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Abstract

Essential genes are the genes required for an organism to survive in stable

conditions with an abundance of nutrients. The identification of essential

genes is important to both our understanding of bacterial organisms and

our ability to manipulate them. Many machine learning methods have been

proposed for the prediction of essential genes. However, the majority of

these studies have a limited focus, i.e. a single optimised classifier and fea-

ture set combination to predict genes within the same organism. Therefore,

as the models have a narrow scope they cannot be reliably applied to newly

sequenced organisms. This ability of a model to generalise to new data can

be improved by increasing the dataset and combining results from different

classifiers.

The aim of this thesis was to develop an ensemble method to predict

essential genes in bacteria. In total 62 commonly used sequence based fea-

tures and 7 supervised learning classifiers were identified from the literature.

Using online databases, 73 studies with high quality laboratory essential-

ity data were collated for 45 bacterial strains. To build the ensemble base

learners, feature selection algorithms were used to generate feature subsets.

Analysis of the subsets showed that while particular features were selected

more frequently by the algorithms, no features were completely excluded.

The performance of each subset with the classifiers was investigated to iden-

tify feature sets for the ensemble base learners.

Through studying the performance of the feature sets as part of a major-

ity voting ensemble algorithm, we were able to show that for cross validation

the ensemble approach performance was higher than the individual classi-

fiers. This was confirmed through validation testing on organism with no

matching genus in training data.

The results show that it is possible to improve the ability of a classifier

to generalise to new organisms through the application of feature selection

and ensemble learning.
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Chapter 1

Introduction

1.1 Introduction

This introduction chapter outlines the motivation for the project along with

the aim of the thesis and the research questions we set out to investigate.

The chapter concludes with a brief summary of each subsequent chapter.

While all biological terms are briefly outlined in the text, to aid under-

standing for a non-biologist, after the chapters is included a glossary where

the terms are described in the context of this thesis. This is provided be-

cause a general understanding of the terms is important for the discussions.

1.2 Background and motivation

Synthetic biology is a field which focuses on the re-engineering of microor-

ganisms for useful purposes. It encompasses both the design and construc-

tion of new biological systems, and the re-designing of existing natural sys-

tems [1,2]. As a multi-disciplinary field with boundless potential, it has been

applied to the development of everything from drug delivery systems [3–5],

to living machines (biobots) [6–8], and the essentials of human space explo-

ration [9, 10].

The rapid growth of synthetic biology is, in part, due to the push for

petrochemical replacements. Our modern life is completely dependent on

the products derived from non-renewable sources such as crude oil, natural

gas and coal, but as our consumption increases, so to does the strain on

the supply chain and environment [11]. Finding greener and sustainable

alternatives of microbial origin has become an important area for use in

industrial biotechnology [12–17].

The “perfect” organism for use in chemical production is one whose
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behaviour and products can be accurately anticipated and controlled [18,

19]. The ideal way to achieve this is by having an organism with only the

minimum number of genes needed for it to survive (a minimal genome), and

then adding the genes required for it to produce the desired chemical for

production [20, 21]. Identifying the genes for survival (essential genes) has

become the cornerstone of synthetic biology [22,23].

The importance of essential genes and the minimal genome concept has

accelerated the advancement of experimental methods within biology which

has, in turn, reduced the cost of genome sequencing [24]. The advantage of

this is that there are now more genome and essentiality data available for use

in computational methods. As a result the application of machine learning

to biology has been steadily increasing. While many different pipelines

and algorithms are being applied to the important task of gene essentiality

prediction [24–27]. Majority of methods are highly specific, being targeted

at predictions within the same species or closely related organisms. Or they

require additional information such as gene function, this information is

available for model organisms and while it can be predicted for unknown

genes. The accuracy of this prediction depends relationship between the

organisms.

1.3 Aims and objectives

The aim of this project is to develop an ensemble method for predicting

essential genes in bacteria using multiple classifiers and feature sets. In

order to achieve this a number of key objectives need to be met:

1. Investigate literature to identify classifiers and features commonly ap-

plied to the computational identification of essential genes.

2. Collect existing gene essentiality data that can be used in supervised

machine learning.

3. Investigate, for the identified classifiers, which features or sets of fea-

tures work best for essential gene prediction.

4. Develop an ensemble method using the identified feature subsets and

classifiers.

5. Assess the developed ensemble method on the datasets identified, in-

cluding an evaluation of prediction accuracy in comparison to state-

of-the-art gene prediction methods.
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1.4 Research questions

The aims and objectives relate to the specific research questions, outlined

below, to be addressed within this thesis.

� How is gene essentiality defined?

The definition of an essential gene is based entirely on the biological

impact it has on the organism. It is an important concept in all

computational prediction methods as it affects the data selected to

train machine learning models.

� What machine learning models currently exist to predict

gene essentiality?

As the diversity of base learners is an important factor for construct-

ing ensembles, identifying the commonly utilised machine learning

classifiers for computational gene prediction is key for construction.

� How does feature selection impact classifier performance?

The prediction accuracy of a classifier largely depends on the data it is

trained with. This requires an investigation into how different subsets

of features perform with the classifiers. Knowing how feature subsets

and classifier combinations perform provides a base for building an

ensemble model.

� How well does the developed ensemble method predict gene

essentiality compared to a single classifier approach?

After the construction of novel ensemble models it is important to

investigate whether they perform better than the individual parts.

Two performance methods commonly applied are cross validation and

unseen test data.

1.5 Organization of the thesis

This section provides a short outline for each chapter of this thesis.

Reviewed in Chapter 2 is the literature relevant for this thesis. It con-

tains an overview of bacterial gene essentiality and the limitations of labora-

tory experiments that produce the data used in computational techniques.

The rest of the chapter covers the important machine learning approaches

on which our project is based. Described in chapter 3 is the gene essentiality

data collected for use with the machine learning algorithms. This was done
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from two online sources the Database of Essential Genes (DEG) and the

Online Gene Essentiality database (OGEE).

Chapter 4 begins by describing the common features adopted from the

literature and how they were generated. It then covers the application of

the feature selection algorithms and the subsequent feature subsets created

for the DEG dataset. The performance of each subset with the machine

learning classifiers is then analysed and discussed.

Using the feature subsets from Chapter 4, Chapter 5 details the build-

ing of the ensemble model using them and assesses the models prediction

accuracy through both cross validation and using OGEE as unseen data. In-

cluded is an evaluation of the predictions generated by the ensemble model

and a comparison to state-of-the-art methods in gene prediction.

Finally, the thesis is concluded in Chapter 6 which provides a discussion

of how well the aims and objectives were addressed and possible future

directions worth pursuing. A brief outline of the project designed to address

the research questions is shown in Figure 1.1.

Database of 
Essential Genes

Online Gene 
Essentiality 
database

Feature selection

Gene essentiality data
Determining the 

feature sets

Determination of 
feature subsets

Testing through 
cross validation

Testing on 
unseen data

Ensemble method

Testing through 
cross validation

Build ensemble 
model

Figure 1.1: An overview of the project. An overall summary of the
project in this thesis and how the parts link together.



Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the literature related to the project. Firstly, an overview

of bacterial essential genes and their limitations in synthetic biology. Sec-

ondly, the key points regarding the laboratory experiments that produce

the data utilised by computational techniques. Finally, a description of

machine-learning based approaches to essential gene prediction. Also pro-

vided is a summary of key studies on which the project is based.

2.2 What is an essential gene?

The genome of an organism contains a complex mass of genes which allow

it to thrive in many different environments. Contained within this mass

of genes are those we consider to be essential for survival. The deletion or

disruption of any one of these genes is lethal.

In this study we consider essential genes as those coding for functions

vital for survival in conditions free from environmental stress and containing

all necessary nutrients [28]. These genes are also referred to as minimal

genes.

The term minimal gene set refers to this smallest possible group of essen-

tial genes required for organism survival. Any genes not in the minimal gene

set are considered to be non-essential. There are two main online sources

which contain information about these minimal gene sets in a number of

different organisms, the database of essential genes [29–31] and the online

gene essentiality database [32,33]. For synthetic biology, being able to iden-

tify and then disrupt or modify these genes can help remove any undesirable

interactions and make biological systems more predictable. Hence why the

14
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hunt for essential genes has become one of the cornerstones of the field. The

search is also of high importance in the medical field as genes essential for

growth in a media where all the nutrients are provided, such as our bodies,

make good targets for broad-spectrum antibacterial drugs [34].

One of the problems in understanding gene essentiality is the vast dif-

ference in genome size between organisms. One of the smallest genomes

belonging to Mycoplasma genitalium contains only 482 genes [35], whereas

Staphylococcus aureus, MRSA, contains ∼3000 genes. While the number

of essential genes in both ranges at 350 genes, the increase in non-essential

genes complicates the relationships within the organism and which in turn

increases the difficult in study.

The most efficient way to achieve high yield production is through alter-

ing an organism which naturally produces the target product. Genes can

be removed from the organism to limit the production of unwanted side

products and interactions, while also increasing the target yield. But for

an organism to contain a pathway for an unusual product it will generally

have lots of other adaptations and therefore a large genome.

2.2.1 Different types of essentiality

Two key functions of an organisms survival depend on its ability to metabolise

and reproduce. So most essential genes relate to these functions. While we

have adopted the minimal gene definition of an essential gene, the term

“essential gene” is open to debate because essentiality ultimately depends

on the conditions in which the organism is growing. There are some other

groups and definitions of essential genes, they are broadly grouped into the

following types:

Conditionally essential These genes are essential under specific growth

conditions. For example, genes required for survival in presence of a toxin

or to utilise different food sources.

Essential for fitness This category contains genes which if removed re-

sult in a measurable decrease in the growth rate or metabolism of the or-

ganism but does not result in death [36]. They are hard to identify as slow

growth can sometimes be classed as cell death which results in mis-classified

genes.

Synthetic lethal genes These are combinations of genes in which the

inactivation of two or more of them result in death [37, 38]. The most
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common reason for synthetic lethality is due to the duplication of genes in

the genome, called paralogs. Genomes normally contain paralogs, making

synthetic lethals one of the most important things to be considered in the

transferring of computational predictions to a laboratory experiment. One

option to overcome this is to identify essential genes and then also have a

list of paralog genes that are potentially essential.

2.3 In vivo prediction methods

Over the years a range of wet-laboratory techniques have been applied to the

investigation of gene essentiality. The methods consist of either randomly

or systematically inactivating genes and their essentiality is determined de-

pending on whether the organism survives [39]. Currently in use are three

main types of biological techniques: transposon mutagenesis, gene knock-

outs, mRNA interface.

The most popular whole genome approach is transposon mutagenesis

and a large portion of the data collected from online databases utilise this

approach. There are some key drawbacks to this method which result in

mis-classified genes, these usually include smaller genes which are rarely

disrupted or an insertion at either end of a gene which may not be sufficient

to disrupt expression [30,36].

While the efficiency of wet-laboratory techniques has greatly improved

over the years, they remain time-consuming and expensive tasks. These

problems apply more so to the study of non-model organisms and those that

are hard to cultivate and manipulate. Scenarios include those with unusual

products of interest but which have large genomes with many interactions.

The advancement of laboratory techniques has resulted in the produc-

tion of vast amounts of data. This has aided the development of com-

putational based methods which enable faster identification of candidate

essential genes, with ever increasing accuracy. Computational methods can

circumvent some of the laboratory limitations for non-model organisms by

providing the necessary information to speed up experiments.

2.4 Machine learning approaches

With the ability to faster identify essential candidates, computational meth-

ods provide an appealing alternative to laboratory experiments as they cir-

cumvent the expensive and difficult experimental screens.
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Many different computational methods have been applied to the search

for essential genes. But as the prediction of essential genes or proteins can

be defined as a classification problem, machine learning approaches can be

applied. There is an ever growing number of classification algorithms avail-

able and they can be grouped by their style of learning, i.e. supervised

learning, unsupervised learning or semi-supervised learning. For determin-

ing gene essentiality, supervised learning is applied because the labels or

classes of the training data are known.

Supervised learners are able to classify genes by constructing and train-

ing a classifier using features or attributes associated with the classes (essen-

tial or non-essential genes) [40,41]. The classifier is trained using the known

essentialities of well-studied genomes and then used to predict essentiality

in another genome [42–44].

There are many different classification algorithms available for super-

vised learning. But as thei r performance depends on the specific problem

to which they are being applied, it is not possible to conclude that one algo-

rithm is superior to another. The ‘perfect’ classifier for a problem depends

on the quality of the training data, the features selected and the unclassified

data [45]. One assumption of supervised learning is that the training and

testing data have the same distribution. While, organisms that are closely

related naturally have this feature, as distance between them increases the

distribution is more likely to be different [41].

As the quality of predictions depends on the relationship between the

training and testing data, machine learning is not currently suitable for

predicting conditional essential genes. The genes that are essential to an

organism are highly dependent on the environmental conditions. A classifier

trained with genes under stable conditions will not have the same class

attributes for genes under other conditions and therefore not accurately

classify genes. As computational techniques are becoming popular there

may soon be enough data under the same condition to use for training a

classifier.

Classifiers

The application of classifiers to the prediction of essential genes and proteins

has already been extensively reviewed in a number of papers [26, 46–49].

While some studies reviewed focus on the implementation of novel and

highly optimised algorithms, existing classifiers are also implemented. The

most common of which are decision trees [40,44,50], k-nearest neighbor [51],

logistic regression [40, 52], naive bayes [40, 41, 53], neural networks [42],
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random forest [52,52] and support vector machines [44,51,54–56].

Features

A variety of features have been associated with gene and protein essential-

ity, and therefore have been applied in machine learning predictions. As

essential genes are under unique evolutionary pressure, it is likely that they

share many other characteristics which may be gleaned from genome se-

quence data. They can be broadly classified into two main groups, sequence

derived features and context dependent features [57,58].

Sequence derived features This group contains features which can be

generated directly from either the DNA or protein sequences. These features

can be further split into: sequence information, homology, physicochemical

properties and subcellular localisation.

Sequence information includes features such as the GC content of a gene,

a high GC content is thought to be more robust and stable [59]. Codon

usage in essential genes is more rigid than non-essential genes [60]. Strand

bias as essential genes tend to be encoded on the leading strand of the

chromosome [61, 62]. Protein length, where essential genes are usually on

the higher or lower end regarding length [63,64].

Homology based features include paralogs. Essential genes should have

a fewer number of paralogs compared to non-essential genes [65].

Cellular localization of proteins have been shown to be important fea-

tures in the identification of essential genes, with nuclear localisation demon-

strating the strongest positive correlation with essentiality [59, 66]. Other

features (areas of localisation) include the cytoplasm, outer membrane and

external.

Context dependent features The features in this group are generated

from experimental data involving the study of both genes and proteins. The

features can be grouped further into network topology and gene expression.

Network topology based features require the availability or construction

of protein-protein interaction (PPI) networks, gene regulatory networks or

metabolic networks. From these networks features are generated. In PPI

networks the genes or proteins are connected and the essential genes tend

to be more highly connected than non-essential genes. Common features of

networks are degree centrality, betweenness centrality, closeness centrality

and subgraph centrality [57, 66–68]. Network topology based features are

possible because of whole genome expression studies. Fang et al. reviews the
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use of PPI networks in combination with other features in the application

of essential genes [48].

Gene expression features are based on mRNA expression levels, how

much the gene is being expressed, and fluctuations in gene expression. The

higher and more stable expression levels are for a gene, the more likely it is

to be essential [69].

While context dependent features are often used in prediction studies

as experimental and genetic network information is available for the well-

studied species, the features are not available for new and under-studied

organisms limiting the application of the prediction model created. As whole

genome sequencing is now widely accessible, sequence derived features have

a more generalizable application and can achieve highly accurate predictions

[39,59,70].

Feature selection

Compared with the traditional homology mapping, supervised machine

learning methods use more features to make predictions. Over the years

a wide range of features have been linked with gene essentiality. However,

increasing the number of features causes an increase in the dimension of the

feature space, resulting in a dramatic increase of computational complex-

ity. Here feature selection is used to reduce the feature set making it a key

process in machine learning [40,71].

As well as the increase in computational complexity, it has been shown

that having a large number of features is not optimal for classification as

many of the features may be redundant and can reduce the accuracy of the

predictions. By reducing the feature set we aim to avoid overfitting and

therefore improve model performance on unseen data while simultaneously

producing more cost-effective models.

There are two main methods for reducing the feature set, the first being

dimension reduction where new features are created by combining the origi-

nal features, these types of approaches include principal component analysis

or information theory. The second method being feature selection where the

most relevant features are selected to create a subset of the original. Here,

as the original features are not altered, it has the advantage of allowing

interpretability by a domain expert.

Feature selection techniques differ in the way they search for feature

subsets and the way they interact with the classifier. For classification

the techniques can be split into three categories: filter methods, wrapper
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methods and embedded methods.

Filter methods are the simplest and fastest, they select feature subsets

based on the relationship between the feature and the class. These types of

methods include variance. Advantages of these methods are they they can

easily be scaled to high-dimensional datasets, have a high number of fea-

tures, they are computationally simple and fast, while also independent of

the classification algorithm. Feature selection is only carried out once before

being evaluated on the classifiers. However, as each feature is considered

separately feature dependencies are ignored, which may lead to worse clas-

sification performance when compared to other types of feature selection

techniques.

Wrapper methods search for the best performing subset by taking each

possible subset, one-by-one, and training and testing the classifier. These

methods include reverse feature elimination. Advantages include the in-

teraction with classifier to choose more meaningful feature subsets and the

ability to take into account feature dependencies. A disadvantage of these

methods are that they have a higher risk of overfitting than the filter meth-

ods and are computationally expensive as the number of features grows and

this applies more so if the classifier is also computationally expensive.

In embedded methods, also referred to as intrinsic methods, feature

selection is done as part of the classifier construction. Examples include

decision trees. Advantages include the interaction with the classification

model, while at the same time being far less computationally intensive than

wrapper methods.

While feature selection has many advantages, the search for a subset

introduces an additional layer of complexity in the modelling task and as the

performance and generalization of classifiers is directly affected by feature

selection, it is no small task.

2.4.1 Ensemble approaches

Ensemble based learning is a general term for approaches that combine

multiple classifiers and whose decisions are combined to improve the per-

formance of the overall system. In the literature they are also referred to as

multiple classifiers, a committee of classifiers or a mixture of experts. The

individual classifiers in an ensemble are called base-learners or inducers and

can be any machine learning algorithm.

It is widely known that through combining multiple classifiers it is possi-

ble to achieve more accurate predictions compared to using single classifiers.
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This is due to the idea that an error in a single inducer will be compensated

for by the other classifiers and as a result the overall prediction performance

of an ensemble is better than that of a single inducer [72, 73]. As a result,

ensemble approaches take advantage of the differences in the base learners

to improve accuracy and reliability.

The results from the base learners can be combined in a number of

ways. The most common method applied in gene studies is majority voting,

this is where the the output is the most represented class among the base

learners. A majority voting system can be optimised through assigning

different weights to the result of each base learner [74,75].

In the area of gene and protein studies ensemble methods have been

applied in range of studies, including to the prediction of protein subcellular

locations [76] and protein structural classes [77]. One of the first applications

of ensemble methods to the prediction of essential genes was in 2006 when

Seringhaus et al. [59] trained a hybrid system that combined the outputs of

decision trees, naive bayes and logistic regression models. The system was

trained on Saccharomyces cerevisiae and used to predict essential genes in

Saccharomyces mikatae.

2.4.2 Summary of the literature

Table 2.1 on the following pages contains the key studies from the literature

on which the project is based. For each study is listed the specific aspects

that were selected for the project in regards to features, feature selection

algorithms and classifiers.
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Table 2.1: Key studies on which the thesis is based.

Features Classifiers
Number of

organisms
References

Sequence SVM 14 Palaniappan et al., 2011

Paralogs Neural Network [78]

Physiochemical Decision Tree

Subcellular

Sequence Logistic Regression 2 Deng et al., 2012

Paralogs [79]

Physiochemical

Subcellular

Sequence SVM 31 Liu et al., 2017

Paralogs [80]

Physiochemical

Subcellular

Sequence PCR 2 Lin et al., 2017

Physiochemical [81]

Protein domain

PPI network

Sequence Ensemble: 2 Deng et al., 2011

Paralogs Naive Bayes [40]

Physiochemical Logistic Regression

Subcellular Decision Tree

Protein domain CN2 Rule

GCE network

Sequence Separate & 1 Saha et al., 2006

Paralogs Ensemble [51]

PPI network Weighted kNN

Conservation SVM

Sequence SVM 16 Ning et al., 2014

Physiochemical [56]

Sequence Ensemble: 2 Seringhaus et al., 2006

Physiochemical Decision Trees [59]

Subcellular Random Forest

Logistic Regression

zeroR Rule

Naive Bayes

Sequence Naive Bayes 21 Cheng et al., 2014

Paralogs [41]

PPI network

Continued on next page
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Table 2.1 : continued from previous page

Features Classifiers
Number of

organisms
References

Sequence SVM 1 Chen et al., 2005

Paralogs Neural Network [42]

PPI network

GCE network

Sequence Naive Bayes 2 Gustafson et al., 2006

Paralogs [70]

Subcellular

PPI network

2.5 Other in silico prediction methods

Other computational methods have also been applied to the prediction of

essential genes. Mushegian and Koonin [82] were the first to develop a com-

putational method in 1996 based on comparative genomics, also commonly

referred to as homology mapping or sequence homology. Homology refers

to genes descended from a common ancestral DNA sequence. The tech-

nique consists of comparing the sequences of genes with known essentiality

against the genome of interest. Sequences that are above a defined percent-

age match and coverage length are grouped as homologs. Essential genes

are often more conserved than nonessential genes in the process of long-

term evolution and should therefore be present in most bacteria [58]. This

method limits the search to conserved genes between organisms which often

accounts only for a small portion of the genome [83], it also overlooks highly

evolving genes leading overall to an underestimation of essential genes [84].

Protein network topology models are based on the physical interactions

of two or more proteins, protein–protein interactions (PPIs). These inter-

actions can be studied in large-scale genome studies and the data used to

build networks in which the essentiality of a gene can be studied. Proteins

in the network which are highly linked to their neighbours tend to be es-

sential [85]. Various attributes of the network nodes are used as features in

classifiers [51, 70,86].

Genome-scale metabolic networks allow us to study the interactions be-

tween proteins in terms of their metabolism [87,88]. A common constrained-

based approach is flux balance analysis (FBA) [88,89]. FBA has been used
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to simulate gene knockouts and the lethality on the network, therefore iden-

tifying essential genes [89].

These methods have been reviewed for their application to gene essen-

tiality in [47, 48]. Along with less commonly applied methods, including

different types of networks [50,66] and orthologous properties [90].

2.6 Chapter summary

This chapter reviewed the importance of bacterial essential genes, the bio-

logical definitions on which studies can be based and a brief outline of the

common laboratory methods used to generate the data utilised in compu-

tational studies. Also covered are some of the limitations and assumptions

that need to be carried forward into computational methods. Most current

computational methods use small subsets of closely related organisms or re-

quire the use of complicated features, as they accuracy of these predictions

depend on the organisms being closely related, their accuracy decreases

when applied to non-model or unknown organisms. The chapter then fo-

cuses on machine learning approaches, reviews the different aspects that

affect their performance and how they have been approached in previous

studies. Finally, a summary table of the studies on which this project was

based is provided.



Chapter 3

Gene Essentiality Data

3.1 Introduction

The performance of a machine learning approach depends on the availability

of high quality data. The data used for training needs to be accurate,

complete and have minimal noise [91]. This chapter outlines the databases

and details for the essential gene data gathered.

3.2 Method

Gene essentiality information was downloaded from two online databases,

the Database of Essential Genes [29–31] and the Online Gene Essentiality

database [32,33], they are described in the following sections. Although the

genes in the databases contain essentiality labels, they lack other useful in-

formation about the gene such as which strand it is located on or its position

in the genome. For this reason the essentiality information obtained from

the databases was combined with the National Center for Biotechnology In-

formation database (NCBI) [92], which contains more detailed information

about the genes, but does not contain essentiality information.

For each bacterial species identified from the essentiality databases the

corresponding genbank (ftp://ftp.ncbi.nlm.nih.gov/genbank) [93] file was

downloaded from NCBI. For every bacterial gene, its gene identifier was

used to find a match within the genbank file. Where a match could not

be found the gene identifier was instead used to obtain a protein identifier

from NCBI. This protein identifier was then used to find a match with the

genbank file. If the protein identifier also resulted in no match the gene was

excluded from the final dataset.

There were some genes for which no matches could be found. The reason

25
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for this being that the genbank files in NCBI are constantly being updated

with results from new experiments and this causes the gene identifiers in

the files to change. However the online databases do not update at the same

rate as NCBI and therefore the genes from the online databases can refer

to older experiments.

Some organisms in the online databases were not included in our study.

For these organisms, gene essentiality was determined for different condi-

tions, such as the presence of the antibiotic Tobramycin or for bile acid

tolerance. Essentiality for all other organisms used is based on rich condi-

tions, meaning only the genes needed for basic functions should be active.

Details about the specific organisms excluded from our study are included

in the separate database sections to follow. At the end of the labeling a

dataset containing: nucleotide gene sequences, gene or protein identifier in

the genbank file and an essentiality label was produced.

3.3 Database of essential genes

Constructed in 2003 by Zhang and his colleagues the Database of Essential

Genes, referred to as DEG, contained all the essential genes available at the

time, along with the ability to run a simple comparison between a query

sequence and those in DEG [29]. As the essential gene field progressed

DEG similarly followed suit and by 2008 it had reached its fifth iteration.

There was a significant increase in the eukaryote genes contained, but a 10-

fold jump in prokaryotic essential genes pushing the number to over 5,000,

for both some of the genes initially collected from the literature and those

determined by theoretical predictions were replaced by genes determined

through genome-wide studies [31].

Along with an increase in genes DEG 10 saw the addition of essen-

tial non-coding elements, customisable BLAST tools that allow species-

and experiment-specific searches for either single genes or a list, annotated

and unannotated genomes [30]. Within DEG are also sub-databases which

contain non-essential coding genes, these can be inferred from the set of

essential genes or based on the original source. This information can come

from transposon mutagenesis studies which determine non-essential genes

first while the essential genes are inferred.

Version 15.2, used in this study, sees DEG divided into four main sec-

tions: non-coding; archaea; bacteria and eukaryotes, all except non-coding

can be searched for both DNA and amino acid sequences. It now contains

over 20,000 essential genes and 600 essential non-coding sequences across
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the database, with 36 different organisms within bacteria [30].

For this study 40 bacterial species were selected from DEG15.2, as their

essentialities are based on growth in rich media (the presence of all vital

nutrients). Information on the organisms is shown in Table 3.1. For the

species selected, the genes obtained from DEG were matched to a genbank

file using the method described in Section 3.2. Of the 40 bacterial species

29 are gram negative and 11 gram positive organisms and 15,043 essential

genes and 93,808 non-essential genes.

The data for seven organisms was excluded from the final dataset for two

main reasons. The first being that the conditions under which essentiality

was determined did not match our definition of essential as discussed in a

previous chapter, the second reason was that after the labeling step there

were no matched genes for these organisms. A list of the organisms and

reasons for exclusion is included in Appendix A.
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Table 3.1: Information on the 40 bacterial species collected from DEG. Shown for each organism: whether it is gram-negative
(-) or gram-positive (+), the number of essential genes in DEG and the number of essential and non-essential genes in the final dataset
after being matched to Genbank files.

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Acinetobacter baumannii ATCC 17978 - 458 3351

Acinetobacter baylyi ADP1 - 499 2332

Agrobacterium fabrum C58 - 361 5154

Bacillus subtilis 168 + 271 4175

Bacillus thuringiensis BMB171 + 516 449

Bacteroides fragilis 638R - 547 3625

Bacteroides thetaiotaomicron VPI-5482 - 325 4778

Brevundimonas subvibrioides ATCC 15264 - 412 2780

Burkholderia thailandensis E264 - 406 3873

Burkholderia pseudomallei K96243 - 505 5726

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 - 166 1572

Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 - 228 1572

Caulobacter crescentus - 480 3051

Escherichia coli MG1655 I - 609 3523

Escherichia coli MG1655 II - 296 4357

Continued on next page
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Table 3.1 : continued from previous page

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Escherichia coli ST131 strain EC958 - 315 4639

Francisella novicida U112 - 392 1572

Haemophilus influenzae Rd KW20 - 642 1128

Helicobacter pylori 26695 - 323 1349

Mycobacterium tuberculosis H37Rv III + 687 3626

Mycobacterium tuberculosis H37Rv + 614 3085

Mycoplasma genitalium G37 + 381 437

Mycoplasma pulmonis UAB CTIP + 310 489

Porphyromonas gingivalis ATCC 33277 - 463 1564

Porphyromonas gingivalis ATCC 33277 - 281 1564

Pseudomonas aeruginosa PAO1 - 336 5515

Pseudomonas aeruginosa UCBPP-PA14 - 335 1164

Salmonella enterica serovar Typhi Ty2 - 358 3940

Salmonella enterica serovar Typhimurium SL1344 - 353 3893

Salmonella typhimurium LT2 - 230 4449

Shewanella oneidensis MR-1 - 402 1505

Sphingomonas wittichii RW1 - 535 4100

Continued on next page
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Table 3.1 : continued from previous page

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Staphylococcus aureus N315 + 302 2329

Staphylococcus aureus NCTC 8325 + 351 2759

Streptococcus agalactiae A909 + 317 907

Streptococcus pneumoniae + 244 127

Streptococcus sanguinis + 218 2270

Synechococcus elongatus PCC 7942 - 682 2165

Rhodopseudomonas palustris CGA009 - 552 4799

Vibrio cholerae N16961 - 779 3497
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3.4 Online gene essentiality database

First introduced in 2012 [32] the Online Gene Essentiality database (OGEE)

now contains the data for over 100 large-scale gene essentiality experiments.

Including the essential and non-essential genes identified from 65 studies for

39 bacterial organisms [33]. OGEE contains experimentally tested essen-

tial and non-essential genes, along with associated gene features such as

expression profiles, duplications and conservation across species. This data

is combined with text-mining results to produce a list of features for each

gene with the genes organised according to their sources [32].

For this study 33 bacterial species were selected, information on the

organisms is shown in Table 3.2. For the species selected, the genes obtained

from OGEE were matched to a genbank file using the method described in

Section 3.2. Of the 33 bacterial species studies 26 are gram negative and 7

gram positive organisms.

As with DEG, we excluded some of the data. Those studies that had

different experimental conditions and those that did not include either the

essential or non-essential genes. This was because both classes are needed

for our evaluation method (described in Section 4.4.1).
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Table 3.2: Information on the 33 bacterial organisms selected from OGEE. Shown for each organism: whether it is gram-negative
(-) or gram-positive (+), the number of essential genes in OGEE and the number of essential and non-essential genes in the final dataset
after being matched to Genbank files.

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Acinetobacter baylyi ADP1 - 293 3195

Agrobacterium tumefaciens str. C58 - 361 5154

Bacillus subtilis subsp. subtilis str. 168 + 228 4160

Brevundimonas subvibrioides ATCC 15264 - 411 3050

Burkholderia cenocepacia J2315 - 162 3376

Caulobacter crescentus NA1000 - 480 3614

Escherichia coli K12 (1) - 298 4054

Escherichia coli K12 (2) - 609 3553

Francisella tularensis subsp. novicida U112 - 385 1685

Haemophilus influenzae Rd KW20 (1) - 450 953

Haemophilus influenzae Rd KW20 (2) - 491 1364

Haemophilus influenzae Rd KW20 - 14 29

Helicobacter pylori 26695 (1) - 33 45

Helicobacter pylori 26695 - 310 1362

Mycobacterium tuberculosis H37Rv (1) + 611 3073

Continued on next page
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Table 3.2 : continued from previous page

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Mycobacterium tuberculosis H37Rv (2) + 423 3394

Mycoplasma genitalium G37 + 378 470

Mycoplasma pneumoniae M129 (1) - 362 599

Mycoplasma pneumoniae M129 - 266 496

Mycoplasma pulmonis UAB CTIP + 404 673

Neisseria gonorrhoeae MS11 - 665 1714

Pseudomonas aeruginosa PAO1 - 336 5515

Pseudomonas aeruginosa UCBPP-PA14 (1) - 431 5725

Pseudomonas aeruginosa UCBPP-PA14 - 331 4664

Rhizobium leguminosarum bv. viciae 3841 - 280 4230

Salmonella enterica subsp. enterica serovar Typhi str. CT18 - 424 4084

Salmonella enterica subsp. enterica serovar Typhi Ty2 - 2264 4322

Shewanella oneidensis MR-1 - 323 2185

Staphylococcus aureus subsp. aureus NCTC 8325 + 350 2891

Streptococcus pneumoniae D39 + 108 274

Synechococcus elongatus PCC 7942 - 677 2364

Vibrio cholerae O1 str. C6706 - 448 3546

Continued on next page



34

Table 3.2 : continued from previous page

Organism name
Gram-positive (+)

/ Gram-negative (-)

Essential genes
in dataset

Total genes
in dataset

Yersinia pestis KIM - 606 3481
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3.5 Chapter summary

Table 3.3 below shows an overall summary of the two datasets collected.

Shown are the number of organisms, instances for each class (essential and

non-essential genes) and the gram-positive and -negative organisms. These

are all important factors that can affect the prediction accuracy of the ma-

chine learning models. The dataset file at this stage contains the nucleotide

gene sequences, the gene or protein identifier match in the genbank file and

an essentiality class label.

Table 3.3: Summary of the collected datasets. Included are the number
of: organisms, gram-positive and -negative organisms, essential and non-
essential genes.

Dataset Number of
organisms

Number
of gram-
positive

Number
of gram-
negative

Essential
genes

Non-
essential
genes

DEG 40 11 29 16481 92370
OGEE 33 7 26 14212 75082



Chapter 4

Determining the Classifier

Feature Sets

4.1 Introduction

The first part of this chapter starts by describing the features that were

generated for each gene in the dataset and then covers the classification

and feature selection algorithms that were applied to create feature subsets.

The second part of the chapter describes the method used to apply the

feature selection algorithms. There is an analysis of the features present in

each generated subset and an evaluation of each feature subsets performance

with the identified classifiers.

4.2 Initial feature generation

For each gene in the dataset, 62 sequence derived features were collated,

information about the features is shown in Table 4.1. Where indicated, fea-

tures were computed using additional tools and added to the dataset. The

features have been widely used in other prediction studies and, as covered in

Section 2.4, can be split into four main types: sequence information (some-

times referred to as intrinsic or gene), homology, subcellular localisation and

physicochemical.

36
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Table 4.1: The 62 features extracted for each gene. Listed is the feature type, abbreviations, a short feature description and any
additional programs used for feature extraction.

Feature type Abbreviations General feature description Tool

Gene GC G+C content of the gene

STRAND Positive or negative strand

L aa Number of amino acids CodonW [94]

G3s, T3s, C3s, A3s, GC3s Base composition at silent sites

CAI Codon Adaptation Index

CBI Codon Bias Index

Fop Frequency of Optimal codons

A, C, D, E, F, G, H, I, K,

L, M, N, P, Q, R, S, T, V,

W, Y

Individual amino acid usage

RARE Use of rare amino acids

TMAA Percentage of amino acids in helices TMHMM [95]

TM60 Percentage of amino acids in helices within the first 60 nucleotides

Homology
P-3, P-5, P-7, P-10, P-15,

P-20, P-30
Paralogs of the gene for a range of e-values BLAST [96]

Subcellular TMH Number of transmembrane helices TMHMM [95]

TM60H Transmembrane helices within the first 60 nucleotides

Continued on next page
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Table 4.1 : continued from previous page

Feature type Abbreviations General feature description Tool

CELL, CYT, CYTM,

EXT, OUTM, PERI

Predicted subcellular localization to the sites: Cellwall, Cytoplasm,

Cytoplasmic Membrane, Extracellular, Outer Membrane and

Periplasm

PSORTb [97]

Physiochemical MW Molecular weight Pepstats [98]

ISO Isoelectric point

TINY, SMALL, ALIP,

AROM, NONP, POL,

CHAR, BASIC, ACID

Molar percentage of the corresponding amino acids for each class:

Tiny, Small, Aliphatic, Aromatic, Non-Polar, Polar, Charged, Basic

and Acidic

ARO Frequency of aromatic amino acids CodonW [94]

HYD Hydrophobicity of protein
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4.3 Classifier and feature selection algorithms

As covered in the literature review many different classification algorithms

and feature selection methods have been applied to the prediction of essen-

tial genes. The algorithms selected for this study have been widely used in

other studies as shown in Table 2.1.

4.3.1 Classification algorithms

In this study we are comparing commonly used supervised algorithms, where

the class of each gene in the training data must be known. The following

algorithms are implemented in the Scikit-learn [99] toolbox v0.20.3 and were

used with their default parameters:

� Decision Trees (DT)

� Logistic Regression (LR)

� Naive Bayes (NB)

� Nearest Neighbors (kNN)

� Neural Networks (NN)

� Random Forest (RF)

� Support Vector Machine with linear kernel (LIN)

4.3.2 Feature selection algorithms

For the study we applied a range of feature selection methods from all

three groups: filter, wapper and embedded. In total 18 feature selection

algorithms were applied:

� Correlation-based Feature Selection (CFS)

� Variance (VAR)

� ReliefF

� Least Absolute Shrinkage and Selection Operator (LASSO)

� Recursive Feature Elimination (RFE) - Combined with the DT, LR,

RF and LIN classifiers

� Sequential Forward Selection (SFS) - Combined with the DT, LR,

kNN, RF and LIN classifiers
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� Sequential Backward Selection (SBS) - Combined with the DT, LR,

kNN, RF and LIN classifiers

4.4 Feature selection method

To begin building the pipeline for feature selection, we used a simple training

and testing method. The collated database of essential genes (DEG) was

split 80 / 20 for training and testing respectively. From there we developed

the framework below to investigate the feature subsets selected when a

feature selection algorithm is run within a cross validation loop.

An outline of the framework developed for each of the 18 feature selec-

tion methods is shown in Figure 4.1. Before classification each gene was

assigned a Boolean value regarding its essentiality (0 for essential and 1 for

non-essential). The class imbalance between the essential and non-essential

genes was left because this imbalance naturally exists within organisms. For

each feature selection method 10-fold cross validation was applied in which

the whole of the DEG dataset was split into 10 parts, 9 parts are assigned

as the training data and 1 part is kept separate and is the testing data. The

feature selection method was applied only to the training data, the resulting

model and the feature selected were saved.

Each classifier was then in turn trained with the training data and the

subset of features selected by the method, then used to predict the testing

data. Once all classifiers are run, one fold of the cross validation is complete

and new training and testing data is assigned. Stratified k-fold was applied

so that each fold has the same class proportions.

4.4.1 Evaluation method

To evaluate our classifier models we applied the commonly used Receiver

Operating Characteristic (ROC) curve method. A ROC curve is a proba-

bility curve which provides information on how well the model is capable

of distinguishing between classes. The area under the ROC curve (AUC) is

the value calculated for detailed comparisons. The closer the AUC value is

to 1, the better the model is at correct predictions.
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Input Dataset - DEG

Training Data Testing Data

Transformed Training Data

Transformed Testing DataTrained Classifier Model

Evaluation (AUC) Fold, DT , LR .....

1,  0.7 ,  0.8, ...
2 ,  0.6, 0.9, ...
:

Fold, F1 , F2, ....
1, True, False, ....
2, False, False, ....
:

Feature Selection

Models (X10)

Repeat for each classifier

Repeat for 10 iterations

Predict

Train

Save model

Save features selected

Transform

Transform

Features Selected

Classifier results

Figure 4.1: Overview of the developed framework. Shown is our
developed framework in which each feature selection algorithm is applied
within a cross validation loop, followed by applying the subset selected to
each classifier and evaluation.
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4.5 Features subsets generated

For each of the 18 feature selection methods, Figure 4.2 provides informa-

tion on the resulting subsets. In the central heatmap, each individual cell

shows how many times over the whole cross-validation the feature was se-

lected. The maximum for our study being 10. The right frequency plot is a

summary of how often each feature was selected over all the feature selection

methods. While the bottom plot shows the average number of features, out

a maximum of 62, per cross-validation fold for each method.

From the plots we can observe that the top 3 selected features are CAI,

C and L aa. CAI and L aa have strong proven links to gene essentiality.

The least 3 selected features are CYTM, GC3s and Fop.

The top selected features were selected more consistently across the al-

gorithms, i.e. the features were selected for almost every fold of the cross-

validation.

RFE-RF selected the most features and VAR the least. Variance selected

the same 4 features for every application of the algorithm but 3 of them

are not frequently selected by other algorithms. ReliefF also showed little

variation in the features selected for each fold. RFE-RF selected all features

except RARE at least once.

SFS-KNN and SBS-KNN have almost the same selection pattern.
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Figure 4.2: Feature subsets selected by each algorithm. For each
feature selection method the center heatmap shows the frequency at which
each feature was selected for the cross validation. The right plot shows
the percentage each feature was selected over the whole feature selection
method. The bottom plot shows the average number of features selected
per cross validation fold for each feature selection algorithm.
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4.6 Classifiers with feature subsets results

To study the impact of feature selection on classifier performance during

each cross-validation loop we trained each of the seven classifiers in Section

4.3.1 with the selected subset of features and predicted the testing split of

data. The framework was also applied to a the whole feature set (all 62

features) to generate a baseline for comparisons.

In total 133 classifier and feature set combinations were tested with 10-

fold cross-validation. All of the 1,330 models were evaluated using the ROC

curve method described in Section 4.4.1. For each combination the average

AUC (avAUC) over the 10 folds and the standard deviations calculated are

shown as a heatmap in Figure 4.3.

For the models trained with all features, first column in Figure 4.3, the

RF classifier gave the highest avAUC of 0.703, but the other classifiers fall

within 1 SD, with the exception of the LIN classifier which is significantly

lower.

After applying feature selection the kNN classifier with the SBS-kNN

and SFS-kNN subsets produced the highest avAUCs values of 0.722 and

0.715, respectively. Across all the feature subsets RF generally produced

the highest avAUC compared to the other classifiers. While the opposite is

true for the LIN classifier, which has the lowest results across all 19 feature

sets applied, its avAUC fluctuates around 0.5.

Compared to the baseline of All features, the ReliefF and VAR feature

subsets caused the greatest reduction to the prediction performance for all

seven classifiers. With the exception of these 2 feature subsets, looking

at each classifier individually, we can see that there is no feature subset

that performs better than another. They all sit within 1 SD of the highest

avAUC. The results also show that none of the feature subsets consistently

perform the best across all the classifiers.
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Figure 4.3: Classifiers with feature subsets AUC results. A heatmap showing the mean AUC and the standard deviation for each
classifier and feature subset combination. Using the DEG dataset and 10-fold cross validation.
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4.7 Combining top performing feature sub-

sets

From Figure 4.3 we can observe that for a classifier, there is no single feature

subset that performs better than another. For each classifier, all the feature

subsets were compared using an independent t-test from the SciPy library

[100], with a p-value of 0.05, against the highest avAUC. The results are

shown in Table 4.2.

The kNN and LIN classifiers have more distinct results for the feature

subsets combinations, as they only have 10 out of 18 that performed best.

Whereas for the DT classifier 17 feature subsets performed the best. For RF,

NN and LR the feature subset with the highest avAUCs were all different

but for all three classifiers the same subsets performed best.

As observed in the heatmap the VAR subset performed significantly

worse for all classifiers. With the exception of the DT classifier, the same

is true for both the ReliefF and SFS-DT feature subsets.

Table 4.2: Top performing feature selection subsets for each classi-
fier. For the each classifier the feature subset producing the highest mean
AUC is indicated by a dot (•). Marked by an asterisk (∗) are the feature
subsets which are within the standard deviation of the highest mean AUC.
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Feature
Selection
Subsets

k
-N

e
a
re

st
N

e
ig

h
b

o
u

rs

R
a
n

d
o
m

F
o
re

st

N
e
u

ra
l

N
e
tw

o
rk

L
o
g
is

ti
c

R
e
g
re

ss
io

n

N
a
iv

e
B

a
y
e
s

D
e
c
is

io
n

T
re

e

S
V

M
–

L
in

e
a
r

RFE & RF ∗ ∗ ∗ • ∗ ∗ •
RFE & LIN ∗ ∗ ∗ ∗ ∗ ∗ ∗
SFS & KNN ∗ • ∗ ∗ ∗ ∗
SBS & KNN • ∗ ∗ ∗ • ∗

LASSO ∗ ∗ • ∗ ∗ ∗
CFS ∗ ∗ ∗ ∗ ∗ ∗

SFS & LR ∗ ∗ ∗ ∗ ∗ ∗ ∗
RFE & DT ∗ ∗ ∗ ∗ ∗
SBS & LIN ∗ ∗ ∗ ∗ ∗ ∗
SFS & RF ∗ ∗ ∗ ∗ ∗ ∗
SBS & LR ∗ ∗ • ∗ ∗ ∗ ∗
SBS & RF ∗ ∗ ∗ ∗ ∗ •
SFS & LIN ∗ ∗ ∗ ∗ ∗ ∗ ∗
RFE & LR ∗ ∗ ∗ ∗ ∗ ∗

ReliefF ∗
SBS & DT ∗ ∗ ∗ ∗ ∗ ∗
SFS & DT •

VAR
Total 10 15 15 15 14 17 10
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For each classifier, all of the best performing subsets shown in Table 4.2

were combined to create a single feature set. Figure 4.4 shows the resulting

feature sets and how frequently each feature was selected within it.

For all the classifiers every one of the 62 features is present in the com-

bined feature set, this is due to the large number of feature subsets com-

bined. Overall the frequency at which each feature is present largely follows

the same pattern as that in Figure 4.2. However, a notable exception to

this is the CYT feature for which the frequency decreases. This occurs be-

cause it is only highly selected by the worst performing subsets, which were

excluded from all of the combined feature sets. Indicating that this feature

does not contribute positively to classifier performance.

Figure 4.4: Feature frequency for combined top performing feature
subsets. Shown for each classifier is the frequency at which feature was
selected for the combined top performing feature subsets.



48

4.8 Discussion of feature subsets

In this chapter we investigated different subsets of features and their per-

formance on seven commonly used machine learning classifiers. This was

done to provide the best performing classifier and feature subsets for the

development of an ensemble model.

To achieve this the first part of the experiment focused on removing

redundant features. The removal of redundant features not only aids in

decreasing overfitting, and thereby improving the prediction performance

of a model, but also reduces the computational complexity speeding up the

model. It is important to remember that a feature shown to be linked with

gene essentiality may be considered redundant in the presence of another

more relevant feature with which it is correlated [101]. This is shown in

Figure 4.2 where the feature CAI is the most frequently selected and Fop

the least selected. These are both measures of codon optimisation [102],

and therefore have the same correlation but Fop becomes redundant. This

type of redundancy also applies to the third least selected feature CYTM,

protein localization to the cytoplasmic membrane, which is correlated with

the transmembrane features TMAA, TMH, TM60H and TM60.

Another highly selected feature, at 72% is the amino acid C, the cysteine

amino acid is required for protein stability, which is especially important

for proteins exported outside the cell [94]. This allows it to be used as

rudimentary feature for protein localization, resulting in EXT only being

selected 25%. This has its benefits because calculating C is faster than

EXT. It is also possible that C is so frequently selected because it partially

replaces the feature TINY.

As expected, the feature L aa which measures the length of the amino

acids sequence is frequently selected at 72% due to its strong correlation

with gene essentiality. The essential genes usually have either short or long

sequence lengths [63,64].

GC3s on the other hand, while having strong links to essentiality, is

only selected 20% of the the time. This is also seen in a study performed

by Liu et al. using multiple organisms [80]. The reason for this is because

the preference for the 3rd codon is very organism specific [103], for example

Saccharomyces prefers AT-ending codons instead of GC [104], therefore this

feature is not useful when using multiple organisms for training.

Overall, there were no features that were fully ignored by the feature

selection methods. This was expected as all the features used in the study

were linked to gene essentiality but also because feature selection was ap-
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plied within the cross validation loop and therefore on 10 different datasets.

Interestingly, of the 62 features less than a third were selected more than

50% across all the feature selection methods. Showing there is a large

amount of redundancy.

While the approach we chose showed us that for some features, which

share biological and or functional similarity, the models selected one of these

gene features more frequently than the other, we did not look into feature

relationships before carrying out feature selection.

As feature relationships can affect some classifiers it is possible that they

will have impacted some feature selection methods. Correlated features

can affect classifiers in different ways. For example with recursive feature

elimination (RFE) and logistic regression, if two correlated features are both

present their importance to the model would be low. But if one feature is

removed the importance score of the other would need to increase. This

would require feature importance to be recalculated after each removal step.

For RFE with random forest or other tree-based models if the correlated

features are both useful for prediction, which one is selected is essentially

random choice. In this case the feature selection method might contain

highly correlated redundant features. While this may not affect the models

prediction accuracy it also does not allow us to gain any information about

feature importance. Future work into investigating multicollinearity in our

feature set may allow us to gain an insight into which redundant features

can be excluded before feature selection.

Another interesting line of further investigation from this point would be

to look into features which frequently appear together across the different

feature selection methods and their impact on the models created.

The second part of the experiment concentrated on the effects of feature

selection on classifier performance and identifying the best performing fea-

ture subset. From the heatmap in Figure 4.3 we observe that, while there

are some classifier and feature subsets which show marginal improvements

to the avAUC, there is not an individual one we can say works the best.

Even though feature selection does not improve the avAUC, it can main-

tain the avAUC for a classifier, reducing the computational complexity of a

model. We were able to reduce features from 62 to an average of 18 features

per cross validation fold.

Support vector machines are useful tools in machine learning and have

been widely used in gene prediction studies. However, our results show that

the SVM with linear kernel models have no discriminatory ability, i.e. it can

not predict whether a gene is essential or not [105]. This is likely because
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our data is not linearly separable [106,107].

Wrapper methods have the advantage of interacting with the classifier

during feature selection and can therefore choose more meaningful features

[108]. This can be seen in our study for the kNN classifier with the SBS-

kNN and SFS-kNN feature subsets which produced the two highest avAUCs

of 0.722 and 0.715.

4.9 Chapter summary

In this chapter we generated the initial features and then applied various

feature selection algorithms. We then investigated the relationships between

the generated feature subsets and seven commonly used machine learning

classifiers. We found that there is no single subset of features that performs

best across all the classifiers. Based on this outcome we decided to use

the combined feature set results from this chapter to develop an ensemble

approach to improve the AUC performance.



Chapter 5

Ensemble Method

5.1 Introduction

This chapter describes how the ensemble method was built, trained, tested

and validated for essential gene prediction. An ensemble algorithm can be

used to improve generalizability over the use of a single estimator. For our

ensemble we concentrated on an averaging method, where you build several

estimators independently and then average their predictions.

5.2 Ensemble design

Here we describe how the ensemble was designed and built to assess how

well the method would perform for cross-validation on the DEG dataset.

5.2.1 Classifier and feature combinations

Carrying forward the results for the combined feature sets, each of the base

classifiers in the ensemble were trained using all 62 features.

As well as the combined feature sets we investigated the performance of

the most frequently selected features for each classifier. The subsets were

created by introducing thresholds of 75%, 50% and 25% to the combined

frequency of selection data shown in Figure 4.4. The resulting feature sub-

sets generated at each threshold are shown in Table 5.1. For the ensemble

section of the project the support vector machine with linear kernel classi-

fier was excluded. This is because in our initial tests the classifier did not

train within a reasonable time frame for our project.

As expected, the threshold subsets for RF, NN and LR are identical as

the same feature subsets were combined for these 3 classifiers, and although

the NB classifier contained one less subset it has the same subsets across

51
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Figure 5.1: Outline of the method used to test the ensemble algorithm on
the DEG dataset using 10-fold cross validation.

all the thresholds. The kNN classifier with a threshold of 50% showed the

greatest variation for the feature sets and was also the classifier with the

most significantly different performances for the feature subsets.

5.2.2 Method

An outline of the method used to test the ensemble algorithm on DEG is

shown in Figure 5.1. For this method 10-fold cross validation was applied

in which the whole of the DEG dataset was split into 10 parts, 9 parts were

assigned as the training data and 1 part was kept separate as the testing

data. Each of the base classifiers was trained using the testing data and

the relevant feature subset. The features were scaled before training using a

Min-Max scaler with a range of -1 to 1. The classifiers had the same default

parameters as the feature selection step (the trained classifiers models are

also stored). Each trained base classifier was then passed to the ensemble

meta-classifier, where they were then used to predict the gene essentialities

for the testing data. The performance of the ensemble algorithm within

each loop was evaluated using a ROC curve and the AUC. Once all folds

are completed the mean AUC and standard deviation (SD) was calculated.

We used a voting classifier ensemble builder from mlxtend [109] with

majority voting (hard voting) and each base classifier had equal weighting.

Where possible we prefit the base classifiers as the mlxtend algorithm we

used does not allow classifiers to be fit in parallel and thus is time consuming.
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Table 5.1: Feature sets for each classifier generated by appying thresholds.

75% threshold 50% threshold 25% threshold

Features

K
N
N

R
F

N
N

L
R

N
B

D
T

K
N
N

R
F

N
N

L
R

N
B

D
T

K
N
N

R
F

N
N

L
R

N
B

D
T

CAI ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
C ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

L aa ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
S ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

ARO ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
MW ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
H ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
R ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Y ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
P ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
W ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
P-3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

BASE ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
K ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
ISO ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

AROM ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
P-7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

TMAA ∗ ∗ ∗ ∗ ∗ ∗ ∗
P-10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
TM60 ∗ ∗ ∗ ∗ ∗ ∗ ∗
ALIP ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
M ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
V ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
P-5 ∗ ∗ ∗ ∗ ∗ ∗ ∗
HYD ∗ ∗ ∗ ∗ ∗ ∗ ∗
CYT ∗ ∗ ∗ ∗ ∗ ∗

SMALL ∗ ∗ ∗ ∗ ∗ ∗ ∗
POL ∗ ∗ ∗ ∗ ∗ ∗ ∗
RARE ∗ ∗ ∗ ∗ ∗ ∗
P-30 ∗ ∗ ∗ ∗ ∗ ∗ ∗
C3s ∗ ∗ ∗ ∗ ∗ ∗
TMH ∗ ∗ ∗ ∗ ∗ ∗

I ∗ ∗ ∗ ∗ ∗ ∗
CELL ∗ ∗ ∗ ∗ ∗ ∗
P-15 ∗ ∗ ∗ ∗ ∗ ∗ ∗
ACID ∗ ∗ ∗ ∗ ∗ ∗ ∗

E ∗ ∗ ∗ ∗ ∗ ∗
Q ∗ ∗ ∗ ∗ ∗ ∗

P-20 ∗ ∗ ∗ ∗ ∗ ∗
TM60H ∗ ∗ ∗ ∗ ∗
TINY ∗ ∗ ∗ ∗ ∗ ∗

F ∗ ∗ ∗ ∗ ∗ ∗
A3s ∗ ∗ ∗ ∗ ∗ ∗
G3s ∗ ∗ ∗ ∗ ∗ ∗
GC ∗ ∗ ∗ ∗ ∗ ∗
T3s ∗ ∗ ∗ ∗ ∗ ∗

CHAR ∗ ∗ ∗ ∗ ∗ ∗
D ∗ ∗ ∗ ∗ ∗ ∗

OUTM ∗ ∗
L ∗ ∗ ∗ ∗ ∗ ∗

CBI ∗ ∗ ∗ ∗ ∗
STRAND
PERI
A ∗ ∗ ∗ ∗ ∗ ∗

NONP ∗ ∗ ∗ ∗ ∗ ∗
T ∗ ∗ ∗ ∗ ∗ ∗

EXT ∗
CYTM
GC3s
Fop
Total 5 4 4 4 4 3 30 23 23 23 23 22 54 55 55 55 55 57
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5.3 Results

In Table 5.1 are the results for the ensemble method tested on DEG with

10-fold cross validation. The feature sets investigated are the combined

features and thresholds described in Section 5.2.1. For the largest features

sets, combined and 25%, the RF classifier generates the highest avAUC

with values of 0.690 and 0.745 respectively. Whereas, for the smaller 75%

and 50% sets the highest avAUCs of 0.849 and 0.860 were produced by

our ensemble model. The results for the combined, 75% and 25% feature

subsets all sit within 1 SD of the highest avAUC.

The resulting highest avAUC combination was the ensemble model with

the 50% feature subset with a value of 0.860, with the three other ensem-

ble models within 1 SD. For the 50% feature subset the NN, LR and NB

classifiers performed worse, i.e. their avAUCs sit outside 1 SD, than our

ensemble model.

Table 5.2: Performance of the ensemble method on the DEG dataset using
the subsets of combined features, and the thresholds created by applying
the thresholds 75%, 50% and 25%. The average AUC (avAUC) for all 10-
folds and the standard deviation (SD) are shown. In bold are the highest
average AUC scores for each subset.

Classifiers Combined 75% 50% 25%
avAUC SD avAUC SD avAUC SD avAUC SD

NN 0.556 0.137 0.602 0.072 0.675 0.051 0.562 0.137
KNN 0.572 0.104 0.747 0.057 0.798 0.070 0.605 0.109
LR 0.626 0.070 0.622 0.093 0.653 0.057 0.642 0.073
RF 0.690 0.118 0.843 0.096 0.858 0.101 0.745 0.113
NB 0.618 0.070 0.611 0.090 0.650 0.053 0.627 0.065
DT 0.601 0.081 0.804 0.078 0.808 0.076 0.605 0.079

Ensemble 0.665 0.129 0.849 0.092 0.860 0.085 0.690 0.131
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5.4 Discussion of ensemble DEG results

As mentioned in Section 2.4.1, through combining multiple classifiers it is

possible to achieve more accurate predictions compared to using single clas-

sifiers. It is based on the idea that an error in a single inducer will be

compensated for by the other classifiers and improve the prediction perfor-

mance [72, 73]. This can be clearly observed in the results for the models

built using the 75% and 50% threshold feature sets, Table 5.2, where the

ensemble avAUCs are higher than those for the individual base learners.

Through combining the top performing subsets for each classifier and

studying the most selected features we were able to improve the AUC per-

formances for all 6 base learners. We were able to achieve this performance

increase while simultaneously reducing the number of features from 62 to 22

- 30, Table 5.1. This idea of improving classifier performance with reduced

features is the focus of feature selection.

The RF classifier can perform better, than other classifiers, with a larger

number of features as it carries out feature selection and ranks the features

as part of its classification and it is also an ensemble. It is also less affected

by multicollinearity. This may explain why is performs better, than the

other base learners, with the higher number of features in the combined

and 25% threshold feature sets.

The number of features for the base classifiers is between 22 - 30, in-

terestingly for the reliefF and SFS-DT subsets which selected around the

same number of features at 19 and 26, the performance of the subsets was

significantly worse than all the others. This highlights the importance of the

features used to train the classifiers, even if they have links to essentiality.

A comparison of the ensemble models performance with previous studies

is shown in Table 5.3. Overall, for 40 bacterial studies our ensemble method

was able to reduce 62 to 23 - 30 and improve the avAUC to 0.860. In

comparison, Liu et al. [80] used LASSO to reduce the number of features

from 57 to 40, while maintaining the AUC of all features. Using an optimised

SVM trainied with 31 bacterial organisms they achieved an AUC of 0.794.

Deng et al., applied an ensemble where all 4 base classifiers were trained

with the same feature sets. They were able to achieve AUCs of 0.89 and

0.93 using only 10 and 13 feature respectively. However their method was

applied using cross validation within the same organisms. Therefore the

datasets were small compared to ours and previous studies, with only 3308

and 4289 instances available for training and testing.

From Table 5.3 we observe that our model produces higher AUCs for
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Table 5.3: Performance comparison of ensemble model with previous stud-
ies.

Study Classifiers
Number of

features
Number of
organisms

AUC

Our model Ensemble (Naive 23-30 40 0.860
Bayes, kNN,
Decision Tree,
Logistic Regression,
Neural Network &
Random Forest)

Liu et al., 2017 [80] SVM 40 31 0.794

Ning at al., 2014 [56] SVM 158 16 0.76

Xu at al., 2020 [110] Neural Network 29 31 0.773

Saha et al., 2006 [51] Ensemble 13 1 0.82
(Weighted kNN
& SVM)

Deng et al., 2011 [40] Ensemble 13 1 0.93
(Naive Bayes,
Logistic Regression, 10 1 0.89
Decision Tree,
& CN2 Rule)

previous studies also utilising large datasets for generalizability [56,80,110].

The AUC for our ensemble model matches previous studies that apply en-

semble methods [40,51].



57

5.5 Ensemble validation

This is a test to see how well the ensemble models generalise to the organisms

from the online gene essentiality database (OGEE) dataset.

5.5.1 Method

In the ensemble framework each of the base classifiers was trained using the

whole of the DEG dataset and the relevant feature subset. The features

were scaled before training using a Min-Max scaler with a range of -1 to 1.

The classifiers had the same default parameters as the feature selection step

(the trained classifiers models were also stored). Each trained base classifier

was then passed to the ensemble meta-classifier, implemented from mlxtend,

where they are then used to predict the gene essentiality for the individual

organisms within the OGEE dataset. The base classifiers predict the prob-

abilities of each gene being essential or non-essential. The ensemble model

combines the results from each base classifier and then votes to produce

a essentiality prediction. Our ensemble model uses majority voting (hard

voting) and each base classifier has equal weighting. The performance of

the ensemble model is evaluated using the AUC value for a ROC curve. The

confusion matrix for each classifier was saved so other evaluation methods

can be calculated, e.g accuracy or specificity. Data to generate the ROC

curves was also stored.

Input Dataset - DEG

Trained Ensemble Classifier

Input combos

OGEE Dataset
C1 + FS3 C2 + FS1

Predict

Classifier , fs method
C1, FS3
C2, FS1
:       :

Evalution (AUC)

train

OGEE Results

Organism, AUC
Org1, 0.4
Org2, 0.8
    :       :

Validation

Per organism

Figure 5.2: Outline of the method used to test the performance of the
ensemble algorithms on the OGEE dataset organisms.
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5.5.2 Results

Every organism in the OGEE dataset was predicted with each base classifier

and subset model and the AUC scores are shown in the sections below. As

both of the online databases contain data on model organisms, 25 out of 33

of the OGEE organisms are in the DEG dataset (using the names provided

to match). To aid understanding of the results the remaining organisms in

OGEE have been split into the following three groups:

� Same species - most closely matched to an organism in the DEG train-

ing set, Salmonella enterica CT18

� Same genus - Burkholderia cenocepacia, Francisella tularensis and My-

coplasma pneumoniae

� No matches - the least closely matched to any organisms in the train-

ing set, the results for these are of the most interest, Neisseria gonor-

rhoeae, Rhizobium leguminosrum and Yersinia pestis

Combined feature sets

The results for the classifier and combined feature sets are shown in Figure

5.3. As expected from Table 5.2 the RF classifier generally has the highest

AUC values, followed by our ensemble model. The NB classifier generally

has the worst AUC performance.

For the same species group RF had a higher AUC than the ensemble.

The same applies to B. cenocepacia and F. tularensis from the same genus

group. However for M. pneumoniae the NN clasifier had the highest AUC.

For the group with no matches, for 2 of the organisms NB gives the best

performance, but for one it was the ensemble.
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Figure 5.3: The AUC results for each OGEE organism for all features.
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Thresholds

The results for the classifier and threshold subsets are shown in Figures 5.4

- 5.6. For the 75% feature subset the general performance of the classifiers

match the DEG cross validation results, with the RF, DT and ensemble

classifiers performing the best. The prediction performance of the kNN

classifier is also improved.

For the 50% feature subset the general performance of the classifiers

match that of the 75% feature subset with the RF, DT and ensemble clas-

sifiers performing the best. The NN, RF and NB generally have the lowest

performances. The AUC values for the organisms are overall higher than the

3 other feature sets. For all of the organisms in the third group which had

no matches in DEG, the ensemble model has the best performance, produc-

ing AUC scores of 0.645, 0.805 and 0.757. It also has the best predictions

for M. pneumoniae.

At a threshold of 25%, the all the models produce worse AUCs. As ex-

pected the RF classifier has good prediction performance for the organisms.

The NN and NB classifiers produce the worst predictions for the validation

data. The best predictions for M. pneumoniae, are produced via the 75%

and 25% NN classifier.
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Figure 5.4: The AUC results for each OGEE organism with a 75% threshold.
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Figure 5.5: The AUC results for each OGEE organism with a 50% threshold.
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Figure 5.6: The AUC results for each OGEE organism with a 25% threshold.
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5.5.3 Discussion of ensemble validation

In this part of the project we set out to validate the ensemble models created

with previously unseen data, the OGEE dataset. We were unable to validate

our models by running them on the same datasets as previous studies as

the data within these studies was available to us within the time-frame of

the project. While the papers do contain the organism names, they do not

contain the NCBI accession or version IDs which allow to use the exact

data. Where DEG has been used previous versions of the database were

unavailable to us, as was the version history.

For all 4 ensemble methods the model built with the 50% threshold

features produced better results for the validation data overall. This result

fits with the general theory of feature reduction improving the generalization

ability of a classifier. This point can be further observed in the large AUC

increase overall for the kNN and DT base classifiers at the 75% and 50%

subsets.

The RF classifier has better predictions for organisms already in the

training dataset but not for those that are not. This is most likely because

the classifier is over-fitting due to the default parameters in scikit-learn [111].

Looking at the base classifiers, for the organisms not in the training data,

we observe that for each organism a different base classifier performs the

best. However, when the results are combined in the ensemble we observe

that combining classifiers can compensate for the errors in others. Of the 7

organisms, 5 have higher ensemble AUCs than those of the base inducers.

The exceptions are S. enterica CT18 which is expected as it is a closely

related to the strains in the training data, so the RF classifier has the best

AUC. Interestingly, the other exception is B. cenocepacia for which the

kNN classifier performs better. Applying an ensemble method compensates

for these differences in classifier preference for specific organisms and still

produce reasonable predictions for a wide range of unknowns.

There is an anomalous low AUC spot for the H. influenzae and H.

pylori organisms, this is most likely due to data in the validation set being

determined under different conditions for that of the training set. This is

one of the main limitations of computational methods where the conditions

for the experimental studies must be thoroughly checked.

Looking at the combined set of all features against the 25% threshold we

see an interesting pattern where the removal of just a few features causes a

large decrease in AUC for the NB and NN classifiers.

A comparison of the ensemble validation results to previous studies is
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Table 5.4: Performance comparison of ensemble model with previous stud-
ies.

Study Classifiers
Number

of
features

Number
of

training
organisms

AUC
(avAUV)

Our model Ensemble (Naive 23-30 40 0.645 - 0.933
Bayes, kNN, (0.742)
Decision Tree,
Logistic Regression,
Neural Network &
Random Forest)

Liu et al., 2017 [80] SVM 40 30 0.531 - 0.901
(0.710)

Deng et al., 2011 [40] Ensemble 9 1 0.69
(Naive Bayes,
Logistic Regression, 10 1 0.80
Decision Tree, - 1 0.80
& CN2 Rule)

Xu at al., 2020 [110] Neural Network 29 30 0.534 - 0.839
(0.698)

Hua et al. [112] SVM 24 24 0.786

Azhagesan et
al,. [113]

Random Forest 100 26 0.566 - 0.911

(0.788)

shown in Table 5.4. Our AUC scores for our validation results, for the 7

organisms not in the training dataset, range from 0.645 - 0.933 with an

avAUC 0.742. Liu et al. evaluated using a leave-one-genome-out (LOGO)

out method and achieved avAUCs of 0.710. An important note for the

LOGO method is that the validation data (the genome left out) is present

during feature selection.

Deng et al. compared 3 organisms one against the other and achieved

AUCs of 0.69 - 0.80, using an ensemble method of 4 base classifiers trained

with the same feature sets. The method optimises the features selected for

each comparison.

The avAUC of our ensemble model sits in the middle of other studies

that also use a large number of training organisms to improve generalisation

[80,110,112,113].
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5.6 Chapter summary

In this chapter we applied thresholds to the combined feature sets to in-

vestigate the performances of the most frequently selected features. These

subsets were used to create an ensemble method which was built and trained

using the DEG dataset and tested with 10-fold cross validation. Then the

ensemble model was validated with individual organisms from the OGEE

database. Our results showed that for the model built with features se-

lected at a frequency of at least 50% the ensemble model performed better

than the base learners. This model also produced the highest AUC scores

for the unseen validation data. Our method is able to generalise to unseen

data as well as previous studies while requiring less input information than

other models. This is an important point for a models application to new

organisms for which little to no information is available.



Chapter 6

General Discussion and

Conclusions

6.1 Introduction

This final chapter brings together evaluations and discussions from the pre-

vious chapters for a general discussion of the thesis. We outline some future

directions for research based on this project and some final conclusions.

6.2 General discussion

The motivation for this project was to provide a faster way to identify gene

essentiality in organisms of interest in synthetic biology. Our approach to

this, and the core aim of this thesis, was to develop an ensemble method

using multiple classifiers and feature sets. To achieve this a number of

objectives needed to be achieved and this section discusses the progress

made towards these objectives.

In Chapter 2 we addressed the first objective and identified classifiers

and features commonly applied to the computational identification of es-

sential genes by conducting a thorough literature search. From this search

we collated a list of 62 sequence based and derived features and 7 com-

monly used classifiers. One of the problems identified from the literature

was the use of small datasets in the studies. Training sets of a small num-

ber of organisms, usually one or two, result in models overfitting and not

generalizing well to unseen data.

To address this problem and produce a model that could be used to

predict essentiality in a range of organism, we needed to gather as much

essentiality data as possible. Chapter 3 describes the labeled data we gath-
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ered to satisfy the second objective. We were able to gather 40 organism

studies from DEG to use for building and training models and a further 33

studies from OGEE to validate the model. We only used the two online

databases as it is difficult to match conditions between individual studies as

there is no standardized approach for reporting results making paper min-

ing difficult and time consuming. The DEG and OGEE databases primarily

contain studies based on the ‘ideal’ conditions we use for our definition of

essential genes.

Chapter 4 was an important step towards achieving our core aim. The

first half of the chapter describes the 62 features generated for each gene.

In the second half of the chapter we applied 18 different feature selection

methods and studied how often each feature was selected. We then went on

to study the AUC performance of these generated subsets on 7 classifiers.

Our results showed that there was no single feature subset that performed

significantly better than another, for the classifier there were between 10

to 17 feature subsets that performed best. While our methods allowed us

to see which features were more frequently selected they do not allow us

to gain meaningful insight into feature importance.As understanding this

aspect of machine learning could help us improve our ensemble models it is

an important line of future research.

The best performing subsets for each classifier were combined and car-

ried forward to develop our ensemble method described in Chapter 5. We

applied thresholds to the combined feature sets to generate subsets of fea-

tures that were selected at a frequency of least 75%, 50% and 25%. The 3

threshold feature sets and combined feature set were then used to build and

train 4 ensemble models, along with the DEG dataset. Evaluation of the 4

ensemble models through 10-fold cross validation showed that feature selec-

tion improved the AUC scores across all 7 classifiers. Our also showed that

for the 75% and 50% threshold subsets the ensemble models perform better

than the individual base learners. Of all the classifiers and feature set com-

binations the ensemble model trained with features selected at least 50% of

the time produced the highest avAUC of 0.860. Compared to the literature

our ensemble model produces higher AUCs than other studies utilising large

datasets for generalizability [56,80,110]. Also the avAUC for our ensemble

model matches previous studies that apply ensemble methods [40,51].

All 4 ensemble models were validated using individual organisms from

the OGEE dataset. It is important to note that because some of the organ-

isms in the OGEE dataset were also present in the DEG training dataset

the AUC scores for these organisms is very high. As the results for these
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organisms do not provide a true evaluation of the ensemble models our val-

idation results focus on the 7 organisms not present in the training dataset.

As expected of all 4 ensemble models the model trained with features se-

lected at least 50% of the time performed best. For the 7 organisms of

interest the model produced AUC scores of 0.645 - 0.933, overall our en-

semble models performs better than previous studies which applied a single

optimised classifier [80,110]. While the AUCs of our model sit in the middle

of other studies that use a large number of training organisms to improve

generalisation [80, 110, 112, 113] our model requires less input information

making it an ideal candidate for the prediction of genes in new or hard to

culture bacterial organisms.

6.2.1 Discussion of evaluation matrix

As covered in section 4.4.1, we used the area under the ROC curve to

evaluate our classifier models. This is commonly used for evaluating binary

classifiers and is calculated using the false positive and true positive rates.

A limitation of this metric is that for imbalanced classes the model may

seem more useful for predictions that it actually is. This is because when

dealing with imbalanced classes the classifier can predict everything as the

larger class and still give good performance when measured using the ROC

metric. In these cases precision-recall curves can provide a better insight

into performance as it is a measure of how good the model is at predicting

the positive class, in our case it would be the essential genes as the minority

class [114].

Our research was based on previous studies in which the ROC curve met-

ric was applied to measure the performance of models with balanced classes.

However during the project it was decided that for laboratory experiments

identifying the non-essential genes is equally important for targeting genes

and as a result we choose not address the class imbalance. This meant

our classes had a ratio of 1:6, essential to non-essential genes. Due to the

context of the research changing, applying the Precision-Recall AUC metric

would have provided a deeper insight into the performance of our models.

As this cannot be addressed with the time and funding available it should

form the start point of any future work.



70

6.3 Future work

6.3.1 Further development of ensemble

Although the aims of our project were addressed, there remains areas of

the method which could be improved and also factors that may improve the

performance of the ensemble model. We would firstly need to incorporate

a support vector machine classifier, with different kernels, to base inducers.

SVMs can produce models with good generalisation and are widely used

for gene prediction. Further investigations into feature subsets at smaller

frequency of selection thresholds could produce insight into which types of

features perform best with particular classifiers.

In important aspect is the voting system applied to the base learners.

The results can be combined in a number of different ways, including dif-

ferent voting systems and the base classifiers can be given different weights,

i.e. the results of some classifiers hold more importance than than others.

Weights could be assigned depending on the classifiers overall performance.

6.3.2 Evolutionary distance

The problem of predicting essential genes as the evolutionary distance in-

creases between the training organisms and target organism is a ongoing

problem in synthetic biology. An interesting study would be to evaluate

how not only the ensemble performs with increasing evolutionary distance

but also the base learners. Increasing the voting weights of classifiers de-

pending on evolutionary distance may increase the scope of our model.

6.4 Conclusions

In conclusion, an ensemble method for the prediction of essential genes in

bacteria has been successfully constructed and validated. Through the de-

velopment of the method, we uncovered interesting relationships between

features linked with gene essentiality through subsets not previously sug-

gested in the literature. The results in this work will help speed up promising

investigations into the production of greener and sustainable petrochemical

replacements.



Glossary

Amino Acid Molecules which have the same basic structure but a dif-

ferent R-group for each of the 20 amino acids. Amino acids sequences or

chains are determined by the gene sequence.

Codon A sequence of 3 nucleotides which correspond to a specific amino

acid during the synthesis of a protein.

Gene A sequence of base organic molecules (see nucleotides) that encode

for the synthesis of product.

Genome The complete set of DNA within an organism.

Helix / Helices In this project we specifically discuss protein helices,

which are a spiral chain of amino acids within a protein.

mRNA A molecule produced from the original DNA version of a gene

from which a protein can be made. Unlike DNA, mRNA is able to leave the

protected nucleus of a cell, where all the genetic information is contained,

and move into areas where proteins are synthesized.

Nucleotides Organic molecules which are the units of DNA and RNA

(see mRNA). There are 4 bases: adenine (A); thymine (T); cytosine (C)

and guanine (G). They form base pairs of A-T and G-C.

Paralogs Copies of a gene on the same genome.

Protein Molecules made of one or more chains of amino acids.

Sequencing We use this term to refer to the process of determining the

order of nucleotides within DNA. There are many different methods for this

process but as they are not relevant for our project, we use it as an umbrella

term to encompass the processes in general.

71



72

Subcellular localisation Cells are split into distinct regions. Some pro-

teins have functions distinct to a region and are therefore found there in

higher numbers.

Transmembrane A term used to describe a molecule which spans the

whole membrane. Meaning that an end of the molecule is present on either

side of the membrane.

Expression Also referred to as gene expression, expression is a measure

of how often a gene is copied from the genome into mRNA.



Chapter 7

Appendix

A - Organisms excluded from DEG dataset

Listed in Table 7.1 are the bacterial studies excluded from the final DEG

dataset.

Table 7.1: Organisms excluded from the DEG dataset.

Organism Reason for exclusion

Streptococcus pneumoniae No non-essential genes present

Pseudomonas aeruginosaPAO1 Required in the presence of To-
bramycin

Mycobacterium tuberculosis H37Rv
II

Required for cholesterol metabolism

Salmonella enterica serovar Typhi Required for bile acid tolerance

Streptococcus pyogenes MGAS5448 Todd-Hewitt medium

Streptococcus pyogenes NZ131 Todd-Hewitt medium

Salmonella enterica serovar Ty-
phimurium 14028S

Required for bile acid tolerance
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[99] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent

Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter

Prettenhofer, Ron Weiss, and Vincent Dubourg. Scikit-learn: Ma-

chine learning in Python. the Journal of machine Learning research,

12:2825–2830, 2011.

[100] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland,

Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,

Warren Weckesser, and Jonathan Bright. SciPy 1.0: fundamen-

tal algorithms for scientific computing in Python. Nature methods,

17(3):261–272, 2020.

[101] Mark Andrew Hall. Correlation-based feature selection for machine

learning. 1999.

[102] J Peden. CodonW. Trinity College, 1997.

[103] Ruth Hershberg and Dmitri A Petrov. General rules for optimal codon

choice. PLoS Genet, 5(7):e1000556, 2009.

[104] Jeffrey L Bennetzen and Benjamin D Hall. Codon selection in yeast.

Journal of Biological Chemistry, 257(6):3026–3031, 1982.



84

[105] Francisco Melo. Area under the ROC Curve BT - Encyclopedia of

Systems Biology. pages 38–39. Springer New York, New York, NY,

2013.

[106] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A

training algorithm for optimal margin classifiers. In Proceedings of

the fifth annual workshop on Computational learning theory, pages

144–152, 1992.

[107] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant.

Applied logistic regression, volume 398. John Wiley & Sons, 2013.

[108] Manoranjan Dash and Huan Liu. Feature selection for classification.

Intelligent data analysis, 1(3):131–156, 1997.

[109] Sebastian Raschka. MLxtend: providing machine learning and data

science utilities and extensions to Python’s scientific computing stack.

Journal of open source software, 3(24):638, 2018.

[110] Luo Xu, Zhirui Guo, and Xiao Liu. Prediction of essential genes in

prokaryote based on artificial neural network. Genes and Genomics,

42(1):97–106, 2020.

[111] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[112] Hong Li Hua, Fa Zhan Zhang, Abraham Alemayehu Labena, Chuan

Dong, Yan Ting Jin, and Feng Biao Guo. An approach for predict-

ing essential genes using multiple homology mapping and machine

learning algorithms. BioMed Research International, 2016, 2016.

[113] Karthik Azhagesan, Balaraman Ravindran, and Karthik Raman.

Network-based features enable prediction of essential genes across di-

verse organisms. PLoS ONE, 13(12):1–13, 2018.

[114] Jesse Davis and Mark Goadrich. The relationship between Precision-

Recall and ROC curves. In Proceedings of the 23rd international con-

ference on Machine learning, pages 233–240, 2006.


	Acknowledgments
	Abstract
	Abbreviations
	Introduction
	Introduction
	Background and motivation
	Aims and objectives
	Research questions
	Organization of the thesis

	Literature Review
	Introduction
	What is an essential gene?
	Different types of essentiality

	In vivo prediction methods
	Machine learning approaches
	Ensemble approaches
	Summary of the literature

	Other in silico prediction methods
	Chapter summary

	Gene Essentiality Data
	Introduction
	Method
	Database of essential genes
	Online gene essentiality database
	Chapter summary

	Determining the Classifier Feature Sets
	Introduction
	Initial feature generation
	Classifier and feature selection algorithms
	Classification algorithms
	Feature selection algorithms

	Feature selection method
	Evaluation method

	Features subsets generated
	Classifiers with feature subsets results
	Combining top performing feature subsets
	Discussion of feature subsets
	Chapter summary

	Ensemble Method
	Introduction
	Ensemble design
	Classifier and feature combinations
	Method

	Results
	Discussion of ensemble DEG results
	Ensemble validation
	Method
	Results
	Discussion of ensemble validation

	Chapter summary

	General Discussion and Conclusions
	Introduction
	General discussion
	Discussion of evaluation matrix

	Future work
	Further development of ensemble
	Evolutionary distance

	Conclusions

	Glossary
	Appendix

