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Abstract

Computational methods provide important contributions to modern drug

discovery projects. In this thesis, we discuss the insights into protein-ligand

interactions afforded by methods such as molecular docking, molecular dy-

namics (MD) and alchemical free energy calculations, which expedite the

process of lead compound design and optimisation. These methods are ap-

plied to two case studies of biomolecular systems of therapeutic interest. The

targets of the studies are the integrin αvβ6 and the bromodomain-containing

protein 4 (BRD4). As the accuracy of molecular mechanics based methods

relies on the quality of the force field in which the potential energy is calcu-

lated from,we focus ondeveloping force field parameters for a series of small

molecule inhibitors of αvβ6. Parameters are then applied to MD and rela-

tive free energy perturbation (FEP) simulations. MD simulations highlight

the importance of hydrogen bonds, metal chelate interactions and cation-𝜋

interactions between the compounds and αvβ6. FEP simulations predict rel-

ative binding affinities for these compounds with an average accuracy of 1.5

kcal mol−1, when compared to experiment.

Initial protein structure and the inclusion of crystallographic water

molecules can have an impact on the accuracy of computational predictions.

To aid the selection of X-ray crystal structure of the first bromodomain (BD1)

of BRD4 for the starting point of any in silico study, an analysis of the struc-

tures available in the Protein Data Bank was performed. To validate this

analysis, molecular docking and absolute FEP simulations were employed.

Docking showed that 82% of ligand poses were better predicted when in-
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cluding a network of water molecules in the binding site of BRD4-BD1. We

also investigate how the alchemical perturbation methods, relative FEP and

multisite lambda dynamics (MS𝜆D) compare in the prediction of relative

binding affinities when targeting BRD4-BD1. Although the accuracy of the

two methods was very similar, an average of 0.6 kcal mol−1 from experi-

ment for both, the computational demand ofMS𝜆D is significantly less, with

90% less simulation time required. Therefore, this study provides a founda-

tion for the investigation of novel inhibitors of BRD4 using MS𝜆D. Overall,

the work presented in this thesis demonstrates the application of molecular

docking, MD and predictions of binding free energy in drug discovery.
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Chapter 1

Drug Discovery

1.1 The drug development process

Modern drug discovery has a hugely positive impact on the quality and

longevity of human life.1,2 A topical example includes dexamethasone, the

first drug to show life-saving efficacy in patients infected with COVID-19.3

The repurposing of dexamethasone, a drug to treat skin diseases and se-

vere allergies among other things,4 has been shown to reduce the number of

COVID-19 related deaths by 35% in patients who require mechanical venti-

lation.5 However, developing a new pharmaceutical product is a time con-

suming and expensive task. Figure 1.1 shows the stages of the drug dis-

covery process. In general, the stages become more resource and expense

intensive as they progress. So clear criteria must be met before progression

along the discovery pipeline.6 In the discovery stage, a gene or protein that

plays a significant role in a disease is identified; this is the target. Follow-

ing evaluation of a target for its therapeutic potential and druggability, the

1
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Figure 1.1: A typical drug discovery and development pipeline.

hit discovery process involves assay development and screening to search

for a compound that binds to the target and has the desired effect. High

throughput screening (HTS) is utilised to automate the screening of large

chemical libraries for activity against the target. In the hit to lead process, a

small number of compounds fromHTS are taken forward for evaluation and

these become lead compounds. Establishing which chemical series have the

potential to become a drug candidate is an important decision as consider-

able amounts of synthetic resources are needed in lead optimisation. Lead

optimisation involves small modifications being made to the compound to

maximise potency against the target and optimise properties for the route

of administration and target location. Figure 1.2 shows an example of lead

optimisation of a scaffold to inhibit integrin αvβ6, a protein linked to the

initiation of idiopathic pulmonary fibrosis (IPF).7 The R substituent on the

aryl ring is modified to increase the potency of the compound towards the

target.8 Potency is measured by pIC50, which is the negative log of the half-

maximal inhibitory concentration (IC50) and represents the concentration of
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Figure 1.2: Activity8 of aryl substituted derivatives of a lead scaffold in αvβ6
integrin cell adhesion assays. All compounds are racemic unless specified.

the drug that is required to achieve 50% reduction in activity of the target.

A pIC50 of ≥ 8 is desirable in lead discovery. However, it is important to

consider the associated error of 0.3 for experimental pIC50 measurements,

meaning that a least four of the compounds in Figure 1.2 are equivalent in

potency.

There are opportunities to be smarter about the selection of compounds

that are synthesised and tested before and during lead optimisation. The

search for maximum potency, facilitated by HTS, often neglects the need for

optimal physicochemical properties to make a compound drug-like.9 Lipin-

ski’s rule of five10 sets out a series of characteristics for an oral drugmolecule

and should be applied in the selection of lead compounds. Despite this, a re-

cent appraisal of these rules considers that they should be used only as guid-

ance, with room for compromise.9 This is because some properties, such as

molecular weight may not play such an important role, while lipophilicity

control is themost important principle. Computationalmethods such as free

energy calculations present a way to minimise the number of compounds

made in the laboratory, while also giving synthetic chemists the confidence
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to embark on novel and often challenging syntheses.

Once a suitable drug candidate is designed, preclinical research is con-

ducted to test the efficacy and safety of the compound before it is tested in

people. On average, it takes 4.5 years to get to this stage.11 The difficulty

and cost of synthesis can often become a challenge here, as scaling up the

synthesis can have an impact on the commercial viability of the project. If a

compound passes preclinical trials, it enters clinical trials. Phase I of clinical

trials involves healthy volunteer studies, where the pharmacokinetics, ab-

sorption and metabolic effects on the body are tested, as well as testing for a

safe dosage range and side effects. Phases II and III involve studies in patient

populations, where the drug is administered to up to thousands of volun-

teers who have the disease or condition. Once the full story of a compound

shows evidence that it is safe and effective for its intended use, the com-

pound is submitted for licensing approval, and once approved, it becomes

available on the market. Over the last decade, the time taken for a success-

ful drug discovery project was, on average, 8.7 years (±3.8) and cost around

£1.15 billion.12,13 It is estimated that five out of 40,000 compounds tested in

preclinical trials reach human testing and only one in five compounds that

reach clinical trials are approved.14 Furthermore, only three out of ten drugs

that make it to the clinic recover their capital investment.15 Therefore, new

strategies must be employed to improve this process. Computational meth-

ods present a solution for making the timeline of drug discovery smarter,

quicker and cheaper. Each stage of the drug discovery process presents its

own challenges; within this thesis, we focus on the discovery stages.
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1.2 Computer Aided Drug Discovery

In the first section we have described how the search for a novel compound

that balances biological activity and drug like properties is a challenging,

time consuming and expensive task. To expedite and facilitate this process,

computational approaches are now common place in both searching for a

starting point in hit discovery andmaking rational decisions about chemical

modifications to improve a compound’s profile in lead optimisation. The

term computer-aided drug design (CADD) has been adopted for the use of

computers in drug discovery. To appreciate CADD and the modelling of

protein-ligand interactions, it is relevant to cover the concept of structure-

based design.

1.2.1 Structure-based drug design

Biomolecules such as proteins play a critical role in disease progression by

communicating through protein-protein interactions or protein-nucleic in-

teractions. Signalling events or changes in metabolic processes, as a result

of these interactions, can lead to disease.16 Therefore the design of a com-

pound that competitively binds to an active site within a target, to stimulate

or block its activity, is necessary. X-ray crystal structures and NMR struc-

tures of biomolecules not only provide insight on the mechanism of action

of how they function, they also give understanding of the specific interac-

tions to target for efficient binding. This enables the design of small changes

that can be made to a compound that lead to increased activity and selectiv-

ity. Improving the physicochemical properties without compromising these
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features is also important. Selectivity can also be tuned by using structural

information of anti-targets. Atomistic detail of other relevant biomolecules

aids the design of a compound to reduce off-target interactions and improve

the safety and pharmacokinetic profile of the compound.17 The use of pro-

tein structure to design competitive binders has become known as structure-

based drug design (SBDD) and is an established analysis used in drug dis-

covery.6

The Protein Data Bank (PDB) contains a wide variety of macromolecular

structure data.18 Since it was established in 1971, the number of structures

available in the PDB has grown each year (Figure 1.3). Structures include

apoproteins, proteins bound with endogenous substrates and biomolecules

that have more than one structure available, each bound with different in-

hibitors.19,20 The first protein crystal structures around the 1960s, myoglobin,

haemoglobin and lysozome, showed that it is possible to understand pro-

tein function through structure and lay the foundation for SBDD.21–23 An

early example of SBDD involves the work of Matthews et al.,24,25 where

new inhibitors of dihydrofolate reductase (DHFR) were found based on

the structural understanding of protein-ligand interactions between DHFR

and methotrexate. Since then, the development and advancement of CADD

means that modern SBDD projects almost always involve the use of chem-

informatics. For example, the improving predictive power of free energy

calculations aids the calculation of binding affinities between protein and

ligands.26,27 These methods allow lead optimisation type questions to be an-

swered, without synthetic expense. A number of computational methods

that are used in contemporary drug discovery projects are explored in the
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Figure 1.3: Yearly growth of the number of structures available in the RCSB
Protein Data Bank since 1990. [Data taken from http://www.rcsb.org (April
2021).]

following sections.

1.2.2 Molecular docking

Although HTS presents an efficient way to explore chemical space, espe-

cially with recent improvements including target-focused libraries28 and the

recognition of privileged scaffolds,29 it is an expensive technique and often

inaccessible in academia without the help of an industrial collaborator. In

contrast, virtual screening (VS) is a more accessible way in which libraries

of small molecules can be searched for compounds that bind to a therapeu-

tic target. VS is the in silico evaluation of large compound libraries to rank

their viability to bind to the target and meet the physicochemical require-

ments necessary for the project. Molecular docking is the most widely used

validation method for structure-based VS. Starting from a structure of the
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target, which could be an experimental structure or obtained through ho-

mology modelling, compound binding is simulated and a scoring function

is used to estimate the binding affinity. This method assesses which of the

large database of compounds will bind favourably to the target and can gen-

erate new ideas for possible interactions. Figure 1.4 demonstrates themolec-

ular docking of an inhibitor of the bromodomain 1 (BD1) of bromodomain-

containing protein 4 (BRD4). The method consists of two components, a

search algorithm and a scoring function.30 The search algorithm is respon-

sible for searching different poses and conformations of a ligand within the

active site. The scoring function provides a quantitative estimation of the

binding energetics, delineates correct poses from incorrect poses and ranks

different compounds, which is a useful tool for selecting compounds for fur-

ther exploration. However, the accuracy of scoring functions remains a chal-

lenge inmolecular docking. It is estimated that the poses of compounds that

are known to bind to a target are successfully predicted 80% of the time.6 In

contrast, limitations to the scoring function prohibits the relative ranking of

different molecules, leading to many false positives when trying to identify

which ligands bind into a particular binding site. A more comprehensive

explanation of the components of molecular docking is provided in the next

chapter.

Early procedures employed a rigid docking method, where fixed struc-

tures of the ligand and receptor were used. Alberg et al.32 designed a

novel bridging compound (TCsA), which binds to cyclophilin A and FK506-

binding protein 12 simultaneously, through searching in a six-dimensional

rotational and translational space so the ligand would fit in the binding site.
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Figure 1.4: An example of molecular docking. I-BET72631 is docked into its
original crystal structure of BRD4-BD1 (PDB: 4BJX).

TCsA was developed as a lead compound for an immunosuppressive agent

and provided an early understanding of the principles of SBDD, demon-

strating the merits of rigid docking. However, this method does not take

into account ligand or protein flexibility. Proteins are highly dynamic and

possess inherent flexibility so that they can adapt to form interactions and

achieve their function. Therefore, to understand how a compound binds, it

is important to recognise the different conformations of an active site. Fur-

thermore, the entropy loss and changes in internal energy of a flexible ligand

upon binding affect the binding affinity, which is not reflected in the dock-

ing score of a rigid docking protocol.33 These issues were first recognised by

Koshland’s "induced fit" theory34,35 which stated that the ligand and recep-

tor should be treated as flexible during docking as the protein is continually

reshaped by interactions with the ligand as it binds. To accommodate this,

many molecular docking programs have been developed over the years and

flexible ligand and flexible receptor docking procedures are now common
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practice.

Flexible ligand docking involves the use of a flexible ligand and a rigid re-

ceptor. This ismore accurate than rigid docking and is implemented inmany

molecular docking programs such as Flex X,36 OpenEye FRED37 andDock.38

However, side chain flexibility also plays an important role in ligand binding,

as changes in side chain conformation allow the receptor to alter its binding

site according to the orientation of the ligand.33 One way to account for dif-

ferent protein conformations is to use an ensemble of target structures that

reflect different binding site conformations. These could be experimental or

modelled structures. Using this method, Dayam andNeamati39 successfully

predicted the bioactive conformations of S-1360, which was one of the first

HIV-integrase inhibitors to enter clinical trials. Molecular docking programs

have also been developed to model side chain flexibility when only using

one crystal structure. These programs include Gold,40 Glide,41 Autodock

Vina42 and MedusaDock.43 There are many computer-based drug discov-

ery projects that have successfully used these programs.44,45 One example

includes work by Kumari et al.46 who used quantitative structure-activity

relationship (QSAR) models and molecular docking to identify the struc-

tural requirements for the inhibition of PfM18AAP, an important drug tar-

get for the treatment of malaria. Although flexible receptor docking can im-

prove the accuracy of docking, it is more computationally demanding than

rigid docking.47 However, with the development of graphics processing unit

(GPU)-accelerated docking,48 it is becoming amore viable and attractive op-

tion for VS and early drug development projects.

Protein flexibility is not the only recent development that has resulted
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in the increased accuracy, reliability and efficiency of molecular docking.

Other areas of improvements include the consideration of solvent, fragment

docking, nonlinear scoring functions andmachine-learning approaches.49–52

Crystallographic water molecules can be important in molecular docking.

Watermolecules can form strong bonds to the receptor, especially in its active

site. A challenge remains in knowing if it is thermodynamically favourable

to displace water molecules or if the molecules improve the stability of lig-

and binding. The displacement of a crystallographic water molecule is asso-

ciated with a favourable gain in entropy, with the release of a well-ordered

molecule into the bulk solvent. However, the process can also cause a loss

in enthalpy.53 Furthermore, water molecules can increase binding affinity

through mediated hydrogen bonds with the ligand and water networks

throughout receptor cavities. Analysis, performed by Klebe,54 revealed that

in approximately 65%of several thousand complex crystal structures, at least

one crystallographicwatermolecule is involved in ligand binding. Addition-

ally, a systematic study55 on the inclusion of bound water molecules into the

docking program AutoDock4 showed an improvement in docking perfor-

mance across 18 different protein-ligand systems. A further improvement

was seen when water and side chain flexibility were considered. This study

illustrates the importance of a proper treatment of watermolecules inmolec-

ular docking.

Artificial intelligence is a technology that encompasses a set of compu-

tational algorithms that allow machines and computers to simulate human

cognitive abilities such as learning and problem-solving. Machine learning

and deep learning are two sub-fields of artificial intelligence that show im-



Chapter 1: Drug Discovery 12

mense promise in enhancing the efficiency and accuracy of molecular dock-

ing for VS.56 Kinnings et al.57 improved the accuracy of docking scores by ad-

dressing the incorrect assumption that individual interactions contribute to-

wards binding affinity in an additive manner. A machine learning approach

was used to capture the nonlinear cooperative features of noncovalent in-

teractions. Furthermore, a recent study by Gentile et al.58 uses deep learn-

ing (Figure 1.5) as a way to rapidly dock billions of compounds, while still

maintaining accuracy. The approach uses QSAR models trained on a small

subset of docking scores to predict the scores for a much larger database of

compounds.

Molecular docking is a helpful tool in areas of drug development besides

VS. For example, in drug repurposing, which is an efficient strategy for iden-

tifying new uses for existing drugs that are outside the scope of their origi-

nal therapeutic use.59 There are many examples of how molecular docking

has aided the understanding of how a drug can be repurposed for the treat-

ment of COVID-19.60–63 Molecular docking is also commonly used as a basis

for further computational investigations. In the absence of a protein-ligand

crystal structure, molecular docking is often used as a precursor tomolecular

dynamics (MD) simulations and calculations of free energy, which further

develop our understanding of the dynamic nature of protein-ligand interac-

tions.

1.2.3 Molecular dynamics simulations

MD simulations give additional insight into the structural, dynamic and

thermodynamic properties of a molecular system, which cannot be gained
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Figure 1.5: Deep learning approach to molecular developed by Gentile et al.
For the first iteration of the model, a small number of compounds are ex-
tracted from a large database and docked to the target. The docking scores
from the sample compounds are used to build a QSAR deep model. Virtual
hits generated from this model are then used to start iteration two. From
iteration two onward, the deep learning model gradually improves by aug-
menting the training set with randomly sampled virtual hits from the previ-
ous iteration. [Reproduced with permission from reference 58.]

from a static X-ray crystal structure or docked model.64 In this context,

a molecular system usually consists of a solute, typically a protein, sur-

rounded by a solvent such as water. Newton’s classical laws of motion are

solved to show how atom positions vary with time, where the forces acting

on the atoms are calculated using empirical potential energy functions (force
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fields). MD trajectories can show the small fluctuations of protein conforma-

tion within an energy minimum, as well as larger conformational changes

as structures cross energy barriers to other local minima. MD simulations

of protein-ligand complexes can provide important information on the dy-

namic character of an active site and the mechanisms responsible for ligand

recognition, therefore guiding the choice of the best compounds for further

drug development. This method also facilitates the evaluation of binding

energetics and kinetics of protein-ligand interactions. Binding kinetics can

have important pharmacological implications as ligand binding/unbinding

rates have been found to be an accurate predictor of drug activity, in com-

parison with selectivity.65,66

The earliest example of a simulation of a biomolecule was published in

1977 where McCammon et al.67 explored the dynamics of bovine pancre-

atic trypsin inhibitor (BPTI). Figure 1.6 shows the structure of BPTI, a pro-

tein consisting of 58 residues. In the figure, a solvated system is illustrated.

However, the first BPTI simulation was performed in vacuum. Despite this,

and it lasting for only 9.2 ps, this study is seen as instrumental in our un-

derstanding of proteins as flexible structures.68 Since then, MD simulations

have become a popular method to model proteins and a large number of

software packages for MD of biomolecules have been developed, for exam-

ple, CHARMM,69 GROMACS,70 AMBER71 and NAMD.72 MD simulations

are significantly more computationally demanding compared to molecular

docking. However, the recent development of computer hardware and soft-

ware, especially GPU acceleration,73–75 means it is now possible to model

systems of considerable sizes and to achieve microseconds of simulation in
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Figure 1.6: Simulation box of solvated BPTI. Yellow and blue spheres corre-
spond to KCl counter ions. Water molecules are shown as lines.

realistic timescales. A recent example includes a study by Jung et al.,76 who

performed one of the largest and first atomic-scale simulations of an entire

gene, which is composed of one billion atoms.

Although crystallographic structures are a good way to investigate

protein-ligand complexes, MD simulations provide a more thorough evalu-

ation of the interactions of a hit compound with a target, which leads to the

rational design of more effective inhibitors. For example, selective inhibitors

of phosphodiesterase-2A (PDE2A) are potential therapeutic targets for the

treatment of Alzheimer’s disease and pulmonary hypertension. Zhang et

al.77 used a combination of VS, molecular docking and MD simulations to

design a novel compound, which inhibits PDE2A with high affinity. MD

simulations showed additional interactions formed by the compound with

the active site, compared to common interactions formed by previous in-
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hibitors, which guided the structural modification of the hit compound. A

further example of how understanding the binding site of a target, through

MD, can lead to new strategies for inhibitor design is reported by Durrant et

al.,78 who performed the first all-atom simulation of the influenza virus. MD

simulations were used to quantify the kinetics of the transition between the

open and closed conformation of the active site, providing important insight

into how to develop anti-influenza therapeutics.

To drawmeaningful conclusions fromMD simulations, it is important to

have an adequate sampling of conformational space. Enhanced sampling

methods, such as replica-exchange,79 metadynamics80 and simulated an-

nealing,81 enable the simulation of time consuming processes, which are

not always achievable to model using standard MD. For example, the es-

cape from non-relevant conformations with high barriers along the poten-

tial energy surface (PES), protein folding and ligand binding events.82 The

ability to model ligand binding and unbinding, provides information on the

binding kinetics. Binding kinetics are characterised by the association rate

constant (kon) and the dissociation rate constant (koff ), or residence time

(𝜏).83 High residence times mean the compound interacts with the target

for a long time and therefore has increased physiological effects. Further-

more, compounds with high kon rates are effective competitors as they have

the potential to bind faster than other ligands. However, it should be noted

that this is only the case under certain circumstances when in vivo. There

can be additional factors to consider such as diffusion rates and the binding

mechanism.84 Nevertheless, the ability to design compounds with desirable

kon and koff rates, can lead to the design ofmore effective and safer drugs. An
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example of calculating binding rates through enhanced sampling is a study

by Gobbo et al.85 The combination of an electrostatic-like collective variable

with adiabatic bias MD achieved a good agreement between computational

and experimental measures for a series of glycogen synthase kinase 3 beta

inhibitors.

A limitation of MD simulations is that they cannot be used to model the

finer details of chemical reactions, as they cannot properly handle bond-

forming and breaking events. This can hinder the study of enzyme activ-

ity, for example, as enzymes create chemical reactions in the body such as

destroying toxins and breaking down food particles during digestion. How-

ever, changes in bonding can be studied using quantum mechanics (QM).

QM is considerably more computationally demanding than molecular me-

chanics (MM) methods such as MD and it is unrealistic to model an en-

tire biomolecule such as a protein or enzyme at the quantum level. There-

fore, hybrid QM/MM methods present a solution. In QM/MM, the active

site, including all residues and chemical groups that play a role in the re-

action, are modelled by QM. The remaining protein and solvent are mod-

elled by MM, most commonly using MD.86 Figure 1.7 shows an example of

a QM/MM setup.87 QM/MMcan also aid the development of drugs. Staphy-

lococcus aureus is a bacterium that can cause several life-threatening diseases

such as pneumonia, meningitis and toxic shock syndrome.88 Its antibiotic

resistance is linked to a gene, fmtA. Dalal et al.89 used a combination of VS,

molecular docking, MD, MM-generalised Born surface area (MM-GBSA)

and QM/MMmethods to develop compounds that target fmtA. MM-GBSA

(more on this method in the next section) and thermodynamic results from
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Figure 1.7: An example representation of a QM/MM biocatalytic system.
[Reproduced with permission from reference 88.]

QM/MM revealed active site residues to target to form stable protein-ligand

complexes.

MD simulations facilitate the calculation of protein-ligand binding free

energies. These types of calculations have a considerable impact on the

hit to lead and lead optimisation stages of drug development, as they pro-

videmore accurate estimations of compound activity compared tomolecular

docking. Free energy calculations are discussed in detail in the next section.

1.2.4 Free energy calculations

Designing a compound that binds competitively and strongly is crucial in

drug development. The amount and types of interactions between a protein

and a ligand are a key component of activity, and these interactions can be

quantified by the free energy of binding (Δ𝐺𝑏𝑖𝑛𝑑). Conventional free energy

changes (Δ𝐺) describe the thermodynamic and kinetic properties of a sys-
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tem and are representations of the energy released or required for a chemical

process. Therefore, Δ𝐺 can be used as a measure of the stability of a system

and Δ𝐺𝑏𝑖𝑛𝑑 relates specifically to the stability of a protein-ligand complex

or ligand binding affinity. Free energy calculations estimate Δ𝐺𝑏𝑖𝑛𝑑 based

on the principles of statistical thermodynamics. These calculations are of-

ten based onMD simulations and are computationally more expensive than

traditional scoring methods in molecular docking. However, unlike dock-

ing, free energy calculations account for the energetic and entropic effects of

ligand binding and produce significantly more accurate results.

There are many different methods, which range in computational ex-

pense, to approximate ligand Δ𝐺𝑏𝑖𝑛𝑑 .64,90 Less computational demanding

methods include the MM Poisson-Boltzmann Surface Area (MM-PBSA)91

and MM-GBSA approaches.92 In MM-PB(GB)SA methods, only the bound

and unbound states of the system are used to estimate binding free en-

ergy, compared to using information on the pathway connecting the two

states. Therefore, these are classed as end-point methods. The balance be-

tween computational efficiency and accuracy make MM-PB(GB)SA attrac-

tive methods in SBDD.93 Early examples of MM-PB(GB)SA date back to the

early 2000s.91,92,94 However, a more recent example is reported by Arba et

al.95 who, based on molecular docking, MD and MM-PBSA, developed a

compound with high affinity for CDK2, a target for anticancer treatments.

More rigorous, and often more accurate, free energymethods include al-

chemical approaches such as free energy perturbation (FEP),96,97 Bennett’s

Acceptance Ratio (BAR)98 and thermodynamic integration (TI).99 These

methods follow the path from the initial state to the final state of the system
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through alchemical changes of the energy function during an MD simula-

tion. FEP is one of the earliest alchemical methods, with the first example

in 1985 describing the calculation of the relative hydration free energy of

ethane andmethanol.100 Since then, FEP has been employed for a number of

uses, including the calculation of solvation free energies and most notably,

ligand binding affinities.101 There are two different strategies that are used

within FEP, absolute binding free energy (ABFE) and relative binding free

energy (RBFE) calculations. ABFE calculations make use of an alchemical

process where the ligand is nonphysically “removed" from solution and “in-

serted" into the protein’s binding site.102 The free energy change during this

process is then calculated. However, ABFE are often challenging and com-

putationally demanding to carry out and so RBFE are often favoured. Figure

1.8 shows the thermodynamic cycle for a RBFE calculation. An alchemical

transformation between two structurally related ligands is performed to cal-

culate the Δ𝐺 along the two vertical legs. The difference between these two

values then yields the relative difference in binding between the two com-

pounds. The ability to accurately compare the binding of two similar com-

pounds makes this method especially applicable in the hit to lead and lead

optimisation stages of drug development. A full theoretical description of

these methods is given in the next chapter of this thesis.

Over the recent years, FEP calculations have been applied to a large num-

ber of drug discovery projects.26,101,103 Many projects are retrospective in

matching predicted activities with experimental values and are important in

laying the foundation for future calculations. For example, Deflorian et al.104

established a reliable set up for FEP calulcations for inhibitors of G protein-
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coupled receptors (GPCRs). GPCRs are one of the most important drug

target classes but are notoriously challenging to model compared to globu-

lar proteins. By recognising the importance of key water molecules, amino

acid ionisation states and equilibration protocols, a successful FEP protocol

was developed. However, not all studies are retrospective. One example

involves a collaboration between Schrodinger Inc. (a computational chem-

istry company) and Nimbus Therapeutics (a bio-technology company).105

Their target was Tyk2, a member of the JAK family of kinases, which is im-

plicated in a number of autoimmune diseases, such as psoriasis, inflamma-

tory bowel disease, and rheumatoid arthritis. Current approved treatments

are pan-inhibitors of the JAK family and can lead to significant side effects

such as anemia and reduced immune function. MM-GBSA and FEP calcula-

tions were utilised to prioritise chemistry decisions in the lead optimisation

of a highly selective inhibitor of Tyk2. This study is instrumental in showing

that free energy methods can be fast enough to have an impact and improve

efficiency of active drug discovery projects.

Despite RBFE being less demanding compared to calculations of ABFE,

high computational cost is still a limitation. To obtain accurate results, it is

essential to have sufficient sampling of free energies along the entire alchem-

ical reaction path, requiring long simulation times. Additionally, for each

pairwise set of compounds, it is necessary to perform a separate calculation,

which often calls for manual intervention for the set up of each. Lambda

dynamics calculations present a solution to these issues.106,107 These types

of free energy calculations predict the relative Δ𝐺𝑏𝑖𝑛𝑑 energies for large sets

of compounds in a small number of simulations. An extension of lambda



Chapter 1: Drug Discovery 22

Figure 1.8: Thermodynamic cycle describing the binding of two compounds.
Δ𝐺1 and Δ𝐺2 represent the free energy of binding of two ligands. Δ𝐺3 and
Δ𝐺4 describe the free energy change of an alchemical transformation of one
ligand into the other, as the free ligand in solution and bound to the receptor,
respectively. The relative free energy of binding of two ligands is the differ-
ence between the alchemical free energy changes.

dynamics is multisite lambda dynamics (MS𝜆D),108 which allows for the

chemical perturbation at multiple sites of a compound scaffold. A recent

MS𝜆D study successfully predicted, with a high degree of accuracy despite

being large perturbations, relative Δ𝐺𝑏𝑖𝑛𝑑 of 21 compounds in a single MD

simulation.109 These types of calculations have the potential to explore large

chemical spaces, compared to traditional free energy methods, and enable

rapid insights into compoundmodifications for the optimisation of potential

drugs.

Binding free energy calculations still present a series of challenges, which

limits theirmainstreamuse in drugdiscovery projects.103,110 The calculations

are highly dependent on force field accuracy, reliability of the starting con-

figuration of the target or complex and the technical challenges of setup and

analysis. Despite this, alchemical free energy methods remain the most ac-
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curate types of binding affinity calculations and could revolutionise the hit

to lead and lead optimisation stages of drug discovery through the effective

prediction of affinity and selectivity.

1.3 Summary

The concepts of drug discovery and structure-based design have been in-

troduced throughout this chapter. The discovery of new drugs is crucial

for the quality and longevity of life, and over the recent decades, compu-

tational methods have increasingly facilitated the discovery of novel drugs

and methodologies for their design. This thesis describes the application of

CADD to drug discovery projects, in a collaboration between the University

of Nottingham (UoN) and GlaxoSmithKline (GSK).

1.3.1 Outline of thesis

In the next chapter, the basic principles of molecular modelling are outlined.

This chapter covers the background and methodology used throughout the

work. The results chapters then presented in this thesis have a focus on two

case studies of biomolecular systemswith therapeutic interest. The first pro-

tein of interest is the integrin αvβ6, which is linked to the progression of

the disease IPF. Chapter 3 describes the development of CHARMM force

field parameters for small molecule inhibitors of αvβ6. This work is signif-

icant as it allows for complexes to be modelled accurately and reliably. In

Chapter 4, we utilise these force field parameters by performing MD and

FEP simulations on αvβ6-inhibitor complexes. These simulations provide
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an understanding of key binding site interactions and guidance for effec-

tive future computational studies on αvβ6-ligand systems. This work is part

of a wider drug discovery project between UoN and GSK.8,111 The integrin

project between these collaborators was established in 2011 and involves re-

search carried out by 4th year MSci chemistry students. Each year (up to

2019), a cohort of ten MSci students design and synthesize compounds for

the inhibition of αvβ6, with compounds tested at GSK. The computational

aspect of this project aimed to give additional insight to the system, which

can then be used to guide compound design.27,112

Chapters 5 and 6 are based on work on BRD4-BD1, a protein that plays

a key role in several diseases, especially cancers. Due to this involvement,

BRD4 has been extensively studied and there are a large number of X-ray

crystal structures available. Chapter 5 presents a thorough analysis of these

structures and describes how the findings can be implemented in method-

ologies such as molecular docking and FEP.113 In Chapter 6, different types

of free energy calculations are explored, with BRD4 serving as a case study.

The time and accuracy advantages of MS𝜆D simulations, compared to tradi-

tional FEP, are demonstrated.
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Methods in Molecular Modelling

2.1 Introduction to Molecular Mechanics

Computational methods used to understand the behaviour of a molecular

system can be split into two fundamental approaches, QMandMM.Modern

QM approaches can calculate molecular properties, often with high accu-

racy, by characterising both the nuclei and electrons of an atom. Systematic

approximations for solving the molecular Schrödinger equation can achieve

energy estimations with an accuracy of greater than 99%, which can lead to

chemical predictions that are accurate to a fraction of a kcal mol−1.114 How-

ever, QM calculations require considerable amounts of computing power

and are generally not possible for large systems such as proteins and other

biomolecules. In drug discovery, QM methods are most useful for studying

the properties of isolated drug-like compounds or small active site regions

of a receptor. In comparison, MM approaches are less computationally ex-

pensive and therefore most commonly used for modelling biomolecules. In

25
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this chapter, the methodologies of a selection of MM based methods are de-

scribed. This provides a background to the techniques, which have been

applied and are presented in this thesis.

MM calculations adopt the Born-Oppenheimer approximation,115 which

describes the energy of amolecule in terms of its nuclear positions. The rapid

motion of the electrons is averaged out and assumed to be at an equilibrium

surrounding the nuclei. This allows the atoms to be treated with fixed-point

charges andmolecular energy is calculated from the sum of bond, angle and

non-bonded interaction contributions. Potential energy functions, which ap-

proximate the energy of a system at a given configuration are also known as

force fields.

2.1.1 Empirical force field models

Force fields calculate the total potential energy (𝑉𝑡𝑜𝑡𝑎𝑙) of a molecule based

on the distortion of its bond lengths, bond angles and dihedral angles from

their equilibrium values, along with non-bonded interactions, which are the

sum of its van derWaals (vdW) and Coulombic interactions. A typical force

field takes the general form:

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑏𝑜𝑛𝑑 +𝑉𝑎𝑛𝑔𝑙𝑒 +𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 +𝑉𝑣𝑑𝑊 +𝑉𝑒𝑙𝑒𝑐 (2.1)

The first three terms correspond to intramolecular properties, arising from

the stretching of bonds between atom pairs, the bending of bond angles and

the rotation around a dihedral, respectively. The following equations de-
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scribe how each contribution is derived:

𝑉𝑏𝑜𝑛𝑑 =
∑︁
𝑏𝑜𝑛𝑑𝑠

1
2 𝑘𝑏 (𝑟 − 𝑟0)2 (2.2)

𝑉𝑎𝑛𝑔𝑙𝑒 =
∑︁

𝑎𝑛𝑔𝑙𝑒𝑠

1
2 𝑘𝜃 (𝜃 − 𝜃0)2 (2.3)

𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 =
∑︁

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

1
2 𝑘𝜙 [1 + 𝑐𝑜𝑠(𝑛𝜙 − 𝛿)] (2.4)

𝑘𝑏 and 𝑘𝜃 are force constants and 𝑟0 and 𝜃0 are equilibrium values so that

bond lengths and angles are treated using a harmonic potential. The en-

ergy associatedwith the stretching of a bond (𝑉𝑏𝑜𝑛𝑑) between two covalently

bonded atoms or bending of an angle (𝑉𝑎𝑛𝑔𝑙𝑒) between three consecutive

atoms is calculated from the force needed to distort them from their min-

imum energy positions. The dihedral energy contribution (𝑉𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙) arises

from the rotation of bonds and the presence of steric barriers between four

atoms that are separated by three covalent bonds. The potential energy for

a dihedral angle, 𝜙, includes terms for the force constant, 𝑘𝜙, the multiplic-

ity, 𝑛 and the phase, 𝛿. The multiplicity indicates the number of cycles per

360◦ rotation of the dihedral angle, while the phase describes the location

of minima on the PES. A graphical representation of the force field terms is

also provided in Figure 2.1.

Non-bonded interactions are treated using the Lennard-Jones 12-6 poten-

tial116 for vdW interactions and the Coulomb potential for the electrostatics:

𝑉𝑣𝑑𝑊 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

4𝜖𝑖 𝑗 [(
𝜎𝑖 𝑗

𝑟𝑖 𝑗
)12 − (

𝜎𝑖 𝑗

𝑟𝑖 𝑗
)6] (2.5)
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Figure 2.1: Schematic of the bonding, 𝑟, angle, 𝜃, dihedral, 𝜙, and non-
bonded terms in a molecular mechanics force field.

𝑉𝑒𝑙𝑒𝑐 =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=𝑖+1

𝑞𝑖𝑞 𝑗

4𝜋𝜖𝜖0𝑟𝑖 𝑗
(2.6)

The Lennard-Jones function (Equation 2.5) consists of a short range repul-

sion term, (1/𝑟𝑖 𝑗 )12, where two atoms repel each other at a very close dis-

tance, and 𝑟𝑖 𝑗 represents the separation between atoms 𝑖 and 𝑗 . This is mod-

elled on the phenomenon of Pauli repulsion,117 which prevents the overlap-

ping of electronic orbitals. An attractive term, (1/𝑟𝑖 𝑗 )6 is also included, which

models the vdW forces of attraction, or dispersion forces, between instanta-

neous and induced dipoles in atoms that arise from electronic fluctuations in

molecules. 𝜖𝑖 𝑗 is the potential well depth, where −𝜖 is the minimum energy

between atom pairs 𝑖 and 𝑗 at the bond distance 𝑟 = 21/6𝜎 and 𝜎 is the inter-

atomic distance at which the potential energy equals zero. The Coulomb

potential (Equation 2.6)models the electrostatic attraction and repulsion be-

tween atoms carrying an unequal charge distribution, where 𝑞𝑖 and 𝑞 𝑗 are

the partial charges of atom 𝑖 and 𝑗 respectively and 𝑟𝑖 𝑗 is their separation. 𝜖

and 𝜖0 represent the relative dielectric constant and permittivity of vacuum,

respectively.



Chapter 2: Methods in Molecular Modelling 29

Terms in a force field, which are not directly obtained frommolecular co-

ordinates, are parameters that are developed based on unique atom types.

For example, carbon-carbon single bond lengths generally fall in the range

of 1.45 to 1.55 Å and so 𝑟0 in the 𝑉𝑏𝑜𝑛𝑑𝑠 term is set to a value within this

range. In contrast, a carbon-carbon double bond is shorter andwill therefore

be assigned a different 𝑟0 value, despite also involving two carbon atoms.

Therefore, atom types are generally assigned based on the chemical envi-

ronment of the atom. The majority of MM software packages include atom

typing algorithms, to carry out this task. The equilibrium values and force

constants in these sets of parameters are ideally determined through exper-

imental measurements. However, if experimental data cannot be obtained

efficiently, these parameters are often derived fromQMcalculations on small

representative structures. The accuracy of MMmodels is heavily dependent

on the quality of the force field parameters and how well they can be gener-

alised from one molecule to another. Therefore, it is sometimes necessary to

perform parameter optimisation for the system or compound of interest.

There are various force fields, which have been developed for different

types of molecules. Generally, they consist of some variation of the energy

potential described in the previous paragraphs. Often they contain addi-

tional terms, such as hydrogen bonding or improper torsions, depending

on their intended use. They may also go beyond the pairwise terms, to in-

clude, for example, three-body terms. Commonly used force fields for pro-

teins include AMBER,118 CHARMM,119 GROMOS120 and OPLS-AA.121 The

force field parameters, which describe a protein, are developed based on

individual amino acids. For example, parameterisation is performed for a
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single alanine amino acid. For a specific protein or system, a database of

parameters is then compiled based on protein sequence. Force field param-

eters for small drug-like compounds are provided separately. Common force

fields for these organic compounds include the General AMBER Force Field

(GAFF),122 CHARMM General Force Field (CGenFF),123 Merck Molecular

Force Field (MMFF),124–128 OPLS3129 and GROMOS96.130–132 The force field

employed (and extended) in work presented in this thesis is the CHARMM

force field for proteins and CGenFF for small molecules.

2.2 Protein-ligand Docking

Molecular docking is used to predict the most stable structures of protein-

ligand complexes according to how the two ‘fit’ together to result in

favourable steric and electrostatic interactions. Hence, docking can provide

valuable insights when designing a drug compound, by estimating ligand

binding affinities and modelling the interactions that take place between a

ligand and the active site of a protein. These types of calculations are often

very fast and are therefore efficient forHTS of large compound libraries. Fur-

thermore, molecular docking is often used as a precursor toMD simulations,

when an X-ray crystal structure of the complex is unavailable.

The first stage in molecular docking is the identification of a binding site.

The coordinates of a receptor are often obtained from a crystal structure and

the binding site can be identified through studying a crystal structure, where

the protein is bound to a different ligand. The accuracy of docking is signif-

icantly improved when the binding site is already known.33 However, com-
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paring a target proteinwith a family of proteins, where their binding sites are

known and they share a similar function can also be sufficient. There are also

several programs that can identify potential binding sites through search-

ing for cavities in protein structures. These include GRID,133 POCKET,134

SurfNet,135 PASS136 and MMC.137 The quality of the receptor structure can

also affect the effectiveness of molecular docking. Therefore, it is important

to choose a reliable crystal structure with good resolution (< 2.5 Å).

Beyond binding site identification, molecular docking consists of two

components. The conformational search algorithm identifies the possible

poses and conformations of a ligand within an active site. A scoring func-

tion then assesses the affinity of each of these configurations. Docking pro-

grams perform these tasks in an iterative process, until the scoring function

identifies a minimum energy conformation.

2.2.1 Search algorithms

In the search stage, torsional, translational and rotational degrees of freedom

are modified, to generate different conformations of a ligand.138 It would be

too computationally expensive to sample every possible iteration of these

binding modes. Therefore, sampling methods have been developed. These

are typically performed through systematic or stochastic search algorithms

(Figure 2.2).

Systematic methods sample the search space at predefined intervals,

gradually changing the conformational parameters of the ligand.139 The al-

gorithm continues until an energy minimum is reached (Figure 2.2B). To



Chapter 2: Methods in Molecular Modelling 32

Figure 2.2: (A) Two dihedral angles, 𝜙1 and 𝜙2, define the possible confor-
mations of a molecule. (B) The red (global energy minimum), blue (local
minima) and black circles represent conformations generated by a system-
atic search algorithm, along a PES. The first graph represents the energy
variation due to the rotation around 𝜙1, where 𝜙2 is kept frozen. (C) The
circles along the PES represent the conformation generated by a stochastic
search algorithm.138 [Reproduced with permission from reference 139.]

avoid converging to a local minimum, compared to the global minimum,

these types of methods are more effective when starting from multiple

starting conformations of the ligand, which are iterated through simulta-

neously.140 Stochastic methods search the conformational space by making

random modifications to the ligand. The algorithm generates ensembles of

conformations and populates a wide range of the energy landscape (Figure

2.2C).138 The choice of searchmethod is often dependent on the type of prob-

lem being addressed. For example, howmuch speed is necessary compared

to a more comprehensive search of conformational space.

Matching algorithms141–143 are a type of systematic search. They are

based on matching a shape map of a ligand, using ligand pharmacophores
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and chemical information such as the position of hydrogen bond donors and

acceptors, to the binding site of a receptor. These algorithms have the ad-

vantage of speed, so are practical for large chemical libraries such as in HTS.

However, a limited accountability of ligand flexibility is achieved. A system-

atic search method that gives a better representation of ligand flexibility is

incremental construction.144–146 In this method, a ligand is broken into sev-

eral fragments and then gradually built back together in the binding site.

As the fragments are added, different orientations are explored, which ac-

counts for the flexibility of the ligand. Also, as a conformational search is

only performed for the fragment that is being added, there is a reduction in

the degrees of freedom, which reduces the number of possible combinations

of internal parameters. This prevents a combinatorial explosion.138

Monte Carlo147,148 and genetic algorithms40,149 are two types of stochas-

tic methods. In Monte Carlo methods, ligand poses are generated through

bond rotations or rigid-body translations. The conformations are then eval-

uated by an energy function. If the conformation passes an energy crite-

rion, it is accepted and further modified to generate the next conformation.

This procedure is repeated until the required number of conformations is

obtained. An advantage of using Monte Carlo search algorithms is that the

changes made to the ligand can be large, meaning energy barriers can be

crossed, increasing the chance of finding the global energy minimum.150

Genetic algorithms apply the concepts of the theory of evolution and nat-

ural selection in generating ligand conformations. The degrees of freedom

are encoded as lists of values called genes, which then make up a chromo-

some and represents the full structure of the ligand. This starting chromo-
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some is used to make mutations and the crossover of genes to generate a

population of chromosomes. This results in new structures, which are as-

sessed using a scoring function. If the score is sufficient, these structures are

used for the next generation of chromosomes. Genetic algorithms present

an efficient way to sample wide areas of conformational space in a small

number of conformations.138,150

Docking studies presented in this thesis use the program OpenEye

OMEGA151 for the generation of ligand conformations. OMEGA is a system-

atic search algorithm which consists of three components. The first involves

the assembly of an initial 3D structure from a fragment library. This library

has been constructed by fragmenting a large collection of commercially avail-

able compounds into ring systems and small linear linkers. Fragments are

optimised using a modified version of MMFF (MMFF94125,126) and distinct

conformations with the lowest energies are chosen. From the user input of

the ligand (usually in the form of SMILES strings), fragments are assembled

to form an initial conformation. Next, every rotatable bond in this initial con-

formation is compared to a torsion library, which is a knowledge-based list

of angles and rules to reduce the potential energy. This stage generates a

large set of conformations. Finally, these conformations are sampled by ge-

ometric and energy filters so that (a) all conformers have a score less than

ten units higher than the lowest energy conformations or (b) 200 mutually

unique conformers are generated. A commonway to test the effectiveness of

conformer generation in docking is to re-dock a ligand into its original pro-

tein crystal structure and compare the docked pose to the crystallographic

pose. When this validation is carried out on a set of 197 challenging lig-
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ands, OMEGA has been found to perform very well in reproducing crystal-

lographic conformations.151

2.2.2 Scoring functions

Once ligand conformations are generated and docked into the active site of

a receptor, a scoring function is used to assign a score to the pose. These

scores serve as estimations of the binding affinity and can be used (with

caution) to rank compounds in drug discovery projects. Scoring functions

can be empirical, force field based or knowledge-based.152

Empirical functions estimate binding affinity by breaking it down into

several components, which account for hydrogen-bonding, ionic interac-

tions, hydrophobic interactions and entropic effects. Based on a training

set of compounds with known binding affinities, these components are each

weighted and summed to give a total energy score. Although the simplicity

of empirical functions mean that they provide quick evaluations of ligand

poses, they are limited by the transferability and quality of the test set of

compounds, used to develop the model.153–155

Force field based scoring functions156–158 provide a more system specific

assessment of a docked pose, compared to empirical functions. Binding

affinity is estimated by the sum of bonded and non-bonded terms, as pre-

viously described in Equation 2.1. However, these types of scoring func-

tions have a slower computational speed, so are less suitable for evaluating

large sets of compounds. Additionally, functions to account for hydrogen

bonds, entropy contributions and solvent effects should be included to im-
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prove their accuracy.159–161

Knowledge-based scoring functions162–164 use statistical analysis to ex-

tract pairwise energy potentials from known crystal structure protein-ligand

complexes. Based on the assumption that favourable interactions will fre-

quently occur in known structures, a score is calculated by favouring these

types of interactions and penalising repulsive protein-ligand interactions.

An advantage of knowledge-based scoring functions is their ability tomodel

uncommon interactions, such as sulfur aromatic or cation-𝜋, which are dif-

ficult to account for in empirical and force field based functions.150

Molecular docking studies described in this thesis use the OpenEye

FRED program37 for docking. This program uses Chemgauss4 as a scor-

ing function. Chemgauss4 recognises the shape, protein-ligand hydrogen

bonds, hydrogen bonding with solvent and metal-chelate interactions of a

ligand within an active site. Shape interactions are based on the vdW radii

of heavy atoms. A penalty score is assigned in the event of the distance be-

tween two atoms being within the sum of their vdW radii. Otherwise, a

score is assigned that is proportional to the number of protein heavy atoms

within 1.25 and 2.5 the sum of the vdW radii of the ligand atoms. Protein-

ligand hydrogen bonding scores are dependent on (a) how far the hydrogen

bond donor is from the ideal position based on the position of the acceptor

atom and (b) how far the hydrogen bond acceptor is from the ideal position

based on the position of the donor atom. For one particular hydrogen bond,

the score is the product of two Gaussian functions of these distances, mul-

tiplied by the strength of the hydrogen bonding groups involved. The total

score is the sum of all protein-ligand hydrogen bonds. The scoring function
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also penalises the breaking of solvent hydrogen bonds as the ligand docks

into the active site. For metal chelating groups, a fixed score is assigned for

each protein metal that is within 1.0 Å of any chelating position on the lig-

and.

Limitations

Most docking programs are accurate predictors of ligand binding poses, es-

pecially when the active site of the protein is already known. However, there

are often system dependent practical considerations, such as the treatment

of crystallographic water molecules. It should be carefully decided whether

to includewatermolecules, so that they can facilitate binding through bridg-

ing protein-ligand interactions, or whether the entropy gain of displacing an

active sitewatermolecule ismore favourable. Themain limitation inmolecu-

lar docking, however, lies in the accuracy of the scoring function. Although

docking can be sufficient as a binary predictor of which compounds bind

and which do not, the ability of molecular docking to correctly rank ligands

in the order of their binding affinity is a challenge. Furthermore, improve-

ments to the accuracy of scoring functions are constrained by the need for

fast evaluations of large numbers of compounds. Often there needs to be a

compromise between accurate predictions and speed. In projects where ac-

curate predictions of binding free energy are necessary, more rigorous ther-

modynamic techniques such as MM-PB(GB)SA are required. FEP methods

also present a solution to obtaining accurate predictions. However, these

are significantly more computationally expensive and are not feasible at the

required timescales for HTS.
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Modern docking programs often account for both ligand and protein

flexibility. However, protein flexibility is generally limited to binding site

side chain rearrangements. As larger scale protein conformational changes

are often important upon ligand binding, higher level samplingmethods are

required, such as MD simulations. MD simulations can also provide infor-

mation on the stability of binding site interactions, based on the frequency

they are maintained throughout a simulation. This allows us to understand

which interactions are most important for binding and should be targeted

when designing drug compounds.

2.3 Molecular Dynamics Simulations

In solution, proteins are flexible and the dynamics of their side chains gives

insight to their function. Although X-ray crystal structures can provide

an atomic level of resolution for a protein, the averaged measurements of

protein conformations from single crystals do not reflect well the mobility

of a protein in solution. MD simulations are a more comprehensive way

to model the conformational dynamics of protein and protein-ligand com-

plexes. Atomic motion is simulated along the PES of a system, which de-

termines the relative stability of different conformations. Energy is supplied

to the system using a constant temperature. Depending on the temperature

specified, the conformations that are sampled are often around a local or

global minimum, as shown in Figure 2.3.
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Figure 2.3: A 2D representation of a PES. The y axis is potential energy,
while the x axis represents the coordinates of a protein conformation. Pro-
tein structure is at an energy minimum or at the top of an energy barrier
when 𝑑𝑉 (𝑥)

𝑑𝑥
= 0. Energy is provided to the system in the form of heat, as

shown by the dotted red line. Energy barriers, which have a higher energy
than the heat provided, cannot be crossed.

2.3.1 Conformational sampling

In MD simulations, the forces acting on atoms are used to calculate the dy-

namics of the system. This is done by solvingNewton’s equations of motion.

𝐹𝑖 (𝑡) = 𝑚𝑖𝑎𝑖 =
−𝑑𝑉 (𝑟 (𝑡))

𝑟𝑖
(2.7)

𝐹𝑖 (𝑡) is the force exerted on atom 𝑖 at time 𝑡, where 𝑖 = 1, 2, ..., 𝑁 and 𝑁 is

the total number of atoms in the system. 𝑚 is the mass and 𝑎 is acceleration.

Force is also equivalent to the gradient of potential energy, 𝑉 , with respect

to atom position, 𝑟. This means that from the potential energy of each atom

(calculated using a force field), it is possible to calculate the acceleration of

each atom.
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To obtain trajectories (𝑟𝑖 (𝑡)) of all 𝑁 atoms in a system as a function of

time, integration algorithms are used. These are approximated by the Taylor

series:

𝑟 (𝑡 + 𝛿𝑡) = 𝑟 (𝑡) + 𝑟′(𝑡)𝛿𝑡 + 𝑟′′(𝑡) 𝛿𝑡
2

2 + 𝑟′′′(𝑡) 𝛿𝑡
3

6 + ... (2.8)

The Verlet algorithm,165 one possible integration algorithm, uses up to the

third term in the expansion. As velocity is the first derivative of position

with respect to time and acceleration is the second derivative, this gives the

following expansions:

𝑟 (𝑡 + 𝛿𝑡) = 𝑟 (𝑡) + 𝑣(𝑡)𝛿𝑡 + 1
2𝑎(𝑡)𝛿𝑡

2 (2.9)

𝑣(𝑡 + 𝛿𝑡) = 𝑣(𝑡) + 𝑎(𝑡)𝛿𝑡 + 1
2𝑎

′(𝑡)𝛿𝑡2 (2.10)

where 𝑣 is the velocity. In the Verlet algorithm, expansions from 𝑡 to 𝑡 + 𝛿𝑡

and 𝑡 − 𝛿𝑡 are combined to give:

𝑟 (𝑡 + 𝛿𝑡) = 2𝑟 (𝑡) − 𝑟 (𝑡 − 𝛿𝑡) + 𝑎(𝑡)𝛿𝑡2 (2.11)

In this basic Verlet algorithm, velocities are not calculated explicitly and so

they are calculated using Equation 2.12:

𝑣(𝑡) ≈ 𝑟 (𝑡 + 𝛿𝑡) − 𝑟 (𝑡 − 𝛿𝑡)
2𝛿𝑡 (2.12)

This means, given two sets of atomic coordinates and a set of velocities, the

time-dependant behaviour of a system can be calculated. However, at the

start of a MD simulation, two sets of atomic coordinates are not yet known.

Furthermore, atomic positions for three consecutive time steps need to be
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stored if velocities are to also be calculated. Therefore, there are better tools

to use in practice. Popular algorithms that overcome these issues include the

leapfrog algorithm166 and the Velocity Verlet algorithm.167

The time step, 𝛿𝑡, is an important consideration. Although a smaller

time step gives a better approximate integration, if it is too small the compu-

tational cost is too high to achieve sufficient exploration of configurational

space. Conversely, large time steps result in unstable simulations with large

errors during the integration of motion. For a flexible molecule such as a

protein, 𝛿𝑡 should be no greater than 1/10 the time of the shortest period

of motion, which is the stretching vibration in molecules (∼10−15 s). The

SHAKE algorithm168 is a common application for bond distance constraints

in MD simulations. In simulations of biomolecules, the highest frequency

vibration is those involving hydrogen atoms. Therefore, the SHAKE algo-

rithm is often applied to constrain any bonds that contain hydrogen atoms,

while still allowing all other atoms to move and vibrate. This allows for the

time step to be increased and results in a lower computational cost for a sim-

ulation of a given length. A typical time step for a proteinMD simulation is 2

fs. However, this limits the simulation length of aMD simulation to nanosec-

onds or microseconds, whereas biological processes often happen on the

microsecond to second timescale.169 Therefore, starting conformations are

important as MD simulations tend to sample the local configurational space

from where they are initiated. For better sampling, it is good practice to

run multiple simulations with different initial velocities or to use enhanced

sampling methods.

Once aMDsimulation has been run for a specified length of time, a trajec-
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tory is produced. This is a combination of frames, which show snapshots of

the protein conformation as time progresses. Trajectories can be observed by

using visualisers such as Visual Molecular Dynamics (VMD),170 PyMOL171

and UCSF Chimera,172 providing a qualitative view of protein dynamics.

Many MD simulation packages such as CHARMM,69 NAMD,173 AMBER174

and GROMACS175 also provide analytical tools to obtain quantitative mea-

sures, such as the root-mean-square deviation (RMSD) of the protein back-

bone during the simulation, compared to its average or starting position.

2.3.2 Ensemble averages

In MD, a system is prepared in a given state, and then allowed to relax to-

wards equilibrium. At equilibrium, physical averages of the system can then

be theoretically determined. The microscopic state of a system describes the

positions, velocities and momenta of the atoms it contains. Phase space is

then explored during MD simulations, where phase space is the space of all

possible microscopic states of the system. The thermodynamic, or macro-

scopic, state of the system is defined by the temperature, pressure and num-

ber of particles. Thus, an ensemble is a collection of all possible microscopic

states within a given thermodynamic state. MD simulations generate differ-

ent microscopic states, i.e. configurations of a protein, which belong to the

same ensemble. Different ensembles have the following characteristics:

• Microcanonical ensemble: The simplest thermodynamic state, where

the system is sampledwith a constant number of particles, volume and

energy (NVE). However, this ensemble can be unrealistic as it does
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not involve any interaction or heat exchange with the environment. It

is most suitable for investigating time-dependent phenomena such as

the vibrational frequencies of a complex system.

• Canonical ensemble: This state bettermatches the conditions of a sim-

ulation to experiment by keeping the number of particles, volume and

temperature constant and allowing the energy to change (NVT). This

ensemble is most suitable for investigating finite temperature phenom-

ena in an isolated system, such as diffusion.

• Isobaric-isothermal ensemble: Matches the conditions of a simulation

with experiment by keeping a constant number of particles, pressure

and temperature (NPT). This ensemble resembles the conditions for

chemical reactions as it is suitable for non-isolated systems where the

volume can change.

• Grand canonical ensemble: The chemical potential, volume and tem-

perature of a system is kept constant (𝜇VT).

To understand any physical property, 𝐴, its average over the contribu-

tions of all states is required. For a system in thermal equilibrium with a

heat bath at a fixed temperature (NVT, NPT, 𝜇VT), this ensemble average is

given by:

⟨𝐴⟩ =
𝑠𝑡𝑎𝑡𝑒𝑠∑︁
𝑖=1

𝜌𝑖𝐴𝑖 (2.13)

where 𝜌 is the probability of the system being in state 𝑖, which is given by

the Boltzmann function,

𝜌𝑖 =
1
𝑞

exp ( −𝐸𝑖

𝑘𝑏𝑇
) (2.14)
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𝑞 =

∫
𝑑𝑟𝑁 exp(−𝐸 (𝑟

𝑁 )
𝑘𝑏𝑇

) (2.15)

where 𝑞 is the partition function, 𝐸 is the energy of state 𝑖, 𝑘𝑏 is the Boltz-

mann constant, 𝑇 is temperature and 𝑟𝑁 is the position of all particles, 𝑁 .

From this, we can interpret that lower energy states are favoured, while

higher energy states have an exponentially decreasing probability of being

sampled.

To calculate the full ensemble average for 𝐴, and integrate over all pos-

sible states, an MD simulation would have to pass through all possible con-

figurations of a system, which is not feasible. Therefore, MD uses a time

average over the course of the MD simulation.

⟨𝐴⟩ = ⟨𝐴⟩𝑡𝑖𝑚𝑒 ≈
∫ 𝑡

0
𝐴(𝑡)𝑑𝑡 (2.16)

2.3.3 Practical considerations

There are factors, additional to the force field, time step and software, to be

considered when setting up an MD simulation. For the majority of in sil-

ico studies of biomolecular systems, it is desirable to simulate the protein as

close to experimental or physiological conditions as possible. Therefore, it is

necessary to also simulate a solvent environment. Furthermore, as it is only

possible to simulate a finite number of atoms, boundary effects should also

be accounted for in the form of periodic boundary conditions (PBC). En-

ergy minimisation and equilibration are important to correct any bad atom

connections in the crystal structure and to ensure an appropriate area of con-

formational space is being explored. These considerations are made prior to



Chapter 2: Methods in Molecular Modelling 45

the main MD simulation, which we term the data collection or production

stage.

Solvation

As proteins function in an aqueous environment, the effects of a solvent en-

vironment must be taken into account to achieve a realistic model. Solvent

plays an important role in the physiological function of a biomolecule. It

gives rise to the hydrophobic effect,176 an entropic effect which brings to-

gether non-polar regions of a protein. Water also provides hydrogen bond

donor and acceptors, which can stabilise tertiary structures and facilitate lig-

and binding. Modelling the behaviour of solvent also allows for the cost of

water displacement to be accounted for in binding events.

There are different levels of chemical accuracy and computational cost

that can be achieved by different solvent models. The simplest of meth-

ods is the implicit solvent model. As water dynamics are typically much

faster than protein rearrangements, the averaged behaviour of many wa-

ter molecules can be treated as a continuum environment. The electrostatic

components are calculated according to the Poisson-Boltzmann equation177

or the Generalised Born equation.178 Solvent can also be modelled using a

coarse grained approach, where each water molecule is treated as just one

atom with a surrounding potential. These two approaches mimic the be-

haviour of bulk water well and have a low computational cost. However,

they do not capture individual solute-solvent interactions, which can be im-

portant for understanding ligand binding. Explicit solvent models, which

include water molecules explicitly as three atoms, obtain a higher level of
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accuracy although they have a higher computational cost. In most explicit

models, a fixed point charge is assigned to each atom. However, it is possi-

ble to go a level higher and account for polarisation on each of the atoms.179

In this thesis, simulating protein-ligand interactions and calculating binding

free energies are of the most interest. Therefore, explicit solvent models are

used throughout the work.

For computational efficiency the bond lengths and angles of water

molecules are often kept rigid in explicit models. Examples of rigid water

molecule models include the transferable intermolecular potential surface

(TIPS) model,180 the simple point charge (SPC) model181 and the transfer-

able intermolecular potential 3P (TIP3P) model.182 Figure 2.4 shows the dif-

ferent site models that can be applied. In a 3-site model, the water molecule

has three interaction sites, corresponding to each of the atoms. In a 4-site

model, only the vdW forces are accounted for on the oxygen atom and a

mass-less charge that is associated with the oxygen atom is appended along

the bisector of the H-O-H bond angle. In a 5-site model negative charges

are located on the electron lone-pair positions on the oxygen atom. A 6-site

model is a combination of the 4- and 5-site models. In the work presented in

this thesis, the TIP3P (3-site) model is used.

In a simulation of a protein, when replicating physiological conditions,

it is necessary to include amino acids that have protonation states accord-

ing to physiological pH (∼ 7.4). This means lysine, arginine and histidine

residues should be protonated and have a positive charge and aspartate

and glutamate residues should be deprotonated and have a negative charge.

Therefore, when constructing a solvent environment, counter ions should be
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Figure 2.4: The TIPS water models.182 ‘M’ represents a mass-less charge as-
sociated with with the oxygen atom and the ‘L’ characters represent the elec-
tron lone pairs on the oxygen atom.

added to give a net neutral charge. Alternatively, ions could be added at a

concentration to match experimental conditions.

To control the flow of atoms that are moving in a system and due to the

limited number of atoms that can be simulated, PBC are typically applied to

explicit solvent systems.

Periodic boundary conditions

In MD simulations, the solute is solvated with a finite number of water

molecules. Therefore, without boundary conditions, the edge atoms would

face vacuum, which is not a good physical description of a biological system.

PBC present a solution, which involves extending the system periodically in

all three directions to represent a pseudo-infinite system (Figure 2.5). When

using PBC,Newton’s equations ofmotion are solved for one primary cell and

the same movements, momenta and interactions are applied to the identical

atoms in the replica cells. If an atom or molecule leaves the primary cell,

the same atom or molecule enters from the opposite replica cell. Therefore,

satisfying the requirement for a constant number of particles, as needed for
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Figure 2.5: A 2D schematic of a periodic systemwith the primary cell shaded
in grey.183 The blue arrows show how when one water molecule moves
across the boundary of a cell, all corresponding images of the molecule also
move. [Figure adapted from reference 182.]

NVT, NPT and NVE ensembles.

In systems where PBC are applied, only the interactions with surround-

ing atomswithin a cutoff are considered. This saves computational time and

ensures that the solute does not interact with a periodic replica of itself. A

switching function is applied so that the contribution from vdW interactions

is set to zero as the distance between two atoms approaches the cutoff. As

vdW interactions quickly approach zero as the distance increases anyway,

the cutoff does not introduce toomany errors to the potential energy.69 How-

ever, Coulomb interactions decay to zero slowly as the distance between two

atoms increases, which introduces discontinuities in the potential energy at

distances around the cutoff. The Coulomb energy between 𝑁 atoms in all
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simulation cells is:

𝑉 =
1
2
∑︁
n

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑞𝑖𝑞 𝑗

4𝜋𝜖0 |𝑟𝑖 − 𝑟 𝑗 | + n
(2.17)

where n is the cell vector and 𝑞𝑖, 𝑞 𝑗 , 𝑟𝑖 and 𝑟 𝑗 are the partial charges and posi-

tions of atoms 𝑖 and 𝑗 , respectively. To solve this equation for long range elec-

trostatic interactions that are separated by a distance larger than the cutoff,

the Ewald summation is used.184 In the Ewald summation, a charge distribu-

tion of opposite sign is placed around a point charge. This means the inter-

action between the charges have short range character, making them easier

to compute. To counteract the opposite sign distributions, the same charge

distributions are introduced in reciprocal space. The particle mesh Ewald

(PME) method185 is a fast and efficient way to approximate the Ewald sum-

mation, and is used in the majority of simulation packages to compute long

range interactions.

PBC can be constructed with various geometries. Figure 2.6 shows the

shapes of periodic cells that are often used in protein MD simulations. The

choice of periodic cell can be made based on the shape of the protein. For

example, a cubic or truncated octahedra could be the most appropriate for a

globular protein. Truncated octahedra are often preferred as they allow the

least number of solvent molecules in the system and therefore speed up the

simulation.
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Figure 2.6: Examples of periodic cells used in simulations.

Energy Minimisation

Energy minimisation is used to prepare a system for MD. As energy min-

imisation algorithms search the PES for local minima, which correspond to

stable arrangements of the atoms, they are useful to relieve any unfavourable

interactions that may be present in the starting X-ray crystal structure. Al-

though there are different types of energy minimisations algorithms avail-

able,186 this section focuses on those that use the derivative of the potential

energy with respect to the Cartesian coordinates of the system atoms.

Derivative algorithms operate as an iterative process. Atomic positions

are progressively changed towards aminimum energy configuration, where

the first derivative of the energy function is zero with respect to the coor-

dinates (Figure 2.3). Minimisation is continued until a defined set of itera-

tions has been performed or till the potential energy converges to aminimum

value. Steepest descent187 and conjugate gradient188 methods are examples

of first order minimisation algorithms. Figure 2.7 shows a representation of

steepest descent. The search starts at an arbitrary position (the initial coordi-

nates) and moves in the direction where the energy decreases most quickly.

The Newton-Raphson method189 is an example of a second order derivative
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Figure 2.7: A 2D schematic of a steepest descent minimisation. Initial guess
structure ‘A’ is minimised to an energy minimum conformation using a
timestep 𝛿𝑡. Structure ‘B’ would relax to the energy well to its right, despite
the alternative energy well having a lower energy.

method, where a Taylor expansion is used around the initial set of coordi-

nates. Although this method is more computationally expensive, it usually

requires fewer steps, compared to first derivative methods, to reach a mini-

mum configuration.

An important consideration when performing energy minimisations is

that they follow a ‘downhill’ path along the PES. This means that algorithms

can only identify the minimum energy point which is closest to the starting

point, regardless of whether it is a local or global energy minimum. For

example, point B on Figure 2.7 will reach the local minimum to its right,

despite being one energy barrier away from the global minimum. For this

reason, more sophisticated sampling methods such as MD simulations are

used to achieve more detailed understanding of the PES of a protein, and

energy minimisations cannot be used as a complete alternative.
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Equilibration

As a system is heated, typically from 0 K to 298 K, the kinetic energy being

added to the system must be transferred to potential energy. During this

time, the solvent and protein atoms undergo a relaxation, which can last for

up to nanoseconds before the system reaches a stable configuration. This

period is typically discarded from any trajectory analysis and is called the

equilibration stage. Equilibration is often conducted in two phases. The first

phase is conducted under the NVT ensemble and is continued until the tem-

perature fluctuates around a specified stable average. It is good practice to

check that the protein system has reached a stable temperature before con-

tinuing with equilibration. Figure 2.8 shows an example of a protein system

that has been heated and is stable around 298 K. The data comes from the

NVTequilibration stage of aMDsimulation of a BRD4 complex, as presented

in Chapter 6 of this thesis. The second phase of equilibration is performed

under the NPT ensemble. During this phase, the pressure of the system is

also stabilised. To be confident that equilibration has been performed suffi-

ciently, criteria such as the average velocity distribution and thermodynamic

properties should be checked. To ensure the structure is stable, RMSD as a

function of time is commonly calculated between the backbone atoms of the

protein at each time step and their average position, as shown in Figure 2.9.

When the RMSD reaches a plateau, this indicates that the structure is stable

and the data collection stage of the MD simulation can begin.
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Figure 2.8: Temperature of a 1 ns MD simulation in the NPT ensemble. The
temperature quickly reaches the target value of 298 K and remains stable
over the remainder of the simulation.

Figure 2.9: RMSD of the position of the backbone atoms of a protein with re-
spect to their average position during a 1 ns MD simulation. A stable RMSD
indicates an equilibrated system.

Enhanced sampling methods

Efficient sampling can often be a limitation of MD simulations. MD trajecto-

ries may not reach all relevant configurations during the timescale of a sim-
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ulation or the protein may become trapped in local minima for its duration.

Enhanced sampling methods, such as metadynamics,80 replica exchange79

and simulated annealing,81 can be used to address this issue:

• Metadynamicswas introduced by Laio and Parrinello in 2002.80 In this

method, a number ofGaussian potentials are placed in the potential en-

ergy wells. This enables a system to cross energy barriers and prevents

it from visiting configurations, which have already been sampled.

• Replica exchangeMD involves runningmultiple simulations at differ-

ent temperatures in parallel, and then frequently exchanging confor-

mations between each simulation. Higher temperatures provide more

energy to the system, enabling it to cross high energy barriers along

the PES. Successful replica exchange techniques rely on the choice of

temperature range, length of each simulation and the number of repli-

cas.190

• Simulated annealing involves initiating a simulation at a high tem-

perature, where energy barriers can be crossed and an extensive ex-

ploration of configurational space is possible. The temperature is then

cooled during the simulation, allowing the system to relax into a min-

imum energy conformation.190

2.4 Free Energy Perturbation Methods

Accurately predicting the binding affinity between a protein and a potential

drug compound is one of the ultimate goals of CADD. There are various
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methods for the estimation of binding free energies, which are continuously

advancing with the increasing availability of computational resources. Re-

cent advancements include opportunities for performing free energy calcu-

lations on a cloud computing platform.191 In this section, focus is placed on

alchemical pathway methods, specifically FEP and lambda dynamics.

2.4.1 Absolute free energy perturbation

Gibbs free energy is a thermodynamic potential that measures the capacity

of a thermodynamic system to domaximum or reversible work at a constant

temperature and pressure. Protein-ligand binding occurs when the change

in Gibbs free energy, Δ𝐺, is negative. The magnitude of the negative value

is analogous to ligand binding affinity, i.e., a compound with a more nega-

tive Δ𝐺 of binding forms tighter interaction with a receptor, compared to a

compound with a less negative Δ𝐺.

Zwanzig’s equation for FEP192 estimates the free energy difference be-

tween two states as:

Δ𝐺 = 𝐺1 − 𝐺0 = −𝑘𝐵𝑇 ln
〈
exp(−𝑈1 −𝑈0

𝑘𝐵𝑇
)
〉
0

(2.18)

where𝑈0 and𝑈1 are the potential energies of each state, 𝑘𝐵 is the Boltzmann

constant, 𝑇 is temperature and ⟨⟩0 represents the Boltzmann average at state

0. In FEP, the two end states are split into a series of intermediate states via

a coupling parameter, 𝜆. The potential energy of the states,𝑈𝜆, then changes
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from𝑈0 to𝑈1 as 𝜆 is incremented from zero to one:

𝑈𝜆 = 𝜆𝑈1 + (1 − 𝜆)𝑈0 (0 ≤ 𝜆 ≤ 1) (2.19)

The total free energy change between 𝐺0 and 𝐺1, is the summation of the

Δ𝐺 between each pair of adjacent intermediate states. Through the linear

mixing of force field parameters, MD simulations can be used as a sampling

technique for generating representative conformations for each 𝜆 state and

calculating𝑈𝜆.

As free energy is a state function, Δ𝐺 is defined by the initial and final

states of a system, regardless of the pathway connecting them. Therefore,

absolute FEP calculations take advantage of the thermodynamic cycle shown

in Figure 2.10. This thermodynamic cycle is used to calculate the free energy

of binding (Δ𝐺𝑜
𝑏
) of a ligand (L) for a protein (P). It should be noted that

absolute FEP does not refer to computing the absolute free energy, 𝐺, but to

the difference in free energy between the bound state of the ligand and the

state where it is free in solvent. The word ‘absolute’ is used to distinguish

between relative FEP calculations, which are discussed under the next sub

heading.

To calculate Δ𝐺𝑜
𝑏
via themost direct path would require large amounts of

complicated computation. Therefore, Δ𝐺𝑜
𝑏
is calculated through a series of

alchemical intermediate states (B, C, D and E in Figure 2.10). The first step

involves decoupling the ligand from solution to calculate 𝐺𝑠𝑜𝑙𝑣
𝑒𝑙𝑒𝑐+𝑣𝑑𝑊 . During

a series of 𝜆 states, often called 𝜆 windows, the Coulombic interactions are

turned off, followed by the vdW interactions. It is important to decouple
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Figure 2.10: Thermodynamic cycle used to obtain absolute binding free en-
ergies.193 The top horizontal Δ𝐺 value, highlighted in red, is obtained by
calculating the vertical legs of the cycle. The ligand in solution (A) is trans-
formed into a non interacting solute (B). The non-interacting ligand is then
restrained (represented by paper clips) and Δ𝐺𝑠𝑜𝑙𝑣

𝑟𝑒𝑠𝑡 is calculated analytically
using a protocol described by Boresch et al.194 The right vertical leg is calcu-
lated in reverse, where constraints are applied to the ligand in complex (E),
followed by the decoupling of the ligand from the system (D). [Reproduced
with permission from reference 192.]

the Coulombic interactions first to prevent errors caused by atoms becom-

ing too close due to their lack of vdW surface. The free energy difference

between states B and C is calculated analytically, according to an expres-

sion proposed by Boresch et al.194 State C is equivalent to state D, where

the ligand interactions within the protein binding site have been decoupled.

Therefore, the Δ𝐺 between these states is zero. The next two legs of the ther-
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modynamic cycle, Δ𝐺 𝑝𝑟𝑜𝑡

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊 and Δ𝐺
𝑝𝑟𝑜𝑡
𝑟𝑒𝑠𝑡𝑟 , are calculated in reverse. To keep

the position and orientation of the ligand close to the bound pose once its in-

teractions with the environment are decoupled, restraints are applied (rep-

resented with paper clips in Figure 2.10). Typically, one distance, two angles

and three dihedral angle restraints between ligand and receptor atoms are

introduced through a harmonic potential with a high force constant (∼10

kcal−1 Å2 deg2). The contribution of these restraints to Δ𝐺𝑠𝑜𝑙𝑣
𝑟𝑒𝑠𝑡𝑟 are evaluated

by:

Δ𝐺𝑠𝑜𝑙𝑣
𝑟𝑒𝑠𝑡𝑟 = 𝑅𝑇 ln

[
8𝜋2𝑉0

𝑟20 sin 𝜃𝐴,0 sin 𝜃𝐵,0

(𝑘𝑟 𝑘𝜃𝐴𝑘𝜃𝐵𝑘𝜙𝐴𝑘𝜙𝐵𝑘𝜙𝐶)
1
2

(2𝜋𝑘𝐵𝑇)3

]
(2.20)

where 𝑅 is the ideal gas constant, 𝑇 is the temperature in Kelvin, 𝑉0 is the

volume corresponding to one molar standard state, or 1660 Å3. 𝑟0 is the

reference bond distance and 𝜃𝐴 and 𝜃𝐵 are the reference angles. 𝑘𝑛 are the

force constants applied to the bond distance, angles and dihedral angles (𝜙𝐴,

𝜙𝐵 and 𝜙𝐶). A series of 𝜆 windows are performed to gradually apply the re-

straints and thendecouple theCoulombic andvdW interactions of the ligand

from the binding site. The binding free energy, Δ𝐺𝑜
𝑏
, can then be determined

by:

Δ𝐺𝑜
𝑏 = −Δ𝐺 𝑝𝑟𝑜𝑡

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊+𝑟𝑒𝑠𝑡𝑟 + Δ𝐺𝑠𝑜𝑙𝑣
𝑒𝑙𝑒𝑐+𝑣𝑑𝑊 + Δ𝐺𝑠𝑜𝑙𝑣

𝑟𝑒𝑠𝑡𝑟_𝑜𝑛 (2.21)

As two separate simulations are performed, uncertainties are calculated by

the root mean square:

Δ𝐺𝑜
𝑏_𝑒𝑟𝑟𝑜𝑟 =

√︃
𝜎2
1 + 𝜎2

2 (2.22)

The methodology described is adapted from a GROMACS absolute binding

free energy tutorial, based on the work of Boyce et al.195 and Aldeghi et al.193
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2.4.2 Relative free energy perturbation

Relative FEP calculations are beneficial for evaluating the binding affinity of

chemically similar compounds, such as in lead optimisation. A thermody-

namic cycle is constructed so that the vertical legs involve making a simple

modification to a scaffold, with the compound in the solvent phase on one

side and the compound in complex with the receptor on the opposite side of

the cycle (Figure 1.8). The change in free energy for each of these alchemical

transformation is measured. Providing that the overall binding mode of the

compound is conserved, it is possible to determine the relative difference in

the free energy of binding, ΔΔ𝐺, between the two compounds.

During an alchemical transformation, the force field parameters assigned

to the ‘disappearing’ atoms on the ligand are slowly decoupled from the sys-

tem, while the parameters for the ‘appearing’ atoms are introduced over a

series of 𝜆 windows. Figure 2.11 shows a representation of this. The hydro-

gen derivative of the aryl ring is being turned off, while the methoxy aryl

derivative is being introduced to the system. Typically, the perturbation be-

ing made to the ligand must not be too large, as accurate predictions require

an overlap of phase space between neighbouring 𝜆windows. There is no de-

fined rule to the amount of atoms that can be perturbed. However, Cournia

et al.196 suggest that a change of a few atoms can be handled routinely, while

larger perturbations are possible depending on the energy landscape of the

system. To ensure a good overlap of phase space, the number of 𝜆 windows

and the length of the simulations should be optimised.

The requirement for phase space overlap between incoming and outgo-



Chapter 2: Methods in Molecular Modelling 60

Figure 2.11: Alchemical transformation of a ligand with the progression of
the 𝜆 variable used in relative FEP calculations. When 𝜆=0 the 3-position of
the aryl ring contains a hydrogen atom and when 𝜆=1, there is a methoxy
substituent.

ing atomsmeans that atommapping is important. This refers to how the per-

turbed atoms are alignedwith each other within the setup of the simulation.

Maximum common substructure (MCS) alignment is a common approach,

which maximises topology overlap, regardless of atom type and bond va-

lences. Additionally, when performing multiple relative FEP simulations

based on a single scaffold, it is sensible to choose a perturbation map that

provides the smallest number of changes between compounds. Although

the simplest way to compare binding free energies between a series of com-

pounds based on a common scaffoldmay be to performperturbations from a

single reference compound, this is not always efficient. Therefore, arranging

the compounds by similarity and performing a set of sequential perturba-

tions can be the most constructive approach. A closed cycle is often created,

so that energies sum to zero and it is possible to detect errors.

Single vs. dual topology approaches

When setting up a relative FEP simulation, there are two ways in which the

ligand topology can be constructed. These are the single and dual topology

approaches. In the single topology approach,197 the topology is designed

so that it contains sites that correspond to both molecules. For example, the
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top schematic in Figure 2.12 shows the perturbation of an -OH group to a

-CH3 group, using the single topology method. In the initial state, two hy-

drogen atoms, corresponding to the -CH3 group, are introduced as dummy

atoms. During the intermediate 𝜆 windows, parameters are scaled so that

the oxygen atom and the dummy atoms become non-physical atoms, which

then become a carbon atom and two hydrogen atoms in the final state. In

contrast, atoms conserve their atom types in the dual topology approach.198

As shown in the bottom schematic in Figure 2.12, both substituents exist in

the topology as a whole. Progression along the 𝜆 windows involves the in-

coming carbon and hydrogen atoms changing from dummy atoms to fully

interacting particles, and vice versa for the outgoing oxygen and hydrogen

atoms.

Less atoms are perturbed in the single topology approach. However,

dual topology approaches are simpler to construct and have the advantage

of being able to sample the configurational space while being decoupled,

aiding convergence.199 Although more efficient, dual topology approaches

can lead to “end-point catastrophes", where instabilities are created as the

result of surrounding atoms clashing with the incoming or outgoing per-

turbed atoms. To prevent this, a soft-core potential can be used.200,201 This

eliminates the singularities at each end point by progressively scaling inter-

actions of outgoing atoms and incoming atoms. The short range repulsive

term in the standard Lennard-Jones potential is scaled to allow “soft" over-

lap of vdW spheres at regions surrounding incoming and outgoing atoms.

The Coulombic term in the potential is also scaled to avoid abnormal elec-

trostatic interactions between the softened atoms and their environment. To
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Figure 2.12: Single and dual topology approaches for constructing an al-
chemical path between ethane and ethanol. D represents a dummy atom,
which has its non-bonded interactions decoupled from the system. M rep-
resents a non-physical intermediate atom, which exists at 𝜆 ≠ 0 and 𝜆 ≠ 1.
[Reproduced with permission from reference 198.]

further prevent issues at the end points of the transformation, it is common

to use smaller increments of 𝜆 as it approaches zero and one.

2.4.3 Energy evaluation

So far, only the Zwanzig formula (Equation 2.19) for approximating free en-

ergies has been discussed. The Bennett acceptance ratio (BAR) is another

way in which free energy differences can be estimated.98 This method uses

data from sampling configurations in two states. For example, the forward
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calculation could be performed from 𝜆=0 to 𝜆=1, followed by the backward

transformation from 𝜆=1 to 𝜆=0. Running the forward and backward trans-

formation is also a useful way to check for convergence of the free energy,

as the two Δ𝐺 values should be equal with opposite signs. Bennett derived

this method from the following equation:

Δ𝐺 = 𝐺1 − 𝐺0 = −𝑘𝐵𝑇 ln ⟨𝑤 exp(−𝛽𝑈1)⟩0
⟨𝑤 exp(−𝛽𝑈0)⟩1

(2.23)

where 𝛽=1/𝑘𝐵𝑇 . Theweighting function, 𝑤, was obtained byminimising the

variance of the free energy. The resulting free energy difference for the BAR

method is given by Equation 2.24, where 𝐺1 − 𝐺0 is solved self consistently.

Δ𝐺 = 𝐺1 − 𝐺0 = −𝑘𝐵𝑇 ln

〈
1

1+exp(−𝛽(𝑈1−𝑈0)+𝛽(𝐺1−𝐺0))

〉
0〈

1
1+exp(𝛽(𝑈1−𝑈0)−𝛽(𝐺1−𝐺0))

〉
1

(2.24)

Thismethod significantly improves free energy estimations compared to tra-

ditional FEP.202,203 Additionally, less overlap of configurational space be-

tween 𝜆 windows is required, meaning fewer windows are necessary and

calculations are faster to perform. A variation of the BAR method is the

multistate Bennett’s acceptance ratio (MBAR).204,205 This method combines

simulation data from multiple states, compared to just two, which further

improves free energy estimations.

Convergence and sufficient sampling are important properties for accu-

rate energy estimations. Small changes made to a ligand can result in large

rearrangements of protein binding sites. One way to measure for sufficient
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sampling is to calculate, for each 𝜆 window, the RMSD of the protein as a

whole, or of the binding site, with respect to its initial conformation. A con-

sistent RMSD within each window means that the protein structure is sta-

ble and that a converged free energy value is likely to be measured for that

value of 𝜆. An additional way to check for convergence is to plot the cumu-

lative free energy differences over varying MD time ranges, as outlined by

Klimovich et al.206

2.4.4 Lambda dynamics

Lambda dynamics,106,207 or 𝜆-dynamics, is an alternative alchemical free en-

ergy method to FEP. Much like FEP, 𝜆-dynamics has recently become much

more feasible, since its development by Brooks et al. in 1995, due to the ad-

vancement of computational resources such as computer clusters and GPU

acceleration. Similar to relative FEP calculations, 𝜆-dynamics performs best

when applied to lead optimisation tasks where knowing the difference in

binding affinity between small changes on a common scaffold is required.

However, 𝜆-dynamics has the ability to estimate the relative ΔΔ𝐺 values of

multiple different variations of a scaffold in one single simulation, negating

the need to do a separate simulation for each pairwise set of compounds.

Recent advancements to 𝜆-dynamics include MS𝜆D and adaptive land-

scape flattening (ALF).208,209 In MS𝜆D, it is possible to simultaneously per-

form perturbations on more that one substitution site of a scaffold, which is

more realistic of the types of changes that are made to a compound in typ-

ical SBDD projects. For example, Figure 2.13 shows a set of perturbations

made to a tetrahydroquinolone scaffold, which is the framework for a set of
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Figure 2.13: Substitutions made on three sites of a tetrahydroquinolone scaf-
fold. Relative binding free energies ΔΔ𝐺1, ΔΔ𝐺2 and ΔΔ𝐺3 can be obtained
from a single MS𝜆D simulation.

BRD4 inhibitors (discussed in Chapter 6). In this example, there are three

substitution sites on the scaffold, with four possible substituents on the or-

ange site, three on the green site and two on the purple site. Values forΔΔ𝐺1,

ΔΔ𝐺2 andΔΔ𝐺3 can be obtained froma single simulation. Additionally,ΔΔ𝐺

values for the combinatorial set of substituents are obtained, meaning these

types of calculations are significantly more efficient than traditional FEP cal-

culations. Previous studies have shown MS𝜆D calculations to be ∼50 times

faster than FEP calculations and obtain results within a similar accuracy.208

In these studies, free energy values were calculated within 0.9 kcal mol−1 of

experiment. ALF facilitates better sampling of physically meaningful states,

meaning larger and more complex perturbations can be performed, while

maintaining precision and accuracy.209
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In𝜆-dynamics, 𝜆 is treated as a dynamic variable that propagates through

the simulation, along with the coordinates. This is in contrast to traditional

FEP, where several simulations are performed at fixed values of 𝜆. Further-

more, the introduction of additional 𝜆 coordinates means that 𝜆-dynamics

can be performed between more than two systems of interest. The potential

energy for MS𝜆D with ALF is calculated using Equation 2.25.208,209

𝑉 (𝑋, {𝑥}, {𝜆}) =𝑉𝑒𝑛𝑣 (𝑋) +
𝑀∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

𝜆𝑠𝑖 (𝑉 (𝑥0, 𝑥𝑠𝑖) +𝑉 (𝑥𝑠𝑖, 𝑥𝑠𝑖))

+
𝑀∑︁
𝑠=1

𝑁𝑠∑︁
𝑖=1

𝑀∑︁
𝑡=𝑠+1

𝑁𝑡∑︁
𝑗=1

𝜆𝑠𝑖𝜆𝑡 𝑗𝑉 (𝑥𝑠𝑖, 𝑥𝑡 𝑗 ) +𝑉𝐵𝑖𝑎𝑠 ({𝜆}) (2.25)

In this equation, 𝑋 represents the atoms that are present in the system for

the entire simulation and 𝑥0 is their coordinates. These include the solvent

atoms, receptor atoms and the atoms in the common core of the ligand,

which are not being perturbed. The coordinates of substituent 𝑖 at site 𝑠

are given by 𝑥𝑠𝑖, 𝑁𝑠 is the total number of substituents that are on one site,

while 𝑀 is the total number of sites. The interaction potential of the environ-

ment atoms (𝑉𝑒𝑛𝑣 (𝑋)) is not scaled by 𝜆, whereas the interaction potentials of

substituent 𝑖 at site 𝑠 interacting with the environment atoms (𝑉 (𝑥0, 𝑥𝑠𝑖)) and

itself (𝑉 (𝑥𝑠𝑖, 𝑥𝑠𝑖)) are scaled by 𝜆 variables. The interaction potential between

substituents 𝑖 and 𝑗 at different sites (𝑉 (𝑥𝑠𝑖, 𝑥𝑡 𝑗 )) is also scaled by the 𝜆 vari-

ables. The intramolecular properties are not scaled by 𝜆 to ensure that the

geometry and basic connectivity of the ligand is preserved even when a sub-

stituent is in a non interacting state. The biasing potential,𝑉𝐵𝑖𝑎𝑠, is discussed

further on in this section.

A substituent, 𝑖, on a scaffold is fully interacting when 𝜆𝑠𝑖=1 and 𝜆𝑠 𝑗=0
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for 𝑖 ≠ 𝑗 . At this point, the system is at a physically meaningful end state. In

practice, however, if a substituent has 𝜆 ≥ 0.8, it is often counted. To ensure

that only one substituent at a given site is interacting at a physically relevant

end point, a set of constraints are employed.

𝑁𝑠∑︁
𝑖=1

𝜆𝑠𝑖 = 1 (0 ≤ 𝜆𝑠𝑖 ≤ 1) (2.26)

These constraints are maintained by the implicit constraints shown in Equa-

tion 2.27.

𝜆𝑠𝑖 =
exp(𝑐 sin 𝜃𝑠𝑖)∑𝑁𝑠

𝑗=1 exp(𝑐 sin 𝜃𝑠 𝑗 )
(2.27)

In MS𝜆D, 𝜃𝑠𝑖 are the dynamic variables, which are treated as volume-less

particles with mass 𝑚𝜃 . To ensure good sampling of end points and stability

of the calculation, a value of 𝑐 = 5.5 has been found to be optimal.210 The

dynamics of the system are generated from the extendedHamiltonian, given

by:

𝐻0(𝑋, {𝑥}, {𝜆}) = 𝑇𝑥 + 𝑇𝜃 +𝑉 (𝑋, {𝑥}, {𝜆(𝜃)}) (2.28)

where 𝑇𝑥 and 𝑇𝜃 are the kinetic energies of the atomic coordinates and the

𝜃 variables, respectively. Finally, the free energy difference between two

derivatives is approximated using the probability of finding the system in

each of the physically meaningful end states, as shown in Equation 2.29.208

ΔΔ𝐺 (𝜆{𝑠𝑖} → 𝜆{𝑠 𝑗}) ≈ − 𝑘𝐵𝑇 ln 𝑃({𝜆𝑠 𝑗 } ≥ 𝜆𝑐)
𝑃({𝜆𝑠𝑖} ≥ 𝜆𝑐)

− (𝑉𝑏𝑖𝑎𝑠 ({𝜆𝑠 𝑗 } = 1) −𝑉𝐵𝑖𝑎𝑠 ({𝜆𝑠𝑖} = 1)) (2.29)

As 𝜆𝑐 approaches 1, this equation becomes exact. However, a value of 𝜆𝑐=0.8
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is sufficient.

Using ALF, the biasing potential energy term (𝑉𝑏𝑖𝑎𝑠 ({𝜆})) can be calcu-

lated using Equations 2.30 to 2.33.209 This function is important, as to obtain

accurate free energy results it is necessary to have sufficient sampling of all

physically meaningful end states. In alchemical transformations, sampling

can be limited by high energy barriers and so ALF is applied to calculate the

biases needed to flatten the energy surface between end points. The fixed

bias (𝑉𝐹𝑖𝑥𝑒𝑑) ensures that all end points have a similar free energy and can

be sampled within the same simulation.211 The potential 𝑉𝐷𝑖𝑎𝑔𝑄𝑢𝑎𝑑 is a bias

to flatten the quadratic barriers shown by 𝜆-dynamics. An end point bias

(𝑉𝐸𝑛𝑑) is also used to overcome the deeper energy wells that exist at the end

points. Variables, 𝜙𝑠𝑖, 𝜓𝑠𝑖,𝜔𝑠𝑖,𝑠 𝑗 and 𝛼, within these equations are altered dur-

ing the ALF phase of the MS𝜆D simulation, until good sampling is observed

for all physically meaningful end points.

𝑉𝐵𝑖𝑎𝑠 = 𝑉𝐹𝑖𝑥𝑒𝑑 +𝑉𝐷𝑖𝑎𝑔𝑄𝑢𝑎𝑑 +𝑉𝐸𝑛𝑑 (2.30)

𝑉𝐹𝑖𝑥𝑒𝑑 =

𝑀∑︁
𝑠

𝑁𝑠∑︁
𝑖

𝜙𝑠𝑖𝜆𝑠𝑖 (2.31)

𝑉𝐷𝑖𝑎𝑔𝑄𝑢𝑎𝑑 =

𝑀∑︁
𝑠

𝑁𝑠∑︁
𝑖

𝜓𝑠𝑖 (𝜆2𝑠𝑖 − 𝜆𝑠𝑖) (2.32)

𝑉𝐸𝑛𝑑 =

𝑀∑︁
𝑠

𝑁𝑠∑︁
𝑖

𝑁𝑠∑︁
𝑗≠𝑖

𝜔𝑠𝑖,𝑠 𝑗𝜆𝑠𝑖𝜆𝑠 𝑗

𝛼 + 𝜆𝑠𝑖
(2.33)
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2.4.5 Limitations of alchemical free energy calculations

Aside from the limitations already discussed, such as end-point catastro-

phes, the requirement for phase overlap and sufficient sampling, there are a

number of other aspects that should be considered for accurate and reliable

estimations of protein-ligand binding free energy.196

Initial structures are a crucial part of the free energy calculation process.

A recent study by Suruzhon et al.212 found that the choice of crystal structure

can have an impact of greater than 1 kcal mol−1, which roughly translates to

a pIC50 of 0.7. Furthermore, sampling rare events such as ligand torsional

motions can have an even greater impact on free energy values. This work

affirms the need for extensive equilibration and averaging values from mul-

tiple repeat simulations to improve the uncertainty around the free energy.

A reasonable initial binding pose of the ligand is also a key factor in free en-

ergy calculations. Without the use of enhanced sampling, capturing events

with high-energy barriers such as changing binding modes or ligand tor-

sions is unlikely. Therefore, it is important to use information from existing

experimental data of similar known binders. The influence of binding pose

and crystallographic water molecules on binding free energy is explored for

a bromodomain-containing protein system in Chapter 5.113

Alchemical free energy calculations that involve a change in chargewhen

going from the initial to the final state of a ligand are generally difficult to

perform.196 One obstacle is that the time required to rearrange the surround-

ing solvent network as a result of a change in net charge will need to be

considerably longer and the overlap between adjacent 𝜆 windows will be
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poorer, compared to perturbationswith a conserved net charge.196 Addition-

ally, transformations are unable to model protonation or electronic polariza-

tion changes that may occur when a ligand goes from solvent to a protein

environment. Recently, King et al.213 demonstrated the impact of protona-

tion and polarization conditions on the predictive accuracy of free energy

calculations and introduced a MBAR/PBSA approach to improve results.

In Chapter 6, a MS𝜆D protocol for accurately predicting changes in ligand

charge is outlined.

Even with the most rigorous set up and extensive simulation times, the

accuracy of free energy estimations fundamentally relies on the quality of

the force field and force field parameters that describe the protein-ligand sys-

tem. Without the right potential energy function, calculations will converge

to the wrong answer.196 Different biomolecular force fields can also arrive at

different free energy values. Pérez-Benito et al.214 performed FEP with two

different software and force field methods. For one set of data, calculations

using Schrödinger-Desmond FEP+215 with the OPLSv3e force field216 and

calculations usingGROMACS175 with the AMBER force field122 both arrived

at the same error from experiment. However, for a second data set, the FEP+

method had an error of 1.17 kcal mol−1 from experiment, whereas the GRO-

MACS method resulted in an error of 1.90 kcal mol−1. This study demon-

strates the importance of choosing the force field and parameter set that best

describes the ligand of interest. Parameters can be validated by comparing

energy minimised values of intramolecular ligand properties, such as bond

lengths, with QM optimised values. Best practice often requires extensive

validation and optimisation of ligand force field parameters, as outlined in
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Chapter 3.27

2.4.6 Conclusions

The advance of computational power to perform MD and free energy cal-

culations has transformed the possibilities of CADD over the last couple of

decades. Starting from X-ray crystal structures or docked complexes, sam-

pling methods aid the understanding of protein-ligand binding, which in

turn provides guidance for compound design and lead optimisation. De-

spite the pitfalls associated with alchemical transformations, they are re-

garded as among themost rigorous techniques for predicting ligand binding

affinity. 𝜆-dynamics andMS𝜆Dmethods for estimating relative binding free

energies show promise as a way to overcome the time limited scalability of

traditional FEP calculations. Their implementation in early drug discovery

projects could provide rapid and reliable estimations of binding affinity for

large compound series, saving huge amounts of synthetic effort. The follow-

ing chapters outline how a variety of computational methods have been ap-

plied to drug discovery projects in a collaboration between UoN and GSK.



Chapter 3

Force Field Parameter

Development for αv Integrin

Inhibitors

3.1 Introduction

The urgent need for new treatments for the chronic lung disease IPF moti-

vates research into antagonists of the RGD binding integrin αvβ6, a protein

linked to the initiation and progression of the disease. In this chapter, we

present the development of new force field parameters for a scaffold of a

series of αvβ6 inhibitors.

72
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3.1.1 Idiopathic pulmonary fibrosis

IPF, a chronic disease characterised by progressive scarring of the lungs, has

a survival rate of two to four years upon diagnosis.217 Despite being consid-

ered a rare disease, 5000 new cases are estimated each year in the UK and

are reported more frequently than leukemia and brain and stomach can-

cers.218–220 Symptoms of IPF include shortness of breath, weight loss and

fatigue. These are the result of respiratory insufficiency, caused by a ’hon-

eycombing effect’ of the lungs (Figure 3.1).221 Furthermore, the progression

of the disease can require patients to need constant hospitalisation or hos-

pice care.222 There are currently two approved treatments of IPF but despite

slowing down progression, each has significant side effects and are not cu-

rative.223 Clearly, IPF is an important public health issue and the need for

alternative treatment is urgent.

The exact mechanisms leading to the pathogenesis of IPF are unclear.

However, aggregates of actively proliferating fibroblasts, termed fibroblas-

tic foci, are a key feature in IPF pathology.224 Lung biopsies indicate that

there is a direct correlation between these foci, progression of the disease and

shortened survival.225 Consequently, it has been suggested that new thera-

pies should target the regulation of fibroblast functions, rather than the in-

flammatory response.226 The transforming growth factor β1 (TGF-β1) plays

a key role in controlling these functions, by responding to tissue injury or

infection and mediating tissue repair. However, increased activity of TGF-

β1 can lead to tissue inflammation in uninjured areas and scar formation.

Therefore, prevention of TGF-β1 activation is important for new therapies
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Figure 3.1: (Left) CT scan of a pair of healthy lungs. (Right) Typical CT scan
from a patient with IPF. Scarring and honeycombing of the lungs is observed
[Reproduced with permission from reference 220].

of IPF.227,228 One mechanism of action of TGF-β1 involves the integrin αvβ6.

Latent TGF-β1 is stored in excess in the extracellular matrix and binds to the

extracellular head region of the transmembrane protein. A drug antagonist

of the αvβ6 receptor could treat IPF through its active site binding in place

of TGF-β1.

3.1.2 Lead compounds for αv antagonism

Latent TGF-β1 is activated upon binding to integrin αvβ6 through an Arg-

Gly-Asp(RGD)LXX(I/L) motif (where X is any amino acid) in the pro-

domain. Key binding interactions are highlighted in Figure 3.2. The ArgRGD

side chain interacts with the carboxyl group on (αv)-Asp218 through biden-

tate hydrogen bonds. The carboxyl group on AspRGD coordinates with a

Mg2+ ion in the metal ion-dependent adhesion site (MIDAS) of the β6 sub-

unit. The Mg2+ ion is flanked by two Ca2+ ions, one of which is called the

adjacent to MIDAS (ADMIDAS). Allosteric antagonists that mimic an RGD

sequence, and therefore these interactions, are of particular interest.
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Figure 3.2: TGF-β1 bound in the active site of αvβ6, showing the αv sub-
unit (faded teal), the β6 subunit (faded green), the backbone of the ligand
(maroon) and heteroatoms (blue and red). The RGD sequence of TGF-β1 is
shown in bold. The bidentate (αv)-Asp218 hydrogen bonding and themetal
chelate interactionwith theMg2+ ion (orange) are indicated by dashed lines.
Asp218 is part of the αv subunit and is shown in bold teal. The Ca2+ ions are
shown in green.

Successful integrin antagonists to reach the market treat diseases such as

multiple sclerosis, Crohn’s disease and acute coronary syndrome.229 How-

ever, to date there have been no approved drugs specifically targeting αv

integrins. Despite this, there a number of αv antagonists to receive interest

and reach clinical trials.230 Awell documented inhibitor of αvβ3 and αvβ5 is

cilengitide (Figure 3.3), a cyclic RGDmimetic that reached phase three clin-

ical trials. Cilengitide binds to these receptors, preventing signalling and in-

ducing apoptosis of tumour cells.231 Although this compound had a promis-

ing start, it did not meet regulatory approval, due to lack of activity and

not significantly increasing overall survival in patients.232 Nevertheless, the

majority of integrin inhibitors currently in clinical development are RGD-

binding and remain a key area of research.
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Figure 3.3: The structure of cilengitide, an αv inhibitor to reach stage three
clinical trials.

A collaboration between GSK and UoN has presented structure activity

relationship (SAR) studies of 36 novel compounds.8 Analogues of a parent

compound were synthesised and pIC50 values were used to measure activ-

ity and selectivity against αvβ3, αvβ5, αvβ6 and αvβ8. Figure 3.4 shows the

structure of the compound’s scaffold. A 1,2,3,4-tetrahydro 1,8-napthyridine

group at one end of the compound mimics the Arg residue in the RGD

tripeptide. Thismoiety is of particular interest inmedicinal chemistry as 1,8-

napthyridines and their derivatives are found in many natural substances

with biological activities.233 The carboxyl on the opposite end of the com-

pound mimics the Asp residue and binds to the Mg2+ MIDAS ion. Sub-

stituents on the aryl group are varied, influencing the potency and selectivity

of the compound.

SAR shows that subtle changes in aryl substituent can lead to substan-

tial effects. This is highlighted by the profound change in activity of enan-

tiomers when a CF3 group is added at the 3-position of the aryl ring. The

(𝑆)-enantiomer has a pIC50 of 7.1, while the (𝑅)-enantiomer has a value of
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Figure 3.4: The structure of an RGDmimetic functioning as the parent com-
pound of an αvβ6 antagonist series.

5.2. Other aryl substituents considered in the SAR include H, Cl, F, methyl,

propyl, methoxy, nitrile, OCF3, SO2Me, phenyl andOCH2O. Possible deriva-

tives of the scaffold is not limited to those that have been previously synthe-

sised. Taking into account constraints such as synthetic accessibility and the

need for drug-like properties, there are still a huge number of viable candi-

dates. This motivates the use of computational approaches to investigate the

relationship between derivatives and their activity, to save cost and synthetic

resources.

3.1.3 The CHARMM force field

The aim was to use MD and FEP simulations to model the binding inter-

actions of αvβ6 with a series of inhibitors, based on the GSK/UoN scaffold

discussed.8,234 The potential energy function chosen for these calculations

was the CHARMM force field,119 as shown in Equation 3.1.
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𝑉 =
∑︁
𝑏𝑜𝑛𝑑𝑠

𝑘𝑏 (𝑏 − 𝑏0)2 +
∑︁
𝑈𝐵

𝑘𝑈𝐵 (𝑟1,3 − 𝑟1,3;0)2 +
∑︁

𝑎𝑛𝑔𝑙𝑒𝑠

𝑘𝜃 (𝜃 − 𝜃0)2

+
∑︁

𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟𝑠

𝑘𝜑 (𝜑 − 𝜑0)2 +
∑︁

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

𝑘 𝜒 (1 + 𝑐𝑜𝑠(𝑛𝜒 − 𝛿)

+
∑︁

𝑛𝑜𝑛𝑏𝑜𝑛𝑑𝑒𝑑

𝜖𝑖 𝑗 [(
𝑅𝑚𝑖𝑛𝑖 𝑗

𝑟𝑖 𝑗
)12 − (

𝑅𝑚𝑖𝑛𝑖 𝑗

𝑟𝑖 𝑗
)6] +

𝑞𝑖𝑞 𝑗

4𝜋𝑟𝑖 𝑗𝜖0𝑖 𝑗

+
∑︁

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠

𝑉𝐶𝑀𝐴𝑃 (𝜙, 𝜓) (3.1)

The CHARMM force field contains functions typical to most biomolecular

force fields (as discussed in Chapter 2). Bond lengths and angles are de-

scribed by harmonic potentials, dihedral angles are treated by their force

constant, 𝑘 𝜒, the multiplicity, 𝑛, and the phase, 𝛿, and non-bonded inter-

actions are calculated using the Lennard-Jones 12-6 potential116 and the

Coulomb potential. In the Lennard-Jones term, 𝑅𝑚𝑖𝑛𝑖 𝑗 is the equilibrium

position of two particles and relates to the van der Waals (vdW) radius by

𝑅𝑚𝑖𝑛 =
6√2𝜎. There are also some additional terms in the CHARMM force

field. The Urey-Bradley (UB) function describes the 1-3 bond distances,

where atoms 1, 2 and 3 are connected, using a force constant, 𝑘𝑈𝐵, and equi-

librium distance, 𝑟1,3;0. Improper dihedral angles are also accounted for us-

ing a harmonic potential with a force constant, 𝑘𝜑, and equilibrium value, 𝜑0.

The final CMAP term serves as an energy estimation for the conformational

flexibility of a peptide backbone.235
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Parameter development

Terms in the force field not obtained directly from molecular coordinates

are parameters that can be developed and optimised based on unique atom

types. This allows different types of atoms and molecular connectivity to

be treated using the same set of equations. The CHARMM force field has

been developed beyond the treatment of proteins. The CHARMM General

Force Field (CGenFF) is an extension of the force field, which contains pa-

rameters to describe small drug-like molecules.123 However, not all atom

types in the RGD mimetic of interest, specifically the 1,2,3,4-tetrahydro 1,8-

naphthyridine group, exist within the CGenFF. Therefore, parameters con-

sistent with the CHARMM force field have been developed to enable the

computational study of the potential αvβ6 antagonists.

3.2 Materials and Methods

The key to developing compatible parameters is consistency with how the

CHARMM force field has been developed. A systematic protocol for param-

eter development, outlined by Vanommeslaeghe et al.,236,237 was followed to

attain a sufficient level of accuracy in a timelymanner. Once parameterswere

optimised, as outlined below, the process was repeated so that all conver-

gence criteria were met. Two iterations, at least, of optimisation are typically

required due to the sensitivity of non-bonding interactions to intramolecular

properties.

As the GSK/UoN scaffold does not contain an extended peptide back-
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bone, the CMAP term in the potential energy function was discarded. The

UB and improper angle terms were also left undefined as these are typically

only used as an additional energy correction when the other terms are not

satisfactory.

3.2.1 Target fragments and initial guess

For computational efficiency, the scaffold was split into three fragments

(Figure 3.5). Fragment 1 contained the 1,2,3,4-tetrahydro 1,8-napthyridine

group, the focus of fragment 2 was the alkyl chain and fragment 3 contained

the amide bond, carboxyl group and aryl ring. The deprotonated carboxyl

group and positively charged naphthyridine fragment were important for

modelling the key RGD interactions and the physiological form of the com-

pound.

Initial guess parameters were obtained using a CGenFF atom typing pro-

gram.236,237 This program finds chemically similar groups already available

in the CGenFF force field and returns a penalty score based on the recom-

mended level of optimisation required for each set of parameters. For exam-

ple, fragment 1 was matched with 1,8-napthyridine, which is pre-existing

in CGenFF, and was assigned an overall penalty score of 223. For penalty

scores between 10 and 50, basic validation is recommended, whereas exten-

sive optimisation is necessary for scores above 50. Fragment 1 was the only

fragment to return a score above 10. Therefore, optimisation efforts were

concentrated on the partial charges and intramolecular parameters of the

1,2,3,4-tetrahydro 1,8-napthyridine group.
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Figure 3.5: Fragments 1, 2 and 3, derived from the scaffold of the potential
αv antagonist. Atom labels correspond to those used in the parameterisation
process.

3.2.2 Intermolecular parameters

Target datawas generated byQMcalculations, using the packageQChem.238

Following, Vanommeslaeghe et al., for each possible hydrogen bonding in-

teraction, a complex was built of the MP2/6-31G* optimised fragment and

a single water molecule in the TIP3P geometry.182 The water molecule was

initially placed in an “ideal" position for hydrogen bonding and the inter-

action distance was optimised at the HF/6-31G* level. From this optimised

distance, an interaction energy can be determined. While higher levels of

theory for QM calculations may give more accurate target data, their use

slows down the parameterisation process and could lead to an imbalance
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Figure 3.6: Bidentate interaction between a water molecule and the polar
hydrogen atoms on fragment 1.

with parameters in other parts of the force field. Usually, this process is

repeated for each hydrogen bonding atom. However, due to the bidentate

interaction of fragment 1with the receptor, a singlewatermoleculewas used

to replicate this interaction (Figure 3.6).

Once QMvalues were determined, theywere comparedwith the interac-

tion distance and energy obtained from an energy minimisation calculation

using the CHARMM force field and initial guess parameters. Partial charges

were then optimised so that the model fragment-water interaction energies

were within 0.2 kcal mol−1 and distances were within 0.1 Å of the QM tar-

get data. This was done by iteratively making small changes to the partial

charges, while maintaining the overall net charge of the fragment.

3.2.3 Intramolecular parameters

Bond length and angle parameters were optimised so that values from

MP2/6-31G* optimised fragments were replicated by energy minimisation
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calculations using the CHARMM force field. Penalty scores from the initial

guess parameters indicated that, for fragment 1, one bond length and several

bond angle parameters required attention. The penalty score for the N1-C9

bond length parameters was 145. Therefore, the force constant and equi-

librium terms were modified until the CHARMM energy minimised bond

length was within 0.03 Å of the QM optimised structure. Bond angle param-

eters were optimised in a similar way, so that angles were within 3◦ of the

MP2/6-31G* optimised structure.

Optimisation of dihedral angle parameters used the MP2/6-31G* PES as

target data. Due to the pseudo-planarity of fragment 1, the only parame-

ters which required optimisation were those for the N1-C8-C7-C6 torsion.

The initial method employed to generate the QM surface involved an opti-

misation with the dihedral angle constrained and using the resulting con-

formation for the subsequent dihedral optimisation. However, this pro-

duced irregularities in the PES, due to the ring flip as the dihedral angle

passed through 0◦. To obtain a smooth PES, geometry optimisations were

performed using a planar initial structure for each new dihedral constraint.

The potential energy term describing rotation around a dihedral angle in the

CHARMM force field features parameters for the force constant, multiplicity

and the phase. The same dihedral scan was carried out using the CHARMM

force field, with these dihedral parameters set to zero. A Monte-Carlo Sim-

ulated Annealing (MCSA) protocol239 with exponential cooling was used

to minimise the root mean square error between the QM and MM energy

profiles.
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Aryl substituent parameters

To test how well the existing CHARMM force field parameters describe the

compound derivatives, when an aryl substituent is attached, penalty scores

were obtained for substituents H, F, CF3, OCF3, methyl and methoxy. From

these scores, optimisation of partial charges on the CF3 derivative was con-

sidered necessary. Dihedral angle parameters were also validated for the C-

O-C-F torsion on the OCF3 derivative. No further optimisation was needed

for any other aryl substituent.

3.3 Results and Discussion

3.3.1 Partial charges

For the 1,2,3,4-tetrahydro 1,8-naphthyridine group (fragment 1 in 3.5), Ta-

ble 3.1 shows the optimised interaction energies and distances for hydrogen

bonding interactions with polar atoms on the antagonist at the HF/6-31G*

level, and when using the CHARMM force field once partial charges were

optimised. Interaction energies are within 0.2 kcal mol−1, as recommended

by parameter optimisation methodology.240 Although the interaction dis-

tance between the fluorine atoms on the CF3 derivative and the TIP3P oxy-

gen atom is above the recommended 0.1 Å, similar disagreement has been

acceptable in other major parameterisation efforts.240
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Table 3.1: QM and MM interaction energies and distances of a single water
molecule in a hydrogen bonding interaction with polar atoms on fragment
1 and the CF3 aryl derivative. O represents the oxygen atom on the TIP3P
water molecule. Distances are in Å and energies are given in kcal mol−1.

H12-O H13-O CF-O

HF/6-31G* Distance 2.1 2.0 2.3
Energy -16.4 -16.2 -1.9

Optimised CHARMM
Parameters

Distance 2.0 1.9 2.0
Energy -16.4 -16.4 -1.9

Difference Distance 0.1 0.1 0.3
Energy 0.0 0.2 0.0

3.3.2 Bond lengths, angles and dihedrals

Figure 3.7 shows the MP2/6-31G* bond lengths and partial charges as-

signed to themethylated 1,8-naphthyridine fragment. The similarity in bond

lengths between the central carbon atom and adjacent nitrogen atoms sug-

gests that the charge delocalisation extends across the ring to include both

nitrogen atoms, rather than a localised aromatic pyridine-piperidine struc-

ture. This is reflected in the partial charges assigned to these atom types in

the developed force field parameters.

Optimised values for the high penalty bond lengths and angles in frag-

ment one are shown in Table 3.2. These values are also in close agree-

ment with the bond lengths and angles in four naphthyridine containing

molecules from the Cambridge Crystallographic Data Centre (CCDC) (Ta-

ble 3.3).241

Due to the planarity of fragment 1, the only dihedral angle that needed

optimising was the N1-C8-C7-C6 dihedral angle (Figure 3.8). Figure 3.9
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Figure 3.7: Bond lengths and atomic partial charges calculated at theMP2/6-
31G* level for fragment 1. Bond lengths are shown in Å.

Table 3.2: Bond lengths and angles on fragment 1 fromMP2/6-31G* geome-
try optimisation and energy minimisation using optimised CHARMM force
field parameters. Bond lengths shown in Å and bond angles shown in de-
grees.

Bond/Angle MP2/6-31G*
Optimisation

Optimised CHARMM
Parameters Difference

N1 - C9 1.34 1.33 0.01
N1 - C9 - N2 119 118 1
C9 - N1 - H12 120 120 0
C9 - N1 - C8 122 119 3
C5 - C9 - N1 123 124 1
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Table 3.3: Bond lengths and angles in molecules containing a dihydro 1,8-
naphthyridine fragment. Atom indexing is taken from Figure 3.5. The struc-
tures are given by CCDC ID. Bond lengths are shown in Å and bond angles
are shown in degrees.

Structure N1-C9 N1-C9-N2 C9-N1-H12 C9-N1-C8 C5-C9-N1
MP2 Optimised 1.34 119 120 122 123
MM Optimised 1.33 118 120 119 124
COYFOM242 1.33 115 - 121 123
BEKWOE243 1.32 118 122 121 125
IPAGEN244 1.37 116 116 123 120

MERLNID245 1.36 116 121 118 121

Figure 3.8: Fragment 1 with the dihedral angle requiring parameter optimi-
sation highlighted.

shows the QM and theMMPES of the N1-C8-C7-C6 dihedral angle. There is

a closer match betweenMMandQM surfaces once dihedral parameters, 𝑘 , 𝑛

and 𝛿, are optimised using aMCSA protocol. The penalty score returned for

the C-O-C-F dihedral parameters in the OCF3 derivative was 98, implying

necessity for optimisation. However, the QM and MM PES around the tor-

sion indicated a sufficient match between the curves when using the initial

guess parameters; therefore, no optimisation was performed.
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Figure 3.9: Dihedral scan around the N1-C8-C7-C6 angle showing the
MP2/6-31G* surface (dashed line), the CHARMM initial guess (dotted line)
and the CHARMM surface after the parameters were optimised (solid line).

3.4 Conclusions

Computational methods aid the investigation of potential antagonists of

αvβ6, a therapeutic target for the treatment of IPF. Consequently, a new set of

parameters compatible with the CHARMM force field has been developed

for the scaffold of a series of αv inhibitors. In particular, parameters have

been developed for 1,2,3,4-tetrahydro 1,8-naphthyridine. As naphthyridine

is an important moiety in medicinal chemistry,233 we expect these new pa-

rameters will find utility in future computational studies, beyond our own.

Starting from initial guess values, partial charges and intramolecular pa-

rameters have been optimised to match QM target data within the desired
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accuracy. Parameters for three fragments of the UoN/GSK scaffold can now

be combined to accurately model the full compound using MM. Parame-

ters can be found in the Supporting Information of reference 27. In the next

chapter, these parameters are used and validated throughMD and FEP sim-

ulations.



Chapter 4

Molecular Simulation of αv

Integrin Inhibitors

4.1 Introduction

In the previous chapter, we outlined how the involvement of integrin αvβ6

in the progression of several tumour types and diseases, including IPF,

makes it an important target for the development of drug compounds.7,230,246

CHARMM force field parameters were optimised for an RGD mimetic,

which serves as the scaffold for a series of αvβ6 inhibitors. In this chapter, we

describe MD simulations of αvβ6 in complex with its natural ligand, TGF-

β1, and each of the RGD mimetic derivatives. Furthermore, to calculate the

difference in binding free energy between derivatives of the scaffold, relative

FEP simulations have been performed on pairs of the RGD derivatives.

90
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4.1.1 Integrins as receptors

Integrin αvβ6 is a transmembrane, heterodimeric protein. The αv subunit

of extracellular αvβ6 comprises a lower and upper calf domain, the thigh

domain and the β-propeller domain (Figure 4.1). Extracellular β6 is made

up of a lower leg, upper leg, and head region. The head region consists of

the plexin-semaphorin-integrin (PSI) domain, the hybrid domain and the

β1 domain. Ligand binding occurs at the interface of the αv and β6 subunit,

with interactions formed between the ligand and each of the head regions

(Figure 4.1). The activity of αvβ6 is influenced by conformational changes

in the multidomain subunits of the integrin. In its inactive bent-closed con-

formation, the subunits hinge at each Genu, so that the head regions fold

towards the cell membrane. Activation involves a switchblade-like opening

motion of the upper domains to give the extended-closed conformation, ex-

posing the active site to ligand binding. A swing out motion of the hybrid

domain away from the αv subunit induces the extended-open conformation.

This results in a more closed binding site at the other end of the β1 domain.

The natural ligand of αvβ6, pro-TGF-β1 binds to αvβ6 through an RGD

motif. Key interactions include a bidentate hydrogen bond andmetal chelate

interaction. As these interactions are consistent across all αv integrins bound

to RGD ligands, we term this set of interactions as canonical interactions.

The MIDAS Mg2+ and the ADMIDAS Ca2+ ions are also important contrib-

utors to ligand binding and conformational rearrangements of the receptor.

The opening of the hybrid domain to give the extended-open conformation

results in a 3 Å movement of the ADMIDAS towards the MIDAS.247 This
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Figure 4.1: Schematic showing the different conformations of αvβ6. The do-
mains of the integrin are labelledwith the extracellular protein shown above
the membrane (denoted as a pink strip); the ligand is shown in orange.247
[Reproduced with permission from reference 246.]

concerted movement decreases the accessibility of the binding site in the

extended-open conformation. The X-ray crystal structure with PDB code

4UM919 has been selected for our study. In this structure, αvβ6 is in complex

with TGF-β1 and has a completeMIDAS andADMIDAS occupancy. In addi-

tion to the canonical interactions displayed in the crystal structure, there are

other binding site contacts. The RGD aspartate on the ligand forms hydro-

gen bonds with (β6)-Asn218 and (β6)-Ala126 in the receptor. The backbone

of the ligand and (β6)-Thr221 also interact (Figure 4.2).
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Figure 4.2: TGF-β1 (maroon backbone) bound in the active site of αvβ6
(PDB: 4UM9). Interacting binding site residues are shown as sticks. Blue
residues correspond to the αv subunit and green to the β6 subunit. The
Mg2+ MIDAS ion is shown as an orange sphere and the Ca2+ ions shown as
green spheres.

4.1.2 Computational approaches for integrin inhibitor de-

sign

Identifying new clinical candidates which balance all necessary properties

and that can be administered as a low dose medicine, is difficult. An impor-

tant aspect, particularly for the clinical dose size, is the affinity of the modu-

lator for its biological target. The more potent the molecule is whilst control-

ling its lipophilicity, the greater the chance of a lower clinical dose. The study

presented in this chapter lays the foundation for computationally estimating

the affinity of inhibitors of the αvβ6 integrin. Predicting ligand affinity in

integrin drug discovery from docking studies has historically been difficult
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(although it is generally possible to rationalise the activity once the data is

available).248 Therefore, understanding which structural features of the in-

hibitor are most important for driving affinity from molecular simulations

complements the empirical process that is generally used in integrin lead

optimisation where compounds are made, tested and SAR are developed.

Computational predictions become particularly important with longer syn-

theses, which use considerable resources and take months to complete.

In a previous computational study of αvβ6, Di Leva et al.249 used MD

simulations to identify additional non-canonical interactions and to develop

a αvβ6 potent cyclic peptide from an RGD containing linear oligomer. This

illustrates the utility of MD simulations for identifying potential areas for

ligand development through a detailed description of how the dynamic

changes of active site residues contribute to receptor-ligand binding. A

computational study of αvβ3 - ligRGD complexes found the ArgRGD - (αv)-

Asp218 interaction is maintained over 100 ns.250 Over the simulation the dis-

tance between AspRGD and the Mg2+ ion in the MIDAS of β3 decreased, in-

dicating these interactions are stable. Another MD simulation study251 re-

vealed, by varying isoDGR-containing cyclopeptides in complex with αvβ3,

subtle differences in ligand interactions that affect the allosteric response of

the receptor to ligand binding.

Our interest focuses on an RGD mimetic as the framework for a series of

potential antagonists (Figure 3.4). Each compound varies at the 3-position

of the aryl group, with substituents including H, F, CF3, OCF3, CH3 and

OCH3. These compounds were taken from a class of compounds in an on-

going study of the SAR of αv integrin inhibitors.8,234 Although other chemo-
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types have been explored in the literature,248,252 our study focuses on a single

scaffold. Scaffold substituents were chosen for this study as they are com-

patible with the CHARMM force field, obviating the need for extensive force

field development for individual compounds. In previous work, the activity

of each compound has been measured through a cell adhesion assay.8 The

compounds have pIC50 values in the range of 5.2 to 7.1. Due to the racemic

nature of the compound, a single pIC50 value is assigned to both the (𝑅)-

and (𝑆)-enantiomer of each compound, with the exception of CF3. As the

CF3 analogue was prepared from commercially available (𝑅) and (𝑆) pre-

cursors, distinct pIC50 values can be assigned to each enantiomer. pIC50 is

the negative log10 of the half maximal inhibitory concentration (IC50), which

we relate to Δ𝐺 using the following equation:

Δ𝐺 = −𝑅𝑇 ln (IC50) (4.1)

where 𝑅 is the gas constant and 𝑇 is temperature.

There is growing interest in predicting relative binding energies using

FEP simulations and integrating them into drug discovery workflows.196

Chemically accurate in silico binding affinities can provide guidance when

optimising lead compounds, saving synthetic resources and effort. There is a

question, however, about the easewithwhich FEP can be applied to new sys-

tems. Nevertheless, with improved force fields and greater computational

resources becoming more available, FEP simulations are increasingly attrac-

tive and tractable. The accuracy of FEP simulations rely on a quality force

field, sufficient sampling and a well equilibrated system. This poses some

practical considerations. For example, force field parameter optimisation is
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often necessary. For convergence of the predicted free energy change for a

transformation, it is important that at each alchemical perturbation between

two end states, the system is equilibrated to that intermediate state. Also,

as perturbations need to be conservative, many windows may be needed to

cope with the change between the two end states. As a result, these simula-

tions can become computationally intensive and access to parallel comput-

ing systems is required for thorough sampling regimes at realistic timescales.

In this chapter, we build on previous calculations112 using molecular

docking. Starting from docked conformations, we use MD and FEP simula-

tions to assess the effects of the different aryl substituents on active site inter-

actions. MD simulations of αvβ6 in complexwith its natural ligand, TGF-β1,

enable us to investigate the dynamic and thermodynamic behaviour of lig-

and binding. We identify the contributions of active site residues to binding

by monitoring how often they interact with the ligand. Furthermore, FEP

simulations have been performed to calculate relative binding free energies.

4.2 Materials and Methods

4.2.1 Molecular docking

Coordinates were taken from an X-ray crystal structure of a αvβ6 dimer

with the pro-domain of its natural ligand, TGF-β1, bound (PDB 4UM919).

To prepare for docking, chains C, D and F were extracted from the equili-

brated structure with all water molecules and ions removed (equilibration

methodology outlined below). Using receptor generation software as part
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of the OpenEye docking toolkit,37,253 Chain F (TGF-β1) was assigned as lig-

and and thus did not interact with the docked molecules. A box centred on

(β6)-Thr221 with sides of length 21.0 × 22.7 × 27.3 Å was situated to fully

cover the TGF-β1 occupied binding site, giving a total receptor volume of

8680 Å3. Constraints were then applied, ensuring a metal chelate interac-

tion with MIDAS and hydrogen bond donors to both of the carboxyl oxygen

atoms on the (αv)-Asp218 residue.

Compounds were protonated according to physiological pH. The com-

pounds studied were prepared using OMEGA,253 for both (R) and (S)

enantiomers. Conformers were generated using a truncated form of the

MMFF94s force field,254 a variant that excludes both Coulomb interactions

and the attractive part of vdW interactions. A maximum energy difference

of 20 kcal mol−1 was allowed from the lowest energy conformer. These al-

lowed molecules to explore additional conformational space. A maximum

of 10,000 conformers per enantiomer was set and conformers within 0.5 Å of

any others were considered duplicate and thus removed. Docking was per-

formed using OpenEye FRED.37 Compounds were docked using the high

resolution setting with rotational and translational step sizes of 1 Å. Chem-

gauss4 was used to score the poses. The poses of each enantiomer were in-

spected for anomalies and the top scoring poses were chosen as the starting

positions for MD simulations.

4.2.2 Molecular dynamics simulations

Coordinates of chains C and D were used as starting structures for sub-

units αv and β6 respectively. Simulations involving the natural ligand used
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chain F coordinates. All water molecules and metal ions throughout the

crystal structure were included. It is particularly important to retain crystal-

lographic water molecules for FEP simulations as they stabilise the system

and improve the equilibration process.196 In accordance with physiological

pH, the zwitterion form of the RGD mimetic was used, with the 1,2,3,4-

tetrahydro 1,8-naphthyridine protonated and the carboxyl group deproto-

nated. The protonated states of arginine and lysine residues were used and

all aspartic and glutamic acids were deprotonated. Histidine residues were

treated as neutral, with the nitrogen atom nearer the backbone protonated.

Procedures to build hydrogen atoms, solvate the system and apply PBCwere

generated using the quick MD simulator module in CHARMM-GUI.255 The

system was solvated in a truncated octahedral periodic boundary cell with

edge distances of 10 Å to construct an explicitly modelled solvent consist-

ing of 16,886 TIP3P water molecules,182 eight Mg2+ and four Cl− ions, to

give a net neutral charge (Figure 4.3). The concentration of the counter ions

matched conditions used in cell adhesion assays performed on these com-

plexes. To optimise the solvent positions, all heavy atoms were fixed, except

for water molecules, during 50 steps of steepest descent (SD) and 50 steps of

Adopted Basis Newton-Raphson (ABNR) minimisation. Protein and metal

ion parameters were obtained from the C36 version of the CHARMM force

field.119 Parameters for metal ions were developed and validated by Beglov

et al.256 and are commonly employed in biomolecular studies.

Upon system setup, the NAMD software173 was used for simulations of

all complexes. Firstly, the solvated crystal structure, still containing TGF-β1,

was minimised for 20 ps using a conjugate gradient and line search algo-
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Figure 4.3: Complex of an RGD mimetic docked into the active site of αvβ6
(PDB 4UM9). The system has been solvated in a truncated octahedral box
with TIP3P water molecules (red dots) and neutralising Mg2+ (orange) and
Cl− (green) ions.

rithm. Protein backbone and side chain restraints were applied using har-

monic constraints with force constants of 10 kcal mol−1 Å−2 and 5 kcal mol−1

Å−2. The system was heated to 298 K in increments of 3 K every 1 ps us-

ing NAMD velocity reassignment. Backbone and side chain restraints were

gradually switched off during a 2 ns equilibration period in the NVT en-

semble. The coordinates of the equilibrated receptor were used for ligand

docking.

To ensure canonical interactions were maintained during an additional

1 ns equilibration of the docked complexes, both carboxyl oxygen atoms

on the aspartate mimetic were constrained to a distance of 2 Å from the

Mg2+ ion. The polar hydrogen atoms on the protonated 1,2,3,4-tetrahydro
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1,8-naphthyridine segment were constrained to a distance of 2 Å from the

carboxyl oxygen atoms on (αv)-Asp218. An initial force constant of 10 kcal

mol−1 Å−2 was used for all distance constraints. Force constants for distance

constraints were steadily decreased to 2.5 kcal mol−1 Å−2 during an equi-

libration of 0.5 ns in the NVT ensemble and 0.5 ns in the NPT ensemble.

This meant all canonical interactions were present at the start of production

runs. Five independent 10 ns production runs were performed in the NPT

ensemble for the (R)- and (S)-enantiomers of each derivative. Simulations

of αvβ6 bound with TGF-β1 were also performed, resulting in a total of 65

simulations of 10 ns. Temperature was controlled using Langevin dynamics

parameters, with a friction coefficient of 5 ps−1 for all equilibration and pro-

duction runs. Constant pressure was maintained using the Langevin piston

Nosé-Hoover method257 with a target pressure of 1 atm. A cutoff distance of

12 Åwas used for vdWpairs, with a switching function at a distance of 10 Å.

The electrostatic potential energy was computed using the PME method.258

The SHAKE algorithm168 was used to fix all bond lengths involving hydro-

gen atoms and a timestep of 2 fs was used. Upon completion of production

runs, all solvent molecules were removed except those within 10 Å of the

ligand, in order to expedite the analysis. Trajectories were sampled every 20

ps, resulting in 500 frames for each replica.

4.2.3 Free energy perturbation simulations

FEP simulations, as discussed in Chapter 2, involve an alchemical transfor-

mation between two structurally related ligands.259 A change is made to the

system so that the potential energy is equivalent to the original potential en-
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ergy with an additional “perturbing" potential energy term (𝑉𝐵𝐴):

𝑈𝐵 = 𝑈𝐴 +𝑉𝐵𝐴 (4.2)

where𝑈𝐴 and𝑈𝐵 are the respective potential energies of stateA andB,which

represent the states where a different ligand is bound in each. States A and

B should arise from the same conformational space and therefore,𝑉𝐵𝐴 needs

to be very small. To address this, the transformation of A to B is divided into

several discrete simulations, called windows, which are connected using a

coupling parameter, 𝜆.

Figure 4.4 shows the thermodynamic cycle of a transformation of one

ligand, L1, (state A) into another, L2 (state B). Δ𝐺1 and Δ𝐺2 are the bind-

ing free energies of each ligand, while Δ𝐺3 and Δ𝐺4 are the free energies

of transforming one ligand into the other, as the free ligand and in complex

with the receptor. At each end point of the simulation (L1 and L2) 𝜆 equals

zero or one. At intervals between these end points, bonded and non-bonded

parameters are scaled so that they are “switched off" for outgoing atoms and

“switched on" for incoming atoms. There are two ways to alchemically mu-

tate ligands. In our FEP simulations, we employ the dual topology approach.

A soft-core potential is used to avoid “end-point catastrophes", where dis-

appearing atoms can leave empty pockets and appearing atoms clash with

the existing environment.200,201 Electrostatic interactions of outgoing atoms

are decoupled from the system over the 𝜆 range of 0 to 0.5, while the electro-

statics for incoming atoms are coupled to the system over the 𝜆 range of 0.5

to 1.
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Figure 4.4: A thermodynamic cycle describing the binding of two ligands, L1
and L2, to a receptor, R. The relative free energy of binding can be calculated
from either the physical (Δ𝐺2 − Δ𝐺1) or alchemical (Δ𝐺4 − Δ𝐺3) legs of the
cycle. In FEP calculations, the transformations of the alchemical pathways
are modelled.

To calculate relative binding free energies of pairs of ligands, ten different

alchemical transformations of aryl substituents were performed. For each

perturbation, three replicas of the forwards and backwards transformation

were performed, resulting in 60 FEP simulations. Ahead of system setup,

dual topologies were constructed for both the free and bound ligands. To

prevent system drift, caused by the charged ends of the free ligand coming

together, the transformations of the free ligand in solvent started from struc-

tures close to an energy minimised conformation. The setup of systems and

free energy simulations were performed using the procedures for the stan-

dard MD simulations described above. During FEP, 𝜆 was increased from

0.0 to 0.1 in 16 discrete steps, from 0.1 to 0.9 in steps of 0.02 and from 0.9 to

1.0 in 16 steps to give a total of 72 windows for each transformation. Equi-

libration was performed for 20 ps at the start of each window, followed by
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100 ps of sampling.

4.3 Results and Discussion

4.3.1 Protein-ligand interactions of TGF-β1

Polar residues that are important for binding can be identified by investigat-

ing the dynamics of hydrogen bonds between the natural ligand of αvβ6,

TGF-β1, and the receptor. From the crystal structure, it is clear that (αv)-

Asp218, (β6)-Ala126, (β6)-Asn218 and (β6)-Thr221 form hydrogen bonds

with TGF-β1. The fraction of time that these interactions were maintained

over the 50 nsMD simulationwasmeasured. A pair of atoms are considered

to be hydrogen bonded if a polar hydrogen atom iswithin 2.5Å of an oxygen,

nitrogen or fluorine atom. A bidentate interaction between (αv)-Asp218 and

theArg residue of the RGDunit on the ligandwas present for 82%of the sim-

ulation time. (β6)-Ala126, (β6)-Asn218 and (β6)-Thr221 were all hydrogen

bonded with TGF-β1 for over 90% of the simulation time. The MD simu-

lation indicated two hydrogen bonds formed between the Asp residue of

the RGD binding tripeptide in the ligand and (β6)-Asn218. One interac-

tion involved the amide backbone of the (β6)-Asn218 residue for 98% of the

simulation time and the other involved the side chain of (β6)-Asn218 for

66% of the simulation time. The hydrogen bond with the side chain is not

present in the starting structure and is only observed as the result of dy-

namics. Both interactions with (β6)-Asn218 are known among RGD ligands

and have been previously recognised.19,260,261 The metal chelate interaction
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Figure 4.5: Residues that form interactions with TGF-β1 (maroon backbone)
over a 50 ns MD simulation. Interacting residues in the crystal structure are
shown (light green) as well as residues that do not interact in the crystal
structure, but gain an interaction during the MD simulation (light blue).
The Mg2+ MIDAS ion (orange) and Ca2+ ions (dark green) are also shown.

between AspRGD and the Mg2+ MIDAS ion was maintained throughout the

entire simulation.

Figure 4.5 depicts the position of the binding site residues that form hy-

drogen bonds with TGF-β1, identified by the crystal structure and MD sim-

ulations. Residues (β6)-Ile219 and (β6)-Gln317 are also shown. These do

not appear to interact in the crystal structure but are in close proximity with

TGF-β1 for 78% and 7% of the MD simulation time, respectively. This high-

lights how MD simulations can identify active site residues that contribute

to ligand binding, which are not observed in a static crystal structure. In an

ongoing study, these receptor conformations generated by MD simulations

are being used for docking as a way to extend the receptor conformational

search space and identify further antagonists.
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Hydrophobic interactions are also important for the binding of TGF-

β1 to αvβ6. The 244-LGRLK-248 sequence directly following the RGD

motif folds into an amphipathic 𝛼-helix, which fits into a β6-specific hy-

drophobic pocket, as previously reported.19,249,262,263 Leu224 and Leu247

form lipophilic contacts with this pocket, which is formed by residues dis-

tinct to β6 when compared to other RGD binding members of the integrin

family such as αvβ3 and αvβ5.19 Contact between the amphipathic 𝛼-helix

of TGF-β1 and the hydrophobic pocket of β6wasmaintained throughout the

MD simulations.

4.3.2 Protein-ligand interactions of RGD mimetics

Bymonitoring the dynamics of hydrogen bonding interactions between each

derivative of the RGD mimetic and the receptor, we characterise the nature

of ligand binding. The stability of the canonical interactions could reflect

the potency of each ligand, as an active compound should maintain these

interactions and remain bound in the active site. In principle, there could be

a link between analogues with higher pIC50 values and better maintained

canonical interactions. All derivatives of the pseudo-RGD compound re-

main bound throughout the MD simulations, through at least one compo-

nent of the canonical interactions. Table 4.1 shows the pIC50 values of each

analogue, which are a measure of activity8 (with additional pharmacologi-

cal data available in reference 8), and the fraction of time that the canonical

interactions were maintained. The interaction frequency is the proportion

of frames with the interaction present with respect to the total number of

frames, averaged over five 10 ns simulations. The bidentate interaction is
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present in all derivatives of the RGD mimetic to a varying extent. However,

there is no correspondence between the stability of the bidentate interaction

and pIC50.

The loss of the bidentate interaction is caused by a slight overall transla-

tion of the ligand in the binding site so that only one polar hydrogen atom on

the naphthyridine fragment is within 2.5 Å of (αv)-Asp218. Although the

bidentate interaction is lost for a considerable amount of time in some lig-

ands, a monodentate interaction between the Arg mimetic and (αv)-Asp218

is commonly observed for all ligands (Table A.1). All analogues of the lig-

and form at least one metal chelate interaction with the Mg2+ ion through-

out the MD simulations. The difference between interactions Mg2+ - O1 and

Mg2+ - O2 is the oxygen atom on the carboxyl group that the Mg2+ interacts

with. Given the proximity of the chiral centre to the MIDAS site, it might

be expected that interaction frequencies for the less active enantiomer with

MIDAS amino-acid residues will be lower as the calculations suggest. Given

the conformational flexibility of the molecule however, what is less expected

is the impact on the bidentate interaction frequency between (αv)-Asp218

and the 1,8-naphthyridine at the other end of the molecule which is much

lower for the less active enantiomer compared to themore active enantiomer

((𝑅)-CF3 19% and (𝑆)-CF3 74%). Nevertheless, the interaction with the MI-

DAS ion is better maintained than the bidentate hydrogen bond in all cases.

Therefore, we observe that the stability of the metal chelate interaction be-

tween AspRGD and the Mg2+ ion is more important than the bidentate hy-

drogen bonding to (αv)-Asp218 for ligand binding.
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The position of the aryl ring on the bound ligand is indicated in Fig-

ure 4.6. The metal chelate interaction formed by the carbonyl and Mg2+

MIDAS ion points inwards into the binding pocket, forcing the aryl ring

to become solvent exposed. Nearby residues are on the 𝛽1-𝛼1 and 𝛼2-𝛼3

loops, specifically (β6)-Ala126, (β6)-Ser127, (β6)-Asn218, (β6)-Ile219, (β6)-

Asp220 and (β6)-Thr221. The side chain of (β6)-Ala126 and the backbone

of (β6)-Asn218 contribute to the β6 hydrophobic binding pocket.19 All (S)-

enantiomer derivatives of the ligand show an interaction with both groups

(Table A.1). Further contacts within 2.5 Å of each substituted ring and any

atom on the β6 unit were investigated. Table 4.1 shows the frequency of con-

tacts with (β6)-Ala126, (β6)-Ser127 and (β6)-Ile219. From the proximity of

the ring to (β6)-Ser127, we observe that the (S)-H, (S)-CH3 and (S)-OCH3

derivatives remain in close contact with the 𝛽1-𝛼1 loop. The remaining S-

derivatives, (S)-CF3, (S)-F and (S)-OCF3, stay close to the 𝛽1-𝛼1 loop, but

for less than 50% of the simulation time. As no other contacts are formed

between these derivatives and the receptor for a significant amount of time,

we suggest that solvent interactions with these more polar substituents in-

fluence the position of the aryl ring.

MD simulations of the natural ligand, TGF-β1, indicated that residues

(β6)-Ala126, (β6)-Thr221 and (β6)-Asn218 in the receptor are all involved in

binding. Therefore, hydrogen bonding interactions between these residues

and the RGDmimetics were investigated. The carboxyl oxygen atoms on the

(S)-forms of theH, F, CH3 andOCF3 derivatives interactedwith (β6)-Ala126

for 67%, 45%, 10% and 60% of the simulation time, respectively. No stable

interactions are identified between any derivatives of the ligand and (β6)-
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Figure 4.6: Position of the aryl ring on the (𝑆)-RGDmimetic within the bind-
ing site. Nearby residues on the 𝛽1-𝛼1 (blue) and 𝛼2-𝛼3 (green) are labelled.
The oxygen atoms of water molecules within 7 Å of the aryl ring are also
shown (red spheres).

Thr221. Although interactions between the ligands and residue (β6)-Thr221

are present in the docked structures, they are lost during equilibration of

the systems and are not observed during dynamics. In the docked struc-

tures, (β6)-Thr221 interacts with the carbonyl oxygen atom on the amide

backbone of the ligand. However, during equilibration, the carboxyl group

rotates away from the receptor to become more solvent exposed.

4.3.3 Cation-𝜋 interactions in αvβ6-RGD systems

A cation-𝜋 interaction consists of an electrostatic attraction between an elec-

tron rich aryl ring and an electron deficient cation. This type of interaction

is common in proteins; an early data mining study of a subset of the PDB

found that over 70% of all Arg side chains are near an aromatic side chain.264
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The crystal structure of αvβ6-TGF-β1 is no exception, with a face-to-face in-

termolecular cation-𝜋 interaction between ArgRGD and residue (αv)-Tyr178

(Figure 4.7). A mixture of factors govern cation-𝜋 interaction orientation,

such as competitive hydrogen bonding and the influence of solvent.265 How-

ever, this parallel geometry is more common in proteins than T-shaped ge-

ometries, althoughT-shaped geometries are preferred in the gas-phase.264,266

To monitor the persistence of the cation-𝜋 interaction during MD, the dis-

tance between the cationic Arg group (the guanidinium carbon in Arg) in

TGF-β1 and the centre of the aromatic (αv)-Tyr178 ring was measured. A

distance less than 5 Å, a common geometrical constraint used in previous

studies, indicated an interaction. The average distance between the two

residues was 4.41 Å with a standard deviation of 0.48 Å. The face-to-face

geometry was also maintained throughout.

As the overarching aim is to design a compound that competitively binds

with αvβ6, it would be sensible to take advantage of the position of (αv)-

Tyr178 and replicate this cation-𝜋 interaction with the RGD mimetics. The

cation in this case is the protonated 1,2,3,4-tetrahydro 1,8-naphthyridine

group. Although the interaction between the naphthyridine group, an aro-

matic cation, and the aromatic side chain of (αv)-Tyr178 could be dominated

by 𝜋-𝜋 interactions, a study by Tsuzuki et al.267 found, through high level

ab initio calculations, that interactions of benzene complexes with aromatic

cations should be categorised as cation-𝜋 interactions as they are stabilised

by large electrostatic and induction interactions. The distance between the

positively charged nitrogen atom and the centre of the aromatic (αv)-Tyr178

ring was measured for each of the RGD derivatives. Table 4.2 shows the
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Figure 4.7: Cation-𝜋 interactions between the cationic nitrogen atoms on
Arg𝑅𝐺𝐷 (top) or the 1,2,3,4-tetrahydro 1,8-naphthyridine group of the (𝑆)-
CF3 derivative (bottom) and the aromatic side chain of (αv)-Tyr178.

distances, averaged over 10 ns of MD. The majority of compounds had an

average distance within the 5 Å cutoff. The cation-𝜋 interaction orientation

sampledmostwas a face-to-face geometry of the (αv)-Tyr178 side chainwith

the naphthyridine group (Figure 4.7). Thus, the RGDmimetics replicate this

type of interaction seen with TGF-β1, in addition to the canonical hydrogen

bonding interactions.
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Table 4.2: The distance between the protonatedN atom on each RGD deriva-
tive and the centre of the aromatic ring on (αv)-Tyr178. Distances have been
averaged over 10 ns of MD simulations, with the standard deviation shown.

Substituent NH+ - Tyr178 Distance (Å)
(S)-H 3.77 ± 0.33
(R)-H 5.01 ± 0.86
(S)-F 4.80 ± 0.41
(R)-F 4.78 ± 1.06

(S)-CH3 4.63 ± 0.43
(R)-CH3 4.13 ± 0.50
(S)-OCH3 3.82 ± 0.47
(R)-OCH3 4.21 ± 0.49
(S)-OCF3 5.21 ± 0.44
(R)-OCF3 5.33 ± 0.69
(S)-CF3 4.19 ± 0.62
(R)-CF3 4.33 ± 0.50

4.3.4 Relative free energy perturbation calculation

To assess the convergence of the alchemical calculations, a method outlined

by Klimovich et al.206 was used. In the example (Figure 4.8) the transfor-

mation of a hydrogen substituent to an OCF3 substituent, with the ligand

in the bound state is considered. This transformation was chosen as it is

the most diverse in terms of the number and types of atoms perturbed and

therefore, it might be most likely to have convergence issues. The free en-

ergy change is calculated using an increasing fraction of the simulation data

(i.e. 0-0.1, 0.0-0.2). Also plotted in Figure 4.8 is the free energy change calcu-

lated with the reverse proportion of the data (i.e. 0.9-1.0, 0.8-1.0). Both sets
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Figure 4.8: Convergence assessment of the transformation of the hydrogen
derivative to the OCF3 derivative, with the ligand bound to the receptor. The
forward (black line) and the reverse (green line) simulation time series are
shown. The horizontal grey strip indicates the equilibrated region.

of data remain within error of the final value and so the calculation is con-

sidered converged. Furthermore, the relative free energies of the forwards

and backwards transformations were compared, as the values are expected

to be identical but of opposite sign. The H → OCF3 perturbation of the free

ligand gave a relative free energy change of -8.9 kcal mol−1, while the OCF3
→H perturbation resulted in a relative free energy change of 8.5 kcal mol−1.

The same perturbations gave relative free energy changes of -10.4 kcal mol−1

and 9.8 kcal mol−1 when the ligandwas bound. The relative free energies re-

flect that, due to its stronger non-covalent interactions, the OCF3 derivative

is favoured over the hydrogen substituent in both solvent and in complex

with the receptor. The similarity for the forwards and backwards transfor-

mation in both states suggests that conditions are met for the convergence of



Chapter 4: Molecular Simulation of αv Integrin Inhibitors 114

the alchemical simulations.

Calculated relative free energies of binding are shown in Table 4.3. The

Δ𝐺 values for the transformations of the free ligand and in complex with the

receptor were evaluated with the BAR method,98 using the ParseFEP tool in

VMD.268 ΔΔ𝐺 values were obtained by taking the difference between each

of these transformations. These theoretical values are compared with ΔΔ𝐺

values obtained from the experimental pIC50 values. For all ten alchemical

transformations, the sign of the relative free energy difference is correctly

predicted, although the magnitude is almost always over-estimated but in a

non-systematic manner. As all derivatives, with the exception of CF3, were

measured as racemic mixtures, there is a probable ±0.3 log error on each

experimental binding free energy, which should also be taken into account.

The calculated values are within 1.5 kcal mol−1 of experiment, with the ex-

ception of the H→ CH3, CH3 →OCH3 and OCH3 →OCF3 aryl transforma-

tions. In order to compare the results of the FEP simulations with simpler

methods, we investigate the relationship between docking scores and experi-

mental activity (Table 4.1). Upondocking of the ligands into the equilibrated

receptor, a score is obtained which reflects the quality of the docking of the

RGD mimetic to the αvβ6 binding site. Although the values are somewhat

empirical and cannot be directly related to binding affinity, docking scores

can be useful for ranking compounds or distinguishing between active and

non-active compounds.269 The docking scores shown in Table 4.1 do not cor-

relate with the pIC50 values. Despite this, the scores do consistently indicate

that the (S)-enantiomers will be more active than the (R)-enantiomers, as

expected. As the relative free energies obtained for the ligands agree more
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Table 4.3: Relative free binding energy of ligand derivatives. Experimental
ΔΔ𝐺 values have an error of 0.6 kcal mol−1.

ΔΔ𝐺 (kcal mol−1)
Transformation Experimental Calculated Absolute Difference
CH3 → OCH3 -0.1 -2.6 ± 0.3 2.5
OCH3 → OCF3 -0.3 -2.3 ± 0.3 2.0

H→ F -0.5 -1.9 ± 0.2 1.4
OCF3 → CF3 -0.5 -0.5 ± 0.4 0.0
H→ CH3 -1.0 -2.9 ± 0.3 1.9
CH3 → CF3 -1.0 -1.4 ± 0.3 0.4
H → OCH3 -1.1 -1.8 ± 0.3 0.7
H → OCF3 -1.4 -1.9 ± 0.4 0.5
F→ CF3 -1.4 -1.3 ± 0.3 0.1
H→ CF3 -1.9 -2.3 ± 0.3 0.4

closely with experiment, compared to the docking scores, we suggest that a

more physically realistic model has resulted from FEP simulations for this

system, albeit at higher computational cost.

There is a lack of correlation in the rank order, with respect to the hy-

drogen derivative, between the calculated and measured affinities. This is

not atypical of many such examples in the field270 where there is a narrow

range of activity exhibited by the ligands. However, it is also important to

note thatwhen forming a perturbationmapwith the hydrogen, fluorine, CF3
and OCF3 substituents, to make a closed thermodynamic cycle, the summa-

tion of the estimated free energy along each edge is -0.9 kcal mol−1. This is

the hysteresis of cycle closure and is substantially higher than the triplicate

error estimate of 0.2-0.4 kcal mol−1. This analysis prompts caution in using

this FEP methodology for ranking this ligand series. Despite this, the sign
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of the free energy change is correctly predicted in each case, suggesting it is

a useful tool for pairwise comparisons of activity.

The closematch between the values for each of the derivatives shows that

FEP calculations do still model the system well, giving a solid foundation

for the associated analysis. While the equilibrium MD simulations provide

information on the dynamic behaviour of interacting residues (as detailed

in Table 4.1), FEP simulations provide a rigorous way to quantify various

physical factors, such as changes in hydrophobic and hydrogen bonding in-

teractions. Taking the transformation from the hydrogen derivative to the

OCF3 derivative as an example, the more lipophilic OCF3 substituent is ex-

pected to have more favorable interactions with the hydrophobic binding

pocket in the β6 subunit. This is reflected by the experimental free energy of

binding, which shows a difference of -1.4 kcal mol−1 between the two deriva-

tives. Calculated values show a similar relative binding free energy of -1.9

kcal mol−1.

4.4 Conclusions

In this work, MD and FEP simulations aid the investigation of potential an-

tagonists of αvβ6. An MD simulation of αvβ6 bound with the the pro do-

main of TGF-β1, starting from an X-ray crystal structure,19 was performed

in order to understand the binding site interactions of the natural ligand.

MD simulations on a series of compounds, based on an RGD mimetic, were

also performed starting from docked structures. From these studies the im-

portance of the canonical interactions, the bidentate interaction of the 1,8-
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naphthyridine with (αv)-Asp218 and the acid binding to the MIDAS site,

are clear. These interactions are supported by unpublished SAR which (i)

demonstrates the distance between the base and the acid is critical and (ii)

shows that maintaining αvβ6 affinity whilst structurally modifying the acid

and 1,8-naphthyridine is particularly challenging. The calculations suggest

the substituted aryl ring is essentially solvent exposed. Other work8,234,248

has found that about two log units of potency can be gained with the opti-

mal substituent bothwith this chemotype8,234 and others,248 but this involves

larger substituents which can form additional interactions with the receptor.

FEP simulations have enabled us to estimate the relative free energies of

binding between pairs of RGDmimetics. As the range in pIC50 of the subset

of compounds studied was 5.2 to 7.1, which is relatively narrow, future work

should expand the substituents studied to include more potent compounds.

Furthermore, in order to rank this series of β6 antagonists, all perturbations

should be linked in some way so that the energies can be compared. There-

fore, an alternative perturbation map should be considered. As suggested

by Cournia et al.,196 instead of performing perturbations to each ligand from

a single reference compound, substituents should be connected in a single

graph, arranged by similarity. By connecting each substituent to at least two

other derivatives in a closed cycle, it is also possible to compute sampling er-

rors as the total free energy change in a closed thermodynamic cycle should

equal zero. Nevertheless, by comparing the binding free energies calculated

in this study with the difference in pIC50 value for each pair, we have shown

that this integrin system, along with this series of ligands is amenable to

study by FEP, with a good level of accuracy.
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From a drug design perspective, lead optimisation of αv integrin in-

hibitors (αvβ6 inhibitors for example) has been driven empirically8 and a

priori selection of optimal substituents on the carbo-aromatic is difficult.

This is because the current understanding in how the substituted aryl part

of the molecule affects potency and selectivity through interactions with the

specificity determining loop in the binding site is poor.7,8 As a result, lead

optimisation requires a large teamof synthetic chemists and substantial bud-

get and canmean progress towards a clinical candidate becomes slow. There

is therefore great value in any reliable method which transitions molecular

design from empiricism to theory.

Based on our previous work,112 large numbers of potential inhibitors

can be generated computationally featuring multi-substituted aryl motifs.

Whilst this has advantages, multi-substituted aromatics can be difficult to

synthesise which exacerbates what are already often challenging and long

syntheses of the inhibitor. So some additional method to select the best com-

pounds to make is needed and this illustrates the value of this work as it

paves the way towards a more robust computational prediction of affinity,

which should be valuable in prioritising compounds for synthesis.



Chapter 5

Structural Variation of

Protein–Ligand Complexes of the

First Bromodomain of BRD4

5.1 Introduction

BRD4, a member of the bromodomain and extra-terminal domain (BET)

family, plays a key role in several diseases, especially cancers. Increased

interest in BRD4 as a therapeutic target has resulted in a wealth of pub-

licly available X-ray crystal structures of the protein in complex with small

molecule inhibitors over the recent decade. These structures provide valu-

able atomistic insight into its binding site interactions. However, this also

means that it is increasingly difficult to choose which crystal structure is

preferred as the starting point of any in silico study. Within this chapter, we

use the structural information available to help understand the flexibility of

119
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BRD4 and examine the effects of small molecule inhibitors, with a focus on

the BD1 binding pocket. This analysis provides guidance in selecting crystal

structures and other features, such as crystallographic water molecules.

5.1.1 Structure and binding of BRD4

The BET family consists of the BRD2, BRD3, BRD4 and bromodomain testis-

specific (BRDT) proteins. Like its family members, BRD4 consists of two N-

terminal BDs (BD1 and BD2) and an extra C-terminal domain (ET).271 Each

BD is composed of four helices (αZ, αA, αB and αC), which are connected

by the ZA loop and BC loop, creating a binding site (Figure 5.1). BRD4 rec-

ognizes the acetylated N-terminal tails of histones through interactions of

its BDs. BRD4-BD1 recognises histone H4, which is anchored by a hydrogen

bonding interaction between the carbonyl oxygen atom on the acetylated ly-

sine and an asparagine residue Asn140 on the BC loop of the receptor.272

A second interaction is formed through a water mediated hydrogen bond

between the acetyl lysine and tyrosine residue Tyr97 on the ZA loop. Ad-

ditional binding site residues create a deep hydrophobic cavity, with Trp81

andMet149 also considered key residues in H4 and small molecule inhibitor

binding.273

At the base of the BRD4-BD1 binding pocket, there is a network of highly

conserved water molecules, which is important in ligand binding and sta-

bilising the protein structure.273–275 A study investigating the structural and

thermodynamic properties of the crystallographic water molecules found

that it is energetically unfavourable to displace the water molecules with a

small drug-like compound, as thiswould require a large amount of energy to



Chapter 5: Structural Variation of BRD4 Complexes 121

Figure 5.1: (Left) Structure of BRD4-BD1 (PDB 3UVW) with histone H4
(light blue) bound. Secondary structures of α-helices αZ, αA, αB and αC are
coloured in red, blue, green and orange, respectively. (Right) Key binding
site residues are highlighted as sticks. Histone H4 is shown in light blue,
with acetylated lysine residues shown as sticks. Water molecules at the base
of the binding site are shown as red spheres.

compensate breaking the hydrogen bonding network.276 Furthermore, MD

simulations demonstrated a high occupancy for several of the water sites.

The authors used these findings to develop a docking based VS protocol to

identify novel inhibitors towards BRD4, highlighting the importance of the

water network in SBDD.

5.1.2 Therapeutic interest

Histones are proteins that provide structural support to the packaging of

DNA into chromosomes. Histones H2A, H2B, H3 and H4 form a core that

are surrounded by segments of DNA, as shown in Figure 5.2. Through bind-

ing to the acetylated tail of histones, BET proteins play a crucial role in regu-

lating gene expression.277 Furthermore, as histone acetylation readers, they

contribute to tumorigenesis (the production or formation of tumours), mak-



Chapter 5: Structural Variation of BRD4 Complexes 122

Figure 5.2: Representation of the packing of DNA into chromosomes. [Fig-
ure reproduced with permission from the National Human Genome Re-
search Institute (https://www.genome.gov July 2021).]

ing them important targets for the development of small molecule drugs to

inhibit these epigenetic interactions. The most extensively studied member

of the BET family is BRD4, due to its promise as a therapeutic target for dis-

eases such as cancer, neurodegenerative disorders, inflammation and obe-

sity.278–282
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Small molecule inhibitors

Over the last decade, there have been many small molecule inhibitors pub-

lished, with some of them reaching human clinical trials.283–288 Contained

within these inhibitors is a wide chemical diversity with core motifs en-

compassing azepines, 3,5-dimethyl isoxazoles, pyridones, triazolopyridines,

tetrahydroquinolines, 4-acyl pyrroles and 2-thiazolidinones.289,290 Each of

these structural classes contains a uniquewarhead, which competes withH4

to replicate the interactions with Asn140 and Tyr97. An additional common

feature of small drug-like compounds bound to BRD4-BD1 is a lipophilic

group, which can extend into the binding pocket and interact with the hy-

drophobic WPF shelf (Trp81-Pro82-Phe83).

The pool of BRD4 inhibitors continues to grow, withmost identified thro-

ugh fragment or SBDD based on properties of known BRD4 inhibitors.291–295

Additionally, a recent review296 identified three novel strategies in target-

ing BRD4, including bivalent BRD4 inhibitors, proteolytic targeting chimeric

molecules and re-purposing of kinase inhibitors. The selectivity of inhibitors

is also being targeted.297–299 Initially many compounds were developed as

BRD4 inhibitors. However, due to the structural similarity across the BDs of

BET proteins, many of these were pan-inhibitors which could cause adverse

side effects such as dizziness and nausea.300,301 Gilan et al.297 used structure-

based design to discover compounds that interact specifically with either the

BD1 or BD2 of BET proteins, providing new insights into improving thera-

peutic strategieswith fewer toxic side effect. Speck-Planche et al.299 have also

developed the first multi-target quantitative structure activity relationship
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(mt-QSAR) model, which can predict BET inhibitor potency against BRD2,

BRD3 and BRD4.

5.1.3 Computational approaches for BRD4 inhibitor design

As in many drug discovery campaigns, computational methods remain an

important tool in finding BRD4 inhibitors.291,293,302,303 Structure based vir-

tual screening methods, such as docking and 3D-QSAR, can facilitate high-

throughput approximations of binding affinities. MD simulations expand

on static representations of protein-ligand complexes by providing a more

dynamic view and develop our understanding of structural patterns and in-

teractions, which lead to high potency and selectivity.304,305 As a crucial goal

of drug development is designing a compound that binds competitively and

strongly, alchemical free energy calculations are becoming increasingly im-

portant as, when done well, they can provide accurate estimations of bind-

ing free energies and present a way to minimize the number of compounds

that are made in the laboratory. Pan et al.291 discovered a BRD4-histone

deactylase (HDAC) inhibitor, a promising therapeutic strategy for colorec-

tal carcinoma, through high-throughput rigid molecular docking of frag-

ments of known BRD4 inhibitors, embedded into the fragment-like library

of ZINC.306 Aflexible dockingmethodwas then implemented on the top 200

scoring fragments. Following this docking, 24 compounds were synthesised

and tested based on the 10 top scoring fragments, resulting in a promising

lead compound. The extensive research already conducted on BRD4 and its

inhibitors also makes it an excellent test case for the development of novel

computational workflows. For example, Fusani et al.307 merged active learn-
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ing with the comparative binding energy (COMBINE) method and demon-

strated its performance using a BRD4 dataset. Active learning was used to

introduce an uncertainty estimation component to the COMBINE method,

which is a powerful tool in studying the structural information of protein-

ligand complexes and deriving QSAR for structurally similar series of com-

pounds.

A fundamental component of structure based in silicomethods is the use

of X-ray crystal structures. It is therefore important to be able to rely on the

starting conformations of proteins in order tomake accurate predictions. For

example, different active site conformations may lead to different binding

poses, which can severely impact predicted binding affinities.212,308 While

MD simulations, combined with enhanced sampling methods, can be used

to find the most stable binding pose, these methods come with a compu-

tational expense and it is still sensible to choose the starting structure with

care. In a study on the T4 lysozyme L99A, Lim et al.309 demonstrated that

predicted relative free energy values are sensitive to initial protein confor-

mation, even when using enhanced sampling.

In this chapter, X-ray crystal structures of BRD4-BD1 complexes in the

PDB are examined and structural clustering is performed, to identify the

variation of conformations and the best static representative structures of

the receptor. To compare the binding site of multiple complexes and identify

ligands which cause structural variation, we useWONKA.310,311 WONKA is

a tool for ligand-based, residue-based and water-based analyses of protein-

ligand structural ensembles. The advantage of using WONKA over other

visualisation and analysis tools, such as PyMOL,312 is its ability to identify
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trends within a data set. It can identify patterns between structure and in-

dividual ligand complexes, and these observations are displayed on a web

based graphical user interface. WONKA also analyses water displacements

and relates which ligands displace conserved water molecules. Therefore,

we are able to explore the extent of the conservation of crystallographic

water molecules in the BRD4-BD1 binding pocket and highlight functional

groups present in the ligands, which displace the usually highly conserved

water network. Molecular docking and absolute FEP calculations are also

used to assess the accuracy of predicted binding poses, with and without

the water network present.

5.2 Materials and Methods

5.2.1 Structural clustering

A survey of the PDB reveals, at the time of this study, 323 X-ray crystal struc-

tures of BRD4 in complex with a variety of ligands. To identify the common

sequence, multiple sequence alignment was performed using the Clustal

Omega313 alignment tool in Chimera.314 Sequence alignment shows that 26

of the ligands are co-crystallised with BD2 and are therefore discounted. In

total, 297 BRD4-BD1 complexes are taken forward for further analysis.

To prepare the receptor structures for clustering, the ligands were first

removed, multiple sequence alignment was performed and the common se-

quence across all structures was retained, with the remaining tails removed.

Protein structural clusteringwas performed using ClusCo,315 a software tool
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for the clustering and comparison of protein models. This utilizes an open

source K-means316 code for Hierarchical Agglomerative Clustering. To iden-

tify a sensible number of groups to cluster the structures into, all-vs-all pair-

wise RMSD values were calculated. RMSD was based on Cα atoms. The

centroid of the whole ensemble was established by clustering with the clus-

ter number set to one.

Although there is no specified upper limit to the number of crystal struc-

tures that WONKA can analyse, a cutoff of 100 structures was found to be

preferable for the software to perform smoothly. To ensure that effects of

a wide range of ligand activity and structural diversity were captured, the

crystal structures studied using WONKA were chosen based on structural

clustering of the co-crystallised compounds. Out of the 297 crystal struc-

tures of BRD4-BD1, there are 266 unique ligands in complex with the recep-

tor, which have accessible experimental data. Compounds that show little or

no activity (pIC50 ≤ 5) were discounted, leaving 175 compounds to be clus-

tered. Ligand structural clustering was performed in DataWarrior,317 using

FragFp descriptors and Tanimoto similarity (𝑇). FragFp is the default de-

scriptor in DataWarrior and is a substructure fragment library based on 512

predefined structure fragments, which occur frequently in typical organic

molecule structures. Tanimoto similarity is calculated by dividing the num-

ber of common features between two compounds by the total number of

features available. In this work, two structures are considered to be similar

if 𝑇 ≥ 0.8 and therefore are grouped into the same cluster. Representative

compounds from each cluster, and their respective crystal structures, were

chosen for analysis using WONKA.
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5.2.2 Molecular docking

The representative compounds from ligand-based clustering were selected

for molecular docking. Ligand coordinates were extracted from their orig-

inal crystal structures and docked against the centroid crystal structure of

BRD4-BD1 (PDB 4BJX), with and without the water network included as

part of the receptor. All other crystallographic water molecules were re-

moved in both cases. To prepare the crystal structure for docking, the re-

ceptor generation software as part of the OpenEye docking toolkit37,253 was

used. The co-crystallised compound with ID 73B was assigned as the lig-

and and therefore did not interact with docked molecules. A box centred

around the original ligand with sides of length 15.7 Å × 20.7 Å × 19.0 Å

was situated to cover the BRD4-BD1 binding cavity, giving a total recep-

tor volume of 6151 Å3. Constraints were applied to ensure a heavy atom

contact with Asn140. Compounds to be docked were protonated according

to physiological pH and prepared using OpenEye OMEGA.253 Conformers

were generated using a truncated form of the MMFF94s force field254 with

a maximum energy difference of 20 kcal mol−1 set from the lowest energy

conformer. A maximum of 1000 conformers was allowed and those within

0.5 Å of any others were considered as duplicates and removed. Docking

was performed using OpenEye FRED.37 Compounds were docked using the

high resolution setting with rotational and translational step sizes of 1 Å. To

measure the accuracy of the docking with and without the water network

present, heavy atom RMSD was calculated between the docked poses and

the crystallographic poses of each of the ligands.
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5.2.3 Absolute free energy calculations

Alchemical free energy calculations are a robust and increasingly common

way to calculate ligand binding affinities. Absolute FEP simulations estimate

binding free energies by calculating the free energy difference between the

bound state of a ligand and the ligand free in solvent. To illustrate the impact

of starting structure on these predictions, two calculations were performed,

each starting from a different binding pose of the same ligand. Initial coor-

dinates were obtained from the molecular docking study, where the ligand

(PDB 83T) was docked to the centroid structure of BRD4-BD1 (PDB 4BJX),

with and without active site crystallographic water molecules. This binding

site water network was retained for the FEP calculation in the case where

it had been involved in the docking. System preparation and the simula-

tions were performed using GROMACS 2020.3175 and the CHARMM force

field.318 Ligand parameterswere generated using CGenFF.240 The complexes

were solvated in a dodecahedral box with an edge distance of 3 nm, to con-

struct an explicitlymodelled solvent consisting of around 32,000 TIP3Pwater

molecules182 and two Cl− ions to give a net neutral charge. In absolute FEP

simulations, ligand binding affinity is estimated by calculating the difference

between the free energy change of decoupling the ligand from solution and

decoupling from the receptor. Therefore, a system was also prepared with

the ligand free in solution. Upon setup, systems were minimized for 200

ps using a steepest descent algorithm. Equilibration was performed for 200

ps in the NVT ensemble with harmonic position restraints applied to the

heavy atoms with a force constant of 1000 kJ mol−1 nm−2. Temperature cou-

pling was achieved by using velocity re-scaling with a stochastic term and a
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reference temperature of 298 K. A further equilibration was performed for

4 ns in the NPT ensemble with a Berendsen pressure and temperature cou-

pling scheme. The decoupling of the ligands from the receptor was split into

30 lambda windows, where ligand restraints were applied and vdW and

Coulomb interactions were gradually turned off. The relative positions of

the ligandswith respect to the receptor were restrained by one bond, two an-

gles and three dihedral harmonic potentials. To account for these restraints,

a correction is applied to the free energy of binding (Equation 2.20). For the

free ligand in solvent, vdW and Coulomb interactions were decoupled over

20 lambda windows. Each lambda window consisted of 1 ns of equilibra-

tion in the NPT ensemble, followed by 2 ns of data collection. Free energy

changes were evaluated with the BAR method98 as implemented in GRO-

MACS.

5.3 Results and Discussion

5.3.1 Receptor based structural clustering

Figure 5.3 shows the distribution of the resolution of the crystal structures

identified in the PDB; they have an average resolution of 1.60 Å. Overall, we

can consider the structures to be high-resolution and have confidence in the

quality of the crystal structure data.

Structural differences within the ensemble of crystal structures were

measured using pairwise RMSD. The median and mean pairwise RMSDs

are 0.56 Å and 0.58 ± 0.22 Å respectively. These RMSD values are small and
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Figure 5.3: Distribution of the resolution of 297 X-ray crystal structures of
BRD4-BD1 complexes (dark grey) and the 101 crystal structures analysed
using WONKA (light grey).

suggest high similarity between most protein structures within the ensem-

ble. The structural similarity between the superimposed structures can be

observed in Figure 5.4. The maximum pairwise RMSD is 1.70 Å between

PDB entries 5KU3 and 6V1L. The overlay of these structures (Figure 5.4)

suggests the largest structural variance occurs in the tail leading to the N-

terminus. There is a small amount of deviation in the ZA loop. Given the

narrow distribution of RMSD values, it is sensible to group the structures

into five clusters. Figure 5.5 shows an overlay of the representation crys-

tal structures of the five structural clusters. The position of the binding site

residues further demonstrates the similarity between different structures of

the receptor. The centroid of thewhole ensemble is the crystal structurewith

PDB code 4BJX, which has a resolution of 1.59 Å. With such a high number
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Figure 5.4: (Left) Superimposed structures of 297 BRD4-BD1 X-ray crystal
structures available in the PDB. (Right) Comparison of structures PDB 5KU3
(blue) and 6V1L (orange), which have the highest pairwise RMSD.

of crystal structures available for BRD4, these results can aid the selection

of the most representative structures to use for the computational study of

BRD4-BD1.

5.3.2 Ligand based structural clustering

Clustering the co-crystallised ligands, which have experimental pIC50 val-

ues of ≥ 5, based on structural similarity resulted in 101 groups. The dis-

tribution of ligand activity for the whole data set and the 101 representative

compounds from each cluster is shown in Figure 5.6. The representative

compounds have a pIC50 range of 5.0 to 8.8 and cover a relatively wide span

of activity. Therefore, no further filtering of the compounds was performed

and the complexes containing these ligands were taken forward for analysis

using WONKA.
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Figure 5.5: Representative X-ray crystal structures after grouping 297 struc-
tures of BRD4-BD1 into five clusters. PDB codes are 5WA5 (purple), 4PS5
(red), 5NNE (blue), 5D0C (yellow), 5U28 (lime) and 4BJX (orange). (Left)
Secondary structures of the five representative structures. (Top right) Active
sites with key binding residues highlighted as sticks. (Bottom right) X-ray
crystal structure resolutions.

5.3.3 Structural diversity of the binding site

WONKA enables the identification of trends in the position of active site

residues formultiple crystal structures of the same protein. Figure 5.7 shows

the superimposition of the key binding site residues in BRD4-BD1 for each

of the co-crystal structures, identified by ligand based structural clustering.

WONKA clusters a particular residue’s conformations into different groups

based on an all-vs-all heavy atom RMSD of 2.5 Å between like-residues in a

structural ensemble. Asn140, Tyr97, Met149, Trp81, Pro82 and Phe83 show

5, 3, 6, 9, 4 and 2 clusters respectively.

Visual inspection reveals that all key binding site residues, with the ex-

ception of Trp81, have a high level of conformational similarity across all
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Figure 5.6: Distribution of pIC50 values for the representative 101 com-
pounds (shaded) compared to the total data set (open).

of the crystal structures, regardless of the structure or activity of the bound

ligand. There are three structures of Trp81 that show dissimilar conforma-

tions, highlighted in blue, red and green in Figure 5.7. There are multiple

factors that could play a role in the observed disorder of Trp81. It is impor-

tant to recognise that these crystal structures provide information on only

one static conformation. A protein is flexible in solution, and it is possible

that the positions of these Trp81 residues aremore orderedwhen sampling a

different conformation. Interactions with other amino acids within the pro-

tein andwith the bound ligand can also influence the position of binding site

residues. The bound ligands that correlate with these deviations in Trp81

position are shown in Figure 5.8. The compounds have experimental pIC50

values of 5.26, 5.89 and 5.20, which are towards the lower end of the range.
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Figure 5.7: The position of key binding site residues in BRD4-BD1 over 101
X-ray crystal structures. Conformations of Trp81, which show the largest
deviation, are shown in blue, red and green.

As these values were measured using different biological assays, we should

be cautious about directly comparing them with each other and the remain-

ing dataset.319 However, for a potent compound, we would expect a pIC50

value upwards of 7.5, regardless of the assay conditions. A possible reason

for these Trp81 positions could be that any hydrophobic interactions formed

by the ligand with Trp81 do not outweigh the stability gained by polar lig-

and atoms forming solvent interactions. No additional binding site residue

interactions are observed, in place of an interaction with Trp81. Therefore,

compounds that result in this disorder of Trp81 are not desirable and do not

correlate with higher binding affinity. Furthermore, it would be sensible to

use structures with a ‘regular’ Trp81 position for the basis of computational

studies.
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Figure 5.8: The three crystal structures and corresponding ligands, which
contain Trp81 conformationsmost dissimilar from thewhole PDB ensemble.
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5.3.4 Active site water molecules

It is well documented that a network of conserved water molecules plays

an important role in BRD4-BD1 ligand binding.274–276,297,320,321 Including

crystallographic water molecules is an important consideration for com-

putational studies, and many tools have been developed to locate water

molecules in protein binding sites.322–325 Crystallographic water molecules

can drastically change the binding mode in protein-ligand docking276 and

also provide stability to the system inmore advancedmethods such as bind-

ing free energy calculations.196 As part of our exploration of X-ray crystal

structures, we usedWONKA to analyse the occupancy of thewater network,

which lines the BRD4-BD1 binding pocket, as shown in Figure 5.9. From the

positions of the water molecules, we can identify that the water molecule at

site 2 mediates a hydrogen bond between Tyr97 and bound ligands. The size

of the red spheres, which represent crystallographic water molecules, reflect

how conserved they are across the ensemble of crystal structures. For exam-

ple, the sphere at site 1 is the largest as all crystal structures, except from one,

contains a water molecule at this position. All water clusters within 8 Å of

the ligand are displayed and there is a maximum distance of 1.5 Å between

a point in a cluster and the cluster centre.

Using WONKA, we can easily identify the ligands which displace the

water molecules in the sites where they are not present. The only crystal

structure with no water molecules at site 1 or 2 is PDB 6MH1 (Figure 5.10).

Water molecules at sites 3 and 4 are also displaced. Divakaran et al.326 ac-

knowledge the reorganisation of the usually conserved water network and
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Figure 5.9: Crystallographic water molecules (red) in the binding pocket
of BRD4-BD1 (orange). The size of the spheres indicate the extent of their
conservation across 101 crystal structures. For perspective, a small molecule
binder (PDB 3ZYU) is shown in blue.

attribute it to the fluorophenyl group of the ligand. A moderate pIC50 value

of 5.77 was measured for this compound. However, increased selectivity

over other BET receptors was observed and it was hypothesised that this

was in part due to the displacement of the water molecules. In our ensem-

ble of crystal structures, which were analysed using WONKA, there are no

other fluorine containing groups which occupy the same region of the bind-

ing site, which perhaps explains why sites 1, 2, 3 and 4 are occupied bywater

molecules for the majority of remaining complexes.

Beside the structure previously discussed, there is one other crystal struc-

ture, PDB 5I88, which does not show water molecules at sites 3 and 4. The

butenyl group on the ligand displaces the water network and induces a rear-
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Figure 5.10: The structure of the compound that displaces crystallographic
water molecules at sites 1-4 is shown on the left. The structure on the right
displaces water molecules at sites 3 and 4.

rangement. The addition of a butenyl group to the compound corresponds

with a reduction in activity as the butenyl containing compound has a pIC50

of 6.43, while its equivalent without the butenyl group has a pIC50 of 7.04.

Crawford et al.275 suggest that, while there may be multiple parameters that

contribute to the decreased potency, the position of the active site water

molecules may play a role.

Site 5 is occupied by a water molecule in all crystal structures, with the

exception of PDB 4GPJ and 5DLZ. The displacement of this water molecule

does not correlate with high activity ligands. Furthermore, there are ten

crystal structures in our data set, which do not contain a water molecule at

site 6. The corresponding ligands for these crystal structures have a pIC50

range of 5.30 to 7.30. The remaining water molecules depicted in Figure 5.9

are present in ≤ 80% of the crystal structures. While we have not found

a correlation between the displacement of specific water molecules in the

network and the activity of the co-crystallised compounds, we have demon-

strated the extent of their conservation. We expect this analysis to be a use-

ful tool in selecting the best crystal structure and number of crystallographic
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water molecules to retain in computational studies of BRD4-BD1.

5.3.5 Molecular docking

To demonstrate the importance of the conserved binding site water network

inmodelling an experimentally accurate system,molecular dockingwas per-

formed with and without the presence of the water network. Ligands from

101 crystal structures of BRD4-BD1 complexes were docked against struc-

ture PDB 4BJX. To compare the two setups, the RMSD values between the

docked poses and the crystallographic poses were calculated. On average,

the improvement in RMSDwhen including the water molecules was 1.52 Å.

The distribution of RMSD values for each data set is shown in Figure 5.11.

Furthermore, 82% of the ligand poses were better predicted when includ-

ing water molecules as part of the receptor. For example, Figure 5.12 shows

a large difference in bound conformation of one of the compounds. The

docked pose has a RMSD of 0.21 Å when water molecules are included and

1.54 Å when docked without water molecules. Different functional groups

occupying different regions of the active site, such as in this example, can

lead to large differences in predicted activity when usingmore involved, but

more accurate, methods such as free energy calculations. The accuracy of

the binding poses when docking with the conserved water molecules indi-

cates that these water molecules should be retained in computational stud-

ies of BRD4-BD1. Furthermore, this aids the design of new inhibitors. Com-

pounds should be designedwith these solvent interactions inmind, while all

other crystallographic water molecules are likely to be able to be displaced.

The receptor used in this study was the centroid of the ensemble of 297
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Figure 5.11: Distribution of RMSD values between docked poses and crys-
tallographic poses. Ligands from 101 crystal structures of BRD4-BD1 com-
plexeswere dockedwith andwithout the retention of crystallographicwater
molecules.

PDB crystal structures of BRD4-BD1. Regardless of the inclusion of crystallo-

graphic watermolecules as part of the receptor, all docked compounds show

a good similarity to their original crystallographic conformations. This in-

dicates that crystal structure 4BJX is a suitable starting conformation for the

in silico study of BRD4-BD1.

5.3.6 Binding free energies

To further illustrate the impact of binding site water molecules, the free en-

ergy of binding was calculated for the two docked poses shown in Figure

5.12. The orange structure is the co-crystallised binding conformation of the

compound. The structure in light blue is the docked pose when including

the active site water network and the green pose is the docked pose obtained
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Figure 5.12: Docked poses with (light blue) and without (green) includ-
ing crystallographic water molecules as part of the receptor. The crystallo-
graphic pose (orange) is also shown for comparison.

without including the water molecules. The experimental binding free en-

ergy for the compound is -8.9 kcal mol−1.327 Absolute FEP resulted in a pre-

dicted binding free energy of -11.2 ± 0.6 kcal mol−1 for the light blue binding

pose and a value of -1.5 ± 0.5 kcal mol−1 for the green pose. A full break-

down of the free energies for each leg of the thermodynamic cycle (Figure

2.10) can be found in Table 5.1. There are a number of factors that can affect

the accuracy of FEP calculations, such as the quality of the small molecule

force field parameters and the number of lambda windows used. However,

the only difference in procedure between our two calculations was the start-

ing pose of the ligand. The large difference between our predicted free en-

ergy values demonstrates the importance of starting structure in these types

of calculations. Furthermore, the inclusion of water molecules resulted in

a free energy of binding which is closer to experiment. This supports our
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Table 5.1: Calculated free energy values for the thermodynamic cycle (Fig-
ure 2.10) of an absolute FEP calculation. Δ𝐺 𝑝𝑟𝑜𝑡

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊+𝑟𝑒𝑠𝑡𝑟 corresponds to the
free energy changewhen decoupling the ligand from complex, with position
restraints on the ligand. Δ𝐺𝑠𝑜𝑙𝑣

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊 is the free energy change when decou-
pling the ligand from solvent and Δ𝐺𝑠𝑜𝑙𝑣

𝑟𝑒𝑠𝑡𝑟_𝑜𝑛 is the free energy correction to
account for the ligand restraints. Ligand binding free energy,Δ𝐺𝑜

𝑏
, is the sum

of these three components. Values are shown for an absolute FEP calculation
of a BRD4 inhibitor with and without the inclusion of binding site crystallo-
graphic water molecules. Free energy values are shown in kcal mol−1.

Receptor Setup
Docking with Water Docking without Water

Δ𝐺
𝑝𝑟𝑜𝑡

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊+𝑟𝑒𝑠𝑡𝑟 -75.8 ± 0.6 -67.9 ± 0.5
Δ𝐺𝑠𝑜𝑙𝑣

𝑒𝑙𝑒𝑐+𝑣𝑑𝑊 61.7 ± 0.2 61.7 ± 0.2
Δ𝐺𝑠𝑜𝑙𝑣

𝑟𝑒𝑠𝑡𝑟_𝑜𝑛 2.9 ± 0.0 4.7 ± 0.0
Δ𝐺𝑜

𝑏
-11.2 ± 0.6 -1.5 ± 0.5

|Δ𝐺𝑜
𝑏
− Δ𝐺𝑒𝑥𝑝 | 2.3 ± 0.6 7.4 ± 0.5

conclusion that these water molecules are crucial for accurately modelling a

BRD4 system.

5.4 Conclusions

There has been increasing interest in BRD4 as a therapeutic target, resulting

in a large number of X-ray crystal structures of the receptor in complex with

small molecule ligands. In this chapter, we examined an ensemble of struc-

tures of BRD4-BD1 complexes in order to compare different conformations

of the protein, without the need, for example, to carry out MD simulations.

By superimposing 297 crystal structures of BRD4-BD1 and calculating pair-

wise RMSD values, we have found a high level of similarity between the con-

formations, regardless of the bound ligand. Clustering algorithms identify
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PDB 4BJX as the centroid of the ensemble and clustering into five groups

gave structures 5WA5, 4PS5, 5NNE, 5D0C and 5U28 as the representative

structures of each cluster.

To achieve a more detailed view of the binding site, we used WONKA

to compare the conformations of individual residues that are important for

histone and small molecule binding. In this analysis the positions of Asn140,

Tyr97, Met149, Trp81, Pro82 and Phe83 in 101 X-ray crystal structures were

compared. With the exception of a handful of Trp81 conformations, the po-

sitions of these residues were extremely similar. This shows the size and

shape of the BD1 cavity remains unchanged with different ligands bound,

highlighting the importance of the chemical features needed in a potential

inhibitor. A polar group at the head of the ligand is necessary to form both

the interaction with Asn140 and a water mediated interaction with Tyr97.

Simultaneously, a lipophilic group is needed to extend into the hydrophobic

cavity of BD1 and strengthen ligand binding.

Water molecules also play an important role in BRD4 ligand bind-

ing. Therefore, we examined the conservation of crystallographic water

molecules in the binding site. Analysis in WONKA showed that the ma-

jority of crystal structures contain the four or five water molecules gener-

ally considered important for ligand binding. In total, there are up to 11

water molecules within 8 Å of the bound ligands, which are largely con-

served across the ensemble. While there have been previous studies on this

highly conserved water network,275,276 ours is the first to consider such a

high number of experimental structures. Our work demonstrates the extent

of the conservation and, throughmolecular docking and absolute FEP calcu-
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lations, highlights the importance of retaining binding site water molecules

in computational studies. Through this examination of BRD4-BD1 crystal

structures, we have provided a quantitative basis to facilitate the selection of

structures in future computational studies.



Chapter 6

Alchemical Free Energy Methods

Applied to BRD4-Ligand

Complexes

6.1 Introduction

Alchemical free energy calculations are increasingly gaining importance due

to their application in drug design and development.101 The accurate and

reliable prediction of ligand binding free energies provides guidance and

confidence in the synthesis of molecules with the potential to be lead com-

pounds. A common use of alchemical methods, such as FEP, is in post-

docking refinement, where more accurate predictions of binding affinity,

compared to docking scores, are desired.328,329 This often involves small

modifications made to a hit compound to increase its potency, or improve

physicochemical properties without compromising potency. An improve-

146
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ment in the computational expense of alchemical methods would mean that

they hold a lot of promise for the high throughput estimation of binding free

energies in drug discovery projects, in both an industrial and academic set-

ting. In this chapter, the application of relative FEP and MS𝜆D simulations

to a set of BRD4-BD1 inhibitors is discussed. In particular, we compare the

accuracy, manual intervention required and computational expense of each

of the methods.

As discussed in the previous chapter, BRD4 is a member of the BET fam-

ily and the development of a drug for its inhibition is of interest for the treat-

ment of several diseases, most notably cancers.278–282 As a result, BRD4-BD1

is the target of an ongoing collaboration between UoN, GSK and the Uni-

versity of Strathclyde. Computational methods are employed to design and

assess compounds, which then actively guides the synthesis of novel poten-

tial inhibitors of BRD4-BD1. The aim is to incorporate alchemical free energy

calculations into the evaluation of the compounds, prior to synthesis. For the

assessment of relative FEP and MS𝜆D approaches to this system, we use a

set of GSK inhibitors that has been previously studied in silico by Coveney

and coworkers.330

6.1.1 Tetrahydroquinoline series of BRD4-BD1 inhibitors

The compounds studied are based on a tetrahydroquinoline (THQ) scaffold

and represent a good range of chemical functionality and binding affinities.

The scaffold and its substituents are shown in Figure 6.1. There are four

points of substitution, which we refer to as sites 1 to 4 and correspond to the

labelledR groups on Figure 6.1. All derivatives of the scaffold have a net neu-
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Figure 6.1: THQ scaffold of a series of BRD4-BD1 inhibitors. Substituents at
each site that have been previously synthesised and characterised are shown.

tral charge except for those with the benzoic and piperidine substituents at

site 4. These groups are charged under physiological conditions and present

an opportunity for the refinement of RBFE calculations that involve a change

in charge.

Experimental data are available for 15 compounds, based on different

combinations of the substituents on the scaffold. These have a pIC50 range

of ≤ 4.3 to 7.9, which corresponds to a binding free energy range of ∼5 kcal

mol−1.330 This range in activity, coupled with the relatively small modifica-

tions on each of the sites, makes this series of compounds a good test case

for RBFE calculations. A previous study by Wan et al.330 described binding

free energy calculations on this series using two free energy protocols. The

first approach is termed "enhanced sampling of molecular dynamics with

approximation of continuum solvent" (ESMACS)331 and is based on MM-

PBSA, where solvent is treated as a continuous approximation. The second

approach involved TIwith enhanced sampling (TIES).332 ESMACSwas used
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for the full set of compounds, while the TIES calculations were split into

three subsets of compounds, so that perturbations involved derivatives with

the same net charge. A good correlation with experimental data was found,

with a Spearman rank correlation coefficient, r𝑠, of 0.78 for the EMACS 3-

trajectory calculations and 0.92 for TIES. Furthermore, the ESMACS proto-

col showed good reproducibility, with a Spearman correlation of 0.98 ± 0.02

between two independent studies performed on different supercomputers.

In this study, we investigate how the calculation of RBFE compares when

using relative FEP96,97 and MS𝜆D108 protocols. Relative FEP simulations in-

volve splitting an alchemical perturbation into a series of 𝜆 windows, where

a substituent is transformed into another with the progression of a 𝜆 vari-

able. In contrast, MS𝜆D calculations utilise 𝜆 as a dynamic variable that

propagates throughout a simulation, along with the coordinates..106,107 The

introduction of additional 𝜆 coordinates means that 𝜆-dynamics can be per-

formed on more than one substituent in a single calculation. Therefore,

RBFEs can be obtained in far fewer calculations than FEP approaches and

on much quicker timescales. This concept is demonstrated herein, where

the computational expense and accuracy, compared to experiment, of these

methods is investigated.
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6.2 Materials and Methods

6.2.1 Molecular docking

Receptor coordinates were taken from the X-ray crystal structure (PDB:

4BJX) of BRD4-BD1 in complex with small molecule inhibitor, I-BET726.330

To prepare for docking, the protein structure was minimised for 20,000 steps

using a conjugate gradient and line search algorithm and equilibrated for 1.5

ns in theNVT ensemble and 18.5 ns in theNPT ensemble. The co-crystallised

ligand was retained for the equilibration period. Solvation and periodic im-

age set up for the equilibration period is outlined in the relative FEPmethod-

ology section below. Once the protein structure was equilibrated, all water

molecules were removed, with the exception of the high conserved network

of five water molecules, which line the binding pocket of BRD4-BD1. Using

receptor generation software as part of the OpenEye docking toolkit,37,253 I-

BET726 was assigned as the ligand and is treated as non-interacting during

themolecular docking. A box centered around the original ligandwith sides

of length 17.7 × 19.7 × 17.0 Å was situated to cover the BRD4-BD1 binding

cavity fully, giving a total receptor volume of 5906 Å3. The 15 THQ com-

pounds were protonated according to physiological pH and prepared using

OpenEye OMEGA.253 Conformers were generated using a truncated form

of the MMFF94s force field254 with a maximum energy difference of 20 kcal

mol−1 set from the lowest energy conformer. A maximum of 1000 conform-

ers was allowed and those within 0.5 Å of any others were considered du-

plicates and removed. Docking was performed using OpenEye FRED37 us-
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ing the high resolution setting with rotational and translational step sizes of

1 Å. Once docked, OpenEye FRED provides ten sets of ligand coordinates

that display the best docking scores. With the exception of compound 7, all

compounds exhibited one conserved binding mode, with little variation be-

tween each set of the ten best coordinates. Within the small movements of

this binding mode, the pose taken forward for each compound was chosen

to optimise the overlap between the common core of the THQ scaffold. Com-

pound 7 displayed two binding modes, with the common binding pose also

taken forward for free energy of binding evaluation.

6.2.2 Multi-site 𝜆-dynamics simulations

Atoms belonging to all derivatives of the THQ scaffold were identified using

a MCS search. The common core used for the neutral set of substituents is

shown in red in Figure 6.2 and the core used for the charged substituents is

shown in blue. All remaining atomswere fragments or anchor atoms, which

are coupled and decoupled from the system as their corresponding 𝜆 vari-

ables propagate through the simulation. Fragments correspond to the parts

of the compound that are treated as substituents. Anchor atoms are the at-

tachment points between the common core and the fragments and become

part of the substituents once the simulation is initiated. Once an initial com-

mon core was identified, the core, fragments and anchor atoms were manu-

ally altered so that additional atoms became part of the fragments. Although

all atom types on the amide and THQ groups of the ligand scaffold are con-

sistent, regardless of the substituents, not all atoms are chosen to belong to

the common core. This is to allow a change in the partial charges assigned
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Figure 6.2: Common cores used in MS𝜆D calculations. Atoms in red were
used as the core for calculations involving neutral substituents. Atoms in
blue were used as the core for charged substituents. All other atoms on the
THQ scaffold, are treated as substituents or anchor atoms, which are per-
turbed during MS𝜆D.

to each of the atoms, which are affected by the substituent attached, thereby

enabling a better representation of the electrostatics of the ligand.

During 𝜆 dynamics, the charge of the compound must sum to an inte-

ger net charge, regardless of the combination of substituents at each site.

Therefore, the partial charges of substituents at one particular site are nor-

malised so that each substituent has the same total net partial charge. An

exception is when a charge perturbation is performed, with the addition of a

protonated or deprotonated substituent. For example, the net charge of com-

pound 15 is -1 (compound indexing shown in Table 6.2). Therefore, the com-

pound changes from neutral to charged during the 𝜆 dynamics simulation.

The alteration of partial charges for the preparation of 𝜆 dynamics is termed

charge re-normalisation and is performed using an algorithm, developed by

the Brooks group (to be published). Initial partial charges were obtained

from atom type matching with existing parameters in the CHARMM force

field, using CGenFF.123 There was an average RMSD of 0.015 e between the
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original CGenFF charges and the adjusted charges. All other parameters, at-

tributed to bond lengths, angles and dihedral angles, remained unchanged

from the CGenFF initial guess parameters.

Two systems were built, one composed of the ligand in solution and

the second with the ligand in complex with BRD4-BD1 (PDB: 4BJX330).

The ligand, receptor and solvent coordinates for the complex site were ob-

tained from the equilibrated structure and molecular docking, as detailed

above. Ligand topologies were constructed using a multiple topology ap-

proach.106,208 This is a similar method to the dual topology approach in FEP,

where all substituents explicitly exist in the topology, attached to the same

common core. For the ligand in solvent system, the ligand was solvated in

a cubic periodic boundary cell with 1755 TIP3P water molecules.182 All fol-

lowing simulations were performed using the CHARMM molecular simu-

lation package with the domain decomposition (DOMDEC) computational

kernels on GPU.69,333,334 MD simulations were run in the NPT ensemble at

298 K and 1 atm using a Nosé-Hoover thermostat335 and Langevin pressure

piston with a friction coefficient of 20 ps−1.257 A timestep of 2 fs was used,

with hydrogen-heavy atom bond lengths constrainedwith the SHAKE algo-

rithm.168 A cutoff distance of 12 Å was used for all long-range interactions,

with a switching function at a distance of 10 Å.

The THQ compounds were split into three sets: those with a net neu-

tral charge (compounds 1 to 9), those with a net charge of +1 (compounds

10 to 12) and finally those with a net charge of -1 (compounds 13 to 15).

Considering only compounds with a net neutral charge, there is one sub-

stituent at site 1, one at site 2, three at site 3 and seven at site 4. Similar
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to FEP, the accuracy of MS𝜆D is impacted by the sizes of the perturbations.

Although there are no hard rules about the number of substituents or sites

that can be handled, generally, the smaller the perturbation between each

substituent, the more substituents or sites that can be used. In our dataset,

seven quite varied substituents on one site, along with other sites of substi-

tution, means that it is sensible to split it into two sets of calculations. Sub-

stituents on site 4 were split into two groups based on their similarity, with

the phenyl, methoxyphenyl, isoxazole and ethylpyrazole substituents in one

group and the phenyl, hydrogen, pyridyl and dimethoxyphenyl substituents

in the second. The phenyl substituent was included in both sets as the refer-

ence compound. For comparison, a single MS𝜆D calculation with all neutral

substituents was performed.

For allMS𝜆Dcalculations, theALF algorithmwas used to identify appro-

priate biasing potentials to flatten the potential energy landscape between

substituents.209 A soft-core potential was used to scale all nonbonded in-

teractions by 𝜆 and to prevent end-point singularities.200,201,208 To identify

initial biases for the complex system, 50 simulations of 100 ps each were per-

formed, followed by 30 simulations of 1 ns to refine the biases. ALF was

performed for the ligand in solution system for 50 simulations of 100 ps, fol-

lowed by 20 simulations of 1 ns. Production simulations were run for 20

and 50 ns for the solution and complex systems respectively, with the first 5

ns of each discarded as equilibration. Five replicas of each production run

were performed using a different random seed. End-state populations were

binned using a 𝜆 ≥ 0.99 cutoff criterion and the final relative free energy of

binding values were calculated by Boltzmann re-weighting end-state popu-
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lations to the original biases and then using Equation 6.1.106,207 Uncertainties

were calculated as the standard deviation of the mean value over the five in-

dependent runs.

ΔΔ𝐺𝑖→ 𝑗 = −𝑘𝐵 ln
𝑃 𝑗

𝑃𝑖

(6.1)

Equation 6.1 shows how relative binding free energies are calculated as

the ratio of the amount of time one ligand is sampled compared to a refer-

ence ligand. In our calculations, compound 3 was chosen as the reference

ligand, because the hydrogen group at site 1 and methyl groups at sites 2

and 3 are the most common substituents at these sites across all of the com-

pounds. Furthermore, the phenyl group at site 4 is most similar to all other

substituents at this position and therefore involves the smallest perturbation

between substituents.

As changing the net charge of the compound adds a layer of complex-

ity, MS𝜆D calculations involving charged substituents were constructed in a

different way to the neutral substituent calculations. Separate simulations

were performed with the neutral form of each charged substituent as the

reference compound. For example, for the negatively charged compounds,

benzoic acid was used as the reference substituent on site 4. The deproto-

nated form, benzoate, was included as a substituent for MS𝜆D. Substituents

attributed to compound 3 were also included in the MS𝜆D calculation, so

that the relative binding free energy with respect to compound 3 could be

calculated, for consistency. Using benzoic acid on site 4 as the reference,

compared to a phenyl group, meant there was a smaller perturbation and
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the change in net charge could be accounted for more effectively. The same

approach was used for compounds with a piperidine substituent, which is

protonated at physiological pH.

6.2.3 Relative free energy perturbation simulations

Dual topologies were constructed, with compound 3 as the reference com-

pound, for each alchemical transformation. For example, Figure 6.3 shows

the ligand topology for the transformation of compound 3 to compound 1.

When 𝜆=0, the phenyl group is interacting with the system and when 𝜆=1,

the methoxybenzene is interacting. Using input generated by CHARMM-

GUI,255 all complex systems were solvated in a cubic periodic boundary cell

with edge distances of 18 Å to construct an explicitly modelled solvent con-

sisting of around 22,000 TIP3P water molecules.182 Depending on the net

charge of the ligand, Na+ or Cl− ionswere added, to neutralise the system. To

optimise the solvent positions, all heavy atoms were fixed, except for water

molecules, during 50 steps of steepest descent and 50 steps of Adopted Ba-

sis Newton-Raphson minimisation. Potential energy evaluations were per-

formed with the CHARMM force field.119 To ensure a fair comparison of

binding free energies obtained from FEP andMS𝜆D calculations, the charge

renormalised ligand parameters, adapted from CGenFF,240 were used. Sys-

tems containing the ligand in solution, without the receptor, were also set

up using input from CHARMM-GUI.255 Ligands were solvated in a cubic

periodic boundary cell with around 2,300 TIP3P water molecules. Minimi-

sation and equilibration were performed using the same protocol as for the

protein-ligand complexes.



Chapter 6: Alchemical Free Energy Methods Applied to BRD4 157

Figure 6.3: Dual topology constructed for the alchemical transformation of
a phenyl group (orange) to a methoxybenzene group (blue), attached to a
THQ scaffold (grey).

Once set up, all systems were minimised for 20 ps using a conjugate gra-

dient and line search algorithm using the NAMD simulation software.173

Protein backbone and side chain restraintswere applied using harmonic con-

straintswith force constants of 10 kcalmol−1Å−2 and 5 kcalmol−1Å−2 during

a heating period of 50 ps. Systems were heated to 298 K in increments of 10

K. Restraints were removed for 0.1 ns of equilibration in the NVT ensemble

and 4.9 ns in the NPT ensemble, with a 2 fs timestep. The temperature was

controlled using Langevin dynamics parameters, with a friction coefficient

of 5 ps−1 for all equilibration and FEP simulations. Constant pressure was

maintained using the Langevin piston Nosé-Hoover method257 with a target

pressure of 1 atm. During equilibration, a cutoffdistance of 12Åwasused for

vdWs pairs, with a switching function at a distance of 10 Å. Long range elec-

trostatic interactions were computed using the PMEmethod.258 The SHAKE

algorithm168 was used to fix all bond lengths involving hydrogen atoms.

To develop an efficient protocol for FEP calculations on this series of

BRD4 inhibitors, a series of benchmark calculations was performed. The
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Figure 6.4: To calculate the binding free energy of compound 15, relative to
compound 3, an intermediate step is required. The relative binding free en-
ergy is the sumofΔΔ𝐺1 andΔΔ𝐺2. Substituents being added or transformed
are shown in red.

relative free energy of binding of compound 1, with respect to compound 3,

was calculated using 8, 10, 16, 20 and 25 𝜆windows. For each 𝜆window, 2 ns

of equilibration was performed, followed by 1 ns of data collection. Electro-

static interactions of outgoing atoms were decoupled from the system from

𝜆=0 to 𝜆=0.5, while the electrostatics for incoming atoms were coupled to

the system from 𝜆=0.5 to 𝜆=1. For all simulations, a soft-core potential was

used to avoid "end-point catastrophes". The effect of reducing the length of

the data collection period for each 𝜆 windowwas then tested by performing

the perturbation with 20 𝜆 windows, 2 ns of equilibration and 0.5 ns of data

collection. Finally, equilibration of lengths 1 ns and 0.5 ns were tested, using

20 𝜆windows and 1 ns of data collection. The average value over three repli-

cas was calculated for each combination of FEP parameters, with free energy

values evaluated using the BAR method98 as implemented in the ParseFEP

tool in VMD.268

Once the optimal number of 𝜆 windows, equilibration length and data

collection length were established, the relative free energies of binding were

calculated for the remaining compounds. As substituents on two sites of the
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common scaffold are modified, compared to compound 3, for compounds

8, 9 and 11 to 15, an intermediate FEP step was required. For example, to

calculate the relative free energy of binding of compound 15, FEP calcula-

tions were performed for the changes shown in Figure 6.4. First, site 4 was

perturbed from a phenyl group to a benzoic acid substituent. In a separate

simulation, the hydrogen atom on site 1 was then transformed to a chlorine

substituent. The sum of the free energy changes for these transformations

resulted in the total relative free energy of binding of compound 15, with

respect to compound 3. Compound 1 served as the reference for transforma-

tions to compounds 8 and 9, and compound 10 was the reference for trans-

formations to compounds 11 and 12. Therefore, including replicas, reverse

transformations and ligand in solution simulations, to obtain the full RBFE

data set for the 14 compounds, with respect to compound 3, a total of 168

FEP simulations were required.

6.3 Results and Discussion

Relative FEP parameters such as number of 𝜆 windows, equilibration and

data collection length is often a balance between obtaining sufficient sam-

pling of each 𝜆 state, while keeping the calculation to a reasonable timescale.

Therefore, we firstly present our findings for the most effective parameters

to use for our system of interest. Next, we discuss the calculation of the

biasing potentials for the MS𝜆D calculations. On demonstration of the relia-

bility of our procedures, we compare the accuracy of relative FEP andMS𝜆D

with respect to experimental binding affinities. Lastly, an assessment of the
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investment required for each method, in terms of both computational and

human time, is presented.

6.3.1 Relative FEP Benchmarking

To establish the best number of 𝜆 windows to use for relative FEP calcula-

tions on this series of BRD4 inhibitors, perturbations from compound 3 to

compound 1 were performed with 8, 10, 16, 20 and 25 windows. This al-

chemical perturbation involved the transformation of a phenyl substituent

on site 4 of the THQ compound to a methoxybenzene substituent. To assess

the performance of the calculations, three criteria were taken into account.

First, a comparison between the predicted relative free energy of binding

and the experimental value was made. Second, the standard deviation of

the mean value of the BAR error over three independent replica runs was

calculated. Third, the convergence was measured by plotting the relative

binding free energy calculated using an increasing fraction of the simula-

tion data. The free energies using the reverse proportion of the data were

also plotted. Convergence plots are important for ensuring that the free en-

ergy is being measured for an equilibrated system. This graphical method

of assessing convergence, outlined by Klimovich et al.,206 helps identify any

non-equilibrated regions throughout the simulation.

Table 6.1 shows the mean predicted relative binding free energies over

three replicas, their errors and the absolute difference with experimental

values. All predicted values are within chemical accuracy of the experi-

mental values, which is generally considered to be 1 kcal mol−1. However,

there is an increase in their absolute differences with a decreasing number
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Table 6.1: Benchmarking of relative FEP protocols. Varying numbers of 𝜆
windows, equilibration time and data collection timewere tested. RBFE pre-
dictions are compared to experiment.

𝜆 Windows Equilibration
(ns)

Data Collection
(ns)

ΔΔ𝐺𝑐𝑎𝑙𝑐

(kcal mol−1)
Error

(kcal mol−1)
Absolute

Difference (kcal mol−1)
25 2 1 -0.5 0.3 0.2
20 2 1 -0.8 0.4 0.5
16 2 1 -0.6 0.5 0.3
10 2 1 -1.2 0.6 0.9
8 2 1 0.3 0.6 0.8
20 2 0.5 -0.8 0.6 0.5
20 1 1 -1.1 0.4 0.8
20 0.5 1 -0.5 0.4 0.2

of 𝜆 windows. Furthermore, the error also increases. This is to be expected,

as decreasing the number of intermediate steps between the transformation

means that there will be a poorer overlap of phase space between each win-

dow. For reliable estimations, an error of no more than 0.5 kcal mol−1 is

desirable. This corresponds to a variation in a pIC50 value of approximately

0.4. With this in mind, FEP with 20 or 16 𝜆 windows appears to be the best

approach. Figure 6.5 shows the convergence plots for these perturbations.

Convergence plots for all benchmark FEP calculations can be found in Ap-

pendix B. An agreement, within error, between the forward and reverse free

energies is a sign of an equilibrated system. The shaded bar on the plots

indicates an error range of 0.5 kcal mol−1, centred on the final relative free

energy value. These plots show that FEP with 20 𝜆 windows results in free

energies that are better converged. Therefore, relative binding free energies

in this study are predicted using 20 intermediate steps between the initial

and final states.

In an attempt to gain computational speed, perturbations with data col-
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Figure 6.5: Convergence assessment of the transformation of a phenyl sub-
stituent at site 4 to a methoxybenzene substituent. (Top) Using 20 𝜆 win-
dows with 2 ns of equilibration and 1 ns of data collection. (Bottom) Using
16 𝜆 windows with 2 ns of equilibration and 1 ns of data collection. The for-
ward (purple line) and the reverse (green line) simulation time series are
shown. The horizontal shaded bar indicates the equilibrated region.
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lection periods of 0.5 ns for each 𝜆 window were tested. This resulted in an

error of 0.6 kcal mol−1 (Table 6.1). Furthermore, poor convergence (Figure

B.4) was observed. Therefore, 1 ns of data collection for each 𝜆 windowwas

performed for all FEP calculations. Equilibration periods of 1 ns and 0.5 ns

were also tested for each 𝜆 window. Reducing the equilibration of the win-

dows to 0.5 ns did not affect the error or convergence of the predicted relative

binding free energies. Therefore, we conclude that a protocol of using 20 𝜆

windows with 0.5 ns of equilibration and 1 ns of data collection results in a

good compromise between accuracy and computational efficiency.

6.3.2 Adaptive landscape flattening

ALF is the process of calculating the biases to flatten the alchemical potential

energy landscape between substituents on a given site, to ensure sufficient

sampling of all substituents.208,209 To assess the fixed biases that were used

for MS𝜆D, their convergence along the serial ALF simulations was investi-

gated. Figure 6.6 shows that at the end of each ALF process, the biases were

stable and therefore suitable to be used for data collection.

6.3.3 Relative binding free energies

Accuracy and reliability

Relative binding free energies are shown in Table 6.2. Results shown for

the neutral compounds usingMS𝜆D are RBFEs calculated from splitting the

compounds into two separate calculations, as this improved the accuracy.

RBFE predictions when including all substituents in one calculation can be
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Table 6.2: Predictions of binding affinity for a series of BRD4-BD1 inhibitors
based on a THQ scaffold (Figure 6.1). Predictions calculated using MS𝜆D
and relative FEP are compared to experiment. All relative free energy values
are shown in kcal mol−1.

ID R1 R2 R3 R4 ΔΔ𝐺𝑒𝑥𝑝 ΔΔ𝐺𝑀𝑆𝜆𝐷 ΔΔ𝐺𝐹𝐸𝑃
|ΔΔ𝐺𝑀𝑆𝜆𝐷

−ΔΔ𝐺𝑒𝑥𝑝 |
|ΔΔ𝐺𝐹𝐸𝑃

−ΔΔ𝐺𝑒𝑥𝑝 |

1 H Me Me -0.3 ± 0.1 -0.4 ± 0.1 -0.5 ± 0.4 0.1 0.2

2 H Me Me H 1.6 ± 0.1 2.3 ± 0.1 2.1 ± 0.4 0.7 0.5

4 H Me Me 0.0 ± 0.1 0.6 ± 0.4 0.4 ± 0.1 0.6 0.4

5 H Me Me -1.5 ± 0.1 1.0 ± 0.1 0.2 ± 0.4 2.5 1.7

6 H Me Me 1.6 ± 0.1 1.4 ± 0.1 0.4 ± 0.6 0.2 1.2

7 H Me Me 1.3 ± 0.1 1.4 ± 0.1 1.3 ± 0.4 0.1 0.0

8 H Me Et 0.4 ± 0.1 1.0 ± 0.1 -1.2 ± 0.6 0.6 1.5

9 H Me i-Pr ≥ 3.4 1.7 ± 0.8 -1.8 ± 0.6 ≥ 1.7 ≥ 5.2

10 H Me Me -1.1 ± 0.2 -0.2 ± 0.2 -0.1 ± 0.5 0.9 1.0

11 H Et Me 0.0 ± 0.4 0.0 ± 0.2 0.6 ± 0.6 0.0 0.6

12 H Pr Me 1.8 ± 0.1 2.0 ± 0.2 1.7 ± 0.6 0.2 0.1

13 H Pr Me 1.9 ± 0.1 1.8 ± 0.1 1.4 ± 0.6 0.1 0.5

14 H Et Me 0.1 ± 0.3 -0.2 ± 0.1 -0.4 ± 0.6 0.3 0.5

15 Cl Me Me -1.4 ± 0.2 -0.6 ± 0.1 -1.6 ± 0.6 0.8 0.2
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Figure 6.6: Convergence of the fixed bias for each substituent at site 4 as
the ALF simulations progress. Substituents at site 4 include methoxyphenyl
(red), ethylpyrazole (green), isoxazole (light blue), hydrogen (orange),
pyridyl (purple) and dimethoxyphenyl (dark blue).

found in Appendix C. Overall, the two methods have similar levels of ac-

curacy compared to experiment. MS𝜆D calculations resulted in an average

difference of 0.6 ± 0.7 kcal mol−1 to experiment and for relative FEP predic-

tions this was 1.0 ± 1.3 kcal mol−1. Furthermore, when discounting the large

deviation from experiment found for compound 9, the average differences

for the MS𝜆D and relative FEP calculations become 0.6 ± 0.7 kcal mol −1 and

0.7 ± 0.5 kcal mol−1, respectively, showing there is little difference in accu-

racy between the two methods. The Spearman correlation (𝑟𝑠) between the

rank order of the predicted and experimental RBFEs have also been calcu-

lated, which shows that both methods have a good, and comparable, cor-

relation with experiment. RBFE predictions calculated using MS𝜆D have a

𝑟𝑠 of 0.80, while relative FEP predictions have a 𝑟𝑠 of 0.70. With this small

dataset, these differences in 𝑟𝑠 are not statistically significant. These results

show that MS𝜆D and relative FEP (using the 𝜆 window parameters selected
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from benchmarking) are accurate methods for the prediction of RBFEs and

identifying highly active compounds out of a set of congeneric compounds.

Whilst the comparison to experiment is similar to the EMACS (𝑟𝑠 0.78) and

TIES (𝑟𝑠 of 0.92) method presented by Wan et al.,330 MS𝜆D predicts ΔΔ𝐺

values for the combinatorial set of substituents at each site and so a larger

space of 28 compounds is explored using the four MS𝜆D simulations pre-

sented in this work. This is discussed in more detail in the computational

expense section.

As discussed previously, all neutral substituents on site 4 were initially

included as part of one MS𝜆D calculation. For comparison, the substituents

were also split into two calculations. The average RBFE compared to ex-

periment was 1.4 ± 1.4 kcal mol−1 when the substituents were included in

one simulation, while the difference was 0.8 ± 0.8 kcal mol−1 when splitting

them into two sets of calculations. Furthermore, RBFE predictions obtained

from one calculation have a 𝑟𝑠 of 0.30, compared to a 𝑟𝑠 of 0.84 for the two

sets. The increased accuracy when splitting the substituents into two calcu-

lations is not surprising. When including all site 4 substituents with a net

neutral charge, there are seven possible substituents, which means that all

combinations of physically meaningful end points are sampled less during

the simulation and less likely to achieve converged results. This is also re-

flected by the larger uncertainties of the singleMS𝜆D simulation, which have

an average of 0.4± 0.2 kcalmol−1 compared to 0.2± 0.2 kcalmol−1 for the two

calculations. Solutions for more accurate predictions in a single simulation

could be to use longer simulation times or enhanced sampling methods. A

study by Vilseck et al.109 demonstrated that accuracy within 0.8 kcal mol−1
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can be achieved for perturbation sites with seven substituents when using

MS𝜆Dwith biasing potential replica exchange,336 to enhance end-state sam-

pling.

A common limitation to RBFE methods is their lack of reproducibil-

ity.337 Like all MD-based methods, this arises from the ensemble averaging

of macroscopic properties over microscopic states. Therefore, the quality of

the predictions relies on howwell themicroscopic states have been sampled.

To address this issue, it is common practice to runmultiple independent cal-

culations with different initial velocities and average the results across the

replicas. Uncertainties can be estimated by calculating the standard devia-

tion around the averaged free energies. In our calculations, five replicaswere

performed for the MS𝜆D calculations and three replicas were performed for

the relative FEP calculations. Three replicaswere chosen for relative FEPdue

to the significantly higher computational cost associated with this method

(discussed in the next section). The uncertainties associated with the pre-

dictions were lower for the MS𝜆D calculations, with an average of 0.2 ± 0.2

kcal mol−1, compared to an average of 0.5 ± 0.1 kcal mol−1 for the relative

FEP calculations. Therefore, more reliable estimations of binding affinity

are achieved using MS𝜆D, especially when there are more than two sites of

perturbation. In these cases, to obtain RBFE values using relative FEP, inter-

mediate transformations are necessary and the uncertainty accumulates over

the two simulations (free energies and their associated uncertainties for the

intermediate calculations can be found in Appendix D). Using MS𝜆D, only

one calculation is required, with an uncertainty that is comparable to when

there is only one site of perturbation.
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Outliers

Compound 9 has a pIC50 of ≤ 4.3 and an experimental RBFE of ≥ 3.4 kcal

mol−1 with respect to compound 3, indicating that it has no activity towards

BRD4-BD1. The difference in substituents between compound 9 and com-

pound 1, which has a pIC50 of 7.0 ± 0.1, is an isopropyl group at site 2, com-

pared to a methyl group. As noted by Wan et al.,330 the position of site 2 oc-

cupies a small lipophilic site in the BRD4-BD1 binding pocket, which offers

little room for large substituents without structural reorganisation. There-

fore, we infer that the isopropyl group is too large for this part of the bind-

ing pocket. A representative compound in the binding site of BRD4-BD1 is

shown in Figure 6.7. The large discrepancy between the experimental and

predictedRBFEs for compound 9 suggests thatMS𝜆Dand relative FEPmeth-

ods are less accurate when predicting non-binders. Additionally, isopropyl

is not well represented in the CGenFF force field,123 particularly the dihedral

angle parameters when attached to an amide, which may also contribute to

the deviation from experiment. A difference larger than 1.5 kcal mol−1 from

experiment was also found for compound 5 for both RBFEmethods. Investi-

gation into the force field parameters and interactions made by the pyrazole

derivative at site 4 of compound 5 is ongoing to try and identify a reason for

this difference.

Charge perturbations

Perturbations that involve a change in net charge of the ligand are difficult

and should generally be avoided. Cournia et al.328 explain that this is due to
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Figure 6.7: Binding site of BRD4-BD1 with inhibitor I-BET726 bound (PDB
4BJX31). I-BET726 is compound 15 in the compound series of interest in this
work. I-BET726 is represented as stick in orange, the protein is shown as
blue cartoon and sticks and water molecules are shown as red spheres.

the PME treatment of long-range interactions, which is likely to introduce an

error when changing the net charge of the system. Additionally, care must

be taken to ensure that enough time is allowed for the rearrangement of sol-

vent molecules around the ligandwhen there is a change in charge. Cournia

et al. advise that changes in charge should bemade to the ligand experimen-

tally, with the results forming the basis for a new series of compounds, with

a consistent net charge. Despite this, we believe there was value in investi-

gating how MS𝜆D handles changes in the charge of a ligand, with relative

FEP as a comparison, especially as there are few examples in the literature.

As described in the methods section, the setup ofMS𝜆D calculations was

slightly modified for the positively charged piperidine and the negatively

charged benzoic acid substituents. A separate MS𝜆D calculation was per-

formed for the positively and negatively charged set of compounds, where
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Figure 6.8: Setup for charge perturbations using MS𝜆D. In this example, the
neutral form of compound 10 is used as the reference to calculate the RBFE
compared to compound 3 and the protonated form of compound 10.

the neutral form of the substituent at site 4 was used for each. A phenyl

group at site 4 was included in the multiple topology setup so that the RBFE

with respect to compound 3 could still be calculated. Figure 6.8 illustrates

the changes in binding free energy calculated for the MS𝜆D perturbation of

compound 3 to compound 10. It should be noted that ethyl and propyl sub-

stituents at site 2were also included so that values of RBFEwere obtained for

compounds 11 and 12 in the same simulation. Using this approach, the aver-

age difference fromexperiment for the charged compoundswas 0.4± 0.4 kcal

mol−1. In comparison, MS𝜆D calculations for the charged substituents with-

out using the neutral reference compound showed an average difference of

0.9 ± 0.3 kcal mol−1 from experiment. Therefore, the impressive agreement

with experiment shown by our protocol demonstrates that there is a benefit

to using a neutral intermediate compound.

Relative FEP predictions for charge perturbations at site 4 also showgood

agreement with experiment, with an average difference of 0.6 ± 0.3 kcal

mol−1. The position of site 4 on the THQ scaffold fills the narrow ZA chan-

nel in the binding site of BRD4-BD1 and points towards the solvent exposed

region (Figure 6.7). It appears that both MS𝜆D and relative FEP methods

accurately predict RBFEs that involve a charge perturbation at this region of
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the binding pocket.

6.3.4 Computational expense

To estimate the computational expense of relative FEP and MS𝜆D calcula-

tions applied to this compound series, the simulation time required for each

method is calculated. Over four MS𝜆D calculations, 119 ns of ALF and 210

ns of data collection is required. This means the full set of RBFE predic-

tions using MS𝜆D can be calculated with 329 ns of simulation time. This is

for predictions where the neutral substituents at site 4 have been split into

two calculations, with five replicas performed for each. In contrast, 240 ns

of simulation time is required for the RBFE prediction of one pairwise set of

compounds using relative FEP, totalling 3360 ns of simulation time for the

full set of 14 predictions. Therefore, the MS𝜆D calculations require less sim-

ulation time by a factor of ∼10, compared to relative FEP, when considering

these 14 compounds. However, as MS𝜆D calculates RBFE for all combina-

tions of substituents at each site, there is a simulation time saving of a factor

of 18, when considering the total molecule space explored. Taking this into

account,MS𝜆Dprovided values for an additional 14 compounds, beyond the

14 presented in Table 6.2. The compound predicted as having the best bind-

ing affinity, relative to compound 3 out the compounds with experimental

data was compound 15. This matches experiment, with it having the highest

pIC50.330 From the additional perturbations that MS𝜆D provided, we found

that a methyl to ethyl perturbation on site two of compound 15 results in an

equivalent binding affinity. It is also possible for further substituents to be

considered at each site with limited additional cost, which would substan-
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tially extend the number of compounds evaluated overall.

A nontrivial aspect of relative free energy calculations is themanual time

it takes to setup a simulation. These setups are often complicated and prone

to human error and although tools for their automation are being devel-

oped, most are in their early stages or are limited to specific simulation

programs.338–340 Therefore, even with advancements in computational re-

sources and GPU acceleration,74 the "human time" required for these calcu-

lations often becomes a limitation for the rapid estimation of RBFE for large

compound data sets, especially in an academic setting. We have found that

for an experienced user and once the initial input scripts have been writ-

ten, the setup of one MS𝜆D calculation is comparable to the setup of one

relative FEP calculation. The difference occurs when considering that one

MS𝜆D calculation can provide a large number of binding affinity predic-

tions, whereas a separate simulation is required for every pairwise set of

compounds when using relative FEP. Therefore, MS𝜆D shows potential for

the high-throughput prediction of accurate binding affinities.

6.4 Conclusions

In this chapter, we have presented an investigation into the applicability of

MS𝜆D and relative FEP calculations to a series of inhibitors of BRD4-BD1, a

prominent therapeutic target. First, benchmarking of relative FEP protocols

was performed. Varying numbers of 𝜆 windows, equilibration and data col-

lection periods were used, with the accuracy, uncertainty and convergence

tested for each combination. We found that using 20 𝜆 windows with 0.5 ns
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of equilibration and 1 ns of data collectionwas optimal and presented a good

compromise between accuracy and efficiency. When applied to the full set

of 14 compounds, relative FEP resulted in RBFE predictions with an average

accuracy of 0.6 ± 0.6 kcal mol−1, when discounting one outlier.

The THQ scaffold has four sites of perturbation, with two substituents at

site 1, three at site 2, three at site 3 and nine at site 4. Two of the substituents

at site 4 have a charge under physiological conditions and were investigated

using separate simulations. To test how well MS𝜆D handles the remaining

combinations, all 2 × 3 × 3 × 7 perturbations were considered simultane-

ously within a single calculation. This resulted in an average accuracy of 1.4

± 1.4 kcal mol−1 and limited correlation between the computed and experi-

mental rank order (𝑟𝑠 = 0.30). MS𝜆D achieved more accurate results when

splitting the neutral set of substituents into two independent simulations,

with an average accuracy of 0.6 ± 0.7 kcal mol−1 for the 14 compounds with

experimental values available.

MS𝜆D and relative FEP simulations achieved comparable levels of ac-

curacy for this dataset. However, the difference lies in the computational

cost of the methods. Comparing the amount of simulation time required

for each, MS𝜆D required a factor of ∼10 less than relative FEP simulations

when considering only those compounds with known free energies, but is a

factor of ∼18 quicker when the entire molecule space is considered. Further-

more, a much larger number of compounds can be evaluated using a single

MS𝜆D calculation, compared to relative FEP, which also saves on manual

setup time. As one of the critical limitations of relative FEP is its computa-

tional cost, MS𝜆D is a promising alternative for the accurate prediction of
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ligand binding affinity. The next step in our wider BRD4 study is to apply

MS𝜆D to a novel set of compounds, for prospective predictions, the guidance

of synthetic decisions and further validation of the method.
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Concluding Remarks

The insights into protein-ligand interactions that computational approaches

provide are crucial to the early stages of modern drug discovery and de-

sign processes. Molecular docking and MD simulations give understand-

ing of protein structure, active sites and the important interactions to target

when designing potential drugs. Furthermore, accurate estimations of bind-

ing affinity obviate the need to make every compound in a series. There-

fore, investigating potential inhibitors in silico expedites the drug discov-

ery pipeline, as computational methods are generally quicker than unfamil-

iar synthetic routes. There is also the benefit of saving synthetic resources

and costs, which is important in the current 2021 climate where sustainable

chemistry is paramount. In this thesis the application of CADD to two bi-

ological systems of therapeutic interest was explored, with a focus on free

energy calculations for the prediction of protein-ligand binding free ener-

gies.

The accuracy of MM methods ultimately rely on the quality of the force

175
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field in which the potential energy is calculated from. Non-bonded and

bonded interactions require parameterisation for quantities such as equi-

librium bond lengths, force constants and atomic charges. These param-

eters are well developed for proteins, mostly from fitting to QM prop-

erties of amino acids, with widely used biological force fields including

CHARMM,119 AMBER118 and OPLS.121 However, small organic compounds

are generally more poorly represented. This can be an issue for modelling

protein-ligand complexes, especially when the desired accuracy of binding

free energy predictions to guide synthetic decisions is generally assumed to

be 0.6-1.0 kcalmol−1.341 In Chapter 3, we recognise the importance of reliable

force field parameters and develop CHARMM force field compatible quan-

tities for a small molecule inhibitor of the protein αvβ6.27 These parameters

are then used for MD and RBFE predictions in Chapter 4. We expect the pa-

rameters developed for the 1,8-naphthyridine moiety to aid future compu-

tational studies, beyond our own, as naphthyridine is a well utilised group

in medicinal chemistry.233

Research into more efficient ways to develop parameters and automate

these processes is ongoing by multiple groups in the MM community.341–344

Although, ad hoc parameter optimisation is important for reliable results, it

can often be too laborious for large compound libraries. One example of

work being carried out is the Open Force Field Initiative.342 This is a col-

laboration between a network of academic and industry researchers to im-

prove techniques for the parameterisation of small molecule and biomolec-

ular force fields. This initiative recognises that a limitation of current opti-

misation regimes is the atom-typing of atoms based on their local chemical
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environments, which adds a level of manual complexity to the process. In-

stead, the SMIRKS Native Open Force Field (SMIRNOFF) format is used,

which assigns parameters based on the full chemical environment of an atom

through direct chemical perception.345 Machine learning is also a promis-

ing tool for improving the speed, accuracy and transferability of parame-

ter development.341,343,346 For example, the program Parameterize343 is an au-

tomated force field parameterisation method that uses density functional

theory (DFT) and neural network potentials. This method produces small

molecule parameters quickly and more accurately than the small molecule

force field for AMBER (GAFF2).122

In Chapter 4, MD and FEP simulations were utilised for the investigation

of a series of small molecules for the inhibition of αvβ6, a protein linked to

the initiation and progression of the chronic lung disease IPF.27 MD simula-

tions highlighted the importance of targeting a set of key binding site inter-

actions, as these were maintained throughout the simulations, regardless of

the substituents attached to the core scaffold. More specifically, theMD sim-

ulations confirm that a bidentate hydrogen bonding interaction with (αv)-

Asp218 and metal chelate interaction with a Mg2+ ion in the binding site are

critical interactions for inhibitors of αvβ6. FEP simulations provided esti-

mates of ligand binding affinity with an average accuracy of 1.5 kcal mol−1,

when compared to experiment. When considering the narrow range of activ-

ity shown by this compound series and the probable experimental error, this

level of accuracy is sufficient to demonstrate that this integrin system, along

with this series of ligands, is amenable to FEP. Substitution on the scaffold

involved the addition of a group onto an aryl ring, which significantly in-
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creases the complexity and length of the synthesis of this compound. There-

fore, accurate predictions of binding affinity are valuable for providing guid-

ance on which compounds should be prioritised for synthesis.

Proteins are highly dynamic and possess inherent flexibility so that they

can adapt to form interactions and achieve their function. As X-ray crystal

structures represent only one static conformation of a protein, the choice of

crystal structure as a starting point for computational modelling can be im-

portant. For example, ligand conformation predictions in molecular dock-

ing can be influenced by different side chain arrangements of an active site.

Furthermore, free energy calculations are even more sensitive to the initial

structure of a protein, compared to docking, as the whole protein structure

contributes to the results, not just the binding site residues.196 Therefore,

equilibration of any structure is important to ensure that it is close to the

correct energy minimum before starting calculations of free energy. To ex-

pedite this process, it is logical, if presentedwith a choice, to choose an initial

crystal structure that is close to an ideal conformation.

BRD4 is a target of therapeutic interest and at the time of our study, there

were over 300 X-ray crystal structures of BRD4-BD1 publicly available. This

presented a challenge for the selection of an initial structure to serve as the

basis for computational modelling. In Chapter 5, an analysis of these crys-

tal structures was performed. Structural alignment of BRD4-BD1 complexes

showed a high level of similarity between the structures, regardless of the

bound ligand. We employed WONKA,310,311 a tool for detailed analyses of

protein binding sites, to compare the active site of over 100 of the crystal

structures. The positions of key binding site residues show a high level of
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conformational similarity, with the exception of Trp81. A focused analysis

on the highly conserved water network in the binding site of BRD4-BD1 is

performed to identify the positions of these water molecules across the crys-

tal structures. The importance of the water network was illustrated using

molecular docking and absolute FEP simulations. 82% of the ligand poses

were better predicted when including water molecules as part of the recep-

tor. Our analysis provides guidance for the design of new BRD4-BD1 in-

hibitors and the selection of the best structure of BRD4-BD1 to use in SBDD,

which is important for faster and more cost-efficient lead discovery.

Accurate predictions of binding affinity are valuable in guiding lead de-

sign andoptimisation. Molecular docking has the functionality to score com-

pounds, based on binding affinity. However, predictions are often compro-

mised by the simplicity of the scoring functions and improvement in their

accuracy remains a challenge. Alternatively, alchemical free energy calcula-

tions presentmethods formore rigorous and accurate estimations of binding

affinity, although the complexity and computational demand of these meth-

ods means they present their own challenges. In Chapter 6, relative FEP and

MS𝜆D simulations are employed to calculate the RBFE for a series of BRD4-

BD1 inhibitors, based on a THQ scaffold. The two methods achieved com-

parable levels of accuracy, with an average difference to experiment of 0.6 ±

0.7 kcal mol−1 for the relative FEP calculations and 0.6 ± 0.6 kcal mol−1 for

the MS𝜆D calculations. However, the computational cost of the MS𝜆D cal-

culations was significantly lower, with a factor of ∼10 less simulation time

required. This study demonstrates the value of MS𝜆D and its potential for

the fast and accurate prediction of ligand binding affinity.
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Appendix A

Protein-ligand interactions of

integrin inhibitors during MD

simulations

In Chapter 4, MD simulations of protein-ligand complexes of integrin in-

hibitors are described. The interaction frequencies between certain binding

site residues and the ligands are calculated and discussed. Interaction fre-

quency is calculated by the proportion of frames with the interaction of in-

terest present with respect to the total number of frames, averaged over five

10 ns simulations. Table A.1 shows a full description of the interaction fre-

quency of the canonical interactions. Interactions with binding site residues,

additional to those shown in the main body of Chapter 4 are also shown. In-

teractions H1, H2, M1 and M2 refer to those labelled in Figure A.1.
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Figure A.1: The RGD mimetic bound to αvβ6. Canonical interactions are
labelled. Whether the interaction is M1 or M2 depends on which carboxyl
oxygen atom on the RGD mimetic is interacting with the receptor.



Appendix B

Convergence assessment of relative

FEP simulations for the calculation

of binding free energies for BRD4-

ligand complexes

Chapter 6 describes the benchmarking of relative FEP simulationswith vary-

ing numbers of 𝜆 windows, equilibration length and data collection length.

The following plots show the convergence of the binding free energy with

each combination of parameters tested. The forward (purple lines) and the

reverse (green lines) simulation time series are shown and the horizontal

shaded bar indicates ±0.5 kcal mol−1 of the final value.
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Figure B.1: Convergence assessment of a relative FEP simulation using 25 𝜆
windows with 2 ns of equilibration and 1 ns of data collection.

Figure B.2: Convergence assessment of a relative FEP simulation using 10 𝜆
windows with 2 ns of equilibration and 1 ns of data collection.



Appendix B 209

Figure B.3: Convergence assessment of a relative FEP simulation using 8 𝜆

windows with 2 ns of equilibration and 1 ns of data collection.

Figure B.4: Convergence assessment of a relative FEP simulation using 20 𝜆
windows with 2 ns of equilibration and 0.5 ns of data collection.
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Figure B.5: Convergence assessment of a relative FEP simulation using 20 𝜆
windows with 1 ns of equilibration and 1 ns of data collection.

Figure B.6: Convergence assessment of a relative FEP simulation using 20 𝜆
windows with 0.5 ns of equilibration and 1 ns of data collection.



Appendix C

RBFE predictions of BRD4-BD1

inhibitors with a net neutral charge

calculated using a single MS𝜆D

simulation

Chapter 6 describes the calculation of RBFEs for a series of BRD4-BD1 in-

hibitors, based on a THQ scaffold. The predicted relative binding affinities

for the compoundswith a net neutral charge, calculated using a singleMS𝜆D

simulation are shown below. In the main body of the text, results are pre-

sented for the compounds when they were split into two sets of MS𝜆D sim-

ulations, which achieved more accurate results compared to the ones pre-

sented below.
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Table C.1: RBFE predictions for a series of BRD4-BD1 inhibitors calculated
using a single MS𝜆D simulation. Relative free energy changes are shown in
kcal mol−1. R positions correspond to Figure 6.2 in the main text.

ID R1 R2 R3 R4 ΔΔ𝐺𝑒𝑥𝑝 ΔΔ𝐺𝑀𝑆𝜆𝐷
|ΔΔ𝐺𝑀𝑆𝜆𝐷

−ΔΔ𝐺𝑒𝑥𝑝 |

1 H Me Me -0.3 ± 0.1 0.3 ± 0.2 0.6

2 H Me Me H 1.6 ± 0.1 1.1 ± 0.7 0.5

4 H Me Me 0.0 ± 0.1 0.7 ± 0.4 0.7

5 H Me Me -1.5 ± 0.1 2.1 ± 0.4 3.6

6 H Me Me 1.6 ± 0.1 0.2 ± 0.4 1.4

7 H Me Me 1.3 ± 0.1 1.2 ± 0.2 0.1

8 H Me Et 0.4 ± 0.1 -0.2 ± 0.4 0.6

9 H Me i-Pr ≥ 3.4 -0.1 ± 0.3 ≥ 3.5



Appendix D

RBFE predictions for intermediate

compounds using relative FEP

In Chapter 6, relative FEP simulations are used to calculate relative binding

affinities for a series of BRD4-BD1 inhibitors. A few of these perturbations

involved changing substituents on more than one attachment point of the

scaffold. Therefore, intermediate transformations were required. The re-

sults of which are shown below. The structure of compound 15h is shown

in Figure D.1.
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FigureD.1: The structure of compound 15h, which is used as an intermediate
FEP compound for the calculation of RBFE for compounds 13, 14 and 15,
with respect to compound 3.

Table D.1: RBFE predictions for intermediate compounds using relative FEP.
Compound numbers correspond to those in Table 6.2.

Transformation ΔΔ𝐺𝑐𝑎𝑙𝑐

(kcal mol−1)
Uncertainty
(kcal mol−1)

3→ 10 -0.1 0.5
10→ 11 0.7 0.2
10→ 12 1.9 0.2
3 → 15h -0.7 0.6
15h → 13 2.1 0.3
15h → 14 0.3 0.2
15h → 15 -0.9 0.2


