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Abstract

Primordial black holes (PBHs), black holes that are formed in the early

Universe from the collapse of over-densities, are a candidate for non-baryonic

cold dark matter. The fraction of dark matter made up of PBHs has been

constrained using multiple mechanisms including evaporation, gravitational

lensing, gravitational waves from mergers, large-scale structure, accretion and

the disruption of wide binaries. In this thesis we review the work on wide

binaries and improve the reliability of these constraints, primarily by intro-

ducing a more physically motivated initial semi-major axis distribution for our

simulated binaries.

We used Monte Carlo simulations to implement halo wide binary encoun-

ters with PBHs over a period of 10Gyr. The binaries are placed in a sea of

perturbers and encounters are calculated using the impulse approximation.

Broken binaries are kept in the simulations and used to calculate constraints,

since their peculiar velocities are similar enough to be mistaken for binary

stars. Our simulation results are consistent with previous work for a log flat

initial semi-major axis distribution, and when broken binaries are removed

from the simulations.

We calculate constraints by using a modified χ2 test to compare the simu-

lated binary distribution with a catalog of observed binaries. A χ2 test provides

p-values whilst also quantifying the goodness of the best fit parameters. We

use a modified version in order to correct for the small number of binaries

used in the comparison. Our constraints are re-scaled to take into account the

non-uniform dark matter density along the binary Galactic orbits. To find the

value by which to re-scale the constraints, we calculate the time-averaged dark

matter density along each binary orbit for which we have sufficient data.

Our final constraints are much weaker than those calculated previously,

primarily due to the inclusion of unbound binaries and a more physically mo-

tivated semi-major axis distribution. These constraints are subdominant to

previously calculated constraints from other effects such as microlensing, grav-

itational waves and accretion in the PBH mass range 1M�−1000M�, allowing

PBHs to make up at least 20% of dark matter.

More detailed simulations are needed to find tighter constraints on the PBH

mass fraction: simulations of the Galactic potential would take into account the

Galactic tide and disk and the variable dark matter density. These constraints

could also be made more reliable by using a larger catalog of binary stars, such

as a subset of GAIA DR2.
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Chapter 1

Introduction

In 1932, Oort measured the velocity dispersion of the stars in our local neigh-

bourhood and estimated there to be almost twice as much mass than is vis-

ible, hypothesising the existence of dark matter [1]. Shortly after, in 1933,

Fritz Zwicky estimated the mass of the Coma cluster using the viral theorem

and, due to the constituent galaxies having too large peculiar velocities for

the cluster to be gravitationally bound, found there to be around 400 times

more mass than is observable, coining the term ‘dark matter’ to describe this

invisible mass [2]. This ratio was confirmed in 1936 by Smith who measured

the mass of the Virgo cluster [3]. Although we are certain that either dark

matter exists, or Newtonian gravity is incorrect, almost 100 years later the

exact nature of dark matter is still unknown.

The physics of the early Universe can provide some insight into the prop-

erties of dark matter by allowing us to calculate the fraction of matter that is

made up of baryons. The nuclei of the light elements: deuterium, helium-3,

helium-4, and lithium-7 were formed approximately 5 minutes after the Big

Bang, once the Universe was cool enough for deuterium to survive and still

hot enough for fusion to happen, this process is called Big Bang Nucleosynthe-

sis (BBN). The abundance of these elements is dependent on multiple factors

including the baryon-photon ratio. When the reaction rate of neutron-proton

interactions became lower than the rate of expansion of the Universe, neutrons

were no longer created but continued to decay with a mean life of ∼ 880 sec-

onds [4] before forming nuclei. This resulted in a final neutron-proton ratio of

1



2 Chapter 1. Introduction

1 : 7. From the primordial abundances of the light elements and the photon

number density, which is calculable from the cosmic microwave background

(CMB), it’s possible to calculate the baryon density.

As well as being either baryonic or non-baryonic, dark matter can also

be categorised as either hot (free streaming length much larger than a pro-

togalaxy) or cold (free streaming length much smaller than a protogalaxy).

The large free streaming length of hot dark matter (HDM) predicts top-down

structure formation, i.e. large galaxy clusters first. However, predictions for

cold dark matter (CDM) and simulations of structure formation with CDM

[5, 6], where small structures form first, are consistent with the structure for-

mation that we observe [7, 8]. Warm dark matter (WDM) has a free streaming

length similar to the size of a protogalaxy, but while there are possible particle

candidates for WDM and CDM (e.g. sterile neutrinos and Weakly Interacting

Massive Particles, respectively), no particles that are known to exist qualify

as either WDM or CDM.

The structure of this thesis is as follows, in this chapter I will briefly discuss

the current evidence for dark matter, possible dark matter candidates, the

formation of primordial black holes (PBHs), and in more detail the current

constraints on PBH dark matter, the subject of this thesis. In Chapter 2 I

cover necessary theory of wide binary disruption and orbital mechanics and

the previous work on which we intend to improve. In Chapter 3 I describe our

simulations in detail, starting with our approximations, stating our parameters

and method, and finishing with our simulation results. Our final constraints

are given in Chapter 4, along with how they were calculated and the details of

the observational data we used. Our conclusions and suggestions for expanding

on this work are summarised in Chapter 5.

1.1 Dark matter

In Sec. 1.1.1 I discuss the main evidence for the discovery of, and subsequent

research on, dark matter, followed in Sec. 1.1.2 by a brief overview of the
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current dark matter candidates.

1.1.1 Evidence for dark matter

Some of the earliest evidence for dark matter comes from the rotation curves

of spiral galaxies [9, 10]. In this section I give the basic theory behind this

evidence and describe some of the other evidence for dark matter that derives

from gravitational interactions.

Galaxies

The orbital speed of stars and gas clouds can be measured from the Doppler

shift of the Hydrogen 21cm line, which we can compare to predicted speeds

calculated using Newton’s laws of gravity. Newton’s laws give a circular speed

at radius r,

vc =

√
GM(< r)

r
, (1.1)

where G is the gravitational constant and M(< r) is the mass within radius

r. At large r, luminosity density is observed to drop exponentially, so if stars

dominate, the mass M(< r) should be constant and we would expect to find

vc ∝ r−1/2. However, in reality, we find that the circular velocity is actually

constant at large r, this implies that M(< r) ∝ r and therefore the mass

density ρ ∝ r−2, if Newtonian gravity is correct. This invisible mass is dark

matter. More evidence for dark matter from galaxies comes from the stability

of spiral galaxies; self-gravitating disks require a spherical halo with a large

velocity dispersion in order to form bars and remain stable [11].

Galaxy clusters

We can estimate the total mass of galaxy clusters using the virial theorem,

which tells us that in a self-gravitating system the kinetic energy T and po-

tential energy V are related by [see e.g. Ref. 12],

2T + V = 0. (1.2)
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We can measure the kinetic energy of the galaxies from their velocities by

application of the Doppler effect, allowing us to estimate the mass of the cluster

from its potential energy. This gives a mass-luminosity ratio of approximately,

M

L
∼ 400

M�
L�

, (1.3)

where M� is the solar mass and L� is the solar luminosity. This ratio is

equivalent to a mass density parameter (fractional density of matter in the

universe relative to the critical density for a flat universe see Eq. (1.4)) Ωm ∼

0.3 [e.g. Ref. 13].

The baryon fraction can be estimated from X-ray spectra and surface

brightness measurements by assuming the gas is spherically symmetric and

in hydrostatic equilibrium. This gives an estimated baryon fraction of fb ∼

0.144± 0.005 [14].

We can also find the mass distribution in a galaxy cluster by observing

gravitational lensing from background galaxies. The positions and intensities

of the images lensed by the galaxy cluster give information on the clusters’

mass distribution [15]. In merging clusters, like the bullet cluster, hot X-

ray emitting gas from the colliding subcluster interacts with the main cluster

and lags behind. This gas is the dominant baryonic matter component, so

in the absence of dark matter, the gravitational potential of the cluster is

expected to follow the distribution of the gas. However, if the cluster mass is

dominated by non-baryonic dark matter, which is assumed to be collisionless

and therefore follows the galaxies during the collision, the cluster potential will

also follow the distribution of the galaxies. Clowe et al. [16] find that the mass

is concentrated around the galaxies in the cluster and subcluster implying that

they must contain a significant amount of non-baryonic dark matter.

CMB anisotropies

Once the temperature of the Universe dropped sufficiently for protons and elec-

trons to form neutral Hydrogen atoms, the Universe became transparent. The
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photons from this time are still propagating through the Universe, although

their wavelength has increased due to its expansion. This background radia-

tion is called the Cosmic Microwave Background (CMB) and it encodes a large

amount of information about the early Universe in the amplitude and angular

power spectrum of its temperature fluctuations. The temperature anisotropies

allow us to measure the matter and baryon density parameters. The density

parameter for component i is defined as,

Ωi ≡
ρi
ρc

=
8πGρi
3H2

, (1.4)

where ρi is the mass density or equivalent energy density of component i, ρc

is the critical density: the total density required for the Universe to be flat, G

is the gravitational constant, and H is Hubble’s constant.

It is possible to conclude that there must be non-baryonic dark matter

from the amplitude of the CMB temperature fluctuations. Baryons are tightly

coupled to photons until decoupling so baryon perturbations can only grow

after decoupling. Non-baryonic dark matter perturbations, however, can start

growing sooner, and for temperature fluctuations to grow enough from their

initial value, there must be some non-baryonic dark matter.

The angular power spectrum of the CMB is a measure of how correlated any

two given points are as a function of their angular separation in the sky. We

can infer different information about the early Universe by studying different

features in the power spectrum, such as the acoustic peaks which relate to the

scale of primordial fluctuations. This scale is related to the baryon acoustic

oscillations (BAOs), which are a measure of how far sound waves were able to

travel in the baryon-photon plasma. BAOs are caused by the competing forces

of gravity and pressure.

Table 1.1 gives the density parameters for the total matter (Ωm), baryonic

matter (Ωb) and cold dark matter (Ωc), measured by the Planck Collaboration

[17]. These parameters are found by combining CMB temperature, polarisa-

tion and gravitational lensing data. By comparing the values of Ωc and Ωb we
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Parameter 68% limits
Ωmh

2 0.1430± 0.0011
Ωbh

2 0.0224± 0.0001
Ωch

2 0.120± 0.001

Table 1.1: The density parameter Ω (defined in text) for the total matter (m) and
separate baryonic (b) and cold dark matter (c) components, as measured by the
Planck Collaboration [17]. The Hubble parameter is H = 100h km s−1 Mpc−1.

can see that the majority of dark matter must be non-baryonic.

Large scale structure

The DES Collaboration [18] [as well as e.g. Refs. 19–21] analysed data from the

first three years of the Dark Energy Survey to constrain structure formation in

the late Universe. By combining the effects of cosmic shear, galaxy clustering

and galaxy-galaxy lensing they were able to determine that the mass density

parameter is Ωm = 0.34 ± 0.03. Cosmic shear is the distortion of the shapes

of background galaxies because of weak gravitational lensing of light between

the sources and observer [22, 23], the galaxy two-point correlation function

measures the spatial clustering of galaxies [24, 25], and galaxy-galaxy lensing

is the cross-correlation of lensed galaxy positions and source galaxy shapes [26].

Combining these three effects calibrates many of the systematic parameters in

the model allowing constraints on cosmological parameters to be calculated.

Modified gravity

All of this evidence relies on Newtonian gravity. While Newton’s laws are

thoroughly tested on small scales [e.g. Ref. 27] they could be different on

cosmological scales and these differences could explain the above measurements

without the need for dark matter.

The first theory of modified gravity, Modified Newtonian Dynamics (MOND),

was formulated by Milgrom in 1983 [28]. This theory was introduced in order

to explain galaxy rotation curves without dark matter. Since then, MOND

has been found to explain several galactic phenomena, such as the core-cusp

problem (inferred DM density profiles of low-mass galaxies are inconsistent
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with N-body simulations) [29] and the missing baryons problem (the present-

day density of baryons is much smaller than that predicted by BBN) [30], that

currently have no solution in the current CDM cosmological model (ΛCDM).

Recent tests have found that the tidal forces of neighbouring galaxies in ΛCDM

aren’t strong enough to explain external field effects, the external force felt by

a self-gravitating system, predicted by MOND [31]. However, one large issue

with MOND is its inability to explain all unseen mass in galaxy clusters [32].

See [e.g. Refs. 33, 34] for more information on MOND.

The first complete relativistic formulation of MOND is Tensor–vector–scalar

gravity (TeVeS) [35]. Being relativistic allows TeVeS to accommodate gravita-

tional lensing, however, recent gravitational wave observations from the merger

of two neutron stars (GW170817) [36] and a gamma ray burst ∼ 2 seconds

later from the same location (GW170817a) [37] can be used to put constraints

on TeVeS, which predicts a difference between the speed of gravity and the

speed of light [38]. This doesn’t rule out other modified gravity theories, in-

cluding some based on TeVeS, that allow gravitational waves to propagate as

they do in general relativity.

1.1.2 Dark matter candidates

There are a variety of different objects and particles that could make up some or

all of the dark matter. These candidates include known astronomical objects,

new particles and known particles that have sufficiently low interactivity.

Non-particle dark matter

Massive Compact Halo Objects (MACHOs) are massive, low luminosity ob-

jects that could make up the missing mass in galaxies while being dark enough

to not have been detected. They consist of faint stellar remnants, brown

dwarfs, planets, rocky debris or primordial black holes (PBHs). Since most of

these objects are baryonic, the only MACHO that could make up a significant

amount of dark matter is PBHs. PBHs are non-baryonic because they form
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before matter-radiation equality. In 1985, Bahcall et al. [39] investigated the

effect of MACHOs on wide binaries in the Galactic halo and found that the

maximum allowed MACHO mass was 2M�. In this thesis we will be expanding

on their work and the work that followed it.

There has been renewed interest in PBH dark matter since LIGO detected

gravitational waves from merging black holes in 2016 [40, 41]. Sasaki et al.

[42] found that if dark matter consists of black holes with the mass that was

detected (∼ 30M�), the merger rate of the black holes would be larger than

the rate inferred by LIGO, but PBHs could make up a fraction of dark matter.

See Sec. 1.2.1 for a brief overview of PBH formation methods and Sec. 1.2.2

for current PBH constraints.

WIMPs

Weakly Interacting Massive Particles (WIMPs) are heavy, stable, weakly cou-

pled particles that are assumed to self-annihilate. The main motivation for

WIMPs comes from the WIMP miracle: the relic dark matter density esti-

mated from the time of WIMP freeze-out is consistent with the measured dark

matter density [43–46]. Supersymmetry requires that the lightest supersym-

metric particle must be stable in order for protons to be stable, making this

particle an excellent WIMP candidate [47]. As of today, however, WIMPs

have not been detected, see Arcadi et al. [48] for the current state of WIMP

research.

Neutrinos

The small interaction cross-section of neutrinos makes them a possible HDM

candidate. Current limits from experiments that constrain the neutrino mass

place an upper limit on the density parameter of neutrinos, Ων . 0.14 [49]. A

tighter bound has also been found using Planck CMB temperature anisotropies

and baryon acoustic oscillations data, while assuming the ΛCDM model in a

flat universe: Ωνh
2 . 0.0016 [50, 51].
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Another type of neutrino, sterile neutrinos, are semi-relativistic making

them a WDM candidate. They are a fourth, heavier species of neutrino with

no electroweak interaction. WDM forms large scale structure more consistent

with observations than HDM. Possible formation mechanisms for sterile neu-

trinos exist, such as the freeze-in mechanism [52], where coupling to a particle

in the thermal bath results in a gradual increase in the sterile neutrino abun-

dance. The random motions of WDM erase perturbations smaller than the free

streaming length and therefore structure formation on scales smaller than,

Mh ∼ 1010

(
Mwdm

1keV

)−3.33

M�, (1.5)

where Mh is the minimum halo mass and Mwdm is the mass of the WDM

particles. The power spectrum for semi-relativistic dark matter can be probed

with the Lyman-α forest which gives constraints on the mass of WDM. See

Ref. [53] for details on the constraints on WDM.

Axions

Axions are another particle dark matter candidate, they are slow-moving low-

mass bosons with multiple formation mechanisms that are consistent with the

known dark matter abundance, such as early Universe phase transitions [54].

They can be detected by a coupling to electromagnetism that converts them

to photons. Axions arise naturally from a solution to the strong CP problem:

the upper limit on the neutron electric dipole moment predicts that very little

charge-parity violation happens, but there is no known physical reason for this

to be the case. Requiring that charge-parity symmetry is conserved solves

the strong CP problem and results in a new particle: the axion. The non-

detection of WIMPS has lead to axions becoming a popular particle dark

matter candidate. See e.g. Ref. [55] for more details.
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1.2 PBHs as Dark Matter

PBHs are black holes which may form in the early Universe through multiple

mechanisms including the collapse of over-dense regions, cosmic string loops

and collisions of bubbles formed in phase transitions [see e.g. Refs. 56–59].

Unlike black holes formed due to astrophysical processes, which form with a

minimum mass of order 1M�, PBHs can form with much smaller masses, in

principle down to the Planck mass ∼ 10−5g. The most straightforward method

for PBH formation, from the collapse of large overdensities, is described in

Sec. 1.2.1 and the current constraints on the PBH abundance are summarised

in Sec. 1.2.2.

1.2.1 PBH formation

The simplest PBH formation method is the collapse of density perturbations

during radiation domination. The following theory is from Carr [60]. Primor-

dial density perturbations are produced during inflation from the quantum

fluctuations of scalar fields. The value above which an over-density δ ≡ δρ/ρ

will form a PBH in the comoving gauge is δc, where δc is equal to the sound

speed squared. During radiation domination, δc = 1/3. The mass of the PBH,

MPBH, formed by this method is of order the mass within the Hubble radius

at the time of collapse, this mass, called the Horizon mass, is given by,

MH =
4π

3
ρ(H−1)3 =

1

2GH
, (1.6)

where the second equality comes from the Friedmann equations: H2 = 8πG
3
ρ.

During radiation domination, the scale factor a ∝ t1/2 ⇒ H = 1/(2t), which

gives,

MH ∼
t

G
∼ 1015g

(
t

10−23s

)
. (1.7)

A PBH with mass of order one solar mass (M� = 2× 1030g) would be formed

around the QCD phase transition (t ∼ 10−6s). Simulations such as those by

Nadezhin et al. [61] have confirmed this result.
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Carr [60] also calculated the initial abundance of PBHs,

β(MH) ≡ ρPBH

ρtot

,

=

∫ ∞
δc

P (δ)dδ,

= erfc

(
δc√

2σ(MH)

)
,

≈ σ(MH) exp

(
− δ2

c

2σ2(MH)

)
, (1.8)

by assuming that the probability distribution of the primordial density per-

turbations, P (δ), is Gaussian with variance σ2(MH). In order to satisfy the

constraints on the initial abundance of PBHs, σ2(MH)� δ2
c .

The variance of the density perturbations, σ2(M), is a measure of the

typical size of matter density fluctuations at a mass scale M , and is given by,

σ2(M) =
1

2π2

∫
dk k2W̃ (kR(M))P (k), (1.9)

where W̃ (kR(M)) is the Fourier transform of the window function with size

R(M), containing mass M , used to smooth the density contrast and P (k) is

the power spectrum of the primordial perturbations. The mass variance on

cosmological scales is measured to be of order 10−5 [62]. For a scale invari-

ant power spectrum this leads to an extremely small initial PBH abundance,

β(MPBH) ∼ exp (−108).

The initial PBH mass function is related to the current PBH density pa-

rameter, ΩPBH, by,

β(MPBH) ≡ ρiPBH

ρic
=
ρeq

PBH

ρeq
c

(
ai
aeq

)
≈ ΩPBH

(
ai
aeq

)
, (1.10)

where a is the scale factor, ‘i’ refers to the time at which PBHs formed and ‘eq’

refers to matter-radiation equality. The equality in this equation comes from

the fact that the density of PBHs is proportional to a−3, and before matter-

radiation equality, the critical density is proportional to a−4. In terms of the
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fraction of dark matter made up of PBHs, this approximately evaluates to,

fPBH ≡
ΩPBH

ΩCDM

∼ 2βeq(MPBH), (1.11)

where βeq(MPBH) is the abundance of PBHs with mass MPBH at matter-

radiation equality.

1.2.2 Current PBH constraints

The current constraints on the fraction of dark matter made up of PBHs as a

function of their mass are summarised in Fig. 1.1 and briefly described in this

section.

Evaporation

PBHs evaporate by emitting Hawking radiation, and would have evaporated

by the present day if their initial mass MPBH is less than M∗ ≈ 5 × 1014g

[63, 64]. More constraints have been made based on the expected evapora-

tion products [65], the damping of CMB anisotropies due to energy injection

during recombination [66, 67], heating of neutral hydrogen [68] and heating

of the interstellar medium in dwarf galaxies [69]. One of the tighter con-

straints due to evaporation is from the extragalactic gamma-ray background,

fPBH . 2 × 10−8(MPBH/M∗)
(3+ε), where ε ∼ 0.1 − 0.4 is a parameter for the

energy dependence of the gamma-ray intensity [58, 70]. This constraint can

be made tighter by a factor of O(10) by considering the effects of blazars and

other known astrophysical sources [71].

Gravitational lensing

When a compact object crosses the line of sight of a background object, dis-

torted images of the background object can be observed. The brightness of

these images and the duration of the lensing event is dependent on the mass

of the foreground object and the relative velocity between the background and

foreground objects. PBHs would provide gravitational lenses for observations

of stars, the number and durations of the observed lensing events can provide
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constraints on the halo fraction of PBHs.

The strongest constraints in the ∼ 1M� mass range are from microlensing

surveys of stars in the small and large Magellanic clouds: the EROS survey

gives an upper limit on the density fraction of compact objects of fPBH < 0.1

for objects with mass 10−6 . MCO/M� . 1 and a stronger limit on PBHs

with mass < 10M�, which cannot make up more than 40% of dark matter

[72]. Alcock et al. [73] searched for long duration (> 150 days) microlensing

events in the MACHO data, after finding no such events they conclude that

compact objects with mass MCO . 30M� cannot make up the bulk of dark

matter. The more recent microlensing surveys OGLE-III and OGLE-IV give

tighter constraints for slightly smaller mass objects, with the mass fraction of

compact objects limited to fPBH . 10−2 for objects with mass MCO ∼ 10−3M�

[74, 75].

Niikura et al. [76] made observations of lensing events with duration 0.1−1

hours in Andromeda with the Subaru Hyper Suprime-Cam (HSC). They only

found one candidate lensing event in their 7 hour observation, which provides

a strong constraint on PBHs with mass 10−11 < MPBH/M� < 10−6, only

allowing 1% of dark matter to be made up of PBHs with masses in this range.

Niikura et al. [76] use a source size of one solar radius, but Smyth et al. [77]

point out that sources are likely to be larger than this. Taking source size

into account weakens the constraints from Niikura et al. [76], allowing PBHs

to make up dark matter for masses below 10−10M� rather than 10−11M�.

Gravitational waves from mergers

PBHs can form binaries when two of them decouple from the Hubble ex-

pansion before matter-radiation equality. These PBH binaries can be made

highly eccentric by three body interactions, and when the black holes coalesce

they produce gravitational waves that can be detected by LIGO-Virgo [78–

80]. Using these measurements and assuming that the PBH binaries aren’t

disrupted, constraints on the density fraction of PBHs have been calculated,
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fPBH < O(10−3) for 10 .MPBH/M� . 300 [42, 81–83].

Dynamical

Wide binaries in the Galactic halo are susceptible to disruption by PBHs, their

survival provides constraints on the mass fraction of PBHs in the halo [84–86].

This thesis focuses on making these constraints more reliable through more

detailed models of binary disruption.

Brandt [87] gives a limit based on observations of a star cluster near the

centre of the ultra-faint dwarf galaxy Eridanus II which has not been disrupted

by halo objects, this constraint excludes objects with mass larger than 5M�

making up all of dark matter. The stars in ultra-faint dwarf galaxies would also

be subject to dynamical heating from MACHOs, increasing the size and veloc-

ity dispersion of the galaxies. The sizes of these galaxies puts an independent

limit on MACHO dark matter with mass & 10M�.

The existence of PBHs in dwarf galaxies would alter their stellar distri-

bution, leading to a reduction in the number of stars at the centre of the

galaxy and a ring in the projected stellar surface density profile, from this

effect Koushiappas and Loeb [88] find that fCO < 0.6 for compact objects with

mass MCO = 30M�.

Large-scale structure

Poisson fluctuations in the PBH number density would affect the formation of

large-scale structure. Observations of the Lyman-α forest provide constraints

on the mass of PBHs in the range 104 − 1010M� using this effect [89, 90].

Accretion

Radiation from accreting black holes deposits energy into the photon-baryon

plasma in the early universe, this affects the statistical properties of the CMB

allowing constraints on the abundance of black holes to be calculated. The

main effect of the energy injections is to increase the free electron fraction,

this is visible in the CMB power spectrum as a damping of fluctuations on
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small angular scales due to photon scattering out of the line of sight [91–94].

These constraints are very tight for PBH masses above ∼ 102M�, effectively

ruling out PBHs in this mass range, but they are much less tight for masses

∼ 1M�.

See Fig. 1.1 for a summary of the current constraints. Solar mass black holes

are ruled out as all of dark matter, assuming a delta-function mass distribution

and that they are smoothly distributed. Since PBHs are discrete objects there

will be Poisson fluctuations in their distributions, it has also been shown that

local non-Gaussianity in the primordial perturbations can cause increased clus-

tering in the initial PBH distribution [95–97]. The mass of a PBH depends on

multiple factors including the size of the fluctuation from which it forms [98, 99]

and the horizon mass at formation time. If the primordial power spectrum has

a finite width peak, PBHs could form at a range of times leading to a range of

formation masses. Figure 1.1 assumes that all PBHs have the same mass, this

assumption is unrealistic but practical, and it is possible to convert single mass

constraints into extended mass function constraints [57]. The constraints from

a log normal PBH mass function [See Ref. 57, Fig. 20] are more spread out,

reducing the amount of parameter space that is allowed for PBHs to make up

all of DM, but less restrictive at their tightest point. The largest open window

in Fig. 1.1 is the asteroid-mass window (5× 10−16 < MPBH/M� < 5× 10−11),

which cannot be constrained by the disruption of wide binaries.
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FIG. 3. All constraints on the fraction of DM in the form of PBHs, fPBHs, with mass MPBH, coming from PBH evaporation,
microlensing, gravitational waves, PBH accretion and dynamical constraints. Each region shows the envelope of constraints
from the corresponding panel in Fig. 2. Digitised bounds and plotting codes are available online at PBHbounds.

H. Indirect constraints

In this subsection we look at constraints on the amplitude of large primordial perturbations, which lead to indirect
constraints on the abundance of PBHs formed via the collapse of large density perturbations during radiation domi-
nation (Sec. II A). These constraints do not apply to PBHs formed via other mechanisms (see Sec. II D). As discussed
in Sec. II A, there are large uncertainties in the calculation of the abundance of PBHs formed from a given primordial
power spectrum.

First order scalar perturbations generate tensor perturbations at second order [247, 248]. If the density perturbations
are sufficiently large then the amplitude of the resulting ‘scalar induced gravitational waves’ (SIGWs) is larger than
that of the GWs generated by the primordial tensor perturbations. Constraints on the energy density of stochastic
GWs, from e.g. Pulsar Timing Arrays, therefore limit the abundance of PBHs formed via the collapse of large
density perturbations [249]. These constraints depend on the shape of the primordial power spectrum, and also the
assumed probability distribution of the density perturbations, and are therefore (inflation) model dependent [250–
252]. Models which produce a broad peak in the primordial power spectrum are most tightly constrained [251, 252].
For PBHs forming from large density perturbations during radiation domination, Refs. [59, 108] find fPBH < 1 for
10−2 . MPBH/M� . 1. Reference [109] finds, using data from NANOGrav, fPBH < 10−23 for MPBH = 0.1M� and
fPBH < 10−6 for 0.002 < MPBH/M� < 0.4. However this calculation makes approximations which have a huge effect
on the constraint on fPBH (including setting the PBH formation threshold equal to unity, and σ2 = A). There are
also tight constraints on the abundance of light, MPBH ∼ 1013−15 g, PBHs from limits on SIGWs from LIGO [253].
Such light PBHs are expected to have evaporated by the present day, however if Hawking evaporation is not realised

Figure 1.1: From Green and Kavanagh [56]. Current constraints on the fraction of
dark matter made up of PBHs, fPBH, as a function of the PBH mass MPBH. Shaded
regions are excluded. These constraints were calculated by multiple methods and
sorted into evaporation, microlensing, GWs, accretion and dynamical constraints.
See text for more information on these constraints.



Chapter 2

Background

In this chapter I will cover the basics of orbital mechanics (Sec. 2.1), how

these theoretical quantities relate to measurable quantities that we can observe

(Sec. 2.2), the relevant theory of the disruption of binary systems by perturbers

(Sec. 2.3) and previous work on wide binary disruption (Sec. 2.4).

2.1 Orbital mechanics

Here I will give a brief overview of the equations of motion of binary stars. Most

of the equations and methods in this section are from Chapter 2 of Murray

and Dermott [100]. The binary equation of relative motion in the centre of

mass frame is,

d2r

dt2
+ µ

r

r3
= 0, (2.1)

where r is the relative position of the two stars at time t, r = |r| and µ =

GMb, where G is the gravitational constant and Mb is the total mass of the

binary. This equation is derived using Newton’s third law and Newton’s law

of gravitation,

r̈ = r̈2 − r̈1 = −GM1

r3
r +−GM2

r3
r. (2.2)

where M1 and M2 are the masses of the two binary components and dots

denote differentiation with respect to time.

We can take the cross product of r with Eq. (2.2) and integrate to find a

constant vector,

h = r× ṙ. (2.3)

17
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The motion of the binary is therefore in a plane perpendicular to the vector

h, which is related to the binary’s angular momentum. Changing to polar

coordinates and substituting in u = 1/r and h = r2θ̇ gives,

d2u

dθ2
+ u =

µ

h2
, (2.4)

which has the general solution,

u =
µ

h2
(1 + e cos(θ −$)) , (2.5)

where e and $ are two constants of integration. Substituting for r we find the

general solution for an orbit in polar coordinates,

r =
p

1 + e cos(θ −$)
. (2.6)

This is the equation of a conic section where e is the eccentricity and p = h2/µ

is the semilatus rectum. This equation can represent 4 differently shaped orbits

[100]:

circle: e = 0, p = a;

ellipse: 0 < e < 1, p = a(1− e2);

parabola: e = 1, p = 2q;

hyperbola: e > 1, p = a(e2 − 1);

where a is the semi-major axis and q is the distance to the central mass at

closest approach. Given the phase of the binary, θ −$, we can now calculate

the separation of the binary r. The relation between Eq. (2.6) and the x and

y coordinates of the binary stars is given in Sec. 3.3.5.

In this thesis we refer to ‘bound’ binaries and ‘unbound’ binaries. Bound

binaries are those with e < 1 and are on periodic orbits, while unbound bi-

naries have e ≥ 1 and are on hyperbolic or parabolic orbits. Most work on

wide binary disruption only considers bound binaries, however we will include

unbound binaries and check whether or not they are necessary to simulate.

They might be necessary if unbound binaries are likely to become rebound in
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subsequent encounters with PBHs or if binaries that are unbound at the end

of the simulation have very similar peculiar velocities and could be mistaken

for bound binaries by observations.

The true anomaly is defined as f = θ − $, and the mean motion is n =

2π/T , where T is the period of the binary, making the mean motion the average

angular velocity. Having defined the mean motion, we can write Kepler’s third

law as,

µ = n2a3. (2.7)

and the constant of motion, h, can be written as,

h2 = na2
√

1− e2. (2.8)

in the case of an elliptical orbit. Differentiating Eq. (2.6) we find the relative

velocity of the binary stars in an elliptical orbit,

V 2 = µ

(
2

r
− 1

a

)
. (2.9)

This gives us an expression for the energy constant of the binary,

C =


− µ

2a
, for 0 ≤ e < 1,

0, for e = 1,

µ
2a
, for e > 0.

(2.10)

In order to create virtual binary stars we need to be able to randomise the

phase, for this we need the mean anomaly. The mean anomaly is a 2π periodic

function that is a linear function of time defined as,

M = n(t− τ), (2.11)

where τ is the time of pericentre passage. When we generate binaries for our

simulations we will randomise the mean anomaly, M , uniformly between 0 and

2π, this will randomise the phase correctly, taking into account the fact that

binaries on elliptical orbits are more likely to be found with separations larger



20 Chapter 2. Background

32 2 The Two-Body Problem

2.4 The Mean and Eccentric Anomalies

In the previous section we showed that, given the value of the true anomaly f ,
we can calculate the orbital radius and velocity of a body provided we know the
eccentricity and semi-major axis of its orbit. However, in practice we usually
want to calculate the location of a body at a given time and our solution to the
two-body problem (Eq. (2.20)) does not contain the time explicitly. Although
f and r are functions of t , we have not shown the nature of this dependence,
although it is obviously nonlinear for e �= 0.

Ideally we would like to make use of an angle that is not only 2π-periodic but
also a linear function of the time. This will be particularly useful later on when
we have to calculate time averages of various quantities. Using our definition of
the mean motion n in Eq. (2.25) we can define the mean anomaly M by

M = n(t − τ), (2.39)

where the constant τ is the time of pericentre passage. Although M has the
dimensions of an angle, and it increases linearly with time at a constant rate
equal to the mean motion, it has no simple geometrical interpretation. However,
from our definition of M and Eq. (2.20) it is clear that when t = τ (pericentre
passage), M = f = 0, and when t = τ + T/2 (apocentre passage), M = f = π ;
similar relationships will hold for additive multiples of the orbital period T .

Although M has no simple geometrical interpretation, it can be related to an
angle that does. Consider a circumscribed circle, radius a, that is concentric
with an orbital ellipse of semi-major axis a and eccentricity e (see Fig. 2.7). A
line perpendicular to the major axis of the ellipse is extended through the point
on the orbit and intersects the circle. We can define E , the eccentric anomaly, to
be the angle between the major axis of the ellipse and the radius from the centre

(a) (b)

a

aO

O

F

F

E f
r

ellipse

circumscribed
circle

x̄

ȳ
F ′

Fig. 2.7. (a) The circumscribed, concentric circle has a radius a equal to the semi-major
axis of the ellipse. (b) The relationship between the true anomaly f and the eccentric
anomaly E .
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Figure 2.1: From Murray and Dermott [100]. (a) An elliptical binary orbit in the
rest frame of one of the binary components. The stationary star is at the focus of
the ellipse F , while the other binary star moves along the ellipse with semi-major
axis a, equal to the radius of the concentric circle. (b) The relationship between the
true anomaly f and the eccentric anomaly E.

than their semi-major axis. The mean anomaly is related to the eccentric

anomaly, E, which is a physical angle, by Kepler’s equation,

M = E − e sinE, (2.12)

and the true anomaly by,

tan
f

2
=

√
1 + e

1− e tan
E

2
. (2.13)

The relationship between the true and eccentric anomalies is shown in Fig. 2.1.

We will also need to calculate a binary’s parameters after an encounter

with a PBH by inverting some of the above equations. From Eq. (2.9), which

gives the relation between the distance between the two binary stars r, and its

rate of change V ,

a =

(
2

r
− V 2

GMb

)−1

, (2.14)

and from Eqs. (2.8) and (2.14),

e =

√
1− h2

GMba
. (2.15)

The constants h and C (Eqs. (2.8) and (2.10)) are related to the total angular
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momentum L and total energy of the system E by,

h =

(
1

M1

+
1

M2

)
L, C =

(
1

M1

+
1

M2

)
E , (2.16)

Eq. (2.15) can be rewritten as,

e =

√
1 +

2MbL2E
G2M3

1M
3
2

, (2.17)

and we can find the semi-major axis using Eq. (2.10),

a =
GM1M2

2|E| . (2.18)

These equations allow us to calculate the new semi-major axis and eccentricity

of a binary after an encounter with a PBH and also demonstrate the link

between semi-major axis and energy; and the link between eccentricity and

angular momentum. Note that an initial eccentricity distribution uniform in

e2 is equivalent to a uniform initial energy distribution.

2.2 Observable quantities

The directly measurable quantity for binary separation is the angular sepa-

ration, ∆s, the angle between the two binary stars in the sky. This can be

converted into the projected separation, rproj, from the distance to the binary

d,

rproj

au
=

d

parsec
× ∆s

arcsec
. (2.19)

The physical binary separation r can then be calculated from the projected

separation by choosing a random orientation for the binary. I discuss which of

these quantities is best for comparing observations with simulations in Sec. 4.4.

2.3 Wide binary disruption

The key approximation used in studies of wide binary disruption is the impulse

approximation, described in Sec. 2.3.1, which is very accurate in the regime of

large binary semi-major axes and provides a huge simplification to the gravi-
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tational encounters between a compact object and binary star. In Sec. 2.3.2,

I calculate estimates for the timescales over which we expect binaries to be

disrupted and describe the two main regimes into which wide binary encoun-

ters with compact objects can be divided. Newtonian gravity is sufficient for

these encounters because the impact parameter is always much larger than the

Schwarzschild radius of the PBHs.

2.3.1 Impulse approximation

If the relative velocity between the PBH and the binary is much larger than

the orbital velocities of the binary stars, we can assume that the stars are

stationary during the encounter. This is the impulse approximation and it

allows us to use simple equations to calculate the effect of an encounter rather

than N-body simulations. The impulse approximation is used in all previous

work on binary disruption that we discuss in this thesis [39, 84–86, 101, 102].

Note that this approximation is valid for any compact object but we are only

interested in PBHs here.

When the impulse approximation is valid, only the velocities and not the

positions of the stars are changed. The equations for the perpendicular and

parallel velocity changes for star i (i = 1, 2) are given by Binney and Tremaine

[12, Eq. (3.54)]:

∆V⊥,i =
2MpVrel

Mp +Mi

bi/b90,i

1 + b2
i /b

2
90,i

bi
bi
, (2.20)

∆V‖,i =
2MpVrel

Mp +Mi

1

1 + b2
i /b

2
90,i

−Vrel

Vrel

, (2.21)

where Mp is the PBH mass, Mi is the mass of star i, Vrel is the velocity of the

PBH, bi is the impact parameter vector for star i and b90,i is the 90◦ deflection

radius for star i,

b90,i ≡
G(Mp +Mi)

V 2
rel

, (2.22)

the impact parameter at which the angle of deflection is 90◦. For all encounters

considered here,

bi
b90,i

� 1, (2.23)
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therefore the change in velocity of star i parallel to the motion of the PBH,

∆V‖,i, is negligible and the change in velocity perpendicular to the PBH be-

comes,

∆V⊥,i =
2GMp

Vrelbi

bi
bi
, (2.24)

which is the same as equations used in previous work [e.g. Ref. 101, Eq. (3)].

This change in velocity leads to a change in the binary energy [101, Eq. (4)],

∆E = V · (∆V1 −∆V2) +
1

2
|∆V1 −∆V2|2, (2.25)

where V = V1 −V2 is the relative velocity between the two binary stars.

Weinberg et al. [101] calculate the average value of ∆E for two cases: the

single kick limit where b � a and the tidal limit where b � a. In the sin-

gle kick limit the velocity change applies predominantly to one of the binary

components, whereas in the tidal limit the total energy change is dependent

on the difference between the velocity changes experienced by the two stars.

The direction from which the perturber approaches the binary is completely

randomised, this makes the direction of the velocity kick, ∆V1−∆V2, uncor-

related with the direction of the binary’s orbit V. Given that this is the case,

when averaging over ∆E the first term in Eq. (2.25) averages to zero. The

average energy change is [101],

〈∆E〉 =


2
(
GMp

bVrel

)2

, for b� a,

7
3

(
GMp

bVrel

)2 (
a
b

)2
, for b� a.

(2.26)

In Sec. 3.2.1, I test the accuracy of the impulse approximation, and in Sec. 3.5.1,

I test the accuracy of Eq. (2.26) for a variety of impact parameter values in-

cluding b ∼ a.

2.3.2 Diffusive and catastrophic encounters

Encounters between a perturber and binary star can be divided into two

regimes: diffusive, where binary evolution is determined by the cumulative

effects of multiple encounters; and catastrophic, where the binary is broken by
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a single encounter.

To find the disruption rate in either regime, we first need to find the rate at

which binaries interact with perturbers. The encounter rate, Ċ, at an impact

parameter between b and b + db and with relative velocity between Vrel and

Vrel + dVrel is given by [12, Eq. (8.47)],

Ċ = npVrel2πb db dP, (2.27)

where np is the number density of PBHs and dP is the probability that the

binary star and PBH have relative velocity between Vrel and Vrel + dVrel.

We use an isotropic Maxwellian velocity distribution for the velocities of

the PBHs and for the centre of mass velocities of the binary stars. The relative

velocity distribution is then given by [12, Eq. (8.46)]:

dP =
4πV 2

rel dVrel

(2πσ2
rel)

3/2
exp

(
− V 2

rel

2σ2
rel

)
, (2.28)

where σrel is the relative velocity dispersion which is found by adding the

velocity dispersions of the two populations in quadrature. Therefore Eq. (2.27)

becomes [12, Eq. (8.47)],

Ċ =
2
√

2πnpb db

σ3
rel

exp

(
− V 2

rel

2σ2
rel

)
V 3

rel dVrel. (2.29)

The following theory, from Binney and Tremaine [12], assumes the distant

tide approximation (b � a) and the impulse approximation. In the diffusive

regime, the rate of energy increase for binaries with semi-major axis, a, is,

Ė = Ċ〈∆E〉 =
14

3

√
2π
G2M2

pnpa
2

σrel

∫
db

b3
, (2.30)

where the average energy change, 〈∆E〉, is given by Eq. (2.26) and to find

the encounter rate Eq. (2.29) has been integrated over Vrel between 0 and ∞.

By integrating Eq. (2.30) over b between bmin and ∞, we can estimate the

disruption time of a binary due to diffusive encounters with compact objects,

td,diff '
|E|
Ė
' 0.085

σrelMbb
2
min

GM2
pnpa

3
, (2.31)



Chapter 2. Wide binary disruption 25

setting bmin ∼ a because for impact parameters smaller than this the distant

tide approximation fails,

td,diff ' kdiff
σrelMb

GMpρa
, (2.32)

where kdiff ≡ 0.085(bmin/a)2. Monte Carlo simulations of diffusive encounters

have found that in practice, kdiff ≈ 0.002 [39]. For our canonical parameters,

Eq. (2.32) evaluates to,

td,diff ∼ 200 Gyr

(
kdiff

0.002

)(
σrel

220km s−1

)(
Mb

M�

)
×
(
Mp

1M�

)−1(
ρ

0.009M� pc−3

)−1 ( a

104 au

)−1

. (2.33)

This timescale is much larger than the age of the Milky Way, suggesting that,

for perturber mass Mp ∼ 1M�, we are unlikely to find binaries that have

broken only due to the diffusive effects of many encounters. It’s worth noting,

however, that after each encounter the binary’s semi-major axis increases,

reducing the diffusive disruption timescale.

In the catastrophic regime, where perturbers are massive enough to break

a binary in a single encounter, the disruption time is equal to the average time

between encounters,

td,cat '
1

Ċ
' kcat

M
1/2
b

G1/2ρa3/2
, (kcat ≈ 0.07), (2.34)

where Eq. (2.29) has been integrated over b between 0 and b1, the impact

parameter for which 〈∆E〉 = |E|. Notably, the disruption timescale in the

catastrophic regime is independent of perturber mass, Mp. This is because the

effect of the decreased number density for more massive perturbers is cancelled

out by a larger value of b1. For our parameters,

td,cat ∼ 10 Gyr

(
kcat

0.07

)(
Mb

M�

) 1
2
(

ρ

0.009M� pc−3

)−1 ( a

104au

)− 3
2
. (2.35)

By equating td,diff and td,cat we can find the critical perturber mass, Mcrit,
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which separates the two regimes,

Mcrit =
kdiff

kcat

(
σ2

relMba

G

)1/2

,

∼ 20M�

(
σrel

220km s−1

)(
Mb

M�

) 1
2 ( a

104au

) 1
2
. (2.36)

The diffusive regime applies for encounters with perturbers less massive than

Mcrit, and the catastrophic regime applies for more massive perturbers.

From these estimates, we expect to find that for perturber masses smaller

than ∼ 20M�, binaries are very unlikely to be broken but may increase in

semi-major axis over the duration of our simulations. For perturber masses

larger than this, however, we expect a large number of binaries to be disrupted.

2.4 Previous work

In Sec. 2.4.1, I discuss previous work on wide binary disruption. This work

was not a means to constrain compact objects but many of the methods used

in these papers are relevant to our work. In Sec. 2.4.2, I provide a comprehen-

sive review of previous papers which used wide binaries to constrain compact

objects in the halo, and in Sec. 2.4.3, I outline how we intended to improve on

this work going into this project.

2.4.1 Studies of wide binary disruption in the Galactic
disk

These studies consider effects like the Galactic tide and encounters with giant

molecular clouds that are likely negligible for our work.

Bahcall et al. [39] 1985

Bahcall et al. [39] use the existence of wide binaries in the Galactic disk to

show that ‘unseen disk objects’ (a dark matter theory from the 1980s), which

constitute half of the local mass density, must have mass less than 2M�. They

use Monte Carlo simulations of encounters between binary stars and point-like

massive objects (‘disk things’, written as DTs) to find the half-life of a binary
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as a function of its semi-major axis and the mass of the DTs.

In their simulations, they assume that binaries form with equal probability

per unit logarithmic interval in semi-major axis. Binary disruption is modelled

by placing individual binaries in a sea of point particles (DTs), with velocities

drawn from an isotropic Maxwellian distribution. The impulse approximation

is used to model encounters, and justified by the fact that a ‘typical encounter’

only lasts for 0.1% of the binary’s orbital period.

The effects of Galactic tidal fields, other passing stars and giant molecular

clouds have not been taken into account for simplicity. Bahcall et al. [39]

justify the omission of these effects by stating that including them would only

tighten their constraint on the mass of the unseen disk objects.

Weinberg et al. [101] 1987

Weinberg et al. [101] simulate encounters between binaries and passing stars

and giant molecular clouds in the solar neighbourhood. Encounters with large

impact parameters are treated statistically while encounters with small impact

parameters are treated individually. Their Monte Carlo method uses the mean

and variance of the energy change due to an encounter to predict the overall

effect of encounters in the diffusive regime, where encounters have a small but

cumulative effect.

Their simulations are used to estimate the characteristic lifetime of a binary

due to diffusive encounters from passing stars and giant molecular clouds. The

Galactic tide is modelled with a tidal cutoff at a = 1pc, binaries with semi-

major axes larger than this are considered broken. They conclude that the

existence of objects in the disk that can break wide binaries on a timescale

similar to the age of the Galaxy is unlikely but not impossible.

Jiang and Tremaine [102] 2010

Jiang and Tremaine [102] predict effects of passing field stars on the distri-

bution of semi-major axes of wide binaries in the Galactic disk. Rather than
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using a tidal cutoff to simulate the Galactic tidal field, they use an approx-

imation of the Galactic potential to find the centre of mass velocity of each

binary system and the individual velocities of the stars due to the Galactic

disk. Another feature of their simulations is the inclusion of unbound binaries.

For binaries with small semi-major axes, where the effect of the Galactic

tide is small compared with the force between the two stars, the evolution

is simulated with the diffusion equation. The diffusion equation [101], which

requires that the energy change due to encounters is much smaller than the

binding energy of the binary, provides an analytical expression for the binary

energy after a given amount of time. They find that the Galactic tide causes

a minimum in the semi-major axis distribution at ∼ 8pc rather than a cut-off,

binaries that have broken can become rebound and the small relative velocities

between broken binary members mean they can be mistaken for bound binaries

by observations.

2.4.2 Constraints on the halo fraction of compact ob-
jects

These are the previous studies constraining the halo fraction of compact objects

using wide binary disruption.

Yoo et al. [84] 2004

Yoo et al. [84] compare Monte Carlo simulations with the observed halo binary

distribution using data from Chanamé and Gould [103], who constructed a

catalogue of binary stars using data from the New Luyten Two Tenths catalog

[104, 105] and categorised each as either a disk or halo binary.

They use the impulse approximation and ignore effects from Galactic tides

and molecular clouds arguing that they can disregard these effects because

they are modelling halo binaries rather than disk binaries. Ionised binaries are

included but do not contribute significantly to their results and they ignore

variation in the dark matter density along binary Galactic orbits.

Yoo et al. [84] conclude that MACHOs with masses M > 43M� are ex-
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cluded at the 95% confidence level, and that this almost completely closes the

only remaining mass window for MACHOs.

Quinn et al. [85] 2009

Quinn et al. [85] evaluate the validity of the binaries used by Yoo et al. [84],

then recalculate the constraints on the MACHO mass. They confirm that three

of the four widest halo binaries are genuine, by measuring the radial velocities

of the binary components and checking that they are within measurements

errors, and follow the method from Yoo et al. [84] leaving out the spurious

binary. From their radial velocity measurements, they calculated Galactic

orbits for the three confirmed binaries and found that the average dark matter

density along these Galactic orbits is much less than the local dark matter

density. They suggest that their constraints could be shifted upwards by a

factor of 5 to take this into account. Their amendments move the upper limit

on the MACHO mass from 43M� to ∼ 500M�, but they conclude that this is

too small a sample to place meaningful constraints on the MACHO mass.

Monroy-Rodŕıguez and Allen [86] 2014

Monroy-Rodŕıguez and Allen [86] use 251 candidate halo binaries from a more

recent catalog [106] to determine a new upper bound for the MACHO mass.

More details on this catalog are given in Sec. 4.5. They closely follow the

method of Yoo et al. [84] with a few adjustments: they use a time averaged

halo density found by averaging over the Galactic orbits of the binaries and

the effect of the Galactic disk is estimated by calculating the fraction of time

each binary spends in the disk and finding constraints from those binaries that

spend the least time in the disk.

From the 25 most halo-like binaries, which spend on average 8% of their

lifetimes in the disk, Monroy-Rodŕıguez and Allen [86] give an upper limit

on the MACHO mass of (3 − 12)M�. This range of masses comes from the

different statistics used to calculate them. This limit almost completely rules
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out MACHOs as the sole component of dark matter in the halo.

2.4.3 Improvements

Our work is primarily a discussion on the approximations made in these pre-

vious papers: which of these are accurate and which would benefit from more

complex simulations. Going into this project our main concern was the initial

semi-major axis distribution, the log flat distribution used in previous work is

not physically motivated and could be updated to match current theories on

wide binary formation mechanisms. We found that other changes, such as the

inclusion of unbound and rebound binaries, also have a large impact on our

final constraints. We discuss the approximations we made in Sec. 3.2.
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Simulations

In this chapter, after a brief overview of how our simulation works (Sec. 3.1), we

will discuss what approximations we have made and how they compare to those

made in previous work (Sec. 3.2), the details of our simulations (Sec. 3.3), the

numerical accuracy of our simulations (Sec. 3.4), the resulting semi-major axis

distributions (Sec. 3.5) and their comparison to previous results (Sec. 3.5.1).

3.1 Overview of simulation

We simulate the effect of gravitational encounters on a population of binary

stars. Each binary evolves independently of the others and is defined by its

semi-major axis and eccentricity. After generating the initial semi-major axis

and eccentricity of a binary, we draw the number of encounters it will expe-

rience over 10Gyr from a Poisson distribution. The impact parameter and

relative velocity of each encounter are calculated as described in Sec. 3.3.3 and

then, after calculating the position and velocity of the two components of the

binary, the encounter is implemented by applying the impulse approximation.

The semi-major axis and eccentricity are recalculated and the next encounter

is simulated. The time at which each encounter happens isn’t necessary to cal-

culate, except for in the case of unbound binaries which is described in detail

in Sec. 3.3.4. Our simulation code can be found here.

31
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3.2 Methods and approximations

Here we discuss the approximations made in order to simulate the evolution of

binaries in a sea of perturbers. The effects considered here are the impulse ap-

proximation (Sec. 3.2.1), unbound binaries (Sec. 3.2.2), the maximum impact

parameter (Sec. 3.2.3), a non-uniform dark matter density (Sec. 3.2.4), binary

interactions with the Galactic disk (Sec. 3.2.5), encounters with other stars,

interactions with the Galactic tide and the effect of giant molecular clouds

(Sec. 3.2.6).

3.2.1 Accuracy of the impulse approximation

Previous papers have justified using the impulse approximation by stating that

the duration of the encounter is much less than the period of the binary or

that the relative velocity dispersion is much larger than the relative speed of

the binary stars [39, 84, 101, 102].

The duration of the encounter can be approximated as,

tenc ∼
2b

σrel

, (3.1)

where b is the impact parameter of the encounter and σrel is the relative velocity

dispersion. The period of the binary is,

P = 2π

√
a3

GMb

, (3.2)

where a is the semi-major axis of the binary and Mb is the total mass of the

binary. For the most extreme encounters, at the maximum impact parameter

(see Sec. 3.2.3), the ratio of encounter duration to binary period is,

tenc

P
∼ 0.00142

(
δ

10−3

)− 1
2 ( a

104au

)− 3
4

(
σrel

220km s−1

)− 3
2
(
Mb

M�

) 1
4
(
Mp

M�

) 1
2

,

(3.3)

where δ, used to derive an expression for the maximum impact parameter, is

the largest possible fractional change in semi-major axis a binary will expe-

rience due to an encounter at the maximum impact parameter. In practice,
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δ = 10−3 is small enough to capture the full effects of wide binary evolution

and we use this value in our simulations, see Sec. 3.2.3 for more details. Since

tenc
P

is very small, the stars move a negligible amount during the encounters

and the impulse approximation is likely to be valid.

In order to confirm that the impulse approximation gives sufficiently accu-

rate results, we compared the semi-major axis after an encounter calculated

using Eqs. (2.20) and (2.21) with the final semi-major axis calculated from a

three body integration code. Our three body integration code uses a fourth

order Hermite integrator and dynamic time steps as described by Dehnen and

Read [107]. The dynamic time steps used are given by the Aarseth criterion

[107, Eq. (25)], the time step for the ith body is,

∆ti =

(
η
|ai||äi|+ |ȧi|2
|ȧi||

...
a i|+ |äi|2

)1/2

, (3.4)

where η = 0.02, ai is the acceleration of body i and dots denote differentiation

with respect to time. We take the minimum value of this time step for the

three objects as the time step for the system.

The simulation starts when the ratio of the force between the PBH and its

nearest star and the force between the two stars is 10−6, it finishes when the

force ratio returns to 10−6. If the PBH is never close enough to the binary for

the ratio of forces to be 10−6 or larger, then the encounter is considered to be

negligible and the semi-major axis and eccentricity are unchanged.

The impact parameter chosen here is the minimum likely impact parame-

ter, bmin, which is derived by requiring that only one encounter per binary is

expected with an impact parameter equal to or less than the minimum impact

parameter over the lifetime of the Galaxy. This gives the expression,

bmin =

√
Mp

πρσrelT
,

= 800au

(
Mp

M�

) 1
2
(

ρ

0.009M�pc−3

)− 1
2
(

σrel

220km s−1

)− 1
2
(

T

10Gyr

)− 1
2

.

(3.5)
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Figure 3.1: The absolute average (of 100 encounters) fractional error in the final
semi-major axis a, after an encounter, calculated using the impulse approximation.
It’s evaluated here at 10 impact parameters logarithmically spaced between the
minimum likely and maximum impact parameter (see text) for different perturber
masses Mp. The solid lines are simulations with initial semi-major axis a = 104au
and the dashed lines are simulations with initial semi-major axis a = 105au.

where ρ is the mass density of compact objects and T is the total simulation

time.

The resulting average fractional error in the final semi-major axis is shown

in Fig. 3.1. For typical parameters, the change in semi-major axis calculated

using the impulse approximation is correct to 14 significant figures showing

that it is valid in this parameter space.

3.2.2 Unbound binaries

Once a binary becomes unbound there are two ways in which it could affect

our results:

1. An unbound binary might ‘look’ like a bound binary in observational

data since the two stars might still be near each other and have similar

peculiar velocities. In this case it might be necessary to keep the unbound

binaries as part of our final distribution of binary semi-major axes.
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2. An unbound binary could become rebound again after subsequent en-

counters with perturbers.

Two previous relevant works that have discussed unbound binaries are Yoo

et al. [84] and Jiang and Tremaine [102]. Yoo et al. [84] provide an analytical ar-

gument for why omission of unbound binaries will not significantly affect their

results and a prescription for including unbound binaries in their simulations

which they use to show that unbound binaries have a negligible contribution.

Their analytical argument shows that two previously bound stars moving away

from each other will be disrupted by the Galactic tide in less that 0.13Gyr af-

ter becoming unbound, this would mean that only binaries disrupted in the

last ∼1% of the age of the Galaxy could be confused with bound systems. To

include unbound binaries in their simulations they assume that the two stars

in an unbound binary drift away from each other in a random direction with

a constant relative velocity given by their escape velocity. The stars then con-

tinue to experience perturbations until the end of the simulation time. Yoo

et al. [84] find that unbound binaries have no significant effect on their final

distribution of binary separations.

Between encounters with a perturber, Jiang and Tremaine [102] evolve

their binary stars by integrating their orbits in the Galactic potential and the

binary’s potential. Their approach is valid for unbound as well as bound bi-

naries and they keep unbound binaries in the simulations. They find that the

components of unbound binaries have small relative velocities allowing them

to be detected as binaries by large astrometric surveys. The difference in con-

clusion between these two papers could be because Jiang and Tremaine [102]

studied the disruption of disk binaries in the solar neighbourhood while Yoo

et al. [84] studied halo binaries. Our method for simulating binaries, including

the differences for simulating unbound binaries is described in Sec. 3.3.
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Simulation results from unbound binaries

Figure 3.2 shows the distribution of unbound binary separations after 10Gyr

of evolution in a sea of perturbers with mass Mp, where the separation is the

physical distance between the two stars in the binary. This simulation used

a log flat distribution for the initial semi-major axes of the 106 binary star

systems.

Allen and Monroy-Rodŕıguez [106] provide a catalog of halo wide binary

candidates. The largest semi-major axis of any of their candidate binaries

is ∼ 1.7pc. Figure 3.2 shows that . 100 binaries (out of 106 binaries in the

simulation) are unbound with separations ∼ 1.7pc at the end of the simulation.

This is small compared to the total number of binaries, however, in order to

check that the number of unbound binaries at this separation is negligible it’s

necessary to compare with the number of bound binaries at this separation.

Figure 3.3 is as in Fig. 3.2 with binaries that were bound throughout the

simulation (solid lines), are unbound at the end of the simulation (dotted

lines) and have been unbound at some point during the simulation but are

bound at the end (dashed lines) plotted separately. Below a separation of

∼ 1.7pc the number of unbound binaries is much less than the number of

bound binaries, indicating that unbound binaries can be left out of the final

separation distribution for comparisons with observational data. However, as

shown by the dashed lines in Fig. 3.3, at a separation of 0.1pc the number

of rebound binaries is only 10 times less than the number of always bound

binaries, this is possibly large enough to have an effect on results.

While the number of unbound binaries in the range of separations we’re

interested in (below ∼ 1.7pc) is relatively low, the number of rebound binaries

is large enough to affect the distribution of binary separations. Figure 3.4

shows the difference in final semi-major axis distribution after 10Gyr of evolu-

tion. Since there is a large difference between the ‘always bound’ (solid lines)

distribution and the distribution for the whole population (dot-dashed lines),
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Figure 3.2: The number of unbound binaries with separation r after 10Gyr of evo-
lution in a sea of perturbers with mass Mp, dark matter density ρ = 0.009M�pc−3

and relative velocity dispersion σrel = 220km s−1. The 106 binaries in the simula-
tion had initial semi-major axes drawn from a log flat distribution. Binaries with
a separation larger than 104pc, which is large enough to assume that the binary is
realistically broken, are removed from the simulation to keep computation time low.
The two plots are identical other than the y-axis which is linear in the top panel
and logarithmic in the bottom panel.
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Figure 3.3: The number of unbound binaries with separation r after 10Gyr of evo-
lution in a sea of perturbers with mass 1M� (blue lines), 10M� (orange lines) or
100M� (green lines); dark matter density ρ = 0.009M�pc−3 and relative velocity
dispersion σrel = 220km s−1. The 106 binaries in the simulation had initial semi-
major axes drawn from a log flat distribution. Binaries with a separation larger
than 104pc, which is large enough to assume that the binary is realistically broken,
are removed from the simulation to keep computation time low. Binaries that were
bound for the duration of the simulation (solid lines), binaries that are unbound at
the end of the simulation (dotted lines) and binaries that were broken at least once
during the simulation but are bound at the end (dashed lines) are plotted separately.
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Figure 3.4: The semi-major axis distribution of 105 binaries with total binary mass
Mb = 1M� after 10Gyr of evolution in a sea of perturbers with masses 10M� (orange
lines), 100M� (green lines) and 1000M� (red lines); perturber density 0.009M�pc−3

and relative velocity dispersion σrel = 220kms−1. The distribution of the binary
semi-major axes before the 10Gyr of evolution is given by the black dotted line. The
solid lines correspond to binaries that were bound for the entirety of the simulation,
the dot-dashed lines correspond to the entire population of binaries.

it is necessary to include unbound binaries in our simulations.

3.2.3 Maximum impact parameter

The maximum impact parameter should be large enough that all encounters

which have a notable effect on the binary system are simulated, but small

enough such that no computing time is wasted since the number of encounters

that a binary system experiences is proportional to b2
max.

The expression for bmax used in these simulations requires that the fractional

change in semi-major axis due to an encounter at bmax is less than a small
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Figure 3.5: The distribution of semi-major axes of 105 binaries with mass 1M� after
10Gyr of evolution in a sea of PBHs with mass 10M�, mass density 0.009M�pc−3,
and relative velocity dispersion 200kms−1. The dotted line is the initial distribution
of semi-major axes. The solid lines are distributions for different values of δ. The
blue, orange, green, red and purple lines are simulations with δ equal to 0.2, 0.5,
1.0, 2.0 and 5.0 times 10−3 respectively.

number δ (see Appendix A for derivation):
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(3.6)

where Mp is the mass of the PBHs, Mb is the total mass of the binary system,

a is the semi-major axis of the binary system and σrel is the relative veloc-

ity dispersion between the binary stars and PBHs. We tested the effects of

changing δ on the final binary semi-major axis distribution in order to find the

best value by increasing δ until the distribution stopped changing, our results

are plotted in Fig. 3.5. The plot shows that δ = 2 × 10−4 is much too small,

but δ = 10−3 gives a large enough maximum impact parameter to include all

encounters that have a non-negligible effect.
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3.2.4 Non-uniform dark matter density

The Galactic orbits of the halo binaries we studied [106] have pericentres as

small as 0.1kpc and apocentres as large as 100kpc. It’s not obvious that

the time-averaged dark matter densities along the binary Galactic orbits will

be similar enough to the local density for the effect of variable density to

be ignored. Yoo et al. [84] find that the time-averaged dark matter density

along their Galactic orbits is higher than the value at the solar radius. Since

including the non-uniform dark matter density in this case would lead to more

disruption and therefore stronger constraints, Yoo et al. [84] ignore this effect

and approximate the density to be constant and equal to the density at the

solar radius.

These Galactic orbits were then recalculated by Quinn et al. [85] using

model I from Dehnen and Binney [108]. The mean time-averaged dark matter

density is found to be between 10% and 45% of the density at the solar ra-

dius. They suggest re-scaling their final constraints to take this difference into

account.

Monroy-Rodŕıguez and Allen [86] calculate the Galactic orbits for their

binary catalog [106] using the Galactic halo mass distribution from Allen and

Santillan [109]. They find that the mean time-averaged dark matter density

along their orbits is not very different from the density at the solar radius and

only has a small effect on their final constraints.

It’s appropriate to use the time-averaged density here because the only

place in the simulations where the dark matter density appears is the calcula-

tion of the encounter rate. Using the time-averaged density along the orbit as

the density for a particular binary would therefore provide exact results.

We calculated the binary Galactic orbits again for the Allen and Monroy-

Rodŕıguez [106] catalog using the galpy python package [110]. We used the

MWPotential2014 model from the package. This model is provided by the

galpy package for convenience and not intended to be used as the current
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best Galactic potential so we will justify our use of it here. Any uncertainty

in the parameters used to fit the model will be subdominant to other sources

of uncertainty in our study and is beyond the scope of this paper. Also, the

model is not out of date since the best fit parameters for the Galactic model

haven’t changed significantly since 2014 [see e.g. Ref. 111].

From our binary Galactic orbits we find that the mean time-averaged dark

matter density is 0.0106M�pc−3, a little larger than the density at the solar

radius (0.00754M�pc−3). The differences found between our average density

and those found by previous authors may be accounted for by the fact that

we find very different Galactic orbits for two of the binaries in the sample:

NLTT 10536 and NLTT 16394. Orbits for four of our binaries are plotted in

Fig. 3.6, these orbits can be compared with the orbits from [85] Fig. 4. Our

orbit for NLTT 10536 agrees with the orbit calculated by Monroy-Rodŕıguez

and Allen [86] but disagrees with Quinn et al. [85]’s calculation, this is likely

explained by the large difference between their distance and line of sight data

when compared with data from SIMBAD for this binary. We found that the

orbit for NLTT 10536 has a maximum z coordinate of around 5kpc, whereas

Quinn et al. [85] find it to be around 40kpc. This might explain the different

mean time-averaged dark matter density calculated by Quinn et al. [85]. We

also believe that Monroy-Rodŕıguez and Allen [86] and Quinn et al. [85] used

an incorrect value for the starting distance from the Sun for NLTT 16394, as

a result we were unable to reproduce this orbit.

The probability density of the time-averaged dark matter densities for the

160 binaries we can calculate Galactic orbits for is shown in Fig. 3.7. The

orange line indicates the dark matter density at the solar radius for our Galac-

tic model and parameters, 0.00754M�pc−3, which is slightly smaller than the

mode of the time-averaged dark matter density distribution (blue line). Since

the peak of the dark matter density distribution is narrow, with a full-width-

half-maximum of 0.00693, re-scaling our constraints should give a good esti-

mate of the effect of a variable dark matter density, this process is described
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Figure 3.6: Galactic orbits for four of the wide binaries in our catalog for a duration
of -10Gyr. Calculated and plotted using the galpy python package [110] with the
MWPotential2014 Galactic potential. The initial conditions are from the SIMBAD
database for NLTT 10536, 16394 and 39456. *The initial conditions for NLTT 15501
are from Quinn et al. [85] Table 1. The bottom plot is the same as the top plot but
zoomed in on the smaller orbits.
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Figure 3.7: Probability density of the time-averaged dark matter density calculated
along the Galactic orbits of 160 binaries from Allen and Monroy-Rodŕıguez [106]
over 10Gyr. The orange vertical line shows the dark matter density at the solar
radius, 0.00754M�pc−3. The orbits and densities were calculated using the galpy

python package and the MWPotential2014 Galactic potential [110].

in more detail in Sec. 4.6. For more information on the wide binary catalog

we used see Sec. 4.5.

3.2.5 Interaction with the Galactic disk

Yoo et al. [84] estimate the effect of a binary passing through the Galactic disk

by equating the change in the z-velocity of a binary passing through the disk

with its internal velocity. The critical semi-major axis found this way, above

which the binary is susceptible to breaking when passing through the disk, is,

acrit =

(
Mbv

2
z

16π2GΣ2

)1/3

, (3.7)

where Mb is the total mass of the binary, vz is the velocity with which binaries

cross the disk and Σ is the surface density of the disk. They find that in the

solar neighbourhood this semi-major axis limit is ≈ 2pc. This is only a little

larger than their largest projected separation so they conclude that the effect

of the Galactic disk is non-negligible. However, since the effect of including
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the Galactic disk is to make their constraints more conservative, they ignore

the effects of the disk in their simulations.

Monroy-Rodŕıguez and Allen [86] calculate the amount of time that 150 of

their 251 binaries spend in the disk and evaluate different upper limits for the

PBH mass depending on which binaries are used to calculate the constraint.

They find that for the 25 most halo-like binaries, i.e. the 25 binaries that

spend the least amount of their time in the disk, their constraints are much

stronger than for the 100 most halo-like binaries. This trend is consistent

for the intervening numbers and supports the assumption that ignoring the

effects of the Galactic disk is a conservative approximation. We perform a

similar analysis of the effects of the Galactic disk to Monroy-Rodŕıguez and

Allen [86], the method and results of this analysis are given in Sec. 4.7.

We find that our constraints for the 25 most halo-like binaries are tighter

than those for the larger population of binaries, however, these constraints are

weaker than those calculated by Monroy-Rodŕıguez and Allen [86] and we are

unsure of the validity of calculating constraints from a sample of 25 binaries.

We conclude that simulations of the Galactic potential [e.g. Ref. 102] would

be preferable in order to calculate less conservative constraints.

3.2.6 Other approximations

We will be assuming that encounters with passing stars, the Galactic tide

and molecular clouds are negligible. In this section I will briefly discuss how

this has been justified in previous work and why ignoring these effects is a

conservative approximation.

Encounters with stars

In Sec. 2.4.1, we described three papers that studied the disruption of wide

binaries in the solar neighbourhood. Bahcall et al. [39] studied the disruption

of wide binaries by compact objects while Weinberg et al. [101] and Jiang and

Tremaine [102] studied disruption by passing stars. Given that passing stars
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have such a large effect on disk binaries we will justify leaving them out of

our simulations. Bahcall et al. [39] ignore this effect for simplicity and state

that including the effect of passing stars would cause their binaries to break

faster, which means that without this effect their constraint on the mass of

compact objects in the disk is conservative. Our justification is the same, with

the addition that since we are looking at the disruption of halo binaries rather

than disk binaries, and the stellar density in the halo is much lower than that

in the disk, the effect of stellar encounters is much smaller and in our case the

approximation is more accurate.

Galactic tide

Wide binaries in the Galactic halo could be affected by tidal forces as they

orbit the Galaxy. The tidal force arises when the gravitational force between

the binary and Galactic centre becomes larger than the force between the two

binary stars. The binary separation above which the binary is susceptible to

tidal forces is called the Jacobi radius. Jiang and Tremaine [102, Eq. (43)] give

an expression for the Jacobi radius of a binary orbiting the Galaxy at the solar

Galactic radius,

rJ = 1.70pc

(
Mb

2M�

)1/3

= 1.35pc

(
Mb

M�

)1/3

, (3.8)

where Mb is the total mass of the binary star. If a binary has separation larger

than rJ it is susceptible to disruption by tidal forces. This equation only

applies at the solar radius but it should still be appropriate because our most

closely orbiting binaries have pericentres at approximately this distance. Yoo

et al. [84] estimate this critical radius to be around 2pc, this is larger than most

of the binaries in their catalog but not by much. They acknowledge that these

effects are likely to be non-negligible and leave them out for simplicity, stating

that this approximation only makes their constraints more conservative.

Bahcall et al. [39] ignore the effect of Galactic tides for simplicity, but

Weinberg et al. [101] take Galactic tides into account with a tidal cut-off at
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1pc. If a binary star has a semi-major axis of 1pc or larger at any point during

their simulations it is discarded and considered to be broken. Weinberg et al.

[101] found that their binaries had shorter characteristic lifetimes than those

simulated by Bahcall et al. [39].

Jiang and Tremaine [102] fully simulate the binary stars in the Galactic

potential, taking into account Galactic tides. While our Jacobi radius of 1.35pc

is small enough that Galactic tides are likely to have some effect on our binaries,

we have left out the effect of Galactic tides for simplicity. Jiang and Tremaine

[102] are studying binaries that spend all of their time close to the solar radius,

whereas our binaries spend the majority of their time much further away from

the Galactic centre. This is an important difference since the effect of the

Galactic tide is greatly reduced further from the centre of the Galaxy. We

are also not using a tidal cut-off for the same reason that we are keeping

unbound binaries in our simulations: it is possible and not unlikely that further

interactions with perturbers will rebind the binary or decrease it’s separation

to below the Jacobi radius. Since the effect of the Galactic tide is to disrupt

orbiting binaries, ignoring this effect is a conservative approximation.

Giant Molecular clouds

Only one of the six papers described in Sec. 2.4 takes into account perturba-

tions from Giant Molecular Clouds (GMCs). Weinberg et al. [101] calculate the

effect of GMCs using the same equations used to calculate the effect of pass-

ing stars. They predict that only encounters where the binary passes through

the GMC are likely to have any effect since the GMCs have radius similar to

the largest impact parameter used in the simulations. While encounters with

stars have a mostly diffusive effect, they find that the main effect of GMCs is

to break binaries that pass through the GMC and approach one of the GMC

subclumps, especially when the binary has had its binding energy decreased

through diffusive encounters. Weinberg et al. [101] find that encounters with

GMCs are important for most wide binaries.
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Yoo et al. [84] justify leaving GMCs out of their simulations in two ways,

firstly, the low density of GMCs (∼ 0.07ρDM) means they will have a fairly

low impact on halo wide binaries and secondly, the minimum likely impact

parameter (Eq. (3.5)) is considerably smaller than the size of a typical GMC.

Like Yoo et al. [84], we will be ignoring encounters with GMCs for simplicity.

Once again, since they may be a disruptive force for wide binaries, leaving out

GMCs will make our constraints more conservative.

3.3 Simulation details

In this section we describe our method for simulating the evolution of binary

stars in a sea of massive perturbers. For equations on orbital mechanics see

Sec. 2.1.

3.3.1 Parameters

The following parameters remain constant throughout this paper: the total

mass of the binary stars Mb = 1M� (each star has mass 0.5M�); the relative

velocity dispersion of the Galactic halo σrel = 220kms−1 [12]; and the duration

of the simulation T = 10Gyr, which is the approximate age of the Galaxy [12].

These parameters are consistent with previous work [e.g. Ref. 84].

The initial binary semi-major axes are drawn from a log flat distribution

between 10au and 105.5au. This distribution was chosen to allow direct com-

parison with the results from Yoo et al. [84]. The choice of initial distribution

here is somewhat unimportant because, like Yoo et al. [84], we use a scattering

matrix to analyse the final distributions and compare them to the observed

binary distribution. The scattering matrix allows us convert any initial binary

semi-major axis distribution into a vector which gives the expected number of

binaries in each final separation bin, this means we can test different initial

distributions without having to re-run the simulations. This is possible be-

cause each binary evolves independently of all other binaries in the simulation,

see Sec. 4.1 for more details. Following Yoo et al. [84] and Jiang and Tremaine
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[102], the initial eccentricity squared e2 is distributed uniformly between 0 and

1.

3.3.2 Encounter rate

Once the initial binary population has been generated, we draw the number of

encounters each binary will experience from a Poisson distribution. To find the

encounter rate we integrate Eq. (2.29) over Vrel between 0 and 100σrel and over

b between 0 and bmax (see Sec. 3.2.3). For each binary we draw the number of

encounters it will experience from a Poisson distribution with mean equal to

the encounter rate multiplied by the total simulation time, T = 10Gyr.

3.3.3 Impact parameter and relative velocity vectors

For each encounter between a binary and PBH we need to find the relative

velocity and impact parameter vectors. The magnitudes of the relative velocity

and impact parameter are given by the distributions in Eq. (2.29), the relative

velocity Vrel has probability density,

P (Vrel) =
V 3

rel

2σ4
rel

exp

(
− V 2

rel

2σ2
rel

)
. (3.9)

We draw Vrel from this distribution using a Monte Carlo Rejection method

[112]. Note the extra factor of Vrel between Eq. (2.28) and Eq. (3.9). This extra

factor of Vrel, which is visible in Eq. (2.29), is necessary because geometrically

it is more likely for binaries to encounter faster moving PBHs.

The impact parameter probability density is given by,

f(b) =
2b

b2
max

. (3.10)

As with the distribution of Vrel we found the b distribution by using the depen-

dency on b from Eq. (2.29) and then the prefactor is found by normalisation.

The impact parameter for each encounter is then found by,

b = bmax

√
x, (3.11)
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where x is a random number between 0 and 1.

Since the PBH velocity distribution is isotropic, the velocity and impact

parameter vectors should be in a random, unweighted direction. By definition

of the impact parameter, the two vectors should also be perpendicular. We

find two random vectors, the first vector is the velocity vector and the second

vector is crossed with the first to find the direction of the impact parameter

vector, random and perpendicular to the velocity.

3.3.4 Evolving the binary forward in time

Before each encounter, the binary needs to be evolved in time. For bound

binaries we do this by randomising the mean anomaly since the time between

encounters is much longer than the period of the binary. The mean anomaly

is drawn from a uniform distribution between 0 and 2π.

For unbound binaries, since hyperbolic orbits are not periodic it wouldn’t

be appropriate to randomise their position in their orbit so instead we evolve

the binaries in time exactly. The variable that we evolve is the eccentric

anomaly which is easily moved forward in time through association with the

mean anomaly and easily calculated after an encounter from the binary stars’

positions and velocities.

Before each encounter we check if the binary is unbound, if it is, the eccen-

tric anomaly is evolved forwards in time with the following method,

1. The mean motion is calculated:

n =

√
GMb

a3
, (3.12)

where G is the Gravitational constant, Mb is the total mass of the binary

star and a is the semi-major axis of the binary star.

2. The mean anomaly is calculated:

M = e sinh(E)− E, (3.13)
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where E is the eccentric anomaly and e is the eccentricity (see Eq. (2.12)

for comparison).

3. The mean anomaly is evolved forward in time:

M = M + nt, (3.14)

where t, the amount of time that has passed since the last encounter,

is drawn from an exponential distribution with mean equal to the mean

time between encounters (1 / rate).

4. The new eccentric anomaly is calculated numerically from Eq. (3.13)

using the Newton-Raphson method.

Occasionally the numerical solution to Eq. (3.13) fails to converge due to

a bad initial guess. In these cases the binary is evolved forward in time

using 2 body integration code.

3.3.5 Opening the binary

In order to implement an encounter the binary needs to be ‘opened’, this means

finding position and velocity vectors for the two binary stars from their semi-

major axes, eccentricities and phases. For bound binaries we calculate the

eccentric anomaly E from the mean anomaly M using Eq. (3.13) by applying

the Newton-Raphson method [e.g. Ref. 112].

We then find the true anomaly f from Eq. (2.13) and the physical separa-

tion of the binary stars r is (see Eq. (2.6)),

r =
a(1− e2)

1 + e cos f
. (3.15)

The relative positions and velocities of the binary stars are,

x1 − x2 = (r cos f, r sin f, 0) , (3.16)
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v1 − v2 =

(
− na√

1− e2
sin f,

na√
1− e2

(e+ cos f), 0

)
, (3.17)

where n is the mean motion calculated from Eq. (3.12).

For unbound binaries we calculate the positions and velocities directly from

the eccentric anomaly. The relative position and velocities of the binary stars

are,

x1 − x2 =
(
a(cosh(E)− e), a

√
e2 − 1 sinh(E), 0

)
, (3.18)

v1 − v2 =

(
na sinh(E)

e cosh(E)− 1
,

na
√
e2 − 1 cosh(E)

e cosh(E)− 1
, 0

)
. (3.19)

These equations can be derived from Eq. (2.6) by substituting in the hyperbolic

functions (x = a(e− coshE), y = b sinhE) rather than the elliptical functions

(x = a cosE, y = b sinE), where b here is the semi-minor axis.

In both cases, the first star is stationary and at the origin, the second star

is given the position and velocity from the vectors above, then the vectors are

moved into the centre of mass rest frame. We don’t randomise the orientation

of the binaries here; random orientations would have no effect since the velocity

vector of the PBH is randomised and isotropic. At the end of the simulations

the binary orientations are randomised in order to calculate the projected

separation of the binaries from their physical separation.

3.3.6 Application of the impulse approximation

We implement the encounter by adding Eqs. (2.20) and (2.21) to the binary

star velocities. The positions of the binaries are unaffected by an encounter in

the impulse approximation.

3.3.7 Closing the binary

After the encounter the binary is ‘closed’ again. We calculate the binary’s new

eccentricity and semi-major axis from Eqs. (2.17) and (2.18) respectively, and

in the case of unbound binaries, the new eccentric anomaly is found by,

E = arcosh

(
r/a+ 1

e

)
, (3.20)
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where the binary separation r = |x1 − x2|. The derivation of Eq. (3.20) from

Eq. (3.18) is straightforward. If at this point the binary has a separation r

larger than 104pc, an unrealistically large separation, the binary is removed

from the simulation and considered to have become permanently unbound.

3.4 Numerical accuracy

The energy change of a binary due to an encounter is given by Eq. (2.25). Over

many encounters the first term in this equation should average to zero while

the smaller second term should contribute a cumulative positive change to the

binary’s energy. The second term is much smaller than the first term which is

usually smaller than the binary energy, so it is important that the simulations

are accurate enough to capture a few significant figures of the second term.

We tested our code to find the number of significant figures of the second

term that are accurate in practice. Our original code in python kept zero

significant figures of the second term in the most extreme case while our new

code written in C++ and using long doubles (x86 extended precision format)

keeps 4 significant figures in the most extreme case and many more than 4 in

most cases.

3.5 Simulation results

Figure 3.8 shows the resulting distribution from our simulations, excluding

unbound binaries (solid lines), along with the final distributions from Yoo

et al. [84] (dashed lines) and Monroy-Rodŕıguez and Allen [86] (dot-dashed).

Here, 105 binaries were evolved for 10Gyr in a sea of PBHs with masses 10M�

(orange lines), 100M� (green lines) and 1000M� (red lines). When we only

keep binaries that are bound for the duration of the simulation, our results

are in good agreement with those from previous work. The initial distribution

used here is a log flat distribution shown by the black dotted line. Binaries

with larger semi-major axes are broken faster, and larger mass perturbers have
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Figure 3.8: The semi-major axis distribution of 105 binaries with total binary mass
Mb = 1M� after 10Gyr of evolution in a sea of perturbers with masses 10M� (orange
lines), 100M� (green lines) and 1000M� (red lines); perturber density 0.009M�pc−3

and relative velocity dispersion σrel = 220kms−1. The distribution of the binary
semi-major axes before the 10Gyr of evolution is given by the black dotted line.
The dashed lines show final results from Yoo et al. [84], the dot-dashed lines show
results from Monroy-Rodŕıguez and Allen [86] and the solid lines show our own
results for binaries that are bound for the duration of the simulation.

a larger effect.

The effect of including unbound and rebound binaries is non-negligible

however, as can be seen in Fig. 3.9. For the larger PBH masses shown in

this figure (100M� and 1000M�), including unbound and rebound binaries

drastically increases the number of binaries present at larger semi-major axes.

This will have the effect of weakening our final constraints. Because of this

significant difference, unbound and rebound binaries will be kept in our final

analysis. In Chapter 4 we describe how constraints on the halo dark matter

fraction are calculated using these semi-major axis distributions.

3.5.1 Reproduction of previous results

Our attempts to reproduce previous work are given in this section. We were

able to reproduce the transition separation and final distributions from Yoo
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Figure 3.9: The semi-major axis distribution of 105 binaries with total binary mass
Mb = 1M� after 10Gyr of evolution in a sea of perturbers with masses 10M� (orange
lines), 100M� (green lines) and 1000M� (red lines); perturber density 0.009M�pc−3

and relative velocity dispersion σrel = 220kms−1. The distribution of the binary
semi-major axes before the 10Gyr of evolution is given by the black dotted line.
The dashed lines show final results from Yoo et al. [84] and the solid lines show our
own results for all binaries, including those that are unbound for any part of the
simulation.
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et al. [84] and the survival probability as a function of time from Bahcall

et al. [39]. We also test the accuracy of the average energy change equations

given in Weinberg et al. [101] and the validity of including only the 100 closest

encounters between binaries and perturbers.

Transition separation

The transition separation at is the semi-major axis below which binaries are

insensitive to encounters with PBHs, as defined by Yoo et al. [84]. Yoo et al.

[84] find an expression for the transition separation by equating the change in

velocity of a star due to an encounter at bmin in the tidal regime (bmin � a)

with the internal velocity of the binary system,

2GMpa

b2
minVrel

∼
√
GMb

a
, (3.21)

where the right hand side is an approximation of Eq. (2.9) and the left hand

side is an approximation of Eq. (2.24) in the tidal regime where the impact

parameters bi are almost equal and the velocity change of the system ∆V is

dependent on the difference between the two impact parameters b1 − b2 ∼ a.

Substituting in Eq. (3.5) for bmin gives [84],

at ∼
(

Mb

4π2Gρ2T

)1/3

, bmin � a. (3.22)

In the Coulomb regime, the velocity change is given by multiplying Eq. (2.29)

by Eq. (2.26) and integrating over b between bmin and a. Equating the resulting

expression with the internal velocity of the binary gives,

at ∼
16πG2ρMpT

Vrel

ln Λ, bmin � a, (3.23)

where ln Λ ≡ ln a/bmin is the Coulomb logarithm. For our canonical parame-

ters, and approximating ln Λ = 1, the transition separation evaluates to,

at ∼


3000au

(
Mp

1000M�

)−1

, Mp < 700M�,

18000au, Mp > 700M�,

(3.24)
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for a total binary mass of 1M�. In the tidal regime, where bmin � a, the binary

is affected most by the closest encounter so binaries with separation smaller

than the transition separation are unlikely to experience a large semi-major

axis change and are unlikely to be broken during simulations. When we plot

this equation in Fig. 3.10 we choose the value of the Coulomb logarithm to

make it continuous.

Figure 3.10 shows results from our own simulations: the fraction out of

1000 binaries that are broken from a single encounter at the minimum impact

parameter (Eq. (3.5)), plotted against perturber mass and semi-major axis.

Binaries in the white region are insensitive to perturbations since they are not

broken by a single encounter at the minimum impact parameter. This plot

agrees well with the predictions of Eq. (3.24), also plotted on Fig. 3.10: below

∼ 700M� the transition separation goes as the inverse of the perturber mass,

while for perturber masses larger than ∼ 700M�, the transition separation

remains constant at ∼ 18000au.

Figure 3.11 shows the fraction of times a binary with a given separation

will break at that separation, this is the break frequency (blue line). For low

separations this is zero, because these binaries have separation smaller than

the transition separation. The break frequency increases with increasing sep-

aration after r ∼ 1pc, up to a value of r ∼ 30pc, dropping to zero when the

binary separation becomes large enough to move the encounters back into the

diffusive regime. This frequency is reflected in the separation frequency distri-

bution (orange line). Where binaries are not easily broken by perturbers, the

separation frequency is large, and where the break frequency is smaller but

non-zero, there are small numbers of binaries with the corresponding separa-

tions over the 10Gyr simulation.

Survival probability

Bahcall et al. [39] predict the probability of a binary’s survival as a function

of time. They use Eq. (2.24) to approximate the half-life of the binaries and
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Figure 3.10: The fraction out of 1000 binaries that are broken from a single encounter
with a PBH at the minimum likely impact parameter, bmin (Eq. (3.5)), plotted
against perturber mass and binary semi-major axis for a total binary mass of Mb =
1M�, binary eccentricity e = 0.7, PBH velocity dispersion σrel =220kms−1 and
perturber density ρ = 0.009M�pc−3. The black line is the transition separation
given by Eq. (3.24). The low-mass part of Eq. (3.24) has been multiplied by 4 for
continuity with the high-mass part.
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Figure 3.11: The fraction of times a binary with separation r breaks at separation
r (blue line) and the total number of times all binaries, with initial semi-major axis
1pc, have had separation r (orange line) over 10Gyr in a sea of perturbers with mass
Mp = 100M�, density ρ = 0.009M�pc−3 and velocity dispersion σrel = 220km s−1.
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predict an exponential decay function for the survival probability using the

calculated half-lives. In the small impact parameter regime they find that

their simulation results agree with this prediction but the exponential decay

doesn’t take into account the effects of diffusive encounters. Figure 3.12 shows

their simulation results and the results from our simulations.

In our simulations less binaries are broken than in simulations by Bah-

call et al. [39]. We believe that the reason for this discrepancy is the dis-

tribution from which the relative speed of the PBH and binary during an

encounter is drawn. Bahcall et al. [39] draw their relative encounter speed

from a Maxwellian distribution, we are reasonably sure that an extra factor

of Vrel should be included in the probability density distribution to take into

account the fact that faster perturbers travel further and have proportionally

more encounters. Our results with (blue line) and without (orange line) the

extra factor of Vrel are shown in Fig. 3.12. The orange line is remarkably

consistent with Bahcall et al. [39]’s results, within random variation.

Average energy change

We tested our simulations further by calculating the average energy change of

large numbers of encounters and comparing this average with the theoretical

values given by Eq. (2.24), which only apply for either very large or very

small impact parameters. The energy change due to an encounter (Eq. (2.25))

can be split into two parts, the first order part and the second order part.

Theoretically the first order term averages to zero so calculations of the average

energy change only need to include the second order term. The variance of

the energy change is large however, so to see the first order term average to

zero at large impact parameters we would need to simulate more encounters

than is practical. The second order term converges much more quickly, so we

compared the average of the second order term of the energy change for 106

encounters with the theoretical energy change from Weinberg et al. [101], the

results are shown in Fig. 3.13.
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Figure 3.12: The survival probability or fraction of binaries that have survived in a
sea of perturbers with mass 3M�, as a function of time. The binaries start with a
semi-major axis of 0.1pc and eccentricity of 0.7, their total mass is Mb = 2M�, the
relative velocity dispersion of the PBHs is σrel = (100/

√
3)kms−1 and the perturber

density is ρ = 0.1M�pc−3, these parameters were chosen to match Bahcall et al.
[39]. The blue line is our simulation results for relative encounter speeds drawn from
a distribution ∝ V 3

rel exp
(
−V 2

rel/σ
2
rel

)
, the orange line is the same as the blue line but

with one fewer factor of Vrel (i.e. Maxwellian), and the green line is the simulation
results from Bahcall et al. [39].
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Figure 3.13: The average energy change calculated from simulations of 106 encoun-
ters divided by the theoretical average energy change from Weinberg et al. [101]
plotted against impact parameter. The simulations use perturber mass Mp = 3M�,
relative velocity dispersion σrel = 220kms−1, total binary mass Mb = 2M�, dark
matter density ρ = 0.009M�pc−3 and binary semi-major axis a = 105au.

From Fig. 3.13, the approximation that the impact parameter b is much

larger or smaller than the binary semi-major axis a only holds for b . 0.01a

and b & 10a. The discontinuity at 105au is due to the change in regime between

the two equations, but we are unsure as to the cause of the discontinuity at

∼ 2×106au. It is likely to be an artefact of the low resolution of this simulation

in impact parameter space.

For the parameters used in Fig. 3.13, the minimum likely impact parame-

ter is 0.0141a and the maximum impact parameter is 2.70a. Since all relevant

encounters have 0.01a < b < 10a, the equations for the average energy change

from Weinberg et al. [101] are invalid for detailed simulations of binary disrup-

tion. This confirmation that our average energy change is correct for b � a

and b � a has given us further confidence that our simulations are working

correctly.
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Figure 3.14: Our simulation of only the 100 closest encounters for perturber mass
Mp = 1000M� (red dotted line), for comparison with results from Yoo et al. [84]
(red dashed line) and our simulations for all encounters out to bmax (red solid line).
For our simulations here, unbound binaries have been removed. Each binary has
a total mass of Mb = 1M�, the PBHs have mass density ρ = 0.009M�pc−3 and
relative velocity dispersion is σrel = 200km s−1.

100 closest encounters

Figure 3.14 shows results from simulating only the 100 closest encounters for

the Mp = 1000M� case in order to compare directly with Yoo et al. [84]. Their

initial distribution is shown by the black dotted line in Fig. 3.14, the fitted

curves for their evolved distribution is the dashed line. In the tidal regime

(Mp & 700M�), where Yoo et al. [84] simulate only the 100 closest encounters,

their simulations give similar results to both our simulations that compute

encounters out to bmax (solid line) and our simulations of only the 100 closest

encounters (dotted line). This suggests that their approximation that only the

100 closest encounters contribute in the tidal regime is valid.
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Calculating Constraints

In this chapter we discuss our method for calculating constraints on the PBH

dark matter fraction from the simulated binary distribution. In Sec. 4.1, we

describe how we calculated and use our scattering matrix, allowing us to test

many different initial binary distributions quickly. The initial distributions

that we test are discussed in Sec. 4.2, and our statistical analysis, a modified

version of the χ2 method, is given in Sec. 4.3. In Sec. 4.4, we justify our use of

binary projected separations to compare our simulated and observed binaries

and we discuss an appropriate lower cut-off to apply to the observed binaries

in Sec. 4.5. We discuss the re-scaling of our constraints to take into account

the non-uniform dark matter density in Sec. 4.6. Our final constraints are

discussed in Sec. 4.8, along with the current status of constraints on PBHs

as dark matter. Results from our analysis using only the 25 most halo-like

binaries are given in Sec. 4.7.

4.1 Scattering matrix

Since the initial semi-major axis distribution of halo wide binaries isn’t well

known [See introduction of 113] we need a way to test different initial distribu-

tions quickly without re-running our simulations. To do this we use a scattering

matrix S, following Yoo et al. [84], where Sij(Mp, ρ) is the number of binaries

with initial semi-major axis ai that have final projected separation rj for a

simulation with perturber mass Mp and dark matter density ρ. We’re able to

63
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do this because each simulated binary evolves independently, allowing us to

effectively put together whichever combination of simulated binaries we need

in order to create the correct initial semi-major axis distribution. To calculate

the expected number of binaries with projected separation rj, P (rj,Mp, ρ), we

multiply the scattering matrix by the initial semi-major axis distribution [84,

Eq. (15)] and normalise the resulting vector so that its sum across the bins in

which there are observed binaries is equal to the number of observed binaries

in our sample,

P (rj,Mp, ρ) ∝ Sij(Mp, ρ)ajq(aj), (4.1)

where a, is the array of semi-major axis bins and q(a), is the probability density

of the initial semi-major axis distribution. The extra factor of aj is necessary

here because our semi-major axis bins are logarithmically spaced. To test

our scattering matrix we compared the final projected separation distribution

directly from the simulations with the corresponding P (Mp, ρ), using a log flat

initial semi-major axis distribution as used in our simulations and confirmed

that the two distributions match.

4.2 Initial semi-major axis distribution

The scattering matrix allows us to test any initial semi-major axis distribution

but we need to choose a parameterisation. Previous work on wide binary

disruption [84–86, 101, 102] used a power law distribution, ∝ a−α, the simplest

generalisation of Oepik’s Law: a log flat distribution found to theoretically

model dynamical equilibrium [114]. Oepik’s law has also been found to match

the distribution of several different samples of wide binaries out to semi-major

axes of ∼ 3000au [115].

One problem with this distribution, however, is that it isn’t motivated by

formation mechanisms of halo wide binaries. For very wide binaries, with semi-

major axis > 10000au, the mechanisms are not well understood but binaries

this wide are expected to be very rare with a distribution that falls off steeper
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Fdim α
1.6 0.90
2.0 0.71
2.6 -0.36
3.0 -0.80

Table 4.1: The fitted power law α to Griffiths [116] Fig. 5.7 for the different values
of the fractal dimension of the simulated star cluster.

than log flat. Griffiths [116] investigates possible mechanisms for binaries with

such large semi-major axes and finds that formation from the dissolution of

large clusters is able to contribute to some of the wide binary population.

Binaries formed in this way become bound when a cluster of stars disperses

and the binding force between the stars and the cluster becomes smaller than

the force between the two stars.

We found that a power law distribution is a good fit to the wide binary

distributions from Griffiths [116] Fig. 5.7, which are calculated based on sim-

ulations of cluster dissolution. Our power law fits are given in Table 4.1 and

plotted in Fig. 4.1. The first column in Table 4.1 is the fractal dimension of

the initial star cluster. Increasing the fractal dimension decreases the amount

of substructure, with Fdim = 3 describing an initially homogeneous distribu-

tion [113]. The second column is the power law we fitted to the distribution,

α. When we vary α to fit our simulated distributions to observational data

we will allow it to vary between 0.7 and 2, since in reality, Fdim is no larger

than 2, and the best fit distribution never has α as large as 2. This range will

take into account contributions to the initial distribution from this formation

mechanism.

This distribution is not complete without a primordial binary population.

Primordial binaries are formed during star formation from the fragmentation

of pre-stellar cores [e.g. Ref. 116]. The primordial population is included by

adding a log normal distribution with mean µ = 100au and log width σ = 1.5
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Figure 4.1: Power law fits to Griffiths [116] Fig. 5.7 semi-major axis cumulative dis-
tribution function for different values of the fractal dimension, Fdim, of the simulated
star cluster. The blue, orange, green and red lines correspond to fractional dimen-
sions 1.6, 2.0, 2.6 and 3.0, respectively. The solid lines are from Ref. [116] Fig. 5.7
and the dashed lines are our power law fits. The fitted power law exponents, α, are
given in Table 4.1.
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[117]. The resulting form of the initial semi-major axis probability density is,

q(a) =



A(a/au)−α

log (amax/amin)

+ 1−A√
2πσ(a/au)

exp
(
− (log (a/au)−µ)2

2σ2

)
, if α = 1,

A(1−α)(a/au)−α

(amax/au)1−α−(amin/au)1−α

+ 1−A√
2πσ(a/au)

exp
(
− (log (a/au)−µ)2

2σ2

)
, otherwise,

(4.2)

where A and α are parameters we will fit for during our analysis, A is a measure

of how much of the distribution is log normal (A = 0 corresponds to all log

normal, A = 1 corresponds to all power law) and α is the power law exponent.

The parameters amin and amax are the minimum and maximum semi-major

axes of the distribution, used for normalisation. We use amin = 30au and

amax = 2× 104pc in order to be able to accommodate all the results from our

simulations for a variety of different parameters. Since the distribution from

the scattering matrix is normalised to match the number of observed binaries

across the observed bins, the only effect of altering amin and amax is to re-scale

A.

The best fit values for α and A as a function of perturber mass and halo

density are plotted in Fig. 4.2. See Sec. 4.3 for a description of the statistics

used to determine the best fits. The white cross shows the global best fit at

Mp = 30M� and ρ = 0.012M�pc−3, the maximum density we simulated, the

value of the local dark matter density is well measured and unlikely to be

larger than this [118]. For the majority of the parameter space a pure power

law distribution is preferred (A = 1) with 1.20 . α . 1.65, but for mid-

range perturber masses (Mp ∼ 200M�) a partially log normal distribution is

favoured, with a power law α . 1.

Figure 4.3 shows an example of our hybrid distribution. We find that for a

perturber mass of 100M� and a dark matter density of 0.009M�pc−3 the initial

distribution parameters that produce a final distribution which best matches

the observed distribution are α = 0.98 and A = 0.89. These parameters were
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Figure 4.2: The best fit values of α (top) and A (bottom) as a function of perturber
mass Mp and dark matter density ρ. The best fit at any given pair of Mp and ρ
corresponds with the minimum value of Y 2 (see text) for those parameters. The
global best fit is the white cross at Mp = 30M� and ρ = 0.012M�pc−3.
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Figure 4.3: The best fit projected separation distribution for perturber mass Mp =
100M� and dark matter density ρ = 0.009M�pc−3 (green line). The corresponding
initial distribution (orange line) has parameters α = 0.98 and A = 0.89. The blue
crosses show the observed binary distribution.

chosen because the best fit for this perturber mass and density has a value of A

that is noticeably smaller than 1. The initial distribution, described by these

parameters, is shown by the orange line, the green line is the corresponding

final distribution and the blue crosses are the observed binary distribution.

This projected separation distribution is demonstrative of the semi-major axis

distribution because semi-major axes and projected separations are approxi-

mately proportional to each other. For projected separations less than about

1000au, the initial distribution is dominated by the log normal part, this drops

off at larger projected separations leaving the power law part of the distribu-

tion. We will be using this hybrid distribution for the rest of our analysis,

our final results will allow A to vary between 0 and 1 but for comparison with

previous results we have set A = 1 where stated.
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4.3 Chi-squared like analysis

Previous work on wide binary disruption used a likelihood analysis [84] or K-S

test [86] to compare simulated distributions with observed binary distributions.

Both of these methods have weaknesses: likelihood analysis doesn’t easily

give p-values, and the K-S test is less sensitive to differences in the extremes

of distributions. This sensitivity is important because it is often the widest

binaries in the sample that contribute most to tightening the constraints in

this context.

Here we have chosen to use a modified version of the χ2 test. The χ2 test

readily provides p-values, allowing us to calculate 2σ and 3σ contours and it is

equally sensitive at the extremes of the distributions as at the median. The χ2

test has its own weaknesses, however, it compares binned data and it is invalid

if the number of samples in those bins is small (. 5). The χ2 statistic is given

by [112, Eq. (14.3.1)],

χ2 =
∑
i

(Ni − ni)2

ni
, (4.3)

whereNi is the number of observed binaries in the ith bin and ni is the expected

number of binaries in the ith bin, calculated from the scattering matrix. The

sum is over all bins with non-zero Ni.

Since we’re dealing with small numbers of binaries in some cases, we use a

modified version of the χ2 test: the Y 2 test [119]. The Y 2 statistic re-scales

the χ2 statistic so that its variance is fixed to be equal to twice its mean, even

in the case where there are small numbers of binaries [see 112, Sec. 14.3.2 for

more details]. The Y 2 statistic [119, Eq. (5)],

Y 2 = ν +

√
2ν

2ν + Σin
−1
i

(
χ2 − ν

)
, (4.4)

where ν, the number of degrees of freedom, is equal to the number of bins that

are compared minus one if the ni’s have been normalised to match the Ni’s

and minus one for each fitted parameter.

Our analysis is as follows, first we calculate Y 2 for every combination of
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perturber mass Mp, dark matter density ρ, A and α. Then for each Mp, ρ pair

we find the minimum value of Y 2: Y 2
min(Mp, ρ). We confirm that the absolute

best fit is a sufficiently good fit by comparing the absolute minimum Y 2: Y 2
min,

which is the minimum value of Y 2
min(Mp, ρ), with the number of degrees of

freedom for the analysis, ν. In this case ν is the number of bins compared (7)

minus one because we have normalised the simulated distribution to match

the observed one, minus two for the two parameters we have fitted (A and ρ).

Our minimum Y 2 value is less that 3, so the best fit distribution is a good fit

and we can continue our analysis.

To obtain constraints on the dark matter density as a function of perturber

mass we need to compare the variation in Y 2 from the minimum value,

∆Y 2(Mp, ρ) = Y 2
min(Mp, ρ)− Y 2

min, (4.5)

with the variation that corresponds to contours of 2σ and 3σ:

∆Y 2
2σ = inverse (1− cdf(0.0455)) , (4.6)

∆Y 2
3σ = inverse (1− cdf(0.00270)) , (4.7)

where cdf is the cumulative distribution function of the χ2 distribution with

2 degrees of freedom. The two degrees of freedom correspond to the two

dimensions of parameter space we are calculating the contours in (Mp and

ρ). To calculate the position of the 2σ contour for a particular Mp we find

the value of ρ that gives ∆Y 2(Mp, ρ) = ∆Y 2
2σ. The p-values calculated by

this method as a function of perturber mass and halo density are plotted in

Fig. 4.4. The black solid and black dotted lines correspond to p-values of 0.05

and 0.003, or equivalently, 2σ and 3σ constraints, respectively. The overall

best fit distribution to the observed binaries is indicated by a white cross,

with the p-values decreasing outwards from that point.

Due to time constraints we were unable to achieve very high resolution in

ρ, making it unlikely that we would find values of ∆Y 2(Mp, ρ) that are almost
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Figure 4.4: P-values calculated from Y 2 (see text) as a function of perturber massMp

and halo density ρ. Values below 0.05 and 0.003, shown by the black solid and dotted
lines, are excluded at 2σ and 3σ, respectively. The best fit to the observed binary
distribution is indicated with a white cross. The values of the initial distribution
parameters, α and A, are chosen to minimise Y 2, see Fig. 4.2.

equal to ∆Y 2
2σ and ∆Y 2

3σ. To combat this, for each perturber mass, we fitted a

power law to ∆Y 2(Mp, ρ) as a function of ρ and inverted the resulting function

to give ρ evaluated at ∆Y 2
2σ and ∆Y 2

3σ. This method gives us much smoother

and more accurate constraints plots. Other than this interpolation, the main

weakness of this analysis method is the use of binned data.

4.4 Projected separation analysis

Previous papers have compared the observed angular separation [e.g. Ref. 84]

or semi-major axis [e.g. Ref. 86] distributions with the simulated distribu-

tions, but both of these methods have disadvantages. Angular separation is

measurable for the observed binaries, but to calculate the angular separation

distribution for simulated binaries it’s necessary to introduce a distribution

for the distances between us and the binaries. Semi-major axes are directly

readable from the simulations but to find semi-major axes for the observed
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distribution it’s necessary to use an eccentricity distribution and randomised

viewing angles for the observed binaries.

Projected separations are easily calculated from distance and angular sep-

aration measurements for the observed binaries (Eq. (2.19)) and for the sim-

ulated binaries we only need to randomise the viewing angles for the binaries

in order to find the projected separation from the absolute separation since we

are already using an eccentricity distribution as part of the simulations. Com-

paring projected separations only requires the assumption that the simulated

binaries are randomly oriented in the sky.

We tested our analysis code by running it with different random seeds to

confirm that the best fit perturber mass is consistent. The resulting ranges of

best fit perturber mass are plotted in Fig. 4.5. The median value of the best fit

perturber mass is shown by the orange lines for three different versions of our

analysis. The first is the projected separation analysis, where the simulated

and observed projected separations are compared. The second is the angular

separation analysis where the simulated binary distances are drawn from the

distance distribution of our observed binary catalog. The third is the angular

separation analysis assuming that all binaries are at a fixed distance of 100pc

from us, this is only for comparison here in order to check which randomised

parameter causes any variability in best fit values.

The best fit perturber mass varies across the entire range of our parameter

space for the angular separation analysis indicating that this method is too

random for the sample sizes we’re using. We find that when we don’t randomise

the binary distances, by either comparing projected separations or picking

an example distance of 100pc, the range of best fits narrows dramatically

giving us sufficiently consistent results. Therefore, our final analysis is made

by comparing the projected separations of the observed and simulated binaries

in order to introduce the least amount of uncertainty in our results.
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Figure 4.5: The range of best fit perturber masses calculated by comparing pro-
jected separations, angular separation with distance drawn from the distribution of
observed binary distances, and angular separations with the distance fixed to 100pc.
Also shown is the effect of using different projected separation or angular separation
cut-offs. The group of 137 binaries is the result of a lower projected separation
cut-off of 1273au and the 177 binaries are from a lower angular separation cut-off of
4.7”. The whiskers show the full range of the best fit mass values, the boxes show
the lower and upper quartiles and the orange lines show the median values.

4.5 Observational data

We use the halo wide binary catalog put together by Allen and Monroy-

Rodŕıguez [106] to calculate our constraints. They searched the literature

for high velocity, metal-poor wide binaries, since these are the most likely to

be halo binaries. Proper motions were taken from the SIMBAD database and

pairs whose proper motions were different by more than the measurement er-

rors were removed. The catalog consists of 111 halo binaries from Allen et al.

[120], 110 from Chanamé and Gould [103], 23 from Zapatero Osorio and Mart́ın

[121] and 7 from Ryan [122]. The majority of the binaries are originally from

Luyten’s NLTT catalog [104] which is complete up to a visual magnitude of

19 and for proper motions larger than 180 mas/yr. As a magnitude limited

sample it is subject to Malmquist (preferential detection of bright stars), kine-

matical and Lutz-Kelker (the assumption that stars are distributed uniformly

in space) biases. We removed a binary from the catalog that we believe to

be a duplicate, the binary with primary star NLTT 29553 and secondary HIP

58962.
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Figure 4.6 shows the angular separation and projected separation distributions

for 250 of the 251 Allen and Monroy-Rodŕıguez [106] binaries. To obtain a

complete binary sample it is necessary to discard binaries with an angular

separation or projected separation below a cut-off. Yoo et al. [84] use a cut-off

of 3.5” to ensure their sample of halo wide binaries is complete. A cut-off of

a few arcsec reflects the resolving power of the telescope used to observe the

sample.

For the binaries that are relevant here (with semi-major axis > 100au),

which have a monotonically decreasing initial semi-major axis distribution,

the semi-major axis distribution, and therefore the angular separation and pro-

jected separation distributions, should decrease monotonically with increasing

semi-major axis. Since we are using projected separations for our analysis we

will choose a projected separation cut-off rather than an angular separation

cut-off. Our cut-off is chosen such that the number of binaries per logarith-

mically spaced projected separation bin decreases with increasing projected

separation, and where the cut-off would split up a projected separation bin,

the cut-off has been increased so that no bins are partially filled. The resulting

cut-off is at 1273au, we keep binaries with projected separations larger than

this leaving us with 137 binaries for our analysis.

Figure 4.7 is a plot of distance against separation for the 250 binaries. Each

blue cross represents a binary star and the orange vertical line indicates our

lower projected separation cut-off. The white space in the top left corner is due

to the resolution of the observations used to put together the catalog, binaries

with a low angular separation are not detected. This plot shows that our choice

of projected separation cut-off effectively removes this incompleteness.

A final confirmation that this is a suitable choice of lower projected separa-

tion cut-off comes from values of Y 2 for populations of binaries with different

cut-offs. We found that decreasing the lower cut-off increases the value of

Y 2
min, and our choice of cut-off at 1273au is the lowest value that allows the

observational data to match the simulation results with a sufficiently good fit.
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Figure 4.6: The angular separation (top) and projected separation (bottom) distri-
butions of 250 binaries from the Allen and Monroy-Rodŕıguez [106] catalog.
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Figure 4.7: Distance plotted against projected separation for the 250 binaries from
the Allen and Monroy-Rodŕıguez [106] catalog. Each blue cross represents a single
binary star. The orange line is the projected separation 1273au, the lower cut-off
used in our analysis.

Our best fit distribution is shown in Fig. 4.8. This plot shows the dis-

tribution which has the smallest Y 2 value (green line) in comparison with

the observed distribution (blue crosses). This distribution has perturber mass

Mp = 30M�, perturber density ρ = 0.012M�pc−3, and initial distribution pa-

rameters α = 1.26 and A = 1.00. The initial distribution for these values of α

and A is also plotted (orange line).

4.6 Re-scaling of constraints

In Sec. 3.2.4 we discussed the necessity of re-scaling our constraints to take

into account the variable dark matter density along Galactic orbits. This re-

scaling has been suggested before by Quinn et al. [85]. We calculated the time-

averaged dark matter density along each binary Galactic orbit, for the binaries

in our catalog that have enough data, and found that the mean time-averaged

density is 0.0106M�pc−3, a little larger than the dark matter density at the

solar radius for our model: 0.00754M�pc−3. We found that the distribution of
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Figure 4.8: The best fit final projected separation distribution (green line) to the
observed binary distribution (blue crosses) and the corresponding initial distribution
(orange line) which has parameters α = 1.26 and A = 1.00. The best fit perturber
mass is Mp = 30M� and the best fit perturber density is ρ = 0.012M�pc−3.

time-averaged densities is narrow, making this method of re-scaling an accurate

approximation. We have re-scaled our constraints by 0.00754/0.0106 = 0.711

as a result of this, making them slightly tighter.

4.7 25 most halo-like binaries

In Sec. 3.2.5 we discussed how Monroy-Rodŕıguez and Allen [86] take into

account the effects of the Galactic disk by calculating constraints from binaries

that spend less time near the Galactic plane. They find that the constraints

for their x most halo-like binaries get increasingly tighter as x decreases.

We replicated this analysis by calculating Galactic orbits for the 160 bi-

naries in our sample that have sufficient data in the SIMBAD astronomical

database [123]. We used the MWPotential2014 Galactic potential in the galpy

package [110] to integrate the orbits of 160 binaries back in time by 10Gyr,

calculating the fraction of their time they spend within 500pc of the Galactic

plane.
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Since only 46 binaries in our sample have both projected separation larger

than our cut-off (1273au) and enough data to calculate the fraction of time

they spend in the disk, we were only able to calculate constraints for the 25

most halo-like binaries for comparison with Monroy-Rodŕıguez and Allen [86]

and not the 50 and 100 most halo-like. The best fit for our 25 most halo-

like binaries has a sufficiently small Y 2
min value to be a good fit. As shown

in Figs. 4.9 and 4.10, our constraints are much weaker than those calculated

by Monroy-Rodŕıguez and Allen [86] but still tighter than those for our full

population of 137 binaries.

We tested how variable the best fit perturber mass and halo densities are

for random populations of 25 binaries. Our results showed that not only did

the best fit perturber mass vary drastically for the different populations, the

minimum Y 2 value varied too, sometimes above the allowed value for valid

constraints. More tests need to be made to confirm that calculating constraints

for the most halo-like binaries in this way is accurate. It’s possible that 25

is too small a number of binaries to give trustworthy results. If we had more

time we would like to test how the constraints are affected by the number

of binaries in the population. It would also be interesting to see how the

constraint depends on the widest binary in the sample, since previous studies

have found that it’s often the widest binary that has the largest effect [e.g. Ref.

85].

It is likely that taking into account interactions with the Galactic disk

would make constraints much tighter since the wide binaries would be passing

through areas of high density, and a more direct model, such as simulating the

Galactic potential [e.g. Ref. 102], might provide more accurate results. This

doesn’t change our main conclusion: when the effects of unbound binaries

and more realistic initial distributions are considered, the constraints become

weaker and more information and sophisticated simulations are needed to make

progress here.



80 Chapter 4. Calculating Constraints

100 101 102 103 104

Perturber mass / M

10 1

100

H
al

o 
de

ns
ity

 / 
0.

00
9M

pc
3

M-R&A 25mhl
M-R&A 100mhl
2 , 25mhl, A = 1
3 , 25mhl, A = 1
2 , 25mhl, 0 < A < 1
3 , 25mhl, 0 < A < 1

Figure 4.9: The maximum allowed fraction of the halo dark matter density made
up of PBHs as a function of the PBH mass. The purple lines are constraints from
Monroy-Rodŕıguez and Allen [86] for their 25 most halo-like (dash-dot line) and
100 most halo-like (solid line) binaries. Our constraints from the 25 most halo-like
binaries with projected separation larger than 1273au are plotted in pink, for A = 1,
and cyan, for 0 < A < 1. The solid lines are 2σ constraints and the dotted lines
are 3σ constraints. A binary is more halo-like if it spends less of its lifetime within
500pc of the Galactic plane [86].



Chapter 4. Constraints 81

4.8 Constraints

Our final constraints are shown in Figs. 4.10 and 4.11. Figure 4.10 shows our 2σ

and 3σ constraints for a power law initial semi-major axis distribution (A = 1)

and our hybrid distribution (0 < A < 1) along with constraints from previous

work on wide binaries. The parameter space above the lines is excluded at ei-

ther the 2σ or 3σ level, as indicated by the caption. Our constraints are much

weaker than those calculated by Yoo et al. [84] and Monroy-Rodŕıguez and

Allen [86], being more similar to the constraints calculated by Quinn et al.

[85]. We can see that using the hybrid distribution makes the constraints

slightly weaker but this effect is very minor. The large difference between our

constraints and those calculated previously could be explained by the inclusion

of unbound binaries, more realistic initial distributions and the use of a χ2-like

analysis. The inclusion of unbound binaries leads to less perturbed final dis-

tributions, this decrease in effectiveness of PBH encounters means that larger

mass perturbers are no longer rejected by the constraints.

Our 2σ constraint with 0 < A < 1 is shown in context with current con-

straints on PBHs as dark matter in Fig. 4.11. The dynamical constraint on

this plot is the 25 most halo-like binaries constraint from Monroy-Rodŕıguez

and Allen [86]. As shown in the previous plot, our constraint is much weaker

than previous constraints calculated using wide binaries, and as a result, our

new dynamical constraint only excludes a small amount of this PBH mass win-

dow. In order to find less conservative constraints on the dark matter fraction

of PBHs, it would be necessary to know more information about the initial

semi-major axis distribution of halo wide binaries or to use more sophisticated

simulations that take into account effects of the Galactic disk and the Galactic

tide, perhaps using a simulation of the Galactic potential similar to Jiang and

Tremaine [102].
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Figure 4.10: As in Fig. 4.9 but our constraints are calculated from the full population
of 137 binaries with projected separation larger than 1273au. The green solid and
dotted lines are the 2σ and 3σ constraints found by Yoo et al. [84], respectively. The
red line is the 2σ constraint calculated by Quinn et al. [85]. The purple dash-dot
and solid lines are constraints from Monroy-Rodŕıguez and Allen [86] for their 25
and 100 most halo-like binaries, respectively. The orange solid and dotted lines are
our own 2σ and 3σ constraints from a power law initial semi-major axis distribution.
The blue solid and dashed lines are the 2σ and 3σ constraints from our hybrid initial
semi-major axis distribution (see text).
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Figure 4.11: From Green and Kavanagh [56] with our own constraint added. A
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Summary

In this chapter I will recap the motivation and methods used in this thesis

(Sec. 5.1), summarise the improvements we were able to make to previous

work on wide binary disruption (Sec. 5.2), list our main conclusions (Sec. 5.3)

and describe a few ways in which our work could be improved or expanded

upon (Sec. 5.4).

5.1 This thesis

We set out to find more reliable constraints on the PBH halo fraction following

the work of Refs. [39, 85, 86]. Our main goal was to use a physically motivated

initial semi-major axis distribution for our wide binary simulations and confirm

whether or not any of the previously used approximations need to be replaced

by a more accurate method. We used our simulations to confirm the impulse

approximation is sufficiently accurate in our parameter space and we tested

the necessity of including binaries that break during the simulation. The non-

uniform density experienced by halo binaries was taken into account by re-

scaling our constraints by the mean time-averaged dark matter density along

their Galactic orbits and we used the method of Monroy-Rodŕıguez and Allen

[86] for including the effects of the Galactic disk. Like previous work [Refs.

12, 84–86], we were unable to include the effects of passing stars, the Galactic

tide and giant molecular clouds; although the omission of these effects will

only make our final constraints more conservative.

84
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Our Monte Carlo simulations implemented encounters using the impulse

approximation for impact parameters out to a maximum value that we con-

firmed is sufficient through convergence testing. Our resulting semi-major axis

distributions are in good agreement with previous work when unbound bina-

ries are left out of the simulations, but when left in, unbound and rebound

binaries have a significant impact on the final binary population. We were

able to produce some of the effects and results from other work and we have

provided explanations for any observed differences.

5.2 Improvements we made

We made various improvements on previous approximations, especially the

physically motivated initial semi-major axis distribution and the inclusion of

unbound binaries. Including unbound binaries increases the number of binaries

in the final binary distribution, either because the binaries became rebound

after a subsequent encounter or because the binary never had a large enough

separation to be removed, consequently the constraints are much weaker. We

were able to include all encounters out to a maximum impact parameter where

previously the 100 closest encounters have been implemented [84–86] or the

further away encounters are simulated as a single diffusive process [101, 102].

We also used improved statistics to compare the observed and simulated

binary distributions. Our modified χ2 test readily gives p-values whilst also

providing a measure of the goodness of the best fit. Previous analyses used

likelihood analysis, which does not measure the goodness of the best fit, and

the K-S test, which has low sensitivity at the extremes of the compared dis-

tributions.

5.3 Our conclusion

We calculated our constraints by comparing the observed and simulated pro-

jected separations, which reduces the number of random variables introduced
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in the comparison to just the orientation of the simulated binaries. We found

this to be necessary for our sample size. We compared the projected sep-

arations using a modified χ2 analysis which gives constraints that take into

account the quality of the best fit distribution.

Due to the inclusion of unbound binaries and the extra variable parameter

in the initial semi-major axis distribution, our constraints are much weaker

than those calculated by [e.g. Ref. 86]. Although we did find constraints for

the 25 most-halo like binaries, we are not certain that this method accurately

takes into account the effect of the Galactic tide. The small sample size might

not provide reliable constraints and given more time we would have liked to

test this method more thoroughly.

Our final constraints (Fig. 4.11) are much weaker than other dynamical

constraints and other constraints in this mass range. The unrealistic initial

distribution used in previous studies may have made those constraints erro-

neously tight. Many of the approximations we made were conservative so more

detailed simulations may be required to find tighter constraints.

5.4 Future work

There are many ways our work could be improved. Firstly, with GAIA DR2’s

radial velocity measurements it should be possible to construct much larger

catalogs of halo wide binaries [124]. At this time there is no confirmed sample

of halo binaries from GAIA DR2 with a well defined selection function.

Correa-Otto et al. [125] studied the effect of the Galactic tide on binary

stars in the solar neighbourhood. They found that the Galactic tide is un-

likely to break a binary, but for binaries with semi-major axes greater than

∼ 1000au, the tidal forces can lead to a large increase in the binary’s eccen-

tricity. Although the effects of the Galactic tide are likely to be weaker for

halo binaries, a large increase in binary eccentricity could lead to much more

disruptive encounters with PBHs, making this effect potentially important. A

more detailed simulation of Galactic dynamics, such as that used by Jiang and
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Tremaine [102] would take into account the effect of the Galactic disk, Galactic

tidal forces and the non-uniform dark matter density much more accurately

than we were able to.

We might have improved our results by comparing observed and simulated

populations without binning. The K-S test, which allows comparison of dis-

tributions without binning, doesn’t provide high levels of sensitivity at the

extremes of the distribution but there are modified versions of the K-S test

that have a more even sensitivity across the distribution. Likelihood analy-

sis, however, remains unsuitable because it doesn’t provide a goodness of fit

measure for the best fit parameters.

Another consideration for the future is black hole binaries. Increasing the

number of PBHs in PBH binaries would be expected to have a more disruptive

effect on halo wide binaries, but current simulations of structure formation

with PBH dark matter are as of yet unable to extrapolate the evolution of

PBH binaries to the present day [126].
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Appendix A

Derivation of the maximum
impact parameter

The maximum impact parameter, bmax, is derived by requiring that the frac-

tional change in binary energy due to an encounter at bmax is less than a small

number δ. We will do this calculation for each term in Eq. (2.25) separately.

Substituting Eq. (2.24) into Eq. (2.25), setting Vrel = σrel and neglecting

the second term in Eq. (2.25),

∆E =
2GMp

σrel

(V1 −V2) ·
(

b1

b2
1

− b2

b2
2

)
. (A.1)

Then since |E| = GMb

2a
,

∆E
|E| =

4Mpa

Mbσrel

(V1 −V2) ·
(

b1

b2
1

− b2

b2
2

)
. (A.2)

The maximum difference in orbital velocity of the two stars is,

|V1 −V2| = 2

√
GMb(1− e)
a(1 + e)

≈ 2

√
GMb

a
. (A.3)

The impact parameter vectors which maximise the difference between impact

parameters are,

b1 = (b+ a)b̂, (A.4)

b2 = bb̂, (A.5)

therefore, ∣∣∣∣b1

b2
1

− b2

b2
2

∣∣∣∣ =
a

b(b+ a)
. (A.6)
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Using Cauchy’s inequality and Eqs. (A.2), (A.3) and (A.6),

∆E
|E| ≤

8
√
GMpa

3/2

√
Mbσrelb(b+ a)

. (A.7)

Finally, we change this to an equality, relabel ∆E/|E| to δ and relabel b to

bmax,

δ =
8
√
GMpa

3/2

√
Mbσrelbmax(bmax + a)

, (A.8)

which has solutions,

bmax = −a
2
±
√
a2

4
+ 8G

1
2MpM

− 1
2

b a
3
2σ−1

rel δ
−1. (A.9)

By substituting in typical values (Mp = 1M�, Mb = 1M�, a = 104au, σrel =

220km s−1), we find that the second term in the square root is much larger

than the first. Neglecting the a/2 terms,

bmax =

(
64GM2

pa
3

Mbσ2
relδ

2

) 1
4

. (A.10)

For the second term in Eq. (2.25), following the same procedure we find,

bmax =

(
4GM2

pa
3

Mbσ2
relδ

) 1
4

. (A.11)

The only differences between Eqs. (A.10) and (A.11) are the prefactor and the

dependence on δ. In our simulations we use Eq. (A.10) since this is the larger

value.
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I. Pâris, J. A. Peacock, P. Petitjean, M. M. Pieri, A. Pisani, F. Prada,
A. Prakash, A. Raichoor, B. Reid, J. Rich, J. Ridl,
S. Rodriguez-Torres, A. Carnero Rosell, A. J. Ross, G. Rossi, J. Ruan,
M. Salvato, C. Sayres, D. P. Schneider, D. J. Schlegel, U. Seljak, H.-J.
Seo, B. Sesar, S. Shandera, Y. Shu, A. Slosar, F. Sobreira,
A. Streblyanska, N. Suzuki, D. Taylor, C. Tao, J. L. Tinker, R. Tojeiro,
M. Vargas-Magaña, Y. Wang, B. A. Weaver, D. H. Weinberg,
M. White, W. M. Wood-Vasey, C. Yeche, Z. Zhai, C. Zhao, G.-b. Zhao,
Z. Zheng, G. Ben Zhu, and H. Zou, “The SDSS-IV Extended Baryon
Oscillation Spectroscopic Survey: Overview and Early Data”, AJ 151
February (2016) 44, arXiv:1508.04473.

[22] D. J. Bacon, A. R. Refregier, and R. S. Ellis, “Detection of weak
gravitational lensing by large-scale structure”, MNRAS 318 October
(2000) 625–640, arXiv:astro-ph/0003008.

[23] S. Joudaki, C. Blake, A. Johnson, A. Amon, M. Asgari, A. Choi,
T. Erben, K. Glazebrook, J. Harnois-Déraps, C. Heymans,
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[94] Y. Ali-Häımoud and M. Kamionkowski, “Cosmic microwave
background limits on accreting primordial black holes”, Phys. Rev. D
95 Feb (2017) 043534, arXiv:1612.05644.

[95] Y. Tada and S. Yokoyama, “Primordial black holes as biased tracers”,
Phys. Rev. D 91 June (2015) 123534, arXiv:1502.01124.

[96] S. Young and C. T. Byrnes, “Signatures of non-gaussianity in the
isocurvature modes of primordial black hole dark matter”, J.
Cosmology Astropart. Phys. 2015 April (2015) 034, arXiv:1503.01505.

[97] T. Suyama and S. Yokoyama, “Clustering of primordial black holes
with non-Gaussian initial fluctuations”, Progress of Theoretical and
Experimental Physics 2019 October (2019) 103E02,
arXiv:1906.04958.

[98] J. C. Niemeyer and K. Jedamzik, “Near-Critical Gravitational Collapse
and the Initial Mass Function of Primordial Black Holes”,
Phys. Rev. Lett. 80 June (1998) 5481–5484, arXiv:astro-ph/9709072.

[99] J. C. Niemeyer and K. Jedamzik, “Dynamics of primordial black hole
formation”, Phys. Rev. D 59 June (1999) 124013,
arXiv:astro-ph/9901292.

[100] C. D. Murray and S. F. Dermott, “Solar system dynamics”, Cambridge
University Press, 2000.

https://arxiv.org/abs/1704.01668
https://arxiv.org/abs/astro-ph/0302035
https://arxiv.org/abs/1903.10509
https://arxiv.org/abs/1707.04206
https://arxiv.org/abs/2002.10771
https://arxiv.org/abs/1803.09697
https://arxiv.org/abs/1612.05644
https://arxiv.org/abs/1502.01124
https://arxiv.org/abs/1503.01505
https://arxiv.org/abs/1906.04958
https://arxiv.org/abs/astro-ph/9709072
https://arxiv.org/abs/astro-ph/9901292


100 BIBLIOGRAPHY

[101] M. D. Weinberg, S. L. Shapiro, and I. Wasserman, “The Dynamical
Fate of Wide Binaries in the Solar Neighborhood”, ApJ 312 January
(1987) 367.

[102] Y.-F. Jiang and S. Tremaine, “The evolution of wide binary stars”,
MNRAS 401 January (2010) 977–994, arXiv:0907.2952.
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[106] C. Allen and M. A. Monroy-Rodŕıguez, “An Improved Catalog of Halo
Wide Binary Candidates”, ApJ 790 August (2014) 158,
arXiv:1406.5164.

[107] W. Dehnen and J. I. Read, “N-body simulations of gravitational
dynamics”, European Physical Journal Plus 126 May (2011) 55,
arXiv:1105.1082.

[108] W. Dehnen and J. Binney, “Mass models of the Milky Way”, MNRAS
294 March (1998) 429–438, arXiv:astro-ph/9612059.

[109] C. Allen and A. Santillan, “An improved model of the galactic mass
distribution for orbit computations.”, Revista Mexicana de Astronomı́a
y Astrof́ısica 22 October (1991) 255.

[110] J. Bovy, “galpy: A python Library for Galactic Dynamics”, ApJS 216
February (2015) 29, arXiv:1412.3451.

[111] A.-C. Eilers, D. W. Hogg, H.-W. Rix, and M. K. Ness, “The Circular
Velocity Curve of the Milky Way from 5 to 25 kpc”, ApJ 871 January
(2019) 120, arXiv:1810.09466.

[112] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
“Numerical recipes in C++ : the art of scientific computing”,
Cambridge University Press, 2002.

[113] M. B. N. Kouwenhoven, S. P. Goodwin, R. J. Parker, M. B. Davies,
D. Malmberg, and P. Kroupa, “The formation of very wide binaries
during the star cluster dissolution phase”, MNRAS 404 June (2010)
1835–1848, arXiv:1001.3969.

[114] M. Valtonen, “Wide Binaries from Few-Body Interactions”, Celestial
Mechanics and Dynamical Astronomy 68 May (1997) 27–41.

https://arxiv.org/abs/0907.2952
https://arxiv.org/abs/astro-ph/0307434
https://arxiv.org/abs/1406.5164
https://arxiv.org/abs/1105.1082
https://arxiv.org/abs/astro-ph/9612059
https://arxiv.org/abs/1412.3451
https://arxiv.org/abs/1810.09466
https://arxiv.org/abs/1001.3969


BIBLIOGRAPHY 101

[115] A. Poveda, C. Allen, and A. Hernández-Alcántara, “The Frequency
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[117] G. Duchêne and A. Kraus, “Stellar Multiplicity”, ARA&A 51 August
(2013) 269–310, arXiv:1303.3028.

[118] P. F. de Salas and A. Widmark, “Dark matter local density
determination: recent observations and future prospects”, Reports on
Progress in Physics 84 October (2021) 104901, arXiv:2012.11477.

[119] L. B. Lucy, “Hypothesis testing for meagre data sets”, MNRAS 318
October (2000) 92–100.

[120] C. Allen, A. Poveda, and M. A. Herrera, “Wide binaries among
high-velocity and metal-poor stars”, A&A 356 April (2000) 529–540.

[121] M. R. Zapatero Osorio and E. L. Mart́ın, “A CCD imaging search for
wide metal-poor binaries”, A&A 419 May (2004) 167–180,
arXiv:astro-ph/0402310.

[122] S. G. Ryan, “Halo Common Proper Motion Stars: Subdwarf Distance
Scale, Halo Binary Fraction, and UBVRI Colors”, AJ 104 September
(1992) 1144.

[123] M. Wenger, F. Ochsenbein, D. Egret, P. Dubois, F. Bonnarel, S. Borde,
F. Genova, G. Jasniewicz, S. Laloë, S. Lesteven, and R. Monier, “The
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