposals that used the
dipole-dipole interaction between the qubits to build entanglement, with the main goal
of increasing the gate speed, thereby decreasing quantum decoherence. These gates have
been actualised with some success in decreasing gate speed to the order of 10µs [38, 18],
down to sub-microsecond gate speeds [20]. The mechanism of how these gates work will
be explained in the subsequent chapters. The main challenges with Rydberg ion gates
are spontaneous emission from the Rydberg state and phonons; vibrational excitations
in the ions, and their effect will be the focus of chapter 4. The following chapter will
focus on building the Jaynes-Cummings model to explore its dynamics, in lieu of forming
a controlled-Z gate with trapped Rydberg ions.
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Chapter 3

Dynamics of the Jaynes-Cummings
Model

3.1 Building the Jaynes-Cummings Model

3.1.1 Single Qubit Model

To build a model of a controlled-Z gate, we first start with a simple model of a single
qubit. The total Hamiltonian describing an atom in the electric field of a plane wave is

Ĥ = Ĥfield + Ĥatom + Ĥint. (3.1)

The field Hamiltonian takes the form

Ĥfield = ωâ†â, (3.2)

where â† and â are the phonon creation and annihilation operators of the centre-of-mass
(COM) mode [39] respectively and ω is the frequency of the trapping potential.

The atom Hamiltonian takes the form

Ĥatom = ωLσ̂z, (3.3)

where in this case, ωL is the frequency of the laser, making the detuning of the plane
wave laser from the resonant frequency of the system ∆ = ω − ωL. The atomic inversion
operator is given by σ̂z = |e〉 〈e| − |g〉 〈g|.

The interaction Hamiltonian [40] is given by

Ĥint = −d̂ · Ê. (3.4)

Here, E is the electric field operator of the laser, where the position of the ion is taken as
zero and only a single mode of the field is considered, namely the resonant mode. This
gives the form
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Ê = i

√
2πωL
V

uL(â− â†),

where ωL is the frequency of the laser, V is the potential difference of the trap, and uL is

the orthonormal field mode. Defining E0 = i
√

2πωL
V

uL, the electric field operator becomes

Ê = E0â+ E?
0â
†. (3.5)

The electric-dipole moment operator of the ion is given by d. In this case, the ion doesn’t
have an electric-dipole moment when it is in an energy eigenstate, therefore 〈g|d |g〉 =
〈e|d |e〉 = 0. This gives the result

d̂ = σ̂+ 〈e| d̂ |g〉+ σ̂− 〈g| d̂ |e〉 .

The spin-ladder operators are defined as σ̂+ = |e〉 〈g| and σ̂− = |g〉 〈e|. Taking d̂eg =

〈e| d̂ |g〉, we can rewrite the electric-dipole operator as

d̂ = d̂eg |e〉 〈g|+ d̂
?

eg |g〉 〈e| . (3.6)

We now can expand (3.4), using (3.5) and (3.6), giving the result

Ĥint = −d̂ · Ê,
Ĥint = −(d̂eg |e〉 〈g|+ d̂

?

eg |g〉 〈e|) · (E0â+ E?
0â
†),

Ĥint = −(d̂eg · E0â+ d̂eg · E?
0â
†) |e〉 〈g| − (d̂

?

eg · E0â+ d̂
?

eg · E?
0â
†) |g〉 〈e| ,

Ĥint = −1

2
[(Ωâ+ Ω̃â†) |e〉 〈g| − (Ω̃?â+ Ω?â†) |g〉 〈e|]. (3.7)

The Rabi frequency is defined as Ω = 2(d̂eg · E0), and the counter-rotating frequency

Ω̃ = 2(d̂eg · E?
0).

To simplify the interaction Hamiltonian some more, it must be transformed from the
Schrödinger picture to the interaction picture [41]. This transformation ’shares’ the time
dependence of the system observables between the state vectors and operators. This
allows many approximations to be made, in this case the rotating wave approximation.

First, a unitary transformation must be performed on the Hamiltonian. We can define
the Schrödinger picture Hamiltonian as

Ĥ = Ĥ0,S + Ĥ1,S,
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where Ĥ0,S = Ĥfield + Ĥatom and Ĥ1,S = Ĥint. This choice of Ĥ0,S is made as these parts
of the total Hamiltonian are exact and solvable, with no explicit time dependence. Now
the transformation matrix can be defined as

Û = exp(iĤ0,St), (3.8)

and the unitary transformation to the interaction picture

Ĥ1,IP = Û
ˆ

H1,SÛ †,

Ĥ1,IP = −1

2
[(Ωâe−i(ω−ωL)t + Ω̃â†ei(ω+ωL)t) |e〉 〈g|+ (Ω̃?âe−i(ω+ωL)t + Ω?â†ei(ω−ωL)t) |g〉 〈e|],

(3.9)

defining the ground state to be the zero of energy.

We now assume the relationship between the atomic transition and laser frequency
ωL ≈ ω. With this condition, the exponential terms oscillating at frequency ω − ωL ≈ 0
are approximately resonant, and the counter-rotating exponential terms oscillating at
ω + ωL ≈ 2ωL, approximately anti-resonant. The rotating wave approximation states
that under the conditions assumed here, ∆ � (ω + ωL), the counter-rotating terms can
be neglected [42]. This is because these terms describe the coupling between states with
very large energy differences, in comparison to the coupling strength. This results in very
little population change between these states being a result of the coupling.

This effect can also be seen by comparing the timescales of the resonant and anti-resonant
behaviour. Defining the following periods;

τ1 =
2π

∆
; (3.10)

τ2 =
2π

ω + ωL
≈ 2π

2ωL
, (3.11)

τ1 being the resonant period, and τ2 the anti-resonant. It is clear that τ1 � τ2, resulting in
the anti-resonant terms completing many full oscillations during one resonant time period.
These oscillations will average out to zero over the analysis of these longer timescales,
therefore those terms can be ignored.

The resulting interaction Hamiltonian in the interaction picture is

ĤRWA
1,IP = −1

2
[(Ωâe−i(ω−ωL)t) |e〉 〈g|+ (Ω?â†ei(ω−ωL)t) |g〉 〈e|]. (3.12)

To return back to the Schrödinger picture, we perform a unitary transformation again.
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ĤRWA
int = Û †ĤRWA

1,IP Û (3.13)

ĤRWA
int =

Ω

2
(âσ+ + â†σ−), (3.14)

Where for the sake of simplicity, Ω is assumed a real number, and it has absorbed the
negative sign. We can now write the full Hamiltonian as,

Ĥ = Ĥfield + Ĥatom + ĤRWA
int ,

Ĥ = ωâ†â+ ωLσ̂z +
Ω

2
(âσ+ + â†σ−). (3.15)

The dynamics of this Hamiltonian can be analysed by considering the Rabi oscillations
of the system. If initial state of the system is prepared as |Ψ(0)〉 = |e, 0〉, the evolution
through time of that state will be

|Ψ(t)〉 = cos(
Ωt

2
) |e, 0〉 − isin(

Ωt

2
) |g, 1〉 .

It then follows the probability of of the states |e, 0〉 and |g, 1〉 will be

Pe,0 = cos2(
Ωt

2
), (3.16)

Pg,1 = sin2(
Ωt

2
). (3.17)

This phenomena is due to the coupling between the atom and the field and can be modelled
using only this part of the Hamiltonian. This coupling forms new eigenstates in the
system, known as dressed states, which are a supersition of the states |e, 0〉 and |g, 1〉.

In the perfectly resonant case, the dressed states will be given by [43]

|1,±〉 =
1√
2

(|g, 1〉 ∓ |e, 0〉).

The Rabi oscillations of the Jaynes-Cummings model in (3.14) are shown in Fig. 3.1,
where all parameters are set to 1 for simplicity and the atom and field Hamiltonians are
not specifically needed for the Rabi oscillations to be seen.
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Figure 3.1: The dynamics of the Jaynes-Cummings model shown in (3.14) is shown in
this figure. The initial state is set to be |g, 1〉 and the parameter Ω is set to unity. The
only two states excited are the initial state and |e, 0〉. The model is limited to two allowed
phonon modes; the ground state |0〉 and the excited state |1〉.

3.1.2 Simple Double Qubit Model

We can extend the system described in the previous section by adding a second atom,
making the interaction Hamiltonian that models the Rabi oscillations

Ĥ =
Ω

2
(â(1)σ

(1)
+ − â(1)†σ

(1)
− + â(2)σ

(2)
+ − â(2)†σ

(2)
− ), (3.18)

where the superscript (n) denotes the nth atom. A method using the probability coeffi-
cients of all possible states can be used to solve and display the dynamics of this system.

We start with the time-dependant Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 = Ĥ |Ψ(t)〉 .

Now consider an arbitrary state |φ(t)〉, which is a supersition of the form

|φ(t)〉 =
N∑

m,n=0

Cgg,mn(t) |gg,mn〉+Cge,mn(t) |ge,mn〉+Ceg,mn(t) |eg,mn〉+Cee,mn(t) |ee,mn〉 ,

(3.19)

where Cgg,mn(t) is the time-dependant probability coefficient of the state |gg,mn〉, with
the rest following suit, and N is the number of phonon modes.
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We can now act on this state with the Hamiltonian, using the following rules for the
operators;

â |n〉 =
√
n |n− 1〉 ,

â† |n〉 =
√
n+ 1 |n+ 1〉 ,

σ̂+ |g〉 = |e〉 ,
σ̂− |e〉 = |g〉 ,

to give the result

Ĥ |φ(t)〉 =
Ω

2
[Cee,01(t) |eg, 00〉+ Cee,10(t) |ge, 00〉+ Cee,00(t) |eg, 01〉+ Cee,00(t) |ge, 10〉

− Cge,11(t) |ee, 01〉+ Cge,10(t) |gg, 11〉 − Cge,10(t) |ee, 00〉+ Cge,00(t) |gg, 01〉
+ Ceg,11(t) |ee, 10〉 − Ceg,01(t) |ee, 00〉+ Ceg,01(t) |gg, 11〉+ Ceg,00(t) |gg, 10〉
+ Cgg,11(t) |ge, 10〉+ Cgg,11(t) |eg, 01〉 − Cgg,01(t) |ge, 00〉 − Cgg,10(t) |eg, 00〉].

(3.20)

Then acting with operators on the left hand side of the Schrödinger equation, we can
collect the like terms of the state vectors to give the following series of coupled differential
equations;
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Ċeg,00(t) =
Ω

2
[−Cgg,10(t)]; (3.21)

Ċge,00(t) =
Ω

2
[−Cgg,01(t)]; (3.22)

Ċeg,01(t) =
Ω

2
[Cee,00(t)− Cgg,11(t)]; (3.23)

Ċge,10(t) =
Ω

2
[Cee,00(t)− Cgg,11(t)]; (3.24)

Ċgg,10(t) =
Ω

2
[−Ceg,00(t)]; (3.25)

Ċgg,11(t) =
Ω

2
[Ceg,01(t) + Cge,10(t)]; (3.26)

Ċee,00(t) =
Ω

2
[−Ceg,01(t)− Cge,10(t)]; (3.27)

Ċee,10(t) =
Ω

2
[−Ceg,11(t)]; (3.28)

Ċgg,01(t) =
Ω

2
[Cge,00(t)]; (3.29)

Ċee,01(t) =
Ω

2
[−Cge,11(t)]; (3.30)

Ċeg,11(t) =
Ω

2
[Cee,10(t)]; (3.31)

Ċge,11(t) =
Ω

2
[Cee,01(t)]. (3.32)

Two of these solutions, each with different initial states, are shown in Fig. 3.2(a) and
Fig. 3.2(b). The first starts with the |eg, 01〉 state fully populated. We see very similar
oscillations to the those in Fig. 3.1, where the state |ge, 10〉 is excited, showing the same
interplay between the states |g, 1〉 and |e, 0〉, but this time with two qubits.

A difference we see however is the states |ee, 00〉 and |gg, 11〉 being excited. This results in
the behaviour of the |g, 1〉 and |e, 0〉 states not being exactly sinusoidal, but rather there is
a delay in repopulating the states from zero. This also indicates the process of excitation
and de-excitation the system goes through, conserving energy all the while; starting in
|eg, 01〉, energy used to excite the second qubit’s phonon is transferred to excite its spin
state, giving |ee, 00〉; at the same time the opposite process is occurring in the first qubit,
where the energy used to excite its spin state is transferred to excite its phonon, giving
the state |gg, 11〉. The behaviour of these two intermediate states is sinusoidal. Following,
the state |ee, 00〉 excites the phonon of its first qubit using the energy from its spin state,
and the state |gg, 11〉 excites the spin of its second qubit using the energy from its phonon,
both populating the state |ge, 10〉.
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(a) (b)

Figure 3.2: The dynamics of the same double spin Jaynes-Cummings model, but with
two different initial states, with the Hamiltonian of the system is given in (3.18). The
dynamics of the Hamiltonian (3.18) where the initial state is prepared as Ceg01 = 1 is
shown in Figure (a). As a result, the states Cge10, Cgg11 and Cee00 are also excited, as they
are coupled to the initial state. Figure (b) shows the dynamics when the initial state is
a supersition of equal probability between all the states (1/

√
12). The states Cgg11 and

Cee00 both peak at approx. 0.33, 180 degrees out of phase. The states Cgg10, Cgg01, Cge11,
Ceg11, and the states Cge00, Ceg00, Cee10 and Cee01 all peak at 0.167; the two groups of states
being 180 degrees out of phase again. Lastly, the state Cge10 peaks at approx. 0.083, with
twice the period of the other states, as it is uncoupled.

3.1.3 Full Double Qubit Model

MW-Dressing of Ions

Similar to the methods used in Rydberg atom gates described in section 2.3.3, Rydberg ion
gates aim to populate the Rydberg states and use their strong dipole-dipole interactions to
build the entanglement between the qubits [38, 20]. The process requires pumping of the
ions to the Rydberg state by separate lasers, then dressing with a microwave field. This
results oscillating dipole moments in the ions, giving rise to the dipole-dipole interactions.

To model this effect, the remainder of this project will use a time dependant Rabi fre-
quency and detuning of the form

Ω(t) = Ω0 sin2(
πt

tf
), (3.33)

∆(t) = ∆0 cos2(
πt

tf
). (3.34)

where the parameters Ω0 = 0.1, ∆0 = 1.7 and the final time tf = 114.85/Ω0 are used.
Both the Rabi frequency and the detuning are shown together in Fig. 3.3.
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Figure 3.3: The Rabi frequency in (3.34) and the detuning in (3.34) are shown in blue
and orange, respectively. The parameters used are Ω0 = 0.1, ∆0 = 1.7 and the final time
tf = 114.85/Ω0.

Derivation of Field Interaction Hamiltonian

Deriving the double spin model of the laser-ion coupling requires a different method to
that of the single spin as many-body physics techniques are needed. We start with a
general Lagrangian describing the displacement of ions from their equilibrium positions,
when coupled by their Coulomb interactions [39],

L =
M

2

N∑
m=1

( ˙qm)2 − 1

2

N∑
n,m=1

qnqm[
∂2V

∂xm∂xn
]0. (3.35)

What is of importance here is the final sum, where qm is the small deviation in the position
of the mth ion, given by xm. The zero after the partial derivatives denotes they are being
evaluated at qm = qn = 0. These partial derivatives can be solved directly, giving a matrix

L =
M

2
[
N∑
m=1

( ˙qm)2 − ν2

N∑
n,m=1

Anmqnqm], (3.36)

where ν is the trap frequency. The eigenvectors of the matrix Anm, for N = 2 are given
by
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b(1) =
1√
2

(1, 1), (3.37)

b(2) =
1√
2

(−1, 1) (3.38)

We now define a general Hamiltonian describing the coupling between two ions and an
electric field as [44]

Ĥint =
Ω(t)

2
(σ̂

(1)
+ eik·x

(1)

+ σ̂
(2)
+ eik·x

(2)

+ h.c.), (3.39)

defining the laser wave vector as k = 2π/λ, where λ is the wavelength of the applied
laser, the position of the nth ion as the displacement vector x(n) and Ω(t) as the time
dependant Rabi frequency, given by (3.34).

The motion of the ions are coupled by their Coulomb interactions, so we define x(1) and
x(2) as

x(1) = l1(â1 + â†1) + l2(â2 + â†2), (3.40)

x(2) = l1(â1 + â†1)− l2(â2 + â†2), (3.41)

where the minus sign in the equation defining x(2) comes from the vector mode in (3.38).
We also define the oscillator length ln =

√
~/2mnνn, where mn and νn are the mass and

frequency of the nth ion, respectively.

We now expand the exponential terms in (3.39) up to the first order, giving the equation

Ĥint =
Ω(t)

2
[σ̂(1)
x + σ̂(2)

x + η1(â†(1) + â(1))(σ̂(1)
y + σ̂(2)

y ) + η2(â†(2) + â(2))(σ̂(1)
y − σ̂(2)

y )], (3.42)

where σ
(n)
x = (1/2)(σ

(n)
+ +σ

(n)
− ) and σ

(n)
y = (1/2i)(σ

(n)
+ −σ

(n)
− ) and the Lamb-Dicke param-

eter ηn = kln.

Equation (3.39) has already had the various approximations described in section 3.1.1
and is essentially a Jaynes-Cummings model [45].

What must also be noted is that the Taylor expansion is only made possible when the
conditions of being in the Lamb-Dicke regime are met. If we consider a particle in a laser
field, the particle having internal states and motional states, the Lamb-Dicke regime is
met when the recoil energy of the particle-photon interaction is much smaller than the
energy of the motional states. This effectively means the emission or absorption of a
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photon has a negligible effect on the motional state of the particle.

More formally, the Franck-Condon coefficients [45] describe this probability of the absorp-
tion or emission of a photon changing the motional state of a particle, and they are given
by

Fn→m = 〈m| exp(ikxx) |n〉 = 〈m| exp(iη(â+ â†)) |n〉 , (3.43)

where the probability is for the transition from motional state |n〉 to |m〉, with kx being the
projection of the laser wavevector on the x direction and η the Lamb-Dicke parameter.
When meeting the conditions for the Lamb-Dicke regime, we can make the following
Taylor expansion

exp(iη(â+ â†)) = 1 + iη(â+ â†) +O(η2), (3.44)

where the terms O(η2) and above can be ignored.

Dipole-Dipole Interaction between Rydberg Ions

Lastly, a dipole-dipole interaction term must be added to the Hamiltonian to complete
the model. This interaction takes the form [46]

Vdd =
1

4πε0

d1 · d2 − 3(n · d1)(n · d2)

R3
, (3.45)

where ε0 is the permittivity of free space, dn is the dipole moment of the nth ion, and
n is the normal vector parallel to the direction of the vector connecting the two ions.
Expanding this expression, we get the result

V̂dd =
1

4πε0R3
[A1(θ)(d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z)

+A2(θ)(d̂1+d̂2z − d̂1−d̂2z + d̂1zd̂2+ − d̂1zd̂2−)

−A3(θ)(d̂1+d̂2+ + d̂1−d̂2−)]. (3.46)

Here the components of the dipole operator in the circular basis are defined as d̂n± =
∓(d̂nx ± id̂ny)/

√
2, where d̂ni is the dipole operator for the nth ion for axis i in the

Cartesian basis. We also have the angular prefactors, given by [47],
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A1(θ) =
(1− 3 cos2θ)

2
,

A2(θ) =
3 cos θ sin θ√

2
,

A3(θ) =
3 sin2θ

2
,

where θ is the angle between the electric field and the normal vector n described earlier.
We know for the experimental setup we are modelling, the linear trap, this angle θ will
be approximately zero, resulting in A2 = A3 ≈ 0 and A1 ≈ −2. We can therefore
simplify (3.46) to

V̂dd ≈
−1

2πε0R3
(d̂1+d̂2− + d̂1−d̂2+ + 2d̂1zd̂2z).

Now expanding the circular dipole operators into the Cartesian basis, we get

V̂dd ≈
−1

2πε0R3
(d̂1xd̂2x − d̂1yd̂2y + 2d̂1zd̂2z).

Again considering the linear trap experimental setup modelled by this Hamiltonian, we
know that the dipole moments in the x and y directions will be negligible, making d̂nx =
d̂ny ≈ 0. We can also redefine the dipole operator in the z direction as d̂nz = dzσ̂nz, where
σ̂nz = |e〉 〈e| − |g〉 〈g| is the Pauli z matrix for the nth ion and dz is the dipole operator
coefficient. Combining this coefficient with the fraction at the beginning of the equation,
the dipole-dipole interaction becomes

V̂dd ≈ V σ̂1zσ̂2z,

where V = −d2
z/2πε0R

3. Lastly, we know that the dipole-dipole interaction is only present
in the Rydberg state |e〉. Making this change to the expression, the final dipole-dipole
interaction Hamiltonian becomes

V̂dd ≈ V σ̂1eeσ̂2ee = Ĥdd, (3.47)

where σ̂ee = |e〉 〈e|. Combining this with the previous terms, the full Hamiltonian mod-
elling a trapped Rydberg ion gate is given by,
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Ĥ = Ĥfield + Ĥatom + Ĥint + Ĥdd,

Ĥ = ω1â
†(1)â(1) + ω2â

†(2)â(2) +
∆(t)

2
(σ̂(1)

ee + σ̂(2)
ee )

+
Ω(t)

2
[σ̂(1)
x + σ̂(2)

x + η1(â†(1) + â(1))(σ̂(1)
y + σ̂(2)

y )

+ η2(â†(2) + â(2))(σ̂(1)
y − σ̂(2)

y )] + V σ̂(1)
ee σ̂

(2)
ee . (3.48)

Here the operator σz in (3.3) has been changed to σee as the detuning only operates in
reference to the Rydberg state |e〉.

The next chapter will fully introduce the concept of controlled gates, and will use the full
Hamiltonian in equation (3.48) to actualise a controlled-Z gate. It will also explore the
dynamics of the spin and phonon states in the qubits, and will ultimately discuss whether
such a gate has a high enough fidelity to be a good candidate for scalable quantum
computing.
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Chapter 4

Controlled-Z Phase Gate using Trapped
Rydberg Ions

4.1 Definition of Controlled-Z Phase Gate

Figure 4.1: The full level scheme for the two qubit system, described by the Hamilto-
nian in (3.48). The interaction basis is |gg〉 , |ge〉 , |eg〉 , |ee〉, and the computational basis
|ss〉 , |sg〉 , |gs〉 , |gg〉. The parameters are the laser detuning ∆, the Rabi frequency Ω, ω1

and ω2 are the atomic transition frequencies for the first and second ions respectively, and
V is the interaction between the |e〉 states.

A controlled gate is one that operates on at least two qubits, using one as a ’control’
qubit, whilst operating on the rest. The control qubit must be in a particular state for
the gate to perform the operation on the remaining states [48]. We can define a general,
two qubit controlled-U gate as

CU =


1 0 0 0
0 1 0 0
0 0 u00 u01

0 0 u10 u11

 , (4.1)

where the operation to be performed on the second qubit if the first is in the state |1〉 is
given by the matrix

U =

(
u00 u01

u10 u11

)
. (4.2)
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We get a controlled-Z gate when U = σz, the Pauli z matrix.

Fig. 4.1 shows the full level scheme for the system described by the Hamiltonian in (3.48).
We can see two basis in this figure; the ’interaction’ basis |gg〉 , |ge〉 , |eg〉 , |ee〉 which is
used in the Hamiltonian and is the basis coupled to the laser field, and the ’computational’
basis |ss〉 , |sg〉 , |gs〉 , |gg〉, where the actual computation of the gate will take place, as
suggested by its name. As stated earlier, we define a controlled-Z phase gate in this basis
by the matrix [49]

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e−iπ

 , (4.3)

where the computational basis given before goes with increasing i and j of the elements
of the matrix. This means if we have an arbitrary state |φ〉 in this basis, given by

|φ〉 =


a
b
c
d

 ,

and it is acted upon by an ideal CZ gate, the result will be

ĈZ |φ〉 =


a
b
c

e−iπd

 . (4.4)

Therefore, an ideal CZ gate is one which acts on a state in its computational basis and
returns it to its initial state, with a phase of −π on the |gg〉 state [49].

4.2 Populations of Spin and Phonon States during

Gate Operation

4.2.1 Spin Populations during Gate Operation

Spin Populations for Ideal States

The Hamiltonian is not in the computational basis, but rather the interaction. This is
because its purpose is to describe the mechanism of the interaction and building the
entanglement between the two qubits in order for the gate to be realised in the computa-
tional basis. Hence the importance of the high-lying Rydberg states |e〉, as explained in
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3.1.3. They have very strong Coulomb interactions, as mentioned in chapter two, which
is used to entangle the qubits. The dynamics of the populations of the spin states in the
interaction basis can be analysed show a clear picture of this process.

Fig. 4.2 shows the populations of the |g〉 and |e〉 states for both qubits, through the gate
operation when the Fock state |gg, 00〉 is used as the initial state. We see that the |e〉
states of both qubits are populated during the gate operation. This shows the possibility
of the entanglement of the qubits.

We also see the states return to their initial sates by the end of the gate operation. For
the Fock state used as the initial state, this is expected and further supports an ideal gate
operation.

Figure 4.2: The dynamics of the spins during the gate operation, for Fock state |gg, 00〉,
showing a smooth Gaussian form, with the |e〉 states of both qubits being populated during
the gate operation. Notably, the populations of the |g〉 returns to unity for both qubits.
The parameters used are ∆0 = 0.1, Ω0 = 0.7, ω1 = 0.1, ω2 = 0.2, l1 = l2 = η = 0.1,
V = 1.7 and the final time tf = 118.45/ω1.

Spin Populations for Coherent States

The previous section prepared the initial state in the ideal case of |gg, 00〉, however this
is not realistic as there will always be noise in the system and probability of exciting the
phonon modes. Using coherent states will be a better representation of real conditions in
a quantum computing gate.

The coherent states are formed using the displacement operator given by

D̂(α) = exp(αâ† − α?â), (4.5)

where for this project, α is a real number. This displacement operator acts as a kind
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of ’push’ exciting higher phonon modes. A greater α results in a bigger ’push’. For the
modelling of a qubit in a quadratic potential, this ’push’ results in oscillations [50].

The displacement operator acts as:

D̂(α) |0〉 = |α〉 .

We can model the effect of the displacement operator on the distribution of population
of the phonon modes [51] as

Pn = exp(
−|α2|

2
)
αn√
n!
, (4.6)

Pn is the population of the nth phonon mode. The distributions for α = 0.2, 0.5, 2.0 are
shown in Fig. 4.3. In reality, there is an infinite number of phonon modes, each populated
to some level, of the form

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 .

However, by knowing the distribution of the populations of the phonon modes, the math-
ematical model of the Hamiltonian can be truncated to the minimum number of phonon
modes needed for an accurate approximation. This decreases the size of the Hilbert space,
making the simulations more efficient.

Figure 4.3: The population distribution of the phonon levels for different coherent states.
The displacement coefficient α, shown in (4.6), ranges from 0.2 to 2.0. For states with a
smaller α, most phonon levels hold a negligible amount of population and can be ignored;
for α = 0.2, the first two phonon levels hold the majority of the population.
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Fig. 4.4 shows the spin population dynamics (calculated by summing the populations of
each individual spin state from the complete population matrix) for an initial coherent
state |gg, αα〉, where α = 0.2, 1.2. The effect on the dynamics are clear in comparison
to the Fock state shown in Fig. 4.2. The general Gaussian form is still present, but there
are oscillations in the dynamics which were not present in the Fock state.

What is also important is that the populations of the spin state after the gate operation
do not return back to as they were in the initial state; fully populated |g〉 states. Rather,
there is some population remaining in the |e〉. This relative population at the end of the
gate operation increases as α increases. This relationship is shown in Fig. 4.5.

(a) (b)

Figure 4.4: The qubit spin dynamics for coherent states with different displacement co-
efficients α. Figure (a) and Figure (b) shows when α = 0.2 and α = 1.2 respectively.
The initial state is unaffected, however the populations of the spin states during the gate
operation and the final state is clearly different from that of the Fock state in Fig. 4.2.
The parameters used are ∆0 = 0.1, Ω0 = 0.7, ω1 = 0.1, ω2 = 0.2, l1 = l2 = η = 0.1,
V = 1.7 and the final time tf = 118.45/ω1 [3].

Fig. 4.5 shows the end population of the |g〉 state for the first qubit against α, with the
model for Fig. 4.5(a) being limited to N = 2 and Fig. 4.5(b) limited to N = 30. First
detail worth noting is the sinusoidal nature of the graphs. This can be explained by the
limiting of the phonon modes in the model.
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(a)

(b)

Figure 4.5: The population of the |g〉 state for the first qubit, at the end of the gate
operation. All parameters between the two simulations are the same, with the exception
being (a) has N = 5 and (b) has N = 30. Increasing N increases the amplitude and
wavelength of the waveform in the graphs. The parameters used are ∆0 = 0.1, Ω0 = 0.7,
ω1 = 0.1, ω2 = 0.2, l1 = l2 = η = 0.1, V = 1.7 and the final time tf = 118.45/ω1.

As explained earlier, the displacement operator gives the qubit a ’push’, exciting higher
phonon modes. In reality, there is an infinite number of phonon modes so increasing α
will always result in higher modes being excited, but with a limited model results in a
’rebound’, exciting lower phonon modes again.

An analogy would be a force applied to a mass on a rough surface, some distance away
from a wall. A small force will result in the mass coming to rest at some displacement
before it hits the wall. When increasing the force applied to mass, it will eventually hit
the wall and rebound back towards its initial position, decreasing its displacement. This
analogy is supported by Fig. 4.5, which shows that when N is increased from 5 to 30, the
period and the amplitude of the result in the graph both increase.
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4.2.2 Phonon Populations during Gate Operation

Phonon Populations for Ideal States

It is important to see that the dynamics of the spin states during the gate operation doesn’t
have a sizable effect on the phonon populations for the initial state |gg, 00〉, although we
know there will be very small populations in these states. The dynamics of the phonon
modes for the first qubit are shown in Fig. 4.6.

Figure 4.6: The dynamics for the Fock state |gg, 00〉. This example is somewhat trivial,
but nevertheless important to see the change in spin populations doesn’t effect the phonon
populations.

Phonon Populations for Coherent States

Using the same coherent state model as in (4.2.1), Fig. 4.7 shows the same gate operations
as Fig. 4.4, however, the dynamics of the phonon modes for the first qubit are shown
instead.
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(a) (b)

Figure 4.7: The phonon dynamics for coherent states with different displacement coeffi-
cients, both figures show the first qubit. Figure (a) and (b) show α = 0.2 and α = 1.2
respectively. The dynamics of the phonon states, during the gate operation, doesn’t
change significantly with alpha, but rather the relative amount each phonon state is
populated. For example, the dynamics of the |1〉 shown in both figures doesn’t change,
however for α = 0.2, the average population is approximately 0.25 during the gate op-
eration, but for α = 1.2, the population is approximately 3.5. The parameters used are
∆0 = 0.1, Ω0 = 0.7, ω1 = 0.1, ω2 = 0.2, l1 = l2 = η = 0.1, V = 1.7 and the final time
tf = 118.45/ω1.

Unlike the spin dynamics, the phonon dynamics are very stable through the gate opera-
tion, the major change with α being the initial populations of each phonon mode, rather
than change during the gate operation. This is expected as we know the displacement
operator acts to excite higher phonon modes and we see these being excited more so when
α = 1.2 as opposed to α = 0.2. We also know that the interaction basis is formed of the
spin states, so more change is expected in these.

Notwithstanding, there are still small deviations in the dynamics of the phonon modes in
the same region as the Gaussian peaks/troughs in the spin dynamics. These deviations
also become more pronounced when α is increased, meaning when higher phonon modes
are excited at the beginning of the gate operation, there is more transfer of population
between the phonon states during the gate operation. This would suggest that there is
potentially some correlation between the two that is worth exploring further.
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Figure 4.8: The dynamics for a coherent state where the displacement coefficient α = 0.2.
The populations for the states |g〉 and |0〉 are shown. There is overlap between the
oscillations in the spin dynamics with the small disturbances in the phonon dynamics, as
shown by the vertical dashed lines.

Fig. 4.8 shows this using the dynamics of the |g〉 and |0〉 states of the first qubit, when
α = 0.2. The vertical lines show some correlation between the peaks in the oscillations
in the Gaussian of the spin dynamics and the deviations in the phonon dynamics. This
could be explained by considering a semi-classical representation of the system; where the
ions are flipping 180 degrees between the spin-up and spin-down states, whilst oscillating
back and forth within a potential trap. This could be the cause of the deviations in the
phonon dynamics. It would also explain the lack of deviations in the phonon dynamics for
the Fock state |gg, 00〉, as in this representation, this ion wouldn’t be oscillating within
the trap.

There are obviously problems with this representation, for example, the position of an ion
within a potential trap will always have a level of uncertainty. However, the representation
could help discover the cause of the deviations.

4.2.3 A Simple Definition of the Fidelity of a Quantum Gate

The fidelity of a quantum gate (calculated using the methods described below) can be
loosely described as a measure of the gate’s quality, and is directly linked with potential
for the scalability needed for a true quantum computer [52, 53, 54].

We can define a simple definition of the fidelity as
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F = TrρW, (4.7)

F = Tr[|ψi〉 〈ψi|t〉 〈t|],
F = Tr[〈ψi|t〉 〈t|ψi〉],
F = | 〈ψi|t〉 |2, (4.8)

where ρ is the initial state density matrix, W is the density matrix of the state at time t,
|ψi〉 is the initial state and |t〉 is the state at time t. The resulting fidelity is clearly then
the probability of finding the system in its initial state, at any given time.

Fidelity of Gate through Gate Operation

Figure 4.9: The fidelity of the gate through time, calculated using (4.8), for the Fock
state |gg, 00〉 and two different coherent states of the form |gg, αα〉; α = 0.2 and α = 1.2
are shown in orange and green respectively. Note how the peaks of the fidelity of the two
coherent states never higher than the curve of the Fock state. The parameters used are
∆0 = 0.1, Ω0 = 0.7, ω1 = 0.1, ω2 = 0.2, l1 = l2 = η = 0.1, V = 1.7 and the final time
tf = 118.45/ω1.

Fig. 4.9 shows the fidelity of the gate through time calculated using (4.8), the initial states
being the Fock state |gg, 00〉 and two coherent states of the form |gg, αα〉, where α = 0.2
and 1.2. The fidelity of the Fock state shows a smooth curve, very similar to that of the
spin state dynamics. This is consistent with what is expected, as we know the probability
of exciting phonon modes in this case is negligible, therefore the only changes that could
effect the fidelity of the gate are the populations of the spin states.

The behaviour changes when the state are displaced initially. Periodic oscillations (the
period equal to approx. 6.23/ω1) arise in the fidelity of the gate when using coherent
states, with the amplitude of these oscillations increasing as α is increased. At the begin-
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ning of the gate operation, the peaks of these oscillations reach the fidelity of the Fock
state, but though the gate operation, they fall away a settle to a level lower than the
fidelity of the Fock state. The peaks of the coherent state with α = 1.2 falls away faster
and settles to a lower peak end fidelity than that of the state where α = 0.2.

What is also worth noting is that the the period of the oscillations in the fidelity of
the coherent states doesn’t change at any point during the gate operation, the form of
oscillations do, around t = tf/2, and then they settle into a new oscillatory pattern with a
different form. This is more clearly seen in the fidelity of the coherent sate where α = 0.2.

They falling away of the peaks of the fidelity can be explained by the |e〉 states of both
qubits being slightly populated at the end of the gate operation, as shown in Fig. 4.4(b).
However, the oscillations at the beginning of the gate operation cannot be explained by
either the spin or phonon dynamics as both are stable when t < tf/2, regardless of α.
These oscillations in the fidelity are caused by the phase of the various states. This also
explains why the oscillations are periodic and why there are none in the Fock state fidelity.

4.3 Robust Definition of the Fidelity of a Controlled

’Z’ Phase Gate

4.3.1 Derivation of Robust Definition of Gate Fidelity

With the same general definition of fidelity;

F = TrρW,

which is slightly different from (4.8) as we now define ρ = |ψo〉 〈ψo| as the ideal gate
output state density matrix. This means |ψo〉 = Ûi |ψi〉 is the output of an ideal gate Ûi
after operating on an initial state |ψi〉. Then we define |t〉 = e−iĤt |ψi〉 as the initial state
at a given time t, when being operated on by the actual gate modelled by the Hamiltonian
in (3.48). W = |t〉 〈t| is the density matrix of the state |t〉.

The fidelity remains

F = | 〈ψo|t〉 |2, (4.9)

however, this can now be expanded in the computational basis, rather than the interaction.

The ideal output state in the computational basis is given by

|ψo〉 =
1

2
[|ss〉+ e−iφg(|sg〉+ |gs〉) + e−iφgg |gg〉 ⊗

N∑
m,n=0

C(o)
mn |mn〉]. (4.10)
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The computational basis is as given previously, |ss〉 , |sg〉 , |gs〉 , |gg〉, the phonon states

are denoted in the sum by |mn〉 and C(o)
mn is the probability coefficient at the end of the

ideal gate operation for the phonon state |mn〉. This will equal zero for all the coefficients,

except for the state |00〉, where C(o)
00 = 1, by definition of the ideal CZ gate.

The phase factors are found on the |g〉 states, with φg denoting the phase on a basis vector
with one |g〉 state, and φgg the phase on the basis vector |gg〉. Both of these phases are
shown in Fig. 4.10(a) and Fig. 4.10(b) respectively.

(a) (b)

Figure 4.10: The single and double spin phase on the |gg, 00〉 state during the gate
operation, using the full Hamiltonian in (3.48), shown in Figures (a) and (b) respectively.
The phase, through the gate operation, of the single spin state |g, 0〉 is identical to the
phase on the state |gg, 00〉 when there is no interaction between the qubits. The Coulomb
interaction V = 1.7, the Rabi frequency Ω0 = 0.1, the laser detuning ∆0 = 1.7 and the
Lamb-Dicke parameter for both qubits η1 = η2 = 0.1.

The phase φg is calculated using a different Hamiltonian than that of φgg. The objective
is to find the phase of a single |g〉 state when operated on by the gate, without any
interference from the |g〉 or |e〉 state of the other qubit. To achieve this, the Hamiltonian
given in (3.48) is changed to remove the parts modelling the interaction and entangled
elements between the two qubits, resulting in

Ĥ = ∆(t)σ̂(1)
ee +

Ω(t)

2
[σ̂(1)
x + η1(σ̂†(1)

y â†(1) + σ̂(1)
y â(1)) + η2(σ̂†(1)

y â†(2) + σ̂(1)
y â(2))]. (4.11)

The solution to this Hamiltonian was then used in finding the phase on the single spin
state |g〉.
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Entangled Phase

We can rotate the |g〉 state by φg, giving the final output state for an ideal CZ gate

|ψo〉 =
1

2
[|ss〉+ |sg〉+ |gs〉+ e−iφent |gg〉 ⊗

N∑
m,n=0

C(o)
mn |mn〉], (4.12)

where the entangled phase is defined as φent = φgg − 2φg. This entangled phase, as per
the definition a the CZ gate given in (4.3), is φent = −π for an ideal gate and initial state.
This entangled phase is shown in Fig. 4.11.

The |gg〉 has the important e−iπ phase, but importantly this state is coupled with the
phonon states |mn〉. This is because the phonon modes are only present in the interaction
basis and the |g〉 states are also part of that basis.

Figure 4.11: The the entangled phase of the state |gg, 00〉, for the Hamiltonian given
in (3.48). The Coloumb interaction V = 1.7, the Rabi frequency Ω0 = 0.1, the laser
detuning ∆0 = 1.7 and the Lamb-Dicke parameter for both qubits η1 = η2 = 0.1.

Similarly, we can define the state at a time t being acted on by the actual gate modelled
in (3.48) as

|t〉 =
1

2
[|ss〉+ |sg〉+ |gs〉+ e−iφt(t) |gg〉 ⊗

N∑
m,n=0

Cmn(t) |mn〉], (4.13)

where φent(t) is the entangled phase as defined above and Cmn(t) is the probability coeffi-
cient of the phonon state |mn〉, both at a given time t.

Now we can derive a new equation for the fidelity of the gate, using (4.9), which gives the
result
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F = | 〈ψo|t〉 |2,

F = |1
4

[〈ss|ss〉+ 〈sg|sg〉+ 〈gs|gs〉+ ei(φent(t)−π) 〈gg|gg〉
N∑

m,n=0

C(o)?
mn Cmn(t) 〈mn|mn〉]|2,

F = |1
4

[3 +
N∑

m,n=0

C(o)?
mn Cmn(t)]|2,

F =
1

16
[3 +

N∑
m,n=0

C(o)?
mn Cmn(t)]2, (4.14)

where all parameters are the same as defined previously.

4.3.2 Robust Gate Fidelity from Ideal Initial State

Fig. 4.12 shows the fidelity of the gate modelled by (3.48), using the equation for fidelity
in (4.14), for the initial Fock state |gg, 00〉. We see a very similar, smooth Gaussian curve
as in Fig. 4.9. The difference comes in the depth and width of the troughs. For this new
method of calculating the fidelity, the minimum value is F = 0.45, and the half-depth
width of the trough is 225.2(µs)/tf ; for the simple method in section 4.2.3, the minimum
value is F = 0.48 and the half-depth width is 217.1µs/tf .

Figure 4.12: The fidelity of the gate through time, calculated using (4.14), for the ideal
initial state |gg, 00〉. The parameters for the Hamiltonian (3.48) used for the gate op-
eration are: The Coloumb interaction V = 1.7, the Rabi frequency Ω0 = 0.1, the laser
detuning ∆0 = 1.7 and the Lamb-Dicke parameter for both qubits η1 = η2 = 0.1. As
expected, the fidelity of the gate starts, and returns to unity. The dashed horizontal line
shows the minimum fidelity required for a scalable quantum computer.
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Moreover, a gate fidelity of approximately 0.9999 has been given as the minimum value for
scalable quantum computing [22], after reassessment of earlier models. The final fidelity
of the gate, shown in Fig. 4.12, is 0.9999472, which meets the scalability requirement.
This may not tell the whole story however, as what is shown in Fig. 4.12 is known as the
intrinsic fidelity [22], i.e. the fidelity of the Hamiltonian modelling the gate, under the
perfect conditions of a simulation. In reality, there could be infidelities potentially caused
by environmental factors.

4.3.3 Robust Gate Fidelity from Coherent Initial State

Figure 4.13: The fidelity of the gate, through time, for coherent initial states |gg, αnαn〉,
where α1 = 0.2, α2 = 0.5 and α3 = 1.2. The parameters for the Hamiltonian (3.48)
used for the gate operation are: The Coloumb interaction V = 1.7, the Rabi frequency
Ω0 = 0.1, the laser detuning ∆0 = 1.7 and the Lamb-Dicke parameter for both qubits
η1 = η2 = 0.1. For all values of α, the oscillations are completely regular before the region
of the Gaussian, but become noisy after this region.

Shown in Fig. 4.13 are the fidelities through time for various coherent states, when α =
0.2, 0.5 and 1.2. It can be seen that the initial fidelity is no longer unity, as with the simple
definition, but it decreases as α increases. This is because as α increases, the initial state
|gg, αα〉 becomes less and less similar to the Fock state |gg, 00〉. It is also important to
note that the fidelity will never be higher than its initial value at t = 0. This means that
the maximum value of α that could possibly give an acceptable end fidelity is the wherein
the fidelity at t = 0 is 0.97. This value is α = 0.25. Similarly, we can determine the
maximum value for α that will result in an end fidelity that satisfies the requirement for
a scalable gate of F = 0.9999 is αmax = 0.0525.
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Chapter 5

Conclusion

In summary, the history of quantum computing was introduced in the first two chapters.
Focusing on the use of trapped atoms and ions, the development of quantum computing
was briefly explored in the second chapter; considering the pros and cons of each proposal,
an argument was made for the use of trapped Rydberg ions in quantum computing gates.
Chapter three derived and examined the properties of the Jaynes-Cummings model, the
mathematical basis of quantum computing using trapped particles.

Finally, in the forth chapter, the Fock state |gg, 00〉 and coherent states |gg, αα〉 were
analysed for a Hamiltonian modelling the behaviour of MW-dressed Rydberg ions in a
linear trap, showing that the gate is capable of achieving fidelities over the threshold of
0.9999 in both cases; the former achieving a fidelity of 0.9999472, the latter having the
limit αmax = 0.0525 to maintain a fidelity over the threshold. A more realistic model of
noise to explore would be thermal states, and following on from that, thermal coherent
states [55], which displace thermal states in phase space. The statistical nature of this
model may be needed to more accurately simulate the conditions of many gates, as re-
search moves from single gates to multiple. We also know that displacing qubits in phase
space has been used as a method to entangle qubits [30], which could reveal a possibility
of using thermal coherent states to develop even quicker gates.
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