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Abstract 

Background: Gout is the most common form of inflammatory arthritis, with a 

prevalence of 2.49% in the United Kingdom. It is characterised by episodes of 

acute inflammation (flares) caused by shedding of monosodium urate (MSU) 

crystals that deposit within and around joints when serum urate (SU) increases 

above its solubilisation point. Despite the central role of hyperuricaemia in the 

pathogenesis of gout, not everyone with elevated SU develop symptomatic 

gout. The reasons underlying the transition from asymptomatic hyperuricaemia, 

with our without MSU crystal deposits, to symptomatic gout remain poorly 

understood.  

Objectives: (1) To explore expression of inflammasome and toll-like receptors 

(TLRs)-associated genes and cytokine levels in different stages of the 

pathogenesis of gout: normal SU, hyperuricaemia without MSU crystal deposits, 

hyperuricaemia with asymptomatic MSU crystal deposits, intercritical gout and 

gout flares. (2) To generate a polygenic risk score (PRS) to distinguish gout 

cases from controls regardless of SU. (3) To generate and validate a genome-

wide association study (GWAS) of asymptomatic hyperuricaemia controls vs. 

gout cases. (4) To generate a PRS to distinguish gout cases from controls with 

asymptomatic hyperuricaemia.  

Methods: Gene expression and cytokine profiling: Participants recruited for 

three clinical studies conducted at the Department of Academic Rheumatology 

were classified according to their SU, presence of MSU crystals, and/or gout 

stage. A total of 108 were included in the gene expression analysis, which 

evaluated the relative expression of 86 genes associated to inflammasome and 

TLRs pathways, using the QIAGEN RT2 RNA PCR Arrays. 185 participants 
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were included in the cytokine measurements, conducted using latex 

agglutination and Meso-Scale Discovery by Affinity Biomarkers Labs. mRNA 

and cytokine levels were compared among groups using the Kruskal-Wallis H 

Test with Bonferroni post-hoc for independent measurements, and Wilcoxon 

signed-rank rest or Friedman test with Bonferroni post-hoc for repeated 

measurements. P-values were corrected for multiple testing using a false 

discovery rate of 5%.  

GWAS and PRS studies: Phenotype and genotype data from participants of the 

UK Biobank resource were used to derive two cohorts: (1) gout cases vs. non-

gout controls (regardless SU levels), and (2) gout cases vs. asymptomatic 

hyperuricaemia controls. The second cohort was divided into the discovery 

dataset (comprised by 70% of the original cohort) and the replication dataset 

(comprised by 30% of the original cohort). Genotype data was quality controlled 

using PLINK v1.9 to remove participants with non-European ethnicity, third 

degree relatives, sex mismatches, low call-rate and heterozygosity outliers, and 

markers deviating from Hardy-Weinberg equilibrium and high missingness. 

Discovery and replication association analyses for gout vs. asymptomatic 

hyperuricaemia were conducted in PLINK using an additive logistic regression, 

with age at recruitment, sex and the first 10 principal components as covariates. 

Genome-wide associations were annotated using FUMA-SNP2GENE resource. 

PRS for gout vs. controls were calculated with PRSice v2.0, using the GUGC 

GWAS summary statistics as the base dataset and the UK Biobank genotype 

data as the target dataset. PRS for gout vs. asymptomatic hyperuricaemia were 

generated using the discovery GWAS summary statistics as the base dataset 

and the replication cohort as the target dataset. Predictive ability of the PRS, 

the demographic and combined models were assessed using the area under 

the receiving operating characteristic curve (AUROC). 
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Results: Gene expression profiling: BIRC2, CD40LG, CXCL1, IL-1β, MEFV, 

NLRP12, PANX1, TNFSF14, TXNIP and XIAP showed a significant 

upregulation in participants with hyperuricaemia with asymptomatic MSU crystal 

deposits, compared to participants with normouricaemia. CFLAR, NAIP, NFBIA, 

NLRC4, NLRP6 and TLR2 were downregulated in participants during the 

intercritical stage, compared to the gout flare; however, these differences were 

not significant after correcting for multiple testing. When these 16 genes were 

compared among the whole spectrum of normouricaemia to acute gout, 

CD40LG, PANX1 and TNFSF14 showed a downregulation in participants with 

acute gout, compared to the groups of participants with asymptomatic 

hyperuricaemia.  

Cytokine profiling: In the comparison of intercritical gout vs. gout flare, the levels 

of VEGF-α and hsCRP showed significant differences. Cytokine levels did not 

show significant differences among participants with normouricaemia, 

hyperuricaemia without MSU crystals and hyperuricaemia with asymptomatic 

deposits of MSU crystals. When cytokines were compared among all groups, 

GRO-α, IL-1β, IL-6, IL-8, IP-10, MCP-1, TNF-α and hsCRP were greater in the 

intercritical gout group, compared to the normouricaemia and asymptomatic 

hyperuricaemia groups.  

PRS for gout: The best-fit PRS was generated from 10 SNPs, and showed a 

significant association with gout. The mean PRS for gout cases and controls 

were significantly different (0.016 compared to 0.0019, respectively). The 

predictive ability of the PRS alone was of 62% that increased to a 75% when 

added to the demographics model.  

GWAS and PRS for gout vs. asymptomatic hyperuricaemia: The GWAS 

revealed 13 independent SNPs located in or near ABCG2, SLC2A9, SLC22A11, 
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GCKR, MEPE, ADH1B, and the non-coding regions PPM1K-DT and 

LOC105377323 These loci associated with the transition from asymptomatic 

hyperuricaemia to gout, and replicated successfully. The PRS generated to 

distinguish gout from asymptomatic hyperuricaemia was generated from 

association data of 17 SNPs and gave a predictive ability of 58.2% and 69.2% 

when combined with the demographics model.  

Conclusions: Inflammasome-associated gene expression and cytokine 

measurements suggest the activation of immune mechanisms in people with 

asymptomatic deposition of MSU crystals and subclinical systemic inflammation 

during intercritical gout. The GWAS findings revealed novel loci associated with 

gout, and confirms the importance of urate transporters and metabolic genes in 

SU variation and its central role in the pathogenesis of gout. Validation studies 

in independent datasets are required to confirm gene expression and genome-

wide genotype results.
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1 Chapter 1. Introduction 

Gout is the most common form of inflammatory arthritis, characterised by 

episodes of acute inflammation because of shedding of monosodium urate 

(MSU) crystals deposited within and around joints. Crystal deposition occurs 

when the serum urate (SU) increases beyond its solubilisation point of 6.75 

mg/dL at 37ºC, according to in vitro studies (Nicola Dalbeth, Merriman, & Stamp, 

2016; Loeb, 1972). Although studies have shown that at temperatures between 

30-35ºC (the average temperature of the first metatarsophalangeal joint in 

humans), the saturation point decreases to between 4.5 and 6.0 mg/dL (Nardin, 

Fogerson, Nie, & Rutkove, 2010). 

Gout has a prevalence of 2.49% in the United Kingdom, and is more common 

in men (with a prevalence between 3 to 6%) than in women (prevalence of 2%) 

(Kuo, Grainge, Mallen, Zhang, & Doherty, 2015). Besides gender, age is 

another factor that contributes to the development of gout, increasing the 

prevalence up to 9% in men and 6% in women older than 75 years of age (H. 

K. Choi, Mount, & Reginato, 2005; K. L. Wallace, Riedel, Joseph-Ridge, & 

Wortmann, 2004; Zhu, Pandya, & Choi, 2011). If gout is left untreated, it can 

cause tophi and evolve to chronic arthritis in some but not all patients. This 

generates greater costs to the health services, due to an increased use of the 

healthcare resources (Saseen et al., 2012). In addition, patients with gout often 

develop other comorbidities that not only aggravate health related quality of life, 

but also hinders an adequate management and treatment of the disease. For 

instance, chronic kidney disease limits the maximum allopurinol dosing that can 

be used (Drivelegka, Sigurdardottir, Svärd, Jacobsson, & Dehlin, 2018).  
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Studies have focused on understanding the inflammatory response to MSU 

crystals, the mechanisms involved in the resolution of flares, and the risk factors 

associated to SU concentrations and gout. This chapter provides relevant 

information about the nature and historical background of gout, the clinical 

characteristics and diagnosis, the metabolic mechanisms of hyperuricaemia, 

the immune response during gout flares, the genetic basis in the pathogenesis 

of the disease, and finally the rationale behind this study concept. 
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1.1 History of gout 

Gout is one of the rheumatic diseases that has been described throughout 

centuries. Its history dates to ancient times, and thanks to anthropologic 

discoveries, it is known that Tyrannosaurus rex fossils showed evidence of bone 

erosion characteristic of gout (Rothschild, Tanke, & Carpenter, 1997). 

Additionally, skeleton remains from Egypt and England (~2480 BC and 150 AD 

respectively), presented similar bone damage features because of gouty 

erosions. However, first documented reports of this disease track back to the 

Ancient Greece and the Roman Empire. Hippocrates first described several 

gout epidemiological facts, such as the higher prevalence in men and 

postmenopausal women, and he assigned the word “podagra” to describe 

severe swelling and pain in the foot (SydenhamSociety, 1891). The origin of the 

word “gout” (from the Latin word “gutta”, which means drop) is credited to Ralph 

Bockingus, who based on the Hippocratic theory of the four biologic humours, 

attributed the infiltration of a biologic fluid into the joint as the causal agent of 

articular inflammation (S. L. Wallace, 1964). 

For many centuries, gout was considered to be an upper social class-exclusive 

disease, due to its popularity among aristocrats, whose lifestyles were 

characterised by excessive food and alcoholic drinks intake. However, it was 

not until the second century AD, when gout’s hereditary nature was introduced 

after observing its incidence among generations. During this period, gout was 

also defined as a disease with intermittent symptoms (S. L. Wallace, 1964). The 

sixth century AD marked an additional and crucial discovery for gout, when 

Colchicum autumnale extracts were introduced as the first therapy to treat gout 

(Storck, 1764). 
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Modern history in gout understanding is marked by the English physician 

Thomas Sydenham. He provided a detailed and accurate description of 

symptoms during gout flares, as well as several clinical features typical of the 

chronic stage, such as joint destruction, tophi formation and renal stones 

(Sydenham, 1683). In 1776, the chemists Carl Wilhelm isolated an acid 

substance from renal stones. Twelve years after, William Hyde examined a 

tophus, concluding the acid substance previously described by Wilhelm, was 

also present in the tophus. This acid compound was later identified as uric acid, 

and in 1848 Alfred Baring Garrod observed that patients with gout had high 

levels of uric acid and gout flares could be the consequence of uric acid 

precipitation into joint tissues (Garrod, 1848).  

One of the breakthrough discoveries happened in the 1960s when McCarthy 

and Hollander observed MSU crystals in synovial fluid of patients with gout 

using polarised light microscopy. This discovery allowed them to conclude that 

episodes of inflammation were induced by the presence of MSU crystals 

(McCarty & Hollander, 1961). This technique has been established as the gold 

standard for the diagnosis of gout and calcium pyrophosphate dihydrate (CPPD) 

crystal deposition disease. 
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1.2 Nature of gout 

After the historical observations, it was recognised that high concentration of 

SU and its crystallisation within joints were the causal agents of gout. However, 

it was not until the 20th century when researchers observed that after injecting 

MSU crystals, the surrounding cells phagocytised them and initiated a severe 

inflammatory response. Thanks to these discoveries, it is now known that the 

natural history of gout is defined by four stages (Nicola Dalbeth et al., 2016): 

 Hyperuricemia without MSU crystal deposition 

 Hyperuricemia with MSU crystal deposition but no flares or tophi 

 MSU crystal deposition triggering episodes of acute inflammation (gout 

flares) 

 Chronic tophaceous gout 

Hyperuricaemia is defined as SU levels greater than 6.8 mg/dL [408 µmol/L], 

concentration at which urate precipitates in vitro under physiological conditions 

(37ºC and pH 7.4) (Loeb, 1972). The mechanisms leading to an overproduction 

or underexcretion of urate that cause hyperuricaemia, will be described in detail 

in section 1.6.1.  

Urate crystal formation is the key stage between hyperuricaemia and gout; 

however, the relationship between SU levels and MSU crystallisation is 

complex. Although SU concentration is important, additional factors contribute 

to the process of microcrystals formation, also known as nucleation. Among 

them, there are several physicochemical factors such as temperature, pH, and 

movement or mechanical trauma in the joints (Loeb, 1972; Wilcox & Khalaf, 

1975). A study reported that different components in the cartilage and the 

synovial fluid are also essential for nucleation and growth of MSU crystals. This 

was determined after analysing nucleation in synovial fluid of patients with 
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different rheumatic diseases, and observing that gouty joints promoted an 

enhancement in crystal formation that occurred through mechanisms 

independent of SU levels (Martillo, Nazzal, & Crittenden, 2014; McGill & Dieppe, 

1991).  

The immune response to  MSU crystals is the fundamental mechanism behind 

a gout flare. Briefly, this response is mediated by the NLR family Pyrin Domain 

Containing 3 (NLRP3) and the Toll-like Receptors (TLRs) 2 and 4, that together 

promote the synthesis of pro-inflammatory cytokines that amplify the immune 

response (Shi, Mucsi Ashley, & Ng, 2009). A detailed explanation of this  will be 

provided in section 1.7. Gout flares self-resolve a few days to up to 2 weeks 

after the episode of acute inflammation started (H. K. Choi et al., 2005). The 

resolution phase is mediated by the formation of aggregated neutrophil 

extracellular traps (aggNETs) that inactivate the synthesis of pro-inflammatory 

molecules (Schett, Schauer, Hoffmann, & Herrmann, 2015). If hyperuricaemia 

persists and gout is not managed accordingly, gout flares may occur more 

frequently and affect multiple joints. 

The time of evolution from acute gout to chronic tophaceous gout is highly 

variable among patients. However, the continuous deposition of MSU crystals 

within joints leads to the development of tophus. These are deposits of densely 

compacted MSU crystals and inflammatory cells (macrophages and plasma B 

cells) surrounded by a fibrovascular capsule. Tophus can be present without 

symptoms of local inflammation or present with flares. However, as they 

continually stimulate the secretion of cytokines and proteases by interacting with 

osteoblasts and chondrocytes, tophi can cause bone erosion, fibromatosis and 

cartilage loss (Chhana & Dalbeth, 2015). Advanced gout manifests with 

frequent flares and a greater number of tophi. This stage of the disease is 
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associated with a decline of the physical and mental health of the patient, 

affecting daily activities and work productivity (Khanna et al., 2012). In addition, 

patients with gout often develop other comorbidities that not only aggravate 

health related quality of life, but also hinder an adequate management and 

treatment of the disease (Drivelegka et al., 2018). 
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1.3 Signs and Symptoms of gout 

The hallmark sign of gout is an abrupt episode of inflammation in a joint. Upon 

examination during gout flares, patients present severe pain, redness, stiffness, 

sensitivity to touch and warmth in the affected joint. Mild fever and fatigue may 

be present as indicators of systemic inflammation. During the initial stages, gout 

flares are usually monoarticular and affect more frequently the first 

metatarsophalangeal joint, followed by the ankle, transverse tarsal joint, knee, 

wrist and elbow (H. K. Choi et al., 2005). Flares usually occur at night, 

presumably due to a decrease of the body temperature that facilitate MSU 

crystallisation, nocturnal dehydration, variation of cortisol levels and sleep 

apnoea that enhance purine metabolism via nucleotides turnover (Hyon K. Choi 

et al., 2015). Gout flares can be triggered by dehydration, surgical procedures, 

alcohol consumption (especially beer) and the intake of purine rich food (beef, 

lamb and seafood) (A. Abhishek, Valdes, Jenkins, Zhang, & Doherty, 2017; 

Rothenbacher, Primatesta, Ferreira, Cea-Soriano, & Rodríguez, 2011). When 

hyperuricemia persists or patients do not receive any treatment, gout becomes 

more severe and flares can occur more frequently and manifest as polyarticular 

inflammation or as chronic tophaceous gout (Nicola Dalbeth et al., 2016; 

Parathithasan, Lee, Pianta, Oon, & Perera, 2016). In patients with advanced 

gout, the principal sign is the presence of tophi in metatarsophalangeal joints, 

metacarpophalangeal joints, elbows, ankles or ears. Tophi tend to appear many 

years after the first flare if hyperuricaemia continues and after recurrent 

episodes of inflammation. However, some patients develop aggressive 

tophaceous gout within a few years, typically in people with organ transplants 

treated with cyclosporine (Clive, 2000). And although they are often clinically 

silent, long-term, they can cause extreme tenderness, limited movement of the 

affected joints, skin ulceration and infection, and psychological impact owing to 
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restrictions in social and work activities and the cosmetic effects (Chhana & 

Dalbeth, 2015).  



Chapter 1. Introduction 

 

10 

 

1.4 Diagnosis of gout 

There are multiple guidelines published by different Rheumatology societies 

and organisations that establish the criteria to diagnose and classify gout. 

Among these are the American College of Rheumatology (ACR) and the 

European League Against Rheumatism (EULAR) (Vargas-Santos, Taylor, & 

Neogi, 2016). In 2015, the ACR and EULAR published a collaborative document 

consisting of improved criteria that consider several observations, such as 

clinical features of gout (joint involvement, characteristics of the affected joint, 

duration of the episode and presence of tophus), laboratory results (SU levels 

and presence of MSU crystals) and imaging (radiography, ultrasound and 

double-energy computed tomography). The sensitivity and specificity were 92% 

and 89% respectively, representing the best values compared to previous 

published criteria. It is however, recommended exclusively for study purposes 

and not for clinical practice, where aspiration of synovial fluid remains the gold 

standard (Neogi et al., 2015). In addition to the ACR/EULAR collaborative 

guideline, in 2018 EULAR published an updated list of eight recommendations 

for the diagnosis of gout. Besides arthrocentesis, evaluation of gout-related 

clinical features and the use of imaging methods, these recommendations 

stated the importance of conducting a thorough assessment of the risk factors 

that contribute to chronic hyperuricaemia, such as chronic kidney disease, 

obesity, specific medication for hypertension and dietary elements 

(consumption of alcohol, sugar drinks, meat and shellfish), and the screening of 

comorbidities that coexist with gout, like diabetes, hypertension, 

hypercholesterolemia, ischaemic heart disease, etc. (Pascal Richette et al., 

2019). Therefore, laboratory tests are essential not only to measure SU levels, 

but also to analyse glycaemic and lipidomic profiles, kidney function test, blood 

cells count and C-reactive protein measurement, to complete the diagnosis, to 
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determine potential therapeutic implications and to monitor the progression of 

the disease or response to therapy (Qing et al., 2013; Ragab, Elshahaly, & 

Bardin, 2017).  

Currently, arthrocentesis of the affected joint to confirm the presence of MSU 

crystals is the technique that allows a definite diagnosis of gout (Neogi et al., 

2015; Pascal Richette et al., 2019). However, joint aspiration is frequently not 

performed, especially in primary care, where most gout diagnosis are identified, 

or is inaccessible when flares occur in small joints (Harrold et al., 2013). 

Furthermore, the gold standard though having a good sensitivity and specificity 

(69% and 97% respectively) is still susceptible to human error, particularly 

because it requires qualified personnel and adequate equipment (Gordon, 

Swan, & Dieppe, 1989). Moreover, gout and other arthritis may coexist, and an 

adequate diagnosis is vital to select further management (Genes & Chisolm-

Straker, 2012). For those reasons, diagnosis of gout should be completed by 

an exhaustive physical evaluation, a record of medical history, laboratory tests 

and imaging methods. The following subsections include a brief description of 

the gold standard and the main imaging methods used for the diagnosis of gout. 

 

1.4.1 Synovial fluid analysis 

The aspiration of synovial fluid or tophus to identify MSU crystals under 

polarising light microscopy is considered as the gold standard diagnostic test. 

This technique involves the analysis under polarising light microscopy of a 

droplet of fresh synovial fluid to look for intracellular needle shaped MSU 

crystals with negative birefringence. MSU crystals show a bright yellow or blue 

colour, depending on the position of the light compensator, with lengths that 
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range from 1-20 µm (Figure 1.1). (H. Paul, Reginato, & Schumacher, 1983; 

Ragab et al., 2017) 

Observing the physical characteristics of crystals is essential to distinguish gout 

from other types of arthritis that not only mimic clinical features of gout, but are 

also triggered by crystals, such as calcium pyrophosphate dihydrate (CPPD) 

(responsible for acute CPP crystal arthritis - previously called pseudogout) and 

basic calcium phosphate (Gordon et al., 1989; MacMullan & McCarthy, 2012). 

Septic arthritis also presents similar symptoms as gout and should be excluded 

when analysing the synovial fluid by gram staining and culturing (Ragab et al., 

2017). Apart from looking for MSU crystals, the analysis of synovial fluid is 

important to determine cell counts. During gout flares, the number of leukocytes 

varies around 50,000 cells/µL; more than 50,000 cells/µL with a higher 

percentage of neutrophils is indicative of septic arthritis (Pascual, Batlle-Gualda, 

Martinez, Rosas, & Vela, 1999; Ragab et al., 2017).  

 

Figure 1.1 Monosodium urate crystals under polarising light microscopy. 

MSU crystals show a needle shape with negative birefringence. Figure taken from (Nicola 
Dalbeth et al., 2016). 
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1.4.2 Imaging in gout 

A wide variety of imaging methods including plain radiographs, ultrasound, 

conventional tomography, dual-energy computer tomography (DECT), and 

magnetic resonance, have been introduced as potential tools to identify patients 

with gout, to monitor the progression of the disease and to assess the response 

to treatment (Nicola Dalbeth & Doyle, 2012; Parathithasan et al., 2016). Among 

these imaging tools, plain radiographs, DECT and ultrasound are the most 

used. Each one presents advantages and disadvantages, and using one 

instead of another depends on several factors, for example the stage of gout 

during examination, availability in clinical settings, expertise of the health 

professionals, etc. Imaging has acquired more interest as some of the tools are 

useful in guiding and facilitating synovial fluid aspiration, and they represent a 

potential alternative to detect joint abnormalities when they are not clinically 

detectable as no tophi are present or there are no evident signs of acute 

inflammation (during asymptomatic hyperuricemia or intercritical gout) (N. 

Dalbeth et al., 2015; Naredo et al., 2014). 

 

1.4.2.1 Plain radiography 

Given that radiographs are widely available and usually inexpensive, they have 

been used for a long time in the diagnosis of gout. The radiographic evaluation 

in gout patients allows the observation of different non-specific features that 

occur because of an acute flare (such as soft-tissue swelling), but more 

specifically changes of chronic tophaceous gout that occur after sustained 

deposition of MSU crystals and its evolution to chronic tophaceous gout. In early 

gout, radiographs are typically normal, but swelling of soft tissues might be 

visible (Nicola Dalbeth & Doyle, 2012). In advanced gout, tophi can be observed 



Chapter 1. Introduction 

 

14 

 

as dense masses between soft tissues and bones and if calcified, can be 

indicative of renal failure causing abnormalities in calcium metabolism or simply 

long-term urate deposits on which calcification has occurred (Gentili, 2003). 

Articular and periarticular bone erosions are also typical in patients with chronic 

tophaceous gout. On plain radiographs, these erosions present a characteristic 

sclerotic border and overhanging edges (Nicola Dalbeth & Doyle, 2012). 

Additionally, intraosseous tophi can cause calcifications that are also visible on 

radiographs. Figure 1.2 shows some examples of these type of radiographic 

features. Provided that bone and cartilage damage appear in advanced gout, 

usually after 5-10 years or even longer after the onset of the disease, plain 

radiographs are not useful in the diagnosis during early stages but assist in 

monitoring the progression of gout. In addition, they help in providing a 

differential diagnosis. For instance, in early gout the joint space keeps a normal 

width, while other arthropathies such as rheumatoid arthritis and osteoarthritis 

show a narrow articular space, although this might change in advanced gout 

(Gentili, 2003).  
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Figure 1.2. Dorsopalmar radiographs.  

Showing a dense mass around soft tissues (A) and bone erosion with the characteristic 
overhanging edges caused by large tophi in the index and middle fingers (B). Adapted from 

(Gentili, 2003) 

 

1.4.2.2 Ultrasonography 

Even though compared to plain radiographs, ultrasound may not be necessarily 

accessible and requires specialised personnel, it provides a more exhaustive 

evaluation and is not invasive (Filippucci, Reginato, & Thiele, 2020). 

Ultrasonography allows the observation of more parameters distinctive of gout 

such as MSU crystal deposits, bone erosion, etc. during early and advanced 

gout. The most distinguishing sign observed by ultrasound is known as “the 

double contour sign” that forms because of the hyperechoic projection of urate 

deposits around the hyaline cartilage that can be visualised as a line of a 

thickness like or even greater than that of the bone (Figure 1.3). The double 

contour sign is not attributable to other crystal-induced diseases and has a high 

specificity (>90%), which makes it a good alternative when arthrocentesis is not 
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accessible. However, it has shown a variable sensitivity (20-90%) (Thiele & 

Schlesinger, 2007). After the increasing use of ultrasonography in rheumatology 

practice and the emergence of more studies, there is now a better consensus 

of ultrasound definitions for gout (Gutierrez et al., 2015). In that way, synovitis 

during a gout flare (with joint effusion and Doppler signal indicating 

hypervascularity), bone erosion, tophi and hyperechoic aggregates, are some 

other ultrasonographic findings of gout (Nicola Dalbeth & Doyle, 2012). 

 

 

Figure 1.3. Comparison of ultrasound images of healthy vs gouty knee joints showing the 

double contour sign.  

Taken from (Thiele & Schlesinger, 2007). 

 

1.4.2.3 Dual Energy Computed Tomography (DECT) 

Similarly to ultrasound, DECT is useful in identifying features during the initial 

stages of gout. It is particularly valuable to distinguish among different arthritis 

and to diagnose subclinical gout cases (i.e. presence of tophi without evident 

clinical manifestations) (Gentili, 2003). This is one of the most accurate methods 

in detecting MSU crystals and differentiating them from calcium deposits or 
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other type of crystals thanks to their different x-ray absorption characteristics. 

DECT mechanism consists of placing two x-ray detectors (usually at 80kVp and 

140 kVp) that generate simultaneous images at different energy levels, these 

are then converted into 3D graphics with colour coding according to the dual 

energy properties (McQueen, Doyle, & Dalbeth, 2011). Figure 1.4 shows an 

example of a DECT scan of the foot with multiple tophi. Compared to other 

methods, DECT provides a clearer picture of the tophi sizes and bone and 

cartilage involvement. However, like ultrasound, it has a high specificity (up to 

95%) but a lower sensitivity that is highly dependent on the stage of gout under 

study. Additionally, as it uses radiation, it still carries risk associated with 

radiation (e.g. increased risk of cancer)  and is not that accessible in terms of 

costs and availability in clinical practices (Bayat, Baraf, & Rech, 2018; McQueen 

et al., 2011). 

 

 

Figure 1.4 Dual energy computed tomography scan.  

Red spots represent tophaceous material around bone and soft tissue of different sites of the 
foot. Taken from (McQueen et al., 2011) 
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1.5 Management of gout 

As for the classification, the ACR (FitzGerald et al., 2020), the EULAR (P 

Richette et al., 2017) and the British Society for Rheumatology (Hui et al., 2017) 

have published guidelines for the management and treatment of gout. These 

recommendations divide the management in non-pharmacological and 

pharmacological treatment.  

Non-pharmacological treatment includes changes in lifestyle to reduce the 

number of flares and prevent the development of other metabolic disorders. 

Dietary modifications such as reduced intake of meat and seafood, limited 

consumption of drinks with high content of fructose (carbonated beverages and 

energy drinks) or alcoholic drinks (especially beer, wine and spirits), and 

increased ingestion of low caloric food, are recommended to reduce the risk of 

gout occurrence (Yuqing Zhang et al., 2012; Yuqing Zhang et al., 2006). A study 

showed that a weight loss of 7.7 kg, after 16 weeks of calorie restriction diet, 

had a meaningful effect in lowering SU concentrations of 0.47-0.57 mmol/L, and 

decreasing frequency of flares (Dessein, Shipton, Stanwix, Joffe, & Ramokgadi, 

2000). Moreover, regular exercise has also shown an impact in reducing SU 

levels. According to a study, running more than 8 km per day is associated to a 

gradual decline in SU and lower risk (50%) of developing gout (Williams, 2008). 

Non pharmacological interventions have small effect on serum urate. 

On the other hand, pharmacological treatment depends on the stage of the 

disease, but in general, the management focuses on three targets (Schlesinger, 

2004): 

 Treating a gout flare 

 Decreasing SU levels to dissolve crystals 

 Providing prophylactic treatment to avoid future flares 
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1.5.1 Gout flares management  

Treatment during gout flares should focus on decreasing inflammation and pain. 

Even though the ACR and the EULAR gout treatment guidelines do not clearly 

indicate when to start with urate lowering treatment (ULT) in relation to a gout 

flare (Q. Li et al., 2017), it has been advised that an abrupt variation in SU levels 

can lead to a partial dissolution of urate crystals, resulting in their mobilisation 

and consequent flare aggravation (H. K. Choi et al., 2005). 

Among the most common drugs used to treat flares, are the nonsteroidal anti-

inflammatory drugs (NSAIDs), colchicine, corticosteroids and IL-1β blockers. 

The selection of treatment depends on clinical features and medical history of 

each patient. Colchicine and NSAIDs (especially naproxen, ibuprofen and 

diclofenac) are commonly used and are effective for flares when administered 

in the appropriate doses (Roddy, Mallen, Hider, & Jordan, 2010). However, as 

they are metabolised in liver and kidney, they are contraindicated in patients 

with chronic kidney disease, cirrhosis or patients undergoing treatments that 

inhibit P-glycoprotein or CYP3A4 (P Richette et al., 2017; Schlesinger, 2004).  

Additionally, they are contraindicated in people with ischaemic heart disease, 

congestive cardiac failure and many other comorbidities as outlined in the 

British National Formulary. In these cases, oral, intra-articular or intramuscular 

administration of corticosteroids can be used (Jansen & Rasker, 2011). Anti-IL-

1 monoclonal antibodies canakinumab or anakinra, are prescribed when 

patients show intolerance to colchicine, NSAIDs and corticosteroids (Bardin, 

2015). Application of a single dose of canakinumab has proven to be effective 

in relieving pain 24 hours after its application, and to extend the period without 

flares (Schlesinger et al., 2012). Despite the promising results, the use of 
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monoclonal antibodies is not the first choice in clinical practice, due to its high 

cost in the UK and elsewhere. 

 

1.5.2 Intercritical gout management 

There are two categories of ULT: xanthine oxidase inhibitors (XOI) and 

uricosurics. Among XOI, allopurinol and febuxostat are considered as first and 

second line treatments, respectively. In cases where there are contraindications 

(especially in patients with severe renal failure) or low response to this type of 

treatment, uricosurics are therefore prescribed. Probenecid, sulfinpyrazone, 

benzbromarone and lesinurad are the most commonly used uricosurics. Severe 

cases of gout with little or no response to XOI or uricosurics, are treated with 

pegloticase. This enzyme converts uric acid into a more soluble metabolite. 

However, the options of treating gout patients with these medicines is limited as 

pegloticase is not available in the UK, benzobromarone is not licensed for the 

use of gout in the UK and is only available from Europe on a named patient 

basis only, and lesinurad does not have NICE (The National Institute for Health 

and Care Excellence) approval and has been recently withdrawn from different 

markets by the manufacturer. (FitzGerald et al., 2020; P Richette et al., 2017) 

There is a consensus about prescribing ULT at low doses initially, and increase 

it gradually based on kidney function tests and SU levels. Losartan or calcium 

channel blockers should be used in patients with hypertension (Hyon K. Choi, 

Soriano, Zhang, & Rodríguez, 2012), while statins or fenofibrate are 

recommended in patients with hyperlipidaemia as they have a modest uricosuric 

effect (Derosa, Maffioli, & Sahebkar, 2015).  
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Prophylactic treatment is suggested once ULT has started. Usually, it consists 

of low doses of colchicine or low dose NSAIDs for a period of six months (P 

Richette et al., 2017). 

Figure 1.5 summarises the pharmaceutical management’s workflow in gout. 
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Figure 1.5 Management of gout. 

Summary of pharmacological interventions according to the European league against Rheumatism and the American College of Rheumatology. NSAIDs: Nonsteroidal anti-
inflammatory drugs. SUA: Serum uric acid. XOI: Xanthine oxidase inhibitors. Adapted from (Loeb, 1972; P Richette et al., 2017). 
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1.6 Pathogenesis of gout 

1.6.1 Pathogenesis of hyperuricaemia  

Purines are a group of molecules essential for multiple biochemical pathways, 

e.g. DNA and RNA synthesis. They are synthesised by both exogenous (de 

novo synthesis) and endogenous (salvage pathways) metabolism, 

interconverted into molecules that serve as intermediates in different pathways, 

and finally excreted as uric acid (UA) or allantoin (Figure 1.6), depending the 

species. (Jinnah, Sabina, & Van Den Berghe, 2013).  

In humans, UA is the final product of purine metabolism because of the absence 

of the enzyme uricase. Uricase catalyses the oxidation from UA to allantoin, 

which is a more soluble metabolite. During primate evolution, the enzyme was 

lost due to two nonsense mutations that resulted in the truncation of the protein 

(Wu, D., Lee, & Caskey, 1992). Although the absence of uricase in humans is 

associated to protective effects - as UA prevents oxidative damage by 

scavenging free radicals (Oda, Satta, Takenaka, & Takahata, 2002); high levels 

of SU are also the main risk factor for other pathologies. 

Under physiological conditions, UA can be found circulating in blood as soluble 

urate provided it does not exceed the saturation limit [6.8 mg/dL] (Nicola Dalbeth 

et al., 2016). To keep urate concentrations at soluble levels, it is crucial to 

maintain a sustained balance between purine intake, endogenous metabolism 

and excretion. When that balance is altered, UA concentration increases which 

can lead to urate precipitation, MSU crystals deposition within joints, and the 

eventual onset of gout. (Martillo et al., 2014) 

Although it is well known that only around 10-12% of people with 

hyperuricaemia develop gout (Langford et al., 1987; B. J. Paul, Anoopkumar, & 

Krishnan, 2017), a high concentration of SU is still the main precursor to MSU 
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crystallisation (Nicola Dalbeth et al., 2016). Therefore, knowing the mechanisms 

behind hyperuricaemia is essential for the understanding of pathogenesis of 

gout. 

 

 

Figure 1.6 Purine metabolism pathway.  

Purine synthesis starts with the presence of other precursors from the pentose phosphate 
pathway –ribose 5-phosphate- and involves both de novo and salvage metabolism. In the first 

case, the final product is inosine monophosphate (IMP), which is used to synthesise adenosine 
monophosphate (AMP) and guanosine monophosphate (GMP) via the salvage pathway. The 

final product that results from the degradation of purines is allantoin; however, in humans is uric 
acid due to the loss of the enzyme uricase. Adapted from (Mandal & Mount, 2015) 

 

1.6.2 Role of hyperuricaemia in gout 

Hyperuricemia can be caused by increased production or under-excretion of 

UA. Previously, it was classified as urate overproduction hyperuricemia and 

renal underexcretion hyperuricemia. The first type considered an increased 

production of UA due to a rich purine diet, or to other rare genetic causes. The 
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second type resulted because of a reduced renal excretion of UA; however, only 

two thirds of UA are eliminated by the kidney. The remaining is excreted by the 

intestine, which can also be compromised and result in hyperuricemia. (T. R. 

Merriman & Dalbeth, 2011)  

With a better and more complete understanding of urate metabolism, 

hyperuricaemia is currently classified as renal underexcretion and renal 

overload, which groups urate overproduction and extra-renal underexcretion 

(Figure 1.7). Clinically, the type of hyperuricemia is defined according to the 

urinary urate excretion (UUE) values, and urate clearance/creatinine clearance 

ratio (also known as FEUA). (Ichida et al., 2012; H. Matsuo et al., 2016) 

 

 

Figure 1.7 Classification of hyperuricemia.  

Hyperuricemia can be classified as renal overload and renal underexcretion. Renal overload is 
caused by urate overproduction or extra-renal underexcretion, in both cases the urinary urate 

excretion (UUE) is >25 mg h-1 / 1.73 m2 and the urate clearance/creatinine clearance ratio 
(FEUA) is >5.5%. Renal underexcretion is caused by an impaired renal excretion, therefore it 

shows UUE <25 mg h-1 / 1.73 m2 and FEUA <5.5%. Taken from (Nakayama et al., 2017) 
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1.6.2.1 Renal overload hyperuricemia 

Renal overload hyperuricemia could be caused by either overproduction of UA 

or reduced urate intestinal excretion. Renal overload hyperuricemia shows UUE 

values greater than 25 mg h-1 / 1.73 m2, and FEUA values greater than 5.5% 

(Ichida et al., 2012).  

Besides diet with a high content of purines and fructose, urate overproduction 

can also be caused by failures in the endogenous metabolism of purines. There 

are several genetic disorders that affect the function of critical enzymes involved 

in the purine pathway (Figure 1.6). 

Lesch-Nyhan syndrome is an X-linked disorder that affects the enzyme 

hypoxanthine-guanine phosphoribosyltransferase (HPRT). This enzyme is 

responsible of converting hypoxanthine and guanine into inosine 

monophosphate and guanosine respectively. Mutations in the HPRT gene result 

in a deficient enzyme and the subsequent accumulation of hypoxanthine and 

guanine, which are converted into UA. Milder consequences of the disease 

include hyperuricemia, gout and nephrolithiasis; while motor and intellectual 

disabilities are characteristic of a severe phenotype. (Jinnah et al., 2013; Torres 

& Puig, 2007) 

Another X-linked syndrome is the phosphoribosyl pyrophosphate (PRPP) 

synthetase superactivity. PRPP synthetase uses ribose-5-posphate and ATP to 

catalyse the synthesis of PRPP. Superactivity of this enzyme is caused by 

mutations or overexpression of the gene PRPS1 (J Roessler et al., 1994). As 

PRPP is produced at higher rates, it triggers an increased synthesis of UA. The 

clinical phenotype includes early onset hyperuricemia, hyperuricosuria (that if 

left untreated can evolve to gout and renal impairment), hearing loss, ataxia and 

hypotonia (Nyhan, 2005). 
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Although urate homeostasis can be compromised because of an overproduction 

of uric acid, this type of hyperuricemia represents only 10% of the cases, while 

the remaining results from urate underexcretion (H. K. Choi et al., 2005). The 

mechanisms of urate transport are complex, but it is well known that two-thirds 

of excretion occurs from in the kidneys and one third of uric acid is excreted via 

gastrointestinal tract. This occurs from urate transporters present in this tissue: 

these are important in the development of hyperuricemia and gout.  

ABCG2 has been identified as a key UA transporter, located in the liver, the 

apical membrane of the intestine, and the proximal tubule (Woodward et al., 

2009). Multiple GWAS have reported the single nucleotide polymorphism (SNP) 

rs2231142 in ABCG2 gene as a susceptibility locus for hyperuricemia and gout 

(C.-J. Chen et al., 2018; Dehghan et al., 2008; Kottgen et al., 2013; Hirotaka 

Matsuo et al., 2014; Wen et al., 2015). Rs2231142 is a missense mutation 

resulting in a substitution from glutamine to lysine at position 141 (Q141K) of 

ABCG2 gene (C.-J. Chen et al., 2018). This SNP has been associated to an 

increment of urinary urate output due to a decreased function (up to 53%) of 

ABCG2 in the excretion of urate via the intestine (Ichida et al., 2012). 

Rs2231142 is responsible for an increase of serum urate by 0.217 mg/dL 

(Kottgen et al., 2013). 

 

1.6.2.2 Renal underexcretion hyperuricemia  

Renal underexcretion hyperuricemia can be caused by either acquired factors 

or genetic variants that predispose to this disorder. It is characterised by UUE 

values less than 25 mg h-1 / 1.73 m2, and FEUA values less than 5.5% (Ichida et 

al., 2012).  
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The development of other metabolic disorders, chronic kidney disease, or the 

use of certain medications (diuretics) are among the acquired factors that can 

lead to a reduced glomerular filtration and hence to renal urate underexcretion 

(T. R. Merriman & Dalbeth, 2011).  

On the other hand, genetic variants that contribute to a higher risk of renal 

underexcretion hyperuricemia are related to renal urate transport, which can be 

divided into four stages: (1) glomerular filtration, (2) reabsorption from the 

glomeruli, (3) secretion, and (4) postsecretory reabsorption in the proximal 

tubule (Mandal & Mount, 2015). Therefore, proteins involved in any of these 

stages have been subject to study. Moreover, GWAS have identified multiple 

variants located in urate transporter coding genes associated with renal 

underexcretion hyperuricemia.  

SLC2A9 is the gene responsible for encoding the urate transporter GLUT9. It is 

found mainly in the proximal renal tubule and has been identified, along with 

ABCG2, as the genetic variant with most effect in gout and hyperuricemia. 

Although the exact causal variant has not been fully elucidated, it has been 

suggested that polymorphisms might be present at regulatory sites of SLC2A9 

gene, affecting the expression of two different isoforms, which results in an 

increased urate reabsorption and decreased fractional excretion (Mandal & 

Mount, 2015). The SNP rs12498742, located in an intronic region of SLC2A9 

gene has been pointed out as responsible for an increase in SU of 0.373 mg/dL 

(Kottgen et al., 2013). This variant, along with rs2231142 (ABCG2) contributes 

to a 3.4% of the genetic risk for hyperuricemia. 

URAT1, another urate transporter, is encoded by SLC22A12 gene and is 

located in the proximal tubule of the renal cortex (Enomoto et al., 2002). URAT1 

was one of the first urate transporters to be described, and thanks to its 
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importance in urate homeostasis, it has become an important drug target for 

several uricosurics such as probenecid and benzbromarone (Ragab et al., 

2017) 

 

1.6.3 Progression from hyperuricemia to gout 

It is estimated that the heritability of hyperuricemia ranges from 40% to 70%; 

however, the genetic variants identified to date only explain 7% of the variation 

of uric acid levels (Dong et al., 2018). Moreover, though being crucial to gout, 

hyperuricemia does not always evolve to symptomatic gout. A follow-up study 

of patients with high SU levels (7.0–7.9 mg/dL) reported that during 14 years, 

only 12% presented gout.(Langford et al., 1987). Another study stated an 

annual incidence of gout of 0.1%, 0.5% and 4.9% in individuals followed up for 

15 years, with SU levels of <7.0 mg/dL, 7.0-8.9 mg/dL and >9.0 mg/dL 

respectively (Campion, Glynn, & DeLabry, 1987). 

Imaging methods have allowed the comparison of joint features in 

hyperuricaemic and normouricaemic individuals, looking for subclinical 

musculoskeletal involvement. There is evidence of low volumes of MSU crystal 

deposits in joints and tendons of people with hyperuricemia but without any 

signs of inflammation (Pineda et al., 2011). For instance, a DECT study showed 

a prevalence of MSU crystal deposition of 24% in patients with hyperuricemia 

(N. Dalbeth et al., 2015). Additional studies that used ultrasound and 

arthrocentesis to confirm presence of MSU crystals, reported a prevalence of 

24.2% and 34.6%, respectively (Abhishek Abhishek et al., 2018; De Miguel et 

al., 2012). Asymptomatic hyperuricemia is therefore characterised by MSU 

crystal deposition but no clinical symptoms of gout. However, the mechanisms 

that lead from asymptomatic hyperuricemia to gout remain poorly understood. 
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Although there are several genome wide association analyses (GWAS) for gout 

(C. Li et al., 2015; H. Matsuo et al., 2016; J. Wang et al., 2012), they have been 

conducted in relatively small datasets, and most of them have identified risk 

variants that overlap with those associated to SU variation. Hitherto, there is 

only one GWAS of asymptomatic hyperuricaemia controls vs. gout cases in 

Japanese population (Kawamura et al., 2019). This study revealed two novel 

loci and a suggestive locus (rs7927466 in CNTN5, rs9952962 in MIR302F and 

rs12980365 in ZNF724) associated with the progression from asymptomatic 

hyperuricaemia to gout. The first two genes have been associated with other 

inflammatory diseases, which supports the importance of the immune response 

to urate crystals in the development of gout. Efforts have focused on the study 

of pathways such as the inflammasomes and Toll-like receptors, which are 

involved in the pathogenesis of the disease, to identify more genetic features 

that may contribute to the understanding of the progress from asymptomatic 

hyperuricemia to gout. 

 

1.7 Immune mechanisms of MSU crystal induced inflammation 

Inflammation is a consequence of an immune response against endogenous 

and exogenous factors that stimulate the activation of several signalling 

pathways and the secretion of pro-inflammatory molecules as a protective 

measure to avoid damage.  

In gout, the release of MSU crystals from connective tissue and joint deposits is 

believed to be the inflammatory triggering factor, which induces the activation 

of both the innate and adaptive immune responses. Together, they cause the 

characteristic abrupt episodes of severe pain, swelling, redness and warmth in 

joints (R. Terkeltaub, 2017). Other factors such as changes in protein coating 
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on the crystals, changes in pro-inflammatory lipid coating etc. may also operate 

given the reported association between dietary and lifestyle excesses and gout 

flares (Ortiz-Bravo, Sieck, & Ralph Schumacher Jr, 1993; R. A. Terkeltaub, 

Dyer, Martin, & Curtiss, 1991), although these are not well understood.  

Though the mechanisms by which MSU crystals induce inflammation are still 

under research, there is currently a better understanding of the pathways 

involved in the activation of the innate immune response, while the process in 

which the adaptive immunity participates in gout pathogenesis is less clear. 

 

1.7.1 Innate immunity in gout 

This type of immunity forms during embryonic development and evolves 

throughout time. It works as the first line defence from pathogens, either by 

physical barriers or by receptors that recognise pathogen-associated molecular 

patterns (PAMPs) and damage-associated molecular patterns (DAMPs). 

Pattern recognition receptors (PRRs) can directly activate immune cells or 

promote the recruitment of macrophages, neutrophils, mast cells, etc. 

Subsequently, they induce the secretion of cytokines and expression of 

transcription factors to further trigger other immune responses, such as the 

complement and adaptive responses.(Hanson & Wigzell, 2014; Male, Brostoff, 

Roth, & Roitt, 2012) 

MSU crystals in joints are identified as danger molecules by Toll-like receptors 

(TLRs) and nucleotide oligomerisation domain (NOD)-like receptors (NLRs). 

Both are responsible of the early immune response in gout. (N. Dalbeth & 

Haskard, 2005) 
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1.7.1.1 Toll-like Receptors 

TLRs are a group of membrane glycoproteins that contain an extracellular 

region of leucine-reach repeat (LRR) motifs and an intracellular region known 

as Toll/IL-1R (TIR) domain. The first region is in charge of recognising a wide 

variety of ligands (e.g. lipopolysaccharides, envelope proteins, DNA fragments, 

RNA fragments, etc.), while the TIR domain’s main function is to recruit the 

adaptor molecule myeloid differentiation primary response protein 88 (MyD88). 

MyD88 is a signal transducer that activates MAP kinases and allows 

translocation of the transcription factor NF-κβ to the nucleus to induce the 

expression of pro-inflammatory cytokines. This can be accomplished through a 

series of steps that include the recruitment of IRAK1 and IRAK4 and the 

consequent assembly of the complex TRAF6-TAB2-TAK1-TAB1 (Figure 1.8). 

(Akira & Takeda, 2004) 
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Figure 1.8 Toll-like receptors (TLRs) signalling pathway. 

TLRs are a type of pattern recognition receptor that mediates the recruitment of MyD88. It 
triggers the association of IRAK4, which further phosphorylates IRAK1 and recruits TRAF6. 

After a series of phosphorylations and ubiquitylations, the complex TRAF6-TAB2-TAK1-TAB1 
activates MAP kinases and IKK complex, which allows the translocation of transcription factor 

NF-κβ to the nucleus. (Akira & Takeda, 2004) 

 

1.7.1.2 NOD-like receptors 

On the other hand, NLRs are a different type of PRRs that form a tripartite 

complex of proteins, known as inflammasomes, that mediate the synthesis of 

caspases, which in turn cleave the pro-inflammatory cytokines IL-1β and IL-18 

to produce their active forms (Latz, Xiao, & Stutz, 2013). Up to date, 22 NLRs 

have been identified (Man Si & Kanneganti, 2015).  
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In general, NLR are integrated by three domains: (1) a C-terminal region 

consisting of LRR motifs, (2) a nucleotide binding or NACHT domain, (3) and 

an amino-terminal domain that could be a caspase activation and recruitment 

domain (CARD), a pyrin domain (PYD), or a baculovirus inhibitor of apoptosis 

domain (BIR) (Menu & Vince, 2011). Under the presence of DAMPs, the LRR 

domain activates NLRs inducing a conformational change that allows the 

recruitment of the apoptosis speck protein (ASC). ASC functions as an adaptor 

protein, since most NLRs contain PYD instead of CARD, which is essential for 

NLR-pro-caspase-1 interactions. In this way, ASC’s CARD domain binds to its 

homologous domain of pro-caspase-1. This oligomerisation prompts self-

cleavage of pro-caspase-1 into p20-caspase-1 and p10-caspase-1 fragments, 

with the subsequent processing of pro-IL-1β and pro-IL-18 cytokines (Latz et 

al., 2013; Rathinam, Vanaja, & Fitzgerald, 2012). Figure 1.9 shows NLRP3 

structure and its general signalling pathway, as an example of an ASC-

dependent NLR. 

The inflammasomes are one of the innate immune complexes that has been 

widely studied owing their role in several inflammatory, autoimmune and 

metabolic disorders (Guo, Callaway, & Ting, 2015). Out of the existing NLR 

inflammasomes, NLRP3 is best characterised, as it recognises an extensive 

number of PAMPs (e.g. Stapylococcus aureus, Candida albicans, Influenza A 

ligands) and endogenous DAMPs (e.g. cholesterol, calcium pyrophosphate 

dihydrate, hyaluronan, MSU crystals) (Jo, Kim, Shin, & Sasakawa, 2016). 

Furthermore, NLRP3 has been associated with the immune response of 

numerous pathologies such as diabetes, obesity, cancer, Parkinson, 

Alzheimer’s disease, rheumatoid arthritis, and gout. (Menu & Vince, 2011). 
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Figure 1.9 NLRP3 inflammasomes structure and signalling. 

Most inflammasomes consist of three main molecules (NLR, ASC and pro-caspase-1) that 
facilitates the activation of inflammatory cytokines. NLRP3 inflammasome has three domains in 
its NLR component: LRR, NACHT and PYD. After activation, NLR recruits ASC, which contains 
a PYD domain and a CARD domain which finally interacts with pro-caspase-1. This multimeric 

protein assembly activates pro-caspase-1 through its self-cleavage into p10-caspase-1 and 
p20-caspase-1, which process the pro-inflammatory cytokines IL-1β and IL-18. (Rathinam et al., 

2012) 

 

In gout, TLR2, TLR4 and NLRP3 are the pattern recognition receptors that 

participate in the downstream signalling to activate IL-1β and IL-18 (Liu‐Bryan, 

Scott, Sydlaske, Rose David, & Terkeltaub, 2005; Sutterwala, Haasken, & 

Cassel, 2014). Although they are critical in gout, PRRs cannot activate the 

immune response by themselves, but they need several biochemical changes, 

that together allow the oligomerisation of the inflammasome and the activation 

of transcription factors to finally promote the synthesis of pro-inflammatory 

cytokines (Kingsbury, Conaghan, & McDermott, 2011). These changes will be 

discussed with more detail in section 1.7.3. 
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1.7.2 Adaptive immunity in gout 

Adaptive immunity is also known as acquired immunity, and unlike the innate 

response that only recognises highly conserved structures, it recognises 

antigens with high specificity. It is divided in two different groups according to 

the type of lymphocytes, as cellular (T cells) and humoral immunity (B cells) 

(Male et al., 2012). Furthermore, once activated they can undergo a clonal 

selection, which generates the immunologic memory (Scherer & Burmester, 

2011). 

T cells develop in the thymus and respond to intracellular pathogens. They are 

divided into two main types of cells: CD4+ T-cells and CD8+ T-cells. CD4+ T-

cells consist of five types including the T helper cells Th1, Th2, Th17, follicular 

helper cell, and the regulatory treg cells. Depending on the type, they can 

directly interact with phagocytes (Th1) and B-cells (Th2) to underpin antigen 

presentation or activate the synthesis of pro-inflammatory cytokines such as IL-

17 (Th17) to recruit other immune cells. CD8+ T cells are divided into two types: 

the cytotoxic T-cells and CD8+ TREG cells. The former promotes the destruction 

of host cells under the presence of intracellular pathogens, while the second 

limit the immune response to prevent overreaction against self-tissues. (Male et 

al., 2012; Overgaard Nana, Jung, Steptoe Raymond, & Wells James, 2014) 

B cells on the other hand, respond to extracellular pathogens. However, to 

initiate their response they require other signals mediated by T-cells or dendritic 

cells. Depending on the type of signal, they can further differentiate into memory 

cells or plasma cells. The latest are in charge of producing IgM and IgD 

antibodies, which successively evolve to the subclasses IgA, IgE and IgG. 

These have higher affinity that confers precise functions to achieve a specific 

immune response. (Bonilla & Oettgen, 2010) 
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According to several studies, the adaptive immunity plays a role in different 

stages of gout pathogenesis. First, it has been observed that humoral immunity 

might participate in the crystallisation of MSU and the subsequent activation of 

the inflammatory response (Martillo et al., 2014). Terkeltaub et al described that 

after incubating MSU crystals with plasma and serum, among the proteins that 

were bound to the crystals were IgGs and complement-associated proteins (R. 

Terkeltaub, Tenner Andrea, Kozin, & Ginsberg Mark, 1983). Subsequent 

studies not only confirmed the existence of specific antibodies against MSU, but 

also correlated the concentration of immunoglobulins with urate crystallisation 

rates (Kaneko & Maru, 2000; Kanevets, Sharma, Dresser, & Shi, 2009). 

However, these results are based on in vitro observations, thus the humoral 

response in vivo remains hypothetical. 

Other markers of the adaptive immunity that have been associated with the 

inflammatory mechanisms in gout are the Th17 and CD8+ T cells. Th17 cells 

promote the synthesis of IL-17, which has been found in synovial fluid of patients 

with gout (Kotake et al., 1999). A study conducted by Conforti et al showed that 

MSU crystals activate dendritic cells that in turn stimulate Th17 differentiation 

(Conforti-Andreoni et al., 2011). Interestingly, this differentiation only occurs in  

the presence of IL-1, which is dependent on NLRP3 inflammasome assembly 

and the expression of NF-κβ, suggesting a central role of IL-1 in MSU crystal 

induced inflammation (Chung et al., 2009). 

Although the role of CD8+ T-cells is less clear, since MSU crystals recruit 

dendritic cells, it has been suggested that they may activate T-cells (Ghaemi-

Oskouie & Shi, 2011). In addition, it has been found that tophus contain 

abundant CD8+ cells with the RANKL (receptor activator of nuclear factor κβ 

ligand) receptor expressed in their membranes. RANKL is responsible for the 
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activation of oesteoclasts. Thus, CD8 cells might have a role in advanced 

stages of gout by prompting bone erosion in patients with tophi (S.-J. Lee et al., 

2011). 

Even though several markers of the adaptive immunity have been identified in 

gout, suggesting an active response of both humoral and cellular systems, their 

contribution to disease pathogenesis remains to be fully elucidated. Yet, these 

studies have highly contributed to building a clearer picture of the pathways 

involved in MSU crystals-induced inflammation. 

 

1.7.3 Mechanism of inflammation in gout 

The hallmark immune sign in gout is the synthesis of pro-inflammatory cytokines 

upon exposure of monocytes (macrophages) and surrounding synovial cells to 

urate crystals. These cells excrete interleukins IL-1β and IL-18, which amplify 

the inflammatory response by attracting neutrophils to the synovium (Kingsbury 

et al., 2011). The activation of the immune response involves the collective 

action of multiple pathways that activate different signals at both the 

transcriptional and post-translational level. 

The activation of the NLRP3 inflammasome requires two essential steps (Figure 

1.10 ). The first one consists of an increase in the expression of NLRP3 protein, 

mediated by TLR-MyD88 pathway (activated once the LRR domain of TLRs 

interacts with MSU crystals). The second step comprises the assembly of the 

inflammasome components NLRP3, ASC and pro-caspase-1. It has been 

identified that after macrophages phagocyte DAMPs, the assembly and 

subsequent activation of the inflammasome complex depends on three different 

signals: (1) presence of reactive oxygen species (ROS), (2) decrease in 
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potassium (K+) concentrations, and (3) synthesis of cathepsin B. (Jo et al., 

2016) 

Once MSU crystals are ingested, macrophages enter a stage of cellular stress 

characterised by an increase of ROS. These potentiate the dissociation of the 

antioxidant TRX (thioredoxin) and its inhibitor TXNIP (TRX-interacting protein) 

(Hwang et al., 2014). As soon as TXNIP is released, it interacts with NLRP3 

inflammasome priming its activation (Zhou, Tardivel, Thorens, Choi, & Tschopp, 

2009). In addition, intracellular urate crystals induce mitochondrial impairment, 

resulting in an abundant excretion of ROS that directly stimulate NLRP3 

inflammasome (Gurung, Lukens, & Kanneganti, 2015).  

Under normal conditions, macrophages present high concentrations of 

intracellular K+. However, it has been observed that DAMPs phagocytosis 

changes cell osmolality, decreasing potassium concentrations significantly. This 

might be in part due to an increased production of ATP by impaired 

mitochondria. ATP molecules activate the potassium membrane transporters 

P2X7 and Pannexin-1, which are responsible for potassium efflux from the cell. 

(Petrilli et al., 2007; Sutterwala et al., 2014) 

Finally, the third signal is mediated by lysosomal damage. Once ingested, MSU 

crystals accumulate inside lysosomes, causing their membrane disruption and 

excretion of enzymes with proteolytic activity, such as cathepsin B. This enzyme 

not only promotes cell death, but also serves as an additional signal for 

inflammasome activation. (Lima Jr et al., 2013) 

Although the exact mechanisms by which these intracellular changes interact 

or stimulate NLRP3 activation remain unclear, it has been observed that they 

create an optimal environment for its assembly (Tschopp & Schroder, 2010). 
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Figure 1.10 Assembly and activation of the inflammasome NLRP3. 

Adapted from (Jo et al., 2016) 

 

While NLRP3 inflammasome is activated, extracellular MSU crystals prompt 

TLR2 and TLR4 activities. As mentioned in section 1.4.1, DAMPs interact with 

the LRR domain of TLRs, initiating the recruitment of MyD88. This pathway 

induces the expression of NF-κβ, which upregulates the transcription of IL-1β 

and IL-18. Initially, these interleukins are excreted from the nucleus as their non-

activated forms (pro-IL-1β and pro-IL-18), but to be excreted from the cell, they 

need to be cleaved to their active forms. This is the stage when the NLRP3 

inflammasome is crucial, since it is in charge of synthesising caspase-1. 

Caspase-1 is the enzyme that cleaves pro-IL-1β and pro-IL-18 to the active 



Chapter 1. Introduction 

 

41 

 

cytokines IL-1β and IL-18. (N. Dalbeth & Haskard, 2005; Ghaemi-Oskouie & 

Shi, 2011; Kingsbury et al., 2011) 

Once pro-inflammatory cytokines are excreted from macrophages, they interact 

with other receptors (e.g. IL-1R) from surrounding cells of the synovium. These 

receptors, just as TLRs, when activated recruit MyD88, upregulating the 

expression of transcription factors and the synthesis of more cytokines and 

chemokines (Kingsbury et al., 2011; Xiao et al., 2015). This process amplifies 

the inflammatory response through the influx of neutrophils to the site of MSU 

crystals deposition and the activation of the adaptive response. Figure 1.11 

shows the mechanisms involved in gouty inflammation. 

On the other hand, once neutrophils ingest urate crystals, they form extracellular 

aggregates (also known as neutrophils extracellular traps (NETs)) that 

eventually lead to the resolution of the inflammatory response. NETs are highly 

compacted structures of engulfed crystals surrounded by a group of molecules 

(histones, DNA, anti-inflammatory proteins and enzymes) that dissolve MSU 

crystals and inactivate the synthesis of pro-inflammatory cytokines. (Schett et 

al., 2015; Schorn et al., 2012) 
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Figure 1.11 Molecular mechanisms of inflammation in gout. 

Adapted from (Kingsbury et al., 2011) 
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1.8 Genetic studies in hyperuricaemia and gout 

The understanding of the molecular mechanisms in gout has been facilitated by 

genetic studies that have identified relevant pathways and loci involved in the 

development of the disease. Among these studies are candidate gene 

association studies and genome wide association studies (GWAS), which have 

been essential to the research of genetics in complex diseases (Jeck, Siebold, 

& Sharpless, 2012). GWAS permits the investigation of genotype information of 

thousands of common variants (minor allele frequency –MAF >5%) across the 

entire genome and their association with a particular phenotype (Manolio, 

2010). 

A GWAS published in 2007 (S. Li et al., 2007), was the first to associate 

polymorphisms in SLC2A9 gene (P=1.84x10-16) with hyperuricemia. 

Interestingly, SLC2A9 had not been previously related to urate metabolism; 

however, subsequent GWAS confirmed its association with SU levels (P=2x10-

15, OR=1.89 [1.36,2.61]) (C. Wallace et al., 2008) and its role in urate transport 

(Vitart et al., 2008). 

Further GWAS also identified the polymorphisms rs2231142 (P = 9.0x10-20, β 

= 0.25 [0.03]) and rs1165205 (P = 5.6x10-10, β = -0.11 [0.02]), in ABCG2 and 

SLC17A3 genes respectively, to be associated to high levels of UA. This study 

also explored SNPs associations with gout, but only rs2231142 reached 

statistical significance (Dehghan et al., 2008). 

The first GWAS meta-analysis, comprised of  28,141 individuals, reported seven 

additional signals that influence SU concentrations: SLC17A1 (P=3.04x10-14, 

β=-0.06 [-0.078,0.459]), SLC16A9 (P=1.07x10-8, β=0.078 [0.051,0.105]), 

SLC22A11 (P=6.68x10-14, β=0.062 [0.046,0.078]), SLC22A12 (P=2.04x10-9, 

β=0.056 [0.074,0.038]), PDZK1 (P=2.68x10-9, β=-0.062 [-0.083,-0.042]), GCKR 
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(P=1.4x10-9, β=0.052 [0.035,0.068]) and LRRC16A (P=8.5x10-9, β=0.054 

[0.036,0.072]) (Kolz et al., 2009). These signals were later confirmed in other 

populations (Y. H. Lee & Song, 2012; Nakayama et al., 2013; A. Tin et al., 2011; 

J. Wang et al., 2012). 

The CHARGE (Cohorts for Heart and Aging Research in Genome 

Epidemiology) consortium found two new SNPs in INHBC (P=1.9x10-11, β=5.16 

[0.77]) and RREB1 (P=1.0x10-9, β=4.39 [0.72]) (Yang et al., 2010). These loci 

were replicated in a meta-analysis of 48 GWAS of serum urate levels and 14 

GWAS of gout, comprising 110,347 and 2,115 Caucasian individuals 

respectively (within the Global Urate Genetics Consortium) (Kottgen et al., 

2013). This meta-analysis revealed 18 novel susceptibility loci in addition to the 

12 already reported. Table 1.1 summarises association results for the novel 

variants for urate concentrations, gout results are not included as none of those 

novel loci showed genome-wide significance. 

Other GWAS have successfully identified four additional loci associated with 

gout in Japanese and Chinese populations: ALDH2 (P=1.7x10-18, OR=0.53 

[0.37,0.52]) (Masayuki Sakiyama, Matsuo, Nakaoka, et al., 2016), BCAS3 

(P=1.36x10-13, OR=0.79), RFX3 (P=1.48x10-10, OR=0.81) and KCNQ1 

(P=1.28x10-8, OR=0.82) (C. Li et al., 2015).  

In 2019, Tin et al published a trans-ancestry meta-analysis of GWAS for SU 

variation in a total of 457,690 individuals. This meta-analysis revealed 183 risk 

loci, of which 147 were novel. These loci were also tested for association with 

gout in a meta-analysis of 20 GWAS (n=13,179 gout cases). Fifty five variants 

had a significant association (P<2.7x10-4), with ABCG2 showing the greatest 

OR (2.04 [1.96-2.12]). Additionally, the 183 SU index SNPs were used to predict 

gout risk in an independent dataset using the UK Biobank (n=334,880 in total 
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and 4,908 gout cases), adding age and sex into the demographic model. The 

genetic model alone had an area under the receiving operator characteristic 

(AUROC) curve of 67%, compared to 80% for the demographics model, 

and84% for  the combined model. This study also analysed genetic correlation 

of SU levels with more than 700 complex diseases, showing that besides gout 

(r=0.92), several cardiometabolic traits, such as insulin resistance, 

dyslipidaemia and obesity, presented the highest correlation coefficients. 

Finally, Tin et al also reported that HNF4A regulates ABCG2 transcription in the 

kidney and that the functional variant rs1800961 in HNF4A lowers serum urate 

variation via an increased urate excretion mediated by ABCG2. (Adrienne Tin 

et al., 2019) 

Although GWAS have contributed to the identification of new genetic variants 

associated to both hyperuricemia and gout, only a minority of those SNPs have 

shown a clear biological implication in the development of the diseases. A 

limitation of GWAS is that the effect of the identified variants tends to be small, 

leaving much of the missing heritability unexplained. Moreover, due to linkage 

disequilibrium, GWAS findings cannot be certainly interpreted as causal 

(Manolio, 2010). 

Given that most genetic variants identified to date are located in regulatory 

regions, expression analysis of GWAS discovery sets might contribute to 

elucidate true causative variants and their functional effects (Tony R. Merriman, 

2015). 
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Table 1.1 Serum urate GWAS meta-analysis.  

Novel susceptibility loci reported by (Kottgen et al., 2013). 

Gene Variant P-value Beta SE 

TRIM46 rs11264341 6.2 × 10−19 -0.05 0.006 

INHBB rs17050272 1.6X10-10 0.035 0.006 

SFMBT1 rs6770152 2.6X10-16 -0.044 0.005 

TMEM171 rs17632159 3.5X10-11 -0.039 0.006 

VEGFA rs729761 8.0X10-16 -0.047 0.006 

BAZ1B rs1178977 1.2X10-12 0.047 0.007 

PRKAG2 rs10480300 4.1X10-9 0.035 0.006 

STC1 rs17786744 1.4X10-8 -0.029 0.005 

HNF4G rs2941484 4.4X10-17 0.044 0.005 

A1CF rs10821905 7.4X10-17 0.057 0.007 

ATXN2 rs653178 7.2X10-12 -0.035 0.005 

UBE2Q2 rs1394125 2.5X10-13 0.043 0.006 

IGF1R rs6598541 4.8x10-15 0.043 0.006 

NFAT5 rs7193778 8.2x10-10 -0.046 0.008 

MAF rs7188445 1.6x10-9 -0.032 0.005 

HLF rs7224610 5.4x10-17 -0.042 0.005 

ACVR1B-
ACVRL1 

rs7976059 1.9x10-9 0.032 0.005 

B3GNT4 rs7953704 2.6x10-8 -0.029 0.005 
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1.9 Rationale of the study 

Despite genetic studies that have contributed to understand the molecular 

mechanisms involved in the development of hyperuricemia and gout, the 

reasons underlying the progress from asymptomatic hyperuricemia with or 

without MSU crystal deposition to symptomatic gout remain unclear.  

This project aims to investigate whether the expression of genes involved in 

different inflammatory pathways known to be activated during gout flares (e.g. 

inflammasome and TLR) also associate with the transition from asymptomatic 

hyperuricemia with/without crystal deposition to gout. 

Additionally, to build on the work done by other investigators and following on 

from the release of serum urate data from UK Biobank, this study will for the 

first-time attempt to ascertain the genetic factors that influence the transition 

from hyperuricaemia to gout. This will be done using GWAS and polygenic risk 

score (PRS) approaches. This we anticipate will improve the understanding of 

why some people with hyperuricemia develop symptomatic gout while others 

do not and whether there is an influence of inflammatory gene expression or 

inflammatory gene variants in this transition.  
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1.10 Aims and objectives 

The overall purpose of this project is to examine genetic factors associated with 

the transition from hyperuricaemia to gout. 

The specific objectives are: 

a) To evaluate whether a differential expression of inflammasome and TLR 

genes is associated with SU levels and transition from asymptomatic 

hyperuricaemia to gout. 

b) To determine inflammasome and TLR gene expression profile during 

acute and intercritical gout. 

c) To generate a PRS model to distinguish gout cases from controls 

regardless of serum urate. 

d) To generate and validate a GWAS of asymptomatic hyperuricaemia vs 

gout. 

e) To generate a PRS model to distinguish gout cases from asymptomatic 

hyperuricaemia controls. 

 

The objectives will be met in two distinct studies. The first one involves wet-lab 

work to explore gene expression profiles and cytokine measurements in 

patients at different stages of gout pathogenesis, recruited at the Department of 

Academic Rheumatology (Chapter 2). The second study involves dry-lab work 

using phenotype and genotype data from the UK Biobank resource to generate 

a PRS model of gout vs. controls (Chapter 3), and to conduct association 

studies in gout cases vs. asymptomatic hyperuricaemia controls (Chapter 4). 
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2 Chapter 2. Gene and cytokine profiling in individuals 

with normouricaemia, asymptomatic hyperuricaemia 

and gout. 

2.1 Introduction 

Hyperuricaemia is the main precursor to gout. Even though environmental 

factors such as diet and lifestyle influence both serum urate level and gout risk, 

there is a genetic component influencing their development with an estimated 

heritability of 40-70% (Nicola Dalbeth et al., 2016; Nath et al., 2007). Several 

groups worldwide have conducted genetic studies to investigate the genes 

contributing to the development of hyperuricaemia and gout. For nearly a 

decade, genome wide association studies (GWAS) have been the key 

methodology used (Kawamura et al., 2019; Kottgen et al., 2013; C. Li et al., 

2015; H. Matsuo et al., 2016; Adrienne Tin et al., 2019; Voruganti et al., 2013). 

However, thus far the genes identified as risk loci, explain only 6-7% of serum 

urate (SU) variation, because genetic variants tend to exert only small effects 

that are not easily captured with GWAS (Dong et al., 2018). On the other hand, 

functional studies have also investigated in detail other processes associated 

to gout, based on the knowledge of the mechanisms involved in different stages 

of its development (C. J. Chen et al., 2006; Holzinger et al., 2014; Kanevets et 

al., 2009; Liu‐Bryan et al., 2005; Martin William, Walton, & Harper, 2008; 

McKinney et al., 2015).  

The progression of gout can be divided in four stages, as summarised in figure 

2.1. The first one is hyperuricaemia, traditionally defined as SU levels >6.8 

mg/dL (408 µmol/L) without evidence of monosodium urate (MSU) crystals 

deposits. Followed by the deposition of MSU crystals within joints without 

symptoms of gout (i.e. without any gout flares). The third is the deposition of 
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MSU crystals with recurrent episodes of acute inflammation (gout flares). The 

last stage is advanced gout, characterised by chronic arthritis, joint damage, 

and presence of tophi. (Nicola Dalbeth & Stamp, 2014) 

The factors governing the transition from hyperuricaemia to asymptomatic MSU 

crystal deposition, and from that state to symptomatic gout are poorly 

understood.  This is despite the fact that the causative mechanisms of 

hyperuricemia are well understood with several genetic variants that contribute 

to renal overload or renal under excretion of urate identified (T. R. Merriman & 

Dalbeth, 2011). It is also known that during a gout flare, the immune response 

to MSU crystals is specifically mediated by TLRs and the NLRP3 inflammasome 

(Liu-Bryan, 2010). Whether variations in these genes and their expression 

affects the transition from asymptomatic hyperuricaemia to gout is not known.  

Thanks to the improved knowledge of the immune mechanisms prompted by 

MSU crystals as a crucial step in the development of gout flare, several studies 

have explored them into more detail as a mean to address the existing gaps. 

Various groups have analysed the impact after MSU crystals stimuli on the 

expression of genes and proteins such as CASP-1, CCL2, CXCL1, IL-1β, IL-6, 

IL-8, IL-37, NLRP3, SOCS3, TNF-α, etc., that are involved in the inflammatory 

response. However, most of them have been conducted either in vitro, by 

extracting synoviocytes that are subsequently exposed to MSU crystals (Dang, 

Xu, Xie, & Zhou, 2018; Anna Scanu et al., 2010; Y. Yu et al., 2019), or in vivo 

using murine models of gout (L. Liu et al., 2016; A. Scanu et al., 2015; Y. Yu et 

al., 2019). Although, some other studies have investigated gene expression and 

cytokine profiles in synovial fluid or serum of controls and cases with acute and 

intercritical gout. (Alberts et al., 2019; Holzinger et al., 2014; Kienhorst et al., 

2015; Yang Liu et al., 2018), only two have examined cytokines and leukocyte 
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counts in individuals with asymptomatic deposition of MSU crystals. These 

studies reported that levels of IL-6 and IL-8 were higher in patients with 

asymptomatic hyperuricaemia (mean (SD) = 69.7 (73.5) pg/mL and 18.5 (25.7) 

pg/mL, respectively), compared to normouricaemic controls (mean (SD) = 28.2 

(17.6) pg/mL and 7.5 (6.1) pg/mL, respectively). Additionally, leukocyte counts 

were higher in patients with asymptomatic deposition of MSU crystals (median 

(IQR) = 200 (138-540) mm3) compared to controls (median (IQR) = 30 (10-53) 

mm3) (Andrés, Bernal, Arenas, & Pascual, 2019; Estevez-Garcia et al., 2018).  

Therefore, the aim of the current study was to analyse mRNA and cytokine 

concentration in different stages of pathogenesis of gout, i.e. normal serum 

urate without MSU crystal deposition, hyperuricaemia without MSU crystal 

deposition, hyperuricaemia with asymptomatic MSU crystal deposition, inter-

critical gout and gout flares. 
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Figure 2.1 Stages in the progression of gout.  
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2.2 Materials and Methods 

2.2.1 Sample source 

This research involved the analysis of gene expression and cytokine 

measurement for different sample sets, corresponding to three clinical studies 

conducted at the Department of Academic Rheumatology, Nottingham City 

Hospital, University of Nottingham. These studies were subjected to ethical 

approval from the University of Nottingham medical school or the NHS 

Research Ethics Committees. References 15/SC/0730, 15/EM/0316 and 

18/EM/0324.  

 

2.2.1.1 Sons of gout study (SOG) 

This study involved men whose father or mother had gout (Abhishek Abhishek 

et al., 2018). For recruitment, people with gout who participated in previous 

clinical research studies (and agreed to be contacted for future studies) at 

Nottingham University or attended the Nottingham NHS Treatment Centre were 

mailed with a study pack to post to their sons. Additionally, the study was 

advertised on Facebook and in one local newspaper. 

In total 1,435 people with gout were sent a study invitation pack to pass to their 

son(s). Interested individuals (249 sons >20 years of age) either returned a reply 

slip or contacted the research team in response to advertisements. They were 

asked to complete a screening questionnaire providing relevant clinical data to 

exclude those who could be classified as having gout based on the Mexico 

criteria (Peláez-Ballestas et al., 2010). Of the 249 who replied, 134 were 

contactable or willing to attend a research visit, and of these, 131 met the entry 

criteria and were considered eligible for a study visit. Demographic information, 

lifestyle data and clinical history (including comorbidities and drug prescriptions) 
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were recorded. Blood and urine samples were also collected during the study 

visit.  

As the objective of the sons of gout study was to estimate the prevalence of 

asymptomatic MSU crystal deposition, participants were assessed by 

musculoskeletal ultrasonography of target sites (blind to SU levels) to look for 

double contour sign, intra-articular tophi or aggregates in the joints and tendons 

(Figure 2.2). 

 

 

Figure 2.2 Ultrasonographic assessment.  

The following joints were assessed by ultrasound: (i) triceps tendon insertion, (ii) second 
metacarpophalangeal joints, (iii) femoral condyles, (iv) wrist triangular fibrocartilages, (v) talar 

domes, and (vi) first metatarsophalangeal joints. (Abhishek Abhishek et al., 2018) 
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2.2.1.2 Immune response in acute gout:  REACT study 

This study comprised patients with gout (diagnosis confirmed by arthrocentesis, 

ultrasound, plain radiography showing erosive tophaceous gout or clinical 

assessment by a rheumatologist for tophi) who presented with a gout flare of no 

more than seven days’ duration before the baseline visit. Subjects were 

recruited by three different means: (1) From among inpatients with gout flare 

admitted to Nottingham University Hospitals NHS Trust. (2) Patients with gout 

seen at the Nottingham University Hospitals NHS Trust or at the Circle 

Nottingham NHS Treatment Centre were requested to contact the research 

team when they developed a gout flare. (3) The study was also advertised with 

posters in doctor’s offices in Department of Rheumatology Nottingham 

University Hospitals NHS Trust. 

Patients willing to participate were contacted by a member of the research team, 

who screened them for eligibility. Twenty-one patients met the entry criteria and 

underwent a baseline visit, during which demographic data, clinical history and 

gout-specific information were recorded. Joint assessment, blood and urine 

sample collection were also performed. Out of the 21 patients recruited, 19 

(90.5%) agreed to give samples. Serum samples were used to measure 

cytokine levels, and three additional tubes (serum separator, DNA isolation and 

RNA stabiliser) were collected for further analyses. 

Participants were followed up at weeks 6 and 12 after the baseline visit, where 

they were asked to update information about flares’ symptoms and/or treatment, 

and provide blood and urine samples.  
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2.2.1.3 Switch off gout attack study (SOG-AS) 

This randomised placebo controlled study was designed to determine whether 

Omega-3 fatty acids prevent gout flares in patients starting on urate lowering 

treatment (ULT). Participants were recruited by three different means: (1) Via 

primary care, where GP surgeries acted as participant identification sites. (2) 

Via secondary care, where hospitals acted as participant identification sites. (3) 

The study was also advertised with posters in clinics, pharmacies, newspapers 

or on social media.  

Individuals willing to participate were invited to a screening visit. Briefly, 

participants were eligible if they: (1) met the American College of Rheumatology 

(ACR)/European League Against Rheumatism (EULAR) classification criteria 

for gout (Neogi et al., 2015), (2) were willing to commence ULT, (3) had SU 

levels ≥360 µmol/L, and (4) presented at least one flare in the previous twelve 

months. Demographic data, clinical history and gout related data were collected 

from participants who met the entry criteria. In total, 56 participants agreed to 

provide blood samples for cytokines measurements, and for genetic studies 

(optional). Participants were randomly prescribed an Omega-3 or a placebo, 

they were asked to start on allopurinol or febuxostat until the 5th week. Dose up-

titration visits were arranged every 2-3 weeks until the participants reached the 

treatment target of SU ≤300 µmol/L. Number of flares, changes in medication 

and side effects related information was collected during all visits; additionally, 

blood samples for cytokines, and for genetic studies (if agreed by the 

participant) were also collected. Only data from the baseline samples are 

included in this study. 
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2.2.2 Sample collection 

Blood samples for RNA extraction were collected in PAXgene® Blood RNA 

Tubes according to manufacturer’s instructions. These tubes contain an RNA 

stabilizer reagent to improve RNA quality and quantity. Samples were stored at 

-80°C in Academic Rheumatology Unit facilities and transferred later to Human 

Genetics Laboratory facilities (Life Sciences Building, University Park) for 

further use. The samples were transferred on dry ice. 

Samples for cytokine measurements were collected in serum separator tubes. 

These were centrifuged and serum was aliquoted into 2.0 mL tubes (two per 

sample). Serum samples were stored at -80°C in Academic Rheumatology Unit 

facilities and shipped later to Affinity Biomarker Labs facilities for cytokine 

measurements. 

 

2.2.3 RNA extraction 

Total RNA was purified using QIAGEN’s PAXgene® Blood RNA kit following the 

manual RNA extraction protocol. This protocol initiated with an incubation step 

of PAXgene® Blood RNA tubes at room temperature for two hours. Tubes were 

then centrifuged for 15 minutes at 5000 x g to collect leukocytes pellets, which 

were subsequently resuspended in 4.0 mL RNase-free water, and centrifuged 

again for 15 minutes at 5000 x g. The pellet was resuspended in 350 µL BR1 

buffer and transferred into a 1.5 mL microcentrifuge tube; 300 µL of BR2 buffer 

and 40 µL proteinase K were added to allow the lysis of cellular membranes 

and digestion of proteins respectively. This sample was mixed and incubated 

for 10 minutes at 55°C using a thermoshaker at 1400 rpm. The lysate was 

transferred to a spin column and centrifuged for 3 minutes at 18000 x g. The 

supernatant was then transferred to a 1.5 mL microcentrifuge tube without 
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disturbing the pellet, and 350 µL ethanol were added in order to optimise nucleic 

acids’ binding properties. This solution was passed through a selective silica 

membrane, to which nucleic acids bind, by centrifuging for 1 minute at 18000 x 

g. After a wash step with BR3 buffer, the membrane was treated with 80 µL 

DNase I incubation mix (10 µL DNase I + 70 µL DNA digestion buffer) for 15 

minutes at room temperature. The spin column was then washed with 350 µL 

BR3 buffer by centrifuging for 1 minute at 18000 x g. Two additional wash steps 

using 500 µL BR4 buffer were conducted, centrifuging for 1 minute and 3 

minutes during each step at 18000 x g. Finally, RNA was eluted in a final volume 

of 40 µL BR5 elution buffer, and incubated at 65°C for 5 minutes. A 5.0 µL 

aliquot was taken from each RNA sample for further quality control analysis. All 

RNA samples were stored at -80°C. 

 

2.2.4 RNA quality control 

All RNA samples were quantified on the Agilent BioAnalyser 2200 TapeStation. 

RNA integrity and DV200 values were also examined. For this protocol, 1.0 µL of 

RNA (or RNA ScreenTape ladder) mixed with 5.0 µL ScreenTape buffer were 

used. Samples were heated at 72°C for 3 minutes and placed on ice for 2 

minutes. After centrifuging, samples were loaded into the BioAnalyser with an 

RNA ScreenTape. The TapeStation consists of a simplified electrophoresis that 

outputs an electropherogram and gel-like figure, which provides a RINe score 

(RNA integrity number equivalent) as a quantitative measure of RNA quality. 

Samples are required to have a RINe score ≥6.0 to be considered acceptable 

for cDNA synthesis. Furthermore, DV200 values were also calculated from the 

2200 TapeStation controller. DV200 values give a more sensitive measure of 

RNA quality for gene expression analyses, by considering the mean RNA 
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fragment size. Values represent the percentage of RNA fragments greater than 

200 nucleotides. 

Samples that did not have a RINe score greater than 6.0, or a DV200 value above 

70% were not considered for cDNA synthesis. 

 

2.2.5 cDNA synthesis 

Complementary DNA (cDNA) synthesis was performed using QIAGEN RT2 First 

Strand Kit. Before the reverse transcription reaction, this protocol included an 

additional step to remove residual genomic DNA (gDNA). If primers for gene 

expression analyses are not designed across exon-exon junctions, they amplify 

gDNA, therefore its elimination is crucial to avoid false positive results. 

gDNA elimination started with 500 ng (set as the starting amount for all samples) 

of RNA, mixed with 2.0 µL reaction buffer GE and RNase-free water (if 

necessary) to get a final volume of 10 µL. The reaction mix was incubated at 

42°C for 5 minutes and placed on ice for at least 1 minute. The total volume (10 

µL) of gDNA elimination mix was then added to the reverse transcription mix, 

which consisted of 4.0 µL 5x BC3 buffer, 3.0 µL RNase-free water, 2.0 µL RE3 

reverse transcriptase mix, and 1.0 µL external P2 control (a built-in external 

control that can be detected by an assay in the QC PCR array to test for possible 

inhibition during the reverse transcription reaction). The final 20 µL mix was then 

incubated for 15 minutes at 42°C, and 5 minutes at 95°C. Finally, 91 µL RNase-

free water were added to each reaction, mixed gently and stored at -80°C. A 7.0 

µL aliquot was taken from each cDNA sample for further viability analysis. 
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2.2.6 cDNA viability 

Before gene expression analysis, RNA and cDNA quality was verified using the 

QIAGEN RT2 RNA QC PCR arrays. These plates allow the simultaneous 

analysis of 12 samples to assess the following parameters: 

RNA integrity: The arrays include primers to amplify two differentially expressed 

housekeeping genes (ACTB and HPRT1). This gives an idea of the threshold 

cycle (CT) ranges expected for the expression array. 

gDNA contamination: two assays are included to evaluate this parameter. One 

uses total RNA as starting material to amplify a housekeeping gene (GDC), 

while the other includes a set of primers specifically designed to amplify non-

transcribed DNA (NRT). 

Reverse transcription inhibition (RCT): to test for possible reverse transcription 

inhibitors generated during RNA purification, one well is designed to amplify the 

external control (P2 control) supplied on the RT2 first strand kit. 

PCR inhibition (PPC): the array contains two wells (per sample) with a plasmid 

template control and primers to amplify it. cDNA is added into one of the wells, 

and RNase-free water into the remaining well.  

DNA contamination: A non-template control (NTC) is also included to detect the 

introduction of any DNA contamination during the array setup. 

The experimental setup involved preparation of three PCR component mixes, 

which were transferred into the plate according to the manufacturer’s layout 

(Figure 2.3). Briefly, the first mix included 6.0 µL cDNA, 75 µL 2x RT2 SYBR 

Green mastermix, and 69 µL RNase-free water. A volume of 25 µL mix 1 was 

dispensed to the first five rows of the array (A-E). The second mix added 1.0 µL 

total RNA (diluted 1:100), 13 µL 2x RT2 SYBR Green mastermix, and 13 µL 
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RNase-free water. 25 µL mix 2 were transferred to row F. The third mix 

contained 30 µL 2x RT2 SYBR Green mastermix, and 30 µL RNase-free water. 

25 µL mix 3 were transferred to rows G and H as shown in figure 2.3. Finally, 

the array was sealed with 8-cap strips, mixed for 1 minute using a 96-well plate 

shaker, and centrifuged for 1 minute using a microplate centrifuge. 

As RNA quality was carefully confirmed on the BioAnalyser Tape Station, only 

48 samples were randomly selected to be analysed on the RT2 RNA QC PCR 

arrays. Amplification was performed in the Agilent AriaMx Thermocycler, under 

the following conditions: 1 cycle for 10 minutes at 95°C, 40 cycles: 15 seconds 

at 95°C, 1 minute at 60°C (+data collection), and a final dissociation cycle (30 

seconds at 95°C, 30 seconds at 60°C, and 30 seconds at 95°C with a resolution 

of 0.5 °C/sec).  

 

 

Figure 2.3 QIAGEN RT2 RNA QC PCR array layout. 

 

Threshold cycles (CT) were calculated for each well by defining a threshold 

above the background signal but in the lower half of the linear phase. This 

threshold was consistent across all RT2 RNA QC PCR arrays. Additionally, PCR 

specificity was analysed through the inspection of melting curves for each well, 
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which must have shown a single peak at temperatures greater than 80ºC. CT 

values were exported to a spreadsheet, and those showing values greater than 

35 were reported as negative calls. QC parameters were analysed as follows: 

Housekeeping gene expression: Both ACTB and HPRT1 housekeeping genes 

included in the array not only provided an estimate of CT values expected for 

the expression array, but also guarantied RNA integrity. Therefore, CT values 

lower than 35 were expected for all samples.  

Reverse transcription inhibition: If inhibitors were present during the reverse 

transcription reaction, they would affect the amplification of the external control 

into the cDNA synthesis mix. Therefore, a ΔCT was calculated by subtracting 

the sample CT minus the control CT (∆𝐶𝑇 = 𝐶𝑇
𝑅𝑇𝐶 − 𝐶𝑇

𝑃𝑃𝐶 (𝑅𝑁𝑎𝑠𝑒−𝑓𝑟𝑒𝑒 𝑤𝑎𝑡𝑒𝑟)
). A 

ΔCT greater than 5 was indicative of apparent inhibition. 

PCR inhibition: Similarly to the previous control, if impurities were present during 

the PCR, the sample CT would be different from the RNase-free water well CT. 

Therefore, a ΔCT (∆𝐶𝑇 = 𝐶𝑇
𝑃𝑃𝐶(𝑐𝐷𝑁𝐴)

− 𝐶𝑇
𝑃𝑃𝐶 (𝑅𝑁𝑎𝑠𝑒−𝑓𝑟𝑒𝑒 𝑤𝑎𝑡𝑒𝑟)

) greater than 3 

indicated inhibition during the amplification reaction.  

gDNA contamination: This parameter required observing 𝐶𝑇
𝑁𝑅𝑇 and 𝐶𝑇

𝐺𝐷𝐶, if the 

first one showed a value ≥ 35, then no gDNA contamination was present. 

However, if the value was less than 35, but 𝐶𝑇
𝐺𝐷𝐶 was greater than 35, the 

remaining gDNA would not affect the gene expression results.  

General contamination: To guarantee no general DNA contamination was 

introduced during the plate setup, 𝐶𝑇
𝑁𝑇𝐶 values should have been ≥ 35.  
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2.2.7 Gene expression profiling 

Gene expression was analysed using a customised 96-well Human RT2 Profiler 

PCR Array. Each plate is comprised of 86 inflammasome and TLRs associated 

genes, 3 housekeeping genes (ACTB, B2M, and RPLP0), 1 control to test gDNA 

contamination (GDC), 3 controls to assess reverse transcription inhibition 

(RTC), and 3 positive PCR controls (PPC) (Figure 2.4). This array is based on 

the QIAGEN Human Inflammasomes RT2 Profiler PCR Array. However, its 

content was modified to include the following genes: CARD8, CD14, DAPK1, 

MAP3K11, NEK7, TLR2, and TLR4. These genes were selected because they 

either play key roles in both the regulation of NLRP3 inflammasome and the 

immune mechanisms in gout, or they have been identified in gout GWAS and 

candidate gene association studies (Y. He, Zeng, Yang, Motro, & Nunez, 2016; 

H. Matsuo et al., 2016; McKinney et al., 2015; Razmara et al., 2002). 

This customised array was designed to run only one sample per plate. 

Therefore, only one PCR mix was needed for each plate. The mix included 102 

µL cDNA, 1350 µL 2x RT2 SYBR Green mastermix, and 1248 µL RNase-free 

water. The PCR mix was transferred to a loading reservoir, and 25 µL were 

dispensed into each well of the array using an electronic multichannel pipette. 

The plate was sealed with 8-cap strips, mixed for 1 minute, and centrifuged for 

1 minute. PCR was performed in the Agilent AriaMx thermocylcer under the 

following conditions: 1 cycle for 10 minutes at 95°C, 40 cycles: 15 seconds at 

95°C, 1 minute at 60°C (+data collection), and a final dissociation cycle (30 

seconds at 95°C, 30 seconds at 60°C, and 30 seconds at 95°C with a resolution 

of 0.5 °C/sec).  

A threshold above the background signal but in the lower half of the linear phase 

was defined, making sure it remained consistent across all RT2 Profiler PCR 
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arrays. Specificity for all wells was assessed by verifying a single peak 

appearing in the melting curves. CT values were calculated for each well and 

exported to a spreadsheet. A CT value of 35 was defined as the cut-off.  

Quality control was thoroughly assessed per plate; this involved the calculation 

of the average CT values for all the controls. A value less than 5 in the difference 

of the average CT
RTC minus the average CT

PPC indicated no reverse transcription 

inhibition. The average CT
PPC should have not varied by more than 2 cycles to 

guarantee the absence of PCR inhibitors. Finally, CT
GDC values greater than 35 

indicated the absence of gDNA contamination. Only the samples that met these 

quality control criteria were considered for relative expression analyses. 
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Figure 2.4 QIAGEN Customised 96-well Human RT2 Profiler PCR Array layout

1 2 3 4 5 6 7 8 9 10 11 12

A AIM2 BCL2 BCL2L1 BIRC2 BIRC3 CARD8 CASP1 CASP5 CASP8 CCL2 CCL5 CCL7

B CD14 CD40LG CFLAR CHUK CIITA CTSB CXCL1 CXCL2 DAPK1 FADD HSP90AA1 HSP90AB1

C HSP90B1 IFNB1 IFNG IKBKB IKBKG IL12A IL12B IL18 IL1B IL6 IRAK1 IRF1

D IRF2 MAP3K7 MAP3K11 MAPK1 MAPK11 MAPK12 MAPK13 MAPK3 MAPK8 MAPK9 MEFV MYD88

E NAIP NEK7 NFKB1 NFKBIA NFKBIB NLRC4 NLRC5 NLRP1 NLRP12 NLRP3 NLRP4 NLRP5

F NLRP6 NLRX1 NOD1 NOD2 P2RX7 PANX1 PEA15 PSTPIP1 PTGS2 PYCARD PYDC1 MOK

G RELA RIPK2 SUGT1 TAB1 TAB2 TIRAP TLR2 TLR4 TNF TNFSF14 TNFSF4 TRAF6

H TXNIP XIAP ACTB B2M RPLP0 HGDC RTC RTC RTC PPC PPC PPC
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2.2.8 Relative expression analysis 

The ΔΔCT method (Livak & Schmittgen, 2001) was used to calculate fold changes 

for each gene. Data was normalised to RPLP0 housekeeping gene, which showed 

less variation among all samples than the other two housekeeping genes. 

First, the ΔΔCT method involves the calculation of the difference between the CT 

values of the gene of interest (GOI) and the CT of the housekeeping gene (RPLP0). 

∆𝐶𝑇 = 𝐶𝑇
𝐺𝑂𝐼 − 𝐶𝑇

𝑅𝑃𝐿𝑃0 

Then, the difference in the average ΔCT values of each gene (biological replicates) 

between groups is calculated. 

∆∆𝐶𝑇 = ∆𝐶𝑇
𝐺𝑟𝑜𝑢𝑝 2

− ∆𝐶𝑇
𝐺𝑟𝑜𝑢𝑝 1

 

(group 2 is the experimental set and group 1 is the control set) 

Finally, fold changes are calculated as 2(−∆∆𝐶𝑇). A fold change greater than 1 is 

indicative of an upregulation, while values between 0 and 1 indicate 

downregulation. 

 

2.2.9 Cytokine measurement 

The cytokines that were selected for quantitation were: GRO-α, hsCRP, IL-1β, IL-

18, IL-6, IL-8, IP-10, MCP-1, TNF-α, and VEGF-α. Cytokines were selected if their 

RNA levels showed a differential expression, or based on their importance in the 

MSU crystal induced inflammatory response. 

A total of 244 serum samples were shipped to Affinity Biomarkers Labs facilities, 

where biomarker analyses were performed. Cytokines were measured using two 
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different platforms: Latex agglutination for hsCRP, and Meso Scale Discovery 

(MSD) U-Plex Array for GRO-α, IL-1β, IL-18, IL-6, IL-8, IP-10, MCP-1, TNF-α, and 

VEGF-α. A brief description of each method is outlined below. 

Latex agglutination: this method was conducted using the CardioPhase® hsCRP 

kit, and analysed on the ADVIA Clinical Chemistry System. This semi-quantitative 

method employed latex particles coated with anti-human CRP antibody, that when 

mixed with serum containing CRP, agglutinated and caused changes in the 

suspension’s turbidity. This turbidity was measured at 571 nm, and compared to 

the standard curve values to determine CRP concentration. 

MSD U-Plex Array: the principle of this assay is similar to the sandwich ELISA, but 

it allows multiplex analyses by using biotinylated capture antibodies (specific to 

each biomarker), which are coupled to U-plex linkers. These linkers self-assembled 

onto exclusive sites on the plate, and serum samples were then added. After the 

antigen bound to the capture antibody, a second antibody (conjugated with 

electrochemiluminiscent labels) was added. The plate was finally analysed in an 

MSD instrument, which applies voltage to the plate electrodes, causing light 

emission from the labels. Each biomarker’s concentration was measured based on 

the light intensity. 

 

2.2.10  Statistical analysis 

Samples from SOG and REACT studies were used for both gene expression 

analysis and cytokine measurements. Additionally, samples from SOG-AS study 

were also used for cytokine measurements. Since the number of samples for RNA 

extraction and serum collection were different for all studies, due to either lack of 
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consent of the patients to perform genetic studies or failure of quality control 

parameters for gene expression profiling, the number of participants for gene 

expression and cytokine measurements varied. Therefore, the demographic data 

for each study are shown for each analysis in the corresponding results section. 

The mean ± standard deviation (SD), and number (n) and  proportion (%) were 

used to describe demographic and comorbidity data respectively. Body mass index 

(BMI) was calculated from weight and height, measured during baseline visit as 

weight/height2 [kg/m2]. One-way Analysis of Variance (ANOVA) and chi-square test 

were used to compare continuous ad categorical data, respectively. 

All statistical analyses were performed using SPSS® Statistics version 24. Graphs 

were produced using GraphPad Prism version 8. 

 

2.2.10.1 Gene expression Statistics 

Relative expression (ΔCT) for SOG study was compared among the following 

groups: (1) normal SU levels (<360 µmol/L) without MSU crystal deposits; (2) high 

SU (≥360 µmol/L) without MSU crystal deposits; and (3) high SU (≥360 µmol/L) 

with MSU crystal deposits. The Kruskal-Wallis H Test with Bonferroni correction for 

pairwise comparisons was used to determine statistical significance. Although 

hyperuricaemia is usually defined as SU >406 µmol/L (6.8 mg/dL), this is the 

concentration at which urate crystallises in vitro at physiological conditions. 

However, a threshold of 360 µmol/L (6.0 mg/dL) was chosen, given its association 

with incident gout (Nicola Dalbeth et al., 2018). 
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Relative expression between the baseline visit and the follow-up visit of REACT 

study, was compared using the Wilcoxon signed-rank test. 

P values were corrected for multiple testing using a false discovery rate (FDR) of 

5%. Adjusted p values (PFDR) less than 0.05 were considered significant.  

 

2.2.10.2 Cytokine measurement Statistics 

Raw data for all cytokine measurements were verified to replace values marked as 

out of the detection limit to a value below the cut-off.  

Cytokine levels were compared for REACT groups using the Friedman test, 

adjusted by Bonferroni correction for pairwise comparison. Additionally, cytokine 

levels for the three groups from SOG study, the active flare group from REACT 

study, and intercritical gout group from SOG-AS study were compared using the 

Kruskal-Wallis H test with Bonferroni correction for pairwise comparisons. P values 

were adjusted for multiple testing using a 5% FDR, and adjusted p values less than 

0.05 were considered significant. 

 

2.2.10.3 Sample size and power estimates 

Calculating power estimates and sample sizes for gene expression analyses is 

challenging, due to the number of genes per array and number of groups under 

study. Wei et al propose a procedure to estimate power and sample size for gene 

expression studies following a gene-by-gene basis to determine the pooled 

standard deviation among groups, for pairwise comparisons (Wei, Li, & Bumgarner, 



Chapter 2. Gene and Cytokine profiling 

 

70 

 

2004).     The R function to determine the required sample size to detect a 2-fold 

change with an 80% power is:   

power.t.test (n=x, delta=1, sd=0.81, sig.level = 0.001, power=0.8, type = 

"two.sample", alternative = "two.sided")  

Where: delta=1 represents a 2-fold change in expression level between the groups 

under study and the control group; sd= the 75th percentile of the pooled standard 

deviation; sig.level= p value <0.001 to account for multiple testing; power= 80%. 

Solving for this function, with a p-value of 0.001 and 80% power, at least 26 

samples per group are required to detect a 2-fold change in the 75% least variable 

genes. 

 

2.3 Results 

2.3.1 Gene expression profiling in individuals with normouricaemia, 

hyperuricaemia without MSU crystal deposition, and MSU crystal 

deposition without gout 

2.3.1.1 SOG study: Sample processing and demographic characteristics 

In total, 131 participants met the entry criteria and underwent a study visit. Of these, 

113 gave consent for collecting blood samples for genetic analysis. Demographic 

characteristics and comorbidities of the 113 participants included in this study are 

summarised in Table 2.1. Participants were classified according to SU levels and 

presence of MSU crystals deposits. In total, 33 participants had normal SU levels 

(<360 µmol/L); 60 had high SU (≥360 µmol/L) without MSU crystal deposits; and 

20 had high SU (≥360 µmol/L) and presence of MSU crystal deposits. The mean 

(SD) age, BMI, and SU were 45.7 (10.9) years, 27.2 (4.8) kg/m2, and 391.2 (67.8) 

µmol/L respectively. The age and BMI were comparable among the three groups. 
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The prevalence of hypertension in this population was 9.7%, while diabetes and 

hyperlipidaemia had a prevalence of 1.8% and 6.2% respectively. 

Total RNA was extracted, with all RNA samples passing the quality control 

parameters for cDNA synthesis. A total of 48 RNA and cDNA samples were 

randomly selected to assess their viability prior to gene expression profiling. All 48 

samples passed the quality control parameters of the QIAGEN RT2 RNA QC PCR 

arrays. However, after analysing the internal controls included in the customised 

Human RT2 Profiler PCR Arrays, 21 samples did not meet either the reverse 

transcription or the PCR efficiency controls. Table 2.1 shows demographics of 

included/excluded cases. 
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Table 2.1 Demographic characteristics and comorbidities of the Sons of Gout Study participants. 

  Total SU<360µmol/L SU≥360µmol/L 

SU≥360µmol/L               
+                                   

MSU crystal 
deposits 

 

  n=113 
Included 
(n=31) 

Excluded* 
(n=2) 

Included 
(n=44) 

Excluded* 
(n=16) 

Included 
(n=17) 

Excluded* 
(n=3) 

Age, years, mean (SD) 45.7 ± 10.9 48.1 ± 12.4 48.5 ± 2.1 44.3 ±  10.1 43.12 ± 12.2 47.2 ± 9.2 45.0 ± 12.8 

BMI, kg/m2, mean (SD)  27.2 ± 4.8 26.5 ± 6.1  26.2 ± 5.7 27.5 ±  4.1 28.1 ± 5.4 27.1 ± 3.3  26.8 ± 2.6 

SU, µmol/L, mean (SD) 391.2 ± 67.8 312.9 ± 37.3 273.5 ± 78.5 429.4 ± 44.7 414.9 ± 36.9 428.4 ± 49.1 408.5 ± 27.2 

Comorbidities, n (%)        

Hypertension 11 (9.7) 6 (19.4) 0 1 (2.3) 4 (25.0) 0 0 

Hyperlipidaemia 7 (6.2) 3 (9.7) 0 2 (4.5) 1 (6.3) 1 (5.8) 0 

Diabetes 2 (1.8) 1 (3.2) 0 0 1 (6.3) 0 0 

  SU: Serum urate; BMI: Body mass index; MSU: Monosodium urate. *Cases were excluded 
if they did not meet the reverse transcription or the PCR efficiency QC. 
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2.3.1.2 SOG study: Gene expression profiling 

To determine whether there was a differential expression of inflammasome and 

TLRs associated genes among the three study groups, real-time RT-PCR was 

performed using a customised 96-well Human RT2 Profiler PCR Array. A 

fluorescence threshold of 0.3 was defined for all arrays, and CT values were 

calculated for each well. Amplification data was normalised to RPLP0 

housekeeping gene, and relative expression among groups was compared using 

the Kruskal-Wallis H test with Bonferroni post-hoc test. After correcting for multiple 

testing using a 5% FDR, 25 genes had an adjusted P value <0.05. However, six 

genes (CCL2, CCL7, DAPK1, IFNG, IL12B, IL6, MAPK11, NLRP4, and NLRP5) 

had a threshold cycle relatively high (>33.5) in all groups, meaning that the 

expression level in PMBCs was low. Therefore, for this study they were not 

considered significant since a greater sample size is recommended to validate 

results. From the remaining 19 genes, only 10 (BIRC2, CD40LG, CXCL1, 1L-1β, 

MEFV, NLRP12, PANX1, TNFSF14, TXNIP, and XIAP) had a fold change ≥1.5 for 

at least one of the hyperuricaemia groups compared to the normouricaemia group 

(Figure 2.5). IL-1β had the greatest fold changes for both SU ≥360 µmol/L and SU 

≥360 µmol/L + MSU crystals groups, compared to the control group (2.27 and 3.79, 

respectively), followed by MEFV (1.79 and 3.25, respectively) and CXCL1 (1.46 

and 2.90, respectively). Table 2.2 summarises the fold-changes for each gene and 

their Kruskal-Wallis H test p values. 
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Table 2.2 Fold changes in gene expression for SU ≥360 µmol/L and SU ≥360 µmol/L + MSU crystals, 

compared to SU <360 µmol/L 

  
SU ≥360 µmol/L 

SU ≥360 µmol/L           
+ MSU crystals   

Gene Fold-change Fold-change Adj. p value* 

BIRC2 1.16 1.86 0.010 

CD40LG 1.29 1.55 0.039 

CXCL1 1.34 2.75 0.011 

IL-1β 2.10 3.58 0.031 

MEFV 1.67 3.10 0.011 

NLRP12 1.27 1.82 0.036 

PANX1 0.91 2.20 2.753x10-05 

TNFSF14 1.00 1.90 0.010 

TXNIP 1.15 1.79 0.024 

XIAP 1.00 1.79 0.001 
Relative expression was compared using the Kruskal-Wallis H test; and correction for 
multiple testing was conducted using a 5% FDR. *5% FDR adjusted p value. 
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Figure 2.5 SOG: Scatter plot of the log base 10 (2-ΔCT) of each gene of the Human RT2 Profiler PCR Array.  

The middle line indicates a fold change of 1.0, and upper and bottom lines indicate up and down regulation respectively. Yellow dots represent 

upregulated genes with a fold change >1.5. A) SU ≥360 µmol/L vs SU <360 µmol/L. B) SU ≥360 µmol/L +MSU crystals vs SU <360 µmol/L.   
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Pairwise comparisons of the relative expression (ΔCT) of the ten genes that 

remained significant after correcting for multiple testing are shown in figure 2.6. All 

the genes showed a significant upregulation in the SU ≥360 µmol/L + MSU crystals 

deposits group compared to the SU <360µmol/L group. While only BIRC2, CXCL1, 

PANX1, TNFSF14, TXNIP and XIAP showed a significant upregulation between 

the SU ≥360 µmol/L + MSU crystals deposits group compared to the SU 

≥360µmol/L group. None of the genes showed a significant difference between the 

SU ≥360µmol/L and SU <360µmol/L groups. 
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Figure 2.6 SOG: Box-plot of relative expression comparison of the eleven genes that showed a significant difference among all groups.  

The Kruskal-Wallis H test was used to determine significance with Bonferroni post-hoc for pairwise comparisons. *padj <0.05; ** padj <0.005; ***padj 
<0.0001. SU, serum urate; MSU, monosodium urate 
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2.3.2 Gene expression profiling in patients with acute and intercritical gout 

2.3.2.1 REACT study: Sample processing and demographic characteristics 

A total of 21 participants met the entry criteria, and 19 gave consent for blood 

sample. However, only 16 provided blood during at least the baseline and one of 

the follow-up visits. In total, 51 blood samples were collected, from which total RNA 

was extracted. Quality control was analysed and 47 RNA samples met the 

parameters to undergo the cDNA synthesis.  

Demographic characteristics and clinical information of the 16 participants whose 

samples were available for at least two time points, are summarised in Table 2.3. 

The mean (SD) age, BMI, and SU were 65.1 (14.1) years, 30.6 (4.7) kg/m2, and 

392.9 (113.6) µmol/L respectively. Gout’s specific information was recorded, with 

the mean (SD) age of onset of 54.4 (16.8) years, and 3.7 (5.2) flares during the 

previous 12 months. The prevalence of people on allopurinol and febuxostat was 

18.8% and 6.3% respectively. 
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Table 2.3 Demographic characteristics and clinical data of the REACT study participants 

 Total 

  n=16 

Gender, male, n (%) 13 (81.25) 

Age, years, mean (SD) 65.1 (14.1) 

BMI, kg/m2, mean (SD)  30.6 (4.6) 
SU, µmol/L, mean (SD) 392.9 (113.6) 

No. Flares, mean (SD) 3.7 (5.2) 

Gout’s age of onset, years, mean (SD) 54.4 (16.8) 

Proportion on ULT, n (%)  

Allopurinol 3 (18.8) 

Febuxostat 1 (6.3) 

Comorbidities, n (%)  

Hypertension 9 (56.3) 

Hyperlipidaemia 5 (31.3) 

Diabetes 4 (25.0) 

Heart attack 5 (31.3) 

BMI: Body mass index; SU: Serum urate; ULT: Urate lowering treatment. 
 

 

2.3.2.2 REACT study: Gene expression profiling 

Although participants from the REACT study attended three visits: one during the 

gout flare, one at week 6, and one at week 12 after the baseline visit, only 11 

individuals provided blood for RNA extraction during all the study visits. Moreover, 

a preliminary statistical analysis using Friedman test to compare repeated 

measures showed that there was no significant difference in any of the 86 genes 

between week 6 and week 12. Therefore, in order to increase the sample size, the 

intercritical gout stage was merged into one group by using the amplification data 

from week 12 if data from week 6 were missing. Thus, relative expression among 

groups was determined using the Wilcoxon signed-rank test, with a 5% FDR to 

correct for multiple testing. A fluorescence threshold of 0.3 was set for all the 
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expression arrays, and the amplification data was normalised to RPLP0 

housekeeping gene.  

Out of the 86 genes under study, six (CFLAR, NAIP, NFKBIA, NLRC4, NLRP6, and 

TLR2) had a fold-change < 0.66 (corresponding to a fold-regulation ≤ -1.5) for the 

intercritical gout group compared to the active flare group, and a p value <0.05 

(Figure 2.7 and Table 2.4). The greatest fold-regulation was observed for NLRP6 

with -2.38 (FC=0.42), followed by NAIP and TLR2 with -2.22 (FC=0.45) and -1.96 

(FC=0.51) respectively. However, after correcting for multiple testing, none of the 

differences remained significant. 

 

Table 2.4 Fold changes in gene expression for Intercritical gout compared to Gout flares group. 

Gene Fold-change p value 

CFLAR 0.54 0.049 

NAIP 0.45 0.010 

NFKBIA 0.55 0.034 

NLRC4 0.60 0.049 

NLRP6 0.42 0.011 

TLR2 0.51 0.036 
Relative expression was compared using the Wilcoxon signed-rank 
test; and correction for multiple testing was conducted using a 5% 
FDR. 
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Figure 2.7 Gene expression of Gout Flare vs. Intercritical Gout graphs.  

A) Scatter plot of the log base 10 (2-ΔCT) of each gene of the Human RT2 Profiler PCR Array. The middle line indicates a fold change of 1.0, and upper and 
bottom lines indicate up and down regulation respectively. Green dots represent downregulated genes with a fold regulation ≤ -1.5. B) Box-plot of relative 
expression comparison of the six genes that showed a significant difference among groups. The Wilcoxon signed-rank test was used to determine significance; 
however, after 5% FDR correction, none of the differences remained significant. 
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2.3.3 Gene expression: comparison between patients with normouricaemia, 

asymptomatic hyperuricaemia and gout. 

To have a complete scenario of the expression of the genes that showed a 

significant difference in the previous analyses, the relative expression of the 16 

genes was compared between participants with gout flares and without 

symptomatic gout from REACT and SOG studies, respectively. The intercritical 

gout group from REACT study was not included in this analysis because these data 

corresponded to a repeated measure of the gout flare group. Although the SOG-

AS study recruited participants with intercritical gout and blood samples were 

collected for gene expression profiling, the analysis of these samples was not 

completed due to Covid-19 pandemic restrictions.  

Therefore, the expression of BIRC2, CD40LG, CFLAR, CXCL1, IL1β, MEFV, NAIP, 

NLRC4, NLRP6, NLRP12, PANX1, TLR2, TNFSF14, TXNIP and XIAP genes was 

compared among the following groups: SU <360µmol/L, SU ≥360µmol/L, SU 

≥360µmol/L + asymptomatic MSU crystals and gout flare. Relative expression was 

compared using the Kruskal-Wallis H test with Bonferroni post-hoc test. Pairwise 

comparisons of the genes are shown in Figure 2.8, and fold changes are shown in 

Table 2.5 (Note this table includes the same fold changes for SU ≥360µmol/L and 

SU ≥360µmol/L + asymptomatic MSU crystals, compared to SU <360µmol/L, 

included in table 2.2). Out of the 16 genes, five showed a significant difference 

between the asymptomatic hyperuricaemia with MSU crystals group compared to 

the acute gout group. After correcting for multiple testing, CD40LG, PANX1 and 

TNFSF14 had lower mRNA levels in the acute gout group (mean rank = 30.06, 

54.63 and 49.25, respectively) compared to the SU ≥360µmol/L + MSU crystals 

(mean rank = 72.78, 92.21 and 81.03, respectively). NLRC4 and NLRP12 had 
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higher mRNA levels in the acute gout group, compared to the normouricaemia or 

the SU ≥360µmol/L, but did not have a significant difference compared to the SU 

≥360µmol/L + MSU crystals. 

 

Table 2.5 Fold changes in gene expression for SU ≥360 µmol/L, SU ≥360 µmol/L + MSU crystals and 

gout flare, compared to SU <360 µmol/L. 

  
SU ≥360 µmol/L 

SU ≥360 µmol/L           
+ MSU crystals 

Gout Flare 
  

Gene Fold-change Fold-change Fold-change Adj. p value* 

BIRC2 1.16 1.86 1.49 0.093 

CD40LG 1.29 1.55 0.76 0.002 

CFLAR 1.19 1.03 1.30 0.854 

CXCL1 1.34 2.75 1.34 0.038 

IL-1β 2.10 3.58 2.06 0.093 

MEFV 1.67 3.10 1.40 0.033 

NAIP 1.11 0.93 2.10 0.086 

NFKBIA 1.05 0.96 1.82 0.183 

NLRC4 0.82 1.46 2.31 0.0009 

NLRP6 1.03 1.05 1.39 1.00 

NLRP12 1.27 1.82 1.76 0.044 

PANX1 0.91 2.20 1.09 0.0004 

TLR2 0.96 1.07 1.92 0.167 

TNFSF14 1.00 1.90 0.88 0.039 

TXNIP 1.15 1.79 1.55 0.061 

XIAP 1.00 1.79 1.25 0.0003 
Relative expression was compared using the Kruskal-Wallis H test; and correction for multiple 
testing was conducted using a 5% FDR. *5% FDR adjusted p value. NOTE: This table includes 

the same fold changes for BIRC2, CD40LG, CXCL1, IL-1β, MEFV, NLRP12, PANX1, TNFSF14, 

TXNIP and XIAP shown in Table 2.2. 
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Figure 2.8 Box-plot of relative expression comparison of the sixteen genes that showed a significant difference amongst either SOG groups or 

REACT groups.  

The Kruskal-Wallis H test was used to determine significance with Bonferroni post-hoc for pairwise comparisons. *padj <0.05; ** padj <0.001; ***padj 
<0.0001. SU, serum urate; MSU, monosodium urate. 
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2.3.4 Cytokine profiles in individuals with normouricaemia, hyperuricaemia 

without MSU crystal deposition, MSU crystal deposition without gout, 

intercritical gout and during a gout flare 

2.3.4.1 Demographic characteristics 

In total, 185 participants from SOG, REACT and SOG-AS studies were included in 

this analysis. Demographic data, comorbidities and gout-related information (where 

applicable) are shown in table 2.5. Participants from SOG study were classified into 

SU <360 µmol/L (n=33), SU ≥ 360 µmol/L (n=60), and SU ≥360 µmol/L + MSU 

crystals deposits (n=20). For SOG-AS and REACT studies, serum samples from 

the baseline visits were considered for this analysis; these corresponded to 

intercritical gout (n=54) and gout active flares (n=18), respectively. The mean (SD) 

age, BMI, and SU were 59.4 (13.8) years, 31.1 (5.0) kg/m2, and 439.9 (79.8) µmol/L, 

respectively.  
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Table 2.6 Demographic characteristics and comorbidities data for participants from SOG, REACT and SOG-AS studies included in the cytokines 

measurement. 

              

   SOG study 
SOG-AS 

study REACT study 

  Total SU<360 µmol/L SU≥360 µmol/L 

SU≥ 360µmol/L             
+                                   

MSU crystal 
deposits 

Intercritical 
gout 

Gout flare 

  n=185 n=33 n=60 n=20 n=54 n=18 

Gender, male, n (%) 181 (97.8) 33 (100) 60 (100) 20 (100) 53 (98.1) 15 (83.3) 

Age, years, mean (SD)* 59.4 ± 13.8 48.3 ± 11.9 44.0 ± 10.5 46.8 ± 9.5 56.4 ± 12.1 69.6 ± 14.8 

BMI, kg/m2, mean (SD)* 31.1 ± 5.0 26.3 ± 6.1  27.7 ±  4.4 26.8 ± 3.2  31.0 ± 5.1 31.3 ± 4.7 

SU, µmol/L, mean (SD)* 439.8 ± 79.8 309.2 ± 39.4 425.5 ± 42.9 423.3 ± 47.5 451.7 ± 62.1 397.9 ± 117.0 

Comorbidities, n (%)       

Hypertension* 32 (17.3) 6 (18.2) 4 (6.7) 1 (5.0) 11 (20.4) 10 (55.5) 

Hyperlipidaemia† 23 (12.4) 3 (9.1) 3 (5.0) 1 (5.0) 10 (18.5) 6 (33.3) 

Diabetes† 9 (4.9) 1 (3.0) 1 (1.7) 0 3 (5.5) 4 (22.2) 

Heart attack* 9 (4.9) 0 0 0 3 (5.5) 6 (33.3) 

No. Flares, mean (SD) 3.3 ± 3.2 N/A N/A N/A 3.2 ± 2,3 3.7 ± 5.4 

Gout’s age of onset, years, mean (SD) 47.0 ± 14.0 N/A N/A N/A 45.1 ± 13.1 54.0 ± 15.5 

Proportion on ULT, n (%)       
Allopurinol 21 (11.4) N/A N/A N/A 18 (33.3) 3 (16.6) 

Febuxostat 1 (0.5) N/A N/A N/A 0 1 (5.5) 

BMI: Body mass index; SU: Serum urate; MSU: Monosodium urate. N/A: Not applicable 
P values were estimated by One-way ANOVA or independent t-test for continuous data, and chi-square test for categorical data. 
*p value <0.001; † p value <0.01. 
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2.3.4.2 Cytokine profiles in individuals with normouricaemia, hyperuricaemia 

without MSU crystal deposition and MSU crystal deposition without 

gout, intercritical gout, and gout flares. 

Serum samples, in aliquots of 2.0 mL, were sent to Affinity Biomarker Labs to 

measure the following cytokines: GRO-α, IL-1β, IL-6, IL-8, IL-18, IP-10, MCP-1, 

TNF-α, and VEGF-α measured using an MSD U-plex array, and hsCRP measured 

by latex agglutination test. Returned data were revised to replace values marked 

as out of the detection limit; these results were used to determine whether the levels 

of the cytokines of interest varied among groups.  

First, cytokine levels were compared amongst the groups of REACT study to 

explore how the cytokines varied six and twelve weeks after the gout flare. This 

analysis was conducted using the Friedman test with Bonferroni post-hoc for 

pairwise comparison. Additionally, p values were corrected to account for multiple 

testing using a 5% FDR. Out of the 10 proteins under study, only VEGF-α and 

hsCRP showed a significant difference among groups (Figure 2.9). For VEGF-α, 

the rank difference among the intercritical gout-week 12 group (mean rank=48.0) 

was significantly lower than the gout flare group (mean rank=18.0; adjusted p value 

<0.0001), but the difference was not significant between week 6 group and gout 

flare group. For hsCRP, the difference for both intercritical gout week 6 (mean 

rank=22.0) and week 12 (mean rank=23.0) compared to the gout flare group (mean 

rank=45) were statistically significant (adjusted p values <0.0001 and p<0.001 

respectively). There was no difference in any cytokines between week 6 and 12.  
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Figure 2.9 Protein levels of GRO-α, IL-1β, IL-6, IL-8, IL-18, IP-10, MCP-1, TNF-α, VEGF-α, and hsCRP in participants with gout flares and 

intercritical gout (6 weeks and 12 weeks after the flare).  

Values represent median ± IQR. Differences among groups were compared using the Friedman test with Bonferroni post-hoc. *** padj<0.001; 
****padj<0.0001. 
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Additionally, cytokines levels were also compared among the three groups of SOG 

study, the intercritical gout group of SOG-AS study, and the gout flare group of 

REACT study. The comparison was conducted using the Kruskal-Wallis H test with 

Bonferroni post-hoc, and p values were corrected for multiple testing using a 5% 

FDR. Results for all cytokines are presented in figure 2.10. All cytokines showed 

an adjusted p value <0.05, but when looking at pairwise comparisons, the 

differences were only significant between specific group pairs. For instance, only 

IL-1β, MCP-1 and hsCRP showed a significant difference among the intercritical 

gout group and the gout flare group. However, for IL-1β and MCP-1 the intercritical 

gout group had a mean rank (132.1 and 124.5, respectively) greater than the gout 

flare group (89.44 and 70.94, respectively), while for hsCRP the mean rank of the 

intercritical gout group was lower than the gout flare group (111.8 vs. 166.3). 

Interestingly, out of the 10 cytokines, 8 (GRO-α, IL-1β, IL-6, IL-18, IP-10, MCP-1, 

TNF-α, and hsCRP) showed significant differences among the intercritical gout 

group and at least one of the SOG study groups.  
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Figure 2.10 Protein levels of GRO-α, IL-1β, IL-6, IL-8, IL-18, IP-10, MCP-1, TNF-α, VEGF-α, and hsCRP in participants with SU <360 µmol/L, SU 

≥360 µmol/L, SU ≥360 µmol/L with MSU crystal deposits, intercritical gout, and gout flares.  

Values represent median ± IQR. Differences among groups were compared using the Kruskal-Wallis H-test with Bonferroni post-hoc. * padj<0.05; 
** padj<0.01; *** padj<0.001; ****padj<0.0001. 
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2.4 Discussion  

Two of the main challenges in knowledge about gout continues to be the 

understanding of the mechanisms involved in the transition from asymptomatic 

hyperuricaemia to gout, and the inflammatory profile of individuals with 

intercritical gout as a mean to understand the heterogeneity of gout symptoms. 

Given that it is well known that the NLRP3 inflammasome and TLRs 2-4 mediate 

the immune response to MSU crystals (Kingsbury et al., 2011; Major, Dalbeth, 

Stahl, & Merriman, 2018; Y. Shi et al., 2009), the objective of this chapter was 

to analyse the expression of genes and the levels of cytokines involved in those 

pathways in different sample sets, as outlined in figure 2.1.  

Below is a discussion per section of the main findings and implications of each 

comparison. 

 

2.4.1 Differential gene expression in participants with normouricaemia, 

asymptomatic hyperuricaemia and gout 

In the analysis of asymptomatic hyperuricaemia vs. normouricaemia, out of the 

86 genes included in the array, 10 (BIRC2, CD40LG, CXCL1, IL-1β, MEFV, 

NLRP12, PANX1, TNFSF14, TXNIP, and XIAP) showed a significant 

upregulation in the group of participants with hyperuricaemia and MSU crystal 

deposits, compared to the normouricaemia group. From these genes, only 6 

(BIRC2, CXCL1, PANX1, TNFSF14, TXNIP, and XIAP) showed a significant 

difference among the hyperuricaemia with MSU crystal deposits and the 

hyperuricaemia only group. As described in Chapter 1, MSU crystals in joints 

are recognised as damage associated molecular patterns (DAMPs) by TLRs, 

which activate the MAP Kinase pathway and the translocation of the NF-κB 

transcription factor to initiate the expression of inactive pro-IL-1β, pro-IL18, and 
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NLRP3 component. The ingestion of MSU crystals also activate different signals 

that are required for the assembly of the NLRP3 inflammasome and the 

subsequent synthesis of caspase-1 that cleaves the inactive interleukins, to 

produce the active cytokines that are excreted from the macrophages (Jo et al., 

2016; Kingsbury et al., 2011; Liu‐Bryan et al., 2005). Several genes that were 

upregulated in this study play important roles in different mechanisms of the 

immune response to MSU crystals. These mechanisms can be divided into four: 

(1) TLRs and NF-κB downstream signalling, (2) NLRP3 inflammasome 

assembly mechanisms, (3) TLRs and NLRP3 inflammasome effector 

mechanisms, and (4) negative regulators. To facilitate the understanding, 

figures 2.11 and 2.12 give a visual representation of the inflammatory pathways 

initiated upon MSU deposition and the specific function of each gene that was 

found upregulated in this analysis. Figure 2.11 highlights in lilac the genes 

BIRC2 and XIAP that are involved in downstream signalling of TLRs; in red the 

genes PANX1 and TXNIP that participate in the signals required for the NLRP3 

inflammasome assembly; and in blue the genes CXCL1 and IL-1β that result as 

a consequence of the activation of TLRs and the NLRP3 inflammasome.  

BIRC2 and XIAP are important components in the regulation of apoptosis by 

modulating both the NRLP3 inflammasome activity and the transcription factor 

NF-κB. BIRC2 can provide positive and negative regulatory controls over NF-

κB signalling via the canonical and non-canonical pathways respectively, which 

consequently alters the expression of pro-inflammatory cytokines (Tan et al., 

2013). A study by Tseng et al reported that hypermethylation in BIRC2 

supressed its expression and exacerbated gout symptoms by increasing IL-1β 

production (Tseng et al., 2021). Although not directly linked to gout, several 

studies have analysed the effects of XIAP deficiency, and observed a sustained 

elevation of serum IL-1β and IL-18 (Lawlor et al., 2017; Yabal et al., 2014). 
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As previously described, the NLRP3 inflammasome assembly depends on three 

different signals. One of them is potassium efflux, which is controlled by 

pannexin-1 (PANX1 gene) -a gap membrane channel- that together with P2RX7 

mediate intracellular calcium and potassium concentrations in macrophages 

(Petrilli et al., 2007). It is known that probenecid, one of the available drug 

treatments for gout, inhibits anion transporters to avoid renal uptake of uric acid. 

Yet, it has been found that probenecid also inhibits pannexin-1. Although the 

exact mechanisms by which this happens are still unclear, as pannexin-1 has 

not been related to urate transporters, Silverman et al hypothesised that 

probenecid not only helps with urate lowering, but it can also cease 

inflammation by preventing the inflammasome activation (Silverman, Locovei, 

& Dahl, 2008). A second signal required for the inflammasome assembly is the 

presence of reactive oxygen species (ROS). An increase in ROS causes TRX 

to dissociate from TXNIP, which interacts with NLRP3 to allow its assembly with 

the remaining components of the inflammasome (Tschopp & Schroder, 2010). 

Dinesh & Rasool evaluated mRNA levels of several genes, included IL-1β, 

TXNIP and NLRP3, in an animal model of MSU induced inflammation to test the 

effect of berberine (an alkaloid used as food supplement). They observed that 

upon MSU crystals stimulation, TXNIP was upregulated, but when the 

macrophages were treated with berberine, the mRNA levels significantly 

decreased –similarly to what occurred when treated with colchicine-, suggesting 

TXNIP as not only as an essential component the immune response mediated 

by inflammasomes, but also as an important target for treatment approaches. 

(Dinesh & Rasool, 2017) 

With regards to the effector mechanisms of TLRs and NLRP3 inflammasome 

activation, one of the hallmark signs of the inflammatory response to MSU 

deposits is the release of several cytokines, such as IL-1β, IL-18 and CXCL1. 
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In this study, the comparison of mRNA levels for IL-1β and CXCL1 showed two 

of the greatest fold changes (3.79 and 2.90, respectively). This is interesting 

because the release of cytokines is the mechanism by which the immune 

response amplifies, and initiate the recruitment of macrophages and activation 

of leukocytes (A. Scanu et al., 2015; Scott, Ma, Viriyakosol, Terkeltaub, & Liu-

Bryan, 2006; Y. Shi et al., 2009).  

 

 

Figure 2.11. Molecular mechanisms of the inflammatory response induced by MSU crystals, 

highlighting eight genes that presented a significant upregulation in SOG analysis.  

In lilac, BIRC2 and XIAP that modulate the expression of the transcription factor NF-κB. In red, 
PANX1 and TXNIP that contribute to the assembly of the NLRP3 inflammasome. In blue, IL-1β 
and CXCL1 as the effector mechanisms of TLRs and NLRP3 signalling. 

 

The genes mentioned above are related to pro-inflammatory mechanisms; 

however, this analysis revealed the upregulation of genes that are associated 
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to anti-inflammatory mechanisms as well. Figure 2.12 highlights in red the 

genes NLRP12 and MEFV that act as negative regulators in the TLRs signalling 

and the NLRP3 inflammasome assembly respectively.  

First, the role of NLRP12 has been widely debated because it is classified as 

an inflammasome and is known to be involved in several bacterial infections, 

but the mechanisms that lead to its activation remain unknown (Vladimer et al., 

2012). On the other hand, it has also been observed that NLRP12 works as a 

negative regulator of inflammation by inhibiting downstream signalling of TLRs 

and NF-κB, and consequently by limiting neutrophil recruitment to the site of 

inflammation (Tuladhar & Kanneganti, 2020). Loss of NLRP12 has been 

associated to chronic colitis, hepatocellular carcinoma, and an increased 

expression of pro-inflammatory cytokines during viral and bacterial infections 

(Allen et al., 2013; L. Chen et al., 2017; Udden et al., 2019). 

MEFV has also been identified as a negative regulator of inflammation, by 

preventing the assembly of inflammasomes that contain a pyrin domain (PYD), 

such as NLRP3. MEFV binds to the adaptor protein ASC, which is comprised 

by a PYD and a CARD domain, hindering the interaction with NLRP3 and pro-

caspase-1 (Papin et al., 2007). Mutations in MEFV gene, responsible for the 

familial Mediterranean fever disease, alter the pyrin structure and block the 

interaction with ASC. This results in an increased activity of NLRP3 

inflammasome and IL-1β production (Jamilloux et al., 2018). Balkarli et al 

investigated the association of these mutations with severity of symptoms in 

gout patients, and observed that heterozygous carriers of MEFV SNPs 

presented more flares per year, and the incidence of tophus was higher 

(Balkarli, Tepeli, Balkarli, Kaya, & Cobankara, 2018) 
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CD40LG and TNFSF14 also showed a significant upregulation; however, their 

role in inflammasome-mediated immune response is less clear. Therefore, 

further investigation is needed to determine possible associations with MSU 

induced inflammation.  

 

 

Figure 2.12. Molecular mechanisms of the inflammatory response induced by MSU crystals, 

highlighting two additional genes that presented a significant upregulation in SOG analysis.  

In red, NLRP12 and MEFV that inhibit the NF-κB cascade and the assembly of the NLRP3 

inflammasome, respectively. 

 

 

As discussed, some of these genes code for proteins that work as pro-

inflammatory molecules, while others inhibit certain steps that could work as 

anti-inflammatory mechanisms. It is possible that this dynamic balance between 
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activation and inhibition of downstream signals upon recognition of MSU 

crystals prevents gout flares occurrence. This type of immune balance has been 

extensively described in infectious diseases like tuberculosis, H pylori infection, 

and hepatitis C (Cicchese et al., 2018). The pathogens causing the disease, 

when recognised by immune cells, activate the TLRs and NLRP3 

inflammasome cascade, notwithstanding they can remain asymptomatic for 

extended periods (Larussa, Leone, Suraci, Imeneo, & Luzza, 2015; Negash, 

Olson, Griffin, & Gale, 2019; Wawrocki & Druszczynska, 2017). Moreover, 

although the immune response can be detected by measuring pro-inflammatory 

cytokines, it is not detrimental to the host’s health. This hypothesis should be 

cautiously assessed and interpreted, because of the differences in the 

mechanisms that pathogens initiate, that DAMPs (such as MSU crystals) would 

not. However, supplementary research of immune balance in asymptomatic 

individuals in follow-up studies could contribute to the field. 

 

The second analysis involved exploring gene expression in patients with gout, 

who attended a baseline visit during a gout flare and were followed-up 6 and 12 

weeks later to compare the expression during the intercritical stage. Out of the 

86 genes, six of them (CFLAR, NAIP, NFKBIA, NLCR4, NLRP6 and TLR2) 

showed a significant downregulation during the intercritical period compared to 

the acute stage, but after correcting for multiple testing the differences did not 

remain significant. This could have happened due to the small sample size 

(n=16) of the study, or the fact that they were already treated with corticosteroids 

by the time the sample was collected. 

A variety of studies have evaluated the clinical and biochemical features during 

the intercritical stage of gout patients. This has been done using imaging tools, 
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such as ultrasound and dual-energy computed tomography (DECT) to 

determine the persistence of MSU crystals (Breuer, Bogot, & Nesher, 2016; Das 

et al., 2017; Q. Wang et al., 2018), or by exploring cytokine profiles compared 

to those from healthy controls and from patients with gout flares (Diaz-Torne et 

al., 2021; Kienhorst et al., 2015). This is important not only because it allows 

the clinical and molecular differentiation of the characteristics of each stage, but 

also because it can lead to the identification of useful tools for the diagnosis of 

patients with suspected gout. 

From the six genes that were upregulated in the intercritical gout group, two of 

them code for proteins that are central to the immune response induced by MSU 

crystals (Figure 2.13). To start with, TLR2 is one of the surface proteins that 

recognises MSU crystals and initiate the recruitment of MyD88 that activates 

the MAPK and NF-κB signalling pathways (Akira & Takeda, 2004). NFKBIA on 

the other hand, forms a dimer with NFKB1, that upon stimulation, is 

phosphorylated and dissociates to allow NF-κB translocation to the nucleus to 

start the transcription of pro-inflammatory cytokines (Mathes, O'Dea, Hoffmann, 

& Ghosh, 2008).  

NAIP and NLRC4 genes were also downregulated in this analysis. This is 

interesting because their encoded proteins assemble to form a different type of 

inflammasome. The NAIP/NLRC4 inflammasome has been described as one of 

the several innate immune responses that grants defence against bacterial 

infections (Kaiwen W. Chen et al., 2014; Franchi et al., 2012; Zhao et al., 2011), 

and information about its interaction with other inflammasomes under certain 

stimuli is emerging. For instance, Qu et al reported the interaction of NLRP3 

with NLRC4 in Salmonella typhimurium infection that causes an amplified 

caspase-1 response. They suggested that the NAIP/NLRC4 interaction could 
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function as an additional signal that together with potassium efflux, cathepsin B 

synthesis and presence of ROS, allow the assembly of the NLRP3 

inflammasome (Qu et al., 2016). Interestingly, a recent study by Teodoro-Braga 

et al found that murine NAIP expression was associated with an increased 

synthesis of IL-1β upon soluble serum uric acid stimulation (Braga et al., 2021). 

 

 

Figure 2.13. Molecular mechanisms of the inflammatory response induced by MSU crystals, 

highlighting two genes that presented a significant downregulation in REACT analysis.  

In blue, NFKBIA and TLR2 that are crucial for the response to MSU crystals and the activation of 

the NF-κB signalling. 

 

NLRP6 forms another inflammasome complex that has been associated to 

tissue specific functions. It plays an important role in gut inflammation and 

microbiota control, but its expression mechanisms are still to be elucidated 
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(Venuprasad & Theiss, 2021). CFLAR on the other side participates in the 

JNK/MAPK pathway, which is upstream of the NF-κB signalling, and is thought 

to negatively regulate inflammation and apoptosis. Several studies have 

described an important role of CFLAR in the improvement of cerebral injury and 

liver associated diseases (Y. Liu, Yu, & Chen, 2018; Xiaohong, Jun, Hongmei, 

& Fan, 2019). Whether NLRP6 and CLFAR activate during the response to MSU 

crystals or contribute to the resolution of gout flares, respectively, has not been 

reported and require additional research. 

Although there are studies that have compared gene and protein levels in 

participants with gout during a flare or during the intercritical period, hitherto 

none of them has done this on the same participants as a follow-up study.  

 

Finally, from the genes that showed significant differences between SOG and 

REACT groups separately, the last analysis consisted in exploring the 

expression of the sixteen genes in the whole spectrum of hyperuricaemia to 

gout flare. CD40LG, PANX1 and TNFSF14 had a significant downregulation 

during the acute flare compared to the group with asymptomatic MSU crystal 

deposition. CD40LG and TNFSF14 regulate T-cell proliferation and cytokine 

production, but the exact mechanisms have not been fully established (Giles et 

al., 2018; Mikolajczak et al., 2004). These findings were opposing to what we 

expected; however, the analysis was limited in terms of the sample size and the 

inclusion of an additional group of participants with intercritical gout. This work 

is currently underway and is expected to provide a clearer idea of whether the 

differences between these genes remain significant. 

 



Chapter 2. Gene and Cytokine profiling 

 

101 

 

2.4.2 Cytokine measurements 

As the mRNA levels for several genes were different among the groups under 

study, it was important to know the cytokine levels of those that were either 

found to be differentially expressed in these comparisons, or that play an 

important role in the immune response induced by MSU crystals. Therefore, 10 

proteins (GRO-α, IL-1β, IL-18, IL-6, IL-8, IP-10, MCP-1, TNF-α, VEGF-α, and 

hsCRP) were measured and compared among the five groups. 

First, in the comparison of the follow-up study REACT, among the gout flare and 

the intercritical stage (6 and 12 weeks after the flare), only VEGF-α and hsCRP 

showed a significant difference. At the time the mRNA analyses were 

conducted, VEGF-α had not been associated with gout. However, in 2019 the 

largest GWAS for SU and gout was published, and VEGF-α was reported as a 

risk loci (Adrienne Tin et al., 2019). Therefore, it was included in the protein 

measurements. VEGF-α is an angiogenic growth factor that has been related to 

a wide variety of diseases, including cancer (associated to tumour progression), 

diabetes, atherosclerosis, heart disease and retinopathies (Apte, Chen, & 

Ferrara, 2019). Angiogenesis has been described in other joint diseases such 

as rheumatoid arthritis, in which synovial capillaries increase to allow leukocytes 

migration during episodes of acute inflammation. Lioté et al analysed 

angiogenin (a potent angiogenic factor) levels in patients with different 

arthropathies, including gout, and observed that it was significantly elevated 

during the flare (LiotÉ, Champy, Moenner, Boval-Boizard, & Badet, 2003). It is 

possible that VEGF-α plays an important role in this process too, and as in 

rheumatoid arthritis, decreases with the resolution of the flare (Young Ho Lee & 

Bae, 2018). 
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hsCRP is the gold-standard biomarker of inflammation, as it increases up to 

3000-fold during bacterial infections or tissue damage (Ansar & Ghosh, 2013). 

As expected, in this study there was a significant decrease during the 

intercritical period compared to the acute episode. Although useful for 

monitoring disease activity, hsCRP is not specific, thus not suitable on its own 

for diagnostic purposes. However, in chronic disorders such as obesity, 

diabetes, hypercholesterolemia and ischemic heart disease, CRP is usually 

persistently elevated and has been suggested as a risk predictor for these type 

of comorbidities (de Ferranti & Rifai, 2002; King, Mainous, Buchanan, & 

Pearson, 2003).  

In order to determine if hsCRP and the pro-inflammatory cytokines included in 

this study, were also over expressed in acute and intercritical gout, compared 

to non-gout participants, an additional sample set of patients with intercritical 

gout (SOG-AS study) was included. This analysis showed that there was no 

variation among individuals with normouricaemia, hyperuricaemia and 

asymptomatic MSU crystal deposition; not even for IL-1β and GRO-α (CXCL1) 

that showed a differential mRNA expression. This is not surprising, since 

discordant effects on mRNA and protein levels have been debated for decades 

and may reflect counterbalance of pro and anti-inflammatory genes. These 

differences are likely to be a result of complex post-transcriptional and 

translational mechanisms (Edfors et al., 2016; Perl et al., 2017). 

Conversely, out of the 10 proteins, the concentrations of GRO-α, IL-1β, IL-6, IL-

18, IP-10, MCP-1, TNF-α, and hsCRP were significantly higher in the intercritical 

gout group compared to the non-gout participants from SOG study. This is 

interesting because it suggests that during intercritical gout there is evidence of 

a sub-clinical systemic inflammation. Several studies have reported similar 
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results after measuring pro-inflammatory cytokines (Diaz-Torne et al., 2021; 

Estevez-Garcia et al., 2018) or conducting ultrasound or DECT studies 

(Chowalloor, Raymond, Cheah, & Keen, 2020) that confirmed intra-articular 

inflammation even after the flare resolution. These observations are important 

due to the impact this may have on long term gout management by altering 

physician perception of gout, from an episodic illness with inactive crystal 

deposits in the intercritical phase to a chronic inflammatory illness. Adherence 

to treatment is known to be poor in gout patients, and is multi-factorial, but if 

sub-clinical systemic inflammation is persistent, long term ULT until crystal 

deposits are dissolved may be offered more emphatically by healthcare 

professionals. 

 

2.4.3 General conclusions 

In this research, significant differences in NLRP3 and TLRs associated pro-

inflammatory genes, but not in cytokine levels, were found in asymptomatic 

hyperuricaemia individuals compared to those with SU <360µmol/L. 

Additionally, the results also indicated that during intercritical gout, there is 

evidence of systemic inflammation.  

This research presents several limitations. First, participants with 

normouricaemia and hyperuricaemia were classified based on a single 

measurement of SU. Moreover, the sample sizes for several groups were 

limited. When we calculated the required sample size to detect a 2-fold change 

with an 80% power in pairwise comparisons, at least 26 samples per group were 

needed. However, the hyperuricaemia with MSU crystal deposits and gout 

participants (for the gene expression analysis) had 17 and 16 participants. With 

these numbers, we only reached a 50% power. Further validation in 
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independent and larger cohorts is recommended. Also, all the analyses were 

conducted in blood, therefore conclusions can only be driven in the context of 

systemic inflammatory mechanisms. Additional validation studies are required 

to determine if they replicate in synovial fluid resident lymphocyte and 

macrophage samples. 

This study involved pooling samples from three different studies. Even though 

this allowed us to build a well defined larger set of samples that represent each 

stage from normouricaemia to gout, this presents several limitations. First, given 

the nature of each study, the recruitment criteria differed among studies. For 

instance, SOG study was limited to the recruitment of male participants, while 

REACT and SOG-AS recruited female and male participants. However, only 4 

women took part of these studies. With these numbers (4 female vs. 181 male 

participants) we could not evaluate whether the differences in gene expression 

and cytokine measurements were sex-specific. Further studies with a 

heterogeneous sample are needed to examine if the mechanisms and genetic 

associations are sex-specific.  

Also, the demographics and clinical characteristics (i.e. prevalence of 

comorbidities, previous treatment, etc.) were significantly different among 

groups, specifically among the non-gout vs. gout groups, and we did not adjust 

for these differences. Further analyses, such as MANCOVA, are suggested to 

determine whether differences in gene expression remain significant after 

adding covariates, such as age, gender, BMI, comorbidities, etc.  

Additionally, although the protocols for collection and storage of blood samples 

were consistent for all studies, they were conducted in different time points, 

which may introduce variability. However, technical variability was minimised 

during subsequent methodologies (RNA extraction, cDNA synthesis, RT-PCR, 
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etc.) by limiting the processing of samples to one person, by using the same 

automatic lab equipment for all samples, and by introducing tight QC controls in 

each stage.  

 Finally, although valuable as a pilot study, the discovery power when using RT-

PCR arrays is very limited, as it depends on the design and content of the plate. 

In this regard RNA sequencing can assist in finding novel transcripts and 

genetic variants contributing to gout.
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3 Chapter 3. UK Biobank Genotyping and Polygenic Risk 

Score for gout. 

3.1  Introduction 

The introduction of personalised medicine has been explored for many years, 

and genetic studies have increased this possibility, with GWAS representing a 

patent impact to the field. While there is still an existing gap between GWAS loci 

and their functional consequences because the majority of risk variants are 

located in intronic regions, GWAS have contributed to the identification of 

pathways relevant to a disease, to the comparison of the genetic makeup 

among different populations and the assessment of risk prediction (Visscher et 

al., 2017). In gout, several GWAS have been conducted in different populations 

(Kottgen et al., 2013; C. Li et al., 2015; Nakayama et al., 2017). However, they 

have used smaller datasets, which has limited the discovery power and only few 

variants have reached genome-wide significance (e.g. the largest GWAS of 

gout included <2,500 gout cases (Kottgen et al., 2013)).  

The most relevant insights in gout has been derived from GWAS looking at SU 

variation, given the causal role that hyperuricaemia plays in the development of 

gout. To date, over 180 variants have been associated with SU variation, and 

several studies have evaluated the correlation of these variants with gout. For 

instance, a study published by Phipps-Green et al investigated the association 

with gout of 28 SNPs that influence SU. They reported significant associations 

for eleven loci located in RREB1, TRIM46, SFMBT1, PRKAG2, A1CF, SFMBT1, 

VEGFA, PDZK1, IGF1R, MAF and HLF (Phipps-Green et al., 2016). Another 

study by Tin et al found significant associations for 55 SNPs, from which the 

urate transporter ABCG2, showed the largest effect (OR (CI) = 2.04 (1.96-2.12)) 



Chapter 3. UK Biobank cohort and PRS for gout vs. controls 

 

107 

 

(Adrienne Tin et al., 2019). The results of GWAS of SU levels have been used 

also to generate predictive models of gout risk. Several studies have generated 

genetic risk scores using the sum of the effect sizes of genetic variants; 

however, they have used only the SNPs that reached genome-wide significance 

(Adrienne Tin et al., 2019; Yanfei Zhang & Lee, 2021). Polygenic risk scores 

(PRS) have acquired increasing interest in investigating the cumulative effects 

of genetic variants on a disease. Compared to other approaches, including 

those conducted to determine gout risk, PRS considers the inclusion of SNPs 

with small effects that even if not detected in GWAS, when added together 

would have a greater effect (Duncan et al., 2019).  

Since one of the aims of genetic analyses would be its translation to a clinical 

setting, we wanted to construct a PRS model using gout GWAS summary 

statistics. For this purpose, we requested access to genotype data of the UK 

Biobank resource to generate a cohort of gout cases vs. controls. One of the 

crucial steps when conducting GWAS and PRS analyses is performing a robust 

QC of the genotyping data to exclude genotyping errors that would lead to type 

I and type II errors (Turner et al., 2011). Therefore, the aim of this chapter is to 

give a detailed explanation of the QC procedures, conducted by the UK Biobank 

and by ourselves to generate good quality working datasets for the PRS 

described in this chapter, and the analyses described in chapter 4.  
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3.2 Materials and Methods 

3.2.1 UK Biobank cohort 

This research was conducted using data from the UK Biobank resource (Project 

ID 45987. Appendix 1 includes the application for this PhD project). The UK 

Biobank is a large population-based prospective study that recruited ~500,000 

participants, aged 40-69 years. Participants were recruited between 2006 and 

2010 across England, Wales and Scotland. The baseline visit comprised 

electronic questionnaires and interviews, which aimed to collect data such as 

sociodemographic characteristics, lifestyle factors, health status, family history, 

cognitive function, etc. Physical and functional measurements were recorded, 

and biological samples (blood, urine and saliva) were also collected. Details 

about recruitment and data processing can be found in the key documents 

section on the UK Biobank website (www.ukbiobank.ac.uk). 

Besides sociodemographic data, the outcomes and exposures of interest for 

this project included lifestyle information, such as smoking status and alcohol 

intake frequency, history of non-cancer illnesses and medications, genome wide 

genetic data, and biomarker measurements. Only participants who were 

classified as Caucasians (via self-report, followed by genetic grouping) and for 

whom genetic data were available, were included in the present study. 

Information about the design of the genotyping arrays and their quality control 

(QC) methods, are described in detail elsewhere (Bycroft et al., 2017; Wain et 

al., 2015; Welsh, 2017). Sections 3.2.2-3.2.4 provide a brief summary of the UK 

Biobank internal QC. 
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3.2.2 The UK Biobank genotyping arrays 

The data release included a total of 502,536 participants. However, genotyping 

data were only available for 488,377 participants. Genotyping was performed in 

two arrays. The UK BiLEVE Axiom array was used to genotype the first 49,950 

samples that took part of the UK Biobank Lung Exome Variant Evaluation study 

(Wain et al., 2015), and included 807,411 markers. The remaining 438,427 

samples were genotyped using the UK Biobank Axiom™ Array, which included 

825,927 markers. The Axiom™ array content summary document is available 

in the UK Biobank website (https://www.ukbiobank.ac.uk/scientists-3/uk-

biobank-axiom-array). Both arrays shared 95% of marker content. Figure 3.1 

summarises the arrays content. 

 

 

Figure 3.1 Summary of UK Biobank/Affymetrix arrays content.  

This scheme describes the content by category, and an approximate number of markers within 

each category. (Bycroft et al., 2017) 
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3.2.3 DNA extraction and genotyping processing 

Blood samples were collected during the baseline visit to the UK Biobank 

assessment centres. Samples for genotyping were selected, and DNA was 

extracted, quantified and analysed to guarantee acceptable quality control 

parameters. DNA samples were shipped to Affymetrix Research facilities in 96-

well plates (each plate containing 94 DNA samples and 2 control samples from 

the 1000 Genomes Project) (Welsh, 2017; Welsh, Peakman, Sheard, & Almond, 

2017).  

Genotyping was conducted by Affymetrix in 106 batches of ~4,700 samples 

each: 11 batches were genotyped on the UK BiLEVE Axiom array, and 95 

batches were genotyped on the UK Biobank Axiom™ Array. Fluorescence 

intensities of each allele were measured. This allows the formation of clusters 

(homozygous clusters –major or minor, and heterozygous cluster), from which 

genotypes can be inferred (example shown in figure 3.2).  

Non-autosomal markers were analysed differently. The Y chromosome and 

mitochondrial markers were assessed by inspecting cluster plots, where only 

two genotype categories are expected. The pseudo-autosomal regions (PAR) 

of the X chromosome were assessed as autosomal markers. 

Filters to exclude markers with poor clustering were applied per batch. A total 

of 35,014 markers did not meet the cluster criteria across batches, or showed 

complex cluster properties (multi-allelic markers); therefore, they were removed 

from the dataset. Detailed information regarding laboratory processing and 

genotype data generation by Affymetrix can be found in the online showcase of 

UK Biobank under the resource IDs 590 and 368 respectively 

(http://biobank.ndph.ox.ac.uk/showcase/). 

http://biobank.ndph.ox.ac.uk/showcase/
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Genotype calling was available for 812,428 markers in a dataset comprised by 

489,212 individuals, on which further quality control procedures were applied. 

 

 

Figure 3.2 Example of clustering and genotype calling for one marker in Batch 001.  

X and Y axes represent transformations of the probes intensities, targeting allele “A” and allele 
“B”. The ovals indicate the location and distribution for each cluster. Adapted from (Bycroft et 

al., 2017). 

 

3.2.4 UK Biobank samples and markers Quality Control (QC) 

Large-scale and strong population structure studies, such as the UK Biobank 

project, give rise to several issues that needed to be addressed prior to 

conducting any analysis. These characteristics, plus the fact that genotyping 

was performed using different arrays and many batches, required a robust QC 

pipeline to account for all the effects.  
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3.2.4.1 Marker-based QC 

Given that conventional QC tests are ineffective when studies show ethnic 

diversity, marker-based QC was conducted exclusively using individuals with 

European ancestry (463,844 individuals). Selection of individuals with European 

ancestry was achieved by using principal component analysis (PCA) to account 

for population structure (described in section 3.2.4.2). 

Four QC tests were designed and applied for each marker in each batch 

separately to explain: (1) Batch effects, (2) Plate effects, (3) Gender effects, and 

(4) Deviation from Hardy-Weinberg equilibrium (HWE). Because individuals 

were selected from the same ethnicity, differences in allele frequencies across 

batches, plates or gender were not expected. Therefore, significant differences 

were indicative of genotyping errors. To determine if such effects impacted 

allele frequencies, Fisher’s exact test was used on the 2x2 contingency table 

for haploid markers, or on the 2x3 contingency table for autosomal (and PAR) 

markers. Deviation from HWE was evaluated on diploid markers using the exact 

test described by Wigginton et al (Wigginton, Cutler, & Abecasis, 2005). 

A p-value of 10-12 was chosen as the cut-off value for all tests. Such a p-value 

was selected in order to remove only markers with strong deviation from the null 

hypotheses. 

Additionally, two tests were applied for each marker across all batches. The first 

one was designed to correct for array effects. Fisher’s exact test was used to 

determine whether individuals genotyped on the UK BiLEVE Axiom Array had 

the same allele frequencies as those genotyped on the UK Biobank Axiom 

Array. As for the previous four tests, if markers had a p-value less than the 

defined threshold (10-12), they were removed from the dataset. Finally, as 

previously mentioned, all plates included DNA of two participants from the 1000 
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Genomes project as controls. A discordance metric was generated for each of 

the controls and each marker, and if a marker had a concordance less than 95% 

for at least one control, it was excluded from the dataset. 

A total of 8,425 markers failed at least one of the QC tests, and were 

consequently removed from the released dataset. 

 

3.2.4.2 Sample-based QC 

In order to perform sample QC, only SNPs that passed marker quality control 

and were in both genotyping arrays were selected (621,641 autosomal and 

15,766 non-autosomal).  

 

Population structure: Genetic ancestry was captured by principal components 

analysis. PCA was conducted using the FastPCA algorithm described by 

Rokhlin et al (Rokhlin, Szlam, & Tygert, 2009). The analysis was done in two 

rounds, the first one aimed to identify unrelated individuals and to adjust for 

heterozygosity. The second-round involved computation of the top 40 PCs after 

samples were filtered according to their kinship coefficients, quality scores (call-

rate and heterozygosity), and markers were pruned to minimise linkage 

disequilibrium (LD).  

  

Gender mismatches: Discrepancies among self-reported gender and genetic 

gender can occur as a consequence of sample mishandling, chromosome 

aneuploidies, or gender dysphoria. Therefore, they should also be captured for 

QC purposes. Genetic gender was inferred from measured intensities of 
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markers on the X and Y chromosomes. For this PhD thesis, all individuals with 

putative aneuploidies were excluded.  

 

Kinship: Like the previous parameter, the calculation of kinship coefficients is 

also essential for QC purposes, not only because it allows to identify sample 

mishandling (specifically experimental duplicates), but it also allows to identify 

genuine familiar relatedness that can affect allele frequencies. Identity by 

descent was calculated for all pairs of samples using the software KING, and 

kinship coefficients were recorded. The released dataset included a variable 

with individuals who were inferred to be third degree relatives or closer. 

 

Call-rate and Heterozygosity: Raw heterozygosity was calculated using 605,857 

autosomal SNPs and adjusting for population structure using the first round of 

PCA computation. Adjusted heterozygosity values for all participants were 

provided as part of the released dataset. Additionally, call-rate was calculated 

using PLINK. An individual was classified as an outlier if the adjusted 

heterozygosity was greater than 0.1903 and the call-rate was less than 95%. 

 

Even though several samples did not meet the QC criteria, they were not 

removed from the released dataset, but variables to identify them were 

provided. Individual phenotype associated data were provided as Stata .raw 

files, while genotype data were provided as binary PED files. Therefore, 

StataSE 15 was used to manage phenotype data to filter individuals who did not 

meet the UK Biobank QC criteria, while PLINK was used to exclude the markers 

that failed the QC.  
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3.2.5 PLINK QC  

Although the UK Biobank designed and applied QC tests for markers and 

samples, only those with strong deviations failed the QC criteria. Consequently, 

additional QC refinement was needed prior conducting further analyses. To 

reduce the computing time when performing the QC procedures, cases and 

controls for each analysis were extracted from the working dataset and 

additional QC filters were applied using PLINK version 1.9. PLINK is an open-

source command line software, designed to efficiently manage and analyse 

whole-genome data (S. Purcell et al., 2007). The UK Biobank provided 

genotype data as binary PED files, which include *.bed files containing the 

genotype information, *.fam files containing individuals’ data and *.bim files 

containing markers information (Figure 3.3).  

 

 

Figure 3.3 Overview of PLINK binary files.  

Adapted from (Marees et al., 2018). 
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Filters to control for relatedness, population structure and gender mismatches 

were not necessary at this stage because the UK Biobank released data 

included variables to select individuals according to their ancestry, kinship 

coefficients and genetic sex. Therefore, the working dataset excluded 

individuals with non-European ancestry, third degree (or greater) relatives and 

sex mismatches. Table 3.1 explains each command of the PLINK QC filters, 

which included the following parameters: 

 

Samples and markers call-rate: This parameter excluded individuals and SNPs 

with high levels of missingness, which can be indicative of poor DNA quality, 

technical errors and poor probe design. Individuals with a call rate <90% and 

markers with a call rate <95% were removed from the dataset. 

Commands: 

>plink --bfile FILE_1 --mind 0.1 --make-bed --out FILE_2 

>plink --bfile FILE_2 --geno 0.05 --make-bed --out FILE_3 

 

Hardy-Weinberg Equilibrium (HWE): Genotype and allele frequencies are 

expected to remain constant over generations, but this equilibrium can be 

disturbed by different factors, such as mutations, non-random mating and 

genetic drift. However, if genetic association studies are conducted in 

individuals from the same ethnicity, differences in allele frequencies are not 

expected, otherwise they can be a result of genotyping errors. Therefore, a 

more stringent evaluation was needed to identify markers deviating from HWE. 

PLINK generated a file that included the genotype counts and the HWE test 

statistics for common SNPs (minor allele frequency (MAF) >0.05). The SNPs 
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were subsequently filtered and those with a p value <6.82x10-8 (Bonferroni 

corrected: 0.05/733138) in the control group, were removed from the dataset. 

Commands: 

>plink --bfile FILE_3 --maf 0.05 --hardy --out FILE.hwe 

>plink --bfile FILE_3 --exclude hwe_SNPs.txt --make-bed --out 

FILE_4 

 

Heterozygosity: The identification of heterozygosity outliers was the last step in 

the QC pipeline. This was important because high levels of heterozygosity can 

be an indicator of poor sample quality or cross contamination, while low levels 

of heterozygosity might be a result of inbreeding. Prior analysing heterozygosity 

coefficients, a pruning step was needed to extract common, independent and 

autosomal SNPs with the following parameters: window size = 50kb, step size 

= 5 SNPs, and correlation coefficient (r2) = 0.2.  

>plink --bfile FILE_4 --maf 0.1 --extract autosomal_SNPs.txt --

indep-pairwise 50 5 0.2 --out FILE_indepSNP.prune.in  

 

Inbreeding coefficients were then generated with PLINK. To identify the outliers, 

the mean and standard deviation (SD) were calculated, and those deviating ± 

3SDs were excluded from the final dataset. 

Command: 

>plink --bfile FILE_4 --extract FILE_indepSNP.prune.in --het --

out FILE.het 

>plink --bfile FILE_4 --remove heterozygosity_outliers.txt --

make-bed --out FILE_5 
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Table 3.1 PLINK commands for quality control procedure. 

  Command Description Selected parameter 

Data 
management 

--bfile Binary file name FILE_N  

--make-bed Creates a new PLINK binary file - 

--out Output name FILE_N 

--exclude Excludes SNPs from the input file txt file with rs identifiers 

--extract Extracts SNPs from the input file txt file with rs identifiers 

--remove Removes individuals from the input file txt file with individual IDs 

QC 
commands 

--mind Excludes individuals with low genotype calls 0.1 

--geno Excludes SNPs with low genotype calls 0.05 

--maf Filters SNPs according to a defined minor allele frequency 0.05 (for HWE), 0.1 (for pruning step) 

--hardy Generates a file with genotype counts and Hardy-Weinberg statistics - 

--indep-pairwise Pruning step to identify independent SNPs  
Window size = 50kb, step size = 5, 

r2=0.2 

--het Computes inbreeding coefficients - 



Chapter 3. UK Biobank cohort and PRS for gout vs. controls 

 

119 

 

3.2.6 Polygenic risk scoring 

Quality controlled genotyping data was used to compute polygenic risk scores 

(PRS) for all individuals in the target dataset using PRSice version 2.0. PRSice 

is a command-line software package that allows the calculation, evaluation and 

plotting of PRS at a range of p-value thresholds to identify the best-fit model. It 

is written as an R code, compiled for bash data management in PLINK. PRSice 

requires GWAS results on a phenotype of interest that work as the base dataset, 

and genotype data as the input or target dataset. These datasets require the 

same extensive GWAS QC to control for markers and samples missingness, 

HWE and heterozygosity, which has been described in the previous section. (S. 

W. Choi & O'Reilly, 2019; Euesden, Lewis, & O’Reilly, 2014). Figure 3.4 

summarises the PRS processing using PRSice. The following sections describe 

the datasets used for the generation of a PRS for gout vs. controls, and the 

parameters used to generate the model. 

 

3.2.6.1 Base dataset 

In 2013, Köttgen et al published the largest GWAS meta-analysis for gout. This 

included 14 studies, comprising 2,115 gout cases and 67,259 controls of 

European ancestry within the Global Urate Genetics Consortium (GUGC) 

(Kottgen et al., 2013). The summary statistics that resulted from this study were 

used as the base dataset for the calculation of PRS in people with gout. They 

are publicly available via the Genome-Wide Repository of Associations 

Between SNPs and Phenotypes (GRASP) database (Leslie, O’Donnell, & 

Johnson, 2014). The summary statistics were provided as *.csv files, which 

were converted and merged into a single *.txt file containing all the association 

analysis results for >2.5 million SNPs on gout. 
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Figure 3.4 Polygenic Risk Score Pipeline.  

Adapted from (S. W. Choi, Mak, & O’Reilly, 2020) 
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3.2.6.2 Target dataset: case-control definition 

The target dataset was assembled from the UK Biobank genotyping data. 

Phenotype and genotype data of gout cases and controls were extracted using 

Stata and PLINK 1.9, respectively. Definition of cases and controls was as 

follows:  

Gout cases: Gout cases were defined following three different criteria (Cadzow, 

Merriman, & Dalbeth, 2017): (1) Self reports, (2) use of urate lowering treatment 

(ULT) and (3) hospital diagnosis. For self-reports of gout, the data field “non-

cancer illnesses” was used to extract participants who reported physician 

diagnosed gout at the baseline visit. Use of ULT consisted of self-reports of 

being on allopurinol, probenecid or sulfinpyrazone. Participants on ULT without 

gout diagnosis via self-reports or hospital records, and with either a primary or 

a secondary diagnosis of leukaemia (ICD-10 codes C90-C96) or lymphoma 

(ICD-10 codes C81-C88) were excluded. Finally, hospital diagnosis of gout was 

defined if participants had a hospital record of primary or secondary episodes, 

which were identified with the following ICD-10 codes: M10 (gout), M100 

(idiopathic gout), M101 (lead-induced gout), M102 (drug-induced gout), M103 

(gout due to impaired renal function), M104 (other secondary gout) and M109 

(gout, unspecified). Figure 3.5 shows the gout cases identified per definition. 

Controls: Individuals without gout from the UK Biobank were selected as 

controls to assemble the target dataset. Gender is recognised as a strong 

confounder in gout (Kuo et al., 2015), and because the UK Biobank is comprised 

by 53.4% of female participants, a random selection of controls would have led 

to an unequal distribution among gout cases and controls. Therefore, cases 

were matched to up to five controls based on gender. 
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These phenotype-genotype taget dataset were merged into a PLINK binary file, 

which underwent the QC procedures described in section 3.2.5. 

 

Figure 3.5 Venn diagram of gout cases from the UK Biobank, identified via self-reports, urate 

lowering treatment and hospital records.  
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3.2.6.3 PRSice script 

PRSice allows setting of multiple parameters, such as LD clumping, selection 

of p-value thresholds, inclusion of covariates to compute individual PRS, use of 

an external panel to compute LD calculations, etc. Table 3.2 gives a description 

of all the commands and settings used to generate the PRS for this project 

Briefly, LD clumping was set to an r2 >0.1 using a 500kb window; upper and 

lower p-value thresholds were set as 0 and 1, respectively, with increments of 

1.0x10-6. The use of an external LD reference panel is suggested when sample 

sizes of the target dataset are small. Because this project involved >40,000 

participants, the same target file was used as the LD reference panel. 
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Script: 

Rscript PRSice.R --dir . \ 
--prsice ./PRSice \ 
--base GUGC_SummaryStats.txt \ 
--target Gout_matched_dataset  \ 
--thread max \ 
--print-snp T \ 
--stat OR \ 
--binary-target T \ 
--no-clump F \ 
--clump-kb 500 \ 
--clump-r2 0.1 \ 
--clump-p 1 \ 
--perm 10000 \ 
--lower 0 \ 
--interval 0.000001 \ 
--upper 1 \ 
--out Gout_controls_PRS 

 

4 Table 3.2 PRSice commands used to generate the PRS for gout vs. controls. 

Command Description Selected parameter 

--base Base/Training dataset 
Gout GWAS Summary 
statistics (Kottgen et 

al., 2013) 

--target Target dataset, binary PLINK file Replication cohort 

--thread Number of thread Maximum 

--print-snp 
Generates an output with the SNPs that 
remain after clumping 

TRUE 

--stat 
Column header containing the effect size 
estimate 

Odds Ratios 

--binary-target 
Indicates if the target dataset includes a 
dichotomous phenotype 

TRUE 

--no-clump If true, PRSice do not compute LD clumping  FALSE 

--clump-kb Indicates the window for clumping 500 kb 

--clump-r2 Indicates the r2 threshold for clumping 0.1 

--clump-p Indicates the p value threshold for clumping 1 

--perm 
Number of permutation to generate the 
empirical p value 

10000 

--lower 
Indicates the starting p value threshold to be 
tested 

0 

--interval 
Indicates the step size of the p value 
threshold 

0.000001 

--upper 
Indicates the final p value threshold to be 
tested 

1 

--out Output name FILE_NAME 
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3.2.6.4 Statistical analysis 

Odds ratios (OR) and p values from the GWAS summary statistics were used 

to calculate the best PRS model, which was generated from testing different p 

value thresholds. The best-fit model was defined by the largest Nagelkerke’s R2 

value. Logistic regression was used to estimate the effect of the demographic 

variables for inclusion into the predictive models. To determine the predictive 

ability of the PRS, the demographics (which included age at recruitment, sex 

and body mass index (BMI)) and the combined model, the area under the 

receiving operatic characteristic curve (AUROC) was used. Logistic regressions 

and the AUROC were conducted using SPSS Statistics 24. 
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3.3 Results 

3.3.1 UK Biobank Cohort: Demographic characteristics 

The UK Biobank released dataset included 502,536 participants. After excluding 

participants without genetic data available, 488,288 individuals were selected 

for QC refinement, which resulted in 354,825 participants. Figure 3.6 

summarises the QC filters for ethnicity, kinship, gender mismatches, call rate 

and heterozygosity. Demographic characteristics, lifestyle information and 

comorbidities data are summarised in table 3.3. The resulting UK Biobank 

cohort was comprised by 46.1% men. The mean (SD) age and BMI were 56.96 

(7.91) years and 27.42 (4.76) kg/m2, respectively. The prevalence for diabetes, 

hypertension, hypercholesterolemia, ischaemic heart disease and cardiac 

failure were 4.18, 26.64, 12.29, 4.51 and 0.07, respectively.  

 

3.3.2 PRS Target dataset: Demographic characteristics 

Gout cases and controls (matched by gender) were derived from the quality 

controlled UK Biobank cohort. These samples and markers underwent a second 

stage of QC filters in PLINK. 7,448 gout cases, 39,959 controls, and 717,091 

genetic variants passed the QC parameters. These data integrated the target 

dataset for PRS calculations. It was comprised by 89.8% men, and their mean 

(SD) age, BMI and SU were 57.46 (7.94) years, 28.11 (4.53) kg/m2 and 5.92 

mg/dL, respectively. Table 3.4 summarises demographic, lifestyle and 

comorbidities data for cases and controls of the target dataset. 
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Figure 3.6 Flowchart indicating the selection of individuals for whom genetic data was available, 

and met the QC criteria.  

A total of 147,711 participants were removed from the released dataset after filtering for 
ethnicity, kinship, gender mismatches, missingness and heterozygosity. 
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Table 3.3 Demographic characteristics of the UK Biobank cohort. 

UK Biobank Demographics 

n=354,825 

Age at recruitment, years, mean 
(SD) 56.96 (7.91) 

Male sex, n (%) 165,379 (46.61) 

BMI, kg/m2, mean (SD) 27.42 (4.76) 
Waist circumference, cm, mean 
(SD) 90.44 (13.49) 

Alcohol intake, n (%)*  

Never 23,062 (6.50) 

Special occasions 37,104 (10.46) 

<1/week 39,064 (11.01) 

1-2/week 93,237 (26.28) 

3-4/week 85,926 (24.22) 

Daily or almost daily 76,178 (21.47) 

Smoking status, n (%)*  
Non-smoker 192,988 (54.39) 

Ex-smoker 124,915 (35.20) 

Current smoker 35,702 (10.06) 

Comorbidities, n (%)  

Diabetes Mellitus 14,825 (4.18) 

Hypertension 90,012 (26.64) 

Hypercholesterolemia 41,535 (12.29) 

Ischaemic Heart Disease 15,253 (4.51) 

Cardiac failure 235 (0.07) 
Chronic Kidney Disease 
categories*  

G1 (>90 ml/min 197,434 (55.64) 

G2 (60-90 ml/min) 132,468 (37.33) 

G3a (45-59 ml/min) 6,409 (1.81) 

G3b (30-44 ml/min) 992 (0.28) 

G4 (15-29 ml/min) 239 (0.07) 

G5 (<15 ml/min) 89 (0.03) 

*The following data were missing: alcohol intake for 0.07%, smoking satus for 0.34%, and CKD 

information for 4.85%. Diabetes, hypertension, hypercholesterolemia,ischaemic heart disease 

and cardiac failure were defined as present if they were self-reported as diagnosed by a doctor. 

Chronic Kidney Disease stages were defined as per the National Institute of Heath and Care 

Excellence (NICE) guidelines CG182.(NICE, 2015) 
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Table 3.4 Demographic characteristics of the PRS target dataset. 

  PRS Target Dataset 

 All  Gout cases Controls 

    n=7,448 n=39,959 

Age at recruitment, years, mean 
(SD) 57.46 (7.94) 60.11 (6.86) 57.46 (7.94) 

Male sex, n (%) 42,572 (89.80) 6,701 (89.97) 35,871 (89.77) 

BMI, kg/m2, mean (SD) 28.11 (4.53) 30.64 (4.98) 27.63 (4.28) 

SU, mg/dL, mean (SD) 5.92 (1.37) 6.65 (1.77) 5.78 (1.23) 

Alcohol intake, n (%)*    

Never 2,441 (5.15) 355 (4.77) 2,086 (5.22) 

Special occasions 3,410 (7.19) 455 (6.11) 2,955 (7.40) 
<1/week 4,151 (8.76) 442 (5.93) 3,709 (9.28) 

1-2/week 12,091 (25.50) 1,683 (22.60) 10,408 (26.05) 
3-4/week 12,615 (26.61) 2,012 (27.01) 10,603 (26.53) 

Daily or almost daily 12,660 (26.70) 2,489 (33.42) 10,171 (25.45) 
Smoking status, n (%)*    

Non-smoker 23,152 (48.84) 3,040 (40.82) 20,112 (50.33) 

Ex-smoker 18,849 (39.76) 3,711 (49.83) 15,138 (37.88) 

Current smoker 5,232 (11.04) 668 (8.97) 4,564 (11.42) 

Comorbidities, n (%)*    

Diabetes Mellitus 2,901 (6.12) 888 (11.92) 2,013 (5.04) 

Hypertension 15,690 (33.10) 4,241 (56.94) 11,449 (28.65) 

Hypercholesterolemia 7,655 (16.15) 2,031 (27.27) 5,624 (14.07) 

Ischaemic Heart Disease 3,466 (7.31) 1,002 (13.45) 2,464 (6.17) 

Cardiac failure 79 (0.17) 46 (0.62) 33 (0.08) 
Chronic Kidney Disease 
categories*    

G1 (>90 ml/min 26,335 (55.55) 3,034 (40.74) 23,301(58.31) 

G2 (60-90 ml/min) 19,472 (41.07) 3,629 (48.71) 15,843 (39.65) 

G3a (45-59 ml/min) 1,177 (2.48) 515 (6.91) 662 (1.66) 
G3b (30-44 ml/min) 280 (0.59) 181 (2.43) 99 (0.25) 
G4 (15-29 ml/min) 82 (0.17) 63 (0.85) 19 (0.05) 

G5 (<15 ml/min) 38 (0.08) 26 (0.35) 12 (0.03) 

*The following data were missing: alcohol intake for 0.08%, smoking satus for 0.37%, and CKD 

information for 0.75%. Diabetes, hypertension, hypercholesterolemia,ischaemic heart disease 

and cardiac failure were defined as present if they were self-reported as diagnosed by a doctor. 

Chronic Kidney Disease stages were defined as per the National Institute of Heath and Care 

Excellence (NICE) guidelines CG182.(NICE, 2015) 
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3.3.3 PRS of gout vs. controls 

A PRS for gout cases and controls was generated using PRSice, with the GUGC 

gout GWAS summary statistics as the base dataset, and the UK Biobank 

genotype data as the target dataset. The base dataset included 2,146,033 

variants, compared to 717,091 in the target dataset; 209,025 variants were 

found in common among both datasets. After applying the clumping 

parameters, 90,188 remained available to generate the PRS for all cases and 

controls. The best-fit model to distinguish between gout cases and controls, was 

defined by the highest Nagelkerke’s R2. Table 3.5 provides a list of different p-

value thresholds and the number of SNPs that contribute to each model. The 

greatest Nagelkerke’s R2 was 0.043, obtained with a p-value threshold of 

7.0x10-6 (Figure 3.7). The best-fit model was calculated from association data 

of 10 SNPs, including ABCG2, SLC2A9, SLC17A3, SLC22A11 and CLNK loci 

(Table 3.6). 

 

Table 3.5 PRSice results for a range of p-value thresholds and the number of SNPs that 

contributed to each model. The best-fit model was obtained at a p-value of 7.0x10-6 with a 
Nagelkerke’s R2 of 0.043. 

p-value 
threshold 

Nagelkerke's 
R2 

p-value 
# SNPs in the 

model 

1 9.63x10-5 0.101 90188 

0.1 2.2x10-4 0.012 15224 

0.01 8.8x10-4 7.54x10-7 2003 

0.001 5.3x10-3 2.83x10-34 267 

0.0001 0.02 1.02x10-122 43 

0.00001 0.041 2.24x10-235 13 

8.0x10-6 0.042 3.10x10-238 12 

7.0x10-6 0.043 3.69x10-247 10 

6.0x10-6 0.037 3.40x10-216 8 

3.0x10-6 0.041 6.55x10-231 6 
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Figure 3.7 PRSice bar plot indicating the PRS model fit across different p value thresholds.  

The highest Nagelkerke’s R2 (0.043) was obtained with a p value=7.0x10-6. 

 

Table 3.6 SNPs under the best-fit p value threshold included in the PRS model for gout cases 

vs controls. 

SNP Chr bp Gene P value 

rs7442295 4 9966380 SLC2A9 7.18x10-25 

rs4698036 4 10331294 Intergenic 5.56x10-18 

rs997219 4 10524671 CLNK 1.10x10-07 

rs2231142 4 89052323 ABCG2 4.98x10-32 

rs2622604 4 89078924 ABCG2 1.69x10-06 

rs16891234 4 9946163 SLC2A9 2.48x10-06 

rs8087353 18 70669839 Intergenic 4.99x10-06 

rs7017745 8 118311980 Intergenic 5.19x10-06 

rs9393672 6 25842605 SLC17A3 6.29x10-06 

rs2078267 11 64334114 SLC22A11 6.02x10-06 
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The mean (±SD) PRS for gout cases was 0.016 (±0.031) compared to 0.0019 

(±0.032) for controls; this difference was significant using an independent t-test 

(p-value <0.0001). PRS were divided into deciles to explore the proportion of 

cases and controls. We observed an increase in gout prevalence across PRS 

deciles, going from 15% at the 2nd decile to an 82% at the 10th decile. Figure 3.8 

shows the distribution of the scores for cases and controls and the proportion 

of cases and controls at each PRS decile. The predictive ability was assessed 

with the AUROC curve, which gave a 62% for the PRS model alone. The 

demographics model gave a 73% predictive ability, and included age, sex, BMI 

and SU into de regression model. The combination of the demographic 

characteristics and the PRS generated by the 10 SNPs generated a predictive 

ability of 75%. Figure 3.9 displays a comparison of the AUROC curves for the 

three models. 

 

 

Figure 3.8 Distribution of polygenic risk scores (PRS) among gout cases and controls.  

A) The horizontal lines represent the mean scores (0.016 for cases and 0.0019 for controls). The 
independent t-test showed a significant difference among groups (p <0.0001). B) Proportion of 

cases and controls at each decile of PRS.  
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Figure 3.9 Area under the receiver operating characteristics (AUROC) curve for the PRS model 

for gout vs. controls, compared to the demographics model, and combined model. 
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3.4 Discussion 

This chapter described the quality control checks conducted on the UK Biobank 

genotype data. Although the UK biobank performed an internal QC evaluation, 

only few samples and markers were removed from the released dataset and 

additional variables were provided to filter information according research 

interests. For this thesis, association studies and PRS calculations required a 

more stringent revision to control for population structure, relatedness, 

missingness, heterozygosity and variants deviating from HWE. These criteria 

allowed the exclusion of genotyping errors, samples mishandling and 

systematic biases. Designing and applying robust QC procedures is crucial 

when conducting genetic association studies, as poor quality data would 

compromise the reliability of associations, and in consequence the results of 

downstream analyses. This QC pipeline was used to examine the datasets 

designed for the PRS for gout, described in this chapter, and for the GWAS and 

PRS for gout vs. asymptomatic hyperuricaemia, described in chapter 4.  

PRS use the cumulative effects of genetic variants from GWAS summary 

statistics, and generate a score for each individual in an independent dataset 

(Euesden et al., 2014). The PRS model for gout cases vs. controls described 

here, was generated using the GUGC gout GWAS summary statistics published 

by Köttgen et al (Kottgen et al., 2013) as the training dataset, and the UK 

Biobank dataset containing genotype data for gout cases and controls as the 

test dataset. Köttgen’s group published another GWAS for SU variation and 

gout risk (Adrienne Tin et al., 2019) that included >8 million SNPs for >400,000 

individuals (including 13, 179 gout cases); and although using these GWAS 

summary statistics would have increased the SNPs in common between the 

base and test datasets, Tin’s GWAS included genetic data of several UK 
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Biobank participants. Therefore, an alternative training dataset, though smaller, 

was used to avoid samples overlapping which can result in a significant inflation 

of the association results between the PRS and the phenotype.  

PRS have the potential of identifying variants, that although not GWAS 

significant, when added up to other variants with small effects do contribute or 

are associated with a specific phenotype (S. M. Purcell et al., 2009). The PRS 

generated by PRSice in this study, showed a significant association with gout 

and were generated from 10 SNPs. Among these variants were the well-known 

loci located in the urate transporters ABCG2 and SLC2A9 genes (C.-J. Chen et 

al., 2018; Vitart et al., 2008), other variants located in or near SLC17A3, 

SLC22A11, CLNK and other intergenic regions. SLC22A11 and SLC17A3 are 

sodium phosphate transporters, and variants located in these genes have been 

associated to lower levels of serum urate and gout susceptibility, respectively 

(Dehghan et al., 2008; Riches, Wright, & Ralston, 2009; Masayuki Sakiyama, 

Matsuo, Shimizu, et al., 2016; Masayuki Sakiyama et al., 2014). CLNK is a 

cytokine-dependent cell linker that function as a positive regulator of 

immunoreceptor signalling (J. Yu et al., 2001). Several candidate gene 

association studies and whole genome sequencing data have shown that SNPs 

located in CLNK are associated with gout occurrence, with ORs ranging from 

1.36 to 2.22 in Han Chinese population (T.-b. Jin et al., 2015), and OR=1.37 in 

Polynesian population (Ji et al., 2021). It has been hypothesised that CLNK 

contribute to gout risk by modulating the response upon cytokine stimulation via 

the STAT signalling pathway (Yao Zhang et al., 2016), confirming the 

importance of immune response in gout pathogenesis.  

When the spread of PRS was compared among groups, the mean of gout cases 

was significantly higher than the mean PRS of controls. However, several 
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controls also had high PRS, in fact, the individual with the highest PRS was a 

control. This can indicate that although having risk loci, protective variants may 

be present as well, which reduces the risk of developing gout. Low PRS were 

also present in gout cases, which might indicate that even if genetic risk variants 

were not present, external factors (e.g. lifestyle factors) might be conditioning 

gout risk. These observations highlight the importance of performing more 

extensive genetic analyses to address the missing heritability, and of exploring 

additional environmental factors affecting the risk of gout (Chaudhury et al., 

2018).  

The predictive ability of the best-fit PRS model alone was 62%, compared to a 

73% for demographic characteristics and 75% for the combined model. 

Previous studies have reported the use of polygenic risk scores to predict gout; 

however, their method differs from ours because they have used the association 

results of GWAS hits for serum urate variation. For instance, the largest GWAS 

published in 2019 by Tin et al conducted a PRS using the 187 SNPs that 

showed a significant association with SU to calculate risk for gout in UK Biobank 

participants. Their results showed an AUROC of 67% for genetic information 

alone and 84% when combined with demographic data (Adrienne Tin et al., 

2019). This has been validated by Zhang & Lee in an independent cohort 

(MyCode Cohort) using 110 variants associated with SU, observing an AUROC 

of 64% for the PRS model and 80% for the demographics and PRS combined 

model (Yanfei Zhang & Lee, 2021). Another study has used PRS to determine 

their association with gout age of onset, presence of tophaceous gout and 

number of flares. In this study, they conducted a GWAS for gout using all the 

participants from the UK Biobank, and used the 12 independent SNPs that 

reached genome-wide significance to construct a genetic risk score for each 

individual of three independent cohorts. They observed a significant association 
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with gout (OR=1.21) and a negative association with age of onset (β=0.43) 

(Sumpter et al., 2019). 

Although the predictive ability of the combined model generated in this project 

was lower than those generated in previous studies, ours was based only on 

the effect of 10 SNPs. Further research is required to determine whether this 

can be improved by using imputed data, which would certainly increase the 

number of common SNPs between the base and the test datasets. Several 

studies have shown that the predictive power can be enhanced by including 

more SNPs into the PRS, beyond those that reached genome-wide significance 

(Mavaddat et al., 2019; S. M. Purcell et al., 2009). On the other hand, this study 

was limited in terms of the base dataset used to generate the model, which had 

a lower number of gout cases. It would be interesting to evaluate if, when 

available, using larger summary statistics improve the PRS model. 

PRS approaches have demonstrated to be suitable for various applications. 

First, in determining shared genetic components among traits; for instance 

among schizophrenia and bipolar disorder (S. M. Purcell et al., 2009), or among 

sporadic early-onset Alzheimer’s disease (AD) and late-onset AD (Chaudhury 

et al., 2018). Second, in identifying individuals at higher risk of developing 

complex diseases. This is expected to benefit from a preventive medicine 

perspective, by initiating environmental or lifestyle modifications that are 

important in a disease progression, but also for the selection of participants for 

clinical trials (Hu et al., 2013). Introducing preventive measures is critical in gout 

management, and people at higher risk of developing the disease or presenting 

a more severe form, could benefit from early interventions such as lifestyle 

changes. Additionally, there are no clinical trials that have looked at the impact 

of long-term treat-to-target strategy with ULT, and this has become a necessity 
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in gout research (Perez-Ruiz & Dalbeth, 2019). In this regard, PRS models 

could play an important role in the design of the trial. 

This study presented several limitations. First, gout was only defined via self-

reports, ULT use and hospital records, rather than using the ACR/EULAR 

classification criteria. Second, age is a well known confounder for gout, however 

we only matched cases and controls by gender. This was done in order to 

maximise the number of controls in our datasets, and we controlled for the 

confounding effect by adding age as a covariate in the demographics and 

combined models. However, we acknowledge that matching by age and gender 

could have been more appropriate to determine their effect on gout risk. 

Additionally, data on medication were not included as covariates in the PRS 

model. It is well known that several diuretics alter SU levels and may contribute 

to an increased risk of gout. This is suggested for future studies to determine 

whether the inclusion of medication and comorbidity data improves the 

predictive ability of the demographics model. Finally, the test dataset was 

comprised by direct genotyping data instead of imputed data. While this 

represents a computationally intensive process, it might well improve the 

predictive power and is suggested as future research. 

 

In conclusion, this chapter stablished the QC pipeline to clean genotype data 

for GWAS and PRS analyses. The PRS model for gout was generated from 10 

SNPs, that included urate transporters and one gene involved in the immune 

response. Validation in independent datasets is required. 

 



Chapter 4. GWAS and PRS of Asymptomatic Hyperuricaemia vs. Gout 

 

139 

 

4 Chapter 4. Genome Wide Association Study and 

Polygenic Risk Score of Asymptomatic Hyperuricaemia 

vs. Gout. 

4.1 Introduction 

Gout is a common form of inflammatory arthritis caused by the deposition of 

monosodium urate (MSU) crystals. Elevated serum urate (SU) concentration is the 

precursor to MSU crystal deposition, and the onset of gout (Nicola Dalbeth et al., 

2016). However, the majority of people with hyperuricemia do not develop gout. For 

instance, in the USA, the prevalence of hyperuricaemia (defined as SU >7.0 mg/dL) 

is 20%, while that of gout is 3.9% (Chen-Xu, Yokose, Rai, Pillinger, & Choi, 2019). 

The reason(s) why only some people with hyperuricaemia develop gout is poorly 

understood. Genome wide association studies (GWAS) have improved the 

understanding of the pathophysiology of hyperuricaemia and gout over the last 10-

15 years. For instance, genetic variants located in urate transporters such as the 

ABCG2, SLC2A9, and SLC22A11 genes have been identified as risk loci for both 

hyperuricemia and gout (Dehghan et al., 2008; Kolz et al., 2009; Kottgen et al., 

2013; S. Li et al., 2007). Additional genetic variants such as GCKR, PDZK1 and 

ALDH2 that play important roles in glucose, cholesterol and alcohol metabolism, 

respectively, have been associated with both phenotypes (Kottgen et al., 2013; C. 

Li et al., 2015; H. Matsuo et al., 2016; Phipps-Green et al., 2016). However, the 

genetic variants associated with progression from hyperuricaemia to gout remain 

poorly understood. To date, only a single GWAS in 6,009 Japanese adults (2,860 

with gout) has examined this, and revealed two novel loci: CNTN5 and MIR302F, 
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that participate in immune and inflammatory responses (Kawamura et al., 2019). 

Further analyses in independent populations and larger sample sizes are needed 

to improve the understanding of the molecular mechanisms involved in transitioning 

from asymptomatic hyperuricaemia to gout.  

Thus, the purpose of this study was to examine the genetic variants associated with 

transition from asymptomatic hyperuricaemia to gout. In order to meet this 

objective, a GWAS using gout cases and asymptomatic hyperuricaemia controls 

(defined as SU ≥6.0 mg/dL) derived from the UK Biobank resource was performed. 

A threshold of ≥6.0 mg/dL to define AH was chose, as the risk of incident gout 

increases above this SU level (N. Dalbeth et al., 2018). Genotype data was used 

to develop a polygenic risk score (PRS) to predict gout-case and asymptomatic 

hyperuricaemia-control status. Finally, in order to compare the effect of the 

independent SNPs from the gout vs. asymptomatic hyperuricaemia GWAS, two 

additional GWAS were performed using gout cases vs. normouricaemia controls 

with SU <6.0 mg/dL, and gout vs. normouricaemia controls with SU <7.0 mg/dL. 
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4.2 Materials and Methods 

4.2.1 UK Biobank cohort 

This study was conducted using data from the UK Biobank resource (Project ID 

45987). Details about the UK Biobank, the samples processing, genotyping arrays 

and internal quality control criteria have been described in Chapter 3, sections 

3.2.1-3.2.4. Briefly, the UK Biobank is a prospective study of ~500,000 participants, 

aged 40-60 years and recruited across England, Wales and Scotland between the 

years 2006 and 2010. Data were collected on lifestyle and sociodemographic 

information, cognitive function, health status, and family medical history. 

Participants had standard physical and functional measurements, and provided 

blood samples for genetic analyses. Details about recruitment and samples 

processing for genotyping are described elsewhere (Sudlow et al., 2015; Welsh, 

2017). 

 

4.2.2  Subjects 

This study included the generation of a GWAS and a PRS of gout cases vs 

asymptomatic hyperuricaemia controls, and a GWAS of gout cases vs 

normouricaemia controls (Figure 4.1). Therefore, three different phenotypes were 

derived from the UK Biobank cohort. The phenotypes were defined as follows: 

Gout cases: Gout was defined as present if any of the following criteria were met: 

self-reported physician diagnosed gout; urate lowering therapy (ULT) prescription 

without a hospital diagnosis of lymphoma or leukaemia (ICD-10 codes C81-C96); 

or a primary or secondary diagnosis of gout in hospital discharge letters using the 

ICD-10 codes M10, M100-M14, and M109. Participants with self-reported physician 
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diagnosed gout were excluded if their SU was <6.0 mg/dL and they did not report 

prescription of ULT at the UK Biobank visit.  

Asymptomatic hyperuricaemia controls: Participants with SU ≥6.0 mg/dL and not 

classified as gout. Hyperuricaemia is usually defined as SU ≥6.8 mg/dL, which is 

the supersaturation concentration under physiological conditions (Loeb, 1972), or 

SU ≥7.0 mg/dL as per the National Health and Nutrition Examination Survey (PPC) 

definition (Zhu et al., 2011). However, for this study, a threshold of ≥6.0 mg/dl was 

chosen as it associates with incident gout in prospective studies (N. Dalbeth et al., 

2018). 

Normouricaemia controls: Participants with SU <6.0 mg/dL and not classified as 

gout were considered as normouricaemia controls. Given the uncertainty around 

definition of normal SU, for example SU <6.0 mg/dL being the treatment threshold 

for treat-to-target ULT (Ruoff & Edwards, 2016), while epidemiological studies use 

a cut-off of <7.0 mg/dl (Zhu et al., 2011), another group of normouricaemia controls 

was ascertained with SU <7.0 mg/dl and not classified as gout. 
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Figure 4.1 Study design. Workflow for the discovery and replication analyses.  

QC, quality control; SD, standard deviation; HWE, Hardy-Weinberg equilibrium; SNPs, single nucleotide polymorphisms; PCs, principal component 
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4.2.3 Genotyping quality control 

The UK Biobank centrally performed QC procedures have been described in 

Chapter 3 section 3.2.4. After excluding the individuals whose genotyping data did 

not meet the QC criteria (i.e. non-European ancestry, gender mismatches, kinship, 

and missingness and heterozygosity extreme outliers), 354,825 participants 

comprised the final working dataset. For this study, two cohorts were derived: Gout 

vs. asymptomatic hyperuricaemia, and gout vs. normouricaemia. In order to reduce 

the computing time when conducting further stringent QC filters, both cohorts were 

generated by extracting the individuals of interest and assigning the phenotype that 

corresponded. Additional QC refinement was conducted using the command line 

software PLINK version 1.9 (Chang et al., 2015; S. Purcell et al., 2007). All the 

commands used for each parameter are detailed in Chapter 3 section 3.2.5. Briefly, 

individuals with a kinship coefficient equivalent to second degree (or greater) 

relatives were excluded. Individuals were also excluded if they had a heterozygosity 

±3 standard deviations (SD) from the mean, or a call rate <90%. Markers with a call 

rate <95%, or those deviating from Hardy-Weinberg equilibrium (Bonferroni 

corrected p value threshold p=6.82x10-8) were removed from the dataset.  

 

4.2.4 Genome-wide association studies 

Gout vs. AH GWAS: This cohort was divided into two datasets: 70% (n=61,882) 

was used as the discovery dataset, and the remaining 30% (n=26,521) was used 

as the validation dataset for replication analysis and PRS generation (Figure 4.1).  
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Gout vs. normouricaemia GWAS: For this cohort, two separate GWAS were 

conducted, using gout cases vs. 64,424 controls with SU <6.0 mg/dL, and gout 

cases vs. 79,531 controls with SU <7.0 mg/dL. 

Discovery and replication association tests were performed using PLINK v1.9. 

Odds ratios (OR) and 95% confidence intervals (CI) were computed using additive 

logistic regression with the following command: 

 

>plink --bfile INPUT_BINARY-FILE_NAME --logistic --ci 0.95           
--adjust --covar COVARIATES_FILE.txt --out OUTPUT_FILE_NAME 

 

Binary files containing individuals’ information, genotype data and genetic markers 

information (.fam, .bed, .bim files, respectively) for each cohort, were used as the 

input file. Given that this study involved the analysis of genetic variants and their 

association with a binary outcome (i.e. gout cases vs. asymptomatic 

hyperuricaemia controls, and gout cases vs. normouricaemia controls), logistic 

regression was performed, with the inclusion of age when attended the baseline 

visit, sex and the first 10 principal components (PCs) as covariates. To control for 

multiple testing, a genome-wide significance threshold of 5.0x10-8 was used. Figure 

4.2 provides an overview of the input files and covariates file content. 
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Figure 4.2 Overview of PLINK binary files format and covariates file. 

Adapted from (Marees et al., 2018). 
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Genetic variants might be correlated due to linkage disequilibrium (LD); thus, 

despite reaching genome-wide significance, they would not be independent. 

Therefore, to determine the number of independent loci from the GWAS analysis, 

LD clumping was performed using the following command, where SNPs with a p 

value <1x10-5, r2 >0.1, and a 500kb window from the index SNPs were assigned to 

the clump: 

 

>plink --bfile INPUT_BINARY-FILE_NAME --clump SUMMARY-
STATS.assoc.logistic --clump-p1 0.00000001 --clump-p2 0.00001   
--clump-r2 0.1 --clump-kb 500 --out OUTPUT_FILE_NAME 

 

Additionally, pairwise LD was further analysed using the R package LDlinkR 

(Myers, Chanock, & Machiela, 2020). This package provides access to the web-

based tool LDlink, which is designed to explore variation and LD structure across 

26 population groups, using the Phase 3 release of the 1000 Genomes Project 

(1000G) as the reference panel. LDlink includes multiple applications, presented in 

eight different modules: LDassoc, LDexpress, LDhap, LDmatrix, LDpair, LDpop, 

LDproxy and LDtrait. LDmatrix is the module that allows the generation of heat 

maps of pairwise comparisons, based on LD metrics (i.e. DI and R2) given a list of 

SNPs with RS identifiers and a population of interest (Machiela & Chanock, 2015). 

For this study, the SNPs identified as independent located in the same gene or less 

than 500kb apart were included in the pairwise analysis. Finally, HaploView was 

used to generate the LD plot based on R2 values (Barrett, Fry, Maller, & Daly, 2004). 
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4.2.5 Annotation 

Annotation of GWAS results was conducted using the Functional Mapping and 

Annotation of Genome Wide Association Studies (FUMA-GWAS). FUMA is a web-

based post-GWAS tool that integrates different repositories including LD patterns 

and functional data of a wide variety of SNPs, through two separate processes: 

SNP2GENE and GENE2FUNC. For this project, the SNP2GENE tool was used to 

confirm independent and significant SNPs, and to map them to genes and to 

generate the Manhattan plots. SNP2GENE requires the summary statistics in 

PLINK format as the input file, it then identifies independent SNPs based on their 

LD structure and the parameters selected for the analysis, and independent SNPs 

are finally mapped to genes according to their functional consequences (i.e. 

physical position, expression quantitative trait loci and chromatin interactions). 

Table 4.1 describes the selected parameters for the identification of lead SNPs 

using the SNP2GENE tool. (Watanabe, Taskesen, van Bochoven, & Posthuma, 

2017) 

 

Table 4.1 FUMA-SNP2GENE parameters for lead SNPs identification 

Parameter  Value 

Sample size N1 

Maximum p value of lead SNPs 5.0 x 10-8 

Maximum p value cut-off 0.05 

R2 threshold to define independent significant SNPs 0.1 

Reference panel population 1000G Phase 3 (EUR)2 

Minimum Minor Allele Frequency 0.01 

Maximum distance between LD blocks to merge into a locus 500kb 

161882 for gout vs Asymptomatic hyperuricaemia GWAS, 85580 for gout vs SU <7.0 mg/dL, and 
71,473 for gout vs SU <6.0 mg/dL. 2Phase 3 release of the 1000 Genomes Project, European 
population. 
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4.2.6 Replication analysis: gout cases vs. asymptomatic hyperuricaemia 

controls 

For replication analysis, the variants that reached genome wide significance in the 

discovery analysis were tested for association with gout in the replication cohort. 

Logistic regression was adjusted for sex, age, and the first 10 PCs. A Bonferroni 

corrected p value of <0.004 (0.05/13) was used to determine significant 

associations in the replication analysis. The results from the discovery GWAS and 

the replication analysis were combined by meta-analysis using PLINK. The fixed-

effects model was used to estimate pooled ORs and 95% CI, and Cochran’s Q test 

p values and I2 values were used to assess heterogeneity.  

 

4.2.7 Additional statistical analyses 

Baseline data were summarised using mean and standard deviation (SD) for 

continuous variables, and number (%) for categorical variables. Independent 

sample t-test and chi-square test were used to compare continuous and categorical 

data respectively.  

As previous GWAS (Kawamura et al., 2019; Nakayama et al., 2017) have used a 

cut-off of 7.0 mg/dl to define hyperuricaemia, a sensitivity analysis was conducted 

to evaluate if the association of GWAS hits and gout remained significant if controls 

had a SU ≥7.0 mg/dL. 

Linear regression was used to examine the effect of GWAS hits on SU levels. This 

was performed using the full cohort, and adjusted for sex and age at recruitment. 

Beta coefficients and standard errors (SE), and adjusted Beta coefficients and SE 

were calculated.  
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4.2.8 Polygenic risk scoring of gout vs. asymptomatic hyperuricaemia 

PRS was calculated using PRSice-2 (S. W. Choi & O'Reilly, 2019). The discovery 

GWAS summary statistics were used as the base dataset, while the replication 

cohort genotype-phenotype data were used as the target dataset. Clumping 

parameters in PRSice were set to an r2 >0.1 and a 500kb window from the index 

SNPs. The lower and upper p value thresholds were set as 0 and 1, respectively, 

in increments of 1.0x10-6. PRS was generated using the following commands and 

parameters (Table 4.2 includes a description of each command). Logistic 

regression was used to estimate the effect of age at recruitment, sex and BMI using 

SPSS Statistics 24. AUROC was used to evaluate the predictive ability of the best-

fit PRS, the demographic characteristics and combined models. 
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Rscript PRSice.R --dir . \ 
--prsice ./PRSice \ 
--base DISCOVERY-SUMMARY-STATS.assoc.logistic \ 
--target REPLICATION-COHORT_BINARY-FILE_NAME \ 
--thread max \ 
--print-snp T \ 
--stat OR \ 
--binary-target T \ 
--no-clump F \ 
--clump-kb 500 \ 
--clump-r2 0.1 \ 
--clump-p 1 \ 
--perm 10000 \ 
--lower 0 \ 
--interval 0.000001 \ 
--upper 1 \ 
--out AH_gout_PRS_kb500 

 

Table 4.2 PRSice commands used to generate the PRS. 

Command Description Selected parameter 

--base Base/Training dataset 
Discovery GWAS 

Summary statistics 

--target Target dataset Replication cohort 

--thread Number of thread Maximum 

--print-snp 
Generates an output with the SNPs that 
remain after clumping 

TRUE 

--stat 
Column header containing the effect size 
estimate 

Odds Ratios 

--binary-target 
Indicates if the target dataset includes a 
dichotomous phenotype 

TRUE 

--no-clump If true, PRSice do not compute LD clumping  FALSE 

--clump-kb Indicates the window for clumping 500 kb 

--clump-r2 Indicates the r2 threshold for clumping 0.1 

--clump-p Indicates the p value threshold for clumping 1 

--perm 
Number of permutation to generate the 
empirical p value 

10000 

--lower 
Indicates the starting p value threshold to be 
tested 

0 

--interval Indicates the step size of the p value threshold 0.000001 

--upper 
Indicates the final p value threshold to be 
tested 

1 

--out Output name FILE_NAME 
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4.3 Results 

4.3.1 Demographic characteristics 

Gout vs. Asymptomatic hyperuricaemia: Following genotype QC filters, data for 

7,049 gout cases and 81,354 AH controls were included. The entire cohort was 

comprised of 80.77% men, and their mean (SD) age, BMI, and SU were 57.87 

(7.77) years, 29.63 (4.81) kg/m2, and 6.92 (0.88) mg/dL, respectively. This cohort 

was divided into the discovery and replication datasets (Table 4.3, Figure 4.1). The 

two datasets had comparable disease and demographic characteristics. 

 

Gout vs. normouricaemia: Two separate GWAS were conducted using the 7,049 

gout cases, comprised by 91.91% men. The mean (SD) age, BMI and SU were 

60.09 (6.86) years, 30.74 (4.95) kg/m2 and 6.75 (1.77) mg/dL, respectively. 79,531 

controls with SU <7.0 mg/dL and 64,424 controls with SU <6.0 mg/dL were included 

in each GWAS. These groups were comprised of 41.85% and 33.94% men, and 

their mean (SD) age, BMI and SU were 56.75 (7.95) and 56.53 (7.99) years; 27.06 

(4.62) and 26.61 (4.50) kg/m2; and 4.92 (1.07) and 4.57 (0.86) mg/dL, respectively. 

Table 4.4 describes the demographics, lifestyle and comorbidities for gout cases 

and normouricaemia controls. 
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Table 4.3 Demographic, life-style and comorbidities for gout cases and asymptomatic hyperuricaemia controls of the 

UK Biobank 

  
Discovery GWAS Replication stage 

 
All  Gout cases Controls Gout cases  Controls 

 n=88,403 n=4,934 n=56,948 n=2,115 n=24,406 

Age at recruitment, years, mean (SD) 57.87 (7.77) 60.11 (6.88) 57.67 (7.82) 60.06 (6.81) 57.69 (7.80) 

Male sex, n (%) 71,401 (80.77) 4,529 (91.79) 45,506 (79.91) 1,950 (92.20) 19,416 (79.55) 

BMI, kg/m2, mean (SD) 29.63 (4.81) 30.79 (4.96) 29.53 (4.78) 30.62 (4.93) 29.53 (4.78) 

SU, mg/dL, mean (SD) 6.92 (0.88) 6.74 (1.78) 6.94 (0.76) 6.77 (1.74) 6.93 (0.75) 

Alcohol intake, n (%)*      

Never 4,397 (4.97) 221 (4.48) 2,822 (4.96) 85 (4.02) 1,269 (5.20) 

Special occasions 6,698 (7.58) 272 (5.51) 4,405 (7.74) 115 (5.44) 1,906 (7.81) 

<1/week 7,588 (8.58) 278 (5.63) 5,006 (8.79) 128 (6.05) 2,176 (8.92) 

1-2/week 21,908 (24.78) 1,093 (22.15) 14,190 (24.92) 496 (23.45) 6,129 (25.11) 

3-4/week 23,370 (26.44) 1,351 (27.38) 15,035 (26.40) 589 (27.85) 6,395 (26.20) 

Daily or almost daily 24,365 (27.56) 1,710 (34.66) 15,448 (27.13) 701 (33.14) 6,506 (26.66) 

Smoking status, n (%)* 
     

Non-smoker 41,778 (47.26) 1,998 (40.49) 27,243 (47.84) 862 (40.76) 11,675 (47.84) 

Ex-smoker 37,705 (42.65) 2,481 (50.28) 23,871 (41.92) 1,065 (50.35) 10,288 (42.15) 

Current smoker 8,590 (9.72) 434 (8.80) 5,613 (9.86) 183 (8.65) 2,360 (9.67) 

Comorbidities, n (%)      

Diabetes Mellitus 5,389 (6.10) 589 (11.94) 3,205 (5.63) 245 (11.58) 1,350 (5.53) 

Hypertension 35,776 (40.47) 2,824 (57.24) 22,206 (38.99) 1,241 (58.68) 9,505 (38.95) 

Hypercholesterolemia 15,831 (17.91) 1,368 (27.73) 9,737 (17.10) 585 (27.66) 4,141 (16.97) 

Ischaemic Heart Disease 6,817 (7.71) 666 (13.50) 4,051 (7.11) 290 (13.71) 1,810 (7.42) 

Cardiac failure 133 (0.15) 28 (0.57) 62 (0.11) 18 (0.85) 25 (0.10) 

Chronic Kidney Disease stages*      
G1 (>90 ml/min 39,800 (45.02) 1,962 (39.76) 25,849(45.39) 855 (40.43) 11,134 (45.62) 

G2 (60-90 ml/min) 43,774 (49.52) 2,434 (49.33) 28,260 (49.62) 1,026 (48.51) 12,054 (49.39) 

G3a (45-59 ml/min) 3,722 (4.21) 343 (6.95) 2,258 (3.97) 159 (7.52) 962 (3.94) 

G3b (30-44 ml/min) 792 (0.89) 138 (2.80) 419 (0.74) 40 (1.89) 195 (0.80) 

G4 (15-29 ml/min) 213 (0.24) 41 (0.83) 106 (0.19) 22 (1.04) 44 (0.18) 

G5 (<15 ml/min) 51 (0.06) 13 (0.26) 19 (0.03) 12 (0.57) 7 (0.03) 

*The following data were missing: alcohol intake for 0.09%, smoking satus for 0.73%, and CKD information for 0.06%. 
Diabetes, hypertension, hypercholesterolemia,ischaemic heart disease and cardiac failure were defined as present if 
they were self-reported as diagnosed by a doctor. Chronic Kidney Disease stages were defined as per the National 
Institute of Heath and Care Excellence (NICE) guidelines CG182.(NICE, 2015). 
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Table 4.4 Demographic, life-style and comorbidities for gout cases and normouricaemia controls of the UK Biobank. 

 Gout vs SU<7.0 mg/dL Gout vs SU<6.0 mg/dL 

 Gout cases Controls Gout cases  Controls 

  n=7,049 n=79,531 n=7,049 n=64,424 

Age at recruitment, years, mean (SD) 60.09 (6.86) 56.75 (7.95) 60.09 (6.86) 56.53 (7.99) 

Male sex, n (%) 6,479 (91.91) 33,280 (41.85) 6,479 (91.91) 21,867 (33.94) 

BMI, kg/m2, mean (SD) 30.74 (4.95) 27.06 (4.62) 30.74 (4.95) 26.61 (4.50) 

SU, mg/dL, mean (SD) 6.75 (1.77) 4.92 (1.07) 6.75 (1.77) 4.57 (0.86) 

Alcohol intake, n (%)*     
Never 306 (4.35) 5,387 (6.78) 306 (4.35) 4,572 (7.10) 

Special occasions 387 (5.50) 8,713 (10.96) 387 (5.50) 7,444 (11.56) 

<1/week 406 (5.77) 8,968 (11.28) 406 (5.77) 7,588 (11.79) 

1-2/week 1,589 (22.57) 21,254 (26.74) 1,589 (22.57) 17.311 (26.89) 

3-4/week 1,940 (27.56) 19,156 (24.10) 1,940 (27.56) 15,183 (23.58) 

Daily or almost daily 2,411 (34.25) 16,006 (20.14) 2,411 (34.25) 12,2856 (19.08) 

Smoking status, n (%)*     
Non-smoker 2,860 (40.57) 44,226 (55.61) 2,860 (40.57) 36,718 (56.99) 

Ex-smoker 3,546 (50.31) 27,057 (34.02) 3,546 (50.31) 21,036 (32.65) 

Current smoker 617 (8.75) 7,995 (10.05) 617 (8.75) 6,465 (10.04) 

Comorbidities, n (%)     
Diabetes Mellitus 834 (11.83) 2,962 (3.72) 834 (11.83) 2,235 (3.47) 

Hypertension 4,065 (57.67) 18,778 (23.61) 4,065 (57.67) 13,644 (21.18) 

Hypercholesterolemia 1,953 (27.71) 8,942 (11.24) 1,953 (27.71) 6,517 (10.12) 

Ischaemic Heart Disease 956 (13.56) 3,107 (3.91) 956 (13.56) 2,158 (3.35) 

Cardiac failure 46 (0.65) 32 (0.04) 46 (0.65) 18 (0.03) 

Chronic Kidney Disease categories*     
G1 (>90 ml/min 2,798 (39.72) 48,410 (60.91) 2,798 (39.72) 41,026 (63.73) 

G2 (60-90 ml/min) 3,477 (49.35) 29,868 (37.58) 3,477 (49.35) 22,617 (35.13) 

G3a (45-59 ml/min) 502 (7.13) 1,084 (1.36) 502 (7.13) 683 (1.06) 

G3b (30-44 ml/min) 180 (2.56) 83 (0.10) 180 (2.56) 39 (0.06) 

G4 (15-29 ml/min) 63 (0.89) 20 (0.03) 63 (0.89) 8 (0.01) 

G5 (<15 ml/min) 25 (0.35) 11 (0.01) 25 (0.35) 6 (0.01) 

*The following data were missing: alcohol intake for 0.07%, smoking satus for 0.32%, and CKD information for 0.07%. 
Diabetes, hypertension, hypercholesterolemia,ischaemic heart disease and cardiac failure were defined as present if 
they were self-reported as diagnosed by a doctor. Chronic Kidney Disease stages were defined as per the National 
Institute of Heath and Care Excellence (NICE) guidelines CG182.(NICE, 2015)  
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4.3.2  GWAS: Gout vs. Asymptomatic Hyperuricaemia 

An additive logistic regression was performed to test the association between gout 

and 710,030 genetic variants. Thirty-four SNPs reached genome wide significance 

(p<5.0x10-8) and after filtering for LD (r2<0.1), 13 SNPs were identified as 

independent associations. Figure 4.3 shows the Manhattan plot for this GWAS. 

These 13 lead SNPs were selected for the replication study, where they were tested 

for association with gout in the remaining 30% of the dataset. Successful replication 

was defined if the p value was < 0.004. Summary results for both the discovery and 

the replication analyses are shown in Table 4.5. The SNP with the greatest effect 

was rs2231142 in ABCG2 gene with aOR=1.66 (2.05x10-78) in the discovery stage, 

and aOR=1.64 (1.17x10-32) in the replication stage. This was followed by a novel 

locus: rs1229984 in ADH1B gene with aOR=1.51, p=5.00x10-12; and aOR=1.44, 

p=4.77x10-5 for the discovery and replication analysis, respectively. The remaining 

SNPs were located in or near GCKR, PPM1K-DT, SLC2A9, MEPE, 

LOC105377323, and SLC22A11. Although an r2<0.1 was set as the threshold to 

determine independent associations in PLINK and FUMA, because eight SNPs 

were located in chromosome 4, near the ABCG2 locus, additional pairwise LD 

comparisons were conducted using LDlinkR and Haploview for those variants 

located <500kb apart (Figure 4.4). This analysis did not show evidence of tight LD, 

and the 13 SNPs were retained as independent associations for further analyses. 

A sensitivity analysis was conducted to examine whether the association between 

the 13 lead SNPs and gout remained significant when controls with asymptomatic 

hyperuricaemia with SU <7.0 mg/dL were excluded. Logistic regression was 
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adjusted for age and sex, and corrected for multiple testing using Bonferroni. For 

all variants, the ORs diminished in magnitude but remained significant (Table 4.6). 
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Figure 4.3 Manhattan plot of the discovery GWAS of gout vs. AH (SU ≥6.0 mg/dL) controls.  

The y-axis shows –log10 P values ordered by chromosomal position on the x-axis. The horizontal dashed-line represents genome wide significance threshold (5.0x10-

8). 
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Table 4.5 Summary of GWAS and replication analysis of 13 lead SNPs in gout cases and AH controls (SU ≥6.0 mg/dL). 

 

1Fixed-effects meta-analysis of the discovery GWAS and the replication analysis. 
2Adjusted for age, sex, and 10 first PCs 
A1, allele 1/effect allele; Bp, base pair position; Chr, chromosome; Freq, frequency; OR, Odds Ratios; SNP, single nucleotide polymorphism  

      
Discovery GWAS Replication stage Meta-Analysis1 

SNP Chr bp Gene A1 Freq aOR (95% CI)2 P value aOR (95% CI)2 P value aOR (95% CI)2 P value 
Cochrane's Q 

p value 
I2 

rs1260326 2 27730940 GCKR T 0.41 1.13 (1.08-1.17) 3.54x10-08 1.15 (1.08-1.23) 2.54x10-05 1.14 (1.10-1.18) 5.10x10-12 0.61 0 

rs2231142 4 89052323 ABCG2 T 0.14 1.66 (1.58-1.76) 2.05x10-78 1.64 (1.51-1.78) 1.17x10-32 1.65 (1.58-1.73) 3.33x10-109 0.75 0 

rs13120400 4 89033527 ABCG2 C 0.28 0.82 (0.78-0.86) 1.56x10-16 0.84 (0.78-0.91) 3.43x10-06 0.83 (0.79-0.86) 3.66x10-21 0.50 0 

rs7672194 4 89126647 ABCG2 T 0.48 1.16 (1.11-1.21) 3.21x10-12 1.15 (1.08-1.23) 1.13x10-05 1.16 (1.12-1.20) 1.58x10-16 0.88 0 

rs4693211 4 89249061 PPM1K-DT C 0.07 1.41 (1.31-1.52) 6.97x10-20 1.26 (1.12-1.42) 1.21x10-04 1.37 (1.28-1.45) 1.55x10-22 0.11 61.62 

rs28793136 4 89216768 PPM1K-DT C 0.08 1.35 (1.26-1.45) 8.19x10-17 1.26 (1.12-1.40) 6.29x10-05 1.32 (1.25-1.40) 4.79x10-20 0.27 19.60 

rs1545207 4 89239492 PPM1K-DT A 0.28 1.14 (1.09-1.20) 6.82x10-09 1.12 (1.05-1.20) 1.07x10-03 1.14 (1.09-1.18) 3.38x10-11 0.66 0 

rs16890979 4 9922167 SLC2A9 T 0.17 0.79 (0.74-0.83) 3.19x10-16 0.73 (0.67-0.80) 1.05x10-11 0.77 (0.74-0.81) 5.45x10-26 0.19 42.09 

rs16891234 4 9946163 SLC2A9 C 0.24 1.16 (1.11-1.22) 6.06x10-10 1.13 (1.05-1.22) 8.86x10-04 1.15 (1.11-1.20) 2.72x10-12 0.57 0 

rs1229984 4 100239319 ADH1B T 0.03 1.51 (1.34-1.69) 5.00x10-12 1.44 (1.21-1.72) 4.77x10-05 1.49 (1.35-1.64) 1.15x10-15 0.68 0 

rs114791459 4 88591554 LOC105377323 A 0.02 1.42 (1.26-1.60) 7.99x10-09 1.47 (1.22-1.77) 5.47x10-05 1.43 (1.30-1.59) 2.01x10-12 0.76 0 

rs114580333 4 88790118 MEPE A 0.02 1.44 (1.26-1.63) 3.01x10-08 1.39 (1.15-1.69) 9.18x10-04 1.42 (1.28-1.59) 1.10x10-10 0.79 0 

rs2078267 11 64334114 SLC22A11 C 0.47 1.16 (1.11-1.21) 1.72x10-12 1.14 (1.07-1.22) 6.27x10-05 1.15 (1.11-1.20) 6.65x10-16 0.62 0 
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Table 4.6 Association between GWAS lead SNPs and gout cases and asymptomatic hyperuricaemia controls with SU ≥7.0 mg/dl. 

SNP Chr bp Gene A1 OR (95% CI) P value1 aOR (95% CI)2 P value1 

rs1260326 2 27730940 GCKR T 1.08 (1.04-1.12) 7.46x10-04 1.09 (1.05-1.13) 1.80x10-04 

rs2231142* 4 89052323 ABCG2 T 1.45 (1.39-1.52) 1.05x10-52 1.48 (1.41-1.55) 6.83x10-57 

rs13120400* 4 89033527 ABCG2 C 0.87 (0.83-0.91) 2.09x10-09 0.86 (0.83-0.90) 1.11x10-10 

rs7672194* 4 89126647 ABCG2 T 1.12 (1.08-1.17) 5.93x10-09 1.13 (1.09-1.17) 4.03x10-09 

rs4693211* 4 89249061 PPM1K-DT C 1.26 (1.18-1.35) 8.85x10-11 1.29 (1.21-1.38) 8.34x10-12 

rs28793136* 4 89216768 PPM1K-DT C 1.25 (1.18-1.34) 6.30x10-11 1.26 (1.19-1.35) 1.07x10-12 

rs1545207 4 89239492 PPM1K-DT A 1.11 (1.06-1.15) 8.98x10-06 1.12 (1.07-1.16) 9.29x10-07 

rs16890979 4 9922167 SLC2A9 T 0.88 (0.84-0.93) 3.73x10-05 0.85 (0.80-0.89) 2.13x10-06 

rs16891234 4 9946163 SLC2A9 C 1.10 (1.05-1.15) 1.31x10-04 1.10 (1.05-1.15) 1.50x10-04 

rs1229984* 4 100239319 ADH1B T 1.38 (1.24-1.53) 1.43x10-08 1.38 (1.25-1.53) 8.38x10-09 

rs114791459* 4 88591554 LOC105377323 A 1.34 (1.21-1.50) 9.03x10-07 1.35 (1.21-1.50) 1.64x10-08 

rs114580333 4 88790118 MEPE A 1.33 (1.18-1.49) 1.66x10-05 1.37 (1.22-1.53) 9.39x10-07 

rs2078267 11 64334114 SLC22A11 C 1.11 (1.07-1.15) 9.49x10-07 1.11 (1.07-1.16) 1.59x10-07 

1 p values were corrected for multiple testing using Bonferroni correction. 2 Adjusted for age and sex. *GWAS significant 
A1, allele 1/effect allele; Bp, base pair position; Chr, chromosome; OR, Odds ratio; SNP, single nucleotide polymorphism; SU, serum urate. 
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Figure 4.4 LD plot for regions in genes ABCG2, PPM1K-DT, MEPE and LOC105377323 on 

chromosome 4.  

Each diamond represents r2 values between two SNPs in European population. The plot was 
generated using HaploView 4.2. 
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4.3.3 Association of lead SNPs and serum urate 

Linear regression was used to investigate whether the loci identified as 

independent associations with gout, had an effect on SU variation. This was 

conducted using the full cohort, and after adjusting for age and sex, and correcting 

for multiple testing, all lead SNPs associated with SU. rs2231142 in ABCG2 and 

rs16890979 in SLC2A9 showed the greatest effects: adjusted β=0.107 and 

p=1.21x10-80, and adjusted β=-0.055 and p=1.67x10-43, respectively (Table 4.7).  
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Table 4.7 Association between GWAS lead SNPs and serum urate levels. 

SNP Chr bp Gene A1 β (SE) P value1 Adjusted β 
(SE)2 

P value1 

rs1260326 2 27730940 GCKR T 0.026 (0.004) 8.68x10-10 0.028 (0.004) 7.97x10-12 

rs2231142 4 89052323 ABCG2 T 0.101 (0.006) 3.86x10-71 0.107 (0.006) 1.21x10-80 

rs13120400 4 89033527 ABCG2 C -0.037 (0.004) 3.05x10-16 -0.039 (0.004) 2.59x10-18 

rs7672194 4 89126647 ABCG2 T 0.026 (0.004) 7.55x10-10 0.027 (0.004) 7.49x10-11 

rs4693211 4 89249061 PPM1K-DT C 0.050 (0.008) 1.55x10-09 0.054 (0.008) 3.27x10-11 

rs28793136 4 89216768 PPM1K-DT C 0.040 (0.007) 8.11x10-07 0.042 (0.007) 9.94x10-08 

rs1545207 4 89239492 PPM1K-DT A 0.020 (0.004) 5.15x10-05 0.021 (0.004) 9.08x10-06 

rs16890979* 4 9922167 SLC2A9 T -0.055 (0.005) 7.59x10-26 -0.072 (0.005) 1.67x10-43 

rs16891234 4 9946163 SLC2A9 C 0.036 (0.005) 1.11x10-13 0.035 (0.005) 2.35x10-13 

rs1229984 4 100239319 ADH1B T 0.056 (0.013) 1.40x10-04 0.055 (0.013) 1.61x10-04 

rs114791459 4 88591554 LOC105377323 A 0.056 (0.013) 1.52x10-04 0.060 (0.013) 3.71x10-05 

rs114580333 4 88790118 MEPE A 0.065 (0.014) 2.59x10-05 0.070 (0.014) 3.32x10-06 

rs2078267 11 64334114 SLC22A11 C 0.029 (0.004) 4.10x10-12 0.030 (0.004) 1.66x10-13 

1 p values were corrected for multiple testing using Bonferroni correction. 2 Adjusted for age and sex. *Note that rs16890979 is in tight LD with the 
previously reported GWAS hit rs12498742 (r2=0.79). 
A1, allele 1/effect allele; Bp, base pair position; Chr, chromosome; SNP, single nucleotide polymorphism. 
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4.3.4 Polygenic risk score model for gout vs asymptomatic hyperuricaemia 

A PRS for gout cases and asymptomatic hyperuricaemia controls was generated 

using PRSice, with the replication cohort as the test dataset and the GWAS 

summary statistics as the base dataset. Initially, 639,925 variants were included, 

and after applying the clumping parameters, a final number of 266,754 SNPs 

remained available for PRS calculation. PRSice calculated the scores at various 

significance thresholds, figure 4.5 illustrates the PRS model fit across the different 

p value thresholds. The best-fit p value threshold that gave the highest 

Nagelkerke’s pseudo R2 (0.016) was 4.0x10-6, and included 17 SNPs (Table 4.8).  

 

 

Figure 4.5 PRSice bar plot indicating the PRS model fit across different p value thresholds.  

The highest Nagelkerke’s R2 (0.016) was obtained with a p value=4.0x10-6. 
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Table 4.8 SNPs under the best-fit p value threshold included into the PRS model. 

SNP Chr bp Gene P value 

rs1260326 2 27730940 GCKR 3.54x10-08 

rs2231142 4 89052323 ABCG2 2.05x10-78 

rs13120400 4 89033527 ABCG2 1.56x10-16 

rs7672194 4 89126647 ABCG2 3.21x10-12 

rs7658584 4 89096641 ABCG2 3.27x10-06 

rs28793136 4 89216768 PPM1K-DT 8.19x10-17 

rs1545207 4 89239492 PPM1K-DT 6.82x10-09 

rs16890979 4 9922167 SLC2A9 3.19x10-16 

rs16891234 4 9946163 SLC2A9 6.06x10-10 

rs1229984 4 100239319 ADH1B 5.00x10-12 

rs114791459 4 88591554 LOC105377323 7.99x10-09 

rs114580333 4 88790118 MEPE 3.01x10-08 

rs2078267 11 64334114 SLC22A11 1.72x10-12 

rs505802 11 64357072 SLC22A12 1.43x10-09 

rs2229357 12 57843711 INHBC 2.18x10-06 

rs7147313 14 23177202 LOC105370404 2.61x10-06 

rs55673000 17 38364764 MSL1 2.41x10-06 

Bp, base pair position; Chr, chromosome; SNP, single nucleotide polymorphism. 

 

These SNPs included the GWAS hits located in or near GCKR, ABCG2, PPM1K-

DT, SLC2A9, ADH1B, MEPE and LOC105377323, and four additional variants in 

SLC22A12, INHBC, MSL1 and LOC105370404 that did not reach genome wide 

significance in the discovery GWAS, but contributed to PRS best fit model.  

Although there was a considerable overlap between the scores of cases and 

controls, the mean (±SD) PRS for gout cases was 0.018 (±0.017) compared to 

0.013 (±0.016) for asymptomatic hyperuricaemia controls. The difference between 

groups was significant (p <0.0001) (Figure 4.6).  
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Figure 4.6 Distribution of polygenic risk scores (PRS) among gout cases and asymptomatic 

hyperuricaemia controls. 

The horizontal lines represent the mean scores for both cases and controls (0.013 and 0.018, 

respectively), which showed a significant difference (p<0.0001). 

 

The predictive ability of this PRS model was evaluated using the AUROC curve, 

and compared to the demographics model (age, sex and BMI) and combined model 

(age, sex, BMI and PRS). The AUC for the PRS model was 58.5%. The 

demographics model had a 66.7% predictive ability, and when the 17 variants when 

added to generate a combined model, the predictive ability increased to 69.2%. 

Figure 4.7 displays the ROC curves for each model. 
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Figure 4.7 Area under the receiver operating characteristics (AUROC) curve for the PRS model, 

demographics model, and combined (demographics + PRS) model. 
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4.3.5 GWAS: Gout vs. normouricaemia 

In order to explore if the lead SNPs associated with the transition from 

hyperuricaemia to gout, were associated with gout when compared to 

normouricaemia controls, two additional GWAS were conducted. These analyses 

involved gout cases vs. normouricaemia controls using a SU cut-off values of <6.0 

mg/dL and <7.0 mg/dL. The first GWAS identified 52 independent SNPs, while the 

second identified 46 independent SNPs (Figure 4.8, Table 4.9). Figure 4.9 displays 

a graphical representation to compare the ORs for each locus in the GWAS of gout 

vs. asymptomatic hyperuricaemia and the GWAS of gout vs. normouricaemia (SU 

<6.0 mg/dL). Since several SNPs were present in the same gene, the variant with 

the smallest p-value was selected and plotted. To be consistent with the sensitivity 

analysis, a comparison of the OR of the thirteen lead SNPs upon exclusion of AH 

controls with SU 6.0-7.0 mg/dL, with the gout vs SU <7.0 mg/dL GWAS was also 

performed (Figure 4.9B). The same loci were responsible for transition from 

asymptomatic hyperuricaemia and normouricaemia to gout. 
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Figure 4.8 Manhattan plot of the discovery GWAS of gout vs. normouricaemia controls.  

The y-axis shows –log10 P values ordered by chromosomal position on the x-axis. The horizontal dashed-line represents genome wide significance threshold (5.0x10-

8). 
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Table 4.9 Summary statistics of the GWAS for gout vs SU <6.0 mg/dL, and gout vs SU <7.0 mg/dL 

      
Gout vs SU <6.0 mg/dL Gout vs SU <7.0 mg/dL 

SNP Chr bp Gene A1 Freq. aOR (95% CI)1 P value aOR (95% CI)1 P value 

rs1967017 1 145723645 PDZK1 T 0.46 1.20 (1.16-1.25) 4.58E-21 1.17 (1.12-1.21) 1.27E-16 

rs760077 1 155178782 MTX1 A 0.40 1.16 (1.11-1.20) 2.28E-13 1.13 (1.09-1.17) 5.40E-11 

rs1260326 2 27730940 GCKR T 0.39 1.26 (1.21-1.31) 2.55E-31 1.23 (1.18-1.28) 7.74E-28 

rs2075252 2 170010985 LRP2  T 0.24 1.13 (1.08-1.18) 2.24E-08 NA2 NA 

rs72929103 2 177047172 HAGLR  A 0.04 1.33 (1.21-1.47) 3.96E-09 NA NA 

rs2581778 3 53055311 SFMBT1 A 0.42 1.16 (1.12-1.20) 4.34E-14 1.14 (1.10-1.18) 5.04E-12 

rs13140984 4 9637886 Intergenic G 0.37 0.86 (0.83-0.90) 5.26E-13 0.89 (0.86-0.93) 5.43E-09 

rs7698858 4 9895070 SLC2A9 C 0.25 0.81 (0.77-0.86) 6.03E-21 0.84 (0.81-0.88) 1.07E-14 

rs75181558 4 9916133 SLC2A9 G 0.02 0.50 (0.43-0.59) 5.87E-17 0.55 (0.47-0.65) 2.65E-13 

rs34213329 4 9917484 SLC2A9 G 0.02 0.56 (0.48-0.65) 7.25E-14 0.62 (0.53-0.72) 2.41E-10 

rs13129697 4 9926967 SLC2A9 G 0.27 0.52 (0.50-0.55) 3.59E-157 0.57 (0.55-0.60) 2.54E-123 

rs16891234 4 9946163 SLC2A9 C 0.22 1.35 (1.29-1.41) 9.87E-41 1.30 (1.25-1.36) 5.26E-35 

rs75341455 4 10061147 WDR1 T 0.03 0.58 (0.51-0.66) 4.75E-17 0.63 (0.56-0.71) 4.86E-13 

rs114695316 4 10291550 AC006499 A 0.03 0.57 (0.51-0.65) 5.61E-19 0.62 (0.55-0.70) 7.65E-15 
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Table 4.9 (Cont). Summary statistics of the GWAS for gout vs SU <6.0 mg/dL, and gout vs SU <7.0 mg/dL 

      
Gout vs SU <6.0 mg/dL Gout vs SU <7.0 mg/dL 

SNP Chr bp Gene A1 Freq. aOR (95% CI)1 P value aOR (95% CI)1 P value 

rs6839820 4 10296114 Intergenic C 0.33 1.24 (1.19-1.29) 7.84E-27 1.20 (1.16-1.25) 5.82E-21 

rs75816008 4 10335496 Intergenic T 0.03 0.64 (0.57-0.72) 1.92E-13 0.70 (0.62-0.77) 2.25E-10 

rs62286747 4 10370537 Intergenic T 0.05 1.34 (1.23-1.45) 8.29E-13 1.29 (1.19-1.39) 4.10E-11 

rs75487798 4 10445207 ZNF518B C 0.04 1.30 (1.19-1.43) 4.39E-08 NA NA 

rs10016702 4 10447640 ZNF518B G 0.10 1.19 (1.12-1.26) 2.53E-08 NA NA 

rs16869379 4 10514681 CLNK C 0.31 0.81 (0.78-0.84) 5.17E-23 0.83 (0.80-0.86) 1.26E-19 

rs114791459 4 88591554 LOC105377323 A 0.02 1.86 (1.66-2.09) 5.16E-26 1.72 (1.54-1.91) 6.68E-23 

rs17013285 4 88767008 MEPE A 0.17 1.22 (1.16-1.28) 1.54E-15 1.19 (1.14-1.25) 2.93E-13 

rs114580333 4 88790118 MEPE A 0.02 1.83 (1.62-2.07) 1.47E-21 1.70 (1.51-1.91) 3.18E-19 

rs7676673 4 88869086 Intergenic C 0.47 1.16 (1.11-1.20) 7.64E-14 1.14 (1.10-1.18) 1.30E-12 

rs2728127 4 88895115 SPP1 G 0.29 0.83 (0.80-0.87) 3.20E-17 0.84 (0.80-0.87) 2.84E-17 

rs2231142 4 89052323 ABCG2 T 0.12 2.50 (2.37-2.64) 2.61E-255 2.24 (2.13-2.35) 5.05E-231 

rs2622604 4 89078924 ABCG2 T 0.26 0.71 (0.67-0.74) 1.42E-49 0.73 (0.69-0.76) 2.50E-45 

rs7658584 4 89096641 ABCG2 A 0.15 0.81 (0.76-0.86) 2.57E-14 0.82 (0.78-0.87) 4.82E-13 
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Table 4.9 (Cont). Summary statistics of the GWAS for gout vs SU <6.0 mg/dL, and gout vs SU <7.0 mg/dL 

      
Gout vs SU <6.0 mg/dL Gout vs SU <7.0 mg/dL 

SNP Chr bp Gene A1 Freq. aOR (95% CI)1 P value aOR (95% CI)1 P value 

rs7672194 4 89126647 ABCG2 T 0.46 1.27 (1.22-1.32) 8.08E-35 1.25 (1.21-1.30) 3.43E-33 

rs28793136 4 89216768 PPM1K-DT C 0.07 1.51 (1.41-1.62) 2.24E-33 1.45 (1.36-1.55) 3.08E-30 

rs1545207 4 89239492 PPM1K-DT A 0.27 1.21 (1.16-1.27) 6.48E-20 1.20 (1.15-1.25) 6.96E-19 

rs4693211 4 89249061 PPM1K-DT C 0.06 1.64 (1.53-1.76) 2.45E-42 1.58 (1.48-1.69) 5.38E-41 

rs1229984 4 100239319 ADH1B T 0.02 1.75 (1.57-1.95) 4.63E-23 1.67 (1.50-1.85) 8.48E-22 

rs520007 5 72445501 LOC105379030 C 0.43 1.14 (1.10-1.18) 4.17E-11 1.12 (1.08-1.16) 2.65E-09 

rs11755724 6 7118990 RREB1 A 0.36 1.17 (1.12-1.21) 8.94E-15 1.14 (1.10-1.19) 1.75E-12 

rs9461183 6 25510649 CARMIL1 G 0.42 1.12 (1.07-1.16) 3.09E-08 NA NA 

rs4712972 6 25772047 SLC17A1 A 0.15 1.21 (1.14-1.276) 1.34E-12 1.18 (1.12-1.24) 6.90E-11 

rs1165196 6 25813150 SLC17A1 G 0.43 0.78 (0.75-0.81) 5.11E-36 0.81 (0.78-0.84) 2.15E-27 

rs3800307 6 27185792 PRSS16 A 0.21 1.15 (1.10-1.20) 5.10E-09 1.13 (1.08-1.18) 3.50E-08 

rs2286276 7 72987354 TBL2 T 0.28 0.85 (0.82-0.89) 1.94E-13 NA NA 

rs3812316 7 73020337 MLXIPL G 0.13 NA NA 0.81 (0.77-0.86) 2.15E-12 

rs10224002 7 151415041 PRKAG2 G 0.29 1.14 (1.10-1.19) 4.45E-10 NA NA 
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Table 4.9 (Cont). Summary statistics of the GWAS for gout vs SU <6.0 mg/dL, and gout vs SU <7.0 mg/dL 

      
Gout vs SU <6.0 mg/dL Gout vs SU <7.0 mg/dL 

SNP Chr bp Gene A1 Freq. aOR (95% CI)1 P value aOR (95% CI)1 P value 

rs1171619 10 61465838 SLC16A9 A 0.22 0.81 (0.76-0.84) 6.74E-20 0.83 (0.79-0.87) 4.85E-16 

rs77085155 11 64154981 Intergenic C 0.04 1.42 (1.29-1.56) 1.58E-13 1.38 (1.27-1.51) 6.36E-13 

rs2078267 11 64334114 SLC22A11 C 0.45 1.28 (1.24-1.33) 1.68E-37 1.26 (1.21-1.30) 2.91E-34 

rs55908299 11 64456148 NRXN2 A 0.07 0.79 (0.73-0.85) 6.95E-09 0.80 (0.74-0.86) 1.84E-08 

rs471618 11 64465403 NRXN2 C 0.19 1.23 (1.18-1.29) 1.90E-18 1.22 (1.16-1.27) 1.46E-17 

rs11227299 11 65549570 AP5B1 G 0.34 1.18 (1.13-1.22) 1.28E-15 NA NA 

rs948493 11 65552154 OVOL1 T 0.34 NA NA 1.14 (1.10-1.19) 4.72E-12 

rs2229357 12 57843711 INHBC A 0.24 0.82 (0.78-0.86) 1.54E-17 0.83 (0.80-0.87) 2.20E-16 

rs28548845 12 122594249 MLXIP C 0.48 0.87 (0.84-0.91) 3.37E-12 NA NA 

rs7488857 12 122625212 MLXIP A 0.48 NA NA 0.88 (0.85-0.92) 4.16E-11 

rs1394125 15 76158983 UBE2Q2 A 0.36 1.13 (1.09-1.18) 1.04E-09 1.11 (1.07-1.15) 3.53E-08 

rs28508560 15 90642706 IDH2  T 0.23 1.15 (1.10-1.20) 4.76E-10 1.13 (1.08-1.18) 3.57E-08 

rs738409 22 44324727 PNPLA3 G 0.22 0.87 (0.83-0.92) 2.17E-08 0.88 (0.84-0.92) 1.18E-08 

A1, allele 1/effect allele; Bp, base pair position; Chr, chromosome; Freq, frequency; OR, Odds Ratios; SNP, single nucleotide polymorphism. 1 Adjusted for age, sex, and 10PCs. 

2Not GWAS significant. 
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Figure 4.9 Scatter plots.  

A) Comparison of the ORs of lead SNPs for both GWAS: gout vs asymptomatic hyperuricaemia (SU ≥6.0 mg/dL) and gout vs SU <6.0 mg/dL. Black dots represent 
ORs of the common risk loci of both GWAS, while grey circles represent ORs of additional lead SNPs of the gout vs SU<6.0 mg/dL that were not significant at GWAS 
level in the gout vs asymptomatic hyperuricaemia GWAS. B) Comparison of the ORs of the thirteen lead SNPs for gout vs asymptomatic hyperuricaemia (defined as 
SU ≥7.0 mg/dL), compared to the ORs in the GWAS for gout vs SU <7.0 mg/dL. Where several SNPs were present in the same gene, only that with the smallest p 
value was plotted in this graph. 
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4.4 Discussion  

This study includes the largest GWAS to date and the first in Caucasians to 

examine the SNPs associated with the transition from asymptomatic 

hyperuricaemia to gout. Using UK Biobank data, it identified 13 independent 

SNPs from eight loci that reached genome wide significance and replicated 

successfully. These loci include urate transporters (i.e. ABCG2, SLC2A9 and 

SLC22A11), metabolic pathway genes (i.e. GCKR and ADH1B), and MEPE 

gene that regulates renal phosphate handling and skeletal mineralization 

(Rowe, 2004). Of the eight loci, ABCG2, SLC2A9, SLC22A11, PPM1K-DT, 

GCKR, and MEPE have been associated with gout or SU levels in previous 

GWAS within different populations (C.-J. Chen et al., 2018; Kottgen et al., 2013; 

Nakayama et al., 2017; Adrienne Tin et al., 2019). However, apart from ABCG2 

and SLC2A9, the remaining genes have never been associated with the 

transition from asymptomatic hyperuricaemia to gout. 

The only previous gout vs. asymptomatic hyperuricaemia GWAS was 

conducted in a Japanese population, and reported three novel loci: rs7927466 

in CNTN5, rs9952962 in MIR302F, and a suggestive locus rs12980365 in 

ZNF724 that do not affect SU (Kawamura et al., 2019). Although rs7927466 is 

not included in the UK Biobank genotype platform, it is covered by its proxy SNP 

rs7942264 (r2=1), but it did not show an association with gout; neither did 

rs12980365. MIR302F was not included in UK Biobank platform and further 

research on this gene is needed. 

ADH1B was identified as a risk variant for gout vs. symptomatic hyperuricaemia. 

It has never previously been associated with gout in a GWAS – even when 

compared to general population. ADH1B encodes the β subunit of the class 1 

alcohol dehydrogenase, and together with ALDH (aldehyde dehydrogenase) 
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enzymes, they mediate key steps in alcohol metabolism by the oxidation of 

ethanol into acetaldehyde by ADH1B, and acetaldehyde into acetate by ALDH2 

(Polimanti & Gelernter, 2018). The SNP rs1229984 in ADH1B is functional 

variant that causes a change of an arginine to histidine. This increases ethanol 

clearance in liver, facilitates its conversion to highly reactive acetaldehyde 

(Edenberg, 2007), increases the NADH/NAD ratio that results in high lactic acid 

levels and increased urate reabsorption via URAT1 (Lieber, Jones, Losowsky, 

& Davidson, 1962). The risk allele of rs1229984 also promotes a “flush 

response” to alcohol and reduces the amount of alcohol consumed (Macgregor 

et al., 2009). Thus, the association between this polymorphism and gout may 

be due to increased production and reabsorption of urate from per unit alcohol 

consumed. This is consistent with the observation by Yokoyama et al in which 

rs1229984 associated with SU≥7 mg/dL (OR (95%CI) 2.04 (1.58–2.65)), while 

the daily alcohol intake was comparable across variants (Yokoyama et al., 

2016). In agreement with these results, Sakiyama et al  evaluated the effect of 

rs1229984 in ADH1B gene on gout (n=1,048 gout cases and 1,334 male 

controls). They reported an increased risk for gout with OR of 1.69 and 1.80 for 

His/Arg and His/His genotypes, respectively, that remained significant after 

correcting for alcohol consumption (M. Sakiyama et al., 2017). However, in their 

study patients with gout and rare variants of the SNP had greater alcohol 

consumption, suggesting an additional role for the latter. Further research is 

required to validate the association between rs1229984 and gout. 

Urate transporters ABCG2, SLC2A9 and SLC22A11 play essential roles in 

pathogenesis of hyperuricaemia (Major et al., 2018; Woodward et al., 2009). 

SLC2A9 has the strongest effect on SU, accounting for 2-3% of variance, 

followed by ABCG2 that explains 1% of SU variation (Major et al., 2018). 

Although both loci have also been associated to gout, GWAS of gout cases vs 
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controls, have shown a greater effect of ABCG2 than SLC2A9 (Phipps-Green 

et al., 2016). In this study, rs2231142 in ABCG2 had a larger effect size on gout 

status compared to asymptomatic hyperuricaemia controls, than that of 

rs16890979 in SLC2A9 (which is in tight LD with the GWAS hit rs12498742) 

and also twice as much effect on SU than the latter. This supports the 

hypothesis that ABCG2 plays a causal role in the transition from hyperuricaemia 

to gout via its effect on SU. However, additional mechanisms may also operate. 

For instance, a smaller study using candidate gene approach, reported a 

nominal association for ABCG2 polymorphisms and gout vs. hyperuricaemia 

(Wrigley et al., 2020). It has been hypothesised that defects in ABCG2 cause a 

deficient autophagy, which is needed to form extracellular aggregates that 

resolve the inflammatory response to MSU crystals (Schorn et al., 2012; Wrigley 

et al., 2020). Additional research is needed to understand the exact 

mechanisms by which ABCG2 affects NLRP3-IL1β signalling. 

The identified loci in PPM1K-DT and LOC105377323 are located in non-coding 

regions and their molecular mechanisms are unclear. Finally, MEPE may 

promote progression to gout via pro-mineralising osteopontin like function or via 

low phosphate levels that associates with incident hyperuricaemia (Cao et al., 

2019). 

The proximity between the variants located in or near LOC105377323, MEPE 

and PPM1K-DT and those located in ABCG2 in this study, raised the question 

of whether the first ones were genuine associations or were driven by the effect 

of rs2231142 in ABCG2. However, after clumping and conducting further 

pairwise LD comparisons, all the SNPs were retained as independent 

associations. Conditional analyses are often used as an approach to answer 
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these interrogations; nonetheless, they can also be too stringent and lead to 

ignoring loci with possible biological relevance.  

ABCG2 gene has shown evidence of complex LD structure and additional SNPs 

within the same locus have been associated to gout. For instance, rs3114018 

(r2>0.2 with rs7672194, reported in our study), located in a different haplotype 

block from rs2231142, has been related to gout risk (K.-H. Yu et al., 2017). 

Additionally, a study by Zelenchuk et al reported that changes to the N-terminal 

region of MEPE contribute to hyperuricaemia and a reduction in fractional 

excretion of uric acid in a mouse model (Zelenchuk, Hedge, & Rowe, 2015). 

Therefore, the role of MEPE in purine metabolism merits additional research. 

Deep sequencing of the ABCG2 gene and up and downstream regions to 

capture MEPE, PPM1K-DT and LOC105377323, is required to determine 

underlying functional rare variants that could influence gout risk. 

 

Regarding the PRS model, this is the first study that generates a PRS for 

predicting gout status in an asymptomatic hyperuricaemia population, and 

reported an AUC of 58.5% for genetic variants alone, that increased to 69.2% 

when demographic factors were added. In a previous study, Tin et al have 

generated a genetic risk score using variants associated with SU and examined 

their ability to predict gout cases in 334,800 UK Biobank participants not 

specifically selected for high SU levels. Their genetic risk score model had an 

AUC of 67% and 84% for the combined model (Adrienne Tin et al., 2019). The 

use of imputed data might improve the predictive ability, and is therefore 

suggested as future work.  
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The GWAS comparing gout cases with normouricaemic controls did not identify 

any inflammatory genes. A large number of lead SNPs were identified at 

genome-wide significance level. Most have been associated with gout or SU 

previously.(C.-J. Chen et al., 2018; Kottgen et al., 2013; H. Matsuo et al., 2013; 

Phipps-Green et al., 2016; Adrienne Tin et al., 2019) However, we identified 

three novel SNPs associated with gout compared to SU <6.0 mg/dL. Of these, 

rs11227299 (AP5B1) is associated with reduced eGFR (Pattaro et al., 2016). 

The variants in MTX1 and PRSS16 genes associated with gout compared to 

SU <6.0 mg/dL, also associate with Parkinson’s Disease and Schizophrenia 

(Gan-Or, Bar-Shira, Gurevich, Giladi, & Orr-Urtreger, 2011; J. Shi et al., 2009). 

This is consistent with the negative associations between Parkinson’s Disease 

and gout, and Schizophrenia and elevated SU (Alonso, Rodríguez, Logroscino, 

& Hernán, 2007; Q. He et al., 2020). 

 

The strengths of this research include a large sample size, and the assessment 

of transition from asymptomatic hyperuricaemia or normouricaemia to gout in 

the same source population. However, there are several limitations. Firstly, gout 

definition was not based on ACR/EULAR classification criteria, but was 

ascertained via self-report of physician diagnosis, hospital diagnoses and ULT 

prescriptions. In addition, the classification of asymptomatic hyperuricaemia 

controls was based on a single SU measurement, which could have been 

affected by diet during the previous days. Additionally, the use of imputed was 

not possible due to computation time and storage capacity, and the use of non-

imputed data limited the discovery power of the GWAS and PRS. 

In conclusion, this study identified 13 GWAS significant risk loci, 12 of which 

have never previously been associated with the transition from asymptomatic 
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hyperuricaemia to gout at GWAS level. Larger GWAS are required to identify if 

variants in inflammatory pathways also contribute to this transition. 
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5 Chapter 5. Summary of the results and general 

discussion 

5.1 Summary of aims and results 

The general objective of this PhD project was to investigate genetic factors 

associated with the transition from asymptomatic hyperuricaemia to gout. This 

was conducted by two separate studies. The first one involved gene expression 

and cytokine measurements in participants recruited for different clinical studies 

at the Department of Academic Rheumatology. The aim was to evaluate 

differences among individuals with (1) normal SU levels (<360 µmol/L) without 

MSU crystal deposits; (2) high SU (≥360 µmol/L) without MSU crystal deposits; 

(3) high SU (≥360 µmol/L) with MSU crystal deposits; (4) intercritical gout; and 

(5) acute gout (Chapter 2). The second study involved the use of phenotype and 

genotype data from the UK Biobank. The UK Biobank is an extensive research 

resource that holds genetic and health-related information for >500,000 

participants. Using genotype/phenotype data from the UK Biobank, we derived 

different phenotypes such as gout cases, non-gout controls and asymptomatic 

hyperuricaemia controls. First, we assemble a dataset of gout cases and 

controls to establish a robust QC pipeline to filter individuals and markers 

according to ethnicity, relatedness, heterozygosity, missingness and HWE. The 

resulting dataset was used to generate a PRS model to distinguish among gout 

cases and controls (Chapter 3). The same QC pipeline was used to construct 

an additional discovery dataset to perform a GWAS of gout cases vs. controls 

with asymptomatic hyperuricaemia. Association results were then validated 

using 30% of the original dataset, and used as the target dataset to construct a 

PRS model (Chapter 4). The key findings for each study are summarised in the 

following sections. 
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5.1.1 Study 1: Gene expression and cytokine analyses 

Chapter 2 explored mRNA levels of 86 genes involved in the NLRP3 

inflammasome and TLRs pathways in 108 individuals, classified according to 

SU levels, presence of MSU crystals or the stage of gout. Ten genes showed 

significant differences among the groups without gout, with IL-1β showing the 

greatest fold changes of 2.27 between SU ≥360 µmol/L and SU <360 µmol/L, 

and 3.79 between SU ≥360 µmol/L + MSU crystals and SU <360 µmol/L. In the 

comparison of intercritical gout vs. gout flare, no genes showed a differential 

expression after correcting for multiple testing. However, because the sample 

size was small (n=16), tentative differences were found for CFLAR, NAIP, 

NFKBIA, NLRC4, NLRP6, and TLR2, with NLRP6 showing the greatest fold 

change (0.42) in the gout flare group compared to the intercritical stage. We 

also examined the expression of the genes that showed significant differences 

in the previous analyses among the complete scenario of normouricaemia to 

acute gout. CD40LG, PANX1 and TNFSF14 showed a significant 

downregulation in the acute gout group compared to the SU ≥360µmol/L + MSU 

crystals group. These differences were unexpected, but further work to include 

a larger group of patients with gout is underway, which will allow us to verify 

these results.  

The second stage of this study explored levels of 10 cytokines relevant to the 

immune response induced by MSU crystals in 185 participants. VEGF-α and 

hsCRP showed significant differences among the gout flare and the intercritical 

stage. And the levels of GRO-α, IL-1β, IL-6, IL-18, IP-10, MCP-1, TNF-α, and 

hsCRP were greater in participants with intercritical gout, compared to the non-

gout participants. No significant differences were observed among the 

normouricaemia and the asymptomatic hyperuricaemia groups. 
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5.1.2 Study 2: GWAS and PRS models using data from the UK Biobank  

The aims of this study were divided in two chapters. First, chapter 3 described 

the UK Biobank and our additional QC filters for genotype data. The resulting 

dataset was used to generate various cohorts: (1) one comprised by controls 

(matched by gender) and gout cases; (2) a cohort of gout cases and controls 

with asymptomatic hyperuricaemia; and (3) a cohort of gout cases and controls 

with normouricaemia.  

The PRS for gout, described in chapter 3, was significantly associated with gout 

and provided a predictive ability of 62% that when added to the demographic 

variables, increased to a 75%. When exploring the risk variants that contributed 

to the scores, we found GWAS hits and additional loci that has been associated 

to gout; interestingly, one of those loci (CLNK) is involved in immune responses. 

Chapter 4 describes the first GWAS in Caucasians to explore genetic variants 

in gout cases vs. asymptomatic hyperuricaemic controls. We reported 13 

independent SNPs that replicated successfully in the validation cohort. These 

SNPs are located in or near ABCG2, SLC2A9, SLC22A11, MEPE, GCKR, 

ADH1B, and intronic regions (PPM1K-DT and LOC105377323). From these 

loci, ADH1B that plays an important role in alcohol metabolism, is a novel 

finding, as it has never been associated to gout or SU in previous GWAS. The 

PRS to distinguish between gout and asymptomatic hyperuricaemia had a 

predictive ability of 58.2% and 69.2% when combined with demographics data. 

Finally, the GWAS of gout vs. normouricaemia showed 52 and 46 independent 

SNPs for gout cases vs. normouricaemia controls with SU <6.0 mg/dL and SU 

<7.0 mg/dL, respectively. Three tentative novel associations were found in 

variants located in or near AP5B1, MTX1 and PRSS16. 

 



Chapter 5. General discussion 

 

183 

 

5.2 General discussion 

In this research project we observed significant differences in NLRP3 and TLRs 

associated genes, but not in cytokines, in individuals with asymptomatic 

hyperuricaemia. Cytokine measurements showed elevated levels during the 

intercritical stage compared to normouricaemia and asymptomatic 

hyperuricaemia. Both observations could have an impact on the management 

of both asymptomatic hyperuricaemia and intercritical gout. The need to treat 

asymptomatic hyperuricemia has been widely debated. On one side, early 

treatments have been questioned due to their side effects like allopurinol 

hypersensitivity syndrome (Stamp & Dalbeth, 2017). However, more studies 

have associated asymptomatic hyperuricaemia with other cardiovascular 

comorbidities (Andrés et al., 2016; Miranda-Aquino et al., 2021), and have 

described that MSU crystals, even in the absence of obvious signs of acute 

inflammation, compromise joint function (Stewart et al., 2017). Additional 

research is needed to determine the true effects long-term of early interventions.  

Conducting follow-up studies in larger sample sizes could assist in the discovery 

of additional mechanisms involved in gout, and in the identification of new 

biomarkers to differentiate each stage in the progression of the disease.  

 

We could not associate the results from study 1 with the results from study 2, 

because the latter did not show any significant associations of genes involved 

in inflammatory mechanisms with the transition from asymptomatic 

hyperuricaemia to gout. This differs to the findings reported by Kawamura et al 

on their GWAS in Japanese population, were they reported two loci (CNTN5 

and MIR302F) involved in immune responses that may aggravate asymptomatic 

hyperuricaemia into gout (Kawamura et al., 2019). There are several reasons 
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that might explain this. First, it could be that markers coverage for inflammatory-

associated genes was low due to the use of directly genotyped data, rather than 

imputed genotypes. For instance, when exploring the UK Biobank array content 

for the 16 genes that showed significant differences among groups in the gene 

expression study (i.e. CLFAR, IL-1β, NLRC4, NLRP6, TLR2, TXNIP, etc.), only 

10 were covered according to their location using the GRCh37 assembly, with 

less than 120 SNPs within those regions. Therefore, increasing SNPs coverage 

using imputed data could improve the discovery power. Using a pathway driven 

approach to generate PRS, can be used to evaluate what happens with the 

predictive ability to identify people with gout, when the model is restricted to 

inflammasome-associated loci. The use of a pathway driven approach has been 

reported recently for the prediction of late-onset Alzheimer’s disease, were the 

PRS was restricted to synapse-encoding genes and the best model was based 

on eight SNPs that gave a predictive accuracy of 72% (Lawingco et al., 2021). 

Second, compared to GWAS for SU, those for gout are still limited in terms of 

sample sizes, and genetic variants exerting small effects are not likely to reach 

genome-wide significance. Additionally, GWAS assess associations of common 

SNPs (MAF >1%), which means that although if rare variants are impacting the 

disease risk, they would not be captured by GWAS (Visscher et al., 2017). 

Because of the limitations of GWAS, the use of sequencing technologies has 

increased as an alternative to fill the gaps in complex genomics research. In 

gout, recent studies that used whole-exome sequencing have revealed 

candidate rare variants located in ABCG2, ADRB3, PRKG2 and SLC16A9 in 

large pedigrees with gout (Huang et al., 2020; Xia et al., 2020). 

Third, most of the risk loci identified by GWAS are located in non-coding regions, 

which hinders the understanding of their functional impact on the trait (Brodie, 

Azaria, & Ofran, 2016). Adding to this challenge, it is now known that SNPs 
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might also affect distant genes, which makes even more complicated the 

mapping of markers, because the nearest gene might not necessarily be the 

causal gene. An example of this is what occurred with FTO gene and obesity: 

GWAS reported that the strongest associations with increasing BMI were SNPs 

located in intronic regions of FTO; thus it was identified as an obesity-related 

gene (Scuteri et al., 2007). However, years later, additional studies revealed 

that those variants modified the expression of IRX3, which was the true link to 

BMI regulation (Smemo et al., 2014). 

Finally, it is well known that genetic variation is also influenced by different 

mechanisms such as epigenetic regulation, chromatin remodelling and post-

transcriptional modifications (van der Wijst, de Vries, Brugge, Westra, & Franke, 

2018). Epigenetic modifications have been associated with inflammatory 

responses in patients with gout, specifically by the activation of micro-RNAs in 

the presence of MSU crystals (Nicola Dalbeth et al., 2015; H. M. Jin et al., 2014). 

Exploring these alternative mechanisms require different approaches, and 

integrating them is crucial to develop more robust fine-mapping algorithms to 

identify causal genes that would improve the understanding of complex 

diseases. 
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5.3 Conclusion 

In this project, we explored gene expression and cytokine profiles among 

individuals with and without gout with varying SU levels and crystal deposition. 

We found significant differences that suggest the activation of inflammatory 

mechanisms in participants with asymptomatic hyperuricaemia, and systemic 

inflammation in intercritical gout. Additionally, our GWAS of gout vs. 

asymptomatic hyperuricaemia uncovered novel loci that has not been 

associated with gout before. With the UK Biobank-related work, we confirmed 

the preponderance of urate transporters and metabolic genes that affect SU 

levels, which supports the central role of hyperuricaemia in the pathogenesis of 

gout.  
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5.4 Future Research 

One of the strengths of this research project was that participants with different 

stages of the disease were used to build our cohorts, and although the sample 

sizes were still limited, this type of well-characterised but larger datasets are 

needed to explore additional mechanisms involved in the transition from 

hyperuricaemia to gout and the severity of the disease. Both gene expression 

and genotype work conducted for this PhD project require further validation in 

independent datasets.  

In terms of the discovery power, RT-PCR and GWAS studies present their own 

limitations, which have been described in previous chapters. Hence, 

sequencing approaches are suggested to identify additional variants that 

contribute to gout risk and to explore the associations of urate-related loci with 

gout. In this regard, the use of resources such as the UK Biobank will be of great 

value thanks to its large-scale genomic data that includes genotyping, whole-

exome sequencing and whole-genome sequencing, plus the detailed 

phenotype information for >500,000 participants. 
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Appendix 1. UK Biobank application (ID project 45987) 

Application details 

 

The purpose of the application is for UK Biobank to determine whether the 

proposed research project is health-related, feasible and in the public 

interest. For this, we require a brief synopsis of the research plan (i.e. a 

description of the aims, methods and intended outputs) rather than a full 

scientific review. Please refer to the online help for guidance and 

examples. 

 

A1. Project title (200 characters): Development of a composite genetic, 

comorbid, and lifestyle factor related risk prediction model for gout, and 

cardiovascular diseases in people with gout. 

 

A2. Research question(s) and aim(s) (up to 5000 characters or 200 

words):  

Hyperuricaemia is the main identified risk factor for gout. This is caused by 

either overproduction or impaired renal and gastrointestinal excretion of urate. 

Once serum urate exceeds the limit of solubilisation, it precipitates and forms 

crystals in and around the joints. Research suggests that a quarter of people 

with hyperuricaemia have asymptomatic monosodium urate deposition, while, 

only 10% people with hyperuricaemia develop symptomatic gout.  

While the molecular mechanisms and genetic variants associated with serum 

urate concentration are well understood, the genetic factors contributing to 

progression from asymptomatic crystal deposition to gout remain unclear. 

Furthermore, gout associates with other metabolic and cardiovascular diseases 

that worsens quality of life and survival.    

Therefore, this research aims to generate polygenic risk score (PRS) models 

with and without additional lifestyle, and comorbid factors for gout and its 

associated comorbidities. The specific objectives of this study are to develop a 

PRS for differentiating people with: 

[1] gout from general population,   

[2] gout from hyperuricaemic controls without gout,  
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[3] gout and cardiovascular comorbidities from people with gout without 

cardiovascular comorbidities. 

PRS have the potential to identify novel genetic variants or pathways associated 

with a particular phenotype, and, may result in further basic science research. 

 

The majority of applications to UK Biobank are for data only. As such, the 

first two questions we ask are whether your application involves access 

to samples or re-contact as this will require some additional information 

and as is set out in the Access Procedures (our data are not depletable, 

but our samples and re-contact opportunities are depletable) 

recontact/sample applications are assessed to a different (more exacting) 

standard. 

 

Does your project require biological samples?  

Yes 

No 

 

Does your project require UK Biobank to re-contact participants: 

Yes 

No 

 

Please provide information on each of the following: 

A3. The background and scientific rationale of the proposed research 

project in general (up to 5000 characters or 300 words):  

Gout is the most common form of inflammatory arthritis, and affects 2.5% adults 

in the UK. It is caused by hyperuricaemia, and, once the serum urate exceeds 

a certain threshold, it deposits inside and around the joints as monosodium 

urate (MSU) crystals. Once released into the joints, the MSU crystals trigger an 

immune response by activating the NLRP3 inflammasome and Toll-like receptor 

pathway that together promote the synthesis of pro-inflammatory cytokines e.g. 

IL-1β. Although it is a treatable condition, gout’s management remains 

suboptimal and patients often progress to a stage characterised by frequent 

flares, tophi, and development of other disorders, such as diabetes, obesity, 

hypertension, hyperlipidaemia, heart attacks, and renal failure. 
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Even though the heritability of gout is estimated at 40-70%, GWAS have allowed 

the identification of genetic variants that explain only 7% of that heritability, with 

most of the identified genetic variants associated with serum urate levels. What 

is more intriguing, despite being crucial to the pathogenesis of gout, 

hyperuricemia does not always causes gout. In fact, only 10-12% of the 

hyperuricaemic individuals develop gout. Similarly, approximately 60% people 

with gout have high blood pressure, while 5-10% have ischaemic heart disease 

or its complications, and, currently there is no predictive model for identifying 

these people at high risk of cardiovascular comorbidities.   

Though GWAS have been a powerful tool for the identification of novel 

pathways or polymorphisms, they are still limited, since they only identify 

common variants and those exerting small effects are not detected, leaving 

most of the missing heritability unexplained. PRS have emerged as an 

alternative not only to address missing heritability in complex diseases by 

tracking back to the variants contributing to the scores, but also to generate 

models that could help classify individuals as cases or controls based on their 

genetic profiles. 

 

A4. A brief description of the method(s) to be used (up to 5000 characters 

or 300 words): 

Three PRS models will be generated as outlined above.  Cardiovascular 

comorbidities will include hypertension, hyperlipidaemia, and ischaemic heart 

disease respectively. We will randomly select upto four age (+/- 5 years), sex 

matched controls for each case in the UK Biobank. We will do further modelling 

including body mass index (BMI), deprivation score; current smoking status, 

alcohol consumption, diuretic prescription along with the PRS for gout. We will 

also include diabetes, hypertension and hyperlipidaemia as additional 

covariates in the PRS for angina and myocardial infarction.  

PRS will be calculated using a software package that computes scores for each 

individual from raw genotype data, at the best fit P-value threshold based on 

GWAS summary statistics. For this purpose, the target datasets will be 

assembled from raw genotype information for gout cases (or asymptomatic 

hyperuricemia cases - once biomarkers data become available) and controls. 

The training or base data sets will consist on publicly available summary 

statistics from GWAS for gout, and each cardiovascular disease. In the training 

dataset, we will order variants according to the p value of association with 
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phenotype, and select variants that associate with the phenotype at < user 

defined p value. Several p value thresholds will be tested to identify the variants 

that provides the highest goodness of fit assessed using R2 characteristic for 

the phenotype in question. The PRS will be calculated for each individual in the 

target dataset, based on alleles present at each selected variant, and weighed 

according to the β-statistic in the base dataset. The distribution of the scores 

will be analysed, and regression analyses will be conducted to test the 

association between the scores and the phenotypes. Finally, ROC curves will 

be generated to evaluate predictive models. Logistic regression will be 

performed to undertake additional modelling including lifestyle and comorbid 

conditions.  

 

A5. The type and size of dataset required (e.g., case-control subset, men 

only, imaging data only, whole cohort, etc.) (up to 5000 characters or 100 

words): 

We require data on genotype, age, sex, deprivation index, BMI, alcohol 

consumption, smoking status, comorbidities, prescriptions, serum urate, and 

lipid profile from the first visit from the entire UK biobank. We request access to 

data for the whole cohort in order to select cases and matched controls.  

Diagnosis and urate lowering treatment prescription will allow ascertainment of 

gout status. Self-reported comorbidity data will allow ascertainment of 

comorbidities. 

Since one objective involves individuals with hyperuricemia without gout, we 

need serum urate to select cases and controls. Therefore, this will be a phased 

application to access biomarker data once available. 

 

 

A6. The expected value of the research (taking into account the public 

interest requirement) (up to 5000 characters or 100 words):  

 If we develop a PRS for identifying people with hyperuricaemia at a high risk of 

gout, such people can be advised to modify their diet and lifestyle factors to 

reduce their gout risk. Likewise, if we develop a PRS for cardiovascular disease 

in gout, this will be used to educate patients with gout about their future risk of 

cardiovascular comorbidities and allow them to make dietary and lifestyle 

changes. This research aims to generate PRS models that have the potential 
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to identify new variants associated to gout, they could help elucidate pathways 

involved in evolution from hyperuricemia to gout.  

 

A7. Please provide up to 6 keywords which best summarise your 

proposed research project: 

Gout, hyperuricemia, polygenic risk score, genotyping 

 

A8. Please provide a lay summary of your research project in plain 

English, stating the aims, scientific rationale, project duration and public 

health impact (up to 5000 characters or 400 words): 

Gout affects one in forty people, and, manifests with episodes of severe joint 

pain and swelling that typically last for 1-2 weeks. If left untreated, the flares 

become more frequent, and, irreversible joint damage may result.   

Gout occurs due to high urate levels in the body, which deposit inside the joints 

as urate crystals. Gout flares occur when these crystals are shed. However, 

only one in ten people with high urate level develops gout. The reasons why 

only a minority of people with high urate levels develop gout are not well 

understood. Moreover, knowing which person with high urate level has a high 

risk of gout will help prevent gout in those at high risk. Apart from this, research 

suggests that gout associates with high blood pressure, and heart disease. 

However, it is unknown which individual with gout is at risk of these 

comorbidities.  

Thus, the purpose of this study is to develop a risk score that can identify people 

with gout from those without gout, and those without gout but with high blood 

urate levels. Finally, we will also develop a risk score to identify people with gout 

at risk of developing high blood pressure and heart diseases.  

In this study, we will calculate a genetic risk score using all the information from 

common and rare genetic variants in participants of the UK biobank. Next we 

will add in information about other lifestyle factors, comorbidities, and 

medications to find out if this improves accuracy of the prediction score.   

In order to generate these prediction scores, we will use data from people with 

disease of interest i.e. gout or gout and heart disease respectively and controls 

without these conditions. The controls will be matched to cases for age and sex.  

This research will be completed in 2 years and will form part of the PhD thesis 

of Ms. Sandoval-Plata. The findings of this study will allow people with high 
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urate levels to find out their risk of developing gout, and will help people with 

gout understand their risk of developing heart disease and hypertension. 

People with high risk can be advised to make lifestyle and dietary changes to 

prevent these illnesses. 

This fits the UK Biobank’s purpose of improving the prevention, diagnosis and 

treatment of life-threatening diseases. 

 

A9. Will the research project result in the generation of any new data fields 

derived from existing complex datasets, such as imaging, accelerometry, 

electrocardiographic, linked healthcare data, etc, which might be of 

significant utility to other researchers: 

Yes 

No 

 

A10. What is the estimated duration of your project, in months? If you 

consider (because for example the project is one involving the generation 

of hypotheses) that it would be difficult to set a fixed end point, we are 

prepared to consider a rolling 3-year period (during which annual updates 

are required): 

24 months 

 

Please note that you are expected to publish (or to make publicly available) your 

results and return to UK Biobank: 

 any important derived variables 

 a description of the methods used to generate them 

 the underlying syntax/code used to generate the main results of the 

paper, and 

 a short layman's description that summarises your findings. 

These should be provided within six months of each publication or within 12 

months of the project end date (whichever comes first). We also ask that you 

send us a copy of your accepted manuscript at least two weeks prior to 

publication and alert us if there are any ethical or contentious issues 

surrounding the findings. 

 


