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In the beginner’s mind there are many possibilities,

but in the expert’s mind there are few.

— Shunryu Suzuki, Zen Mind, Beginner’s Mind



Abstract

Road networks are critical to society as they support people’s daily mobility, the freight

industry, and emergency services. However, a range of predictable and unpredictable

events can affect road networks, disrupting traffic flows, connectivity, and, more generally,

the functioning of society. With the increased interconnectivity and interdependency of

the economic sectors, the need to manage this threat is more critical than ever. To this end,

stakeholders need to understand the potential impacts of a multitude of predictable and

unpredictable events. The present thesis aims at developing a framework to evaluate and

understand the resilience (ability to sustain, resist and recover from perturbations) of road

networks under a multitude of potentially unpredictable disruptions, and at assessing the

role of different network design (e.g. network topology) and operation (e.g. travel-demand

distribution) characteristics in road network resilience.

To this end, this thesis adopts a hazard-independent approach that considers all possi-

ble scenarios disrupting multiple links (more specifically up to a certain number of links).

Novel indicators—including a robustness, unsatisfied-demand and resilience indicator mea-

suring the demand-weighted-average increase in travel time in the disrupted network, the

proportion of stranded travellers, and the speed of network-performance recovery, re-

spectively—are developed and tested as part of this thesis. A link-criticality-assessment

method based on multiple-link failures is also developed to identify the links that should

be given priority for pre-event reinforcement and post-event restoration. To assess the

effects of network size, topology, and demand distribution on network resilience, the thesis

considers a variety of case studies, including artificial networks generated by a random

road network model (developed as part of this thesis) and real network models derived

from real-world maps. To assess the influence of demand variations, capacity constraints

and congestion on network resilience, this thesis performs a resilience analysis of a network

under several demand conditions. Finally, to assess the effects of recovery strategies on

network resilience and characterize the optimal recovery strategy, this thesis performs a

resilience analysis of a network considering all possible link-repair sequences.

This research should ultimately contribute to the incorporation of resilience considera-

tions into transport planning and management standards, which currently give priority to

transport efficiency—the efficient movement of vehicles through a transport network under

normal conditions—rather than the movement of vehicles under disrupted conditions.
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Chapter 1

Introduction

1.1 Background and research motivations

1.1.1 The need for research on road network resilience

Extreme weather events and human-made hazards could damage critical infrastructures

(such as electricity, water and transport networks) resulting in casualties, service disrup-

tions and significant economic losses. The resilience (i.e. ability to sustain, resist and

recover from perturbations) of these infrastructures is thus essential for society.

The interest around the concept of resilience rose over the last twenty years (Manca et

al., 2017; Martinson, 2017; Woods, 2015) as society had to face several shocks including the

1995 earthquake in Kobe (Japan), the 2005 bombing of the London (UK) public transport

system, or the more recent (2018) collapse of the Morandi bridge in Genoa (Italy). The

resilience of critical infrastructures is hence now at the heart of several policies and research

programmes including the EU Adaptation strategy (Manca et al., 2017) and the 100

Resilient Cities Programme (Spaans and Waterhout, 2017). In particular, researchers,

industry professionals and policy-makers acknowledge the need for metrics to pro-actively

manage the resilience of critical infrastructures (Martinson, 2017; Omer et al., 2013; UK

Department for Transport, 2014) as metrics provide an effective tool to assess the current

resilience of infrastructures, compare strategies for resilience enhancement and measure

progress.

The present doctoral thesis addresses this need in the context of road networks because

road infrastructures are essential to our increasingly connected society as they support

people’s daily mobility, the freight industry, and also emergency services. Road disruptions

directly affect users through greater congestion, loss of time, and higher fuel consumption,

but also lead to indirect impacts, including constrained access to jobs and services as well

as poorer air quality (Hallegatte et al., 2019). The impacts on businesses include sales

losses, delays in supply and delivery as well as diminished competitiveness in international

markets (Hallegatte et al., 2019). Pelling et al. (2002) estimated that the 1995 earthquake

in Kobe (Japan) increased the regional transportation costs and cost of goods by over 50%

and 10%, respectively. The UK Department for Transport (2014) estimated that the July

2007 flood in London (UK) led to almost 10,000 people being stranded while the repair

costs were estimated at £40 to 60 million.
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1.1.2 The future incorporation of ”resilience thinking” into transport

modelling, planning and management

Transport models, representing the complex real-world transport and land use systems,

provide a powerful tool to predict transport systems performance under different conditions

and assess the impact of transport infrastructure options. Transport models are thus

essential to plan, design, and manage transport networks and land use.

Transport modelling and planning standards (Highways England, 2015; Ortúzar and

Willusem, 2011) currently give priority to transport efficiency—the efficient movement of

vehicles through a transport network under normal conditions—rather than the move-

ment of vehicles under disrupted conditions (Ganin et al., 2017). However, as explained

above, transport networks are critical infrastructures subject to service disruptions that

can severely impact society. Hence, society could benefit from the incorporation of the

”resilience thinking” approach into transport planning, operation and maintenance stan-

dards.

The present thesis seeks to contribute to this effort as it aims to develop a framework

that adapts the resilience modelling approach into aspects of transport planning. Classical

transport planning and modelling methods are used to develop, test and validate novel

road network resilience assessment methods, but also to develop a better understanding

of road network resilience.

1.2 Research gaps

The literature review (Chapter 2) allowed the identification of several research gaps. The

present sub-section provides an overview of the research gaps addressed in this thesis.

1.2.1 The limitations of current approaches to road network resilience

As the main function of road networks is to provide mobility, that is, to connect trip origins

and destinations in a timely manner, the resilience of road networks should characterise

their ability to deliver this function under a multitude of potentially unpredictable condi-

tions. Indeed, the resilience concept accepts the possibility that a wide range of disruptive

events may occur but are not necessarily predictable, and focus on anticipating and en-

hancing the performance of the disrupted system rather than preventing or mitigating the

loss of assets (ARUP, 2014; Park et al., 2013).

However, assessments of the potential impact of disruptive events on road networks

generally focus on a limited set of scenarios illustrating the proposed methodology (Nogal

et al., 2016; Omer et al., 2013; Zhang and Wang, 2016) or the worst-case scenario using

a game theory approach (Alderson et al., 2017; Bhavathrathan and Patil, 2015a, 2015b,

2018). These studies do not uncover the potential impact of all possible disruption sce-

narios as suggested by the resilience paradigm. This is unfortunate as such findings could

be useful to practitioners and public authorities. For example, considering that a wide

range of events (e.g. road accidents, flooding, etc.) can unpredictably disrupt any parts

of the network, the identification of multiple worst-case scenarios rather than the single

worst-case scenario would be more useful in practice.

2



CHAPTER 1. INTRODUCTION

A range of recent studies (reviewed in Chapter 2) consider multiple disruption scenarios

in the road transport context. However, these studies present one (or several) of the

following shortcomings:

• Focus on risk analysis (e.g. Wisetjindawat et al., 2017; Zhou et al., 2017), which

relies on records of past disruptions that may overlook unpredictable events.

• Use full dismantling processes to model disruptive events in road networks (Buhl et

al., 2006; Casali and Heinimann, 2020), which lack applicability to a range of road

perturbations such as car accidents, sabotage actions and landslides that disrupt

only a limited number of roads. Dismantling process analyses are useful to deter-

mine the critical number of failed components after which networks can no longer

function. However, this information is relevant only when analysing major disasters

(e.g. earthquakes or large floods) that can potentially damage many roads. Be-

sides, the unavailability of a small fraction of a transport network can lead to major

consequences, for instance, the collapse of the I-35W Bridge (Minneapolis, USA)

resulted in economic losses of US$71,000 - $US220,000 a day (Xie and Levinson,

2011). Hence, a better understanding of the potential impacts of events disrupting

a limited number of links and intersections remains important.

• Consider only single-link failures (Omer et al., 2013; Sullivan et al., 2010; Taylor

et al., 2006). However, the consequences of multiple-link failures are not simply

the combination of those resulting from single-link failures (Wang et al., 2016).

The consideration of single-link failures only may lead to inefficient prevention and

restoration measures in the advent of events disrupting several road segments or

several events concurrently affecting different parts of the network.

Besides, some of these studies (Buhl et al., 2006; Casali and Heinimann, 2020) rely on

network topological models that while accounting for the arrangement of the roads and

intersections, disregard traffic flows and capacity constraints. The resulting robustness

analyses are hence unable to capture dynamic effects of disruptions such as increased

congestion on alternative routes (Mattsson and Jenelius, 2015).

Ganin et al. (2017) performed twenty realisations of disruption scenarios affecting a

random and finite number of links on traffic flow models of 40 US cities to compare

efficiency and resilience. However, the impacts of the different disruption scenarios were

not studied in detail and the number of scenarios considered relatively limited.

Therefore, although research has contributed to the understanding of road network

resilience, characterisation of the potential impacts of a full range of predictable and

unpredictable disruption scenarios is still lacking.

1.2.2 The role of recovery strategies in road network resilience

Resilient systems are associated with several properties (presented in the literature review

of Chapter 2). Among these properties, there are robustness—the ability to absorb per-

turbations—and rapidity (or recoverability)—the ability to recover quickly. In the context

of road networks, most works (Bhavathrathan and Patil, 2018; Ganin et al., 2017; Gau-

thier et al., 2018; Omer et al., 2013) focus on robustness while rapidity has attracted less

3
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attention. Still, considering the socio-economic consequences of road disruptions, recov-

ery processes can have an important influence on the welfare of society as they can help

alleviate disruption consequences in the early stage recovery. The studies that consider

recovery processes propose different approaches. Nogal et al. (2016) and Nogal and Honfi

(2019) focus on the gradual adaptation of road users following both the perturbation and

restoration phases. Tuzun Aksu and Ozdamar (2014) develop a scheduling mathemati-

cal model optimising the link-repair sequence to quickly recover the network connectivity

to facilitate evacuations. Zhang et al. (2017) develop a scheduling mathematical model

optimising the link-repair sequence to quickly improve the network performance under

stochastic damage levels and repair durations. Finally, Hu et al. (2016), compare differ-

ent repair strategies under random (damaging random sets of links), localised (damaging

adjacent links), and malicious (seeking to maximise the damage to the system perfor-

mance) dismantling processes. However, the studies of Hu et al. (2016), Tuzun Aksu and

Ozdamar (2014) and Zhang et al. (2017) rely on topological network models and perfor-

mance metrics that do not consider link capacity constraints. Furthermore, these studies

do not assess the performance of the recovery strategy across a full range of predictable

and unpredictable disruption scenarios as mentioned above.

1.2.3 The effects of road-network characteristics on network resilience

In addition to the limited understanding of road network resilience to a multitude of

potentially unpredictable disruption scenarios, there is a limited understanding of the

effects of the characteristics of road networks on network resilience. Most studies (e.g.

Gauthier et al., 2018; Wang et al., 2016; Zhang et al., 2015) focus on a limited set of

case studies such that their findings may be valid for the specific networks studied only.

Further investigations are thus required to evaluate the effectiveness of these approaches

and the generality of their findings.

Some authors (Buhl et al., 2006; Ganin et al., 2017; Zhang et al., 2015) considered

multiple networks to understand the effects of certain network characteristics on road

network resilience. Zhang et al. (2015) assessed the role of network topology in transport

resilience, considering 17 network structures with some relation to the layout of transport

systems. This study demonstrates that redundant networks had greater resilience level.

However, Zhang et al. (2015) considered very regular and abstract network structures

that do not hold many features of real road networks such as the heterogeneity of road

intersections. Buhl et al. (2006) analysed the topological patterns of 40 self-organised

street networks (e.g. Rome). As part of this study, the authors assessed the relationship

between the network robustness (measured by the impact of dismantling processes on the

network structure) and the network size and topology. This study was however limited

to self-organised street networks, and as stated above relied on dismantling process that

lack applicability to a range of real road perturbations. The study of Ganin et al. (2017)

focused on the relationship between efficiency and resilience.

Therefore, the understanding of the effects of the network size and topology on road

network resilience can be increased further by considering a large set of real road networks

and a multitude of potential disruptions affecting a limited number of links. Besides,

it would be interesting to asses the effects of other network characteristics (such as the
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distribution of the travel demand) on network resilience.

1.3 Research aim, objectives and approach

1.3.1 Research aim and objectives

The purpose of the present thesis is to contribute to the reduction of the impacts of disrup-

tions on road network operations. To this end, this thesis aims at developing a theoretical

framework to evaluate and understand the resilience of road networks. This work will

support decision-makers (especially transport planners) in anticipating, assessing, and ul-

timately reducing the impact of disruptive events on road networks.

The framework should address the research gaps identified above—lack of characteri-

sation of the potential impacts of a full range of predictable and unpredictable disruption

scenarios, lack of characterisation of the rapidity component (i.e. recovery strategies)

in road network resilience, and limited understanding of the effects of road networks’

characteristics (topology, travel demand distribution, congestion, etc.) on road network

resilience. Hence, this thesis more specifically aims to develop a framework suitable to

evaluate the resilience of road networks under a multitude of potentiality unpredictable

disruptions, and assess the role of different network design (e.g. network topology) and

operation (e.g. recovery strategies) characteristics in road network resilience.

To this end, this thesis has three objectives:

• develop accurate metrics and methods for quantifying the resilience of road networks

to a multitude of predictable and unpredictable disruption scenarios;

• assess the effects of different network characteristics (including size, topology, de-

mand distribution and demand intensity) on network resilience;

• assess the effects of recovery strategies on network resilience.

1.3.2 Main approach and assumptions

Hazard-independent approach

To reach its first objective, the present thesis adopts a hazard-independent approach that

considers all possible scenarios disrupting multiple links (more specifically up to a certain

number of links). This approach is based on the assumption that road disruptions are

rarely predictable and can occur in any parts of the network.

In reality, some events are more predictable (e.g. maintenance works) than others (e.g.

terrorist attacks) and some parts of a road network can be more frequently affected than

others. Such considerations could help decision-makers optimise the allocation of resilience

investments to the more probable hazards and more exposed parts of the network. How-

ever, the predictability of a hazard depends on several parameters, including the nature

of the hazard and the state of knowledge around this hazard, which is often related to his-

torical data available. Hence, disruptions can happen for reasons that seem extraordinary

prior to catastrophe, but in retrospect involve familiar and generalizable patterns (Park

et al., 2013). In the transport context, unknown hazards could refer to cascading events
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leading to road damage, warnings signs being ignored, or poor decision-making from main-

tenance operators, etc. Hence, the hazard-independent approach ensures that unknown

and unpredictable hazards are considered in the resilience analysis. This approach is in

line with the resilience paradigm, which contrary to the risk paradigm accepts the possi-

bility that a range of disruptive events may occur but are not necessarily predictable, and

focus on anticipating and protecting the performance of the disrupted system rather than

preventing or mitigating the loss of assets due to specific events (ARUP, 2014).

Besides, this approach focuses on combinations of link failures concurrently disrupting

up to a certain number of links for computational reasons. The maximum number of con-

currently disrupted links is chosen depending on the case study. Hence, this approach does

not explicitly address large scale events (e.g snow) that can affect most of the network.

However, it is expected that above a certain number of affected roads the network perfor-

mance would drop to zero. This assumption is validated in the case studies of Chapter 3

where the maximum numbers of failed links are sufficient to reach a near-zero performance

and in Chapter 4 where full dismantling processes are modelled. Hence, the choice of the

maximum number of concurrently disrupted links can help determine the impact of large

scale events.

Fixed travel-demand assumption

Hazards can impact both the supply and the demand side of the transport system. The

supply side (i.e. the network) is affected by the obstruction or damage induced on the

infrastructures, which in turn impacts traffic conditions. The demand side representing the

flow of users can also be impacted as trips may be cancelled or delayed due to usual routes

and destinations being affected. As this research seeks to evaluate how the availability

of alternate routes and capacity helps remediate the consequences of network disruptions,

travel demand was considered fixed to effectively compare the network performance under

different disruption scenarios (all other things being equal). Hence, in this thesis, the

”travel demand” generally refers to the undisrupted network travel pattern. Nonetheless,

Chapter 5 considers different demand distribution and intensity possibilities, which provide

some insights into the potential effect of the travel demand alteration caused by disruptions

on the resilience assessment.

Case studies

To test the metrics and methods developed (objective 1), the thesis considers a variety

of case studies. The case studies include a four-node highway network model, the well-

known Sioux Falls network model (LeBlanc et al., 1975), a set of abstract network models

generated by a random road graph model (developed as part of this thesis), and a set of

real road network models.

To assess the effects of network size, topology, and demand distribution on network

resilience (objective 2), the present thesis compares the robustness to multiple disruption

scenarios of hundreds of abstract and real network models. The abstract networks result

from a novel model developed to randomly generate graphs presenting the topological

and operational characteristics of real-road networks. This random network model is used

because contrary to real maps its characteristics are controllable and allow for a sound
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sensitivity analysis of network resilience, which in turn can provide practical insights for

network planning and management. The results derived from the analysis of the abstract

networks are ultimately validated on a set of models based on real network samples, whose

data was extracted from OpenStreetMap (www.openstreetmap.org).

To assess the effects of travel demand distribution and intensity on network resilience

(objective 2), the thesis compares the robustness to multiple disruption scenarios of the

Sioux Falls network model under different travel demand conditions ( e.g., concentrated

vs distributed demand, and low vs medium vs high demand level). To assess the effects of

recovery strategies on resilience (objective 3), the thesis compares several recovery strate-

gies in the Sioux Falls network model. The Sioux Falls network model is studied for three

reasons. The first reason is computational effectiveness. This network model is composed

of 24 nodes and 76 directed links, leading to reasonable traffic-simulation run times (under

5 seconds). This short run time allowed the performance of over five hundred thousand

disruption simulations using parallel processing on a desktop. The second reason is repro-

ducibility. The Sioux Falls network dataset is readily available, for example on the Trans-

portation Networks for Research repository (Transportation Networks for Research Core

Team, 2019), and has been extensively used in the transport literature (Bhavathrathan

and Patil, 2015b; Mitradjieva and Lindberg, 2013; Wang et al., 2016). Finally, the Sioux

Falls case study includes the data necessary to perform traffic simulations (i.e. the travel

demand data), which provides a more realistic assessment of the impacts of disruptions on

the network. This was not the case for the abstract and real networks mentioned above.

Therefore, the increased understanding of road network resilience developed in this thesis

also comes from the comparisons of all of these case studies.

1.3.3 Thesis workflow

Figure 1.1 presents the workflow of the present thesis, including its purpose, aim, objec-

tives, and chapters.
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1.4 Outline of the thesis

This doctoral thesis is organised as follows:

Chapter 1 corresponds to the present introduction, which provides a background to this

doctoral thesis as well as the research aim, objectives, approach and main assumptions.

Chapter 2 provides an analysis of the literature related to the doctoral thesis. Firstly,

background information on road network management is provided. Then, the common

properties of road networks and their graph representations are identified through a liter-

ature survey. This survey also considers random road graph models. Afterwards, Chapter

2 focuses on disruptive events, traffic incident management and risk analysis. This topic

leads to the concept of resilience, which is the focus of the remainder of the chapter. The

definitions and concepts associated with resilience are analysed, then several topics related

to road-network-resilience assessments are discussed including transport, disruption, and

resilience-quantification models.

Chapter 3 builds on the analysis of the literature to develop a robustness assess-

ment framework for road networks. This framework provides two main tools: a hazard-

independent approach that considers all possible scenarios disrupting multiple links (more

specifically up to a certain number of links) and a set of meaningful robustness indicators

suitable to discriminate between the impacts of a wide range of disruptive events. The

framework is tested on two case studies: a four-node highway network model and the

Sioux Falls network model. The case studies are also used to demonstrate the ability of

the proposed robustness indicator to discriminate between a wider range of disruption

scenarios than the indicators currently used in the literature.

Chapter 4 also focuses on road network robustness but seeks to evaluate the effects of

several network attributes including size, topology and demand distribution on robust-

ness. To this end, this chapter explores the correlation between these network attributes

and network robustness to single-, multiple-, random- and targeted-link failures. For this

purpose, the GREREC model was developed to randomly generate a variety of abstract

networks presenting the topological and operational characteristics of real-road networks,

on which a robustness analysis is performed. This analysis quantifies the difference be-

tween the link criticality rankings when only single-link failures are considered as opposed

to multiple-link failures and the difference between the impact of targeted and random

damage. The effects of the network attributes on the network robustness and on the two

differences mentioned above are assessed and discussed. Finally, this analysis is also per-

formed on a set of real road networks to validate the results obtained with the artificial

networks.

Chapter 5 adopts and improves the hazard-independent model (developed in Chapter

3) to quantify and understand the difference between the impacts of random-, localised-,

and targeted-link failures. This Chapter also explores the predictability of the link combi-

nations whose failure would lead to the highest impacts on the system performance, and
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the difference between of the link criticality rankings when only single-link failures are

considered as opposed to multiple-link failures. Finally, the effects of demand intensity

and distribution variability (and therefore congestion) on the network robustness and link

criticality metrics are assessed by repeating the robustness analysis under different travel

demand conditions in the Sioux Falls network model.

Chapter 6 focuses on quantifying the impacts of recovery processes and, more specifi-

cally, link-repair strategies on resilience. This chapter analyses the performance of several

link-repair strategies in the Sioux Falls network across a full range of disruption scenarios

using the disruption model developed and improved in Chapters 3 and 5, respectively. The

strategies considered include: (i) the optimal (minimising the disruption consequences over

the recovery process), (ii) average (representing a recovery process where the disrupted

links are repaired in random order), (iii) flow-based (where the links with the highest

traffic flow in the undisrupted network are repaired first), and (iv) criticality-based (where

the links whose individual failure result in the highest impacts on the system performance

are repaired first) recovery. The results of this comparison are then used to evaluate the

correlation between robustness and resilience, and characterise the optimal repair strategy.

Chapter 7 concludes the thesis by providing a general discussion of the research con-

tributions, implications and limitations, as well as recommendations for future research

investigations.
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Chapter 2

Literature review

2.1 Introduction

The present literature review aims to provide a background to the different topics ap-

proached in this thesis. Section 2.2 focuses on road network administration and road

classification to provide a general background to this thesis. Section 2.3 identities the

main characteristics of road networks and their graph representations to provide a basis

for chapter 4, where a model is developed to randomly generate graphs presenting the

main characteristics of road networks. The existing random road network generators are

reviewed in Section 2.4. Subsequently, Section 2.5 focuses on disruptive events, traffic in-

cident management and risk analysis. This topic leads to the concept of resilience, which

is the focus of section 2.6. Finally, Section 2.7 discusses several topics related to road net-

work resilience assessment including transport, disruption, and resilience-quantification

models.

2.2 Road network management

This section introduces two elements of road transport management related to road net-

work resilience: road network administration and road classification.

2.2.1 Road network administration

The present thesis should be of direct interest to road administrations around the world

as well as their advisors (e.g., transport consultants, researchers, etc.). The structure of

road network administrations varies widely from country to country. In the UK Highways

England (formerly called Highways Agency) is responsible for managing motorways and

trunk roads in England, whereas other roads fall within the responsibility of local authori-

ties (e.g. Nottinghamshire County Council in the Nottingham area). In contrast, all roads

in Northern Island are operated by a single entity: Transport NI.

These authorities have the lead responsibility for developing, implementing and moni-

toring better incident management procedures as well as managing the response to disrup-

tive events. For example, both Highways England and the county councils manage highway

drainage and roadside ditches under the Highways Act 1980 (DEFRA, 2011). Considering

that the effective management of the response to disruptive events is as important as the
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physical resilience of the infrastructures to extreme events (UK Department for Transport,

2014), road agencies and their procedures play a key role in network resilience.

2.2.2 Road classification

A key aspect of road network management is road classification. Road classification is

important for resilience assessments as the latter can focus on certain groups of roads

depending on the scope of the assessment and the objectives of the stakeholders.

Road and traffic agencies historically categorise roads based on vehicular traffic (Aus-

troads, 2017). Two main types of ”designed” roads are considered: traffic routes serving

primarily mobility and local streets serving primarily property access. The movement

function being theoretically the inverse of the access function a road with higher traffic

movement function has restricted access and vice versa.

This conventional classification was questioned by Marshall (2005) because the theoretical

inverse relationship between mobility and access can not fully represent a wide range of

multifunctional street types. The author argues that urban streets could be independently

classified with regards to travelling speeds, transit orientation (i.e. strategic contiguity or

routes connected up contiguously) and urban space criteria.

Nonetheless, the two-dimensional relationship between mobility and access has been

incorporated into many road design and management schemes. The UK Department for

Transport (2012) adapts this principle to consider five road categories:

• Motorways

• A roads: major roads providing large-scale transport links within or between areas;

• B roads: connecting different areas and feeding traffic between A roads and smaller

roads in the network;

• Classified unnumbered roads (also called minor roads): smaller roads connecting

unclassified roads with A and B roads, and often linking a housing estate or a

village to the network.

• Unclassifed roads: local roads intended for local traffic. The vast majority (60%) of

roads in the UK fall within this category.

Besides this road classification, the UK Department for Transport considers a Strategic

Road Network (SRN) and a Primary Route Network (PRN) for management purposes.

The Strategic Road Network comprises the motorways and major trunk roads in England

that are managed by Highways England. The SRN represents approximately 7080 km

(4,400 miles) of road (UK Department for Transport, 2012). The Primary Route Network

designates ”roads between places of traffic importance across the UK, with the aim of

providing easily identifiable routes to access the whole of the country” (UK Department

for Transport, 2012). Hence, the SRN forms a part of the PRN. Outside of national

parks, few places in England are more than 16 km (10 miles) from a primary route (UK

Department for Transport, 2012).
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2.3 Road network properties

The abstract representation of a transport system as a network of nodes (or vertices)

and links (or edges), whether it involves roads, railways or airspace, defines a network

topology. Depending on the scope of the study, nodes can represent real-life intersections,

major intersections or cities. The same principle applies to the links. Hence, the network

nodes and links are given attributes that reflect the field of application and scope of

the study. In the case of road networks, the most intuitive and popular approach is to

model both intersections and dead-ends as nodes and the road segments between them as

links. This section surveys the literature to characterise road networks and their graph

representations (based on the popular modelling approach). For the sake of illustration,

Figure 2.1 shows examples of urban road maps and their graph representations.

Figure 2.1: Examples of urban road maps (left) and their graph representations (right),

extracted from Buhl et al. (2006).
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2.3.1 Road networks approximate planarity and patterns

An important characteristic of road networks noted in the literature is their approximate

planarity (Peng et al., 2014; Xie and Levinson, 2007). Road networks essentially lie in a

plane such that when two roads intersect, a link between them is created. Few exceptions

to this rule exist such as elevated highway bridges spanning other roads. Boeing (2018)

investigated the planarity of 50 urban street networks worldwide, showing that many road

networks can be described as approximately planar. However, the planar simplification

can misrepresent intersection densities, street lengths and routing in certain cites that

contain a non-negligible number of grade separations such as Moscow (Boeing, 2018).

Several authors (Rifaat et al., 2011; Southworth and Ben-Joseph, 2003) analysed and

classified the patterns of urban road networks. Wang et al. (2017b) summarised these stud-

ies and classified all road networks as grid (four-legged intersections with right angles and

parallel lines), warped parallel (straight lines mostly parallel to each other with curved or

rectilinear formations and three-legged intersections), mixed (no dominant pattern), loops

and lollipops (tree-like structure with cul-de-sacs, branches and three-legged intersections)

and sparse (discontinuous and decentralised with a high proportion of cul-de-sacs). As an

indication, according to Wang et al. (2017b), all of these patterns could be identified in

community areas in Florida’s Orange County (USA).

2.3.2 Road networks intersections

Network topologies are typically characterised by the distribution of the degree (i.e. the

number of adjacent links) of their nodes. The studies of Cardillo et al. (2006), Masucci

et al. (2009) and Wang et al. (2017a) evaluating the topology of network samples from

20 cities, London (UK) and Xiamen Island (China) respectively allow characterising the

degree distribution in road networks. Undirected graphs representing road networks gen-

erally have very few six-or-more road intersections, few five-road intersections, a large

number of four-road intersections and a very large number of three-road intersections

except in cities presenting a dominant square-grid structure (e.g. San Francisco) where

four-street intersections are more frequent than three-street intersections.

These empirical studies show that the number of connections of road intersections is

limited. In road networks, two distant nodes are less likely to be directly connected due

to the distance-dependence of the links travel costs (Buhl et al., 2004). Hence, although

intersections connecting more than six roads exist (e.g. the roundabout at Place Charles

de Gaulle in Paris connects 12 streets) they are very rare and can be treated as exceptions.

2.3.3 Road networks links

Another important characteristic of road networks noted in Xie and Levinson (2007) is the

heterogeneity resulting from road hierarchy (i.e. roads are typically categorised into minor

and major local streets, regional roads, and highways as discussed above) that differentiate

between functional properties and operational performance of roads, which provide both

property access and travel mobility. Local streets mainly serve the land access function

while arterial roads (e.g. highways) provide a high level of mobility for through movement.

Road hierarchy results in heterogeneous link travel costs. It is, however, difficult to go

14



CHAPTER 2. LITERATURE REVIEW

beyond this statement and define a general distribution for the link travel costs in road

network models because these costs depend on dynamic factors such as the link travel

time (which depends on a variety of parameters including the link length, speed limit and

traffic conditions). Furthermore, even the distributions of static parameters like the length

of the links present several configurations. Crucitti et al. (2006) found that self-organised

cities (e.g. Cairo, Egypt) exhibited single-peaked distributions while planned cities (e.g.

Los Angeles, USA) exhibited multimodal distributions due to their grid pattern. However,

Crucitti et al. (2006) did not report any specific distribution. Masucci et al. (2009) fitted

a power-law (with a cut off for the longest streets) to the London street network model.

The study of Strano et al. (2013) that considered 10 European cities showed slightly

different results as a power-law emerged in the distribution tails but the fitting worsened

with decreasing link lengths. They observed that the percentage of streets failing inside

the power-law region ranged from 4% (Barcelona, Spain) to 29% (Lancaster, UK) and

suggested that cities may be composed of streets following two distributions.

2.3.4 Summary of the characteristics of road networks and their graph

representations

Finally, the review of the different studies of real-world road networks topologies and pat-

terns allowed identifying the main properties of road networks and their representations:

• road networks are not universally planar but many road graphs can be approximated

as planar;

• road networks include patterns ranging from the regular grid and wrapped parallel

structures to the more irregular loops, lollipops and sparse structures;

• road graphs have a negligible proportion of intersections with six or more connec-

tions;

• road graphs comprise a large majority of three or four road intersections;

• the functional properties and performance of road links are heterogeneous.

2.4 Random road network models

In this thesis (more specifically in Chapter 4), a novel random road graph model is devel-

oped and used to evaluate the correlation between road network properties and resilience.

The present subsection surveys existing random road network models to provide a back-

ground to this topic.

Random road network models were developed for different purposes. Bai et al. (2003)

used a grid model to evaluate the impact of mobility (e.g. connected vehicles on a free-

way) on the performance of routing protocols for ad hoc networks. That model is very

regular and does not hold many features of real road networks like the heterogeneity in

nodal degrees. More sophisticated models for generating random road network models

have been proposed by the research community in complex network theory. Gerke et al.

(2007) proposed a planar variant of the classical Erdős–Rényi random graph model (in
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complex network theory a ”random network” refers to a network where each node pair

is connected with a fixed probability). Masucci et al. (2009) built on this basis to pro-

pose the Growing Random Planar Graph (GRPG) that seeks to mimic the effect of urban

sprawls. Unfortunately, both models tend to generate more high degree nodes (superior

to six) than observed in real networks. Eisenstat (2011) also notes that the GRPG model

results in an unrealistic abundance of acute-angled intersections.

Other works focused on developing models for road networks at a larger scale (e.g.

national scale) that hence account for the diversity in road hierarchy. Kalapala et al.

(2006) studied the topological and geometric structure of the national road networks of

three countries (i.e. Denmark, England and the USA). The study revealed that all journeys

from a postal code to another, regardless of their length, have an identical structure.

Drivers seeking to optimise their travel time would typically start their journey in a local

street close to their point of origin, and progressively move to larger and faster roads

(which are higher in the road hierarchy) until reaching the fastest single road between their

origin and destination. On this road, they cover as much distance as possible, and then

progressively descend to smaller roads until their destination. This finding led Kalapala et

al. (2006) to introduce a square-grid fractal model for road placement that reproduces both

the observed hierarchical and scale-invariant structure of journeys. Noting that the basic

fractal model was too regular to resemble real road networks, Eisenstat (2011) proposed

the quadtree model, which employs the fractal model but uses a random tree to distribute

the smaller square grids in the network. The drawback of both models is that the degree

of the intersections in the networks generated is limited to four.

To overcome the shortcomings of the grid model, Peng et al. (2014) developed the

Grid model with Random Edges (GRE). The main idea of this model is to randomly

introduce the effects of obstacles and shortcuts in the basic grid model. Obstacles (e.g.

buildings, parks and rivers) normally make a road network sparser as they prevent certain

roads from being built while shortcuts (i.e. diagonal links in the grid) make a road net-

work denser. Using an optimisation algorithm and six parameters (the area length and

width, the average lengths of vertical and horizontal lines in the network model, a proba-

bility controlling the presence of horizontal and vertical lines to simulate obstacles, and a

probability controlling the presence of shortcuts), they fit the model to real road network

samples from 66 main cities in Europe and the USA. The topological characteristics (i.e.

average nodal degree, average shortest path length, and density of nodes and links) of

the abstract models and real networks were reasonably correlated especially in the case

of the US cities (for which the fitting process was easier since they generally do not have

shortcuts).

2.5 Disruptive events management

2.5.1 Disruptive events

Disruptive events can impact both the supply and the demand side of the transport system.

The supply side (i.e. the network) is affected by the damage induced on the infrastructures,

which in turn impacts traffic conditions through road unavailability as well as speed and

capacity reductions. The demand side that represents the users’ flow patterns, mode choice
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and average speed is also impacted. The effects on the demand side include for example

trip cancellations due to destinations being affected or re-routing due to congestion on

usual routes.

According to the CEDR (2009) disruptive events are responsible for around 10% to

25% of the congestion experienced in Europe (i.e. 10-15% in Sweden and 25% in England)

and are the largest single cause of journey unreliability. In the USA, the estimated loss

due to disruptive events is 1.3 billion vehicle-hours of delay congestion each year costing

almost US$10 billion (FEMA, 2012). Disruptive events can be categorised based on several

factors: cause, scale, severity, etc. This section makes a distinction between man-made

and natural events.

Man-made events

Man-made events range from small accidents leading to the closure of one lane in a local

road to major accidents causing a motorway closure for several hours with cascading effects

affecting the entire network. El-Rashidy (2014) gives the example of a five-vehicle crash

on the westbound carriageway of the M26 motorway, which occurred in Kent (UK) on

16 April 2014 and led to the closure of M26 in both directions for over six hours. The

motorway was then partially reopened (i.e. one lane was opened on the M26 eastbound)

while the second eastbound lane and the westbound lanes between M20 and M25 remained

closed for 12 hours (BBC, 2014). According to the BBC report (2014), two people died in

the crash while others were seriously injured. The accident also led to a hundred vehicles

being trapped on the motorway for several hours.

Sabotage and terrorist actions such as New York 9/11 and London 7/7 are also man-

made events that can disrupt road traffic and cause widespread economic losses (Cox et

al., 2011). Finally, infrastructure deterioration due to ageing and repair works can also

lead to disruptions. For example, the road works carried out in London regularly lead

to ”significant congestion and reliability costs on road users and businesses” (Arter and

Buchanan, 2010).

Natural events

Natural events (such as earthquakes, extreme temperatures, high winds, heavy rain and

snowfall) affect road infrastructures and disrupt traffic flows. The impacts of natural

events are manifold and include reductions in visibility, vehicles stability manoeuvrability,

traffic speeds and road capacity as well as increases in maintenance costs, operations costs

and accident rates (Maze et al., 2005; Pisano and Goodwin, 2004; UK Department for

Transport, 2014). However, it is noted that accidents occurring during rain or winter con-

ditions seem less severe as they involve fewer fatal crashes (Brown and Baass, 1997). This

is mainly attributed to the decrease in vehicle speeds during adverse weather conditions.

Floods and winter conditions were found to cost Europe and the UK more than any

other weather-related disruptive event (Enei et al., 2011). Chatterton et al. (2010) esti-

mated the cost of the summer 2007 flood—caused by exceptional rainfall—at £191 million.

Approximately half of this amount is due to road infrastructures damage whereas the over

half is due to traffic delays. The authors recognised however that there is much uncertainty

about the estimate of traffic delay and redirections.
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Finally, natural events are expected to increase in severity and frequency due to climate

change. Hence, numerous policy-makers and practitioners emphasise the need to protect

transport infrastructures from climate change (Colin et al., 2016; DEFRA, 2011; Kiel et

al., 2016).

2.5.2 Traffic incident management

When disruptive events occur congestion quickly builds and the likelihood of a secondary

incident increases (Austroads, 2017). Depending on the incident location and traffic dis-

tribution, the travel time of road users may increase at the route, area or network level.

From a safety perspective, Karlaftis et al. (1999) found that each minute of clearance time

of the primary incident increases the likelihood of a second crash by 2.8%. Therefore,

Traffic Incident Management—the process of detecting, responding to, and clearing traffic

incidents (Austroads, 2017)—plays a key role in reducing the impacts of incidents on safety

and traffic operation. A typical Traffic Incident Management process involves six opera-

tional stages: detection and verification, motorist information, response, site management,

traffic management, and clearance (Austroads, 2017).

2.5.3 Risk analysis vs Resilience analysis

So far, the dominant approach used to inform the management of disruptive events in

engineering systems has been risk analysis (Park et al., 2013). Typical risk analyses

involve three stages: risk identification and characterisation, risk exposure analysis, and

consequences analysis.

However, Park et al. (2013) challenge the applicability of risk analyses to complex

systems. Complex systems such as transportation networks are in a a perpetual dynamic

state because they involve engineering, human and natural systems interacting together

while they are subject to both external and internal forces. Hence, a range of hazards

occurring in complex systems are unpredictable. For instance, prior to the London 7/7

attacks, it was difficult to conduct comprehensive risk analyses of terrorist attacks since

there was little information about the location, time and consequences of such events

(El-Rashidy, 2014).

To overcome this limitation, addressing the resilience (ability to resist, recover from

and adapt to shocks) of complex systems can be a more suitable approach since it is a

dynamic property emerging and observable across a variety of disruption scenarios (Park et

al., 2013). Resilience analyses accept the possibility that a wide range of disruptive events

may occur but are not necessarily predictable, and focus on anticipating and protecting

the performance of the disrupted system rather than preventing or mitigating the loss of

assets due to specific events (ARUP, 2014).

2.6 The concept of system resilience

2.6.1 Definitions and concepts

The term resilience originates from the Latin word “resiliere” which means to bounce

back (Henry and Ramirez-Marquez, 2012). The concept of resilience was extended to

18



CHAPTER 2. LITERATURE REVIEW

systems by Holling (1973), as the ability of ecological systems to “absorb changes of state

variables, driving variables, and parameters, and still persist.” Since then, the word has

been adapted and reinvented to refer to the capacity of systems to anticipate, sustain and

recover from external shocks, as well as, the ability to cope with changes in general (IPCC,

2012; Martinson, 2017).

The growing interest in resilience led to confusion over its concept as several authors,

(e.g. Ganin et al., 2017; Henry and Ramirez-Marquez, 2012), found a lack of consensus

and rigour in the use of the term. For example, the concept of resilience overlaps other

concepts such as robustness and reliability, often confused with resilience (Bruneau et al.,

2003; Ganin et al., 2017). To provide more clarity, the different definitions available have

been surveyed. The review highlighted the concepts connected to the word resilience.

The seminal framework introduced by Bruneau et al. (2003) associates system resilience

with the following notions: (i) reduced failure probabilities (ii) reduced consequences from

failures and (iii) reduced time to recovery. The framework includes two historical defini-

tions of resilience. The first one, attributed to Holling (1973), refers to the perturbation

that can be absorbed before the system is displaced from one state to another. The second

definition describes resilience as the speed of the system to return to its initial equilibrium

(Pimm, 1984). These definitions led to two distinct approaches to resilience (Reggiani,

2013). On the one hand, Pimm’s definition (1984) marks the origin of the engineering

resilience—in which the system has a unique equilibrium. On the other hand, the ecolog-

ical resilience, accredited to Holling (1973), expects the system to move from a state of

equilibrium into a new, different and stable state after a shock. In the latter, the focus

shifts from the system itself to its function and output (Spaans and Waterhout, 2017).

Woods (2015) identified four concepts associated with resilience in the context of com-

plex systems:

• Resilience as rebound from trauma and return to equilibrium;

• Resilience as a synonym for robustness i.e. capacity to absorb perturbations;

• Resilience as opposite of brittleness, i.e. ability to extend adaptive capacity in the

face of unexpected events;

• Resilience as network architectures that can sustain the ability to adapt to future

events as conditions evolve.

The first two categories match the historical definitions of resilience and the last two

concepts of Bruneau et al. (2003). In the third and fourth categories Woods (2015) insists

on the ability to ”adapt” with the idea that the first two categories (i.e. resilience as re-

bound from trauma and return to equilibrium, and resilience as a synonym for robustness)

are concerned with known or well-modelled perturbations only.

Ultimately, the two main concepts associated with resilience in the majority of the

literature are the ability to absorb perturbation and recover quickly. The other resilience

concept (i.e. ”reduced failure probabilities”) mentioned by Bruneau et al. (2003) has

evolved to refer to the capacity to adapt to unexpected events and conditions. The con-

fusion over the concept of resilience probably derived from the existence of these different

notions and the tendency of researchers to focus on one of these notions when addressing
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particular systems (Koliou et al., 2018). System resilience as a comprehensive concept can

thus be summarised with three pillars: reducing (i) consequences (ii) recovery time (iii)

and vulnerabilities to future expected and unexpected conditions.

2.6.2 Properties and related subjects

As explained above, the concept of resilience comprises three pillars: reduced consequences,

reduced recovery time and reduced vulnerability to future unpredictable shocks. Therefore,

a resilient system should exhibit these three abilities. A possible approach to assess the

resilience of a system is to consider the properties of resilient systems.

Many researchers and practitioners took this approach, proposing conceptual frame-

works desegregating resilience into several properties. Their studies provide further in-

sights into the notion of resilience and help to determine the boundaries and relationships

between resilience and other terms such as robustness, vulnerability, and reliability. Table

2.1 provides an overview of the different concepts and properties usually connected to

system resilience.

Table 2.1: Overview of the properties often associated with system resilience

Properties

(alphabetical

order)

Definitions (adapted from reference

data)

Relationship with resilience according to

reference data (author, date)

Bruneau et

al., 2003

Godschalk,

2003

Hosseini et

al., 2016

Adaptability

(or flexibility)

Capacity to change and adapt in re-

sponse to changing circumstances

- Property

of resilient

systems*

-

Rapidity (or

Recoverability)

Capacity to meet priorities and

achieve goals in a timely manner in

order to contain losses

Resilience

property

- Resilience

dimension

Redundancy Extent to which elements exist that

are substitutable (i.e. spare capacity

purposely created within systems to

accommodate disruption and surges in

demand)

Resilience

property

Property

of resilient

systems*

-

Reliability Ability to maintain typical operation

prior to a disruption

- - Resilience

dimension

Resourcefulness Capacity to identify problems, estab-

lish priorities, and mobilize resources

when a disruption occurs

Resilience

property

- -

Robustness (or

Strength)

Ability to withstand a given level of

stress or demand without suffering

degradation or loss of function

Resilience

property

Property

of resilient

systems*

-

Vulnerability Ability to stave off initial impacts

after an adverse event

- - Resilience

dimension

*The other properties mentioned by Godschalk (2003) are: Diversity, Autonomous components, Col-

laboration, Efficiency and Interdependence

Godschalk (2003) reviewed several studies of system resilience to identify the common
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characteristics of resilient systems (Table 2.1). According to Godschalk (2003), resilient

systems are composed of small autonomous (able to operate independently) components

with diverse functionalities (“to protect the system against various threats”). They are

also efficient (optimised input-output ratio), redundant (“so that the system does not fail

when one component fails”) and strong (able to withstand an adverse event). Furthermore,

collaboration (shared information and resources among components or stakeholders) and

adaptability (the capacity to learn from experience and change) are additional indicators

of resilience.

Bruneau et al. (2003) associate resilience of both physical and social systems to the

4R’s: robustness, redundancy, rapidity and resourcefulness (defined in Table 2.1). They

also see robustness and rapidity as resilience “ends” (i.e. outcomes that deeply affect

stakeholders), while redundancy and resourcefulness are resilience “means” by which sys-

tem resilience can be improved. In other words, although adding redundant elements to a

system can enhance resilience, robustness and rapidity are the key measures that should

be used to evaluate the benefits of this strategy.

Subsequent studies draw on the work of Bruneau et al. (2003) and Godschalk (2003).

For instance, Reed et al. (2009) mentioned the 4R’s in a resilience assessment of a power

supply network after Hurricane Katrina. Simonovic (2018) used them to assess the re-

silience of a railway network under flooding. Researchers and practitioners also supple-

mented these sets of properties to propose their own context-specific frameworks, e.g.

Murray-Tuite (2006) in the context of transportation systems and ARUP (2014) in the

context of cities.

Reliability and vulnerability are two other concepts often associated with system re-

silience. Referring to the approach of Henry and Ramirez-Marquez (2012), Hosseini et al.

(2016) described them as part of a time-dependent process involving a disturbed system:

• Reliability is the “ability of the system to maintain typical operation prior to a

disruption”;

• Vulnerability is the “ability of the system to stave off initial impacts” after the

disruptive event;

• Recoverability is the “ability of the system to recover in a timely manner.”

In this framework, a resilient system encompasses these three abilities. The definitions

of robustness and vulnerability are close (Table 2.1) such that vulnerability is often viewed

as the opposite of robustness (Simonovic, 2018).

The seminal definition of reliability as the ability of a system to ”perform its required

functions under stated conditions for a specified period of time” (IEEE Computer Society,

1991) is compatible with the framework of Hosseini et al. (2016) where reliability focuses

on the system pre-event performance. However, this focus on the system pre-event per-

formance also suggests that reliability is not essential in resilience analyses as the latter

focuses on the consequences of disruptive events. The focus on consequences allows re-

silience studies to consider unpredictable events while reliability studies often deal with

probabilities and predictable events.

Finally, it is noted that there is no consensus on the definitions and relationships

between the different concepts and properties mentioned above as the same terms can
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be used with different definitions in different contexts. For instance, in the context of

hazard mitigation, Cutter et al. (2008) view resilience and vulnerability as separate but

often linked concepts, while some researchers consider resilience as an integral part of

vulnerability. In the present thesis, system resilience is considered as a comprehensive

concept that can be measured by the system robustness and rapidity—as proposed by

Bruneau et al. (2003). The adaptability side of resilience is included in the present thesis

by the consideration of a multitude of potentially unpredictable disruption scenarios.

2.7 Resilience modelling and quantification for road net-

work management

The present section draws on the understanding of system resilience established above to

analyse the literature on resilience modelling and quantification for road network manage-

ment. This section discusses three aspects of the different studies and approaches avail-

able in the literature: the transport model, disruption model, and resilience quantification

model.

2.7.1 Transport models

Transport models represent real-world transport and land use systems to predict and

analyse their performance under different conditions. Two main types of transport models

can be identified in road-network-resilience assessment studies: topological and traffic flow

models.

Topological models

Topological studies root in graph theory and focus on measuring the resilience of road

networks based on their structure (the arrangement of the roads and intersections). Road

infrastructures are modelled as a graph G(V,E) composed of a set of nodes or vertices

(V ) and a set of links or edges (E). The most intuitive and popular approach (called

primal representation) is to model both intersections and dead-ends as nodes and the

street segments between them as links. This approach ”retains the geometric patterns

and geographical properties of transportation systems” (Lin and Ban, 2013). Depending

on the scope of the study, nodes can represent real-life intersections, major intersections

or cities. The same principle applies to the links. The latter are attributed weights

corresponding to their actual lengths, travel times, monetary costs, or a generalised travel

cost combining the previous metrics.

Alternatively, the graph can represent the network intersections as edges and the road

segments as vertices. This approach (called dual representation) reflects the functional

structure of the transport network (Lin and Ban, 2013) in the sense that users generally

navigate from one street to another (for example, GPS systems provide the name of the

streets that we should follow not the name of the intersections). The dual representation

provides a better picture of road hierarchy (Kalapala et al., 2006; Lin and Ban, 2013) and

leads to graphs with higher degrees than that of the primal graphs. Therefore, the dual

representation of a road network is comparable in its degree distribution with computer,

ecological or social networks (Casali and Heinimann, 2020).
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Considering the geographical nature of road disruptions, most of the studies on the

resilience of road networks (Buhl et al., 2006; Casali and Heinimann, 2019; Hu et al.,

2016; Zhang and Wang, 2016; Zhang et al., 2015) use the primal representation. These

studies measure the impacts of disruptions on the distance between the nodes—or Origin-

Destination (OD) zones—, the network connectivity (i.e. the number of nodes—or OD

zones—that are connected), or the number of redundant alternative routes between the

OD zones. However, topological models disregard traffic flows and link capacity con-

straints. Hence, these studies are unable to capture dynamic effects of the disruption

such as increased congestion on alternative routes and the related behavioural responses

(Mattsson and Jenelius, 2015).

Traffic-flow models

Traffic-flow models also represent roads into graphs but add another layer to the physical

network representation: the distribution of the flow of vehicles through the network. As a

result, traffic flow studies generally provide a more realistic assessment of the consequences

of disruptions for the users and society (Mattsson and Jenelius, 2015). The resilience

studies based on traffic-flow models generally measure the impact of the disruption on

the users’ travel time and sometimes consider the environmental (Omer et al., 2013) and

economic implications (Kurth et al., 2020; Omer et al., 2013) of the disruptions.

However, in comparison to topological analyses, traffic-flow analyses present two ma-

jor disadvantages: their data hungriness and computational complexity. These analyses

require travel demand data (describing the origin and destination of the users) and cali-

brated behavioural models (describing the users’ response to changes in their travel costs)

that are often unavailable. Besides, considering the computational effort required for traf-

fic simulations, it is currently unrealistic to perform thousands of disruption simulations

that each require a traffic analysis as with topological analyses. This is especially true for

large networks as the computational effort of traffic simulations exponentially increases

with the size of the network model.

The traffic models used in the literature typically minimise the travel cost of all road

users (Bhavathrathan and Patil, 2015a, 2015b; Omer et al., 2013), assume that users inde-

pendently minimise their own travel cost (Ganin et al., 2017) or that only the users affected

by the disruption modify their routes (Faturechi and Miller-Hooks, 2014). These assump-

tions are called as System-Optimum, User-Equilibrium, and Partial-User-Equilibrium traf-

fic assignments respectively. The traffic assignment is the fourth stage of the seminal

four-step (trip generation, trip distribution, modal split, and traffic assignment) transport

model (Ortúzar and Willusem, 2011) that can be used to estimate the number of vehicles

(or people) that will use a specific transport facility based on travel data that can be

obtained through census information, surveys, and estimates. The assumptions related to

the traffic model are however rarely validated against real-life data as the travel demand

data required are often unavailable. More sophisticated traffic models are also used in

the literature including dynamic models considering the evolution of the traffic flow over

time (Gauthier et al., 2018; Nogal et al., 2016) and stochastic models considering the

subjectivity of the users’ response to the disruption (Nogal and Honfi, 2019). These fea-

tures however increase the data requirements and computational complexity of transport
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models.

2.7.2 Disruption models

As explained in Chapter 1, the resilience of road networks should characterise their ability

to deliver this function under a multitude of potentially unpredictable conditions. How-

ever, assessments of the potential impact of disruptive events on road networks generally

focus on a few scenarios illustrating the proposed methodology (Nogal et al., 2016; Omer et

al., 2013; Zhang and Wang, 2016) or the worst-case scenario using a game theory approach

(Alderson et al., 2017; Bhavathrathan and Patil, 2015a, 2015b, 2018). These studies do

not uncover the potential impact of all possible disruption scenarios as suggested by the

resilience paradigm.

A range of recent studies consider multiple disruption scenarios in the road transport

context. For example, Zhou et al. (2017) and Wisetjindawat et al. (2017) proposed inter-

esting frameworks to consider multiple hazards. Both studies, however, belong to the risk

analysis paradigm, which relies on records of past disruptions (including road accidents,

maintenance and disasters), that may overlook unpredictable events as explained above

(Section 2.5).

Ganin et al. (2017) performed twenty realisations of disruption scenarios affecting a

random and finite number of links on traffic flow models of 40 US cities. The purpose

of the study was to compare efficiency (the annual delay in peak-periods under normal

conditions) and resilience (the annual delay in peak-periods due to disruption) across

different network topologies. Hence, the impacts of the different disruption scenarios

were not studied in detail and the number of scenarios considered relatively limited. The

other studies that consider multiple disruption scenarios can be divided into two groups:

dismantling process studies and link criticality studies.

Dismantling process studies

The research community in complex network theory has studied robustness as the changes

of some metric of the network functionality against the fraction of removed nodes (or

links) to understand how many nodes (links) have to be removed to fragment a network

into isolated components (Réka et al., 2000; Zanin et al., 2018). Applications of the

”dismantling process” approach to road networks are available in (Buhl et al., 2006; Casali

and Heinimann, 2020; Hu et al., 2016). Buhl et al. (2006) and Casali and Heinimann (2020)

performed hundreds to thousands of realisations of different types of dismantling processes

on self-organised street networks (e.g. Rome) and the Zurich road network, respectively.

Hu et al. (2016) compared different types of dismantling processes and recovery strategies

in square grids and the road network of the Hainan province (China).

These three studies made a distinction between targeted and random dismantling pro-

cesses. The latter model damage to a random set of links (e.g. pavement maintenance,

pipe bursting or police incidents amongst others can lead to random road closures) whereas

targeted attacks imply a driving force seeking to maximise damage to the network (e.g. the

bombing of a critical bridge). Besides random and targeted failures, Hu et al. (2016) con-

sidered localised failures (e.g. landslides, flooding). Unlike random and targeted failures

that cause damage to network components distributed throughout the whole system, lo-
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calised damage lead to aggregated destruction of adjacent components limited to a specific

area. While random and targeted failures are commonly considered in complex network

theory (Réka et al., 2000; Zanin et al., 2018), the consideration of their localised counter-

parts is more recent (Hu et al., 2016).

However, the focus on dismantling processes only is not necessarily appropriate for road

network management. Dismantling-process analyses are useful to determine the critical

number of failed components after which networks can no longer function. This infor-

mation is important, for example, to address mutations and router problems in gene and

computer networks respectively (Réka et al., 2000). For road networks, this information

is relevant only when analysing major disasters (e.g. earthquakes or large floods) that can

potentially damage many roads. This is because contrary to computer, ecological or social

networks, road networks are composed of large physical infrastructures that are difficult

to damage. Hence, dismantling processes lack applicability to a wide range of road per-

turbations such as car accidents, sabotage actions and landslides that disrupt a limited

number of roads. Besides, experience showed that the unavailability of a small fraction

of a transport network can lead to major consequences for society and the economy. For

instance, the collapse of the I-35W Bridge in Minneapolis (USA) resulted in economic

losses of US$71,000 to US$220,000 a day (Xie and Levinson, 2011). Hence, a better un-

derstanding of the potential impacts of events disrupting a limited number of links and

intersections remains important in practice.

Link criticality studies

Another group of studies, that can be called link criticality studies, traditionally consider

a full range of predictable and unpredictable disruption scenarios. These studies seek

to identify the links whose failure would result in the highest impacts on the network

performance. The rationale for such studies is that the most critical roads should be given

top priority for pre-event reinforcement and post-event restoration.

To identify critical links in a network, Taylor et al. (2006) proposed an approach based

on single-link failures (SLFs) where each link is removed from the network model and the

corresponding effect on the network performance is estimated. The levels of impact are

then ranked and the links demonstrating the most significant impacts are considered the

most critical. This approach has been widely adopted and improved in subsequent studies

(Gauthier et al., 2018; Omer et al., 2013; Sullivan et al., 2010) that also considered link

capacity reductions rather than complete link removal. However, capacity reductions add

to the already high computational cost of this approach since several scenarios need to be

computed per link.

A growing concern in link criticality studies is that this approach disregards the effect

of multiple-link disruptions. Wang et al. (2016) showed that the most critical links in

multiple-link failures are not simply the combination of the most critical links with single-

link failure. Hence, the consideration of single-link failures only is insufficient as this

approach could lead to inefficient prevention and restoration measures in the advent of

events disrupting several road segments or several events concurrently affecting different

parts of the network.
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2.7.3 Resilience quantification models

As discussed above, resilient systems are associated with two main properties: robust-

ness—the ability to function despite disturbances—and rapidity (or recoverability)—the

ability to recover its functionality quickly. In the context of road networks, most papers

(e.g. Bhavathrathan and Patil, 2018; Ganin et al., 2017; Gauthier et al., 2018; Omer et

al., 2013) focus on robustness while recovery processes have attracted less attention. The

present subsection discusses the resilience quantification models that focus on robustness,

before discussing the models that consider recovery processes.

Robustness quantification

Robustness measures (that do not address rapidity) are sometimes referred to as resilience

measures in the literature e.g. in (Ganin et al., 2017; Omer et al., 2013). These resilience

indicators are considered as robustness measures in this Chapter although they are not

referred to as is in the references. Robustness metrics focus on the instantaneous loss

of performance of the system following a disruption without considering the subsequent

recovery process. The majority of these metrics compare the network pre- and post-event

functionality. Depending on the transport and disruption models adopted (discussed in the

previous subsections), the network functionality is measured by the network connectivity,

the network redundancy, the users’ travel time, etc. In reality, robustness indicators

should compare the required- and disrupted-network performance to evaluate the ability

of the system to provide functionality despite disruption. However, as the definition of

the required performance is arbitrary (since it depends on the judgement of the transport

operators, public authorises and users), the network pre-event performance is often used

as a proxy for the required performance.

The robustness indicators available in the literature range from the simple difference

(Ganin et al., 2017) or ratio (Bhavathrathan and Patil, 2015a, 2015b; Omer et al., 2013) of

the network performance metrics to more complex indicators such as the indicator of Ip and

Wang (2011) and Zhang and Wang (2016). Ip and Wang (2011) defines the resilience [sic]

of a transport network as the weighted sum of the resilience of the nodes, the node resilience

being the weighted average number of reliable routes to all other nodes. The index of Zhang

and Wang (2016)—called Weighted average number of reliable Independent Path Ways

(WIPW )—follows the same principle. WIPW assesses the extent to which redundant

alternative routes exist between the OD pairs (i.e. combinations of trips’ starting and

ending points):

WIPW =

n∑
i=1

wiri (2.1)

where wi and ri are the weighting factor associated to node i and the average number

of reliable independent pathways (IPWs) between i and any other nodes in the network

model, respectively. wi reflects the importance of i being connected during a disaster

(i.e. wi is inversely proportional to the shortest distance from i to the nearest emergency

centre). ri is also computed using weighting factors that take into account:

• the number of IPWs between i and any other nodes
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• the reliability (i.e. failure probability) of the IPWs

• the average daily traffic and length of the IPWs (which reflect the relative impact

of the pathway on society).

This method differs from the other robustness quantification methods as it includes the

reliability of the links in a network-level assessment. However, this assessment is hazard-

specific, requires data on the link reliabilities, and is therefore appropriate for certain

hazards only (e.g. earthquakes). With their indicator, Zhang and Wang (2016) attempt

to take into account the fact that during and after disasters, users are likely to modify

their usual routes to reach emergency services or evacuate the affected area. This topic

is addressed in more details in a growing research area called “evacuation and emergency

transport modelling”. An overview of the research on highway-based evacuation modelling

and simulation is available in (Murray-Tuite and Wolshon, 2013).

Resilience quantification

Several generic (i.e. applicable to any system using the appropriate context-specific func-

tions) frameworks were developed to assess the resilience of engineering systems (Bruneau

et al., 2003; Henry and Ramirez-Marquez, 2012; Sharma et al., 2018). These frameworks

include the seminal work of Bruneau et al. (2003) that defines robustness and rapidity as

the key measures that should be used to quantify resilience and introduces a graphical

interpretation of the resilience concept where the latter is measured by the integral of the

quality of infrastructure over time. This concept—called resilience triangle—is illustrated

in Figure 2.2, where the quality of infrastructure is measured by the quantity 100−Q(t),

Q(t) being the system performance expressed in percentage. As shown in Figure 2.2, a

hazard causes a sudden drop in performance at t0, after which the system gradually recov-

ers its performance until t1 when the system is completely repaired. The integral hence

measures both the loss of performance and the time required to return to the pre-event

performance. Henry and Ramirez-Marquez (2012) proposed a time-dependent system

resilience measure alongside with a time-to-recover and a resilience-cost metric. More re-

cently, Sharma et al. (2018) proposed a series of partial descriptors based on the analogy

of the system recovery curve with a cumulative distribution function in probability theory

including resilience ”centre” and resilience skewness.

50

time

Q
(t

)
in

 %

t0 t1

100

Figure 2.2: The resilience triangle—adapted from Bruneau et al. (2003).
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In the context of road networks, the studies that consider recovery processes pro-

pose different approaches. Nogal et al. (2016) and Nogal and Honfi (2019) focus on the

gradual adaptation of road users following both the perturbation and restoration phases.

Tuzun Aksu and Ozdamar (2014) developed a model optimising the link-repair sequence

to quickly recover the network connectivity to facilitate evacuations. Zhang et al. (2017)

developed a model optimising the link-repair sequence to quickly improve the network per-

formance under stochastic damage levels and repair durations. To this end, the authors

added recovery processes to their robustness quantification method (Zhang and Wang,

2016). Finally, Hu et al. (2016), compare different repair strategies under random, lo-

calised, and targeted perturbations. However, the studies of Hu et al. (2016), Tuzun Aksu

and Ozdamar (2014) and Zhang et al. (2017) rely on topological transport models that do

not consider link capacity constraints (which are discussed above).

Noting that recovery processes are case-specific and depend on whether infrastructures

are damaged, Murray-Tuite (2006) suggest that when the infrastructure is damaged, re-

covery could be measured by the amount of time, money, and outside assistance required

to restore connectivity at an acceptable level of service. In the case where infrastructure

is not damaged, the author proposes to measure recovery by the amount of time required

to alleviate congestion.

2.8 Summary and concluding remarks

The present chapter provides a background to the research presented in this doctoral

thesis. The literature survey covered several topics including road network management,

road networks properties, random road network models, disruptive events management,

and road network resilience. This chapter firstly highlighted the role of road agencies and

their management practices (road classification and life cycle asset management) in road

network resilience. Then, a review of studies examining real road networks topologies

and patterns was conducted to identify the common properties of road graphs including

approximate planarity, negligible proportion of intersections with six or more connections

and heterogeneity in roads functionality and performance. This chapter also discussed the

random graph models available in the literature. This discussion showed that the GRE

model synthesizes most of the topological characteristics of road networks. This model

is therefore used as a basis to build the random road graph model used in this thesis

(Chapter 4).

The review subsequently focused on disruptive events management. It was shown that

road networks are increasingly exposed to a wide range of disruptive events threatening

their usability. These events were categorised into man-made and natural events. Figure

2.3 summarised this classification as well as the interactions between the different types

of events.

The review showed that the management of disruptive events could be informed by

two approaches: risk analyses and resilience analyses. Risk analyses focus on the prob-

ability of occurrence and consequences of disruptive events and therefore have limited

applicability to complex systems (such as road networks) that often face unpredictable

and unknown hazards. In contrast, resilience analyses accept the possibility that a range

of disruptive events may occur but are not necessarily predictable, and focus on anticipat-
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Figure 2.3: Classification of disruptive events and their interactions

ing and protecting the performance of the disrupted system. The remainder of the review

focused on resilience and showed that the resilience concept was gradually stretched to

incorporate several notions that can be summarised as reducing disruptions consequences,

recovery time from disruptions, and vulnerabilities to future expected and unexpected con-

ditions. Finally, the present chapter discussed the advantages and disadvantages of the

road-network-resilience assessment approaches available in the literature. This allowed

the identification of research gaps that will be addressed in the present thesis: lack of

characterisation of the potential impacts of a full range of predictable and unpredictable

disruption scenarios, lack of characterisation of the rapidity component (i.e. recovery

strategies) in road network resilience, and limited understanding of the effects of road

networks’ characteristics (topology, travel demand distribution, congestion, etc.) on road

network resilience (Section 1.2).
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Chapter 3

Robustness of road networks to

multiple disruption scenarios

3.1 Introduction

The literature review showed that system resilience can be measured by two key proper-

ties that resilient systems should exhibit under stress: robustness (the ability to absorb

perturbations) and rapidity (the ability to recover quickly). This chapter focuses on road

networks’ robustness to multiple disruption scenarios. As the main function of road net-

works is to provide mobility (i.e. the ability to travel between trip origins and destinations

in a timely manner) the robustness of road networks should characterise their ability to

deliver this function under a multitude of potentially unpredictable conditions. However,

assessments of the potential impact of disruptive events on road networks generally focus

on a limited set of scenarios illustrating their methodologies (Nogal et al., 2016; Omer

et al., 2013; Zhang and Wang, 2016) or the worst-case scenario using a game theory ap-

proach (Alderson et al., 2017; Bhavathrathan and Patil, 2015b, 2018). These studies do

not uncover the potential impact of all possible disruption scenarios as suggested by the

resilience paradigm. This is unfortunate as such findings could be useful to practitioners

and public authorities. For example, considering that a wide range of events (e.g. pave-

ment maintenance, road accidents, flooding, etc.) can unpredictably disrupt any parts

of the network, the identification of multiple worst-case scenarios rather than the single

worst-case scenario would be more useful in practice.

A range of recent studies consider multiple disruption scenarios in the road transport

context. However, as shown in Chapter 2, these studies present one (or several) of the

following shortcomings:

• disruptions are modelled based on records of past disruptions that may overlook

unpredictable events (Wisetjindawat et al., 2017; Zhou et al., 2017).

• full dismantling processes are used to model disruptive events in road networks (Buhl

et al., 2006; Casali and Heinimann, 2020). Dismantling-process analyses are useful

to determine the critical number of failed components after which networks can

no longer function. This information is relevant when analysing major events (e.g.

earthquakes or floods) but less relevant for a wide range of road perturbations such
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as car accidents, sabotage actions and landslides that disrupt a limited number of

roads only.

• Disruptions are limited to single-link failures (Omer et al., 2013; Sullivan et al., 2010;

Taylor et al., 2006). However, multiple-link failures are not the simple combination

of the most critical links with single-link failure (Wang et al., 2016). Consequently,

the consideration of single-link failures only may lead to inefficient prevention and

restoration measures in the advent of events disrupting several road segments or

several events concurrently affecting different parts of the network.

Besides, some of these studies (Buhl et al., 2006; Casali and Heinimann, 2020) rely

on network topological models that take into account the network topology but disregard

traffic flows, capacity constraints and congestion.

Therefore, although research has extensively contributed to the understanding of road

network robustness, characterisation of the potential impacts of a full range of predictable

and unpredictable disruption scenarios is still lacking. To increase this understanding, the

present thesis adopts a hazard-independent approach that considers all possible scenarios

disrupting multiple links (more specifically up to a certain number of links). The maximum

number of concurrently disrupted links is limited by computational effectiveness. The

threshold for the maximum number of disrupted links is chosen depending on the network

studied to understand the effect of the damage extension (number of disrupted links) on

the network performance. Besides, the present chapter uses traffic modelling techniques

accounting for traffic flows and congestion to provide a more realistic assessment of the

impacts of the disruptions on the network.

To assess road network robustness to multiple disruption scenarios, this chapter de-

velops and uses a robustness indicator suitable to discriminate between the impacts of a

wide range of disruptive events. The proposed indicator based on the demand-weighted

average increase in travel time along the OD pairs of the disrupted network is compared

to a total travel time change indicator, which is representative of the robustness indicator

used in the literature (Chapter 2). The comparison is based on the application of both

indicators to two case studies: a four-node highway network model and the Sioux Falls

road network model.

This chapter is organised as follows. Section 3.2 presents the methods and case studies.

Section 3.3 and 3.4 describe and discuss the results, respectively. Section 3.5 provides some

concluding remarks.

3.2 Methods

3.2.1 Disruption model

Disruptive events can impact both the supply and the demand side of the transport system.

The supply side (i.e. the network) is affected by the damage induced on the infrastructures,

which in turn impacts traffic conditions through road unavailability as well as speed and

capacity reductions. The demand side representing the flow of users can also be impacted

as trips may be cancelled or delayed due to usual routes and destinations being affected.

As this study seeks to evaluate how the availability of alternate routes and capacity helps
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remediate the consequences of network disruptions, travel demand was considered fixed

to effectively compare the network performance under different disruption scenarios (all

other things being equal).

As road disruptions are rarely predictable, an “all-hazard” approach in line with the

resilience paradigm was adopted. All possible combinations of link failures disrupting up

to a certain number of links at the same time were simulated. The maximum number of

concurrently disrupted links was chosen depending on the case study.

3.2.2 Robustness indicators

Demand-weighted average increase in travel time along the OD pairs

Robustness metrics should compare the required- and disrupted-network performance to

evaluate the ability of the system to provide functionality despite disruptions. As the

definition of the required performance is arbitrary (since it depends on the judgement of

the transport operators, public authorises and users), the network pre-event performance

is often used as a proxy for the required performance. The network performance can be

measured by the users’ travel time (TT ) since the main function of road networks is to

allow road users to reach their chosen destination within a reasonable travel time.

This chapter presents a novel robustness indicator that measures the demand-weighed

average increase in travel time along the OD pairs of the disrupted network. This indicator

was developed as part of the present thesis. It is computed in two steps. Firstly, a TT

relative change index (TTCw) is computed for each OD pairs:

TTCw =

(
1 +

TTwd − TTw0
TTw0

)−1
(3.1)

where TTw0 and TTwd are the undisrupted and disrupted travel times on the OD pair w,

respectively. The travel time change index decreases as the travel time increases, being

equal to 1 if the TT remains unaltered despite the disruption. TTCw can also exceed 1

for OD pairs whose road users experience a decreased TT due to reduced congestion on

some roads that they share with users who had to reroute due to the disruption.

The network robustness indicator (RO) then combines the travel time change indices

of all OD pairs using a weighted average:

RO =
∑
w

kwTTCw (3.2)

where w and kw are an OD pair and the associated weighting factor, respectively. kw

is given by the ratio between the demand for w and the total demand in the network.

As disruptions cause an increase in travel time in most OD pairs, the network robustness

indicator (RO) remains between 0 and 1. RO = 100% indicates that despite the disruptive

event the TT remains roughly equal to the initial travel time on all OD pairs. Otherwise,

the network robustness decreases as TTwd increases, the drop being more important when

highly demanded routes are impacted.

To complement RO, several measures of the spread of the impacts across the OD pairs

can be used. Among these measures, the most meaningful could be the proportion of road

users unable to reach their chosen destination following the disruption. These users wish
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to travel between disconnected OD pairs whose TTCw tend to zero (as the travel time

between the trip origin and destination becomes infinite). Hence, the proportion of users

unable to reach their chosen destination—also called unsatisfied demand (USD)—is given

by:

USD =
∑

w kwδw

where δw =

{
0, if TTCw < 0.001

1, otherwise

(3.3)

where TTCw < 0.001 means that the disrupted travel time on w is 1000 higher than the

initial travel time on w. This threshold proved to be low enough to distinguish between the

OD pairs where the TT naturally increases and the OD pairs where the TT unrealistically

increases (as the latter use failed roads that are assigned a very high and unrealistic cost

of travel in the model) in the case studies of this thesis. Moreover, it seems reasonable to

consider that an OD pair where the travel time is multiplied by 1000 is blocked. Depending

on the networks operators’ and users’ level of acceptance, this threshold could be modified

to consider OD pairs where the travel time is multiplied by 50, 100, etc. as failed.

For a more detailed assessment, the travel time in equations 3.1-3.3 can be replaced

by a generalised travel-cost metric considering other route choice factors such as distance,

tolls, and scenery. The weighting factors (kw) can also be adapted to give more importance

to critical routes used by emergency services, for example.

Total travel time change indicator

Most robustness indices described in the literature consider the change in total travel

time in the network (Bhavathrathan and Patil, 2015b; Ganin et al., 2017; Omer et al.,

2013). This metric seems however unable to discriminate between scenarios leading to few

or many Origin-Destination pair disconnections as these scenarios all lead to very high

increases in total travel time. When an OD pair (w) is disconnected (i.e. destination D

can no longer be reached from origin O), transport models assume that the travel time

is infinite (or takes a very high value), which arbitrarily increases the total (or average)

travel time. The robustness indicators based on the total TT may hence arbitrarily and

unfairly decrease towards 0% even when a large proportion of the demand is still satisfied.

In comparison, the demand weighted average used in the proposed robustness indicator

(RO, Eq. 3.2) ensures that the decrease in performance due to w being disconnected is

proportional to the importance of w.

To demonstrate the ability of RO to discriminate between a wider range of perturbation

scenarios than total TT based indicators, the relative change of the total travel time

(ToTTC) was computed and compared with RO.

ToTTC =

(
1 +

ToTTd − ToTT0
ToTT0

)−1
(3.4)

where ToTT0 and ToTTd are the undisrupted and disrupted total travel times, respectively.

ToTTC provides a measure of the change in system-wide travel time scaled in [0,1].
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3.2.3 Case studies

Four-node highway test network

The indicators were firstly tested on a very simple highway network with four nodes and

six links (Prescott, 2017). For the sake of simplicity, the link-travel times were assumed to

be linearly dependent on the link flow (Figure 3.1). The travel times (tti) are in minutes

and the flows (xi) in thousands of vehicles per hour. Two OD pairs are considered: from

O1 to D1 and from O2 to D2 with peak-hour demand for travel d1 = 4000 and d2 = 5000

vehicles per hour respectively. The traffic assignment model used is a user equilibrium

that minimises the travel time of all road users. This model is the fourth stage of the

seminal four-step (trip generation, trip distribution, modal split, and traffic assignment)

transport model (Ortúzar and Willusem, 2011) that can be used to estimate the number

of vehicles (or people) that will use a specific transport facility based on travel data that

can be obtained through census information, surveys, and estimates.

Case study 1: Base scenario

O1

O2 D1

D2

1 2

3

4

5 6

Link Cost of travel function

1 tt1(x1) = 2 + 4x1

2 tt2(x2) = 1 + 3x2

3 tt3(x3) = 8 + 2x3

4 tt4(x4) = 10 + x4

5 tt5(x5) = 7 + 4x5

6 tt6(x6) = 3 + 5x6

Figure 3.1: Four-node highway test network model.

Two damage extension levels were considered in this case study: single-(SLFs) and

two-(2LFs) link failures. These disruptions led to the unavailability of one or several

routes, which was modelled by assigning a very high cost of travel (10,000 min) to the

disrupted routes. SLFs and 2LFs were sufficient to assess the potential impacts of all

possible failure scenarios in this network as the results showed that certain 2LFs cause

99.3% decreases in network performance measured by travel time increases. A Python 3.6

code was develop (as part of the present thesis) to compute both the traffic equilibrium

and the robustness indicators.

The Sioux Falls network

The second case study is the Sioux Falls (USA) network. Firstly introduced in LeBlanc

et al. (1975), the Sioux Falls network (Figure 3.2) has been extensively used as a case

study in the literature (Bhavathrathan and Patil, 2018; Mitradjieva and Lindberg, 2013;

Wang et al., 2016). This network consists of 24 nodes, 76 directed links, and 24 OD zones.

The datasets describing this case study were obtained from the Transportation Networks

for Research repository (Transportation Networks for Research Core Team, 2019). These

datasets provide the network structure, link characteristics (including capacity, length,

and free-flow travel time) and the origin-destination trip matrices.

34



CHAPTER 3. ROBUSTNESS OF ROAD NETWORKS TO MULTIPLE
DISRUPTION SCENARIOS

Figure 3.2: Sioux Falls network model.

Transport model A standard transport model (Ortúzar and Willusem, 2011) was used

to compute and compare the travel time of road users in the initial and disrupted condi-

tions. Using the demand matrix available at the Transportation Networks for Research

repository (Transportation Networks for Research Core Team, 2019), traffic was assigned

to the network assuming that users independently minimised their travel time. Although

individual driving habits may vary (D’Lima and Medda, 2015), this assumption seems rea-

sonable in the absence of more detailed data as it was adopted in a traffic model validated

against traffic data from 40 US urban areas (Ganin et al., 2017).

The travel time of link a (tta) is defined by the standard BPR function (Bureau of

Public Roads, 1964):

tta(xa) = ttfa

[
1 + 0.15

(
xa
ca

)4]
(3.5)

where xa, ca and ttfa are the link flow, capacity and free-flow travel time, respectively.

Disruption simulations The simulations were performed in Julia language (v.1.2) us-

ing the packages Distributed, LightGraphs and TrafficAssignement for parallel processing,

network analysis and traffic assignment computation, respectively. The latter implements

three methods to find the user equilibrium: the original, conjugate, and bi-conjugate

Frank-Wolfe (FW) algorithms (Mitradjieva and Lindberg, 2013). FW algorithm is one of

the most popular methods used to solve traffic assignment problems while the conjugate

and bi-conjugate versions of this algorithm improve its convergence speed. The fast bi-

conjugate FW algorithm was used here with a relative convergence gap of 10−4, which is
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a sufficient criterion for equilibrium stability (Boyce et al., 2004). To model link closures,

a very high free-flow travel time (10,000 min) was assigned to unavailable links.

Five damage extension levels were considered in this case study: single-, two-, three-

(3LFs), four- (4LFs) and five- (5LFs) link failures. It was assumed that single- to five-link

failures could provide enough data points to understand the effect of the damage extension

(number of disrupted links) on the Sioux Falls network. This seems true as certain two-link

failures already fragmented the Sioux Falls network model and certain five-link failures

(that disrupt 13% of the undirected links in the Sioux Falls network) caused 87% decreases

in performance, measured by travel time increases.

The links of the Sioux Falls network (Figure 3.2) were disrupted in both directions at

the same time leading to 38 single-, 703 two-, 8436 three-, 73,815 four- and 501,942 five-link

failures. Hence, the robustness and link criticality indicators measured the impact caused

by the unavailability of both directions. For consistency, the link flows refer to the sum

of the flows in both directions in this paper. However, as the demand in the Sioux Falls

network is not totally symmetric a link might be more critical in one direction than the

other. For the original Sioux Falls network, the simulations took 41 hours using parallel

processing on an Intel i3-7100 3.9GHz and 8GB memory workstation. The simulation

code was developed as part of this research.

3.3 Results

3.3.1 Comparison of the robustness indicators in the Four-node network

The impacts of all single- and two-link failures on the Four-node test network (Figure 3.1)

were evaluated using the network robustness indicator, RO (Eq. 3.2), which measures

the demand-weighted average increase in travel time along the OD pairs. The impacts

were also evaluated using the total travel time change indicator, ToTTC (Eq. 3.4), which

measures the relative change of the total travel time (often used as a robustness indicator

in the literature). The results are shown in Table 3.1, where they are ordered in increasing

number of routes unavailable and OD pairs disconnected, which can be used as an indicator

of disruption severity.

In the undisrupted network, two routes connect each OD pair and the average travel

time per driver is 27.5 min. Single-link failures either blocked one route or two routes

serving different OD pairs (as shown in Table 3.1). Hence, none of the SLF resulted in

network disconnection as at least one of the routes connecting each OD pair remained

available. Most of the scenarios of 2LF (8/15) caused the unavailability of two routes

serving different OD pairs, which did not affect the network connectedness. The other

scenarios blocked two routes serving the same OD pair or three routes, which, in both

cases, disconnected one OD pair. Finally, the simultaneous failure of road 3 and 4 resulted

in the unavailability of all routes (Table 3.1).

Table 3.1 shows that the network robustness indicator reflects the impact of the haz-

ards on the network as it gradually decreased with the number of routes unavailable.

Besides, the values spread in a large range (from 0.3% to 96%), showing that RO is suit-

able to compare several scenarios. In comparison, the total travel time change indicator

(ToTTC) gradually decreased with the number of unavailable routes when OD pairs were
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not disconnected (first three rows in Table 3.1) but reached a close to zero value for all

scenarios leading to OD-pair disconnections (last three rows in Table 3.1). Therefore, this

indicator was unable to differentiate between the cases where one or two OD pairs were

disconnected.

Table 3.1: Evaluation of the impacts of all possible single- and two-link failures in the four

node test network.

No. of routes

unavailable

No. of OD pairs

disconnected

Single-link

failures

Two-link

failures

Network robust-

ness (RO)*

Total travel time

losses (ToTTC)*

0 0 - - 100% 100%

1 0 1,2,5,6 - [79.2%, 96.0%] [75.7% , 96.0% ]

2 0 3,4 1&2, 1&3,

1&5, 2&4,

2&6, 3&5,

4&6, 5&6

[56.8%, 82.6%] [56.8% , 80.4% ]

2 1 - 1&6, 2&5 [51.8%, 60.8%] [0.5% , 0.6% ]

3 1 - 1&4, 2&3,

3&6, 4&5

[29.6%, 42.6%] [0.5% , 0.6% ]

4 2 - 3&4 0.3% 0.3%

*[min, max]

3.3.2 Comparison of the robustness indicators in the Sioux Falls network

The impacts of all possible single- to five-link failures on the Sioux Falls network were

evaluated using the network robustness indicator, RO (Eq. 3.2), which measures the

demand-weighted average increase in travel time along the OD pairs. The impacts were

also evaluated using the total travel time change indicator, ToTTC (Eq. 3.4), which

measures the relative change of the total travel time (often used as a robustness indicator

in the literature). The results are shown in Figure 3.3, where the values and kernel density

of the network robustness indicator are compared to that of the total TT relative change

indicator for the five damage extension groups. In Figure 3.3.b, the unsatisfied demand

indicator, USD (Eq. 3.3), is used to distinguish between the disruption scenarios that

lead unsatisfied demand (grey points) and the scenarios that do not lead to unsatisfied

demand (yellow points).

In Figure 3.3.a, both indicators present single-peaked distributions, however, the dis-

tributions of the total TT change indicator have less pronounced peaks than the network-

robustness-indicator distributions. Furthermore, it can be observed in Figure 3.3.a that

ToTTC progresses more quickly towards zero than RO as the damage extends. Some

2LF, 3LF, 4LF and 5LF scenarios have ToTTC values close to zero while their RO values

remain superior to 0.475, 0.322, 0.223 and 0.126, respectively.

Three domains appear in Figure 3.3.b regardless of the damage extension group. On the

left side of the plots (ToTTC ≤ 0.10), RO is independent of ToTTC (vertical lines). On

the right side (ToTTC > 0.5), the two indicators appear linearly correlated (R2 = 0.80).

Between these two domains, the linear model is less relevant (R2 = 0.42).

37



CHAPTER 3. ROBUSTNESS OF ROAD NETWORKS TO MULTIPLE
DISRUPTION SCENARIOS

1LF 2LF 3LF 4LF 5LF

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
0

2

4

6

Value

K
er

ne
l d

en
si

ty

Indicator RO ToTTC

(a)

1LF 2LF 3LF 4LF 5LF

0.000.250.500.75 0.000.250.500.75 0.000.250.500.75 0.000.250.500.75 0.000.250.500.75

0.25

0.50

0.75

1.00

ToTTC

R
O

USD > 0.01% USD < 0.01%

(b)

Figure 3.3: Comparison of the network robustness (RO) and total travel time change

(ToTTC) indicators under single- (1LF), two- (2LF), three- (3LF), four- (4LF) and five-

(5LF) link failures in the original Sioux Falls network

The ToTTC values close to zero correspond to link combinations whose failure cause

OD-pair disconnections measured by a non-zero USD value (grey points in Figure 3.3.b).

For example, the simultaneous disruption of (1,2) and (1,3) isolates node 1 from the rest of

the network and disconnects all OD pairs involving this node as suggested by the network

structure (Figure 3.2). Besides, none of the 1LFs lead to OD pair disconnections, which

explains why none of the 1LFs have a ToTTC value close to zero).

Extended impact of single- and multiple-link failures in the Sioux Falls network

The simulations considered five levels of damage extension (from single- to five-link fail-

ures) that had an increasing impact on the Sioux Falls network performance. Figure 3.4

shows the evolution of the mean and minimum, and mean and maximum values of RO

and USD across the damage extension groups, respectively.

In Figure 3.4.a, the mean robustness indicator value quickly decreases as the damage

extension increases (from 86.7% in 1LFs to 43.6% in 5LFs), while the standard deviation

of RO remains steady (between 6.50% and 9.30%). A regression analysis showed that the

relationship between the mean robustness indicator value and the damage extension could

be captured by a linear model (R2 = 1). The relationship between the minimum robustness

indicator values and the damage extension could be captured by a piecewise linear model

(R2 = 1), where the minimum value of RO linearly decreases as the damage extension

increases, the slope being sharper before the breakpoint (≈ 2.32). This breakpoint is

close to two, which is the minimum number of links required to fragment the Sioux Falls

network and cause unsatisfied demand (as shown in Figure 3.4.b).

In Figure 3.4.b, the mean USD value barely increases with the damage extension (from
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0% in 1LFs to 0.1% in 5LFs), which shows that most scenarios do not disconnect OD pairs.

In comparison, the maximum value of USD increased in steps (from 0% in 1LFs and 2LFS

to 1.7% in 2LFs to 7.3% in 3LFs and 4LFs, etc.). The standard deviation of USD increased

with the damage extension, meaning that the heterogeneity of the potential impacts of the

failure scenarios on the proportion of stranded users increased with the number of failed

links.
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Figure 3.4: Evolution of the network robustness (RO) and unsatisfied demand (USD)

indicators depending on the damage extension (number of failed links) in the original

Sioux Falls network. Error bar = mean ± sd

3.3.3 Most critical disruption scenarios in the Sioux Falls network

The network robustness indicator was used to identify the top-5 most critical scenarios in

all damage extension groups. These scenarios are presented in Table 3.2 along with their

RO and USD values. Table 3.2 excludes the most critical 5LF scenarios for the sake of

brevity. The top-5 most critical 5LF scenarios in the Sioux Falls network are discussed in

Chapter 5, which explores the relationship between the most critical scenarios and links.

Table 3.2 shows that none of the top-5 most critical scenarios led to unsatisfied demand

(USD = 0%). This Table also shows that the most critical combinations of 2LFs, 3LFs

and 4LFs did not necessarily involve the most critical links with SLF as links outside of

this group, for example (10,11) and (17,19), appeared in these combinations.
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Table 3.2: Top-5 most critical combinations of single-, two-, three-, and four-link failures

in the original Sioux Falls network

Link combination RO (USD) Link combination RO (USD)

(10,15) 73.2 % (0 %) (10,15) (17,19) (18,20) 32.2 % (0 %)

(18,20) 74.0 % (0 %) (9,10) (10,11) (18,20) 33.2 % (0 %)

(9,10) 75.3 % (0 %) (10,15) (16,17) (18,20) 34.0 % (0 %)

(12,13) 77.7 % (0 %) (5,9) (10,11) (10,15) 34.3 % (0 %)

(6,8) 77.8 % (0 %) (9,10) (10,15) (18,20) 34.5 % (0 %)

(9,10) (10,11) 47.5 % (0 %) (9,10) (10,11) (10,15) (18,20) 22.3 % (0 %)

(10,15) (18,20) 48.9 % (0 %) (9,10) (10,11) (12,13) (18,20) 22.3 % (0 %)

(5,9) (10,11) 51.6 % (0 %) (10,15) (10,17) (16,17) (18,20) 22.6 % (0 %)

(9,10) (18,20) 53.0 % (0 %) (5,9) (10,11) (10,15) (15,19) 22.6 % (0 %)

(12,13) (18,20) 53.5 % (0 %) (3,12) (9,10) (10,11) (18,20) 22.8 % (0 %)

RO = Network robustness indicator (Eq. 3.2); USD = Unsatisfied demand indicator (Eq. 3.3)

3.4 Discussion

3.4.1 Measuring road network robustness

In the first case study (the Four-node test network), the comparison between the values

derived from the network robustness indicator (measuring the demand-weighted average

increase in travel time along the OD pairs) and the total TT change indicator clearly

showed that the former was able to discriminate between a wider range of scenarios than

the latter (Table 3.1).

In the second case study (The Sioux Falls network), the comparison between the values

derived from the two indicators showed conflicting results. The distributions of the total

TT change indicator in the damage extension groups presented less pronounced peaks

(Figure 3.3.a), which suggests that this indicator provided a finer distinction between the

impacts of the disruption scenarios than RO. As the ability to discriminate between the

impacts of different scenarios—which helps towards the allocation of the limited resources

to the most critical scenarios—is a desirable feature of robustness indices, ToTTC may

appear to be a better indicator.

However, the comparison also showed that contrary to RO, ToTTC provides a zero

value for all disruption scenarios that lead to OD-pair disconnections despite the variability

of the resulting unsatisfied demand. In Figure 3.3.b, most of the scenarios causing OD-pair

disconnections appear on the left side of the plots where ToTTC remains inferior to 10%

while RO ranges between 12% and 95%. ToTTC is unable to discriminate between the

impacts of scenarios causing OD-pair disconnections because these scenarios all result in

very high total travel time values. This is because link unavailability is usually modelled

by assigning a very high cost of travel to the damaged link such that when an OD pair

is disconnected the users along this OD pair experience a very high and unrealistic travel

cost. RO differentiates between the impacts of scenarios involving OD-pair disconnections

because this indicator aggregates the values of the travel time change indices (TTCw, Eq.

3.1) of all OD pairs, which include disconnected OD pairs with TTCw values close to zero
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and non-disconnected OD pairs with higher TTCw values.

Subsidiary indicators quantifying the spread of the impacts among the OD pairs and

users can be used to complement the assessment including an indicator measuring the share

of unsatisfied demand. The latter could even be combined with one of the conventional

indicators based on the increase in total TT to provide an aggregated indicator able to

consider the scenarios that lead to OD-pair disconnections as proposed by Bagloee et al.

(2017). However, as shown in Table 3.2, several perturbation scenarios lead to the same

proportion of unsatisfied demand. This would limit the ability of the aggregated indicator

to discriminate between the impacts of these scenarios. In contrast, RO provides a single

measure of the impacts and can discriminate between the impacts of most scenarios.

3.4.2 Network robustness and damage extension

The first case study considered disruption scenarios concurrently affecting up to two links

with the assumption that single- and two-link failures could provide enough data points

to understand the effect of the damage extension on the Four-node test network. The

results validated this assumption as single- and two-link failures allowed the evaluation

of the effects of the two main mechanisms behind the loss of performance in disrupted

networks: travel time increases and network (or OD pairs) disconnections. The later

could be observed as certain two-link failures fragmented the four-node network (Table

3.1). Besides, the concurrent failure of link 3 and 4 disconnected the two OD pairs of this

case study and led to a robustness indicator value of 0.3%. Hence, the impacts of the

scenarios considered covered the full range of possible robustness values.

The second study considered disruption scenarios concurrently affecting up to five

links with the assumption that single-, two-, three-, four- and five-link failures could

provide enough data points to understand the effect of the damage extension on the

Sioux Falls network. The results partly validated this assumption. Single- to five- link

failures allowed the evaluation of the effects of the two main mechanisms behind the loss

of performance in disrupted networks: travel time increases and network (or OD pairs)

disconnections. The later could be observed as certain two-link failures already fragmented

the Sioux Falls network while some five-link failures led to larger disconnections. This is

evidenced by the range of the maximum value of the unsatisfied demand indicator (USD)

that increased from 0% in 1LFs to 15% in 5LFs. As this indicator mainly depends on

the network connectivity, it is comparable to the network robustness indicators used in

topological studies measuring road network robustness by the reduction in the size of the

giant (or largest connected) component of the network under dismantling processes (Buhl

et al., 2006; Casali and Heinimann, 2020). The data points obtained for the maximum

values of USD (Figure 3.4.b) are consistent with the first points of the plots shown in

these studies. In the later, the size of the giant components under targeted dismantling

processes decreases in two—for small networks composed of few hundred nodes in Buhl

et al. (2006)— or three—for large networks composed of thousands of nodes in Casali and

Heinimann (2020)—main stages. In small networks, the most detrimental stage to the

network performance (or transition phase) occurs in the first stage (when 0% to 30% of

the links are disrupted) while in large networks the transition occurs in the second stage

(when 10% to 40% of the links are disrupted). The Sioux Falls network being small, the
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transition phase started with 2LFs and it can be expected that the maximum value of

USD will continue to rapidly increase reaching a value of approximately 90% when up to

30% of the links (≈ 11 links in the Sioux Falls network) will be disrupted as reported in

Buhl et al. (2006).

However, the present results also showed that certain five-link failures (that disrupt

13% of links in the Sioux Falls network) can cause 87.4% decreases in network performance

measured by the demand-weighted average increase in travel time along the OD pairs (RO)

as shown in Figure 3.4.a. This value means that the travel time of most road users would

be multiplied by eight. Therefore, single- to five- links failures provided sufficient data

points to understand the full range of potential impacts caused by multiple-link failures

on the travel time in the Sioux Falls network. Besides, the present results showed that

the evolution of the mean and minimum robustness indicator values with respect to the

damage extension could be represented by linear and piecewise linear models, respectively

(Figure 3.4.a). The extra data points could hence be predicted using these models.

Ultimately, the present results show that the same disruption scenario can lead to

major consequences in terms of travel time increases but minor consequences in terms of

network (or OD pairs) disconnections. This shows that topological studies, which disregard

traffic flows and potential congestion to focus on the network structure can overestimate

the robustness of road networks.

3.4.3 Most critical scenarios and links

In the Four-node test network the combination of the most critical links with single-link

failures, 3 and 4, lead to the most critical two-link failures (Table 3.1). In addition, 3

and 4 appeared in all of the top-5 most critical 2LF combinations (last two rows in Table

3.1). In the Sioux Falls network, this pattern could not be verified as (10,11), which does

not belong to the top-5 most critical links with SLF, is part of the most critical 2LF

combination (Table 3.2). The latter results are in accordance with the findings of Wang

et al. (2016) that show that the most critical links when multiple-link failures occur are

not simply the combination of the most critical links with single-link failure. However,

the present results also indicate that the validity of this pattern depends on the network

studied. The next chapters of this thesis (Chapters 4 and 5) investigate the role of the

network characteristics in the realisation of this pattern.

3.5 Summary and concluding remarks

The research presented in this chapter was conducted to increase the understanding of the

potential impacts of a full range of predictable and unpredictable disruption scenarios in

road networks. In line with the hazard-independent approach suggested by the resilience

paradigm, this chapter investigated the impact of all possible scenarios disrupting multiple

links (more specifically up to a certain number of links) in two case studies. The thresh-

olds chosen for the maximum number of disrupted links (two in the Four-node network

and five in the Sioux-Falls network) allowed the observation of the two key mechanism

behind the loss of performance in disrupted networks (travel time increases and OD-pair

disconnections). These thresholds also provided sufficient data points to understand the
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effect of the damage extension (number of failed links) on the performance of the networks

considered. Therefore, the approach adopted allowed understanding the potential impact

of a wide range of disruptive events, including unpredictable events that could be over-

looked by risk analyses focusing on a few predictable scenarios. This research led to two

key conclusions:

• The widely adopted robustness-quantification approach that measures network ro-

bustness by the total travel-time losses cannot discriminate between the impacts

of the scenarios causing OD-pair disconnections. The discrimination between these

scenarios remains important as they are manifold and lead to different proportions

of stranded road users. Hence, this discrimination could help transport practitioners

and public authorities in the allocation of the limited resources available for road

infrastructures construction and maintenance to the most critical scenarios and links.

• To discriminate between the impact of scenarios that lead to OD-pair disconnections,

it is necessary to consider the impacts on the OD pairs (or users) separately rather

than the total travel-time losses in the network. This can be achieved by measuring

the relative change of the travel time along the OD pairs. The proposed robustness

indicator uses a demand-weighted average to aggregate these relative change values

into one indicator.

The present research provided a disruption model and a robustness indicator suitable

to assess the impacts of multiple disruption scenarios in road networks. These tools hence

define a theoretical framework for assessing the role of network topology, demand variations

and recovery strategies in network resilience, which are the objectives of the subsequent

chapters of this thesis.
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Chapter 4

Role of network topology and

demand variations in network

robustness

4.1 Introduction

In Chapter 3, a robustness assessment framework for road networks was developed to in-

crease the understanding of the potential impacts of a full range of disruption scenarios

on road network performance. This framework was tested on two case studies. Although

these case studies provide interesting conclusions the generality of these conclusions re-

mains unclear. Similarly, several road network robustness studies available in the literature

including (Cats et al., 2016; Wang et al., 2016; Zhang et al., 2015) provided interesting

findings but focused on a small set of networks. As such, their findings may only be valid

for the specific networks studied. Further investigations are thus required to evaluate the

effectiveness of these approaches and the generality of their findings.

Wang et al. (2016) showed that the most critical links when multiple-link failures

occur are not simply the combination of the most critical links with single-link failure.

Their study was however limited to two different networks of up to 24 nodes, which seems

insufficient to justify the generality of the statement. Hence, it remains unclear how the

most critical links can be identified considering multiple-link failures, how different are

the criticality rankings when only single-link failures are considered as opposed to when

multiple-link failures are considered and how sensitive are these results to different network

characteristics.

Besides, robustness studies commonly distinguish between targeted and random fail-

ures (as discussed in Chapter 2). However, most of these studies conclude that transport

networks are less robust to targeted attacks than random ones but do not attempt to

quantify the extended impact of targeted attacks (Zanin et al., 2018). As explained in

Zanin et al. (2018), the simple conclusion that a network is more vulnerable to targeted

attacks does not provide any novel insights since it is inherent to the definition of both

kinds of attacks. A more interesting question is how much more vulnerable a network is

to targeted attacks compared to random failures. In other words, the objective is rather

to quantify the difference of impacts and subsequently determine if a particular network
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is well protected against targeted attacks or not.

The present chapter aims at answering these questions by performing a robustness

analysis on a variety of abstract road networks. These networks result from a model

that randomly generates graphs presenting the topological and operational characteris-

tics of real road networks. This random network model is used because contrary to real

maps its characteristics are controllable and should (hypothesis) allow for a sound sen-

sitivity analysis of network robustness, which in turn can provide practical insights for

network planners and operators. This novel approach allows the analysis of a large set of

networks resulting in a clearer understanding of the generality of the results and conclu-

sions, which are ultimately validated on a set of real network samples from OpenStreetMap

(www.openstreetmap.org).

The research presented in this chapter adopts a topological transport model. Although

topological models disregard capacity constraints and can overestimate network robustness

(as shown in Chapter 3), they have the advantage of not requiring detailed travel-demand

data. Topological analyses are also less computationally expensive than traffic analyses

(as discussed in Chapter 2). These two qualities of topological models allow the analysis

of a large set of potential disruption scenarios and road networks.

This chapter has four research objectives: (i) develop a random road network model,

(ii) use this model to evaluate the correlation of topological and operational network

characteristics with robustness to single-, multiple-, random- and targeted-link failures as

well as (iii) the correlation between single- and multiple-link-failure based link criticality

rankings, and (iv) validate the results using real road network samples. This chapter is

organised as follows. Section 4.2 presents the methods including the random road graph

model. The results are presented in section 4.3 and discussed in section 4.4. Finally, some

conclusions and recommendations are provided in Section 4.5.

4.2 Methods

This section describes the research method adopted. Firstly, the abstract road network

model is introduced. The network attributes and the robustness metrics used are then

presented, followed by the experimental procedure. Finally, the road network samples

used for validation are presented.

4.2.1 Grid network with Random Edges and Regional Edge Costs (GREREC)

model

The model used to generate random road networks is an improvement of the GRE model

(Section 2.4) since this model synthesizes most of the topological characteristics of road

networks (identified in the literature review of Section 2.3). Four modifications were

introduced to the GRE model to better fit the purpose of the present analysis:

• the removal of the links at the rim of the network is allowed;

• the unconditional removal of vertical and horizontal links is allowed;

• the generation of all types of diagonals (i.e. shortcuts) is possible;
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• the geometric lengths of the edges are not considered instead the links are directly

assigned a random travel cost depending on the link position in the network.

The first three modifications allow the generation of a larger spectrum of network

topologies. To ensure that the graphs generated by the original GRE model are connected

(i.e. a path exist between every pair of nodes), the model always keeps the edges at the

rim of the area and allows the removal of a vertical edge only if its adjacent bottom left

horizontal edge exists. The elimination of these two constraints allows the generation

of sparser and more irregular topologies. In addition, keeping the edges at the rim of

the area means that for any pair of nodes in the network there is a path connecting

them through the network periphery, which may not always be the case in real networks.

This assumption may be especially problematic for robustness analyses, which aim at

evaluating the consequences of link failures in the network. One implication of these two

modifications is however that the graphs generated can be disconnected. An analysis of

the connectedness of GREREC model is provided in Appendix A.1. This analysis shows

that the values of p and q for which the graphs depend on m and n and that p plays

a more important role than q because the shortcuts alone are not sufficient to connect

the network nodes since they only depart from certain nodes (see rule 3) and 4) in the

procedure below.

Besides, the GRE model generates only shortcuts departing form specific nodes to

ensure planarity (two diagonals cannot intersect without creating a node). In the present

model, the construction of both diagonals was made possible by allowing the construction

of one diagonal providing that the other one does not exist (see rule 3) and 4) in the

procedure below).

The fourth modification increases the flexibility of the model and allows the introduc-

tion of road hierarchy effects in the network. To this end, travel-cost values are randomly

assigned to the links depending on their origin node. The area around a node hence

describes a ”region” where roads are likely to present the same characteristics (length,

speed limits, etc.). This modification implies that contrary to the original GRE model,

the present model does not generate geometric grid networks with straight lines. The

networks generated have a ”grid” topology but their spatial representation may include

curved roads to respect the geometric distances between the nodes.

This new model is called the Grid network with Random Edges and Regional Edge

Costs (GREREC). The procedure used to generate a graph with the GREREC model is

described below:

1. Generate a graph with a rectangular grid topology. The dimensions m and n of the

rectangle (i.e. the number of nodes per row and columns respectively) are the only

parameters necessary to define the grid. The graph generated has N = m · n nodes

and the vertex on the i-th column and j-th row is denoted as vi,j .

2. Check and remove the existing edges by the order “left to right, bottom to top” with

probability (1− p).

3. For each vertex vi,j where both i and j are odd numbers, generate the four diagonal

edges departing from vi,j with probability q.
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4. For each vertex vi,j where i is an even number (regardless of j), generate the four

diagonal edges departing from vi,j with the probability q providing that the diagonal

is not intersecting an existing one.

5. Randomly assign a travel cost to the edges by the order “left to right, bottom to

top” with the following rule: all the links departing from the same node have the

same cost of travel.

v0,0

vmn,,mn

vi,j

n

m

vi+1,j+1

vi+1, j

vi,j+1

Figure 4.1: Grid network used in the procedure to build the GREREC model

The grid network model used in the procedure is shown in Figure 4.1. The sequences

of travel costs assigned to the links in rule 5 were generated as normally distributed

random numbers in the discrete interval [1,max(n,m)] to ensure that the costs diversity

was proportional to the network size. In other words, a larger network is more likely

to be composed of a more diverse range of road types. Considering the huge variety of

link cost distributions observed in real road networks (Section 2.3), the standard normal

distribution was arbitrarily adopted to generate random sequences of link costs that at least

were unlikely to result in uniform distributions since none of the distributions observed in

real road networks was uniform.

The GREREC model hence uses four parameters: m and n (the dimensions of the

rectangular grid), p (the probability of keeping horizontal and vertical edges in the grid)

and q (the probability of generating shortcuts in the grid) to generate random road graphs.

The standard deviation of the link costs in the network can also be used to measure the

link cost heterogeneity (hlc) in the network. Figure 4.2 shows examples of graphs gener-

ated by the GREREC model. The topologies generated range from relatively sparse and

decentralized structures (Figure 4.2.a) to very compact structures (Figure 4.2.f) but also

include the very ordered grid-like structure (Figure 4.2.d) and more irregular structures

(Figure 4.2.b).

4.2.2 Network topological and operational characteristics

Network topological characteristics

To characterise the topology of the graphs generated, five topological measures with po-

tential relevance to network robustness were selected: the network alpha, beta and gamma
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(a) medium p low q (b) medium p medium q (c) medium p high q

(d) high p low q (e) high p medium q (f) high p high q

Figure 4.2: Examples of graphs generated by the GREREC model depending on p (proba-

bility of keeping horizontal and vertical edges) and q (probability of generating shortcuts).

Low p means p < 0.33, medium p means 0.66 > p > 0.33, high p means p > 0.33. The

edge thickness indicates a higher cost of travel. m = n = 5

indices, as well as the average and standard deviation (heterogeneity) of the degree distri-

bution in the network.

The alpha, beta and gamma indices are measures of the connectivity (or density) of

planar graphs presented in Kansky (1963). The alpha index (α) is the ratio of the number

of cycles (i.e. path wherein a node is reachable from itself without using the same link

more than once) to the maximum possible number of cycles (2N − 5):

α =
L−N + µ

2N − 5
(4.1)

where L, N and µ are the numbers of links, nodes and sub-graphs in the graph respectively.

The case when µ = 1 (the graph is connected) is referred to in Buhl et al. (2004) as the

meshedness coefficient, which varies from zero (tree structures) to one (complete planar

graph, which is a triangulation).

The beta index (β) is the ratio between the number of links and the number of nodes.

β =
L

N
(4.2)

Minimally connected networks (where the links form a cycle) have a beta value close to

one while denser networks have a higher β. A network composed of mostly four-legged

intersections (e.g. the grid pattern) would present a value of β close to two. The average

degree and β are equivalent in undirected graphs (i.e. β = 2 < Degree >, < Degree >

being the average value of the nodal degree distribution) since in these graphs the total

number of links equals two times the sum of the node degrees (Barabási and Pósfai, 2016).
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The gamma index (γ) is the ratio of the number of links to the maximum possible

number of links in a planar graph 3(N − 2):

γ =
L

3(N − 2)
(4.3)

All of these indices (i.e. α, β, γ) increase with the network connectivity.

Operational characteristics

The main function of road networks is to provide mobility i.e. connect origin-destination

pairs in a timely manner. In the graphs representing road networks, some of the nodes

don’t serve as origin-destination points. To take this specificity into account, it is assumed

that the bottom-left (v0,0) and top-right (vmn,mn) nodes of the original grid (Figure 4.1)

were OD points and randomly selected additional OD points in the network with prob-

ability r. When r = 0 only these two nodes were considered as OD points, while when

r = 1 all the nodes in the network served as OD points.

Therefore, besides their topological characteristics, the GREREC networks have two

operational characteristics: rOD, the ratio between the number of OD points and the

number of nodes, and hlc, the heterogeneity of the link travel costs (standard deviation of

the links cost distribution).

4.2.3 Robustness, link-criticality and attack-extended-impact indicators

Robustness indicator

The robustness indicator (RO, Eq. 3.2) developed in Chapter 3 was used to assess the dis-

ruption impacts on the networks considered. In the present chapter, the transport model

does not consider link capacity constraints and potential congestion for computational rea-

sons as hundreds of networks are analysed and compared. This implies that the present

chapter mainly concerns uncongested road networks. The OD pairs were considered to be

of equal importance (i.e. kw = 1/NOD, NOD being the number of OD pairs), and TTw0
and TTwd are the undisrupted and disrupted travel costs on the least-cost path along w in

Eqs. 3.1-3.2.

Link criticality indicator

The present chapter considers a full range of predictable and unpredictable disruption sce-

narios using the hazard-independent disruption model proposed in Chapter 3. All possible

single-, two- and three-link failures were simulated. The maximum number of concurrently

disrupted links was limited to three for the sake of computational effectiveness.

To identify the most critical links with regards to multiple-link-failures, the following

method was adopted. A criticality index was computed for each link depending on the

effect of its degradation on the network performance in all of the scenarios considered.

The criticality index (Cra) of link a is:

Cra =
∑
t

1

Lt
〈1−ROs〉at (4.4)
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where ROs is the network robustness to the hazard s as defined in Equation 3.2. The

notations t and Lt indicate a damage extension group (e.g. 2LF) and the number of links

damaged by the hazards of this group, respectively. The division by Lt means that failed

links were assumed to equally contribute to the loss of performance. 〈1−ROs〉at means

that 1−ROs is averaged over the scenarios of the same size t in which a is damaged. The

averages per scenario size ensure that the contributions of the different scenario sizes to

the link criticality are in the same range. Indeed, there are more scenarios of multiple-link

failures than SLFs. If L is the number of links in the network, there is one, (L − 1) and

(L− 1)(L− 2) scenarios of SLF, 2LFs and 3LFs per link, respectively, hence a simple sum

would inherently give more importance to multiple-link failures. The criticality index of

a non-critical link would tend to zero as the network robustness to the hazards involving

the failure of this link will be close to 1, causing Cra to increase with the link criticality.

Comparison of the link criticality rankings derived from different scenarios

To compare the rankings derived from the criticality index (Cra) when only single-link

failures are considered as opposed to when multiple-link failures are considered, Spear-

man’s rank-order correlation coefficient was used. Spearman’s and Kendall’s coefficients

are the most popular indicators to evaluate the correlation of non-parametric measures

and have equivalent performances (Puth et al., 2015). The choice of Spearman’s coefficient

has been motivated by the fact that Puth et al. (2015) found better results when the data

contain ties, which is the case in the present study. This coefficient provides a measure in

[-1,1], where -1 and 1 indicate a very strong negative and positive correlation respectively

while zero indicates no correlation.

Measurement of the extended impact of targeted attacks

In this section, an indicator is developed to quantify the difference in impact between

random and targeted attacks. The ”dismantling process” approach found in complex

network theory studies (Réka et al., 2000; Zanin et al., 2018) is used to develop a single

measure of road networks robustness to a mode of attack (e.g. targeted attacks) that does

not present the arbitrariness of the indicator used in (Buhl et al., 2006) and accounts for

the increased TT . This measure is called ”cumulative” robustness (CROz) and is given

by the expression:

CROz =
1

L

∫ L

0
ROz(x)dx (4.5)

where z is the attack mode considered and L the total number of links in the network.

ROz(x) is the road network robustness indicator (Eq. 3.2) when x links failed. As ROz(x)

is scaled between 0 and 1, the division by L also scales CROz between 0 and 1. The value

obtained can hence be used to compare the robustness of networks of different sizes.

The computation of the network cumulative robustness to targeted attacks requires a

sequence of failed links resulting in rapid and severe robustness losses. Criticality-based

attacks were excluded because of their computational costs, as these require the analysis

of L! SLF scenarios in a network containing L links. Instead, the betweenness centrality

(i.e. the number of shortest paths that go through an edge) first introduced by Freeman
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(1979) were used to identify important links in the networks. The betweenness centrality

of link a is given by

BETW (a) =
∑
x 6=y

σxy(a)

σxy
(4.6)

where σxy and σxy(a) are the number of shortest paths between the nodes x and y and

the number of shortest path between x and y that contain a respectively (De Meo et al.,

2012). The link betweenness can be used as an indicator of the link importance (Cats et

al., 2016) as an edge with a high betweenness score connects many pairs of nodes through

the shortest path between them.

In the interactive (or dynamic) betweenness attack, the links with the highest between-

ness scores are iteratively removed while the betweenness of the links is recomputed after

each removal. Dynamic betweenness attacks hence target potentially highly critical links

in each step, making the attack more harmful to the network than attacks based on initial

estimations of link importance in the original network. Interactive betweenness attacks

were selected to model targeted attacks in this chapter since they have been reported as

the most detrimental attack among different attacks (Holme et al., 2002; Zanin et al.,

2018).

To evaluate the extended impact of targeted attacks in a specific network, the cumu-

lative robustness of the network to an interactive betweenness attack (CROBETWI) and

a representative random attack (CRORAND) were compared. The latter was obtained by

averaging the impact of 1000 random attacks. The extended impact of targeted attacks

(TAEI) is defined as the difference between both values:

TAEI = CRORAND − CROBETWI (4.7)

The concepts described in this section are illustrated in Figure 4.3 where CROBETWI

corresponds to the area under the dashed curve and CRORAND is the mean area under

the solid curves.
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Figure 4.3: Comparison of the impact of a targeted dismantling process (BETWI) and 10

random dismantling processes (RANDOM) on a 33-link GREREC network.
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4.2.4 Experimental procedure and simulations

To identify the characteristics that influence network robustness to single, multiple, ran-

dom and targeted link failures in the GREREC model, quasi Monte-Carlo (QMC) sim-

ulations were employed to obtain 300 samples that are as different from each other as

possible. Contrary to standard Monte-Carlo methods based on pseudo-random numbers,

QMC methods use sequences of quasi-random numbers providing values that are better

equidistributed in a given volume than pseudo-random numbers (Dalal et al., 2008). These

methods were originally designed for integration but were used here to ensure that the

results covered a large parameter space with limited samples and thus save computation

time. Sobol’s algorithm was adopted as one of the most popular and effective algorithms

for generating quasi-random sequences (Bratley and Fox, 1988).

The parameters values (n, m, p, q, r) were chosen in [2,15]×[2,15]×[0,1]×[0,1]×[0,1]

each parameter being uniformly sampled from its interval (n and m were discretely sam-

pled). The values of n and m were limited to 15 for computational cost reasons. As an

indication for n = m = 15, the basic grid network has 420 links leading to 12,225,940

scenarios of three-link failures to analyse.

For each set of parameter values, the simulations were performed as follows:

1. Use the parameter values to generate an undirected graph using the GREREC model

(section 4.2.1)

2. Check whether the graph is connected; if the graph is not connected go to the next

iteration.

3. Select a random set of OD pairs in the network with probability r.

4. Perform an analysis of the network robustness to single-, multiple-, random- and

targeted-link failures as well as an analysis of the link-criticality rankings correlation.

4.2.5 Validation using real road maps

To validate the results of the analysis of the GREREC networks, the same analysis was

performed on 30 real network samples. These samples were extracted from the road net-

works of six urban areas around the world: Johannesburg, London, New York, Paris,

San Francisco and Seville. Five samples were arbitrarily extracted in each of these ar-

eas using bounding boxes defined by latitude and longitude bands of 0.01 width (≈ 1.11

km) to obtain graphs of the same order of magnitude as the GREREC networks anal-

ysed. To acquire the samples, the Python package OSMnx (Boeing, 2017) was used to

download drivable street network data within the chosen boundaries from OpenStreetMap

(www.openstreetmap.org) and automatically processed into length-weighted nonplanar

graphs. In OpenStreetMap intersections of two divided roads, small roundabouts and

sometimes intersections where opposite streets are not perfectly aligned create clusters

of nodes that correspond to single intersections in the real world. Hence, these network

samples slightly underestimate the number of high degree intersections. For the sake of

reproducibility, it was however decided to keep the existing models unaltered. Figure 4.4

shows examples of the graphs analysed. The 30 graphs analysed are shown in Appendix

B.
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(a) (b) (c)

Figure 4.4: Examples of road network samples extracted from OpenStreetMap and anal-

ysed: (a) Pacific Heights, San Francisco, (b) Levallois-Perret, Greater Paris and (c) West

Kensington, London

4.3 Results

The simulations were performed in R 3.4.4 and used the libraries randtoolbox and igraph for

quasi-random number sequence generation and network analysis respectively. The R script

was run in seven days on the University of Nottingham’s high-performance computer, using

in parallel twelve compute nodes with 2×20 core processors (Intel Skylake 6138 2.0GHz)

and 192 GB memory each. The simulations resulted in 161 connected GREREC networks

analysed in the following subsections.

4.3.1 Evaluation of the GREREC networks topology and patterns

The topological indices presented in section 4.2.2 were computed to evaluate the topology

of the networks generated. The networks were also categorised into structural pattern

groups based on the division of the values of p and q into three equally spaced intervals

(Table 4.1). As only one connected network was generated with a value of p inferior to

0.33 (low values of p are highly likely to result in disconnected networks), this network

was excluded from the structural pattern analysis since it could not support a statistical

analysis. The distributions of the nodal degree in each of these structural pattern groups

are summarised in Figure 4.5. Figure 4.2 shows examples of networks belonging to each

group.

α, β, γ and the average degree provided the same information as the correlation be-

tween these different values ranged from 0.98 to 1. Hence, regardless of the index consid-

ered, the two extremes structures are the sparse structures of B1 and the very compact

structures of C3 (i.e. lowest and highest connectivity values respectively in Table 4.1).

The low degree heterogeneity of B1 and C1 (0.98 and 1.02 respectively) suggest that

both structures are rather homogeneous compared to the other ones. Indeed, B1 and C1

present a dominant frequency (median superior to 35%) of 3-legged and 3- and 4-legged

intersections respectively, whereas the frequency peaks are less pronounced in the other

groups (Figure 4.5). B1 represents sparse structures with a high proportion of 3-legged

intersections that provides some ”regularity” to the structure. This group is close to the

warped parallel structure in Wang et al. (2017b)). B2 and B3 represent more organic

structures with a mixture of vertical and horizontal links and shortcuts. C1 is the very
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Table 4.1: Topological characteristics of the GREREC networks generated depending on

p (probability of keeping horizontal and vertical edges) and q (probability of generating

shortcuts).

Network

group

p q α index β index γ index 〈Degree〉 h∗
Degree

B1 [0.33, 0.66] [0, 0.33) 0.291(0.11) 1.51(0.26) 0.538(0.066) 3.02(0.53) 0.969(0.32)

B2 [0.33, 0.66] [0.33, 0.66] 0.446(0.14) 1.82(0.31) 0.637(0.090) 3.64(0.62) 1.413(0.15)

B3 [0.33, 0.66] (0.66, 1] 0.543(0.11) 2.01(0.24) 0.699(0.068) 4.02(0.48) 1.753(0.20)

C1 (0.66, 1] [0, 0.33) 0.476(0.09) 1.88(0.21) 0.655(0.058) 3.77(0.41) 1.021(0.19)

C2 (0.66, 1] [0.33, 0.66] 0.612(0.11) 2.14(0.26) 0.745(0.070) 4.26(0.51) 1.336(0.15)

C3 (0.66, 1] (0.66, 1] 0.713(0.11) 2.32(0.29) 0.812(0.067) 4.64(0.58) 1.619(0.30)

mean(standard deviation); * Degree heterogeneity

C1 C2 C3
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Figure 4.5: Nodal degree frequencies in the GREREC network structural pattern groups

(box = 25th and 75th percentiles).

ordered grid-like structure with a majority of vertical and horizontal links. Finally, C2 and

C3 are more compact structures where an increasing proportion of shortcuts are introduced

in this grid-like structure.

4.3.2 Correlation between the network characteristics and robustness

metrics in the GREREC networks

To model single- and multiple-link failures, three damage extension groups were consid-

ered: single-, two- and three-link failures. The robustness of the networks generated to

the disruption scenarios was assessed using Eq. 3.2. The mean robustness indicator val-

ues of each network to the scenarios of the same damage extension group was used as a

general measure of the network robustness to this damage group. The robustness values

were also used to compute the link criticality indicators using Eq. 4.4. SLF, 2LF and 3LF

based criticality rankings were compared to the rankings derived from the combination of

all of these scenarios (ALL) using Spearman’s correlation coefficient. These correlation

values evaluate the extent to which SLF (or 2LF, etc.) based criticality measures repre-
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sent the overall link criticality. The indicators related to the impacts of targeted attacks

(CROBETWI , CRORAND and TAEI) were computed using Eqs. 4.5-4.7.

All of these robustness metrics were evaluated against three types of network charac-

teristics: the network size (i.e. the number of nodes in the network), topology (i.e. α,

β, γ and the degree distribution) and operational characteristics (i.e. the proportion of

nodes serving as OD pairs and heterogeneity of the link costs). Spearman’s coefficient was

used to assess whether a monotonic relationship existed between these variables (Table

4.2). An analysis of the distributions of the network attributes in the sample analysed is

provided in Appendix A.2.

Table 4.2: Correlation (RS) between the network characteristics and robustness metrics

in the set of GREREC networks analysed. ns, *, ** and *** denote the significance at

p > 0.05, p < 0.05, p < 0.005 & p < 0.001 respectively.

Network characteristics

Network

size (N)

Network con-

nectivity (α,

β, γ)

Degree

heterogeneity

Link costs

heterogeneity

Proportion of

nodes being OD

points

Mean robustness

to SLF

0.92∗∗∗ [0.72, 0.83]∗∗∗ 0.38∗∗∗ -0.33∗∗∗ -0.10ns

Mean robustness

to 2LF

0.93∗∗∗ [0.72, 0.83]∗∗∗ 0.38∗∗∗ -0.33∗∗∗ -0.10ns

Mean robustness

to 3LF

0.93∗∗∗ [0.72, 0.83]∗∗∗ 0.39∗∗∗ -0.33∗∗∗ -0.10ns

SLF vs ALL(1) 0.16∗ [-0.04, 0.00]ns -0.19∗ -0.16∗ 0.86∗∗∗

2LF vs ALL 0.41∗∗∗ [0.19, 0.24]∗ -0.05ns -0.16∗ 0.66∗∗∗

3LF vs ALL 0.73∗∗∗ [0.63, 0.71]∗∗∗ 0.45∗∗∗ -0.26∗∗∗ -0.35∗∗∗

Robustness to a

BETWI(2)
-0.28∗∗∗ [0.29, 0.43]∗∗∗ 0.16* 0.06ns 0.20∗

Robustness to a

RAND(3)

0.20∗ [0.78, 0.87]∗∗∗ 0.58∗∗∗ -0.10ns 0.17*

Targeted attack

extended impact

0.59∗∗∗ [0.68, 0.74]∗∗∗ 0.63∗∗∗ -0.15ns -0.00ns

(1) Correlation of the link criticality rankings derived from single- (SLF), two- (2LF) and three- (3LF)

link failures, and the combination of all three (ALL); (2) Interactive betweenness attack; (3) Represen-

tative random dismantling process.

Concerning the network connectivity, the highest correlation value in absolute was

systematically obtained with β (or its equivalent the average degree). β is hence the

preferred connectivity indicator for the plots of this chapter except for the robustness to

random and targeted attacks that had the strongest correlation with γ.

Mean robustness of the networks to single-, two- and three-link failures

The proportion of nodes serving as OD points was not correlated with the network mean

robustness to SLFs, 2LFs and 3LFs (|RS | < 0.20 and p-value > 0.05). The degree and link

cost heterogeneities both showed weak correlations with the network mean robustness to
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SLFs, 2LFs and 3LFs (Table 4.2). The network characteristics that exhibited the strongest

correlation with the mean network robustness were the network size and connectivity

(Table 4.2) suggesting a potential relationship between these values shown in Figure 4.6.
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Figure 4.6: Mean robustness of the GREREC networks to single-, two- and three-link

failures depending on their (a) size and connectivity and (b) connectivity.

Two domains appear in the plots of Figure 4.6.a. On the left side, the smallest networks

exhibit a large variability in their mean robustness to SLFs, 2LFs and 3LFs while on the

right side, the mean robustness of the largest networks seems independent of N . A visual

assessment suggested that the change points for SLF, 2LF and 3LF were approximately

N = 30, N = 35 and N = 40, respectively. Furthermore, the assessment of the results

across the different damage extension groups shows that the average mean robustness of

the small networks (less than 30 nodes) went from 96% (sd = 0.04) in SLFs to 87% (sd =

0.14) in 3LFs. In contrast, the average mean robustness of the large networks (N > 30)

slightly decreased from 99% (sd = 0.01) in SLFs to 98% (sd = 0.02) in 3LFs.

Two domains are also present in the data of Figure 4.6.b that could be well represented

by a piecewise linear model (R2 ≈ 0.89). Hence, the mean network robustness linearly

increased with β, the slope being sharper before the breakpoint (β ≈ 1.55). Besides, the

gaps between the mean robustness of the networks to SLFs, 2LFs and 3LFs gradually

decreased with β. The average mean robustness of the weakly connected networks (β 6

1.55) went from 93% (sd = 0.04) in SLFs to 77% (sd = 0.16) in 3LFs while in the highly

connected networks it slightly decreased from 99% (sd = 0.01) to 98% (sd = 0.02).
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Correlation between the link-criticality rankings

The distributions of the link ranking correlation values are summarised in Table 4.3. These

results indicate that SLF-based criticality rankings were generally very strongly correlated

with the rankings based on all scenarios (the mean correlation value being 0.934) however

low correlation values were also observed (e.g. 0.460). 2LF and 3LF based rankings

showed even stronger mean correlations with the rankings based on ALL (0.983 and 0.995

respectively).

Table 4.3: Correlation (RS) between the link criticality rankings derived from different

scenarios: single- (SLF), two- (2LF) and three- (3LF) link failures and the combination of

all three (ALL)

SLF vs ALL 2LF vs ALL 3LF vs ALL

Min 0.460 0.698 0.878

Median 0.985 0.999 0.999

Mean 0.934 0.983 0.995

Max 1.000 1.000 1.000

Table 4.2 shows that SLF vs ALL was not correlated with the network attributes

(|RS | < 0.20) except for the proportion of nodes serving as OD points (RS = 0.86).

The correlations between 2LF vs ALL and the network attributes were weak at best

(|RS | < 0.40) except for the proportion of nodes serving as OD points (RS = 0.66). In the

case of 3LF-based criticality rankings, the correlation with the ratio of OD points to nodes

became weak and negative (RS = −0.35) while other network attributes started to play a

role (i.e. the correlation of 3LF vs ALL with N and β were 0.73 and 0.71 respectively).

The influence of the network size on the rankings correlation is shown in Figure 4.7.a,

where it can be seen that there were no significant relationship between the number of

nodes in the network and both SLF vs ALL and 2LF vs ALL. In contrast, the minimum

value of 3LF vs ALL increased with N . The influence of the proportion of nodes being

OD points on the rankings correlation is shown in Figure 4.7.b, where the accuracy of

SLF-based rankings increased with rOD. When rOD ≤ 0.5 the mean value of SLF vs ALL

is 0.87 (sd = 0.12) but reaches 0.99 (sd = 0.01) when rOD > 0.5.
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Figure 4.7: Correlation of the link criticality rankings derived from single- (SLF), two-

(2LF) and three- (3LF) link failures and the combination of all three (ALL) depending on

(a) the network size and (b) the proportion of nodes serving as OD points in the GREREC

networks

Extended impact of targeted attacks

None of the network attributes demonstrated a strong correlation with the network ro-

bustness to a dynamic betweenness attack (|RS | < 0.43). In contrast, the network robust-

ness to random attacks demonstrated a strong correlation with the network connectivity

(0.78 6 RS 6 0.87), a moderate correlation with the degree heterogeneity (RS = 0.58)

and no correlation or an uncertain weak correlation with the other attributes (p-value

> 0.001). The results are similar for the targeted attack extended impact except that the

network size demonstrated a moderate correlation with TAEI (RS = 0.59).

Figure 4.8 shows the influence of the network connectivity, size and structural pattern

group membership on both CRORAND and TAEI . In Figure 4.8.a the largest networks

seemed to follow a linear model relatively supported by a regression performed on the

networks with more than 10 nodes (R2 = 0.76). In contrast, the linear model appeared

less relevant for TAEI (R2 = 0.45).
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Figure 4.8: Relation between the ”cumulative” robustness to random attacks—i.e. robust-

ness to random dismantling processes—(CRORAND, Eq. 4.5) and the extended impact of

targeted dismantling processes (TAEI , Eq. 4.7) and three networks attributes: (a and b)

the network connectivity and size and (c and d) the structural pattern group membership.

box = 25th and 75th percentiles, notch = ±1.58IQR/
√
n

.

4.3.3 Comparison with the real road networks

Topology of the road network samples

As the topology of a network can be characterised by its degree distribution, the average

and standard deviation of the degree distributions in the GREREC and real networks

(Figure 4.9) were used for comparing their topology. The real network topologies ranged

from tree-like structures (Figure 4.4.c) to more compact and ordered grid-like structures

(Figure 4.4.a) with average degrees of 2.33 and 3.32 respectively. In Figure 4.9, it can

be seen that the topology of the real networks was close to the topology of some of the

GREREC networks but that the latter also contained a large range of networks with

higher average degree and degree heterogeneity values. Furthermore, the comparison with

Table 4.1 and Figure 4.5 suggests that B1, B2, C1 and C2 were the GREREC structural

pattern groups that are the closest to the real networks, while B3 and C3 present higher

proportions of high degree nodes (superior to six) than real networks. Hence, the GREREC

model better represents real road networks when the probability of generating shortcuts

is low (q < 0.66).
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Figure 4.9: Comparison of the topology of the GREREC and real networks analysed. The

degree heterogeneity is the standard deviation of the degree distribution in the network.

Correlation of the network robustness metrics with the network characteristics

in the real network models

The correlation between the networks attributes and robustness metrics was also evaluated

in the real network models (Table 4.4). These correlations were generally consistent with

the correlations observed with the GREREC networks (Table 4.2) as they often had the

same signs, ranges and p-values.

Although the correlations of the network mean robustness in SLFs, 2LFs and 3LFs with

the network size were lower in the real networks (0.67 on average) than in the GREREC

networks (0.93 on average), the network size and connectivity remained the only param-

eters strongly correlated to the mean network robustness. Furthermore, the smallest real

networks also exhibited a large variability in their mean robustness to SLFs, 2LFs and

3LFs while the robustness of the largest networks seemed independent of N . The average

mean robustness of the small real networks (N 6 30) went from 91% (sd = 0.04) in SLFs

to 73% (sd = 0.10) in 3LFs, while the average mean robustness of the large networks

(N > 30) slightly decreased from 98% (sd = 0.01) in SLFs to 95% (sd = 0.04) in 3LFs.

However, in the real networks, the correlation of the mean robustness to single and

multiple link failures with the degree heterogeneity was uncertain (p-value > 0.05) while

the correlation with the link cost heterogeneity appeared stronger (-0.57 on average).

Besides, the piecewise linear model connecting the network mean robustness and connec-

tivity (Figure 4.6.b) remained relevant for the real networks but less accurate (R2 ≈ 0.59

in Figure 4.10.a).

In the real networks, the correlation of the robustness to the interactive betweenness

attack with the network parameters remained weak or moderate at best (Table 4.4). The

GREREC and real network correlation results were also similar for the robustness to

random dismantling processes except that the latter was now uncorrelated with the degree

heterogeneity. In contrast, the correlation of the extended impact of targeted attacks with

the network size, connectivity and degree heterogeneity went from being strong in the

GREREC networks to being not significant, moderate and not significant, respectively.

The linear model connecting network connectivity and robustness to random disman-

tling processes remained relevant (R2 = 0.87 in Figure 4.10.b) for the real networks but
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Table 4.4: Correlation (RS) between the network characteristics and robustness metrics in

the road network samples analysed. ns, *, ** and *** denote the significance at p > 0.05,

p < 0.05, p < 0.005 & p < 0.001 respectively.

Network characteristics

Network

size (N)

Network con-

nectivity (α,

β, γ)

Degree

heterogeneity

Link costs

heterogeneity

Proportion of

nodes being OD

points

Mean robustness

to SLF

0.66∗∗∗ [0.74, 0.83]∗∗∗ -0.20ns -0.55∗∗ -0.17ns

Mean robustness

to 2LF

0.67∗∗∗ [0.73, 0.82]∗∗∗ -0.20ns -0.57∗∗ -0.17ns

Mean robustness

to 3LF

0.68∗∗∗ [0.72, 0.81]∗∗∗ 0.17ns -0.59∗∗∗ -0.16ns

SLF vs ALL(1) 0.28ns [0.20, 0.21]ns -0.08ns -0.29ns 0.59∗∗∗

2LF vs ALL 0.41∗ [0.22, 0.24]ns -0.10ns -0.39∗ 0.40∗

3LF vs ALL 0.35ns [0.01, 0.02]ns -0.00ns -0.30ns -0.25ns

Robustness to a

BETWI(2)
-0.43∗ [0.53, 0.67]∗∗ -0.11ns 0.43∗ 0.01ns

Robustness to a

RAND(3)

0.27ns [0.70, 0.83]∗∗∗ -0.18ns 0.31∗ 0.11ns

Targeted attack

extended impact

0.30ns [0.48, 0.52]∗∗ -0.22ns -0.18ns 0.24ns

(1) Correlation of the link criticality rankings derived from single- (SLF), two- (2LF) and three- (3LF)

link failures, and the combination of all three (ALL); (2) Interactive betweenness attack; (3) Represen-

tative random dismantling process.

with a steeper slope of 1.1 compared to 0.49 for the GREREC networks.

Table 4.5 shows that SLF vs ALL, 2LF vs ALL and 3LF vs ALL were at best weakly

correlated with the network attributes (|RS | < 0.40 and p-value > 0.005) apart from

the proportion of nodes serving as OD points that was strongly correlated with SLF vs

ALL (RS = 0.59). This is also consistent with the GREREC results except that 3LF vs

ALL was also strongly correlated with the network size and connectivity in the GREREC

networks.

The results of the link criticality rankings comparisons in the real network models

are summarised in Table 4.5. As with the GREREC networks (Table 4.3), SLF-based

criticality rankings were generally very strongly correlated with the rankings based on all

scenarios (the mean correlation being 0.973) while 2LF and 3LF based rankings showed

even stronger mean correlations with the rankings based on ALL (0.999 and 0.995 respec-

tively).

61



CHAPTER 4. ROLE OF NETWORK TOPOLOGY AND DEMAND VARIATIONS IN
NETWORK ROBUSTNESS

Breakpoint: 1.41   Slope 1: 0.25   Slope 2: 0.05   R2 = 0.57
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Figure 4.10: Influence of the network connectivity (beta and gamma) on the (a) mean ro-

bustness (RO, Eq. 3.2) to single-, two- and three-link failures and (b) ”cumulative” robust-

ness to random attacks—i.e. robustness to random dismantling processes—(CRORAND,

Eq. 4.5) in the real road network models

Table 4.5: Correlation (RS) between the link criticality rankings derived from single-

(SLF), two- (2LF) and three- (3LF) link failures and the combination of all three (ALL)

in the real road network samples

SLF vs ALL 2LF vs ALL 3LF vs ALL

Min 0.803 0.998 0.974

Median 0.993 0.999 0.995

Mean 0.973 0.998 0.995

Max 1.000 1.000 1.000

4.4 Discussion

The comparison of the topology of the GREREC and real road networks suggest that the

former contain a larger set of topologies. For example, the structural-pattern groups B3

and C3 have higher proportions of six-to-eight degree nodes than real networks. Although

these networks may be rare in the real world due to costs and land-use constraints, their

inclusion in this analysis remains useful to assess the benefits in terms of robustness of

designing and building networks with a higher proportion of intersections connecting more

than six streets.
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The robustness analysis performed on both sets of networks allowed determining the

influence of certain network attributes on network robustness as well as the generality of

these findings. Firstly, the variations of the correlation between the robustness metrics

and the network attributes (Table 4.2 and 4.5) depending on the aspect of robustness

considered (mean robustness, link criticality, and extended impact of targeted attacks)

reflect the fact that network robustness is a complex and multidimensional problem in

which different network characteristics play more or less important roles depending on

the aspect of robustness considered. Hence, none of the network attributes on its own is

sufficient to explain road network robustness.

4.4.1 Influence of the degree and link-cost distributions on network ro-

bustness

Among the indicators considered, the link cost heterogeneity (i.e. the standard deviation

of the link cost distribution) was the only indicator that showed no significant correlation

with the robustness metrics of the GREREC networks. It is, however, difficult to conclude

that the road network robustness is generally independent of the link cost heterogeneity

as this could be specific to the indicator tested or to the process used to generate the link

costs in the GREREC model. Indeed, the link cost heterogeneity of the real networks had

a stronger (but still moderate) correlation with the mean robustness to single-, two- and

three-link failures. Hence, the present results show that the link cost heterogeneity has

a weak to moderate influence on the network robustness and more importantly that the

links travel costs are much less important than the other parameters considered (i.e. the

network topology and proportion of nodes serving as OD points) in terms of robustness.

In the GREREC networks, the degree heterogeneity (i.e. the standard deviation of

the degree distribution) was positively and moderately correlated with network average

robustness (i.e. mean robustness to SLFs, 2LFs and 3LFs and robustness to random

dismantling processes). This correlation could not be verified in the real network samples.

Considering the strong correlation between the network connectivity and robustness in

both sets of networks, this difference may be explained by the fact the degree heterogeneity

and connectivity were correlated in the GREREC networks (RS = 0.64, p-value < 1015)

but uncorrelated in the real graphs (RS = −0.21, p-value = 0.256). This highlights one of

the weaknesses of the GREREC model where higher degree heterogeneity is often paired

with higher connectivity while it may not always be the case in the real-world.

The present results may explain why previous research found that the degree heterogeneity

positively impacted road network robustness. Considering the tail of degree distribution

as an indicator of the degree heterogeneity, Buhl et al. (2006) noticed that the latter

was positively correlated with the network robustness to random dismantling processes.

The suitability of this indicator to reflect the degree heterogeneity is however problematic

for two reasons. Firstly, the accuracy of this index depends on whether degree distri-

butions tails (for degrees superior to three) can be approximated by exponential decays.

This is not the case, for example, in cities presenting a dominant square-grid structure

(e.g. San Francisco) where four-street intersections are more frequent than three-street

intersections. Secondly, tails also contain information about the network connectivity as

lower-decay rates also imply that more high-degree nodes are present in the network and
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therefore that the network connectivity and robustness are higher.

4.4.2 Influence of the network size and connectivity on the network

robustness to single-, multiple-, random- and targeted-link failures

The analysis showed that a linear model connected the network density and robustness

in both the GREREC (Figure 4.8.a) and the real (Figure 4.10.b) networks. These obser-

vations are consistent with the conclusions of Buhl et al. (2006) who also found a linear

relationship between those metrics although they considered a different robustness indi-

cator. The steeper slope observed in the real networks can be explained by the smaller

range of γ in this set of networks [0.38, 0.58] compared to [0.41, 0.91] in the GREREC

networks since the data in Figure 4.8.a suggests that the slope of the linear model would

also be steeper in this range. Hence, the network robustness to a random dismantling

process linearly increases with the density (i.e. the proportion of possible links or cycles

that are actually present in the network).

In both the GREREC and the real networks, the weak to moderate correlation ob-

served between the network robustness to a dynamic betweenness attack (CROBETWI)

and the connectivity indicators (α, β and γ) contrasts with the strong correlation found be-

tween the network connectivity and its mean robustness to SLFs, 2LFs, 3LFs and random

dismantling processes. This may be because CROBETWI—like any other measure of the

impact of a targeted attack—essentially looks at the impact in the worst-case scenario.

As two networks can perform similarly under a targeted attack but differently under a

wider range of disturbances, such measures may not be sufficient on their own to compare

the robustness (ability to maintain functionality despite various disturbances) of different

networks. It is, therefore, more meaningful to study and quantify the impact of targeted

attacks in comparison with other attacks in the same network.

The positive correlations observed between the network connectivity, CRORAND and

the extended impact of targeted attacks (TAEI) suggest that although highly-connected

networks are likely to be more robust to random failures than sparse networks, the ex-

tended impact of a targeted attack would also be larger in the former. Highly connected

networks hence offer more opportunities for malicious attacks to be more detrimental than

random attacks. In practice, this means that in sparse networks most of the links should

be equally protected as the impacts of random and targeted attacks are close, whereas

high-betweenness links should be given a higher priority for protection in complex net-

works.

However, network dismantling processes and the related robustness indicators lack

applicability as real-life perturbations (car accidents, floods or sabotage actions) rarely

follow this mechanism. Hence, the present study also considered single- and multiple-

link failures to determine the influence of the network size (number of intersections) on

the network robustness. Like the network connectivity, the network size was strongly

correlated to the mean robustness to SLFs, 2LFs and 3LFs in both the GREREC and

the real networks. These strong correlations can be explained by the fact that both

parameters increase the number of alternatives routes available to substitute the disrupted

ones. Furthermore, the correlation of the network size with the robustness to SLFs, 2LFs

and 3LFs but lack of correlation with the robustness to random dismantling processes
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suggests that most of the MLFs scenarios had a local impact.

The present results also showed that the relationship between the network connectivity

and mean robustness tends to follow a piecewise linear model in the case of SLFs, 2LFs and

3LFs (Figure 4.6.b and 4.10.a), in which the effect of the network density on the mean

robustness decreases to almost zero after the breakpoint. The value of this breakpoint

slightly increased from 1.41 in the real networks to 1.55 in the GREREC graphs and

should, therefore, be around those values.

Finally, if the conclusion that single- and multiple-link failures are more harmful in

small and sparse networks was expected, the present research still provided quantitative

estimates showing that the impact of SLFs and 3LFs are comparable in large networks

(more than 30 nodes) while their impacts differ of 9% (18% in the real networks) in

robustness on average in the small networks. Similarly, in the sparse networks (β < 1.55)

the mean impact of SLFs and 3LFs differed of 16% (7% in the real networks) in robustness

but of only 1% in the compact networks.

Similar behaviours could be expected for scenarios involving a greater number of failed

links (four-link failures, etc.) although the size and connectivity thresholds may slowly in-

crease with the number of failed links considered. Therefore, when designing or upgrading

a road network, the addition of redundant routes in the network (by building additional

roads and intermediate intersections) is an efficient way to improve the network mean

robustness up to a certain size (N ≈ 40) and connectivity (β ≈ 1.5) threshold after which

the robustness enhancement is limited.

4.4.3 Influence of the ratio of OD points to nodes on the link criticality

rankings

The comparison of the link criticality rankings derived from single-, two- and three-link fail-

ures and the combination of all three showed that these rankings depend on the scenarios

and network considered in both the GREREC and the real networks. The low correlation

values obtained in some cases (e.g. the minimum value was 0.460 in the GREREC net-

works) indicate that SLFs and ALL can provide substantially different lists of links which

are most critical to the network performance in case of disruption. The minimum value

(0.803) obtained in the real networks was certainly higher than in the GREREC model

because the set of real networks (30) was smaller than the set of GREREC networks (161).

These results hence confirm and give more depth to the conclusions of Wang et al. (2016):

the most critical links when multiple-link failures occur are not simply the combination of

the most critical links with single-link failures.

The present study showed that SLF vs ALL was significantly positively correlated

with the proportion of nodes being OD points in both the GREREC and real networks.

Furthermore, SLF-based rankings were well correlated with the rankings based on all

scenarios in networks with a high proportion of nodes serving as OD points (rOD > 0.5).

In such networks, OD pairs are more likely to be originally connected by direct routes for

which the alternatives routes are much more costly or do not exist. In these networks,

SLFs are hence very critical while the contribution of MLF scenarios to the link criticality

is limited. In contrast, SLF-based rankings are likely to misrepresent the overall link

criticality in networks with a low ratio of OD points to nodes where SLFs are less relevant
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due to the availability of several ”equivalent routes”.

Although the correlation between 3LF and ALL based rankings remained generally

high (above 0.878 in the GREREC networks), the variability of the correlation between

both rankings further decreased with the network size. This may be explained by the

fact that most 3LF scenarios are likely to be very critical in small networks resulting in

more difficulty in distinguishing between the impacts of these scenarios on the network

performance and thus in ranking the links.

One practical implication of these findings is that the classical method assessing link

criticality based exclusively on SLFs is likely to misrepresent the overall link criticality in

road networks where the population (demand) is not homogeneously distributed among

all the intersections. The application of this method outside of this case could lead to

inefficient prevention and restoration measures in the advent of events disrupting several

road segments (e.g. flooding) or several events affecting different parts of the network at

the same time (e.g. a car accident could cause the unavailability of a road while a bridge

is closed for repair work in another part of the network).

On the other hand, the brute-force approach—testing all possible scenarios of MLFs—is

limited by its computational cost and appropriate for small to medium (sub)networks only.

Considering this, two-link failures seemed to provide a possible solution balancing accu-

racy and computational cost (the mean values of 2LF vs ALL being 0.981 and 0.998 for the

GREREC and real networks respectively compared to 0.933 and 0.973 for SLF vs ALL) at

least to represent the overall link criticality in failures of up to three links. Future research

could seek to determine more precisely when it is necessary to consider 2LF, 3LF, 4LF,

etc. and accordingly develop less computationally expensive methods for link criticality

ranking.

4.5 Summary and concluding remarks

The present chapter focused on finding universal insights into road networks robustness

to single-, multiple-, random- and targeted-link failures. To this end, the GREREC model

was developed to randomly generate a variety of abstract networks presenting the topolog-

ical and operational characteristics observed in real road networks, on which a robustness

analysis was performed. This analysis was also reproduced on a set of real network samples

for validation.

The results showed that the GREREC model can generate networks with topologies

similar to real maps (ranging from tree-like structures to more compact and ordered grid-

like structures) but also more diverse topologies presenting, for example, higher propor-

tions of intersections connecting six to eight streets than real maps. Hence, the analysis

performed on both sets of networks allowed to assess the robustness of real networks but

also networks that could be designed and built for greater resilience. As the scenarios con-

sidered model a large range of disruptive events leading to the closure of sets of roads (e.g.

serious car accidents, bridge failures and repair works), the results provide a framework

to understand the potential influence of different network attributes on different aspects

of road network robustness to such events.

The network size and connectivity strongly influenced the network mean robustness

to multiple-link failures and allowed to distinguish small (sparse) networks where the im-
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pact of MLFs heavily depend on the attack size from large (compact) networks where the

increased attack size has a negligible effect. The results also showed that the addition of

redundant routes in road networks (through additional roads and intermediate intersec-

tions) is an efficient way to enhance the network robustness to multiple-link failures up to

a certain size and connectivity threshold.

As the construction of new roads requires significant investments, the proposed link

criticality indicator can be used as a tool to identify and prioritise the road segments for

which alternatives connections should be built. This indicator should, however, be used

carefully as the present research shows that link criticality rankings are sensitive to the type

of disruption scenarios considered (i.e. single or multiple link failures) and that the network

attribute controlling the correlation between SLF-based rankings and the rankings based

on all scenarios is the ratio of OD points to nodes. The classical method assessing link

criticality based exclusively on single-link failures is hence likely to misrepresent the overall

link criticality in road networks where the population (demand) is not homogeneously

distributed among all the intersections, which could lead to inefficient prevention and

restoration measures in the advent of events disrupting several road segments or several

events affecting different parts of the network at the same time.

The comparison of the impact of targeted and random attacks showed that highly-

connected networks are more robust but also offers more opportunities for malicious at-

tacks to be more harmful than random failures. The identification and protection of the

most critical road segments are hence more crucial in compact road networks than in

sparse networks where most links are equally important to the network performance.

Ultimately, the GREREC model and the results presented here could be used as a

relevant null model to benchmark the robustness of road networks. As stated above,

the present chapter adopted a topological transport model, which disregards capacity

constraints, for computational effectiveness. Therefore, to complement the present results,

Chapter 5 investigates the sensitivity of the network robustness, the difference between

single- and multiple-link based link criticality rankings, and extended impact of targeted

attacks to capacity constraints and travel demand variability.
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Chapter 5

Role of demand variations and

capacity constraints in network

robustness

5.1 Introduction

Chapter 4 assessed the effects of different network characteristics (the network size, topol-

ogy and demand distribution) on the robustness of road networks to single-, multiple-,

targeted- and random-link failures. This research also assessed the effects of the network

characteristics on the difference between the link criticality rankings based on single- and

multiple-link failures and the difference between the impacts of targeted and random fail-

ures. However, this assessment relied on a topological model and therefore did not consider

capacity constraints and potential congestion. To complement this research and assess the

role of capacity constraints in road network robustness, the present chapter analyses the

robustness of the Sioux Falls network (Chapter 3) under different travel demand conditions

and disruption types.

To this end, the present chapter uses and adapts the hazard-independent disruption

model developed in Chapter 3 (which considers all possible scenarios disrupting multi-

ple links without considering disruption probabilities as explained in Section 1.3.2). This

adaptation allows the comparison of the impacts of three types of damage, namely, ran-

dom (damaging random sets of links), localised (damaging adjacent links), and targeted

(seeking to maximise the damage to the system performance). The robustness analysis of

the Sioux Falls network is also used to explore the predictability of the link combinations

whose failure would lead to the highest impacts on the system performance, and the dif-

ference between the link criticality rankings when only SLFs are considered as opposed to

when MLFs are considered. Finally, the effects of demand intensity and distribution vari-

ability (and therefore congestion) on the network robustness and link criticality metrics

are assessed by repeating the robustness analysis under different travel demand conditions.

This chapter is structured as follows. Section 5.2 presents the methods and case studies.

In Section 5.3 and 5.4, the results of the network robustness assessment are presented and

discussed, respectively. Sections 5.5 provides concluding remarks.
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5.2 Methods

5.2.1 Disruption model

The present chapter considers a full range of predictable and unpredictable disruption

scenarios using the hazard-independent disruption model proposed in Chapter 3. All

possible combinations of link failures disrupting up to five links at the same time were

simulated. This resulted in a dataset that combined five levels of damage extension:

single-, two-, three-, four- and five-link failures.

The disruption scenarios in this dataset were then categorized into three types of

disruptions, that are, localised-, targeted- and random-link failures. Localised scenarios

disrupt adjacent links. These scenarios can be identified using the following procedure:

1. Identification of all localised two-link combinations

(i) for each link, a1, in the network, search for all links, a2 6= a1, adjacent to a1

(i.e. connected to the same node) and store (a1, a2) in a dataset

(ii) remove duplicates from the dataset

2. Identification of all localised three-link combinations

(i) for each link combination, (a1, a2), search for all links, a3 6= a1 & a2, adjacent

to a1 and for all links, a3 6= a1 & a2, adjacent to a2, and store (a1, a2, a3) in a

dataset

(ii) remove duplicates from the dataset

3. Identification of all localised four- and five-link combinations

(i) repeat step 2 using the localised three- and four-link combination datasets,

respectively

It is noted that localised disruptions are normally specified in terms of hazard-prone

areas derived from climate models (Casali and Heinimann, 2019; Demirel et al., 2015; Hu

et al., 2016; Wisetjindawat et al., 2017). In this thesis, localised failures refer to a range of

events that may differ in nature (flooding, landslide, or large demonstrations) but lead to

similar consequences, that is, the unavailability of adjacent network components. Again,

this approach is used to reduce the dependency of the robustness assessment on empirical

data, which may overlook unpredictable events.

Unlike localised disruptions that lead to aggregated destruction of components in a

limited area, targeted- and random-link failures can damage network components dis-

tributed throughout the whole system. The latter damage a random set of links (e.g.

pavement maintenance, pipe bursting, or police incidents amongst others can lead to ran-

dom road closures) whereas targeted attacks imply a driving force seeking to maximise

damage to the network performance (e.g. the bombing of a critical bridge). Robustness

studies—especially in the context of complex network theory—commonly distinguish be-

tween these two types of failures (Buhl et al., 2006; Réka et al., 2000; Zanin et al., 2018),

while localised failures are increasingly considered (Hu et al., 2016).
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In this chapter, targeted attacks correspond to the 5% scenarios in each damage ex-

tension group (dataset) that cause the highest increases in travel time, measured by the

network robustness indicator (RO, Eq. 3.2). The random failures correspond to the

scenarios that are neither localised nor targeted.

Table 5.1 presents the definitions, models and real-world events associated with the

three types of scenarios. The events presented in Table 5.1 could lead to partial speed

or capacity reductions rather than complete road obstructions. However, the inclusion of

such effects would add to the already high computational cost of the hazard-independent

approach since several scenarios need to be computed per link.

Table 5.1: Classification and model of disruptive events affecting road networks

Name Definition Model Real-word events repre-

sented

Localised Failure of adjacent links Failures identified by the itera-

tive procedure (above)

Flooding, Landslides, Large

demonstrations

Targeted Failure with a maximum

impact on network perfor-

mance

Failures leading to the bottom

5% robustness indicator values

Targeted bombing, Sabo-

tage, Industrial actions

Random Failure of randomly se-

lected links in the network

Failures that are neither criti-

cal nor localised

Serious car accidents, Road

works, Police incidents

5.2.2 Network robustness and link criticality assessment

To assess the impacts on the disruption scenarios, the present chapter uses the network

robustness (RO, Eq. 3.2) and unsatisfied demand (USD, Eq. 3.3) indicators developed

in Chapter 3. To identify the most critical links with regards to multiple-link failures, the

present chapter adopts the method and link criticality indicator (Cra, Eq. 4.4) developed

in Chapter 4. As in Chapter 4, Spearman’s correlation coefficient was used to compare the

rankings derived from the criticality index when multiple-link failures are considered with

the rankings that can be derived from less computationally expensive approaches (e.g. the

SLFs and the link flow in the undisrupted state).

5.2.3 Case studies

The original Sioux Falls network

The present chapter analyses the robustness of the Sioux Falls network, which is presented

and studied in Chapter 3. The assumptions, transport model and disruption simulations

used in Chapter 3 are also adopted here.

Effect of travel demand on the network robustness

To provide a clearer understanding of road network robustness dependency on travel de-

mand conditions, the effect of the demand intensity and distribution on the Sioux-Falls-

network robustness and link-criticality metrics was evaluated. In the original Sioux Falls

network, the travel demand is heterogeneously distributed across all intersections as every
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node is both an origin and a destination point (Figure 5.1). To evaluate the effect of the

demand distribution, two extreme cases were considered. Firstly, a case where the travel

demand between all OD zones of the Sioux Falls network was removed from the network

and homogeneously distributed among six arbitrarily chosen nodes: 1, 8, 10, 12, 20, and

23 (Figure 3.2). Secondly, a case where the demand was homogeneously distributed to all

nodes in the network was considered.
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Figure 5.1: Demand distribution in the original Sioux Falls network (OD = Origin-

Destination)

To evaluate the effect of the demand intensity, both extreme cases were computed

under three levels of demand: low, medium, and high. The high level corresponds to the

total demand in the original Sioux Falls network (360,600 vehicles/hour) that is already

congested. The low (72,120 vehicles/hour) and medium (180,600 vehicles/hour) levels

correspond to 20% and 50% of the total demand in the original network, respectively.

These demand levels were chosen to obtain uncongested, congested, and highly-congested

case studies.

5.3 Results

Impact of localised, random and targeted link failures

Subsets of the 2LF, 3LF, 4LF and 5LF scenario sets were considered to assess the difference

between the impacts of localised, targeted, and random damage using the disruption model

described in Section 5.2. The impacts of the three types of scenarios are compared in

Figure 5.2. Figure 5.2.a shows the relationship between the network robustness indicator

measuring the average increase in TT along the OD pairs and the unsatisfied demand

indicator measuring the proportion of road users unable to reach their chosen destination.
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Figure 5.2.b and c show the distributions of RO and USD across the damage type and

extension groups.
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Figure 5.2: Impact of localised, random and targeted two- (2LF), three- (3LF), four- (4LF)

and five- (5LF) link failures in the original Sioux Falls network. (RO = Network robustness

indicator, USD = Unsatisfied demand indicator, box = 25th and 75th percentiles)

The results indicate that targeted attacks were much more critical to the network

performance than random failures (the difference between the mean robustness to random

and targeted failures being 19.4%, 20.3%, 19.5% and 17.9% in 2LFs, 3LFs, 4LFs and 5LFs,

respectively in Figure 5.2.b) while localised failures were only slightly more critical than

their random counterparts (the difference between the mean robustness to random and

localised failures being 1.6%, 2.9%, 4.0% and 4.3% in 2LFs, 3LFs, 4LFs, 5LFs respectively

in Figure 5.2.b). In addition, the difference between the mean robustness in localised and

random failures increased with the damage extension while the difference between targeted

and random failures seemed relatively constant.

Although the differences between the mean USD values in the three damage types

were insignificant (< 1.0%), it can be seen in Figure 5.2.a and c that the highest values of

the unsatisfied demand indicator appeared among the localised scenarios four all damage

extension groups except 5LFs. In contrast, the targeted attacks presented the lowest USD

values.
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5.3.1 Most critical disruption scenarios

The network robustness indicator was used to identify the five most critical scenarios in

all damage extension groups. These scenarios are presented in Table 5.2 along with their

RO and USD values.

Table 5.2: Top-5 most critical combinations of single-, two-, three-, and four-link failures

in the original Sioux Falls network

Link combination RO (USD)

(10,15) 73.2 % (0 %)

(18,20) 74.0 % (0 %)

(9,10) 75.3 % (0 %)

(12,13) 77.7 % (0 %)

(10,15) 77.8 % (0 %)

(9,10) (10,11) 47.5 % (0 %)

(10,15) (18,20) 48.9 % (0 %)

(5,9) (10,11) 51.6 % (0 %)

(9,10) (18,20) 53.0 % (0 %)

(12,13) (18,20) 53.5 % (0 %)

(10,15) (17,19) (18,20) 32.2 % (0 %)

(9,10) (10,11) (18,20) 33.2 % (0 %)

(10,15) (16,17) (18,20) 34.0 % (0 %)

(5,9) (10,11) (10,15) 34.3 % (0 %)

(9,10) (10,15) (18,20) 34.5 % (0 %)

(9,10) (10,11) (10,15) (18,20) 22.3 % (0 %)

(9,10) (10,11) (12,13) (18,20) 22.3 % (0 %)

(10,15) (10,17) (16,17) (18,20) 22.6 % (0 %)

(5,9) (10,11) (10,15) (15,19) 22.6 % (0 %)

(3,12) (9,10) (10,11) (18,20) 22.8 % (0 %)

(7,15) (8,16) (9,10) (10,11) (10,15) 12.7 % (0.1 %)

(9,10) (10,11) (10,16) (16,17) (18,20) 13.7 % (0.0 %)

(9,10) (10,11) (10,15) (16,17) (18,20) 13.9 % (0.0 %)

(5,9) (10,11) (10,15) (15,19) (18,20) 14.2 % (0.0 %)

(2,6) (4,5) (9,10) (10,11) (18,20) 14.2 % (0.0 %)

RO = Network robustness indicator (Eq. 3.2); USD = Unsatisfied

demand indicator (Eq. 3.3), Bold font = localised scenario.

In accordance with the results presented in Figure 5.2, it can be seen in Table 5.2 that

none of the top-5 most critical scenarios led to unsatisfied demand (USD = 0). Besides,

among the top-5 most critical scenarios only one was a localised scenario that is (9,10) &

(10,11) in bold in Table 5.2.

The most critical combinations of 2LFs, 3LFs, 4LFs and 5LFs did not necessarily in-

volve the most critical links with SLF as links outside of this group, for example (10,11)

and (17,19), appeared in these combinations. However, all top-5 most critical 2LF scenar-

ios involved the disruption of at least one of the top-6 most critical links with SLF, (5,9)

being the 6th most critical link with SLF. Similarly, the top-5 most critical 3LFs and 4LFs

all contained one of the top-5 most critical combinations of 2LFs and 3LFs, respectively.
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Four of the top-5 most critical 5LF combinations - except the first one i.e. (7,15) (8,16)

(9,10) (10,11) (10,15) – contained one of the top-8 most critical 4LF combination, (4,5)

(9,10) (10,11) (18,20) being the 8th most critical 4LF combinations. The critical combina-

tions of 2LFs, 3LFs, 4LFs and 5LFs hence involved at least one of the most critical links

with SLF.

This pattern suggests that to identify and evaluate the impact of the top-5 most critical

MLF scenarios it might not be necessary to consider all possible scenarios. Instead, an

iterative procedure could be used as follows (in a network composed of L links):

(i) Evaluate the impact of all SLFs [L simulations]

(ii) Rank the impacts and select the top-10 most critical links (and not the top-5 to

reduce the probability of missing critical scenarios)

(iii) Compute all 2LF scenarios involving the top-10 most critical links with SLF [10(L−1)

simulations]

(iv) Rank the impacts and select the top-10 most critical 2LFs

(v) Compute all 3LF scenarios involving the top-10 most critical 2LFs [10(L− 2) simu-

lations]

(vi) Repeat the two previous steps until reaching the desired number of failed links

Therefore, to identify the top-5 most critical scenarios concurrently disrupting M links,

this procedure would require L+ 10
∑M−1

k=1 (L− k) disruption simulations (= 1,118 in the

Sioux Falls network for 4LFs), which is far less computationally expensive than the
(
L
M

)
simulations required to test all possible scenarios (= 78,315 in the Sioux Falls network for

4LFs).

5.3.2 Critical links

As the most critical failure scenarios involve a multitude of links including links that are

only critical when they concurrently fail with a specific set of other links (Table 5.2), it

is difficult to rank links using the top-5 most critical scenarios only. Therefore, the link

criticality was assessed using the link criticality indicator, Cra (Eq. 4.4), which combines

the robustness indicator values of all single and multiple-link failure scenarios into one

indicator.

According to Cra, the most critical links in the Sioux Falls network were in criticality

order, (10,15), (18,20), (9,10), (12,13), and (6,8), which is consistent with the SLF results

(Table 5.2). To verify if the ranking provided by Cra was totally consistent with the

SLF-based criticality ranking, the relation between the two rankings was evaluated using

Spearman’s correlation coefficient. The correlation between the two rankings was very

strong (Rs = 0.993).

5.3.3 Effects of demand variations on the network robustness and link

criticality results

To evaluate the effects of demand variations on the aforementioned results, the analysis

was repeated on versions of the Sioux Falls network with different demand distribution
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and intensity conditions (Section 5.2). For computational effectiveness, the disruption

simulations were limited to single-, two- and three-link failures in these six case studies.

The results are presented in Table 5.3, where the original Sioux Falls network is included

for comparison. This table shows the mean and standard deviation of the flow/capacity

ratio of the links in the network to provide a general measure of the congestion level. The

low-, medium-, and high-demand levels correspond to uncongested (mean flow/capacity

ratio < 0.5), congested (mean flow/capacity ratio ≈ 1), and highly congested (mean

flow/capacity ratio > 1.5) conditions, respectively.

The mean robustness indicator values of each network—computed over SLFs, 2LFs

and 3LFs— were used as a general measure of the network robustness. The comparison

of this value across the different case studies (Table 5.3) shows that higher demand and

congestion reduce robustness. Furthermore, for the same congestion level, the networks

where the demand was better distributed across the nodes were more robust.

To compare the impact of localised-, random-, and targeted-link failures in the case

studies, the differences between the mean robustness indicator values in these three types

of damage were computed (Table 5.3). The results suggest that the impact of localised and

random failures were similar in all case studies (the absolute difference between the two

means being inferior to 5%). Localised failures were more critical than random failures in

some networks as the sign of the difference changed. However, this sign seemed correlated

to neither the demand intensity nor the distribution. The difference between the impacts

of targeted and random failures remained significant in all case studies (≥ 7%). The

differences were higher in the networks with concentrated demand (between 21.9% and

30.2%) than in the networks with distributed demand (between 7% and 21%).

Spearman’s correlation coefficient was used to quantify the difference between the

link criticality rankings derived from multiple- and single-link failures. The correlation

coefficients (presented in Table 5.3) showed that the two rankings were always very strongly

(Rs ≥ 0.80) correlated. The correlation was stronger in the networks where the demand

was distributed to all the nodes and increased further with the congestion level in both

demand distribution cases. The correlation between the criticality rankings based on the

link flow, flow/capacity ratio and multiple-link failures were also examined, and discussion

of these results is available in Appendix C. These results were not included in Table 5.3

for brevity.

The standard deviation of the link criticality values in each network was computed

to evaluate the heterogeneity of the link criticality distributions in the networks. The

results (presented in Table 5.3) showed that the heterogeneity was higher in the networks

with concentrated demand. Moreover, the heterogeneity of the link criticality distribution

increased with the demand intensity in both demand distribution cases.

The top-5 most critical links in all case studies were identified based on SLFs, 2LFs and

3LFs using the criticality indicator. The lists of these critical links are presented in Table

5.3, where it can be seen that the criticality ranking depends on the demand distribution

and intensity as all lists were different.

The accuracy of the iterative procedure proposed to identify and predict the impact

of the top-5 most critical scenarios of MLFs (Section 5.3.1) was evaluated by computing

the proportion of top-5 2LFs and 3LFs that could be predicted in the case studies (Table

5.3). This procedure was more accurate when the demand was distributed (the minimum
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proportion of scenarios identified was 50% when the demand was concentrated and 70%

when it was distributed). This accuracy increased in congested networks (90% to 100% of

the scenarios identified).

Table 5.3: Effect of the demand distribution and intensity on the network initial state,

robustness, and link-criticality

Demand concentrated

in six nodes

Original

Sioux Falls

network

Demand distributed

to all nodes

Network initial

state

Demand level Low Medium High High Low Medium High

Link flow/capacity

ratio
0.40(0.40) 1.08(0.57) 2.19(0.99) 1.47(0.57) 0.41(0.30) 0.93(0.43) 1.79(0.62)

Network robustness

Mean robustness(1) 0.923 0.781 0.663 0.755 0.950 0.859 0.704

Difference between

mean robustness

to random and

localised failures(2)

-0.006 -0.021 -0.033 0.022 0.001 -0.004 -0.012

Difference between

mean robustness

to random and

targeted failures(2)

0.219 0.302 0.270 0.199 0.070 0.190 0.212

Link criticality

SLF vs ALL(3) 0.971 0.991 0.998 0.993 0.994 0.996 0.998

Standard deviation

of the link critical-

ity values

0.083 0.168 0.191 0.108 0.026 0.078 0.142

Top-5 most critical

links according to

ALL (in criticality

order)

(1,3)

(6,8)

(13,24)

(12,13)

(3,12)

(3,4)

(1,3)

(3,12)

(4 5)

(6,8)

(3,4)

(3,12)

(6,8)

(4,5)

(13,24)

(10,15)

(18,20)

(9,10)

(12,13)

(6,8)

(6,8)

(12,13)

(13,24)

(1,3)

(18,20)

(5,9)

(3,4)

(6,8)

(1,3)

(9,10)

(5,9)

(3,12)

(12,13)

(13,24)

(6,8)

Proportion of top-5

most critical 2LFs

and 3LFs predicted

by the iterative

procedure

1.000 0.500 0.900 1.000 0.700 1.000 0.900

Run time(4) 4min 25min 56min 33min 2min 8min 2h41min

mean (standard deviation); (1) mean computed over single- (SLF), two- (2LF) and three- (3LF) link

failures; (2) mean computed over 2LFs and 3LFs; (3) Correlation between the link criticality rankings

based on single-(SLF) and multiple- (ALL) link-failures, ALL = SLF + 2LF +3LF ; (4); Time taken to

perform the SLF, 2LF and 3LF simulations using parallel processing on an Intel i3-7100 3.9GHz and

8GB memory work station.
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Figure 5.3 shows the spatial distribution of link criticality values in the different de-

mand intensity and distribution conditions. For the sake of brevity, only the low and

high demand concentrated in six nodes and distributed across all nodes are shown. In

Figure 5.3, the link criticality values seem more heterogeneous in the networks with high

and distributed demand, which is confirmed by the evolution of the standard deviation

of the link criticality values in Table 5.3. Furthermore, it is interesting to note that in

the uncongested networks (Figure 5.3.a and c) the most critical links—(1,3), (6,8), (12,13)

and (13,24)— were in the network periphery while in the congested networks (Figure 5.3.b

and d) some inner links—(4,5) and (5,9)—appeared among the top-5 most critical links

(Table 5.4).

(a) (b)

(d)(c)

Figure 5.3: Most critical links in the Sioux Falls network under different conditions: (a)

low demand concentrated in six nodes, (b) high demand concentrated in six nodes, (c)

low demand distributed to all nodes, and (d) high demand distributed to all nodes. The

nodes in silver are OD points; the link labels and thickness indicate the values of the link

criticality indicator, Cra, which combines the link criticality derived from single-, two-,

and three-link failures into one indicator.
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The correlation between the link criticality rankings derived in the different demand in-

tensity and distribution conditions was evaluated (Table 5.4) to determine which rankings

were the closest to each other. Inside the demand distribution groups, the link criti-

cality rankings were strongly correlated as the value of the correlation coefficient within

the networks with concentrated and distributed demand remained above 0.767 and 0.698,

respectively. Inside both groups, the correlation between the medium and high-level de-

mand conditions increased further (RS > 0.90). In contrast, the correlation between the

rankings derived from the networks with concentrated and distributed demand was mod-

erate to strong (0.565 ≤ Rs ≤ 0.748) and the correlation of the ranking in the original

network with the other cases was moderate at best (|RS | ≤ 0.575).

Table 5.4: Correlation (RS) between the link criticality rankings derived in different de-

mand intensity and distribution conditions

Demand concentrated

in six nodes

Demand distributed

to all nodes

Demand

level
Low Medium High Low Medium High

Demand concentrated in six

nodes

Low

Medium

High

0.824

0.767 0.948

Demand distributed to all

nodes

Low

Medium

High

0.663

0.565

0.610

0.618

0.718

0.753

0.565

0.703

0.748

0.777

0.698 0.918

Original Sioux Falls net-

work
High 0.113 0.225 0.267 0.507 0.575 0.532

5.4 Discussion

5.4.1 Impact of random, localised and targeted damage

The comparison of the impacts of the three types of damage in the original Sioux Falls

network (Table 5.2 and Figure 5.2) showed that the most critical types of scenarios were

targeted, localised, and random failures (in that order); and that targeted attacks were

significantly more detrimental to the network performance than random failures (20% dif-

ference in robustness) while localised failures were only slightly more critical than random

failures (3% difference in robustness in average). These results are consistent with the

findings of Hu et al. (2016) that however considered full dismantling processes rather than

failure scenarios disrupting a limited number of roads.

Furthermore, the comparison of the difference between the mean robustness in localised

and random failures across the different demand intensity and distribution conditions (Ta-

ble 5.3) showed that their impacts were very close (the mean difference being inferior to

5%) and that one could be slightly more detrimental than the other in different condi-

tions. This suggests that although random scenarios damage infrastructures distributed

throughout the whole network (and therefore potentially impact more users) the resulting

impact is in general equivalent to the impact of localised failures. Hence, the impact may
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be significant in only one of the locations disturbed.

The analysis of the unsatisfied demand resulting from the different types of damage

(Figure 5.2) showed that localised failures lead to higher proportions of unsatisfied demand

than their targeted counterparts. Hence, localised damage cause a maximum impact

on a limited number of road users. In contrast, targeted attacks strategically damage

network components that are apart (as shown in Table 5.2 where the top-5 most critical

combinations of link failures rarely involved adjacent links) but whose simultaneous failures

cause important and widespread impacts (the mean difference between the impact of

targeted and random failures remained superior to 7% in robustness in all case studies

in 5.3). The difference was greater in the networks where the demand was concentrated

in a few nodes compared to networks where the demand was distributed to all nodes.

This is because in the former it is easier to cause important and widespread impacts with

limited resources (number of disrupted links) as more vehicles share the same routes. This

explanation is confirmed by the relatively high heterogeneity of the link criticality values

observed in the networks with concentrated demand compared to the other cases (Table

5.3). In contrast, in the networks with distributed demand, most links tend to be equally

critical, which explains why the extended impact of targeted attacks (i.e. the difference

between the impact of targeted and random damage) is reduced when the demand is well

distributed.

The demand intensity has a similar impact on the network as the heterogeneity of

the link criticality values and the extended impact of targeted attacks increased with the

demand intensity for both demand distribution conditions (except that in the network with

concentrated demand the extended impact of targeted attacks was higher with medium

demand than high demand). Therefore, it is more crucial to identify and protect the most

critical links in networks that are congested and where the demand is not well distributed

among the intersections.

5.4.2 Identification and sensitivity of the most critical scenarios and

links

Predictability of the scenario- and link-criticality rankings

Wang et al. (2016) showed that the links involved in the most critical multiple-link failures

are not simply the combination of the most critical links with single-link failure. The

present results went further to show that the most critical links and scenarios are not

completely random. The top-5 most critical scenarios of different sizes (i.e. SLFs, 2LFs,

etc.) were related to each other as the top-5 most critical scenarios of size M tented to

appear in the top-5 most critical scenarios of size M+1. This led to an iterative procedure

(described in section 5.3.1) providing a heuristic to identify and predict the impact of these

scenarios with a decreased computational effort.

This pattern and therefore the accuracy of the procedure seemed stronger and higher,

respectively, in congested networks. This may be because all links are used in congested

networks since road users along the same OD pairs use several routes to minimise their

respective travel times. Therefore, in congested networks there is a limited spare capacity

available to accommodate the users that need to re-route following a disruption such that

disruptions mainly lead to additional congestion. The most critical scenarios of size M are
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hence likely to appear in the most critical scenarios of size M+1. Whereas in uncongested

networks, travellers along the same OD pairs tend to use the same route such that some

links may be unused and provide a good alternative for re-routing when disruptions occur,

leading to limited network performance losses. Hence, the combined effect of the link

failures seems more difficult to predict in uncongested networks.

For the same reason, the proposed procedure can also provide a satisfying approxima-

tion of the link criticality ranking in congested networks as this procedure requires the

computation of all SLFs, which according to the present results were very strongly corre-

lated to the rankings based on MLFs in congested networks (RS > 0.990). These results

complement the findings of Chapter 4 that show the influence of the network size, topol-

ogy, and demand distribution on the correlation between SLF- and MLF-based criticality

rankings but does not consider the influence of congestion.

The limited accuracy of the iterative procedure in uncongested networks is not bad

news considering that traffic simulations are individually less computationally expensive

in uncongested networks than in congested networks as shown by the run times reported

in Table 5.3. This is because the user equilibrium is easier to compute in uncongested

networks. Indeed, the Frank-Wolfe algorithm seeks to find the equilibrium traffic flows

where the travel time of each user is minimum. To this end, the algorithm incrementally

assigns the OD demand in multiple steps such that in each step a fraction of the OD matrix

is loaded to the shortest paths and the resulting link travel time calculated (depending on

the link flow). The re-calculated link travel times are used in the following step to find

new shortest paths for the OD pairs. In uncongested networks, the equilibrium search is

rapid as the link travel times are independent of link flows such that most travellers along

an OD pair use the same route. Whereas in congested networks, travellers along an OD

pair use several routes to reduce their travel time as congestion builds up, leading to a

greater number of iterations required to reach the equilibrium.

Finally, it is interesting to note that the pattern found between the top-5 most critical

link combinations suggests that, in practice, the protection or rapid repair of the top-5 most

critical links with SLF can also help towards the protection of the network performance

against the most critical MLF scenarios as the latter tend to involve at least one of the

top-5 most critical links with SLF.

Influence of the demand intensity and distribution on the link criticality rankings

The results showed that the link criticality rankings are sensitive to the demand inten-

sity and distribution (Tables 5.3 and 5.4). The significant difference observed between

the criticality rankings in the demand distribution conditions considered (demand het-

erogeneously distributed in the original Sioux Falls network, concentrated in six nodes,

and homogeneously distributed to all nodes) was expected since the demand distribution

modifies the network usage. The difference observed between the demand intensity (low,

medium, and high) conditions was more interesting. The very strong correlation found

between the medium- and high-demand conditions regardless of the demand distribution

(Table 5.4) showed that the ranking of the links significantly changes as the network moves

from uncongested to congested conditions but remains similar when congestion further in-

creases.
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In addition, the analysis of the spatial distribution of the link criticality values in the

network (Figure 5.3) showed that the main difference between the uncongested and con-

gested conditions was the fact that in the former the most critical links belonged to the

network periphery while some inner links appeared among the top-5 most critical links

in the congested networks. In uncongested networks, when an inner link is unavailable

the network structure naturally provides several alternatives routes that lead to reason-

able increases in travel time for the affected users, whereas, in congested networks, these

alternative routes are already congested and therefore lead to greater TT increases.

To conclude, this shows that the accuracy of the demand distribution model is impor-

tant for robustness assessments as this will significantly impact the resulting link criticality

rankings. In contrast, the accuracy of the demand intensity evaluation seems less crucial

if the network is accurately defined as uncongested or congested in its undisrupted state.

Hence, practitioners should carefully think about the conditions that they wish to consider

when performing road network robustness assessments. They may, for example, choose to

consider the peak-hour conditions that should represent the worst-case scenarios in terms

of demand intensity; or prioritise the demand going from/to critical locations (for example

hospitals, fire stations and airports) that may lead to a different demand distribution than

the dominant peak-hour home-work trips; or consider and combine both. This sensitivity

analysis also provides some insights into the potential effect of the travel demand alteration

caused by disruptions on the present assessment. Following a major disruption, work and

leisure trips are likely to be cancelled or delayed while emergency trips (e.g. evacuation

and transport from/to hospitals) are likely to increase. Hence, the travel demand is likely

to concentrate in a few zones while the total demand intensity decreases. The low- and

medium- demand intensity concentrated in six nodes may represent such conditions in the

Sioux Falls network. In these conditions, the network robustness increased and the link

criticality rankings completely changed (Table 5.3).

5.5 Summary and concluding remarks

The present chapter analysed in more detail the robustness of the Sioux Falls network

(Chapter 3) to understand the difference between the impacts of localised, targeted and

random disruptions but also the effect of demand variations and capacity constraints on

road networks robustness. This analysis led to three key conclusions:

• The demand distribution (i.e. how the demand for travel, or population, is dis-

tributed among the network intersections) and intensity (i.e. whether the network is

congested in the undisrupted state) significantly influence the robustness assessment

results especially the link criticality rankings. Hence, practitioners need to carefully

consider the traffic conditions for which the resilience assessment is made and also

the possible evolution of these traffic conditions.

• Random and localised damage (disrupting the same number of links) generally lead

to similar consequences while intentional attacks target links that may be apart

and not critical on their own but whose combined disruptions create a maximised

and widespread impact. Besides, targeted attacks are even more detrimental to the
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network performance in comparison to random failures when the demand for travel

(or population) is high and concentrated among a few nodes.

• In congested networks, it may not be necessary to simulate all possible disruption

scenarios to identify and assess the impact of the most critical scenarios of multiple-

link failures. Instead, a procedure that requires the computation of all SLF scenarios,

followed by the computation of the top-10 most critical scenarios of 2LFs, 3LFs, etc.

can be used. In uncongested networks, the proposed procedure may not provide

satisfactory results. However, the lower computational time of the traffic simulations

in uncongested networks reduces the need for such procedures. Hence, the full-scan

approach that simulates all possible scenarios of multiple-link failures may be used

in this case.
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Chapter 6

Role of recovery strategies in

network resilience

6.1 Introduction

Chapters 3 to 5 focus on road network robustness (the ability to absorb perturbations),

which is one of the two main properties of resilient systems (the other being rapidity i.e.

the ability to recover quickly). This focus on robustness allowed to evaluate how the

availability of alternate routes and capacity helps remediate the consequences of initial

disruptions to the network. These consequences mainly depend on the network topology,

capacity and travel demand, and on the disruption type, extension and impacts on the

system performance, which were all considered. However, to fully capture the resilience

of a transport system, the speed of the network-performance recovery should also be

considered.

In the context of road networks, most works (Bhavathrathan and Patil, 2018; Ganin

et al., 2017; Gauthier et al., 2018; Omer et al., 2013) also focus on robustness while

rapidity has attracted less attention. Still, considering the socio-economic consequences

of road disruptions, recovery processes can have an important influence on the welfare

of society as they can help alleviate disruption consequences in the early stage recovery.

The studies that consider recovery processes propose different approaches. Nogal et al.

(2016) and Nogal and Honfi (2019) focus on the gradual adaptation of road users following

both the perturbation and restoration phases. Tuzun Aksu and Ozdamar (2014) develop

a model optimising the link-repair sequence to quickly recover the network connectivity

to facilitate evacuations. Zhang et al. (2017) develop a model optimising the link-repair

sequence to quickly improve the network performance under stochastic damage levels

and repair durations. Finally, Hu et al. (2016), compare different repair strategies under

random, localised, and malicious perturbations. However, the studies of Hu et al. (2016),

Tuzun Aksu and Ozdamar (2014), and Zhang et al. (2017) rely on topological network

models and performance metrics that do not consider link capacity constraints. As shown

in Chapter 3, this approach can significantly overestimate the resilience of road networks,

particularly when analysing congested networks, as those in most major cities worldwide.

Hence, the understanding of the role of rapidity and therefore recovery strategies in the

resilience of congested road networks is currently limited. To increase this understanding,

83



CHAPTER 6. ROLE OF RECOVERY STRATEGIES IN NETWORK RESILIENCE

the present chapter compares the performance of several recovery strategies across a full

range of disruption scenarios in the Sioux Falls network. This chapter has two objectives:

(i) evaluate how recovery strategies can help reduce disruption consequences, and (ii)

characterise the optimal recovery strategy.

In the traffic context, network resilience mainly depends on the consequences of the

initial disruption to the network performance, the immediate response (in terms of closing

lanes or reducing speed limits on affected roads) and the speed of restoring full func-

tionality (through repair actions). As the present research seeks to analyse and compare

the performance of different repair strategies under a full range of potential disruption

scenarios, the immediate response is considered outside the scope of this study. The re-

covery model focuses on the common element shared by all network recovery processes:

the link repair sequence and its impact on the network performance. In reality, recovery

processes could take many forms and durations depending on the nature of the disruption

(car accident versus snow versus earthquake) and the resources allocated to response and

repair. As detailed case-by-case modelling (Misra et al., 2020; Mitoulis et al., 2021) would

be required to address this, the general framework presented here cannot take these into

account and focuses instead on comparing link repair sequences without considering the

duration of the repair actions performed on the individual links.

The present chapter considers a full range of predictable and unpredictable disrup-

tion scenarios using the hazard-independent disruption model developed and improved in

Chapters 3 and 5, respectively. This approach allows for an assessment of the performance

of different repair strategies under a multitude of disruption scenarios.

The chapter considers all possible link-repair sequences that can be implemented under

each disruption scenario. This data is summarised into four recovery models. Firstly, the

optimal (minimising the disruption consequences over the recovery process) and average

(representing a basic recovery process where the disrupted links are repaired in random

order) recovery curves are considered. These recovery models are compared and used

to evaluate the variations in network resilience due to the network recovery strategy.

To better characterise the optimal recovery strategy, two additional recovery models are

considered and compared with the optimal recovery: the flow-based (where the links with

the highest traffic flow in the undisrupted network are repaired first), and criticality-based

(where the links whose individual failure would result in the highest impacts on the system

performance are repaired first) recovery strategies.

The present chapter is structured as follows. Section 6.2 presents the methods and

case study. In Section 6.3 and 6.4, the results of the network resilience assessment are

presented and discussed, respectively. Section 6.5 provides some concluding remarks.
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6.2 Methods

6.2.1 Disruption model and disrupted network performance quantifica-

tion

Disruption model

The present chapter considers a full range of predictable and unpredictable disruption sce-

narios using the hazard-independent disruption model developed and improved in Chap-

ters 3 and 5, respectively. All possible link-failure combinations concurrently disrupting

up to four links in the Sioux Falls network were modelled and classified into damage type

(localised, random and targeted) and damage extension (single-, two-, three- and four-link

failures) groups.

Network performance quantification

The network performance indicator (NP ) adopted in this study considers the relative

change in travel time along the network Origin-Destination pairs. The relative changes

measured on all OD pairs are then aggregated by a weighting average giving more impor-

tance to the OD pairs associated with higher demand.

NP =
∑
w

kw

(
1 +

TTwd − TTw0
TTw0

)−1
(6.1)

where w and kw are an OD pair and the associated weighting factor, respectively; kw is

the ratio between the demand for w and the total demand in the network; TTw0 and TTwd
are the undisrupted and disrupted travel times along w, respectively. NP is scaled in [0,1]

and decreases as TTwd increases.

This network performance indicator can be complemented by a measure of the un-

satisfied demand (USD) that represents the proportion of road users unable to reach

their chosen destination in the disrupted network. These users wish to travel between

disconnected OD pairs, hence their travel time becomes infinite i.e. TTwd → ∞ and

1 +
TTw

d −TT
w
0

TTw
0

→ 0

USD =
∑

w kwδw

where δw =

{
0, if TTCw < 10−3

1, otherwise

(6.2)

This set of indicators was developed in Chapter 3, where it is shown that to effectively

discriminate between the impacts of scenarios that lead to the disconnection of OD pairs,

it is necessary to consider the impacts on the OD pairs (or road users) separately rather

than the often adopted network-wide travel-time losses.

6.2.2 Recovery process modelling and resilience quantification

Resilience quantification

In this chapter, road network resilience is measured by the integral of the road network

performance indicator (NP , Eq. 6.1) over the recovery process (Figure 6.1). This mea-

sure is an adaptation of the seminal framework of Bruneau et al. (2003), where system
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resilience is measured by the integral over time of the expected degradation in system

quality expressed in percentage (Figure 2.2).
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Figure 6.1: Illustration of the network robustness and resilience concepts and metrics

Figure 6.1 shows the evolution of the road network performance indicator following

a multiple-link disruption. The disruption causes a sudden drop in the network perfor-

mance, which reaches its lowest value at t = t0. Subsequently, the network undergoes a

recovery process until t = tR when the network is fully repaired (the repair could include

improvements that lead to a network performance surpassing the original performance if

desired). The resilience assessment focuses on the recovery process, which occurs between

t0 and tH (grey rectangle in Figure 6.1); where tH is the time horizon chosen to compute

RE, defined here as the maximum time that the recovery process could require.

The network robustness corresponds to the lowest network performance value reached

before the start of the recovery process (Figure 6.1). It is noted that in Chapter 3 to 5 no

distinction is made between the network robustness and performance indicators. This dis-

tinction is necessary for the present analysis as the evolution of the network performance

through the recovery process is considered. The network robustness indicator (RO) cor-

responds to the instantaneous loss of performance observed in the network without any

recovery activity:

RO = NP (t = t0) (6.3)

The network resilience indicator (RE) measures the area below the recovery curve

(yellow area in Figure 6.1), which is divided by τH to scale RE in [0,1]. This indicator

is bounded by a worse-case scenario where the event causes a major decrease in network

performance that is not restored until tH , and a best-case scenario where the event causes

a minor decrease in network performance that is rapidly recovered. The network resilience

indicator (RE) is defined as follows:

RE =

∫ τH
0 NP (τ)dτ

τH
(6.4)
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where τ = t−t0 is the time elapsed since the incident (or the start of the recovery process)

at τ0, and τH is the time horizon chosen to compute RE. The integral is divided by τH to

normalize RE. A fully resilient system would either (i) be very robust i.e. NP = 100%

before any repairs or (ii) be very rapid to recover i.e. NP quickly increases towards 100%

as affected links are repaired. On the contrary, a non-resilience network will exhibit a

low-performance level slowly increasing with the number of links repaired.

In many works—including in Bruneau et al. (2003) where it was first introduced—system

resilience was measured until full recovery (τR). However, this expression can provide the

same value of resilience for different recovery curves, NP (τ), (Sharma et al., 2018; Zobel,

2011). In this work, a fixed time horizon is used to overcome this limitation.

Recovery process model

As explained above, the present work focuses on link repair sequences and their impacts

on network performance. Hence, recovery progress is measured by the number of links

repaired (or cleared) following the disruption rather than the duration of the repair. Under

this assumption, the time horizon corresponds to the maximum number of links that can

be repaired between t0 and tH (NH), which is also the number of disrupted links, resulting

in:

RE =

∑NH
0 NP (x)

NH
(6.5)

where x corresponds to the number of links repaired following the disruption.

To conclude, as RE depends on NH , the resilience of the network to a hazard is

characterised by the tuple (RO,RE,NH).

Recovery strategies

For each disruption scenario considered (Section 6.2.1), all possible link repair sequences

were modelled, and the associated network performance (NP , Eq. 6.1) recovery curve

and resilience indicator (RE, Eq. 6.5) computed. These results were used to consider two

recovery strategies:

• the resilience-optimal recovery curve, obtained by selecting the repair sequence lead-

ing to the highest resilience indicator value.

• the average recovery curve, obtained by averaging the NP values of all curves at

each stage of the repair process. This curve represents a basic recovery process where

the disrupted links are repaired in random order.

To understand the mechanism behind the link order in the optimal recovery process,

two additional processes were considered:

• the link-flow-based recovery curve, where the links with the highest traffic flow in

the undisrupted network are repaired first

• the link-criticality based recovery curve, where the links with the highest critical-

ity value are repaired first. The link criticality measures the impact of the link

unavailability on the network performance.
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The criticality-based recovery strategy is inspired by criticality studies (reviewed in

Chapter 2), which seek to identify the links whose failure would result in the highest

impacts on the network performance.

6.2.3 Case study and numerical simulations

The present chapter analyses the robustness of the Sioux Falls network, which is presented

and studied in Chapter 3. The assumptions, transport model and disruption simulations

used in Chapter 3 are also adopted here. This transport model implies that the network

performance is compared across different equilibrium states, where road users have perfect

information of the network state and accordingly minimises their TT . The assumption

allows for a fair comparison of the impacts of the link disruptions and repairs on the

network performance as the traffic should tend towards these equilibriums following each

disruption and repair. However, it is noted that, in reality, the network will go through

transition phases as users get updated about the network state and adapt as discussed in

Nogal and Honfi (2019).

To speed up the resilience analysis, the recovery curves were computed based on the

disruption-simulation data as the latter also correspond to the recovery states. For exam-

ple, the link-repair sequence [a, b, c] leads to the following states: concurrent failure of a, b

and c; concurrent failure of b and c; and failure of c; that were all simulated as part of the

disruption simulations. Therefore, the numerical simulations were divided into two main

parts: the disruption simulations, and the recovery simulations that re-used the disruption

data. The disruption and recovery simulations took 6h and 5h38 min, respectively, using

parallel processing on an Intel i5-8265U 1.60Hz and 8GB memory laptop.

6.3 Results

6.3.1 Variations in network resilience due to the recovery strategy

This subsection seeks to evaluate the variations in network resilience due to the recovery

strategy to better understand its importance for disruptive event management. To this

end, the relationships between the robustness (RO, Eq. 6.3), unsatisfied demand (USD,

Eq. 6.2) and resilience (RE, Eq. 6.5) indicators are evaluated across multiple disruption

scenarios (Section 6.2.1). The efficiency of the optimal repair strategy (the difference

between the resilience indicator values derived from the optimal and average recovery

curves) is subsequently evaluated.

Network robustness versus network resilience

Figure 6.2 shows the relationship between the network robustness and resilience indicators

across the damage extension groups in the Sioux Falls network. The resilience indicator

values are derived from the average (Figure 6.2.a) and optimal (Figure 6.2.b) recovery

curves. The results show that the two indicators were linearly correlated for both recovery

curves (R2 between 0.85 and 0.99) although the strength of the relationship increased

with the average recovery curve (Figure 6.2). This linear relationship implies that when

comparing perturbation scenarios that affect the same number of links, the network ro-
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bustness (or instantaneous performance loss) can explain most of the variations in network

resilience. Therefore, the recovery strategy has a minor impact on the network resilience.

This impact increases with the damage extension (R2 decreased as the number of dis-

rupted links increases) and became significant under four-link failures (R2 < 0.95 for both

recovery curves).

The unsatisfied demand level is also included in Figure 6.2, where it seems that USD

could also play a role in the prediction model. However, this role was not significant as

the double regression performed on the data improved R2 by around 0.5% only.
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Figure 6.2: Relationship between the network robustness and resilience indicators across

all possible two- to four-link failures in the Sioux Falls network—resilience computed under

a) the average and b) optimal recovery models

Figure 6.3 shows the relationship between the network robustness and resilience indi-

cators for the three damage types. The linear relationship found between the two metrics

across the damage extension groups (Figure 6.2) remained relevant for the damage types

(Figure 6.3). The strength of the linear model remained high for random and localised

disruptions (R2 > 0.85 for both the average and optimal recovery curves) but became mod-

erate under targeted disruptions (R2 = 0.79 and R2 = 0.48 for the average and optimal

recovery curves respectively).
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Figure 6.3: Relationship between the network robustness and resilience indicators across

all possible localised-, random- and targeted-link failures concurrently disrupting two- to

four- links in the Sioux Falls network—resilience computed under a) the average and b)

optimal recovery models

Efficiency of the optimal repair strategy across the disruption scenarios

Figure 6.4 shows the evolution of the efficiency of the optimal recovery (the difference

between the resilience indicator values derived from the optimal and average recovery

curves) across the damage extension groups. This Figure shows that the efficiency of the

resilience-optimal repair strategy generally increased with the damage extension (as the

mean values of the efficiency in the 2LFs, 3LFs and 4LFs were 1.3%, 2.8% and 4.3%,

respectively). In addition, the efficiency of the optimal repair strategy was generally

higher under targeted attacks than under localised and random link-failures as shown

by the positions of the medians in Figure 6.4. However, the scenarios with the highest

efficiency were random failures for all damage extension groups as shown in Figure 6.4.
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Figure 6.4: Efficiency of the optimal recovery strategy i.e. difference between the resilience

indicator (RE) value derived from the optimal and average recovery—across the damage

extension and type groups

6.3.2 Identification of the optimal repair strategy

This subsection seeks to characterise the optimal link-order repair strategy and under-

stand the decision-making process that leads to this strategy. To this end, all possible

repair strategies are firstly compared under a specific four-link failure scenario for illustra-

tive purposes. This comparison allows the identification of the resilience optimal repair

strategy, which is then compared to the criticality- and flow-based repair strategies in

this specific scenario. The optimal, flow-based and criticality-based recovery strategies

are subsequently compared across all possible disruption scenarios.

Comparison of all repair strategies following a four-link failure

This subsubsection focuses on a specific four-link failure scenario where (1,2), (1,3), (10,11)

and (10,17) are concurrently disrupted in the Sioux Falls network (Figure 3.2). This

scenario leads to a significant decrease in network performance (NP=66.6%) and a very

small proportion of road users unable to reach their chosen destination (USD = 0.5%).

The latter is due to the concurrent disruption of (1,2) and (1,3) that isolates node 1 from

the rest of the network and disconnects all OD pairs involving this node (as suggested by

the network structure shown in Figure 3.2). Figure 6.5.a and b show the evolution of the

network performance and unsatisfied demand indicators along all possible repair strategies

following this disruption scenario, respectively. The recovery curves are represented as step
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functions because it is assumed that the network performance increased only once the links

are fully repaired and traffic allowed to use them. The resilience indicator values associated

with these different repair strategies are shown in Figure 6.5 using the colour and width

of the curves. Thin blue curves correspond to the lowest resilience indicator values while

large coral-coloured curves correspond to the highest resilience values.
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Figure 6.5: Evolution of the Sioux Falls a) network-performance and b) unsatisfied-demand

indicators along all possible recovery processes following the concurrent failure of (1,2),

(1,3), (10,11) and (10,17)

It can be observed in Figure 6.5.a, that the different repair strategies led to a variety

of network performance recovery curves. The optimal repair strategy (large and coral-

coloured curve) presents the sharpest increases in NP in the early stage recovery (when

the first and second link are repaired), while the repair trajectories associated to the

lowest RE values (thin blue curves) present slight network performance increases in the

early stage recovery.

Furthermore, some recovery trajectories include a stage when NP slightly drops before

increasing to a higher level. For example, the lowest blue curve in Figure 6.5.a presents a

drop in NP following the repair of the first link. The link-repair order that leads to this

NP curve is: (1,2), (10,11), (10,17) and (1,3). Along this curve, the network performance

evolves from NP = 66.0% (USD = 0.5%) to NP = 64.5% (USD = 0%), before and after

repairing (1,2), respectively. Hence, before (1,2) is repaired 0.5% of users cannot reach

their chosen destination. After the repair, these users re-enter the network while there is

no increase in capacity, which contributes to a congestion increase that affects the travel

time of most travellers such that the overall network performance decreases (from 66.0%
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to 64.5%). This explanation is confirmed by the evolution of the mean link flow/capacity

ratio computed over all links except (1,2) that evolve from 1.65 (sd = 0.73) to 1.70 (sd

= 0.78) before and after the repair of (1,2), respectively. This high mean flow/capacity

ratio shows that the concurrent unavailability of (1,2), (1,3), (10,11), and (10,17) leads

to a highly congested network which is further put under pressure when (1,2) re-opens.

Therefore, in this example, it is more efficient to prioritise the re-opening of the inner links

(10,11) and (10,17) to reduce the network congestion level before re-opening the outer links

(1,2) and (1,3), which allow the users unable to leave/reach node 1 to re-enter the network.

This conclusion can also be drawn from Figure 6.5.b, where it is interesting to note that

the resilience-optimal strategy is not optimal in terms of the unsatisfied demand as the

USD curve associated to the highest RE values drops after repairing three links.

Comparison between the optimal, criticality-based and flow-based repair strate-

gies

To better characterise the decision-making process that leads to the optimal link repair

strategy following the concurrent failure of (1,2), (1,3), (10,11) and (10,17), the latter was

compared to two strategies that prioritise the links with the highest traffic flow and crit-

icality values, respectively. The repair sequences and resilience indicator values resulting

from these different strategies are shown in Table 6.1, where the resilience value derived

from the average recovery curve is included for comparison. Table 6.1 shows that the flow-

and criticality-based recovery strategies led to resilience indicator values superior to that

of the average recovery curve. The criticality-based strategy led to the optimal repair

sequence (RE = 87.5%), while the flow-based strategy led to a slightly less efficient repair

order (RE = 85.6%), where (1,3) is repaired before (10,17).

Table 6.1: Comparison of different recovery strategies following the concurrent failure of

link (1,2), (1,3), (10,11) and (10,17)

Optimal

recovery

Link-flow

based recovery

Link-criticality

based recovery

Average

recovery

curve (1)

Repair sequence
(10,11) (10,17)

(1,3) (1,2)

(10,11) (1,3)

(10,17) (1,2)

(10,11) (10,17)

(1,3) (1,2)
-

Network resilience

(RE)

0.875 0.856 0.875 0.816

(1) computed over all possible recovery curves

Comparison of the optimal, criticality-based and flow-based recovery strategies

across multiple disruption scenarios

To validate the results obtained in the example above, the resilience indicator values

resulting from the criticality- and flow-based repair strategies were compared to that of

the optimal and average recovery curves in all two- to four-link-failure scenarios. Figure

6.6.a and b compare the link flow-based recovery strategy with the average and optimal

recovery, respectively. Figure 6.6.a shows that the flow-based strategy is not necessarily
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more efficient than the average recovery as the dots equally spread above and below the

reference line. Figure 6.6.b shows that the flow-based strategy is rarely optimal as most

dots appear below and far from the reference line. Figure 6.6.c and d compare the link-

criticality based recovery strategy with the average and optimal recovery, respectively.

Contrary to the flow-based recovery strategy, the criticality-based strategy (Figure 6.6.c)

was more efficient than the average recovery curve in almost all cases as the dots appear

above and far from the reference line. Accordingly, the criticality-based strategy was

generally optimal or close to optimal as the dots appear close to the reference line in

Figure 6.6.d.

In Figure 6.6, the damage extension groups are distinguished by different colours and

shapes. A visual analysis of these colours and shapes shows that the difference between the

network resilience values derived from the different strategies increased with the number

of failed links (as 4LF and 3LF scenarios spread further away from the reference line than

3LF and 2LF scenarios, respectively). This can be explained by the fact that less failed

links means fewer possible recovery strategies and less wrong choices.
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Figure 6.6: Comparison of the resilience indicator values resulting from different recovery

strategies for all possible two- to four-link failures in the Sioux Falls network—a) link-

flow based recovery vs average recovery, b) link-flow based recovery vs optimal recovery,

c) link-criticality based recovery vs average recovery, d) link-criticality based recovery vs

optimal recovery

As the criticality based recovery is closer to the optimal recovery than the flow-based

and average recovery curves (Figure 6.6), the difference between the criticality and optimal
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recovery was further investigated. Table 6.2 shows the evolution of the difference between

the resilience indicator values resulting from the optimal and criticality-based recovery

strategies across the damage extension groups. This table shows that the mean of the

difference between the RE values of the two strategies remained small and slowly increased

(from 0% in two- and three-link failures to 0.25% in four-link failures). The maximum value

of this difference also increased with the damage extension reaching small but significant

values of 4.91% and 6.96% in 3LFs and 4LFs, respectively.

Table 6.2: Summary statistics of the difference between the resilience indicator (RE)

values resulting from the optimal and link-criticality based recovery strategies across the

damage extension groups

Two-link

failures

Three-link

failures

Four-link

failures

Mean 0.00% 0.00% 0.25%

Standard deviation 0.00% 0.34% 0.61%

Max 0.00% 4.91% 6.96%

6.4 Discussion

6.4.1 Importance and role of recovery strategies in network resilience

The comparison of the network robustness and resilience indicators (Figures 6.2 and 6.3)

showed that although the resilience indicator accounts for the network performance re-

covery in addition to the instantaneous performance losses (measured by the robustness

indicator), the two indicators displayed a very strong linear relationship. This relation-

ship shows that the network robustness bears most of the information about the impact

of disruptions. In other words, recovery processes play a minor role in the comparison of

the impacts of two damage scenarios such that the scenarios that lead to the highest in-

stantaneous performance losses tend to also lead to the highest impacts over the recovery

process.

Still, the strength of this relationship evolved depending on the recovery strategy

considered. For example, in the four-link failures, R2 went from 0.95 under the average

recovery curve to 0.85 under the optimal recovery curve. This suggests that the optimal

repair strategy can help counterbalance the instantaneous impact of damage scenarios

such that two damage scenarios that lead to similar robustness values (i.e. instantaneous

impacts) would lead to different resilience values (i.e. impacts over the recovery process).

Furthermore, the decrease of the strength of the linear model (Figure 6.2) as the dam-

age extension increases shows that the importance of the role of recovery processes in

network resilience gradually increases with the damage extension. Hence, the identifica-

tion and implementation of the optimal recovery strategy appeared crucial for scenarios

disrupting more than four links in the Sioux Falls network. This represents 10% of the

links in the Sioux Falls network.

The comparison of the strength of the linear model across the damage types (Fig-

ure 6.3) showed that under random and localised damage the network robustness could
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explain ≈ 95% of the resilience variations with the average recovery curve (≈ 85% with

the optimal recovery). This decreased to 79% with the average recovery curve (48% with

the optimal recovery) under targeted attacks. This suggested that the identification and

implementation of the optimal recovery strategy are crucial for targeted attacks.

Ultimately, the present results show that the network robustness is a good proxy for

the network resilience for random and localised scenarios affecting a small number of links.

For critical disruption scenarios affecting a large number of links it is important to consider

and model recovery processes. The consideration of the latter may, for example, modify

the lists identifying the most critical disruption scenarios, used by transport practitioners

and public authorises to optimise the allocation of the limited resources available for road

infrastructure construction and repair to the most critical scenarios and links.

6.4.2 Efficiency of the optimal recovery strategy

The evaluation of the efficiency of the optimal recovery strategy—i.e. the difference be-

tween the resilience indicator (RE) values derived from the optimal and average recov-

ery—across the different disruption scenarios showed that the optimal repair strategy can

lead to significantly higher resilience values (the maximum value of the efficiency was 10.1%

for the four-link failures in Figure 6.4). The analysis of the sensitivity of this efficiency to

the damage extension showed that it generally increases with the number of links affected

(Figure 6.4). The mean efficiency values of the optimal recovery went from 1.3% in 2LFs

to 2.8% in 3LFs to 4.3% in 4LFs and it can be expected that these values will continue

to increase as the damage extends to more links. The number of possible repair strategies

increases with the number of affected links (when R links are affected there are R! possible

link-repair sequences) such that the difference between the performance of the optimal and

average recovery strategies also increases. Therefore, in accordance with the discussion

above, the identification and implementation of the optimal repair strategy become more

crucial when several links are affected.

The analysis of the sensitivity of the same efficiency to the damage type led to conflict-

ing results. The efficiency of the optimal recovery strategy appeared generally higher in

targeted attacks (as shown by the medians of the boxplots in Figure 6.4) while the maxi-

mum efficiency values did not necessarily appear among targeted attacks (Figure 6.4). It

is hence difficult to characterise the specific scenarios for which the implementation of the

optimal recovery strategies would be most effective.

6.4.3 Optimisation of the recovery strategy at the operational level

The present research also allowed to better characterise the optimal recovery strategy. The

analysis of the disruption example (Figure 6.5) where (1,2), (1,3), (10,11) and (10,17) were

concurrently disrupted showed that the optimal repair strategy (maximising the recovery

of the network performance indicator) could give priority to the repair of the network inner

links that reduce the travel time of most users over the repair of the network-outer links

that allow a minority of road users to leave/reach the zones disconnected from the rest

of the network. This choice can be explained by the fact that the disruption of the inner

links (10,11) and (10,17) lead to severe congestion that would increase further when the

minority of stranded users re-enter the network. This would not happen in an uncongested
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network since the repair of the links allowing stranded road users to leave/reach the zones

disconnected from the rest of the network would not affect the travel time of the other

users. This shows that it is important to consider and model capacity constraints and

congestion, and that the previous studies (Hu et al., 2016; Zhang et al., 2017) that did

not consider capacity constraints and potential congestion may incorrectly prioritise the

recovery of the network connectivity to the recovery of the users’ travel time.

The comparison of the resilience indicator values resulting from the optimal recovery

strategy with that of the link-flow and link-criticality based recovery strategies showed

that the link criticality-order—based on the impacts of the single-link failures on the

network performance—provides relevant information to establish an optimal link repair

sequence (Figure 6.6.c and d), while the link flow provides irrelevant information (Figure

6.6.a and b). This shows that the identification of an optimal or close to optimal repair

strategy requires the computation of disruption scenarios evaluating the impacts of the

links unavailability on the network performance as the metrics based on the network usage

in the undisrupted state such as the link flow are unable to account for the reserve capacity

available in the network to absorb the disruptions.

These results also suggest that the link-criticality rankings can be used to find close

to optimal repair strategies with a decreased computational burden. The comparison of

all possible repair-orders requires
∑R

i=1

(
R
i

)
(15 if R = 4) disruption simulations while

the identification of the link-criticality based recovery requires R (4 if R = 4) disruption

simulations, R being the number of disrupted links. Furthermore, considering that the

links involved in the most-critical multiple-link failures are not simply the combination of

the most-critical links with single-link failure (Wang et al., 2016), it may be possible to

increase further the ability of the criticality based recovery to tend to the optimal-repair

strategy by adopting a link criticality indicator based on multiple-link failure simulations

such as the one proposed in Chapter 4. The accuracy and extra computational cost of

this method will increase with the size of the MLF scenarios considered (i.e. 2LF, 3LF,

4LF, etc.). Future research could seek to determine more precisely when it is necessary

to consider 2LF, 3LF, 4LF, etc. and accordingly develop less computationally expensive

methods for identifying the optimal recovery strategy.

6.5 Summary and concluding remarks

The present chapter assessed the effects of link-repair strategies on network resilience and

analysed the characteristics of the optimal recovery strategy. Several link-repair strategies

were compared across a multitude of perturbation scenarios. This approach allowed the

analysis of a large set of scenarios resulting in a clearer understanding of the generality of

the results and conclusions. The study led to four key conclusions:

• The network robustness (that measures the initial performance loss of the disrupted

network) is a good proxy for the network resilience for random and localised scenarios

affecting a small number of links. For critical disruption scenarios affecting a large

number of links it is important to consider and model the recovery processes.

• The identification and implementation of the optimal repair strategy become more

crucial when several links are affected since this leads to a multitude of decision
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variables, constraints, and possible alternative strategies.

• It is possible to identify a close to optimal repair strategy with the results of a

criticality analysis based on the impact caused by the individual or concurrent failure

of the network links.

• The repair strategy should be adapted to the traffic conditions. In uncongested

networks (found in rural areas or in off-peak hours in urban areas), the priority

should be to reconnect as many people as possible to the network in the early stage

recovery. In a highly congested network (found in peak hours in urban areas), it

could be beneficial to prioritise the re-opening of the network inner links to reduce the

overall congestion before re-opening of the outer links that will reconnect stranded

travellers to the network.
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Chapter 7

Conclusions

7.1 General discussion

The present thesis aimed at developing a theoretical framework to evaluate the resilience

of road networks under a multitude of potentiality unpredictable disruptions and assess

the role of different network design (e.g. network topology) and operation (e.g. travel

demand and link repair strategies) characteristics in road network resilience. To this end,

novel road network resilience assessment tools were developed and applied to a range of

case studies.

7.1.1 Proposed resilience assessment framework for road networks

The proposed resilience framework encompasses the following elements:

• a hazard-independent disruption model that can be used to assess the potential

impacts of a wide range of perturbation scenarios including random-, localised-, and

targeted-link disruptions (Chapters 3 and 5).

• network performance, robustness and resilience indicators that provide an accurate

and meaningful mean to quantify road network resilience (Chapters 3 to 6).

• a link-criticality-assessment method based on multiple-link failures that can be used

as a tool to identify the road segments that should be given priority for pre-event

reinforcement (which may involve building alternative connections) and post-event

restoration (Chapters 4 to 6)

• procedures allowing to identify and assess the impacts of the most critical scenarios

of multiple-link failures with decreased computational efforts (Chapter 5).

• a close to optimal link repair strategy (i.e. the link-flow-based recovery) that provides

a link-repair strategy maximising resilience with decreased computational efforts

(Chapter 6)

• a random road graph model and a methodology that can be used to accurately eval-

uate the influence of network size, topology and demand characteristics on transport

network performance (Chapter 4)
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• a general understanding of the influence of several network planning and management

characteristics (including size, topology, demand distribution and intensity, and link

repair strategy) on resilience (Chapters 3 to 6).

The general understanding of the role of the network planning and management char-

acteristics in road network resilience is summarised in Table 7.1, which shows the influence

of the different characteristics considered in this thesis on road network robustness and

resilience. This table summarises the findings of Chapters 4 and 5. Considering the strong

correlation observed between robustness and resilience in Chapter 6, it is assumed that the

relationships found between the network characteristics and robustness are also applicable

to network resilience. Ultimately, the resulting framework provides a starting point for

creating a plan to assess and manage the resilience of a road network.

Table 7.1: Influence of network characteristics on road network resilience (”+” = posi-

tive relationship, ”−”negative relationship, ”none” = no relationship, and ”uncertain” =

uncertain correlation and relationship)

Network robustness

and resilience

Correlation between SLF

and MLF based link

criticality rankings(1)

Difference between

random- and

targeted-link failures

Network size (no. of

nodes)

+ none uncertain

Network connectiv-

ity

+ none +

Network degree

heterogeneity

uncertain none uncertain

Network link cost

heterogeneity

uncertain none uncertain

Ratio of OD

points/nodes

none + none

Network demand

intensity

− + uncertain

(1)SLF = Single-link failure, MLF = Multiple-link failure.

7.1.2 Research insights

Besides the proposed resilience assessment framework mentioned above, the present re-

search led to insights on road-network-resilience evaluation, implementation and strength-

ening. The insights related to resilience evaluation are the following:

• To effectively compare the impacts of disruption scenarios that lead to OD pairs

disconnections, it is necessary to consider the impacts on the OD pairs (or road

users) separately rather than the total travel-time losses in the network (which are

often used in the literature). This can be achieved by measuring the relative change

of the travel time along the OD pairs. The proposed network performance indicator

uses a demand-weighted average to aggregate these relative change values into one

indicator (Chapter 3).
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• The demand distribution (i.e. how the demand for travel or population is distributed

among the network intersections) and intensity (i.e. whether the network is con-

gested in the undisrupted state) significantly influence the resilience assessment re-

sults especially the link criticality rankings. Hence, practitioners need to carefully

consider the traffic conditions for which the resilience assessment is made and also

the possible evolution of these traffic conditions (Chapter 5).

• The classical method assessing link criticality based exclusively on single-link failures

(Taylor et al., 2006) is likely to misrepresent the link criticality that can be derived

from multiple-link failures in road networks where the population (demand) is not

homogeneously distributed among all the intersections. This could lead to inefficient

prevention and restoration measures in the advent of events disrupting several road

segments or several events affecting different parts of the network at the same time

(Chapters 4 and 5)

• Network robustness (that measures the initial performance loss of the disrupted

network) is a good proxy for network resilience in the case of random and localised

scenarios affecting a small number of links. For critical disruption scenarios affecting

a large number of links it is important to consider and model recovery processes

(Chapter 6).

The insights related to resilience implementation and strengthening are the following:

• The addition of redundant routes in road networks (through additional roads and

intermediate intersections) is an efficient way to enhance the network robustness

under multiple-link failures up to a certain size and connectivity threshold, after

which the return on investments would be limited (Chapter 4).

• Highly-connected networks are more robust but also offers more opportunities for

malicious attacks to be more harmful than random failures. The identification

and protection of the most critical road segments are hence more crucial in highly

connected road networks than in sparse networks where most links are equally im-

portant to the network performance (Chapter 4).

• Although the most critical link combinations are not simply the combinations of the

most critical links with singe-link failures the most critical multiple link failures tend

to involve at least one of the most critical links with SLF. Hence, the protection

or rapid repair of the top-5 most critical links with SLF can also help towards

the protection of the network performance against the most critical MLF scenarios

(Chapter 5).

• Link metrics derived from the network usage in the undisrupted state such as the link

flow and flow/capacity ratio are of limited relevance for identifying the most critical

links in a network and for optimising link-repair strategies. Instead, practitioners

should consider metrics derived from disruption simulations such as the proposed

link criticality indicator (Chapters 5 and 6, and Appendix C).

• Repair strategies should be adapted to the traffic conditions. In uncongested net-

works (found in rural areas or off-peak hours in urban areas), the priority should
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be to reconnect as many people as possible to the network at the early stage of re-

covery. In highly congested networks (found in peak hours in urban areas), it could

be beneficial to prioritise the re-opening of the network inner links to reduce the

overall congestion before re-opening of the outer links that will reconnect stranded

travellers to the network (Chapter 6).

These findings and implications should be of interest to researchers, industry profes-

sionals and policy-makers aiming to perform robustness and resilience analyses of road

networks.

7.2 Limitations and recommendation for future work

The first limitation of this thesis is that the findings are theoretical and have not been

validated against real data, for example, of a disrupted road network. Furthermore, two

main types of limitations exist in the present research, related to resilience and transport

modelling, which are both discussed below. Another potential limitation is the scalability

of the approach adopted, which is also discussed below.

7.2.1 Scalability

The full-scan approach adopted in this study is limited by computational capacity as its

computational cost increases exponentially with the number of links in the road network.

Hence, its application is currently realistic for small to medium (sub)network models com-

posed of up to a few hundred links only. The removal of residential and service roads

(that are not designed for through movements) as well as intersections connecting one

to two links from network models which have a minor impact on the estimated travel

speeds as shown in Ganin et al. (2017), may help to reach this threshold in certain cases.

Alternatively, future applications of this approach at larger scales could benefit from ex-

pected growth in computational capacity and further optimisation of traffic simulation

algorithms.

Future works could further investigate the scalability of this approach and the appli-

cability of the present findings to large networks. This may lead to the development of

methods for assessing road network robustness under multiple disruption scenarios that

rely on heuristics (such as the iterative procedure proposed in Chapter 5 for identifying

the most critical scenarios) that decrease the computational burden of the assessment.

7.2.2 Limitations related to disruption and resilience modelling

As explained in Section 1.3.2, this thesis adopted an hazard-independent disruption model

that equally considers all possible events to ensure that unknown and unpredictable haz-

ards are accounted for in the resilience analysis. These hazards are events (e.g. cascading

events or operational errors) that occur in complex systems that are in a perpetual dy-

namic state as they involve engineering, human and natural systems interacting together

while they are subject to external and internal forces (Park et al., 2013). Hence, unknown

and unpredictable hazards diminish as the state of knowledge increases but also appear
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as complex systems evolve. Resilience approaches disregarding predictability are there-

fore required to account for unknown hazards. However, in reality, some events are more

predictable (e.g. maintenance works) than others (e.g. terrorist attacks) and some parts

of a road network are more frequently affected than others. Such considerations remain

important to help decision-makers optimise resources allocation to the more probable haz-

ards and more exposed parts of networks. Therefore, both approaches should be used and

sometimes combined to reduce disruption impacts on road networks’ resilience.

To allow the comparison between multiple potential disruption scenarios, the recov-

ery model adopted in Chapter 6 focuses on link-repair sequences and their impacts on

the network performance. In practice, an assessment considering only a few disruption

scenarios should use a detailed case-by-case modelling approach to take into account the

duration of the response and repair actions. This approach would allow to model and

optimise other important characteristics of recovery strategies such as budget constraints

and opportunistic interventions.

To limit the computational effort required to simulate all possible link failure com-

binations, the disruption simulations considered complete link unavailability only rather

than partial link capacity (or speed) reductions. For the same reason, the recovery model

assumed that repair works directly led to full link capacity recovery. Future research could

work towards the inclusion of partial capacity reductions in the proposed disruption and

recovery models to understand its impact on resilience, link criticality and recovery as

proposed in Sullivan et al. (2010) and Cats et al. (2017). This would, however, require a

reduction of the computational complexity of the simulations.

7.2.3 Limitations related to transport modelling

More realistic transport models

Chapter 4 analysed hundreds of networks to investigate the relationship between network

robustness and topology. For the sake of computational efficiency, this chapter relied on

a transport model that did not consider link capacity constraints and potential conges-

tion, which implies that the results obtained in this chapter mainly apply to uncongested

road networks. Although, it seems reasonable to consider that link capacity constraints

would have a minor effect on the relationship between network topology and robustness

(i.e. if network topology a is more robust than network topology b when they are both

uncongested, a should remain more robust than b when they are congested) this should

be validated.

Chapters 3, 5 and 6 analysed the robustness of the Sioux Falls network using a transport

model that accounts for capacity constraints and congestion. This transport model was,

however, static as it did not consider the variation of the travel demand over time. To

address this limitation of the model, the robustness analysis was repeated under different

demand distribution and intensity conditions in Chapter 5.

This limitation could have been addressed by using a dynamic transport model, which

directly takes into account the variation of the travel demand over time. Dynamic trans-

port models are more informative than their static counterparts as they model the forma-

tion and dispersion of vehicle queues caused by temporary saturation of link sections as well

as queues propagation towards upstream links (called spillback). However, dynamic trans-

103



CHAPTER 7. CONCLUSIONS

port models require detailed travel-demand data that are often unavailable. Furthermore,

considering that dynamic transport models are more computationally demanding than

their static counterparts, the application of the hazard-independent approach adopted in

this thesis (that requires multiple disruption simulations) to dynamic traffic models would

be limited by computational capacity.

More comprehensive transport models

To effectively compare the network performance under different disruption scenarios, travel

demand was considered fixed in this thesis. In reality, road perturbation can also impact

the travel demand as trips may be cancelled, delayed or modified due to usual routes

and destinations being affected. The consideration of different demand distribution and

intensity conditions in Chapter 5 provided some insights into the potential effects of travel

demand alteration caused by disruptions on resilience. Following a major disruption,

work and leisure trips are likely to be cancelled or delayed while emergency trips (e.g.

evacuation and transport from/to hospitals) are likely to increase. Hence, travel demand

will likely concentrate in a few zones while demand intensity decreases. The low- and

medium- demand intensity concentrated in six nodes may represent such conditions in

the Sioux Falls network. In these conditions, the network robustness increased and the

link criticality rankings completely changed. A more detailed analysis would be required

to fully capture these effects and their effect on network operations. Future works could

adopt more comprehensive transport models capable of assessing the impacts of road

disruptions on trip generation and distribution. This would, however, require detailed

data on the travel demand and land use but also calibrated-behavioural models, which are

often unavailable.

Finally, the present thesis focused on road networks. Future works could adapt the

proposed resilience assessment methodology to multimodal transport systems to evaluate

whether temporary intermodal solutions can be used to optimise congestion and connectiv-

ity in disrupted transport networks. Similarly, the approach adopted in Chapter 4—which

consists in analysing a large set of randomly generated road networks—is scalable and

probably applicable to other transport networks (using suitable random network models).

Future works could hence extend this approach to other road network performance metrics

or other transport modes.
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Appendix A

Connectedness and attribute space

of the GREREC networks

A.1 Connectedness of the GREREC model

As the GREREC model can generate disconnected networks, the probability of the net-

works being connected depending on the parameters n, m, p and q was estimated using

Monte Carlo simulation (500 simulations per set of values). The results are shown in

Figure A.1.
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Figure A.1: Connectedness of the GREREC model depending on the dimensions m and

n of the graph (i.e. number of nodes per row and columns in the rectangle respectively)

and the parameters p and q

As shown in Figure A.1, the values of p and q for which the graphs were connected

with a certain probability increased with their size (controlled by m and n). Furthermore,

p plays a more important role than q, as the probability of the graph being connected

exceeds 48% for p ≥ 0.6 regardless of q. This is because the shortcuts alone are not

sufficient to connect the network nodes since they only depart from certain nodes (see rule

3) and 4) in the procedure in section 4.2.1), whereas horizontal and vertical edges depart

from every node.
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A.2 Attribute space of the set of GREREC networks anal-

ysed

A Quasi-Monte Carlo method was used to obtain a sample of networks that homogeneously

covered the parameter space of the GREREC model, which however did not necessarily

imply that the space of the network attributes would be also homogeneously covered. This

appendix evaluates the distribution of the attribute values in the set of networks analysed

to verify if the possible attribute values were well represented in this sample. Figure A.2

shows the histograms of the network attributes considered in this study. It can be observed

that the distributions were generally well-spread in their domains. The largest networks

were less represented because they correspond to high values of m and n (the dimensions

of the rectangular grid). The lowest values of α, β and γ were under-represented because

they correspond to unconnected graphs. As an indication the minimum number of links

required to connect a planar graph of N nodes is N − 1 (Cardillo et al., 2006). Hence, the

minimum values of β are, for example, β = 0.90 and β = 0.99 for N = 10 and N = 200

respectively.
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Figure A.2: Histograms of the network attributes in the set of GREREC networks analysed

.

The relationships between the network attributes are shown in Figure A.3, where it

can be seen that these attributes were generally uncorrelated.
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Figure A.3: Relationship between the network attributes in the set of GREREC networks

analysed

.
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Appendix B

Real maps considered in Chapter 4

In Chapter 4, a robustness analysis of 30 network models derived from real maps (from

OpenStreetMap, www.openstreetmap.org) is performed to validate the results obtained

with the GREREC network models. For brevity, Figure 4.4 only presented five examples

of the 30 networks. This appendix presents all of these maps. The networks are shown

in Figures B.1 to B.6. Table B.1 provides the coordinates of the bounding boxes used to

build the graphs.

(a) (b) (c)

d) (e)

Figure B.1: Network models derived from different neighbourhoods in Greater San Fran-

cisco (USA): (a) North-East San Francisco, (b) Old Palo Alto, (c) Sea Cliff and Outer

Richmond, (d) Pacific Heights, and (e) South San Francisco.
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(a) (b) (c)

d) (e)

Figure B.2: Network models derived from different neighbourhoods in New York (USA):

(a) Crown heights in Brooklyn, (b) Jamaica Hills and Jamaica Estates in Queens, (c)

Saddle Rock and Great Neck, (d) Mapleton and Bensonhurst in Brooklyn, and (e) Yorkville

in Manhattan.

(a) (b) (c)

d) (e)

Paris

Figure B.3: Network models derived from different neighbourhoods in Greater Paris

(France): (a) Levallois-Perret, (b) 9th district, (c) 16th district, (d) Saint-Denis, and

(e) Charenton-le-Pont.
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(a) (b) (c)

d) (e)

London

Figure B.4: Network models derived from different neighbourhoods in London (UK): (a)

South Tottenham, (b) The Wrythe, (c) Kensington, (d) Southwark, and (e) Fulham.

(a) (b) (c)

d) (e)

Johannesb
ourg

Figure B.5: Network models derived from different neighbourhoods in Greater Johannes-

burg (South Africa): (a) Braamfontein and Hillbrow , (b) Zola in Soweto, (c) Jan Hofmeyer

and Vrededorp, (d) Johannesburg South, and (e) Longdale and Riverlea.
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(a) (b) (c)

d) (e)

Seville

Figure B.6: Network models derived from different neighbourhoods in Seville (Spain): (a)

Nervión, (b) Heliópolis and Bami, (c) Urb. el Pandero, (d) Urb. las Tres Barras, and (e)

Los Remedios.
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Table B.1: Coordinates of the bounding boxes used to build the 30 graphs extracted from

OpenStreetMap (www.openstreetmap.org).

Id Area (Country) North(1) South(1) East(3) West(4)

1 Greater San Francisco (USA) 37.79 37.78 -122.41 -122.42

2 Greater San Francisco (USA) 37.44 37.43 -122.14 -122.15

3 Greater San Francisco (USA) 37.79 37.78 -122.48 -122.49

4 Greater San Francisco (USA) 37.80 37.79 -122.43 -122.44

5 Greater San Francisco (USA) 37.675 37.665 -122.425 -122.435

6 New York (USA) 40.67 40.66 -73.95 -73.96

7 New York (USA) 40.72 40.71 -73.79 -73.80

8 New York (USA) 40.80 40.79 -73.74 -73.75

9 New York (USA) 40.62 40.61 -73.98 -73.99

10 New York (USA) 40.779 40.769 -73.941 -73.951

11 Greater Paris (France) 48.90 48.89 2.29 2.28

12 Greater Paris (France) 48.88 48.87 2.35 2.34

13 Greater Paris (France) 48.86 48.85 2.278 2.268

14 Greater Paris (France) 48.91 48.90 2.37 2.36

15 Greater Paris (France) 48.835 48.825 2.41 2.40

16 London (UK) 51.583 51.573 -0.062 -0.072

17 London (UK) 51.39 51.38 -0.17 -0.18

18 London (UK) 51.49 51.48 -0.186 -0.1965

19 London (UK) 51.51 51.50 -0.08 -0.09

20 London (UK) 51.487 51.477 -0.213 -0.223

21 Greater Johannesburg (South Africa) -26.19 -26.20 28.05 28.04

22 Greater Johannesburg (South Africa) -26.24 -26.25 27.85 27.84

23 Greater Johannesburg (South Africa) -26.188 -26.198 28.02 28.01

24 Greater Johannesburg (South Africa) -26.26 -26.27 27.99 27.98

25 Greater Johannesburg (South Africa) -26.20 -26.21 27.97 27.96

26 Seville (Spain) 37.389 37.379 -05.96 -05.972

27 Seville (Spain) 37.361 37.351 -05.977 -05.987

28 Seville (Spain) 37.3485 37.3385 -06.03 -06.04

29 Seville (Spain) 37.335 37.325 -06.071 -06.081

30 Seville (Spain) 37.382 37.372 -05.996 -06.006

(1) northern latitude of bounding box,(2) southern latitude of bounding box, (3) eastern longitude

of bounding box, (4)western longitude of bounding box.
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Appendix C

Additional results of the Sioux

Falls network case study

The Sioux Falls case study was used in Chapters 3, 5 and 6 to test the proposed robustness,

resilience and link criticality indicators, and also assess the effects of demand variations

on the robustness, resilience and link criticality results. In Chapter 5, Spearman’s coef-

ficient was used to quantify the difference between the link criticality rankings derived

from multiple-link failures and less computationally expensive criticality metrics including

the link flow, flow/capacity ratio and single-link failures. For the sake of brevity, Chapter

5 only presented and discussed the correlation between single- and multiple-link-failure-

based criticality rankings. This appendix presents and discusses the correlation between

the rankings based on the multiple-ink failures, the link flows and the link flow/capacity

ratio. Table C.1 shows the evolution of the rankings correlation across the different de-

mand distribution and level conditions considered in Chapter 5. The correlation between

single- and multiple-link-failure based criticality rankings (SLF vs ALL) is included for

comparison.

Table C.1 shows that the rankings based on the flow/capacity ratio and the MLF

simulations were uncorrelated (Rs ≈ 0) in the network with medium demand distributed to

all nodes and strongly correlated (Rs ≈ 0.70) in the network with low demand distributed

to six nodes. In contrast, the rankings based on the link flow and SLFs appeared always

strongly (Rs ≥ 0.60) and very strongly (Rs ≥ 0.80) correlated with the rankings based

on MLFs, respectively. The correlation between the rankings based on the link flow and

MLFs was higher in the network with concentrated demand compared to the network with

distributed demand. Furthermore, the correlation seemed to decrease with the congestion

level when the demand was concentrated but increase with the congestion level when

demand was distributed to all nodes.

The higher heterogeneity of the link flow/capacity ratio and criticality values observed

in the networks with concentrated demand (Table 5.3) suggested that in such networks

a few links tend to attract most of the traffic and form the network weaknesses. The

present results confirm that these links (i.e. the links with highest flow/capacity ratio) are

not necessarily the most critical as shown by the rank correlation between these metrics

(0.322 ≤ Rs ≤ 0.706).

Ultimately, this shows that the link criticality can partly be explained by the link traffic
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APPENDIX C. ADDITIONAL RESULTS OF THE SIOUX FALLS NETWORK CASE
STUDY

Table C.1: Effect of the demand distribution and intensity on the network initial state

and link-criticality rankings correlation

Demand concentrated

in six nodes

Original

Sioux Falls

network

Demand distributed

to all nodes

Network initial

state

Demand level Low Medium High High Low Medium High

Link flow/capacity

ratio
0.40(0.40) 1.08(0.57) 2.19(0.99) 1.47(0.57) 0.41(0.30) 0.93(0.43) 1.79(0.62)

Link criticality

SLF vs ALL(1) 0.971 0.991 0.998 0.993 0.994 0.996 0.998

FLOW vs ALL(1) 0.938 0.874 0.870 0.897 0.783 0.854 0.861

FLOW/CAP vs

ALL(1)
0.706 0.331 0.322 0.147 0.164 -0.010 0.040

mean (standard deviation); (1) Correlation between the link criticality rankings derived from the single-

link failures (SLF), link flow (FLOW), flow/capacity ratio (FLOW/CAP), and the multiple-link failures

(ALL, ALL = SLF + 2LF +3LF)

flow while the link flow/capacity ratio appears irrelevant. Still, the link rankings based

on the link flow were always less correlated with the rankings based on the multiple-link

failures than the SLF-based rankings (Table C.1). Hence, failure simulations are generally

required to properly assess the link criticality as the metrics based on the network usage

in the undisrupted state are unable to account for the reserve capacity available in the

network to absorb disruptions.
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rectors of Roads (CEDR). La Défense, France. http://www.cedr.eu/download/

116

https://doi.org/10.1177/2399808318802941
https://doi.org/10.1177/2399808318802941
https://doi.org/10.1061/(ASCE)0733-947X(2004)130:1(49)
https://doi.org/10.1061/(ASCE)0733-947X(2004)130:1(49)
https://doi.org/10.1145/42288.214372
https://doi.org/10.1193/1.1623497
https://doi.org/10.1140/epjb/e2006-00085-1
https://doi.org/10.1140/epjb/e2006-00085-1
https://doi.org/10.1140/epjb/e2004-00364-9
https://doi.org/10.1103/PhysRevE.73.066107
https://doi.org/10.1103/PhysRevE.73.066107
https://doi.org/https://doi.org/10.1371/journal.pone.0220338
https://doi.org/https://doi.org/10.1371/journal.pone.0220338
https://doi.org/10.1016/j.compenvurbsys.2020.101460
https://doi.org/10.1016/j.tra.2016.03.015
https://doi.org/10.1016/j.ress.2017.07.009
https://doi.org/10.1016/j.ress.2017.07.009
http://www.cedr.eu/download/Publications/2009/e%7B%5C_%7DTraffic%7B%5C_%7DIncident%7B%5C_%7DManagement.pdf
http://www.cedr.eu/download/Publications/2009/e%7B%5C_%7DTraffic%7B%5C_%7DIncident%7B%5C_%7DManagement.pdf


REFERENCES

Publications/2009/e%7B%5C %7DTraffic%7B%5C %7DIncident%7B%5C %

7DManagement.pdf

Chatterton, J., Viviattene, C., Morris, J., Penning-Rowsell, E. C., & Tapsell, S. M. (2010).

The costs of the summer 2007 floods in England (tech. rep.). Environment Agency.

Bristol, UK. https://doi.org/978-1-84911-146-1

Colin, M., Palhol, F., & Leuxe, A. (2016). Adaptation of Transport Infrastructures and

Networks to Climate Change. Transportation Research Procedia, 14 (0), 86–95.

https://doi.org/10.1016/j.trpro.2016.05.044

Cox, A., Prager, F., & Rose, A. (2011). Transportation security and the role of resilience:

A foundation for operational metrics. Transport Policy, 18 (2), 307–317. https :

//doi.org/10.1016/j.tranpol.2010.09.004

Crucitti, P., Latora, V., & Porta, S. (2006). Centrality in networks of urban streets. Chaos,

16 (1). https://doi.org/10.1063/1.2150162

Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. (2008).

A place-based model for understanding community resilience to natural disas-

ters. Global Environmental Change, 18 (4), 598–606. https ://doi .org/10.1016/

j.gloenvcha.2008.07.013

Dalal, I. L., Stefan, D., & Harwayne-Gidansky, J. (2008). Low discrepancy sequences for

monte carlo simulations on reconfigurable platforms. Proceedings of the Interna-

tional Conference on Application-Specific Systems, Architectures and Processors,

108–113. https://doi.org/10.1109/ASAP.2008.4580163

De Meo, P., Ferrara, E., Fiumara, G., & Ricciardello, A. (2012). A novel measure of

edge centrality in social networks. Knowledge-Based Systems, 30, 136–150. https:

//doi.org/10.1016/j.knosys.2012.01.007

DEFRA. (2011). National Flood and Coastal Erosion Risk Management Strategy for Eng-

land (tech. rep.). Department for Environment, Food and Rural Affairs (DEFRA).

London, UK. https : //assets .publishing . service . gov .uk/government/uploads/

system/uploads/attachment%7B%5C %7Ddata/file/228898/9780108510366.pdf

Demirel, H., Kompil, M., & Nemry, F. (2015). A framework to analyze the vulnerability

of European road networks due to Sea-Level Rise (SLR) and sea storm surges.

Transportation Research Part A: Policy and Practice, 81, 62–76. https://doi.org/

10.1016/j.tra.2015.05.002

D’Lima, M., & Medda, F. (2015). A new measure of resilience: An application to the

London Underground. Transportation Research Part A: Policy and Practice, 81,

35–46. https://doi.org/10.1016/j.tra.2015.05.017

Eisenstat, D. (2011). Random road networks: the quadtree model (P. Flajolet & D. Pa-

nario, Eds.). In P. Flajolet & D. Panario (Eds.), Proceedings of the eighth workshop

on analytic algorithmics and combinatorics (analco), San Francisco, CA, USA.

https://doi.org/https://doi.org/10.1137/1.9781611973013.9

El-Rashidy, R. A. (2014). The Resilience of Road Transport Networks: Redundancy , Vul-

nerability and Mobility characteristics (Doctoral dissertation September). The Uni-

versity of Leeds.

Enei, R., Doll, C., Klug, S., Partzsch, I., Sedlacek, N., Nesterova, N., Kiel, J., Rudzikaite,

L., Papanikolau, A., & Mitsakis, V. (2011). Vulnerability of transport systems -

Main report: WEATHER Deliverable 2 (tech. rep.).

117

http://www.cedr.eu/download/Publications/2009/e%7B%5C_%7DTraffic%7B%5C_%7DIncident%7B%5C_%7DManagement.pdf
http://www.cedr.eu/download/Publications/2009/e%7B%5C_%7DTraffic%7B%5C_%7DIncident%7B%5C_%7DManagement.pdf
http://www.cedr.eu/download/Publications/2009/e%7B%5C_%7DTraffic%7B%5C_%7DIncident%7B%5C_%7DManagement.pdf
https://doi.org/978-1-84911-146-1
https://doi.org/10.1016/j.trpro.2016.05.044
https://doi.org/10.1016/j.tranpol.2010.09.004
https://doi.org/10.1016/j.tranpol.2010.09.004
https://doi.org/10.1063/1.2150162
https://doi.org/10.1016/j.gloenvcha.2008.07.013
https://doi.org/10.1016/j.gloenvcha.2008.07.013
https://doi.org/10.1109/ASAP.2008.4580163
https://doi.org/10.1016/j.knosys.2012.01.007
https://doi.org/10.1016/j.knosys.2012.01.007
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%7B%5C_%7Ddata/file/228898/9780108510366.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment%7B%5C_%7Ddata/file/228898/9780108510366.pdf
https://doi.org/10.1016/j.tra.2015.05.002
https://doi.org/10.1016/j.tra.2015.05.002
https://doi.org/10.1016/j.tra.2015.05.017
https://doi.org/https://doi.org/10.1137/1.9781611973013.9


REFERENCES

Faturechi, R., & Miller-Hooks, E. (2014). Travel time resilience of roadway networks under

disaster. Transportation Research Part B: Methodological, 70 arXiv 1103.5451, 47–

64. https://doi.org/10.1016/j.trb.2014.08.007

FEMA. (2012). Traffic Incident Management Systems (tech. rep. FA-330/ March 2012).

Federal Emergency Management Agency (FEMA).

Freeman, L. C. (1979). Centrality in social networks. Social Networks, 1 (3)arXiv 0112110,

215–239. https://doi.org/10.1016/0378-8733(78)90021-7

Ganin, A. A., Kitsak, M., Marchese, D., Keisler, J. M., Seager, T., & Linkov, I. (2017).

Resilience and efficiency in transportation networks. Science Advances, 3 (12),

e1701079. https://doi.org/10.1126/sciadv.1701079

Gauthier, P., Furno, A., & El Faouzi, N. E. (2018). Road network resilience: how to

identify critical links subject to day-to-day disruptions. Transportation Research

Record, 2672 (1), 54–65. https://doi.org/10.1177/0361198118792115

Gerke, S., Schlatter, D., Steger, A., & Taraz, A. (2007). The Random Planar Graph

Process. Random Structures and Algorithms, 236–261. https://doi.org/10.1002/rsa

Godschalk, D. R. (2003). Urban Hazard Mitigation: Creating Resilient Cities. Natural

Hazards Review, 4 (3), 136–143. https://doi.org/10.1061/(ASCE)1527-6988(2003)

4:3(136)

Hallegatte, S., Rentschler, J., & Rozenberg, J. (2019). Lifelines: The Resilient Infrastruc-

ture Opportunity (tech. rep.). World Bank. Washington, DC. https://doi.org/10.

1596/978-1-4648-1430-3

Henry, D., & Ramirez-Marquez, J. E. (2012). Generic metrics and quantitative approaches

for system resilience as a function of time. Reliability Engineering and System

Safety, 99, 114–122. https://doi.org/10.1016/j.ress.2011.09.002

Highways England. (2015). Planning for the future: guide to working with Highways Eng-

land on planning matters (tech. rep.). Highways England.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of

Ecology and Systematics, 4 arXiv arXiv:1011.1669v3, 1–23. https://doi.org/10.

1146/annurev.es.04.110173.000245

Holme, P., Kim, B. J., Yoon, C. N., & Han, S. K. (2002). Attack vulnerability of complex

networks. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related

Interdisciplinary Topics, 65 (5), 14. https://doi.org/10.1103/PhysRevE.65.056109

Hosseini, S., Barker, K., & Ramirez-Marquez, J. E. (2016). A review of definitions and

measures of system resilience. Reliability Engineering and System Safety, 145, 47–

61. https://doi.org/10.1016/j.ress.2015.08.006

Hu, F., Yeung, C. H., Yang, S., Wang, W., & Zeng, A. (2016). Recovery of infrastructure

networks after localised attacks. Scientific Reports, 6 (24522). https://doi.org/10.

1038/srep24522

IEEE Computer Society. (1991). IEEE Standard Computer Dictionary: A compilation of

IEEE Standard computer Glossaries (610-1900). Piscataway, USA, IEEE. http:

//elib.peaceland.edu.ng:8383/greenstone3/sites/localsite/collect/peacelan/index/

assoc/HASHbaad/2439e09f.dir/doc.pdf

Ip, W. H., & Wang, D. (2011). Resilience and friability of transportation networks: Eval-

uation, analysis and optimization. IEEE Systems Journal, 5 (2), 189–198. https:

//doi.org/10.1109/JSYST.2010.2096670

118

https://doi.org/10.1016/j.trb.2014.08.007
https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1126/sciadv.1701079
https://doi.org/10.1177/0361198118792115
https://doi.org/10.1002/rsa
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)
https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)
https://doi.org/10.1596/978-1-4648-1430-3
https://doi.org/10.1596/978-1-4648-1430-3
https://doi.org/10.1016/j.ress.2011.09.002
https://doi.org/10.1146/annurev.es.04.110173.000245
https://doi.org/10.1146/annurev.es.04.110173.000245
https://doi.org/10.1103/PhysRevE.65.056109
https://doi.org/10.1016/j.ress.2015.08.006
https://doi.org/10.1038/srep24522
https://doi.org/10.1038/srep24522
http://elib.peaceland.edu.ng:8383/greenstone3/sites/localsite/collect/peacelan/index/assoc/HASHbaad/2439e09f.dir/doc.pdf
http://elib.peaceland.edu.ng:8383/greenstone3/sites/localsite/collect/peacelan/index/assoc/HASHbaad/2439e09f.dir/doc.pdf
http://elib.peaceland.edu.ng:8383/greenstone3/sites/localsite/collect/peacelan/index/assoc/HASHbaad/2439e09f.dir/doc.pdf
https://doi.org/10.1109/JSYST.2010.2096670
https://doi.org/10.1109/JSYST.2010.2096670


REFERENCES

IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate

Change Adaptation. A Special Report of Working Groups I and II of the Inter-

governmental Panel on Climate Change (tech. rep.). Intergovernmental Panel on

Climate Change. New York, USA. https://doi.org/10.1017/CBO9781139177245

Kalapala, V., Sanwalani, V., Clauset, A., & Moore, C. (2006). Scale invariance in road

networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,

73 (2)arXiv 0510198, 1–6. https://doi.org/10.1103/PhysRevE.73.026130

Kansky, K. J. (1963). Structure of transportation networks : relationships between network

geometry and regional characteristics. Chicago, USA, University of Chicago, Dept.

of Geography.

Karlaftis, M. G., Latoski, S. P., Richards, N. J., & Sinha, K. C. (1999). ITS Impacts

on Safety and Traffic Management: An Investigation of Secondary Crash Causes.

Intelligent Transportation Systems Journal, 5 (1), 39–52. https://doi.org/10.1080/

10248079908903756

Kiel, J., Petiet, P., Nieuwenhuis, A., Peters, T., & Van Ruiten, K. (2016). A Decision

Support System for the Resilience of Critical Transport Infrastructure to Extreme

Weather Events. Transportation Research Procedia, 14, 68–77. https://doi.org/10.

1016/j.trpro.2016.05.042

Koliou, M., van de Lindt, J. W., McAllister, T. P., Ellingwood, B. R., Dillard, M., & Cutler,

H. (2018). State of the research in community resilience: progress and challenges.

Sustainable and Resilient Infrastructure, 9689, 1–21. https://doi.org/10.1080/

23789689.2017.1418547

Kurth, M., Kozlowski, W., Ganin, A., Mersky, A., Leung, B., Dykes, J., Kitsak, M., &

Linkov, I. (2020). Lack of resilience in transportation networks: Economic impli-

cations. Transportation Research Part D: Transport and Environment, 86, 102419.

https://doi.org/10.1016/j.trd.2020.102419

LeBlanc, L. J., Morlok, E. K., & Pierskalla, W. P. (1975). An efficient approach to solving

the road network equilibrium traffic assignment problem. Transportation Research,

9 (5), 309–318. https://doi.org/10.1016/0041-1647(75)90030-1

Lin, J., & Ban, Y. (2013). Complex Network Topology of Transportation Systems. Trans-

port Reviews, 33 (6), 658–685. https://doi.org/10.1080/01441647.2013.848955

Manca, A. R., Benczur, P., & Giovannini, E. (2017). Building a Scientific Narrative To-

wards a More Resilient EU Society Part 1: a Conceptual Framework. https://doi.

org/10.2760/635528

Marshall, S. (2005). Streets and Patterns. London, UK, Spon press.

Martinson, R. (2017). Resilience in a Transportation System: A Whole System Approach.

Transportation Research Circular: Transportation Systems Resilience - Prepara-

tion, Recovery and Adaptation, (E-C226), 1–9. http://onlinepubs.trb.org/onlinepubs/

circulars/ec226.pdf

Masucci, A. P., Smith, D., Crooks, A., & Batty, M. (2009). Random planar graphs and

the London street network. European Physical Journal B, 71 (2)arXiv 0706.0024,

259–271. https://doi.org/10.1140/epjb/e2009-00290-4

Mattsson, L. G., & Jenelius, E. (2015). Vulnerability and resilience of transport systems - A

discussion of recent research. Transportation Research Part A: Policy and Practice,

81, 16–34. https://doi.org/10.1016/j.tra.2015.06.002

119

https://doi.org/10.1017/CBO9781139177245
https://doi.org/10.1103/PhysRevE.73.026130
https://doi.org/10.1080/10248079908903756
https://doi.org/10.1080/10248079908903756
https://doi.org/10.1016/j.trpro.2016.05.042
https://doi.org/10.1016/j.trpro.2016.05.042
https://doi.org/10.1080/23789689.2017.1418547
https://doi.org/10.1080/23789689.2017.1418547
https://doi.org/10.1016/j.trd.2020.102419
https://doi.org/10.1016/0041-1647(75)90030-1
https://doi.org/10.1080/01441647.2013.848955
https://doi.org/10.2760/635528
https://doi.org/10.2760/635528
http://onlinepubs.trb.org/onlinepubs/circulars/ec226.pdf
http://onlinepubs.trb.org/onlinepubs/circulars/ec226.pdf
https://doi.org/10.1140/epjb/e2009-00290-4
https://doi.org/10.1016/j.tra.2015.06.002


REFERENCES

Maze, T. H., Agarwal, M., & Burchett, G. (2005). Whether weather matters to traffic

demand, traffic safety, and traffic flow. (tech. rep. Final General Report, August

2005). Iowa State University. Ames, USA.

Misra, S., Padgett, J. E., Barbosa, A. R., & Webb, B. M. (2020). An expert opinion

survey on post-hazard restoration of roadways and bridges: Data and key insights.

Earthquake Spectra, 36 (2), 983–1004. https://doi.org/10.1177/8755293019891722

Mitoulis, S. A., Argyroudis, S. A., Loli, M., & Imam, B. (2021). Restoration models for

quantifying flood resilience of bridges. Engineering Structures, 238 (February), (ac-

cepted). https://doi.org/10.1016/j.engstruct.2021.112180

Mitradjieva, M., & Lindberg, P. O. (2013). The Stiff Is Moving - Conjugate Direction

Frank-Wolfe Methods with Applications to Traffic Assignment. Transportation Sci-

ence, 47 (2), 280–293.

Murray-Tuite, P. (2006). A comparison of network transportation resilience under sim-

ulated system optimum and user equilibrium conditions (L. F. Perrone, F. P.

Wieland, J. Liu, B. Lawson, D. M. Nicol, & R. M. Fujimoto, Eds.). In L. F.

Perrone, F. P. Wieland, J. Liu, B. Lawson, D. M. Nicol, & R. M. Fujimoto (Eds.),

Proceedings of the 2006 winter simulation conference, Monterey, California (USA),

IEEE. https://doi.org/10.1109/WSC.2006.323240

Murray-Tuite, P., & Wolshon, B. (2013). Evacuation transportation modeling: An overview

of research, development, and practice. Transportation Research Part C: Emerging

Technologies, 27, 25–45. https://doi.org/10.1016/j.trc.2012.11.005

Nogal, M., & Honfi, D. (2019). Assessment of road traffic resilience assuming stochastic

user behaviour. Reliability Engineering and System Safety, 185 (July 2018), 72–83.

https://doi.org/10.1016/j.ress.2018.12.013

Nogal, M., O’Connor, A., Caulfield, B., & Martinez-Pastor, B. (2016). Resilience of traf-

fic networks: From perturbation to recovery via a dynamic restricted equilibrium

model. Reliability Engineering and System Safety, 156, 84–96. https://doi.org/10.

1016/j.ress.2016.07.020

Omer, M., Mostashari, A., & Nilchiani, R. (2013). Assessing resilience in a regional road-

based transportation network. International Journal of Industrial and Systems

Engineering, 13 (4), 389–408. https://doi.org/10.1504/IJISE.2013.052605
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(a) Nervión, (b) Heliópolis and Bami, (c) Urb. el Pandero, (d) Urb. las

Tres Barras, and (e) Los Remedios. . . . . . . . . . . . . . . . . . . . . . . 111

126



List of Tables

2.1 Overview of the properties often associated with system resilience . . . . . . 20

3.1 Evaluation of the impacts of all possible single- and two-link failures in the

four node test network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Top-5 most critical combinations of single-, two-, three-, and four-link fail-

ures in the original Sioux Falls network . . . . . . . . . . . . . . . . . . . . 40

4.1 Topological characteristics of the GREREC networks generated depending

on p (probability of keeping horizontal and vertical edges) and q (probability

of generating shortcuts). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Correlation (RS) between the network characteristics and robustness met-

rics in the set of GREREC networks analysed. ns, *, ** and *** denote the

significance at p > 0.05, p < 0.05, p < 0.005 & p < 0.001 respectively. . . . . 55

4.3 Correlation (RS) between the link criticality rankings derived from different

scenarios: single- (SLF), two- (2LF) and three- (3LF) link failures and the

combination of all three (ALL) . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Correlation (RS) between the network characteristics and robustness met-

rics in the road network samples analysed. ns, *, ** and *** denote the

significance at p > 0.05, p < 0.05, p < 0.005 & p < 0.001 respectively. . . . . 61

4.5 Correlation (RS) between the link criticality rankings derived from single-

(SLF), two- (2LF) and three- (3LF) link failures and the combination of all

three (ALL) in the real road network samples . . . . . . . . . . . . . . . . . 62

5.1 Classification and model of disruptive events affecting road networks . . . . 70

5.2 Top-5 most critical combinations of single-, two-, three-, and four-link fail-

ures in the original Sioux Falls network . . . . . . . . . . . . . . . . . . . . 73

5.3 Effect of the demand distribution and intensity on the network initial state,

robustness, and link-criticality . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Correlation (RS) between the link criticality rankings derived in different

demand intensity and distribution conditions . . . . . . . . . . . . . . . . . 78

6.1 Comparison of different recovery strategies following the concurrent failure

of link (1,2), (1,3), (10,11) and (10,17) . . . . . . . . . . . . . . . . . . . . . 93

6.2 Summary statistics of the difference between the resilience indicator (RE)

values resulting from the optimal and link-criticality based recovery strate-

gies across the damage extension groups . . . . . . . . . . . . . . . . . . . . 95

127



LIST OF TABLES

7.1 Influence of network characteristics on road network resilience (”+” = pos-

itive relationship, ”−”negative relationship, ”none” = no relationship, and

”uncertain” = uncertain correlation and relationship) . . . . . . . . . . . . 100

B.1 Coordinates of the bounding boxes used to build the 30 graphs extracted

from OpenStreetMap (www.openstreetmap.org). . . . . . . . . . . . . . . . . 112

C.1 Effect of the demand distribution and intensity on the network initial state

and link-criticality rankings correlation . . . . . . . . . . . . . . . . . . . . . 114

128



Nomenclature

τ Time elapsed since the start of the recovery

a A link in a road network

BET (a) Betweenness centrality of link a

BETWI Interactive betweenness attack

ca Capacity of link a

Cra Criticality indicator of link a

CROz ”Cumulative” robustness of a network to an attack mode z

dw Travel demand on the OD pair w

G(V,E) Graphs composed of a set of vertices (V ) and edges (E)

hdegree Degree heterogeneity (i.e. standard deviation)

hlc Heterogeneity (i.e. standard deviation) of the link cost distribution

in a network

kw Weighting factor associated with the OD pair w

L Number of links in a network

Ls Number of links damaged by the hazard s

m Number of nodes per row in the GREREC model

N Number of nodes in a network

n Number of nodes per column in the GREREC model

NH Maximum number of links that can be repaired between t0 and tH

NP Road network performance indicator

p Probability of keeping horizontal and vertical edges in the GREREC

model

q Probability of generating shortcuts in the GREREC model

r Probability of considering additional nodes as OD points in the

GREREC model

129



NOMENCLATURE

RS Spearman’s rank order correlation coefficient

rOD Ratio between the number of OD points and the number of nodes

in a road network

RAND Representative random attack

RE Road network resilience indicator

RO Road network robustness indicator

s Hazard

t Time

t0 Start time of the recovery process

tH Time horizon chosen to compute RE

TAEI Targeted-attack-extended-impact indicator

ToTTC Total travel time change indicator

TT Travel Time

TTw0 Undisrupted TT along w

tta Travel time of link a

ttfa Free-flow travel time of link a

TTwd Disrupted TT along w

TTCw TT relative change index - along w

USD Proportion of unsatisfied demand

vi,j The vertex on the i-th column and j-th row in the GREREC model

w OD pair

WIPW Weighted average number of reliable Independent Path Ways

xa Flow on link a

z An attack mode

2LF Two-link failure

2LF vs ALL Correlation between the link criticality rankings based on 2LFs and

ALL

3LF Three-link failure

3LF vs ALL Correlation between the link criticality rankings based on 3LFs and

ALL

130



NOMENCLATURE

4LF Four-link failure

5LF Five-link failure

ALL SLFs + 2LFs + 3LFs

BPR Bureau of Public Roads

CEDR Conference of European Directors of Roads

DEFRA Department for Environment, Food & Rural Affairs

FEMA Federal Emergency Management Agency

FLOW vs ALL Correlation between the link criticality rankings based on the link

flow and ALL

FLOW/CAP vs ALL Correlation between the link criticality rankings based on the flow/capacity

ratio and ALL

FW Franke-Wolfe (algorithm)

GRE Grid network with Random Edges

GREREC Grid network with Random Edges and Regional Edge Costs

GRPG Growing Random Planar Graph

IPW Independent Path Ways

LCAM Life-Cycle Asset Management

MLF Multiple-link failure

OD Origin-Destination

PRN Primary Route Network

QMC Quasi Monte-Carlo

RTM Road Transport Management

SLF Single-link failure

SLF vs ALL Correlation between the link criticality rankings based on SLFs and

ALL

SRN Strategic Road Network

131


	Abstract
	Funding
	Acknowledgements
	Publications
	Introduction
	Background and research motivations
	The need for research on road network resilience
	The future incorporation of "resilience thinking" into transport modelling, planning and management

	Research gaps
	The limitations of current approaches to road network resilience
	The role of recovery strategies in road network resilience
	The effects of road-network characteristics on network resilience

	Research aim, objectives and approach
	Research aim and objectives
	Main approach and assumptions
	Thesis workflow

	Outline of the thesis

	Literature review
	Introduction
	Road network management
	Road network administration
	Road classification

	Road network properties
	Road networks approximate planarity and patterns
	Road networks intersections
	Road networks links
	Summary of the characteristics of road networks and their graph representations

	Random road network models
	Disruptive events management
	Disruptive events
	Traffic incident management
	Risk analysis vs Resilience analysis

	The concept of system resilience
	Definitions and concepts
	Properties and related subjects

	Resilience modelling and quantification for road network management
	Transport models
	Disruption models
	Resilience quantification models

	Summary and concluding remarks

	Robustness of road networks to multiple disruption scenarios
	Introduction
	Methods
	Disruption model
	Robustness indicators
	Case studies

	Results
	Comparison of the robustness indicators in the Four-node network
	Comparison of the robustness indicators in the Sioux Falls network
	Most critical disruption scenarios in the Sioux Falls network

	Discussion
	Measuring road network robustness
	Network robustness and damage extension
	Most critical scenarios and links

	Summary and concluding remarks

	Role of network topology and demand variations in network robustness
	Introduction
	Methods
	Grid network with Random Edges and Regional Edge Costs (GREREC) model
	Network topological and operational characteristics
	Robustness, link-criticality and attack-extended-impact indicators
	Experimental procedure and simulations
	Validation using real road maps

	Results
	Evaluation of the GREREC networks topology and patterns
	Correlation between the network characteristics and robustness metrics in the GREREC networks
	Comparison with the real road networks

	Discussion
	Influence of the degree and link-cost distributions on network robustness
	Influence of the network size and connectivity on the network robustness to single-, multiple-, random- and targeted-link failures
	Influence of the ratio of OD points to nodes on the link criticality rankings

	Summary and concluding remarks

	Role of demand variations and capacity constraints in network robustness
	Introduction
	Methods
	Disruption model
	Network robustness and link criticality assessment
	Case studies

	Results
	Most critical disruption scenarios
	Critical links
	Effects of demand variations on the network robustness and link criticality results

	Discussion
	Impact of random, localised and targeted damage
	Identification and sensitivity of the most critical scenarios and links

	Summary and concluding remarks

	Role of recovery strategies in network resilience
	Introduction
	Methods
	Disruption model and disrupted network performance quantification
	Recovery process modelling and resilience quantification
	Case study and numerical simulations

	Results
	Variations in network resilience due to the recovery strategy
	Identification of the optimal repair strategy

	Discussion
	Importance and role of recovery strategies in network resilience
	Efficiency of the optimal recovery strategy
	Optimisation of the recovery strategy at the operational level

	Summary and concluding remarks

	Conclusions
	General discussion
	Proposed resilience assessment framework for road networks
	Research insights

	Limitations and recommendation for future work
	Scalability
	Limitations related to disruption and resilience modelling
	Limitations related to transport modelling


	Appendix Connectedness and attribute space of the GREREC networks
	Connectedness of the GREREC model
	Attribute space of the set of GREREC networks analysed

	Appendix Real maps considered in Chapter 4
	Appendix Additional results of the Sioux Falls network case study
	References
	List of Figures
	List of Tables
	Nomenclature

