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Abstract

In the past several decades, cold atom experiments have provided physicists with
copious amounts of new discoveries, none more important than that of Bose-
Einstein condensation, where laser-cooled bosonic gases ‘condense’ into the lowest
available energy state of the system. While playing a pivotal role in ultracold
experiments, atoms within a Bose-Einstein condensate interact very weakly with
one another. A major dichotomy to this is interaction experienced by Rydberg
atoms, where the interaction strength between atoms are orders of magnitude
larger than standard atom-atom interactions.

In this thesis we examine the dynamical properties of Rydberg-dressed Bose-
Einstein condensates under different forms of trapping potentials. The study
of the out-of-equilibrium dynamics of Bose-Einstein condensates has lead to a
plethora of novel and interesting features. We aim to expand on this already
lucrative field by inducing dynamics via Rydberg-dressing, which creates an ef-
fective soft-core interaction between the dressed states.

The work chapters will be divided into two main parts. First we study the exci-
tation of roton and maxon modes in a three-dimensional free space model, where
the dynamics is induced via an instantaneous quench of the interaction param-
eters in Chapter 3. The Bogoliubov eigenspectrum develops maxon and roton
modes, which are respectively the local maximum and minimum of the spectrum
in momentum space. They lead to exotic dynamics associated with the energy
scales of the modes. The maxon modes are found to produce stable oscillations
which are unseen in dipole-dipole interacting Bose-Einstein condensates. The
simulations examined encapsulate the quantum depletion, density-density cor-
relations, and condensate number fluctuation; all of which display two distinct
oscillation frequencies, attributed to the development of maxon and roton modes
for strongly interacting systems.

In the second half of this thesis, we examine the dynamics of Rydberg-dressed
Bose-Einstein condensates, when confined on periodic lattice potentials. In par-
ticular, we focus our attention on a Bose-Hubbard chain, as this will allow us to
truly utilise the long-range behaviour of the soft-core interaction. This will be
discussed in Chapters 4 and 5. The eigenspectra of such systems develop complex
anti- and avoided-level crossings. The resulting dynamics is described by mean-
field Gross-Pitaevskii equations. This leads to nonlinear and chaotic dynamics in
the adiabatic level crossings, and self-trapping behaviour. We show that the sys-
tem is highly dependent on the initial state, the zero-energy level bias of the traps,
and the nonlinear interaction strength. We then expand on the chaotic nature
of the system by examining the energetic stability and the Lyapunov exponents.
These show that the self-trapping behaviour arises due to strongly positive ex-
ponents, as opposed to the conventional idea of the system being energetically
unstable. We finally discuss how the chaotic nature of Rydberg-dressing scales
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with the size of the system. The findings show that such systems are hyper-
chaotic, with the number of positive Lyapunov exponents scaling linearly with
the number of sites.

The results of this thesis may prove to be highly useful in the creation of stable
Rydberg-dressed Bose-Einstein condensates, and in the field of ultracold atoms
as a whole.
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Chapter 1

Introduction

In the field of ultracold gases, there exists no topic more deified by scientists

and civilians alike, than Bose-Einstein condensation; a new state of matter where

nearly all the atoms in a closed bosonic system ‘condense’ into the lowest avail-

able energy state. Bose-Einstein condensates have practical applications in the

related fields of superconductivity and quantum computation, all the way to the

other end of the physics spectrum at quantifying the behaviour of dark matter

axions particles. However, the problem with this exotic state of matter is that

is incredibly fragile, where even the slightest increase in temperature from the

environment can trigger a complete collapse of the condensate. This has lead

physicists to devote years of research into stabilising and controlling this phe-

nomenon, with some astounding results.

A key way to manipulate these states is by controlling the interatomic interactions

between either the atoms in the condensate, or the condensed and non-condensed

particles. One such interaction is induced by Rydberg atoms. These atoms

produce both strong and long-range interactions, which could in theory allow

for highly precise experiments to take place. The problem with these atoms

is that they are highly unstable, with life times on the order of microseconds.

Unfortunately, this means that Rydberg atoms as they stand, are not a viable

option for examining any sort of out-of-equilibrium dynamics, usually associated

with dilute ultracold gases. To get around this hurdle, we propose the use of the

1



2

more novel states known as Rydberg-dressed states. These states are coupled to

the groundstate, giving them extended lifetimes of the order of milliseconds. It

should be noted that while the process of dressing the Rydberg atoms diminishes

their long-range interaction strength, the resulting two-body interactions are still

more than strong enough to produce interesting results.

In Chapter 2, we will present a brief theoretical summary of Bose-Einstein con-

densation. Key concepts like optical trapping and the famed Bose-Hubbard model

are introduced. We discuss the different ground state configurations possible for

a Bose-Hubbard Hamiltonian, such as the superfluid and Mott-insulating phases.

Next we discuss Rydberg atoms and the related Rydberg-dressed states. These

atoms are known to produce a soft-core shaped interaction, which allows for pre-

cise control of nearest- and next-nearest-neighbour interactions.

In Chapter 3 we begin by discussing the dynamical properties of dilute Bose gases

with short-range two-body interactions, suspended in free-space. This allows us to

explain some key concepts, such as collective excitations and Bogoliubov theory.

We then expand on this foundation, and introduce Rydberg-dressed interactions

to the condensate. This produces novel oscillations in the dynamics, unseen in

other forms of long-range interacting Bose-Einstein condensates. We examine the

resulting quantum depletion, density-density interactions, and the fluctuations

away from the condensed state.

Chapters 4 involves confining Bose-Einstein condensates on neighbouring optical

traps. Beginning again with short-range interactions, we introduce the concepts of

Landau-Zener transitions when there are two and three traps side-by-side, along

with self-trapping, which is analogous to the Mott-insulator of the Bose-Hubbard

model. We produce the adiabatic eigenspectra for chains with a fixed number

of traps. This allows us to discuss how both avoided and direct level-crossings

affected the aforementioned dynamics. By introducing the dressed states into

these chains, we find that the adiabatic theorem is unable to be fulfilled due to

bifurcations in these energy levels along the ground state. What we find leads
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us to the research carried out in chapter 5. As we increase the number of sites

in these chains, the system naturally becomes more chaotic. In fact, we show

that when there are more than three sites, the system is inherently hyperchaotic.

This is verified by examining the dynamical stability and the Lyapunov expo-

nents exponents. The corresponding phase-space representation shows regions of

severe chaos, with very few islands of stability found, assuming the long-range

interaction parameters are sufficiently large. The relative decrease in the size of

phase-space that is encapsulated by chaotic trajectories is shown to be propor-

tional to an increasing number of sites.

Finally in chapter 6 we conclude our examination of Rydberg-dressed Bose-

Einstein condensates and discuss some possible next steps that could be used

to enrich new research in this already prolific field.



Chapter 2

Theoretical background

In this chapter, we introduce the relevant physics that will play a pivotal role in

the coming thesis. We begin in Sec. 2.1 with a brief introduction on ultracold

gases. The behaviour of these gases under specific interactions is the main focus

of this thesis, and as such, it is important to understand, not only the theory

of these gases, but also how we can realise them viably in experiments. From

here we discuss optical trapping, which is a natural lead to the extended Bose-

Hubbard model; a Hamiltonian that describes the dynamics of bosons between

lattice sites, which are subjected to both onsite and offsite interactions. In Sec.

2.2 we introduce the physics behind Rydberg atoms; along with both pros and

cons to these highly excited atoms. We then explore the idea of Rydberg-dressed

states. This interaction is the fundamental concept for the coming chapters.

2.1 Ultracold gases

Ultracold atoms refer to atoms that have been cooled to temperatures near ab-

solute zero. At these energy scales, the quantum mechanical nature of the atom

dominates. Experimentally, this regime has been achieved with dilute Bose and

Fermi gases, using laser cooling [1]. The experiments have been so fruitful as

the high degree of controllability that these atoms innately have allowed for the

precise construction of specific Hamiltonians to study. These experiments were

4



Chapter 2. Ultracold gases 5

spurred on by decades of theoretical research ranging from the study of ground

state phase diagrams, to the exciting area of out-of-equilibrium dynamics, which

will be at the forefront of this thesis in later chapters [2].

2.1.1 Bose-Einstein condensation

Arguably one of the most important physical phenomena uncovered in the past

several decades is Bose-Einstein condensation. This new state occurs when atoms

are cooled to ultracold temperatures, allowing them to occupy the same ground

state. In this regime, typical microscopic quantities behave macroscopically.

While first being predicted in 1924 by Albert Einstein, it was Satyendra Nath

Bose’s calculations that developed the relevant statistical physics that describes

this new state.

Assuming a system is in thermal equilibrium, the mean occupation state is given

by the Bose distribution

n̄s =
1

e(Es−µ)/kBT − 1
, (2.1)

where Es refers to the single-particle energy in state s, µ is the chemical potential,

T is temperature and kB is Boltzmann’s number. This describes the statistics

behind identical particles with integer spin, known as bosons. What is clear

from Eq. 2.1 is that the single-particle energy and the chemical potential provide

a fundamental constraint for the system, where µ < E0, s = 0 referring to the

ground state of the system. This prevents negative occupation of states. For n̄s to

be conserved with decreasing temperature, the chemical potential must increase

in turn. The total number of atoms in the system is given by N = Nc + Nex,

where Nc and Nex represent the condensed and excited atoms respectively.

The density of states for a particle in D-dimensions with a system size L is

ρ(E) =
ΩD

2

(
L

2π

)D (
2m

~2

)D
2

E D
2
−1, (2.2)
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where Ω1 = 1, Ω2 = 2π, and Ω3 = 4π. It can be shown that BECs are in fact

unstable in one and two dimensions [3] due to the behaviour of ρ(E). As such,

we consider a three-dimensional BEC in the following scenario.

Within the thermodynamic limit, the density of excited atoms in the ultracold

gas can be expressed in terms of ρ(E) as

nex =
Nex

L3
=

ˆ ∞
0

ρ(E) dE
e(E−µ)/kBT − 1

. (2.3)

At temperatures close to absolute-zero it is expected that all atoms will condense,

meaning that Eq. (2.1) will become

N ≈ 1

e−µ/kBT − 1
(2.4)

⇒ −µ
kBT

= log

(
1 +

1

N

)
≈ 1

N
(2.5)

Therefore, once N is sufficiently large, the term e−µ/kBT can be set to 1. The

number of excited atoms will then be given by

nex = =
1

4π2

(
2m

~2

) 3
2
ˆ ∞
0

√
E dE

eE/kBT − 1
. (2.6)

Using the standard integral
´ √

x
ex−1 = ζ3/2Γ3/2, where ζ3/2 is the Riemann-zeta

function and Γ3/2 is the gamma function; Γ3/2 =
√
π
2

, we obtain the atom density

n = ζ3/2

[
2πmkBT

~2

]3/2
. (2.7)

This leads to a critical Bose temperature for condensation

Tc =

[
n

ζ3/2

] 2
3 ~2

2πmkB
. (2.8)

For temperatures below this threshold, the bosons will condense into a BEC.

Above Tc, and the atoms will have passed the thermal critical value, and the

condensate will collapse. The amount of bosons in the ground state is therefore
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0 1 2
T/Tc

0.0

0.5

1.0

Nex/N

Nc/N

Figure 2.1: Critical temperature for BEC transition. The condensed fraction
Nc/N and the excited fraction Nex/N is shown. At T/Tc = 1 we see that the BEC has
been destroyed by the increasing thermal energy.

given by

Nc

N
= 1−

[
T

Tc

]3/2
. (2.9)

The first experimental creation of an atomic BEC was achieved in 1995 [4–6].

2.1.2 Preparation of rubidium BECs

As with most aspects of atomic physics, the advent of lasers was crucial to the

development of trapping and controlling atoms. Once the required atom sample

is created in an oven, they are released towards a Zeeman slower, where they are

travelling of speeds up to 500 − 600ms−1. Upon entering the Zeeman slower, a

pump laser, shinning in the opposite direction of the incoming particles, slows

the atoms to around 10ms−1. From here they are then captured by a magneto-

optical trap, where they are cooled to temperatures close to 100µK. The final

step in creating a BEC is ‘evaporative cooling’, where higher energy particles

are removed from the system by incrementally lowering the trap energy, as these

particles are found near the boundary of the trap. This technique was originally

designed for creation of BECs [6]. It reduces the average thermal energy of the
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system as a whole, leading to systems with ultracold energy scales.

2.1.3 Effective interaction between atoms

An important property of ultracold gases is that particle separation is usually

an order of magnitude larger than the length scales associated with atom-atom

interactions, meaning that we can neglect three-body interactions and focus our

attention on two-body interactions.

However, the process of trapping atoms means we are left with a dilute sample

as the majority of atoms have been removed through evaporative cooling [1, 6].

For neutral atoms, the main form of interaction between atoms is a weak van

der Waals (vdW) interactions scaling as r−6, where r represents the interatomic

distance. At short distances, where the orbitals of the atoms begin to overlap,

this vdW interaction is superseded by a strong Coulomb interaction, meaning

that the full scattering process for these atoms becomes quite complex [2, 7].

In order to calculate the full interaction, one would need to evaluate short-range

correlations between atoms when constructing the many-body Hamiltonian. This

can be avoided however by introducing the concept of an effective interaction.

This describes the process of ‘integrating out’ short-wavelength degrees of freedom

in the interaction [8].

The scattering process for a pair of particles is due to s-wave interactions [9],

and can be characterised by a single parameter, called the scattering length. The

Born approximation tells us that the scattering length is given as

aBorn =
mr

2π~2

ˆ
drU(r). (2.10)

What has been shown is that the low-energy scattering process is described with

a great accuracy using only an effective two-body interaction Ueff . This means
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that the interaction takes the following form

ˆ
drUeff (r) =

2π~2as
mr

(2.11)

For a particle of equal mass m, the reduced mass is simply mr = m/2, meaning

that we obtain

U0(r− r′) =
4πas~2

m
δ(r− r′), (2.12)

where as is the scattering length of the atoms, which is typically on the magnitude

of 103a0, the Bohr radius being a0 = 0.529 Å. This result shows that a pair of

particles may exhibit an effective contact interaction, by means of the scattering

process, while vdW interactions are suppressed due to the large spacing between

atoms.

2.1.4 Optical lattices

Atoms in a BEC can be trapped optically using lasers [10]. Expanding on that,

atoms can be trapped in periodic potentials using standing waves, creating optical

lattices. While first being suggested by Letokhov in 1968 [11], it was nearly two

decades later until the world saw the advent of the first optical lattice by Saloman

et. al. in 1987 [12]. A standing wave laser field is periodic in space, meaning

that they form periodic potentials due to the stark effect [9]. These are then used

to trap groups of atoms, where they are subjected to a periodic lattice potential

Vlat(r), such that Vlat(r + d) = Vlat(r), where d is that lattice spacing.

The motional energy eigenstate for a particle in an infinite length periodic po-

tential is described by a Bloch function φb,q, where b is the energy band that

the particle is localised on in the potential and q is the quasi-momentum. The

wavefunction for such states is therefore simply ûq(r) = φb,q(r)eiq·r The Fourier
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transform of these form a complete basis which takes the form

Wb(r− rj) =
∑

q∈BZ

φb,q(r)eiq·r, (2.13)

where the summation is restricted to the first Brillouin zone. These are known

as Wannier functions, and they describe the wave function localised around each

site j.

Assuming that we are using a deep lattice, the atoms are further localised in the

lowest Bloch band of the Wannier functions, meaning b = 0. The connection

between these Wannier functions and the field operator ψ(r) is

ψ̂(r)(†) =
∑

j

W (∗)(r− rj)â
(†)
j , (2.14)

where â
(†)
j is the annihilation (creation) operator associated with the Wannier

state at site j.

2.1.5 Gross-Pitaevskii equation

One of the pillars of quantum mechanics is the Schrödinger equation, which de-

scribes the dynamics of non-interacting particles. However when many-body

interactions are introduced, we need to look elsewhere to model the dynamics

seen.

As we are switching to a many-body picture, we begin with a second quantization

Hamiltonian with short-range interactions U(r− r′) = U0δ (r− r′) [see Eq. 2.12].

The total Hamiltonian of the system is

Ĥ = Ĥ0 + Ĥs (2.15)
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where

Ĥ0 =

ˆ
ψ̂†(r)

(
− ∇

2~2

2m
− µ+ Vlat(r)

)
ψ̂(r) dr

Ĥs =
1

2

ˆ
ψ̂†(r)ψ̂†(r′)U(r− r′)ψ̂(r)ψ̂(r′) dr dr′, (2.16)

=
U0

2

ˆ
ψ̂†(r)ψ̂†(r)ψ̂(r)ψ̂(r) dr. (2.17)

Here, ψ̂(r) is given by Eq. (2.14), ∇ is the gradient operator, and Vlat(r) is a pe-

riodic lattice potential. The field operator obeys standard bosonic commutation

relations as

[
ψ̂ (r) , ψ̂† (r′)

]
= δ (r− r′)

[
ψ̂ (r) , ψ̂ (r′)

]
=

[
ψ̂† (r) , ψ̂† (r′)

]
= 0. (2.18)

By means of the Heisenberg equations, we can then derive the equations of motion

for the field ψ̂(r) as

i~
∂

∂t
ψ̂(r) =

[
ψ̂(r), Ĥ

]
. (2.19)

By neglecting any correlations beyond quadratic order, the Gross-Pitaevskii equa-

tion of motion is found as

i~
∂

∂t
ψ̂(r) =

(
−∇

2~2

2m
+ Vlat (r) + U0|ψ̂ (r) |2

)
ψ̂ (r) . (2.20)

2.1.6 Bose-Hubbard model

Bosonic lattice systems can also be described by the Bose-Hubbard model (BHM).

Originally Hubbard’s model was used to describe electrons in a crystalline solid

and superconductors [13]. The model rose to the forefront of bosonic physics

when it successfully predicted the superfluid-Mott insulator phase transition [14].

The BHM in general is used to describe atoms with short-range interactions,
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controlled by s-wave interactions [see Eq. (2.12)].

By using Eq. (2.14), and substituting this into Hamiltonian (2.15), the BHM is

found as

Ĥ =
L∑

i

(Γj − µ)n̂j −
L∑

〈i,j〉
Ji,j â

†
i âj +

U0

2

L∑

j

n̂j(n̂j − 1).

(2.21)

J controls the strength of the quantum tunnelling between lattice sites, while Γj

is a local potential operator for any given lattice site.

In this situation, the parameters are given in terms of the Wannier functions on

each site as

Ji,j =

ˆ
drW ∗(r− ri)

(
− ∇

2~2

2m
+ Vlat(r)

)
W (r− rj), (2.22)

Γj =

ˆ
dr|W (r− rj)|2Vlat(r− rj), (2.23)

U0 =

ˆ
dr|W (r)|4U(r). (2.24)

It should also be made clear that quantum tunnelling between sites becomes expo-

nentially suppressed across any sites on the lattice that are not nearest neighbour

[2, 15]. This is indicated by 〈...〉 in the summation in Hamiltonian (2.29).

The most fundamental results of the Bose-Hubbard model are that of the fabled

superfluid-Mott insulator transition. In the Mott phase, the atoms remain com-

pletely localised in their respective sites due to the dominance of the interaction

strength. Once the tunnelling strength dominates, the atoms enter the superfluid

phase where they move freely between sites with no resistance. The order param-

eter governing this phase transition is the expectation value of creation operator

φi = 〈âi〉. In the Mott phase, φ = 0 as hopping is completely suppressed. In

the superfluid phase, |φ| > 0. Approaching the Hamiltonian from a mean-field

perspective, and assuming a flat periodic lattice potential [Γj = 0 ∀ j] the many-

body Hamiltonian can be decomposed into single-body Hamiltonians by means
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Figure 2.2: Phase Diagrams for the Bose-Hubbard Model.The phase diagrams
for the order parameter φ(a) and the average density n̄ (b) are shown. The order
parameter shows the clear dichotomy between the Mott phase and the superfluid phase.
The black line shows the analytic boundary found by Landau’s mean-field theory. Here
we show up to and including n̄ = 3.

of the approximation â†i âj ≈ φ∗i âj +φj â
†
i−φ∗iφj, and by examining only the site j,

where the site index can be neglected. The single-body Hamiltonian can therefore

be expressed as

H = −Jφ(â† + â) + Jφ2 +
U0

2
n(n− 1)− µn. (2.25)

The groundstate is always real, and therefore the complex components of φj can

be neglected. Direct diagonalisation of the above mean-field Hamiltonian pro-

duces a superfluid-insulator phase map. We can additionally calculate expected

densities as n = φ2.

Additionally, Hamiltonian (2.25) can be expressed as H = Hint + Hhop. The

Hamiltonian Hint is the interaction Hamiltonian, of which the occupation num-

ber state |n〉 is an eigenstate, such that Hint |n〉 = Eint |n〉. The eigenenergy is

Eint = U
2
n(n− 1)− µn. The energy of the hopping Hamiltonian can be found by
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perturbation theory as

Ehop =
∑

m 6=n

| 〈n|Hhop|m〉 |2
Em − En

= (Jφ)2
[

U0n

U0(n− 1)− µ −
n+ 1

U0n− µ

]
. (2.26)

This means that the total energy using this occupation number state can be

expressed in the following form E = Eint +Ehop = a± bφ2. Landau’s formulation

for second-order phase transition [16] tells us that the the flipping of b from

positive to negative determines the occurrence of a phase transition. This allows

us to analytically find the phase boundary for the parameters J and µ for different

occupation numbers n̄ as

J/U0 =

(
n

U0(n− 1)− µ −
n+ 1

U0n− µ

)−1
. (2.27)

Both the analytical and direct diagonalisation phase boundaries are shown in

Fig. 2.2.

2.1.7 Extended Bose-Hubbard model

A natural extension to the Bose-Hubbard model is the inclusion of density-density

interactions from neighbouring sites. This addition is known as the extended

Bose-Hubbard model (eBHM).

Assuming a nonlocal interaction V (r− r′), the second quantization Hamiltonian

2.16 picks up an additional energy term ĤL

ĤL =
1

2

ˆ
ψ̂†(ri)ψ̂

†(rj)V (r− r′)ψ̂(ri)ψ̂(rj) dri drj, (2.28)
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Figure 2.3: Phase Diagrams for the Extended-Bose-Hubbard Model. The
first order parameter is shown in (a), along with the onsite density in (b). We also
show both ∆φ (c) and ∆n (d). The long-range interaction parameter in this scenario
is Vi,j/U0 = 1.5.

Using the same methodology as before, we obtain the following Hamiltonian

ĤL =
L∑

i

(Γj − µ)n̂j −
L∑

〈i,j〉
Ji,j â

†
i âj +

U0

2

L∑

j

n̂j(n̂j − 1) +
1

2

L∑

i,j

Vi,jn̂in̂j.

(2.29)

where the final terms dictates the interactions between neighbouring sites and

Vi,j =

ˆ
dr dr′|W (r− ri)|2V (ri − rj)|W (r′ − rj)|2. (2.30)

The addition of the long-range interactions mean that we need another order

parameter to account for next-nearest neighbour-interactions. In this case, if sites

i and j are nearest-neighbours, then the two order parameters are φj and φj+1,

meaning that â†j âj ≈ φ∗j âj + φj â
†
j − φ∗jφj and â†j âj+1 ≈ φ∗j âj+1 + φj+1â

†
j − φ∗jφj+1.

We can then quantify the phases by looking at the differences in both the order
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parameters ∆φ, and the densities ∆n. When φj = φj+1 = 0 and nj = nj+1 then

we are in the superfluid phase where atoms are free to move from site to site

without restriction, and the system is homogeneous in density. When φj 6= φj+1

and nj 6= nj+1 we enter the regime dominated by supersolidity.

Like a superfluid, atoms have free movement between sites, however there will

exist order in spatial modulations in the densities, forming a pseudo-lattice struc-

ture of varying densities. Now, in the case where both φj = φj+1 = 0 we enter

insulating regions, where atom movement is restricted. There are two scenarios

for this, either we are in a Mott-insulting phase where nj = nj+1 or density-wave

phase where nj 6= nj+1. For example, all of this information can be extrapo-

lated from Fig. 2.3, where we have set the long-range interaction parameter as

Vi,j/U0 = 1.5, and restrict our calculation to include onsite, and nearest neigh-

bour interactions only. In Fig. 2.3 (a) and (b) we respectively show the order

parameter φj and the density nj. Additionally we show the difference in the two

order parameters and the difference in the two densities, ∆φ and ∆n. From these

we can infer the densities of the other order parameter, thus distinguishing the

phases seen in the extended Bose-Hubbard model.

Superfluidity, supersolidity, and insulating phases will play a pivotal role in the

coming chapters.
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2.2 Rydberg Interactions

To fully realise the potential of the many-body quantum states described so far, we

need highly controllable and strong interatomic interactions. One of the methods

that has been at the forefront of ultracold physics for the past few decades is

manipulating Rydberg states.

2.2.1 Rydberg states

In the early years of quantum mechanics, Niels Bohr successfully developed a

model that quantised the orbital angular momentum of the electron in a hydrogen

atom, showing that energies at the smallest scales are distributed into quanta.

His model says that the energy of a quantum state with a specific integer principal

quantum number N is

EN = − Z
2

N 2
Ry. (2.31)

Here Ry = e4mr

32ε2~2π2 is the Rydberg energy unit, where e is the electron charge,

ε is the free space permittivity and mr is the reduced mass between the valance

electron and the atomic core. Eq. (2.31) describes the scaling behaviour for alkali

atoms, such as sodium, rubidium, and caesium. States where N � 1 are known

as Rydberg states. This model can be extended to multi-electron atoms using

quantum defect [17], which were originally described by Rydberg himself in 1890

[18]. It is well known that Rydberg atoms have interesting and unique properties

such as experiencing long-range two-body van der Waals (vdW) interactions as

well as allowing high precision research to be undertaken with a large degree of

controllability [19]. These atoms may be used in the formation of exotic quantum

phases including solitons, the melting of ordered crystalline states to disordered

liquids, and supersolidity, where the translational symmetry of a superfluid is

broken [20–31]. These strong interatomic interactions scale in strength as N 11.

This can suppress other excitations by shifting the energy levels of neighbouring
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atoms within a certain volume, known as the Rydberg blockade, where the typical

length scale is much larger than the average coherence length of a Bose gas [32, 33].

The radiative lifetime of Rydberg states has been shown to scaled as roughly N 3

In general, the lifetime of a Rydberg atom with N ∼ 50 is of the order of 100µs,

which is far too quick to allow for the evolution of out-of-equilibrium dynamics

[34].

2.2.2 Rydberg-dressed states

To compensate for the lack of longevity of Rydberg states, we propose an al-

ternative process known as Rydberg-dressing, where the groundstate is dressed

via laser coupling to excited Rydberg states. This creates a new groundstate of

Rydberg-dressed atoms, where a weak admixture of Rydberg states modifies the

neutral atom groundstate. The lifetime of these dressed atoms can be observed

to be as large as 10ms [35]. This means that by applying a Born-Oppenheimer

approximation, the Rydberg states are adiabatically eliminated, leaving a Bose

gas of only Rydberg-dressed atoms whose properties can be exploited.

These dressed states also allow for their own interesting properties, such as the for-

mation of quantum magnets [36], the creation of strongly correlated phases which

can lead to a quantum-classical crossover [37], and can show coherent quantum

transport [38]. Furthermore, in recent years, they have become more accessible in

experiments due to more advanced theoretical methods of observation [39]. Ad-

ditionally, recent experiments have successfully demonstrated Rydberg-dressing

in optical tweezers [39], optical lattices [40–42], and traps [43, 44].

2.2.3 Soft-core interaction

Dressing the groundstate with Rydberg states is done by utilising a highly de-

tuned laser as illustrated in Fig. 2.4. To begin, we have the electronic Hamiltonian
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Figure 2.4: Bose gas of Rydberg-dressed bosons. A Bose gas interacting in free
space, being radiated by a driving laser, producing the Rydberg-dressed interaction with
detuning ∆ and Rabi frequency ΩR.

coupling a high-lying Rydberg state |r〉 to the ground state |g〉

Ĥr =
∑

j

∑

i<j

Vi,jσ
(i)
rr σ

(j)
rr −∆

∑

j

σ(j)
rr +

ΩR

2

∑

i,j

[
σ(i)
rg + σ(j)

gr

]
, (2.32)

where ∆ is the detuning and ΩR is the Rabi frequency of oscillations between the

ground state and the excited state. Vα,β = C0/|ri − rj|6 is the Rydberg-Rydberg

interaction potential between states α and β, while σjαβ = |α〉j 〈β| is the jump

operator between states α and β on site j. C0 is the vdW dispersion coefficient for

the excited Rydberg states, which controls the strength of the dressed interaction.

For this calculation let us consider a simple two-atom model. The Hamiltonian

can then be expressed as

Ĥr2 = V1,2σ
(1)
rr σ

(2)
rr + ∆

[
σ(1)
rr ⊗ I + I⊗ σ(2)

rr

]

+
ΩR

2

[
σ(1)
gr ⊗ I + σ(1)

rg ⊗ I + I⊗ σ(2)
gr + I⊗ σ(2)

rg

]
(2.33)

The single atom excitation Hamiltonian is then

Ĥ0 =




V1,2 + 2∆ 0 0 0

0 ∆ 0 0

0 0 ∆ 0

0 0 0 0



, (2.34)
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while the interaction Hamiltonian is

ĤI =
ΩR

2




0 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0



. (2.35)

As we can see the single-atom Hamiltonian is degenerate in ∆. To avoid com-

plexity in the mathematics, we switch our basis to the dressed-atom basis of

|gg〉 =




0

0

0

1




, |rr〉 =




1

0

0

0




, and |D〉 =
1√
2




0

1

1

0



, (2.36)

where |D〉 = |gr〉 is the symmetric dressed state. The anti-symmetric dressed

state is decoupled and can be neglected from this point. Within this basis, we

avoid degenerate energy levels since

Ĥ ′0 =




V1,2 + 2∆ 0 0

0 ∆ 0

0 0 0



, (2.37)

and

Ĥ ′I =
ΩR√

2




0 1 0

1 0 1

0 1 0



. (2.38)

The eigenvalues of the unperturbed Hamiltonian can be simply read as Err =

V1,2 + 2∆, Ed = ∆, and Egg = 0. The matrix elements of the interaction Hamil-

tonian are given by Hn,m = 〈n|H ′i|m〉. We then apply a fourth-order perturbative
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expansion on the ground state, of the form

E(4)
gg =

∑

γ 6=gg

∑

α6=gg

∑

β 6=gg

Hgg,γHγ,αHα,βHβ,gg

(Egg − Eγ)(Egg − Eα)(Egg − Eβ)
− E(2)

gg

∑

γ

|Hgg,γ|2
(Egg − Eγ)2

,

(2.39)

where the superscripts denote the perturbative order, and E
(1)
gg = E

(3)
gg = 0. The

perturbation can then be expressed as

E(4)
gg =

4Ω4
R

∆3

[
1− ∆

V1,2 + 2∆

]
(2.40)

Recalling that the van der Waals interaction between atoms 1 and 2 is V1,2 =

C0/|r1 − r2|6, we can simplify Eq. (2.40) as follows;

E(4)
gg =

4Ω4
R

∆3

[
V1,2 + ∆

V1,2 + 2∆

]

=
4Ω4

R

∆3

1

2

[
C0/|r1 − r2|6 + ∆

C0/ (2|r1 − r2|6) + ∆

]

=
4Ω4

R

∆3

{
1

2
+

1

2

[
C0

C0/2∆ + |r1 − r2|6
]}

=
2Ω4

R

∆3
+

2Ω4
R

∆3

C0

C0/2∆ + |r1 − r2|6
, (2.41)

Rydberg-dressing creates an effective interaction which is soft-core in nature

meaning [23–26, 28, 30, 45–48] that interactions are constant between neigh-

bouring atoms within a range known as the soft-core radius [27]. This length

scale is analogous to the Condon Radius for interatomic interactions [49], and is

denoted by R = (C0/2∆)1/6. With this, and Eq. (2.41), the soft-core interaction

takes the following form (up to a constant),

Λ(r− r′) =
C0

R6 + |r− r′|6 . (2.42)

The interaction potential saturates to a constant, i.e., Λ(r)→ C0/R
6 when



Chapter 2. Rydberg Interactions 22

Figure 2.5: Different length scales in a Rydberg-dressed system. The different
length scales between an optical lattice is compared with a Rydberg-dressed soft-core
interaction (red curve). The soft-core radius R can span multiple lattice sites.

|r| � R, and approaches to a vdW type at distances of |r| � R, i.e., Λ(r) →

C0/|r|6. What is interesting is that typically R� d (d being the lattice spacing),

meaning that the range of this interaction can span, not only distances vastly

exceeding standard boson coherence lengths, but also multiple lattice sites where

the strength of the off-site coupling is equal in magnitude to the onsite coupling

[45].

For a discrete system the soft-core interaction may be expressed as

Λi,j =
C0

R6 + d6|i− j|6 . (2.43)

where i and j are the site indices. This will coincide with the notation used in

Chapters 4 and 5.



Chapter 3

Roton and maxon excitations in

a Rydberg-dressed Bose-Einstein

condensate

In this chapter, we investigate the dynamics of a three-dimensional Bose-Einstein

condensate of ultracold atomic gases with a soft-core shape long-range interaction,

which is induced by laser dressing the atoms with a highly excited Rydberg state.

For a homogeneous condensate, the long-range interaction drastically alters the

dispersion relation of the excitations, supporting both roton and maxon modes.

Rotons are typically responsible for the creation of supersolids, while maxons are

normally dynamically unstable in BECs with dipolar interactions. We show that

maxon modes in the Rydberg-dressed condensate, on the contrary, are dynami-

cally stable. We find that the maxon modes can be excited through an interaction

quench, i.e. turning on the soft-core interaction instantaneously. The emergence

of the maxon modes is accompanied by oscillations at high frequencies in the

quantum depletion, which is the process of losing atoms within the condensate.

Roton modes on the other hand lead to much slower oscillations. The dynamically

stable excitation of the roton and maxon modes leads to persistent oscillations

in the quantum depletion. Through a self-consistent Bogoliubov approach, we

23
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identify the dependence of the maxon mode on the soft-core interaction. Our

study shows that maxon and roton modes can be excited dynamically and simul-

taneously by quenching Rydberg-dressed long-range interactions. This is relevant

to current studies in creating and probing exotic states of matter with ultracold

atomic gases. Several sections of the following chapter have been transcribed

verbatim (with minor changes to symbols and mathematical notation to comply

with the overall continuity), along with the accompanying data and figures, from

the following publication:

“Dynamical excitation of maxon and roton modes in a Rydberg-dressed

Bose-Einstein condensate”

G. McCormack, R. Nath, and W. Li

Physical Review A: 102 023319 (2020) [50]

Copyright c© 2020 by American Physical Society. All rights reserved

3.1 Introduction

Collective excitations induced by particle-particle interactions play an important

role in the understanding of static and dynamical properties of many-body sys-

tems. The ability to routinely create and precisely control properties of ultracold

atomic gases opens exciting prospects to manipulate and probe collective ex-

citations. In weakly interacting Bose-Einstein condensates (BECs) with s-wave

interactions [2, 7, 9, 51], phonon excitations reduce the condensate density, giving

rise to quantum depletion [52]. It has been shown [35] that quantum depletion

can be enhanced by increasing the s-wave scattering length through Feshbach

resonances [53, 54]. By dynamically changing the s-wave scattering length [55],

phonon excitations can alter the quantum depletion, the momentum distribu-

tion [56], correlations [57], contact [58–61], and statistics [62] of the condensate.

Moreover the phonon induced quantum depletion plays a vital role in the forma-

tion of droplets in BECs [63].
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(a) (b)

(c)

Figure 3.1: Soft-core interaction and quench scheme. (a) The soft-core inter-
action as a function of the interatomic distance r. Energy is scaled by R6/C0 with R
and C0 to be the soft-core radius and dispersion coefficient. The interaction is constant
when r� R, and becomes a vdW type when r� R. (b) Fourier transformation of the
soft-core interaction. The minimum of the interaction locates at krR ≈ 5π/3, where
the interaction is attractive. (c) The quench scheme. A weakly interacting BEC with
s-wave interactions is first prepared. The laser dressing is applied at time t = 0, which
induces the soft-core interaction.

When long-range interactions are introduced, the dispersion relation correspond-

ing to the quasiparticle spectrum of a BEC is qualitatively different, where the

excitation energies of the collective modes depend non-monotonically on the mo-

mentum. Previously BECs with dipole-dipole interactions have been extensively

examined [64–70]. In two-dimensional (2D) dipolar BECs [71], roton and maxon

modes emerge, where roton (maxon) modes correspond to local minima (maxima)

in the dispersion relation. The strength of dipolar interactions can be tuned by

either external electric or magnetic fields [68]. When instabilities of roton modes

are triggered, a homogeneous BEC undergoes density modulations such that a

supersolid phase could form. The existence of roton modes has been supported

by a recent experiment [72]. Maxon modes, on the other hand, normally appear

at lower momentum states [71]. It was shown however that the maxon modes

in dipolar BECs are typically unstable and decay rapidly through the Beliaev

damping [64, 69].

Strong and long-range interactions are also found in gases of ultracold Rydberg

atoms [22, 29, 31, 73, 74]. As a result, Rydberg-dressing is proposed as an alternate
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long-range interaction. In this chapter, we study excitations of roton and maxon

modes in three dimensional (3D) Rydberg-dressed BECs in free space at zero tem-

perature. Three dimensional uniform trapping potentials of ultracold atoms have

been realized experimentally [75]. When the soft-core interaction is strong, both

the roton and maxon modes are found in the dispersion relation of the collective

excitations. Starting from a weakly interacting BEC, roton and maxon modes

are dynamically excited by instantaneously switching on the Rydberg-dressed in-

teraction. Through a self-consistent Bogoliubov calculation, we show that the

roton and maxon modes leads to non-equilibrium dynamics, where the quantum

depletion exhibits slow and fast oscillations. Through analyzing the Bogoliubov

spectra, we identify that the slow oscillations correspond to the excitation of the

roton modes, while the fast oscillations come from the excitation of the maxon

modes. The dependence that these modes have on the quantum depletion in the

long time limit is determined analytically and numerically.

In Sec. 3.2 we begin by introducing the Hamiltonian for a 3D Bose gas with

both short-range and long-range interactions. The Bogoliubov approximation is

explained and we introduce the concept of collective excitations.

In Sec. 3.3, dispersion relations are found using the static Bogoliubov calculation,

where roton and maxon modes are identified. We then examine the dynamics of

the quantum depletion due to the interaction quench. Excitations of the roton

and maxon modes are studied using a self-consistent Bogoliubov method. The

asymptotic behavior of the BEC at long times is also explored. The fluctua-

tions within the condensate are discussed alongside the density-density correla-

tion function. We go on to draw comparisons between the interaction induced

via Rydberg-dressing, and dipolar BECs. Finally, with Sec. 3.4, we summarise

and discuss some implications of our work.
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3.2 Hamiltonian of 3D Bose gases and

theoretical method

In this section we wish to develop a macroscopic representation for Bose gases.

We begin with the construction of the relevant Hamiltonian that will govern the

energy of the system. The Bogoliubov spectrum and dynamics for short-range

interacting BECs are then explored, to introduce us to the key concepts of the

momentum distribution and the quantum depletion.

3.2.1 Hamiltonian

To begin with, let us consider a 3D Bose gas with both short-range and long-

range interactions described by the second quantization Hamiltonian (2.28). The

Hamiltonian can be expressed as Ĥ = Ĥ0+Ĥs+Ĥl, where Ĥ0 is the single particle

Hamiltonian, Ĥs is the short-range interaction Hamiltonian, and Ĥl is the long-

range interaction Hamiltonian. The full form of these Hamiltonian elements are

discussed in Chapter 2.

Using the Fourier basis for the field operator

ψ̂(r) =
1√
Ω

∑

k

eik·râk, (3.1)

where âk is the bosonic annihilation operator acting on a momentum state k and

Ω is the volume of the system, the single particle Hamiltonian is found to be

Ĥ0 =
1

Ω

ˆ
dr
∑

k1k2

â†k1
e−ik1·r

(
−∇

2

2m
− µ

)
âk2e

ik2·r (3.2)

=
1

Ω

ˆ
dr
∑

k1k2

â†k1
âk2

( |k2|2
2m
− µ

)
e−i(k1−k2)·r, (3.3)

where m is the mass of the boson. Using the normalisation requirement that
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´
ei(kl−kj)·r dr = Ωδ(kl − kj). We arrive at

Ĥ0 =
∑

k

(εk − µ)â†kâk, (3.4)

where εk = |k|2/2m is the kinetic energy dispersion relation.

Next we can examine the short-range interaction Hamiltonian where we follow a

similar substitution approach.

Ĥs =
1

2Ω2

ˆ ˆ
dr dr′ψ†(r)ψ†(r′)U0δ(r− r′)ψ(r)ψ(r′) (3.5)

=
1

2Ω2

ˆ
drψ†(r)ψ†(r)U0ψ(r)ψ(r) (3.6)

=
U0

2Ω2

ˆ
dr

∑

k1k2k3k4

â†k1
â†k2

âk3 âk4e
i(k1−(k2−k3+k4)) (3.7)

=
U0

2Ω

∑

k2k3k4

â†k2−k3+k4
â†k2

âk3 âk4 . (3.8)

Defining k4 − k2 = q and adhering to conservation of momentum, we arrive at

Ĥs =
U0

2Ω

∑

kk′q

â†k+qâ
†
k′−qâkâk′ . (3.9)

When we look at the long-range interaction Hamiltonian, we switch to a centre

of mass reference frame where we define the vectors P = r − r′ and R = r+r′

2

which gives

Ĥl =

ˆ ˆ
dR dP

2Ω2

∑

k1k2k3k4

â†k1
â†k2

âk3 âk4V (P)e−i(k1−k3)·(R+P
2
)e−i(k2−k4)·(R−P

2
)

=

ˆ ˆ
dR dP

2Ω2

∑

k1k2k3k4

â†k1
â†k2

âk3 âk4V (P)e−i(
1
2
[k1−k3−k2+k4])·Pe−i(k1−(k3−k2+k4)·R

=

ˆ
dR

2Ω2

∑

k1k2k3k4

â†k1
â†k2

âk3 âk4Ṽ

(
1

2
[k1 − k3 − k2 + k4]

)
e−i(k1−(k3−k2+k4)·R

=
1

2Ω

∑

k1k2k3k4

â†k1
â†k2

âk3 âk4Ṽ

(
1

2
[k1 − k3 − k2 + k4]

)
δk1,(k3−k2+k4)

=
1

2Ω

∑

k2k3k4

â†k3+k4−k2
â†k2

âk3 âk4Ṽ (k4 − k2) . (3.10)
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Following the same momentum conservation as the short-range Hamiltonian, we

arrive at

ĤL =
1

2Ω

∑

kk′q

Ṽ (q)â†k+qâ
†
k′−qâkâk′ . (3.11)

Combining all three components yields the required form

Ĥ =
∑

k

(εk − µ)â†kâk +
∑

kk′q

gk
2Ω

â†k+qâ
†
k′−qâkâk′ . (3.12)

where for continuity with later sections, we define the nonlocal momentum space

interaction as gk = Ṽ (q)+U0. The operators âk and â†k obey the standard bosonic

commutation relations [âk, â
†
k′ ] = δk,k′ .

3.2.2 Bogoliubov approximation

We now return to the statement that for a system at zero temperature, the

groundstate is macroscopically occupied as a Bose-Einstein condensate [see Sec.

2.1.1]. In the thermodynamic limit, the expectation value of the number of parti-

cles in this state will be given by Nc. With that in mind, and defining â0 ≡ âk=0

we can say that

â0 |Nc〉 ≈
√
Nc |Nc〉

â†0 |Nc〉 ≈
√
Nc |Nc〉 (3.13)

since for the many-body condensate state, |Nc〉 ≈ |Nc ± 1〉. In other words, the

macroscopic state of the condensate is so large, that the addition or subtraction

of a particle does not change the condensed state. This approach was first used

by Bogoliubov [76, 77] in the context of 4He, however, it is now used to explain

many aspects of weakly interacting zero temperature physics. The total energy

of the system is then given by the Hamiltonian (3.12). We can separate the k = 0



Chapter 3. Hamiltonian of 3D Bose gases andtheoretical method 30

terms, from all terms where k 6= 0 as

Ĥ = (ε0 − µ) â†0â0 +
∑

k 6=0

(εk − µ) â†kâk

+
∑

kk′q 6=0

gk
2Ω

[
â†k+qâ

†
0âkâ0 + â†0â

†
k′−qâ0âk′ + â†k+qâ

†
0â0âk′

+ â†0â
†
k′−qâkâ0 + â†k+qâ

†
k′−qâ0â0 + â†0â

†
0âkâk′ + â†0â

†
0â0â0

]
. (3.14)

By then applying the relations (3.13) to the above Hamiltonian and noting that

by the argument of conservation of momentum (i.e., k = −k and q = 0) we arrive

at

Ĥ =
gkN

2
c

2Ω
− µ+

∑

k 6=0

[
(εk − µ+ 2â†kâk) +

gkNc

2Ω

(
â†kâ

†
k′ + âkâk′

)]
(3.15)

Next, let us consider the fact that the total number of atoms of the system N ,

which includes the condensate and all occupied excited states, is given as

N = Nc +ND (3.16)

Here ND is the number of atoms that are depleted from the groundstate. We can

see that ND =
∑

k 6=0 â
†
kâk, meaning that the we have the relations

Nc = N −
∑

k 6=0

â†kâk (3.17)

and

N2
c = N2 − 2N

∑

k 6=0

â†kâk +O(â2k), (3.18)
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where we have excluded terms of quadratic and higher order. The Hamiltonian

can then be expressed self-consistently as

Ĥk = Eg +
∑

k 6=0

[
(εk +

gkNc

Ω
)â†kâk +

gkNc

2Ω

(
â†kâ

†
k′ + âkâk′

)]
. (3.19)

The ground state energy Eg = gkN
2

2
−µN can be neglected from this point in the

calculation as it is just a constant energy shift. The Hamiltonian now reads

Ĥk =
1

2

∑

k 6=0

[
(εk + gknc)(â

†
kâk + â†−kâ−k) + gknc(â

†
kâ
†
−k + âkâ−k)

]
,(3.20)

where nc = Nc/Ω is the density of condensed atoms. The prefactor of 1/2 comes

from separating the momentum states of the kinetic energy terms above and below

k = 0. This can be further simplified by performing a canonical transformation on

these operators such that they become new operators that act only on momentum

states where k 6= 0, as opposed to acting on the ground state of the condensate

itself. This is known as the Bogoliubov transformation and can be concisely given

as




âk

â†−k


 =




ūk v̄k

−v̄k −ūk







b̂k

b̂†−k


 . (3.21)

The operator b̂k is the annihilation operator for quasiparticles above the zero mo-

mentum state. These obey the standard bosonic commutation relations [b̂k, b̂
†
k′ ] =

δk,k′ , so long as the condition |ūk|2 − |v̄k|2 = 1 is held. The form of these Bogoli-

ubov amplitudes can be determined by substituting Eq. (3.21) into the effective

Hamiltonian (3.20), which gives

ūk = +

√
1

2

(
εk + gknc

Ēk
+ 1

)

v̄k = −
√

1

2

(
εk + gknc

Ēk
− 1

)
. (3.22)
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Figure 3.2: Bogoliubov excitations and momentum density. (a) The Bogoli-
ubov eigenspectrum is shown as a function of momentum, while the momentum density
is shown in (b). Linear phonon modes cause excitations in the momentum of quasi-
particles. In this scenario, only short-range interactions are examined, implying that
Ṽ (q) = 0.

where

Ēk =
√
εk(εk + 2gknc) (3.23)

is the Bogoliubov energy eigenspectrum. In this new basis, the Hamiltonian is

now diagonal with respect to the quasiparticles and takes the form

ĤB =
∑

k 6=0

Ēkb̂
†
kb̂k. (3.24)

3.2.3 Elementary excitations

The total particle density in the system is given as n = nc +
∑

k 6=0 â
†
kâk/Ω,

assuming a fixed atom number in the system. Here, in the basis of Bogoliubov

quasiparticles, this expands as

n = nc +
∑

k 6=0

|vk|2 +
∑

k 6=0

(|uk|2 + |vk|2)b̂†kb̂k. (3.25)
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This means that when a particle with non-zero momentum is created, the total

number of condensate atoms must decrease. A powerful outcome of this is that

there is always loss of atoms from the condensate in an interacting Bose gas.

These are known as elementary excitations and their distribution of momentum

values can be mapped by evaluating the groundstate expectation value

nk = 〈â†kâk〉 = |vk|2. (3.26)

Let us assume that atom-atom interactions are s-wave in nature, and therefore

are controlled by Eq.(2.12), meaning that gk ≡ U0. We can plot the Bogoli-

ubov excitation spectrum Ēk [Fig. 3.2(a)] and the momentum density nkk
2 [Fig.

3.2(b)]. The momentum density can be used to more easily visualise the density

of excited states. For this section the momentum is scaled by the condensate

coherence length ζ = (mU0n)1/2, such that k ≡ kζ. For small values of k, Ēk is

linear, meaning that these amount to low energy phonon modes. At larger values

of k, the dispersion becomes quadratic.

The total density of excited particles is called the quantum depletion of the con-

Figure 3.3: Self-consistent Bogoliubov Algorithm. The algorithm is laid out for
the reader. An initial guess of the condensate density is used to calculate the quantum
depletion. If the corresponding density is equal to the initial guess, the density is stored
and the simulation moves onto the next time step.
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densate and is given by

nd =
1

Ω

∑

k 6=0

nk, (3.27)

The quantum depletion is the summation of all the nonzero momentum states

that are under the curve in Fig. 3.2(b). This means the condensate fraction is

simply given by

nc = n− nd. (3.28)

When the interactions are limited to short-range contact interactions, the quan-

tum depletion can be found analytically to be

nd =
8(asnc)

3/2

3
√
π

. (3.29)

For a system with very weak interactions the depletion will be small, meaning the

condensate fraction will remain fixed near nc ≈ n. However, when we increase

the value of U0 the total depletion begins to rapidly rise, leading to substantial

loss of the condensate [see Fig. 3.4].

This raises an issue however. The excitation spectrum and momentum distri-

bution depend on nc. This means to be completely accurate, we must calculate

the depletion self-consistently [64], using an iterative algorithm [see Fig. 3.3]. At

t = 0 we begin with an initial guess of the density. This is used to calculate

the momentum distribution of the atoms; integration then provides the quantum

depletion, and therefore yields the density. This is iterated until the input density

is the same as the output density. Once a consistent result is found, we move

to the next time-step. This method is crucial in the coming chapter. 3.4. For

stronger interactions, this self-consistent method is vital in calculating the correct

quantum depletion.
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Figure 3.4: Condensate fraction vs interaction strength. The blue curve shows
the depletion assuming nc = n. This is in stark contrast to the self-consistent calcula-
tion given by the red curve. As with 3.2, we only examine the short-range interacting
scenario.
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3.2.4 Hamiltonian of the Rydberg-dressed BEC

We consider a uniform 3D Bose gas of N atoms that interact through both s-

wave and soft-core interactions, described by the second quantization Hamiltonian

Ĥ = Ĥ0 + Ĥs + Ĥl [see Chapter 2]. The interaction potential is described by

V (r− r′) = U0δ(r− r′) + Λ(r− r′). Using the method described in the previous

section, the Hamiltonian in a momentum basis is given by Eq. (3.12), where

the Fourier transformation of the atomic interaction g̃(r − r′) is now given by

gk = U0 + Λ̃(k). Here we have replaced the generic long-range interaction with

the soft-core interaction, introduced in Sec 2.2.2.

Λ̃(k) is the Fourier transformation of the soft-core potential where Λ̃(k) = λ0f(k).

Λ0 = C0/R
6 determines the strength and f(k) has an analytical form

f(k) =
2π2e−

kR
2

3kR

[
e−

kR
2 − 2 sin

(
π

6
−
√

3kR

2

)]
, (3.30)

which characterizes the momentum dependence of the interaction. Though the

interaction is repulsive in real space, i.e. Λ(r−r′) > 0, it contains negative regions

in momentum space, as shown in Fig. 3.1(b). The negative part of Λ̃(k) appears

at momentum around kR ∼ 5π/3. Previously, it was shown that the attractive

interaction in momentum space is crucially important to the formation of roton

instabilities when employing a Bogoliubov approximation on such a system [71],

as is the case with the coming sections.

3.2.5 Self-consistent Bogoliubov approach for the quench

dynamics

The quench of the soft-core interaction consists of two steps. The system is

initially in the ground state of a weakly interacting BEC, i.e. Λ0 = 0 when

t ≤ 0. At time t > 0 the Rydberg dressing is switched on immediately. The

scheme is depicted in Fig. 3.1(c). The time dependence of the atomic interaction
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is described by a piecewise function as follows,

gk =





U0 when t ≤ 0

U0 + Λ0f(k) when t > 0.
(3.31)

We assume that the s-wave interaction is not affected during the quench. Hence

we use parameter α = Λ0/U0 to characterize the strength of the soft-core inter-

action with respect to the s-wave interaction.

A time-dependent Bogoliubov approach is applied to study the dynamics induced

by the interaction quench. It is an extension of the conventional Bogoliubov

approximation from Sec. 3.2.2, where the canonical transformation becomes time-

dependent, âk 6=0(t) = uk(t)b̂k−vk(t)∗b̂†−k where uk(t) and vk(t) are time-dependent

amplitudes with the relation |uk(t)|2 − |vk(t)|2 = 1, which preserves the bosonic

commutation relation. This approach has been widely used to study excitation

dynamics in BECs with or without long-range interactions [56–58, 62, 64]. It

provides a good approximation when the condensate has not undergone significant

depletion.

Using the Heisenberg equation for the bosonic operators, we obtain equations of

motion of uk(t) and vk(t),

i



u̇k(t)

v̇k(t)


 =



εk + gknc(t) gknc(t)

−gknc(t) −εk − gknc(t)






uk(t)

vk(t)


 , (3.32)

where nc(t) is the time-dependent condensate density. The total density consists

of the condensate and depletion densities as n = nc(t) + nd(t) with the total

density of the excitation, i.e. quantum depletion given as

nd(t) =
1

Ω

∑

k

nk(t), (3.33)

where nk(t) ≡ 〈â†kâk〉 = |vk(t)|2 is the distribution of all possible momentum

states.



Chapter 3. Hamiltonian of 3D Bose gases andtheoretical method 38

For a particle conserving system, both the depleted density and the conden-

sate density are time dependent. In practice, the quantum depletion as a func-

tion of time is difficult to calculate, as the differential equations (3.32) become

non-autonomous. Here we will apply the self-consistent procedure as used in

Sec. 3.2.2. First, we force the pre-quench density to be the total density,

meaning nc(0) = n, i.e. assuming that the non-condensed occupation is neg-

ligible. This is a valid assumption so long as the s-wave interaction is weak.

The evolution of coefficients uk(t) and vk(t) depends on the dispersion relation

Ek(t) =
√
εk[εk + 2gknc(t)], which is assumed to change adiabatically with time

through the condensate density nc(t).

Eqs. (3.32) are solved exactly, yielding solutions



uk(t)

vk(t)


 =

[
cos(Ek(t)t)I− i

sin(Ek(t)t)

Ek(t)

×




εk + gknc(t) gknc(t)

−gknc(t) −εk − gknc(t)



]


uk(0)

vk(0)


 ,

(3.34)

where I is the identity matrix, and the initial values of uk(t) and vk(t) are [9],

uk(0) =

√
1

2

[
εk + U0n

Ek(0)
+ 1

]

vk(0) = −
√

1

2

[
εk + U0n

Ek(0)
− 1

]
. (3.35)

We can then calculate the momentum distribution function as

nk(t) = |vk(0)|2 + gknc(t)

[
gknc(t)− U0n

]
εk [1− cos(2Ek(t)t)]

2Ek(t)2Ek(0)
. (3.36)

Taking into account all of the momentum components, the quantum depletion is
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evaluated through,

nd(t) =
1

2π2

ˆ ∞
0

nk(t)k
2 dk, (3.37)

where we have replaced the summation by the integration over momentum space.

The angular part in the integration has been integrated out in the above equation.

With the quantum depletion at hand, the condensate fraction is found to be

nc(t) = n − nd(t). We then reinsert the result back into Eq. (3.36) and iterate

the procedure until the calculation converges self-consistently.

In the following calculations, we will scale the energies, lengths, and times with

respect to the interaction energy U0n, coherence length ζ = (mU0n)−1/2, and

coherence time τ = tU0n of the initial condensate. The zero range interaction

strength is fixed by the s-wave scattering length, which is set to as = 0.1n−1/3

throughout this chapter.

3.3 Results and discussions

3.3.1 Stationary dispersion relation

The soft-core interaction drastically alters the dispersion relation of the Bogoli-

ubov excitations. To illustrate this, we first examine dispersion relations of a

static BEC by assuming that the soft-core interaction is present. When the soft-

core interaction is weak, i.e. α is small, the dispersion relation resembles that of

a weakly interacting BEC. To do this, we utilise the stationary dispersion rela-

tion, given by Eq. (3.23). The excitation energies increase monotonically with

momentum k [9] [see Fig. 3.5(a)]. By increasing α, the shape of the Bogoliubov

spectra changes significantly. A local maximum and minimum can be seen in the

dispersion relation [Fig. 3.5(a)]. At the maximum, special modes called maxon

modes form, while roton modes emerge around the minima [71]. In the following,

we will denote the energies of the maxons and rotons with γm and γr, as the local
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Figure 3.5: Roton and maxon mode. (a) Bogoliubov spectra in the stationary state
for α = 0 (black dashed), 1 (blue dot-dashed), 6 (green dashed), and 7.7 (solid purple),
when R = 15. The energy gaps γr and γm indicating respectively the roton and maxon
energies are marked for the green curve. For α > 7.7, the spectrum becomes unstable.
(b) The critical value αr vs R. Analytical calculations (black) agree with the numerical
data (red dots). (c) Roton energy γr. Increasing α, the roton energy decreases. For
large α, the analytical (black solid) and numerical (dot) results agree. At small α, roton
minima become weak and eventually disappear, which leads to the deviation. The data
points in red are the energies taken numerically from the dispersion. (d) Maxon energy
γm increases with α. The analytical (black solid) and numerical data agree nicely. In
(c) and (d) R = 15.

maximal and minimal values of the dispersion relation.

The roton and maxon modes depend on the soft-core interaction non-trivially.

When increasing α, γr decreases while γm increases, as given by the examples

shown in Fig. 3.5(a). For sufficiently large α, the roton gap vanishes as the en-

ergies become complex, i.e. the roton is unstable. The roton instability can

drive the system out of a uniform condensate, leading to the formation of su-

persolids [27, 78, 79]. It should be noted that the instability here is induced
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by stronger, isotropic interactions. In dipolar BECs, instabilities are caused by

angular dependent interactions [66].

It is important to obtain the critical value at which the roton mode becomes

unstable. From Fig. 3.1(b), the Fourier transform of the soft-core potential has

the most negative value around kr ≈ 5π/3R. The roton minimum takes place

around this momentum. By substituting kr into the dispersion relation, we can

identify the critical α at which the roton energy becomes complex,

αr =
5e5π/3 (36R2 + 25π2)

72πR2
[
2e5π/6 sin

(
π
6
− 5π

2
√
3

)
− 1
] . (3.38)

To check the accuracy of this critical value, we numerically find the instability

point from the dispersion relation for various α values. Both numerical and

analytical values are shown in Fig. 3.5(b). The analytical result agrees with

the numerical values very well. This supports the assumption that the roton

minimum happens around momentum kr.

Knowing the momentum kr, we can obtain the roton energies by inserting it into

Eq. (3.23). It is found that the roton energy γr decreases with increasing α [see

Fig. 3.5(c)]. The roton energy from the numerical calculations agrees with the

analytical data, especially when the soft-core interaction is strong. Decreasing

the soft-core interaction, the roton modes disappear for sufficiently small α, as

our numerical calculations indicate. We notice large deviations between the two

methods in this regime.

On the other hand, the location of the maxon modes in momentum space is diffi-

cult to find. By analyzing the dispersion relation, the momentum corresponding

to the maxon mode is approximately given by km ≈ kr/2. Using this approx-

imation, we substitute this momentum value into Eq. (3.23) and calculate the

maxon energy. The result is shown in Fig. 3.5(d), where the approximate value

matches the numerical values with a high degree of accuracy.

Recently, the stationary state of 2D and 3D Rydberg-dressed BECs have been
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examined [80]. It was shown that the increased occupation around the roton

modes leads to instabilities in the groundstate in the form of density waves. It

was also seen that the strong interparticle interactions lead to a large depletion

of the condensate.

3.3.2 Roton and maxon excitation

Depending on parameters of the soft-core interaction, the stationary dispersion

relation could support roton and maxon modes. One example is displayed in Fig.

3.6(a). Now if we quench the interaction, the dispersion relations of the initial and

final states are different. The system is driven out of equilibrium, such that the

momentum distributions nk(τ) evolve with time. In Fig 3.6(b), snapshots of the

momentum density nk(τ)k2 are shown. At τ = 0, the BEC is in a stationary state,

which depends on the initial condition, v̄k. The respective momentum density

is a smooth function of k. At later times, different momentum components are

excited by the presence of the soft-core interaction. The appearance of the maxon

modes can be seen in the momentum density as the boundary between the phonon

modes oscillating, and the dip in the excited momentum density. This additional

occupation causes exotic dynamics of the quantum depletion.

The dynamics of the quantum depletion depends vitally on the parameter R and

α in the soft-core interaction. After switching on the interaction, the excitation

of the Bogoliubov modes significantly affects the momentum distribution. We

will first investigate the oscillatory behavior of the quantum depletion. For mod-

erate soft-core interactions, many momentum modes are excited by the soft-core

interaction, as shown in Fig. 3.6(b). As a result, the quantum depletion increases

rapidly with time, and then oscillates around a constant value [Fig. 3.6(c)]. The

Fourier transformation ñd(ν) of the quantum depletion, characterizes the spec-

tra of the dynamics, shows a sharp peak [Fig. 3.6(d)]. The peak’s position, i.e.

the frequency of the oscillation, decreases gradually when increasing the soft-core

radius.
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Figure 3.6: Excitation of the roton and maxon mode, with changing soft-
core interaction. In(a) the dispersion for a static BEC is given. The momentum
of the roton and maxon modes decreases with increasing soft-core radius R. Without
soft-core interactions, the excitation energy monotonically increases with momentum
(dashed). The location of the maxon modes for the red curve is highlighted it the arrow.
In (b)-(c), the interaction quench is applied. Momentum densities nkk

2 at time τ = 30
are shown in (b). The black dashed curve shows the momentum distribution of the
initial state. Fast oscillations are found in the quantum depletion (c), which leads to
sharp peaks in the respective Fourier transformation (d) The non-zero width of the
peaks results from the simulation running over a finite time. The frequency νm at the
major peaks is determined by the maxon frequency. Minor peaks corresponding to other
frequencies are almost invisible. For the above, three different soft-core radius R = 8
(red), 10 (green), and 12 (blue) are considered, while the interaction strength is fixed
at α = 4.

For stronger soft-core interactions, the roton mode moves towards the instabil-

ity point [see Fig. 3.7(a)]. In this case, higher momentum components can be

excited during the interaction quench [Fig. 3.7(b)]. As the interaction strength

approaches αr, the momentum density develops a large occupation at momentum

values matching kr. Exact maxon momenta again prove elusive to find. However,

we instead see that the phonon modes matching the linear momentum values

in the excitation spectra are excited in a similar linear-like fashion up to the
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Figure 3.7: Excitation of the roton and maxon mode, with changing inter-
action strength. The dispersion (a), momentum distribution (b), quantum depletion
(c) and Fourier transformation of the quantum depletion (d) for R = 10 and α = 5
(blue), 6.5 (green), and 7.99 (red) are shown. Approaching to the roton instability,
the momentum density distribution develops a large occupation around modes at kr at
τ = 30. Both the roton and maxon momenta are highlighted with arrows. The depletion
dynamics maintains a slower oscillation as the interaction strength is increased, which
can be seen from the Fourier transformation of the quantum depletion. The lower peak
frequency νr is determined by the roton mode. The major peaks at higher frequencies
are due to the excitation of maxons. When α = 7.99, both the roton and maxon mode
are dynamically stable, giving narrow Fourier spectra.

expected value of km, as shown.

In this case, a new, lower frequency pattern develops on top of the fast oscillation

in the quantum depletion [Fig. 3.7(c)]. This changes the Fourier spectra of the

quantum depletion, where a new peak is found at a lower frequency [Fig. 3.7(d)].

It is important that the peak positions in ñd(ν) are determined by the roton

and maxon energies. In the quantum depletion, the fast oscillations are due

to the excitations of the maxon modes, while slow oscillations are due to the

roton modes. To verify this, we first obtain the maxon and roton frequencies by

substituting the corresponding momentum km and kr into Eq. (3.23). We then
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compare them with the frequency at the peak positions in the Fourier spectra.

Note that the oscillation frequency (i.e. peak frequency of the Fourier spectra) in

the quantum depletion is twice the Bogoliubov energy, as can be seen in Eq. (3.36).

As shown in Fig. 3.8, the numerical data for both the maxon mode (a-b) and roton

mode (c-d) agree with the analytical calculations. When varying the interaction

strength, the maxon (roton) frequency increases (decreases) with increasing α. If

we increase the soft-core radius, frequencies of both modes decrease.

The agreement between numerical and analytical calculation confirm that both

roton and maxon modes are excited via quenching the soft-core interaction. The

dynamically excited modes are stable, as both the fast and slow oscillations are

persistent for a long time. In our numerical simulations, the oscillations will not

dampen even when the simulation time τ > 1000. Such persistent oscillatory dy-

namics also leads to the sharp peaks in the Fourier transformation of the quantum

depletion.

We want to emphasize that the quench dynamics in the dressed BEC is in sharp

contrast to BECs with either s-wave or dipolar interactions. In a weakly in-

teracting BEC, the quantum depletion grows exponentially to a steady value

∝ ζ−
1
3 , while oscillatory patterns are not present in the depletion [57], due to the

fact that low energy phonon modes dominate the quench dynamics. In dipolar

BECs [64, 68, 72, 81, 82], on the other hand, roton modes are formed due to the

interplay between long-range dipolar and s-wave interactions [64, 68, 72, 81, 82].

These roton modes can be excited by quenching the dipolar interaction, while

maxon modes are typically unstable in the dynamics. This will be explored in

Sec. 3.3.6.

3.3.3 Quantum depletion in the long time limit

In the long time limit τ � 1, the quantum depletion oscillates rapidly around

a mean value [Fig. 3.6(c) and 3.7(c)]. In the following, we will evaluate the

asymptotic mean value of the quantum depletion. First we will derive an analytic
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Figure 3.8: Maxon frequency (a-b) and roton frequency (c-d). The dots are
numerical data from the Fourier spectra. The solid curves are the analytical results
2γm in (a)-(b) and 2γr in (c)-(d) obtained from the Bogoliubov dispersion. The maxon
(roton) frequency increases (decreases) with increasing interaction strength. At the
critical point αr, the roton mode loses stability. Frequencies of both modes tends towards
0 for larger R values as the soft-core interaction becomes weaker. In (a) and (c) R = 15.
In (b) and (d) α = 4.

expression using the following approximations. In the long time limit, the time

averaged quantum depletion is largely determined by the low momentum modes.

Moreover, we will neglect the oscillation term in Eq. (3.36), as they are related

to the roton and maxons. Using these approximations, the asymptotic form of

the momentum distribution n∞k is obtained,

n∞k ≈
1

2

(
k2 + 1√
k2(k2 + 4)

− 1

)
+
αf(k)

4k

n∞c
n
, (3.39)

where n∞c is the asymptotic condensate density. After carrying out the integral

over momentum space, the approximate quantum depletion when τ → ∞ is

obtained,

n∞d
n
≈ 2Γ

(
R2 + απ

3R2 + 2παΓ

)
, (3.40)
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Figure 3.9: Asymptotic quantum depletion. The asymptotic quantum depletion
increases with increasing α (a), which is seen from both the analytical and numerical
calculations. The quantum depletion n∞d decreases with increasing soft-core radius (b).
The solid line is found analytically using Eq. (3.40), while the data points are found
by numerically solving Eq. (3.37) and taking the mean value at later times between
τ ≈ 50→ 150. Parameters in (a) are R = 3 (open black) and 4 (solid red). Parameters
in (b) are α = 1 (open black) and 3.5 (solid red).

where Γ = (2π2ζ3n)−1. This result predicts that the quantum depletion ap-

proaches a constant value n∞d /n → 2Γ/3 in the limit R → ∞. This resembles

the result of the weakly interacting BEC, i.e. the soft-core interactions plays no

role in the dynamics. To verify the analytical calculation, we numerically find

the mean value of the quantum depletion when time is large. Both the numerical

and analytical results are shown in Fig. 3.9. For small α, low momentum states

are populated by switching on the soft-core interaction. This is the regime where

the approximation works. Here we find a good agreement between the numerical

and analytical calculations. Increasing the interaction strength, more and more

higher momentum components are populated [see Fig. 3.7(b)], causing larger de-
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pletion. A clear deviation between the numerical and analytical data is found,

as the approximations we made in evaluating Eq. (3.40) become less accurate.

On the other hand, the quantum depletion becomes smaller by increasing the

soft-core radius, as the strength of the soft-core interaction reduces. In this case

the numerical and analytical results agree well [see Fig. 3.9(b)].

3.3.4 Condensate fluctuation

In this section, we evaluate the fluctuation of the condensate for the Rydberg-

dressed BEC. The condensate fluctuation is defined as

∆nc =

√
〈n2

c〉 − 〈nc〉2

=

√
〈n2

d〉 − 〈nd〉2

=
1

Ω

√∑

kk′ 6=0

[
〈â†kâkâ†k′ âk′〉 − 〈â†kâk〉 〈â†k′ âk′〉

]
,

where we have assumed the total density n is a constant. Using the Bogoliubov

transformation, the fluctuation of the condensate is obtained,

∆nc =
1

Ω

√
2
∑

k 6=0

nk(1 + nk) (3.41)

One can numerically evaluate the fluctuation by inserting Eq. (3.36) into the

above equation. For convenience, the relative fluctuation,
√
N∆nc/n, will be

calculated. Some examples are shown in Fig. 3.10(a). The fluctuation increases

rapidly, and then saturates at an asymptotic value when time is large. The

fluctuation oscillates around the asymptotic value. The maxon modes lead to fast

oscillations. When the roton mode is significantly populated, a slower oscillation

is found.

The asymptotic value of the fluctuation depends on the soft-core interaction.

Increasing α, the asymptotic value increases [see Fig. 3.10(a) and (b)]. We can

estimate the asymptotic value of the density fluctuation by replacing nk with its
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Figure 3.10: Condensate fluctuation. (a) Dynamics of the condensate fluctuation.
We fix R = 10, and evolve the system for α = 5 (blue), 6.5 (green), and 7.99 (purple).
The dashed line is the fluctuation without the soft-core interaction, i.e. α = 0. The
inset shows fluctuations when α = 7.99 to highlight the low frequency oscillations due
to rotons. The axes of the inset is same as panel (a). Mean values of the fluctuations
for different α (b) and R (c) when time τ →∞ are shown. We have considered R = 3
(open black) and 4 (solid red) in (b) and α = 1 (open black) and 3.5 (solid red) in (c).
Other parameters can be found in Fig. 3.9 in the main text.

asymptotic value Eq. (3.39), in Eq. (3.41), which yields

√
N∆n∞c
n

=

√
2Γ

ˆ ∞
0

n∞k [1 + n∞k ] k2 dk. (3.42)

Further assuming the fluctuation depends solely on low momentum states, we
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obtain the approximate result of the fluctuation when τ →∞,

√
N∆n∞c
n

≈

√
2Γπ2

[
1 + π2α

(
6
√

3 + παC
)]

27R
, (3.43)

with the constant C =
[
4
√

3π − 3 log
(
27
16

)]
. The approximation result shows

that fluctuations of the condensate decreases (increases) with increasing R (α).

In Fig. 3.10(b) and (c), numerical and approximate results are both shown. The

two calculations agree when α is small or R is large, where the depletion and

fluctuation are both small. Though large discrepancy is found when α is large or

R is small, the trend found from both numerical and analytical calculations are

the same.

3.3.5 Density-density Correlation

Lastly we evaluate the density-density correlation function [56, 57]

g(2)(r, t) =
∑

k,k′,q

eik.r
1

Ω2

〈
â†k+q(t)âk(t)â†k′−q(t)âk′(t)

〉

. (3.44)

Within the Bogoliubov transformation, this can then be expressed in terms of the

condensate density as 〈1/Ω2
∑

k,k′ â
†
k+q(t)âk(t)â†k′−q(t)âk′(t)〉 = n2+n/Ω

∑
k[4|vk|2−

u∗kvk−ukv∗k]. Defining D = |r− r′ |/ζ as the scaled interatomic distance, the cor-

relation function is given as [57]

g(2)(D, τ)− 1 =
4Γ

D

ˆ ∞
0

k dk sin(kD)
[
nk − Re[u∗k(τ)vk(τ)]

]
.

(3.45)

The first term is the correlations that develop between condensed atoms while the

second term describes the correlations between the condensate and excited states.

We see from Fig. 3.11(a) that the correlations immediately develop both slow

and fast oscillations. The slow oscillation corresponds to the excitation of roton
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Figure 3.11: Density-density correlation. (a) The density-density correlations as
a function of D and τ , when R = 15 and α = 7.7. Correlations at D = 5 (blue), 15
(orange), and 25 (green) are shown in (b). The corresponding Fourier spectrum of the
correlation function is shown in (c). In the Fourier spectra, the peaks at lower and
higher frequencies are due to the excitation of roton and maxon modes.

modes, when γr is small. The fast oscillations attributed to the maxon occupation

are more easily observed when looking at a specific value of D [Fig. 3.11(b)]. The

corresponding Fourier transformation g̃(2) (D, ν) − 1 clearly show the associated

frequency peaks. When the distance D < R, g(2)(D, τ) − 1 oscillates with large

amplitudes and can have negative values, i.e. strong repulsive interactions lead

to anti-correlations. The correlations are seen to increase in amplitude in this

regime. Around the soft-core radius, the correlations are positive, and reach

their maximal values, after which they begin to decrease with D. The formation

of the roton minima inhibits larger scale correlations from developing.
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3.3.6 Dynamics of two dimensional dipolar systems

Quench dynamics in BECs with dipolar interactions are drastically different. The

dipolar interaction is given by

Ṽdd(r− r′) = g0δ(r) +
d2

|r− r′|3 [1− 3 cos2(θ)], (3.46)

where d is the dipole moment, θ is the angle between the dipoles and molecular

axis, and g0 is the short-range contact interaction as before. In 3D, the Fourier

transform of the dipolar interaction has no momentum dependence [68]. In a

2D trapped dipolar Bose gas [65, 67], the interaction potential displays a strong

momentum dependence [64].

We consider a quasi-2D setup [64], where a strong confinement is applied in the

perpendicular z-direction while leaving atoms free to move in the x − y plane.

The dipoles are polarized along this z-axis. This leads the axial confinement as

lz, which provides a natural rescaling of r 7→ r/lz [64, 65, 67, 69, 70]. After

integrating Eq. (3.46) in the z-axis, we obtain the Fourier transformation of the

quasi-2D dipolar interaction [64]

gdd(k) = g0 + d2
[
2− 3k

√
πErfc(k)ek

2
]
, (3.47)

where Erfc(k) is the complimentary error function. Here we define the dimen-

sionless parameter αd = d2/g0 to characterizing the strength of the dipolar in-

teraction, such that the interaction after the quench is given as gdd(k)/g0 =

1 + αd

[
2− 3k

√
πErfc(k)ek

2
]
. The quench scheme for the dipolar case is similar

to the procedure outlined in the main text. We switch on the dipolar interaction

instantaneously, while keeping the s-wave interaction unchanged.

The dispersion relation for the dipolar BEC is shown in Fig. 3.12(a), where both

roton and maxon modes can be seen.

When the dipolar interaction is compared to the Rydberg-dressed BEC [e.g Fig.

3.5(a)], the energies of the low momentum modes remain small, as seen by directly
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Figure 3.12: Quantum depletion in a dipolar BEC. Red curves are for αd = 2.1
and blue curves are for αd = 2.7. The axial confinement is set to lz = 0.1n−1/2. We
show the dispersion relation in (a) while the momentum distribution at time τ = 30
is shown for (b). The quantum depletion and corresponding Fourier spectra are shown
in (c) and (d) respectively. The inset shows a maxon mode is excited for αd = 2.1.
However the signal is very weak and almost invisible. The axes of the inset is same as
panel (d).

comparing the dispersion relations. The absence of these large maxon energies

means that the mechanism behind the dipolar interactions prevent the oscillations

that we previously attributed to the maxon modes from reaching large amplitudes

[Fig. 3.12(b)][64, 69, 83].

We follow the same self-consistent process to obtain the condensate fraction. We

calculate the quantum depletion as before as nd/n = 1/(2πl2zn)
´∞
0
nkk dk. When

αd is small, the dynamics develops maxon oscillations, which dampens in short

time scales, as shown in Fig. 3.12(c). When αd is large, the roton frequency

completely overpowers the maxon frequency in the dynamics. The absence of a
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stable maxon mode is also seen in the Fourier spectra [Fig. 3.12(d)].

3.3.7 Baliaev dampening

A minor subtlety is the fact that the maxon modes are found at a local maximum

of the dispersion relation. This should imply that maxons are inherently unstable

due to the energetically favoured roton modes. What we can show however is

that, at least qualitatively, this decay channel is closed leading to the stable

maxon modes. We can explain this in what follows [69, 84, 85].

For a 3D Bose gas, the dispersion relation can be expanded (up to third-order in

momentum) as

Ek ≈ ck + bk2 + dk3 +O[k4] (3.48)

As pointed out by Maris [85], it is possible for quasiparticles, with momentum

k to decay into two phonon modes, if and only if, both energy and momentum

conservation is conserved. For this, the energy of k must lie above the phonon

dispersion energy (Ep = ck).
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Figure 3.13: Taylor Expansion of Rydberg-dressed BEC phonon modes.
Black-dashed curves show the phonon component of the Rydberg-dressed condensate.
The red curve is that of the coefficients of the quadratic momentum components. The
parameters used are α = 4 and R = 8
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For the Rydberg-dressed interaction, the dispersion is given by

Erd
k ≈ crdk

[
1 + k2

9− 8ncπ
2R2α

72g0nc + 48ncπα

]
+O[k4], (3.49)

where the phonon velocity is

crd =

√
(2π2α + 3g0)nc

3
. (3.50)

As can be seen in Fig. 3.13, the dispersion has no quadratic component at

low momenta. We see that the dispersion bends downwards as we increase the

momentum value. This means that a maxon cannot decay into a two photons.

This explains why the maxon modes are stable for Rydberg-dressed BECs.

In comparison, we can also calculate the phonon velocity for the dipolar BEC

[69, 84]. The expanded dispersion in this case is given by

Edd
k ≈ cdk


1− 3

√
πncα

2
d

2cd
k +

n2
cαd

(
2+g0
nc

+ 24g0 + 48− 9π)
)
k2

8c4d
+O[k3]


 ,(3.51)
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Figure 3.14: Taylor Expansion of Dipolar BEC phonon modes. In this exam-
ple, the quadratic dispersion beaches the linear phonon modes, meaning that this decay
channel is open.
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with a phonon velocity

cd =
√
nc (g0 + 2αd) (3.52)

3.4 Summary and discussion

We have studied dynamics of 3D BECs in free space, with Rydberg-dressed soft-

core interactions. An interaction quench is implemented through turning on the

soft-core interaction instantaneously, starting from a weakly interacting BEC.

The Bogoliubov spectrum of the BEC displays local maxima and minima, which

are identified as maxon and roton modes. Through a time-dependent Bogoliubov

approach, we have calculated dynamics of the quantum depletion self-consistently.

Our results show that both roton and maxon modes are excited by switching on

the soft-core interaction. The excitation of roton and maxon modes generate

slow and fast oscillatory dynamics in the quantum depletion. Our simulations

show that the excited roton and maxon modes are stable in the presence of the

soft-core interaction, which are observed from the persistent oscillations of the

quantum depletion. We have found the frequencies of the roton and maxon modes

approximately, which are confirmed by the numerical simulations.

Our study shows that exotic roton and maxon excitations can be created in

Rydberg-dressed BECs through the interaction quench. Properties of the maxons

and rotons can also been seen from condensate fluctuations and density-density

correlations. Additionally we briefly explained some reasoning as to why the

Rydberg-dressed interactions produce stable maxon modes, a feature not seen in

its dipolar counterpart. The results studied in this work might be useful in iden-

tifying the soft-core interaction, through measuring the frequencies and strength

of the quantum depletion. In the future, it is worth studying the formation of

droplets and spatial patterns in Rydberg-dressed BECs, which could be affected

by the presence of roton or maxon modes.



Chapter 4

Nonlinear dynamics of

Rydberg-dressed Bose-Einstein

condensates in a triple-well

potential

This chapter is the first of two that studies the dynamics of Rydberg-dressed

Bose-Einstein condensates trapped in a triple-well potential in the semiclassical

limit. The Rydberg-dressed BECs experience a long-range soft-core interaction,

giving rise to strong nearest and next-nearest neighbor interactions in the triple-

well system. Using mean-field Gross-Pitaevskii equations [see Chapter 2], we

show that lower branches of the eigenspectra exhibit loops and level-crossings

when the soft-core interaction is strong. The direct level-crossings eliminate the

possibility of adiabatic Landau-Zener transitions when tilting of the triple-well

potential. We demonstrate that the long-range interaction allows for self-trapping

in one, two, or three wells, in a far more controllable manner than BECs with

short-range or dipolar interactions. Exact quantum simulations of the three-well

Bose-Hubbard model indicate that self-trapping and nonadiabatic transition can

be observed with less than a dozen bosons. Our study is relevant to current

57
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research into collective excitation and nonlinear dynamics of Rydberg-dressed

atoms. Several sections of the following chapter have been transcribed verbatim,

along with the accompanying data and figures, from the following publication:

“Nonlinear dynamics of Rydberg-dressed Bose-Einstein condensates in a

triple-well potential”

G. McCormack, R. Nath, and W. Li

Physical Review A: 102 063329 (2020) [86]

Copyright c© 2020 by American Physical Society. All rights reserved

4.1 Introduction

The understanding of the dynamics of interacting Bose-Einstein condensates has

been a fruitful field of research in the past three decades [6, 9, 51, 87–89]. With

modern experimental techniques that allow for controlling properties of ultra-

cold atomic gases, such as atom-atom interactions [90], trapping potentials and

spatial dimensions [91–93], along with long coherence times [94], stationary and

dynamical properties of atomic BECs have been explored in great detail [51].

The dynamics of trapped atomic BECs are typically described by the mean-field,

Gross-Pitaevskii equation [90, 95, 96], with which many interesting properties and

novel dynamics have been revealed [43, 97–104]. In optical lattices [2], bosons can

undergo the well-known superfluid-Mott insulator transition [105]. It has been

proposed that BECs [106–108] and atoms trapped in optical lattices [109] can be

used for carrying out quantum computation.

Substantial work has also been carried out in finite-sized double-well and triple-

well potentials. For technical specifications see Chapter 4.2. In the quantum

regime, the dynamics of atoms in double well potentials are affected by the on-

site (short-range) interactions, causing wave-packet collapse and revivals [110].

In the semiclassical regime, strong onsite interactions introduce interesting non-

linear effects. One striking feature is that the eigenspectrum of the nonlinear
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system develops a loop structure due to strong onsite interactions [111, 112].

Chapter 4.2 discusses these in great detail. The loop causes the breakdown of the

adiabatic theorem and self-trapping dynamics, which has been examined experi-

mentally [113, 114]. In triple-well configurations, static and dynamical properties

depend on boundary conditions and spatial profiles of two-body interactions.

With closed boundaries and bare onsite interactions [115–117], multiple loop

structures are found in the spectra of the coupled nonlinear system. These com-

plicated spectra lead to turbulent phase spaces [118–120] and produce oscillatory

dynamics beyond the typical Josephson or self-trapping behavior [115, 116, 121].

Population transfer between energy levels has been found via Landau-Zener tun-

neling [115, 118, 119]. Additionally, resonance generation within a triple-well

was explored [122]. Ring-shaped triple-well setups (i.e. periodic boundary con-

ditions) have also been examined, in which eigenenergies intersect even for the

noninteracting case [123].

When long-range dipolar interactions are present, the dynamics of BECs are

changed dramatically in triple-well potentials. The ground state shows exotic

behavior, such as mesoscopic quantum superpositions [124] and macroscopic

first-order coherence between the outer sites [125]. Recently, quantum popula-

tion [126] and entanglement [127] dynamics of dipolar BECs in triple wells have

also been examined. However, dipolar interactions decay rapidly with distance

r as r−3, which leads to weak nearest-neighbor and much weaker next-nearest-

neighbor interactions in a triple-well potential.

Long-range interactions can be realized alternatively by means of Rydberg-dressing.

In contrast with the previous chapter, here we are motivated by a number of the-

oretical studies on the static and dynamical properties of Rydberg-dressed atoms

confined in traps [23, 24, 47, 50, 128–130] and optical lattices [19, 30, 45, 131–134].

In this chapter, we study BECs interacting with long-range soft-core interac-

tions trapped in a triple-well potential [see Fig. 4.1]. A key feature is that the

long-range Rydberg-dressed interaction allows us to explore dynamics in a regime
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Figure 4.1: Schematic of a triple-well lattice potential. The potential height (zero-
point energy) γ of each trap may be adjusted dynamically. Atoms may interact via
onsite (W ), nearest (U) or next-nearest (V ) neighbour interactions, while the tunneling
J is restricted to nearest-neighbor sites, forming a chain setup.

where nearest-neighbor and next-nearest-neighbor interactions are strong, due to

the large soft-core radius. When the traps are tilted, the system undergoes nona-

diabatic Landau-Zener transitions due to complicated loops and level-crossings

on the lower branches of the eigenspectra. This results in dynamical instability

and hence leads to the breakdown of the adiabatic theorem. This is in stark con-

trast to systems with short-range interactions, where tunneling from the ground

state is not prevented from adiabatic population dynamics, as the level-crossings

emerge in the higher energy branches [see Section 4.2]. By tuning the profile of

Rydberg-dressed interactions, we can also control self-trapping of BECs [92, 135]

to a high degree of accuracy, which is typically difficult if considering only onsite

interactions. We propose that the nonlocal interactions allow for precise ma-

nipulation of the final states, such that we can control whether the trapping is

localized in a one, two, or even all three wells simultaneously. We also carry out

simulations of the quantum dynamics which takes into account the inter-well cor-

relations. The comparison with the mean-field results show that the transporting

dynamics can be found in mesoscopic systems with tens of atoms.

The chapter is organized as follows. We begin by discussing the mean field dy-

namics of coupled BECs with two and three potential wells. This provides us

with a gateway to discussing relevant physics, such as adiabatic Landau-Zener

transitions and self-trapping. In Sec. 4.3 the Hamiltonian of the Rydberg-dressed

system is introduced. The corresponding mean-field approximation is presented
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and the resulting equations of motion are given. We examine the eigenspectrum

and discuss new features in our system. In Sec 4.4, we explore nonadiabatic

transitions for both weak and strong nonlinear interactions. The Landau-Zener

transition probability is also examined. By analysing the Poincaré sections for

different energy values, we show that the system can move towards highly chaotic

regions when the nonlinear interactions are strong. We then examine self-trapping

of bosons in different sites. The dynamics depend on initial conditions and long-

range interactions. We moreover compare the mean-field results to quantum

dynamics. We summarise and discuss some implications of our work in Sec. 4.5.

4.2 Multi-well BECs with short-range mean-field

interactions

It is common in the study of quantum systems to consider only a small, finite

number of energy levels, that have strong coupling strengths between each level.

As such, a natural extension to a uniform Bose gas is coupling multiple conden-

sates in a single system. In this section we discuss the concepts of Landau-Zener

transitions between neighbouring states (sites). We then discuss the nonlinear

dynamics that develop where there are onsite and offsite density-density interac-

tions present.

4.2.1 Landau-Zener transitions

A particularly interesting phenomenon for two isolated neighbouring states is

that of Landau-Zener (LZ) transitions. Energy spectrum anti- and avoided-level

crossings have since been well described since their inception by Laudau and

Zener in 1932 [136, 137].
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Adiabatic theorem

Landau-Zener population transfer between states arises by means of the adiabatic

theorem of quantum mechanics, which states that eigenstates of a system remain

as instantaneous eigenstates when the system is slowly varied with respect to the

level spacing.

Suppose that a state ψn(t) is found, such that the following eigenvalue equation

is satisfied

H(t) |ψn(t)〉 = εn(t) |ψn(t)〉 . (4.1)

Then ψn(t) is an instantaneous eigenstate for the time-dependent Q×Q Hamil-

tonian H(t), for n = 1, 2, 3, ...,Q. The corresponding energies are therefore εn(t).

However, it should be made clear that, in general, an instantaneous eigenstate is

not a solution to the time-dependent Schrödinger equation

i
d

dt
|Ψ(t)〉 = H(t)Ψ(t). (4.2)

The relationship between ψ(t) and Ψ(t), the solution to the Schrödinger equation,

is not trivial. What should be clear from the adiabatic theorem however is that if

at time t = 0, the true eigenstate is |Ψ(0)〉 = |ψn(0)〉, then the Hamiltonian H(t)

must be varying slowly in time. Meaning that for an arbitrary time τ , 0 ≤ t ≤ τ ,

the true eigenstate of the Schrödinger equation will remain |Ψ(τ)〉 ≈ |ψn(τ)〉, up

to a global phase factor. This means that population transfers between energy

states are highly suppressed.

While the global phase is irrelevant to any dynamics seen, the relative phase

factors between the instantaneous eigenstates are not. This means that for

|Ψ(t)〉 =
Q∑

n=1

cn(t) |ψn(t)〉 (4.3)

the time evolution of the phases cn(t) will matter.
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Acting the Schrödinger equation onto Eq. (4.3) gives

i

Q∑

n=1

(
ċn |ψn(t)〉+ cn ˙|ψn(t)〉

)
=

Q∑

n=1

cn(t)εn(t) |ψn(t)〉 . (4.4)

Then we can act 〈ψm(t)| onto the above equation, m 6= n, to yield

iċm =

(
εm − i 〈ψm(t)| ˙ψm(t)〉 cm(t)− i

∑

m 6=n
〈ψm(t)| ˙ψn(t)〉 cn(t)

)
. (4.5)

The term 〈ψm(t)| ˙ψn(t)〉 can be related to a matrix element of the time-dependent

Hamiltonian in the space of instantaneous eigenstates by first taking the time

derivate of Eq. (4.1), which gives

Ḣ(t) |ψn(t)〉+H(t) ˙|ψn(t)〉 = ε̇n(t) |ψn(t)〉+ εn(t) ˙|ψn(t)〉. (4.6)

Again acting with 〈ψm(t)|, and with a bit of algebra we arrive at

〈ψm(t)| ˙ψn(t)〉 =
Ḣm,n

εn − εm
, (4.7)

where Ḣm,n is the derivative of a matrix element of the time-dependent Hamilto-

nian. Plugging this result back into Eq. (4.5) we get

iċm =

(
εm − i 〈ψm(t)| ˙ψm(t)〉 cm(t)− i

∑

m6=n

Ḣm,n

εn − εm
cn(t)

)
. (4.8)

If the final term vanishes, it can be shown that |cm| = 1, meaning that ψn(t) =

ψn(τ). Finally, by ignoring this last term we can see that

cm(t) = cm(0)e−i
´ t
o εm(t′) dt′e−

´ t
o 〈ψm(t)| ˙ψn(t)〉dt′ . (4.9)

From this we can see that final state depends not only on dynamical phase,

but also on a geometric phase; linking adiabatic processes with Berry phases

[138, 139].
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Avoided-level crossings

We imagine a two state system, separated by an energy gap 2γ. The states are

coupled via the parameter J . The Schrödinger equation for ψ1 and ψ2 is

i
d

dt



ψ1

ψ2


 = H(t)



ψ1

ψ2


 , (4.10)

where the time-dependent Hamiltonian is

H(t) =



γ(t) −J

−J −γ(t)


 (4.11)

One finds that the corresponding eigenvalues for the Hamiltonian above are

ε = ±
√
γ2 + J2 (4.12)

As is illustrated in Fig. 4.2, the smaller the parameter J , the smaller the gap

between the energy levels becomes, 2J for J = 0. Now let us return to the

statement that this level bias γ is a time varying quantity. For simplicity we

assume it is linear in time as γ = αt, where α is a rate parameter, governing how

-� -� � � �

-�

-�

�

�

�

�

Figure 4.2: Eigenenergies as a function of level bias. The energies are plotted
as a function of the level bias γ for J = 0 (black dashed) , J = 1 (blue), and J = 2(red).
As the hopping amplitude decreases, the distance between the upper and lower branch
of the spectrum closes to 0.
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fast the levels move past each other.

For a sufficiently large gap, the adiabatic theorem [111] says that the time evo-

lution of the original energy eigenstate will remain an energy eigenstate of the

changing Hamiltonian so long as this gap value is comparable to
√
α. If not, we

expect that other states will be excited by a quench in γ.

Landau-Zener transition formula

We now calculate the population transfer between the states ψ1 and ψ2. From

Eq. (4.10), we get the coupled equations

iψ̇1 = γψ1 − Jψ2

iψ̇2 = −Jψ1 − γψ2 (4.13)

To be technical, we need to reintroduce c1(t) and c2(t), as described in the pre-

vious section. These are the probability amplitudes of the states |ψ1〉 and |ψ2〉,

which are defined in the diabatic limit, meaning they are eigenstates of the time-

dependent Hamiltonian (4.11).

The equations of motion are now given as

iċ1 = γc1 − Jc2

iċ2 = −Jc1 − γc2. (4.14)

Combining both equations yields the second order equation

c̈1 + c1
[
iα + J2 + γ2

]
= 0. (4.15)

The probability amplitude c1 can then be decomposed into

c1(t) = ξ(t) exp

(
−i

ˆ t

t0

dαt′
)
. (4.16)
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Here the wavefunction has been divided into its time dependent component [ξ(t)]

and its phase. By inserting Eq. (4.16) into Eq. (4.15) we arrive at the second

order differential equation

ξ̈(t)− 2iαtξ̇(t) + J2ξ(t) = 0 (4.17)

A “common” method for solving this ODE is by utilising parabolic cylindrical

polar coordinates [137]. This method is highly complex with some non-intuitive

steps. As a work around we employ a method first described in [140]. This

method involves the use of the complex plane, and some relatively basic complex

analysis. To begin, we make some observations about the above ODE. In the

limit of ξ(t→∞), ξ̇(t) and ξ̈(t) must vanish as we have made the statement that

the system will have undergone a complete adiabatic crossover in the long-time

limit, yielding no change in the function. In order to balance the ODE, this

implies ξ̇(t) must be finite. Hence we can neglect ξ̈(t→∞) yielding

2iαtξ̇(t) = J2ξ(t). (4.18)

The solution to this first-order ODE is found to be

ξ(t) = ξ(t0) exp

[
−iJ2/2α ln

(
t

t0

)]
, (4.19)

where t0 is the initial starting time. Taking the derivative of the above yields

ξ̇(t)

ξ(t)
=

(−iJ2

2αt

)
(4.20)

and

ξ̈(t)

ξ(t)
=

J2

2αt2

(
J2

2α
− i
)
. (4.21)

We can see that the second derivative depends on t−2, which justifies neglecting
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the second derivative at large times. In the limit of t→ 0, Eq.(4.21) is simply

ξ̈(0)

ξ(0)
= −J2. (4.22)

Returning to Eq. (4.19), we can re-write it as

ξ̈(t)

ξ(t)
− 2iαt

ξ̇(t)

ξ(t)
+ J2 = 0. (4.23)

We see that this is now a well defined ODE across all time as ξ(t) tends to be

a complex function, unless the system is pushed into a regime with unrealistic

parameters, i.e., J →∞. Applying the Cauchy principal value integral with the

limits t = (−∞,+∞) yields

 +∞

−∞

ξ̈(t) dt

ξ(t)t
− 2iα

 +∞

−∞

ξ̇(t) dt

ξ(t)
+ J2

 +∞

−∞

dt

t
= 0. (4.24)

The final term within this limit goes to 0, while the second term is

 +∞

−∞

ξ̇(t) dt

ξ(t)
= lim

t→0+

 +∞

ε

ξ̇(t) dt

ξ(t)
= ln[ξ(t→ 0)]. (4.25)

This means we can express ξ(t→ 0) as

ln[ξ(t→ 0)] =
−i
2α

 +∞

−∞

ξ̈(t) dt

ξ(t)t
. (4.26)

Equation (4.26) encloses a contour in the complex t-plane, with a residue located

at t = 0. An illustration of the contour is shown in Fig.4.3.

The movements along the contour are:

1. −R→ ε

2. A semicircle of radius ε above the real t-axis

3. ε→ R
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Figure 4.3: Complex t-plane. An illustration of the complex plane with a singularity
at t = 0.

4. A semicircle of radius R above the real axis

Decomposing the integral via these constraints yields

˛
C

ξ̈(t) dt

ξ(t)t
=

ˆ −ε
−R

ξ̈(t) dt

ξ(t)t
+

ˆ R

ε

ξ̈(t) dt

ξ(t)t
+

˛
ε

ξ̈(t) dt

ξ(t)t
+

˛
R

ξ̈(t) dt

ξ(t)t
. (4.27)

In the limit where ε→ 0+ and R→∞,

˛
C

ξ̈(t) dt

ξ(t)t
=

 ∞
−∞

ξ̈(t) dt

ξ(t)t
+

˛
ε→0+

ξ̈(t) dt

ξ(t)t
+

˛
R→∞

ξ̈(t) dt

ξ(t)t
. (4.28)

Within the imposed limits, the integral over t from -∞ to ∞ contains no singu-

larities, and therefore is 0. We also note that the integral as R → ∞ decays as

t−3, and can also be set to 0. By utilising the residue theorem, we can express

the remaining integral as

˛
ε→0+

ξ̈(t) dt

ξ(t)t
= −iπRes

[
ξ̈(t)

ξ(t)t
, t = 0

]
. (4.29)

Using Eq. (4.22) we find that

ln[ξ(t→ 0)] =
−i
2α

[
−iπJ2

]
(4.30)

⇒ ξ(t→ 0) = exp

(−πJ2

2α

)
. (4.31)
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Or in other words,

P (α) = |ξ(t→ 0)|2 = exp

(−πJ2

α

)
(4.32)

which describes the transition probability between two states as a function of

the rate α. This is the Landau-Zener transition probability, where the resulting

dynamics [136, 137] has produced a vast field of research and is still lucrative in

terms of its modern day applications.

4.2.2 Bose-Einstein condensates in a double well potential

Consider a similar scenario as the Landau-Zener model where now the interaction

terms depend nonlinearly on the densities [92, 110–112, 141, 142]. The model

consists of two levels as the previous section, except now the interaction terms

depend of the occupation of the states. The total system density is normalised

by |c1|2 + |c2|2 = 1, where c1 and c2 are probability amplitudes for sites 1 and

2. The hopping parameters between the sites is J , which is again taken to be

negative. The level bias γ is the amount each site is offset by with respect to the

zero-point energy. The evolution of the system is tracked by varying the level

bias with time as γ = αt, where α is a sweeping rate. When α � 1 we imagine

a very rapid sweep while for α� 1 we imagine a slow sweep.

Beginning with the BHM, Eq. (2.21), we restrict the number of sites to L = 2.

From here, the creation and annihilation operators can be replaced with classical

fields as âj ≈ cj and â†j ≈ c∗j , which are normalised by the total atom number

N � 1. The resulting mean-field Hamiltonian is

H̃ = γc1 − γc2 − J(c∗1c2 + c∗2c1) +
W

2

[
|c1|2(|c1|2 − 1) + |c2|2(|c2|2 − 1)

]
, (4.33)

whereW = U0N is the mean-field interaction parameter. The nonlinear Schrödinger

equation for a double-well potential is then
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Figure 4.4: Double-well eigenspectrum vs level bias The eigenspectrum is shown
as a function of the level bias γ when the interaction strength is (a) W = 2, (b) W = 4,
(c) W = 6, and (d) W = 8. The analytic results from Eq. 4.37 is shown in black while
the red dots are found by numerically solving the Schrödinger equation. The numerics
and analytics overlap perfectly.

i
d

dt



c1

c2


 =



γ +W |c1|2 −J

−J −γ +W |c2|2






c1

c2


 , (4.34)

For a nonlinear system, the total number of eigenenergies is not necessarily re-

stricted by the number of states in the system. In particular, for two sites the

total number of eigenvalues can be four. When L = 2 there does exist an analyt-

ical solution. First we can exploit the eigenvalue equations for the Schrödinger

equation by replacing i d
dt

with the eigenvalue ε yielding

εc1 =
[
γ +W |c1|2

]
c1 − Jc2

εc2 = −
[
γ +W |c2|2

]
c2 − Jc1. (4.35)
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Multiplying both sides by their respective conjugates and subtracting yields

|c2|2 − |c1|2 = − γ

ε−W . (4.36)

This is then reinserted into the deterministic equation det [H − εI] = 0, which

produces a fourth order eigenvalue equation as

ε4 − 3Wε3 + ε2
(

13W 2

4
− J2 − γ2

)

+ εW

(
2J2 + γ2 − 32

2

)
−W 2

(
J2 − γ2

4
+
W 2

4

)
= 0.

(4.37)

The solutions to Eq. (4.37) are shown in Fig. 4.4. Additionally, we have solved

Eqs. (4.34) numerically, and plot it along side the analytic results where we

see great agreement. To do this, we employ a shooting method, where we self-

consistently scan the solutions for a given initial condition Y ᵀ = [c̄1, c̄2]. Once an

eigenvector is found to be a true eigenvector of the Hamiltonian, the associated

eigenvalue is stored. The numerics will be important in the coming chapters as

large systems sizes where L > 2 tend to be far too difficult to solve analytically.

When W = 2, the eigenspectrum deformation on the upper level leads to the

beginning of a bifurcation in the energy levels. This can be seen in Fig. 4.4(a).

We show that this deformation develops in to a full looping structure for increasing

interaction strength [see Figs. 4.4(b-d)]. The location of the deformation however

is in stark contrast to simulations carried about by [111, 112]. Here they used

the relative densities between sites. This created bifurcations on the lower energy

levels. This means that due to the splitting in the groundstate energy level, the

system was prevented from undergoing a complete adiabatic crossover when the

nonlinear interaction strength was strong. This is simply a consequence of the

symmetry between short-range and long-range interactions. In Refs [111, 112], the

densities depend on the nonlinear interaction term asW (|c2|2−|c1|2). By applying
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Figure 4.5: Retention Probability. The tunnelling probability is shown for various
interaction strengths. The W = 0 case is compared with the Landau-Zener formula
from Eq. (4.32).

the conservation condition, we see this can be expressed as W (1 − 2|c1|2) =

W − 2W |c1|2. The constant term is simply a shift in the global energy of the

system. The negative sign produces an attractive interaction over a repulsive

interaction, leading to the formation of the single loop on the lowest energy level.

In Fig. 4.5, the probability of the population being retained in the initial state is

shown for different interaction strengths. This is calculated by using Eq. (4.32).

When α� 1, we see that tunnelling to the adjacent site is suppressed

We show the population dynamics between the energy levels for W = 1 in Fig.

4.6 for (a) α = 1 and (b) α = 0.001. As expected the fast quench leads to minor

excitations of higher states as
√
α ∼ ∆E. For the slow quench, we see almost

full adiabatic population transfer. When we increase the interaction strength

further, to W = 5 [Fig. 4.7 for (a) α = 1 and (b) α = 0.001], we see that for

both the fast and slow quenches the system exhibits a complete crossover. From

the eigenspectra, we see that for stronger interaction strengths, the groundstate

energy level enters a plateau-like region. This fixes the energy to a near constant,

meaning that any changes to the time-dependent Hamiltonian result in minute

changes in the density.

Another fascinating feature attributed to the nonlinear interactions is self-trapping
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Figure 4.6: Landau-Zener Dynamics for weak nonlinear coupling. The dy-
namics of the densities n1 (dotted red) and n2 (solid blue) is shown for tilting rates (a)
α = 1 and (b) α = 0.0001 for W = 1.

where the densities of one (or more) of the sites become fixed, even when the in-

teraction strength is increased. We calculate this by finding the time-averaged

densities in each well for a static trap (γ = 0), defined as

〈ni〉 = lim
τ→∞

[´ τ
0
|ci(t)|2 dt

τ

]
(4.38)

In practice, we take τ = 100 which is more than sufficient. The loops create

new avoided level crossings, leading to the nontrival tunnelling dynamics. When

the energy gap between the lowest state and the first excited state is less than

the tunnelling strength ∆E < 2J we see Josephson oscillations between the two

states. When ∆E > 2J we enter the self-trapping regime. In Fig 4.8(a) we plot

different interaction strengths which shows the difference between both regimes.

For a double-well system we find that there are two dynamical regions present.
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Figure 4.7: Landau-Zener Dynamics for strong nonlinear coupling. The
same dynamics as shown in Fig .4.6, now using W = 5.
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Figure 4.8: Dynamics and Self-trapping. (a) The oscillatory dynamics for the
population of site one is shown for various interaction strengths. (b) The time averaged
population of both wells, with an initial condition n1(0) = 1. At a critical interaction
strength W = 4 we see the population sharply transitions to localisation in well one.

When the nonlinear coupling is weak, i.e W = 2, we see Josephson oscillations

between the two states. For W = 4, we reach a critical interaction strength where

we begin to enter the regime of self-trapping. This is clearly illustrated for W = 6

in Fig. 4.8(a). The transition is prominent when looking at the self-trapping as

a continuous function of the interaction strength, which is shown in Fig 4.8(b).

After W = 4 the localisation follows a logarithmic scaling [111].

4.2.3 Bose-Einstein condensates in a triple well potential

We move our attention now to a system with three trapped BECs. The mean-field

Hamiltonian for this scenario is

H̃ =
3∑

j

Γj|cj|2 − J
3∑

〈i,j〉
c∗i cj +

W

2

3∑

j

|cj|2(|cj|2 − 1). (4.39)

The local trapping operator is Γj = −(j − 2)γ.

The nonlinear Schrödinger equation for this system is

i
d

dt




c1

c2

c3




=




γ +W |c1|2 −J 0

−J W |c2|2 −J

0 −J −γ +W |c3|2







c1

c2

c3



, (4.40)

where c1, c2, and c3 are the mean-field amplitudes for the respective sites; defined
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Figure 4.9: Triple-well eigenspectrum vs level bias. The eigenspectrum is shown
as a function of the level bias γ when the interaction strength is (a) W = 1, (b) W = 3,
(c) W = 5, and (d) W = 9.

in the adiabatic regime as with the double-well potential. W and γ are again

the mean-field interaction strength and level bias respectively. The three sites

are connected as a Bose-Hubbard chain with closed boundaries. As mentioned in

the previous section, it becomes excessively difficult to analytically calculate the

eigenspectrum for a system where L > 2. As such, we rely on numerically solving

the coupled ODEs given by the Schrödinger equation, Eq. (4.40), along with the

conservation equation
∑

j |cj|2 = 1.

The eigenspectra for various interaction strengths are shown in Fig. 4.9. We see

striking differences between the double-well model, from Fig. 4.4. We notice the

emergence of a star structure on the highest energy level, and additional loops

on the middle energy levels. In total, there can be up to 9 eigenvalues for certain

values of γ.

As with the double-well system, the adiabatic passage of the initial Hamiltonian
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Figure 4.10: Landau-Zener Dynamics for weak nonlinear coupling The dy-
namics of the densities n1 (dotted red), n2 (solid blue), and n3 (dashed black) is shown
for tilting rates (a) α = 1 and (b) α = 0.001 for W = 1.

towards the final Hamiltonian remains intact even for strong nonlinear coupling,

as the topology of the groundstate energy level remains the same throughout

the tilting process. This can be seen in both Figs 4.10 and 4.11, where both

fast (α = 1) and slow (α = 0.001) are shown for weak and strong nonlinear

interactions respectively.

Self-trapping is also possible for triple-well BECs. Figure 4.12 shows the self-

trapping dynamics for a symmetric system (i.e., γ = 0), initialised in the left site

[n1(0) = 1], while Fig. 4.13 shows the same for the initial condition n2(0) = 1.

Here we note that the initial conditions play a major role in the dynamics seen.

This will be a pivotal concept in Chapters 4 and 5, when we discuss a triple-well

system with long-range interactions.
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Figure 4.11: Landau-Zener Dynamics for strong nonlinear coupling. The
same dynamics as shown in Fig .4.6, now using W = 5.
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Figure 4.12: Oscillations and self-trapping dynamics n1(0) = 1. Here n1 refers
to the leftmost well. (a) Oscillatory dynamics of the left well for various interaction
strengths showing the Josephson Oscillations for weak coupling and self-trapping oscil-
lations for strong coupling. (b) Averaged-time dynamics as a function of the interaction
strength

4.3 Mean-field Hamiltonian with Rydberg-dressed

interactions.

We consider N bosonic atoms in a one-dimensional trap array, whose dynamics

is governed by an extended Bose-Hubbard Hamiltonian

Ĥ =
3∑

j

Γjn̂j − J
3∑

〈i,j〉
â†i âj +

U0

2

3∑

j

n̂j(n̂j − 1) +
1

2

3∑

i,j

Λi,jn̂in̂j, (4.41)

where we have omitted the chemical potential in Eq. (2.29) and set the number

of sites L = 3. Additonally, the generic long-range interaction term is replaced

with that discrete soft-core interaction, given by Eq. (2.43). Here we imagine a
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Figure 4.13: Oscillations and self-trapping dynamics with n2(0) = 1. Here n2
refers to the centre well. (a) and (b) show the same dynamics as in Fig. 4.12, now
with the initial condition n2(0) = 1
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triple-well chain setup, i.e., closed boundary conditions. The bosonic annihilation

(creation) operator at site j is given by âj(â
†
j). Γj and n̂j = â†j âj are the local

tilting potential and number operator, respectively. The parameter U0 = 4πas/m

characterizes the onsite (s-wave) interaction.

In the limit of N � 1, we employ the mean-field approximation to replace the

bosonic operator with a classical field ψj, i.e. âj ≈ ψj, â
†
j ≈ ψ∗j and

∑
j |ψj|2 =

N [90]. This yields the mean-field Hamiltonian

H̃ =
3∑

j

Γj|ψj|2 − J
3∑

〈i,j〉
ψ∗iψj

+
U0

2

3∑

j

|ψj|2(|ψj|2 − 1) +
1

2

3∑

i,j

Λi,j|ψi|2|ψj|2. (4.42)

The dynamics of the classical field ψi is derived via the canonical equation

idψj/dt = ∂H̃/∂ψ∗j . For convenience, we define the normalized field cj = ψj/
√
N

with the normalization condition
∑

j |cj|2 = 1. For the triple-well system, we

obtain the following coupled nonlinear GP equations

iċ1 =
(
W |c1|2 + U |c2|2 + V |c3|2

)
c1 + γc1 − Jc2, (4.43a)

iċ2 =
[
W |c2|2 + U(|c1|2 + |c3|2)

]
c2 − J(c1 + c3), (4.43b)

iċ3 =
(
W |c3|3 + U |c2|2 + V |c1|2

)
c3 − γc3 − Jc2, (4.43c)

where we have defined W = N(Λ11 + U0), U = NΛ1,2 and V = NΛ1,3 to be

the onsite, nearest-neighbor and next-nearest-neighbor mean-field interactions,

respectively. The short-range interaction W accounts for contributions from the

s-wave and onsite soft-core interaction. The local potential Γj is antisymmetric,

given by Γj = −(j − 2)γ, i.e. Γ1 = γ, Γ2 = 0, and Γ3 = −γ. Here γ is a bias

field to create a potential height difference between neighboring traps. In Sec.

4.4.1, the potential wells are linearly biased through γ = αt, with α being the

sweep rate. In Sec. 4.4.2, we will consider a fixed γ. To be convenient, we will

scale time and energy with respect to 1/J and J in the following unless stated
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Figure 4.14: Energy spectra with different short-range interactions. We show
the adiabatic eigenspectra as a function of γ for (a) W = −5, (b) W = 0, (c) W = 5,
and (d) W = 10 while fixing U = 2V = 5. When the short-range interaction is
attractive or vanishing, loops and direct level-crossings are found in the lower branches.
These structures disappear when W = U . When the short-range interaction dominates,
the structures are found in the upper branches of the levels. The linear case (W =
U = V = 0) is shown for reference in each panel (blue dotted). To compare with the
nonlinear spectra, the linear spectra are shifted vertically by W .

explicitly.

4.3.1 Adiabatic eigenspectra of the GP equation

When analyzing the adiabatic spectra of the system through Eqs. (4.43a-4.43c),

the presence of the nonlinear interactions implies that standard methods (i.e. di-

agonalization of the Hamiltonian) are not valid. We adapt the method applied

to treat nonlinear equations corresponding to interacting BECs in double-well

potentials [111]. The basic idea is to convert the nonlinear equations into a

high-order L2 polynomial equation of eigenvalue ε, and additionally applying the

normalization condition [143]. For L = 3, it becomes difficult to solve the re-

sulting polynomial equation even numerically. As such, we employ a shooting
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Figure 4.15: Energy spectra with different long-range interactions. By turning
off the short-range interactions (W = 0), the adiabatic eigenspectra are shown as a
function of γ for U = 2V with (a) U = 1, (b) U = 3, (c) U = 5, and (d) U = 9.
When the long-range interactions are strong, loops and direct level-crossings emerge on
the lower branches, as shown in panels (b)-(d). The linear case (W = U = V = 0) is
shown for reference in each panel (blue dotted).

method that is similar to obtaining bound states of the Schrödinger equation. A

trial energy εt is fed into the nonlinear GP equations, allowing us to calculate

eigenvectors [c1, c2, c3] and eigenenergy εn. An eigenstate is identified if the cal-

culated and trial energy are equal, i.e., εt = εn. This is carried out for a fine grid

of trial energies to obtain all eigenenergies.

We first investigate the interplay between short-range (W ) and long-range (U

and V ) interactions. When both the short and long-range interaction are per-

turbative with respect to J , the eigenspectra are separated and display avoided

level-crossings only, even when γ ∼ 0 [see demonstration in Sec. 4.2.3]. To

highlight the roles played by the nonlinear interaction, we calculate the eigen-

spectra of the GP equation by varying W while fixing U = 2V = 5, shown in

Fig. 4.14. When the tilting is large, i.e., |γ| > |W |, U, and V the eigenspec-
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Figure 4.16: Energy spectra vs the long-range interactions. Increasing the
interaction strength leads to the creation of new energy levels in (a) symmetrical traps
(γ = 0) and (b) titled traps (γ = 1). Location of the critical interaction strengths can
then be extrapolated. In (a) the critical values are Uc1 ≈ 3.5 and Uc2 ≈ 5.4. In (b) the
critical values are U c1 ≈ 4.1, U c2 ≈ 6.6, and U c3 ≈ 8.

trum approaches the linear spectrum. When W = −10 (i.e., attractive onsite

interactions), we find direct level-crossings between the lowest three branches at

γ = 0. Slightly away from γ = 0, large loop structures are found, as shown in

Fig. 4.14(a). When W = 0 similar structures are found, where the sizes of the

loops shrink [Fig. 4.14(b)]. When W = U = 2V = 5, the loops disappear

and the spectrum is similar to the linear spectrum This set of parameters largely

gives a global energy shift. Due to the normalization condition, only Eq. (4.43a)

and Eq. (4.43c) have a single nonlinear term proportional to V while Eq. (4.43b)

has no nonlinear interaction term anymore. When W = 10 [Fig. 4.14(d)], the

loop and level crossings re-appear in the higher energy branches. In this case the

spectra are dominated by the short-range interaction. This structure is similar

to previous studies in systems with bare onsite interactions [116, 117, 117] where

the loops and level-crossings form star-like structures.

In the remainder of this work, we will focus on a regime where only long-range

interactions are present (i.e., W = 0). For soft-core interactions where R � 1,

the nearest and next-nearest neighbor interactions are the same as U = V . The

resulting spectra can be obtained from BECs with bare short-range interactions

[see details in Sec. 4.2.3]. This can be understood since the particle conser-

vation maps the long-range interaction to an attractive short-range interaction.
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To violate this symmetry, we will focus on a condition U = 2V , which will be

used for the remainder of this chapter. This restriction can move the loop and

level-crossings to the central region, leading to interesting dynamics. For weak

long-range interactions, the eigenenergies are slightly modified from the linear

counterpart [Fig. 4.15(a)]. When the long-range nonlinear interaction is strong

(i.e., U, V � 1), the energy levels are pushed upwards by increasing U and V ,

as can be seen in Fig. 4.15(b). The spectrum develops a loop structure on the

lowest level when U = 2V = 3. By further increasing the long-range interac-

tions [see Figs. 4.15(c) and (d)], the loops become larger and more complicated

level-crossings emerge in higher energy states.

In Fig. 4.16(a) we plot the energy levels as a function of U with γ = 0. At a

critical interaction strength Uc1 ≈ 3.5, a new branch of levels emerges. Further

increasing U to Uc2 ≈ 5.4, a second branch appears at higher energies. Note that

explicit values of Uc1 and Uc2 depend on γ. Fig. 4.16(b) shows another example

for a tilted trap with γ = 1. The levels are more separated in the low energy

region. Here the two critical values are U c1 ≈ 4.1 and U c2 ≈ 6.6. Furthermore we

see the emergence of a third energy level at U c3 ≈ 8. In the following sections,

we will show that the critical values of the long-range interaction strongly relate

to dynamical behaviors of the system.

4.4 Results

4.4.1 Landau-Zener and nonadiabatic transitions

In this section we study the dynamics of the long-range interacting BEC when the

traps are tilted at different rates α. Without nonlinear interactions (U = V = 0),

the level spacing is determined by the tunneling rate J . In the diabatic regime

where
√
α is large and comparable to the typical level spacing ∆E [see dashed

curve in Fig. 4.15], the system does not have enough time to respond to the

change of the tilting. Starting from the ground state, higher energy levels will
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Figure 4.17: Landau-Zener transitions with weak and strong interactions.
The bias potential is tilted with a fast rate α = 1 in (a) and (c), and a much slower
rate α = 0.001 in (b) and (d). The interaction is U = 2V = 1 in the upper panels and
U = 2V = 3 in the lower panels. For rapid tilting, higher energy modes are excited such
that oscillatory dynamics are observed in (a) and (c). For slow tilting, the dynamics
depends strongly on the nonlinear interactions. When the interaction is strong, the
adiabatic condition is broken [see Fig. 4.16(b)]. The densities n1, n2, and n3 are given
by the dotted red, solid blue, and dashed black lines.

be excited. In the adiabatic regime where
√
α is small, the adiabatic theorem

states that the system will remain in an instantaneous eigenstate under variation

of α [144, 145]. This has been studied extensively with two-state (well) systems,

where the transition probability from t→ −∞ to t→∞ is given analytically by

Eq. (4.32)

In Fig. 4.17, the population evolution of the BECs in the three wells is shown in

the presence of weak interactions. Initially all atoms are in the left well [n1(0) =

1]. When the trap is tilted rapidly at rate α = 1 [Fig. 4.17(a)], the population

undergoes fast oscillations when the tilting is reversed, i.e., γ > 0. This case

corresponds to the diabatic regime where the lowest energy gap is ∆E = 0.6,

comparable to
√
α = 1. The level spacing ∆E now depends on the nonlinear
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interaction strengths, in addition to the hopping. In Fig. 4.17(b), we show the

population evolution for slow tilting with α = 0.001. The dynamics is in the

adiabatic limit, as
√
α ≈ 0.03 � ∆E, leading to smooth population changes

among the three wells. The system follows the ground state adiabatically, where

the population tunnels from the leftmost to rightmost well.

For sufficiently strong nonlinear interactions, the lower levels develops loop struc-

tures near U > Uc1. Due to the nonlinearity, the number of eigenvalues available

is now greater than the dimension of the Hilbert Space. Dynamically, the system

undergoes multiple avoided and direct level-crossings, when increasing γ from

−∞ → +∞. As a result, oscillations are seen in the diabatic regime due to the

excitation of higher energy eigenstates [see Fig. 4.17(c)]. In the adiabatic limit,

the loop structures play vital roles as many eigenstates are excited, giving rise to

extremely fast oscillations with multiple frequencies, as seen in Fig. 4.17(d).

To show the influence of the long-range interaction on the dynamics, we show the

probability of the population being retained in the initial state (left well) for dif-

ferent tilting rate α in Fig. 4.18. The excitation probability is largely captured by

the Landau-Zener transition probability Eq.( 4.32) when the nonlinear interaction

vanishes. When U = 1 the retention probability of the initial well increases. It

approaches the non-interacting case in the adiabatic limit when α� 1. Note that

there are no simple power laws present in the tunneling probability as a function

of α, which is different from the double-well potentials [111]. For even stronger

interactions U = 3, the excitation probability depends on α non-monotonically.

The retention probability is large when α < 1, and becomes dramatically larger

when α > 1. As shown in Fig. 4.15, the presence of the loop and level-crossings

breaks the adiabatic condition. Violating the Landau-Zener prediction in the adi-

abatic limit has also been shown for both double-well [111–114] and triple-well

system with short-range interactions [115, 123].
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Figure 4.18: Retention probability of the initial state. The analytical Landau-
Zener probability for U = 0 is given by the black squares. The other curves correspond
to the numerical calculations for U = 0 (red dashed), U = 1 (blue dotted), U = 2 (green
dot-dashed), and U = 3 (purple solid). The parameter γ is varied from −10→ +10 in
calculating the probability.

4.4.2 Self-trapping and chaotic dynamics

The retention probability in Fig. 4.18 indicates the emergence of self-trapping

when the long-range interaction is strong. Self-trapping has been extensively

studied in double-well potentials [110, 111]. BECs with short-range interactions

can localize in a single well as the densities scale logarithmically with the in-

teraction strength, above a certain critical value. Self-trapping is also studied

with short-range interacting BECs in triple-well potentials [115, 116]. Here, we

will discuss the differences between both short and long-range interactions, and

how we can control the final distribution of atoms by manipulating the initial

conditions.

Without nonlinear interactions (U = 0), the mean-field Eqs. (4.43a-4.43c) are

analytically solvable, yielding solutions

c1(t) =
1

ω2

{
J [Jc̄1 + γc̄2 − Jc̄3]

+
[
γ2c̄1 − Jγc̄2 + J2 [c̄1 + c̄3]

]
cosωt

+ iω [Jc̄2 − γc̄1] sinωt

}
, (4.44a)
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c2(t) =
1

ω2

{
γ [Jc̄1 + γc̄2 − Jc̄3]

+ [2Jc̄2 + γ[c̄3 − c̄1]] cosωt

+ iω[c̄1 − c̄3] sinωt

}
, (4.44b)

c3(t) =
1

ω2

{
−J [Jc̄1 + γc̄2 − Jc̄3]

+
[
Jγc̄2 − γ2c̄3 + J2 [c̄1 + c̄3] cosωt

]

+ +iω [Jc̄2 + γc̄3] sinωt

}
, (4.44c)

where ω =
√

2J2 + γ2 and Y ᵀ = [c̄1, c̄2, c̄3] denotes the eigenvectors at t = 0.

In the presence of nonlinear interactions, the mean-field equations are solved

numerically with a given set of parameters and initial conditions. To characterize

dynamics in the long time limit, we calculate the time averaged densities in

individual wells by Eq. (4.38). In the numerical simulations, we integrate the

nonlinear GP equations from t = 0 up to t = 100. We have checked that consistent

results can be obtained when integrating the GP equations up to this time.

In the following we consider several different cases for both the symmetric and

antisymmetric trap setups, to demonstrate the importance that the initial con-

ditions have on the dynamics. We begin by looking at the symmetric case where

γ = 0.

Case I: Y ᵀ = [1/2, 1/
√

2, 1/2]

The lowest energy eigenstate when U = 0 is given by Y ᵀ = [1/2, 1/
√

2, 1/2].

Using this as the initial state, the corresponding atomic densities in each wells

are obtained by using Eq. (4.38),

〈n1〉 = 〈n3〉 =
1

4
, 〈n2〉 =

1

2
.

The majority of the particles are found in the middle well. Using the same initial

state, we numerically solve the GP equations for different U . In Fig. 4.19(a), the

average density decreases in the two outer wells while increasing in the middle site,
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Figure 4.19: Self-trapping of the populations with different initial conditions
with symmetric wells. The time-averaged densities of each site are shown as a
function of the interaction strength U for γ = 0. The initial conditions Y ᵀ = [c̄1, c̄2, c̄3]
are shown as insets in each panel. The densities of the left, middle and right wells are
denoted with red dotted, blue solid, and black dashed curves. The average density is
obtained by evolving the GP equations to time τ = 100.

as U increases. When U � 1, the population tends to fully localize in the middle

site. Due to strong nearest-neighbor and next-nearest-neighbor interactions, the

lowest energy corresponds to all atoms sitting in one well, as we show in the

numerical simulation. Here we see a smooth transition from the initial densities

towards the self-trapping regime. From Fig 4.16 (a) we see that when U > Uc1

the lowest energy level is largely independent of U . The next excited level has

also merged with the lowest level, preventing any occupation of higher energy

modes. This accounts for the smooth increase in the densities as each the energy

gap separating any higher levels is larger than the hopping strength, i.e ∆E > J .

Case II: Y ᵀ = [1, 0, 0]

When changing the initial state to Y ᵀ = [1, 0, 0], the dynamics of the popula-

tion changes drastically. Without interactions, the time-average populations are
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obtained again with the help of Eq. (4.38),

〈n1〉 = 〈n3〉 =
3

8
, 〈n2〉 =

1

4
.

Increasing U , the average densities of the middle well decreases slightly and then

stays at a lower value [Fig. 4.19(b)]. The populations then become turbulent as

the interaction strength passes U = Uc1, where the dynamics can not be cate-

gorized by standard Josephson or self-trapping regimes. Due to the complicated

energy levels [see Fig. 4.16(a)], chaotic dynamics is produced as particles tunnel

between each site within the range of Uc1 < U < Uc2. This chaotic dynamics con-

tinues until the interaction strength passes U = Uc2. The self-trapping re-emerges

such that the BECs localize in the left well when U > Uc2.

Case III: Y ᵀ = [
√

2/3,
√

1/3, 0]

Fig 4.19(c) shows the system being initialized in the state Y ᵀ = [
√

2/3,
√

1/3, 0].

Without interactions (i.e. U = 0), the average densities in each well are

〈n1〉 = 〈n2〉 = 〈n3〉 =
1

3
.

As with the previous case, the dynamics is turbulent within the region of Uc1 <

U < Uc2 due to the superposition of energy levels. What is interesting is that the

densities are no longer localized in a single well in the limit when U →∞. Here

the weighting of the initial conditions have allowed for approximately 17 % of the

atoms to occupy the middle well, with the remainder almost all in the left well.

Case IV: Y ᵀ = [
√

1/3,
√

1/3,
√

1/3]

Next we examine the initial condition Y ᵀ = [
√

1/3,
√

1/3,
√

1/3]. The time-

average density with U = 0 is

〈n1〉 = 〈n3〉 =
1

4
, 〈n2〉 =

1

2
.
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Figure 4.20: Self-trapping of the populations with different initial conditions
with antisymmetric wells.. The same as Fig. 4.19, except now γ = 1

For this case we see drastically different dynamics in Fig. 4.19(d). First, we note

that in the intermediate region Uc1 < U < Uc2, the system bypasses any chaotic

dynamics. This will be examined in more detail in the coming section, however

we can attribute this to the structure of phase space that the fixed points travel

through. Moreover, this case provides an example of self-trapping in three wells

simultaneously, as ni > 0 ∀ i, when U � 1.

Case V: Y ᵀ ≈ [0.221, 0.577, 0.789]

We now move on to examine the antisymmetric case by focusing on γ = 1.

In Fig. 4.20(a), we begin by examining the lowest energy eigenvector Y ᵀ ≈

[0.221, 0.577, 0.789]. When U = 0 the time-average densities of each well are

〈n1〉 ≈ 0.045, 〈n2〉 =
1

3
, 〈n3〉 ≈ 0.622.

As with the symmetric case, the system is prepared in an eigenstate of the initial

Hamiltonian, meaning that there is a smooth transition as the state follows the
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constant energy past U & 3. From Fig. 4.16(b) we see that the energy difference

between the lowest energy state and the upper states is far larger than the hopping

strength, i.e ∆E > J , preventing coupling to higher energy states.

Case VI: Y ᵀ = [1, 0, 0]

We begin to see more interesting dynamics when the initial condition Y ᵀ = [1, 0, 0]

is again chosen. For the tilted wells this gives the noninteracting densities

〈n1〉 =
1

2
, 〈n2〉 =

1

3
, 〈n3〉 =

1

6
.

At first glance these initial values may seem uninteresting, however they imply

that even though the trap is orientated such that the rightmost well has the lowest

overall level bias, the densities are still localized mainly in the leftmost well. This

phenomenon is extremely counter-intuitive as one would expect a large proportion

of the densities to tunnel to the lowest available state. When we numerically

solve the nonlinear GP equation [see Fig. 4.20(b)], we see this feature persist for

strong nonlinear interaction strength U > U c3. The intermediate chaotic region

now spans the entire range of U c1 < U < U c3, as the tilted orientation produce

a further energy level at much larger interaction strengths [see Fig. 4.16(b)]. As

U →∞, we see that the localization is almost fully in the leftmost well, with the

highest level bias energy. Similar phenomena where reported for the short-range

interacting system in Ref. [116].

Case VII: Y ᵀ = [
√

5/6,
√

1/6, 0]

The noninteracting density for this case can be obtained by using Eq. (4.38),

〈n1〉 =
17− 2

√
5

36
, 〈n2〉 =

1

3
, 〈n3〉 =

17 + 2
√

5

36
.

Similar to the previous case in Fig. 4.20(c), we see that this initial condition

yields highly chaotic dynamics, where the range of the chaos extends the region
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U c1 < U < U c3. When the nonlinear interaction is strong, and the system enters

the self-trapped regime (U > U c3) we see that self trapping occurs in the leftmost

and middle wells, with roughly 10% of the particles occupying the middle site.

Case VIII: Y ᵀ = [0, 1, 0]

In this case, the time-average density when U = 0 is

〈n1〉 = 〈n2〉 = 〈n3〉 =
1

3
.

In Fig. 4.20(d) we see self-trapping dynamics once the interaction passes U > U c2,

as only the lowest energy level is occupied. When U c1 < U < U c2 the dynamics

is unstable such that the average density fluctuates drastically when varying U .

4.4.3 Poincaré sections and chaotic dynamics

Figs. 4.19 and 4.20 show that regular and chaotic dynamics can be triggered by

varying the initial state, even when the long-range interactions are the same. This

dependence comes from the fact that energies of the system are changed when

considering different initial states. As the energy is a conserved quantity, the

system will show vastly different trajectories in phase space. We now illustrate

this dependence using Poincaré sections [116, 146].

To obtain the Poincaré section, Hamiltonian (4.42) is converted to a classical

Josephson-like analogue, where the resulting equations of motion define a 4-

dimensional phase space in terms of the canonical variables {n1, θ1} and {n3, θ3}

The amplitudes of each site can be expressed in terms of the total density and a

phase factor as ci =
√
nie

iφi . Importantly, only the relative phase between each

site is an observable, meaning we can define the relative phase factors θ1 = φ2−φ1

and θ3 = φ2 − φ3. The conservation condition means that the densities of the

second site is defined by n2 = 1−n1−n3. Using these, the mean-field Hamiltonian

(4.42) can be expressed similarly to a classical Josephson Hamiltonian of the form
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H = − 2J
√

1− n1 − n3

[
cos(θ1)

√
n1 + cos(θ3)

√
n3
]

+ U(1− n1 − n3)(n1 + n3) + V n1n3 + γ(n1 − n3) (4.45)

The resulting Lagrangian equations of motion for conserved momenta then read

ṅ1 = −2J
√
n1

√
1− n1 − n3 sin(θ1) (4.46)

ṅ3 = −2J
√
n3

√
1− n1 − n3 sin(θ3) (4.47)

θ̇1 = U (1− 2n1 − 2n3) + V n3 + γ − J
√

1− n1 − n3 cos(θ1)√
n1

+
J
[√
n1 cos(θ1) +

√
n3 cos(θ3)

]
√

1− n1 − n3

(4.48)

θ̇3 = U (1− 2n1 − 2n3) + V n1 − γ −
J
√

1− n1 − n3 cos(θ3)√
n3

+
J
[√
n1 cos(θ1) +

√
n3 cos(θ3)

]
√

1− n1 − n3

(4.49)

These equations provide an alternate way of calculating the dynamics, which can

also be used to explore how the relative phase of each site changes as a function

of time. For a given set of initial condition {n1(0), θ1(0)}, conservation of energy

allows us to find the initial n3(0) for a given energy value E where E = H, while

looking along the plane of θ3 = 0. The intersection of n1 and θ1 along the plane

of θ3 = 0 in the θ̇3 < 0 are recorded to produce the Poincaré section.

In Fig. 4.21(a) we show the Poincaré section when the average energy E =

〈H〉/N = −0.5. Regular orbits mean that solutions to the dynamics will travel

across phase space via smooth paths periodically. This energy is associated with

the initial conditions given by Figs. 4.19(a) and (d), which do not show chaos

in their time-averaged dynamics in the interplay region of Uc1 < U < Uc2. In

Fig. 4.21(c) we show dynamics of the population that corresponds to the initial
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Figure 4.21: Poincaré Sections, regular and chaotic population dynamics.
The Poincaré sections for (a) E = −0.5 and (b) E = 0.2 are shown. Panels (c) and (d)
show dynamics of n1 (red dotted), n2 (solid blue), and n3 (black dashed) using initial
conditions that would lie on the sections of (a) and (b) respectively. Other parameters
are U = 3 and γ = 0.

condition of Fig. 4.19(d). The periodic oscillation of the population is consistent

with the regular pattern in the Poincaré section. Fig. 4.21(b) shows a very

different situation where the Poincaré section at E = 0.2 only has localized regions

of chaos, corresponding to the initial conditions of Figs. 4.19 (b) and (c). In Fig.

4.21(d), we see that the associated dynamics does not show regular periodic

oscillations. Recent studies have found interesting chaotic dynamics emerging

from three-state systems when nonlinear interactions become strong [118–120].

The understanding of the chaotic dynamics and its control in Rydberg-dressed

BECs will be useful for future experiments.
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Figure 4.22: Quantum and semiclassical dynamics. Populations obtained from
the extended Bose-Hubbard Hamiltonian (4.41) using (a) U = 1 and (b) U = 5 for
different atom numbers. The black solid curves show the mean-field results with same
interactions. Landau-Zener transitions are shown when (c) α = 1 and (d) α = 0.01
with U = 3. Arrows are used in (d) to distinguish the different oscillations.

4.4.4 Comparison between quantum and mean-field dy-

namics

The mean-field dynamics presented in previous sections is obtained in the limit

N → ∞. Experimentally, self-trapping of populations has been observed with

BECs containing about 1000 atoms in double-well potentials, where dynamics

of the BEC can be accurately described by the mean-field theory [113]. In this

section, we will show that the adiabatic and nonadiabatic dynamics predicted by

the mean-field theory can be also seen in relatively small systems with N ≤ 100.

To study the quantum dynamics, we numerically solve the Schrödinger equations

using the three-site Bose-Hubbard Hamiltonian (4.41). We will encounter a time-

dependent Hamiltonian when studying the Landau-Zener transition.

In the Josephson oscillation regime when U < Uc1, populations oscillate among
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the potential wells almost completely, as shown in Fig. 4.22(a). At later times,

the population partially returns to the initial well. The long-time dynamics of the

population shows a relaxation, especially when N is small. Increasing N , we find

that the relaxation becomes weaker, such that the quantum dynamics resembles

that of the mean-field calculation. Similar dynamics has been investigated in

detail in Ref [147]. When approaching the self-trapping regime (U > Uc1), only

a small fraction of populations can tunnel to other potential wells. The popula-

tion oscillates irregularly around a constant that is close to 1 [see Fig. 4.22(b)].

Increasing N , we find that amplitudes of the oscillation decrease rapidly, and the

average population also increases. The average population, however, is smaller

than the mean-field result. The difference is largely attributed to the many-

body correlations between potential wells, which are neglected in the mean-field

calculations

In Fig. 4.22(c) and (d) we study Landau-Zener dynamics by dynamically changing

the trap bias from γ = −10 to γ = 10 in Hamiltonian (4.41). The corresponding

mean-field dynamics is shown in Fig 4.17(c) and (d). When rate α is large, the

right well starts to be populated once γ > 0. Further increasing γ, the population

oscillates with larger amplitudes for larger N . Remarkably, such evolution agrees

with the mean-field calculation well. In the adiabatic regime with α = 0.01,

the mean-field calculation shows rapid oscillations around n3 ∼ 1. We note that

the quantum dynamics is less oscillatory than the mean-field result, especially

when N is large. However, asymptotic values from both quantum and mean-field

calculations agree when γ � 1.

4.5 Discussion

We have studied the dynamics of Rydberg-dressed BECs in a triple well poten-

tial. Within the mean-field theory, we have obtained eigenenergies of the system

for different combinations of parameters. It is found that the eigenspectrum de-

velops multiple level-crossings in the lower branches of the eigenspectra, when
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the soft-core interaction is strong. The presence of level-crossings in the lower

branches leads to more complicated dynamics than BECs with only short-range

interactions. We have shown that it is possible to achieve self-trapping of pop-

ulations in either one, two, or three wells by varying the initial conditions and

the level bias. We have identified parameter regions, where dynamics is chaotic.

This is demonstrated with the population evolution, and further confirmed with

Poincaré sections. By numerically solving the quantum Hamiltonian for fixed

particle numbers, we have shown that similar behaviour to the mean-field re-

sults can be observed even when the particle number is only N ∼ 100. In the

next chapter, study how chaos emerges in the finite trap system due to strong

long-range interactions. In the future, it would be advantageous to increase the

number of sites to explore mean-field and quantum mechanical effects due to the

soft-core interaction on a larger scale.



Chapter 5

Hyperchaos in a Bose-Hubbard

chain with Rydberg-dressed

interactions

In this chapter we study chaos and hyperchaos of Rydberg-dressed Bose-Einstein

condensates (BECs) in a one-dimensional optical lattice. Due to the long-range

soft-core interaction between the dressed atoms, the dynamics of the BECs are

described by the extended Bose-Hubbard model, similar to Chap. 4. In the

mean-field regime, we analyze the dynamical stability of the BEC by focusing

on the groundstate and localized state configuration. Lyapunov exponents of the

two configurations are calculated by varying the soft-core interaction strength,

potential bias and length of the lattice. Both configurations can have multiple

positive Lyapunov exponents, exhibiting hyperchaotic dynamics. We show the

dependence of the number of the positive Lyapunov exponents and the value of

the largest Lyapunov exponent on the length of the optical lattice. The largest

Lyapunov exponent is directly proportional to areas of phase space encompassed

by the associated Poincaré sections. We demonstrate that linear and hystere-

sis quenches of the lattice potential and the dressed interaction lead to distinct

dynamics due to the chaos and hyperchaos. Our work is relevant to current re-
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search on chaos, and collective and emergent nonlinear dynamics of BECs with

long-range interactions. Several sections of the following chapter have been tran-

scribed verbatim, along with the accompanying data and figures, from the fol-

lowing publication:

“Hyperchaos in a Bose-Hubbard chain with Rydberg-dressed interactions”

G. McCormack, R. Nath, and W. Li

Photonics, 8 554, 2021 [148]

5.1 Introduction

Over the past two decades, Bose-Einstein condensates (BECs) of ultracold atomic

gases have become an ideal system to study both quantum and nonlinear dynam-

ics, due to the high controllability over the two-body interactions [90], trapping

potentials [9] and spatial dimensions [91, 92], along with long coherence times.

The emerging nonlinear phenomena depend strongly on the two-body interac-

tions between atoms. In the presence of s-wave interactions, BECs can form dark

and bright soliton [149–156] and exhibit Newton’s cradle behavior [157], which

are paradigmatic examples in nonlinear physics. In trap array and optical lattice

settings, self-trapping of the BEC emerges due to strong repulsive interactions

[88, 111–116, 158–160], where the BEC is localized in a single site. This is in

contrast to the homogeneous superfluid state, which forms the groundstate of

an infinite lattice when the interaction is weak [75, 161, 162]. Both the homo-

geneous and self-trapped states correspond to solutions, i.e. fixed points, of the

discrete Gross-Pitaevskii (GP) equation [96]. The stability of these fixed points

depends on various parameters, such as the s-wave interaction. It has been shown

that the self-trapped state in a double-well potential can only be stable when the

onsite interaction strength is much stronger than the tunneling strength [111].

Nonetheless, the homogeneous state can be disturbed by the s-wave interaction

and external potentials, giving rise to chaotic dynamics [163, 164]. Under strong
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Figure 5.1: (Color online) The extended Bose-Hubbard chain and quench-
ing schemes. (a) Nearest-neighbor (U) and next-nearest-neighbor (V ) interactions
between atoms in a one dimensional optical lattice (lattice constant d). The tilting of
the lattice is denoted by the parameter γ. We consider a linear quench in (b) γ and (c)
U towards a non-zero value (solid). When γ (U) returns to the initial value (both solid
and dashed), this is a hysteresis quench. The rate to quench γ (U) is α (β) . See text
for details of the soft-core interaction and quenching protocols.

periodic modulation of the hopping, extended chaotic regions are found in phase

space [165].

On the other hand, long-range interactions play important roles in determining

the dynamical stability of BECs. Solitons may occur in BECs in the presence

of dipolar interactions [166–170]. The competition between s-wave and dipo-

lar interactions [124, 125, 127] leads to bifurcations in the eigenspectra and to

chaotic dynamics, when confined in harmonic traps [171, 172]. Self-trapping of

dipolar BECs in double-well [173–176] and triple-well potentials [177–179] have

been examined theoretically. Besides the dipolar interaction, one can laser-couple

groundstate atoms to high-lying Rydberg states [25, 27, 34, 37, 180–183], which

induces a long-range soft-core interaction between two dressed atoms (with a

distance r) [see Chapter 2].

In chapter 4 we have shown that self-trapping dynamics of Rydberg-dressed BECs

can be controlled in a triple-well potential through mean-field and quantum me-
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chanical analysis. In this chapter, we investigate chaotic properties of Rydberg-

dressed BECs in a one-dimensional (1D) optical lattice in which the dressed

interaction leads to a multi-site density-density interaction. In the semiclassi-

cal regime, the nonlinear dynamics of the Bose-Hubbard model is captured by

a discrete, coupled GP equation. Nonlinear eigenenergies, Bogoliubov spectra

as well as Lyapunov exponents of the dressed BEC in the lattice are investi-

gated. We then explore dynamical stability of the groundstate and localized

state, where dependence of the largest, and total number of positive Lyapunov

exponents [184, 185] on the dressed interaction and system size is explored. We

probe the chaotic dynamics by employing both linear and a hysteresis quench of

the potential bias and dressed interaction [120, 186, 187].

The chapter is organized as follows. In Sec. 5.2 the Hamiltonian of the Bose-

Hubbard chain is introduced. The corresponding mean-field approximation and

GP equations are given. Methods on calculating the eigenenergy, Bogoliubov

spectra and Lyapunov exponents are briefly introduced. Quench schemes of the

potential bias and nonlinear interaction are explained. We explore static (eigenen-

ergies and Bogoliubov spectra) and dynamical properties (Lyapunov exponents)

of the groundstate and localized state configurations in Sec. 5.3, and Sec. 5.4,

respectively. Dynamics driven by both the linear and hysteresis quenching pa-

rameters are explored with different initial states. In Sec. 5.5 we examine the

scaling of the Lyapunov exponents with the system size for the two different con-

figurations. We demonstrate through numerical calculations that areas of the

Poincaré sections scale almost linearly with the largest Lyapunov exponent. We

conclude our work in Sec. 5.6.
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5.2 Model and method

5.2.1 Extended Bose-Hubbard model in the semiclassical

limit

Our setting consists of N bosonic atoms confined in a one-dimensional lattice

with lattice constant d, as depicted in Fig. 5.1(a). The Rydberg-dressing induces

long-range interactions between atoms at different sites. Taking into account the

hopping between nearest-neighbor sites, we obtain an extended Bose-Hubbard

Hamiltonian of L sites [181]

Ĥ = −J
L∑

〈i,j〉
â†i âj +

L∑

j

Γjn̂j +
1

2
Ĥint, (5.1)

where âj(â
†
j) is the bosonic annihilation (creation) operator at site j. This setup

is analogous to the Hamiltonian introduced in Sec 4.41, except we are no longer

restricted to L = 3 sites. The tunneling strength J acts only on nearest-neighbor

sites, denoted by 〈·〉 in the summation. Here, n̂j = â†j âj is the number operator,

while Γj is the local tilting potential. A more general relation for the local tilt-

ing potential is given by Γj = −γ (j − 1− bL/2c), where b·c and γ are the floor

function and level bias between neighboring sites, respectively. The onsite and

long-range interactions are described by Ĥint = g
∑L

j n̂j (n̂j − 1) +
∑L

i,j Λi,jn̂in̂j.

In this chapter, we will again restrict ourselves to the onsite, nearest-neighbor

(Λj,j±1) and next-nearest-neighbor (Λj,j±2) interactions, where R ∼ d. This ap-

proximation is valid as the soft-core interaction decays rapidly when the separa-

tion between sites is larger than the soft-core radius.3

In the semiclassical limit N � 1, we employ the mean-field approximation where

the bosonic operator is described by a classical field ψj, i.e. âj ≈ ψj
√
N , and

â†j ≈ ψ∗j
√
N , with the normalization condition

∑
j |ψj|2 = 1. This yields the
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semiclassical Hamiltonian H ≈ Ĥ/N ,

H =
L∑

j

Γj|ψj|2 − J
L∑

j

(
ψ∗j+1ψj + ψ∗j−1ψj

)

+
N

2

L∑

i,j

|ψj|2
[
g
(
|ψj|2 − 1

)
+ Λi,j|ψi|2

]
. (5.2)

The dynamics of the classical field ψj is obtained via the canonical equation

idψj/dt = ∂H/∂ψ∗j , yielding the coupled GP equations

iψ̇j = −J (ψj+1 + ψj−1) +
[
Γj +W |ψj|2 + (5.3)

U
(
|ψj+1|2 + |ψj−1|2

)
+ V

(
|ψj+2|2 + |ψj−2|2

) ]
ψj,

where we have defined W = N(Λj,j + g), U = NΛj,j±1, and V = NΛj,j±2, to

be the onsite, nearest-neighbor and next-nearest-neighbor interaction strength.

The onsite interaction W takes into account contributions from both the s-wave

and soft-core interaction. We will assume a vanishing onsite interaction, i.e.

W = 0 which allows us to focus on effects induced by the long-range interaction

part. To be concrete, we will fix the nearest-neighbor and next-nearest-neighbor

interaction to be U = 2V in the following discussion. Time and energy will be

scaled with respect to 1/J and J in what follows.

It is convenient to examine the real (Rj = Re[ψj]) and imaginary components

(Ij = Im[ψj]) of ψj,

Ṙj = −J (Ij+1 + Ij−1) +
[
Γj +W |ψj|2 + (5.4)

U
(
|ψj+1|2 + |ψj−1|2

)
+ V

(
|ψj+2|2 + |ψj−2|2

) ]
Ij,

İj = J (Rj+1 +Rj−1)−
[
Γj +W |ψj|2 + (5.5)

U
(
|ψj+1|2 + |ψj−1|2

)
+ V

(
|ψj+2|2 + |ψj−2|2

) ]
Rj,

with |ψj|2 = R2
j + I2j . Both Rj and Ij are real valued functions of time. We

will calculate Lyapunov exponents and the Poincaré sections based on these real
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functions. Note that Rj and Ij represent mean values of the quadrature of

the operator âj. The quadrature fulfills the commutation relation similar to the

position and momentum operator [188]. Hence the mean values of the quadrature

allow us to obtain useful information on the dynamics of the system in phase

space. For small systems, L = 2 or 3, one can also describe the classical field

with the canonical phase and particle number decomposition [116, 189].

5.2.2 Nonlinear eigenenergies and Bogoliubov spectra

Though the Hamiltonian (5.2) is Hermitian, the density-dependent nonlinearity

prevents us from calculating the eigenenergy through conventional diagonaliza-

tion. To overcome this, a shooting method will be employed to numerically

evaluate the eigenstate Ψ̄j = [ψ̄1, ψ̄2, · · · , ψ̄L] and corresponding eigenenergy εj

self-consistently [86]. A trial solution is seeded into the semiclassical Hamilto-

nian. It is then diagonalized, leading to a new eigenstate and eigenenergy. This

process is iterated until the resulting eigenstate and eigenenergy is obtained self-

consistently.

For interacting systems, one can analyze the Bogoliubov spectra εB to understand

the stability of the eigenstate. This is achieved by linearizing around a given state

Ψ̄ (e.g., a fixed point of the semiclassical system), where each component is given

by ψj = ψ̄j + uje
−iεBt − v∗j eiεBt, with uj and vj being the probability amplitudes

of the Bogoliubov quasiparticles [9]. The dynamics of uj and vj are described by

the Bogoliubov equations [118, 119],



L N

−N −L







u

v


 = εB




u

v


 (5.6)

where L = H̃0 + 2UP − µ, and N = −UP . H̃0 and P are L× L block matrices.

From Eq. (5.3), we obtain the matrix elements 〈ψj|H̃0|ψj〉 = Γj, 〈ψj|H̃0|ψj±1〉 =

−J , 〈ψj|P|ψj〉 = |ψ̄j+1|2 + |ψ̄j−1|2 + (|ψ̄j+2|2 + |ψ̄j−2|2)/2, 〈ψj|P|ψj±1〉 = 2ψ̄j±1ψ̄j

and 〈ψj|P|ψj±2〉 = ψ̄j±2ψ̄j, while other matrix elements are zero. If the Bogoli-
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ubov spectra are complex numbers, the state is then dynamically unstable, as

Bogoliubov quasiparticles grow (decay) exponentially with time, at a rate that is

determined by the imaginary part of the spectra.

5.2.3 Poincaré sections and Lyapunov exponents

The emergence of chaos in the dynamics can be characterized by the Poincaré

sections and Lyapunov exponents. For L sites, the possible trajectories are the

complete set of {R1, · · · ,RL, I1, · · · , IL}. Due to the normalization condition,

we need to solve a 2L−1 dimensional system to obtain the dynamics. It is difficult

to comprehend the stability of the trajectories in such a high dimensional phase

space. Instead, we project the dynamics to a two dimensional (2D) Poincaré

section to identify the dynamical properties. To calculate the 2D Poincaré section,

we record trajectories of selected variables (Rj, Ij) as they cut through the Uk-

plane (j 6= k), provided that U̇k > 0. These intersecting points form the 2D

Poincaré section. To be specific, we will evaluate the Poincaré section of variable

(R2, I2) on the U1 plane.

The strength of chaos can be measured by the Lyapunov exponents associated

with the equations of motion [184, 185]. The Lyapunov exponents give the rate

of separation between trajectories for a given initial state. As the Lyapunov

exponents depend on the initial state, we will consider both the groundstate and

a localized state initially. In a localized state, nearly all the condensate sits in a

single site, which can be stable (i.e. the self-trapping state) when the nonlinear

interaction is strong. In this work, the Lyapunov exponents λj (j = 1, · · · , 2L) are

calculated via DynamicalSystems.jl, a fast and reliable Julia library to determine

the dynamics of nonlinear systems [190]. We have checked that it gives data

consistent with the method in Ref. [184]. When there exists at least one positive

Lyapunov exponent the trajectories will separate exponentially, leading to chaotic

dynamics. The dynamics is classed as hyperchaotic when there are more than

two positive Lyapunov exponents [185].
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Figure 5.2: Eigenenergies, Bogoliubov spectra and Lyapunov exponents
when varying the tilt γ. We show (a) the nonlinear eigenenergy, Bogoliubov spectra
of (b) the groundstate and (c) the first excited state , and (d) the Lyapunov exponents of
the groundstate. The nonlinearity dominates when |γ| is small, leading to loops in the
eigenenergy. The Bogoliubov spectra are all real when the system is in the groundstate
(b). The Bogoliubov spectra have complex components (red region) when the system is in
the first-excited state. Positive Lyapunov exponents indicate the system exhibits chaos
dynamically, which appear mostly in the loop region of the eigenenergy. Parameters are
L = 3 and U = 2V = 5.
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5.2.4 Quenching schemes

In Sections. 5.3 and 5.4 we will explore the dynamics of the system with time-

dependent parameters via the following quenching schemes.

Scheme I: First we consider a linear quench of the potential bias [86]. The bias

between two neighboring sites is given by the function

γL = γi + αt, (5.7)

where γi and α are the initial value and quench rate, respectively. With γi < 0,

the quench takes place from t = 0 to t = 2γf/α with γf = −γi, depicted by the

solid curve in Fig. 5.1(b).

Scheme II : Alternatively, we consider a hysteresis quench [120, 186, 187] where

the system begins at γi and then evolves towards γf . At time τ = γf/α, the

potential bias is quenched back towards γi. The function describing this scheme

is

γH = γf + (γi − γf )
|τ − t|
τ

. (5.8)

The corresponding scheme is shown by the solid and dashed curve in Fig. 5.1(b).

Scheme III : In addition to quenching the level bias we also change the two-

body interaction strength through a linear ramp,

UL = Ui + βt (5.9)

where Ui is the initial interaction strength and β is the quench rate. This is shown

by the solid curve in Fig. 5.1(c). Note that the next-nearest-neighbor interaction

V depends on time as well due to the relation U = 2V .

Scheme IV : The hysteresis counterpart of the interaction quench is given by

UH = Uf + (Ui − Uf )
|τ ′ − t|
τ

, (5.10)
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Figure 5.3: Eigenenergies and Lyapunov exponents as a function of U . We
show eigenenergy for (a) L = 3 and (b) L = 5 when the trap is balanced (γ = 0). Level
crossings are found when the interaction is strong. Starting from the groundstate, we
calculate Lyapunov exponents for (c) L = 3 and (d) L = 5. For a given U , Lyapunov
exponents of same value but opposite signs appear in pairs.

where Uf is the final interaction strength, with τ ′ = Uf/β.

5.3 Stability of the groundstate

5.3.1 Eigenenergies, Bogoliubov spectra and Lyapunov ex-

ponents

Without the nonlinearity, the number of eigenenergies Nε is identical to L, the

dimension of the semiclassical system. The number of eigenenergies can be larger

than L when the interaction is strong. As an example, eigenenergies for L = 3

as a function of the bias γ are shown in Fig. 5.2(a). We find Nε > L when

|γ| . U , where the nonlinearity dominates. Loops and crossings appear in the

eigenenergies, except in the highest energy level.
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Figure 5.4: (color online) Final population distribution for the groundstate.
The population by quenching γ with (a) scheme I and (b) scheme II is shown for L = 3.
In the numerical simulation, γi = −γf = −10 and the interaction strength is U = 5.
The interaction U is quenched with (c) scheme III and (d) scheme IVwhere Ui = 0,
Uf = 10 and γ = 0 , respectively. In all the figures, the quench rates (α or β) are 1
(blue), 0.1 (green), and 0.01 (red). The total number of trajectories is M = 100. The
target final state is shown as the large black circle.

For a given state of the nonlinear system, one obtains 2L Bogoliubov spectra,

whose values depend on the specific eigenstate and nonlinear interaction strength.

The Bogoliubov modes are stable for all γ when the system is in the groundstate,

i.e., the Bogoliubov spectra εB are real, as shown in Fig. 5.2(b). This is in contrast

to excited eigenstates, whose Bogoliubov spectra have imaginary components. As

an example, the Bogoliubov spectra of the first excited state is shown in Fig.

5.2(c). The corresponding Bogoliubov mode will decay (grow) exponentially,

when the imaginary part is negative (positive).

The chaotic dynamics of the system is characterized by positive Lyapunov ex-

ponents. In Fig. 5.2(d) Lyapunov exponents are shown for the groundstate of

the system. When increasing γ, negative and positive Lyapunov exponents are
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found in regions where the eigenenergies show loops. The negative and positive

Lyapunov exponents appear in pairs with the same absolute values, as our system

is conservative. In this example, one positive Lyapunov exponent can be found

when |γ| < 1, indicating the presence of chaos. This means that small fluctu-

ations on the groundstate could gain exponential growth, and hence drives the

system away from the groundstate.

To further understand roles played by the nonlinearity, we calculate eigenenergies

as a function of the interaction strength U shown in Fig. 5.3(a) and (b), for L = 3

and L = 5, respectively. It can be seen that new branches are generated when the

nonlinear interaction U is large enough. Lyapunov exponents of the groundstate

of the nonlinear system are shown in Figs. 5.3(c) and 5.3(d). Positive Lyapunov

exponents are found in the strongly interacting region, whose values increase with

increasing U . Larger Lyapunov exponents mean that the exponential growth of

the instability can be even faster. Importantly, the number of Lyapunov expo-

nents now depends on L. For L = 3, one obtains a single positive Lyapunov

exponent when U & 4. When L = 5, there are 3 positive Lyapunov exponents.

This indicates that the system enters the so-called hyperchaos regime [191–193],

where more than one positive Lyapunov exponents can be found in the dynamics.

In the two examples, we obtain maximally L − 2 positive Lyapunov exponents,

as the energy and particle number is conserved in the Bose-Hubbard chain.

5.3.2 Quench dynamics

In the linear regime, dynamics of the system will follow the eigenstate adia-

batically when slowly quenching the tilt potential. However the dynamics may

deviate from the adiabatic eigenstate in the nonlinear regime, especially when

positive Lyapunov exponents are found. This will be illustrated through quench-

ing the tilt potential and interaction strength given by Eqs. (5.7)-(5.10). To

trigger the instability in the dynamics, we consider a thermal mixed state Ψ̄′j =

[ψ̄1e
iθ1 , ψ̄2e

iθ2 , · · · , ψ̄LeiθL ] around a given state Ψ̄j (the groundstate), where θj
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is a random phase distributed uniformly between 0 and 2π [120]. In numerical

simulations, we typically consider an ensemble of M = 100 realizations with a

given set of parameters.

We first examine a linear quench of the bias γ when the system is prepared in the

groundstate at γi = −10 and L = 3. The majority of the condensate is located on

the first (leftmost) site [n1(0) = |ψ1|2 ≈ 1] initially [Fig. 5.4(a)]. In the adiabatic

limit and without the nonlinear interaction, the condensate will move to the third

well, n3(τ) ≈ 1, after the quench [86]. The population at this adiabatic limit is

shown with a black dot in each panel. The quench dynamics however depend

on the finite quench rate and the interaction strength. When the interaction is

weak the condensate can be in any of the three sites, since the tunneling strength

between neighboring sites plays the dominant role. The distribution of the final

population is affected by the noise on the initial state and also depends on the

final time in the simulations. Increasing U , the population is distributed into a

larger region of phase space, i.e., it occupies a larger areas in the n3-n1 plane. By

fixing the interaction U , our numerical simulation shows that the smaller α is,

the closer the population distribution is to the adiabatic limit.

For the hysteresis quench given by Eq. (5.8), we see that even for U = 5 (meaning

the eigenstate exhibits complicated level crossings) the density mostly returns to

the initial state, at least when α � 1 [Fig. 5.4(b)]. Here the hysteresis quench

has allowed for a large level of reversibility in the dynamics [120], as the chaotic

behaviour has not been triggered. Increasing the quench rate α, the population

distributions cluster around much smaller regions in phase space, than the one

shown in panel (a).

In Fig. 5.4(c) we quench the interaction according to Eq. (5.9). The initial states

depend on the value of γ. For example the groundstate is Ψ̄ = [0.5, 1/
√

2, 0.5]

for γ = 0. The final states are highly dependent on the initial conditions, due

to the chaos in the dynamics [see the crossing energy levels in Fig. 5.3 (a) and

Lyapunov exponent in Fig. 5.3(c)]. We have verified that by increasing γ the
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randomness associated with the final states decreases, as the number of crossings

in the eigenenergy will decrease.

In case of the hysteresis quench of U , we find that the results [Fig. 5.4(d)] are

similar to the linear quench. When looking at γ = 0, the final states do not

return to the initial value. As shown in Fig. 5.3(c), the Lyapunov exponent of

the groundstate becomes positive when U & 4, which causes the final state to be

more random, i.e. resulting in a broader distribution of the densities. As the tilt γ

increases, we have verified that chaos is gradually suppressed, as the population

localizes in the trap that corresponds to the lowest energy state. In order to

trigger chaotic dynamics in the tilted case, stronger interactions are needed in

general.

5.4 Stability of the localized state

5.4.1 Bogoliubov spectra and Lyapunov exponents

In this section, we will explore stability of a situation where the condensate is

trapped in a single site. When localized at one end of the lattice, it corresponds to

the groundstate if the lattice potential is strongly tilted |γ| � 1. We will examine

dynamics of localized states even in the balanced case (γ = 0), partially motivated

by the fact that the self-trapped state can be stabilized by strong nonlinear inter-

actions. We will show that dynamical instabilities of localized states will depend

strongly on the long-range interaction. To be concrete, we will consider a scenario

where the condensate is confined in the second trap from the left of the lattice,

i.e. Ψ̄ = [0, 1, · · · , 0]. In the numerical simulations of the dynamics, uniform

density fluctuations are applied to the lattice to trigger the hopping dynamics.

This modifies the initial state to be Ψ̄ = [
√
ε/Leφ1 ,

√
1− εeφ2 , · · · ,

√
ε/LeφL ]

with ε � 1 and φj to be a random phase. This choice furthermore insures that

the energy of different initial states are almost identical.

In Figs. 5.5(a) and (b), dynamical unstable regions in the Bogoliubov spectra for
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Figure 5.5: (color online) Bogoliubov spectra and Lyapunov exponents of the
localized state. Dynamically unstable regions (dark red) for (a) L = 3 and (b) L=5
are shown as a function of U and γ. Panels (c) and (d) give the Lyapunov exponents
as a function of U . Random perturbation to the initial state are examined for (e) L = 3
and (f) L = 5. The red lines show the maximal Lyapunov exponents in (c) and (d),
correspondingly. Here γ = 0 in panels (c)-(d).
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Figure 5.6: (color online) Final population distribution for the localized
state. The first and second row show the linear and hysteresis quench of γ. Here
U = 5, γi = −γf = 10. The third and fourth row show the linear and hys-
teresis quench of U with Ui = 0, Uf = 10 and γ = 0. In (a)-(d) we consider
three sites and the initial thermal state is Ψ̄ = [0.1eiφ1 ,

√
0.98eiφ2 , 0.1eφ3 ] with φj

(j = 1, 2, 3) are random number in [0, 2π]. In (e)-(h) L = 5 and the initial state is

Ψ̄ = [
√

0.005eiφ1 ,
√

0.98eiφ2 ,
√

0.005eiφ3 ,
√

0.005eiφ4 ,
√

0.005
iφ5

] with φj (j = 1, · · · , 5)
being randomly distributed in [0, 2π]. The small fraction in sites other than the localized
state is used to trigger the hopping dynamics. Other parameters are same with the one
in Fig. 5.4.
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L = 3 and L = 5 are shown (highlighted with dark red color). In the unstable

region, εB develops imaginary components, which depend on U , γ and L. In case

of L = 3, the condensate is localized in the middle site initially, meaning the

Bogoliubov spectra are symmetric with respect to γ. Fig. 5.5(a) shows that the

system is dynamically unstable when U is small, in particular when the lattice

is balanced (|γ| is small). This is not surprising, as the localized state is not the

groundstate, nor does the system support the self-trapped state. By increasing

the interaction strength, we note that the localized state returns to a stable

configuration when |γ| is small. This means that the localized state becomes

a stable, self-trapped state [86]. When L = 5, the dynamical stability now

depends heavily on tilt γ. When γ > 0 there is a much broader range of unstable

regions. This feature is largely due to the non-symmetric initial state having

higher energies. Therefore we expect to see qualitatively different dynamics in

the various quenching schemes.

The Lyapunov exponents exhibit sensitive dependence on the system size. As

shown in Fig. 5.5(c) the Lyapunov exponents for L = 3 show an unusually sym-

metric shape when U & 4. The exponents are a smooth function of U , and reach

maximal value around U = 5. Further increasing U , the positive Lyapunov ex-

ponents decrease. This indicates that the localized configuration could exhibit

chaotic dynamics for large U . For L = 5 we notice that positive Lyapunov expo-

nents can be found when U is relatively small. A key difference is that there are

multiple positive Lyapunov exponents [Fig. 5.5(d)], where the nonlinear dynam-

ics enters the hyperchaotic regime.

To understand the maximal Lyapunov exponents, we slightly alter the initial state

so that we have Ψ̄ =
[
ε,
√

1− 2ε2, ε, · · · , 0
]
, where ε is a small perturbation to the

wavefunction of the traps on either side of the localized site, with 0 < ε < 0.01.

In Fig. 5.5(e) and (f) [corresponding to L = 3 and 5] the largest Lyapunov

exponent λm (red) and Lyapunov exponents obtained with modified initial states

(black) are shown (only the positive branch). It shows that a minor change to



Chapter 5. Stability of the localized state 115

the initial state will change Lyapunov exponents significantly. However λm gives

an approximate upper bound for all the Lyapunov exponents.

5.4.2 Quench dynamics

For U = 5 and L = 3, a linear quench [Fig. 5.6(a)] from γi = −10 to γf = 10

shows strong self-trapping behavior in the rightmost potential. We expect that

by performing a hysteresis quench back towards γi, the population would localize

in the leftmost site again. However from Fig. 5.6(b) we see that the final state

is rather chaotic. Due to the dynamical instability and chaos near |γ| < 1,

the final state deviates from the initial state. In panels (c) and (d) we quench

according to Eqs. (5.9) and (5.10) respectively. The dynamics show that in both

cases the localized initial state loses population to the outer potential wells in

an approximately equal manner for both the linear and hysteresis quenches. The

strong nonlinear interactions in the initial localized trap repel the condensate

symmetrically to the two neighboring traps. Additionally, we notice that in panel

(d) the population could be n1 = n3 ≈ 0, meaning that the final state is exactly

equal to the initial state. We have achieved fully reversible with the hysteresis

dynamics in these simulations. As shown in panel (c), this is not the case where

the populations are always n1 ≈ n2 > 0, implying that the strong two-body

interactions prevent a complete localization of the condensate on a single site.

We now move on to examine the dynamics for the five site system. Without two-

body interactions, linearly quenching from γi to γf will force the atoms towards

the rightmost trap. However from Fig. 5.6(e) we see that the occupation is never

very much greater than n5 ≈ 0.5, even for the slowest quenching rates considered

in the simulation. When the quench rate is fast (α ∼ 1), we find less occupation

in both the first and last site, implying the occupation has been spread amongst

the remaining sites. In panel (f), the hysteresis counterpart is shown. Now the

population should tend towards n1 ≈ 1. However this is not what is found in the

numerical simulations. The populations distribute randomly in all sites. In panels
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(g) and (h), the dynamics is qualitatively different from the L = 3 scenario. The

symmetry between the densities of the two outermost sites is lost completely, and

is replaced with a chaotic distributions, largely due to the presence of hyperchaos

[see Fig. 5.5(d)].

5.5 Scaling of Lyapunov exponents with the sys-

tem size

In the following we will investigate how the maximal and total number of Lya-

punov exponents depend on the system size and initial state, focusing on pa-

rameter regimes where the nonlinear interaction can not be neglected, i.e. chaos

and hyperchaos are expected in the dynamics. In general Lyapunov exponents

depend on the input state of the calculation [184]. Two different initial states,

i.e. the groundstate and the localized state, will be examined in detail.

In Fig. 5.7(a) the largest Lyapunov exponent λm for the groundstate configuration

is shown. When 2 ≤ L ≤ 4, the values of λm are small in general. This is due to

the fact that chaos has not been triggered [see Fig. 5.5(b) and (c)]. When L > 4,

the situation changes as chaos is already found with the given U . We find λm

decreases gradually when U = 3 and U = 5 for larger L. On the other hand, the

total number of positive Lyapunov exponents η is seen to increase almost linearly

with L when U = 3 and U = 5, depicted in Fig. 5.7(b). Importantly, η > 2 when

L > 4 for both U = 3 and U = 5, i.e. the dynamics is hyperchaotic. On the

other hand, η decreases and deviates from the linear dependence on L when L

is large, e.g. at L = 10 when U = 3 and L = 14 when U = 5. In general the

linear relation holds up to a larger L for larger U . Recently it has been shown

that the largest Lyapunov exponents in the BHM can be obtained from the echo

dynamics of the condensate [194]. A similar technique could be applied to extract

the largest Lyapunov exponents studied here.

Figs. 5.7(c) and (d) show both λm and η for the the localized state. In this
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Figure 5.7: (color online) Lyapunov Exponents vs System Size. The maximum
Lyapunov exponent and total number of positive Lyapunov exponents are shown in (a)
and (b) for the groundstate configuration. Panels (c) and (d) show the same quantity for
the localized state. The larger U is, the larger the maximal Lyapunov exponent. The
maximal Lyapunov exponent decreases with increasing L. The number of Lyapunov
exponents increases and then decreases with increasing L. For the localized state, η
increases nearly linearly with increasing L. In each panel, U = 1 (black squares), 3
(blue circles) and 5 (red triangles).
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Figure 5.8: (color online) Poincaré Sections of the groundstate and localized
state on the U1-plane. The Poincaré sections are shown for the groundstate (a-c) and
the localized state (d-f). Each point represents a numerical realization. We consider
L = 5 (a,d), L = 10 (b,e), and L = 20 (c,f). Other parameters are U = 3 and γ = 0.

case, λm is largest when L = 5, and decreases with increasing L for U = 3 and

U = 5. Compared to the groundstate, a visible difference is that λm 6= 0 when

U = 1 for the localized state. Their values, however, are smaller than the one

for U = 3 and U = 5. This implies that it will be difficult to observe chaotic

dynamics with this level of nonlinear interactions. On the other hand, η increases

with increasing U . When L > 10, η still increases with L, but slightly deviates

from the linear scaling with L. A similar dependence is also found for stronger

nonlinear interactions, as demonstrated with U = 5 in panel (d). For such state,

η > 1 can be seen even with relatively weak interaction (e.g. U = 1), leading to

more pronounced hyperchaotic dynamics.

The total number of nonlinear differential equations is 2L (the real and imagi-

nary parts of ψj). For conserved systems, the number of positive and negative

Lyapunov exponents are the same, and the sum of the Lyapunov exponents is

zero. These features can be seen, e.g., in Fig. 5.2(d). Our numerical simulations

show that the maximal number of positive Lyapunov exponents is L − 2 [see
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Figure 5.9: (color online) Areas of the Poincaré Sections. We compare the fitted
area (open shapes) of the Poincaré section with λm (solid) for both the groundstate (a)
and localized state (b), respectively. The blue circles are for U = 3, and red triangles
for U = 5. In both situations γ = 0.

Fig. 5.7(b) when U = 5 and L ≤ 11 and Fig. 5.7(d) when U = 5 and L ≤ 14.].

As the extended Bose-Hubbard model is a Hamiltonian system, not only the sum

of the Lyapunov exponents vanishes, but also conserved quantities, such as the

energy and particle number, are found in the dynamics. This indicates that the

maximal number of the Lyapunov exponents is L− 2 but not L. For sufficiently

large L, the total number of positive Lyapunov exponents is smaller than L−2, as

the nonlinear interaction becomes smaller. For the groundstate, one can estimate

the interaction energy for a given site to be 2(U + V )/L2 approximately, i.e. the

mean local interaction energy decreases with increasing L.

The chaotic dynamics depend strongly on the largest Lyapunov exponents λm,

which is considered as an indication of chaos in the dynamics. To illustrate this,

the Poincaré section on the U1 plane for different system sizes is shown in Fig. 5.8,

showing that profiles of the Poincaré section depend on the system size and the

initial state. When L = 5 the area is largest [Fig. 5.8(a)] and decrease with
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increasing L in case of the groundstate [Fig. 5.8(b) and (c)]. For different L,

the profile of the Poincaré section is largely symmetric with respect to R2 = 0

and I2 = 0. In case of the localized state, similar dependence on L is found, as

depicted in Fig. 5.8(d)-(f). We note two differences compared to the groundstate

ones. First, the profile of the Poincaré section displays symmetry with respect to

I2 = 0 but not R2 = 0. Second, the areas of the Poincaré section in the localized

state are slightly larger, as the corresponding λm is larger [see Fig. 5.7(a) and

(c)].

The area is largely determined by the largest Lyapunov exponent. To verify this,

we find the area of the Poincaré section approximately through numerically fitting

the Poincaré section, shown in Fig. 5.9. For the groundstate, the dependence of

the fitted area and λm on L agrees well when U = 5. For U = 3, a good agreement

is also found when L ≥ 8. When L = 5 and L = 7, the fitted areas differ largely

from the corresponding λm. This discrepancy might be caused by the fact that

the relatively weak nonlinear interaction leads to uncertainties in calculating the

Lyapunov exponent. For the localized state, the agreement is improved in general

for both U = 3 and U = 5. This suggests that the discrepancy in the groundstate

could be a boundary effect when L is small, as the localized state suffers less from

the boundary effect.

5.6 Summary and outlook

We have investigated the chaotic and hyperchaotic dynamics of a one-dimensional

Bose-Hubbard chain of Rydberg-dressed BECs in the semiclassical regime. We

have shown that both the groundstate and localized state can have positive Lya-

punov exponents, even though the corresponding Bogoliubov spectra are real

valued. As a result, small perturbations to these states lead to large fluctuations,

which are captured by the quench dynamics. We have found that hyperchaos

emerges in both the groundstate and localized states when the nonlinear interac-

tion is strong and L is large. The total number of positive Lyapunov exponents,
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η, is bound by L − 2 (L ≥ 3). We have shown that η grows with the system

size L when U is large. So far our investigations are focusing on the semiclassical

regime. There has been an exploration into the relationships between chaos and

quantum entanglement [195]. Moreover, quantum chaos can be seen by analyzing

the statistics of eigenspectra on the Bose-Hubbard model with onsite [196] and

long-range interactions [197, 198]. It is therefore worthwhile to explore features

of chaos and hyperchaos due to the Rydberg dressed interaction in the quantum

regime.



Chapter 6

Overview and conclusion

To conclude, we will first discuss the main outcomes of each chapter. Following

that we will also discuss possible limitation of our findings, and what we be-

lieve would be acceptable steps to enrich the field of Rydberg-dressed bosonic

dynamics.

6.1 Main contributions

In Chapter 3, we explored the dynamics of Rydberg-dressed bosonic atoms in free

space. What was found was that the resulting dynamics showed a unique high

frequency oscillation. This was attributed to the maxon modes being stable,

a property not found in the long-range dipole-dipole interaction counterpart.

We showed that this was possible due to the decay channel being blocked in

the Rydberg-dressed case. In Chapter 4, we showed that when there are three

optical traps in tandem, the condensates interact in a highly turbulent manner.

The long-range interaction causes a bifurcation in the adiabatic eigenspectrum,

when the interaction strength is strong with respect to the tunnelling strength.

The results of this chapter provided a glimpse into the chaotic nature of coupled

Rydberg-dressed BECs, and proved to be our starting point in chapter 5. Here

we expanded our analysis to examine the Rydberg-dressed dynamics on a lattice

chain of length L. We returned to the Bogoliubov equations first introduced in

122
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chapter 3, and made use of the Lyapunov exponents, to determine that coupled

Rydberg-dressed BECs are indeed hyperchaotic. We showed that the number

of sites is directly correlated with the number of positive Lyapunov exponents.

Additionally, we showed that the area encapsulated in phase space is inversely

proportional to L.

6.2 Limitations and suggestions for further im-

provements

In Chapter 3, the high frequency maxon modes warrants more study. While

we provided an insight into the dampening process, this was only a taster to

qualitatively explain the results found. More research into Baliaev dampening is

needed to truly understand the internal dynamics of a 3D BEC with Rydberg-

dressed interactions.

Chapters 4 and 5 provided a means of exploring they chaotic dynamics of Rydberg-

dressed atoms on a optical lattice. We show that Rydberg-dressing provides a

means of controlling the interatomic interactions within a BEC. However, a caveat

is that these systems are incredibly sensitive to minor perturbations in the ground

state. Meaning that care needs to be taken when preparing the initial state. An

appropriate next step would be to expand to higher dimensional lattices, where

potentially the soft-core interaction may create unique spatial patterns in the

BEC. Whether chaos is increased or decreased with the addition of higher dimen-

sions is still undetermined.
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M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Nature Physics 14,
442 (2018).

[73] W. Li, C. Ates, and I. Lesanovsky, Physical Review Letters 110, 213005
(2013).

http://dx.doi.org/ 10.1038/32354
http://dx.doi.org/10.1038/nphys2850
http://dx.doi.org/ 10.1103/PhysRevA.98.063617
http://dx.doi.org/ 10.1103/PhysRevA.98.063617
http://dx.doi.org/10.1103/PhysRevA.87.053607
http://dx.doi.org/10.1103/PhysRevA.88.063611
http://dx.doi.org/10.1103/PhysRevA.89.021601
http://dx.doi.org/ 10.1103/PhysRevLett.112.110402
http://dx.doi.org/ 10.1103/PhysRevLett.112.110402
http://dx.doi.org/ 10.1103/PhysRevLett.108.145305
http://dx.doi.org/ 10.1103/PhysRevLett.108.145305
http://dx.doi.org/10.1103/PhysRevA.90.063626
http://dx.doi.org/10.1126/science.aao5686
http://dx.doi.org/10.1103/PhysRevA.90.043617
http://dx.doi.org/10.1103/PhysRevA.90.043617
http://dx.doi.org/10.1103/PhysRevA.73.031602
http://dx.doi.org/10.1103/PhysRevLett.85.1791
http://dx.doi.org/10.1103/PhysRevLett.85.1791
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/10.1103/PhysRevLett.106.065301
http://dx.doi.org/ 10.1088/0034-4885/72/12/126401
http://dx.doi.org/ 10.1088/0034-4885/72/12/126401
http://dx.doi.org/10.1103/PhysRevA.93.053606
http://dx.doi.org/ 10.1103/PhysRevA.82.043623
http://dx.doi.org/ 10.1103/PhysRevA.82.043623
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/10.1103/PhysRevLett.90.250403
http://dx.doi.org/ 10.1038/s41567-018-0054-7
http://dx.doi.org/ 10.1038/s41567-018-0054-7
http://dx.doi.org/10.1103/PhysRevLett.110.213005
http://dx.doi.org/10.1103/PhysRevLett.110.213005


BIBLIOGRAPHY 128

[74] C. Ates, B. Olmos, W. Li, and I. Lesanovsky, Physical Review Letters 109,
.233003 (2012).

[75] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadz-
ibabic, Physical Review Letters 110, 200406 (2013).

[76] N. N. Bogoliubov, J. Phys (USSR) 23, 292 (1947).

[77] Y. Yu, Annals of Physics 323, 2367 (2008).

[78] S. M. Roccuzzo and F. Ancilotto, Physical Review A 99, 041601 (2019).

[79] T. Macr̀ı, F. Maucher, F. Cinti, and T. Pohl, Physical Review A 87, 061602
(2013).

[80] I. Seydi, S. H. Abedinpour, R. E. Zillich, R. Asgari, and B. Tanatar,
Physical Review A 101, 013628 (2020).
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