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Abstract

In this thesis several homotopical aspects of linear algebraic quantum field theory are
treated. These homotopical aspects are crucial when formalizing quantum gauge theories
in a way that fully respects their gauge symmetries. After preliminaries introducing the
relevant elements of category theory, Lorentz geometry, algebraic quantum field theory, chain
complexes, model categories and operads, the definition of semi-strict homotopy algebraic
quantum field theory is given, weakening only the time-slice axiom.

Building on the work done in [BSW20], an operadic definition of general algebraic field
theories is obtained. This allows for adjunctions between different kinds of field theories: a
descent adjunction, related to local-to-global features of a field theory; a localization adjunc-
tion, related to the existence of dynamics for a field theory; and a canonical quantization
adjunction between linear field theories and quantum field theories. The latter adjunction is
shown to generalize to homotopy algebraic field theories, and to preserve weak equivalences.
This yields a general machinery to produce linear homotopy quantum field theories.

After this, the construction of examples of homotopy algebraic quantum field theories is
studied. From the input data of a field complex and an equation of motion, the solution com-
plex is formed as a derived critical locus. This retrieves several features of the BV formalism:
ghost fields, antifields and an antibracket, i.e. a canonical shifted Poisson structure on the
solution complex. Crucially, it is found that using features of the Lorentzian geometry of
spacetime, this shifted Poisson structure can be trivialized in two ways, yielding an unshifted
Poisson structure on the solution complex and thus a homotopy algebraic linear field theory.

The canonical quantization functor then produces a linear homotopy algebraic quantum
field theory. This is illustrated by two examples: Klein-Gordon theory, which is shown to
be equivalent to the usual treatment in algebraic quantum field theory; and linear Yang-
Mills theory, which is a first nontrivial example of a linear homotopy algebraic quantum field
theory, and is not equivalent to any ordinary algebraic quantum field theory.

Finally, the issue of relative Cauchy evolution for linear homotopy algebraic quantum
field theory is treated. Using the localization adjunction an equivalent perspective on relative
Cauchy evolution for ordinary algebraic field theories is proposed, which is found to be more
suitable for homotopy algebraic field theories since the weakening of the time-slice axiom turns
out to severely complicate the usual approach. A rectification theorem is proven for linear
observables, and a suitable Poisson structure is found on the strictified model. Combined with
the homotopical properties of the linear quantization functor this allows for a well-defined
notion of relative Cauchy evolution for linear homotopy algebraic quantum field theories, and
it is shown that for the linear observables in such a theory this notion agrees with the naive
approach of quasi-inverting the maps involved. The relative Cauchy evolution for the linear
Yang-Mills model is then computed, and it is shown that the associated stress-energy tensor
agrees with the usual Maxwell stress-energy tensor.
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CHAPTER 1

Introduction

The theory of quantum fields is arguably one of the greatest achievements of modern
physics. In particle physics, the Standard Model accounts for all known matter, describes
all known interactions besides gravity and it has led to what is possibly the most precise
prediction in physics, the anomaly of the magnetic moment of the electron. Beyond particle
physics, quantum field theory has broad applications in condensed matter theory and cos-
mology, it has revolutionized certain areas of mathematics, and has led to the creation of
others.

While quantum field theory has been extremely successful in both physics and math-
ematics, a complete mathematical formalization has not been achieved in full generality.
Feynman’s path integral infamously refuses to be rigorously defined for quantum fields, and
even beyond that the field is rife with calculations leading to infinities in all but the simplest
models. Methods of perturbative renormalization have been developed to remedy this, but
a full description of the nonperturbative theory is still out of reach.

An important class of quantum fields is that of the so-called gauge fields. For example,
the Yang-Mills fields are a crucial ingredient of the Standard Model, as they carry the elec-
troweak and strong forces between elementary particles. Gauge fields are fields with a gauge
symmetry: they are invariant under the action of a local gauge group, which is an action by
a Lie group at every point in spacetime. Field configurations that are related by a gauge
symmetry are considered to be equivalent. One can think of a choice of representative of a
gauge equivalency class as a choice of coordinates in which the value of the field is expressed,
at every point in spacetime.

The ingredient of gauge equivalence in a quantum field theory turns out to bring its own
set of issues when constructing a mathematical theory of quantum gauge fields. Specifically, it
leads us to a weaker notion of equivalence of theories: a pair of theories can be equivalent even
when one has more fields than the other, for example when one of the theories is procured
by gauge-fixing the other or by adding a redundant gauge symmetry. So in certain cases we
can think of two non-isomorphic theories as equivalent, and we need to work in a framework
that treats them as such. This leads us beyond the usual set- and category theory-based
approaches, in turn leading to new conceptual and definitional challenges, which are of a
different nature than the infinities arising in non-gauge quantum field theory; of course, the
latter will in general still be present, and need to be addressed too.

This thesis is concerned with some of these former challenges. Specifically, we work in
the framework of homotopy algebraic quantum field theory, which generalizes the framework
of algebraic quantum field theory to the language of model categories. Algebraic quantum
field theory is one of the main approaches toward rigorously defining quantum field theories,
focusing on the algebras of observables which are defined on any subspacetime of the space-
time one works on. And model categories are categories defined explicitly to deal with weak
equivalences such as the ones described above.
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1.1. FROM QUANTUM FIELDS TO ALGEBRAIC QUANTUM FIELD THEORY 5

Algebraic quantum field theory and respecting weak equivalences are the two fundamental
concepts underlying the work in this thesis. So let us informally introduce both, building on
ideas and notation that are hopefully familiar to the reader.

1.1. From quantum fields to algebraic quantum field theory

In a first course on quantum field theory one usually starts with a scalar field φ(x) on
Minkowski spacetime M with the Klein-Gordon equation

(�−m2)φ = 0 ,

as the equation of motion. On a spatial slice in M (say the t = 0 hyperplane with spatial
coordinate x) we then have the quantum field φ(x) and its conjugate momentum π(x) =
∂tφ(x). These fields are operator valued distributions acting on the Hilbert space of states
and they satisfy the equal time canonical commutation relations[

φ(x), π(x′)
]

= iδ3(x− x′) ;
[
φ(x), φ(x′)

]
=
[
π(x), π(x′)

]
= 0 .

We think of the operator φ(x) as observing the value of the field φ at the point x so we call
φ and other quantum fields observables. This is the equal time approach, or Hamiltonian
approach, to quantum fields.

The treatment then usually moves from the Schrödinger picture to the Heisenberg picture,
making the observables time dependent instead of the states. Where in the Schrödinger
picture the equation of motion for the states was given by the Schrödinger equation, in
the Heisenberg picture we have the Heisenberg equation for the observables, a differential
equation for φ involving the commutator of the field and the Hamiltonian. This means we
now have a covariant quantum field operator φ(x) defined on all of spacetime, obtained by
solving the Heisenberg equation with initial data φ(x) and π(x) = ∂tφ(x). In the usual
treatment of quantum Klein-Gordon theory this is evidenced by the fact that the Fourier
expansion of φ(x) is given by a three-dimensional integral over the momenta k, with the zero
component k0 appearing in the time dependent part eik0t given by k0 =

√
k2 +m2. So we

work on-shell, with the dynamics now encoded in the quantum fields: in a sense, the quantum
fields φ(x) only observe solutions to the equation of motion.

The commutator for the quantum fields is then[
φ(x), φ(x′)

]
= iG(x, x′)

where G is the (singular) causal Green function for the Klein-Gordon operator. Importantly
G(x, x′) is zero when the difference x−x′ is a spacelike vector. This is the algebraic expression
of causality: the fact that a measurement in a region U1 of Minkowski space cannot influence
a measurement in a region U2 that is spacelike to U1.

From here, a treatment of quantum field theory usually moves on to scattering and per-
turbation theory, adding interactions, defining in and out states, finding Feynman diagrams,
calculating n-point functions and generally doing calculations within the framework. We
move in the other direction, formalizing the quantum fields and (some of) their properties.
We will still primarily think of the Klein-Gordon field φ(x) but the lessons we learn should
be broadly applicable.

We start by collecting the observables φ(x), their products and a unit, into the algebra of
observables A. If we have a Hilbert space of states H we can then think of A as a subalgebra
of the algebra of operators on H. However, an algebra of quantum field observables will
in general admit many different inequivalent Hilbert space representations (the Stone-von
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Neumann theorem does not apply because the algebra is infinitely generated). So we decide
to consider the algebra A as the fundamental object of our field theory; hence the name
algebraic quantum field theory. The Hilbert space of states is then a choice of representation
of A.

We then recognize that the observables φ(x) are too sharp: they are operator valued
distributions, which need to be integrated against a test function to give true operators. If
we do not do this, this results in infinities, evidenced by the singular behaviour of the Green
function appearing in the commutation relations, for example. So we define the observables
φ(f) that are smeared with compactly supported functions f ∈ C∞c (M),

φ(f) :=

∫
M
f(x)φ(x) d4x .

The operator valued distributions φ(x) are not part of A anymore, but they can be ap-
proximated by the smeared observables φ(f) by letting f approach δ4(x). The observables
φ(f) naturally carry an involution, making A into a ∗-algebra1. The commutation relations
between quantum fields then are[

φ(f), φ(f ′)
]

= i

∫
M
f(x)G(f ′)(x) d4x

where G is now the causal Green operator for Klein-Gordon theory, which will not lead to
infinities since f is still compactly supported and G(f ′) is smooth.

One of the fundamental features of (quantum) fields that we have not yet touched on is
their local nature: a field located at a point x can only influence particles and other fields at
that point or its neighbours. Implementing locality leads to an even more rigorous reinter-
pretation of A. This procedure has two steps. First, we recognize that on any subspacetime
U of Minkowski space, we can define the algebra A(U) of observables located on U . These
are all smeared observables φ(f) where f is supported on U . The local nature of the fields
then ensures that A(U) is closed under products and the involution, so it is indeed still a
∗-algebra. So A is now a function

A : COpens(M) −→ ∗Alg

assigning to any causal open of M (i.e. any subspacetime) its local algebra of observables.
The second step is to realize that some of these algebras are related: if U1 ⊆ U2 is an

inclusion then any observable φ(f) ∈ A(U1) is also local to U2. So the inclusion ι : U1 ↪→ U2

leads to an inclusion of algebras A(ι) : A(U1) ↪→ A(U2)2. This leads us to recognize A as not
just a function, but a functor

A : COpens(M) −→ ∗Alg .

So A is in fact a net of algebras, one for each subspacetime U of M, with maps between
algebras corresponding to inclusions in M.

We can now give our two conditions of causality and dynamics in this new language. We
saw that the causality of fields was algebraically expressed by the fact that if the difference
between two points in M is spacelike, the commutator of fields located there is zero. In our

1To make the algebra of observables into a C*-algebra we need to form the Weyl algebra, which we will
not pursue in this text.

2In general A(ι) might not be an inclusion, as we will see in Remark 2.3.3.
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functorial discription this translates to the condition that if U1 and U2 are spacelike separated
in a larger spacetime U ′, [

A(ι1)
(
φ(f1)

)
,A(ι2)

(
φ(f2)

)]
= 0 ∈ A(U ′)

where ιi : Ui → U ′ are the inclusion maps and φ(fi) ∈ A(Ui). We call this condition Einstein
causality.

As for the dynamics, we saw that the quantum fields φ(x) only observe solutions in the
theory. We formalize this as follows. A Cauchy surface of a spacetime U is a spacelike
hypersurface Σ such that every inextendible causal curve in U intersects Σ exactly once.
A Cauchy morphism ι : U → U ′ is then an inclusion such that the image ι(U) contains a
Cauchy surface of the bigger spacetime U ′. This means that Σ is a good surface to define
initial conditions on for the theory on U ′; in other words, a solution on U will uniquely
determine a solution on U ′. In terms of the algebras this implies that the observables local to
U already completely observe all possible solutions on U ′. This is formalized by the time-slice
axiom: the map of algebras

A(ι) : A(U) −→ A(U ′)

is an isomorphism whenever ι : U → U ′ is a Cauchy morphism.
This leads us to our first definition of an algebraic quantum field theory: it is a functor

A : COpens(M) −→ ∗Alg that satisfies Einstein causality and the time-slice axiom. This
is a quite abstract definition, and also quite general: it says nothing about the size of the
algebras or which (if any) fields the theory describes. In this language, a field φ is upgraded
to be a natural transformation

φ : C∞c −→ A

of the underlying functors valued in vector spaces, with components

φU : C∞c (U) −→ A(U)
f 7−→ φ(f)

.

The algebraic approach to quantum field theory was first proposed in the seminal paper
[HK64]. The essential step was letting of the representation Hilbert space that is central in
the Wightman axioms [WG65]; it is considered to come second in the algebraic approach.
Originally, the only regions considered were bounded opens Uc of M, which is not a big ask:
any φ(f) will live in a A(Uc) since f is compactly supported. In [BFV03] locally covariant
quantum field theories were introduced by defining theories on all suitable spacetimes M ,
elegantly incorporating symmetries of a spacetime (such as the Poincaré group) as automor-
phisms of spacetimes without relying on them. This will be our Definition 2.3.1 of algebraic
quantum field theory.

A complete survey of the successes of algebraic quantum field theory is beyond the scope
of this section, see e.g. [Fre15] and the other chapters in the book [BDFY15] for a recent
overview. By moving to formal power series in ~, one can treat perturbative models in AQFT,
see e.g. [FR15] and [Rej16]. It is still an open question how to move beyond perturbation
theory, and include non-perturbative features; for recent progress on convergence for simple
models see [BR18] and [BFR21].

We end by noting that other functorial formalizations of quantum field theory exist,
though we will not cover them beyond this paragraph. Some, such as topological quantum
field theory [Ati88], and one definition of conformal field theory [Seg88], focus on cobordisms
as formalizing the time-evolution of states. A more recent approach is the use of factorization
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algebras of observables in quantum field theory [CG16], axiomatizing the operator product
expansion and correlation functions.

1.2. Gauge theory and weak equivalences

We now turn to gauge theory. Mathematically, (classical) gauge fields on a spacetime
M are connections on a corresponding principal G-bundle P , where G is a compact Lie
group. These connections carry a natural action of the gauge group G(P ), which locally
looks like the group of G-valued functions on M . Two field configurations that are related by
a gauge transformation g ∈ G(P ) describe the same physical configuration, and are therefore
considered to be physically equivalent.

For our purposes, the essential point is now that the classical space of fields F(M), or
the classical space of solutions to the equation of motion Sol(M), is no longer simply a set
(or a set with extra structure like a vector space or a manifold): it is a groupoid of fields (a
category in which all maps are isomorphisms). The objects of F(M) are field configurations,
i.e. the connections on P , and the morphisms are the gauge transformations between field
configurations. Field configurations that are different can then still be gauge equivalent when
there exists a gauge transformation between them. And once we accept that we will work
with fields up to equivalence, we have no choice but to also work with a broader notion of
equivalence for theories than isomorphisms of categories.

To see this, consider the following simple example: let F(M) be a set of classical field
configurations without any symmetries, say the smooth functions on M for concreteness. In
our broader framework we can then simply double this set and introduce a Z/2Z-symmetry
between each field configuration and its copy: we define the disjoint union F(M) := F(M) t
F(M), together with the Z/2Z-action

f1
oo

1
// f2

where we write f1 ∈ F(M) for elements of the first of the two copies of F(M) in the disjoint
union, and f2 ∈ F(M) for elements of the second. The content of this new theory F(M)
is manifestly the same: in essence we have simply given two different labels to each field
configuration.

But we find that there is no way of defining a map F : F(M) → F(M) that has a strict
inverse F−1 : F(M) → F(M). We see this directly: for any f ∈ F(M), F−1 will map its
copies f1 and f2 in F(M) to isomorphic, hence equal, elements in F(M), since there are no
(non-identity) symmetries in F(M). So F−1 can never be injective. On the other hand, from
the perspective of category theory, there is no problem: we can define the obvious maps

F : F(M) −→ F(M)
f 7−→ f1

;
F−1 : F(M) −→ F(M)

f1, f2 7−→ f

and although the composition F ◦ F−1 is not the identity idF(M), it is isomorphic to idF(M).

So we have learned that the right concept of equivalence for groupoids (and more broadly
for categories) is weaker than that of isomorphism. And that if we start working with gauge
fields, there is no way around working with this weaker notion of equivalence for groupoids
of gauge fields. A word of warning: in the above example we introduced a redundant gauge
symmetry: the group Z/2Z acts freely, and as such our groupoid of gauge fields F(M) is
equivalent to the set of fields F(M) that we started with, by design. In actual gauge theory,
however, this is not the case: most groupoids of gauge fields are not equivalent to a set. As
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such, one will in general lose information when working with the set of gauge equivalence
classes instead of its underlying groupoid of gauge fields.

We conclude that, if we are to take these symmetries seriously, we necessarily have to work
in a mathematical framework that is capable of working up to weak equivalence. Concretely,
for our purpose of working with algebraic quantum gauge field theories, this means two
things. First, any definitions will only be up to weak equivalence. For example, the time-slice
axiom will state that to any Cauchy morphism ι, the field theory functor A will assign a weak
equivalence rather than an isomorphism. And second, any construction we use to construct an
algebraic quantum gauge field theory will need to preserve weak equivalences. As an example,
for the linear quantization functor Qlin that we define in Chapter 3 we will have to check
that if f : L → L′ is a weak equivalence of linear field theories, Qlin(f) : Qlin(L) → Qlin(L′)
is a weak equivalence of quantum field theories (it is). And if this is not the case, we need to
derive the functor: adapt it in such a way that the new version does preserve equivalences,
while being as close to the old functor as possible.

In several areas of mathematics, working up to weak equivalences is well-trodden ground.
The above description of equivalence of categories has long been recognized as the correct
one. In topology one often studies topological spaces up to homotopy, which is a much more
flexible notion than that of homeomorphism. And in homological algebra, chain complexes
of vastly different size (like the simplical complex and the singular complex of a space in
algebraic topology) can still be thought of as equivalent if they have the same homology
groups: we work up to quasi-isomorphism.

In all of these cases, we find that being a weak equivalence is not just a property, but that
there exist extra structures that witness this fact: 2-morphisms of categories (called natural
transformations) compare the 1-morphisms (functors) between categories. Homotopies can
deform topological spaces, or continuous maps between them. And in homological algebra,
chain homotopies are used to compare chain maps. So we are naturally led to higher struc-
tures, these homotopies or 2-morphisms, between maps. And of course, there is no reason to
stop there: we could try to define homotopies of homotopies of continuous maps, 4-morphisms
between 3-morphisms between 2-morphisms between functors between categories, and so on.

In the past half century of mathematics, several ways of handling weak equivalences in a
category have been developed. One approach is introducing 2-morphisms between morphisms
in a category, while letting all conditions for 1-morphisms (for example, associativity of
composition) only hold up to these 2-morphisms. We can then repeat this, introducing 3-
morphisms between 2-morphisms and weakening the conditions on 2-morphisms to hold up to
3-morphisms, and so on. This leads to the theory of infinity categories or (∞, 1)-categories,
which are famously extremely hard to define in this way directly. Probably the most common
approach to define infinity categories is to use simplicial sets, resulting in the definition of
quasi-categories [Joy02, Lur09a]. Homotopical categories [Rie14] yield a more flexible but
less powerful framework, as categories with only a class of weak equivalences to be specified.

The main approach we will take is that of model category theory. A model category is a
category C that comes with a class of weak equivalences, and two auxiliary classes morphisms,
the fibrations and the cofibrations. These can be thought of as the “good” surjections and
injections, respectively, which means that certain lifting problems have a solution: they are
used to define two weak factorization systems. This turns out to be enough data to form
the homotopy category of C, which is a localization of C: a category where we can simply
treat the weak equivalences as isomorphisms. Importantly for our purposes, model category
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theory is also a good framework to derive functors, i.e. deform them such that they preserve
weak equivalences.

Model category theory was initially developed by Quillen [Qui06, Qui69], to find a
framework that encompasses the similar homotopical ideas across topology, homological al-
gebra and simplicial sets. He called it homotopical algebra, seeing it as a generalization
of homological algebra. We will regularly mix the use of the terms homotopy and weak
equivalence in this text, using the term homotopical to mean “treating weak equivalences in
an appropriate way”. Specifically, we use the term homotopical functor for a functor that
preserves weak equivalences.

1.3. Homotopy algebraic quantum field theory

So we arrive at the fundamental question driving this thesis: how do we define and
construct algebraic quantum field theories in a manifestly homotopical way? In other words,
how do we give definitions that naturally incorporate weak equivalences, and how do we
ensure our constructions preserve weak equivalences? Answering these questions is the goal
of the homotopy algebraic quantum field theory project.

Of course, noting that extra care should be taken when working with gauge theories is not
an original or new insight. The Faddeev-Popov ghosts fields [FP67] were a first expression
of this fact, which lead to the development of the BRST formalism [BRS76, Tyu75] and
the Batalin-Vilkovisky formalism [BV84, BV83]. And in algebraic quantum field theory,
[Hol08] constructed quantum Yang-Mills theory as a perturbative quantum field theory on
any spacetime, while [FR12, FR13] developed the BV formalism for algebraic quantum field
theories, arguably giving first examples of homotopy algebraic quantum field theories before
this concept was precisely defined.

The first signs that the usual approach of algebraic quantum field theory was not adequate
for the study of gauge theories were found in [DL12]. There, it was shown that the isotony
axiom of locally covariant quantum field theory in [BFV03] is too stringent for Maxwell
theory, because observables of topological charges might not survive moving to a larger
spacetime. This was expanded upon in several works, [SDH14, BDS14, BDHS14, BSS17,
BBSS17]. The universal algebra of the theory on a general spacetime was found to be
deficient, since it was missing Dirac charge quantization and flat connections.

In [BSS15] this issue was resolved at the level of linear observables. The solution was
to use homotopy colimits, providing evidence that gauge theories should be studied in an
appropriate homotopical framework. First attempts to develop this homotopical framework
of algebraic quantum field theory include work on groupoid actions in [BS17], obtaining
first toy models of homotopy algebraic quantum field theory, and the study of the classical
solution stack of non-abelian Yang-Mills fields in [BSS18].

At this moment it was still unclear what the definition of a homotopy algebraic quantum
field theory was. In [BSW20] the crucial step of using operads to define algebraic quantum
field theory was introduced. This led to several insights into the structure of algebraic
quantum field theory, see also [BDS18, BSW19b]. Importantly, building on this operadic
framework of algebraic quantum field theory, a definition of homotopy algebraic quantum
field theory was obtained in [BSW19a].

Further developments inspired by homotopy algebraic quantum field theory include the
categorification of algebraic quantum field theories [BPSW21] and the definition of smooth
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structures on algebraic quantum field theories [BPS20]. In [Yau20] further resolution tech-
niques were developed for homotopy algebraic quantum field theory, and in [Car21] new
model structures on the category of homotopy algebraic quantum field theories were devel-
oped via left and right Bousfield localization.

We see that a lot of formalism on homotopy algebraic quantum field theory has been
developed. There has, however, been a lack of examples beyond toy models. The goal of
this PhD project was to remedy this by developing linear homotopy quantum field theories,
a class of more realistic examples.

1.4. Summary and contents

This thesis is called Higher linear algebraic quantum field theory. We have now hopefully
shed light on all the words in the title, except for the term linear. Giving a full formalization
of gauge theories in the framework of homotopy algebraic quantum field theory is far beyond
the scope of this text or this author. Instead, we will mostly work with linear (quantum) field
theories in this text. These are theories with a linear equation of motion and a linear gauge
action, so they are in particular non-interacting, which excludes e.g. nonabelian Yang-Mills
theory. Of course, these are not realistic models for Nature as a whole. But they have proven
to be an ideal testing ground for the homotopical aspects of homotopy algebraic quantum
field theory.

Practically, the focus on linear theories means that we are working with chain complexes,
the homotopical analogues of vector spaces. Field theories are then valued in differential
graded algebras, algebras in chain complexes, which is also true for general homotopy algebraic
field theories. The quantum field theories are then obtained by linear quantization of the
linear observables, which sidesteps the problems with the quantization of general Poisson
algebras. Working solely with chain complexes, we will not encounter any nonlinear objects
like stacks.

Let us now summarize the contents of this thesis. In Chapter 2 we give the necessary
preliminaries for the text. We give a short introduction to category theory, and then move on
to the Lorentzian geometry and results on Green operators that we will need. We then give
a more formal introduction to algebraic quantum field theory, taking care to work out the
example of Klein-Gordon theory first. Afterward, we turn to chain complexes and their model
category theory, the language in which much of this text has been written. We introduce
operads and their algebras, which are powerful tools for introducing homotopies to algebra,
and we end the preliminaries by giving a definition of semi-strict homotopy algebraic field
theories.

In Chapter 3 we use these operads for algebraic field theories: first to characterize alge-
braic field theories satisfying only the Einstein causality axiom as being valued in the algebras
over an operad, and then to redefine these theories as algebras over a field theory operad.
The machinery of operads and their algebras then allows us to obtain adjunctions between
different types of field theories, leading to characterizations of field theories that satisfy the
conditions of descent and the time-slice axiom. This also results in a linear quantization
adjunction that allows us to construct linear quantum field theories from linear field theo-
ries. We then treat homotopical aspects of linear quantum field theories, finding that linear
quantization is a homotopical functor and that it preserves both the homotopical descent
condition and the homotopical time-slice axiom.



12 1. INTRODUCTION

In Chapter 4 we use our linear quantization adjunction to give a full example of a ho-
motopical linear algebraic quantum field theory, which we call linear Yang-Mills theory. We
start by defining the solution complex of a linear theory as a derived critical locus, obtaining
the ghost field and the antifields of the BV formalism in the process. This complex carries a
natural shifted Poisson structure, and remarkably the Lorentzian structure of a spacetime M
and the existence of retarded and advanced Green operators allows us to extract an unshifted
Poisson structure on the solution complex. After treating functoriality and the algebraic field
theory axioms, the full linear field theory is under control, and the quantization of the theory
is straightforward with the results from Chapter 3. Throughout the chapter we use the chain
complex valued Klein-Gordon model as a sanity check for our constructions, while developing
the linear Yang-Mills model as a true homotopy AQFT.

In Chapter 5 we consider relative Cauchy evolution for homotopy algebraic quantum field
theories, which tests how fields respond to compactly supported perturbations of a spacetime
metric. We start by giving a slightly different approach to relative Cauchy evolution for
regular algebraic field theories, using the time-slice adjunction from Chapter 3. We then use
this approach to hypothesize several rectification theorems that would allow one to define
relative Cauchy evolution for homotopy algebraic quantum field theories at various levels of
generality. We then prove such a rectification theorem for linear field theories, first treating
the complexes of linear observables and then their Poisson structures. This yields a well-
defined notion of relative Cauchy evolution for linear homotopy quantum field theories, which
agrees with the naive approach on the linear observables of a theory. We end the chapter by
working out the relative Cauchy evolution for our linear Yang-Mills model, finding that its
stress-energy tensor agrees with the usual Maxwell stress-energy tensor. In particular, the
ghost field and antifields do not carry energy.



CHAPTER 2

Preliminaries

2.1. Category theory

Category theory is the language in which much of modern algebra, geometry and topology
is written. It is also the language of algebraic quantum field theory, and other mathematical
approaches to quantum field theory. The classic reference is MacLane [ML13]. The book by
Leinster [Lei14] is a beautiful and gentle introduction. Riehl [Rie17] is another introduction,
which covers more ground.

2.1.1. Basic definitions and examples. The three fundamental definitions in category
theory are the following.

Definition 2.1.1. A category C consists of:

• a collection of objects Ob C,
• for any two objects c, c′ ∈ Ob C a set of morphisms HomC(c, c′).

The category also comes equipped with:

• a composition of morphisms

◦ : HomC(c′, c′′)×HomC(c, c′) −→ HomC(c, c′′)
(g, f) 7−→ g ◦ f

for all c, c′, c′′ ∈ Ob C,
• an identity morphism

idc ∈ HomC(c, c)

for every c ∈ Ob C.

The composition and identity morphisms satisfy the compatibility relations

• associativity:
h ◦ (g ◦ f) = (h ◦ g) ◦ f

for any triple of composable morphisms f, g, h,
• identity:

idc′ ◦ f = f = f ◦ idc
for any f ∈ HomC(c, c′).

We will often write c ∈ C instead of c ∈ Ob C for an object in C and write gf for the

composition g ◦ f . We will also use the notation f : c → c′ or c
f−→ c′ for f ∈ HomC(c, c′)

and C(c, c′) for the set of morphisms HomC(c, c′). Lastly, for any morphism c
f−→ c′ we say

that s(f) := c is the source of f , and t(f) := c′ is its target.

Definition 2.1.2. Let C and D be categories. A functor F : C→ D is an assignment

Ob C −→ Ob D
c 7−→ F (c)

13
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together with maps of morphisms

F : HomC(c, c′) −→ HomD(F (c), F (c′))

for all c, c′ ∈ Ob C. These maps are required to preserve the composition,

F (g ◦ f) = F (g) ◦ F (f) ,

and the identities,

F (idc) = idF (c) .

Functors can be composed in the obvious way, and for any category C we have the obvious
identity functor 1C : C → C. These two structures make the collection of categories and
functors into a category itself. We will write Fun(C,D) or DC for the set of functors from
C to D. In fact, these in turn also form a category themselves, the morphisms of which are
the natural transformations.

Definition 2.1.3. Let C and D be categories, and F and G be two functors from C to
D. A natural transformation η : F ⇒ G is a family of morphisms

ηc : F (c) −→ G(c)

for all c ∈ Ob C such that for any f : c→ c′ in C, the diagram

F (c)
ηc
//

F (f)

��

G(c)

G(f)

��

F (c′)
ηc′
// G(c′)

(2.1.1)

commutes.

The notation η : F ⇒ G is useful when talking about both functors and natural trans-
formations; the notation η : F → G can also be used when there is no risk of confusion, and
we will do so throughout this thesis.

Definition 2.1.4. A natural transformation η : F ⇒ G is a natural isomorphism if each

component ηc : F (c)
∼=−→ G(c) is an isomorphism.

Natural transformations can be equipped with two compositions. One is called vertical
composition: for η : F ⇒ G and ζ : G⇒ H we have ζ ◦v η : F ⇒ H by composition at each
component:

(ζ ◦v η)c := ζcηc : F (c)→ H(c) .

To define horizontal composition consider two pairs of composable functors F, F ′ : C → D
and G,G′ : D→ E, with natural transformations η : F ⇒ F ′ and ζ : G⇒ G′ between them.
Then we have the horizontal composition ζ ◦h η : GF ⇒ G′F ′ through

(ζ ◦h η)c := ζF ′(c)G(ηc) = G′(ηc)ζF (c) : GF (c)→ G′F ′(c) .

Note that for any functor F we can define the identity natural transformation idF : F ⇒ F
between the compositions of functors through

(idF )c := idF (c) : F (c)→ F (c) .
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For a diagram

C
F
// D

G

&&

G′

88⇓ η E
H
// F

we can then form the horizontal composition idH ◦h η ◦h idF , which we will denote by HηF :
HGF ⇒ HG′F to simplify notation.

There are many examples of categories. We give a few below, and will encounter more in
later chapters. The basic example of a category is the category of sets.

Example 2.1.5. Set is the category of sets. Objects of Set are sets and morphisms are
maps. The composition is the standard composition of maps, and the identity map is the
identity morphism.

Sets with extra structure give many other examples of categories. As with Set, compo-
sition is given by composition of maps and identity maps are identity morphisms in each of
the below examples.

Example 2.1.6. VectK is the category of vector spaces over a field K. Objects of VectK
are vector spaces over K and morphisms are linear maps.

In a sense, vector spaces can be thought of as special types of chain complexes, which we
introduce in Section 2.4.1.

Example 2.1.7. Top is the category of topological spaces and continuous maps. Man
is the category of smooth manifolds and smooth (i.e. infinitely differentiable) maps.

A choice of extra structure on manifolds (like orientation, metric or symplectic structure)
with corresponding morphisms gives a refinement of Man. We will encounter Loc, one such
refinement, in Definition 2.2.8.

Example 2.1.8. AlgAsK is the category of unital associative algebras over a field K. Ob-
jects are associative algebras with unit (A, µ, η) and morphisms are linear maps that preserve
the multiplication and unit.

We will often suppress the choice of ground field K, writing AlgAs instead of AlgAsK .

Example 2.1.9. If we work over the field C (or more generally over a field with an involu-
tion) we can define the category ∗AlgAs of ∗-algebras. Objects are unital associative algebras
with involution (A, µ, η, ∗) and morphisms are linear maps that preserve the multiplication,
unit and involution.

Other choices of algebraic structure lead to other categories of algebras. These can often
be characterized as algebras over operads, which we will do in Section 2.5.2. One structure
that cannot be defined using operads is that of a Poisson vector space.

Example 2.1.10. PoissVectK is the category of Poisson vector spaces over a field K.
Objects are pairs of a vector space V together with a Poisson structure τ : V ∧ V → K,
where we note that the wedge product forces τ to be antisymmetric. A morphism of Poisson
vector spaces L : (V, τV ) → (W, τW ) is a linear map L : V → W that preserves the Poisson
structure: L∗τW = τW ◦ (L ∧ L) = τV .
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Example 2.1.11. As already mentioned above, our definitions of categories, functors and
natural transformations define two examples of categories.

Cat is the category of categories1, with categories as objects and functors as morphisms.
Functors can be composed in the obvious way, composing the maps of objects and the maps
of morphisms, and the identity functor is the identity map on objects and morphisms.

Given two categories C and D, we can also define the functor category Fun(C,D) or DD.
Objects are functors from C to D and morphisms are the natural transformations between
them, with vertical composition of natural transformations as composition of morphisms,
and the identity natural transformation as the identity.

In fact, we can combine these two structures and think of Cat as a 2-category, though we
will not pursue 2-categories in this text. We just note here that categories carry a broader
notion of equivalence than isomorphism, as alluded to in Section 1.2 of the introduction.

Definition 2.1.12. An equivalence of categories C and D is a pair of functors

F : C // D : Goo

together with a pair of natural isomorphisms

η : 1C ⇒ GF ; ε : FG⇒ 1D .

There is another characterization of functors that establish an equivalence, for which
we need a few more definitions. We start by noting that functors act on both objects and
morphisms, and we can consider their behaviour on either. For example, are they surjective
or injective? It turns out that on objects, this is not quite the right question.

Definition 2.1.13. A functor F : C → D is essentially surjective if for all d ∈ D,
d ∼= F (c) for a c ∈ C.

Asking the question of surjectivity and injectivity for the sets of morphisms leads to the
definitions of full and faithful functors.

Definition 2.1.14. A functor F : C→ D is full if for any two c, c′ ∈ C, the map

F : HomC(c, c′) −→ HomD(F (c), F (c′))

is surjective, and F is faithful if this map is injective. A functor that is both full and faithful
is called fully faithful.

Lemma 2.1.15. A functor F : C → D is part of an equivalence if and only if it is fully
faithful and essentially surjective.

Categories and functors themselves allow for several constructions and definitions that
give new categories.

Definition 2.1.16. Given a category C, we define its opposite category Cop by reversing
the arrows of C: objects of Cop are the objects of C, and HomCop(c, c′) := HomC(c′, c).
The identities of Cop are the identities of C, and composition similarly is the same, but with
the arguments reversed: f ◦Cop g = g ◦C f .

Remark 2.1.17. Definition 2.1.2 of a functor is really the definition of a covariant functor.
A contravariant functor F : C→ D is a functor that reverses the direction of the morphisms
and the order of composition; so equivalently, it is a covariant functor F : Cop → D or
F : C→ Dop.

1Really, Cat is the (large) category of all small categories, see also Remark 2.1.24
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Definition 2.1.18. Let C and D be categories. Their product category C×D is defined
as follows. The objects of C × D are pairs (c ∈ C, d ∈ D). For (c, d), (c′, d′) ∈ C × D, a
morphism (c, d)→ (c′, d′) is a pair (f, g) with f : c→ c′ and g : d→ d′.

Definition 2.1.19. Let C be a category. A subcategory C′ of C is a category such that

Ob C′ ⊆ Ob C

and for any c, c′ ∈ Ob C′,
HomC′(c, c

′) ⊆ HomC(c, c′) .

We will write C′ ⊆ C.

If C′ is a subcategory of C, there is a natural inclusion functor ι : C′ ↪→ C. This functor
is clearly faithful, but not necessarily full.

Definition 2.1.20. A full subcategory C′ ⊆ C is a subcategory such that the inclusion
functor is full. In other words, for any c, c′ ∈ C′,

HomC′(c, c
′) = HomC(c, c′) .

An even more refined type of subcategory is that of a (co)reflective subcategory. We
will return to these subcategories in Definition 2.1.27 because we first need to define adjoint
functors.

In the same way that surjectivity on objects is not the right way to think about surjectivity
of functors, the naive definition of the image of a functor is also not the right one. In fact, it
is not even always a category.

Definition 2.1.21. Let F : C→ D be a functor. The essential image of F is the smallest
subcategory of D that contains all objects F (c) and all morphisms F (f) for c and f in C, and
also all objects isomorphic to any F (c) and all isomorphisms f : F (c)→ d and g : d→ F (c).

Note that this definition fits with Definition 2.1.13 of essential surjectivity: a functor is
always essentially surjective onto its essential image.

Given a category C and an object c ∈ C, we can ask what C looks like from the perspective
of c: which maps to c exist, and which maps out of c?

Definition 2.1.22. Let C be a category and c ∈ C. The overcategory or slice category
C/c or C ↓ c has all morphisms f : c′ → c into c as objects. Morphisms from f : c′ → c to
g : c′′ → c are all h : c′ → c′′ in C such that the diagram

c′
h

//

f
��

c′′

g
��

c

commutes.
Dually, the undercategory or coslice category c/C or c ↓ C has all morphisms f : c → c′

out of c as objects, and morphisms from f : c→ c′ to g : c→ c′′ are all h : c′ → c′′ in C such
that the diagram

c
f

��

g

��

c′
h

// c′′

commutes.
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Note that there exists a forgetful functor (or a projection) from C/c to C, forgetting the
perspective of c:

Π : C/c −→ C
(f : c′ → c) 7−→ c′ c′

h
//

f
��

c′′

g
��

c

 7−→ (h : c′ → c′′)
(2.1.2)

and likewise we can define the projection c/C→ C.
The above definition of (co)slice categories can in fact be expanded to incorporate func-

tors.

Definition 2.1.23. Let F : C→ D be a functor and d ∈ D. The comma category F/d or
F ↓ d of F over d has as objects pairs (c, f : F (c)→ d) where c ∈ C and f is a D-morphism.
A morphism from (c, f) to (c′, f ′) is a C-morphism g : c→ c′ such that the diagram

F (c)
F (g)

//

f
!!

F (c′)

f ′}}

d

commutes.
Dually, the mma category d/F or d ↓ F of F under d has pairs (c, f : d→ F (c)) as objects,

where c ∈ C and f is a D-morphism. A morphism from (c, f) to (c′, f ′) is a C-morphism
g : c→ c′ such that the diagram

d
f

}}

f ′

!!

F (c)
F (g)

// F (c′)

commutes.

Similar to (2.1.2) there exist forgetful functors

Π : F/d −→ C ; Π : d/F −→ C . (2.1.3)

Remark 2.1.24. Lastly, a note about the size of categories. A category C is small if
the collection of objects Ob C is a set and the collection of all morphisms Mor C is a set,
and large otherwise. Not every category we consider will be small, but every one will be
equivalent to a small category. We will for the most part ignore issues of size in this text.

2.1.2. All concepts. Many concepts in algebra, geometry and topology can be captured
by a universal property. One of the strengths of category theory is that it is an efficient
language for these universal properties, expressing parallels between concepts in different
fields. In this thesis we will encounter adjoint functors, (co)limits and Kan extensions.
Miraculously, we will not use the Yoneda lemma anywhere (at least explicitly).
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2.1.2.1. Adjoint functors.

Definition 2.1.25. Let C and D be categories and

F : C // D : Goo

be a pair of functors. F is left adjoint to G and G is right adjoint to F , if

D(F (c), d) ∼= C(c,G(d))

naturally in c ∈ C and d ∈ D.
Naturality here means that for any pair of composable morphisms

F (c)
g
// d

q
// d′

in D, qg = G(q)g, and for any pair of composable morphisms

c′
p
// c

f
// G(d)

in C, fp = fF (p). Here we write f for the image under the above bijection of a morphism
f : c → G(d), which we call the transpose. Likewise, we write g for the transpose of a
g : F (c)→ d.

If F is left adjoint to G, we write F a G (or G ` F ).

For an arbitrary category C, the only morphisms that we know exist are the identities
idc : c→ c. For an adjunction F a G this means we always have the transposes

ηc := idF (c) : c −→ GF (c)

and

εd := idG(d) : FG(d) −→ d .

It turns out that these are the components of a natural transformation η : 1C ⇒ GF called
the unit and a natural transformation ε : FG ⇒ 1D called the counit. They satisfy the
triangle identities: we have the commutative diagrams of natural transformations

F
Fη +3

idF �&

FGF

εF
��
F

;

G
ηG +3

idG �&

GFG

Gε
��
G

. (2.1.4)

The unit and counit completely characterize an adjunction: by naturality, for any g :
F (c)→ d its transpose is

g = G(g)ηc

and for any f : c→ G(d) its transpose is

f = εdF (f) .

And in fact there exists a one-to-one correspondence between adjunctions between F and G,
and pairs of natural transformations η : 1C ⇒ GF and ε : FG⇒ 1D that satisfy the triangle
identities (2.1.4).
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Example 2.1.26. An important class of adjunctions are so-called free-forget adjunctions.
These are adjunctions where the right adjoint forgets part of the structure of an object, while
the left adjoint freely generates it.

As an example, let K be a field and consider the category of vector spaces VectK (see
Example 2.1.6) and the category of associative algebras with unit AlgAs over K (see Example
2.1.8). Any associative algebra with unit (A, µ, η) has an underlying vector space A, and this
defines a forgetful functor

U : AlgAs −→ VectK.

This functor has a left adjoint which is constructed as follows. For a vector space V ∈ VectK,
we construct the tensor algebra (T⊗(V ), µ⊗, η⊗),

T⊗(V ) :=
⊕
n≥0

V ⊗n ∈ AlgAs

with multiplication

µ
(
v1 ⊗ · · · ⊗ vm, v′1 ⊗ · · · ⊗ v′n

)
:= v1 ⊗ · · · ⊗ vm ⊗ v′1 ⊗ · · · ⊗ v′n

and unit
η⊗ = 1 ∈ K =: V ⊗0.

This defines a functor
T⊗ : VectK → AlgAs

which is quickly seen to be left adjoint to U :

AlgAs(T
⊗(V ), A) ∼= VectK(V, U(A))

naturally for any vector space V and algebra A. The components of the unit of this adjunction
are linear maps

ι1 : V → U(T⊗(V )) (2.1.5)

which embed V into the direct summand V ⊗1 ∼= V of T⊗(V ).
A somewhat less violent forgetful functor on associative algebras yields a unital Lie alge-

bra; we will return to this in Section 3.3.4.

Adjoint functors are also used in defining (co)reflective subcategories, two refinements of
full subcategories (see Definition 2.1.20).

Definition 2.1.27. A full subcategory ι : C′ ↪→ C is reflective if the inclusion functor
ι has a left adjoint T a ι. Likewise, it is a coreflective subcategory if ι has a right adjoint
R ` ι.

Given an adjunction F a G, we can ask if either of the functors is equivalent to a
(co)reflective inclusion. These turn out to be characterized by their (co)units.

Definition 2.1.28. Let
F : C ⊥

//

D : Goo

be a pair of adjoint functors. We say that F exhibits C as a coreflective subcategory of D if
F is fully faithful, or equivalently if the unit η : 1C ⇒ GF is a natural isomorphism. In this
case, C is equivalent to its essential image under F (see Definition 2.1.21 and Lemma 2.1.15
and recall that a functor is essentially surjective on its essential image).

Dually, G exhibits D as a reflective subcategory of C if G is fully faithful, or equivalently
if the counit ε : FG ⇒ 1D is a natural isomorphism. Then D is equivalent to its essential
image under G.
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If an adjunction exhibits both reflective and coreflective subcategories, we find that it is
an equivalence.

Definition 2.1.29. An adjunction is an adjoint equivalence if its unit and counit are
natural isomorphisms. Equivalently, see Lemma 2.1.15, it is an equivalence when either
component is fully faithful and essentially surjective.

Not every equivalence of categories (see Definition 2.1.12) is an adjoint equivalence: this
is only the case when the natural transformations η and ε are the unit and counit of an
adjunction, or equivalently when they satisfy the triangle identities (2.1.4).

2.1.2.2. Limits and colimits.

Definition 2.1.30. Let C be a category, and I be a small category. A diagram of shape
I in C is a functor D : I → C.

A cone (c, fi) on a diagram D is then an object c ∈ C together with a family of morphisms
fi : c→ D(i) for all i ∈ I, such that if g : i→ i′ is a morphism in I, the diagram

c
fi
//

fi′   

D(i)

D(g)

��

D(i′)

commutes.
A limit (limI(D), pi) of D is a universal cone on D: a cone on D such that for any cone

(c, fi) on D there exists a unique morphism

c
f
// limI(D)

such that fi = pi ◦ f for all i ∈ I.
Dually, a cocone (c, fi) on a diagram D is an object c ∈ C together with a family of

morphisms fi : D(i)→ c for all i ∈ I, such that if g : i→ i′ is a morphism in I, the diagram

D(i)
fi
//

D(g)
��

c

D(i′)

fi′

>>

commutes.
A colimit (colimI(D), ιi) of D is a universal cocone on D: a cocone on D such that for

any cocone (c, fi) on D there exists a unique morphism

colim(D)I
f
// c

such that fi = f ◦ ιi for all i ∈ I.

We call a (co)limit finite if the category I has finitely many objects and morphisms. Note
that postcomposing a morphism c → limI(D) with the morphisms pi yields a cone on D.
So giving a morphism into limI(D) is equivalent to giving a cone on D. Dually, giving a
morphism out of colimI(D) is equivalent to giving a cocone on D. Finally, if they exist,
limits and colimits are unique up to isomorphism; as such, we will often be speaking of the
(co)limit of a diagram.
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Example 2.1.31. Many well-known constructions are examples of limits or colimits.

• If I is a discrete category (i.e. a category with no morphisms that are not the
identity) then its limit is called a product. We write

∏
iD(i) := limI(D). This is the

usual product in the categories Set, VectK, Man, Cat, et cetera.
• Dually, the colimit of a diagram of a discrete category is called a coproduct. We

write
∐

iD(i) := colimI(D); in Set this is the disjoint union. In VectK (and ChK,
see Section 2.4.1) we also write

⊕
iD(i) := colimI(D); this is the direct sum.

• Consider the category
• //

// •
of two objects and two nonidentity morphisms. A limit of a diagram on this category
is called an equalizer; a colimit a coequalizer.

As an example, if A ∈ AlgAs is an associative algebra and W ⊆ U(A) is a vector
subspace of A with inclusion i : W ↪→ U(A) and zero map 0 : W → U(A) (see
Example 2.1.26), the colimit of the diagram

F (W )
i
//

0
// A

in AlgAs is the quotient of A by the ideal generated by W .
• Consider the category

•

��

• // •
of three objects and two nonidentity morphisms. Limits of diagrams on this category
are called pullbacks; they include several constructions known as such and they also
include intersections.

As an example, if C∞(M) is the vector space of real-valued smooth functions on
M and P : C∞(M)→ C∞(M) is a linear differential operator, the pullback of

C∞(M)

(id,P )

��

C∞(M)
(id,0)

// C∞(M)× C∞(M)

in VectR will be the solution space of P : the vector space of functions f ∈ C∞(M)
such that Pf = 0. This vector space can be thought of as the intersection of the
section (id, P ) with the section (id, 0) in C∞(M)× C∞(M).
• If we take I = ∅ to be the empty category, we see that a limit lim∅(D) in C is an

object ∗ such that for any object c ∈ C, there exists a unique morphism c → ∗.
Such a ∗ is called a terminal object in C.
• Dually, a colimit colim∅(D) is an object ∅ such that for any c ∈ C, there exists a

unique morphism ∅ → c. This ∅ is called an initial object in C.

Limits do not exist in general for all categories.

Definition 2.1.32. Let C be a category. If I is a small category, we say that C has
limits of shape I if a limit limI(D) exists in C for every diagram D of shape I. We call C
complete if it has all small limits, i.e. if a limit limI(D) exists in C for every diagram D of
every shape I.
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Dually, C has colimits of shape I if a colimit colimI(D) exists in C for every diagram D
of shape I and we call C cocomplete if it has all small colimits.

C is called bicomplete if it is both complete and cocomplete.

Examples of bicomplete categories are the categories Set and VectK. If C has all limits
of shape I, the operation of forming a limit defines a functor

lim
I

: CI −→ C

from the category of diagrams of shape I in C to C. This functor is right adjoint to the
diagonal functor

∆ : C −→ CI

that assigns to any object c ∈ C the constant diagram D(i) = c. Dually, C has all colimits
of shape I, this defines a functor

colimI : CI −→ C

that is left adjoint to ∆.
If F : C→ D is a functor, F (limI(D)) will be a cone of the diagram FD : I → D, but it

is not necessarily a limit of that diagram. In particular, the functors limI and colimJ do not
commute in general, if they exist.

Definition 2.1.33. A functor F : C→ D is said to preserve limits if, when (L, pi : L→
D(i)) is a limit cone on D in C, (F (L), F (pi) : F (L)→ FD(i)) is a limit cone on FD in D.

Dually, F preserves colimits if, when (C, ιi : C → D(i)) is a colimit cone on D in C,
(F (C), F (ιi) : FD(i)→ F (C) is a colimit cone on FD in D.

Theorem 2.1.34. Right adjoints preserve limits, and left adjoints preserve colimits: if

F : C ⊥
//

D : Goo

is a pair of adjoint functors, the left adjoint F preserves colimits, and the right adjoint G
preserves limits.

Proof. This is shown in Section 6.3 in [Lei14]. �

2.1.2.3. Kan extensions. Let C,D,E be categories and F : C → D and K : C → E be
functors:

C
F

//

K
��

D

E

. (2.1.6)

We can then ask if there exists a functor E→ D that makes the resulting triangle commute
as well as possible. This results in the definition of a Kan extension.

Definition 2.1.35. Let F and K be functors as above. A left Kan extension of F along
K is a functor LanKF : E→ D and a natural transformation η : F ⇒ LanKF ◦K,

C
F

//

K
��

η

��

D

E
LanKF

>>

,
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such that (LanKF, η) is universal for this property: for any other pair (G : E→ D, γ : F ⇒
GK), γ factors uniquely as γ = (γ̃K)η for a γ̃ : LanKF ⇒ G.

Dually, a right Kan extension of F along K is a functor RanKF : E→ D and a natural
transformation ε : RanKF ◦K ⇒ F ,

C
F

//

K
��

D

E
RanKF

>>

ε

KS

,

such that (RanKF, ε) is universal for this property: for any other pair (G : E→ D, δ : GK ⇒
F ), δ factors uniquely as δ = ε(δ̃K) for a δ̃ : G⇒ RanKF .

If they exist, Kan extensions are unique up to natural isomorphism, so it makes sense
to speak of the left Kan extension. In turn, certain (co)limits give the Kan extensions
explicitly, if the (co)limits exist. We give the formula for the left Kan extension, since we will
use it later. Recall Definition 2.1.23 of comma categories and that there exists a canonical
projection Π : K/e→ C for the comma category K/e of a functor K : C→ E.

Theorem 2.1.36. Let F and K be functors as above. If the colimits

colim(K/e
Π−→ C

F−→ D) (2.1.7)

exist for every e ∈ E, then these define the left Kan extension LanKF : E→ D on the object
e ∈ E. For g : e→ e′ in E, LanKF (g) is defined by the pushforward functor f∗ : K/e→ K/e′.
The natural transformation η : F ⇒ LanKF ◦K is given by ηc := ιe(c,idKc) : Fc→ LanKF (Kc)

where ιe(c,f) : F (Π(c,Kc
f−→ e)) = Fc→ LanKF (e) are the canonical maps into the colimit.

The above expression of Kan extensions as (co)limits is equivalent to the Kan extension
being pointwise (which is a stronger condition on the definition of Kan extensions and argued
to be the correct one in [KK82]), see Theorem 6.3.7 in [Rie17].

Remark 2.1.37. If the left and right Kan extensions can be extended to functors

LanK , RanK : Fun(C,D) −→ Fun(E,D)
F 7−→ LanKF, RanKF

they are left and right adjoint to the pullback functor

K∗ : Fun(E,D) −→ Fun(C,D)
G 7−→ GK

respectively. In particular, we will use the notation

L! : Fun(C,D)
//
Fun(BZ,D) : L∗oo

in Chapter 5, where L : C → BZ is the localization of C, writing L! for LanL. We will
extend this notation in Section 2.5.2, finding that this left Kan extension is a special case of
operadic left Kan extension.
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2.1.3. Symmetric monoidal categories and additive categories. Monoidal cate-
gories formalize an extra structure that categories such as Set and VectK have: the (tensor)
product.

Definition 2.1.38. A monoidal category (T,⊗, I) is a triple consisting of a category T,
a bifunctor

⊗ : T×T→ T

called a monoidal product, and an object I ∈ T called the monoidal unit, together with three
natural isomorphisms, the associator

αt,t′,t′′ : (t⊗ t′)⊗ t′′
∼=−→ t⊗ (t′ ⊗ t′′)

and the left and right unitors,

λt : I ⊗ t
∼=−→ t ; ρt : t⊗ I

∼=−→ t.

These natural isomorphisms are required to satisfy two coherence conditions: the pentagon
identity,

((t⊗ t′)⊗ t′′)⊗ t′′′ α⊗id
//

α

��

(t⊗ (t′ ⊗ t′′))⊗ t′′′ α
// t⊗ ((t′ ⊗ t′′)⊗ t′′′)

id⊗α
��

(t⊗ t′)⊗ (t′′ ⊗ t′′′) α
// t⊗ (t′ ⊗ (t′′ ⊗ t′′′))

and the triangle identity,

(t⊗ I)⊗ t′ α
//

ρ⊗id &&

t⊗ (I ⊗ t′)

id⊗λxx

t⊗ t′

.

To simplify notation and equations, we will suppress the associators and unitors when
possible, writing (T,⊗, I) where we should really write (T,⊗, I, α, λ, ρ) and writing t⊗t′⊗t′′
without worrying about brackets.

Definition 2.1.39. A monoidal category (T,⊗, I) is called braided if it is equipped with
a braiding B, a natural isomorphism

Bt,t′ : t⊗ t′
∼=−→ t′ ⊗ t

that satisfies the two hexagon identities,

(t⊗ t′)⊗ t′′ α
//

B⊗id
��

t⊗ (t′ ⊗ t′′) B
// (t′ ⊗ t′′)⊗ t

α

��

(t′ ⊗ t)⊗ t′′ α
// t′ ⊗ (t⊗ t′′) id⊗B

// t′ ⊗ (t′′ ⊗ t)

and

t⊗ (t′ ⊗ t′′) α−1
//

id⊗B
��

(t⊗ t′)⊗ t′′ B
// t′′ ⊗ (t⊗ t′)

α−1

��

t⊗ (t′′ ⊗ t′) α−1
// (t⊗ t′′)⊗ t′ B⊗id

// (t′′ ⊗ t)⊗ t′

where α is the associator of T.
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IfB2 = id the braiding is called symmetric, and T is called a symmetric monoidal category.

Definition 2.1.40. A symmetric monoidal category is called closed if for any t ∈ T, the
functor −⊗ t : T→ T has a right adjoint [t,−]. This means that we have a bijection

HomT(t⊗ t′, t′′) ∼= HomT(t, [t′, t′′])

that is natural in every argument. The functor

[ , ] : Top ×T→ T

is called the internal hom, and is also denoted by hom.

Example 2.1.41. Set is an example of a closed symmetric monoidal category, with the
cartesian product × as the monoidal product, and the one point set {∗} as the monoidal

unit. The symmetric braiding is the obvious map X×Y
∼=−→ Y ×X that switches the factors,

and the internal hom is the usual mapping set:

[X, Y ] = Set(X, Y ).

which explains the name internal hom: it is an object in the category (so it is internal) that
plays a role that is played by the set of morphisms in Set.

Example 2.1.42. The category VectK is closed symmetric monoidal; the tensor product
plays the role of the monoidal product, and the ground field K is the monoidal unit. As with
Set, the braiding is the obvious map V ⊗W → W ⊗ V that flips the factors. The internal
hom is the mapping set, interpreted as a vector space over K:

[V,W ] = HomK(V,W ).

Another closed symmetric monoidal category is the category ChK of chain complexes
over a field K; we will treat these in Section 2.4.1.

Remark 2.1.43. If T is closed, the functor − ⊗ t is a left adjoint. Because left adjoint
functors preserve colimits (Theorem 2.1.34) this implies that

colimI(ti ⊗ t′) ∼= colimI(ti)⊗ t′

for any diagram t : I → T

Definition 2.1.44. If T is cocomplete, it allows for Set-tensoring: if S ∈ Set and t ∈ T,
we define

S ⊗ t :=
∐
s∈S

t.

Note that for any s ∈ S we have a corresponding inclusion map ιs : t→ S ⊗ t.

Additive categories formalize another structure on VectK: the addition of morphisms.

Definition 2.1.45. An additive category2 is a category C that is enriched over the abelian
groups: for any c, c′ ∈ C, HomC(c, c′) is an abelian group. The composition of morphisms
is bilinear: (g1 + g2)(f1 + f2) = g1f1 + g1f2 + g2f1 + g2f2.

2In other contexts this is called a preadditive category.



2.2. LORENTZIAN GEOMETRY AND NORMALLY HYPERBOLIC OPERATORS 27

2.2. Lorentzian geometry and normally hyperbolic operators

All constructions of field theories in this thesis are on the category of globally hyperbolic
spacetimes Loc, which we will introduce here. These are spacetimes (oriented and time-
oriented Lorentzian manifolds) that one can equip with a global time coordinate (in a sense
made precise below). This in turn ensures that our theories can exhibit a dynamical law.
The reference used throughout this section is [BGP07]; other references are [Bär15] and
[BD15].

Throughout this section we assume that our manifolds are oriented and connected.

2.2.1. Some features of Lorentzian manifolds. We start by considering some basic
structures of Lorentzian manifolds.

Definition 2.2.1. A Lorentzian manifold (M, g) is a manifold M of fixed dimension n
together with a metric g on M of Lorentzian signature (−+ + · · ·+).

Note that we use the “mostly plus” convention here: the signature of our metric has one
minus sign, and all the others are plusses. A mostly minus convention is also often found in
the literature. From here on out we will frequently abuse notation and write M for the pair
(M, g).

Let us import some notions from special relativity to the setting of Lorentzian manifolds.
First recall that on Minkowski space M, and on a vector space V with Lorentzian inner
product ( , ) like TpM for p ∈M more generally, vectors v ∈ V \{0} are classified as either

• spacelike: (v, v) > 0
• lightlike: (v, v) = 0
• timelike: (v, v) < 0.

The origin 0 ∈ V is considered to be spacelike, and a vector is called causal if it is lightlike
or timelike.

These vectors are organized as follows. We define I(0) to be the set of all timelike vectors;

then J(0) := I(0) is the set of all causal vectors (and the origin), and C(0) := ∂I(0) is the set
of all lightlike vectors (and the origin), which is also called the lightcone. If the dimension of
V is at least 1, I(0) has two connected components, and a choice I+(0) of one of these is called
a time-orientation. Vectors in I+(0) are called future-directed, and we define I−(0) := −I+(0),
the past-directed vectors, such that I(0) = I+(0)t I−(0). Likewise, one can define J±(0) and
C±(0).

Definition 2.2.2. A time-orientation t on an oriented Lorentzian manifoldM is a smooth
choice of time-orientation I+(p) on TpM for all p ∈ M . Equivalently, it is an equivalence
class of smooth timelike (and therefore nonzero) vector fields t on M .

A time-oriented and oriented Lorentzian manifold is called a spacetime.

A curve γ(t) in a Lorentzian manifold M is called timelike if all its tangent vectors are
timelike. Likewise, we define lightlike, spacelike and causal curves. On a spacetime M (which
means M has a time-orientation) we also define future-directed and past-directed curves.

These different classes of curves allow us to define notions like the causal future of a point
on a general spacetime. For a point p ∈M , we define its chronological future I+(p) to be all
points q ∈ M such that there exists a future-directed timelike path from p to q in M , and
its chronological past I−(p) all q ∈M such that a future-directed path from q to p exists (or
equivalently, a past-oriented path from p to q). Similarly, the causal future J+(p) of p consists
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of p itself and all q ∈ M such that there exists a future-directed causal curve from p to q,
and the causal past J−(p) consists of p and all q ∈M such that there exists a future-directed
causal curve from q to p.

These definitions extend to subsets of M in the obvious way: for a subset U ⊆ M we
define I±(U) =

⋃
p∈U I±(p) and J±(U) =

⋃
p∈U J±(p), and we have J(U) = J+(U) ∪ J−(U)

and I(U) = I+(U) ∪ I−(U).

2.2.2. Globally hyperbolic spacetimes and Cauchy surfaces. There exists a whole
hierarchy of causality conditions on spacetimes. One of the most basic demands is for M
to not have closed causal curves; we will work with spacetimes that are globally hyperbolic,
which is a somewhat stronger definition.

Definition 2.2.3. A spacetime M is said to satisfy the strong causality condition if it
contains no almost closed causal curves: for any p ∈ M with neighbourhood U 3 p, p has a
neighbourhood V 3 p contained in U such that any causal curve that starts and ends in V
is completely contained in V .

A spacetime M is called globally hyperbolic if it satisfies the strong causality condition
and for any two p, q ∈M , J+(p) ∩ J−(q) is compact.

It turns out that there are two other characterizations of globally hyperbolic spacetimes,
which are related to Cauchy surfaces. To understand these, we need a few preliminary
definitions.

A piecewise C1 curve γ : I →M is called inextendible if no piecewise C1 reparametrization
of γ can continuously be extended to the end points of the reparametrized interval. For a
subset U ⊆ M , its domain of dependence D(U) is the collection of points p ∈ M such that
any inextendible timelike curve through p intersects U . A subset Σ ⊆ M is called achronal
if every timelike curve in M intersects Σ at most once.

Definition 2.2.4. A Cauchy hypersurface or Cauchy surface in a spacetime M is a subset
Σ ⊆M such that every inextendible timelike curve in M intersects Σ exactly once. In other
words, Σ is achronal and D(Σ) = M .

Intuitively, a Cauchy surface Σ is a spatial slice of our spacetime, and timelike curves give
a local time-coordinate. The following result shows that globally hyperbolic spacetimes look
like this globally, and that the metric splits in a nice way relative to Σ.

Theorem 2.2.5. Let M be a connected spacetime. The following are equivalent:

(1) M is globally hyperbolic.
(2) M has a Cauchy surface Σ.
(3) M is isometric to R × Σ with metric −βdt2 + h(t), where t is the time coordinate

on the first factor R, β is a positive smooth function on R×Σ and h(t) is a smooth
family of Riemannian metrics on Σ parametrized by t. Moreover, {t}×Σ is a Cauchy
surface for any t.

Proof. This is Theorem 1.3.10 in [BGP07]. For a long time it was a folk theorem in
Lorentzian geometry; it was finally completely proven in [BS05]. �

The metric and time-orientation on a spacetime M allow us to define several notions
related to compactness, which we will need when considering Green operators.

Definition 2.2.6. A subset U ⊆M is called
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• past compact if for any p ∈M , the closure of U ∩ J−(p) is compact,
• future compact if for any p ∈M , the closure of U ∩ J+(p) is compact,
• spacelike compact if it is contained in the causal cone J(K) of a compact subset K,
• timelike compact if it is both past and future compact,
• strong past compact if it is both past and spacelike compact,
• strong future compact if it is both future and spacelike compact.

Note that the closure of U is compact if and only if it is past, future and spacelike compact.

If U is past (resp. future) compact, one can find a Cauchy surface Σ ⊂ M in the past
(resp. future) of U : a Σ such that U ⊆ I+(Σ) (resp. U ⊆ I−(Σ)).

Two other notions that have more specific analogues in the context of Lorentzian geometry
are convexity and disjointness.

Definition 2.2.7. On a spacetime M , two subsets U, V ⊂M are called causally disjoint
if J(U) ∩ V = ∅ (or equivalently, U ∩ J(V ) = ∅).

On a globally hyperbolic spacetime3 M , a subset U ⊆ M is called causally convex or
causal if J+(U) ∩ J−(U) = U . In other words, any causal curve that starts and ends in U is
contained in U .

We organize the globally hyperbolic spacetimes into the category Loc.

Definition 2.2.8. The category Loc is

Loc =


obj : globally hyperbolic spacetimes M of fixed dimension

mor :
smooth isometric open embeddings f : M → N that preserve orientation

and time-orientation such that f(M) ⊆ N is causally convex in N

The fact that f(M) ⊂ N is causally convex in N means that through f we can consider
M to be a subspacetime of N . Any physical phenomenon on f(M) can then equivalently be
described on M .

There are two extra structures on Loc that will be important for us.

Definition 2.2.9. A morphism f : M → N in Loc is called Cauchy if f(M) ⊆ N
contains a Cauchy surface of N .

Definition 2.2.10. A pair of maps in Loc with the same target, f1 : M1 → N and
f2 : M2 → N , are called causally disjoint if f1(M1) and f2(M2) are causally disjoint, i.e. if
J(f1(M1)) ∩ f2(M2) = ∅.

Informally speaking, when a morphism f : M → N is Cauchy, a solution of field equations
on M uniquely determines a solution on N . When two regions are causally disjoint, no
physical (causal) signal can travel between the two regions. Our definitions of field theories
will satisfy axioms that ensure these properties.

A choice of spacetime M ∈ Loc gives a subcategory of Loc:

Definition 2.2.11. For M ∈ Loc, COpens(M) is the category of causally convex opens
of M . Objects of COpens(M) are causally convex open subsets U of M , and the morphisms
are inclusions, if they exist: for U, V ⊆M causally open,

COpens(M)(U, V ) =

{
{U ⊆ V } if U ⊆ V

∅ otherwise.

3The definition on more general Lorentzian manifolds is more involved, see [BGP07] Def. 1.3.3
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Let us note a few facts about COpens(M). First, it has a terminal object, which is M
itself. Furthermore, COpens(M) is not a full subcategory of Loc: for example, if M = M is
Minkowski space, the set of endomorphisms COpens(M)(M,M) contains just one element,
while Loc(M,M) is the connected component of the Lorentz group containing the identity.
We also remark that COpens(M) can be characterized as the overcategory Loc ↓ M (see
Definition 2.1.22). From this perspective, for all M ∈ Loc there exists an obvious forgetful
functor

COpens(M) −→ Loc (2.2.1)

that forgets the morphism to M .
Another subcategory of Loc is Loc�, which is central to the question of descent for field

theories.

Definition 2.2.12. The category Loc� ⊆ Loc is the full subcategory of Loc consisting
of spacetimes M such that M is diffeomorphic to Rn (as a manifold).

Importantly, both COpens(M) and Loc� inherit the notions of Cauchy morphisms and
causally disjoint pairs from Loc.

2.2.3. Normally hyperbolic operators. We now turn to partial differential operators
on a globally hyperbolic spacetime M .

Let V be a vector space over either K = R or K = C. Recall that a vector bundle over
M with fiber V is the data E

π−→M such that

• π is a smooth surjective map,
• for any p ∈M , Ep := π−1(p) is a vector space with Ep ∼= V ,
• any p ∈ M has a neighbourhood U ⊂ M such that π−1(U) ∼= U × V in a way that

is compatible with π: the diagram

π−1(U)
∼=
//

π
%%

U × V
π1

��

U

commutes, where π1 is the projection of U×V on the first factor U , and the restriction
of this map to any fiber π−1(q) (q ∈ U) gives an isomorphism π−1(q) ∼= V of vector
spaces.

E is called the total space, π is the projection and π−1(U) ∼= U × V is a local trivialization.
The dimension of V is called the rank of E.

For E
π−→M a vector bundle, a smooth map s : M → E is called a section if π ◦ s = idM .

We write Γ(E) for the C∞(M)-module of sections. We will also consider various subspaces of
Γ(E), characterized by their support properties: Γc(E) is the space of sections with compact
support, and Γtc(E), Γpc(E), Γfc(E), Γsc(E) contain the sections with timelike compact, past
compact, future compact and spacelike compact support, respectively.

If E
π−→ N is a vector bundle and f : M → N is a map, we can form the pullback bundle

f ∗E //

π′

��

E

π

��

M
f
// N
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as a limit in Man. Explicitly,

f ∗E = {(x, e) ∈ X × E|f(x) = π(e)}
and π′(x, e) = x. In turn, sections of E can be pulled back to f ∗E:

f ∗ : Γ(E) −→ Γ(f ∗E)
s 7−→ f ∗s(x) = (x, s(f(x))) .

The section f ∗s of f ∗E is called the pullback of s along f .
If M and N are globally hyperbolic spacetimes with vector bundle E → N , and f :

M → N is a smooth open embedding (for example, if f is a Loc-morphism) then compactly
supported sections of f ∗E can be pushed forward along f : for s ∈ Γc(f

∗E) we can define the
pushforward of s along f as

f∗s(x) =

{
s(f−1(x)) x ∈ f(M)

0 x /∈ f(M)
(2.2.2)

for x ∈ N .
A fiber metric h on E is an inner product hp on Ep for each p ∈M that depends smoothly

on p. If E is equipped with a fiber metric h, this induces the integration pairing

〈s, s′〉 :=

∫
M

h(s, s′) volM

on all sections s, s′ ∈ Γ(E) with compactly overlapping support, where volM is the volume
form induced by the metric on M .

Given M of dimension n and two vector bundles E
π−→M and F

ρ−→M with fibers V and
W , a linear differential operator of order at most k is a K-linear map P : Γ(E)→ Γ(F ) that
is locally of the form one would expect: for p ∈ M there exists a neighbourhood U of p in
M with coordinates xi and local trivializations π−1(U) ∼= U × V and ρ−1(U) ∼= U ×W such
that

Ps =
∑

α:|α|≤k

Aα

( ∂

∂x1

)α1

. . .
( ∂

∂xn

)αn
s (2.2.3)

in these coordinates. Here, α = (α1, . . . , αn) are all multi-indices valued in Nn
0 and we sum

over all α such that |α| :=
∑

i αi ≤ k, and Aα ∈ HomK(V,W ). P is said to be of order k if
it is of order at most k, but not of order at most k − 1.

If E and F are equipped with fiber metrics hE and hF with induced integration pairings
〈 , 〉E and 〈 , 〉F , the formal adjoint of a linear differential operator P : Γ(E) → Γ(F ) is the
differential operator P ∗ : Γ(F )→ Γ(E) defined by

〈s′, Ps〉F = 〈P ∗s′, s〉E .

A linear differential operator P : Γ(E)→ Γ(E) is formally self-adjoint if P ∗ = P .
For a differential P : Γ(E) → Γ(F ) of order k with local expression (2.2.3), its principal

symbol σP is the map
σP : T ∗M −→ HomK(E,F )

that one gets by contracting a covector with the linear maps in the order k part of P : for
ζ =

∑
i ζi dx

i ∈ T ∗pM ,

σP (ζ) :=
∑

α:|α|=k

Aα(p)
(∏

i

(ζi)
αi
)
.
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A linear differential operator P : Γ(E) → Γ(E) of order two is called normally hyperbolic if
its principal symbol is

σP (ζ) = g(ζ, ζ) idE

where we recall that g is the metric on M .

Example 2.2.13. An important example of normally hyperbolic operators is the d’Alembert
operator �, also known as the Hodge Laplacian or the Laplace-de Rham operator, which will
play an central role in chapter 4. It acts on the k-forms Ωk(M) = Γ(

∧k T ∗M) of any oriented
pseudo-Riemannian manifold (M, g) of dimension n.

To define �, we first note that g induces a fiberwise inner product

( , ) :
k∧
T ∗pM ⊗

k∧
T ∗pM → R

such that (η, ζ) is a smooth function on M when η, ζ ∈ Ωk(M) are k-forms on M . The
volume form volM induced by the metric g then allows us to define the Hodge star operator

∗ : Ωk(M)→ Ωn−k(M)

through

η ∧ ∗ζ = (η, ζ) volM

for η, ζ ∈ Ωk(M). Integrating over M yields the integration pairing

〈η, ζ〉 =

∫
M

η ∧ ∗ζ

which is defined if the supports of η and ζ have compact overlap.
The Hodge star in turn allows us to define the codifferential

δ := (−1)k ∗−1 d ∗ : Ωk(M)→ Ωk−1(M). (2.2.4)

Since d squares to zero, δ does too, and using Stokes’ theorem, δ is seen to be formally adjoint
to the de Rham differential d with respect to the integration pairing:

〈dη, ζ〉 = 〈η, δζ〉 (2.2.5)

where now η ∈ Ωk(M) and ζ ∈ Ωk+1(M).
The d’Alembertian � is then defined as

� := (d + δ)2 = dδ + δd.

Note that since d2 = δ2 = 0, both d and δ commute with �:

d� = dδd = � d , δ� = δdδ = � δ.

Moreover, because d and δ are formally adjoint to each other with respect to the integration
pairing, we immediately see that � is self-adjoint:

〈�η, ζ〉 = 〈η,�ζ〉.
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2.2.4. Green operators. Normally hyperbolic operators form a class of linear differen-
tial operators that can be solved using Green operators.

Definition 2.2.14. For a linear differential operator P : Γ(E)→ Γ(E) on a time-oriented
Lorentzian manifold M , a retarded Green operator for P is a linear map

G+ : Γpc(E)→ Γpc(E)

such that

(1) P ◦G+ = idΓpc(E) = G+ ◦ P
∣∣
Γpc(E)

(2) supp(G+s) ⊆ J+(supp(s))

Similarly, an advanced Green operator for P is a linear map

G− : Γfc(E)→ Γfc(E)

such that

(1) P ◦G− = idΓfc(E) = G− ◦ P
∣∣
Γfc(E)

(2) supp(G−s) ⊆ J−(supp(s))

An operator P for which both G+ and G− exist is called Green hyperbolic.
For a Green hyperbolic operator P with advanced and retarded Green operators G±, its

retarded-minus-advanced operator or causal propagator is the difference

G := G+ −G− : Γtc(E)→ Γ(E).

Recall that timelike compact means both future and past compact, which is exactly where
G is defined.

Remark 2.2.15. Note that if G± exist, they are unique: for example, if both G+ and G̃+

are retarded Green operators for P , we immediately find

G+s = G+PG̃+s = G̃+s

for all s ∈ Γpc(E).

The existence of Green operators for the operator P implies several properties for P
related to sections of various support: for example, by condition (1) in Definition 2.2.14 we
immediately see that P is injective on Γpc(E). These properties are most compactly stated
in the form of an exact sequence, as follows.

Theorem 2.2.16. Let P : Γ(E) → Γ(E) be a Green hyperbolic operator with Green
operators G±. Then the following sequence is an exact complex:

0 // Γtc(E)
P
// Γtc(E)

G
// Γ(E)

P
// Γ(E) // 0 .

Restricting to sections of compact support (at the start of the sequence) we find that

0 // Γc(E)
P
// Γc(E)

G
// Γsc(E)

P
// Γsc(E) // 0

is also exact.

Proof. These statements are Lemma 2.14, Theorem 2.15 and Proposition 2.16 in [BD15].
�
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Remark 2.2.17. If E comes equipped with a fiber metric and P : Γ(E)→ Γ(E) is both
Green hyperbolic and self-adjoint, the Green operators G+ and G− for P are also adjoint on
compactly supported sections: if s, s′ ∈ Γc(E),

〈s,G+s′〉 = 〈PG−s,G+s′〉 = 〈G−s, PG+s′〉 = 〈G−s, s′〉 .
This immediately implies that the causal propagator G = G+ −G− is skew-adjoint:

〈s,Gs′〉 = −〈Gs, s′〉
for s, s′ ∈ Γc(E).

Remark 2.2.18. Let P be a Green hyperbolic operator with Green operators G±, and
let Q be another linear operator that commutes with P and does not increase the support of
sections. Then Q will also commute with G±: for example, for s ∈ Γpc(E),

QG+s = G+PQG+s = G+QPG+s = G+Qs.

For our purposes, the main result on normally hyperbolic operators is the following the-
orem.

Theorem 2.2.19. Normally hyperbolic operators on globally hyperbolic spacetimes are
Green hyperbolic.

Proof. For sections of compact support, this was proven in [BGP07], see Corollary
3.4.3. The extension to sections of future and past compact support is proven in [Bär15]. �

Example 2.2.20. Continuing Example 2.2.13, we note that since the d’Alembert operator
� is normally hyperbolic, it has advanced and retarded Green operators G+

� and G−� on
globally hyperbolic spacetimes. Moreover, since d and δ commute with �, they also commute
with its Green operators by Remark 2.2.18.

2.3. Algebraic quantum field theory

In this section we define algebraic quantum field theory (AQFT), the framework in which
this thesis operates. The conceptual basis has already been laid in the introduction. We first
treat the case of Klein-Gordon theory in some detail, and then give the necessary definition of
algebraic quantum field theory. The book by Haag [Haa12] is probably the best introduction
to the algebraic viewpoint on quantum field theory. Other references for this section are
[FV15] and [BD15].

2.3.1. An example: Klein-Gordon observables. As an illuminating example of an
algebra of observables, let us consider Klein-Gordon theory on a globally hyperbolic spacetime
M , following [BD15].

To start with, scalar fields are simply (real-valued) smooth functions on M :

φ ∈ C∞(M).

The equation of motion for a field of mass m is

Pφ := (�−m2)φ = 0

where we use the d’Alembertian � defined in Example 2.2.13. Then the (classical) solution
space is the kernel of the Klein-Gordon operator:

SolKG :=
{
φ ∈ C∞(M) | Pφ = 0

}
= ker

(
P
)
. (2.3.1)



2.3. ALGEBRAIC QUANTUM FIELD THEORY 35

For the observables on C∞(M) we choose to use the compactly supported smooth func-
tions on M ,

ψ ∈ C∞c (M).

Such a ψ defines a functional Fψ on C∞(M) through the integration pairing:

Fψ : C∞(M) −→ R

φ 7−→
∫
M

ψ φ volM .

These Fψ can be interpreted as evaluation functionals, smeared by ψ: if

evx : C∞(M) −→ R
φ 7−→ φ(x)

is the functional that evaluates φ at the point x ∈M , then Fψ can be interpreted as

Fψ =

∫
M

ψ(x) evx volM

or more suggestively,

φ(ψ) := Fψ(φ) =

∫
M

ψ(x)φ(x) volM (2.3.2)

where only here we use notation φ(x) := evx(φ) for the operator evaluating the field φ at x.
The assignment ψ 7→ Fψ is injective, so we choose the real vector space of (off-shell) linear

observables to be

LKGoff-shell(M) := {Fψ|ψ ∈ C∞c (M)} ∼= C∞c (M).

Note that we are indeed making a choice of observables here: for example, the evaluation
functionals evx defined above are not included. So we have chosen a subspace of the algebraic
dual of C∞(M), which we call the smooth dual space to C∞(M). Importantly, our choice of
dual space is large enough, in that it separates C∞(M): if φ1 6= φ2 ∈ C∞(M), there exists
an Fψ ∈ LKGoff-shell(M) such that Fψ(φ1) 6= Fψ(φ2).

Moving on-shell (i.e. restricting our observables to SolKG ⊂ C∞(M)) we see that some
Fψ are identically zero on SolKG: if ψ = Pα with α ∈ C∞c (M) and φ ∈ SolKG,

Fψ(φ) =

∫
M

(Pα) φ volM =

∫
M

α (Pφ) volM = 0

where we have used the fact that � (and therefore the Klein-Gordon operator P ) is formally
self-adjoint. Using the fact that P is Green hyperbolic and the properties expressed in the
exact sequences of Theorem 2.2.16 we see that in fact,{

ψ ∈ C∞c (M)|Fψ
∣∣
SolKG

= 0
}

= PC∞c (M)

so we define the linear observables of our Klein-Gordon theory to be the equivalence classes
of functions representing the functionals:

LKG(M) := C∞c (M)
/
PC∞c (M) ∼= LKGoff-shell(M)

/{
Fψ ∈ LKGoff-shell(M)|Fψ

∣∣
SolKG

= 0
}

(2.3.3)

Note that this is part of a more general pattern: restriciting to a subspace (Sol = ker(P ) ⊆
V ) corresponds to taking a quotient on the (choice of) dual (Obs = V ∗

/
P ∗V ∗).
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The next step for both the classical and the quantum theory is to specify a Poisson struc-
ture τ on the observables. This Poisson structure is constructed using the Green operators
G±KG of P = �−m2, which exist because of Theorem 2.2.19:

τM : LKG(M) ⊗ LKG(M) −→ R
[ψ1] ⊗ [ψ2] 7−→

∫
M
ψ1 GKG ψ2 volM

(2.3.4)

which is well-defined because of the properties of G±KG (recall that GKG = G+
KG −G

−
KG).

Restricting to a Cauchy surface, one can in fact show that this Poisson structure corre-
sponds to the usual equal-time canonical commutation relations encountered when treating
the Klein-Gordon field as a quantum field theory (see e.g. [Wal94]; note that there and in
many other texts τ is called a symplectic structure). We also remark that while the introduc-
tion of the Poisson structure as presented here seems ad hoc, there are several constructions
that lead to this specific Poisson form; for example, the Peierls formula (see [Kha14]) and
Zuckerman’s variational bicomplex ([Zuc87]). We will see this Poisson structure arise in yet
another way in chapter 4 through certain canonical shifted Poisson structures.

The assignment of (LKG(M), τM) to M can be extended to a functor on Loc: for any
causal embedding f : M → N in Loc, the pushforward f∗ (2.2.2) is defined by extending a
compactly supported function ψ by zero outside of f(M) ⊆ N :

f∗ : LKG(M) −→ LKG(N)

[ψ] 7−→ [ψN ]

where

ψN(x) =

{
ψ(f−1(x)) x ∈ f(M)

0 x /∈ f(M)

for x ∈ N . We also see that for [ψ1], [ψ2] ∈ L(M)

(f∗)
∗(τN)([ψ1], [ψ2]) = τN(f∗[ψ1], f∗[ψ2]) = τM([ψ1], [ψ2])

using the uniqueness of Green operators and the support of ψ1. So we have a functor

(LKG, τ) : Loc −→ PoissVectR

where PoissVectR is the category of Poisson vector spaces, see Example 2.1.10.
To construct the classical theory we form the symmetric algebra

Sym⊗
(
LKG(M)

)
:=
⊕
n≥0

LKG(M)⊗n/Σn

which is the symmetrization of the tensor algebra found in Example 2.1.26. The tensor
product still gives the multiplication,

([ψ1]⊗ · · · ⊗ [ψn]) · ([ψ̃1]⊗ · · · ⊗ [ψ̃m]) := [ψ1]⊗ · · · ⊗ [ψn]⊗ [ψ̃1]⊗ · · · ⊗ [ψ̃m]

and the unit is

1 ∈ R =: LKG(M)⊗0.

We extend the Poisson structure τM to the tensor algebra as a derivation, which defines a
Poisson bracket {, }M on Sym⊗

(
LKG(M)

)
. The resulting Poisson algebra

AKG
cl (M) =

(
Sym⊗(LKG(M)), {, }M

)
is the classical algebra of observables for Klein-Gordon theory.
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The quantum theory is obtained through canonical quantization of the linear observables:
we form the tensor ∗-algebra of the complexified linear observables LKGC (M) := LKG(M)⊗RC,

T⊗
(
LKGC (M)

)
:=
⊕
n≥0

LKGC (M)⊗n

where multiplication and unit are defined as in Example 2.1.26. and the ∗-involution is given
by

([ψ1]⊗ · · · ⊗ [ψn])∗ := [ψn]⊗ · · · ⊗ [ψ1] (2.3.5)

which is extended antilinearly (recall that all ψi ∈ C∞c (M) are real-valued). The ∗-ideal that
implements canonical commutation relations is

ICCR(M) :=
(
[ψ1]⊗ [ψ2]− [ψ2]⊗ [ψ1]− iτM([ψ1], [ψ2])

∣∣ [ψ1], [ψ2] ∈ LKG(M)
)

and the algebra of quantum observables is then the quotient of the tensor algebra by this
ideal:

AKG
qu (M) := T⊗

(
LKGC (M)

)/
ICCR(M) ∈ ∗Alg.

For [ψ] ∈ L(M) = C∞c (M)
/
PC∞c (M), we write its class in AKG

qu (M) as

φ̂(ψ) := [ψ] + ICCR(M) ∈ AKG
qu (M). (2.3.6)

Like LKG, both AKG
cl and AKG

qu can be extended to functors on Loc. The pushforward
immediately extends to a map of tensor algebras

f∗ : T⊗(LKG(C) (M)) −→ T⊗(LKG(C) (N)).

which also defines a map of symmetric algebras. Since (f∗)
∗(τN) = τM ,

f∗ : AKG
cl (M) −→ AKG

cl (N)

is a map of Poisson algebras; moreover, it implies that

f∗
(
ICCR(M)

)
⊆ ICCR(N)

so we find that f∗ descends to a map of algebras

f∗ : AKG
qu (M) −→ AKG

qu (N).

This concludes our (very succinct) treatment of the classical and quantum observables of
Klein-Gordon theory on an arbitrary globally hyperbolic spacetime M . Besides functoriality,
AKG
qu exhibits two other features that make it into an algebraic quantum field theory, as we

will see in the next section.

2.3.2. Algebraic quantum field theory. With the necessary preliminaries given, we
now define algebraic quantum field theory.

Definition 2.3.1. An algebraic quantum field theory on Loc is a functor

A : Loc −→ ∗Alg

that assigns to each globally hyperbolic spacetime M its ∗-algebra of observables A(M).
Moreover, it satisfies two axioms:

(1) Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint morphisms
in Loc (see Definition 2.2.10), their observables commute in A(N):[

A(f1)
(
A(M1)

)
,A(f2)

(
A(M2)

)]
= {0} ⊆ A(N).
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(2) Time-slice: if f : M → N is a Cauchy morphism in Loc (see Definition 2.2.9), then
it induces an isomorphism of algebras of observables:

A(f) : A(M)
∼=−−→ A(N).

If M ∈ Loc, an algebraic quantum field theory on M is a functor

A : COpens(M) −→ ∗Alg

satisfying the Einstein causality and time-slice axioms.

Remark 2.3.2. As mentioned in the introduction, this definition of an algebraic quantum
field theory (AQFT) A ensures that our theory exhibits some key features that one would
demand from a quantum field theory:

• Since A is a functor, the theory is local in the sense that for a subspacetime U ⊆
M the inclusion i : U ↪→ M tells us which observables on M are located on U :
A(i)

(
A(U)

)
⊆ A(M);

• As its name suggests, the Einstein causality axiom ensures that A is causal: since
the observables supported in spacelike separated regions in a spacetime N commute,
the subsystems on the two regions are independent;
• Because of the time-slice axiom, A has a dynamical law: a solution around a Cauchy

surface can be propagated to the whole spacetime, so dually, the observables sup-
ported around that Cauchy surface are enough to probe the entire solution space.

Remark 2.3.3. One other axiom that is often included in the definition of an algebraic
quantum field theory is isotony:

(3) Isotony: for any f : M → N in Loc, the map of algebras

A(f) : A(M) −→ A(N)

is injective.

Isotony tells us that non-zero observables on M will still be non-zero observables on N : none
are lost when moving to the larger spacetime. However, this condition turns out to be too
stringent for some models; for example, non-zero topological charges in Abelian Yang-Mills
theory on M will be zero on N if N has trivial cohomology groups (this was first seen
in [DL12] and expanded upon in [SDH14, BDS14, BDHS14, BSS17, BBSS17]. One
proposal to resolve this is to replace the isotony axiom by a descent axiom; we will return to
this in Section 3.3.1.

One direct advantage of the algebraic definition of quantum field theory is that it allows
one to define and study quantum field theories on all globally hyperbolic spacetimes, curved or
otherwise, with no reference to specifics of that spacetime (such as the Poincaré symmetries
of Minkowski spacetime). As such it is an excellent framework to study QFTs on curved
spacetimes. It is also a suitable setting to study general aspects of quantum field theories:
one would expect that causality and dynamics are features of any QFT, and the prominence
of observables in the theory allows locality to be baked in from the start. Note that while
we are considering quantum fields on curved spacetimes, these are not theories of quantum
gravity: the geometry of the spacetimes is kept fixed but arbitrary, so at best these are
solutions to the classical Einstein equations.
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Example 2.3.4. The functor AKG
qu describing the observables of quantum Klein-Gordon

theory discussed in the previous Section 2.3.1 defines an algebraic quantum field theory on
Loc. We already saw that AKG

qu : Loc→ ∗Alg is a functor. Einstein causality for arbitrary
elements follows from Einstein causality on generators: if supp(ψ1) and supp(ψ2) are spacelike
separated,

[φ̂(ψ1), φ̂(ψ2)] = iτM(ψ1, ψ2) = i

∫
M

ψ1 GKG ψ2 volM = 0

because of the support properties of GKG and supp(ψ1)∩J(supp(ψ2)) = ∅. Proving the time-
slice axiom is somewhat more involved, requiring the use of Green operators and partitions
of unity; this is done in the two theorems in section 3.1 of [BD15].

The algebras AKG
qu (M) are generated by the smearings φ̂(ψ) of the linear field φ (2.3.2),

where ψ ∈ C∞c (M) is a test function. This assignment of observables clearly respects the
morphisms in Loc: for f : M → N in Loc and ψ ∈ C∞c (M),

φ̂(f∗ψ) = A(f)φ̂(ψ) ∈ AKG
qu (N) .

Here, f∗ is the pushforward of compactly supported functions along f . The spaces C∞c (M)
of compactly supported sections in fact form their own functor, the cosheaf

C∞c : Loc −→ VectR
M 7−→ C∞c (M)

(f : M → N) 7−→ (f∗ : C∞c (M)→ C∞c (N)) .

For general algebraic quantum field theories, note that a field on M with values in a vector
bundle E(M) should be smeared against a compactly supported section of the dual bundle

E∗(M). In these theories, quantum fields like φ̂ can then be defined as follows.

Definition 2.3.5. Let A : Loc → ∗Alg be an algebraic quantum field theory and
E : Loc → VecBun a contravariant functor that assigns to M ∈ Loc a vector bundle
E →M of rank k over M . A quantum field Φ̂ of type E in A is then a natural transformation

Φ̂ : Γc(E
∗) −→ A

between the underlying functors of vector spaces (recall that we write Γc(E
∗) for the com-

pactly supported sections of the dual bundle E∗).

We cast our definition of classical observables of a field theory into the same algebraic
mold.

Definition 2.3.6. An algebraic classical field theory on Loc is a functor

A : Loc −→ PoissAlgK

that assigns to each globally hyperbolic spacetime M its Poisson algebra of observables
A(M) =

(
A(M), {, }M

)
and to each morphism f : M → N in Loc a Poisson algebra

morphism

A(f) :
(
A(M), {, }M

)
→
(
A(N), {, }N

)
i.e. a linear map A(f) : A(M) → A(N) such that A(f) ◦ {, }M = {, }N ◦ A(f) ⊗ A(f).
Moreover, it satisfies two axioms:
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(1) Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint morphisms
in Loc (see Definition 2.2.10), their observables have trivial Poisson bracket in A(N):{

A(f1)
(
A(M1)

)
,A(f2)

(
A(M2)

)}
N

= {0} ⊆ A(N)

(2) Time-slice: if f : M → N is a Cauchy morphism in Loc (see Definition 2.2.9), then
it induces an isomorphism of Poisson algebras of observables:

A(f) : A(M)
∼=−−→ A(N) .

Remark 2.3.7. Both the classical and quantum Klein-Gordon theories from the previous
Section 2.3.1 are free theories: they are constructed using the Poisson vector space of linear
observables. Constructing an interacting theory is significantly more involved; specifically,
canonical quantization is a lot less straightforward.

The theories constructed in this thesis will all be free; in fact, one of the main topics
of chapter 3 is a generalization of the quantization of Klein-Gordon theory in Section 2.3.1.
This leads us to the following algebraic definition of linear field theory.

Definition 2.3.8. An algebraic linear field theory on Loc is a functor

(L, τ) : Loc −→ PoissVectR

that assigns to each globally hyperbolic spacetime M its Poisson vector space of linear ob-
servables (L(M), τM). Moreover, it satisfies two axioms:

(1) Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint morphisms
in Loc (see Definition 2.2.10), their linear observables in L(N) pair to zero with
respect to τN :

τN

(
L(f1)

(
L(M1)

)
,L(f2)

(
L(M2)

))
= {0} ⊆ R .

(2) Time-slice: if f : M → N is a Cauchy morphism in Loc (see Definition 2.2.9), then
it induces an isomorphism of Poisson vector spaces of linear observables:

L(f) :
(
L(M), τM

) ∼=−−→
(
L(N), τN

)
.

Definition 2.3.9. All three classes of algebraic field theories are subcategories of functor
categories: the morphisms between two field theories are the natural transformations between
the functors. As such, we have the full subcategories

QFT(Loc) ⊆ ∗AlgLoc ; ClFT(Loc) ⊆ PoissAlgK
Loc ; LFT(Loc) ⊆ PoissVectR

Loc .

Definition 2.3.10. Given the definitions of algebraic quantum field theory and algebraic
linear field theory, we can define a linear canonical quantization functor

CCR : LFT(Loc) −→ QFT(Loc)

in the spirit of Section 2.3.1: for a Poisson vector space (V, τ) ∈ PoissVectR, we define

ccr(V, τ) := T⊗
(
VC
)/
ICCR(V, τ)

where ICCR(V, τ) is the ∗-ideal of T⊗
(
VC
)

generated by the canonical commutation relation:

ICCR(V, τ) =
(
x⊗ y − y ⊗ x− iτ(x, y)

)
.
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One immediately sees that this defines a functor ccr : PoissVectR → ∗Alg and postcompo-
sition by this functor yields4

CCR := (ccr)∗ = ccr ◦ (−) : LFT(Loc) −→ QFT(Loc).

If A = CCR(L, τ) ∈ QFT(Loc), we will say that A is a linear algebraic quantum field theory.
The inclusion unit ι1 : VC → T⊗(VC) (2.1.5) of the free-forget adjunction T⊗ a U yields the
canonical natural transformation

ι1 : L −→ CCR(L, τ) (2.3.7)

of vector space valued functors, where we suppress the forgetful functor U .

Definition 2.3.11. For linear algebraic quantum field theories A = CCR(L, τ), there
exists a special class of quantum fields in the sense of Definition 2.3.5: first, a linear field Φ
in (L, τ) of type E is a natural transformation

Φ : Γc(E
∗) −→ L

of the underlying functors into the category of vector spaces. A linear quantum field Φ̂ of
type E in A is then a quantum field

Φ̂ = ι1 ◦ Φ : Γc(E
∗) −→ A

where Φ is a linear field in (L, τ) and ι1 is the canonical natural transformation (2.3.7) from
L to A.

2.4. Chain complexes and model categories

The field theories in this text will regularly be homotopy field theories, in the sense that
they are functors into a category of algebras valued in chain complexes. In turn, the category
of chain complexes admits a structured study of its weak equivalences: it is a model category.
Weibel [Wei95] will be our main source for chain complexes and we refer to [MR19] for our
treatment of bicomplexes. We will use [DS95, Rie14, Hov07] for model categories.

2.4.1. Chain complexes and bicomplexes. We collect the facts on chain complexes
we will need here and refer to [Wei95] for a proper introduction. Let K be a field of
characteristic 0.

Definition 2.4.1. A chain complex (C•, d) over K is a sequence of vector spaces {Cn}n∈Z
over K with a differential, a sequence of linear maps {d : Cn → Cn−1}n∈Z such that d2 = 0.
A cochain complex (C•, d) over K is a sequence of vector spaces {Cn}n∈Z over K with a
codifferential, a sequence of linear maps {d : Cn → Cn+1}n∈Z such that d2 = 0.

We will almost exclusively work with chain complexes in this text. We visualize a chain
complex (C•, d) as

. . . Cn−1
d
oo Cn

d
oo Cn+1

d
oo . . .

d
oo

and often abuse notation by denoting it by C•, (C, d) or C. The index n ∈ Z is called the
degree of the component of the complex, so the differential reduces the degree of elements in
the chain complex by 1. For an element c ∈ Cn we write |c| := n for its degree. We sometimes

4We should really prove that this construction preserves Einstein causality and the time-slice axiom; we
will do this in Chapter 3. See Corollary 3.3.21.
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use the notation
(n)

A to emphasize that A is the component at degree n of the complex in
question.

Remark 2.4.2. If V is a vector space, we will abuse notation and also write V for the
chain complex

. . .
(−1)

0oo
(0)

V
0
oo

(1)

0
0
oo . . .oo

that is only nonzero in degree 0, with V0 = V . In particular we will write K for the chain
complex that consists of the ground field K concentrated in degree 0.

Definition 2.4.3. A morphism f : (C•, dC)→ (D•, dD) of chain complexes is a sequence
of linear maps fn : Cn → Dn that commutes with the differentials:

fndC = dDfn+1

for all n ∈ Z; f is called a chain map. A chain homotopy λ between two chain maps
f, g : C → D is a sequence of maps λn : Cn → Dn+1 increasing the degree by 1 such that

fn − gn = dDλn + λn−1dC .

We write ∂λ for the chain map (∂λ)n := dDλn + λn−1dC , a notation that will become
more clear when discussing the internal hom below.

We think of the essential information of a chain complex as being its homology:

Definition 2.4.4. Let C be a chain complex. For n ∈ Z we define its nth homology as

Hn(C) := ker
(
Cn−1 Cn

d
oo

)/
im
(
Cn Cn+1

d
oo

)
which is well-defined because d2 = 0. A complex C is exact if Hn(C) = 0 for all n; in other

words, when ker
(
Cn−1 Cn

d
oo

)
= im

(
Cn Cn+1

d
oo

)
for all n.

Because the components of a chain map f : C → D commute with the differentials, f
defines a map on homology,

Hn(f) : Hn(C) −→ Hn(D)

which we will often simply denote by f . If f is an isomorphism on homology, i.e. if Hn(f)
is an isomorphism for all n, we call f a quasi-isomorphism. If f : C → D is a chain map, a
quasi-inverse of f is a chain map g : D → C such that gf − idC = ∂λ and fg− idD = ∂ρ for
chain homotopies λ and ρ.

We might write f−1 for a quasi-inverse of f , but we of course need to be careful with
this notation: a quasi-inverse is not an actual inverse to f unless ∂λ = 0 and ∂ρ = 0, and
a quasi-inverse will in general also not be unique. Since we consider the homology of a
chain complex its relevant information, we think of quasi-isomorphisms as establishing an
equivalence between two complexes, even when the two complexes are not isomorphic. We
will consider this issue further in the next section.

The chain complexes over K, together with the chain maps, form the category ChK. This
is a category rich in additional structure: the quasi-isomorphisms make it into a homotopical
category, and even a model category, as we will see in Example 2.4.19. It is also a closed
symmetric monoidal category.
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Definition 2.4.5. The tensor product of two chain complexes (C, dC) and (D, dD) is

(C ⊗D)n :=
⊕
k+l=n

Ck ⊗Dl

with differential d⊗ defined by extending the differentials as derivations with a sign from the
Koszul rule: for c ∈ Ck and d ∈ Dl,

d⊗(c⊗ d) := dC(c)⊗ d+ (−1)kc⊗ dD(d) .

The monoidal unit is then given by the complex K, that is, the complex that is K in degree
0, and 0 elsewhere, with trivial differential. The braiding is given by a graded flip: for
c⊗ d ∈ Ck ⊗Dl,

B(c⊗ d) = (−1)kld⊗ c . (2.4.1)

The internal hom for ChK is quite a bit bigger than the set of morphisms in ChK: for
(C, dV ), (D, dW ) ∈ ChK, it is the mapping complex

[C,D]n =
∏
m∈Z

HomK(Cm, Dm+n)

where HomK(Cn, Dn+m) is the vector space of linear maps between vector spaces. For
L = {Lm : Cm → Dm+n}m ∈ [C,D]n we have the differential

∂L =
{

dDLm − (−1)nLm−1 dC : Cm → Dm+n−1

}
m
∈ [C,D]n−1.

The internal hom gives a characterization of the chain maps in ChK: for (Cn, dC), (Dn, dD) ∈
ChK,

ChK(C,D) = ker
(
∂ : [C,D]0 → [C,D]−1

)
.

It also characterizes the chain homotopies: a chain homotopy λ between f and g is a λ ∈
[C,D]1 such that f − g = ∂λ.

Definition 2.4.6. Given a chain complex (C, dC) we define its shifting C[k] by an integer
k by C[k]n := Cn−k and dC[k] := (−1)kdC .

It is clear that C[k][l] = C[k + l] for any two k, l ∈ Z and that C[0] = C. Moreover, the
shifting interacts with the closed monoidal structure: first, we see that C[k] ∼= K[k]⊗C. And
for two chain complexes C and D we have the isomorphism of internal homs hom(C,D[k]) ∼=
hom(C,D)[k] through

hom(C,D[k])n
∼=−→ hom(C,D)[k]n

{Lm : Cm → D[k]m+n}m 7−→ {Lm : Cm → Dm+n−k}m
. (2.4.2)

Importantly, this isomorphism preserves the differentials ∂ of the internal homs.

Example 2.4.7. The differential forms ω ∈ Ωk(M) on a manifold M of dimension n form
the well-known de Rham cochain complex

Ω0(M)
d
// Ω1(M)

d
// · · · d

// Ωn(M)

and we will write Hk
dR(M) for its cohomology in degree k. If M is equipped with a metric,

the codifferential δ (2.2.4) defines the complex

Ω0(M) Ω1(M)
δ
oo · · ·δ

oo Ωn(M)
δ
oo .
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We write Hk
δ (M) for its homology in degree k and Ωk

δ (M) for ker
(
δ : Ωk(M) → Ωk−1(M)

)
.

Of course, the Hodge star ∗ is an isomorphism, so we have Hk
δ (M) = ∗Hn−k

dR (M).
Taking the compactly supported differential forms Ωk

c(M) gives subcomplexes of these two
complexes, and we write Hk

c,dR(M) and Hk
c,δ for their (co)homology. Note that this reverses

functoriality:

Ω• : Manop −→ coChR

is a contravariant functor using the pullback of forms, where coChR is the category of cochain
complexes. On the other hand, if we write Manemb for the category of manifolds with smooth
open embeddings as morphisms,

Ω•c : Manemb −→ coChR

is a covariant functor using the pushforward of compactly supported forms.

Theorem 2.4.8. (Poincaré duality) The integration pairing

( , ) : Ωk(M)⊗ Ωn−k
c (M) −→ R

ω ⊗ ζ 7−→
∫
M
ω ∧ ζ

induces a nondegenerate bilinear pairing

( , ) : Hk
dR(M)⊗Hn−k

c,dR(M) −→ R .

So if the cohomologies are finite dimensional,

Hk
dR(M) ∼= (Hn−k

c,dR)∗ .

We can define algebraic structures like a multiplication or a Poisson structure on chain
complexes in the same way we define them on vector spaces; we just have to be careful that
all maps involved are chain maps.

Definition 2.4.9. A differential graded unital associative algebra is a triple (A, µ, η)
where A = (A, d) is a chain complex, µ : A ⊗ A → A is an associative multiplication and
η : K→ A is a unit. Both µ and η are required to be chain maps, which in particular implies
that η(1) ∈ A0, since K is concentrated in degree 0. These algebras form the category dgAlgAs;
we include the dg to emphasize that we are working with chain complexes. Morphisms in
dgAlgAs are chain maps that preserve the multiplication and the unit.

If we work over the field C we can also define differential graded ∗-algebras. These are
differential graded algebras that have an involution ∗ : A → A. We write dg∗AlgAs for the
category of differential graded ∗-algebras.

Other algebraic structures (like that of a Lie algebra, or a Poisson algebra) can also be
defined on chain complexes. As with vector spaces, we will define them using operads in
Section 2.5.2.

Definition 2.4.10. A Poisson chain complex (V, τ) is a chain complex V = (V, d) to-
gether with a Poisson structure, a chain map τ : V ⊗ V → K that is graded antisymmetric:
τ(v, w) = −(−1)|v||w|τ(w, v). Note that since τ is a chain map and K is concentrated in
degree 0, τ will only pair an element of degree n with elements of degree −n. Morphisms
of Poisson chain complexes (V, τ) → (V ′, τ ′) are chain maps f : V → V ′ that preserve the
Poisson structure: f ∗(τ ′) = τ ′ ◦ (f ∧ f) = τ . The Poisson chain complexes form the category
PoissChK.
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Definition 2.4.11. We can also use the shifting defined above to shift the Poisson struc-
ture. A k-shifted Poisson chain complex (V,Υ) is a chain complex V = (V, d) together with
a shifted Poisson structure Υ : V ⊗ V → K[k] that is shifted graded antisymmetric:

Υ(v, w) = −(−1)|v||w|+k|v|+k|w|Υ(w, v) .

Since Υ pairs elements of degree n with elements of degree −n+ k, we see that

• when k is odd, Υ is symmetric: Υ(v, w) = Υ(w, v);
• when k is even, Υ is graded antisymmetric: Υ(v, w) = −(−1)|v||w|Υ(w, v).

This is a somewhat unintuitive expression of antisymmetry. Heuristically, it helps to think
of Υ as an object of degree k sitting in between v and w, and then applying the Koszul
sign rule. In this regard, (v)Υ(w) would perhaps be a more appropriate notation, though
confusing in its own way.

To end this section, we also define bicomplexes, which we will use in chapter 5 as a tool
to calculate the bar construction. The convention to let the two differentials anticommute
is nonstandard but it is convenient for our purposes; the opposite convention where they
commute is equivalent by adding a sign to the vertical differential, see Remark 2.2 in [MR19].

Definition 2.4.12. A bicomplex C = (C••, δ, d) over K is a family of vector spaces
{Cp,q}p,q∈Z over K together with a horizontal differential d : Cp,q → Cp−1,q such that d2 = 0
and a vertical differential δ : Cp,q → Cp,q−1 such that δ2 = 0. The differentials are required
to anticommute:

dδ + δd = 0 .

A morphism of bicomplexes f : C → D is a family of linear maps {fp,q : Cp,q → Dp,q}p,q∈Z
that commute with both differentials. We write bChK for the category of bicomplexes over
K.

For an element c ∈ Cp,q we say that p is its horizontal degree, q is its vertical degree, (p, q)
is its bidegree and |c| := p+ q is its total degree. For any fixed q, C•,q will be a chain complex,
as will Cp,• for a fixed p. And vice versa, we can specify a bicomplex C by describing for
example all the complexes of fixed vertical degree C•,q and the vertical differential δ.

Like ChK, the category bChK is symmetric monoidal.

Definition 2.4.13. The tensor product C ⊗ D of two bicomplexes C and D is the
bicomplex

(C ⊗D)p,q :=
⊕

i+k=p, j+l=q

Ci,j ⊗Dk,l

with differentials

d(c⊗ d) = d(c)⊗ d+ (−1)|c|c⊗ d(d)

δ(c⊗ d) = δ(c)⊗ d+ (−1)|c|c⊗ δ(d)

where we emphasize that |c| = i+j is the total degree of c ∈ Ci,j. The monoidal unit is given
by K, the bicomplex that is K in bidegree (0, 0) and 0 elsewhere, with trivial horizontal and
vertical differential. The braiding is given by a graded flip

B(c⊗ d) = (−1)|c||d|d⊗ c .
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Definition 2.4.14. Bicomplexes can be made into chain complexes by
⊕

-totalization:

Tot⊕ : bChK −→ ChK
(C, d, δ) 7−→

(
Tot⊕(C), dtot

)
with Tot⊕(C) given by

Tot⊕(C)n :=
⊕
p+q=n

Cp,q

and the total differential

dtot := d + δ .

This defines a strong monoidal functor.

We will routinely abuse notation and simply write totalization for
⊕

-totalization; since
we do not use

∏
-totalization in this text this should not lead to confusion.

2.4.2. Weak equivalences and localization. In Section 2.4.1 we noted that the im-
portant information of a chain complex lies in its homology. From the perspective of category
theory this means that we think of any quasi-isomorphism f : C → D (i.e. any chain map
that induced an isomorphism in homology) as establishing an equivalence between the chain
complexes C and D. Note however, that C and D do not need to be isomorphic.

Quasi-isomorphisms in ChK are an example of weak equivalences: a class of morphisms
in a category that we think of as establishing an equivalence, that includes the isomorphisms
but will in general also contain non-isomorphisms. Homotopy equivalences between topolog-
ical spaces give another example, and equivalences between categories (like the equivalences
between groupoids of gauge fields discussed in Section 1.2 of the introduction) give a third.

In all cases mentioned here we find a concept of equivalence that is weaker than isomor-
phism, but we want to treat it as being a true equivalence. A first impulse would be to try
to make them into isomorphisms, i.e. adapt the category in such a way that they can be
inverted. This leads to the notion of localization.

A localization of a category C at a subset of its morphisms W is a new category C[W−1]
such that every f ∈ W becomes an isomorphism in C[W−1]. Moreover, the localization
is universal for this property: any functor F : C → D that sends all morphisms in W to
isomorphisms must factor through C[W−1]. This results in the following definition, Definition
7.1.1 in [KS06].

Definition 2.4.15. Let C be a category and W ⊆ Mor C a subset of its morphisms.
Then a localization of C at W is a category C[W−1] together with a functor

L : C −→ C[W−1]

such that

• for any f ∈ W , L(f) is an isomorphism;
• for any functor F : C → D to an arbitrary category D such that F (f) is an

isomorphism for all f ∈ W , there exists a functor FL : C[W−1] → D and a natural

isomorphism η : F
∼=−→ FL L;

• the pullback functor

L∗ : Fun(C[W−1],D) −→ Fun(C,D)

is fully faithful.
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Localizations are unique, up to categorical equivalence. From a formal perspective, local-
izations are very nice to work with, and in many cases one can prove that they exist. However,
finding a model for a localization that is not too large to work with is in general a very hard
problem, and several techniques have been developed to construct workable models. Perhaps
the most famous one is model category theory.

2.4.3. Model categories. A model category is a category with a class of weak equiv-
alences and two other classes of morphisms that we think of as the “good” surjections and
injections. Again, we will give a short review of the facts that we will need here; [DS95] is
a good introduction to the subject.

Definition 2.4.16. A model category is a category C with three classes of morphisms in
Mor C:

• the weak equivalences (c
∼−→ c′) ∈ W ;

• the fibrations (c� c′) ∈ Fib;
• the cofibrations (c ↪→ c′) ∈ Cof

which are all closed under composition and include all identities. Fibrations that are also
weak equivalences are called trivial or acyclic fibrations; likewise, cofibrations that are also
weak equivalences are called trivial or acyclic cofibrations.

Moreover, the following axioms hold:

MC1 C is complete and cocomplete: it contains all small limits and colimits.
MC2 The 2-out-of-3 property holds for the weak equivalences: if f and g are composable

morphisms and two of the three maps f , g and gf are weak equivalences, then so is
the third

MC3 All three classes of morphisms are closed under retracts: if we have the diagram

c
i
//

f
��

d
r
//

g
��

c

f
��

c′
i′
// d′

r′
// c′

in C such that ri and r′i′ are the identities on c and c′ respectively, then if g is a
weak equivalence, fibration or cofibration, so is f .

MC4 In the diagram

c
f
//

� _

i
��

d

p
����

c′ g
//

h
??

d′

where i is a cofibration and p is a fibration, the lift h exists whenever either i or p is
also a weak equivalence. (A lift in this diagram is a map h that makes both resulting
triangles commute.)

MC5 Any map f : c→ c′ in C factors in two ways:

c
f

//� n

i

∼

��

c′

c̃

p

@@ @@

;

c
f

//� n

i
��

c′

c̃

p
∼

@@ @@
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i.e. as an acyclic cofibration followed by a fibration, or as a cofibration followed by
an acyclic fibration.

Remark 2.4.17. In axiom MC5, we do not demand that the factorizations are functo-
rial. However, in all model categories we will encounter, it will be possible to choose these
factorizations to be functorial. This is true for most model structures one encounters: “it
seems to be exceedingly difficult to find model categories that fail to satisfy this condition”
[Rie19]. Specifically, it is true for categories that admit Quillen’s small object argument. We
refer to Section 2.1 in [Hov07], Chapter 12 in [Rie14] and Section 3.2 in [Rie19] for more
on this. We note here that functorial factorizations in particular allow for functorial fibrant
and cofibrant replacements, see Definition 2.4.28.

Remark 2.4.18. In a sense these axioms are overdetermined: Proposition 3.13 in [DS95]
tells us that if we have chosen the classes of weak equivalences and fibrations, the class of
cofibrations is completely determined by the lifting diagram in axiom MC4. We say that
the cofibrations are the morphisms that satisfy the left lifting property with respect to the
acyclic fibrations. And dually, the fibrations are completely determined by a choice of classes
of weak equivalences and cofibrations: they are the morphisms that satisfy the right lifting
property with respect to the acyclic cofibrations.

There are several immediate implications to the model category axioms. For example,
all three classes of morphisms contain all isomorphisms. This follows from the fact that all
three classes of morphisms contain the identity, and axiom MC3 where f is an isomorphism,
g = i′ = r′ = idc′ , i = f and r = f−1. Furthermore, since we demand that a model category
C is complete and cocomplete in axiom MC1, C always contains an initial object ∅ and a
terminal object ∗. For any object c ∈ C we then say that c is fibrant if c→ ∗ is a fibration,
and cofibrant if ∅ → c is a cofibration.

It is in general a hard exercise to prove that a given class of weak equivalences and
(co)fibrations in a category defines a model category structure. We will solely work with the
model category of chain complexes and categories related to it, so for the purposes of this
thesis, the most important result of this section is the following, which is shown in Section
2.3 of [Hov07].

Example 2.4.19. The category ChK over chain complexes over a field of characteristic
0 forms a model category, where

• the weak equivalences are the quasi-isomorphisms;
• the fibrations are the degreewise surjections;
• the cofibrations are the maps that satisfy the left lifting property (see Remark 2.4.18)

with respect to the acyclic fibrations.

It is cofibrantly generated and admits Quillen’s small object argument, so it allows for func-
torial factorization, see Remark 2.4.17. Every object in ChK is fibrant and cofibrant. Note
that we consider all (unbounded) chain complexes; there is no need for them to be bounded
from below as in [DS95].

Remark 2.4.20. Model category theory is a powerful framework for forming the local-
ization of a category (see Definition 2.4.15): it allows for the construction of the homotopy

category C
γ−→ Ho C of a model category, which is a localization of the category at its weak

equivalences. It is also a strong tool for deriving functors, i.e. making sure they preserve
weak equivalences (see Section 2.4.5). In terms of the homotopy category, this condition of
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preserving weak equivalences is that the functor descends to a well-defined functor on the
homotopy category.

2.4.4. Model structures on functor categories. As noted in the previous section, it
is in general a hard problem to prove that a choice of weak equivalences and (co)fibrations
defines a model structure. But a given model structure on a category may be used to define
other model structures. One such case that will be relevant to us is the model structure on
functor categories.

If C is a model category, and D is a small category, the functor category Fun(D,C) has
a natural notion of weak equivalence: a natural transformation η between functors is a weak
equivalence if each component ηd is a weak equivalence. In this case we say that the weak
equivalences are defined objectwise or componentwise. We can likewise define the fibrations
or the cofibrations objectwise, but recall Remark 2.4.18: a choice of weak equivalences and
(say) fibrations determines the cofibrations, so we can in general only hope to define one of
the two auxiliary classes of maps this way. This leads to the following definition.

Definition 2.4.21. Let C be a model category and D be a small category. Then we
define the projective weak equivalences in Fun(D,C) to be the objectwise weak equivalences,
and the projective fibrations to be the objectwise fibrations. The projective cofibrations are
the natrual transformations that satisfy the left lifting property with respect to the projective
acyclic fibrations. If these choices define a model category structure we call this the projective
model structure on Fun(D,C).

Dually, we define the injective weak equivalences in Fun(D,C) to be the objectwise weak
equivalences, and the injective cofibrations to be the objectwise cofibrations. The injective
fibrations are the natrual transformations that satisfy the right lifting property with respect
to the injective acyclic cofibrations. If these choices define a model category structure we call
this the injective model structure on Fun(D,C).

As is implied in the definition, neither projective nor injective model structures on functor
categories exist in general. But the former do exist in quite broad cases by the following result,
Theorem 12.3.2 in [Rie14].

Proposition 2.4.22. If a model category C is cofibrantly generated and admits the
small object argument, the functor category CD admits the projective model structure for
any small category D.

Example 2.4.23. When K is of characteristic 0, the functor category ChK
D admits the

projective model structure for any small category D by Example 2.4.19. Note that in the
projective model structure, every object is fibrant.

2.4.5. Derived functors. Say that C and D are two model categories and F : C→ D
is a functor. If f : c → c′ is a weak equivalence, we would like F (f) : F (c) → F (c′) to
be a weak equivalence, too. Otherwise, F is deficient in the sense that equivalent inputs
have inequivalent outcomes. Unfortunately, many functors one encounters in the wild do not
preserve weak equivalences; the process of approximating these functors by functors that do
so is called deriving the functors.

Definition 2.4.24. Let F : C→ D be a functor of model categories that have homotopy

categories C
γ−→ Ho C and D

δ−→ Ho D. A left derived functor for F is a functor LF : C→ D
that preserves weak equivalences, together with a natural transformation q : LF ⇒ F , such
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that
(
(δLF )γ, (δq) ◦h η−1

)
is a right Kan extension of δF along γ. Here we use the natural

isomorphism η : δLF ⇒ (δLF )γγ from Definition 2.4.15.
Dually, a right derived functor for F is a functor RF : C → D that preserves weak

equivalences and a natural transformation r : F ⇒ RF , such that
(
(δRF )γ, η ◦h (δr)

)
is a

left Kan extension of δF along γ.

Derived functors are in general not unique up to natural isomorphism, and to be precise
we should really say that we are finding a derived functor of F , or a model for the derived
functor of F .

There is a general theory of deriving functors via left and right deformations, see for
example Chapter 2 in [Rie14]. We will specialize this method to the particularly nice case
where our functor is part of a Quillen adjunction.

Definition 2.4.25. A Quillen adjunction is an adjunction

C
F
//
D

G
oo

between model categories, such that F preserves cofibrations and G preserves fibrations.

Remark 2.4.26. By Remark 9.8 in [DS95] the definition of a Quillen adjunction is equiv-
alent to G preserving fibrations and acyclic fibrations, or also to F preserving cofibrations
and acyclic cofibrations.

Happily, in the situation where one of the components of a Quillen adjunction preserves
weak equivalences, we do not need to derive that component.

Lemma 2.4.27. If the left or the right adjoint of a Quillen adjunction preserves weak
equivalences, it is a model for its derived functor.

The crucial ingredient for our derivation of functors are (co)fibrant replacement functors,
which are the deformations in [Rie14].

Definition 2.4.28. Let C be a model category. A cofibrant replacement on C is an
endofunctor Q : C→ C together with a natural acyclic fibration q : Q⇒ 1C such that Q(c)
is cofibrant for all c ∈ C.

Dually, a fibrant replacement on C is an endofunctor R : C→ C together with a natural
acyclic cofibration r : 1C ⇒ R such that R(c) is fibrant for all c ∈ C.

The (co)fibrant replacements can be used to derive both components of a Quillen adjunc-
tion as follows, see Theorem 9.7 in [DS95].

Proposition 2.4.29. If C allows for functorial factorization (see Remark 2.4.17) fibrant
and cofibrant replacements on it exist.

If F a G is a Quillen adjunction, (Q, q) is a cofibrant replacement on C and (R, r) is a
fibrant replacement on D, then (LF := FQ,Fq) and (RG := GR,Gr) are models for the left
derived functor for F and the right derived functor for G, respectively.

One technical result that is used in proving the existence of derived functors is Ken
Brown’s lemma, which we will also independently use in this text.

Lemma 2.4.30. (Ken Brown) Let F be a functor between model categories that carries
acyclic cofibrations between cofibrant objects to weak equivalences (for example, if F is



2.4. CHAIN COMPLEXES AND MODEL CATEGORIES 51

the left adjoint in a Quillen adjunction). Then F preserves all weak equivalences between
cofibrant objects.

Dually, let G be a functor between model categories that carries acyclic fibrations between
fibrant objects to weak equivalences (for example, when G is the right adjoint in a Quillen
adjunction). Then G preserves all weak equivalences between fibrant objects.

Definition 2.4.31. If F a G is a Quillen adjunction with unit η : 1C → GF and
counit ε : FG→ 1D, and it is derived in the manner of Proposition 2.4.29, the derived unit
η̃ : Q→ RGLF and the derived counit ε̃ : LFRG→ R are given by

η̃c : Qc
ηQc

// GFQc
GrFQc

// GRFQc = RGLFc

ε̃d : LFRGd = FQGRd
FqGRd

// FGRd
εRd

// Rd
. (2.4.3)

Remark 2.4.32. The functors LF = FQ and RG = GR are in general not strictly
adjoint, and the triangle identities (2.1.4) do not in general hold strictly for the derived
unit and counit. This improves on the homotopy categories (see Remark 2.4.20): there, the
descended derived functors again form an adjunction, and the triangle identities hold for the
unit and counit.

Remark 2.4.33. Similar to the case for localizations of categories, the (co)fibrant re-
placements Q and R that go into the definitions of the derived functors LF and RG always
exist, but it is in general quite hard to find (co)fibrant replacements that are small enough
to manage. Finding these workable models for Q and R (or for the derived functors) is a lot
of the work that goes into computations involving underived functors.

Example 2.4.34. Limit and colimit functors are an important class of functors that
often need to be derived. For example, consider the following two diagrams in the category
of topological spaces for any n ≥ 1:

Sn−1 //

��

Dn

Dn

;

Sn−1 //

��

∗

∗
Here, Dn is the n-disc, Sn−1 = ∂(Dn) is its boundary, the n−1-sphere, and ∗ is the singleton
topological space, the terminal object in Top. The maps in the left diagram are the inclusions
of the boundary of Dn into Dn. Weak equivalences in the diagram category Top•←•→• are
defined componentwise, and Top has a model structure where the weak equivalences are
the weak homotopy equivalences, so these diagrams are weakly equivalent in the diagram
category.

Forming the colimit of these diagrams in Top, the pushout, means gluing the outer two
spaces along the images of the middle one. We see that the pushout of the left diagram is Sn,
but the pushout of the right one is ∗. So the pushout does not preserve weak equivalences.
It turns out that in the right diagram, we need to cofibrantly replace. One such replacement
is by the left diagram, so Sn is the homotopy pushout of the diagram.

An example of a limit that needs to be derived is the pullback of chain complexes; we
will carry out an explicit computation of such a homotopy pullback in in Theorem 4.1.7.

(Co)fibrantly replacing is not the only way of deriving a functor, as we will see in the
next section.
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2.4.6. The bar construction. Let F : C→ D be a functor between any two categories
and consider the Kan extension diagram (2.1.6)

C //

F
��

ChK

D

where ChK is the model category of chain complexes over a field K. Recall Remark 2.1.37:
if it exists (as is the case for ChK), the left Kan extension functor is part of the adjunction

F! : Fun(C,ChK)
//
Fun(D,ChK) : F ∗oo .

The following is a construction to derive the left Kan extension F! in the projective model
structures on Fun(C,ChK) and Fun(D,ChK), by fattening up the complex to a bicom-
plex using all possible maps in C and D and then totalizing the resulting bicomplex. It
works in much more generality than just for ChK and the left Kan extension (see Chapter
4 in [Rie14]), but we restrict ourselves to complexes and bicomplexes here to avoid treating
simplicial sets in these preliminaries. Effectively, we have already used the Dold-Kan corre-
spondence to move from simplicial chain complexes to bicomplexes that are nonnegatively
graded in the degree corresponding to the simplicial degree. This is the bar we put on the
functor B∆ below (no relation to the name of the construction).

The bar construction associated to F is a functor

B∆(F,C,−) : Fun(C,ChK) −→ Fun(D,bChK) .

To a functor X : C → ChK it assigns the functor B∆(F,C, X) which in turn assigns to an
object d ∈ D the bicomplex B∆(F,C, X)(d)•,• which is concentrated in nonnegative vertical
degrees q ≥ 0. In vertical degree q = 0 the bicomplex is given by the complex

B∆(F,C, X)(d)•,0 =
⊕
c∈C

⊕
(Fc

g−→d)∈D

X(c)• (2.4.4)

collecting a copy of X(c) for every map of the shape g : Fc → d in D. In positive vertical
degrees q ≥ 1 the bicomplex is the complex

B∆(F,C, X)(d)•,q =
⊕
c∈C

⊕
(Fc

g−→d)∈D

⊕
(c

f1←−··· fq←−sfq)∈C
fi 6=id

X(sfq)•

collecting objects X(sfq) for all g : Fc → d in D as above and all chains of composable
morphisms

c
f1←− · · · fq←− sfq

in C that do not include any identity morphisms. The horizontal differential onB∆(F,C, X)(d)
is simply the differential on the complexes X(c) while the vertical differential is given by the
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alternating sum

δ(c, g, f1, · · · , fq, x) = (−1)|x|
(

(sf1, g ◦ Ff1, f2, . . . , fq, x)

q−1∑
j=1

(−1)j(c, g, f1, . . . , fj ◦ fj+1, . . . , fq, x)

(−1)q(c, g, f1, . . . , fq−1, fq(x))
)

for an element (c, g, f1, . . . , fq, x) ∈ B∆(F,C, X)(d)•,q of degree q ≥ 1 (since the bicomplex is
nonnegatively graded, δ is 0 on B∆(F,C, X)(d)•,0). Here, |x| is the (chain complex) degree
of x ∈ X(sfq).

To morphisms k : d→ d′ in D, the functor B∆(F,C, X) assigns the bicomplex morphism

B∆(F,C, X)(k) : B∆(F,C, X)(d) −→ B∆(F,C, X)(d)
(c, g, f1, · · · , fq, x) 7−→ (c, k ◦ g, f1, · · · , fq, x)

which composes the index morphism g with k.
We recognize the sum in the definition of B∆(F,C, X)(d)•,0 (2.4.4) as a sum over the

objects in the overcategory F ↓ d. And in fact, if we calculate the zeroth vertical homology
of the bicomplex, we find the model (2.1.7) of the left Kan extension. So we have indeed
fattened up the left Kan extension in some sense. In Section 13.3 and Theorem 17.2.7 in
[Fre09] it is proven that after totalizing back to ChK,

LF! := Tot⊕
(
B∆(F,C,−)

)
: Fun(C,ChK) −→ Fun(D,ChK)

is a model for the left derived left Kan extension functor F!.
Let us also give the derived unit and counit of the derived adjunction

LF! : Fun(C,ChK)
//
Fun(D,ChK) : RF ∗oo .

First, note that we do not need to derive the pullback F ∗; we see this either by the fact that
every object is fibrant in the projective model structure on Fun(D,ChK) or directly by the
fact that if a natural transformation γ : G → G′ is a weak equivalence, so is F ∗γ = γF :
GF → G′F because the weak equivalences are defined objectwise. So we have RF ∗ = F ∗ and
the cofibrant replacement (R, r) is chosen to be the identity. The derived counit ε̃ : LF!F

∗ →
idFun(D,ChK) at the component Y ∈ Fun(D,ChK) then is the natural transformation

ε̃Y : LF!F
∗(Y ) −→ Y (2.4.5a)

that is in turn at the component d ∈ D

ε̃Y,d : Tot⊕
(
B∆(F,C, F ∗Y )

)
(d) −→ Y (d)

(c, g, y) 7−→ Y (g)(y)
(c, g, f1, . . . , fq, y) 7−→ 0

. (2.4.5b)

for any positive vertical degree q ≥ 1.
For the derived unit we have the cofibrant replacement

Q = Tot⊕
(
B∆(idC,C,−)

)
: Fun(C,ChK) −→ Fun(C,ChK) (2.4.6)

that is obtained by applying the bar construction to the identity functor id : C → C. The
derived unit η̃ : Q → F ∗LF! at the component X ∈ Fun(C,ChK) then is the natural
transformation

η̃X : Q(X) −→ F ∗LF!(X) (2.4.7a)
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which in turn at the component c̃ ∈ C is given by

η̃X,c̃ : Tot⊕
(
B∆(idC,C, X)(c̃)

)
−→ Tot⊕

(
B∆(F,C, Y )(F c̃)

(c, f0, f1, . . . , fq, x) 7−→ (c, Ff0, f1, . . . , fq, x)
. (2.4.7b)

Note that this is a different way of deriving functors than the one described in the previous
section: indeed, LF! is not equal to F!Q with the cofibrant replacement Q given above.
However, the two functors are equivalent.

2.4.7. Homotopical categories. Not all categories with a class of weak equivalences
can be equipped with the structure of a model category. In particular, not all categories are
complete or cocomplete. A more flexible definition is that of a homotopical category. We
collect the definitions we need here from [Rie14].

Definition 2.4.35. A homotopical category is a category C with a class of weak equiva-
lences W ⊆Mor C which is closed under composition and contains all identities. Moreover,
W satisfies the 2-out-of-6 property: if f , g and h are composable morphisms, and hg and gf
are weak equivalences, then f , g, h and hgf are weak equivalences too.

As is the case with model categories, all isomorphisms are weak equivalences (this follows
from the 2-out-of-6 property and the fact that W contains all identities).

Example 2.4.36. The category of Poisson chain complexes PoissChK (see Definition
2.4.10) is a homotopical category; the weak equivalences are the maps for which the under-
lying chain map is a quasi-isomorphism. It is not a model category, since it does not contain
all coequalizers, so it is not cocomplete.

Note that besides the underlying chain complex V , we can also weakly vary the Poisson
structure τ by adding a homotopy ∂ρ for ρ ∈ hom(

∧2 V,K)1. There is in general no direct
Poisson chain map (V, τ)→ (V, τ + ∂ρ), so we will have to take care of this issue separately;
we will do so in Proposition 3.4.6 for example.

Remark 2.4.37. The 2-out-of-6 property is stronger than the 2-out-of-3 property. How-
ever, it can be shown that the weak equivalences of a model category also satisfy the 2-out-of-6
property. Therefore, any model category also forms a homotopical category with its class of
weak equivalences.

Example 2.4.38. We will find in Section 2.5.3 that all differential graded algebras that
we consider form model categories where the weak equivalences are the maps of algebras such
that the underlying chain maps are quasi-isomorphisms. By the above remark we see that
this choice of weak equivalences also makes these categories into homotopical categories.

Definition 2.4.39. A homotopical functor between homotopical categories is a functor
that preserves weak equivalences, i.e. it maps weak equivalences to weak equivalences.

2.5. Operads

Operads are structures that encode algebra. For example, an algebra over the associative
operad is an associative algebra. They become essential when trying to do algebra up to
homotopy [Val14, LV12], though we will not pursue these ideas in this text. Here we
introduce operads and their algebras, following [Yau16], and we will then introduce model
structures for algebras over operads valued in chain complexes, following [Hin97, Hin13].



2.5. OPERADS 55

2.5.1. Colored operads. Fix a closed symmetric monoidal category T that is complete
and cocomplete. We first introduce some notation. For a set C, we write c := (c1, . . . , cn) ∈ Cn

for any finite sequence in C with n ≥ 0. We call c a C-profile. The length of c is |c| := n. We
can compose two profiles a = (a1, . . . , am) and b = (b1, . . . , bn) by concatenation:

(a, b) := (a1, . . . , am, b1, . . . , bn).

Definition 2.5.1. Let C be a set. A C-colored sequence X in T is an assignment

X
(
t
c

)
∈ T

for all (c, t) ∈ Cn × C and all n ≥ 0. The length n of c is called the arity of X
(
t
c

)
and its

elements. A morphism of C-colored sequences f : X → Y is a family of T-morphisms

f : X
(
t
c

)
−→ Y

(
t
c

)
for all (c, t) ∈ Cn × C and all n ≥ 0. We collect the C-colored sequences in T and their
morphisms into the category SeqC(T).

For n ≥ 0 we denote the symmetric group on n elements by Σn. We define a right-Σn-
action on the profiles of length n by

cσ := (cσ(1), . . . , cσ(n)).

Definition 2.5.2. A C-colored symmetric sequence X in T is a C-colored sequence to-
gether with a right-action of the symmetric group: if σ ∈ Σn then we have a T-morphism

X(σ) : X
(
t
c

)
−→ X

(
t
cσ

)
such that X(τ)X(σ) = X(στ) for σ, τ ∈ Σn and X(e) = id for the unit e ∈ Σn. A morphism
of symmetric sequences is a SeqC(T)-morphism that commutes with the symmetric action:
Y (σ)f = fX(σ). The C-colored symmetric sequences in T and their morphisms are collected
in the category SymSeqC(T).

Operads are symmetric sequences, equipped with a composition that matches the colors
and a corresponding unit, as follows.

Definition 2.5.3. Let C be a set. A C-colored operad (O, γ,1) with values in T consists
of the following data:

• a C-colored symmetric sequence O in T;
• the operadic composition: T-morphisms

γ : O
(
t
a

)
⊗
⊗
i

O
(ai
bi

)
−→ O

(
t
b

)
for all all n > 0, k1, . . . , kn ≥ 0, t ∈ C, a ∈ Cn and bi ∈ Cki for i = 1, . . . , n, where
b = (b1, . . . , bn);
• The operadic unit: T-morphisms

1 : I −→ O
(
c
c

)
for all c ∈ C, where I is the monoidal unit in T.

These operations are required to satisfy associativity, unitality and equivariance axioms:
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• Associativity: the diagram[
O
(
t
a

)
⊗
⊗

iO
(ai
bi

)]
⊗
⊗

i

[⊗
j O
(
bij
cij

)] γ⊗id
//

permute

��

O
(
t
b

)
⊗
⊗

i

[⊗
j O
(
bij
cij

)]

γ

��

O
(
t
a

)
⊗
⊗

i

[
O
(ai
bi

)
⊗
⊗

j O
(
bij
cij

)]
id⊗

⊗
i γ

��

O
(
t
a

)
⊗
⊗

iO
(ai
ci

) γ
// O
(
t
c

)
commutes for all possible t, a, bi and cij, where b, ci and c are defined by concate-
nation. “Permute” means the relevant actions of the associator and the braiding of
T to permute the tensor products.
• Right unitality: the diagram

O
(
t
c

)
⊗ I⊗n

id⊗
⊗
i 1 ((

ρ⊗n

∼=
// O
(
t
c

)
O
(
t
c

)
⊗
⊗

iO
(
ci
ci

) γ
77

commutes for all (c, t) ∈ Cn × C, where ρ is the right unitor of T.
• Left unitality: the diagram

I ⊗O
(
t
c

)
1⊗id &&

λ

∼=
// O
(
t
c

)
O
(
t
t

)
⊗O

(
t
c

) γ

99

commutes for all (c, t) ∈ Cn × C, where λ is the left unitor of T.
• Top equivariance: the diagram

O
(
t
a

)
⊗
⊗

iO
(ai
bi

) O(σ)⊗permute
//

γ

��

O
(
t
aσ

)
⊗
⊗

iO
(aσ(i)

bσ(i)

)
γ

��

O
(

t
b1,...,bn

) O(σ〈k1,...,kn〉)
// O
( t
bσ(1),...,bσ(n)

)
commutes for all a ∈ Cn, σ ∈ Σn and all possible t and bi. Here σ〈k1, . . . , kn〉 ∈ Σ∑

i ki

is the block permutation induced by σ, and “permute” is the permutation of the
factors in

⊗
iO
(ai
bi

)
induced by σ, using the braiding of T.

• Bottom equivariance: the diagram

O
(
t
a

)
⊗
⊗

iO
(ai
bi

) id⊗
⊗
iO(σi)

//

γ

��

O
(
t
a

)
⊗
⊗

iO
( ai
biσi

)
γ

��

O
(

t
b1,...,bn

) O(σ1⊕···⊕σn)
// O
(

t
b1σ1,...,bnσn

)
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commutes for all bi ∈ Cki , σi ∈ Σki and all possible t and a. Here σ1⊕· · ·⊕σn ∈ Σ∑
i ki

is the block sum induced by the σi.

Definition 2.5.4. If C = {∗} has only one element, we call C-colored operads uncolored
operads. For an uncolored operad O, we write O(n) for the object O

( ∗
∗···∗
)

of arity n.

Definition 2.5.5. A morphism of C-colored operads φ : O → P is a morphism of the
underlying symmetric sequences that preserves the composition,

O
(
t
a

)
⊗
⊗

iO
(ai
bi

) γO
//

φ⊗
⊗
i φ

��

O
(
t
b

)
φ
��

P
(
t
a

)
⊗
⊗

iP
(ai
bi

) γP
// P
(
t
b

)
for all n, t, a and bi, and the unit,

I
1O
//

1P
��

O
(
c
c

)
φ

��

P
(
c
c

)
for all c.

We write OpC(T) for the category of C-colored operads valued in T, and Op(T) :=
Op{∗}(T) for the category of uncolored operads. For O ∈ OpC(T), we will say that O is
T-valued. Since T is complete and cocomplete, so is OpC(T), see Theorem 3.8 in [PS18].

Example 2.5.6. Let C be a small category. Its diagram operad DiagC is the Ob C-
colored operad which is concentrated in arity 1: for c, c′ ∈ C, DiagC

(
c′
c

)
:= C(c, c′). Operadic

composition is defined by composition of morphisms, and the operadic unit 1c is simply the
identity.

In general, it is useful to visualize the elements o ∈ O(n) in arity n as (directed and
rooted) trees with n inputs (or leaves), and one output,

o
.

In this visualization, grafting the outputs of trees to the leaves of another and then contracting
the internal edges represents composition, the identity is a one-input tree, and permutation of
the leaves is the symmetric action. This heuristic can in fact be used to construct operads; let
us illustrate this by giving a presentation of the (uncolored) associative operad in T = Set.

Start with a single tree with two leaves,

to represent the multiplication µ in an algebra, and a tree with one leaf,

which is the operadic unit 1 (representing the identity morphism of an algebra; the object
representing the unit element of the algebra will be defined below). Composition (in the
operad) is now achieved by grafting these trees: for example,

γ
(

; ,
)

=
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and

γ
(

; ,
)

= .

Of course, we can keep grafting larger and larger trees like this, which results in binary trees
of every arity (i.e. every number of leaves).

The symmetric action will now permute the leaves of trees, which we label to keep track

of this. So we write
1 2

for the generating tree with two leaves; the symmetric action then

yields

(12)
(

1 2

)
=

2 1

and in general we find

σ
(

1 n

)
=

σ−1(1)σ−1(n)

for any σ ∈ Σn, where represents any binary tree we can construct through grafting.
The elements we can construct this way are flat binary trees (trees with two inputs and

one output at every node) with the n leaves of the tree labeled by σ(1) to σ(n) for any σ ∈ Σ.
For example, we have the element

2 5 1
4 3

in arity 5.
We then implement the associativity relation

=

for all possible permutations of the inputs. We can then use this relation to reshape every
one of our trees into a standard shape, say

σ(1)

σ(n) .

Lastly, we introduce one more generator, the tree

with zero leaves, which represents the unit η of the algebra. The relations

= =

then encode unitality.
One can now check that this construction indeed defines an operad, taking care with the

permutations in the top equivariance axiom.

Example 2.5.7. The associative operad As is the operad constructed above.
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There exists an obvious forgetful functor

U : OpC(T) −→ SeqC(T) (2.5.1)

that forgets the symmetric action, the operadic composition and the operadic unit. If fact, if
we define NOpC(T) to be the category of C-colored nonsymmetric operads by removing the
symmetric action and the equivariance axioms from Definition 2.5.3, we have the commuting
square of forgetful functors

SeqC(T) SymSeqC(T)oo

NOpC(T)

UΩ

OO

OpC(T) .
UΣ

oo

OO

U

hh

(2.5.2)

Like in Example 2.1.26, the functor U has a left adjoint.

Theorem 2.5.8. The forgetful functor U (2.5.1) is part of the adjunction

F : SeqC(T)
//
OpC(T) : Uoo . (2.5.3)

The functor F is the free C-colored operad functor and for G ∈ SeqC(T) we say that F (G) is
the free operad generated by G.

Proof. This is proven in Chapter 20 in [Yau16]. The functor F is built by finding left
adjoints to the forgetful functors

SeqC(T) NOpC(T)
UΩ

oo OpC(T)
UΣ

oo

where UΣ forgets the symmetric action and UΩ forgets the operadic composition and unit. �

Given a free operad F (G) generated by G ∈ SeqC(T), we can implement relations on it
as follows. Let R ∈ SeqC(T) be another sequence, and

r1, r2 : R
//
// UF (G)

be two parallel SeqC(T)-morphisms. By the adjunction (2.5.3) this is equivalent to two
parallel OpC(T)-morphisms

r1, r2 : F (R)
//
// F (G)

which we denote by the same symbols. Since OpC(T) is cocomplete, we can then form the
coequalizer.

Definition 2.5.9. For G ∈ SeqC(T) and relations r1, r2 : R → UF (G), the C-colored
operad presented by G and the relations ri is the coequalizer

F (R)
r1
//

r2
// F (G) // F (G)/(r1 = r2)

in OpC(T).

As in the construction of the associative operad As above it is helpful to denote the
generators of a free operad by trees, and the relations as relations of tree diagrams.
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Example 2.5.10. The associative operad As constructed above is the operad generated
by

µ = ; η =

representing multiplication and the unit, respectively, with the relations

= ; = = (2.5.4)

implementing associativity and unitality.
Note that this construction was done in Set; for any bicomplete closed symmetric monoidal

category T we can use the Set-tensoring of Definition 2.1.44 and the monoidal unit I ∈ T
to define generators G⊗ I and relations ri : R⊗ I → UF (G)⊗ I ∼= UF (G⊗ I) and form the
operad

As := F (G⊗ I)/(r1 = r2)

in Op(T).

Example 2.5.11. Let T = VectK. The Lie operad Lie is the operad generated by

[ , ] =

representing the Lie bracket, with the relations

1 2
= −

2 1
;

1
2 3

+
2

3 1

+
3

1 2

= 0 (2.5.5)

implementing antisymmetry and the Jacobi identity.

Example 2.5.12. Again let T = VectK. The Poisson operad Pois is the operad generated
by

µ = ; η = ; { , } =

representing multiplication, unit and Poisson bracket, respectively, and as relations associa-

tivity and unitality (2.5.4) for and , antisymmetry and the Jacobi identity (2.5.5) for ,
together with the relations

1 2
=

2 1
;

1
2 3

=
3

1 2

+
2

1 3

implementing commutativity of the multiplication and the fact that the Poisson bracket is a

derivation in the second entry (antisymmetry of then implies that it is also a derivation
in the first entry). The relation

= 0

then follows from the derivation relation.

Example 2.5.13. Let T = VectK. The unital Lie operad uLie is the operad generated by

[ , ] = ; η =

representing the Lie bracket and the unit, respectively, with as relations antisymmetry and

the Jacobi identity (2.5.5) for , and

= 0

implementing infinitesimal unitality for the Lie bracket.
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Since in the above three examples of Lie, Pois and uLie we are using addition in our
relations, the three operads cannot be defined in any monoidal category T. They can,
however, be defined for any additive T. Specifically, interpreting vector spaces as chain
complexes concentrated in degree zero defines Lie,Pois, uLie ∈ Op(ChK). When more than
one base field is involved, we will use the notation OK to specify that O ∈ OpC(VectK) or
OpC(ChK).

Definition 2.5.14. If Q ∈ OpD(T) is a D-colored operad and f : C → D is a map of
sets of colors, we can define the pullback C-colored operad f ∗Q ∈ OpC(T) by

f ∗P
(
t
c

)
:= P

(
f(t)
f(c))

)
and restricting the symmetric action, operadic composition and operadic unit in the obvious
way.

This allows us to define the category of operads with varying colors COp(T): an object is
a pair (C,P) where C is a set of colors and P ∈ OpC(T) is a C-colored operad. A morphism

(f, φ) : (C,P) −→ (D,Q)

in COp(T) is then a map of sets of colors f : C → D together with an OpC(T)-morphism
φ : P → f ∗Q.

2.5.2. Algebras over operads. In the previous sections we saw several operads that
encode algebraic structures, like the associative operad As or the Lie operad Lie. The objects
that exhibit these algebraic structures are the algebras over the operad. Recall that T is a
bicomplete closed symmetric monoidal category.

Definition 2.5.15. Let C be a set of colors (which is in particular a category without
nonidentity morphisms). A C-colored object is a functor X : C → T, i.e. an assignment Xc

to every color c ∈ C.
A map of C-colored objects f : X → Y is a natural transformation, i.e. a map fc : Xc → Yc

for every c ∈ C.

Any map f : C→ D induces the pullback functor of D-colored objects

f ∗ : TD −→ TC (2.5.6)

via f ∗(Y )c = Yf(c). This functor has a left adjoint

f! : TC −→ TD (2.5.7)

with f!(X)d =
∐

c∈f−1(d) Xc.

Definition 2.5.16. Let (O, γ,1) ∈ OpC(T) be a C-colored operad valued in T. An
algebra A over O is a C-colored object, i.e. an assignment Ac ∈ T for each c ∈ C, together
with an O-action: for all n ≥ 0 and all (c, t) ∈ Cn × C, a T-morphism

α : O
(
t
c

)
⊗ Ac −→ At

where we write Ac := Ac1 ⊗ · · · ⊗ Acn . The O-action is required to satisfy the following
conditions:
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• Associativity: the diagram[
O
(
t
a

)
⊗
⊗

iO
(ai
bi

)]
⊗ Ab

γ⊗id
//

permute

��

O
(
t
b

)
⊗ Ab

α

��

O
(
t
a

)
⊗
⊗

i

[
O
(ai
bi

)
⊗ Abi

]
id⊗

⊗
i α

��

O
(
t
a

)
⊗ Aa

α
// At

commutes for all possible t, a and bi.
• Unity: the diagram

I ⊗ Ac

1⊗id &&

λ

∼=
// Ac

O
(
c
c

)
⊗ Ac

α

::

commutes for all c.
• Equivariance: the diagram

O
(
t
c

)
⊗ Ac

O(σ)⊗permute
//

α
$$

O
(
t
aσ

)
⊗ Aaσ

α
yy

At

commutes for all t, c ∈ Cn and σ ∈ Σn.

Definition 2.5.17. A morphism of O-algebras κ : (A,αA) → (B,αB) is a map of C-
colored objects κ : A→ B that commutes with the O-action:

αB ◦ (id⊗
⊗
i

κci) = κt ◦ αA : O
(
t
c

)
⊗ Ac → Bt

for all n ≥ 0 and all (c, t) ∈ Cn × C.
We write AlgO for the category of algebras over the operad O.

Example 2.5.18. An algebra (A,α) over the diagram operad DiagC of a category C
of Example 2.5.6 assigns an object A(c) := Ac ∈ T to all objects c ∈ C. The operation
A(f) := α(f ;−) : A(c) → A(c′) for f : c → c′ then defines maps in T. One can check that
the algebra axioms now exactly ensure that A : C→ T is a functor. So AlgDiagC

∼= TC is the
functor category.

Example 2.5.19. As the notation suggests, algebras over the operads As, Lie,Pois, uLie ∈
Op(VectK) are associative, Lie, Poisson and unital Lie algebras in VectK, respectively. In
particular, we see that our earlier notation of AlgAs for the category of associative algebras
agrees with our current notation. Similarly, interpreting these vector space-valued operads
as chain complex-valued operads concentrated in degree zero, their algebras are differential
graded associative, Lie, Poisson and unital Lie algebras, respectively. We will keep using
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the notation dgAlgO for differential graded algebras, to make clear that we are considering
algebras valued in chain complexes.

Working over the field C, adding an involution ∗ and implementing the obvious relations
turns the above algebras into ∗-algebras and differential graded ∗-algebras, though we must
note that we are not using operads to formalize this structure (this last note will be relevant
when discussing the model structure on differential graded algebras). In [BSW19b] such
∗-operads are studied, as well as their applications to algebraic quantum field theory.

For an operad O ∈ OpC(T), there exists an obvious forgetful functor from O-algebras to
C-colored objects

UO : AlgO −→ TC (2.5.8)

that forgets the O-action on an algebra. As was true for operads (Theorem 2.5.8) and
associative algebras (Example 2.1.26), this forgetful functor has a left adjoint.

Theorem 2.5.20. The forgetful functor UO (2.5.8) is part of the adjunction

O ◦ (−) : TC //
AlgO : UOoo . (2.5.9)

The functor O ◦ (−) is the free O-algebra functor and for X ∈ TC we say that O ◦X is the
free O-algebra generated by X.

The O-algebra O ◦X can be computed very explicitly using coends: see Theorem 2.8 in
[BSW20].

Definition 2.5.21. Let (f, φ) : (C,P) → (D,Q) be an Op(T)-morphism and (A,α) ∈
AlgQ be aQ-algebra. Then the pullback (f, φ)∗A of (A,α) along (f, φ) is defined by (f, φ)∗A :=
f ∗A (2.5.6) and the P-action

α(f,φ)∗A : P
(
t
c

)
⊗ ((f, φ)∗A)c

φ⊗id
// Q
(
f(t)
f(c)

)
⊗ Af(c)

α
// Af(t) = ((f, φ)∗A)t .

This defines a functor

(f, φ)∗ : AlgQ −→ AlgP .

As is true for functor categories (see Remark 2.1.37), i.e. algebras over the diagram
operad (see Example 2.5.18), the pullback of algebras over operads has a left adjoint.

Theorem 2.5.22. Let (f, φ) : (C,P) → (D,Q) be a COp(T)-morphism. Then the
pullback of algebras defined in Definition 2.5.21 is part of an adjunction on the algebra
categories

(f, φ)! : AlgP
//
AlgQ : (f, φ)∗oo .

We call the functor (f, φ)! the operadic left Kan extension.

Proof. This follows from the adjoint lifting theorem for the square of functors and
adjoints

AlgP

UP
��

AlgQ(f,φ)∗
oo

UQ
��

TC

P◦(−)

OO

f!
// TD .

f∗
oo

Q◦(−)

OO
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because the square of pullbacks and forgetful functors commutes and the category T is
cocomplete, see Section 4.5 in [Bor94]. One finds that for a P-algebra (A,α),

(f, φ)!(A,α) = colim
(
Q ◦ f!(P ◦ A)

∂0
//

∂1

// Q ◦ f!(A)
)

where we suppress the forgetful functors UP and UQ, ∂0 = Q◦f!(α) and ∂1 is constructed using
the units and counits of the other three adjunctions, which involves the operadic composition
of Q. �

Example 2.5.23. If F : C→ D is a functor, it induces a morphism F : DiagC → DiagD
of diagram operads. Using the identification of Example 2.5.18 the pullback F ∗ : AlgDiagD

→
AlgDiagC

is then seen to be the ordinary pullback of functor categories. Therefore, the operadic
left Kan extension is the ordinary left Kan extension of functors in this case.

2.5.3. Model structures for differential graded algebras over operads. Now let
T = ChK be the model category of chain complexes over a field of characteristic 0, see
Example 2.4.19. We saw that the functor category ChK

D = dgAlgDiagD
admits the projective

model structure in Example 2.4.23, for which the weak equivalences and fibrations are defined
objectwise. A natural question to now ask is if this is also true for algebras over other ChK-
valued operads.

Let O ∈ OpC(ChK) be an operad. Recall the free-forget adjunction (2.5.9)

O ◦ (−) : ChK
C //

dgAlgO : UOoo .

By Proposition 2.4.22, ChK
C carries the projective model structure. We can define the classes

of weak equivalences (fibrations) on dgAlgO to be the algebra morphisms f such that UO(f)
is a weak equivalence (fibration) in ChK

C, i.e. an objectwise weak equivalence (fibration) in
ChK. Note that, if this defines a model structure on dgAlgO, this makes UO right Quillen.

Definition 2.5.24. An operad O ∈ OpC(ChK) is called admissible if the above choice of
objectwise weak equivalences and fibrations defines a model structure on dgAlgO, with the
cofibrations as the algebra morphisms that satisfy the left lifting property with respect to
the acyclic fibrations.

Theorem 2.5.25. If K is of characteristic zero, all operadsO ∈ OpC(ChK) are admissible:
they admit a model structure with objectwise weak equivalences (quasi-isomorphisms) and
objectwise fibrations (degreewise surjections).

Proof. This is shown in Theorem 2.6.1 in [Hin13], see also [Hin97]5. The crucial point
is that because the characteristic of K is 0, the operad O is Σ-split: since every n! is invertible,
the natural sum map

π : OΣ = FΣUΣ(O) −→ O
has a Σ-splitting. Here, FΣ a UΣ is the part of the free-forget adjunction of Theorem
2.5.8 that forgets the symmetric action and freely generates it, and π is the counit of this
adjunction. �

5Its erratum [Hin03] is related to a counterexample when the characteristic of K is nonzero, so it does
not apply to our case.
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Example 2.5.26. We find that the category of differential graded associative algebras
dgAlgAs is a model category, with quasi-isomorphisms of the underlying chain complex as
the weak equivalences and degreewise surjections as the fibrations. The same is true for the
categories dgAlgLie, dgAlgPois and dgAlguLie. Working over C and adding an involution as
in Example 2.5.19 we find that by Remark 2.4.37, dg∗AlgAs is a homotopical category (see
Definition 2.4.35), as are dg∗AlgLie, dg∗AlgPois and dg∗AlguLie. To the best of our knowledge,
the question of whether these are model categories has not yet been studied.

2.6. Homotopy algebraic quantum field theory

With the model structure on the categories of operad algebras from Section 2.5.3 in hand,
we can give definitions of algebraic field theories as in Section 2.3.2 with the axioms only
holding up to homotopy.

Recall (Definition 2.3.9) that algebraic field theories are subcategories of functor cate-
gories. From Example 2.5.26 we see that dgAlgO is a model category for the operads As, Pois
and uLie. We also see that the corresponding category dg∗AlgOC

is a homotopical category
(see Definition 2.4.35), as is PoissChK by Example 2.4.36. In all cases, the weak equivalences
are the maps such that the underlying chain map is a quasi-isomorphism. This also makes
the functor categories

dgAlgO
C ; dg∗AlgOC

C ; PoissChK
C

into homotopical categories for any category C and uncolored operad O, with the weak
equivalences being the natural weak equivalences, i.e. objectwise quasi-isomorphisms.

Picking O = AsC and C = Loc we can try to define homotopy algebraic quantum field
theory. Generalizing the time-slice axiom is straightforward: we replace the condition that
A(f) is an isomorphism with the condition that it is a weak equivalence. Generalizing Einstein
causality is more complicated: this is done in [BSW19a] and involves finding a Σ-cofibrant
resolution of the corresponding field theory operad (we will introduce the field theory operad
in the next chapter, though not the resolution). Effectively, the commutator map now is only
homotopic to the zero map, and there is a whole tower of homotopies governing this.

Since all field theories in this text satisfy the strict Einstein causality axiom, we choose
to only weaken the time-slice axiom here, arriving at the definition of semi-strict homotopy
algebraic quantum field theories. Note that by the strictification theorem 4.3 in [BSW19a]
there is no loss of generality when doing this in characteristic 0. Compare Definition 2.3.1
and recall Definition 2.2.10 of causally disjoint morphisms and Definition 2.2.9 of Cauchy
morphisms.

Definition 2.6.1. A semi-strict homotopy algebraic quantum field theory on Loc is a
functor

A : Loc −→ dgAlgAsC

that satisfies the following two axioms:

(1) Strict Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint
morphisms in Loc, their observables commute in A(N): the commutator map[

A(f1)(−),A(f2)(−)
]

: A(M1)⊗ A(M2) −→ A(N)

is the zero map.
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(2) Homotopy time-slice: if f : M → N is a Cauchy morphism in Loc, then it induces
an weak equivalence

A(f) : A(M)
∼−−→ A(N)

in dgAlgAsC .

The category of semi-strict homotopy algebraic quantum field theories on Loc is the full
subcategory

hQFT(Loc) ⊆ dgAlgAsC
Loc

and hQFT(Loc) inherits the structure of a homotopical category since the weak equivalences
in dgAlgAsC

Loc are defined objectwise.

Remark 2.6.2. Involutions are an extra structure on the category of differential graded
As-algebras that are not governed by the operad (see Example 2.5.19 and also [BSW19b]).
So in order to streamline the following chapters, we have chosen to suppress the datum of
a ∗-involution in the above definition and in the text that follows. An added advantage of
this definition is that the category of homotopy algebraic quantum field theories is a model
category, as will be shown in Proposition 3.4.1.

In all examples constructed in this text, we find that we can add the involution if needed.
In particular, the linear homotopy algebraic quantum field theories obtained by the canonical
commutation relations functor CCR (3.4.2) admit an extension of the involution (2.3.5), see
Appendix A in [BBS20]. As such, the linear Yang-Mills model obtained in Theorem 4.4.12
does, too.

We will propose another characterization of the homotopy time-slice axiom in Definition
3.4.12. We will sometimes drop the prefix semi-strict in this text; however, every field theory
considered will satisfy the strict Einstein causality axiom.

Picking different algebraic categories and adapting the axioms accordingly we find semi-
strict homotopy versions of Definitions 2.3.6 and 2.3.8 of algebraic classical and linear field
theories.

Definition 2.6.3. A semi-strict homotopy algebraic classical field theory on Loc is a
functor

A : Loc −→ dgAlgPois

that satisfies two axioms:

(1) Strict Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint
morphisms in Loc, the induced Poisson bracket A(N){

A(f1)
(
−
)
,A(f2)

(
−
)}

N
: A(M1)⊗ A(M2) −→ A(N)

is the zero map.
(2) Homotopy time-slice: if f : M → N is a Cauchy morphism in Loc, then it induces

a weak equivalence

A(f) : A(M)
∼−−→ A(N)

in dgAlgPois.

The semi-strict homotopy algebraic classical field theories form the full homotopical sub-
category

hClFT(Loc) ⊆ dgAlgPois
Loc .
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Definition 2.6.4. A semi-strict homotopy algebraic linear field theory on Loc is a functor

(L, τ) : Loc −→ PoissChR

that satisfies two axioms:

(1) Strict Einstein causality: if f1 : M1 → N and f2 : M2 → N are causally disjoint
morphisms in Loc, the induced Poisson structure

τN
(
L(f1)(−),L(f2)(−)

)
L(M1)⊗ L(M2) −→ R

is equal to zero.
(2) Homotopy time-slice: if f : M → N is a Cauchy morphism in Loc, then it induces

a weak equivalence
L(f) : L(M)

∼−−→ L(N)

in PoissChR.

The semi-strict homotopy algebraic linear field theories form the full homotopical sub-
category

hLFT(Loc) ⊆ PoissChR
Loc .

We see that all of our categories of homotopy field theories are homotopical categories,
with objectwise quasi-isomorphisms as weak equivalences. In Proposition 3.4.1 we will see
that the categories of field theories valued in operad algebras (i.e. the classical field theories
and the quantum field theories) are in fact model categories with these classes of weak
equivalences.

We end by extending Definitions 2.3.5 and 2.3.11 of (linear) quantum fields to the context
of differential graded algebras.

Definition 2.6.5. Let A ∈ hQFT(Loc) be a homotopy algebraic quantum field theory,
and let E be a graded vector space with a differential on Γc(E

∗). A quantum field of type E
is a natural transformation

Φ̂ : Γc(E
∗) −→ A

between the underlying functors of chain complexes.
If (L, τ) is a homotopical linear field theory, a linear field of type E is a natural transfor-

mation
Φ : Γc(E

∗) −→ L

between the underlying functors of chain complexes. The corresponding linear quantum field
of type E of A = CCR(L, τ) (see Section 3.4.2 for a description of the canonical quantization
scheme for chain complex-valued theories) is the natural transformation

Φ̂ = ι1 ◦ Φ : Γc(E
∗) −→ A

where ι1 : L→ A is the canonical natural transformation.



CHAPTER 3

Operadic quantization

In this chapter we build on the work done in [BSW20] on operads for algebraic quantum
field theory, expanding it to any uncolored operad. We recast the Einstein causality axiom in
terms of operads, and then define algebraic field theories as algebras over a field theory operad.
Varying spacetime categories leads to adjunctions related to descent and the time-slice axiom,
while the canonical operad map uLie→ As yields a linear quantization adjunction. We end by
treating linear quantization for chain complex valued theories, which will be used throughout
the rest of this thesis. The results in this chapter have earlier appeared in [BS19b] and were
summarized in [Bru19].

3.1. Formalizing the definition of algebraic field theories

In this section we recast our definitions of algebraic quantum field theory (Definition
2.3.1) and algebraic classical field theory (Definition 2.3.6) into an operadic form. Broadly
speaking, our definitions of field theory1 incorporated two data: a spacetime category C
(such as Loc or COpens(M)) and a choice of algebraic structure (such as an associative
algebra or a Poisson algebra). We now recognize the latter as a choice of operad P governing
the algebraic structure of the field theory, and we note that this choice comes with a third
one, that of the closed symmetric monoidal category T. For now, we fix T and assume it is
complete and cocomplete; we will start investigating what happens if it is a model category
in Section 3.4.

Field theories are then functors C → AlgP satisfying two properties, Einstein causality
and time-slice. We would like to formalize these two properties, turning them into structure
built into the functors. For the time-slice axiom, this entails localizing at the Cauchy mor-
phisms. This is the topic of Section 3.3.2. Formalizing Einstein causality is more involved,
and it is one of the reasons for developing the operadic definition of field theory.

To start with we formalize spacetime categories with a notion of pairs of causally disjoint
maps (Definition 2.2.10).

Definition 3.1.1. An orthogonal category C = (C,⊥) is a small category C with an
orthogonality relation ⊥: a set of orthogonal maps ⊥ ⊆ Mor C t × t Mor C. This notation

means that ⊥ consists of pairs of morphisms in C with a common target, (f1, f2) = (c1
f1−→

c
f2←− c2); f1 and f2 are called orthogonal. We write f1 ⊥ f2 for (f1, f2) ∈⊥ and we demand

that ⊥ is

• symmetric: if f1 ⊥ f2 then f2 ⊥ f1;

• stable under composition: if (f1, f2) = (c1
f1−→ c

f2←− c2) ∈⊥ then for c
g−→ c′ in C and

c′i
hi−→ ci, gf1h1 ⊥ gf2h2.

1We will mostly drop the prefix “algebraic” from now on

68
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A functor F : C → D between orthogonal categories is called orthogonal if it preserves
orthogonality: if f1 ⊥C f2 then F (f1) ⊥D F (f2). We write OrthCat for the category of
orthogonal categories and orthogonal functors.

Example 3.1.2. The category of globally hyperbolic spacetimes Loc, with the pairs of
causally disjoint maps as pairs of orthogonal maps, would be an orthogonal category if it
were small. Abusing notation, we will from here on out write Loc for any small category
equivalent to Loc, and Loc = (Loc,⊥Loc) is the orthogonal category for which ⊥Loc is the
set of pairs of causally disjoint maps.

Similarly, Loc� and COpens(M) are orthogonal categories choosing causally disjoint
pairs as orthogonal maps. Another example is the category Man of smooth manifolds with
open embeddings as morphisms, where the orthogonal pairs are the pairs of maps with disjoint
images.

Lemma 3.1.3. Let F : C→ D be a functor between small categories.

• If D is an orthogonal category with orthogonality relation ⊥D, then

F ∗(⊥D) :=
{

(f1, f2)|F (f1) ⊥D F (f2)
}

defines an orthogonality relation on C. We call F ∗(⊥D) the pullback of ⊥D along F .
F : (C, F ∗(⊥D))→ (D,⊥D) is an orthogonal functor.
• If ⊥C is an orthogonality relation on C, then

F∗(⊥C) :=
{

(gF (f1)h1, gF (f2)h2)|f1 ⊥C f2; g, h1, h2 ∈Mor D
}

defines an orthogonality relation on D. We call F∗(⊥C) the pushforward of ⊥C along
F . F : (C,⊥C)→ (D, F∗(⊥C)) is an orthogonal functor.

Proof. This follows immediately from Definition 3.1.1. �

Einstein causality says that these orthogonal pairs of morphisms should lead to commuting
observables at the level of algebras, so the next step is to formalize what “commuting” means
in this framework. Define the uncolored sequence I[2] ∈ Seq(T) as

I[2](n) =

{
I n = 2

∅ n 6= 2

where I ∈ T is the monoidal unit.

Definition 3.1.4. A bipointed (of arity 2) uncolored operad Pr = (P , r1, r2) is an uncol-
ored operad P ∈ Op(T) together with two Seq(T)-morphisms

r1, r2 : I[2] ⇒ U(P).

Recall that U : Op(T)→ Seq(T) is the forgetful functor; we will suppress the U when able,
and just write ri : I[2]→ P for the Seq(T)-morphisms.

We say that an Op(T)-morphism φ : Pr → Qs of bipointed operads preserves the points
if the diagram

I[2]
ri
// P

φ

��

I[2] si
// Q



70 3. OPERADIC QUANTIZATION

in Seq(T) commutes for both i. We then define Op2pt(T) to be the category of bipointed
uncolored operads with Op(T)-morphisms that preserve the points as morphisms.

The maps r1 and r2 pick out two arity 2 operations in P , and we will interpret “commut-
ing” to mean that these two operations are equal. Note that this definition could easily be
extended to operations of higher arity, encoding more general conditions than commutation,
and that likewise the definition of orthogonal category can include n-tuples of orthogonal
morphisms; since we will not use any other operations than binary ones we have restricted
to the arity 2 case.

We can now give a definition of a field theory satisfying Einstein causality in this language
(recall that the time-slice axiom will be treated later).

Definition 3.1.5. Let C = (C,⊥) be an orthogonal category, and Pr be a bipointed
uncolored operad. A field theory of type Pr on C is a functor

A : C −→ AlgP

such that for all (c1
f1−→ c

f2←− c2) ∈⊥, the diagram

I ⊗ A(c1)⊗ A(c2)

r2⊗A(f1)⊗A(f2)

��

r1⊗A(f1)⊗A(f2)
// P(2)⊗ A(c)⊗2

αPc
��

P(2)⊗ A(c)⊗2

αPc

// A(c)

(3.1.1)

commutes, where αPc is the action of P on the algebra A(c).
The category of field theories of type Pr on C is a full subcategory of AlgP

C, which we
call FT(C,Pr).

Note that we define FT(C,Pr) ⊆ AlgP
C to be a full subcategory, so we do not impose any

conditions on the morphisms. Since morphisms in AlgP
C are natural transformations in AlgP

they respect both the algebraic structure and the functoriality in C, so they automatically
preserve the structures that encode Einstein causality and any such natural transformation
is a satisfactory morphism of field theories.

As expected, our previous definitions of (algebraic) field theories (without the time-slice
axiom) fit into the framework of Definition 3.1.5. Note that in Section 2.3.2 we implicitly used
the closed symmetric monoidal category T = VectK; we will see that the below definitions
work in larger generality.

Example 3.1.6. Let C an orthogonal category. An (algebraic) quantum field theory (see
Definition 2.3.1) on C is a field theory of type Asµ,µ

op

(see Example 2.5.10), where µ and µop

pick out the multiplication and opposite multiplication, respectively:

µ : I[2] −→ As ; µop : I[2] −→ As

1 7−→ =
1 2

1 7−→
2 1

.

If T is additive, we can also present quantum field theories using the commutator [ , ] :=
µ− µop and 0, which turns out to be more convenient for the purpose of linear quantization.
These two definitions are equivalent, so we have

QFT(C) := FT(C,Asµ,µ
op

) ∼= FT(C,As[ , ],0).
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Example 3.1.7. Let T be additive and let C be an orthogonal category. A classical field
theory (see Definition 2.3.6) on C is a field theory of type Pois{ , },0 (see Example 2.5.12),
where { , } picks out the Poisson bracket operation in Pois:

{ , } : I[2] −→ Pois

1 7−→

(recall that corresponds to the Poisson bracket, while corresponds to the commutative
multiplication in the notation of Example 2.5.12). So we have

ClFT(C) := FT(C,Pois{ , },0).

As observed in Remark 2.3.7, the Klein-Gordon theory constructed in Section 2.3.1 is a
free theory. This means that both the classical and the quantum theories can be constructed
from the linear observables LKG in a straightforward way. We will treat the process of linear
quantization in our operadic language in Section 3.3.4; for now we will give an operadic
definition of linear field theories.

Example 3.1.8. Trying to define linear field theories (see Definition 2.3.8) we run into an
issue: for a Poisson vector space (V, τ) the Poisson structure τ : V ⊗ V → R lands in R, not
V . As such PoissVectR is not a category of algebras over an operad, and Definition 2.3.8
of linear field theory is not a field theory in the sense of Definition 3.1.5. This is resolved by
taking the Heisenberg Lie algebra of (V, τ), in effect complexifying V and adding the ground
field to it. We define

heis : PoissVectR −→ AlguLieC
(V, τ) 7−→

(
VC ⊕ C, [ , ]

)
where the bracket is defined by

[v1 ⊕ λ1, v2 ⊕ λ2] := 0⊕ iτ(v1, v2)

and 0⊕ 1 is the unit.
So we adapt Definition 2.3.8 and we say that if T is additive, a linear field theory on C

is a field theory of type uLie[ , ],0 (see Example 2.5.13) where [ , ] picks out the Lie bracket
operation in uLie:

[ , ] : I[2] −→ uLie

1 7−→ .

and we have
L̃FT(C) := FT(C, uLie[ , ],0).

Remark 3.1.9. The pushforward along heis defines a functor of functor categories,

heis∗ : PoissVectR
C −→ AlguLieC

C .

Recall Definitions 2.3.8 and 2.3.9. From the definition of the Lie bracket on heis(V, τ) it is
clear that if L ∈ LFT(C) satisfies Einstein causality, so does heis∗(L). Moreover, looking
ahead, if L satisfies the time-slice axiom, so does heis∗(L). So heis∗ restricts to a functor of
field theories,

heis∗ : LFT(C) −→ L̃FT(C)

Note that while the above definition of L̃FT(C) works for any additive closed symmetric
monoidal category T, for a linear field theory to be of the form heis∗(L) for L ∈ LFT(C),
we require that T = VectC (and we will see in Section 3.4 that T = ChC also works).
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3.2. Field theories as algebras over field theory operads

We will now translate our definition of field theories to yet another form, realizing them
as an algebra over a colored operad (as opposed to a functor with values in algebras over an
uncolored operad, as in last section). First, we reformulate AlgP

C as the algebras over an
obj(C)-colored operad PC. Then, we implement our generalized version of Einstein causality
from the previous section, building it into the definition of the field theory operad Pr

C
.

Throughout this section we will use the multi-morphism sets

C(c, t) :=
∏
i

C(ci, t)

which have elements f = (f1, . . . , fn) ∈ C(c, t). The multi-morphisms carry a permutation
group action

fσ = (fσ(1), . . . , fσ(n)) ∈ C(cσ, t)

for σ ∈ Σn and f ∈ C(c, t), and a composition defined by composition in C,

f(g
1
, . . . , g

n
) = (f1g11, . . . , fngnkn) ∈ C(b, t)

for f ∈ C(a, t) and g
i
∈ C(bi, t). With the unit id ∈ C(t, t) it becomes an operad.

Recall the definition of a colored operad, Definition 2.5.3, and recall that we have fixed a
closed symmetric monoidal category T that is complete and cocomplete. In particular, this
means that we can Set-tensor (see Definition 2.1.44).

Definition 3.2.1. Let C be a small category with set of objects C0 := obj(C) and let
P be an uncolored operad valued in T. We define PC ∈ OpC0

(T), the C-coloring of P , as
the following C0-colored operad.

• For (c, t) ∈ C0
n ×C0,

PC

(
t
c

)
:= C(c, t)⊗ P(n)

with inclusion maps ιf : P(n)→ PC

(
t
c

)
for f = (f1, . . . , fn) ∈ C(c, t).

• For (c, t) ∈ C0
n ×C0 and σ ∈ Σn, the permutation action PC(σ) is defined by

P(n)
P(σ)

//

ιf

��

P(n)

ιfσ

��

PC

(
t
c

) PC(σ)
// PC

(
t
cσ

)
for all f = (f1, . . . , fn) ∈ C(c, t).

• For (a, t) ∈ C0
n × C0 and (bi, ai) ∈ C0

ki × C0, the operadic composition γPC is
defined by

P(n)⊗
⊗

iP(ki)
γP

//

ιf⊗ιg1⊗···⊗ιgn
��

P(
∑

i ki)

ιf(g
1
,...,g

n
)

��

PC

(
t
a

)
⊗
⊗

iPC

(ai
bi

) γPC
// PC

(
t
b

)
for all f = (f1, . . . , fn) ∈ C(a, t) and g

i
= (gi1, . . . , giki) ∈ C(bi, ai).
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• The operadic unit 1PC is defined by

I
1
P
//

1
PC

!!

P(1)

ιidc
��

PC

(
c
c

)
for all c ∈ C0.

Checking that this defines a colored operad is straightforward but lengthy; essentially,
this follows because P is an (uncolored) operad, and because composition in C works in an
appropriate way.

The central result about PC is the following, which tells us that PC encodes the functors
on C valued in AlgP .

Lemma 3.2.2. Let C be a small category and P be an uncolored operad. Then there is
a canonical isomorphism

AlgPC

∼= AlgP
C.

Proof. By Definition 2.5.16 an algebra over PC is a family of objects Ac ∈ T for each
c ∈ C0, with a PC-action

α : PC

(
t
c

)
⊗ Ac → At.

Because PC is a coproduct and T is closed (see Remark 2.1.43), the definition of the operad
action is equivalent to a famliy of T-morphisms

αf : P(n)⊗ Ac → At

for all n ≥ 0, (c, t) ∈ C0
n × C0 and f ∈ C(c, t), satisfying the three axioms of Definition

2.5.16: the diagrams [
P(n)⊗

⊗
iP(ki)

]
⊗ Ab

γP⊗id
//

permute

��

P(
∑

i ki)⊗ Ab

αf(g
1
,...,g

n
)

��

P(n)⊗
⊗

i

[
P(ki)⊗ Abi

]
id⊗

⊗
i αgi

��

P(n)⊗ Aa
αf

// At

(3.2.1a)

I ⊗ Ac

1
P⊗id &&

λ

∼=
// Ac

P(1)⊗ Ac
αidc

::

(3.2.1b)

P(n)⊗ Ac
O(σ)⊗permute

//

αf
$$

P(n)⊗ Aaσ

αfσ
yy

At

(3.2.1c)

commute.
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The first diagram and the right unitality axiom for P imply that for any f ∈ C(c, t), αf
factorizes as

P(n)⊗
[⊗

i I ⊗ Aci
] ∼=

λ
//

id⊗
⊗
i 1
P⊗id

��

P(n)⊗ Ac

αf

��

P(n)⊗
⊗

i

[
P(1)⊗ Aci

]
id⊗

⊗
i αfi

��

P(n)⊗ At⊗n
αidt

// At

(3.2.2)

since f = (f1, . . . , fn) = (idt, . . . , idt)(f1, . . . , fn), where the sequence of identities idt =
(idt, . . . , idt) is also of length n. So the PC action is uniquely specified by the T-morphisms

α̃t := αidt : P(n)⊗ At⊗n → At

for all n ≥ 0 and all t ∈ C0, and

A(f) := αf (1
P ⊗ id)λ−1 : Ac → At

for all f : c→ t in C. Using f = idt in the diagrams (3.2.1) we see that (At, α̃t) is a P-algebra
for every t ∈ C0. And using n = 1 we see that A : C→ AlgP(T) defines a functor.

Reversing this argument, equation (3.2.2) defines a PC-algebra structure on a functor
A : C→ AlgP , A(c) = (Ac, α̃c). Using this correspondence between PC-algebras and functors
C→ AlgP we see that an AlgPC

-morphism exactly translates to a natural transformation of
functors valued in AlgP . �

Now we turn our attention to the generalized Einstein causality axiom as implemented
in Definition 3.1.5. As such, fix an orthogonal category C = (C,⊥) and a bipointed operad
Pr = (P ; r1, r2 : I[2] ⇒ P). For (c, t) ∈ C0

n ×C0 we define

⊥(c, t) := ⊥ ∩ C(c, t);

note that ⊥(c, t) can only be nonempty if |c| = n = 2 because ⊥ was defined as a set of pairs
of maps. The C0-colored sequence of relations R⊥ ∈ SeqC0

(T) is then defined as

R⊥
(
t
c

)
:= ⊥ (c, t)⊗ I

which is also only nontrivial if |c| = n = 2. The two morphisms ri : I[2] → P are extended
to SeqC0

(T)-morphisms

ri,C : R⊥
(
t
c

)
→ PC

(
t
c

)
through

I
ri

//

ιf

��

P(2)

ιf

��

R⊥
(

t
(c1,c2)

) ri,C
// PC

(
t

(c1,c2)

)
for all f = (f1, f2) ∈ ⊥((c1, c2), t).
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Definition 3.2.3. Let C be an orthogonal category and Pr be a bipointed operad. We
define Pr

C
, the operad of field theories of type Pr on C, as the coequalizer

F (R⊥)
r2,C

//

r1,C
// PC

// Pr
C

(3.2.3)

in OpC0
(T), where F : SeqC0

(T)→ OpC0
(T) is the free operad functor of Theorem 2.5.8.

This, it turns out, is the correct definition of an operad encoding Einstein causality, as
evidenced by the following result.

Theorem 3.2.4. Let C be an orthogonal category and Pr be a bipointed operad. Then
there exists a canonical isomorphism

AlgPr
C

∼= FT(C,Pr)

between the category of algebras over the field theory operad Pr
C

of Definition 3.2.3 and the

category of field theories on C of type Pr from Definition 3.1.5.

Proof. The operad Pr
C

is defined as a coequalizer in Definition 3.2.3, so the Pr
C

-action
on an algebra A is equivalently defined by a morphism

PC

(
t
c

)
⊗ Ac −→ At

for all (c, t) ∈ C0
n ×C0, i.e. a PC-action, such that the operations picked out by r1,C, r2,C :

R⊥
(
t
c

)
→ PC

(
t
c

)
result in the same action on A. This means that for (f1, f2) ∈ ⊥

(
(c1, c2), t

)
,

the diagram

I ⊗ Ac1 ⊗ Ac2
r2,C⊗id⊗id

//

r1,C⊗id⊗id

��

P(2)⊗ Ac1 ⊗ Ac2
αf1,f2
��

P(2)⊗ Ac1 ⊗ Ac2
αf1,f2

// At

commutes, where we use the notation αf from the proof of Lemma 3.2.2. Using the isomor-
phism constructed in Lemma 3.2.2, we see that this exactly translates to a functor on C
valued in AlgP satisfying the diagram given in Definition 3.1.5, i.e. a field theory of type Pr
on C. �

Remark 3.2.5. This construction gives yet another way of characterizing (algebraic) field
theories. As such, the quantum field theories of Example 3.1.6, the classical field theories of
Example 3.1.7 and the linear field theories of Example 3.1.6 (formalized as Heisenberg Lie
algebras) are all algebras over the corresponding colored operad.

Having formalized our definition of field theory as algebras over the operad Pr
C

we will

now examine the relations between different kinds of field theory by varying C and Pr. Before
we do this, we must first check that the assignment (C,Pr) 7→ Pr

C
is appropriately functorial.

Recall that the orthogonal categories were collected in the category OrthCat, see Definition
3.1.1, and the uncolored bipointed operads were collected in the category Op2pt(T), see
Definition 3.1.4.

Proposition 3.2.6. The construction of Pr
C

in Definition 3.2.3 naturally extends to a
functor

OrthCat×Op2pt(T) −→ COp(T)

into the category COp(T) of operads with varying colors.
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Proof. A morphism in OrthCat×Op2pt(T) is of the form

(G, φ) : (C,Pr) −→ (D,Qs)

where G : C → D is an orthogonal functor and φ : Pr → Qs is a morphism of bipointed
uncolored operads. This defines an COp(T)-morphism of the colored operads

φG : PC −→ QD

through the components

P(n)
φ

//

ιf

��

Q(n)

ιG(f)

��

PC

(
t
c

) φG
// QD

(
G(t)
G(c)

)
= G∗QD

(
t
c

)
.

Similarly, this defines a morphism of C0-colored sequences

RG : R⊥C
−→ UC0G

∗FD0R⊥D

through the components

I

ιf

��

I

ηR⊥D
,Gt,Gc ιG(f)

��

R⊥C

(
t
c

) RG
// UD0FD0R⊥D

(
G(t)
G(c)

)
= UC0G

∗FD0R⊥D

(
t
c

)
.

Recall Theorem 2.5.8: here we use both the free-forget adjunction FC0 a UC0 for C0-colored
operads and sequences, and the free-forget adjunction FD0 a UD0 for D0-colored operads
and sequences. The morphism ηR⊥D

,Gt,Gc is the unit for the adjunction FD0 a UD0 at the

component R⊥D

(
G(t)
G(c)

)
.

Because G is an orthogonal functor and φ preserves the points, this yields a morphism of
parallel pairs: the diagram

FC0(R⊥C
)

r2,C
//

r1,C
//

RG

��

PC
//

φG

��

Pr
C

G∗FD0(R⊥D
)

s2,C
//

s1,C
// G∗QD

// colim
(
G∗FD0(R⊥D

)
s2,C

//

s1,C
// G∗QD

)
commutes in OpC0

when either taking r1 and s1, or r2 and s2. Because forming colimits is
functorial, this gives an OpC0

-morphism

Pr
C
−→ colim

(
G∗FD0(R⊥D

)
s2,C

//

s1,C
// G∗QD

)
. (3.2.4)

Pulling back the defining diagram (3.2.3) of QD along G we get

G∗FD0(R⊥D
)

s2,C
//

s1,C
// G∗QD

// G∗Qs
D
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noting that G∗(si,D) = si,C. The universal property of the colimit then yields the morphism

colim
(
G∗FD0(R⊥D

)
s2,C

//

s1,C
// G∗QD

)
−→ G∗Qs

D
. (3.2.5)

Composing the morphisms (3.2.4) and (3.2.5) results in the desired operad morphism

φG : Pr
C
−→ G∗Qs

D

which is the operadic part of the COp(T)-morphism

(G, φG) : (C0,PrC) −→ (D0,QsD)

which we also denote by φG. �

3.3. Field theory adjunctions: universal constructions

With the operadic definition of field theory and the functoriality of Pr
C

we can now reap
the rewards, constructing adjunctions between field theories of different types. Proposition
3.2.6 tells us that for any morphism (F, φ) : (C,Pr)→ (D,Qs) in OrthCat×Op2pt(T) we
get a morphism of colored operads

φF : Pr
C
−→ Qs

D

in COp(T). Using Theorems 2.5.22 and 3.2.4 this yields an adjunction

(φF )! : FT(C,Pr) // FT(D,Qs) : (φF )∗oo (3.3.1)

of categories of field theories.
The morphism φF has two ingredients, F and φ, and we have

φF = idF ◦ φid = φid ◦ idF .

As such, a pair (F, φ) really determines a square of adjunctions

FT(C,Qs)

(φid)∗

��

(idF )!
// FT(D,Qs)

(idF )∗
oo

(φid)∗

��

FT(C,Pr)

(φid)!

OO

(idF )!
// FT(D,Pr).

(idF )∗
oo

(φid)!

OO

where the square formed by the right adjoints (the pullbacks (idF )∗ and (φid)∗) commutes
and, because left adjoints are unique up to unique natural isomorphism, the square formed
by the left adjoints (idF )! and (φid)! commutes up to natural isomorphism. By considering
the maps separately we can find a more explicit description of the pullbacks in this square
of adjunctions.

An orthogonal functor F : C→ D induces a pullback on the categories of functors,

F ∗ = (−) ◦ F : AlgP
D −→ AlgP

C.

Considering the definition of idF in Proposition 3.2.6 (for id : Pr → Pr) and the identification
of FT(C,Pr) with algebras over Pr

C
in Theorem 3.2.4 we see that (idF )∗ is the restriction of

this pullback F ∗ to the full subcategory FT(D,Pr), so we write

F ∗ := (idF )∗ : FT(D,Pr) −→ FT(C,Pr). (3.3.2)
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As a special case, if for C = (C,⊥) we consider the orthogonal functor

F := id : (C, ∅) −→ (C,⊥),

we see that

F ∗ : FT
(
(C,⊥),Pr

)
−→ FT

(
(C, ∅),Pr

)
= AlgP

C (3.3.3)

is the inclusion functor of the full subcategory FT(C,Pr) into the functor category AlgP
C, see

Definition 3.1.5. The left adjoint F! then establishes FT(C,Pr) as a reflective full subcategory
of AlgP

C.
A morphism φ : Pr → Qs in Op2pt(T) induces a pullback of algebras over uncolored

operads

φ∗ : AlgQ −→ AlgP

as in Definition 2.5.21, which can be used to push forward functors into algebra categories:

(φ∗)∗ = φ∗ ◦ (−) : AlgQ
C −→ AlgP

C.

And again, with the definition of φid (now for id : C → C) and the identification of field
theory categories and algebras over field theory operads, we see that (φid)∗ is the restriction
of (φ∗)∗ to the full subcategory FT(D,Pr), so we write

(φ∗)∗ := (φid)∗ : FT(C,Qs) −→ FT(C,Pr).

Combining these two findings, we find the following.

Lemma 3.3.1. The right adjoint (φF )∗ in the adjunction (3.3.1) has an explicit description
as either of the two compositions in the commutative diagram

FT(C,Qs)

(φ∗)∗
��

FT(D,Qs)F ∗
oo

(φ∗)∗
��

(φF )∗

uu

FT(C,Pr) FT(D,Pr).F ∗
oo

So we will find two different types of adjunctions: adjunctions that arise from an orthog-
onal functor F : C → D and adjunctions arising from a morphism of bipointed operads
φ : Pr → Qs, and we will study adjunctions of both types. F and φ determine a square of
adjunctions

FT(C,Qs)

(φ∗)∗
��

F!
// FT(D,Qs)

F ∗
oo

(φ∗)∗
��

FT(C,Pr)

(φ∗)!

OO

F!
// FT(D,Pr).

F ∗
oo

(φ∗)!

OO

(3.3.4)

where we denote the left adjoints of F ∗ and (φ∗)∗ by F! and (φ∗)!, respectively. Note that these
are the left adjoints for the field theory categories: both F ∗ : AlgP

D → AlgP
C and (φ∗)∗ :

AlgQ
C −→ AlgP

C have left adjoints, but the field theory left adjoints are not necessarily
the restictions of these left adjoints. As mentioned above, the square formed by the right
adjoints F ∗ and (φ∗)∗ commutes and the square of the left adjoints F! and (φ∗)! commutes
up to unique natural isomorphism, but the other two squares do not necessarily commute.
So we will also study the interplay of left and right adjoints in the above diagram.
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3.3.1. Full orthogonal subcategories: descent. The first type of adjunction we en-
counter is one arising from full orthogonal subcategories C ⊆ D. Recall Definition 2.1.20
of a full subcategory C ⊆ D: this is a category that contains only part of the objects of
D, but all of the morphisms in D between objects in C are also morphisms in C. Our
guiding example is the category Loc� ⊆ Loc. A natural question to ask about a field theory
A ∈ FT(Loc,Pr) is whether or not it is determined by its restriction to Loc�. This is the
issue of descent mentioned in Remark 2.3.3.

First we define full orthogonal subcategories.

Definition 3.3.2. Let D = (D,⊥D) be an orthogonal category. A full orthogonal sub-
category C ⊆ D is a full subcategory C ⊆ D with the pullback orthogonality relation:
f1 ⊥C f2 if and only if f1 ⊥D f2.

For a full orthogonal subcategory C ⊆ D, the embedding functor j : C → D defines an
orthogonal functor j : C→ D.

Proposition 3.3.3. Let j : C → D be a full orthogonal subcategory and Pr be a
bipointed uncolored operad. Then the field theory adjunction

j! : FT(C,Pr) // FT(D,Pr) : j∗oo (3.3.5)

exhibits FT(C,Pr) as a full coreflective subcategory of FT(D,Pr): the unit η : id→ j∗j! is
a natural isomorphism.

Proof. This is proven in Proposition 4.6 in [BSW20] for the case P = As. The proof
for the general case is completely similar: the image of a Pr

C
-algebra (A, α) under the left

adjoint j! is given by the colimit

j!(A) = colim
(
Pr

D
◦ j!(PrC ◦ A)

∂0
//

∂1

// Pr
D
◦ j!(A)

)
(3.3.6)

where Pr
C
◦ A denotes the free algebra (see Theorem 2.5.20) and the j! used in the colimit

is the left adjoint (2.5.7) to the pullback j∗ : TD0 → TC0 of categories of colored objects
(Definition 2.5.15). The map ∂0 is defined using the Pr

C
-action on A, while ∂1 is constructed

from the units and counits of both the adjunction j! a j∗ of categories of colored objects,
and of the adjunction F a U of Theorem 2.5.8, which involves the operadic composition of
the factor Pr

D
with j(Pr

C
).

At this point, one uses the fact that j is a full orthogonal inclusion, which implies that
j∗(Pr

D
) = Pr

C
and the fact that the left adjoint j! (2.5.7) has the particularly easy form

j!Xd =

{
Xd if d ∈ C

∅ if d /∈ C .

In turn, this is used to show that after applying the pullback j∗, the expression (3.3.6)
simplifies to

j∗j!(A) = colim
(
Pr

C
◦ (Pr

C
◦ A)

Pr
C
◦α
//

γ◦A
// Pr

C
◦ (A)

)
.

This coequalizer diagram is part of the diagram expressing associativity of the Pr
C

-action on
A, and by Lemma 4.3.3 in [Bor94] the colimit of the diagram is naturally isomorphic to A.
By Lemma 1.3 in [JM89] this proves the result. �
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Example 3.3.4. As mentioned in the introduction, one example of a full orthogonal
subcategory is the subcategory Loc� ⊆ Loc of globally hyperbolic spacetimes that are dif-
feomorphic to Rn, see Definition 2.2.12. The pullback orthogonality relation on Loc� is the
same as the one defined in Definition 3.1.2, and the functor j : Loc� → Loc gives the
adjuntion

j! : FT(Loc�,Pr) // FT(Loc,Pr) : j∗oo

between field theories on all of Loc on the right and field theories only defined on Loc�. We
saw in Lemma 3.3.1 that the right adjoint j∗ is the restriction of the pullback j∗ : AlgP

Loc →
AlgP

Loc� , which takes a field theory defined on all of Loc and restricts it to Loc�. The left
adjoint j! is more interesting: it takes a theory defined on Loc� and extends it to all globally
hyperbolic spacetimes of Loc. In [BSW20] it was shown that j! is a generalization and
refinement of Fredenhagen’s universal algebra construction, see [Fre90], [Fre93], [FRS92]
and [Lan14].

Remark 3.3.5. Let j : C → D be a full orthogonal subcategory. The right adjoint j∗

in the adjunction (3.3.5) is a pullback, so it is the functor restricting field theories on D to
C, while as per the example, we interpret the left adjoint j! as a universal extension functor.
Proposition 3.3.3 then tells us that for a theory B ∈ FT(C,Pr) on C, the restriction of the
extension of B, j∗j!(B), is isomorphic to B by the unit ηB of the adjunction. In other words,
j! extends field theories on C to D without changing their values on the category C where
they are defined.

This also functions as a sanity check for j!: in general, there is no guarantee that j!(B) is
non-trivial on any d ∈ D. For example, field theories that have local solutions but not always
global solutions on topologically non-trivial spacetimes might provide examples of theories
that are non-trivial on Loc� but trivial on other parts of Loc. And in fact, Fredenhagen’s
universal algebra may indeed be trivial in some cases, see e.g. [RV12] and [Lan14]. However,
Proposition 3.3.3 ensures that if B is non-trivial, so is j!(B), since its restriction j∗j!(B) is.

The adjunctions given by full orthogonal subcategories j : C→ D allow us to formalize a
local-to-global condition, which we will call a descent condition. A theory B ∈ FT(C,Pr) on
C will always yield a theory j!(B) on D. This is a theory that is completely determined by
its values on C and through the restriction functor j∗, j!(B) can again be made into a theory
on C. This naturally leads one to pose the reverse question: given a theory A ∈ FT(D,Pr),
is it determined by its values on C? In other words, is A ∼= j!j

∗(A)?

Definition 3.3.6. Let j : C → D be a full orthogonal subcategory. A field theory
A ∈ FT(D,Pr) on D is called j-local if the component εA : j!j

∗(A) → A of the counit is an
isomorphism. We write FT(D,Pr)j−loc ⊆ FT(D,Pr) for the full subcategory of j-local field
theories.

Corollary 3.3.7. If we restrict to FT(D,Pr)j−loc ⊆ FT(D,Pr) on the right side of the
adjunction (3.3.5), we get an adjoint equivalence

j! : FT(C,Pr) ∼
//
FT(D,Pr)j−loc : j∗oo .

Proof. This is immediate: Proposition 3.3.3 tells us that the unit of the adjunction is
an isomorphism, while the counit is an isomorphism by Definition 3.3.6. �
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Remark 3.3.8. In [Lan14] a similar condition was investigated, restricting to connected
spacetimes and using the categorical left Kan extension along j rather than the operadic left
Kan extension j!. It was shown there that Klein-Gordon theory is j-local in this sense.

3.3.2. Orthogonal localization: time-slice. We will now consider another adjunction
arising from varying the orthogonal category C, focusing on localizations L : C→ C[W−1].
In a loose sense this discussion is dual to the previous one: where in Section 3.3.1 we con-
sidered subcategories with a subset of objects but all possible morphisms, we now keep the
set of objects equal, while adding morphisms. The example we keep in mind is L : Loc →
Loc[Cauchy−1] where Cauchy is the set of Cauchy morphisms in Loc, see Definition 2.2.9.
This is of course related to the time-slice property of field theories. Recall Definition 2.4.15.

Definition 3.3.9. Let C = (C,⊥C) be an orthogonal category with a subset W ⊆
Mor C of morphisms. An orthogonal localization C[W−1] is given by a localization L : C→
C[W−1] of C at W , together with the pushforward orthogonality relation ⊥C[W−1]:= L∗(⊥C)
of ⊥C along L, see Lemma 3.1.3.

If L : C → C[W−1] is a localization of C at W , L : C → C[W−1] is an orthogonal
functor, and we can study the corresponding field theory adjunction.

Proposition 3.3.10. Let L : C → C[W−1] be an orthogonal localization, and Pr be a
bipointed uncolored operad. Then the field theory adjunction

L! : FT(C,Pr) // FT(C[W−1],Pr) : L∗oo (3.3.7)

exhibits FT(C[W−1],Pr) as a full reflective subcategory of FT(C,Pr): the counit ε : L!L
∗ →

id is a natural isomorphism.

Proof. We saw in (3.3.2) that the pullback L∗ : FT(C[W−1],Pr)→ FT(C,Pr) of field

theories is given by the restriction of the pullback L∗ : AlgP
C[W−1] → AlgP

C of functors. By
Definition 2.4.15 of localization, this pullback is fully faithful. Because FT(D,Pr) ⊆ AlgP

D is

a reflective full subcategory inclusion for both D = C and C[W−1], see (3.3.3), the restriction
to field theory categories is also fully faithful. �

Orthogonal localization is directly related to the time-slice axiom. We will use the fol-
lowing generalization.

Definition 3.3.11. A field theory A ∈ FT(C,Pr) is called W -constant if for any f : c→
c′ in W , A(f) : A(c) → A(c′) is an isomorphism. We write FT(C,Pr)W−const ⊆ FT(C,Pr)
for the full subcategory of W -constant field theories.

Proposition 3.3.12. The adjunction (3.3.7) restricts to an adjoint equivalence

L! : FT(C,Pr)W−const ∼
//
FT(C[W−1],Pr) : L∗ .oo

Proof. Recall from Lemma 2.1.15 that an adjunction is an adjoint equivalence when
either functor is fully faithful and essentially surjective. Proposition 3.3.10 proves that L∗ is
fully faithful: because the counit ε is an isomorphism, L∗ is a bijection on Hom-sets. So it
remains to prove that L∗ is essentially surjective on FT(C,Pr)W−const.

First, note that the image of L∗ lies in FT(C,Pr)W−const: if B ∈ FT(C[W−1],Pr), then
for any f ∈ W , Lf is an isomorphism in C[W−1] by the definition of localization. So B(Lf)
is an isomorphism, and therefore L∗(B)(f) = B(Lf) is, too, so L∗(B) is W -constant.
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For essential surjectivity, let A ∈ FT(C,Pr)W−const. The underlying functor A : C →
AlgP will send all f ∈ W to isomorphisms, so by definition of localization, it factors through
C[W−1]: there exists a B : C[W−1] → AlgP such that A is naturally isomorphic to BL =
L∗(B). By Definition 3.3.9 of orthogonal localization (and the definition of the pushforward

orthogonality relation, see Lemma 3.1.3), we see that in fact B ∈ FT(C[W−1],Pr): the
diagram corresponding to diagram (3.1.1) that B has to satisfy to be a field theory commutes
because A is a field theory and A and L∗(B) are naturally isomorphic in AlgP . �

Example 3.3.13. For our purposes, the central example of an othogonal localization is

L : Loc → Loc[Cauchy−1], the localization of Loc at all Cauchy morphisms. As noted in
Section 2.4.2, one can prove that this localization exists, though it is very hard to find a
workable model for it. Sidestepping this practical issue for the moment, such a localization
L gives the adjunction

L! : FT(Loc,Pr) // FT(Loc[Cauchy−1],Pr) : L∗oo

between the category of field theories without any condition for Cauchy morphisms on the

left and the category FT(Loc[Cauchy−1],Pr) on the right, which Proposition 3.3.12 tells
us is equivalent to the category of field theories satisfying the time-slice axiom. A field
theory A ∈ FT(Loc,Pr) then satisfies the time-slice axiom if and only if the corresponding
component of the unit ηA : A→ L∗L!(A) is an isomorphism.

The right adjoint L∗ is a pullback functor: it takes a theory B ∈ FT(Loc[Cauchy−1],Pr)
for which the time-slice axiom holds, and interprets it as a more general field theory L∗(B) ∈
FT(Loc,Pr), forgetting that the time slice axiom holds for L∗(B). The left adjoint can
then be viewed as a time-slicification functor: it makes a theory A ∈ FT(Loc,Pr) that not

necessarily satisfies the time-slice axiom into a theory L!(A) ∈ FT(Loc[Cauchy−1],Pr) that
does. Proposition 3.3.10 then tells us that this process of time-slicification is not too violent:

if B ∈ FT(Loc[Cauchy−1],Pr) is a theory for which the time-slice axiom holds, forgetting
this condition and then applying the time-slicification functor L! results in a theory L!L

∗(B)
that is isomorphic with B through the counit.

To give a concrete example of time-slicification and show that it does not in general lead
to trivial field theories, first recall the treatment of Klein-Gordon theory from Section 2.3.1.
There, we defined

LKG(M) := LKGoff-shell(M)
/{
Fψ ∈ LKGoff-shell(M)|Fψ

∣∣
SolKG

= 0
}

implementing the time-slice axiom for the linear observables by forming a quotient. Similarly,

say that B = A/I ∈ FT(Loc[Cauchy−1],Pr) is a field theory satisfying the time-slice axiom,
which is obtained from an off-shell theory A by dividing out an ideal I that implements the
equation of motion. What we mean by this is that the theory L∗(B) ∈ FT(Loc,Pr) is given
by the coequalizer

F (I) //
// A // L∗(B)

in FT(Loc,Pr) where F (I) is the free field theory generated by I and the two parallel maps
are the adjuncts of the inclusion I ↪→ U(A) and the zero map I → U(A) obtained through
the adjunction F a U (Theorem 2.5.8). Now apply L! to the above diagram. L! is a left
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adjoint, so it preserves colimits and we get

L!F (I) //
// L!(A) // L!L

∗(B) ∼=

εB
// B

as a coequalizer in FT(Loc[Cauchy−1],Pr). Proposition 3.3.10 provides the last arrow in
the diagram. We see that the field theory B = A/I equivalently may be presented as a
quotient of the time-slicification L!(A). Of course, this is true for any such B, so we find that
any on-shell quotient of the off-shell theory A can be also be obtained as a quotient of L!A.
So assuming the theory A allows for on-shell quotients, L!(A) is a nontrivial theory that in
particular contains the information for any such possible quotient.

3.3.3. Change of operad. We will now study the field theory adjunction

(φ∗)! : FT(C,Pr) // FT(C,Qs) : (φ∗)∗oo (3.3.8)

resulting from a change of operad φ : Pr → Qs while keeping the orthogonal category C fixed.
Specifically, we will see what happens to j-locality (see Definition 3.3.6) and W -constancy
(see Definition 3.3.11) under these kinds of adjunctions. In the next Section, we will consider
a specific case, that of linear quantization.

The general result on preserving j-locality and W -constancy is the following.

Proposition 3.3.14. Let φ : Pr → Qs be a morphism of bipointed uncolored operads
and C an orthogonal category, with corresponding adjunction of field theories (3.3.8).

(1) If j : D→ C is a full orthogonal subcategory, the left adjoint (φ∗)! in the adjunction
(3.3.8) preserves j-local field theories. (Note the reversal of C and D as compared
with Section 3.3.1.)

(2) If W ⊆ Mor C is a subset of morphisms in C, the right adjoint (φ∗)∗ in the
adjunction (3.3.8) preserves W -constant field theories.

Proof. Item (1): Let A ∈ FT(C,Pr) be j-local, so the counit εA : j!j
∗(A) → A is an

isomorphism. Then we have the commutative diagram

j!j
∗(φ∗)!(A)

ε
(φ∗)!(A)

// (φ∗)!(A)

j!j
∗(φ∗)!j!j

∗(A)

j!j
∗(φ∗)!εA ∼=

OO

ε
(φ∗)!j!j∗(A)

// (φ∗)!j!j
∗(A)

∼= (φ∗)!εA

OO

j!j
∗j!(φ

∗)!j∗(A)

∼=

OO

ε
j!(φ
∗)!j∗(A)

// j!(φ
∗)!j∗(A)

∼=

OO

j!(φ
∗)!j∗(A)

j!η(φ∗)!j∗(A)
∼=

OO

for the counit ε(φ∗)!(A) of (φ∗)!(A). The top diagram is the diagram (2.1.1) for the natural

transformation ε : j!j
∗ → id at the morphism (φ∗)!εA, so it commutes, and j!j

∗(φ∗)!εA and
(φ∗)!εA are isomorphisms because εA is. The middle diagram expresses the fact that the left
adjoints j! and (φ∗)! commute up to unique natural isomorphism, which was mentioned after
equation (3.3.4). The bottom diagram is the triangle identity (2.1.4) for the adjunction j! a j∗
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at (φ∗)!j∗A, and because of Proposition 3.3.3 we know that the unit η is an isomorphism.
The diagram proves that ε(φ∗)!(A) is an isomorphism, so (φ∗)!(A) is j-local.

Item (2): Let A ∈ FT(C,Qs) be W -constant: for any f : c → c′ in W , A(f) : A(c) →
A(c′) is an isomorphism. Then (φ∗)∗(A)(f) = φ∗(A(f)) is also an isomorphism, since φ∗ is a
functor, so (φ∗)∗(A) is W -constant. �

This is half of the answer to the question “does the adjunction (3.3.8) preserve j-locality
and W -constancy?” Note the symmetry of this result: the left adjoint (φ∗)! preserves j-local
theories, which form a coreflective subcategory, while the right adjoint (φ∗)∗ preserves W -
constant theories, which form a reflective subcategory. In fact, we could draw a diagram dual
to the one on j-locality to prove preservation of W -constancy: the essential ingredient is the
fact that the right adjoints in the square (3.3.4) commute and the left adjoints commute up
to unique natural isomorphism. The converse statements are not always true, but we do find
that the left adjoint preserves W -locality in a special case, as follows.

Recall that FT(C,Qr) is defined as a full subcategory of the functor category AlgQ
C and

that the right adjoint (φ∗)∗ on FT(C,Qr) is the restriction of (φ∗)∗ from the functor category
AlgQ

C to the field theory category FT(C,Qr). In turn, the right adjoint (φ∗)∗ on AlgQ
C is

the pushforward along the right adjoint φ∗ in the adjunction

φ! : AlgP
// AlgQ : φ∗oo

of algebras over uncolored operads. In contrast, the left adjoint (φ∗)! on FT(C,Pr) is in
general not related to the functor category. But we do have a candidate coming from this
adjunction of algebras over uncolored operads: the pushforward along φ!, i.e. the left adjoint
in the adjunction

(φ!)∗ : AlgP
C // AlgQ

C : (φ∗)∗oo . (3.3.9)

Proposition 3.3.15. Let φ : Pr → Qs be a morphism of bipointed uncolored operads,
C be an orthogonal category and W ⊆ Mor C be a subset. If the left adjoint (φ∗)! in the
adjunction (3.3.8) is naturally isomorphic to the restriction of (φ!)∗ in (3.3.9) from AlgP

C to
FT(C,Pr), (φ∗)! preserves W -constant field theories.

Proof. As in the proof of item (2) in Proposition 3.3.14, this is immediate: since (φ!)∗ is
the pushforward along the functor φ!, if A(f) is an isomorphism for f ∈ W , so is (φ!)∗(A)(f) =
φ!(A(f)). �

Let us investigate the condition of (φ∗)! being naturally isomorphic to the restriction of
(φ!)∗. The field theory operad Pr

C
was defined as a coequalizer in Definition 3.2.3. Say that

π : PC → PrC is the corresponding morphism in OpC0
(T). Then π defines an adjunction of

algebra categories

π! : AlgP
C // FT(C,Pr) : π∗oo

where we use Lemma 3.2.2 and Theorem 3.2.4 to rewrite both categories of algebras. One
immediately sees that π∗ is the inclusion functor of FT(C,Pr) into AlgP

C. Moreover, this
adjunction establishes FT(C,Pr) as a full reflective subcategory of AlgP

C, since π∗ is fully
faithful.
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For a morphism of bipointed uncolored operads φ : Pr → Qs we now get a square of
adjunctions

FT(C,Pr)

π∗

��

(φ∗)!

// FT(C,Qs)
(φ∗)∗

oo

π∗

��

AlgP
C

π!

OO

(φ!)∗
// AlgQ

C.
(φ∗)∗

oo

π!

OO

As before, the square of right adjoints (φ∗)∗ and π∗ commutes because both maps are pull-
backs, which implies that the square of left adjoints commutes up to unique natural isomor-
phism. In these terms, saying that (φ∗)! is naturally isomorphic to the restriction of (φ!)∗ is
saying that a third square commutes: that π∗(φ∗)! is naturally isomorphic to (φ!)∗π

∗.

Lemma 3.3.16. If (φ!)∗π
∗ factors through FT(C,Qs), i.e. if for A ∈ FT(C,Pr),
(φ!)∗π

∗(A) ∈ FT(C,Qs) ⊆ AlgQ
C,

then (φ∗)! is naturally isomorphic to the restriction of (φ!)∗.

Proof. Since (φ!)∗π
∗(A) ∈ FT(C,Qs), (φ!)∗π

∗(A) ∼= π∗(B) for a B ∈ FT(C,Qs), so
π∗π!(φ!)∗π

∗ ∼= (φ!)∗π
∗ since π!π

∗ is naturally isomorphic to id (because π∗ : FT(C,Qs) →
AlgQ

C is a reflective subcategory). So we find

(φ!)∗π
∗ ∼= π∗π!(φ!)∗π

∗ ∼= π∗(φ∗)!π!π
∗ ∼= π∗(φ∗)!

where the second equivalence holds because the left adjoints commute up to natural iso-
morphism, and the third one holds again because π∗ : FT(C,Qs) → AlgQ

C is a reflective
subcategory. �

3.3.4. Linear quantization. We will now consider a specific field theory adjunction
resulting from a change of operad: the quantization of linear field theories. Because we will
work with the unital Lie operad, we fix an additive closed symmetric monoidal category T.

Recall that we defined quantum field theories on an orthogonal category C as

QFT(C) := FT(C,As[ , ],0)

in Example 3.1.6, while we defined linear field theories on C as

L̃FT(C) := FT(C, uLie[ , ],0)

in Example 3.1.8. Consider the canonical uncolored operad morphism

φ : uLie→ As

which sends the unit of uLie to the unit of As and sends the generator [ , ] ∈ uLie representing
the Lie bracket to the commutator [ , ] = µ− µop ∈ As. Of course, this clearly also defines a
morphism of bipointed uncolored operads

φ : uLie[ , ],0 → As[ , ],0

so as before this yields a field theory adjunction

Qlin := (φ∗)! : L̃FT(C) // QFT(C) : (φ∗)∗ =: Ulin.oo (3.3.10)

It turns out that this is a linear quantization adjunction; in particular, Qlin makes a linear field
theory into a quantum field theory in a way that can rightfully be interpreted as quantization.
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First, consider Ulin. Writing out the functor φ∗ : AlgAs → AlguLie we find that it assigns to
an associative algebra with unit (A, µ, η) the Lie algebra with unit (A, [ , ] := µ− µop, η). So
this is the forgetful functor, that forgets the multiplication on an algebra, but remembers the
commutator. The corresponding pushforward Ulin = (φ∗)∗ simply carries out this operation
objectwise: for A ∈ QFT(C), Ulin(A) assigns φ∗(A(c)) ∈ AlguLie to each c ∈ C.

The left adjoint Qlin in the adjunction (3.3.10) can also be explicitly described, by con-
structing a model for the left adjoint φ! in the adjunction

φ! : AlguLie
// AlgAs : φ∗oo

in the spirit of Lemma 3.3.16: we will see that (φ∗)! is isomorphic to the restriction of (φ!)∗.
The construction is a variation of the well-known universal enveloping algebra U⊗(L) of a
Lie algebra L, which we call the unital universal enveloping algebra.

Start with a unital Lie algebra (V, [ , ], η) ∈ AlguLie and form the usual tensor algebra

T⊗(V ) :=
⊕
n≥0

V ⊗n ∈ AlgAs

as in Example 2.1.26, with multiplication µ⊗, unit η⊗ and inclusion ι1 in the direct summand
V ⊗1. The tensor algebra T⊗(V ) remembers nothing about the Lie bracket [ , ] or the unit η.
To remedy this, first consider the T-morphisms

V ⊗ V
q1:=(µ⊗−µop

⊗ )(ι1⊗ι1)
//

q2:=ι1[ , ]
// T⊗V

picking out the commutator in T⊗V and the Lie bracket on V (we suppress the forgetful
functor U : AlgAs → T here: to be precise we should write U(T⊗V )). By the adjunction
T⊗ a U this diagram in T defines an AlgAs-diagram of which we form the coequalizer

T⊗(V ⊗ V )
q1
//

q2
// T⊗V

π
// U⊗V

in AlgAs, which is the usual universal enveloping algebra of the Lie algebra (V, [ , ]). For the
unit η we consider the two T-morphisms

I
s1:=πι1η

//

s2:=πη⊗
// U⊗V

which compare η, the Lie unit of V ∈ AlguLie, and η⊗, the multiplicative unit of T⊗V ∈ AlgAs.
This again defines a diagram in AlgAs of which we take the coequalizer

T⊗(I)
s1
//

s2
// U⊗V

π′
// φ!(V ).

Both of the above diagrams in T implementing the bracket and the unit are clearly functorial
in AlguLie-morphisms. Because taking colimits is functorial, we find that we have a functor

φ! : AlguLie −→ AlgAs

Lemma 3.3.17. The functor φ! is left adjoint to the forgetful functor

φ∗ : AlgAs −→ AlguLie

described above.
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Proof. For V ∈ AlguLie and A ∈ AlgAs, we want a natural bijection

AlgAs(φ!(V ), A) ∼= AlguLie(V, φ
∗(A)).

An AlgAs-morphism κ : φ!(V )→ A defines a unital Lie morphism κπ′πι1 : V → φ∗(A) (recall
that φ∗(A) is the same T-object as A). Conversely, if ρ : V → φ∗(A) is an AlguLie-morphism,
the underlying T-morphism defines an AlgAs-morphism ρ : T⊗V → A which descends to the
quotients U⊗V and φ!(V ) because ρ is a unital Lie morphism. �

We now check the condition for Lemma 3.3.16 for our operad morphism φ : uLie→ As.

Proposition 3.3.18. If B ∈ L̃FT(C) is a linear field theory on C, the pushforward
along the unital universal enveloping functor (φ!)∗(B) = φ!B ∈ AlgAs

C is a quantum field
theory: (φ!)∗(B) ∈ QFT(C).

Proof. Let (c1
f1−→ c

f2←− c2) ∈⊥ be a pair of orthogonal maps in C = (C,⊥). Because

B ∈ L̃FT(C) is a field theory in the sense of Definition 3.1.5, the induced bracket[
B(f1)(−),B(f2)(−)

]
c

: B(c1)⊗B(c2) −→ B(c)

is the zero map (see Example 3.1.8). For (φ!)∗(B) ∈ AlgAs
C to be a quantum field theory, we

need the induced commutator[
φ!B(f1)(−), φ!B(f2)(−)

]
c

: φ!B(c1)⊗ φ!B(c2) −→ φ!B(c)

to also be the zero map (see Example 3.1.6). On linear observables (the image of π′πι1
in φ!B(ci)) this immediately follows from the definition of the universal enveloping algebra
U⊗(B(c)) above and the fact that B is a field theory. The fact that the Leibniz rule allows
us to expand the commutator of polynomials of linear observables then proves the general
case. �

The upshot of this proposition and Lemma 3.3.16 is now

Corollary 3.3.19. The restriction of the pushforward (φ!)∗ : AlguLie
C → AlgAs

C to the

field theory category L̃FT(C) is a model for the left adjoint Qlin : L̃FT(C) → QFT(C) in
the linear quantization adjunction (3.3.10).

Remark 3.3.20. With the explicit description of Qlin, we can now explain the name
“linear quantization functor”. Let T = VectK for K = R or C. Recall that in Definition
2.3.10 we defined the linear canonical quantization functor CCR : LFT(C) → QFT(C).
Using heis defined in Example 3.1.8 and the discussion there, we recognize that

Qlin ◦ heis∗ ∼= ccr∗ ∼= CCR : LFT(C) −→ QFT(C)

so Qlin is one half of the canonical quantization functor CCR.

Let us summarize the results of this section and add a proof of the claim in Definition
2.3.10, that the canonical quantization functor CCR preserves Einstein causality, the time-
slice axiom and the descent condition.

Corollary 3.3.21. Let C be an orthogonal category. The canonical operad morphism
φ : uLie→ As induces the linear quantization adjunction

Qlin := (φ!)∗ : L̃FT(C) // QFT(C) : (φ∗)∗ =: Ulin.oo (3.3.11)

Moreover,
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(1) If j : D → C is a full orthogonal subcategory, the linear quantization functor

Qlin : L̃FT(C) → QFT(C) maps j-local linear field theories to j-local quantum
field theories.

(2) If W ⊆ Mor C is a subset of morphisms, the linear quantization functor Qlin :

L̃FT(C)→ QFT(C) maps W -constant linear field theories to W -constant quantum
field theories.

Proof. Item (1) follows from item (1) in Proposition 3.3.14. Item (2) follows from
Proposition 3.3.15 and Corollary 3.3.19. �

3.4. Quantization of linear gauge theories

We now choose the closed symmetric monoidal category T to be the category of chain
complexes ChK over the field K = R or C. Of course, all constructions and results on field
theories from the previous sections still hold, but recall from Example 2.4.19 that ChK is
a model category. This in particular means that ChK has a class of weak equivalences, the
quasi-isomorphisms, which is a bigger class of morphisms than just the isomorphisms. We
will see that the model structure on ChK induces a model structure on the categories of
field theories. This raises the question that we will answer in the rest of the section: are our
constructions, definitions and results preserved under weak equivalences?

3.4.1. Model structures for field theory categories. Write hFT(C,Pr) for the
category of field theories FT(C,Pr) when Pr is valued in ChK. We start by defining a
model structure on hFT(C,Pr) that is induced by the model structure on ChK. This means
that the weak equivalences (and the fibrations) are defined objectwise, as one would expect.
Recall Definition 3.1.5.

Proposition 3.4.1. Let C be an orthogonal category and Pr ∈ Op2pt(ChK) be an
uncolored bipointed operad valued in chain complexes. If we define a field theory morphism
ζ : A→ B in hFT(C,Pr) (which is a natural transformation between the underlying functors
A,B : C→ dgAlgP) to be

(1) a weak equivalence if all the components ζc : A(c) → B(c) are weak equivalences
(i.e. quasi-isomorphisms) in ChK;

(2) a fibration if all the components ζc : A(c)→ B(c) are degreewise surjective in ChK;
(3) a cofibration if ζ has the left-lifting property with respect to acyclic fibrations;

then hFT(C,Pr) is a model category with these choices.

Proof. Recall Theorem 3.2.4: hFT(C,Pr) ∼= AlgPr
C

. The result then immediately

follows from Theorem 2.5.25. �

This proposition improves on the results from Section 2.6 that the objectwise quasi-
isomorphisms make dgAlgO

C and the subcategory of field theories into a homotopical cate-
gory, by showing that they make these categories into a model category. Note that here we
are still working with the category FT(C,Pr) of field theories, which means these theories
satisfy the strict Einstein causality axiom. So we are considering semi-strict field theories, as
mentioned in Section 2.6. We will cover the homotopy time-slice axiom in Definition 3.4.12.

Remark 3.4.2. With this model structure, every object A ∈ hFT(C,Pr) is fibrant: the
unique chain map from A(c) to the terminal object 0 (the chain complex that is {0} in every
entry) is always surjective for any c.
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The other result we will need for a model categorical treatment of our linear quantization
functor is the fact that our algebra adjunctions are Quillen adjunctions, see Definition 2.4.25.

Proposition 3.4.3. Let F : C → D be an orthogonal functor, and φ : Pr → Qs be a
morphism in Op2pt(ChK). Then the corresponding adjunction (3.3.1) of algebras is a Quillen
adjunction with respect to the model structures on hFT(C,Pr) and hFT(D,Qs) defined in
Proposition 3.4.1.

Proof. This is immediate with Remark 2.4.26, since the pullback (φF )∗ obviously pre-
serves weak equivalences and fibrations, which are both defined componentwise. �

3.4.2. Homotopical linear quantization. We now turn to the linear quantization of
chain complex-valued field theories. In Remark 3.3.20 we saw that linear quantization for
T = VectK consists of two parts:

CCR = ccr∗ ∼= Qlin ◦ heis∗
and both of these functors are pushforwards: we have Qlin = (φ!)∗ and

PoissVectR

ccr

++

heis
// AlguLieC φ!

// AlgAsC .

The morphism (φ!)∗ is of course defined for any additive T. The left morphism heis was
originally defined for T = VectR on the left and T = VectC on the right (since the tensor
product ⊗RC is involved) but it can easily be extended to Poisson chain complexes: for
(V, τ) ∈ PoissChR, VC := V ⊗R C is obtained by tensoring with C, the chain complex with
C at degree 0 as the only non-trivial entry (or equivalently, Vn⊗R C at each degree, with the
differentials extended linearly). An extra summand of C at degree 0 provides the Lie unit,
and the Lie bracket on heis(V, τ) :=

(
VC ⊕ C, [ , ]

)
is defined by

[v1 ⊕ λ1, v2 ⊕ λ2] := 0⊕ iτ(v1, v2) (3.4.1)

similarly as for vector spaces. Lastly, as in Remark 3.1.9 we immediately see that heis∗
preserves the Einstein causality axiom.

So we end up with the analogous quantization scheme for chain complex valued field
theories,

CCR = ccr∗ ∼= Qlin ◦ heis∗ (3.4.2)

with Qlin = (φ!)∗ and

PoissChR

ccr

,,

heis
// dgAlguLieC φ!

// dgAlgAsC (3.4.3)

where we now use the notation dgAlguLieC and dgAlgAsC to emphasize that we are working with
differential graded (i.e. chain complex-valued) algebras. This means that we can separately
investigate the homotopical properties of the two components heis∗ and Qlin. Since both
functors are pushforwards, and the weak equivalences in PoissChR and hFT(C,Pr) are
defined componentwise, it suffices to consider the functors heis and φ!.

For the functor heis : PoissChR → dgAlguLieC , recall Example 2.4.36: PoissChR is a
homotopical category, not a model category. The weak equivalences in PoissChR are the
Poisson morphisms f : (V, τ) → (V ′, τ ′) such that the underlying chain map f : V → V ′ is
a quasi-isomorphism in ChR. Since dgAlguLieC is a model category by Theorem 2.5.25 it is a
homotopical category with the componentwise quasi-isomorphisms as weak equivalences.
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Proposition 3.4.4. The functor heis is a homotopical functor: it preserves the weak
equivalences on PoissChR and dgAlguLieC .

Proof. This is immediate by the definition of heis and the definitions of weak equiva-
lences: f : V → V ′ is a quasi-isomorphism, so its extension heis(f) : VC ⊕ C → V ′C ⊕ C is
too. �

Since weak equivalences in h̃LFT(C) are defined objectwise in Proposition 3.4.1 and we
saw above that heis∗ preserves the Einstein causality axiom, we immediately find

Corollary 3.4.5. The functor

heis∗ : hLFT(C) −→ h̃LFT(C)

is a homotopical functor.

Another datum that can be weakly varied is the Poisson structure τ ∈ hom(V ∧V,R)0: we
can consider the chain homotopic Poisson structure τ+∂ρ for a homotopy ρ ∈ hom(V ∧V,R)1.

Proposition 3.4.6. For a Poisson complex (V, τ) ∈ PoissChR and a 1-chain ρ ∈
hom(V ∧ V,R)1 there exists a zig-zag

heis(V, τ) HV,τ,ρ
∼
oo

∼
// heis(V, τ + ∂ρ)

of weak equivalences in dgAlguLieC .

Proof. Consider the acyclic chain complex

D :=
( (−1)

C
(0)

Cid
oo

)
(3.4.4)

and write x := 1 ∈ D0 and y := dx = 1 ∈ D−1 for the two vectors spanning D. We construct
the interpolating object HV,τ,ρ ∈ dgAlguLieC as

HV,τ,ρ := VC ⊕D ⊕ C
(recall that the chain complex C is C concentrated in degree 0) with Lie bracket[

v1 ⊕ α1 ⊕ λ1, v2 ⊕ α2 ⊕ λ2

]
:= 0⊕

(
i(∂ρ)(v1, v2)x+ iρ(v1, v2)y

)
⊕ iτ(v1, v2)

and unit 0 ⊕ 0 ⊕ 1. For s ∈ R, define the differential graded unital Lie ideal Is ⊆ HV,τ,ρ to
be generated by the relations

0⊕ x⊕ 0 = 0⊕ 0⊕ s ; 0⊕ y ⊕ 0 = 0.

Forming the quotient we see that

HV,τ,ρ/Is ∼= heis(V, τ + s ∂ρ)

with quotient map

πs = idVC + qs : HV,τ,ρ −→ heis(V, τ + s ∂ρ)

which is the identity on VC and

qs : D ⊕ C −→ C
(c1x+ c2y)⊕ λ 7−→ sc1 + λ

on D⊕C. Since qs is a quasi-isomorphism, all πs are weak equivalences, and filling in s = 0, 1
now gives the desired result. �
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We now turn to the other ingredient of linear quantization. Recall the model structures

on h̃LFT(C) and hQFT(C) from Proposition 3.4.1 and the linear quantization adjunction
(3.3.11),

Qlin := (φ!)∗ : h̃LFT(C) // hQFT(C) : (φ∗)∗ =: Ulinoo .

By Proposition 3.4.3 this is a Quillen adjunction, so we can pursue the strategy of deriving
it as in Proposition 2.4.29, (co)fibrantly replacing on either side of the adjunction.

For Ulin we are in luck: since every object in hQFT(C) is fibrant (recall that the fibrations
are defined as objectwise surjections), R := id suffices as a fibrant replacement and we find

Proposition 3.4.7. The underived functor Ulin in the adjunction (3.3.11) is a model for
the derived functor RUlin.

For the left adjoint Qlin we are not done quite so quickly, since not every object in

h̃LFT(C) is cofibrant. However, we do have the following.

Proposition 3.4.8. The unital universal enveloping algebra functor φ! : dgAlguLieC →
dgAlgAsC constructed in Section 3.3.4 preserves weak equivalences, i.e. morphisms of differ-
ential graded algebras such that the underlying chain maps are quasi-isomorphisms.

Proof. Let ρ : V → V ′ be a weak equivalence in dgAlguLieC , i.e. a quasi-isomorphism.
Recall the construction of φ!: now working with T = ChC, we see that if (V, [ , ], η) ∈ dgAlguLie
is a differential graded unital Lie algebra, we have

φ!(V ) = T⊗V
/
I

where T⊗V is the tensor algebra

T⊗V =
⊕
n≥0

V ⊗n

and I is the differential graded ideal generated by

v1 ⊗ v2 − (−1)|v1||v2|v2 ⊗ v1 = [v1, v2] ; 1⊗ = 1

for all homogeneous elements vi ∈ V and the units 1⊗ = η⊗(1) of T⊗V and 1 = η(1) of V .
The tensor algebra T⊗V has a filtration

T≤mV :=
m⊕
n=0

V ⊗n

which allows us to define
φ!(V )m := T≤mV

/
(T≤mV ∩ I)

for all n ≥ 0. This in turn defines a sequential diagram

φ!(V )0 � � // φ!(V )1 � � // φ!(V )2 � � // · · ·

in ChC with colimit φ!(V ). Because filtered colimits are exact (Theorem 2.6.15 in [Wei95]),
they preserve quasi-isomorphisms, and it suffices to prove that the induced chain map

φ!(ρ) : φ!(V )m −→ φ!(V
′)m

is a quasi-isomorphism for all m.
Using the relations defining I, we see that the quotient of two neighbours in the sequence

is
φ!(V )m+1

/
φ!(V )m ∼= Ṽ ⊗m+1

/
Σm+1
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where Ṽ := V/C1 is the quotient of V by the unit and Σm+1 is the symmetric group acting on
the tensor product by permuting the entries. So we have a short exact sequence of complexes

0 // φ!(V )m // φ!(V )m+1 // Ṽ ⊗m+1
/

Σm+1
// 0 (3.4.5)

for all m ≥ 0. Form the long exact sequance of homology from the short exact sequence
(3.4.5),

· · · // Hl+1

(
V
m+1)

// Hl

(
φ!(V )m

)
// Hl

(
φ!(V )m+1

)
// Hl

(
V
m+1)

// Hl−1

(
φ!(V )m

)
// · · ·

writing V
m+1

for V ⊗m+1
/

Σm+1. Using the five lemma, we see that we can proceed by

induction on m, provided that ρ induces isomorphisms on the homology of Ṽ ⊗m
/

Σm. The
first steps of induction are clear: the chain maps(

φ!(ρ) : φ!(V )0 −→ φ!(V
′)0
)

=
(
id : C −→ C

)
and (

φ!(ρ) : φ!(V )1 −→ φ!(V
′)1
)

=
(
ρ : Ṽ −→ Ṽ ′

)
are clearly quasi-isomorphims.

For the chain complexes Ṽ ⊗m
/

Σm we have

H•(Ṽ
⊗m/Σm) ∼= H•((Ṽ

⊗m)Σm)

∼= (H•(Ṽ
⊗m))Σm

∼= (H•(Ṽ )⊗m)Σm .

Here we use the fact that for a finite group action G on a chain complex V over a field of
characteristic zero, we can use the projection 1

|G|
∑

g∈G g to show that the coinvariants V/G

are isomorphic to the invariants V G and taking the homology commutes with taking the
invariants. In the last step we use the Künneth formula for fields. So the induced map

ρ̃ : Ṽ ⊗m
/

Σm −→ Ṽ ′⊗m
/

Σm

is indeed a quasi-isomorphism, and we have proven the result. �

Corollary 3.4.9. The linear quantization functor Qlin in the adjunction (3.3.11) pre-
serves weak equivalences, and is therefore a model for the left derived functor LQlin.

Proof. The first claim follows from Proposition 3.4.8 and the fact that the weak equiv-

alences in h̃LFT(C) are defined objectwise in Proposition 3.4.1. The second claim follows
from Lemma 2.4.27. �

Combining our results on heis and Qlin we find

Proposition 3.4.10. The linear canonical quantization functor

CCR = Qlin ◦ heis∗ : hLFT(C) −→ hQFT(C)

is a homotopical functor: it preserves weak equivalences. Moreover, for a linear field theory
(V, τ) ∈ hLFT(C) and a natural 1-chain ρ ∈ hom(V ∧ V,R)1 there exists a zig-zag

CCR(V, τ) AV,τ,ρ
∼
oo

∼
// CCR(V, τ + ∂ρ)

of weak equivalences in dgAlgAsC .
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Proof. The first claim follows from Corollary 3.4.5 and Corollary 3.4.9. The second
follows from Proposition 3.4.6 and Corollary 3.4.9, with AV,τ,ρ = Qlin(HV,τ,ρ). �

3.4.3. Homotopical descent and time-slice. We end this chapter by considering ho-
motopical generalizations of j-locality (see Definition 3.3.6) and W -constancy (see Definition
3.3.11) in the context of the model category T = ChK, and investigating their behaviour
under the linear quantization functor Qlin.

First, consider a full orthogonal subcategory j : C→ D as in Section 3.3.1. Proposition
3.4.3 tells us that the field theory adjunction (3.3.5)

j! : hFT(C,Pr) // hFT(D,Pr) : j∗oo

is a Quillen adjunction. Since every object in hFT(D,Pr) is fibrant, R = id suffices as
a fibrant replacement, so we can choose Rj∗ = j∗ as a model for the right derived functor.
Unfortunately, the left adjoint j! will in general not preserve weak equivalences (see Appendix
A in [BSW19a]) so it has to be derived: Lj! = j!Q for a cofibrant replacement Q with natural

weak equivalence q : Q
∼−→ id. This also alters our Definition 3.3.6 of j-locality.

Definition 3.4.11. A field theory A ∈ hFT(D,Pr) on D is called homotopy j-local if
the component

ε̃A : j!Qj
∗(A)

j!qj∗(A)
// j!j
∗(A)

εA
// A

of the derived counit is a weak equivalence.

Now let C be an orthogonal category, and W ⊆ Mor C a subset of morphisms. The
natural homotopical generalization of Definition 3.3.11 is

Definition 3.4.12. A field theory A ∈ hFT(C,Pr) is called homotopy W -constant if for
any f : c→ c′ in W , A(f) : A(c)→ A(c′) is a quasi-isomorphism in ChK.

Compare Definition 2.6.1 of semi-strict homotopy algebraic field theories: we see that
such a theory on C is exactly a Cauchy-constant field theory A ∈ hFT(Loc,As[ , ],0).

Proposition 3.4.13. Let j : D→ C be a full orthogonal subcategory, and W ⊆Mor C

be a subset of morphisms. The linear quantization functor Qlin : h̃LFT(C) → hQFT(C)
(see (3.3.11) and Corollary 3.4.9) preserves homotopy j-local field theories and homotopy
W -constant field theories.

Proof. For homotopy j-locality, let B ∈ h̃LFT(C) be a homotopy j-local linear field
theory, so the derived counit ε̃B : j!Qj

∗(B) → B is a weak equivalence. We want to show
that the derived counit ε̃Qlin(B) : j!Qj

∗Qlin(B)→ Qlin(B) of the quantized theory Qlin(B) ∈
hQFT(C) is also a weak equivalence.
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First, consider the following diagram:

j!Qj
∗Qlin(B)

ε̃Qlin(B)
// Qlin(B)

j!Qj
∗Qlinj!︸ ︷︷ ︸
∼=j!Qlin

Qj∗(B)

j!Qj
∗Qlinε̃B ∼

OO

ε̃Qlinj!Qj
∗(B)

// Qlinj!︸ ︷︷ ︸
∼=j!Qlin

Qj∗(B)

Qlinε̃B∼

OO

j!Qj
∗j!QQlinQj

∗(B)

j!Qj
∗j!qQlinQj

∗(B) ∼
OO

ε̃j!QQlinQj
∗(B)
// j!QQlinQj

∗(B) .

j!qQlinQj
∗(B)∼

OO

The top vertical arrows are weak equivalences because ε̃B is, and because Qlin, j∗ and
j!Q = Lj! preserve weak equivalences. We have j!Qlin

∼= Qlinj! because the left adjoints
in the diagram (3.3.4) commute up to natural isomorphism. Left Quillen functors preserve
cofibrant objects, so QlinQj

∗(B) is cofibrant, and of course QQlinQj
∗(B) is cofibrant too.

By Ken Brown’s lemma (Lemma 2.4.30) the left Quillen functor j! preserves weak equiva-
lences between cofibrant objects, like qQlinQj∗(B) : QQlinQj

∗(B)→ QlinQj
∗(B). Since j∗ and

j!Q = Lj! preserve weak equivalences we see that bottom vertical arrows in the diagram are
also weak equivalences. By the 2-out-of-3 property of weak equivalences, we see that ε̃Qlin(B)

is a weak equivalence if and only if ε̃j!QQlinQj∗(B) is.
So write A := QlinQj

∗(B); we then want to prove that ε̃j!QA is a weak equivalence. This
follows from the 2-out-of-3 property and the diagram

j!Qj
∗j!Q(A)

j!qj∗j!Q(A)
//

ε̃j!Q(A)

((

j!j
∗j!Q(A)

εj!Q(A)
// j!Q(A)

j!QQ(A)

j!QηQ(A) ∼=

OO

j!qQ(A)

∼
// j!Q(A)

j!ηQ(A) ∼=

OO
.

The two top arrows give the definition of the derived counit, while the right triangle is
the triangle for the (underived) unit and counit. The vertical arrows are isomorphisms by
Proposition 3.3.3. Lastly, the bottom arrow is a weak equivalence because j! is left Quillen
and qQ(A) is a weak equivalence between cofibrant objects.

For homotopy W -constancy, the argument is a lot simpler: recall that Qlin = (φ!)∗ is the
pushforward along φ!. We saw in Proposition 3.4.8 that φ! preserves weak equivalences, so

since weak equivalences in h̃LFT(C) and hQFT(C) are defined objectwise, Qlin(A) will be
homotopy W -constant if A is. �



CHAPTER 4

Linear Yang-Mills theory

In the previous chapter the canonical quantization functor CCR : hLFT(C)→ hQFT(C)
was constructed. In this chapter we will use this functor to develop the linear Yang-Mills
model, one of the first examples of a homotopy algebraic quantum field theory. For the
underlying homotopy linear field theory the solution complex is obtained as a derived critical
locus. The Poisson structure on the solution complex is then constructed using the crucial
insight that the Green operators of the d’Alembertian � allow us to trivialize the canonical
shifted Poisson structure in two different ways. The results in this chapter were previously
published in [BBS20]. A note on notation: the functor CCR in that article is denoted by
ccr in this text.

4.1. Field and solution complexes

In Section 2.3.1 we encountered the data used to define a linear field theory: the space of
fields and the equation of motion, with which we defined the solution space. In this section
we encode these data into chain complexes. We will consider observables and the Poisson
structure in the next section. For now we fix a globally hyperbolic spacetime M ; we will
consider functoriality in Section 4.4. Note that all complexes in this section are over R;
complex numbers will show up when discussing quantization.

We start with the chain complex of fields.

Definition 4.1.1. A field theory complex F on M is a chain complex

F(M) =
(
F0(M) F1(M)

Q
oo

)
(4.1.1)

concentrated in degrees 0 and 1, such that both Fi = Γ(Ei) are vector spaces of sections of
vector bundles Ei → M of finite rank with fiber metric hi and Q : F1(M) → F0(M) is a
linear differential operator.

We interpret the sections in F0(M) as the physical fields; the sections in F1(M) then are
the gauge transformations (if there are no gauge transformations, E1 is the zero bundle).
This is illustrated by the following two examples, which will be guiding us throughout this
chapter.

Example 4.1.2. The scalar field complex on M is the chain complex(
Ω0(M) 0

0
oo

)
concentrated in degree 0. The fiber metric is given by scalar multiplication. This is exactly
what is expected when considering the treatment of Klein-Gordon theory in Section 2.3.1:
there are scalar fields φ ∈ Ω0(M) = C∞(M) and no nontrivial gauge transformations.

95
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Example 4.1.3. The linear gauge theory complex with gauge group R on M is the chain
complex (

Ω1(M) Ω0(M)
d
oo

)
where d is the de Rham differential. The fiber metric given by the metric (or equivalently
by the Hodge star operator) as in Example 2.2.13. Sections A ∈ Ω1(M) in degree 0 are
interpreted as gauge fields and sections ε ∈ Ω0(M) in degree 1 are gauge transformations.
The gauge transformations ε act on gauge fields as A→ A+ dε.

Remark 4.1.4. It is possible to encode higher linear gauge field theories (with gauge
transformations of gauge transformations and so on) into this framework by allowing for
longer chain complexes,

F(M) =
(
F0(M) F1(M)

Q1
oo F2(M)

Q2
oo . . .

Q3
oo

)
,

where as in Definition 4.1.1 every Fi(M) is the space of sections of a vector bundle over M
equipped with a fiber metric. For example we could consider the complex(

Ωp(M) Ωp−1(M)
d
oo . . .

d
oo Ω0(M)

d
oo

)
of p-form gauge fields and gauge transformations, 2-gauge transformations and so on. The
results in this chapter (specifically, the shape of the solution complex as a homotopy pullback
in Theorem 4.1.7) extend to these kinds of field theories in an obvious way.

The next step is to encode the equation of motion, which determines the dynamics of
the theory. We take the equation of motion operator to be a formally self-adjoint linear
differential operator

P : F0(M) −→ F0(M) (4.1.2)

that acts on the gauge fields in degree 0. The corresponding action functional is then

S(s) :=
1

2
〈s, Ps〉 =

1

2

∫
M

h(s, Ps)volM . (4.1.3)

The action is gauge-invariant if and only if the equation of motion operator P satisfies

PQ = 0 (4.1.4)

so we will assume this from now on. Note that since P is formally self-adjoint, this implies
that

(PQ)∗ = Q∗P ∗ = Q∗P = 0 .

To encode the equation of motion operator in our chain complex language, we define the
contangent complex T ∗F(M) to F(M) as

T ∗F(M) = F(M)× Fc(M)∗

where

Fc(M)∗ :=
( (−1)

F1(M)
(0)

F0(M)
−Q∗
oo

)
with Q∗ being the linear differential operator that is formally adjoint to Q. Fc(M)∗ is the
complex to which the complex of compactly supported sections

Fc(M) :=
( (0)

F0,c(M)
(1)

F1,c(M)
Q
oo

)
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is the smooth dual. Note that there are two choices made here: we choose the tangent space
to a point in F(M) to be Fc(M), and we choose the cotangent space to that point to be the
complex Fc(M)∗ that the tangent space is smoothly dual to. Since F(M) models a linear
space, the total cotangent space is then T ∗F(M) = F(M)× Fc(M)∗. Explicitly, we have

T ∗F(M) =
( (−1)

F1(M)
(0)

F0(M)× F0(M)
−Q∗π2
oo

(1)

F1(M)
ι1Q
oo

)
where the first copy of F0(M) in F0(M) × F0(M) is the zero degree term in F(M) and the
second one is the zero degree term in Fc(M)∗. The map ι1 : F0(M) → F0(M) × F0(M)
includes F0(M) in the first factor, while π2 : F0(M)× F0(M)→ F0(M) is the projection on
the second factor.

The section δvS : F(M)→ T ∗F(M) obtained from varying the action is then

F(M)

δvS
��

T ∗F(M)

=


0

0

��

F0(M)
0

oo

(id,P )

��

F1(M)
Q

oo

id
��

F1(M) F0(M)× F0(M)
−Q∗π2
oo F1(M)

ι1Q
oo

 . (4.1.5)

To find the space of solutions Sol(M), we need to enforce the equation of motion: Pφ = 0,
and we see that this is done by intersecting δvS with the zero-section

F(M)

0
��

T ∗F(M)

=


0

0

��

F0(M)
0

oo

(id,0)
��

F1(M)
Q

oo

id
��

F1(M) F0(M)× F0(M)
−Q∗π2
oo F1(M)

ι1Q
oo

 (4.1.6)

which is the content of the following definition.

Definition 4.1.5. Let F(M) be a field complex with equation of motion operator P :
F0(M) → F0(M) that satisfies (4.1.4). Then the solution complex Sol(M) is the derived
critical locus of the associated action functional S (4.1.3): it is the homotopy pullback

Sol(M) //

��

F(M)

δvS
��

h .

F(M)
0
// T ∗F(M)

(4.1.7)

in the model category ChR.

Remark 4.1.6. As in the fourth item of Example 2.1.31 we can think of this pullback as
solving an intersection problem, i.e. forming the solution space to our equation of motion.
The fact that it is a homotopy pullback then means that we are implementing the equations
of motion only up to weak equivalence (i.e. up to homology).

Theorem 4.1.7. The complex

Sol(M) =
( (−2)

F1(M)
(−1)

F0(M)
Q∗
oo

(0)

F0(M)
P
oo

(1)

F1(M)
Q
oo

)
(4.1.8)

is a model for the solution complex of Definition 4.1.5.
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Proof. This is Proposition 3.21 in [BS19a]. The proof uses the technology of proper
model categories, see Chapter 13 in [Hir09]: since all objects in ChK are fibrant, it is a
right proper model category by its Corollary 13.1.3. By Proposition 13.3.4 we see that we
can equivalently calculate the homotopy pullback of a weakly equivalent diagram, and by
Corollary 13.3.8 we see that when either of the maps g or h in a pullback diagram

Y

h
��

X
g
// Z

in ChK is a fibration (i.e. a degreewise surjection), the homotopy pullback of the diagram
is weakly equivalent to the ordinary pullback X ×Z Y . So we can calculate the homotopy
pullback by replacing one of the two maps 0 or δvS in the diagram (4.1.7) by an equivalent
fibration.

We proceed with the zero map (4.1.6). Note that this map is already surjective on the
part F(M) of the complex T ∗F(M) = F(M)×Fc(M)∗. So we introduce the term Fc(M)∗⊗D
where D is the acyclic chain complex (3.4.4) concentrated in degrees −1 and 0, now with the

field R instead of C. Define F̃(M) := F(M)×(Fc(M)∗⊗D). The maps id : Fc(M)∗ → Fc(M)∗

and

D

��

R

=


(−1)

R

0

��

(0)

Rid
oo

id

��

0 R0
oo


then define the fibration 0̃ : F̃(M)→ T ∗F(M) by

F̃(M)

0̃
��

T ∗F(M)

=


(−2)

F1(M)

��

(−1)

F1(M)× F0(M)
idπ1+Q∗π2
oo

π1id

��

(0)

F0(M)× F0(M)
(−Q∗,id)π2
oo

(idπ1,idπ2)

��

(1)

F1(M)
ι1Q

oo

id

��

0 F1(M)oo F0(M)× F0(M)
−Q∗π2

oo F1(M)
ι1Q

oo


which is weakly equivalent to the zero map 0 : F(M)→ T ∗F(M) because D is acyclic.

So we see that a model for Sol(M) can be computed by calculating the ordinary pullback
in the diagram

Sol(M) //

��

F(M)

δvS
��

F̃(M)
0̃
// T ∗F(M) .

The chain complex (4.1.8) is then seen to indeed be the pullback in this diagram in ChK. �

To illustrate this, consider the examples of Klein-Gordon theory and linear Yang-Mills
theory defined above.

Example 4.1.8. For the scalar field complex of Example 4.1.2 we have the formally
self-adjoint Klein-Gordon operator

P = �−m2 : Ω0(M) −→ Ω0(M)
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as the equation of motion operator. This yields the usual Klein-Gordon action

S(φ) =
1

2
〈φ, (�−m2)φ〉 =

1

2

∫
M

(
dφ ∧ ∗dφ−m2φ2volM

)
and the solution complex from Theorem 4.1.7 is

SolKG(M) =
(

0
(−1)

Ω0(M)
0
oo

(0)

Ω0(M)
�−m2
oo 0

0
oo

)
. (4.1.9)

In terms of the BRST/BV formalism, we interpret the two terms in the complex as follows:

• the fields φ ∈ Ω0(M) in degree 0 are the scalar fields;
• the fields φ‡ ∈ Ω0(M) in degree −1 are the antifields.

The homology of SolKG(M) is zero in degree −1: this follows from the fact that the first
complex in Theorem 2.2.16 is exact in the last term. In degree 0, the homology

H0(SolKG(M)) ∼=
{
φ ∈ Ω0(M) | Pφ = 0

}
= ker

(
P
)

is isomorphic to the ordinary Klein-Gordon solution space (2.3.1) we found earlier. So the
solution complex of Klein-Gordon theory is quasi-isomorphic to the usual solution space,
interpreted as a chain complex concentrated in degree 0. Recall the general tenet of chain
complexes: the essential information of a chain complex lies in its homology, so we only
consider chain complexes up to quasi-isomorphism. This means that for Klein-Gordon theory
we can equivalently work with either the solution complex or the solution space, and the
solution complex contains no new information.

Example 4.1.9. For the linear gauge theory complex of Example 4.1.3 we choose the
linear Yang-Mills operator

P = δd : Ω1(M) −→ Ω1(M)

as the equation of motion operator. Since d and δ are mutually adjoint with respect to the
fiber metric (see Example 2.2.13), P is formally self-adjoint, and it is clear that PQ = δdd =
0. The resulting action is then the usual linear Yang-Mills action

S(A) =
1

2
〈A, δdA〉 =

1

2
〈dA, dA〉 =

1

2

∫
M

F ∧ ∗F

where F = dA ∈ Ω2(M) is the usual field strength 2-form. The solution complex from
Theorem 4.1.7 is

SolLYM(M) =
( (−2)

Ω0(M)
(−1)

Ω1(M)
δ
oo

(0)

Ω1(M)
δd
oo

(1)

Ω0(M)
d
oo

)
. (4.1.10)

We can again interpret the terms in this complex in the language of the BRST/BV formalism:

• the fields A ∈ Ω1(M) in degree 0 are the gauge fields;
• the fields c ∈ Ω0(M) in degree 1 are the ghost fields corresponding to the gauge

transformations;
• the fields A‡ ∈ Ω1(M) in degree −1 are the antifields for the gauge field;
• the fields c‡ ∈ Ω0(M) in degree −2 are the antifields for the ghost field.

We can also calculate the homology in each degree:
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• In degree 1, we find the zeroth de Rham cohomology of M ,

H1

(
SolLYM(M)

) ∼= ker
(
d : Ω0(M)→ Ω1(M)

) ∼= H0
dR(M) .

These are the locally constant ghost fields, and as such they describe the gauge
transformations that act trivially on the gauge fields, i.e. the degree to which the
gauge group acts non-freely. Since H0

dR(M) ∼= Rπ0(M) is a vector space of dimension
equal to the number of connected components of M , this homology is never zero.
• In degree 0 we find the usual space of gauge equivalence classes of solutions to the

linear Yang-Mills equation,

H0

(
SolLYM(M)

)
=
{
A ∈ Ω1(M)|δdA = 0

}/
dΩ0(M) .

This is the object that would traditionally be considered the solution space of the
theory.
• In degree −1 we find

H−1

(
SolLYM(M)

)
= ker

(
δ : Ω1(M)→ Ω0(M)

)/
δdΩ1(M)

∼= ker
(
δ : Ω1(M)→ Ω0(M)

)/
δΩ2(M)

= H1
δ (M) ∼= Hm−1

dR (M)

where m = dim(M). The second step follows by a standard argument using parti-
tions of unity and Green operators for the d’Alembert operator � that will also be
employed in Section 5.6. The last step uses the isomorphism given by the Hodge star
between the de Rham cohomology and the δ-homology. This homology captures ob-
structions to solving the inhomogeneous linear Yang-Mills equation δdA = j, where
j ∈ Ω1

δ(M) is a 1-form such that δj = 0.
• In degree −2 we find the top de Rham cohomology of M ,

H−2

(
SolLYM(M)

)
= Ω0(M)

/
δΩ1(M) = H0

δ (M) ∼= Hm
dR(M)

by the same arguments as above. Since M ∼= R×Σ by Theorem 2.2.5, Hm
dR(M) ∼= 0

is trivial.

Note that in contrast to the Klein-Gordon complex, the linear Yang-Mills complex contains
more information than the classical gauge orbit space of solutions H0

(
SolLYM(M)

)
. In

particular it is not quasi-isomorphic to a complex concentrated in degree 0.

4.2. Observables and Poisson structure, shifted and unshifted

We now turn to the linear observables on a solution complex. A general result from
derived algebraic geometry (see [PTVV13, CPT+17, Pri18]) is that a derived critical
locus comes equipped with a shifted Poisson structure. As we will see below, this is true
in particular for our solution complex. The crucial feature of both of our examples (Klein-
Gordon theory and linear Yang-Mills theory) is that because of the existence of retarded and
advanced Green operators for the relevant differential operators, this Poisson structure is
homologically trivial and there exist retarded and advanced chain homotopies that trivialize
it. Taking the difference, we will see that this allows us to define an unshifted Poisson
structure on the solution complex, which is the crucial ingredient for quantizing the theory
as in Section 3.4.2.

We first define the chain complex of linear observables on Sol(M) in a similar manner to
how we defined the linear observables LKG(M) in Section 2.3.1.
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Definition 4.2.1. For a solution complex Sol(M) as in (4.1.8), the complex of linear
observables L(M) on Sol(M) is defined as

L(M) :=
( (−1)

F1,c(M)
(0)

F0,c(M)
−Q∗
oo

(1)

F0,c(M)
P
oo

(2)

F1,c(M)
−Q
oo

)
(4.2.1)

where the subscript c means we are considering sections with compact support. The inte-
gration pairing defined by the fiber metrics hi on the bundles Ei defines evaluation chain
maps

〈 , 〉 : L(M)⊗Sol(M) −→ R
〈 , 〉 : Sol(M)⊗ L(M) −→ R (4.2.2)

between the linear observables and the solutions.

Note that the choice of signs for the differentials in (4.2.1) ensures that the evaluation
pairings (4.2.2) are chain maps.

Clearly, Sol(M) and L(M) look quite similar: we get the latter by shifting the former,
restricting to sections of complex support and adding minus signs to some of the boundary
maps. This is the feature that allows us to define the shifted Poisson structure. First, consider
the [1]-shifted solution complex,

Sol(M)[1] =
( (−1)

F1(M)
(0)

F0(M)
−Q∗
oo

(1)

F0(M)
−P
oo

(2)

F1(M)
−Q
oo

)
(recall the definition of the shifting of a chain complex from Definition 2.4.6). Then the
natural inclusions ι : Fi,c(M)→ Fi(M) define the chain map

L(M)

j

��

Sol(M)[1]

:=


(−1)

F1,c(M)

−ι
��

(0)

F0,c(M)
−Q∗
oo

−ι
��

(1)

F0,c(M)
P
oo

ι

��

(2)

F1,c(M)
−Q
oo

ι

��

F1(M) F0(M)
−Q∗
oo F0(M)

−P
oo F1(M)

−Q
oo

 . (4.2.3)

In turn, j can be used to define the shifted Poisson structure as follows.

Definition 4.2.2. The 1-shifted Poisson structure Υ on a solution complex Sol(M)
(4.1.8) with linear observables L(M) (4.2.1) is the chain map Υ : L(M) ⊗ L(M) → R[1]
defined by the composition

L(M)⊗ L(M)
Υ

//

id⊗j
��

R[1]

L(M)⊗ R[1]⊗Sol(M)
B⊗id

// R[1]⊗ L(M)⊗Sol(M)

id⊗〈 , 〉

OO

(4.2.4)

where B is the braiding in ChK (see (2.4.1)) and we have used the isomorphism Sol(M)[1] ∼=
R[1]⊗Sol(M).

Remark 4.2.3. In BRST/BV terminology, Υ is called the antibracket. It is shifted graded
antisymmetric. In Section 2.4.1 we saw that this means that for homogeneous elements
α ∈ Lk(M), β ∈ L−k+1(M),

Υ(α, β) = Υ(β, α) .

This follows from the fact that the fiber metrics hi defining 〈 , 〉 are symmetric, the sign in
the definition of j (4.2.3) and the symmetry of the solution and observable complexes.
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In the terminology of [CPT+17], Υ is a (−1)-shifted Poisson structure.

It turns out that in our two guiding examples of Klein-Gordon theory and linear Yang-
Mills theory, the homology class of the chain map j is trivial. We will find two different
trivializations of j, which will allow us to define an unshifted Poisson structure on Sol(M).

First, we define the past compact and future compact versions of the complex of linear
observables L(M):

Lpc/fc(M) :=
( (−1)

F1,pc/fc(M)
(0)

F0,pc/fc(M)
−Q∗
oo

(1)

F0,pc/fc(M)
P
oo

(2)

F1,pc/fc(M)
−Q
oo

)
. (4.2.5)

The sections in these complexes are not observables; we will only use Lpc/fc(M) as auxiliary
complexes. Note that L(M) includes in both Lpc(M) and Lfc(M) and that the map j factors
through both inclusions:

L(M)
j

//

ι
%%

Sol(M)[1]

Lpc/fc(M)

jpc/fc

77

(4.2.6)

where ι is the obvious inclusion chain map (without any signs) and jpc/fc is the obvious
extension of j (4.2.3).

These complexes of past and future compact observables allow for the following definition.

Definition 4.2.4. If Sol(M) is a solution complex with linear observable complex L(M),
a retarded trivialization Λ+ is a contracting homotopy of Lpc(M): a homotopy

Λ+ ∈ hom
(
Lpc(M),Lpc(M)

)
1

such that idLpc(M) = ∂Λ+. Likewise, an advanced trivialization Λ− is a contracting homotopy
of Lfc(M): a homotopy

Λ− ∈ hom
(
Lfc(M),Lfc(M)

)
1

such that idLfc(M) = ∂Λ−.

Lemma 4.2.5. Retarded and advanced trivializations Λ± have the following properties:

(1) If Λ± ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
1

is a retarded or advanced trivialization, then

j = ∂(jpc/fc Λ±ι) (4.2.7)

and

Υ = ∂
(
(id⊗ 〈 , 〉)(B ⊗ id)(id⊗ jpc/fc Λ±ι)

)
.

So the homology classes [j] = 0 and [Υ] = 0 are trivial.
(2) If Λ±, Λ̃± ∈ hom

(
Lpc/fc(M),Lpc/fc(M)

)
1

are two retarded or two advanced trivial-
izations,

Λ̃± − Λ± = ∂λ±

where λ± ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
2

is a 2-chain.

(3) If Λ+,Λ− ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
1

is a pair of retarded and advanced trivial-
izations, then

G := jpcΛ
+ι− jfcΛ

−ι ∈ hom
(
L(M),Sol(M)[1]

)
1

(4.2.8)



4.2. OBSERVABLES AND POISSON STRUCTURE, SHIFTED AND UNSHIFTED 103

is a 1-cycle: ∂G = 0. So G defines a chain map

G : L(M) −→ Sol(M) .

Proof. (1) This follows immediately from the factorization of j (4.2.6) and the
definition of Υ (4.2.4) and the fact that all maps involved are chain maps.

(2) Because idLpc/fc(M) = ∂Λ±, Lpc/fc(M) has trivial homology. This implies that the

internal hom hom
(
Lpc/fc(M),Lpc/fc(M)

)
also has trivial homology: for any ρ ∈

hom
(
Lpc/fc(M),Lpc/fc(M)

)
m

with ∂ρ = 0,

ρ = id ◦ ρ = ∂Λ± ◦ ρ = ∂(Λ± ◦ ρ) + Λ± ◦ ∂ρ = ∂(Λ± ◦ ρ)

so [ρ] = 0. This immediately implies that since

∂(Λ̃± − Λ±) = idLpc/fc(M) − idLpc/fc(M) = 0

we have Λ̃± − Λ± = ∂λ± for a 2-chain λ± ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
2
.

(3) The first claim follows from item (1):

∂G = j − j = 0 .

The second claim is immediate with the bookkeeping of shiftings of chain complexes
(Definition 2.4.6) and the isomorphism (2.4.2):

hom
(
L(M),Sol(M)[1]

)
1
∼= hom

(
L(M),Sol(M)

)
[1]1

∼= hom
(
L(M),Sol(M)

)
0
.

�

Remark 4.2.6. Note that the argument in the proof of item (2) of Lemma 4.2.5 extends to

higher homotopies: if both λ± and λ̃± are 2-chains that trivialize Λ̃±−Λ± then λ̃±−λ± is a 2-
cycle, and since the internal hom has trivial homology, they are related by the boundary of a 3-
chain. This argument applies to all higher homotopies, so we can say that retarded/advanced
trivializations are unique up to contractible choice.

A pair of retarded and advanced trivializations Λ± thus defines a chain map (4.2.8)

L(M)

G
��

Sol(M)

=


0

��

F1,c(M)oo

G−1

��

F0,c(M)
−Q∗
oo

G0

��

F0,c(M)
P
oo

G1

��

F1,c(M)
−Q
oo

��

F1(M) F0(M)
Q∗
oo F0(M)

P
oo F1(M)

Q
oo 0oo

 (4.2.9)

by item (3) in Lemma 4.2.5. With this map, we can try and construct an unshifted Poisson
structure. However, not every pair of trivializations will do.

Definition 4.2.7. A pair Λ+,Λ− ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
1

of retarded and ad-
vanced trivializations is called compatible if the chain map G defined in (4.2.8) is formally
skew-adjoint with respect to the evaluation maps (4.2.2) 〈 , 〉: the diagram

L(M)⊗ L(M)
id⊗G

//

−G⊗id
��

L(M)⊗Sol(M)

〈 , 〉
��

Sol(M)⊗ L(M)
〈 , 〉

// R

(4.2.10)

commutes.
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Definition 4.2.8. Let Sol(M) be a solution complex with linear observable complex
L(M) and Λ+,Λ− ∈ hom

(
Lpc/fc(M),Lpc/fc(M)

)
1

be a pair of compatible retarded and ad-
vanced trivializations. Then the corresponding unshifted Poisson structure τ on the solution
complex Sol(M) is the chain map defined by

L(M)⊗ L(M)
τ

//

id⊗G ))

R

L(M)⊗Sol(M)

〈 , 〉

88

. (4.2.11)

Remark 4.2.9. Note that since Λ± are by assumption compatible, the unshifted Poisson
structure τ can be defined by either composition in the diagram (4.2.10). This ensures that
τ is graded antisymmetric, τB = −τ where B is the braiding in ChR. So τ also defines a
chain map

τ : L(M) ∧ L(M) −→ R
on the graded exterior product that we again denote by τ , i.e. a 0-cycle τ ∈ hom

(∧2 L(M),R
)

0
.

Remark 4.2.10. As will be more clear from the examples in Sections 4.2.1 and 4.2.2, the
chain map G plays a similar role to that of the causal propagator in ordinary quantum field
theory, so we will sometimes refer to it as such. We will call its ingredients

G± := jpc/fcΛ
±ι ∈ hom

(
L(M),Sol(M)[1]

)
1

(4.2.12)

retarded and advanced Green homotopies because they play a role similar to that of Green
operators, and in our examples Green operators will be the crucial ingredient in their defi-
nition. Note that they are in general not chain maps L(M)→ Sol(M)[1] even though they
are of the right degree. We will use these Green homotopies extensively in Section 5.6.

Corollary 4.2.11. If Λ±, Λ̃± ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
1

are two pairs of compatible
retarded and advanced trivializations with corresponding unshifted Poisson structures τ, τ̃ ∈
hom

(∧2 L(M),R
)

0
, there exists a 1-chain ρ ∈ hom

(∧2 L(M),R
)

1
such that τ̃ − τ = ∂ρ.

So [τ ] = [τ̃ ] ∈ H0

(
hom(

∧2 L(M),R)
)
.

Proof. From item (2) in Lemma 4.2.5 we know that Λ̃± − Λ± = ∂λ± where λ± ∈
hom

(
Lpc/fc(M),Lpc/fc(M)

)
2

are 2-chains. So if we define

ρ̃ := 〈 , 〉
(
id⊗ (jpcλ

+ι− jfcλ
−ι)
)

we have

τ̃ − τ = ∂ρ̃

by the definitions of τ (4.2.11) and G (4.2.8). The chain homotopy ρ̃ is not necessarily graded
antisymmetric, so consider its decomposition

ρ̃ = ρ̃s + ρ̃a =
1

2
ρ̃ (id +B) +

1

2
ρ̃ (id−B)

into its symmetric and antisymmetric parts (recall that B is the braiding on ChR). Since
both τ̃ and τ are graded antisymmetric, we find that after antisymmetrizing τ̃ − τ = ∂ρ̃,

τ̃ − τ = ∂ρ̃a

where ρ := ρ̃a ∈ hom
(∧2 L(M),R

)
1
. �
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This ends the general treatment of shifted and unshifted Poisson structures on solution
complexes. Note that while the shifted Poisson structure always exists, the crucial new ingre-
dient necessary for the existence of the unshifted Poisson structure is the pair of compatible
retarded and advanced trivializations. It is not at all a given that these trivializations exist;
our next task now is to investigate whether or not they exist for our two examples. We will
see that they do, and that these retarded and advanced trivializations are closely related to
retarded and advanced Green operators.

4.2.1. Klein-Gordon theory. Recall that the solution complex SolKG(M) for Klein-
Gordon theory is (4.1.9)

SolKG(M) =
(

0
(−1)

Ω0(M)
0
oo

(0)

Ω0(M)
�−m2
oo 0

0
oo

)
with scalar fields φ in degree 0 and antifields φ‡ in degree −1. The complex of linear observ-
ables (see Definition 4.2.1) is then

LKG(M) =
(

0
(0)

Ω0
c(M)

0
oo

(1)

Ω0
c(M)

�−m2
oo 0

0
oo

)
. (4.2.13)

The observables ψ ∈ LKG0 (M) = Ω0
c(M) in degree 0 observe the scalar field φ,

〈ψ, φ〉 =

∫
M

ψ φ volM ,

and the observables α ∈ LKG1 (M) = Ω0
c(M) in degree 1 observe the antifield φ‡,

〈α, φ‡〉 =

∫
M

αφ‡ volM .

Note that as with the solution complex, the homology of LKG(M) is only nonzero in
degree 0, where it is isomorphic to the vector space LKG(M) (2.3.3) we found in Section
2.3.1. So our study of Klein-Gordon theory so far is still quasi-isomorphic to the study there.

The shifted Poisson structure (see Definition 4.2.2) on SolKG(M) pairs the scalar field
observables and antifield observables:

ΥKG : LKG(M)⊗ LKG(M) −→ R[1] (4.2.14a)

with

ΥKG(α, ψ) = −
∫
M

αψ volM = ΥKG(ψ, α) (4.2.14b)

for α ∈ LKG1 (M) = Ω0
c(M) and ψ ∈ LKG0 (M) = Ω0

c(M).
The retarded and advanced trivializations (see Definition 4.2.4) Λ± for Klein-Gordon

theory have to be trivializations for the past compact and future compact versions of the
observable complex LKG(M) (4.2.13):

0

0

��

0

&&

Ω0
pc/fc(M)

0
oo

id
��

Λ±0

((

Ω0
pc/fc(M)

�−m2
oo

id
��

0

&&

0
0

oo

0

��

0 Ω0
pc/fc(M)

0
oo Ω0

pc/fc(M)
�−m2

oo 0
0

oo

.
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We see that in the case of a theory without gauge symmetries, a retarded/advanced trivial-
ization is given by a single map. For Klein-Gordon theory this is

Λ±0 : Ω0
pc/fc(M) −→ Ω0

pc/fc(M)

and the defining relation ∂Λ± = idLpc/fc(M) is equivalent to the two equalities

(�−m2) Λ±0 = id ; Λ±0 (�−m2) = id . (4.2.15)

Proposition 4.2.12. Klein-Gordon theory has unique retarded and advanced trivializa-
tions Λ± ∈ hom

(
LKGpc/fc(M),LKGpc/fc(M)

)
1
:

Λ±0 = G± : Ω0
pc/fc(M) −→ Ω0

pc/fc(M)

where G± are the retarded and advanced Green operators for the Klein-Gordon operator
P = �−m2.

Proof. The Klein-Gordon operator is normally hyperbolic, so by Theorem 2.2.19 its
Green operators exist. We immediately see that the definition of retarded and advanced
Green operators (Definition 2.2.14) is equivalent to the defining relations (4.2.15) of retarded
and advanced trivializations.

Uniqueness of the trivializations follows either by the uniqueness of Green operators
(Remark 2.2.15) or item (2) in Lemma 4.2.5 and the fact that hom

(
LKGpc/fc(M),LKGpc/fc(M)

)
2

=
0. �

Remark 4.2.13. Note that the above proof immediately generalizes to any Green hy-
perbolic differential operator P defining a non-gauge complex SolP (M): the retarded and
advanced trivializations of this theory will always be given by the unique Green operators
G±P . So one can think of these trivializations as linear gauge theory generalizations of Green
operators.

Since the the Klein-Gordon operator is formally self-adjoint, the causal propagator G =
G+−G− is skew-adjoint by Remark 2.2.17, so the pair of trivializations Λ± is compatible in
the sense of Definition 4.2.7. So by Definition 4.2.8, Λ± define the unshifted Poisson structure

τ(ψ1, ψ2) =

∫
M

ψ1Gψ2 volM (4.2.16)

which is the same Poisson structure (2.3.4) that we found in Section 2.3.1.
In conclusion, we find that the chain complex treatment of Klein-Gordon theory as a linear

field theory is equivalent to the treatment in Section 2.3.1: in Example 4.1.8 we saw that the
solution chain complex SolKG(M) is quasi-isomorphic to the Klein-Gordon solution space
(2.3.1) we found; at the start of this section we saw that the complex of linear observables
(4.2.13) is quasi-isomorphic to the space of linear observables (2.3.3); and we just found that
the (unshifted) Poisson structure (4.2.16) is the same as the Poisson structure (2.3.4). This
serves as a good sanity check for the theory constructed so far: it produces a treatment of
Klein-Gordon theory that is equivalent to the usual one.

Remark 4.2.14. If we compare our results with those found in Section 6.4 of [GR20],
we see that the shifted Poisson structure (4.2.14) and unshifted Poisson structure (4.2.16)
agree, up to a minus sign. The operators β±, which are used in Section 6.4.2 in [GR20]
to relate the Poisson bracket and the factorization product, are analogous to our retarded
and advanced trivializations Λ±, though our use of sections with past compact and future
compact support means that we do not need to make use of partitions of unity.
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4.2.2. Linear Yang-Mills theory. The solution complex for linear Yang-Mills theory
is (4.1.10)

SolLYM(M) =
( (−2)

Ω0(M)
(−1)

Ω1(M)
δ
oo

(0)

Ω1(M)
δd
oo

(1)

Ω0(M)
d
oo

)
and recall the names we gave the fields in SolLYM(M) in Example 4.1.9. By Definition 4.2.1
the complex of linear observables is then

LLYM(M) =
( (−1)

Ω0
c(M)

(0)

Ω1
c(M)

−δ
oo

(1)

Ω1
c(M)

δd
oo

(2)

Ω0
c(M)

−d
oo

)
. (4.2.17)

We interpret the elements of the linear observable complex as follows:

• observables ψ ∈ LLYM0 (M) = Ω1
c(M) in degree 0 observe the gauge field A,

〈ψ,A〉 =

∫
M

ψ ∧ ∗A

• observables χ ∈ LLYM−1 (M) = Ω0
c(M) in degree −1 observe the ghost field c,

〈χ, c〉 =

∫
M

χ c volM

• observables α ∈ LLYM1 (M) = Ω1
c(M) in degree 1 observe the antifield A‡,

〈α,A‡〉 =

∫
M

α ∧ ∗A‡

• observables β ∈ LLYM2 (M) = Ω0
c(M) in degree 2 observe the antifield c‡,

〈χ, c〉 =

∫
M

β c‡ volM .

As in Example 4.1.9 the homology of the complex can be computed explicitly:

• In degree −1 we find

H−1

(
LLYM(M)

)
= H0

c,δ(M) ∼= Hm
c,dR(M)

where m = dim(M), which is the linear dual to H1

(
SolLYM(M)

) ∼= H0
dR(M) by

Poincaré duality (Theorem 2.4.8). These are the linear observables that probe the
gauge transformations that act trivially on the gauge fields.
• In degree 0 we find

H0

(
LLYM(M)

)
= Ω1

c,δ(M)
/
δdΩ1

c(M)

which is the usual vector space of gauge-invariant on-shell linear observables, see e.g.
[SDH14, BDS14, BDHS14, FL16, Ben16, BSS17].
• In degree 1 we find

H1

(
LLYM(M)

)
= Ω1

c,δd(M)
/

dΩ0
c(M) ∼= H1

c,dR(M)

again using properties of the Green operators for the d’Alembertian �. This is the
linear dual to H−1

(
SolLYM(M)

) ∼= Hm−1
dR (M) by Poincaré duality. As such, these

are the linear observables that measure obstructions to solving the inhomogeneous
linear Yang-Mills equation.
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• In degree 2 we find

H2

(
LLYM(M)

)
= H0

c,dR(M) ∼= 0

because M ∼= R× Σ.

So we find that in homology, the observables in LLYM(M) exactly test the homology classes
of the corresponding degree of SolLYM(M).

The shifted Poisson structure (see Definition 4.2.2) on SolLYM(M) pairs observables of
a field with observables of its antifield:

ΥLYM : LLYM(M)⊗ LLYM(M) −→ R[1]

is defined as

ΥLYM(α, ψ) = −
∫
M

α ∧ ∗ψ = ΥLYM(ψ, α)

ΥLYM(β, χ) =

∫
M

β χ volM = ΥLYM(χ, β)

for ψ ∈ LLYM0 (M) = Ω1
c(M), α ∈ LLYM1 (M) = Ω1

c(M), χ ∈ LLYM−1 (M) = Ω0
c(M) and

β ∈ LLYM2 (M) = Ω0
c(M).

The retarded and advanced trivializations Λ± for linear Yang-Mills theory (see Defini-
tion 4.2.4) will now be trivializations of the past and future compact versions of the linear
observable complex LLYM(M) (4.2.17):

0

0

��

0

&&

Ω0
pc/fc(M)

0
oo

id
��

Λ±−1

((

Ω1
pc/fc(M)

−δ
oo

id
��

Λ±0

((

Ω1
pc/fc(M)

δd
oo

id
��

Λ±1

((

Ω0
pc/fc(M)

−d
oo

id
��

0

&&

0
0

oo

0

��

0 Ω0
pc/fc(M)

0
oo Ω1

pc/fc(M)
−δ

oo Ω1
pc/fc(M)

δd
oo Ω0

pc/fc(M)
−d

oo 0
0

oo

.

So a retarded or advanced trivialization is a triple of maps

Λ±−1 : Ω0
pc/fc(M) −→ Ω1

pc/fc(M), (4.2.18a)

Λ±0 : Ω1
pc/fc(M) −→ Ω1

pc/fc(M), (4.2.18b)

Λ±1 : Ω1
pc/fc(M) −→ Ω0

pc/fc(M) (4.2.18c)

such that

−δΛ±−1 = id ; δdΛ±0 − Λ±−1δ = id (4.2.18d)

−dΛ±1 + Λ±0 δd = id ; −Λ±1 d = id . (4.2.18e)

Proposition 4.2.15. Write G± : Ω1
pc/fc(M)→ Ω1

pc/fc(M) for the advanced and retarded

Green operators of the d’Alembert operator � : Ω1(M) → Ω1(M) on 1-forms (see Example
2.2.13). Then the maps

Λ±−1 = −G±d , Λ±0 = G± , Λ±1 = −δG± (4.2.19)

define a compatible pair of retarded and advanced trivializations for linear Yang-Mills theory.

Proof. From the definition of Green operators (see Definition 2.2.14) we immediately
see that since � = dδ + δd, the maps (4.2.19) satisfy the equations (4.2.18). Compatibility
follows from the fact that since � is formally self-adjoint, G = G+ − G− is formally skew-
adjoint (see Remark 2.2.17), the fact that d and δ are mutually adjoint (2.2.5) and the fact
that since d and δ commute with �, they commute with G± (see Example 2.2.20). �
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Remark 4.2.16. Note that in contrast to the situation for the Klein-Gordon field, the
retarded and advanced trivializations for linear Yang-Mills theory will in general not be
unique, though they are unique up to contractible choice. See item (2) in Lemma 4.2.5: for
any 2-chain λ± ∈ hom

(
Lpc/fc(M),Lpc/fc(M)

)
2
, Λ̃± = Λ± + ∂λ± will also be a retarded or

advanced trivialization and all such trivializations are of this form.

The retarded and advanced trivializations define the chain map

LLYM(M)

G
��

SolLYM(M)

=


0

��

Ω0
c(M)oo

Gd
��

Ω1
c(M)

−δ
oo

G
��

Ω1
c(M)

δd
oo

−δG
��

Ω0
c(M)

−d
oo

��

Ω0(M) Ω1(M)
δ
oo Ω1(M)

δd
oo Ω0(M)

d
oo 0oo

 (4.2.20)

where the relative minus sign compared to (4.2.19) is due to postcomposition with the maps
jpc/fc. Moreover, the pair Λ± is compatible by Proposition 4.2.15, so G defines an unshifted
Poisson structure τLYM by Definition 4.2.8. This is

τLYM(ψ1, ψ2) =

∫
M

ψ1 ∧ ∗Gψ2 = −τLYM(ψ2, ψ1) (4.2.21a)

τLYM(α, χ) =

∫
M

α ∧ ∗Gdχ = τLYM(χ, α) (4.2.21b)

for ψ1, ψ2 ∈ LLYM0 (M) = Ω1
c(M), α ∈ LLYM1 (M) = Ω1

c(M) and χ ∈ LLYM−1 (M) = Ω0
c(M).

Here G = G+ − G− is the causal propagator for the d’Alembert operator �. This Poisson
structure pairs the gauge field observables with themselves, and pairs the ghost field observ-
ables with the observables for the antifield of the gauge field. Note that a different choice
of compatible Λ̃± (see Remark 4.2.16) would result in a different but homotopic unshifted
Poisson structure τ̃LYM , see Corollary 4.2.11.

4.3. Linear quantum field theories

Using the results from Section 3.4 we can construct the quantum theories of our chain
complex-valued presentations of Klein-Gordon theory and linear Yang-Mills theory. Recall
that in Section 3.3.4 we defined the canonical quantization functor

ccr = φ! ◦ heis : PoissChR −→ dgAlgAsC

which is a homotopical functor: heis is homotopical by Proposition 3.4.4 while φ! is homotopi-
cal by Proposition 3.4.8. Moreover, we saw in Proposition 3.4.6 that for a Poisson complex
(V, τ) ∈ PoissChR and a 1-chain ρ ∈ hom(V ∧ V,R)1 (which is the case when we have two
pairs of compatible retarded and advanced trivializations, see Corollary 4.2.11), there exists
a zig-zag

heis(V, τ) HV,τ,ρ
∼
oo

∼
// heis(V, τ + ∂ρ)

of weak equivalences in dgAlguLieC . The upshot of all this is the following.

Corollary 4.3.1. Let Sol(M) be a solution complex of a field complex F(M) with
equation of motion operator P , and let L(M) be its complex of linear observables. If Λ± is a
compatible pair of retarded and advanced trivializations and τ is the corresponding unshifted
Poisson structure, then

ccr
(
L(M), τ

)
∈ dgAlgAsC
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is a quantum algebra of observables that only depends on the quasi-isomorphism class of
L(M). Moreover, if Λ̃± is another compatible pair of retarded and advanced trivializations
with corresponding Poisson structure τ̃ , there exists a zig-zag of equivalences

ccr(L(M), τ) AL(M),τ,τ̃
∼
oo

∼
// ccr(L(M), τ̃)

of corresponding quantum field theories.

This means that both of our examples give well-defined quantum field theories on M .

Example 4.3.2. For Klein-Gordon theory, we found in Section 4.2.1 that the complex
LKG(M) is quasi-isomorphic to its zero degree homology, which were the on-shell linear
observables we found in Section 2.3.1. In fact, we have the quotient map

LKG(M)
∼−→ H0

(
LKG(M)

)
= Ω0

c(M)
/

(�−m2)Ω0
c(M)

which is a quasi-isomorphism. The unshifted Poisson structure τKG (4.2.16) descends to the
quotient because G(�−m2) = 0, so the quotient map defines a weak equivalence(

LKG(M), τKG
) ∼−→

(
H0

(
LKG(M)

)
, τKG

)
in PoissChR. By Corollary 4.3.1 we find that the quantum theory ccr

(
LKG(M), τKG

)
is

weakly equivalent to ccr
(
H0

(
LKG(M)

)
, τKG

)
in dgAlgAsC , which is the theory AKG

qu we con-
structed in Section 2.3.1 viewed as a differential graded algebra concentrated in degree 0.

Example 4.3.3. For linear Yang-Mills theory, we found the solution complex SolLYM(M)
in Example 4.1.9 and the complex of linear observables LLYM(M) in Section 4.2.2. By
Corollary 4.3.1 this results in a consistent quantum theory ccr

(
LLYM(M), τLYM

)
that (up

to quasi-isomorphism) does not depend on the expression of SolLYM(M) or our choice of
retarded and advanced trivializations (4.2.19).

Explicitly, using the same notation as (2.3.6) and Example 2.3.4 we can write Â(ψ) with
ψ ∈ LLYM0 (M) = Ω1

c(M) for the linear quantum observables for the gauge field A. Similarly,
we write ĉ(χ) with χ ∈ LLYM−1 (M) = Ω0

c(M) for the linear quantum observable for the ghost

field c and Â‡(α) and ĉ‡(β) with α ∈ LLYM1 (M) = Ω1
c(M) and β ∈ LLYM2 (M) = Ω0

c(M)
for the linear quantum observables for the antifields A‡ and c‡. The nonzero commutation
relations in the quantum algebra ccr

(
LLYM(M), τLYM

)
are then[

Â(ψ1), Â(ψ2)
]

= i

∫
M

ψ1 ∧ ∗Gψ2 1 (4.3.1)[
Â‡(α), ĉ(χ)

]
= i

∫
M

α ∧ ∗Gdχ1 =
[
ĉ(χ), Â‡(α)

]
(4.3.2)

by (4.2.21), (3.4.1) and the defining relations of φ! in Section 3.3.4.

4.4. Linear Yang-Mills theory as a homotopy AQFT

So far we have worked on a fixed globally hyperbolic spacetime M . For our field theories
to qualify as algebraic field theories, we will have to consider functoriality and the Einstein
causality and time-slice axioms.

We will consider both the spacetime category Loc (see Definition 2.2.8) and COpens(M) ∼=
Loc ↓M for a fixed M (see Defintion 2.2.11) here. Recall (2.2.1) that there exists a forgetful
functor COpens(M)→ Loc; this will be useful to pull back constructions on all of Loc to
COpens(M).
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To start with, we need our input data to be sufficiently functorial. So from now on we will
assume that the vector bundles Fi, their fiber metrics hi and the linear differential operator
Q of Defintion 4.1.1 are natural on Loc. Given this, our assignment of field complexes in
Definition 4.1.1 defines a functor

F : Locop −→ ChR

that assigns to a Loc-morphism f : M → N the chain map F(f) : F(N)→ F(M) that is the
pullback of sections f ∗ : Fi(N)→ Fi(M) for each i.

Next, we also assume the action (4.1.3) or equivalently the equation of motion operator
(4.1.2) is natural. This in turn implies that the assingment of solution complexes (4.1.8)
defines a functor

Sol : Locop −→ ChR

also using the pullback of Loc-morphisms.
For the complex of linear observables (see Definition 4.2.1) we note that the pushforward

of compactly supported sections f∗ : Fi,c(M) → Fi,c(N) corresponding to a Loc-morphism
f : M → N also ensures that

L : Loc −→ ChR

is a functor. Moreover, the integration pairings (4.2.2) are natural: the diagram

L(M)⊗Sol(N)
f∗⊗id

//

id⊗f∗
��

L(N)⊗Sol(N)

〈 , 〉N
��

L(M)⊗Sol(M)
〈 , 〉M

// R

(and the diagram where L(M) and Sol(N) are swapped) commutes for all Loc-morphisms
f : M → N .

Given the above assumptions, one immediately sees that the inclusion maps j : L →
Sol[1] (4.2.3) are natural, in the sense that

L(M)
f∗

//

jM
��

L(N)

jN
��

Sol(M)[1] Sol(N)[1]
f∗
oo

commutes for all Loc-morphisms f : M → N . The shifted Poisson structures Υ : L ⊗ L →
R[1] are then also natural: the diagram

L(M)⊗ L(M)
ΥM
//

f∗⊗f∗
��

R[1]

L(N)⊗ L(N)
ΥN
// R[1]

commutes for all Loc-morphisms f : M → N .

Remark 4.4.1. Note that all the above assumptions on naturality are satisfied in both
of our examples of Klein-Gordon theory (see Examples 4.1.2 and 4.1.8) and linear Yang-
Mills theory (see Examples 4.1.3 and 4.1.9), where in both cases the pullback is given by the
pullback of differential forms and the pushforward is given by the pushforward of compactly
supported differential forms.
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Remark 4.4.2. On the category of causal opens of M , COpens(M), we can use the
forgetful functor COpens(M) → Loc to restrict any functors and natural transformations
on Loc, as mentioned above. So naturality on Loc implies naturality on COpens(M), and
conversely it is in general harder to establish naturality on Loc than on COpens(M). This
will become apparent later.

For the unshifted Poisson structures, we need the retarded and advanced trivializations
Λ± in Definition 4.2.4 to be appropriately natural. Our results on Loc will be weaker than
the ones on COpens(M) so we will describe both cases separately. Recall Definition 4.2.4
and diagram (4.2.6) for the definitions of ι and jpc/fc.

Definition 4.4.3. Let C be Loc or COpens(M) for a M ∈ Loc. Then a C-natural
retarded or advanced trivialization Λ± is a family

Λ± =
{

Λ±M ∈ hom
(
Lpc/fc(M),Lpc/fc(M)

)
1

}
M∈C

of retarded or advanced trivializations for M ∈ C that is C-natural in the sense that

f ∗(jpc/fcΛ
±
N ι)f∗ = jpc/fcΛ

±
M ι

for any morphism f : M → N in C.

Note that as in Remark 4.4.2, a Loc-natural retarded or advanced trivialization can be
restricted to a COpens(M)-natural retarded or advanced trivialization.

Proposition 4.4.4. The unique retarded and advanced trivializations for Klein-Gordon
theory defined in Proposition 4.2.12 and the retarded and advanced trivializations for lin-
ear Yang-Mills theory defined in Proposition 4.2.15 both define Loc-natural retarded and
advanced trivializations.

Proof. This follows from the naturality of Green operators, which is Lemma 3.2 in
[BG12]. In turn, this lemma hinges on the uniqueness of Green operators (Remark 2.2.15)
and their (support) properties (Definition 2.2.14), and the fact that our vector bundles and
equation of motion operator are assumed to be suitably natural at the start of this section. �

Definition 4.4.5. Let C be Loc or COpens(M) for a M ∈ Loc. Then a C-natural
unshifted Poisson structure τ on a solution complex Sol : Cop → ChR is a 0-cycle τ ∈
hom

(∧2 L,R
)

0
in the chain complex

hom
(∧2L,R

)
:= lim

M∈Cop
hom

(∧2L(M),R
)
∈ ChR (4.4.1)

where L : C→ ChR is the complex of linear observables of Sol described above.
If τ, τ̃ ∈ hom

(∧2 L,R
)

0
are two C-natural unshifted Poisson structures, a C-natural

homotopy ρ between τ and τ̃ is a 1-chain ρ ∈ hom
(∧2 L,R

)
1

such that τ̃ − τ = ∂ρ.

Remark 4.4.6. Using Definition 2.1.30 of limits, the somewhat abstract definition of τ
as an element of a limit complex can be translated to be more concrete. We find a choice of
τ to be equivalent to a family of unshifted Poisson structures, i.e. chain maps{

τM : L(M) ∧ L(M) −→ R
}
M∈C
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for all M ∈ C, which are C-natural: the diagram

L(M) ∧ L(M)
τM
//

f∗∧f∗
��

R

L(N) ∧ L(N)
τN
// R

commutes for all f : M → N in C.
In this language, a C-natural homotopy between τ and τ̃ is a family of 1-chains{

ρM ∈ hom
(∧2L,R

)
1

}
M∈C

such that τ̃M − τM = ∂ρM for all M ∈ C and ρN(f∗ ∧ f∗) = ρM for all f : M → N in C.

As one would expect, C-natural retarded and advanced trivializations define C-natural
unshifted Poisson structures. However, when it comes to the C-naturality of the homotopies
we run into complications when C = Loc.

Lemma 4.4.7. (1) Let C be Loc or COpens(M) for a M ∈ Loc. If Λ± is a compat-
ible pair of C-natural retarded and advanced trivializations, then the componentwise
construction of unshifted Poisson structures in Definition 4.2.8 defines a C-natural
unshifted Poisson structure on Sol.

(2) Now let C be COpens(M) for a M ∈ Loc. Then the chain complex hom
(∧2L,R

)
defined in (4.4.1) is isomorphic to the mapping complex hom

(∧2L(M),R
)

. There-

fore, a COpens(M)-natural unshifted Poisson structure τ is uniquely determined
by its value τM on M . Likewise, a COpens(M)-natural homotopy ρ is uniquely
determined by its value ρM on M .

(3) Again let C be COpens(M) for a M ∈ Loc. If Λ± and Λ̃± are two COpens(M)-
natural compatible pairs of retarded and advanced trivializations, then the corre-
sponding unshifted Poisson structures τ and τ̃ from item (1) are COpens(M)-
naturally homotopic: τ̃ − τ = ∂ρ for a COpens(M)-natural homotopy ρ.

Proof. (1) This follows directly from the definition of the unshifted Poisson struc-
ture (4.2.11), since its components G and 〈 , 〉 are by assumption C-natural.

(2) Since COpens(M) has a terminal object M , COpens(M)op has an initial object.
And one immediately sees that the initial object of a diagram is isomorphic to the
limit of that diagram. So we indeed find

hom
(∧2L,R

) ∼= hom
(∧2L(M),R

)
using (4.4.1).

(3) From item (2) we know that a COpens(M)-natural homotopy ρ between τ and τ̃
is equivalent to a homotopy ρM between τM and τ̃M . And by Corollary 4.2.11 we
know that such a ρM always exists.

�

Remark 4.4.8. Here we find that the treatments on Loc and COpens(M) diverge:
while item (1) of the above lemma holds for both spacetime categories, it is not obvious
if item (3) holds for Loc, because (2) does not. Let us consider this. Let Λ± and Λ̃± be
two Loc-natural retarded and advanced trivializations with corresponding unshifted Poisson
structures τ and τ̃ . By Corollary 4.2.11 we know that for any M ∈ Loc, we can find a 1-chain
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ρM ∈ hom
(∧2 L(M),R

)
1

such that τ̃M − τM = ∂ρM . But there is no guarantee that these

homotopies ρM can be chosen to be Loc-natural. The argument for COpens(M) hinges on
the fact that it has a terminal object, which is not the case for Loc.

The upshot of this fact is that with our current results, we do not know if the model for
linear Yang-Mills theory as an AQFT on Loc constructed below is unique up to natural weak
equivalence. In particular, there might exist another compatible pair of Loc-natural retarded
and advanced trivializations that differs from the ones found in Proposition 4.4.4. In turn,
this would lead to a non-homotopic Loc-natural unshifted Poisson structure and potentially
to a non-equivalent quantization. However, note that this difference would be quite subtle:
on any object M , we saw above that τM and τ̃M are homotopic. We just do not know if this
homotopy is natural.

Let us now investigate the functoriality of our two examples.

Example 4.4.9. For Klein-Gordon theory, see Examples 4.1.2 and 4.1.8, and Section
4.2.1. In Remark 4.4.1 we noted that the naturality assumptions on the vector bundles and
the equation of motion are satisfied for Klein-Gordon theory, so that the solution complex
SolKG, the complex of linear observables LKG and the shifted Poisson structure ΥKG are
natural on Loc. In Proposition 4.4.4 we saw that the unique retarded and advanced trivial-
izations for Klein-Gordon theory are Loc-natural, so by item (1) of Lemma 4.4.7 they define
a Loc-natural unshifted Poisson structure τKG on SolKG, which is given by (4.2.16).

For Klein-Gordon theory, we in fact obtain stronger results than those found in Lemma
4.4.7: in Proposition 4.2.12 we saw that the retarded and advanced trivializations are unique,
so τKG is unique, too. We find that our chain complex-valued treatment of Klein-Gordon
theory results in a linear field theory that is quasi-isomorphic to the one constructed in
Section 2.3.1 with no other possible choice for the unshifted Poisson structure τKG.

Considering Remark 4.2.13 we see that this result on uniqueness of τ immediately gener-
alizes to any non-gauge theory with a Green hyperbolic equation of motion operator P : the
Green operators will be unique, so the trivializations and unshifted Poisson structure will be,
too.

Example 4.4.10. For linear Yang-Mills theory, see Examples 4.1.3 and 4.1.9, and Section
4.2.2. As in the case of Klein-Gordon theory, the naturality of the input data noted in Remark
4.4.1 implies that SolLYM , LLYM and ΥLYM are Loc-natural. And the Loc-naturality of
the retarded and advanced trivializations found in Proposition 4.4.4 yields a Loc-natural
unshifted Poisson structure τLYM on SolLYM by item (1) of Lemma 4.4.7, which is given by
(4.2.21).

As noted in Remark 4.4.8, we cannot exclude the possibility of other, non-homotopic,
Loc-natural compatible pairs of retarded and advanced trivializations existing. In turn,
these might define Loc-natural unshifted Poisson structures that are not homotopic to our
found τLYM . Of course, as shown in items (2) and (3) of Lemma 4.4.7, when restricting
to COpens(M) for a M ∈ Loc the situation improves. In that case, another choice of
COpens(M)-natural compatible pairs of retarded and advanced trivializations defines a
homotopic COpens(M)-natural unshifted Poisson structure τ̃LYM because it is determined
by τ̃LYM

M
. So on COpens(M), our constructions define a unique homology class

[τLYM ] ∈ H0

(
hom

( 2∧
LLYM ,R

))
.
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So we find that both (LKG, τKG) and (LLYM , τLYM) define functors

C −→ PoissChR

for both C = Loc and C = COpens(M) for M ∈ Loc. To be able to use the results
from Section 3.4 to make our linear field theories into quantum field theories, we still need
to make sure that these functors satisfy the two field theory axioms, Einstein causality and
the time-slice axiom. Recall Definition 2.6.4 of a semi-strict homotopy algebraic linear field
theory.

Proposition 4.4.11. Let (LKG, τKG) : Loc→ PoissChR be the functor found in Exam-
ple 4.4.9 and let (LLYM , τLYM) : Loc→ PoissChR be the functor found in Example 4.4.10.
These functors both define semi-strict homotopy linear field theories on Loc: they satisfy
strict Einstein causality and the homotopy time-slice axiom.

Proof. For Klein-Gordon theory, we found the unshifted Poisson structure (4.2.16)

τ(ψ1, ψ2) =

∫
M

ψ1Gψ2 volM

and we immediately see that this theory satisfies (strict) Einstein causality by the same
argument as in Example 2.3.4.

As for the time-slice axiom, we use the fact noted in Section 4.2.1: the complex of linear
observables LKG(M) is (through the natural quotient map) quasi-isomorphic to its zeroth
homology H0

(
LKG(M)

)
, which is the usual vector space of linear observables defined in

Section 2.3.1. The map on the homology induced by a Cauchy morphism f : M → N is then
exactly the usual pushforward f∗ of equivalence classes of functions on M , which is proven to
be an isomorphism in [BD15], as mentioned in Example 2.3.4. Because weak equivalences in
PoissChR

C are defined objectwise (see Section 2.6) the theory (LKG, τKG) is equivalent to
(H0(LKG), τKG) and we see that (LKG, τKG) indeed satisfies the homotopy time-slice axiom.

Next we turn to linear Yang-Mills theory. As in the case of Klein-Gordon theory, the
support properties of Green operators and the form (4.2.21) of the unshifted Poisson structure
τLYM immediately imply that the theory satisfies strict Einstein causality.

For the time-slice axiom, let f : M → N be a Cauchy morphism in Loc. This induces
the pushforward f∗ : Ωi

c(M)→ Ωi
c(N) of compactly supported 0- and 1-forms, which are the

components of the chain map L(f) : LLYM(M)→ LLYM(N) (see Remark 4.4.1). This chain
map in turn induces maps Hn(f∗) on the homology; for the homotopy time-slice axiom to
hold, we need these induced maps to be isomorphisms.

Recall from Section 4.2.2 that H∗
(
LLYM(M)

)
is nonzero in degrees n = −1, 0 and 1.

The fact that Hn(f∗) is an isomorphism is known in the literature: in degrees n = ±1 this
follows from homotopy invariance of de Rham cohomology while in degree 0 the proof is more
involved, see e.g. the discussion after Definition 4.13 in [SDH14]. But we note here that,
similarly to Klein-Gordon theory, one can find an explicit quasi-inverse to L(f) using Green
operators and partitions of unity; we will carry out this calculation in the next chapter, see
(5.6.7) and Proposition 5.6.3. �

We find that (LKG, τKG) ∈ hLFT(Loc) and (LLYM , τLYM) ∈ hLFT(Loc). With our
results on the linear quantization functor CCR from Section 3.4.2 we can finally state our
main result: linear Yang-Mills theory ALYM = CCR(LLYM , τLYM) is a homotopy AQFT (as
is our presentation of Klein-Gordon theory).
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Theorem 4.4.12. (1) Let (LKG, τKG) : Loc → PoissChR be the functor found in
Example 4.4.9. Then the functor

AKG := CCR(LKG, τKG) : Loc −→ dgAlgAsC

defines a homotopy AQFT on Loc.
(2) Let (LLYM , τLYM) : Loc → PoissChR be the functor found in Example 4.4.10.

Then the functor

ALYM := CCR(LLYM , τLYM) : Loc −→ dgAlgAsC

defines a homotopy AQFT on Loc. Restricting to COpens(M) for any M ∈ Loc
defines a homotopy AQFT on M . This homotopy AQFT on M does not depend,
up to natural weak equivalence, on the choice of Loc-natural compatible pair of
retarded and advanced trivializations.

Proof. Both functors are homotopy AQFTs by Proposition 4.4.11 and the first part of

Proposition 3.4.10. Uniqueness (up to natural weak equivalence) of ALYM on COpens(M)
follows from item (3) in Lemma 4.4.7 and the second part of Proposition 3.4.10.

Note that the homotopy AQFT AKG on Loc does not depend on the choice of Loc-
natural compatible pair of retarded and advanced trivializations, since these are unique by
Proposition 4.2.12. �

We end with some final remarks on the two theories.

Remark 4.4.13. The differential graded algebra AKG(M) will in general be much bigger
than the algebra AKG(M) encountered in Section 2.3.1: while the latter algebra was valued
in VectC (so it is concentrated in degree 0 when interpreted as a differential graded algebra)
the AKG(M) constructed above will in general be nonzero in positive degrees. Nevertheless
we find that our chain complex-treatment of Klein-Gordon theory is equivalent (i.e. quasi-
isomorphic) to the usual treatment of Section 2.3.1. Indeed, we saw that LKG(M) is quasi-
isomorphic to its zeroth homology H0

(
LKG(M)

)
in Section 4.2.1, so by Proposition 3.4.10,

AKG(M) is quasi-isomorphic to CCR
(
H0

(
LKG(M)

)
, τKG

)
, which is the algebra concentrated

in degree 0 found in Section 2.3.1. Since all these constructions are functorial, we find that
the two field theories are equivalent.

Remark 4.4.14. As for linear Yang-Mills theory, we emphasize as in Remark 4.4.8 that
while our constructions above define a homotopy AQFT on Loc, we cannot exclude the
possibility of another Loc-natural compatible pair of retarded and advanced trivializations
existing. This could yield another Loc-natural unshifted Poisson structure τ̃LYM that is not
homotopic to the one we found, in turn leading to a potentially non-equivalent quantization.
The difference would of course have to be quite subtle: on any M ∈ Loc, we did find that
τLYM
M

and τ̃LYM
M

are homotopic.

Lastly, consider the theory ALYM
0 = CCR

(
H0(LLYM), τLYM

)
that assigns the quantum

algebra generated by the linear gauge-invariant on-shell observables to a spacetime M ∈ Loc.
This is the usual model in the literature, see e.g. [SDH14, BDS14, BDHS14, FL16,
Ben16, BSS17]. Unlike for Klein-Gordon theory in the above remark, we find that our
model ALYM is not weakly equivalent to ALYM

0 : on generic spacetimes M , Hn(LLYM(M))
will be nonzero in degrees n = −1, 0, 1, so Hn(ALYM(M)) will be nonzero in both positive
and negative degrees. In particular, ALYM(M) and ALYM

0 (M) will already differ in zeroth
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homology: while the latter will only be generated by the linear gauge-invariant on-shell
observables, ALYM(M) will also contain classes obtained by formal products of equal amounts
of linear ghost field observables and linear antifield observables.



CHAPTER 5

Relative Cauchy evolution for homotopy AQFTs

Relative Cauchy evolution (RCE) [BFV03, FV15, FL16] probes the degree to which
the observables of a quantum field theory respond to a perturbation in the spacetime metric.
It is fundamentally built on the time-slice axiom, which encodes the dynamics of a theory; we
can think of relative Cauchy evolution as testing what happens if we evolve a field over the
perturbation. We will deal with some of the issues that arise when trying to treat relative
Cauchy evolution in a homotopy quantum field theory, in particular when the time-slice
axiom is weakened to the homotopy time-slice axiom, as is the case for the linear homotopy
quantum field theories constructed in previous chapters, like the linear Yang-Mills model.
The work done here was previously published in the preprint [BFS21].

5.1. Relative Cauchy evolution

In this section we review relative Cauchy evolution for regular (vector space-valued) field
theories from several perspectives. This will turn out to be useful in the next sections, where
we will move on to homotopy (i.e. chain complex-valued) field theories.

Let us start by reviewing the time-slice axiom. Recall Definition 2.2.8 of the category
Loc of globally hyperbolic spacetimes and Definition 2.2.9 of Cauchy morphisms. A field
theory A then satisfies time-slice if, when f : M → N is a Cauchy morphism, A(f) is an
isomorphism (we consider the strong time-slice axiom here; in the next section we turn to
the weaker case where A(f) is a quasi-isomorphism). We first encountered it in our various
Definitions 2.3.1, 2.3.6, 2.3.8 of algebraic field theories as the axiom that ensures the theory
has a dynamical law.

In Section 3.3.2 we saw that the time-slice axiom can be characterized in two differ-
ent ways: now writing W for the set of Cauchy morphisms in Loc we had the orthogonal
localization functor

L : Loc −→ Loc[W−1]

(recall Definition 3.3.9 of the orthogonal localization). In Proposition 3.3.10 we found the
adjunction

L! : QFT(Loc)
//
QFT(Loc[W−1]) : L∗oo (5.1.1)

and in Proposition 3.3.12 we saw that it reduces to the adjoint equivalence

L! : QFT(Loc)W−const ∼
//
QFT(Loc[W−1]) : L∗oo (5.1.2)

between quantum field theories satisfying W -constancy (i.e. the time-slice axiom) on the left

and quantum field theories on the localized category Loc[W−1] on the right.
Given a field theory A that satisfies the time-slice axiom, we define the relative Cauchy

evolution as follows. Consider a spacetime (M, g) ∈ Loc with metric g, and a compactly

118



5.1. RELATIVE CAUCHY EVOLUTION 119

supported metric perturbation h ∈ Γc(Sym2T ∗M) that is small enough: Mh := (M, g + h) is
also a globally hyperbolic spacetime. We then can define the spacetimes

M± := M \ J∓(supph)

with the causal past and future of supph removed. Both M± naturally embed into both M
and Mh, so we have the diagram

M+
i+

}}

j+

""

M Mh

M−
i−

aa

j−

<<
(5.1.3)

in Loc. Note that all four morphisms are Cauchy morphisms, though they are not isomor-
phisms (unless h = 0). Applying A we then obtain the diagram

A(M)+
A(i+)

yy

A(j+)

&&

A(M) A(Mh)

A(M−)
A(i−)

ee

A(j−)

88

of isomorphisms in AlgAs(VectC). The relative Cauchy evolution associated to the pair (M,h)
is then the automorphism

RCEM,h := A(i−)A(j−)−1A(j+)A(i+)−1 : A(M) −→ A(M) (5.1.4)

of the algebra of observables A(M) that cycles clockwise through the diagram once. The map
RCEM,h is compatible with Loc-morphisms and morphisms of field theories, see Propositions
3.7 and 3.8 in [FV12].

Let us now consider relative Cauchy evolution from the other perspective offered by
Proposition 3.3.12. Using the localization functor L : Loc → Loc[W−1] we see that the
images under L of all four Cauchy morphisms in (5.1.3) are isomorphisms in the localized

category Loc[W−1]. So we can define the RCE composition

rM,h := L(i−)L(j−)−1L(j+)L(i+)−1 : L(M) −→ L(M)

in Loc[W−1]. For a given quantum field theory B ∈ QFT(Loc[W−1]) the relative Cauchy
evolution associated to (M,h) is then defined as the image under B of this automorphism:

RCEM,h := B(rM,h) : B(L(M)) −→ B(L(M)) . (5.1.5)

The two definitions (5.1.4) and (5.1.5) of the RCE morphism are of course equivalent when
the theories A and B are equivalent under the adjoint equivalence (5.1.2), i.e. when A = L∗B.

In order to simplify the problem of localizing Loc we now restrict the adjoint equivalence
(5.1.2) to the small category consisting only of the four spacetimes in question. As such we
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define the subcategory

C :=


M+

i+

}}

j+

""

M Mh

M−
i−

aa

j−

<<

 (5.1.6)

of Loc consisting of four objects and four non-identity morphisms. Note that no pair of
morphisms in C is orthogonal (recall Definition 3.1.1) so the pullback orthogonality relation
(recall Lemma 3.1.3) on C along the inclusion functor into Loc is the empty one. So a
quantum field theory on C in the sense of Definition 3.1.5 and Example 3.1.6 (which satisfies
Einstein causality but not necessarily the time-slice axiom) is simply a functor from C to
AlgAs(VectC). From now on we suppress the orthogonality data on C and simply write C.

We also note that every morphism in C is a Cauchy morphism. So the localization of
C at the Cauchy morphisms (on which the pushforward orthogonality relation of Lemma
3.1.3 along the localization functor is also empty) is the localization C[All−1] of C at all
morphisms. We can explicitly describe a such a localization as follows.

Write BZ for the category with one object ∗ and Z as the set of morphisms from ∗ to
itself:

BZ :=
(
∗ Z
yy

)
. (5.1.7)

We will routinely write n + m for the composition of morphism n and m in BZ for obvious
reasons. Note that the data of a functor B from BZ to an arbitrary category D consists of
the object B := B(∗) together with a Z action in D, i.e. a group morphism Z→ AutD(B)
to the automorphism group of B in D, which is characterized by the automorphism B(1)
(or equivalently B(−1)). We then claim that the functor

L : C −→ BZ
M,Mh,M+,M− 7−→ ∗

i+, j+, j− 7−→ 0
i− 7−→ 1

(5.1.8)

is a localization of C at all morphisms.

Lemma 5.1.1. The above functor L : C→ BZ (5.1.8) is a localization of the category C
(5.1.6) at all morphisms.

Proof. Recall Definition 2.4.15 of the localization of a category. It is clear that every
L(f) is an isomorphism, since every morphism in BZ is an isomorphism. Given a functor
F : C→ D such that every F (f) is an isomorphism for f in Mor C, we define

FL : BZ −→ D
∗ 7−→ F (M)
1 7−→ F (i−)F (j−)−1F (j+)F (i+)−1

such that FL(n) := FL(1)n. Then F and FLL are naturally isomorphic by

ηM = idF (M) : F (M) −→ F (M)
ηM+ = F (i+) : F (M+) −→ F (M)
ηMh

= F (i+)F (j+)−1 : F (Mh) −→ F (M)
ηM− = F (i+)F (j+)−1F (j−) : F (M−) −→ F (M) .
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Lastly, the pullback functor

L∗ : Fun(C[W−1],D) −→ Fun(C,D)

is clearly faithful, since L is surjective on objects. To prove fullness, let G,H : BZ→ D be
functors and κ : GL→ HL be a natural transformation. Since L sends the three morphisms
i+, j+ and j− to 0, we find that κM = κM+ = κMh

= κM− by naturality of κ, so all
components of κ coincide. Naturality with respect to the last morphism i− then shows that
κMG(1) = H(1)κM− = H(1)κM so ζ∗ := κM defines a natural transformation ζ between G
and H such that κ = ζL. �

Reducing to C and its localization BZ the adjunction (5.1.1) simplifies to

L! : Fun(C,AlgAs)
//
Fun(BZ,AlgAs) : L∗oo

which becomes an adjoint equivalence when restricting the left category to Fun(C,AlgAs)
All

(recall that since C and BZ have an empty orthogonality relation, quantum field theories on
the categories are simply functors to AlgAs). In this adjunction, the right adjoint L∗ is simply
the pullback functor along L, while L! is the left Kan extension along L. In Theorem 2.1.36
we saw that L! can be computed as a colimit:

L!(A) = LanLA = colim

(
L/∗ Π

// C
A
// AlgAs

)
. (5.1.9)

Here, L/∗ is the comma category of L over the unique object ∗ ∈ BZ (see Definition 2.1.23)
and Π : L/∗ → C is the canonical forgetful functor (2.1.3).

Objects in the comma category L/∗ are pairs(
N ∈ C, (f : Lc = ∗ −→ ∗)

)
= (N, n) ∈ Ob C× Z

and morphisms between (N, n) and (N ′, n′) are morphisms f : N → N ′ in C such that

L(N) = ∗
L(f)

//

n
$$

L(N ′) = ∗

n′zz∗
commutes, i.e. such that n = n′ + L(f). These conditions imply that between two objects
in L/∗ there exists at most one morphism. In fact, recalling the definition of L we find that
we can visualize the comma category as

· · · → (M,n− 1)
i−←− (M−, n)

j−−→ (Mh, n)
j+←− (M+, n)

i+−→ (M,n)
i−←− (M−, n+ 1)← · · ·

(5.1.10)
not writing the identity morphisms. Note that for any of composable morphisms

(N, n)
f−→ (N ′, n′)

g−→ (N ′′, n′′)

in L/∗ we have either f = id or g = id (or both).
The projection Π : L/∗ → C forgets the integer n: Π(N, n) = N ∈ C and Π(f :

(N, n) → (N ′, n′)) = (f : N → N ′). Recalling the definitions of C (5.1.6) and the comma
category (5.1.10) we see that Π exhibits L/∗ as a kind of universal cover of C. Pictorially,
we think of L/∗ as a spiral that is infinitely long in both directions, with four nodes at every
level n corresponding to the four objects in C. Adjacent nodes are then connected by a
unique morphism. This spiral is projected by Π onto C, which is a loop with four nodes
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where adjacent nodes are also connected by unique morphisms. We will use this intuitive
picture throughout this chapter, hopefully eludicating the large formulas we will encounter.
Specifically, we will refer to the index n as the level in the spiral.

Moving on to L!(A) we have the canonical maps

ι(N,n) : A(N) −→ L!(A)

into the colimit (5.1.9). The Z-action on L!(A) is then defined through the universal property
of the colimit, by

A(N)
ι(N,n)

{{

ι(N,n+k)

##

L!(A)
L!(A)(k)

// L!(A)

for all (N, n) ∈ L/∗ and all k ∈ Z, which we visualize as moving up k levels in the spiral.
If we let ζ : A → A′ be a natural transformation (i.e. a morphism in Fun(C,AlgAs)) then
L!(ζ) : L!(A)→ L!(A

′) is determined by the functoriality of the colimit:

A(N)
ζN
//

ι(N,n)

��

A′(N)

ι′
(N,n)

��

L!(A)
L!(ζ)

// L!(A
′)

where ι(N,n) : A(N) → L!(A) and ι′(N,n) : A′(N) → L!(A
′) are the canonical maps of the

colimits.
Now let A ∈ Fun(C,AlgAs)

All be a QFT that satisfies the time-slice axiom. We know
that the adjunction L! a L∗ is an adjoint equivalence when restricting to Fun(C,AlgAs)

All,
so A is equivalent to L!(A). Since we have

L(i−)L(j−)−1L(j+)L(i+)−1 = 1

in BZ by (5.1.8) we find that the relative Cauchy evolution on L!(A) is given by

L!(A)(1) : L!(A) −→ L!(A) (5.1.11)

so by moving up one level in the spiral.
In fact, we can directly relate the two approaches to relative Cauchy evolution (using A

or using L!(A)) by noting that ι(N,n) : A(N) → L!(A) is an isomorphism. We then have the
commutative diagram

A(M)
RCEM,h

//

ι(M,n)

��

A(M)

ι(M,n)

��

L!(A)
L!(A)(1)

// L!(A)

intertwining our two notions of relative Cauchy evolution.
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5.2. Relative Cauchy evolution for homotopy AQFTs

We now turn to homotopy algebraic quantum field theories1, and the question of how to
define relative Cauchy evolution for them. Recall the model structure on (quantum) field
categories of Proposition 3.4.1: a weak equivalence of homotopy field theories is a natural
weak equivalence (i.e. quasi-isomorphism) of the underlying functors. Crucially, a homotopy
quantum field theory A satisfies the homotopy time slice axiom (see Definition 2.6.1 and
also Definition 3.4.12): if f : M → N is a Cauchy morphism, A(f) : A(M) → A(N) is a
quasi-isomorphism.

The issue with defining relative Cauchy evolution as in (5.1.4) on general homotopy
quantum field theories A : Loc→ dgAlgAs is then that quasi-isomorphisms do not in general
have inverses. For chain complexes, quasi-inverses exist (and we in fact will find these later
in the chapter), but the quasi-inverse to a quasi-isomorphism of associative algebras will in
general be an A∞-morphism, see [LV12]. Moreover, we cannot simply invert objectwise: we
have to take care of Loc-functoriality. Any choices made along the way would lead to a
potentially infinite tower of coherences when considering compatibility with Loc-morphisms,
morphisms of field theories or between RCE-morphisms themselves.

So we follow the strategy of the previous section. Recall that this involved two steps:
using the adjunction L! a L∗ (which is Quillen, see Proposition 3.4.3), and considering only
one single metric perturbation (M,h), in effect restricting to the category C ⊆ Loc. Let us
consider both steps individually first.

On the one hand, if we restrict our theory from Loc to C, we do not need to worry
about other RCE-morphisms anymore, and C-functoriality is a lot easier to handle than
Loc-functoriality. We would still need to find the A∞-quasi-inverse, which seems to be a
hard but solvable problem, but it is not clear if a good physical interpretation could be
extracted.

Conversely, we could keep working on Loc and use the Quillen adjunction

L! : hQFT(Loc)
//
hQFT(Loc[W−1]) : L∗oo .

The goal now would be to prove that the restricted derived unit of this adjunction is a weak
equivalence when restricting the left side to the category hQFT(Loc)hoW of quantum theories
satisfying the time-slice axiom. In that case, a theory A ∈ hQFT(Loc)hoW satisfying homo-

topy time-slice could equivalently be described by the theory LL!(A) ∈ hQFT(Loc[W−1]),
where LL! is the left derivation of L!. The theory LL!(A) assigns to any Cauchy morphism
an isomorphism, not just a quasi-isomorphism, so all RCE-morphisms (5.1.5) are defined
in a coherent way: since all inverses are strict there would be no need to work with A∞-
quasi-inverses or with higher coherences. But finding a workable model for the localization
Loc[W ]−1 is beyond the scope of this thesis.

Employing both strategies we consider the adjunction

L! : Fun(C, dgAlgAs)
//
Fun(BZ, dgAlgAs) : L∗oo (5.2.1)

remembering that since both C and BZ have empty orthogonality relations, quantum field
theories on them are simply functors to dgAlgAs. L∗ is the usual pullback functor, and L!

is the differential graded version of the functor L! (5.1.9). As above, the goal now would

1Recall from Section 2.6 that in this text we use homotopy AQFT to mean semi-strict homotopy AQFT.
Since we restrict to the category C with empty orthogonality data in this chapter, this has no bearing on
the results presented here.
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be to prove that the derived unit of this Quillen adjunction is a weak equivalence when
restricting the left category in the adjunction to the category Fun(C, dgAlgAs)

hoAll of quantum
theories satisfying the time-slice axiom. This would again mean that a field theory A ∈
Fun(C, dgAlgAs)

hoAll satisfying homotopy time-slice could equivalently be described by the
theory LL!(A) ∈ Fun(BZ, dgAlgAs), i.e. the differential graded algebra LL!(A)(∗) with strict
Z-action LL!(A)(1) describing the relative Cauchy evolution as in (5.1.11).

Proving that the restriction of the derived unit of the above adjunction is a weak equiv-
alence using simplicial methods does not seem impossible, but we did not find a complete
proof before this thesis was due. So we reduce our scope once more, now restricting to quan-
tizations of linear field theories A = CCR(L, τ) where CCR is the linear quantization functor
(3.4.2) and (L, τ) is a homotopy linear field theory in the sense of Definition 2.6.4. The plan
for the rest of this chapter is as follows: in Section 5.3 we will prove a rectification theorem
as described above for the adjunction

L! : Fun(C,ChK)
//
Fun(BZ,ChK) : L∗oo

on linear observables L, finding a notion of relative Cauchy evolution for L. In Section 5.4
we will find a Poisson structure τL on the strictified linear observables LL!(L). In Section
5.5 we use these results to prove a rectification theorem for linear quantum field theories and
show that for the linear observables, the strict relative Cauchy evolution is homotopic to the
naive version. Finally, in Section 5.6 we will treat relative Cauchy evolution for the example
of linear Yang-Mills theory of Chapter 4 and calculate the stress-energy tensor.

5.3. A rectification theorem for the linear observables

The first step is to prove a rectification theorem for the linear observables L such as the
complexes from Definition 4.2.1. We are working on the category C (5.1.6), so the linear
observables are functors

L : C −→ ChK.

In turn, we saw that C localizes to the category BZ through the functor L (5.1.8), which
yields the Quillen adjunction

L! : Fun(C,ChK)
//
Fun(BZ,ChK) : L∗oo (5.3.1)

where we endow both sides with the projective model structure. L∗ is the pullback functor
along L, and L! is the left Kan extension along L.

The time-slice axiom for a theory of linear observables L says that L assigns weak equiv-
alences in ChK (i.e. quasi-isomorphisms) to all Cauchy morphisms in C, that is, to all mor-
phisms in C. We write Fun(C,ChK)hoAll for the category of functors satisfying homotopy
time-slice; as mentioned in Section 5.2 our goal of proving a rectification theorem is then
proving that the derived unit of the above adjunction is a weak equivalence when restricting
the left side to Fun(C,ChK)hoAll.

Let us give all the ingredients for this theorem: the underived and the derived functors,
and the derived unit and counit. Recall the expression of L! (5.1.9), the projective model
structure on functors valued in ChK (Example 2.4.23), the process of deriving functors (Sec-
tion 2.4.5) and the bar construction (Section 2.4.6).

First, the right adjoint L∗. Recall that a functor Y : BZ→ ChK is characterized by the
object Y := Y (∗) and the automorphism Y (1) : Y → Y . The pullback of such a Y under L∗
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is then the functor L∗Y = Y L which we visualize as

Y
id

~~

id

  

Y Y

Y
Y (1)

``

id

>>
(5.3.2)

recalling the shape (5.1.6) of the category C. As noted in Section 2.4.6, since each object
is fibrant in the projective model structure on Fun(BZ,ChK), we do not need to fibrantly
replace and the right adjoint L∗ is the right derived functor RL∗.

Then, the left adjoint. The explicit expression of the underived functor L! is (5.1.9); to a
functor X ∈ Fun(C,ChK) it assigns the object

L!X =
⊕

(N,n)∈L/∗

X(N)n

/(
X(sf)n −X(f)(X(sf))n+L(f)

)
f∈MorL/∗ . (5.3.3)

The sum
⊕

(N,n)∈L/∗X(N)n consists of a copy of X(N) for each object (N, n) ∈ L/∗. The
chain complex that we quotient out by then is generated by all elements

xn −X(f)(x)n′

where xn ∈ X(N)n and X(f)(x)n′ ∈ X(N ′)n′ for f : (N, n) → (N ′, n′) in L/∗, so n′ =
n+L(f). We can visualize this quotient as an appropriate chain complex X(N) at each node
in the spiral, linked through the quotient to each of its neighbours. The Z-action is then
given by moving up and down the spiral:

L!(X)(k) : L!X −→ L!X
[xn] 7−→ [xn+k]

.

To derive L! we use the bar construction, effectively unfolding this quotient into a bicom-
plex such that the quotient is retrieved in zeroth vertical homology. From Section 2.4.6 we
see that

LL!(X) = Tot⊕
(
B∆(L,C, X)

)
∈ Fun(BZ,ChK) (5.3.4)

is a model for the left derived functor LL!, where B∆ is the bar construction and Tot⊕ is
the functor totalizing the resulting bicomplex into a chain complex. To simplify notation we
write

X̃ := B∆(L,C, X) ∈ Fun(BZ,bChK) (5.3.5a)

for the bicomplex valued functor obtained by the bar construction. This functor can be
explicitly described as follows. The underlying bicomplex X̃ := X̃(∗) is

X̃ =
(
X̃•,0 X̃•,1

δ
oo

)
. (5.3.5b)

There are no terms in higher vertical degree, since there are no pairs of composable morphisms

(N, n)
f−→ (N ′, n′)

g−→ (N ′′, n′′) in L/∗ for which f and g are not the identity. In turn,

X̃•,0 =
⊕

(N,n)∈L/∗

X(N)n =
⊕
n∈Z

⊕
N∈C

X(N)• (5.3.5c)
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is the sum we found in the expression of L!X (5.3.3) over all nodes in the spiral, and

X̃•,1 =
⊕

(N,n)∈L/∗

⊕
(N

f←−N′)∈C
f 6=id

X(N ′)• =
⊕
n∈Z

⊕
f∈MorC

f 6=id

X(sf)• (5.3.5d)

is precisely the complex that implements the quotient in (5.3.3). So we have in a sense
unfolded the quotient L!X: the complex X̃•,0 still yields a complex at every node in our

spiral, while X̃•,1 implements the quotient linking to neighbouring nodes.

For X̃•,0 we write (N, n, x) for the element x ∈ X(N) in the summand indexed by (N, n),

and similarly for X̃•,1 we write (f, n, x) for the element x ∈ X(N) in the summand indexed by

(f, n). We will also use this notation for the elements of the totalization Tot⊕(X̃) = LL!(X).
The vertical differential δ : X̃•,1 → X̃•,0 is then given by

δ(f, n, x) = (−1)|x|
(
(sf, n+ L(f), x)− (tf, n,X(f)x)

)
(5.3.6)

where |x| is the degree of x in X(sf). The Z-action is then very explicitly given by addition:

X̃(k) : X̃ −→ X̃
(N, n, x) 7−→ (N, n+ k, x)
(f, n, x) 7−→ (f, n+ k, x)

.

The derived counit ε̃ : LL!L
∗ → id at the component Y ∈ Fun(BZ,ChK) is then given

by (2.4.5):
ε̃Y : LL!L

∗Y −→ Y
(N, n, y) 7−→ Y (n)(y)
(f, n, y) 7−→ 0

(5.3.7)

which is clearly equivariant with respect to both Z-actions, so it is a natural transformation

of functors from BZ to ChK. Note that every component in the sums L̃∗Y •,0 and L̃∗Y •,1
(5.3.5) is Y.

For the derived unit, we have the cofibrant replacement (2.4.6)

Q(X) = Tot⊕
(
B∆(id,C, X)

)
∈ Fun(C,ChK)

through applying the bar construction to the identity functor id : C → C. Like LL!(X)
above it can be explicitly described. To simplify notation, write X∆ := B∆(id,C, X) ∈
Fun(C,bChK). For N ∈ C we then have the bicomplex

X∆(N) =
(
X∆(N)•,0 X∆(N)•,1

δ
oo

)
∈ bChK (5.3.8a)

with again no terms in higher vertical degrees because composable morphisms in C are very
restricted. In turn, the terms appearing in the bicomplex are

X∆(N)•,0 =
⊕

g∈MorC
tg=N

X(sg)• (5.3.8b)

and
X∆(N)•,1 =

⊕
(g,f)∈Mor2 C

tg=N,f 6=id

X(sf)• , (5.3.8c)

where we use the notation Mor2 C for the composable pairs of morphisms in C. We write
(g, x) ∈ X∆(N)•,0 for elements of vertical degree 0, and (g, f, x) ∈ X∆(N)•,1 for elements of
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vertical degree 1. Note that the condition f 6= id implies that g = id in this sum defining
X∆(N)•,1, so any element (g, f, x) of vertical degree 1 will always have g = id. The vertical
differential δ is given by

δ(g, f, x) = (−1)|x|
(
(gf, x)− (g,X(f)x)

)
for any (g, f, x) ∈ X∆(N)•,1. C-functoriality is then given by given by postcomposition: for
h : N → N ′ in C,

X∆(h) : X∆(N) −→ X∆(N ′)
(g, x) 7−→ (hg, x)

(g, f, x) 7−→ (hg, f, x)
.

It is a general result (Lemma 13.3.3 in [Fre09]) that Q(X) is a naturally weakly equivalent
to X through the natural weak equivalence qX : Q(X)→ X which has components

qX,N : Q(X)(N) −→ X(N)
(g, x) 7−→ X(g)x

(g, f, x) 7−→ 0
. (5.3.9)

In our simple case this is explicit with the quasi-inverse sX : X → Q(X) given by

sX,N : X(N) −→ Q(X)(N)
x 7−→ (idN , x)

(5.3.10)

so q (and s) are indeed quasi-isomorphisms.
With the resolution Q(X) under control, the derived unit η̃ : Q → L∗LL! is then given

at components X and N ∈ C by (2.4.7)

η̃X,N : Q(X)(N) −→ L∗LL!(X)(N) = LL!(X)
(g, x) 7−→ (L(g), sg, x)

(g, f, x) 7−→ (L(g), f, x)
. (5.3.11)

With all the ingredients in place, we can now prove the rectification theorem.

Theorem 5.3.1. (1) The derived counit ε̃ (5.3.7) of the Quillen adjunction L! a L∗
(5.3.1) is a weak equivalence.

(2) When we restrict to the full subcategory Fun(C,ChK)hoAll ⊆ Fun(C,ChK) of func-
tors such that any X(f) for f ∈ Mor C is a quasi-isomorphism, the derived unit
(5.3.11) is also a weak equivalence.

Proof. Item (1): For the derived counit, let Y ∈ Fun(BZ,ChK) and recall the shape
of L∗Y (5.3.2). To prove that the derived counit is a weak equivalence, we can construct an
explicit quasi-inverse to the chain map underlying the component ε̃Y (5.3.7).

So define
κ : Y −→ LL!(L

∗Y )
y 7−→ (M, 0, y)

that embeds Y at the node (M, 0) in the spiral. Clearly κ does not preserve the Z-action, but
it does not need to: we just need it to prove that εY is a quasi-isomorphism. It is immediate
that ε̃Y κ = id.

For the other composition we will find a homotopy ρ ∈ hom(LL!(L
∗Y ),LL!(L

∗Y ))1 such
that

κε̃Y − id = ∂ρ . (5.3.12)
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For any node (N, n) in the spiral L/∗ (5.1.10), write

(M, 0) =: (N−1, n−1)
f0←− (N0, n0)

f1−→ (N1, n1)
f2←− · · · fm↔ (Nm, nm) := (N, n) (5.3.13)

for the shortest zig-zag between (M, 0) and (N, n) in the spiral, and write

fi : (N s
i , n

s
i) −→ (N t

i , n
t
i)

for the morphisms in this zig-zag. For an element of vertical degree 0 (N, n, y) ∈ LL!(L
∗Y ) =

Tot⊕(L̃∗Y ) we then define the homotopy

ρ(N, n, y) = −(−1)|y|
m∑
i=0

(−1)i(fi, n
t
i, Y (n− ns

i)y)

and we let ρ(N, f, y) = 0 for elements of vertical degree 1.
We now find that (5.3.12) holds: for (N, n, y) of vertical degree 0,

∂ρ(N, n, y) = (δ + d)ρ(N, n, y) + ρ(δ + d)(N, n, y)

= δρ(N, n, y)

= −
m∑
i=0

(−1)i
(
(N s

i , n
s
i, Y (n− ns

i)y)− (N t
i , n

t
i, Y (n− nt

i)y)
)

= (M, 0, Y (n)y)− (N, n, y)

= (κε̃Y − id)(N, n, y)

where the horizontal differential d drops out because Y (k) is a chain map and we use
δ(N, n, y) = 0. Furthermore, all neighbouring terms from the zig-zag (5.3.13) cancel ex-
cept the terms from the boundary, yielding the desired result. Similarly, we find that

∂ρ(f, n, y) = ρδ(f, n, y) = −(f, n, y)

for any element (f, n, y) of vertical degree 1. So we indeed have (5.3.12), and εY indeed is a
quasi-isomorphism.

Item (2): For the derived unit, let X ∈ Fun(C,ChK)hoAll now be a functor such that for
any f ∈Mor C, X(f) is a quasi-isomorphism. We need to prove that the component

η̃X,N : Q(X)(N) −→ LL!(X)

(5.3.11) is a quasi-isomorphism for each N ∈ C. Since the category C is connected, ev-
ery Q(X)(f) is a quasi-isomorphism and every LL!(X)(f) is an isomorphism, it suffices to
prove that the component η̃X,M at M is a quasi-isomorphism by the 2-out-of-3 property and
naturality of η̃X . In turn, η̃X,M is a quasi-isomorphism if and only

φ := sX,M η̃X,M : X(M) −→ LL!(X)
x 7−→ (M, 0, x)

is a quasi-isomorphism, where sX,M is the quasi-inverse to qX,M (5.3.10).
The strategy now is to consider the short exact sequence of complexes

0 // X(M)
φ
// LL!(X) // coker(φ) // 0

which is exact because φ is injective. If we then prove that the homology of coker(φ) is
trivial, the long exact sequence of homologies associated to this sequence then implies that



5.3. A RECTIFICATION THEOREM FOR THE LINEAR OBSERVABLES 129

φ is an isomorphism on homology, i.e. a quasi-isomorphism. To do this, we will use spectral
sequences, filtering coker(φ).

First, recall the structure (5.3.5) of the complex LL!(X) and note that by dividing out
the copy of X(M) at the node (M, 0) in the spiral, the cokernel admits the direct sum
decomposition coker(φ) = FL ⊕ FR. Here FL ∈ ChK is the chain complex associated with
the objects and morphisms to the left of the node (M, 0) in the spiral (5.1.10), i.e. of
negative and zero level n, and FR ∈ ChK is the chain complex associated with the objects
and morphisms to the right of the node (M, 0) in the spiral, i.e. of positive level n. We can
prove that coker(φ) has trivial homology by proving this for FL and FR independently.

For notational convenience we write(
(M, 0)

fR0←− NR
0

fR1−→ NR
1

fR2←− · · ·
)

:=
(

(M, 0)
i−←− (M−, 1)

j−−→ (Mh, 1)
j+←− · · ·

)
for the part of the spiral associated to FR. Then FR is

FR = Tot⊕
( ⊕
k≥0

X(NR
k )

⊕
k≥0

X(sfRk )
δR
oo

)
with vertical differential on (fk, k, x) ∈

⊕
k≥0

X(sfRk ) given by

δR(fk, k, x) =


(−1)|x|(0, x) k = 0

(−1)|x|((k, x)− (k − 1, X(fRk )x)) k ≥ 2 even

(−1)|x|((k − 1, x)− (k,X(fRk )x)) k odd .

The difference with the vertical differential δ (5.3.6) at k = 0 is a result of the fact that we
divided out X(M) at level 0 in the cokernel.

We then define the filtration 0 ⊆ FR
0 ⊆ FR

1 ⊆ · · · ⊆ FR
p ⊆ · · · ⊆ FR by restricting the

direct sums defining FR to k ≤ p,

FR
p := Tot⊕

( ⊕
0≤k≤p

X(NR
k )

⊕
0≤k≤p

X(sfRk )
δR
oo

)
.

This filtration is exhaustive and bounded below. The quotients

FR
p /F

R
p−1 =

{
cone(id : X(NR

p )→ X(NR
p )) p ≥ 0 even

cone(−X(fRp ) : X(NR
p−1 → X(NR

p )) p ≥ 0 odd

are then all mapping cone complexes (see Definition 1.5.1 in [Wei95]), each associated to a
quasi-isomorphism because X ∈ Fun(C,ChK)hoAll assigns quasi-isomorphisms to all maps in
C. By Corollary 1.5.4 in [Wei95] we have H•(F

R
p /F

R
p−1) = 0 for all p, and by the convergence

theorem for spectral sequences (Theorem 5.5.1 in [Wei95]) we have H•(F
R) = 0.

A completely analogous argument also shows that H•(F
L) = 0, so we find H•(coker(φ)) =

0 as required. �

Let us summarize the results of this section for the next one. If L : C → PoissChK is
linear field theory on C satisfying the homotopy time-slice axiom, we also write L for the
underlying functor L ∈ Fun(C,ChK)hoAll (we will treat the Poisson structure in the next
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section). Theorem 5.3.1 and qL : Q(L)→ L (5.3.9) then yield the zig-zag of weak equivalences

Q(L)
qL
∼

}}

η̃L

∼
%%

L L∗LL!(L)

(5.3.14)

in Fun(C,ChK) (and even in Fun(C,ChK)hoAll since Q(L) ∈ Fun(C,ChK)hoAll also). This
zig-zag shows that the original theory L that satisfies the homotopy time-slice axiom is
equivalent to the theory L∗LL!(L), which satisfies the strict time-slice axiom. The price to
pay is that L∗LL!(L) will be a theory that assigns the same, larger complex LL!(L) to every
object in C.

The relative Cauchy evolution on these complexes LL!(L) is then very simple: we have

rceM,h := LL!(L)(1) : LL!(L) 7−→ LL!(L)
(N, n, x) 7−→ (N, n+ 1, x)
(f, n, x) 7−→ (f, n+ 1, x)

(5.3.15)

where we write rce for the relative Cauchy evolution on linear observables, in contrast to
the notation RCE for quantum field theories. So similar to the reformulation (5.1.11) this
version of RCE is simply addition by 1 to the level in the spiral (5.1.10).

5.4. A Poisson structure on the strictified linear observables

We now turn to the Poisson structure. To form a quantum theory Ast from the strictified
theory L∗LL!(L) we need a Poisson structure on the complex LL!(L). We then also need to
make sure that this theory is equivalent to the quantum theory A = CCR(L, τ) ∈ hQFT(C)
of the original model. Our strategy has two steps. First, we define the Poisson structure

τL : LL!(L) ∧ LL!(L) −→ K (5.4.1)

on the theory LL!(L) : BZ→ ChK. Then, we prove that this Poisson structure is compatible
with the original τ on L by showing that they are homotopic when pulled back to Q(L) in
the diagram (5.3.14).

To define the Poisson structure τL on LL!(L) we will use zig-zagging maps related to the
spiral (5.1.10). First, choose a quasi inverse

L(f)−1 : L(N ′)→ L(N) (5.4.2)

to the quasi-isomorphism L(f) : L(N) → L(N ′) for every morphism f : N → N ′ in C. For
any two nodes (N, n), (N ′, n′) ∈ L/∗ in the spiral we then note that there exists a unique
chain of zig-zags of minimal length between them. Applying L to the spiral and using L(f)−1

for the arrows in the opposite direction this yields the zig-zagging chain maps

ZN,n
N ′,n′ : L(N ′) −→ L(N) (5.4.3)

through these shortest zig-zags in L/∗. For example, the zig-zag

(M−, n)
j−−→ (Mh, n)

j+←− (M+, n)
i+−→ (M,n) (5.4.4a)

results in the map

ZM,n
M−,n

= L(i+)L(j+)−1L(j−) : L(M−) −→ L(M) (5.4.4b)
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while the zig-zag

(M−, n+ 1)
i−−→ (M,n)

i+←− (M+, n)
j+−→ (Mh, n) (5.4.4c)

yields the map

ZMh,n
M−,n+1 = L(j+)L(i+)−1L(i−) : L(M−) −→ L(Mh) . (5.4.4d)

Note that for the second map we have reversed the direction of the spiral compared to
(5.1.10) to keep the source object on the left; of course, how we write a zig-zag down does
not influence the zig-zagging chain map, and we will in fact use this freedom below when
defining the zig-zagging homotopies. We further note that the zig-zagging chain maps (5.4.3)
are manifestly invariant under the Z-action:

ZN,n+k
N ′,n′+k = ZN,n

N ′,n′ (5.4.5)

for all k ∈ Z.
We now need to introduce homotopies that compare the zig-zagging chain map ZN,n

N ′,n′

with its neighbours. First, choose chain homotopies λf ∈ hom(L(N ′),L(N ′))1 and γf ∈
hom(L(N),L(N))1 that witness that L(f)−1 is a quasi-inverse to L(f),

L(f)L(f)−1 − id = ∂λf (5.4.6a)

L(f)−1L(f)− id = ∂γf (5.4.6b)

and a chain 2-homotopy ξf ∈ hom(L(N ′),L(N ′))2 that governs compatibility between L(f)
and the 1-homotopies,

L(f)γf − λfL(f) = ∂ξf . (5.4.7)

For the identity morphisms idN , we choose L(idN)−1 = idL(N) to be the identity and the
homotopies λidN = 0, γidN = 0 and ξidN = 0 to be zero.

Remark 5.4.1. The quasi-inverse and the corresponding homotopy data always exist.
One can show this directly, by choosing projections from L(N) onto ker d and from ker d onto
H•(L(N)). There is also a nice 2-categorical argument, hinging on the fact that ChK can be
enriched to a 2-category where the 2-morphisms are homotopy classes of chain homotopies
and the equivalences are the quasi-isomorphisms. The existence of our homotopy data then
follows from the fact that every equivalence can be upgraded to an adjoint equivalence (see
Exercise 2.2 in [Lac10]): L(f)−1 is the right adjoint to L(f), γf and −λf are the unit and
counit of this adjunction, respectively, and the equation for ξf is one of the two triangle

identities. We will not need the homotopy ξ̃f resulting from the other triangle identity

γfL(f)−1 − L(f)−1λf = ∂ξ̃f .

In the linear Yang-Mills example of Section 5.6 we will explicitly calculate these homotopies
using the familiar tools of Green operators and partitions of unity.

Now we use the basic homotopies λf , γf and ξf to define the homotopies that govern the

behaviour of the zig-zagging chain maps ZN,n
N ′,n′ when composing them with maps L(f) and

L(f)−1.
Let us first consider composition from the left. Let (N ′, n′) be an object in L/∗ and

(f, n) : (sf, n+L(f))→ (tf, n) be a morphism in L/∗. A zig-zagging chain homotopy for the
left composition is then a chain homotopy

Λf,n
N ′,n′ ∈ hom(L(N ′),L(tf))1 (5.4.8a)
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such that
L(f)Z

sf,n+L(f)
N ′,n′ − Ztf,n

N ′,n′ = ∂Λf,n
N ′,n′ . (5.4.8b)

We construct Λf,n
N ′,n′ as follows. First, note that there are two possibilities for the direction

of f compared to the zig-zag: it either points along the zig-zag,

(N ′, n′) oo
zig-zag

// (sf, n+ L(f))
f

// (tf, n) , (5.4.9a)

or it points against the zig-zag,

(N ′, n′) oo
zig-zag

// (tf, n) (sf, n+ L(f))
f

oo . (5.4.9b)

As with the examples of zig-zagging chain maps (5.4.4) we note that the orientation of the
zig-zag as written down here might be opposite to the one of the spiral (5.1.10). We then

define Λf,n
N ′,n′ to be

Λf,n
N ′,n′ :=

{
0 for direction (5.4.9a)

λfZ
tf,n
N ′,n′ for direction (5.4.9b) .

(5.4.10)

To check that (5.4.8) holds we note that when f points along the zig-zag (5.4.9a) we have

L(f)Z
sf,n+L(f)
N ′,n′ = Ztf,n

N ′,n′

so Λf,n
N ′,n′ = 0 indeed suffices. On the other hand, if f points against the zig-zag (5.4.9b),

L(f)Z
sf,n+L(f)
N ′,n′ − Ztf,n

N ′,n′ = (L(f)L(f)−1 − id)Ztf,n
N ′,n′ (5.4.11)

= ∂λfZ
tf,n
N ′,n′ (5.4.12)

= ∂Λf,n
N ′,n′ (5.4.13)

because Ztf,n
N ′,n′ is a chain map. So Λf,n

N ′,n′ is indeed a zig-zagging chain homotopy for the left
composition.

Similarly, let (N, n) be an object in L/∗ and (f ′, n′) : (sf ′, n′ + L(f ′)) → (tf ′, n′) be a
morphism in L/∗. A zig-zagging chain homotopy for the right composition is then a chain
homotopy

ΓN,nf ′,n′ ∈ hom(L(sf ′),L(N))1 (5.4.14a)

such that
ZN,n

tf ′,n′L(f ′)− ZN,n
sf ′,n′+L(f ′) = ∂ΓN,nf ′,n′ . (5.4.14b)

We again distinguish the directions of f : along the zig-zag,

(sf ′, n′ + L(f ′))
f ′

// (tf ′, n′) oo
zig-zag

// (N, n) , (5.4.15a)

or against the zig-zag,

(tf ′, n′) (sf ′, n′ + L(f ′))
f ′

oo oo
zig-zag

// (N, n) . (5.4.15b)

Then

ΓN,nf ′,n′ :=

{
0 for direction (5.4.15a)

ZN,n
sf ′,n′+L(f ′)γf ′ for direction (5.4.15b) .

(5.4.16)

defines a zig-zagging chain homotopy for the right composition; proving this is analogous to
the case of left composition.
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Lastly, let (f, n) : (sf, n + L(f)) → (tf, n) and (f ′, n′) : (sf ′, n′ + L(f ′)) → (tf ′, n′) be
morphisms in L/∗. A zig-zagging 2-homotopy is a 2-homotopy

Ξf,n
f ′,n′ ∈ hom(L(sf ′),L(tf))2 (5.4.17a)

such that

L(f)Γ
sf,n+L(f)
f ′,n′ − Γtf,n

f ′,n′ + Λf,n
sf ′,n′+L(f ′) − Λf,n

tf ′,n′L(f ′) = ∂Ξf,n
f ′,n′ . (5.4.17b)

We now distinguish five cases for the directions of f and f ′ relative to the zig-zag:

(sf ′, n′ + L(f ′))
f ′

// (tf ′, n′) oo
zig-zag

// (sf, n+ L(f))
f

// (tf, n) , (5.4.18a)

(sf ′, n′ + L(f ′))
f ′

// (tf ′, n′) oo
zig-zag

// (tf, n) (sf, n+ L(f))
f

oo , (5.4.18b)

(tf ′, n′) (sf ′, n′ + L(f ′))
f ′

oo oo
zig-zag

// (sf, n+ L(f))
f

// (tf, n) , (5.4.18c)

(tf ′, n′) (sf ′, n′ + L(f ′))
f ′

oo oo
zig-zag

// (tf, n) (sf, n+ L(f))
f

oo , (5.4.18d)

(f, n) = (f ′, n′) . (5.4.18e)

The 2-homotopy

Ξf,n
f ′,n′ :=


0 for cases (5.4.18a), (5.4.18b) and (5.4.18c)

λfZ
tf,n
sf ′,n′+L(f ′)γf ′ for case (5.4.18d)

ξf for case (5.4.18e)

(5.4.19)

then defines a zig-zagging 2-homotopy, again by a similar proof to the previous two cases.
We note three things. First, in the case that f = id or f ′ = id, the above case distinctions

are nonsensical. This is not a problem however, since we had chosen λid = 0, γid = 0 and
ξid = 0 so in this case our definitions for Λ, Γ and Ξ are also zero in all cases. Second, like
the zig-zagging chain map ZN,n

N ′,n′ (5.4.5), the zig-zagging homotopies are all Z-invariant. We

immediately see that this follows from the Z-invariance of ZN,n
N ′,n′ . So for example, ΓN,n+k

f ′,n′+k =

ΓN,nf ′,n′ for any k ∈ Z. And third, we note that the purpose of these homotopy coherence data

is to relate the shortest zig-zag maps ZN,n
N ′,n′ to longer zig-zags that are obtained by composing

ZN,n
N ′,n′ with a map L(f) on either side. In general we could continue this procedure, building

a tower of homotopies to relate any zig-zag between two objects to the shortest one, but we
will not need this for the Poisson structure τL.

We now have the tools to define the Poisson structure

τL : LL!(L) ∧ LL!(L) −→ K (5.4.20)

on the strictified functor LL!(L) = Tot⊕(L̃) : BZ→ ChK (recall the definition of L̃ (5.3.5)).
To unpack the condition

τL ◦ dLL!(L)∧LL!(L) = dK ◦ τL = 0 (5.4.21)

that τL is a chain map, we use the underlying bicomplexes: note that LL!(L) ∧ LL!(L) =

Tot⊕(L̃) ∧Tot⊕(L̃) ∼= Tot⊕(L̃ ∧ L̃). Decomposing the bicomplex L̃ ∧ L̃ into chain complexes

(L̃ ∧ L̃)•,n of constant vertical degree, we first note that since L̃ is concentrated in vertical
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degrees 0 and 1, L̃ ∧ L̃ is concentrated in vertical degrees 0, 1 and 2. A Poisson structure
(5.4.20) is then given by a family of n-chains{

τL,n ∈ hom
(
(L̃ ∧ L̃)•,n,K

)
n

}
n=0,1,2

(5.4.22)

invariant under the Z-action on L̃ and such that

τL,n ◦ δL̃∧L̃ + τL,n+1 ◦ dL̃∧L̃ = 0 (5.4.23)

for all n, since dTot⊕(L̃∧L̃) = δL̃∧L̃ + dL̃∧L̃.
So τL has three nonzero components. To define them, recall that we write (N, n, x) ∈ L̃•,0

for elements in L̃ of vertical degree 0 and (f, n, x) ∈ L̃•,1 for elements of vertical degree 1,
and write τN for the component at N of the Poisson structure τ on L ∈ Fun(C,ChK). We
define τL by

τL,0
(
(N, n, x)⊗ (N ′, n′, x′)

)
:=

1

2

(
τN
(
x⊗ ZN,n

N ′,n′x
′)+ τN ′

(
ZN ′,n′

N,n x⊗ x′
))

, (5.4.24a)

τL,1
(
(f, n, x)⊗ (N ′, n′, x′)

)
:=

1

2

(
τtf
(
L(f)x⊗ Λf,n

N ′,n′x
′)+ (−1)|x

′|τN ′
(
ΓN

′,n′

f,n x⊗ x′
))

,

(5.4.24b)

τL,1
(
(N, n, x)⊗ (f ′, n′, x′)

)
:= (−1)|x|

1

2

(
τN
(
x⊗ ΓN,nf ′,n′x

′)+ (−1)|x
′|τtf ′

(
Λf ′,n′

N,n x⊗ L(f ′)x′
))

,

(5.4.24c)

τL,2
(
(f, n, x)⊗ (f ′, n′, x′)

)
:= −(−1)|x|

1

2

(
τtf
(
L(f)x⊗ Ξf,n

f ′,n′x
′)− τtf ′(Ξf ′,n′

f,n x⊗ L(f ′)x′
))

.

(5.4.24d)

Proposition 5.4.2. The τL defined in (5.4.24) defines a Poisson structure on LL!(L) =

Tot⊕(L̃).

Proof. Invariance under the Z-action follows from the fact that Z, Λ, Γ and Ξ are all
invariant.

For checking that τL is a chain map, we see that the conditions (5.4.23) that are not zero
are

τL,0 ◦ dL̃∧L̃ = 0 ; τL,0 ◦ δL̃∧L̃ + τL,1 ◦ dL̃∧L̃ = 0 ; τL,1 ◦ δL̃∧L̃ + τL,2 ◦ dL̃∧L̃ = 0 .

The first condition is immediate since all ingredients of τL,0 are chain maps, so τL,0 is too.
The second condition follows from a moderately lengthy computation using the definition of

δL̃ in (5.3.6) and the definitions of Λ (5.4.10) and Γ (5.4.16). The third similarly follows from

the definition of δL̃ and the definition of Ξ (5.4.19). �

This concludes the first of the two tasks we set for this section. The second one was to
prove that this new Poisson structure τL defines a Poisson structure onQ(L) that is homotopic
to the one defined by τ . For this, we first note that the functor L∗ : Fun(BZ,ChK) →
Fun(C,ChK) defines the Poisson structure L∗(τL) on L∗LL!(L). With pullbacks along the
zig-zag of weak equivalences (5.3.14) we thus get the two Poisson structures

q∗L(τ) = τ(qL ∧ qL) : Q(L) ∧Q(L) −→ K
η̃∗L(L∗τL) = (L∗τL)(η̃L ∧ η̃L) : Q(L) ∧Q(L) −→ K (5.4.25)
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on Q(L) ∈ Fun(C,ChK). Here we can then compare the two Poisson structures, and our
compatibility condition is to demand that they are homotopic:

η̃∗L(L∗τL)− q∗L(τ) = ∂ρ = ρ ◦ dQ(L)∧Q(L) (5.4.26)

for a ρ ∈ hom(Q(L) ∧Q(L),K)1.
Let us now construct the components ρN ∈ hom(Q(L)(N)∧Q(L)(N),K)1 for a N ∈ C.

We again use the underlying bicomplexes: Q(L)(N) = Tot⊕(L∆(N)) (recall Definition (5.3.8)
of L∆) so we have

Q(L)(N) ∧Q(L)(N) = Tot⊕(L∆(N)) ∧ Tot⊕(L∆(N)) ∼= Tot⊕(L∆(N) ∧ L∆(N)) .

Decomposing the bicomplex L∆(N)∧L∆(N) into chain complexes (L∆(N)∧L∆(N))•,n, the
homotopy ρN can now be defined by the family of n+ 1-chains{

ρN,n ∈ hom
(
(L∆(N) ∧ L∆(N))•,n,K

)
n+1

}
n∈Z

so that condition (5.4.26) becomes

τL,n ◦ (η̃L ∧ η̃L)− τN,n ◦ (qL ∧ qL) = ρN,n−1 ◦ δL
∆(N)∧L∆(N) + ρN,n ◦ dL∆(N)∧L∆(N)

where we now consider the original Poisson complex (L(N), τN) as a bicomplex concentrated
in vertical degree 0, so τN,0 = τN and τN,n = 0 for n 6= 0.

As with τL, ρN,n can only be nonzero for n = 0, 1, 2 because of the vertical degrees of
the bicomplex L∆(N). In fact, we only need the n = 0 and n = 1 components. Recall that
we write (g, x) ∈ L∆(N)•,0 for elements of vertical degree 0, and (g, f, x) ∈ L∆(N)•,1 for
elements of vertical degree 1. We then define

ρN,0
(
(g, x)⊗ (g′, x′)

)
:=

1

2

(
(−1)|x|τN

(
L(g)x⊗ Λg,0

sg′,L(g′)x
′)+ τN

(
Λg′,0

sg,L(g)x⊗ L(g′)x′
))

(5.4.27a)

ρN,1
(
(g, f, x)⊗ (g′, x′)

)
:= −(−1)|x

′|1

2
τN
(
Ξg′,0
f,0 x⊗ L(g′)x′

)
(5.4.27b)

ρN,1
(
(g, x)⊗ (g′, f ′, x′)

)
:= −1

2
τN
(
L(g)x⊗ Ξg,0

f ′,0x
′) (5.4.27c)

where we have used that for any (g, f, x) of vertical degree 1, g = id.

Proposition 5.4.3. The components ρN,n defined in (5.4.27) define a natural chain
homotopy ρ ∈ hom(Q(L) ∧Q(L),K)1 that satisfies (5.4.26).

Proof. As in the case of Proposition 5.4.2, this is a straightforward calculation using
the properties of the zig-zagging homotopies Λ (5.4.10), Γ (5.4.16) and Ξ (5.4.19), and the
naturality of the original Poisson structure τ . �

Propositions 5.4.2 and 5.4.3 allow us to upgrade the diagram (5.3.14) of chain complex-
valued functors on C to the diagram

(Q(L), q∗L(τ))
ρ
' (Q(L), η̃∗L(L∗τL))

qL

∼
uu

η̃L

∼
**

(L, τ) (L∗LL!(L), L∗τL)

(5.4.28)

of linear field theories on C.
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5.5. Relative Cauchy evolution for linear quantum field theories

With the results of the previous sections in hand, we can now use the machinery of
Chapter 3 to define a notion of relative Cauchy evolution for linear quantum field theories.
Recall (3.4.3) that we defined the quantization functor

ccr : PoissChR −→ dgAlgAsC

of Poisson chain complexes, which in turn (3.4.2) defined the quantization functor

CCR = ccr∗ : hLFT(C) −→ hQFT(C)

of linear field theories (recall that since we are working on the small category C, there is
no orthogonality data, so we write C for C = (C, ∅)). Given a linear field theory (L, τ) ∈
hLFT(C), this yields the homotopy quantum field theory

A := CCR(L, τ) ∈ hQFT(C) .

The strictified model (L∗LL!(L), L∗τL) then defines another homotopy quantum field theory,

Ast := CCR(L∗LL!(L), L∗τL) = L∗(CCR(LL!(L), τL)) ∈ hQFT(C) ,

which is constant on the objects of C. This field theory satisfies the strict time-slice axiom
by construction, since it is the pullback of CCR(LL!(L), τL) : BZ → dgAlgAsC along the
localization functor L : C→ BZ. So Ast is in fact a strict quantum field theory on C, since
the Einstein causality axiom is an empty condition when the orthogonality relation is empty.
Explicitly, recalling (5.3.15) we see that on Ast we have the explicit RCE automorphism

RCEM,h := CCR(rceM,h) = CCR(LL!(L)(1)) : CCR(LL!(L), τL)
∼=−→ CCR(LL!(L), τL)

(5.5.1)
on the differential graded algebra CCR(LL!(L), τL) which Ast assigns to each object N ∈ C.
So for linear quantum field theories, relative Cauchy evolution for the strictified model is
again addition by 1 to the level in the spiral (5.1.10).

We now use both parts of Proposition 3.4.10 with the diagram (5.4.28). Denote the
canonical quantizations of the other two objects in the diagram by

AQ := CCR(Q(L), q∗L(τ)) ∈ hQFT(C)

and

Ast
Q := CCR(Q(L), η̃∗L(L∗τL)) ∈ hQFT(C) .

The weak equivalences qL and η̃L in the diagram then define weak equivalences

CCR(qL) : AQ
∼−→ A

and

CCR(η̃L) : Ast
Q
∼−→ Ast

in hQFT(C) (and therefore in Fun(C, dgAlgAsC)) by the first part of Proposition 3.4.10. The
second part of the proposition then tells us that since η̃∗L(L∗τL) = q∗L(τ) + ∂ρ, there exists an
object AQ(L),q∗L(τ),ρ ∈ Fun(C, dgAlgAsC) together with a zig-zag of weak equivalences

AQ AQ(L),q∗L(τ),ρ
∼
oo

∼
// Ast

Q .
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Combining these two results we find that our constructions lead to the diagram of weak
equivalences

AQ

CCR(qL) ∼
��

AQ(L),q∗L(τ),ρ
∼
oo

∼
// Ast

Q

CCR(η̃L)∼
��

A Ast

in Fun(C, dgAlgAsC). We have proven the following.

Theorem 5.5.1. Let (L, τ) ∈ hLFT(C) be a homotopy linear field theory on C that
satisfies the homotopy time-slice axiom, so L ∈ Fun(C,ChR)hoAll. Its homotopy quantum
field theory A = CCR(L, τ), which satisfies the weak time-slice axiom, is then equivalent
via a zig-zag of weak equivalences in the category Fun(C, dgAlgAsC) to the theory Ast =
CCR(L∗LL!(L), L∗τL) which satisfies the strict time-slice axiom.

This is the main result of this chapter: a linear homotopy quantum field theory A =
CCR(L, τ) which satisfies the homotopy time-slice axiom, for which the relative Cauchy
evolution would in general be an A∞-quasi-automorphism, is equivalent to its strictification,
a linear homotopy quantum field theory Ast = CCR(L∗LL!(L), L∗τL) that satisfies the strict
time-slice axiom. From an abstract point of view, we are done: we have proven that a
well-defined concept of relative Cauchy evolution exists for linear homotopy quantum field
theories, using the adjunction (5.1.2). The field theory Ast is very unwieldy, however: the
complexes CCR(LL!(L), τL) are very large. And moreover, the concept of relative Cauchy
evolution as addition by 1 to the level in the spiral has no clear physical interpretation. In
particular, it is not at all clear how to divine a stress-energy tensor from this point of view.

To remedy this, let us move forward by comparing linear observables in the theories
A and Ast, in the spirit of Definitions 2.3.5, 2.3.11 and 2.6.5 of quantum fields as natural
transformations. Our plan is to interpret some of the linear observables in the theory A as
linear observables in the theory Ast, and to show that the strict relative Cauchy evolution
RCEM,h = CCR(LL!(L)(1)) on Ast (5.5.1) for these observables is equivalent to the naive
approach obtained by quasi-inverting the maps involved.

For the original theory A = CCR(L, τ), we have the canonical chain map

L(M) −→ A(M) = CCR(L, τ)(M)

that assigns to any linear observable its corresponding generator in the CCR-algebra. Simi-
larly, there is the canonical map

LL!(L) −→ Ast(∗) = CCR(LL!(L), τL)

for the strictified algebra. Choosing the original spacetime M in C and the level n = 0, we
then define the chain map

ι : L(M) −→ LL!(L)
ω 7−→ (M, 0, ω) .

So we embed the original complex L(M) of linear observables on M in the complex of linear
observables LL!(L) of the strictified theory, at the level (M, 0) in the spiral. Composing ι
with the canonical map,

L(M)
ι
// LL!(L) // CCR(LL!(L), τL)

we can then interpret the linear observables of the original theory L on M as linear quantum
observables in the strictified theory Ast.
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On the complex CCR(LL!(L), τL) we have constructed a concept of relative Cauchy evo-
lution. On the complex L(M) we have not, but there is the naive guess

rcelin
M,h := ZM,0

M,1 = L(i−)L(j−)−1L(j+)L(i+)−1 : L(M) −→ L(M) (5.5.2)

of the zig-zagging chain map (5.4.3) that corresponds to moving down the spiral by one level
that is obtained by using the quasi-inverses (5.4.2). These two concepts of relative Cauchy
evolution agree per the following result.

Proposition 5.5.2. The diagram

L(M)
ι

//

ZM,0M,1
��

LL!(L) //

rceM,h

��

CCR(LL!(L), τL)

RCEM,h
��

L(M)
ι

//

θ
4<

LL!(L) // CCR(LL!(L), τL)

(5.5.3)

is homotopy commutative: the right diagram commutes, and the left diagram commutes up
to a homotopy,

rceM,hι− ιZM,0
M,1 = ∂θ

where θ ∈ hom(L(M),LL!(L))1 is constructed in the proof.

Proof. The right square in the diagram commutes strictly by the definition of RCEM,h

on Ast (5.5.1). For the left diagram, first recall that LL!(L) = Tot⊕(L̃) is the totalization

of the bicomplex L̃ (5.3.5), which has elements (N, n, x) of vertical degree 0 and elements

(f, n, x) of vertical degree 1. L̃ has a vertical differential δL̃ (5.3.6) and a horizontal differential

dL̃ obtained from the original complexes L(N). So we have

∂θ = (δL̃ + dL̃)θ + θdL(M)

and after evaluating on an element x ∈ L(M) we find that we need θ to satisfy

(1,M, x)− (0,M,ZM,0
M,1x) = (δL̃ + dL̃)θ(x) + θ(dL(M)(x)) .

We will construct θ by transporting (1,M, x) along

(M, 0)
i−←− (M−, 1)

j−−→ (Mh, 1)
j+←− (M+, 1)

i+−→ (M, 1) (5.5.4)

which is the part of the spiral (5.1.10) that corresponds to the zig-zagging chain map ZM,0
M,1 .

To do this, we again distinguish between the two directions of arrows in the zig-zag. Let
f : (sf, n + L(f)) → (tf, n) be any of the maps in the zig-zag (5.5.4). If f points from

right to left, i.e. if there is a term L(f) in the map ZM,0
M,1 (5.5.2), we define the homotopy

θ←−
f
∈ hom(L(sf),LL!(L))1 as

θ←−
f

(x) := (−1)|x|(f, n, x) .

Then

∂θ←−
f

(x) =
(
(sf, n+ L(f), x)− (tf, n,L(f)x)

)
+ (−1)|x|(f, n, dx) + (−1)|dx|(f, n, dx)

= (sf, n+ L(f), x)− (tf, n,L(f)x)

for all x ∈ L(sf).
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Conversely, if f points from left in the zig-zag (5.5.4), i.e. if there is a term L(f)−1 in the

map ZM,0
M,1 (5.5.2), we define the homotopy θ−→

f
∈ hom(L(tf),LL!(L))1 as

θ−→
f

(x) := −(−1)|x|(f, n,L(f)−1x)− (tf, n, λfx) .

where λf is one of the two homotopies (5.4.6) witnessing that L(f)−1 is a quasi-inverse to
L(f). We then have

∂θ−→
f

(x) = −
(
(sf, n+ L(f),L(f)−1x)− (tf, n,L(f)L(f)−1x)

)
− (−1)|x|(f, n, dL(f)−1x)− (−1)|dx|(f, n,L(f)−1dx)

− (tf, n, (dλf + λfd)x)

= (tf, n, x)− (sf, n+ L(f),L(f)−1x)

for all x ∈ L(tf).
In both cases, the homotopies θ←−

f
and θ−→

f
move an element x from right to left in the

zig-zag (5.5.4). Composing these homotopies, we find the desired homotopy θ,

θ = L(i−)L(j−)−1L(j+) θ−→
i+

+ L(i−)L(j−)−1 θ←−
j+

L(i+)−1

+ L(i−) θ−→
j−

L(j+)L(i+)−1 + θ←−
i−
L(j−)−1L(j+)L(i+)−1

�

We have found the second main result of this section: for the linear observables in A we
can use the naive definition (5.5.2) of relative Cauchy evolution, which up to homotopy agrees
with the strict relative Cauchy evolution (5.5.1) for the theory Ast. Crucially, this is only
true for the linear observables in A, i.e. the image under the canonical map L(M)→ A(M).
Indeed, since the components do not preserve the Poisson structure τ , the naive RCE map
ZM,0
M,1 (5.5.2) will in general not lift to a map of algebras A→ A.

Summing up the results of this section, we see that Theorem 5.5.1 proves that a well-
defined concept of relative Cauchy evolution exists for linear homotopy quantum field theo-
ries. Proposition 5.5.2 then shows how to extract a computable RCE for the linear observables
in these theories that is compatible with the strict RCE for Ast.

5.6. Relative Cauchy evolution for linear Yang-Mills theory

We end this chapter by calculating the relative Cauchy evolution (5.5.2) for the linear
Yang-Mills model of chapter 4. We first construct an explicit quasi-inverse L(f)−1 to any
map L(f) corresponding to a Cauchy morphism f in Loc. We then give explicit formulas
for the relative Cauchy evolution of the four linear fields that generate ALYM and we close
by computing the stress-energy tensor of the theory.

Recall the solution complex SolLYM (4.1.10) of linear Yang-Mills theory, its complex of
linear observables LLYM (4.2.17), the inclusion map j : L→ Sol[1] (4.2.3), the retarded and
advanced trivializations Λ± (4.2.19) yielding the Green homotopies G± = jpc/fcΛ

±ι (4.2.12)
and the causal propagator G (4.2.20). To discern between maps, homotopies and other con-
structions on different spacetimes, we will add a subscript of the spacetime where necessary.

Let f : N → N ′ be a Cauchy morphism in Loc. We will now construct the quasi-inverse
to L(f) : L(N)→ L(N ′), making two choices:

(i) First, choose two Cauchy surfaces Σ± ⊆ N such that Σ+ lies in the chronological
future of Σ−: Σ+ ⊆ I+,N(Σ−).
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Note that the images Σ′± := f(Σ±) ⊆ N ′ of Σ± in N ′ are also Cauchy surfaces, because f is
a Cauchy morphism.

(ii) Second, choose a partition of unity ρ′± on N ′ such that ρ′+ is zero in the past of Σ′−
and ρ′− is zero in the future of Σ′+; i.e. a partition of unity subordinate to the open
cover {I+,N ′(Σ

′
−), I−,N ′(Σ

′
+)} of N ′.

Write ρ± := f ∗(ρ′±) for the pullback of ρ′± along f ; this defines a partition of unity on N
subordinate to the open cover {I+,N(Σ−), I−,N(Σ+)}. We then define the chain homotopies

λ̃f := −ρ′+G−N ′ − ρ
′
−G+

N ′ ∈ hom
(
LLYM(N ′),SolLYM(N ′)[1]

)
1

(5.6.1)

γ̃f := −ρ+G−N − ρ−G
+
N ∈ hom

(
LLYM(N),SolLYM(N)[1]

)
1
. (5.6.2)

In turn, these homotopies define homotopies λf on L(N ′) and γf on L(N) as follows.

Lemma 5.6.1. The chain homotopy λ̃f factors uniquely through the inclusion chain map
jN ′ : LLYM(N ′)→ SolLYM(N ′)[1] (4.2.3): there exists a unique chain homotopy

λf ∈ hom
(
LLYM(N ′),LLYM(N ′)

)
1

such that
λ̃f = jN ′λf .

Analogously, the chain homotopy γ̃f factors uniquely through the inclusion chain map jN :
LLYM(N)→ SolLYM(N)[1], so there exists a unique homotopy

γf ∈ hom
(
LLYM(N),LLYM(N)

)
1

such that
γ̃f = jNγf .

Proof. The proofs for both claims are identical; we will give the proof for λ̃f . First,
notice that uniqueness is immediate, since the inclusion chain map j : L→ Sol[1] is injective.

For existence, we have to show that for any ω ∈ LLYM(N ′), λ̃f (ω) ∈ L(N ′), i.e. that

λ̃f (ω) = −ρ′+G−N ′(ω)− ρ′−G+
N ′(ω)

has compact support. Since ω has compact support, G−N ′(ω) has strong future compact
support. And since ρ′+ has past compact support, −ρ′+G−N ′(ω) is compactly supported by

Definition 2.2.6. Similarly, the other term −ρ′−G+
N ′(ω) has compact support, so λ̃f (ω) has,

too. �

Remark 5.6.2. Since we will use them for computing the relative Cauchy evolution, let
us give explicit formulas for λf and γf . For any Ñ ∈ Loc, define the operator

QÑ(χ) := −dÑ(χ) ; QÑ(ψ) := ψ ; QÑ(α) := −δÑα ; QÑ(β) := 0 (5.6.3)

for χ ∈ LLYM(Ñ)−1, ψ ∈ LLYM(Ñ)0, α ∈ LLYM(Ñ)1 and β ∈ LLYM(Ñ)2, Note that G±
Ñ

=

jpc/fcG
±
Ñ
QÑ where G±

Ñ
are the retarded and advanced Green operators for the d’Alembert

operator �Ñ , and recall that the map jpc/fc carries a minus sign in degrees −1 and 0, so the
signs of Q are the same as those of the retarded and advanced trivializations Λ± (4.2.19).
The chain homotopy λf is then given by

λf = −ρ′+G−N ′QN ′ − ρ′−G+
N ′QN ′ (5.6.4)

and the chain homotopy γf is

γf = −ρ+G
−
NQN − ρ−G+

NQN . (5.6.5)
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Now consider the chain map

jN ′ + ∂N ′λ̃f : L(N ′) −→ Sol(N ′)[1].

Let ω ∈ L(N ′) be any differential form. We investigate the support of

ω̃ := jN ′(ω) + ∂N ′λ̃f (ω) ∈ Sol(N ′)[1] .

On U+ := I+,N ′(Σ
′
+) ⊆ N ′, the chronological future of Σ′+, we have

ω̃
∣∣
U+

= jN ′(ω)
∣∣
U+
− ∂N ′G−N ′(ω)

∣∣
U+

= 0

since ρ′+ = 1 and ρ′− = 0 on U+, and jN ′ = ∂G±N ′ (4.2.7). Likewise, on U− := I−,N ′(Σ
′
−) ⊆ N ′,

the chronological future of Σ′−, ω̃ will be zero. So the support of ω̃ ∈ Sol(N ′)[1] lies in the
closed time-slab

J−,N ′(Σ
′
+) ∩ J+,N ′(Σ

′
−) ⊆ f(N) ⊆ N ′ .

It is also clear from its definition that ω̃ has spacelike compact support, so as in Lemma 5.6.1
we see that the chain map jN ′ + ∂N ′λ̃f factors as

jN ′ + ∂N ′λ̃f = jN ′(id + ∂N ′λf )

where

id + ∂N ′λf : L(N ′) −→ L(f(N)) (5.6.6)

is a chain map that takes values in the subcomplex L(f(N)) ⊆ L(N ′) and λf is the homotopy
found in Lemma 5.6.1. On the subcomplex L(f(N)) ⊆ L(N ′) the pullback f ∗ : L(f(N)) →
L(N) of differential forms along f : N → N ′ is defined, so we obtain the chain map

L(f)−1 := f ∗ (id + ∂N ′λf ) : L(N ′) −→ L(N) . (5.6.7)

This is indeed a quasi-inverse of L(f) : L(N)→ L(N ′).

Proposition 5.6.3. Let f : N → N ′ be a Cauchy morphism in Loc, with the corre-
sponding chain map L(f)−1 (5.6.7) and homotopies λf and γf defined in Lemma 5.6.1. Then
we have

L(f)L(f)−1 − id = ∂N ′λf (5.6.8a)

L(f)−1L(f)− id = ∂Nγf (5.6.8b)

L(f)γf − λfL(f) = 0 . (5.6.8c)

In particular, L(f)−1 is a quasi-inverse to L(f).

Proof. Recall that L(f) = f∗ is the pushforward of compactly supported forms. For
the first identity we then have

L(f)L(f)−1 − id = f∗f
∗ (id + ∂N ′λf )− id = ∂N ′λf

since f∗f
∗ is the identity on the subcomplex L(f(N)) ⊆ L(N ′).

Since the chain map jN is injective in every degree, the second identity is equivalent to

jNL(f)−1L(f)− jN = jN(L(f)−1L(f)− id) = jN∂Nγf = ∂N γ̃f .

We see that

jNL(f)−1L(f)− jN = jNf
∗ (id + ∂N ′λf )f∗ − jN = ∂N(f ∗λ̃ff∗)
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where for the second equality we have used the naturality of j and ∂ and the fact that
f ∗f∗ = id on L(N). We then find

f ∗λ̃ff∗ = f ∗(−ρ′+G−N ′ − ρ
′
−G+

N ′)f∗ = −ρ+f
∗G−N ′f

∗ − ρ−f ∗G+
N ′f∗ = γ̃f

because of the naturality of the Green homotopies and the definition of ρ±, proving the
second identity.

For the third identity, note that for any ω ∈ L(N), both L(f)γf (ω) and λfL(f)(ω) are
supported on f(N) ⊆ N ′. So these forms lie in L(f(N)) and we see that the third identity
is equivalent to

f ∗λfL(f) = f ∗L(f)γf .

We find that

f ∗λfL(f) = −f ∗ρ′+G−N ′QN ′f∗ − f ∗ρ′−G+
N ′QN ′f∗

= −ρ+G
−
NQN − ρ−G+

NQN = γf = f ∗L(f)γf

where we use the explicit formulas for λf (5.6.4) and γf (5.6.5). For the second equality we
use the naturality of G± and Q and the definition of ρ±, and in the last step we use the fact
that f ∗f∗ = id on L(N). �

Equipped with the explicit formula for the quasi-inverse L(f) (5.6.7) and its ingredient
λf (5.6.4) we can now write down an explicit formula for the RCE chain map (5.5.2) of
linear quantum fields for the linear Yang-Mills model. To keep notation manageable, we
will suppress the pullbacks f ∗ and pushforwards f∗ of differential forms: since all of the
morphisms f in C are subset inclusions, f ∗ and f∗ are simply restrictions and extensions by
zero. We then have

ZM,0
M,1 = L(i−)L(j−)−1L(j+)L(i+)−1

=
(
id + ∂Mh

λj−
)(

id + ∂Mλi+
)

= id +
(
∂Mh

λj−
)(

id + ∂Mλi+
)

+ ∂Mλi+

= id +
(
(∂Mh

− ∂M)λj−
)(

id + ∂Mλi+
)

+ ∂M
(
λi+ + λj−(id + ∂Mλi+)

)
.

Since in diagram (5.5.3) of Proposition 5.5.2 the RCE map on LM) is only determined up to
homotopy, so we drop the last term and redefine the relative Cauchy evolution for the linear
quantum fields to be

rcelin
M,h := id +

(
(∂Mh

− ∂M)λj−
)(

id + ∂Mλi+
)

: L(M) −→ L(M) . (5.6.9)

Note that it is essential here that we are considering chain maps L(M) → L(M), which
allows us to drop terms ∂Mρ for any homotopy ρ ∈ hom(L(M),L(M))1 when working up
to homotopy. We cannot do the same for terms ∂Mh

ρ (and in fact these are the terms that
determine the relative Cauchy evolution).

Investigating the support properties of the different ingredients of the RCE map allows
us to simplify it further.

Proposition 5.6.4. The chain map rcelin
M,h (5.6.9) is equal to

rcelin
M,h = id +

(
dL(Mh) − dL(M)

)
GMh

QMh
(id + ∂Mλi+) (5.6.10)

where GMh
is the causal propagator for the d’Alembert operator �Mh

and QMh
is the operator

defined in (5.6.3).
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Proof. We saw (5.6.6) that the chain map

id + ∂Mλi+ : L(M) −→ L(M+)

takes values in the sub-chain complex of differential forms supported on M+ ⊆M . We thus
compute

(∂Mh
− ∂M)λj−

∣∣
L(M+)

=
(
dL(Mh) − dL(M)

)
λj−
∣∣
L(M+)

+ λj−
(
dL(Mh) − dL(M)

)∣∣
L(M+)

=
(
dL(Mh) − dL(M)

)(
− ρ+G

−
Mh
QMh

− ρ−G+
Mh
QMh

)∣∣
L(M+)

=
(
dL(Mh) − dL(M)

)(
−G−Mh

QMh

)∣∣
L(M+)

=
(
dL(Mh) − dL(M)

)(
G+
Mh
−G−Mh

)
QMh

∣∣
L(M+)

=
(
dL(Mh) − dL(M)

)
GMh

QMh

∣∣
L(M+)

.

The crucial ingredient here is that since the differentials dL(M) and dL(Mh) are differential
operators, they are local, so they agree outside the support of h. In the second step we use
this, since this shows that

(
dL(Mh)− dL(M)

)∣∣
L(M+)

= 0. Here we also used the formula (5.6.4)

for λj− , so the ρ± are the partitions of unity arising from a choice of Cauchy surfaces in M−.
In the third step we use that ρ+ = 1 and ρ− = 0 on supp(h). And in the fourth step we use
that J+,Mh

(M+) ∩ supp(h) = ∅. �

Remark 5.6.5. Let us explicitly calculate the components of the chain map rcelin
M,h

(5.6.10) for the four linear fields of linear Yang-Mills theory. Recall the complex L(M)
(4.2.17) and the operator Q (5.6.3).

• For the linear ghost field observable χ ∈ L(M)−1 = Ω0
c(M), we find

rcelin
M,h(χ) = χ+ (δMh

− δM)GMh
dMh

(id + ∂Mλi+)(χ)

= χ+ (�Mh
−�M)GMh

(id + ∂Mλi+)(χ)

= χ−�M GMh
(id + ∂Mλi+)(χ)

(5.6.11)

where we have used the fact that dMh
commutes with GMh

, that dM = dMh
, that

�Mh
GMh

= 0 and that δ = 0 on 0-forms, so � = δd on 0-forms.
For homology, we see that on 0-forms,

�M GMh
= δMdM GMh

= ∗−1
M dM ∗M dMGMh

= ∗−1
M dM(∗M − ∗Mh

)dMGMh

= δM(id− ∗−1
M ∗Mh

)dMGMh

where in the third step we use that

∗−1
M dM ∗Mh

dMGMh
= ∗−1

M ∗Mh
δMh

dMh
GMh

= ∗−1
M ∗Mh

�Mh
GMh

= 0 .

Since (id − ∗−1
M ∗Mh

) is only supported on supp(h), the resulting form is compactly
supported, so we see that �M GMh

(id+∂Mλi+)(χ) will be exact in the chain complex
L(M), so the relative Cauchy evolution is trivial in homology,

[rcelin
M,h(χ)] = [χ] .
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• For the linear gauge field observable ψ ∈ L(M)0 = Ω1
c(M), we find

rcelin
M,h(ψ) = ψ + (δMh

dMh
− δMdM)GMh

(id + ∂Mλi+)(ψ) . (5.6.12)

In homology this agrees with the relative Cauchy evolution for the field strength
tensor of Maxwell theory computed in Section 6.3 of [FL16], if we take ψ = δMω
for ω ∈ Ω2

c(M+).
• For the linear antifield observable for the gauge field α ∈ L(M)1 = Ω1

c(M), we find

rcelin
M,h(α) = α + (dMh

− dM)GMh
δMh

(id + ∂Mλi+)(α) = α (5.6.13)

because dMh
= dM .

• Finally, for the linear antifield observable for the ghost field β ∈ L(M)2 = Ω0
c(M),

we find
rcelin

M,h(β) = β (5.6.14)

because QMh
(β) = 0.

We find that the relative Cauchy evolution is trivial on the linear antifield observables α and
β and it is trivial in homology on the linear ghost field observable χ, so it is only nontrivial
on the linear gauge field observables ψ, where it agrees with earlier results from [FL16].

We end this section by computing the stress-energy tensor of the linear Yang-Mills model.
In ordinary algebraic quantum field theory, this is done by varying the perturbation h of the
metric by multiplying it with ε2 and calculating the first derivative

tM,h :=
d

dε
rcelin

M,εh

∣∣
ε=0

: L(M) −→ L(M) .

We want to interpret tM,h as the commutator [TM(h),−] with the smeared stress-energy ten-
sor, which in particular means that it needs to be a derivation on the algebra of observables.
The stress-energy tensor TM is then given by

τM
(
tM,h(ω1)⊗ ω2

)
=

∫
M

hab T
ab
M (ω1, ω2)volM

where ωi are fields in the theory and a and b are spacetime indices.
To simplify the calculation, we once more perturb the formula for linear RCE, by choosing

observables that are supported on M+. This means we can precompose the RCE map (5.6.10)
with L(i+) : L(M+)→ L(M), which is in turn homotopic to the chain map

rcelin,+
M,h := id +

(
dL(Mh) − dL(M)

)
GMh

QMh
: L(M+) −→ L(M) .

Considering the formula for rcelin
M,h (5.6.10) and the explicit formulas of Remark 5.6.5 we see

that this comes down to removing the map id + ∂Mλi+ that restricts from M to M+ from
the formulas.

We then compute the chain map

tM,h :=
d

dε
rcelin,+

M,εh

∣∣
ε=0

: L(M+) −→ L(M) .

To do this, we need to use index notation ω = ωa1···andxa1 ∧· · ·∧dxan for differential n-forms.
In these terms, the action of both dM and δM is expressed using the Levi-Civita connection
∇M , see e.g. Section 3 in [FL16]. For both of the nontrivial RCE maps on χ (5.6.11) and

2For any perturbation h there always exists an r > 0 such that (M, g + εh) ∈ Loc for all ε ∈ [−r, r], see
Theorem 7.2 in [BEE96].
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ψ (5.6.12) we recognize that δMεh
− δM is the crucial ingredient. So we calculate for any

k + 1-form ω = ωa0···andxa0 ∧ · · · ∧ dxan ,

(δMεh
ω − δMω)a1···an = ε

(
∇M a(h

abωba1···an)− 1

2
(∇M bh

a
a)ω

b
a1···an

+
k∑
j=1

(−1)j−1(∇M ahbaj)ω
ab
a1···âj ···ak

)
+O(ε2)

to first order in ε. Here we use the usual notation âj for an index that has been removed,
and since we are working to first order in ε we can raise and lower indices using either g or
g + εh. We find that

tM,h(χ) = ∇M a(h
ab(dMGMχ)b)−

1

2
(∇M bh

a
a)(dMGMχ)b

tM,h(ψ)c = ∇M a(h
ab(dMGMψ)bc)−

1

2
(∇M bh

a
a)(dMGMψ)bc

+ (∇M ahbc)(dMGMψ)ab

tM,h(α)c = 0

tM,h(β) = 0

(5.6.15)

for the observables χ ∈ L(M+)−1, ψ ∈ L(M+)0, α ∈ L(M+)1 and β ∈ L(M+)2.
One last issue now is that the chain map tM,h : L(M+) → L(M) does not extend to a

derivation of algebras A(M+)→ A(M) relative to the algebra map A(i+) : A(M+)→ A(M).

This is an artifact of rcelin,+
M,h not preserving the Poisson structures, which to first order in ε

(at infinitesimal level) is expressed as

τ ◦ (tM,h ∧ L(i+) + L(i+) ∧ tM,h) 6= 0 : L(M+) ∧ L(M+) −→ R .

Luckily, this can be remedied by adding a homotopy: if we define the map

t̃M,h := tM,h + ∂ν : L(M+) −→ L(M)

where ν ∈ hom(L(M+),L(M))1 is the homotopy defined by

ν(χ)b =
1

2
haa(dMGMχ)b − hab(dMGMχ)a

ν(ψ)b = 0 ν(α) = 0 ν(β) = 0 .

then

τ ◦ (t̃M,h ∧ L(i+) + L(i+) ∧ t̃M,h) = 0

by integration by parts.
Following the arguments in Section 6.2 of [FL16], we find that this defines the stress-

energy tensor

T abM (ω1, ω2) =
1

4
gab(Fψ1)cd(Fψ2)cd − (Fψ1)ac(Fψ2)bc (5.6.16)

through

τM
(
t̃M,h(ω1)⊗ L(i+)(ω2)

)
=

∫
M

hab T
ab
M (ω1, ω2)volM

for all ωi ∈ L(M+). Here, Fψ := dMGMψ ∈ Ω2(M) is the field strength 2-form of the gauge
field, which is only nonzero when the ωi = ψi are gauge field observables. So, as one would
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suspect, we find that the ghost fields and antifields do not contribute to the stress-energy
tensor, and that for the gauge fields A it agrees with the usual Maxwell stress-energy tensor.



CHAPTER 6

Conclusion and outlook

In this thesis we covered several aspects of higher linear algebraic quantum field the-
ory. Recall from the introduction that homotopy algebraic quantum field theory is a natural
framework to study quantum gauge theories, since it allows for an appropriate handling of
weak equivalences. The formalism of homotopy algebraic quantum field theory has under-
gone rapid development in the past few years, but there were not many nontrivial examples
available beyond toy models.

The work done in this thesis has sought to remedy this. A general quantization func-
tor for homotopy linear field theories was developed, which was shown to be appropriately
homotopical. Using this functor the linear Yang-Mills model was constructed, a nontrivial
example of a homotopy algebraic quantum gauge theory that is not equivalent to an or-
dinary algebraic quantum field theory. The existence of a well-defined concept of relative
Cauchy evolution for linear homotopy algebraic quantum field theories was proven, yielding
a stress-energy tensor for linear Yang-Mills theory.

In chapter 3 we built on the work in [BSW20] to characterize algebraic field theories
in terms of operad algebras and in particular define a canonical quantization functor. We
gave a general definition of algebraic field theories of type Pr on an orthogonal category C
satisfying the Einstein causality axiom (Definition 3.1.5), and found (Theorem 3.2.4) that
these field theories are the algebras over a field theory operad Pr

C
:

FT(C,Pr) ∼= AlgPr
C
.

In turn, this yields several field theory adjunctions. For a full orthogonal subcategory
j : C → D, the adjunction j! a j∗ (3.3.5) establishes the category of field theories on C
as a full coreflective subcategory of the category of field theories on D (Proposition 3.3.3),
characterizing j-local theories, i.e. theories that satisfy descent along j (Corollary 3.3.7). On

the other hand, for an orthogonal localization L : C → C[W−1], the adjunction L! a L∗

(3.3.7) establishes the field theories on C[W−1] as a full reflective subcategory of the field
theories on C (Proposition 3.3.10), characterizing W -constant theories, i.e. theories that
satisfy the analogue of the time-slice axiom (Proposition 3.3.12).

The canonical operad map φ : uLie → As results in the linear quantization adjunction
Qlin a Ulin (3.3.10), and Qlin is the essential part of the canonical commutation relations
functor

CCR : Qlin ◦ heis∗ : LFT(C) −→ QFT(C)

from linear field theories to quantum field theories. This construction applies to both vector
space-valued and chain complex-valued field theories. The category of chain complex-valued
field theories carries a model structure with objectwise quasi-isomorphisms as weak equiva-
lences (Proposition 3.4.1). The canonical commutation relations functor preserves these weak
equivalences and results in weakly equivalent theories when varying the Poisson structure by

147
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a homotopy (Proposition 3.4.10), and it also preserves homotopy j-local field theories and
W -constant field theories (Proposition 3.4.13).

In chapter 4 we constructed one of the first nontrivial examples of a linear homotopy
quantum field theory, the linear Yang-Mills model. The general construction is that from the
input data of a field complex F(M) that includes gauge transformations and an equation of
motion P , one forms the solution complex Sol(M) as a derived critical locus (Theorem 4.1.7).
The linear observables L(M) (4.2.1) of the theory naturally embed into this solution complex,
which defines a 1-shifted Poisson structure Υ on Sol(M) (Definition 4.2.2), the antibracket of
the BV formalism. Crucially, when working on a globally hyperbolic spacetime M , retarded
and advanced Green operators related to P allow us in special cases to trivialize this shifted
Poisson structure in two ways, and their difference defines an unshifted Poisson structure τ
on Sol(M) (Definition 4.2.8). This is a crucial result, since the Poisson structure allows for
the canonical quantization of the theory as found in chapter 3 (Corollary 4.3.1), and as such
yields examples of linear homotopy algebraic quantum field theories, provided all ingredients
are appropriately functorial (Section 4.4).

The examples of Klein-Gordon theory and linear Yang-Mills theory both define linear
homotopy algebraic quantum field theories on Loc (Theorem 4.4.12). The chain complex
model of Klein-Gordon theory was found to be equivalent to the usual vector space-valued
treatment of Klein-Gordon theory in algebraic quantum field theory (Remark 4.4.13), after
moving to the homology in degree 0 (the only degree where homology is nontrivial). The
linear Yang-Mills model is not equivalent to a vector-space valued field theory (Remark
4.4.14), and as such provides a nontrivial example of a homotopy algebraic quantum field
theory that is not equivalent to an algebraic quantum field theory in the usual sense.

In chapter 5 we treated relative Cauchy evolution for homotopy algebraic quantum field
theories. Relative Cauchy evolution for a homotopy algebraic quantum field theory A is not
easily defined, because they only satisfy the homotopy time-slice axiom: Cauchy morphisms
f in Loc only lead to weak equivalences A(f) in dgAlgAs, which in general only have A∞-
quasi-inverses. Using the adjunction L! a L∗ (3.3.7) we reformulated the notion of relative
Cauchy evolution for ordinary algebraic quantum field theories, calculating the localization

L : C −→ BZ
of the category C of objects and morphisms relevant to relative Cauchy evolution (Lemma
5.1.1).

The strategy was to strictify the homotopy quantum field theory using the adjunction
L! a L∗. We restricted from Loc to C, and restricted to linear homotopy quantum field
theories A = CCR(L, τ) constructed in the previous chapters. We then strictified a homotopy
linear field theory (L, τ). First we proved a rectification theorem for the linear observables L,
deriving the functor L! (Theorem 5.3.1). Then we defined an appropriate Poisson structure
τL on the resultant object LL!(L) (Proposition 5.4.2) that is compatible with the original
Poisson structure τ (Proposition 5.4.3) through the diagram of equivalences

Q(L)
qL
∼

}}

η̃L

∼
%%

L L∗LL!(L) .

Using the results from Chapter 3 on the homotopical properties of the linear quantization
functor CCR we found that the above construction yields a strictification Ast of the linear
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homotopy quantum field theory A = CCR(L, τ) (Theorem 5.5.1). This theory satisfies the
strict time-slice axiom and as such carries a strict relative Cauchy evolution. The linear
quantum observables in A then carry a notion of relative Cauchy evolution obtained by the
naive quasi-inversion of the maps involved (Proposition 5.5.2). We obtained formulas for
relative Cauchy evolution for the linear Yang-Mills model, finding that only for the gauge
field it is nontrivial in homology (Remark 5.6.5), and as such obtained a stress-energy tensor
that the ghost and antifields do not contribute to (5.6.16).

Several avenues for further research present themselves. For one, while the existence of a
well-defined concept of relative Cauchy evolution was proven for linear homotopy algebraic
quantum field theories, it is still an open question if this can be done for a general homotopy
algebraic quantum field theory. This question can be attacked on various levels. At the level
of homotopy quantum field theories on the RCE category C (5.1.6), one can follow the same
strategy as in Chapter 5 and derive the left adjoint in the adjunction (5.2.1) using a bar
resolution. The simplicial bookkeeping this involves is heavier than that used in this text,
but it does not seem impossible.

Moving beyond the RCE category C and its localization BZ, it does not seem feasible at
the moment to find a workable model for the localization of Loc at all Cauchy morphisms.
But perhaps one could localize other interesting subcategories larger than C, such as the
category of all spacetimes Mh obtained by a compact perturbation h to the metric of M and
all possible M±. If such a model were constructed, one could proceed in a similar way as
in this thesis, deriving the localization functor L! for either the linear observables or generic
homotopy algebraic quantum field theories.

Finally, one could try to directly compute the A∞-quasi-inverses, ignoring localization.
For the case of linear quantum field theories A = CCR(L, τ) this is an exercise involving
corrections to the multiplication in A governed by τ . In both this case and the generic
one, one challenge is to ensure that these approaches lead to a result with a good physical
interpretation.

Another topic that demands further research is the question of descent for homotopy
algebraic quantum field theories. Recall that this is a local-to-global property: it tells us if a
theory on a general spacetime can be reconstructed using local data. In several approaches
to functorial field theory this plays a crucial role: for example, extended topological quantum
field theories are determined by their value on a point by the cobordism hypothesis [Lur09b].
And in the context of factorization algebras [CG16], factorization homology constructs a
theory on general manifolds from its values on disks [AF15]. The relevant example for
algebraic quantum field theory is j : Loc� → Loc. We found that a theory B on D satisfies
descent with respect to the full subcategory inclusion j : C→ D if the component Lj!j

∗B→
B of the derived counit is a weak equivalence (Definition 3.4.11). The behaviour of B on a
spacetime M is then completely determined by its behaviour on spacetimes diffeomorphic to
Rn.

As noted in Remark 3.3.8, a descent condition for Klein-Gordon theory was found in
[Lan14]. So far, however, descent for algebraic quantum field theory has not been systemati-
cally studied. The natural question to ask is now whether linear homotopy algebraic quantum
field theories such as the linear Yang-Mills model satisfy descent for j : Loc� → Loc. As in
Chapter 5, this involves deriving the left adjoint j! and now determining the derived counit
of the adjunction. Such a construction would allow us to answer if linear Yang-Mills theory
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satisfies descent; it would also shed a broader light on the concept and whether or not it is
natural to ask field theories to satisfy this powerful condition.

Finally, all quantum gauge theories that occur in Nature have nonlinear gauge groups,
so one should eventually go beyond the linear field theories presented in this thesis. The
first step would be to move from gauge group R to U(1), considering nonlinear (but still
non-interacting) gauge theories. This immediately asks for much heavier technical machin-
ery, moving from linear Poisson chain complexes to higher (derived and stacky) differential
geometry.

The constructions of chapters 3 and 4 are clearly rooted in chain complexes, but perhaps
analogous constructions for derived stacks of nonlinear non-interacting theories could be
found. When trying to pursue this, at every step of the way one would have to provide
constructions and make choices analogous to those made for linear theories. For example,
the solution space Sol(M) now is the derived critical locus of a function of a quotient stack
rather than the derived critical locus of a function on a chain complex; in the context of
derived algebraic geometry this was achieved in [BSS21]. Beyond this, a good analogue of
the linear observables L(M) would be crucial; Pontryagin duals might provide the solution
here.
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