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Abstract

Analog models in physics utilize a conceptual metaphore and a mathe-
matical similarity to describe one system in terms of another. In this thesis,
we will present the work that has been done regarding a time-dependent ana-
log examining classical fluid interface waves in order to test predictions from
cosmology. We will first detail theoretical work regarding interface waves in a
strong-gradient magnetic field, conceived to simulate cosmological inflation,
and constituting the first proposal for analog cosmology using interface waves.
Motivated by this proposal we will then shift our focus towards parametric
resonance, a process by which interface waves are exponentially amplified
when coupled to an oscillating gravitational field.

We outline an experiment designed to study the effective field theory of
the interface, subject to parametric amplification. In this, we demonstrate
that it is possible to conduct hundreds of nearly identical experiments while
carefully controlling and monitoring the mechanical, optical, chemical, and
environmental conditions with previously unachievable levels of precision.
Our measurements of the exponential growth and damping rates for the
interface waves are believed to be the most precise ever reported. The precise
repetitions in the experiment further allow us to comment on the distribution
of initial state at sub-micrometer amplitudes, introduce a classical two-mode
squeezing model to characterize the linear statistical evolution of the model,
and we present preliminary results characterizing the degree of nonlinearity
in the system.

Our results show that it is possible to control and interact with two-fluid
systems to the accuracy needed to mimic and investigate in depth cosmolog-
ical processes in a controlled laboratory environment. At the heart of this
thesis is the desire to gain a deeper understanding of effective or emergent
field theories. Our vision is to establish a fluid interface metrology approach
to drive theoretical developments in both, the effective field theories in fluids
and cosmology alike.
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Chapter 1

Introduction

The question of how the universe began is a very universal one. Physical
cosmology attempts to answer this question in a rigorous way. The formu-
lation of modern physical cosmology started in 1915 with the publication
of Einstein’s general relativity, a radically new theory for gravity. Within
this new framework the gravitational field is encoded in a spacetime geom-
etry or metric [1, 2]. This metric contains information regarding distances
and spacetime curvature, and is related to the density of matter and energy
via the Einstein field equations. In the 1920s, Hubble’s measurements of
the redshift of distant galaxies provided evidence that the universe was ex-
panding [3]. In the same decade, the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric was developed, and in the 1930s, shown to be the only so-
lution of Einstein’s field equations for a spatially homogeneous and isotropic
expanding universe [2].

The expanding FLRW spacetime matched the observations of Hubble,
however it was soon discovered that the universe was too homogeneous given
that regions of the early universe must have been causally disconnected. This
is referred to as the Horizon Problem. Further, theories suggested that the
curvature of an expanding universe would be extremely sensitive to initial
conditions. This is called the Flatness Problem. In 1980, these problems were
solved by Guth and Starobinsky independently, by incorporating a brief pe-
riod during which the universe underwent an exponential growth or inflation
into the model [4, 5]. Inflation proposes that each of the three spacial dimen-
sions in our universe is expanding by a factor of e60 within a time interval of
10−33s. By this process initially small perturbations get amplified and con-
verted to density fluctuations, eventually leading to the observed large-scale
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structure of the universe [1].
The rapid expansion of the universe in the inflation model is driven by a

scalar field known as the inflaton, and at the end of inflation it is believed
that this begins oscillating. Other fields coupled to the inflaton experience
a sinusoidal modulation in frequency, and for certain fields this results in
exponential amplification. This phase of the early universe is known as pre-
heating [6], and the phenomenon responsible for the exponential amplification
of coupled fields is known as parametric resonance [7, 8].

Inflation and preheating are elegant, albeit exotic solutions which make
modern cosmology compatible with observations. Because of the importance
and impossibility of observing inflation in our own universe, we explore the
possibility of studying this extraordinary process in a commonplace system
encountered in everyday life, namely fluid interfaces at room temperature
and pressure. To mimic inflation, we introduced a system consisting of two
immiscible fluids moving through a strong magnetic field in the bore of a
superconducting magnet. By precisely controlling the propagation speed of
the interface waves, we can capture the essential dynamics of inflationary
fluctuations.

In order to establish the analogy between fluids and early universe cosmol-
ogy on a rigorous footing, it is essential to have a deep understanding of the
theory of interface waves. The linear theory of traveling waves is generally
credited to Airy (1841) [9]. In his analysis, Airy was able to find the cor-
rect dispersion relation for small amplitude waves propagating on an open
channel flow. The dispersion relation mathematically relates the wavelengths
and the frequency of the oscillations for the wave considered, and allows one
to accurately predict the wave’s propagation speed. It was found that the
frequency depends not only on the gravitational acceleration, but also on
the hyperbolic tangent of the fluid depth divided by the wavelength. This
is in stark contrast to most other wave systems, where the frequency and
wavelength have a polynomial relationship. The usual form of this disper-
sion relation is generally the first indication of the complexities encountered
when examining interface waves theoretically.

While Airy described waves accurately in some regimes, at sufficiently
short wavelengths small scale effects due to surface tension become impor-
tant. This scale is commonly referred to as the capillary-length, specified by
the ratio of the coefficient of surface tension and the force per unit volume
due to gravity. When the ratio is large, gravitational effects can be neglected.
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When the ratio is of order one, both forces must be taken into account [10].
The first publication of the dispersion relation for gravity-capillary waves was
by Thompson (later Lord Kelvin) in 1871 [10, 11].

The theories of Airy and Thompson apply to inviscid and irrotational,
and in this sense idealized or Platonic fluids. In reality, the closer one looks,
the more complex interface waves become. Especially at small scales, one
must begin to include viscous dissipation, boundary layers, nonlinearities,
and meniscus 1 effects. Feynmann summarizes the familiarity and complexity
of water-waves nicely: “Now, the next waves of interest, that are easily seen
by everyone and which are usually used as an example of waves in elementary
courses, are water waves. As we shall soon see, they are the worst possible
example, because they are in no respects like sound and light; they have all
the complications that waves can have [12].”

In order to develop a cosmology simulator based on two-fluid systems, a
comprehensive understanding of the complications and complexities for the
effective field theory of the interface dynamics is essential. We designed and
implemented an experiment with an unprecedented level of repeatably and
precision in order to test the effective field theory of interface fluctuations
with hitherto unseen accuracy. In the chapters that follow we will demon-
strate that despite the complications mentioned above, we are not only able
to make predictions using theories from cosmology, but these theories are
observable in a precision experiment.

1.1 Analog Gravity

The origin story of analog gravity goes as follows[13]: In 1972, Bill Unruh
was giving a public lecture on black holes, and used a familiar example of
a waterfall in order to explain the concept of a black hole horizon. In the
analogy, the continuous stream of water falls faster than sound can propa-
gate, creating an effective horizon which only allows sound to travel in one
direction. The analogy was put on solid theoretical grounds in 1980, when
Unruh realized that the linear equations for sound propagating in a flowing
medium matched the equations for a massless scalar field propagating in a
general curved spacetime background.

1The meniscus describes the curvature of the interface waves at the solid boundaries,
and is due to the interaction energy between each fluid and the solid in question.
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Unruh raised the possibility of employing the analogue system exhibiting
an effective black hole horizon to study black hole evaporation, a process by
which a black hole emits thermal radiation, as predicted by Hawking [14].
Unruh’s vision was to use the introduced analog system to bring the elusive
Hawking proccess, usually found in remote parts of the universe, into a con-
trolled laboratory environment. The advantage of an analog experiment is
perhaps best stated by Unruh himself: “Does the thermal radiation emission
by a dumb hole 2 survive the generalization of hydrodynamics to a fully
atomic description of the fluid? If it does not, then one has no faith that the
Hawking effect would survive a fully quantum treatment of gravity [13].”

This perhaps simple analogy started a whole new line of research. To
this end, a large variety of systems have been proposed, including the orig-
inal acoustic analog [15, 16, 17], interface waves [18], acoustics waves in
BECs [19, 20, 21, 22], ripplons in superfluid helium [23, 24], and electromag-
netic waves in dielectric media [25, 26]. For a more comprehensive list, and
for an excellent introduction to analog gravity in general, see [21].

While the field of analog gravity is built on the idea of turning abstract
ideas from field theory on curved spacetimes into reality, the experimental
efforts only started relatively recently. Arguably, one of the most experi-
mentally fruitful analog systems for black hole phenomena employ interface
waves. Starting with the first experimental observation of Hawking radia-
tion in [27], interface wave analogs have shown remarkable promise in the
investigation of other black hole phenomena. In 2017, the first observation
of superradiant scattering was made in a bathtub vortex [28]. In the same
system, a black hole ringdown was observed in 2018 [29] and a backreaction
with the background fluid flow was observed in 2021 [30].

Also relevant to this thesis however, are time-dependent analogs for in-
vestigating cosmological scenarios. The investigation of analog simulators
for cosmology has been much more limited in comparison to analog black
holes. Most have considered implementation in BECs on theoretical grounds,
e.g.[31, 32, 33, 34, 35, 36], though in the past decade several experiments have
been reported. In 2012, signatures of the analog Dynamical Casimir effect 3

were observed in a BEC [37], and in 2013 Sakharov Oscillations 4 were ob-

2Dumb, meaning mute; sound can enter but not escape.
3The dynamic Casimir effect predicts the production of particles in the presence of an

accelerating mirror.
4Sakharov oscillations correspond to a multi-peak structure in the power spectrum of

the cosmic microwave background radiation left over from the Big Bang. They are due to
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served in a superfluid [38]. Later, in 2018, phonon production and red-shift
due to a rapidly expanding BEC ring was observed [39] in an inflationary
analog. While this experiment simulated the expansion of the early universe
by directly expanding the BEC, this strategy dillutes the condensate, and it
is impossible to maintain this type of expansion for long [40]. Another strat-
egy is to modify the propagation speed of a wave, which effectively modulates
the system size by changing the distance it can propagate in a given time.

This thesis will focus on two interrelated fluid-phenomenon, touching on
diamagnetic levitation and focusing on parametric resonance. In either case,
we have an effective modulation of the gravitational acceleration, which al-
ters the dispersion relation for the interface waves in such a way that the
propagation speed becomes time dependent. The fluid system examined in
this thesis represents the first theoretical and experimental demonstration of
a cosmological analog using interface waves. In addition to being the first
time-dependent analog, fluid systems on a large scale (such as the scales found
in [27, 28, 29, 30]) with wavelengths on the order of one meter behave very
differently than fluid systems on the centimeter scale. Surface tension and
meniscus effects alter the boundary conditions of the fluid [41, 42], boundary
layer effects may need to be taken into account when calculating the disper-
sion relation [43, 44], and predicting the rate of dissipation in the system
becomes highly nontrivial [45].

1.2 Diamagnetic levitation and parametric res-

onance.

Levitation experiments which demonstrated that stable levitation is possible
in a solenoidal magnetic field were first demonstrated by Simon and Geim [46]
using a 16T superconducting magnet. In these experiments, diamagnetic
graphite, water droplets, and even a living frog were levitated within certain
regions of the solenoidal field.

The zones of stability within the solenoid were later calculated by Berry
and Geim [47], providing rigorous theory to back up the experiments. Later
experiments (more pertinent to this thesis) explored fluid physics phenom-
ena for systems which allowed the effective gravitation acceleration to be
modulated in time. In particular, investigations were made regarding the

acoustic pressure waves in the early universe.
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stabalization of the Rayleigh-Taylor instability (in which a heavy liquid is
supported above a less dense liquid in an unstable equillibrium) in rotat-
ing systems [48], and in the predicted fissure of levitating, rotating water
droplets [49]. In this spirit, Chapter 2 outlines a proposal to investigate
phenomena in analog cosmology induced by a system mimicing exponential
inflation in a strong-gradient magnetic field [50]. It was this investigation
which motivated the experiment detailed in the rest of this thesis.

Paremetric resonance offered a promising starting point for these investi-
gations. This phenomenon, studied by Faraday in 1831, considers the rapid
growth of standing waves from a seeminly flat interface in a vessel of fluid un-
dergoing vertical oscillations [51]. When the entire vessel oscillates vertically,
the motion acts to modulate the acceleration due to gravity. The mathemat-
ical description of this includes an oscillating parameter in the equation of
motion, and when the oscillation is large enough, this leads to parametric
resonance. This behavior was first put on solid theoretical ground by Ben-
jamin and Ursell in 1954, when they demonstrated that the oscillation in the
gravitational acceleration entered Airy’s dispersion relation for linear waves,
and that each wavelength in the system corresponded to a different para-
metric equation [52]. This theory predicts that at low amplitudes the waves
would undergoe exponential amplification, and corresponds to a period of
initial growth before nonlinear interactions distribute the energy throughout
each of the eigenmodes in the system. At late times, one observes a standing
wave pattern with a relatively fixed amplitude [51, 52].

Since this theory was published, a large number of experimental and
theoretical investigations have been conducted. In the words of Miles and
Henderson: “Faraday waves have been of special interest in recent years as
a (possibly) tractable problem in fluid mechanics to which the techniques
of modern bifurcation and chaos theory are applicable after a normal-mode
expansion [53].” The seeming tractability of the problem is rather deceptive.
The most notable leap in theory was by Kumar and Tuckerman (1994), who
used a more comprehensive fluid model by Chandrasekhar [43]. The theory
of Chandrasekhar incorporates viscous boundary layers at the top and bot-
tom of the fluid container, as well as at the fluid interface. While this did
lead to an improvement in stability predictions, matches between theory and
experiment are still somewhat sparse [53], and it seems that there is always
one more detail left unaccounted for.

In the system presented for example, even full hydrodynamic simulations
are not possible without additional information. The surface tension between
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the fluids creates a meniscus at the inner and outer radii of the fluid vessel.
Not only is the shape of this meniscus dependent on the gravitational accel-
eration in the system, but the contact angle between the fluid-fluid interface
and the vessel also exhibits a form of hysteresis [54]. This dynamic contact
angle prevents an accurate prediction of the wavenumbers in the system,
which in turn prevents an accurate prediction of the system’s response to
parametric oscillations.

1.3 Overview

The theory presented in [50] was the first to propose a cosmological ana-
log utilizing interface waves. In it, we presented the idea of creating an
exponential expansion of the analog metric, mimicking inflation. By utiliz-
ing a strong-gradient magnetic field used in previous fluid physics experi-
ments [48, 49], we demonstrated that it was possible to exponentially change
the effective gravity in a two-fluid system from approximately 200 ms−2 to 0
ms−2 within a 2s interval.

Beginning as a humble petri dish taped to a large speaker, the experi-
ment underwent a complete redesign of the oscillation apparatus, the detec-
tion method, three iterations of fluid cell designs, and months of work trying
to come to grips with wavelet analysis. The experiment presented in this
thesis has grown into something which will (hopefully) be of interest to both
the analog gravity and fluid physics communities. We believe that the mea-
surements that we made of the exponential growth and damping rates of the
interface waves in our system are the most precise ever reported. Further, we
believe that the unprecedented repeatability and precision of our experiment
enables us to explore statistical predictions from cosmological theories in our
fluid system, opening the way to future analog investigations of cosmological
phenomena that have previously not been possible.

The thesis is organized as follow:

� In Chapter 2, we will present and develope the original analog inflation
simulator that was first published in [50]. The work presented in this
chapter represents the first work investigating the potential of an in-
terface wave analog for cosmology. We will then make some comments
regarding the importance of dissipation in the system, and present some
new predictions.
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� In Chapter 3, we will develope the fluid physics equations leading to
the analogy in a different direction, focusing on parametric resonance.
While the existing literature focuses on finding stable and unstable
experimental parameters, we will extend the analysis in order to obtain
predictions for the parametric amplification rate. Several theories will
be developed and a phenomenological approach will be discussed.

� In Chapter 4, the experimental setup and methodology will be pre-
sented. This begins with an aparatus hereafter referred to as the shaker ,
designed to produce vertical oscillations and currently believed to be
the most precise ever produced. We will then describe the detection
method for the interface waves, optimized according to a new analy-
sis presented in appendix A. This is followed by a description of the
automization process, and finally the fluid cell, a purpose-built vessel
which allows a repeatable, standardized filling procedure for the fluids
used.

� In Chapter 5, the analytic methods used to describe the system and
extract information are presented. This includes a mapping from the
real-valued height field, and a novel implementation of wavelets in or-
der to obtain the complex eigenmodes commonly used in the analog
field theory. We close the chapter with a detailed description of the
statistical quantities from cosmology, wherein we extend the existing
predictions in order to account for a finite number of measurements.

� In Chapter 6, we present the results of the shaker experiment. Start-
ing with the parameters most relevant to the fluid physics theories, we
detail first the repeatability and precision of the experiment. Then,
the exponential amplification rate, the dissipation rate, and an approx-
imate initial amplitude for the waves considered are presented. In the
second half, results pertinent to the analogy are presented, with a focus
on classical two-mode squeezing.

1.4 Statement of originality

Below is an explaination of which portions of this thesis represent original
work by the author, which portions were done in collaboration, and which
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portions are the work of other members of the group and or physics depart-
ment at the University of Nottingham.

� Chapter 2 is based on the publication in [50]. The derivation of the
analog wave equation and the results in this chapter are the result of my
own work as principal investigator. It also contains recent simulations
conducted by a group memmber.

� Chapter 3 is my own interpretation, and in sections, (minor) extension
of theories presented in the existing literature. Most of the work is
based off of Landau and Lifshitz [10], Chandrasekhar [44], Kumar and
Tuckerman [43], and the overview of the Mathieu equation given in [8].

� Chapter 4 represents a great deal of work by dozens of people, though
most of the design and nearly all of the initial setup were my own. Of
course, the experimental aparatus could not have been built without
the expertise of the mechanical technicians in the physics department.
Likewise, all measurements would have been recorded with a pen and
paper had it not been for the electronics technicians in the physics
department.

� The time-frequency analysis presented in Chapter 5 was mainly taken
from [55], but has never been applied to analog cosmology experiments,
nor (to my knowledge) has it been applied to parametric resonance in
order to extract amplification and damping rates. The field theory
concepts in this chapter are mainly adapted from [56] and [57], and the
squeezing analysis is an extension of the analysis presented in Chapter
2.

� Chapter 6 reflects Chapter 4, in that it represents the work of a large
number of people, though most of the initial work in obtaining these
results was done by me. Much of the work presented in this chapter
(especially relating to the free field theory) is part of current research,
and its interpretation is ongoing.
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Chapter 2

Analog cosmology in a
strong-gradient magnetic field

The experiment presented in the chapters that follow were initially motivated
by the possibility of verifying cosmological predictions in a time-dependent
analog spacetime, in line with the experiments conducted in [27], and [58],
with the final goal of creating an analog simulator for exponential inflation
using a strong-gradient magnetic field [50]. In this chapter, we will present
the original work relating to this proposed experiment. While this experi-
ment was never conducted, the numerical results in this chapter served as
motivation for the shaker experiments investigated in the rest of this the-
sis. This chapter will include the first derivation of a time-dependent analog
metric for an interface wave system, and constitutes the only proposal capa-
ble of simulating inflationary dynamics in a two-fluid system that has been
reported to date.

Based off of the work published in [50], we will start with an abridged
derivation of the wave equation for the velocity potential in the two fluid
system, demonstrating that this potential obeys the same equations of motion
as a massless scalar field in an FLRW spacetime (a more detailed treatment
of the fluid equations is given in Chapter 3). We will then present some more
recent predictions for the height field, motivated by the insights gained in the
parametric resonance experiments. These predictions incorporate dissipation
for a height field simulation in the proposed magnet experiment.
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2.1 Analogue cosmology

We consider a system of two immiscible liquids, a diamagnetic layer lying
atop a paramagnetic one, that can be moved at a precisely controllable rate
through a strong, spatially varying magnetic field generated by a supercon-
ducting solenoid or a Bitter magnet (c.f. Ref. [59, 60]). The body forces ap-
plied to the liquid sample amount to an effective gravitational force, whose
time dependence can be controlled by the geometry of the magnetic field and
the sample’s velocity. Thus, the fluids are subject to a time-varying effective
gravitational field.

It is well-known [15] that small perturbations on the surface of irrotational
fluids experience an effective geometry whose properties are determined by
the background flow. The corresponding metric in our system takes the
form gµν ∝ diag(−c2, 1, 1), where c is the propagation speed of the interface
perturbations. A key property of surface waves is that the propagation speed
depends on gravity, which in our system is rendered time-dependent.

This provides the versatility to engineer analogue cosmological spacetimes
and study in detail the dynamics of perturbations in various time-dependent
backgrounds. We discuss our experimental setup, and show that within
this system an inflationary regime arises naturally: the effective speed of
propagation of surface waves can be tailored to decrease in an exponential
fashion giving rise to a shrinking ‘effective horizon’. Thus, the interface
fluctuations exit the horizon mode by mode, transitioning from uncorrelated
oscillatory behavior to frozen and squeezed regimes, in direct analogy to
inflationary perturbations.

2.2 The two-fluid system

The derivation here is included in order to clarify the analogy with cosmology.
Many steps are skipped, however everything that follows is correct, despite
being abridged. For a more detailed derivation, see section 3.1.1.

We consider an immiscible two-fluid system (2.1), with densities ρ1>ρ2,
heights h2 = −h1 = h0, small magnetic susceptibilities |χ1,2| � 1, and flow
velocities v1,2. The system is subjected to a magnetic field B(~x, t) ∼ 10 T
with a large vertical field gradient ∼ 150 T/m. To model this system, we
consider Euler’s momentum equation for an invicid and incompressible fluid

11



Figure 2.1: Schematics of the two-fluid system. Two immiscible fluids, with
densities ρ1,2, magnetic susceptibility χ1,2, and height h1,2, separated by the
equilibrium interface at z0 (dotted line). Gravity interface waves distort the
interface layer (solid line) where each point is characterized by its amplitude
ξ and velocity Uθ (Ur). ∂S are the boundaries (here depicted for fluid 2)
given by a hard wall (upper), an interface boundary (right), and a moving
boundary at the interface of the two fluids (lower).

with the inclusion of the magnetic potential energy [47, 46, 61]:

~∇ · ~Uj = 0 (2.1)

ρj

(
∂t + ~Uj · ~∇

)
~U j = ~∇

(
−pj +

χj
2µ0

B2

)
+ ρj~g . (2.2)

In the above, the indices i = {1, 2} label the lower and upper fluids respec-
tively; pj is the fluid pressure, µ0 the vacuum permeability, and ~g = (0, 0,−g)
is the acceleration due to gravity. We assume an irrotational velocity field
~Uj = ~∇φj, and a fluid-fluid interface ξ given by z = z0 + ξ(θ, r, t). We then
linearise equations (2.1) and (2.2) around a stationary background flow, so
that φj = φ0 +ϕj, with φ0 = 0. We further take ∂zB � ∂rB. Expanding the
B2 term in a Taylor series about ξ, the linearized Euler equations for each
fluid at the interface can be written as

ρj∂tϕ = −pj −
(
ρjg +

χ

µ0

B∂zB

)
ξ (2.3)

At the impermeable upper and lower boundaries h1 and h2, equation (2.1)
leads to the Ansatz

ϕj =
∑

k

cosh[k(z − hj)]ϕj,k(θ, r, t), (2.4)

where k2 represents the eigenvalues of the 2D-Laplacian in cylindrical co-
ordinates (in this case the wavenumber squared) and the sum is over all

12



eigenvalues. The dynamic boundary condition at the interface is obtained
by subtracting (2.3) for fluid 2 from fluid 1:

ρ1∂tϕ1 − ρ2∂tϕ2 =

(
−(ρ1 − ρ2)g0 +

(χ1 − χ2)

µ0

B∂zB

)
ξ −∆p, (2.5)

and the change in pressure across the interface is related to the height field
by

∆p = τ∇2ξ, (2.6)

where τ is the coefficient of the surface tension [10].
The kinematic boundary condition can be written as

∂tξ = ∂zϕ1 = ∂zϕ2, (2.7)

which, together with the ansatz above evaluated at z = 0 leads to

k sinh(−kh0)ϕ2,k = k sinh(kh0)ϕ1,k, (2.8)

which implies that
ϕ2,k = −ϕ1,k. (2.9)

Relabeling ϕk ≡ ϕ1,k, and substituting equation (2.6) into equation (2.5) in
k-space, we get

(ρ1 + ρ2)∂tϕk cosh(kh0) =

(
−(ρ1 − ρ2)g0 +

(χ1 − χ2)

µ0

B∂zB + τk2

)
ξk.

(2.10)
Defining the effective gravity [59],

geff = g − [χ1 − χ2]

[ρ1 − ρ2]µ0

B∂zB , (2.11)

and the gravitational term

Gk =
([ρ1 − ρ2]geff + τk2)

ρ̃
, (2.12)

(where ρ̃ = ρ1 + ρ2), we can rewrite equation 2.10 so that the ξk term is
isolated:

G−1
k (ρ1 + ρ2)ϕ̇k = ξk. (2.13)

13



Taking the time derivative of both sides, and noting that ξ̇k = k sinh(kh0)ϕk
by equation (2.7), we finally arrive at our wave equation for ϕk:

ϕ̈k + ω2
kϕk =

ġeff

Gk

ϕ̇k , (2.14)

where the left hand side of (2.14) describes the familiar oscillatory behaviour
with frequency

ω2
k = Gkk tanh(kh) . (2.15)

The effective gravity, geff in our setup can be modulated by the motion of
the sample (and thus of the interface z0(t)) through the external magnetic
field B(z). This introduces an explicit time dependence of the frequency
ωk ≡ ωk(t) as well as an additional friction term (right hand side of (2.14))
corresponding to the Hubble friction well known in cosmology [1]. The ac-
celeration of the sample, z̈0, is taken into account by substituting g → g+ z̈0

in (2.11).

2.3 Massless scalar fields in FLRW spacetimes

In order to make the connection with cosmology transparent we consider the
shallow water (or long wavelength) limit kh� 1. The change in the effective
gravity (2.11) directly translates to a change in the propagation speed ck of
long wavelength perturbations. We define the mode-dependent scale factor

a−2
k (t) ≡ c2

k(t) = Gk(t)h , (2.16)

with which the equation of motion (2.14) take the form

ϕ̈k + 2
ȧk
ak
ϕ̇k +

k2

a2
k

ϕk = 0 . (2.17)

Thus, our two fluid system in the shallow water limit is equivalent to a
massless scalar field in a FLRW-type rainbow universe [33]. In the long
wavelength regime, the k-dependence of the scale factor remains due to the
surface tension τ (see equation (2.12)). This regulatory part vanishes when
τ → 0, and the effective metric for the perturbations is then:

ds2 = gµνdx
µdxν = −dt2 + a2(t)(dx2 + dy2) . (2.18)
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This is the exact FLRW solution to the Einstein’s equations for an expand-
ing, homogeneous, and isotropic universe described by one k-independent
scale factor a(t). In addition, it is possible to change the sign of Gk(t) by in-
verting the direction of geff (see Fig. 2.2B), previously exploited in magnetic
levitation experiments e.g. [59, 47, 46, 49]. In our setup, this corresponds
to a Hartle-Hawking-like [62, 63] change from Lorentzian to Euclidian sig-
nature in the analogue spacetime geometry, as can be seen from Eqs. (2.16)
and (2.18).

Note that even for τ 6= 0 the ability to change the sign of the effective
gravity geff allows for an infinite expansion for a single mode in our system.
This can be explicitly seen by calculating the number of e-folds

N = ln

(
ak(tf)

ak(ti)

)
=

1

2
ln

(
τk2 + [ρ]geff(ti)

τk2 + [ρ]geff(tf)

)
, (2.19)

used in cosmology to describe the length of the inflationary period, where
here the denominator can approach zero if geff becomes negative. Thus,
by changing the magnetic field accordingly, it is possible to engineer the
exact time-dependence of the scale factor ak(t) to correspond to exponential
expansion for a specific k-value, or (as in what follows) inflation in the linear
dispersion limit:

a2
k(t) =

ρ̃

([ρ1 − ρ2] e−2Ht +τk2)
' ρ̃

[ρ1 − ρ2]
e2Ht, (2.20)

where H is the effective Hubble parameter. This includes, in principle, an
arbitrarily high number of e-folds for certain values of k.

2.3.1 Effective horizon and mode freezing

One of the hallmarks of inflation, giving rise to the large scale structure
formations observed in our universe, is the freezing of modes once they exit
the Hubble horizon. It is common to introduce the auxiliary field χk =
ak ϕk for which the wave equation (2.14) takes the form of a time-dependent
harmonic oscillator with frequency

Ω2
k(t) =

k2

a2
k

− äk
ak

. (2.21)

Horizon crossing occurs at Ω2
k = 0, separating the oscillating solution dom-

inated by the first term on the right hand side from exponentially grow-
ing / decaying solutions at late times, dominated by the time-independent
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Figure 2.2: Panel A depicts the effective gravity geff in the bore of the magnet
for the butanol-aqueous solution (z̈0 = 0). The vertical axis gives the vertical
position in the magnet z, and the horizontal axis the radial position r. The
magnitude is given by the colorbar. The solid white lines are contours of
the effective gravity, with the dashed line depicting the region over which geff

changes sign. Panel B is the effective gravity along the axis of the solenoid
(r = 0). The inset rescales the horizontal axis to better demonstrate the sign
change of geff .
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second term. The essence of inflationary dynamics is fully captured for late
times after a mode has crossed the horizon, since the dynamics of the physical
field ϕk freezes and becomes trivial, obeying a constant solution in time.

Our system exhibits an analogue behaviour, where each mode crosses the
shrinking effective horizon beyond which it freezes. In Figure 2.2 panel B
the solution of the field equation (2.14) for the longest wavelength of our
system is shown for the full non-linear dispersion relation (2.15), computed
numerically using a Runge-Kutta fourth-order scheme. For t < 0 the system
is evolved in flat space, reducing (2.14) to a simple harmonic oscillator. At
t = 0 the system begins to expand, leading to an oscillatory, damped time
evolution of the field, which upon crossing the effective horizon approaches
rapidly a nearly constant field solution.

The non-dissipative model (including dispersive effects) exhibits minor
differences to a completely frozen field solution, caused by the interfacial
tension. For the expansion parameter outlined in equation (2.20), the surface
tension introduces a small time-depence to äk/ak and in turn a slow further
evolution of the field outside the horizon. Apart from a different effective
expansion experienced by high momentum modes, this regulatory part leads
to the mode re-entering the Hubble horizon, exhibiting oscillatory behaviour
at later times. 1

Returning to figure 2.3 (panel B), we further present the evolution of the
surface height ξk = a2

kϕ̇k, directly accessible in the experiment, which exhibits
a growing, non-oscillatory solution after horizon crossing. The continuous
observation of the field dynamics provides direct evidence for the inflationary
dynamics of the system.

2.3.2 Classical squeezing for inflation model

While the above evolution and mode freezing describe the full dynamics
during inflation, there is an equivalent description in terms of squeezed
states [64, 65]. This approach is in close analogy to condensed matter sys-
tems undergoing rapid changes (e.g. quenches [38]) in the propagation speed
of long-wavelength perturbations.

For a quadratic field theory the quantum nature of the system is only
determined by the initial conditions, while each trajectory evolves according

1When dissipation is included in the wave equation from the onset, this behavior is not
present. See equation (2.34) and the discussion thereof below.
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Figure 2.3: Panel A shows the evolution of the vertical position z0(t) (dashed
red) and acceleration z̈0(t) (solid purple) of the vessel in the magnet corre-
sponding to an exponentially inflating analogue universe with Hubble pa-
rameter H = 3 s−1.
Panel B depicts the solution to the wave equation (2.17). The solid lines
represent the real part, and the dashed lines represent the absolute value of
the velocity potential φk (purple) and of the height field ξk (red). The black
dash-dotted lines represent different number of e-folds N = 0, 1, 2 and 4 for
the mode. The shaded region indicates where the mode is outside the Hubble
horizon.
Panel C depicts the maximal two-mode squeezing of the system projected
onto the instantaneous eigenbasis at the times (equivalently number of e-
folds) indicated. The solid line indicates the theoretical full width at half
maximum for each distribution. The intensity plots represent the probabil-
ity of a given measurement of Yk and Y−k after 2000 simulated experimental
runs.
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to the classical equation of motion [66]. Therefore, by emulating the quan-
tum statistics of the initial state, we can study the full time evolution of
inflationary physics within the linear regime of fluid dynamics.

Our system allows us to stop the expansion and to analyse the inflationary
signatures in the resulting flat spacetime through the statistical properties
of the state. The associated definition of a well defined ground (vacuum)
state leads to cosmological quasi-particle production (mode amplification)
and two-mode squeezed states. This is the result of the rapid effective ex-
pansion of our analogue universe connecting two flat regions of spacetime
a(ti) → a(tf) [57]. Note that while the freezing of the modes is sensitive to
äk/ak ≈ const, squeezing effects are rather generic and occur for more general
types of expansion. 2 In line with quantum field theory in curved spacetime,
we introduce the classical quasi-particle amplitudes bk in the initial flat region
of spacetime by expanding the field

Xk(x, t) =
(
f i
k(t)bk + f i

k(t)
∗
b∗−k
)

exp(ikx), (2.22)

where the b±k are complex constants representing the initial state, and the
fk(t) represent the field evolution in time. The time-dependent mode func-
tions (fk, f

∗
k ), normalized by the Wronskian:

〈fk ; fk〉 ≡ i (f ∗k∂tfk − (∂tf
∗
k )fk) = 1.

As the conservation of the Wronskian implies |αk|2 − |βk|2 = 1, the initial
and final flat regions of spacetime are related by a Bogoliubov transforma-
tion f i

k(t) = αkf
f
k(t) + βkf

f
−k(t)

∗
. The final state is fully described by the

corresponding transformation of the quasi-particle amplitudes

dk ≡ 〈f f
k(t) ; Xk〉 = αkbk + β∗kb

∗
−k. (2.23)

The measurable mode intensity after the effective expansion in our system is

〈d∗kdk〉 =
(
2|βk|2 + 1

)
〈b∗kbk〉 , (2.24)

2In light of the work done on the shaker experiment, it is not clear whether the dk
and d−k amplitudes can be observed separately, since the concept of positive and negative
frequency modes (or equivalently, propagating and counter-propagating) is nullified when
ωk → 0 (see equations (2.22) and (2.23)). The interpretation of the squeezing results
presented in the original publication is ongoing, however the following is presented here in
order to provide context for the predictions in figure 2.3. For a more detailed treatment,
see Chapter 5, sections 5.2, 5.3.1, and 5.3.2.
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where 〈. . . 〉 denotes the classical expectation value over sufficiently many
measurements, allowing us to assume 〈b∗−kb−k〉 = 〈b∗kbk〉.

As anticipated from translational invariance in equation (2.17), the Bo-
goliubov coefficients αk, βk only mix modes of opposite momenta:

〈d−kdk〉 = 2αkβ
∗
k 〈b∗kbk〉 . (2.25)

Quasi-particle amplification therefore occurs in the form of correlated, counter-
propagating pairs, and our system exhibits the classical analogue of two-mode
squeezing. Therein the fluctuations in one quadrature are lowered below their
initial value at the cost of increasing the fluctuations in the other. Defining
the position variable

Yk =
(
f f
k(t)dk + f f

k(t)
∗d∗k
)
/|f f

k|, (2.26)

we show in figure 2.3, panel C, the two-mode squeezed states for varying
number of e-folds N during the expansion.

For each parameter we sampled 2000 trajectories from an initial uncor-
related Gaussian state. At the times presented, the maximum squeezing
|αk − βk|2 caused by the correlations (2.25) increases with N , due to the in-
creasing number of created quasi-particle pairs. A similar behaviour is found
by increasing the effective Hubble parameter H, as shown in Fig. 2.3 for
H = 2, 4 s−1 and the limit of an instantaneous quench, H → ∞. Note that
each mode itself shows no sign of squeezing and is simply amplified according
to (2.24).

2.4 Proposed experimental implementation

In order to minimise the influence of non-linear contributions to the dis-
persion relation, we choose a two-fluid system consisting of 1-butanol and
a weak aqueous paramagnetic solution, with a small interfacial surface ten-
sion, τ = 1.8mN/m [67] (immiscibility requires τ 6= 0). We take an annular
basin for which the azimuthal degrees of freedom obey periodic boundary
conditions with a maximal wavelength λmax = πd. The diameter d is lim-
ited by the size of the bore of the superconducting magnet, which for our
experimental setup is d = 4cm.

A significant advantage of our proposed system is the ability to make
non-destructive measurements of interface-waves. For example, using a “Fast
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Checkerboard Demodulation” (FCD) method [68] enables the time-resolved
measurement of the full dynamics. Another benefit to the proposal stems
from our ability to repeat a single experiment under the same laboratory
conditions, enabling us to test the statistical predictions of cosmology in a
way that was never before possible.

We tune the scale factor a(t) to be exponential in the linear dispersion
limit. This can be achieved by combining the spatially dependent magnetic
forces within the bore with a small mechanical acceleration of the system.
The time-dependent position and acceleration of the basin in the magnet is
given in 2.3 panel A, determined by solving the differential equation

geff(z0, z̈0) = g0 exp(−2Ht), (2.27)

where geff is a function of z0 and z̈0, and g0 is the initial effective gravitational
acceleration. In Figure 2.2, we show the effective gravity in the magnet bore
for our butanol-aqueous system. Panel A depicts the effective gravitational
acceleration for a cross-section of the magnet bore, and panel B provides a
plot of geff as a function of the vertical position.

2.5 Predictions for the height field including

dissipation

The previous sections describe the theoretical motivation for a proposed ex-
periment. At the time of the original proposal, little was known regarding
how the small scale of the experiment would affect our findings. In Chap-
ter 3, we will provide a more detailed derivation of the equations of motion,
and provide some discussion on the importance of dissipation and boundary
layers for small systems. In this section, we will present some newer results,
simulating the height field (which is directly observable) for the same sys-
tem in the same magnet, this time including an additional damping term
with coefficient γk and a stochastic source (see equation (6.21), section 6.2.1
for more details). The damping rate is calculated using the theory of [45],
modified to accomodate an annulus instead of a cylinder.

If we use equation (2.7) to note that

ϕk =
1

k sinh(kh0)
ξ̇k, (2.28)
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we can eliminate ϕk from equation (2.13) to obtain

ξ̈k + ω2
kξk = 0. (2.29)

Adding a phenomenological damping term, and a stochastic source term, we
have,

ξ̈k + 2γkξ̇k + ω2
kξk = Γk(t). (2.30)

Figure 2.4 depicts the results for a set of eigenmodes. Each curve rep-
resents the mean result of 1000 simulations, and the trajectory through the
magnet is chosen so that ak(t) = eHt (with H = 5), for the selected m = 1,
k = 68m−1 mode (chosen because it has the smallest value of γk). As can
be seen, the chosen mode is sharply amplified when the expansion begins,
however instead of increasing linearly as seen for the ξk field in figure 2.3
(panel B), it seems to increase monotonically with decreasing velocity.

To see why this is, we examing the damped equation of motion, in the
limit ωk → 0:

ξ̈k =− 2γkξ̇k (2.31)

=⇒ ξ̇k(t) = ξ̇k(t0) e−2γk(t−t0) (2.32)

=⇒ ξk(t) = ξk(t0) +
ξ̇k(t0)

2γk

(
1− e−2γk(t−t0)

)
(2.33)

Thus, we can see that the inclusion of damping stabilizes the system (mini-
mizing the chance of nonlinearities), and the modes should approach a con-
stant amplitude so long as a stable geff can be maintained.

In terms of mode freezing, these results require some extra interpretation.
In equation (2.21), we see that mode freezing is due to the Hubble friction
term in equation (2.17), and occurs for ϕk when the scale factor ak outgrows
the wavenumber k.

As it happens, the equations leading up to the wave equation (2.30) do
not lead to a Hubble friction term in the ξk field, and the only parameter
which is capable of ‘freezing’ the height field is the damping term γk. We
know from the familiar example of the damped harmonic oscillator [69] that
the ξk field oscillates with natural frequency

ω̃k =
√
ω2
k − γ2

k, (2.34)
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Figure 2.4: Simulated damped ξk evolution in the superconducting magnet.
The fluid parameters are the same as in figure 2.3, however dissipation and
a stochastic source are included as in equation (2.30).
The left-hand axis shows the effective gravitational acceleration in black. The
right-hand axis depicts the mean evolution of each of the mode functions, and
the corresponding values of (m, k) and γk are listed in the legend at the top.
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and it is clear that the modes will become ‘frozen’ once ωk ≤ γk.
Figure 2.5 shows the natural frequency of each of the simulated modes

with respect to time. Because the effective gravity in these simulations prefers
the m = 1, k = 68m−1 dispersion relation, this is the only mode which un-
dergoes freezing as described above. The inset of the plot shows the real and
imaginary parts of the natural frequency for the chosen mode with respect
to time. As can be seen, for the chosen mode freezing happens at roughly
t = 0.8s, corresponding to 4 e-folds of analog inflation. Comparing mode
freezing in a system without damping to these results will be a future line of
investigation.
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Figure 2.5: Simulated natural frequency for each of the eigenmodes in the
superconducting magnet. The chosen mode function ‘freezes’ at t = 0.8s,
corresponding to 4 e-folds of analog inflation. The inset demonstrates that
after the mode freezes, the mode evolves exponentially. This is in line with
the predictions of equation (2.33).
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Chapter 3

Fluid theory and parametric
amplification

The modelling of interface waves has varying degrees of complexity, and
when the system size is large compared to the capillary length it is possible
to start from the simple case of an invicid, irrotational fluid as presented in
the previous chapter. At smaller scales, rotational boundary layer effects due
to viscosity are believed to become important [44, 43], and these effects are
taken into account at the solid walls of the fluid container as well as at the
interface.

The motion of a fluid is governed by the continuity equation, and the
Navier Stokes equations. The continuity equation represents the conservation
of mass in the fluid system. For incompressible fluids, the continuity equation
can be written as

∇~U = ∇~u+∇2φ = 0, (3.1)

where ~U is the fluid’s velocity field, and ~u and φ are the solenoidal and
irrotational components respectively. For incompressible fluids with constant
density and viscosity , the Navier Stokes equations can be written as

∂t~U +
(
~U · ∇

)
~U − µ

ρ
∇2~U = −1

ρ
∇p+ ~g, (3.2)

where µ is the dynamic viscosity of the fluid, ρ is the fluid density, ~g is an
external acceleration (often the acceleration due to gravity) [10, 70, 71, 44].
The pressure p is defined by the stress tensor σ [10]:

σab = −pδab + µ

(
∂ua
∂xb

+
∂ub
∂xa

)
, (3.3)
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where the indices a, b ∈ {θ, r, z} indicate the spacial dimension.
The Navier Stokes equation represents the conservation of momentum

in a fluid and are famously difficult to solve, even numerically [72]. Be-
cause of this, certain assumptions and approximations are often necessary
when attempting to find tractable equations of motion for a system. These
assumptions often come in the form of linear approximations, subject to
rule-of-thumb conditions, such as the small amplitude condition for interface
waves [10]:

a� L, (3.4)

where a is the amplitude of the interface wave, and L is the wavelength.
In the following sections, we will first derive the wave equation which

most closely corresponds to the time-dependent gravitational analogy. A
theoretical treatment of interface waves undergoing parametric resonance
will then be given for the simple dispersion relation derived previously. This
theory will then be expanded to include a more comprehensive treatment of
the boundary layers in the system. Finally, some practical considerations
regarding a full theoretical description of the system will be listed, as well as
a simplified, phenomenological model.

3.1 Simple dispersion relation

Figure 3.1 depicts the fluid system under consideration. We have an annular
volume of fluid, bounded at inner and outer radii r1 and r2 respectively by
ridged, concentric (right circular) cylindars. The upper and lower boundaries
consist of parallel ridged plates, located at h1 and h2 respecively.

In the following section, we will derive the equation of motion for the
perturbed height field for eigenmodes in the system. The vertical position
of the interface is defined at z = z0 + ξ (and in what follows we choose our
coordinate system such that z0 = 0). We will refer to the lower and upper
fluids using the index j = {1, 2} respectively, and we assume that the flow
in the system is everywhere irrotational, so that ~u = 0, and the velocity field
is fully described by a velocity potential, φj:

~U (j) = ~∇φj. (3.5)

We further assume that the system is perturbed from rest, and we neglect
any terms of order O(φnj ), and O(ξn) for n > 1.
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Figure 3.1: The left-hand panel, a) depicts a schematic of the two-fluid sys-
tem. In panel b), we see an azimuthal slice of the vessel. The denser fluid,
labeled 1 sits below the lighter fluid, labeled 2. The coordinate axes are cho-
sen such that the equillibrium height is at z = 0, and the vertical boundary
walls are axisymmetric.

3.1.1 Laplace’s Equation

From the continuity equation, we have

~∇ · ~U (j) = ∇2φj = 0. (3.6)

From this, we can see that the equation of motion for the fluid height is the
result of the boundary conditions to Laplace’s equation, the solutions for
which are quite well known. Defining ∇2 = ∇2

x + ∂2
z , we have that

∇2
xφj = −k2φj, (3.7)

where φj is given by

φj =
∑

m

∑

k

eimθ
(
arH

(1)
m (kr) + brH

(2)
m (kr)

)
fj(z)ϕj,k(t). (3.8)

In the above, H
(1)
m and H

(2)
m are Hankel functions of order m of the first

and second kind respectively. f(z), and ϕk(t) are as-yet-unknown functions,
and k is found by assuming that the fluid does not penetrate the ridged
boundaries at r = ri, which implies that

ur
∣∣
r=ri

= ∂rφ
∣∣
r=ri

=0 (3.9)

=⇒ arkH
(1) ′

m (kri) + brkH
(2) ′

m (kri) = 0. (3.10)
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The two equations at r1 and r2 are used to determine the two unknowns ar
and br. It is easy to show that if we do not want to have ar = br = 0, then
we must have

H(1) ′

m (kr2)H(2) ′

m (kr1)−H(1) ′

m (kr1)H(2) ′

m (kr2) = 0, (3.11)

which must be solved for k numerically.
Using the expansion (3.8), equation (3.7) and equation (3.6) together

imply that

∂2
zφ− k2φ =0 (3.12)

=⇒ f ′′(z) = k2f(z). (3.13)

With a bit of foresight, we can write the general solution to this equation as

fj(z) = aj sinh(k[z − hj]) + bj cosh(k[z − hj]), (3.14)

where hj has already been defined as the location of the ridged z-boundaries.
Since we have impenetrability at the top and bottom boundaries as well, we
have

u(j)
z

∣∣
z=hj

= ∂zφj
∣∣
z=hj

= 0, (3.15)

which immediately implies that aj = 0 for j = {1, 2}. Absorbing the bj into
the ϕj,k terms, and setting the radial function equal to Rk(r), we have

φj =
∑

m

∑

k

eimθ Rk(r) cosh(k[z − hj])ϕj,k(t). (3.16)

3.1.2 The Boundary Conditions at the Interface

The above equation does not describe the time-dependent behavior of the
interface waves, as we still do not know the form of the ϕj,k. In order to
obtain this description, we need to examine the boundary at the free-surface
ξ. The kinematic boundary condition at the surface is given by

∂tξ = lim
z→0±

uz, (3.17)

where the limit is from below for fluid 1, and from above for fluid 2. This
allows us to expand ξ in terms of the eigenfunctions in equation (3.16),

ξ =
∑

m

∑

k

eimθ Rk(r)ξk(t). (3.18)

29



Equation (3.16), together with equations (3.17) and (3.5), imply that

ξ̇k = k tanh(khj) cosh(khj)ϕj,k, (3.19)

which in turn implies (via continuity of the velocity field across the interface)
that

ϕ2,k =
sinh(kh1)

sinh(kh2)
ϕ1,k. (3.20)

Throughout the fluid, the velocity field obeys the Euler momentum equa-
tion for a fluid at rest:

ρj∂t~U
(j) − µj

ρj
∇2~U (j) = −~∇pj − ρjgẑ. (3.21)

The continuity equation implies that the viscous term is zero for irrotational
flow in the fluid bulk. Further, since ~U (j) = ~∇φj we can simplify the mo-
mentum equation by factoring out the gradient:

ρj∂tφj = pj − ρjgz. (3.22)

Equation (3.22) is valid throughout each of the fluids, but of particular in-
terest is the boundary between the two. At z = ξ, we subtract the j = 2
equation from the j = 1 to get the dynamic boundary condition at the free
surface:

ρ1∂tφ1 − ρ2∂tφ2 = ∆p− (ρ1 − ρ2)gξ, (3.23)

where ∆ signifies the difference between the fluid 1 component and the fluid
2 component.

It is well-known that the curvature of the interface between two immisci-
ble fluids produces a discontinuity in the stress-tensor [70, 10, 71] and pressure
terms. Rearranging the zz component of the stress tensor in equation (3.3)
and subtracting fluid 2 from fluid 1, we find that

∆p = −∆σzz − 2
∂2

∂z2
(µ1φ1 − µ2φ2) . (3.24)

The change in the normal component of the stress tensors, ∆σzz is related
to the curvature via the surface tension coefficient τ ,

∆σzz = τ

(
1

R1

+
1

R2

)
' −τ∇2

xξ, (3.25)
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where the Ri represent the orthogonal radii of curvature at the point of
interest [71, 10].

Inserting equation (3.25) into equation (3.24), we can eliminate the pres-
sure term from the dynamic boundary equation to get

ρ1∂tφ1 − ρ2∂tφ2 = −2
∂2

∂z2
(µ1φ1 − µ2φ2)− (ρ1 − ρ2)gξ +∇2τ. (3.26)

In order to eliminate one of the velocity potentials, we use equation (3.16) to
note that ∂2

z cosh(khj)ϕj,k = k2 cosh(khj)ϕj,k, together with equation (3.20)
and the map ∇2

xξ 7→ −k2ξk to get:

(
ρ1 cosh(kh1)− ρ2 cosh(kh2)

sinh(kh1)

sinh(kh2)

)
∂tϕ1,k =

−
(
[ρ1 − ρ2]g + τk2

)
ξk−2

(
µ1 cosh(kh1)− µ2 cosh(kh2)

sinh(kh1)

sinh(kh2)

)
k2ϕ1,k.

(3.27)

Dividing both sides of the equation by cosh(kh1), and using (3.19) to
eliminate the velocity potential term, we have

ρ̃∂tξ̇k = −
(
[ρ1 − ρ2] g + τk2

)
k tanh(kh1)ξk − 2k2µ̃ξ̇k, (3.28)

where we have defined the weighted sums, ρ̃, and µ̃ by

ρ̃ = ρ1 −
tanh(kh1)

tanh(kh2)
ρ2,

and equivalently for µ̃. Rearranging, we now have a simple wave equation in
terms of the interface eigenmode ξk:

ξ̈k + 2γkξ̇k + ω2
kξk = 0, (3.29)

where we have defined the exponential damping coefficient 1

γk =
µ̃

ρ̃
k2, (3.30)

1It should be noted here that this damping term is exactly half the damping term
derived in [10], where the total change in energy in the volume of fluid is considered.
Attempts to reconsile the results above with the energy derivation have not been successful,
however including a generic damping term γk from the start seems necessary, as this term
changes the equation of motion for the velocity potential field ϕk below.
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as well as the natural frequency

ω2
k =

(
ρ1 − ρ2

ρ̃
g +

τ

ρ̃
k2

)
k tanh(kh1) (3.31)

≡Gkk tanh(kh1). (3.32)

3.1.3 The Wave Equation in terms of ϕk

In the previous derivation, no assumptions were made on the gravitional
acceleration, g. If we would like to obtain a wave equation in terms of the
velocity potential ϕk ≡ ϕ1,k, we require a bit more care if we want g ≡ g(t)
to be a function of time.

We begin by once again dividing both sides of equation (3.27) by cosh(kh1):

ρ̃∂tϕk = − 1

cosh(kh1)

(
[ρ1 − ρ2]g + τk2

)
ξk − 2µ̃k2ϕk. (3.33)

From here, we divide each side by ρ̃; isolating the ξk term on one side of the
equation, we have

∂tϕk + 2γkϕk = − 1

cosh(kh1)
Gkξk. (3.34)

We require the equation to contain ∂tξk on its own, so that we may use
equation (3.19) to eliminate ξk. The usual practice is to operate on both sides
with ∂t, however the time-dependent Gk term prevents this from working
directly. Instead, we first divide both sides by Gk,

∂t
[
G−1
k (∂tϕk + 2γkϕk)

]
= − 1

cosh(kh1)
∂tξk. (3.35)

Substituting in equation (3.19), and multiplying both sides by Gk, we are
left with 2

∂2
t ϕk +

(
2γk −

Ġk

Gk

)
∂tϕk +

(
ω2
k − 2γk

Ġk

Gk

)
ϕk = 0. (3.36)

Finally, in the inviscid limit, we have that γk 7→ 0 and we return to the
familiar analog in equation (2.14),

∂2
t ϕk −

Ġk

Gk

∂tϕk + ω2
kϕk = 0. (3.37)

2It should be noted here that the derivation given in Chapter 2 assumes from the start

that the fluids considered are invicid. Because of this, the 2γk
Ġk

Gk
ϕk term is not included.
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3.2 Floquet theory for simple dispersion re-

lation

We are interested in the dynamic behavior of linear waves undergoing para-
metric amplification. The first systematic theoretical description of para-
metric amplification for (invicid) interface waves was given by Benjamin and
Ursell [52], in which equation (3.29) is derived 3 in an oscillating gravitational
field, namely,

ξ̈k + 2γkξ̇k +

(
ρ1 − ρ2

ρ̃

[
g + ε̃ cos(2ωdt)

]
+
τ

ρ̃
k2

)
k tanh(kh1) = 0. (3.38)

This is a damped Mathieu equation, which is well-known to have stable
and unstable solutions depending on the relative values of γk, ωk, ωd and ε̃.
When the interface is unstable, the linear equation above predicts exponential
solutions e(η1−γk)t and e(η2−γk)t, and it can be demonstrated that eη1t eη2t =
1 [73, 74].

Thus, unstable solutions come in pairs, with η2 = −η1. These modes
correspond to exponentially growing and decaying oscillations [8, 43, 53],
with amplitudes which will be most conveniently described by

Ak = e−γkt cosh(ηkt), (3.39)

Bk = e−γkt sinh(ηkt). (3.40)

Due to the fact that the interface waves cannot actually grow without bound
in a real system, the exponential growth predicted by the linear equation of
motion for the interface waves breaks the linearity assumption (for example,
equation (3.4)) used on the Navier Stokes equation (3.2). Once this threshold
amplitude is reached, the system is observed to stabalize in a pattern of
constant-amplitude standing waves [51, 75, 76].

In most experimental and theoretical investigations of parametric reso-
nance of interface waves, the exponentially decaying terms are neglected and
research tends to focus on so-called stability curves. These are the bound-
aries between stable and unstable regions of the parameter space defined by
ε̃ and ωk for fixed ωd and γk.

3It should be noted that Benjamin and Ursell’s invicid derivation left out the damping
term completley. This is equivalent to setting γk = 0 in what follows.
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To this author’s knowledge, no theoretical or experimental investigations
have been made regarding the exponential amplification rate, hereafter re-
ferred to as λk = (ηk − γk), described by this linear theory. Instead, the
literature tends to focus on stable versus unstable solutions, without regard
for the amplification rate.

In order to apply the Floquet analysis to equation (3.38) we will make
some definitions:

δk =

(
τ

ρ̃
k2 +

ρ1 − ρ2

ρ̃
g

)
k tanh(kh0), (3.41)

and

εk =

(
ρ1 − ρ2

ρ̃
ε̃ cos(ωdt)

)
k tanh(kh0). (3.42)

we can re-write equation (3.38) as

ξ̈ + 2γkξ̇ + δkξ + 1
2
εk
(
eiωdt + e−iωdt

)
ξ = 0. (3.43)

The periodicity of acceleration implies that the solutions are also periodic.
We write the general solution as [8, 43]

ξ = e(λk+iϑk)t
∑

an einωdt, (3.44)

where (λk + iϑk) is the Floquet exponent for the system, and the sum is over
all n ∈ Z.

It can be demonstrated that when an instability is present, we will have
either ϑk = 1

2
ωd, or ϑk = 0. These cases are referred to as the subharmonic

(with frequency ωd
2

) and harmonic (with frequency ωd) cases respectively [77,
43]. 4

The first and second derivatives of (3.44) with respect to time are easily
calculated to be

ξ̇ = e(λk+iϑk)t)
∑

an [(λk + iϑk) + inωd] einωdt, (3.45)

and
ξ̈ = e(λk+iϑk)t)

∑
an [(λk + iϑk) + inωd]

2 einωdt . (3.46)

4In particular, this implies that the oscillations of the unstable modes have a frequency
set exactly by the driving frequency ωd, regardless of the natural frequency as defined by
the dispersion relation (3.29).
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Defining Ωn = [(λk + iϑk) + inωd], we can write equation (3.43) in terms of
the generalized solutions:

e(λk+iϑk)t
{∑

an
(
Ω2
n + 2γkΩn + δk

)
einωdt

+
∑

an
(

1
2
εk ei(n+1)ωdt +1

2
εk ei(n−1)ωdt

)}
= 0. (3.47)

Rearranging the second sum, we can group terms with the same frequency
(this procedure has the name harmonic balancing) and we have

e(λk+iϑk)t
∑[

an
(
Ω2
n + 2γkΩn + δk

)

+ 1
2
εkan−1 + 1

2
εkan+1

]
einωdt = 0. (3.48)

Since equation (3.48) is valid for each n, we can disregard the exponen-
tials, and rewrite it as an infinite tridiagonal system:

H∞ · ~a∞ =




. . . . . . . . . 0 0 0
...

. . . 1
2
εk Dn−1

1
2
εk 0 0 . . .

. . . 0 1
2
εk Dn

1
2
εk 0 . . .

. . . 0 0 1
2
εk Dn+1

1
2
εk . . .

. . . 0 0 0
. . . . . . . . .







...
an−2

an−1

an
an+1

an+2
...




= 0, (3.49)

where we have defined Dn = (Ω2
n + 2γkΩn + δk) as the nth diagonal entry.

Since equation (3.48) is homogeneous, the determinant of the above ma-
trix (called Hill’s determinant) must vanish [8]. This, in turn provides an
equation for the complex number (λk + iϑk).

In practice, the infinite sum in equation (3.44), as well as the linear system
in (3.49) is truncated so that n ∈ [−N,N ],

We can write the truncated equation for (λk + iϑk) as

HN · ~aN =




D−N
1
2
εk 0 . . . 0

1
2
εk D−N+1

1
2
εk . . . 0

. . . . . . . . . . . . . . .

0 . . . 1
2
εk DN−1

1
2
εk

0 . . . 0 1
2
εk DN







a−N
a−N+1

...
aN−1

aN




= 0. (3.50)
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(a)
(b)

Figure 3.2: Results for simulations of the shaker for each of the presented
theories in this chapter. Panel a) depicts the predicted amplification rates for
each azimuthal number m corresponding to the first k-value of the order-m
Bessel equations (3.11), and panel b) corresponds to the second. Values of
λm below zero represent modes for which damping is dominant.

The truncated Hill’s determinant produces a single equation,

det [HN(λk + iϑk)] = 0, (3.51)

which can be solved for (λk + iϑk) numerically, using generalized eigenvalues.
The results of this analysis (using measured fluid parameters) are shown in
Figure 3.2.

3.3 Including horizontal boundary layers, and

viscosity at the interface

While the work done in [52] did much to align the theory of Mathieu equa-
tions and Floquet analysis with the fluid theory, more often than not, there
were large discrepancies in theoretical and experimentally obtained stabil-
ity curves [53]. Kumar and Tuckerman [43] expanded the simple dispersion
theory above to include boundary layers with nonzero vorticity at the upper
and lower boundaries of the fluids, as well as at the interface. This treatment
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follows the stability analysis of Chandrasekhar in [44], and special mention
is made of the importance of the continuity of the transverse component of
the stress tensor across the interface. 5

The following is adapted from both [44] and [43], in order to approximate
the Floquet exponent λk (as opposed to identifying regions of stability). We
assume that the equation of motion is still separable, and linear. When the
background velocity is negligible, the Navier Stokes equations for the velocity
perturbations can be factorized as [78]:

(iρωk − µ∇2)

(
~U +

1

iω
∇p
)

= 0. (3.52)

We can write the solution ~U as a sum of irrotational and viscous components:

~U = ~u+∇φ. (3.53)

~u is a boundary layer satisfying (iρω−µ∇2)~u = 0, and φ is a velocity potential
satisfying

(
∇φ+ 1

iω
∇p
)

= 0. It is assumed that the boundary layer ~u goes
rapidly to zero away from the vessel walls.

For two fluids, indexed by j, we once again denote the velocity compo-
nents as ~U j = ~uj+∇φj, and in what follows, Wj indicates the z component of
the velocity in fluid j. In the fluid bulk, we are governed by equation (3.52).
In the z-direction, this has solutions given by Wj = ∂zφj + wj, where the
velocity potential can once again be expanded according to equation (3.8).
For the sake of clarity, we repeat the general solution here, supressing the
radial and azimuthal components:

φ1 =
∑

k

(a1 sinh(k[z + h0]) + b1 cosh(k[z + h0]))ϕ1,k, (3.54)

φ2 =
∑

k

(a2 sinh(k[z − h0]) + b2 cosh(k[z − h0]))ϕ2,k. (3.55)

The boundary layer equation has the general solution

w1 =
∑

k

c1 e−q1,k[z+h0] +d1 eq1,kz, (3.56)

w2 =
∑

k

c2 eq2,k[z−h0] +d2 e−q2,kz . (3.57)

5Unfortunately, this implies that the boundary layers at the interface are rather im-
portant, making further simplifications to the theory questionable.
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The eigenvalues qj,k satisfy the boundary layer equation in (3.52):

q2
j,k =

iρjωk
µj

+ k2. (3.58)

In everything that follows, we will suppress the k subscript in the qj to
improve readability.

The boundary equations at z = ±h0 are described by impenetrability
(Wj = 0), and the no-slip condition (Ur = Uθ = 0 paired with the continuity
equation together imply that

∂zWj = 0. (3.59)

Since the dj terms are exponentially suppressed far from the interface, the
impermiability condition at z = ±h0 gives,

Wj = kaj + cj = 0 (3.60)

for each j. Likewise, the no-slip condition gives

∂zW1 =k2b1 − q1c1 = 0, and (3.61)

∂zW2 =k2b2 + q2c2 = 0. (3.62)

Eliminating the cj from equations (3.60) and (3.61) we find that

a1 = − k
q1

b1, (3.63)

a2 =
k

q2

b2. (3.64)

This, in turn, allows us to define simplified expressions for φ1 and φ2.
Starting with,

Γ1 =

(
− k
q1

sinh(k[z + h0]) + cosh(k[z + h0])

)
, (3.65)

Γ2 =

(
k

q2

sinh(k[z − h0]) + cosh(k[z − h0])

)
. (3.66)

We have
φj = bjΓjϕj. (3.67)
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At the fluid-fluid interface, the boundary equations come from the re-
quirements of continuity for the velocity, the incompressibility condition,
continuity of the tangential component of the stress tensor, and the dynamic
boundary condition [44, 43]. These are, respectively:

∆Wj =0, (3.68)

∆∂zWj =0, (3.69)

∆µj
(
∂2
z + k2

)
Wj =0, (3.70)

∆
[
ρj∂t − µj(∂2

z − k2) + 2µjk
2
]
∂zWj =−

[
∆ρjg(t)k2 − τk4

]
ξ. (3.71)

At the interface, the cj terms are exponentially suppressed, leaving us
with four equations for the four unknowns b1, b2, d1, d2. While it is possible
in theory to obtain an exact equation for the interface height, in practice the
resulting equations are completely intractable. Instead, we use a computer
algebra system (either Sage or Matlab’s symbolic package) to find expres-
sions for d1, d2 and b2, and then we plug these expressions into the dynamic
boundary condition.

The resulting system can be written in terms of a new dispersion function
Dn, as well as a new parametric amplitude function εk. This leads once again
to the same system of equations as in equation (3.49), and Hill’s determinant,
equation (3.51). The predicted results for measured fluid parameters are once
again given in Figure 3.2.

3.4 Vertical boudaries

The analysis of Kumar and Tuckerman did not take into account finite system
size. As a final effort to estimate the Floquet exponents for different modes
in the system, an attempt was made to include lateral boundary layers at
the inner and outer sidewalls. This attempt was modeled after the analysis
of Chandrasekhar in [44].

We examing the radial component of equation (3.52), and we once again
assume that the fluid does not penetrate the vessel walls, which produces the
boundary condition

Ur = 0 at r = {r1, r2}. (3.72)

The no-slip condition together with the continuity equation (see equation
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(3.59)) produces

∇~U = ∇Urr̂ =
1

r
∂rrUr = 0,

=⇒ Ur + ∂rUr = 0,

=⇒ ∂rUr = 0 at r = {r1, r2}, (3.73)

where the last line is due to impenetrability. The velocity potential has the
familiar solutions from the invicid flow theory, given in equation (3.8).

Since the boundary layer goes rapidly to zero away from the vessel walls,
the rotational component of equation (3.52) can be very well-approximated
by [78] [

iρωk − µ2

(
1

r
∂r + ∂2

r

)]
ur = 0. (3.74)

This equation has a general solution of the form [72],

ur(r) =
∑

k

crK0(skr)K0(skr1)−1 + drK0(skr2)K0(skr)
−1 (3.75)

'
∑

k

cr e−sk(r−r1) +dr esk(r−r2) . (3.76)

In the above, K0 is a modified Bessel function (of order zero) of the second
kind, and cr and dr are constants. 6 The eigenvalue sk is a solution to
equation (3.74), and is related to the frequency ωk by

s2
k =
−iωkρ
µ

. (3.77)

The summation in equation 3.75 is over the variable k due to the eigenex-
pansion of the velocity potential in equation (3.8), and the subscript in the
variable sk is included to make the frequency and wavenumber dependence
of the boundary equation explicate.

6The final line is justified via the first-order term in the asymptotic relation [79],

Kν(z) ∼
√

π

2z
e−z

(
1 +

4ν2 − 1

8z
+

(4ν2 − 1)(4ν2 − 9)

2!(8z)2
+ ...

and has been verified numerically to be within 10−8 for all relevant values of the complex
number z.
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Substituting the above solutions into the boundary equations (3.72) and
(3.73) produces the following transcendental system of equations for the con-
stants of integration:

Ur(ri) = cr e−sk(ri−r1) +dr esk(ri−r2) +arkH
(1) ′

m (kri) + brkH
(2) ′

m (kri) = 0
(3.78)

U ′r(ri) = −crsk e−sk(ri−r1) +drsk esk(ri−r2)

+ ark
2H(1) ′′

m (kri) + brk
2H(2) ′′

m (kri) = 0 (3.79)

where ri denotes r1,2, and the prime indicates a derivative with respect to r.
When evaluating ur(r) at r1 and r2, it is readily seen from equation (6)

that ur(r1) = cr + ε, and ur(r2) = dr + ε, where ε ∼ e−|sk|(r2−r1), which is
essentially zero. 7 By approximating ur(r1) = cr and ur(r2) = dr, equation
(3.78) at r1 and r2 gives

cr =− arkH(1) ′

m (kr1)− brkH(2) ′

m (kr1) (3.80)

dr =− arkH(1) ′

m (kr2)− brkH(2) ′

m (kr2). (3.81)

Plugging these equations into equation (3.79) at r1 and r2, while approxi-
mating u′r(r1) = −skcr and u′r(r2) = skdr we find that either ar = br = cr =
dr = 0, or

(
skH

(1) ′

m (kr1) + kH(1) ′′

m (kr1)
)(
kH(2) ′′

m (kr2)− skH(2) ′

m (kr2)
)

−
(
skH

(2) ′

m (kr1) + kH(2) ′′

m (kr1)
)(
kH(1) ′′

m (kr2)− skH(1) ′

m (kr2)
)

= 0. (3.82)

For fixed ωk, this equation can be solved for k numerically. The results
comparing this analysis with the theories in the previous sections are shown
in Figure 3.2.

Note that equation (3.77) produces a dynamic relationship between the
wavenumber and the frequency. This needs to be taken into account when
one solves for the allowable modes in the system. The solution is obtained
by first assuming that sk = 0, and then recursively approximating k and
the Floquet exponent λk. Further, for a two-fluid system indexed by j, it
is not generally true that the kinematic viscosity νj =

µj
ρj

will be the same

7This is due to the magnitude of the eigenvalues sk. Even for low frequencies and
conservative estimates for the density and viscosity, the magnitude of sk will still be quite
large (as can be seen immediately from equation (3.77).
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in each fluid. In this case, equation (3.82) must be solved independently for
each fluid, and consequently each fluid will have disparate values of k (even
though the geometry of the boundaries remains the same).

3.5 A phenomenalogical model

It should be noted that none of the above theories were successful in predict-
ing the Floquet exponents that we observed in experiments. In fact, none
of the analysis above were even able to predict the correct eigenmodes to
be excited. These findings are consistent with the general agreement that
even if the fluid theory is accurate, it can be extremely difficult to match this
theory with fluid parameters such as viscosity and surface tension (see [76]
for a bit of meta-analysis on this topic). Universally, we observed a great
deal more damping than any of the theories predicted. 8

As it turns out, accurately predicting the dissipation rate of interface
waves is a rather difficult task. In one study, agreement with the disipa-
tion rates predicted by theory was only found when the fluid vessel (made
of brass) was polished to a mirror finish [45]. In this study, it was noted
that “Roughnesses whose depth was small compared to the boundary layer
thickness had a remarkably large effect.” This is even more remarkable when
one consideres that boundary layer thickness is again much smaller than
the wavelength of the modes in question (since wavelength is generally the
length-scale considered in the irrotational theory) [10].

To complicate things further, none of the above theories account for
meniscus effects on the lateral boundaries. A nonzero meniscus will result in
different eigenvalues k allowable in the fluid vessel, and it has been noted that
unless the interface is somehow pinned to a specific height, the strict quanti-
zation of the allowable k values in the system is somewhat blurred (resulting
in a less discrete range of frequencies) [41, 42]. In all of the above theo-
ries, it is assumed that the velocity potential obeys Von Neumann boundary
conditions, equivalent to a contact angle of 90°.

Theoretical treatments allowing for various contact angles have been
given (see [53] in addition to the above), however to this author’s knowl-
edge, there has been no rigourous confirmation of these predictions beyond
demonstration that the stability curves are altered when the contact angle is

8Even when we multiplied the daming term from section 3.1 by the customary factor
of 2.
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changed [80], or that theories have a “plausible agreement [53]” with exper-
iments when certain physical parameters are assumed .

All of these complications can perhaps make the prospect of predictions
seem pretty bleak, however there is a bit of light at the end of the theoretical
rabbit-hole. A more recent experimental study investigated stability curves
using the simple dispersion theory outlined in section 3.1. This group found
very good agreement with theoretical predictions using equation (3.29), so
long as they multiplied the damping found in [10] by a factor of 8. 9

The efficiency of this methodology cannot be argued with. One may
simply adjust the value of γk until it matches experiments, and then one is
free to use any standard numerical method to solve equation (3.29) as an
ODE. All of the uncertainty when dealing with fluid parameters vanishes!

Approximating the Floquet exponents with an ODE also has a secondary
benefit. In the Floquet theories presented above, a perfect (and eternal)
sinusoidal acceleration is assumed, making it difficult to estimate the effects
of finite shaking intervals, and shaker noise. The final method of predicting
the Floquet exponent therefore consists of solving the ODE given by equation
(3.29), and numerically extracting the exponential amplification rate that
results by fitting a linear polynomial to log |ξk|. The value of γk used can
be either adjusted to provide the best experimental fit, or set directly using
experimentally obtained dissipation rates.

Figure 3.2 compares the predictions of the different methods. In both
panels, we see that there is a cluster of modes which interact with the shaker
strongly enough to become amplified. This occurs around the m = 7 mode
for the first radial wavenumbers (panel a), and around m = 4 for the second
(panel b). 10 The ODE simulations (denoted by the × symbol) match the
simple dispersion Floquet predictions for the same simulated parameters, as
expected. The Chadrasekhar Floquet theory used by Kumar and Tuckerman
does produce different predictions than the simple dispersion relation. How-
ever it appears that correcting for the boundary layers on the sidewalls does
not significantly change the predicted amplification rates for most modes
when comparing to the Chandrasekhar theory. The modes that do change
significantly appear to be at the extreme ends of the amplified clusters, sug-
gesting that a small shift in natural frequency is causing a significant shift

9Recall that the value in equation (3.30) is off from standard predictions found in [10]
by a factor of 2. Compared to our damping result, the authors had to multiply by 16.

10The first and second radial wavenumbers correspond to the smallest and second small-
est nonzero solutions of equations (3.11) and (3.82).
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in the predicted amplification rate.
The simulations labeled ‘ODE, 4λk’ show significantly smaller amplifica-

tion rates then any of the other simulations. These correspond to the ODE
equation (3.29) with 4× the theoretical damping found in [10]. In Chapter
6, we will see that the ODE simulation produces excellent results for the
m = 4 mode when we simulate the system using accelerometer data from
the experiment and experimental values of the dissipation rate. As we shall
see this correspondence with a completely linear simulation will provide a
valuable comparison to data, as a way of testing whether deviations from
expected behavior are due to nonlinearities.
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Chapter 4

Experimental concept and
methodology

The theories described in the previous chapter pertain to a system which
undergoes sinusoidal oscillations perfectly aligned with the acceleration due
to gravity, and the analysis described in Chapter 2 is predicated on a large
number of individual experiments with identical laboratory conditions and
parameters. Theoretically and numerically, these constraints are quite easy
to implement, but in practice matching these assumptions requires careful
design and calibration.

In this chapter, we will examine some of the more imporant mechanical
aparatus developed to ensure that we are as close to the theoretical frame-
work as experimental precision will allow. The first item discussed will be
the aparatus used to produce vertical oscillations, hereafter referred to as the
shaker. After this, we will examine the detection method for measuring the
interface waves. We will then provide a brief discussion of the automation
process, and the steps taken in order to procure a large number of experi-
mental runs. We will close this chapter with the design of the fluid cell.

4.1 Vertical sinusoidal oscillations, and the

design of the Shaker

In order to enable reliable statistical analysis, the conditions of individual
experimental runs must be kept as consistent as possible. In this section,
the overall design of the apparatus used to subject the two-fluid system to
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approximately vertical sinusoidal oscillations will be discussed.
We will first explain the concept behind the shaker design, pointing out

the most important components and explaining their relavance. The proce-
dure for aligning the shaker so that the oscillations are approximately ver-
tical (parallel to the acceleration due to gravity) will be briefly explained.
For more details on the calibration of the accelerometer, and the alignment
process, see Appendix B.

4.1.1 Concept and Mechanics

The shaker was designed as a driven simple harmonic oscillator, and is de-
picted in Figure 4.1. In the following, the components detailed will be ref-
erenced by their corresponding number in the figure. The entire system
rests on an active noise-cancellation, auto-leveling optical table correspond-
ing to (0) in the figure. 1 The springs (1) are selected such that the natural
frequency of the spring-mass system matches the desired frequency of the
shaker’s oscillations.

Vertical guides were incorporated into the design in order to reduce un-
wanted horizontal motion. The vertical guides were built using frictionless
air-bearings (2), confined to move along 20mm diameter steal posts, chosen
to drastically exceed the expected horizontal forces from the shaker motion,
without taking up too much space in the experimental design. The air-
bearings themselves provided a frictionless surface of air ∼ 10µm thick, and
provided a restoring force of 23Nµm−1 whenever the system was pushed out
of equillibrium [81].

The resonant spring-mass system acts as a mechanical filter reducing me-
chanical noise, and ensuring that higher harmonics of the driving frequency
are unlikely. In addition, the resonant system can be driven with very little
input, and a simple 8Ω speaker (3) 2 driven at less than 1.5V was found to
be more than adaquate. In order to ensure that the oscillations produced
were sinusoidal, and restricted to vertical, an accelerometer 3 (4) was used
to measure the driving frequency oscillations in three orthogonal directions,
and adjustment screws (5) were used to minimize horizontal accelerations.
The accelerometer was also used to set the driving frequency of the shaker as
in the following procedure: Starting with the observed frequency for damped

1Thorlabs, PTS602
2Tectonic, TEBM65C20F-8
3Analog Devices, EVAL-ADXL354
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Figure 4.1: Schematic of the shaker design.
The entire system rests on a noise-isolating, auto-leveling optical table (0).
The springs (1) are selected so that the natural frequency of the spring-mass
system matches the desired frequency of shaker oscillations.
The vertical guides (2) restrain the system on a frictionless cushion of air.
Since the system is driven at resonant frequencies, a small electromagnetic
driver (3) is capable of producing the required oscillations.
The motion is recorded using a high-precision accelerometer (4), and the
system is aligned to vertical using leveling screws (5).
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oscillations measured when the spring-mass system was pertubed from rest,
a narrow frequency sweep, in increments of 0.025 Hz was conducted. The
driving frequency was then chosen to correspond to the peak amplitude of
this frequency sweep.

Figure 4.2 shows an example of the accelerometer data for a single shaker
experiment. In panel a), we can see the acceleration data as a function of
time. The vertical dashed lines indicate the window for the FFT analysis,
which is much more informative. In panel b), we see that the x and y com-
ponents of the accelleration are more than two orders of magnitude smaller
than the vertical at the driving frequency (6 Hz in this example). The higher
harmonic peak for ãz at 12 Hz is due to distortion of the sine wave.

4.2 The Detection Method

The detection method for the interface waves was a type of Fourier Trans-
form Profilometry (FTP)[82], modified to reduce occlusion and localized er-
rors, and to utilize refraction as in a Schlieren technique [83]. Essentially,
the Schlieren method provides a map between optical displacements (due to
refraction) in a sinusoidal pattern and the gradient of the fluid interface. The
FTP method is able to measure sub-pixel optical displacements by comparing
this deformed sinusoid to a stationary reference pattern. For a more detailed
analysis of the detection method’s precision and noise level, see Appendix A.

The interface waves can be modeled as a height field ξ(x, y, t), where
ξ describes the perturbed height (relative to the equillibrium height of the
fluid interface), and x, y, and t are the laboratory coordinates. When the
height field ξ is perturbed away from its horizontal equillibrium, light from a
point p(x, y, t) is refracted by the curvature of the interface, which causes an
apparent displacement, δ~x, of the position of p as measured by the camera.
A schematic of the optical setup for the detection method is shown in figure
4.3, with the main optical components labeled.

These displacements are related to the gradient of the height field,

∇ξ = −h−1
∗ δ~x, (4.1)

where δ~x is the vector displacement, and h∗ is an optical parameter given by

h∗ =

(
1

αhp
− 1

H

)−1

. (4.2)
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(a)

(b)

Figure 4.2: Accelerometer data from the shaker .
Panel (a) depicts the acceleration versus time for each of the three axis. Note
the scale used for ax,y is two orders of magnitude smaller than the scale used
for az. The vertical, dashed lines indicate the window used for the Fourier
transform in panel (b).
Panel (b) depicts the spectral amplitude for each of the three filters. The
spectral amplitude of the x, y and z components are listed, along with the
ratio Rã.
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Figure 4.3: Schematic of the optical aparatus for the shaker setup. The entire
system is bolted to the optical table (0), so that the relative motion between
each of the components is zero. The camera is mounted on translation stages
(1) allowing adjustments perpendicular to the optical axis. A custom built
kinematic mount for the imaging mirror (2) allows us to align the optical axis
to be approximately parallel with the fluid cell’s axis of symmetry (see Figure
4.4). The periodic pattern used in the detection method is illuminated from
below (3).

In the above, hp is the distance between the pattern and the interface, H
is the distance between the pattern and the camera, and α is a constant
function of the index of refraction for both fluids:

α = 1− nupper

nlower

. (4.3)

The obtained gradient is then integrated to recover the height field ξ.
In order to efficiently measure the displacements δ~x, a method of Fourier

Transform Profilometry (FTP) based on Schlieren analysis is performed [68,
83]. In this method, a periodic pattern is placed below the fluid interface, and
images at time t are compared to a reference image, assumed to represent
zero displacement. Figure 4.4 shows an example, where we have chosen
the mean of 100 stationary images to represent the reference (taking the
mean negates possible fluctuations in the reference, better approximating
zero displacement).
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Figure 4.4: Panel (a) is an averaged set of images from the experimental
setup. The pattern is a 2-dimensional sinusoid, with equal period in the
x and y directions. Note that nearly half of the image is masked by the
fluid cell, necessitating the use of a compactly supported filter in the FTP
method.
Panel (b) depicts a zoomed-in portion of the image. The color-scale ranges
from the minimum pixel intensity value to the maximum pixel intensity value
within the pattern, and all pixels obscurred by the fluid cell are zero. At the
edge of the fluid cell, we can see that meniscus effects distort the pattern
making this region untrustworthy.
Panel (c) depicts the hole drilled into the inner cylindar of the fluid cell.
The hole is 1.5mm in diameter, and the height of the cylindar is 30mm. By
observing the light that passes through, and comparing the major and minor
diameters of the resulting elipse, we can estimate the angle θ between the
camera’s optical axis and the axis of the fluid cell. By adjusting the mirror
shown in figure 4.3, we have reduced θ to less than 0.1°.
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4.2.1 Measurement of a known interface

In order to ensure that our detection method produces accurate results, we
have tested the method on plano-convex spherical lenses, 4 with focal lengths
of f1 = 1000mm, f2 = 750mm, f3 = 500mm, and f4 = 250mm. The lenses
are made of N-BK7 glass with a refractive index of nlens = 1.515 [84], and
were submerged in pure water nupper = 1.33. The radius of curvature for
these lenses, Ri is related to the focal length, fi by the known formula [84]

Ri = fi(nlens − 1), (4.4)

and the precise specifications of manufacture provide an excellent resource
for testing the detection method.

The raw data, and the wrapped phase information is depicted in Figure
4.5. Figure 4.6 depicts the reconstructed height profiles h(x, y) for each of
the lenses. Panel (d), which depicts the ratio of a reconstructed diameter over
the theoretical radius of curvature provided by equation (4.4) is of special
interest. The solid lines represent a reconstruction in which the integration
is done in Fourier space, as described in equation (A.51). The dotted line
represents the arithmetic mean of trapezoidal integration in the x and y
directions separately. In general, spectral integration is expected to produce
better results, since it is not based on any finite difference approximations,
and is global in nature.

Another interesting feature in panel (d) is the nearly flat nature of each
curve. This is indicative that the reconstructions are off by a linear factor
in each case, and that this linear factor changes with each lens. Though
this may at first seem troubling, we might account for this linear error by
noting that each lens has a different thickness according to its method of
manufacture. This thickness alters the value of hp (assumed constant) in
equation (4.2) by a small amount. This, in turn causes a change in scale of
the approximated gradient in equation (4.1).

4.2.2 Lighting, and other imaging considerations

This section will briefly describe the optical setup for the experiment, includ-
ing camera alignment, the lighting system, as well as the reasoning behind
the camera distance and the camera aperture setting. Figure 4.3 represents

4Thorlabs, ESK53-A
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(a) (b)

(c) (d)

Figure 4.5: Panel (a) depicts the mean reference image, I0, and panel (b)
shows the deformed surface with the lenses. The lower panels show the
wrapped phases for the signal extracted from the (x− y) [panel (c)], and the
(x + y) [panel (d)] components of the pattern. The range of the colorbar
is from −π to π. In the experiment conducted, the pattern used was of
the form P (x, y) = A cos(2πk0x + 2πk0y) + A cos(2πk0x − 2πk0y), and the
resulting phase differences represent displacements in the direction of ±45°
to the horizontal, and the x and y components are recovered algebraically.
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Figure 4.6: Panel (a) depicts the reconstructed height profile (in meters) for
each of the four lenses, starting with the lens of highest curvature. Panel (b)
shows the difference (in meters) between the reconstructions and the theo-
retical surfaces defined by equation (4.4). Panel (c) depicts the horizontal
diameter of each lens, along with the theoretical value. Dotted lines show
reconstructions using the mean of trapezoidal integrations in the x and y di-
rections. Panel (d) shows the ratio of the reconstructions over the theoretical
profiles.
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dx

θ

hc

Figure 4.7: Alignment of the optical axis relative to the fluid cell. (The
schematic is not to scale.)

the shaker setup including the equiptment built to accomodate the detection
method. In order to eliminate relative motion between the components, ev-
erything is bolted to the optical table, labeled (0) in the figure. The camera
5 was mounted on translation stages (1) 6 so that the system could be easily
centered in the camera’s field of view, maximizing the number of pixels used
in the detection method.

The system was imaged using a mirror mounted at 45°(2), with purpose-
built adjustment screws to facilitate optical alignment. In order to align the
optical axis of the system with the axis of the fluid cell, a 1.5mm diameter
hole was drilled in the inner cylinder of the fluid cell (see figure 4.4, panel c).
The height of the cylinder is hc = 30mm, and the large aspect ratio provided
a means of accurately estimating the camera’s alignment. If θ is the angle
between the optical axis and the axis of the cylinder, and 2 dx is the width of

the obscurred portion of the 2mm aperture, then we have that θ = asin
(

dx
hc

)

(see Figure 4.7.) By carefully adjusting the mirror, we were able to obtain
2 dx = 1px = 0.04mm (see Figure 4.4, panel (c)), corresponding to an angle
of less than 0.1°.

The LED imaging array (3) was designed to provide nearly-uniform high-
intensity lighting to be placed below the periodic pattern described above.
7 Each component was mounted in a custom-made printed circuit board
(PCB), designed with the help of the electronics technical staff, and were
driven using constant-current, low-noise [85] diodes designed specifically for

5Phantom VEO 640L, Ametek
6Thorlabs, part numbers DTS50/M and DTSA03/M.
7Wurth Elektronik, part number 151053RS03000
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LED illumination. 8

The PCB was designed as a tightly packed equilateral grid of 19x20 LEDS,
capable of producing 1900cd of luminous intensity. The output is then passed
through a number of ground glass optical diffusers 9 placed at 10mm intervals
above the array. The diffusers ensure that the discrete grid of lamps appears
as a uniform light source to the camera.

The additional illumination provided by the LED array allowed us to
reduce the aperature of the camera lens to its minimum value. This served
dual purposes in reducing optical noise, and increasing the depth of field.

4.3 Automation and synchronization

The experimental design, and detection procedure both ensure that the im-
portant experimental parameters (such as shaker acceleration amplitude, and
detection sensitivity) are consistent from experimental run to experimental
run. In this section, we will discuss the methodology behind the automation
of the system, including a description of the automation script which runs
the experiment.

4.3.1 Automation of the shaker using Matlab, and Na-
tional Instruments card

Each piece of experimental hardware (excluding the camera) was controlled
using a National Instruments multi-function data aquisition card, 10 capable
of analog and digital input and output. The device was interfaced with
Matlab using the (now legacy) daq.createSession interface of the Data
Aquisition Toolbox [86].

One of the important parameters included in this set is the time t = 0
at which the shaker is switched on. In order to synchronize each of the data
sets, an indicator LED was mounted on the outside edge of the fluid vessel.
This LED was switched on in parallel with the shaker-driver, with a precision
better than ±1.25 × 10−4s. This allowed us to synchronize each individual
experiment to within one timestep (a single image in the video stream).

8Diodes Incorporated, part number AL5809.
9Thorlabs, part numbers DG100X100-20 and DG100X100-220

10National Instruments, PCIe-6363
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Additional measurements were made in order to ensure that the exper-
imental conditions from experiment to experiment were consistent. These
measurements included the air pressure feeding the air bearings, the voltage
output to the indicator LED, and three temperatures sensors were placed
at strategic locations: Close to the fluid vessel, on the air supply manifold
for the air bearings, and an additional measurement was possible due to a
thermometer inside of the accelerometer.

The steps to run a single experiment are as follows:

1. Initialize, and switch on:

1.A) Initialize the driver, the indicator LED, and the analog inputs for
the accelerometer, temperature sensors and other inputs;

1.B) Initialize the camera;

1.C) Turn on the imaging LED array, and open the valve for the air
bearings using a digital switch;

2. Begin data aquisition:

2.A) Begin recording images;

2.B) Pre-shaking pause ( 6 seconds);

2.C) Begin recording analog inputs and begin shaking the system;

2.D) Stop shaker, and synchronization LED;

2.E) Post-shaking pause ( 8 seconds);

2.F) Stop image aquisition, acceleration and temperature measurements;

3. Turn off, download, and save:

3.A) Switch off the LED array, and switch off the air bearings valve;

3.B) Download the images and save the accelerometer and temperature
data;

In the above procedure, step 1. is performed before the data collection
in order to ensure that the steps in 2. run as smoothly and quickly as pos-
sible. (In particular, initializing the camera can take a variable amount of
time.) The LED array is switched off between experiments in order to pre-
vent overheating of the array and the fluid cell, and to maintain a consistent
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illumination profile from experiment to experiment. In step 2.B), we record
several seconds of images of the stationary system in order to use their aver-
age as a reference (see section A.3 for details). The analog inputs in step 2.C)
are started a few milliseconds before the shaker driver and the synchroniza-
tion LED. After the shaker driver and the synchronization LED are stopped
in step 2.D), the spring-mass aparatus, and the interface oscillations con-
tinue with exponentially decaying amplitude. The extended period of data
aquisition enables the capture of this data.

Step 3. is fairly self-explainatory. Each data set contains thousands of
images (roughly 4500 with a framerate of 100 frames per second), and the
most stable way to download is as a proprietary .cine file, specific to the
hardware used. The accelerometer and temperature data are saved as .mat

files, native to Matlab. The time taken to download and save also provides
additional time for the interface waves to return to their initial (unamplified)
state. This settling time is necessary if we want the experimental runs to be
uncorrelated.

The automation of the camera was facilitated using a proprietary soft-
ware development kit (SDK) with a Matlab interface. This SDK is not in
widespread use, and support from the developer was extremely limited.

4.4 Fluid cell designs, and fluid choices

As the experiment progressed, it became more and more apparent that in
order to eliminate problems with the fluid cell and the procedure for filling
it, we would need to test a large number of filling methods and this was
made quite difficult when additional safety measures were required. In what
follows, we will examine the different cell designs, as well as the problems
encountered and solutions which lead to further iterations.

4.4.1 Fluid choices, and influence on cell design

The initial experiments were attempted in an open air–water system. This
system was soon discared for two reasons. The first was due to the significant
surface tension contribution, both to the dispersion relation, and in the form
of a meniscus which formed at the vertical boundaries of the system.

Since the meniscus is dependent on the surface tension, as well as the
accelleration due to gravity [10], a time-dependent g(t) produces a time-
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dependent mensicus, which manifests as travelling waves moving away from
the vertical boundaries. In the air–water system, the effect of the meniscus
was prominent enough that the meniscus waves completely dominated the
system at early times. The effect of this contribution to the interface waves
undergoing parametric resonance is not well understood.

The second reason was perhaps more simple. From the start, the goal was
to automate this system, so that we could do statistics on a large number of
experimental runs. It was quickly discovered that over the course of several
hours, the water in the system would evaporate, reducing the fluid level and
changing the experimental parameters. For these reasons, it was decided
that a liquid–liquid system in a closed cell would be preferable.

4.4.2 Iterative design of the fluid cell

The fluids used in the experiment were chosen to minimize the effects of
surface tension. This was done in order to bring the dispersion relation closer
to the linear approximation described in [50], and thus make the analogy with
cosmology more applicable.

One of the overarching problems encountered with systems comprising
of two liquids was air bubbles trapped in the fluid cell. In particular, when
the system was shaking, larger bubbles (modulated by the effective gravity)
would oscillate with the oscillating pressure of the fluids. This caused un-
wanted forced oscillations from the upper window at the driving frequency.
In addition, the presence of bubbles (even smaller bubbles) produced devia-
tions and occlusions in the detection method.

Filling the fluid system in such a way that no air was trapped proved to be
a difficult design challenge, and the final cell was designed to acomodate fluids
that were safe enough to find in a well-stocked kitchen [87], and inexpensive
enough to purchase large quantities of. The safety and availability of the
final fluid system allowed for dozens of different methods to fill the fluid cell
to be attempted. The final filling procedure made it possible to quickly,
reliably and reproducibly fill the fluid cell and make adjustments ensuring
the absense of bubbles, and an approximately equal volume of each fluid.

Iteration 0: all acrylic fluid cell, with n-butanol–water system.

The first liquid–liquid system that was used for the experiment consisted
of n-butanol as the upper fluid, and purified water as the lower fluid. Pu-
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rified water has a density of ρ = 997kgm−3, and a dynamic viscosity of
µ = 0.89mPas, at 25°C, and the density and viscosity of n-butanol were
taken to be ρ = 815kgm−3, and µ = 2.54mPas at 25°C [88]. As explained in
section 2, n-butanol was chosen primarily due to the low coefficient interfacial
tension with water, τ = 1.8mN/m [67].

The main advantages of n-butanol were in the relatively low cost, (less
than £40 for a 2.5L bottle [89]) and the fact that it did not chemically interact
with transparent acrylic plastic (enabling precise machining of the fluid cell).
The primary drawback to using n-butanol was due to safety and disposal
concerns [90]. n-butanol is a flamable liquid which causes skin irritation,
serious eye damage and the fumes cause respiratory irritation. In addition,
n-butanol needs to be disposed of in a sealed container.

Due to the harmful nature of the vapors, the liquid can only be handled
under a fume hood. This meant that leaks in the fluid cell were potentially
dangerous, and in a short period of time it was seen that these leaks were
inevitable with the fluid cell as it was designed. During the final attempt to
fill the fluid cell, the base separated from the circular cylinder. The entire
system was discarded, and new plans were drawn up.

This failed attempt at the n-butanol–water system provided two impor-
tant conclusions. The first was that working with a chemical which required
a fume-hood for safe handling was out of the question. Even if the fluid cell
could be filled successfully, the chances of a leak in the system were far too
high. The second was that a great deal more thought had to be put into the
fluid vessel if it was going to be filled completely (without air bubbles) with
two liquids.

Iteration 1 (nylon cylinders, glass windows, neoprene gaskets)

The next fluid system utilized purified water as the upper fluid, and propylene
carbonate as the lower fluid. Propylene carbonate has a density of ρ =
1205kgm−3, and a dynamic viscosity of µ = 4.2mPas, at 25°C [88], and
a surface-tension coefficient of τ = 2.8mN/m [67]. This combination was
chosen so that we once again minimized the coefficient of surface tension
between the two liquids, however we also wanted the fluid to be safer than
n-butanol.

The vapor pressure of propylene carbonate is more than 200 times lower
than the vapor presure of n-butanol [90, 91]. For this reason, no precautions
regarding chemical fumes are necessary. Further, though propylene carbonate
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Figure 4.8: A rendered
representation of the
original acrylic tank.
The actual tank was
discarded after it broke
apart.

may cause skin irritation, it is safe enough to be used in cosmetics at low
concentrations [92].

Figure 4.9 is a schematic of the first fluid cell designed to eliminate bub-
bles. Glass windows were required since transparent plastics are soluble in
propylene carbonate. The centeral cylinder was aligned to the axis of the
outer cylinder by using an aluminium jig which protruded through the upper
window.

The cell was designed to be filled under water in order to eliminate the
presense of bubbles, and sealed with neoprene gaskets. Importantly, neoprene
is one of the few elastic materials which does not chemically interact with
propylene carbonate. The system was then held in an aluminium frame,
tightened by six machine screws. After the system was sealed, propylene
carbonate could be added, and water removed using hypodermic syringes
and septa seals (small rubber seals which close after the needle is removed).

In practice, there were many problems with this design. Most noticably,
the neoprene gaskets provided a very poor seal, and the glass windows tended
to crack when tightening the aluminium frame. The problem with the gaskets
was circumvented by using a great deal of silicone sealant, which proved to be
unaffected when submersed in propylene carbonate. Finally, the septa seals
tended to provide an excellent point of entry for air, and as time went on it
became clear that these seals were not fit for purpose. The septa seals were
eventually replaced with threaded luer-lock adapters. These were retro-fitted
into place as a temporary solution.

While the first nylon tank was able to produce some preliminary results,
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(1)

(2)

(3)

(4)

Figure 4.9: The fluid-cell designed
for the propylene carbonate–water
system. The windows (1) were
made from glass, which limited
the amount of machining possible.
The central cylinder was aligned to
the axis of the outer cylinder us-
ing an aluminium jig (not shown),
through a hole drilled in the glass
(2). The entire system was sealed
using gaskets (4), and the fluid-
levels were adusted using hypoder-
mic syringes and septa-seals (3).

it was clear that the system was not able to produce a consistent experiment.
Most of these issues stemed from the fact that propylene carbonate interacted
so strongly with plastics. For example, the standard method of making
a system of this size air-tight is to use o-rings, however o-rings for large-
diameter fittings were not available in neoprene (one of the only plastics that
did not dissolve in propylene carbonate). Likewise, the glass windows could
not be machined. This reduced the precision of the windows, and necessitated
the use of the aluminium jig (which provided another point of entry for air
to contaminate the sample).

Iteration 2 (nylon cylinders, o-rings, and acrylic windows)

As many of the problems with the first nylon vessel were due to the use of
propylene carbonate, an alternative fluid-fluid system had to be devised. An
alternative, novel system was first devised after seeing a Youtube video [93]
featuring a demonstration of a fluid-fluid system with “salted out” isopropenol.
After much trial and error (mostly done by a labmate), a new system was
devised.

The two-phase sytem is in dynamic equillibrium. It consists of an organic
phase containing mostly water and ethanol, as well as an aqueous phase con-
taining mostly water and aqueous potassium carbonate. 11 The two-phase

11In reality, the organic phase has a small percentage of potassium carbonate, and the
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(2)

(3)

(4)

(5)

(1)

80mm
40mm

Figure 4.10: The fluid-cell de-
signed for the two-phase system
(not to scale). The windows (1)
were made from machined acrylic,
with a recess (2) cut into the
window to hold the inner cylin-
dar (made from nylon) in position.
The system was sealed using o-
rings(4), and fluid levels were ad-
justed using luer lock fittings (3).
A narrow hole was drilled in the in-
ner cylinder (5) to improve optical
alignment.

system has a number of advantages over the water–propylene carbonate sys-
tem. Perhaps most importantly, this system is far safer. The increased safety
provided us with extra opportunities to experiment with different methods
for filling the first nylon vessel. This, in turn allowed us to produce a new
design better suited to our requirements.

The current fluid-cell is depicted in Figure 4.10. The inner and outer
radii of the fluid cell are 20mm and 40mm respectively, and the total depth
is 35mm. In this iteration, acrylic windows 12 are machined to accomodate
a recess which holds the inner nylon cylinder in place. This provides a more
precise alignment, and eliminates another potential path for bubbles to enter
the system, as there is no need for an alignment hole.

Because we have fewer restrictions on materials, o-rings are used to seal
the system. These are fit in a corresponding recess which provides an engi-
neered seal between the windows and the outer cylinder. Luer locks provide
an easy means to add and remove fluids, and to eliminate bubbles. The luer

aqueous phase has a small percentage of ethanol.
12It has been observed that acrylic windows are stable in the short-term. However, after

long periods, the acrylic will absorb ethanol, swell and become crazed. When experiments
are not being conducted, the fluid-cell is filled with water to prevent this.
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adapters are threaded directly into the outer cylinder. 13

The procedure for filling it is as follows:

1. After submerging all of the components and knocking to remove bub-
bles, the tank is assembled under water.

2. The assembled tank is drained, and rinsed with excess organic solution
from the two-phase system. This is repeated.

3. The two phases are added in equal amounts using a syringe. After
the syringe is locked in place, the system is pressurized as the fluid is
added. When pressure is released, the excess air and bubbles re-fill the
syringe.

4. Minute adjustments are made using the same procedure. Additional
aqueous solution is added to the top, and the excess volume re-fills the
syringe with organic solution. Similarly, additional organic solution is
added to the bottom.

Perhaps a note is in order, regarding the final version of the fluid cell,
as well as the two fluids. The importance of this final system, its repeata-
bility, safety, and standardised filling procedure cannot be over emphasized.
Without a repeatable fluid-fluid sample, free from bubbles and other con-
taminents, the experiment was not practical. The new tank was also stable,
allowing us to run experiments over long periods, obtaining 1500 separate
runs for the results shown in Chapter 6.

13It is almost not possible to overstate either how incredibly well-engineered the luer
lock technology is, or how well it works. Even the end-caps, which produce an air-tight
seal are designed to use surface tension to prevent bubbles from entering the system when
tightened.
However, much to our dismay, we believe that air is still able to enter the system due to
a fault in the threading of the nylon cylinder.
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Chapter 5

Analytic Methods

In this chapter, we will outline the methods used to process the data from
the experiments. The experimental results will be given in Chapter 6. In
the first two sections, we will make the mapping between our real-valued
data and the complex mode functions explicate before introducing a time-
frequency analysis using wavelets which allows us to differentiate between
the propagating and counter-propagating modes defined in Chapter 2.

A more comprehensive examination of mode squeezing in field theory
will then be given, including a description of the statistical observations
possible in our classical system. Finally, we will examine mode-squeezing in
the presense of linear damping, and we will present a normalization method
that makes observation of squeezing in damped systems possible.

5.1 Interface wave analysis

5.1.1 Mode functions and cylindrical coordinates

The system under consideration has axisymmetric boundaries, and the wave
equation (see Chapter 3, equation (3.8)) is separable in cylindrical coordi-
nates. In this section, we will detail the mapping between the height field
measured in our system and the mode functions favored in relativistic field
theory using the eigendecomposition of the height field. After this, we will
explain the procedure for transforming the data (which is measured on a
Cartessian grid using a camera) into cylindrical coordinates via a 2D inter-
polation. We will finish this section with a demonstration of the effect that
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the interpolation method used has on the data.
The height field ξ(θ, r, t) is composed of Bessel functions in the radial

direction, and sinusoids in the azimuthal and temporal directions. Expanding
the height field, we have

ξ(θ, r, t) =
∑

ω

∑

k

∑

m

am,k(t)Rm(rk) cos (mθ − ωm,kt+ ϑm,ω) , (5.1)

where Rm(kr) = Jm(kr) + bm,kYm(kr), and bm,k and k are chosen to satisfy
the radial boundary conditions. Similarly, the constant ϑm,ω and the initial
value am,k(t = 0) are chosen to satisfy the initial conditions of the system.

The periodic boundary conditions in the azimuthal direction imply that
m is an integer, and the frequency is taken to be either a positive or negative
real number, and when the product mωm,k < 0, the mode functions represent
waves propagating in the θ direction. Likewise, when mωm,k > 0, the mode
functions represent waves which propagate in the −θ direction. In what
follows, we will often refer to these two cases as propagating and counter-
propagating modes respectively. 1

From the field theory perspective, quasi-particles are represented by com-
plex exponentials called mode functions, with a well-defined instantaneous
amplitude. Recall that the wave equation (represented in k-space) describing
the height field ξm,k(t) is given by

ξ̈m,k + 2γ(k)ξ̇m,k +

(
τ

ρ1 + ρ2

k2 +
ρ1 − ρ2

ρ1 + ρ2

g(t)

)
k tanh(kh0)ξm,k = 0, (5.2)

where the fluid parameters are defined as before.
If um,k and its complex conjugate u∗m,k form a basis for the solution space

of this second order ODE, then we can write the full solution as

ξ(θ, r, t) =
∑

k

∑

m

ξm,k(t)Rm(kr) eimθ, (5.3)

with
ξm,k(t) = bm,kum,k(t) + cm,ku

∗
m,k(t). (5.4)

1In QFT, the convention is to define the modes with −ωm,kt terms as positive frequency,
and the modes with ωm,kt terms as negative frequency. We will follow this convention
here, however in what follows, propagating (counter-propagating) and positive (negative)
frequency will be used interchangably.
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Since we require the interface to be a real number, we have that ξ−m,k =
ξ∗m,k. Further, since equation (5.2) does not depend on the sign of m, 2 we
have that um,k = u−m,k. Together, these two facts imply that cm,k = b∗−m,k.

Rewriting equation (5.3) as a sum over m ≥ 0, and supressing the radial
component for clarity, we have

ξ(θ, r, t) =
∑

m≥0

ξm(t) eimθ +ξ−m(t) e−imθ (5.5)

=
∑

m≥0

[
bmum + b∗−mu

∗
m

]
eimθ + [b−mum + b∗mu

∗
m] e−imθ . (5.6)

Equation (5.6) represents the equation that will be used throughout most
of the analysis in the sections below. However, for rapidly changing b±m, it
is not so easy to separate the positive and negative frequency signals and so
this representation can be a bit misleading. A more natural representation of
the modes in the system as real-valued amplitudes is obtained by converting
back to real numbers.

If we assume that the mode function um has the form am(t) e−iωm,kt, with
am ∈ R, and we write bm = 1

2
am(t) eiϑm,ω , we see that equation (5.6) and

(5.1) are the same:

ξ(θ, r, t) =
∑

m≥0

([
bm e−iωmt +b∗−m eiωmt

]
eimθ +

[
b−m e−iωmt +b∗m eiωmt

]
e−imθ

)
,

(5.7)

=
∑

m≥0

[
bm eimθ−iωmt +b∗m e−imθ+iωmt

]
+
[
b−m e−imθ−iωmt +b∗−m eimθ+iωmt

]

=
∑

ω

∑

m

am(t) cos (mθ − ωmt+ ϑm,ω) (5.8)

where the sum over m in the last line includes negative integers once again,
and we have continued to supress the radial component.

This seeminly trivial mapping contains a subtle importance within the
context of the analogy. In a quantum system, the complex amplitudes b∗m
and bm are akin to creation and annihilation operators, b̂†m and b̂m.

2While the eigenvalues k depend on m, the transcendental equations which determine
the values of k are invariant with respect to the sign of m, and the equation of motion is
likewise invariant with respect to the sign of k.
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In our classical system, the (real) amplitude am(t) is continuously observ-
able with non-destructive measurements, and it can be seen from equation
(5.7) that the b+m terms correspond to propagating modes, and the b−m am-
plitudes correspond to counter-propagating modes. On the other hand, the
representation in (5.8) which leads directly to the real representation of the
field demonstrates that if the propagating and counter-propagating modes
are to be measured separately, then they must first be resolved into positive
and negative azimuthal components.

In the next section, we will outline the interpolation procedure used to
transform the rectilinear height-field data (obtained from the digital camera)
to the cylindrical coordinates corresponding to the symmetry of the fluid cell.

5.1.2 Coordinate transformation of data

In this section, we will explain the interpolation procedure used to transform
the experimental data from Cartesian to cylindrical coordinates. We will
then provide a comparison of the interpolation methods standard in Mat-
lab, and we will finish by demonstrating the effect of white noise on this
transformation.

Since the data is created in Cartesian coordinates, the interpolation must
be defined in terms of Cartesian coordinates. For example, we set c, d to be
integers ranging from 0 to N − 1, and define

x =2

(
c

N
− 1

2

)
, (5.9)

y =2

(
d

N
− 1

2

)
, (5.10)

so that x, y ∈ [−1, 1). An N ×N image I[c, d] can now be defined in terms
of these coordiantes,

I[d, c] ≡ I
(
x[c], y[d]

)
(5.11)

and we are careful to note that the indices change positions:

[row, column] 7→
(
x[column], y[row]

)
. (5.12)

We define our query points for the interpolation in polar coordinates first.
For minimum and maximum radii r1 and r2, we set

r[a] = r1 +
a

Nr − 1
(r2 − r1) , (5.13)
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where a is an integer ranging from 0 to Nr − 1, and Nr ' N
2

(r2 − r1) is an
integer chosen to correspond to the actual number of points being sampled.

Likewise, we can estimate the number of points in the azimuthal direction
as an integer, Nθ ' 2πN

2
r1, 3 allowing us to define the azimuthal coordinate

θ[b] = 2π

(
b

Nθ

− 1

2

)
, (5.14)

where b is once again an integer ranging from 0 to Nθ − 1.
The query points for the interpolation are now defined using the polar

coordinates:

xq[a, b] =r[a] cos (θ[b]) , (5.15)

yq[a, b] =r[a] sin (θ[b]) . (5.16)

Specifically, we use Matlab’s interp2 function, which interpolates using
one of five methods:

� nearest (Nearest neighbor), simply sets the value of the query point to
the value of the nearest sample; this method is the only discontinuous
interpolation method available.

� linear sets the value using a bilinear interpolation formula (which is
just a linear interpolation in each direction).

� cubic uses a bicubic interpolation (once again, cubic in each direction).

� makima (Modified Akima), uses piecewise Hermite polynomials.

� spline interpolation uses cubic splines.

Figure 5.1 depicts the resulting spurious signals due to the interpolation
from Cartesian coordinates into cylindrical coordinates. The data is defined
to be a perfect m = 8 sinusoid sampled along the x and y coordinates defined
above. From the figure, we might assume that the cubic splines will always
produce the best results, and in a noise-free situation this is true.

Figure 5.2 depicts the same analysis with the inclusion of noise. Here,
we can see that all of the continuous methods have similar performance,

3In practice, we set Nr and Nθ to be a power of 2, enabling a small speed-up in the
FFTs used in the analysis.
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(a)

(b)

Figure 5.1: Panel (a) depicts the azimuthal Fourier transform of a perfect
sinusoid sampled on Cartesian coordinates [Panel (b), sampled at the white
dashed line]. The sinusoid has a wavenumber m = 8, and though each in-
terpolation method produces the correct amplitude at this signal, spurious
signals at varying wavenumbers are created by the coordinate transforma-
tion. It is clear that the nearest neighbor scheme produces the least accurate
approximation, followed by the linear and modified Akima schemes, then the
cubic scheme and finally the cubic splines. Note the scale on the vertical
axis. The spurious signals for each of the continuous interpolation schemes
is on the order of 10−6 times smaller than the actual signal.
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though there is a huge discrepancy between the time required for the spline
methods and the linear and cubic schemes. Interestingly, it seems that when
noise is taken into account, linear interpolation is both the fastest continuous
method, and produces the lowest spurious signal.

5.2 Relevant observables, and problems with

real-valued data

In section 5.1.1 we briefly touched on the difficulties encountered when work-
ing with real-valued data. Within the analogy between QFT in cosmological
backgrounds one works with complex mode functions which are described by
theoretically well-defined occupation numbers (amplitudes) at all points in
time. However in the experiment, the interface waves are measured as real-
valued sinusoids. In this section, we will introduce two methods to extract
the propagating and counter-propagating amplitudes described previously,
namely the Hilbert transform and the wavelet transform. We will provide
a motivating example for both, and produce simulated data explaining the
benefits of each.

Consider, for example, the case of a solitary pair of propagating/counter-
propagating waves, both with time-dependent amplitude A(t). Ignoring the
radial component, the observable height field at time t is given by

ξ(θ, t) = A(t) cos (mθ − ωmt+ ϑm,ω) +A(t) cos (mθ + ωmt+ ϑm,−ω) . (5.17)

Two waves moving in opposite directions with the same amplitude sum to
a standing wave. To see this, we first redefine the time coordinate, t 7→ t+t0,
so that

−ωmt0 + ϑm,ω =
ϑ

2
, and (5.18)

ωmt0 + ϑm,−ω =
ϑ

2
. (5.19)

Further, we redefine the azimuthal coordinate, θ 7→ θ+θ0, so that mθ0 = −ϑ
2
.
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(a)

(b)

Figure 5.2: Panel (a) depicts the mean spectrum of 1000 interpolated sinu-
soids with 1% white noise added. The procedure is the same as that used to
produce Figure 5.1. Note that the mean spectral amplitude falls below 1%
for all of the continuous interpolation methods for all m > 0. Interestingly,
the m = 0 signal seems to be close to 1% for each interpolation scheme. The
average time taken to interpolate the data using each method, is listed in the
legend.
Panel (b) shows the spectrum for a single data-point, for comparison.
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Equation (5.17) simplifies to

ξ(θ, t) =A(t) cos (mθ − ωmt) + A(t) cos (mθ + ωmt)

=A(t)
[

cos(mθ) cos(ωmt) + sin(mθ) sin(ωmt)

+ cos(mθ) cos(ωmt)− sin(mθ) sin(ωmt)
]

=2A(t) cos(mθ) cos(ωmt).

(5.20)

Now, we can start to see the problem with our real observables. If we
wish to describe these waves in our system as mode functions, then we will
need to know the amplitude A(t) at all times t. However, we have no way to
estimate A(t) when cos(ωmt) is not close to the extremal values ±1. 4

In order to recover the instantaneous amplitude, the standard practice
when working with real signals s(t) is to perform a Hilbert transform, defined
as the Cauchy principal value of the integral [94]

H[s](t) =

∫ ∞

−∞

s(t− τ)

πτ
dτ. (5.21)

In the simpliest case of s(t) = a cos(ωt) (with constant a), it can be shown
that H[s](t) = a sin(ωt). This allows us to define the analytic extension of
s(t) as

s̃(t) = s(t) + iH[s](t)

= a cos(ωt) + ia sin(ωt)

= a eiωt .

(5.22)

While for the standing wave described above, Bedrosian’s theorem [94]
proves that if A(t) varies more slowly than cos(ωmt), and the spectra of A(t)
and cos(ωt) do not overlap, then

H[A(t) cos(ωt)] = A(t) sin(ωt). (5.23)

Thus, we can recover the amplitude A(t) at all times using the analytic
extension of ξ:

ξ̃(θ, t) =ξ(θ, t) + iH[ξ(θ, t)]

=2 cos(mθ)A(t)
[

cos(ωmt) + i sin(ωmt)
]

=2A(t) cos(mθ) eiωmt,

(5.24)

4One approach in dealing with this issue is to locate the local extrema and then to
interpolate between these points to find A(t). However, this approach fails to distinguish
between propagating and counter-propagating modes.
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since |ξ̃(θ, t)| = 2A(t) cos(mθ), and the amplitude can be recoverd with an
azimuthal FFT.

In the case of time-dependent analogs however, one is often interested
in observing rapid changes in the analog metric. For example, if A(t) is an
exponentially increasing function (as is the case in parametric resonance)
then the spectrum of A(t) drops off as 1

f
and Bedrosian’s theorem does not

apply. In the next section, we will examine the efficacy of wavelet analysis
when considering this problem.

5.2.1 The Continuous Wavelet Transform

The investigation performs a time-frequency analysis using a Continuous
Wavelet Transform (CWT). 5 The CWT used is commonly referred to as
the Morlet wavelet, and the implementation used preserves the amplitude of
a signal [55]. This type of analysis looks at small time-segments of the data
(‘windowed’ by a normalized Gaussian distribution) and finds the spectral
content of these windows of data by comparing them to a complex expo-
nential (see [55] Section 3.1 for a concise motivation of the CWT). This is
accomplished by convoluting the signal with a wavelet function ψ(t), here
given by

ψfc(t) =
1√
πσ

e
−t2
σ2 e−i2πfct, (5.25)

where σ is the standard deviation of the Gaussian envelope, chosen to compli-
ment the central frequency fc. In practice, choosing σ = 1

fc
is practical, since

this ensures that the envelope allows six full oscillations of the exponential
within 99% of its total area.

This type of wavelet transform is particularly suited to the analysis of
parametrically amplified waves obeying the linear field theory. We know
from the analysis given in section 3.2 that for parametric oscillations with
frequency 2πfd ≡ ωd, the growing modes have a fixed frequency equal to
πfd, and that the amplitude is exponential. Thus, an amplified mode in our
system will have the form

ξm(t) = b̃m eλmt e−iπfdt +b̃∗−m eλmt eiπfdt . (5.26)

We can therefore select the central frequency of the wavelet to match the
frequency of the growing mode. The resulting convolution is then between

5Actually, it is a discrete approximation of a CWT.
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a normalized Gaussian and an exponential. The solution of this integral is
well known [95]:

∫ ∞

∞
ψ± fd

2

(t− τ) eλmτ e±πfdτ dτ = e
2λ2m
f2
d eλmt e±iπfdt, (5.27)

where we select either the posive frequency mode, or the negative frequency
mode depending on the sign attached to the central frequency of the wavelet.
Keeping in line with the notation used above, we can define our time-dependent
amplitude functions,

dm(t) =bm e
2λ2m
f2
d eλmt, (5.28)

d∗−m(t) =b∗−m e
2λ2m
f2
d eλmt . (5.29)

This approximation is valid away from sharp transitions in amplitude behav-
ior. In particular, due to our choice of σ = 1

fc
with our wavelet, we have a

99% confidence in our results after three oscillations of our growing mode (in
Chapter 6, we will see that this corresponds to roughly 1s).

We can thus approximate the instantaneous amplitude for an exponen-

tially changing amplitude to within a multiplicative factor, exp
(

2λ2m
f2d

)
, which

is of order 1 when λm is much smaller than the driving frequency fd. Further,
by taking the logarithm of the amplitude, we can separate this known factor
from the exponential amplification rate,

log |dm(t)| = λmt+
2λ2

m

f 2
d

+ |bm| ' λmt+ |b̃m|. (5.30)

Likewise, when the shaker is switched off, we expect to have exponentially
decaying waves according to equation (3.29). Writing the exponential decay
rate as γm, 6 we have

log |dm(t > tstop)| = γmt+
2γ2

m

f 2
d

+ |bstop|, (5.31)

where in this case, the constant bstop represents the amplitude of the mode
function after shaking has ceased.

6This slight abuse of notation also serves to differentiate between the experimental
dissipation rate and the theoretical dissipation rate γk.
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We can therefore see that during a period of exponential growth, we are
able to extract the exponential growth rate, as well as an estimation of the
initial amplitude |bm|. Likewise, during a period of exponential decay we are
able to extract the decay rate γm, and further, the exponential rates will not
be subject to approximation errors from the continuous wavelet analysis.

Using equation (5.7) as a starting point for our analysis, we see that for
a given height field ξ(θ, t), the azimuthal FFT amplitude for the +m mode
gives

ξm = dm(t) e−iωmt +d∗−m(t) eiωmt, (5.32)

and the output of the positive and negative frequency wavelet analysis will
therefore be

dm 'bm eλmt e−iωmt, and (5.33)

d∗−m 'b∗−m eλmt eiωmt, (5.34)

enabling us to proceed with the analysis presented in Chapter 2.

5.3 Free Field Theory Analysis

In this section, we will introduce the Bogolyubov transformation for our
analog mode functions. Following this, we will develop the idea of classical
mode squeezing and we will demonstrate that this phenomenon is observable
even in the presense of dissipation.

5.3.1 Mode statistics: Classical squeezing in the non-
dissipative theory

We will define classical squeezing in an analogous way to quantum squeezing.
In quantum squeezing the variance of an observable (position for example) is
‘squeezed’ below its vacuum expectation value, at the expense of the variance
of its conjugate momentum. The increase in one variance is necessary due
to the Heisenburg uncertainty limit, such that the product of the variances
remains constant.

While a full description of quantum squeezing is outside the scope of this
thesis, the author recommends [96] for additional information. In our system,
we will define squeezing to be such that the variance of an observable will
drop below the variance in the initial state [50].
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In this section, we will provide some motivation and formalism regarding
the Wronskian of the field ξm. This will be followed by a presentation of the
Bogolyubov transformation for the system, and a field theoretic description
of the amplification and creation of counter-propagating modes.

In Chapter 2, we introduced an auxilliary field, defined in order to elim-
inate the first derivative term (corresponding to damping in this case) from
the equation of motion in question. Beginning with the equation of motion
for our field ξm,

ξ̈m + 2γmξ̇m + ω2
mξm = 0, (5.35)

where we have rewritten equation (3.29) to use the subscript m. We make
the following coordinate change:

χm = eγmt ξm. (5.36)

We can rewrite the equation of motion as

χ′′m + Ωm(t)χm = 0, (5.37)

where the frequency Ωm is given by

Ωm = ω2
k(t)− γ2

m. (5.38)

Since equation (5.37) is a second order differential equation, we can span
the space of solutions with two linearly independent functions. In the most
general case, if xm and ym are two linearly independent solutions to (5.37),
then um = xm + iym is a complex solution, and {um, u∗m} form a basis for all
complex solutions [56].

Keeping equation (5.7) in mind, we see that the mode functions um and
u∗m can be viewed as waves moving with opposite momenta, allowing us to
write χm as a superposition of counter-propagating waves:

χm = bmum + b∗−mu
∗
m. (5.39)

These functions are generally normalized using the Wronskian, 7 defined as

Wr(um, u
∗
m) = u̇mu

∗
m − umu̇∗m. (5.40)

7If we wish to quantize our theory, we may do so at this point by mapping b±m 7→ b̂±m,
and requiring the operators to satisfy the usual bosonic commutation relations,

[
b̂±m, b̂

†
±k′
]

= δ(k − k′)
[
b̂±m, b̂±k′

]
=
[
b̂†±m, b̂

†
±k′
]

= 0,

and normalizing the mode function as above [56].
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Taking the derivative of Wr, we have

Ẇr = ümu
∗
m + u̇mu̇

∗
m − u̇mu̇∗m − umü∗m. (5.41)

Cancelling terms, and adding Ω2
mumu

∗
m − Ω2

mumu
∗
m, we have

Ẇr =
(
üm + Ω2

mum
)
u∗m −

(
ü∗m + Ω2

mu
∗
m

)
um, (5.42)

which is zero by equation (5.37), implying that the Wronskian is conserved.
Normalizing the functions χm so that Wr(um, u

∗
m) = 2i allows for the

definition of the usual ladder operators and commutation relations associated
with b±m in a quantum field theory [56].

Translational symmetry of the equations of motion imply that momentum
is conserved in this system. However, changing the frequency Ωm changes
the energy of the field χm. As energy is added or removed from the sys-
tem, the momentum of the field is compensated via the creation of counter-
propagating waves. This can be seen from the following example.

Consider a monochromatic propagating wave, initially in flat space, that
is completely described by a single plane wave χm = bmum eik·~x, where um =

e−iΩ
(i)
m t for all time t < 0 (region 1). At t = 0, the spacetime undergoes some

expansion (region 2), before once again becoming static for all t > tf (region
3). Since the equation of motion is second order and the solutions in region 3
are plane waves ({vm, v∗m} say), we know that after the expansion the mode
um is some superposition of vm and v∗m:

um = αmvm + βmv
∗
m. (5.43)

It is easy to show using equations (5.40) and (5.43) that so long as the mode
functions are normalized in the same way, we will have

(
|αm|2 − |βm|2

)
Wr(vm, v

∗
m) = Wr(um, um∗), (5.44)

=⇒ |αm|2 − |βm|2 = 1. (5.45)

Thus we see that equation (5.43) describes a Bogolyubov transformation [97,
40], familiar from quantum field theory in curved spacetimes.

In particular, if the system in question is undergoing parametric amplifica-
tion, we can rewrite the Bogolyubov coefficients in terms of the amplification
rates predicted by the Floquet theory (equation (3.39)):

αm = cosh(ηmt), (5.46)

βm = sinh(ηmt). (5.47)
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This satisfies equation (5.45) trivially, and helps with intuitive understanding
of the system.

If our solitary propagating wave χm is undergoing parametric amplifi-
cation, then initially αm = 1 and βm = 0. As amplification progresses,
counter-propagating waves (corresponding to βmv

∗
m) will be produced as the

propagating waves are amplified (this must occur since momentum is con-
served).

After several cycles, the difference between the propagating and counter-
propagating amplitudes is e−ηmt. On the other hand, equation (5.44) implies
that the energy of the propagating mode grows along with the energy of the
counter-propagating mode. Observationally this means that even if the sys-
tem starts out with a solitary propagating wave χm, the creation of counter-
propagating modes implies that the system will tend towards a standing
wave. However in what follows, we will show that it is equation (5.44) which
gives meaning to the interpretation provided by classical squeezing.

5.3.2 Classical squeezing for the auxilliary field

In general, the Bogolyubov transformation can be considered a change of
basis from {um, u∗m} to {vm, v∗m}, and for any arbitrary expansion [57], we
have

χm = bmum + b∗−mu
∗
m (5.48)

7→ bm (αmvm + βmv
∗
m) + b∗−m (α∗mv

∗
m + β∗mvm) (5.49)

= dmvm + d∗−mv
∗
m. (5.50)

Collecting terms, we see that the mode function amplitudes after expansion
are given by 8

dm = αmbm + β∗mb
∗
−m. (5.51)

This quantity is often investigated as the two-point auto-correlation over
a large number of measurements:

〈dmd∗m〉 =
〈
|dm|2

〉
=
(
|αm|2 + |βm|2

) 〈
|bm|2

〉
, (5.52)

where we have used the fact that αm = α−m, βm = β−m, and 〈|bm|2〉 =
〈|b−m|2〉 due to symmetry in the equation of motion, and the fact that the

8Note that the observables dmvm and d∗−mv
∗
m correspond to the output of the wavelet

transform for the positive and negative frequency wavelets respectively.
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uniformly distributed azimuthal phase ensures that 〈b2
±m〉 = 〈bmb−m〉 =

〈bmb∗−m〉 = 0. Similarly, we find that modes propagating in opposite di-
rection are now cross-correlated:

〈dmd−m〉 = 2αmβ
∗
m

〈
|bm|2

〉
. (5.53)

Note that by construction (under the assumptions of axisymmetry and lin-
earity), all other m−m′ correlations are zero.

The amplification and cross-correlation manifest themselves in the sys-
tem as 2-mode squeezing. If we define the real observableXm = dmvm+d∗mv

∗
m,

then we can examine the quadrature variables (Xm +X−m) and (Xm −X−m).
We compute the variance of both quantities:

Var (Xm ±X−m) = 〈(Xm ±X−m)2〉
= 4

〈
|bm|2

〉 {(
|αm|2 + |βm|2

)
|vm|2 ± 2Re

(
αmβ

∗
mv

2
m

)}
.

(5.54)

If the mode functions vm are normalized to 1, 9 and we choose t such that
Re (αmβ

∗
mv

2
m) is maximized, then we find that Var (Xm −X−m) is squeezed

below its initial state, while Var (Xm +X−m) is increased. However, it is easy
to show algebraically that the product Var (Xm −X−m) Var (Xm +X−m) re-
mains constant when Re(αmβ

∗
mv

2
m) = |αmβ∗mv2

m|:

1

16 〈|bm|2〉2
Var (Xm +X−m) Var (Xm −X−m)

=
{(
|αm|2 + |βm|2

)
+ 2|αm||βm|

}{(
|αm|2 + |βm|2

)
− 2|αm||βm|

}

=
(
|αm|2 + |βm|2

)
− 4|αm|2|βm|2

=
(
|αm|2 − |βm|2

)2
= 1. (5.55)

This is the classical analog of quantum squeezing. In the quantum picture,
one observable is squeezed below the quantum uncertainty limit while its
conjugate variable increases accordingly in order to preserve the uncertainty
principle [96]. In our classical analog, we find from equation (5.54) that
as 2|αm||βm| −→ |αm|2 + |βm|2, the oscillating cross-correlation term will
cause Xm + X−m to alternate between 0 and 2 (|αm|2 + |βm|2). Intuitively,

9Since we are not quantizing our fields, we need not follow the convention of normalizing
the mode functions using the Wronskian.
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this corresponds to different moments in time for a standing wave. When
Xm + X−m is maximized, the standing wave is at its zenith, and all of the
energy of the mode is stored as potential. When Xm + X−m is zero, the
free-surface is flat, and all of the energy is kinetic.

Mathematically, we can use the forms for αm and βm predicted by the
Floquet theory. We define

Nm ≡ 4
〈
|bm|2

〉 (
α2
m + β2

m

)

= 4
〈
|bm|2

〉 (
cosh(ηmt)

2 + sinh(ηmt)
2
)

= 4
〈
|bm|2

〉
cosh(2ηmt), (5.56)

and

cm ≡ 4
〈
|bm|2

〉
2αmβmv

2
m

= 4
〈
|bm|2

〉
2 cosh(ηmt) sinh(ηmt)v

2
m

= 4
〈
|bm|2

〉
sinh(2ηmt)v

2
m (5.57)

from equation (5.55). This allows us to predict the shape of the distributions
for Xm +X−m and Xm −X−m when Re(cm) = |cm|:

Nm + |cm| = 4
〈
|bm|2

〉
e2ηmt, (5.58)

and
Nm − |cm| = 4

〈
|bm|2

〉
e−2ηmt . (5.59)

Additionally, we shall see in section 5.3.3 that these variables also provide a
useful measure of the degree of decoherence in the system.

5.3.3 The Wronskian for the field ξm

In the above calculations, the constant value of Wr(um, u
∗
m) is a result of

equation (5.37). When considering the Wronskian and the field ξm, we must
use instead equation (5.35). In this case, we find that equation (5.42) becomes

∂t Wr =
(
üm + ω2

mum
)
u∗m −

(
ü∗m + ω2

mu
∗
m

)
um (5.60)

=− 2γm (u̇mu
∗
m − umu̇∗m) (5.61)

=− 2γm Wr . (5.62)
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Thus, we find that the Wronskian is no longer conserved, and for a damped
field described by equation (5.35), we have

Wr(um, u
∗
m) = Wri e

−2γmt, (5.63)

where Wri is some initial value, defined by equation (5.40) and the initial
mode functions {um, u∗m}.

If we assume an initial (static) spacetime with a constant Wronskian for
the mode functions {um, u∗m}, and we define the Bogolyubov coefficients for
the instantaneous mode functions {vm, v∗m}, then we will find that

|αm|2 − |βm|2 = e−2γmt . (5.64)

This, together with the definition of the auxilliary field suggests that

αm = e−γmt cosh(ηmt), (5.65)

βm = e−γmt sinh(ηmt). (5.66)

Repeating the same calculations for the quadraturesXm andX−m, we find
the product in equation (5.55) is no longer constant. With linear damping,
the same calculation gives

Var (Xm +X−m) Var (Xm −X−m) (5.67)

=16
〈
|bm|2

〉2 (|αm|2 − |βm|2
)2

(5.68)

= e−4γmt 16
〈
|bm|2

〉2
, (5.69)

and we can see that the interpretation given for the auxilliary field is no
longer valid.

Keeping the definition of the auxilliary field in mind, it would be con-
venient to simply redefine the quadratures in the same manner as equation
(5.36). Unfortunately, in practice this leads to very large amplitudes, and
fails to produce the predicted results. Trying another tactic, we define:

∆4
m = Var (Xm +X−m) Var (Xm −X−m) (5.70)

= e−4γmt 16
〈
|bm|2

〉2
, (5.71)
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as well as the new quadratures

Ym =
1

∆m

Xm (5.72)

=
eγmt

2
√
〈|bm|2〉

(dmvm + d∗mv
∗
m) , (5.73)

≡
(
d̃mvm + d̃∗mv

∗
m

)
. (5.74)

Where the new amplitudes d̃±m are theoretically consistent with the auxil-
liary amplitudes defined in equation (5.51).

The advantages of defining the normalization in this manner are two-fold.
First, the product of the variances

Var (Ym + Y−m) Var (Ym − Y−m) = 1 (5.75)

is trivially conserved. Second, ∆m provides a statistically accessible and con-
sistent way of eliminating the exponential factor from the quadratures X±m,
ensuring that the normalized Bogolyubov coefficients match the theoretical
coefficients for the auxilliary field which obey equation (5.45). This further
implies that the squeezing should be characterized by equations (5.58) and
(5.59).

A note regarding the observed product of variances

It should be mentioned that in data as well as in linear ODE simulations ,
we have not observed an exponential decay in equation (5.67). It is currently
believed that this is due to imperfect statistics. Taking the unnormalized val-
ues Nm and cm defined in (5.56) and (5.57) respectively, the theory produces
the following result:

lim
t→∞
|cm|
Nm

= 1. (5.76)

In practice, the time-dependent v2
m term in the definition of cm produces

inconsistencies due to the precision of finite timesteps in real-world measure-
ments and synchronization between experimental runs. For Nruns experi-
ments (or simulations), we will have that

lim
t→∞

1− |cm|
Nm

≡ εm ∝
1

Nruns

. (5.77)
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Using the Floquet predictions for the Bogolyubov coefficients as defined
in (5.65), and redefining the observable cm so that

cm ≡ 4
〈
|bm|2

〉
(1− εm) sinh(2ηmt)v

2
m, (5.78)

we see that the product of variances is likewise modified:

1

4 〈|bm|2〉
(
N2
m − |cm|2

)

= e−4γmt + e−4γmt
(
2εm − ε2m

)
sinh2(2ηmt)

' e−4γmt +2εm e(4ηm−4γm)t . (5.79)

The above suggests that for any finite number of experiments, the product
of variances given in equation (5.55) will be observed to increase exponentially
(even when γm = 0) when t is large enough that

2εm e4ηmt > 1. (5.80)

These results coincide and expand upon statements regarding quantum
squeezing [98]. Specifically, “Pure Platonic Squeezing” is an idealized concept
(arising from the Platonic ideal for a given experiment), and some form
of decoherence is always present. The parameter εm is equivalent to the
parametrization of the level of decoherence, δk defined in [99]. In this study,
the authors consider temporal decoherence due to weak nonlinearities in an
interacting quantum system. To this author’s knowledge, decoherence arising
from imperfect synchronization of continuous measurements (not possible in
quantum experiments) and statistics in a perfectly linear system has not yet
been considered.
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Chapter 6

Results

In this chapter, we will present the results of the experiments detailed in
Chapter 4. The first section will demonstrate the methodology used to ex-
tract the amplification and damping rates, as well as the extrapolated initial
amplitude for a single experimental run. We will then present the results for
the full set of experiments.

In the second section, we will present the field theoretic results for the
squeezing that was presented in section 5.3.3. These will be compared with
data simulated using a linear ODE as discussed in section 3.5.

6.1 Fluid Physics Results

In this section, the measured parametric amplification rates, extrapolated
initial amplitudes, and exponential damping rates will be shown. We will
first outline some experimental parameters for the data set. We will then
present a step-by-step analysis of the quantities listed above for a single
experimental run. Finally, we will present the full results of the experiment,
and discuss the accuracy that has been acheived.

6.1.1 Experimental Parameters

In this section, the repeatability and consistency of experimental parameters
across the full data set will be demonstrated. The results that follow pertain
to 1500 experimental runs. The first data point was taken at approximately
17:00 on July 23rd 2021, and the full dataset took approximately 50 hours
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to complete. The approximate 2 minute duration of each experimental run
included roughly 25s of shaking, and 75s of downloading and data storage. As
can be seen in what follows, the damping rate measured in each experiment is
more than double the amplification rate. By this estimation, there was more
than sufficient time to allow the system to return to its initial state between
experimental runs (ensuring that consecutive experiments are uncorrelated).
The full experiment was conducted over the weekend in a dark-room in order
to minimize both mechanical and optical noise in the measurements.

In Figure 6.1, panel a) we see accelerometer and temperature data for all
1500 experiments. The acceleration of the shaker is defined as the Fourier
amplitude ãz ≡ ãz(fd), where fd is the frequency of the shaker’s oscillations.
1 From the figure, we can see that the amplitude of the shaker’s oscillations
drifts slightly as time passes. In particular, we see a significant change be-
ginning at roughly 11:00 on the 24th of July, and another at roughly the
same time on the 25th. From the temperature data, we can postulate that
these changes result from sharp increases in ambient temperature starting in
mid-morning on a summer day. Presented as µ± σ (the mean plus or minus
the standard deviation), we have the shaker amplitude (corresponding to ε̃
defined in equation (3.38)):

ãz(fd) = 3.458± 0.025ms−2. (6.1)

It is currently believed that the observed anti-correlation between the
shaker amplitude and temperature is due to shifts in the natural frequency
of the spring-mass system. The origin of this believe stems from the trial-
and-error method by which we set the shaker frequency (see section 4.1):
On a particularly hot day in the summer, this procedure was conducted as
we entered the laboratory, and before the air-conditioner had been started.
In the afternoon of that day, it was discovered that the shaker amplitude
had dropped with the ambient temperature, and the above procedure was
conducted again resulting in a new peak amplitude.

Panel b) shows information detailing how well the experiment matches the
theoretical assumptions about the shaker’s oscillations. The left-hand axis
depicts the ratio of the magnitude of the radial accelleration and the vertical
acceleration at the driving frequencies (see Appendix B, equation (B.5) for
more details). The right-hand axis displays the total harmonic distortion

1Specifically, we use twice the Fourier amplitude at fd, since half of the energy in the
signal is at −fd.
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(a)

(b)

Figure 6.1: In panel a), the left-hand vertical axis depicts the Fourier ampli-
tude from the accelerometer for each experimental number. The right-hand
axis shows the change in temperature for the three separate thermometers
used. It can be seen that during periods of stable temperature, the shaker
amplitude is quite constant. The non-uniformity in the accelerometer data
suggests that the sharp increase in the temperature during the summer morn-
ing and early afternoon was most influential.
In panel b), the left-hand axis shows the relative horizontal acceleration at
the driving frequency. It should be noted that for each experiment, the hor-
izontal acceleration is less than 0.5%. The right-hand axis depicts the total
harmonic distortion (THD). This value is maintained below 1.5% for each
experiment.
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(THD), which is a measure of how much the shaker deviates from a pure
sinusoid in its oscillations. The THD quantity in the figure is calculated as:

THD =

√∑20
n=2 ãz(nfd)

ãz(fd)
, (6.2)

where ãz(nfd) indicates the nth harmonic of the driving frequency fd.

If more precision in the shaker is required, there are two suggested fixes
regarding the previous conjectures: First, the experiment could be thermally
buffered from the surrounding room. Attempts were made to control the
temperature using an air-conditioner, however the air-conditioner installed
operated on a 10 minute duty cycle, and this cycle was very noticable in the
data collected. A buffer, consisting of an inner and outer box may smooth
these variations. The second suggestion is perhaps more robust. Transient
signal analysis (available in many introductory textbooks, see [69] for ex-
ample) informs us that a driven damped harmonic oscillator will have a
broader resonance peak if the damping and driving force are both increased.
This implies that if the natural frequency of the system shifts slightly due
to environmental conditions, there will not be such a sharp decrease in the
steady-state amplitude of the spring-mass system.

In Figure 6.2, we see the same accelerometer data presented as a relative
deviation from the mean amplitude,

Q =
ãz − 〈ãz〉
〈ãz〉

. (6.3)

This is presented for the full data set in panel a), and for subsets S1 (con-
taining 561 experimental runs), and S2 (containing 532 experimental runs) in
panel b). In order to obtain the subsets, the Matlab function findchangepts

was used to separate the shaker amplitude into contiguous samples with a
similar root mean square in the relative deviation. Written as above, with a
superscript indicating the set number, we have

ã(1)
z (fd) = 3.486± 0.003m, (6.4)

and
ã(2)
z (fd) = 3.448± 0.003m. (6.5)
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(a)

(b)

Figure 6.2: Panel a) depicts the relative deviation of the shaker amplitude
and the mean versus experiment number, with regions of stability bounded
by the vertical lines. We can see that for all 1500 experiments, we are within
+1% and −1.5% of the mean amplitude, 〈2|ãz|〉 = 3.46ms−2.
In panel b) we see that for the subsets S1 and S2, this deviation is considerably
reduced, and we are within +0.2% and −0.4% of the mean for each subset.
Letting the subscript denote the set number, we have 〈2|ãz|〉1 = 3.49ms−2,
and 〈2|ãz|〉2 = 3.45ms−2.
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6.1.2 Interface wave results

In this section, we will first present the results of the interface wave analysis
regarding the exponential growth and decay rates, and the approximation
of the initial amplitude for the interface waves. This will be followed by a
presentation of a subset of data points which does not display the behavior
expected from the linear theory.

In Figure 6.3, we see the progression from reconstructed height field to
the time-evolution of a single azimuthal mode. The (2+1)-dimensional data
is reduced to (1+1) dimensions by considering a single radius in isolation.
In panel a), we see a time-slice corresponding to tstop (the moment that the
shaker-driver is switched off) for experiment number 36. Note that we seem
to be examining an m = 4 mode with one radial zero crossing (see section
5.1.1). The isolated radius is emphasized by the horizontal dashed lines, and
corresponds to 22.4mm (chosen to maximise the signal to noise-ratio). In
what follows, we will consider the m = 4 mode at the radius pictured for
each of the experimental runs.

Panel b) displays the time-evolution of all of the azimuthal modes at the
selected radius. It is clear from this figure that for all time-steps, the m = 4
mode carries the strongest signal. In panel c), we see the time-evolution of
the m = 4 mode. In this figure, we can clearly see a period of exponentially
increasing amplitude prior to tstop followed by a damping period after the
shaker-driver is switched off.

Figure 6.4, panel a) demonstrates the Morlet wavelet analysis presented
in section 5.2.1. In it, we see that at fd

2
= 3.035Hz, a signal becomes aparent

at roughly 12s, and grows to dominate the signals at all frequencies. In
section 5.2.1 we saw that the output of the wavelet transform was the complex
amplitude,

dm ' bm eλmt e−iωmt . (6.6)

Since this quantity is complex, we have access to the instantaneous ampli-
tude of the mode, which is plotted in panel b). Panel b) also demonstrates
how the initial amplitude can be approximated, and how the exponential
amplification rate for the mode, as well as the exponential damping rate are
extracted from the log amplitudes. This same analysis was automated, and
the quantities above were extracted for all 1500 experimental runs.

In Figure 6.5, we see the resulting analysis for the entire (time-synchronized)
experimental set. In panel a), we see that there are actually four distinct re-
gions in the data. In region 1, we do not have enough resolution in the
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Figure 6.3: In panel a), we see a single timeframe of the reconstructed height
field. The data is from experiment number 36, at the timestep closest to the
stop-time of the shaker, tstop = 26.36s. The horizontal white lines outline the
selected radius, Ir = 16, for the data analysis.
Panel b) depicts the azimuthal Fourier decomposition for the selected radius
for all time-steps. From this plot, we can see that the m = 4 mode presents
the strongest signal. The vertical white line indicates tstop.
Panel c) depicts the m = 4 mode versus time. The black vertical dashed
line indicates tstop. Note the exponential increase in amplitude starting at
roughly 15s, followed by the exponential damping after tstop.
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Figure 6.4: In panel a), we see the frequency-time decomposition for ξ4. The
greyed out areas on the left and right-hand edges of the plot indicate regions
for which the boundary effects of the wavelet are too large to neglect. The
vertical line represents tstop, and the red box indicates fd

2
.

Panel b) depicts the instantaneous amplitude for the mode as a function of
time. The exponential amplification rate is extracted as the slope of log(|ξ̃m|),
and the initial amplitude is approximated as the linear offset. The exponen-
tial damping rate is extracted as the slope of log(|ξ̃m|) for t > tstop.
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detection method to distinguish the signal from the noise. Roughly, region
1 extends from 0s to 12.5s. In region 2, we can see that the majority of
experiments exhibit the exponential amplification that is predicted by the
linear theories presented in Chapter 3. Interestingly, this region extends all
the way to tstop for the majority of experiments, but not for all of them.

We can define region 3 as a ‘plateau’ region to accomodate this obser-
vation. As stated, the duration of region 3 is close to zero for the majority
of the experiments, however it is clear that the expected exponential am-
plification predicted by the linear theories fails once modes reach a certain
amplitude. 2 Finally, we define region 4 to begin at tstop for all experiments,
and to continue until the end of the data aquisition. As expected, this region
is characterized by exponential decay of the modes.

Though the detection method is not capable of resolving the initial am-
plitudes of the interface waves, we are still able to obtain an approximation
of

|ξm=4(0)| = 10−9.2±0.4m. (6.7)

The values presented in panel b) must be taken with a grain of salt; these
values are extrapolated all the way to t = 0, despite the shaker’s amplitude
of oscillation being too small to produce parametric amplification. Likewise,
more work must be done to understand the nature of this log-normal distri-
bution.

In panel c), we see that the distribution for the exponential amplification
rate parameter λm resembles a flattened Gaussian, with

λm = 0.535± 0.007s−1. (6.8)

In panel d), we can clearly see that the distribution of the measured damping
rates is bimodal, with

γm = 1.08± 0.01s−1. (6.9)

In order to explain the bimodal distribution of γm, we return our atten-
tion to Figure 6.1. In panel a), we can see that there is a clear increase
in temperature of roughly 1.5°C between set S1 and S2 (denoted in Figure
6.2). It is conjectured that the bimodal distribution in γm is due to a shift in
ambient temperature for the experiments (where an increase in temperature
is expected to correspond to a decrease in fluid viscosity).

2The consistency of this plateau amplitude across experimental runs is quite interesting,
however there was not enough time to investigate this properly
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Figure 6.5: Panel a) depicts the log-scale amplitude versus time for each of the
1500 experimental runs. As demonstrated in Figure 6.4, an approximation of
the initial amplitude, the exponential amplification rate and the exponential
damping rate are extracted. Panel b) shows a histogram of the order of
magnitude for the approximate initial amplitudes (in log10 meters). Panel c)
shows a histogram of the exponential amplification rate, and panel d) depicts
the distribution of the exponential decay rate (with units s−1). Note the twin
peaks in the exponential decay rates, which are believed to correspond to
different temperatures.
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Figure 6.6 displays the distributions for |ξm=4(0)|, λm and γm within the
subsets S1 and S2. In panel a), we can see that the approximated initial
amplitude distributions are quite similar. We have:

|ξm=4(0)|(S1) =10−9.2±0.4m, and (6.10)

|ξm=4(0)|(S2) =10−9.2±0.4m. (6.11)

In panel b), we see that S2 has a slightly lower mean amplification rate when
compared to S1. This is likely due to an interplay between the shift in shaker
amplitude and the shifted damping rates. The growth rates for the subsets
are:

λ(S1)
m =0.537± 0.008s−1, and (6.12)

λ(S2)
m =0.535± 0.007s−1. (6.13)

Panel c) is perhaps the most interesting. The subsets were initially defined
to correspond to regions of consistent shaker amplitude, and it can be clearly
seen in figures 6.1 and 6.2 that the ambient temperature in S2 is roughly
1.5°C warmer than it is in S1. We can therefore conjecture that the shift
in the γm distributions is due to a change in temperature. This is in line
with the fact that fluid viscosities are expected to decrease with increasing
temperature [100].

To the best of this author’s knowledge, the difference in damping is be-
lieved to represent the most precise measurement of the damping rates for
interface waves ever reported. 3 We have

γ(S1)
m =1.100± 0.008s−1, and (6.14)

γ(S2)
m =1.080± 0.005s−1. (6.15)

Finally, we investigate the so-called plateau region described above. In
Figure 6.5, we note that once a mode reaches a certain amplitude, the ex-
ponential growth stops, and the amplitude plateaus at a somewhat steady
level.

With this in mind, we can approximate the time that an individual mode
stops growing using the log amplitude, as

tgrow '
log(|d4|max)− |ξ4(0)|

λm
. (6.16)

3See [101] for comparable results, however in this paper, the authors do not state the
number of repetions for each experiment.
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(a) (b) (c)

Figure 6.6: The distributions for the subsets S1 and S2. In panel a), we
see that the approximated initial amplitudes have the same distribution for
each subset. In panel b), we see that the center of the distribution for set
S1 is somewhat shifted compared to S2, though the shift doesn’t seem to be
significant. Panel c) depicts the distributions for the exponential decay rates
for each subset. It is conjectured that the damping rate for S1 is larger due
to the decreased temperature (see Figure 6.2). To this author’s knowledge,
the difference in the damping rates between S1 and S2 represents the most
precise measurement of interface wave decay that has ever been reported.
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Likewise, we can approximate the time that an individual mode starts de-
caying as

tdecay '
log(|d4|max)− |bstop|

γm
, (6.17)

where |bstop| is the offset in equation (5.31). We then define a plateau time
as

∆tplat = tdecay − tgrow. (6.18)

We then attempt to create a subset of ‘plateau-runs’ as follows:

SP := {U ∴ ∆tplat ≥ 〈∆tplat〉+ nσ}, (6.19)

where U represents the full data set, and σ is the standard deviation of ∆tplat.
The results are presented in Figure 6.7, and are remarkably consistent

with expectations when the number of standard deviations n, in equation
(6.19) is set to 1. In panel c), we see that the modes that appear to reach
a plateau begin with a larger amplitude in general. Since the amplification
rate for each of the experiments is similar, this implies that once a threshold
amplitude is reached, the modes dissipate energy into the other eigenmodes
in the system, and exponential growth stops. In particular, we see in panel
d) that since the plateau runs tend to have a similar amplitude, the standard
deviation of SP becomes smaller, and levels off before tstop. In addition, the
subset of non-plateau runs, SA = U\SP (where the A is for apparently-linear)
peaks at tstop, as we would expect. The plateau runs are scattered throughout
the 50 hours of the experiment with no apparent clustering, suggesting that
this plateau behavior is caused by random fluctuations in the initial state.
The direct observation of a transition from linear to nonlinear behavior will
be the topic of future investigations.

6.2 Field Theory Results

In this section, we will outline the results from the field theory predictions in
section 5.3. We will begin by introducing some simulated experiments, and
show that the relevant parameters (namely, ηm and λm) are in agreement
with the data. We will then present the results for classical squeezing in
the system, and compare the experiment to the simulations. Finally, we will
provide some preliminary results regarding higher-order correlations, which
suggest that the system is linear throughout most of its evolution.
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Figure 6.7: Deviations from expected linear behavior. Panel a) depicts the
distribution of the plateau times ∆tplat. Experiments that show a 1σ devia-
tion from the mean are considered plateau runs.
Panel b) demonstrates the plateau effect for the set of runs with a 3σ devi-
ation (chosen for emphasis). Note that most runs in this set share a similar
amplitude in the plateau region. The vertical dashed line represents tstop.
Panel c) shows the overlap between the 1σ plateau set and the full data set
for the distributions of the (log10) approximated initial amplitude.
In panel d), we show a heuristic check regarding the efficacy of the ∆tplat

sorting method. Here, we see that the deviation in the non-plateau runs
peaks at tstop as expected. In contrast, since each run plateaus at a similar
amplitude, the deviation between the 1σ runs decreases sharply before tstop.
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6.2.1 Classical squeezing results

Even though the majority of experimental runs appears to follow the predic-
tions of the linear theory, the fluid physics equations leading to the equation
of motion for the interface waves are known to be quite complex. This being
the case, a comparison between a completely linear theory (provided by the
ODE in equation (5.6), see section 3.5) and the data provides useful test to
verify if deviations from predictions are the result of nonlinearities. The sim-
ulations were conducted to mimic the experiments as closely as possible. The
damping rate for each simulation was chosen to match the damping measured
for the same experiment. Likewise, the gravitational acceleration g(t) was
taken directly from accelerometer data (see equation (3.31) and Figure 4.2).
Using the accelerometer data in the simulations allows us to incorporate any
nuances in the time-evolution of the shaker’s oscillations which might not be
included otherwise. The largest potential deviation from the experimental
parameters is likely the choice of initial state. For the simulations presented,
the initial amplitude for each mode was sampled from a complex normal dis-
tribution, and scaled to have a similar order of magnitude as found in the
experiment.

The resulting data is then treated exactly as experimental data, in the
form of azimuthal Fourier amplitudes, as depicted in panel c) of Figure 6.3.
Since the accelerometer data is not synchronized, individual simulations are
synchronized in the same manner as the experiments, using a voltage signal
from the indicator LED (read directly into the National Instruments card in
this case), and then treated with the same wavelet analysis. The results for
the exponential amplification rates λm are shown in Figure 6.8, and as can
be seen, are in agreement with the experimental value. Since the primary
parameters of interest in section 5.3 are γm and λm = ηm − γm, it is ex-
pected that the field theory predictions applied to the experiments and the
simulations should coincide.

In Figure 6.9, we see the product of variances, predicted to be exponen-
tially decaying for idealized statistics in equation (5.67), and increasing as
e4λmt when a finite number of experiments is considered.

In panel a), we see the decoherence parameter εm plotted versus time for
both the simulation and the experiments. There are two interesting compar-
isons to make here. First, the simulation decreases to a constant value at a
much faster rate than the experiment. If we accept the Floquet predictions
for αm and βm, then the ratio |cm|N−1

m should evolve as (1− εm) tanh(ηmt),

99



Figure 6.8: Simulated versus experimental amplification rates. By simulating
the system using accelerometer data and the experimental damping rates
(see equation (5.6)), we are able to obtain a close approximation to the
experimental amplification rates. This close correspondence allows us to
compare various field theory predictions for the experiment with a fully linear
model.
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so the rapid transition is expected. What is far less understood is the com-
paratively gentle slope for the experimental curve. As well, the experiment
demonstrates a much larger value of εm than the simulations. Since the ex-
periment and the simulations are synchronized in exactly the same manner,
timing alone should not account for the discrepancy. In panel b) of Figure
6.9, we see that the product of variances does indeed follow equation (5.79),
which adjusts for a nonzero εm.

Finally, we get to the classical squeezing. As described in section 5.3.3,
the quadratures must be normalized in order for the concept of squeezing to
have real meaning. According to equation (5.79), and the results in panel
d) of Figure 6.9, it is not likely that product of variances will be constant
as defined for the auxilliary field (equation (5.55)) if a system is dissipative
and the experiment is conducted over reasonable timescales. Indeed, even for
modest amplification rates, and a reasonable number of experiments, we will
still find that the quantity on the left-hand side of the inequality in (5.80) is
greater than 1.

With this in mind, the definition of (unnormalized) classical squeezing
makes little sense in the presense of strong dissipation, and some form of
normalization will be necessary. Figure 6.10 shows the squeezing results for
the quadratures Y±m. As we can see, the state does exhibit squeezing, in
the sense that as time progresses, the probability of measuring Ym = Y−m
increases.

The timesteps for the squeezing plots have been chosen to correspond
as closely as possible to the condition 2Re(dmd

∗
−mv

2
m) = 2|dm||d−m|, and for

clarity one cycle of this oscillation is skipped between images. The interval
was chosen to ensure that the signal was above the noise-level for the detec-
tion method, and we did not include redundant plots in which the degree of
squeezing remains constant.

So, while further investigation is required in order to provide a full in-
terpretation of the squeezing results, we have still demonstrated that it is
possible to measure this effect in a dissipative system. This should perhaps
be compared to the unnormalized squeezing results presented in Figure 6.11.
This figure is only provided for comparison, to show that without normaliza-
tion, one simply sees the probable amplitudes in the system increase.

It is somewhat surprising that the overall state is unsqueezed even at
t = 11.4s, and as demonstrated in Figure 6.12, this behavior is not found in
simulations. The initial timestep in Figure 6.12 is chosen so that we avoid
boundary effects with the wavelet, and the final timestep is chosen well after
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(a)

(b)

Figure 6.9: Panel a) depicts the decoherence parameter εm for simulations
and experiments. Note how quickly the simulation value of εm stabilizes
compared to the experiments.
In panel b), we see the simulated and experimental product of variances. As
predicted in section 5.3.3, we see that the observed value is close to 4λm.
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Figure 6.10: Classical squeezing of normalized mode functions. Each plot rep-
resents the probability distribution of the modes Ym and Y−m at the timestep
indicated. The red ellipse has major and minor axes equal to Var(Ym +Y−m)
and Var(Ym−Y−m) respectively, and area equal to π. As time progresses, the
probability of measuring Ym = Y−m increases until roughly 14s, after which
the degree of squeezing remains constant. The constant nature of squeezing
at late times reflects the decoherence parameter εm.
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Figure 6.11: Classical squeezing of unnormalized mode functions. This figure
is only for comparison to Figure 6.10. As can be seen, the minor axis of the
ellipses are roughly constant, and the major axes grow with time.
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Figure 6.12: Classical squeezing for normalized, simulated data. The squeez-
ing happens much more quickly with the simulated data for reasons that are
not fully understood. As expected from Figure 6.9, panel a), the degree of
squeezing becomes constant after a short time.

the degree of squeezing has become constant.
While this discrepancy is not completely understood, preliminary results

for stochastic simulations suggest that this may be due to the viscous dissi-
pation acting as a decoherent source in the system. Consider a modification
to the equation of motion (5.35), to include a forcing term [102]:

ξ̈m + 2γmξ̇m + ω2
mξm = Γm(t), (6.20)

where Γm satisfies a fluctuation-dissipation relation, for example

〈Γm(t)Γm(t′)〉t ∼ 4γm
kBT

m
δ(t− t′). (6.21)

In the above, kB is the Boltzmann constant, T is the ambient temperature,
and m is some effective mass.

Figure 6.13 compares the quantity 1− cmN−1
m for the simulations already

presented, the experiment, and a (very preliminary) stochastic simulation
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Figure 6.13: (1− cmN−1
m ) for preliminary stochastic simulations results. We

can see that even perfectly synchronized stochastic simulations produce a
nonzero decoherence parameter εm. As well, the initial slope of the curve
for the stochastic simulations is much more similar to the slope of the ex-
perimental curve during the experimental intervale of interest, t ' 11.5s to
t ' 15s.

(the details of which go beyond the scope of this report). The simulations
are based off of an averaged accelerometer curve for g(t), and so are perfectly
synchronized. We can see from the resulting plot that the stochastic source,
on its own produces some decoherence. As well, we see that the rate of
change is midway between the regular simulations and the experiments.

Of course, much more work must be done in order to make concrete
statements regarding these results, however it seems like a very interesting
avenue of investigation. In particular, if this conjecture is correct, then the
experiments may have demonstrated a new way in which to investigate the
noise corresponding to the fluctuation dissipation theorem’s predictions at
large amplitudes.
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6.2.2 Preliminary Results regarding higher-order cor-
relations

In this section, we will present additional preliminary results which attempt
to characterize the degree of nonlinearity in the system. As mentioned in
Chapters 2 and 3, the underlying assumption beneath the analogy with cos-
mology is that the system is linear. While we demonstrated in figure 6.7
that a subset of the experiments stops obeying the predictions of the linear
theory at large amplitudes, this on its own does not imply that the system
is linear at small amplitudes.

The analysis that follows is motivated by Wick’s theorem in quantum field
theory, which has a classical counterpart in Isserlis’s theorem [103, 104]. The
results are included for the sake of completeness, however this investigation
is being spearheaded by other members of the research group, and the theory
and interpretation of what follows is beyond the scope of this thesis.

For central random variables, i.e. 〈Xa〉 = 0, we can write a general four-
point correlation function as

〈X1X2X3X4〉 =κ ({X1, X2, X3, X4}) + 〈X1X2〉〈X3X4〉
+ 〈X1X3〉〈X2X4〉+ 〈X1X4〉〈X2X3〉. (6.22)

Here κ denotes the joint cumulant, which reduces to κ({Xa}) = 〈Xa〉 for
singletons and κ({Xa, Xb}) = 〈XaXb〉 for pairs. The joint cumulant κ(A) for
|A| ≥ 3 is zero if, and only if, every Xa ∈ A is Gaussian [105]. Therefore,
the joint-cumulant κ4 ≡ κ ({X1, X2, X3, X4}) can only take non-zero values
when it is non-Gaussian [105, 106]. Notice that in the Gaussian case, i.e.
κ4 = 0, Eq. (6.22) is the classical statistics analogue of Wick’s theorem in
quantum systems [103, 104].

Based on these observations, we consider equal-time four-point correlation
functions of the form

G(4)
m ≡ 〈ξm(t)ξm(t)ξ∗m(t)ξ∗m(t)〉 = 〈|ξm(t)|4〉, (6.23)

with a measure of Gaussianity defined by

Γm(t) ≡
〈
|ξ̃m|4

〉
− 2

〈
|ξ̃m|2

〉2

− 〈ξ̃2
m〉〈(ξ̃∗m)2〉 (6.24)

where ξ̃m(t) ≡ ξm(t)− 〈ξm(t)〉.
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Figure 6.14: In the upper panel, the G
(4)
m function is plotted for the full

experiment, the simulation and the full experiment without plateau runs.
The semi-transparent curves represent the functions as defined in equations
(6.23) and (6.24), while the solid lines represent non-oscillating approxima-
tions computed using the complex amplitudes d±m. In the lower panel, the
measure of Gaussianity is plotted for the same. Note that for normally
distributed random variables, the parameter Γm(t) should be zero, as well as
the large difference between each curve.
In particular, the sharp transition for the experiments is believed to be in-
dicative of a change in the distribution of amplitudes. If this is true, the
change in the Γm parameter implies the onset of nonlinear behavior, even for
the (apparently linear) non-plateau subset. .
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Figure 6.14 depicts the G
(4)
m and the Γm(t) functions for the full exper-

iment, the non-plateau subset (which contains experiments that appear to
follow the linear theory), and the simulations from introduced in the previ-
ous section. The semi-transparent curves represent the functions as defined
in equations (6.23) and (6.24), while the solid lines represent non-oscillating
approximations computed using the complex amplitudes d±m [107]. It is in-
teresting to note that the non-plateau data set seems to deviate substantially
from the full data set regarding this parameter. In particular, it appears that
once the plateau runs are subtracted from the full set, the remaining data
seems to be significantly more Gaussian according to this measure. In addi-
tion, it should be noted that even for the non-plateau set (which appears to
behave linearly when each experiment is examined individually), there is a
sharp change in the Gaussianity parameter before tstop. This change in the
distribution seemingly implies an onset of nonlinear behavior which is only
visible statistically. For comparison, the simulated data set demonstrates no
sharp transition (the gradual increase is suspected to be due to non-Gaussian
damping and amplification rate distributions [107]).

While the data presented above is in very preliminary stages, it seems
to suggest that the linear approximations assumed in the fluid theories of
Chapter 3 can be quantifiably tested. If this interpretation is valid, then the
statistical methods presented here further demonstrate that the analysis mo-
tivated by the cosmological analogy can inform the fluid physics community.
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Chapter 7

Conclusion

The original motivation for the experiment outlined in this thesis was an
analog system simulating exponential inflation in a superconducting magnet.
Of course, the investigation that followed demonstrated that there was a
great deal more to learn if we intended to make the statistical observations
outlined in Chapter 2. In the end we designed and built a shaker, more
precise than the state of the art aparatus described in [108]. We analysed
and improved the detection method, automated the measurements, and after
three iterations designed a fluid cell for a novel fluid-fluid system enabling
us to repeat experiments with confidence. We developed the time-frequency
analysis which allowed us to separate the positive and negative frequency
waves in our system with minimal error, and we have demonstrated that
it is possible to learn from a classical analog of two-mode squeezing, even
when the system is subject to significant dissipation. In this section, we
will summarize the main results of each chapter, and conclude this thesis
by outlining some prospects for future investigations. We will close with a
statement regarding the outlook for the original magnet experiment.

7.1 Summary of chapters

The analog proposed in Chapter 2 was the first to examine the potential
of utilizing a strong-gradient magenetic field to change the analog metric in
an interface wave system. In this chapter, we investigated the possibility of
simulating an exponentially expanding universe by subjecting the system to
a 200-fold decrease in the effective gravitational acceleration over a period of
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less than two seconds. The first half of the chapter focused on the velocity
potential, with the assumption that dissipation could be neglected. The sec-
ond half of the chapter introduced new simulations which include dissipation
in the equation of motion from the onset, and focused on the height field
in the system (which is directly observable). The chapter concluded with a
discussion of mode-freezing in the presense of damping.

In Chapter 3, we delved deeper into the underlying theory leading to the
equation of motion for the height field presented in Chapter 2. From here,
we examined the case of parametric resonance, looking in particular at the
exponential amplification rate predicted by the simple dispersion relation.
We then examined a more comprehensive theory, including boundary layers
at the top and bottom of the vessel as well as at the fluid-fluid interface. Ex-
panding on this, we attempted to include the boundary layers at the vertical
sidewalls as well. Finally, we discussed the limitations of these predictions
regarding the real fluid behavior, and propounded a phenomenological ap-
proach instead.

Chapter 4 detailed the experimental setup. The experiment was designed
specifically to adhere as closely to the theoretical framework as possible.
The resulting system was automized and provided an unprecidented degree
of control over experimental parameters, allowing us to use the statistical
analysis first investigated in Chapter 2. This included a description of the
shaker itself, the detection method, the automation process, and the fluid-
fluid system.

The analysis presented in Chapter 5 first attempted to reconcile the fluid
theory described in Chapter 3 and the field theory in Chapter 2. This started
with a mapping between the measured height field and the mode function rep-
resentation favored in quantum field theories. From there, we explained the
difficulty encountered with real-valued data, especially regarding oscillations
with rapidly-varying amplitude. We then detailed some results from time-
frequency analysis using wavelets, demonstrating that the wavelet methods
would enable us to extract the instantaneous amplitudes of the mode func-
tions. The rest of this chapter focused on the classical analog of two-mode
squeezing, and showed that the theory could be extended to enable the ob-
servation of squeezing in the presense of dissipation.

Finally, in the results chapter we began by demonstrating the repeata-
bility of the experiment. We then presented the results pertinent to the
fluid theories presented in Chapter 3, including the parametric amplification
rates, the damping rates, and an approximation of the initial amplitude in
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the system. Within these results, we believe that we have produced the most
precise measurement of the damping of interface waves ever published. We
closed the chapter by presenting the results pertinent to analog cosmology.
This section was mainly focused on classical squeezing, as detailed in Chap-
ter 5, however preliminary investigations regarding statistical signatures of
stochastic decoherence and nonlinearities in the system were also presented.

7.2 Future prospects and outlook

There are many different avenues of investigation that were left unexplored in
this thesis. Starting with the fluid theories described in Chapter 3, the way
forward is somewhat clear: The different theories have each made different
predictions, and each of these must be tested. Regarding the analysis and the
results, further work is necessary in order to understand what can be learned
from the classical squeezing results. Likewise, the decoherence produced
from the stochastic source term presented at the end of Chapter 6 is quite
interesting, and it seems as though there is a lot of information to glean from
the theory as well as the simulation and experimental data. The same can
be said regarding the higher order correlation results; there is a great deal
more that is unknown than there is understood, though this is perhaps not
terribly surprising considering the complexity of the system we are studying.

Experimentally, there is always more to do. The precision of the sys-
tem could be pushed further. A stronger driver could be installed alongside
electromagnetic damping in order to give the spring-mass system a broader
resonance spectrum. This would hopefully provide an even more precise am-
plitude response over the course of thousands of experiments. The pattern
used in the detection method could be replaced (along with the lens, the
camera, and the light source) in order to obtain better contrast, and better
precision. The fluid vessel could be redesigned to enable the meniscus to
be pinned in order to fix the radial boundary conditions more accurately.
The modifications and enhancements to the setup depend on the direction
in which the research leads. Currently, there are several planned extensions
to this project: 1

1A note should be made regarding the long list that follows, and the interruptions to
the research presented in this thesis due to the pandemic. After the first lockdown ended,
it was not possible to simply pick up where we had left off as we would have hoped. For
various technical, bureaucratic, logistical, and social reasons we found that things did not
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1. The experiment will be repeated at different frequencies and amplitudes
in order to test the predictions of Chapter 3.

2. An investigation will be conducted regarding the nonlinear regime, both
at the onset and in the late stages.

3. A novel interferometric detection method, based on the FTP algorithm
will be implemented in order to resolve the initial state and explore the
information content of correlation functions with order ≥ 4.

4. The experimental techniques and procedures developed with be trans-
lated to superfluid helium interfaces.

5. The classical setup will be translated to the superconducting magnet
facility at the University of Nottingham in order to test the predictions
made in Chapter 2.

6. Following the project at the University of Nottingham, the system will
be moved to one of the Bitter magnet facilities outside of the country
(for example, see [60]).

In short, a new line of research has started on interface wave metrology
applied to fluid and superfluid systems.

progress as quickly as they had in previous years. In the list below, items 1 and 2 would
have been included in this thesis, and much work was put into item 3 before the pandemic
started and plans were subsequently changed as a result of it.
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Appendix A: Detection Method, pre-
cision and noise

In this section we will outline the overall process used in the detection method
for the parametric resonance experiment. An explaination of how the method
works will be given, followed by a simple treatment of the discretization of
pixel intensities. Next, the algorithm used will be explained, along with a
framework allowing us to investigate the accuracy and precision of a given
measurement using a discretized (digital) camera with noise. Finally, we will
describe the specific procedure used in the shaker experiment, and provide
results about the noise in the shaker experiment measurements.

Takeda first published a description of Fourier transform profilometry in
1983 [82], wherein a 1D sinusoidal pattern was projected onto the surface
of a 3D object exhibiting diffuse reflection. Figure A.1 depicts the optical
arrangement first described by Takeda.

If we define the distances L = PC, H = DAs + AsB, dx = A0Aa, and
h(x, y) = BAs, then we have (due to the similarity of triangles 4AsSC and
4AsA0Aa) a relation between the height of the point As, and the apparent
shift in position on the imaging plane dx (hereafter referred to as an optical
displacement):

h(x, y) =
dxH

L+ dx
. (A.1)

This simple relation allows one to measure height field perturbations by
equating them to optical displacements in the imaging plane, however the
question remains: How can we convert light intensity measurements from a
sensor array to a displacement?

A.1 Optical displacements with discretized in-

tensity

In this section we will introduce a simple example system, and demonstrate
how the discretization of pixel values limits the sensitivity of measurements.
We will then introduce a simple improvement, and extend the arguements to
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As

S C

Aa A0B

D

4AsSC ∼= 4AsA0Aa

AsD(SC)−1 = AsB(A0Aa)
−1

Figure A.1: Points S and C describe the positions of the light-source and
camera respectively. If the surface profile is flat, a projected ray will strike the
surface at point A0, and this is the position of the ray that will be observed by
the camera. However, when the height profile changes the surface intercepts
the ray, which strikes at the point As. The apparent position, Aa of the point
in the imaging plane will appear to shift when compared to the flat surface.
Note that in the limit of a flat surface, we have As = Aa = A0.
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this example.
Consider a system in which all illumination on the surface is created by a

projecter producing a perfectly linear intensity gradient along one dimension
(as depicted in Figure A.2). The line containing points S and C is assumed
to be parallel with the imaging plane. As well, the distance between the
camera and the surface is assumed to be large when compared to any surface
deformations considered (in particular, the figures above and below are not
drawn to scale). In what follows, we will use the coordinates x, t and Pt(x)
to denote the (continuous) horizontal position, time and luminous intensity
of points in the pattern (object) plane of the optical system.

If we choose image 0 such that the surface is flat, P0(x) gives the measured
intensity as a linear gradient in x, and the value of P0(x1) corresponds to the
intensity created by the projector for that point. However, for a deformed
surface, the camera measures the intensity at point As and assigns this value
to the apparent location x1. The actual value measured is the same as would
be measured at point x2 if the surface were flat. We can obtain the shift
dx = (x2−x1) by comparing the values of P1(x1) and P0(x1) since the linear
gradient ensures that

P1(x1) = P0(x2) = P0(x1) + κ dx, (A.2)

for some easily measured value of κ. This would allow us to obtain the height
profile using (for example) equation (A.1).

A.1.1 Estimations for minimum measurable displace-
ment, based on discretized intensity

Since digital cameras are discrete by definition, we will need to take the
discrete nature of these values into account. We will define a pixel to be a
single photoelectric element within a digital camera’s sensor array, indexed
in the array by a pixel number n, which ranges between [0, N − 1] (and N
is the total number of pixels in the direction under consideration). When
an image is taken, some discrete number of photons from the pattern Pt(x)
strikes the pixel array. In what follows, we will use n, j and Ij[n] to denote the
sampled values of the above, where n and j represent some spacially averaged
area and temporally averaged inverval respectively, and Ij[n] represents the
pixel intensity value (PIV) of a given pixel in the image plane of the digital
camera’s sensor array.
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S C

x1 x2

S C

x1 x2

I1(x1) = I0(x2)

≡ I0(x1) + κdx

Image 0: Image 1:

I0(x1) = I(x1)
As

Figure A.2: Points S and C describe the positions of the light-source and
camera respectively. The projector illuminates the surface with a linear gra-
dient of light. When the surface is flat, the camera detects the light at point
x1, however when the surface is deformed, the camera detects an apparent
shift in illumination, ∆I. In the case of a linear gradient, the apparent shift
in illumination is linearly related to the apparent shift in position, dx.

We will likewise assume that the discrete values of Ij[n] increase after a
threshold number of photons is absorbed. This implies that the PIV Ij[n] is
a floored spacial and temporal average, where the index n represents the area
of the pixel centered on xn, and the index j represents the interval starting
at tj. In other words, when a threshold number of photons fall on the area
indexed by n during the interval indexed by j, the PIV of Ij[n] increases
by one increment, which ranges from [0, 2B − 1]. Here, B represents the
bit-depth of the sensor, and it is a value limited by the camera’s hardware.

As a familiar example of bit-depth in images, we can consider the 24-bit
RGB standard that is ubiquitous in computer displays. Since the human eye
can only percieve roughly 10 million different colors, computer displays are
built to provide 8-bits for each of Red, Green, and Blue [109]. This allows
display hardware to produce 28×28×28 = 224 = 16, 777, 216 different distinct
colors, (and is the reasoning behind the 24-bit RGB standard). Because of
this, grayscale images are typically limited to B = 8, so Ij[n] is limited to
the range of [0, 255]. To illustrate how this effects the limits of the detection
method, let us consider the precision of the method described above. For
this simple example, we will also assume that (by adjusting the intensity of
the projector and the exposure time of the image) we are able to completely
occupy the full range of the camera’s bit-depth. For example, the brightest
points on the surface are mapped to pixel values of exactly Ij[n] = 2B − 1,
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and the darkest points are mapped to exactly Ij[n] = 0.
In the above case, when B = 8, and N = 1024, one finds that for the flat

surface,

I0[n] =

⌊
2B − 1

N
· n
⌋
'
⌊

2B

N
· n
⌋

=

⌊
1

4
· n
⌋
. (A.3)

When comparing images of a deformed surface to this reference, we want to
know what is the minimum dx that can be measured using this setup. To
find the minimum possible apparent displacement dx[n] ≡ δn (in px), we
apply the floor function and equation (A.3) to equation (A.2):

Ij[n] '
⌊

1

4
· (n+ δj[n])

⌋
.

If Ij[n] = I0[n], then we measure a zero shift, so we require that |Ij[n]− I0[n]| ≥ 1.
This means that the minimum possible apparent displacement measurable
with this setup is approximated by

⌊
2B

N
· (n+ δj[n])

⌋
−
⌊

2B

N
· n
⌋
'
⌊

2B

N
· δj[n]

⌋
≥ 1

=⇒ δj[n] ≥ N

2B
=

1024

256
= 4. (A.4)

In other words, using an 8-bit image with 1024 pixels in the direction of
measurement, we are only able to measure a displacement of 4 pixels or
more. (Not very good!) Comparing this to the same setup, using a camera
with a bit-depth of 12,

δj[n] ≥ 1024

4096
=

1

4
, (A.5)

we find that we can measure a displacement of 1/4 [px].
If one is limited by camera hardware, then a change in the projected

pattern is necessary. Instead of a linear gradient, consider the same pattern
mirrored about the center. The intensity of the flat surface can be modeled
as a discretely sampled triangle wave, with wavenumber k0 = 1:

I0[n] =

⌊
A · tri

(
2πk0

N
n

)⌋
, (A.6)

where A ∈ [0, (2B−1− 1)] is the amplitude, and is restricted by the bit-depth
of the camera, and we have defined our triange wave to have unit amplitude:

tri

(
2πk0

N
n

)
=

8

π2

∞∑

a=1,3,5,...

(−1)(a−1)/2

a2
sin

(
a

2πk0

N
n+ aϕ0

)
. (A.7)
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x[n]

Image 0:

S C

x[n]

Image 0:

Figure A.3: The projector illuminates the surface with a repeating linear
gradient of light. For the same (small) apparent shift in pixel position, δ[n],
the change in the measured intensity is increased.

Using the same approximations as we did previously, and noting that the
derivative of the triangle wave in equation (A.7) is (except at isolated points)
equal to ±4Ak0

N
, we have

Ij[n] =

⌊
A · tri

(
2πk0

N
(n+ δj[n])

)⌋
(A.8)

Ij[n] 'I0[n]±
⌊

4Ak0

N
δj[n]

⌋
, (A.9)

which once again leads to an approximation for the minimum measurable
pixel displacement, δ0:

Ij[n]− I0[n] '
⌊

4Ak0

N
· δj[n]

⌋
≥ 1

=⇒ δj[n] ≥ N

4Ak0

≡ δ0. (A.10)

In the above example, with B = 8, we can estimate that A ' 2(B−1), so
for k0 = 1 we have that δj[n] ≥ 1024

512
= 2 as expected. Of course, one can

simply increase the value of k0 in order to increase sensitivity. For example
when k0 = 10, the resolution increases by a factor of 10, and we find that
δj[n] ≥ 0.2 pixels. Figure A.3 illustrates this, and also demonstrates a trade-
off: The larger the k0 value, the more care must be taken for larger values of
δj[n], since it becomes increasingly likely that a displacement will shift a full
period of the triangle wave.
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Due to the fact that
⌊
A · tri

(
2πk0
N

(n+ δj[n])
)⌋
6= I0[n]±

⌊
4Ak0
N
δj[n]

⌋
in

general, equation (A.10) is a useful estimate, but it is not exact. In fact,
since the pixel intensity values in Ij[n] are rounded, there will always be
so called ‘lucky’ pixels, for which even small fractions of δ0 produce integer
differences between Ij[n] and I0[n]. If we denote the apparent pixel shift by
δj[n] = qδ0, and abuse notation a bit by writing Ij[n] ≡ Ij[n + qδ0], we find
that

Ij[n+ qδ0]− I0[n] ≤ dqe, (A.11)

where d·e denotes the ceiling function, which rounds any input up towards
the next largest integer.

We can see from the above that q corresponds to a measurable difference
between the PIV of image j, and the PIV of the reference. When working
with large numbers of pixels and large numbers of images, it is useful to
estimate the expected change in PIV measured for a given constant shift,
which can be calculated as the mean change in PIV across all pixels:

〈q〉 =
1

N

∑

n

Ij[n+ qδ0]− I0[n] (A.12)

=
1

N

∑

n

(⌊
A · tri

(
2πk0

N
(n+ qδ0)

)⌋
−
⌊
A · tri

(
2πk0

N
n

)⌋)
. (A.13)

Figure A.4 depicts the expected value of 〈q〉 for various simulated pixel
displacements for a triangle wave pattern as described above, and for a sinu-
soidal pattern, which is free of the higher-harmonics seen in equation (A.7).

Note that the estimation for minimum pixel displacement δ0 relies on
the gradient of the pattern, and that the irregularity of the gradient in the
sinusoidal pattern corresponds to a lower probability of measuring a given
displacement. However, when we use the slope of the triangle wave pattern
to estimate the minimum displacement for both patterns, we once again
measure (on average) the value of the input. This happy coincidence allows
us to use equation (A.10) in both cases. Note however, that for e.g. q = 1 in
this case, we will measure a PIV difference of 2 for some pixels when using
the sinusoidal pattern. 1

1It should be mentioned that in simulations, the systematic errors when using the
triangle-wave pattern are much larger than the errors produced when using a sinusoidal
pattern. This is likely due to the fact that the infinite higher harmonics of the triangle
wave will appear in the pattern’s FFT due to aliasing, (see equation (A.7)).
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Figure A.4: The expected PIV difference between the ideal reference I0[n]
and a simulated displacement Ij[n], calculated using equation (A.12). The
blue curve gives the expected pixel shift measurement for a triangle wave,
where the nearly constant slope produces quite regular results. The red
curve gives the expected pixel shift for a sine wave, however the irregular
gradient of the reference reduces the probability of measuring the expected
shift. The yellow curve demonstrates that a sinusoidal pattern produces the
same results as a triangle wave pattern so long as we raise the estimation for
the minimum displacement measurable.
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Figure A.5: A sine wave restricted to three intensity values.

A.1.2 Quantization noise and SNR

Before moving forward and developing the FTP algorithm, a note should be
made on how the minimum displacement value δ0, and the expected change
in PIV 〈q〉 defined above relate to measurable signals. Figure A.5 depicts a
sine wave discretized with three separate amplitude levels, corresponding to
{−1, 0, 1}. The sine wave is clearly correlated with the blue curve, however
this is obviously not an ideal signal. In electronics, this type of error is
regularly encountered in analog to digital converters (ADCs), and it referred
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to as quantization noise 2. Quantization noise is well-studied, and useful
approximations are readily available when the number of amplitude levels is
large (this is typically measured in bits, and typical ADC devices have at
least 8 bits, or 256 amplitude levels to work with). When the number of
discrete amplitudes is lower, the approximations can break down [110, 111],
so we will instead estimate the quantization noise in our system numerically.

In keeping with the convention of calling the quantization errors noise, we
define the quantization signal to noise ratio (qSNR) as the ratio of the root
mean square (RMS) of the signal to the RMS of the error. For a theoretical
signal y[n], and a discretized approximation yd[n], we have

qSNR =
∑

n

√
yd[n]2

(yd[n]− y[n])2
. (A.14)

Figure A.6 depicts the qSNR for signals of the form y[n] = q sin
(
2πk n

N
+ ϕ

)
,

quantized to the nearest integer. The range of k values covers different col-
ored markers, as indicated by the colorbar on the right-hand side of the plot,
and a range of values of ϕ is tested for completeness. One can see that as
the value of q increases the qSNR does as well, however so does the spread
of occupied qSNR values. It appears that increasing the value of k increases
the spread in qSNR as well.

A.2 The FTP algorithm with discretized in-

tensity values

At its core, the FTP method is simply an efficient method of extracting
optical displacements from periodic patterns. We will work with a generic
periodic pattern defined as Pj(x) = P0(x + δj(x)), describing a continuous
function of a continuous variable, and an exact displacement δj(x). We
will assume a bit-depth of B = 12, as can be found in many experimental
digital cameras. The amplitude A[n] defined below is simulated as a constant,
defined relative to the bit-depth (and rounded to the nearest integer) as

A ' 2B

3
= 1365. The frequency of the pattern is chosen to be the same

as the value obtained for experiments, k0 = 108.3px−1, and the number of

2Personally, I would be more inclined to call this quantization error as opposed to noise,
but we will follow the convention used in the electronics literature.
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Figure A.6: qSNR as calculated from rounding y[n] = q sin
(
2πk n

N
+ ϕ

)
to

the nearest integer. The signal is simulated across a range of amplitudes q
and frequencies k. Increasing q and k both seem to increase the spread of
qSNR values. Variations in ϕ also produce small variations in the qSNR.
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pixels N is taken to be 1024. Together, these parameters define the estimated
minimum measurable displacement as

δ0 =
N

4Ak0

' 1.7×10−3px. (A.15)

In general, there are three steps in any FTP algorithm:

1. Convert the (real) image of the periodic pattern into a complex expo-
nential of a single frequency:

Pj(x) 7→Ij[n] = B[n] + A[n] cos

(
2πk0

N
[n+ δj[n]]

)
(A.16)

7→Ĩj[n] = A[n] exp

(
i2πk0

N
[n+ δj[n]]

)
(A.17)

2. Extract the local phase shifts by multiplying Ĩj[n] by the complex con-
jugate of a reference image, Ĩ0[n]∗ and calculating the argument of the
result:

Ĩj[n] · Ĩ0[n]∗ =A[n]2 exp (i2πk0[n+ δj[n]]) exp (−i2πk0n) (A.18)

7→2πkδj[n] = δφj[n] (A.19)

3. The phase δφj is a real number between−π and π, with units of radians.
For phase-displacements larger than 2π, artificial discontinuities will
need to be removed using a phase-unwrapping algorithm before the
optical displacement, δx = δφ

2πk0
, is calculated.

The analysis in this section will focus on step 1, which can also be seen as
a type of Hilbert transform (commonly used in signal processing). For signals
of finite length, the Hilbert transform is approximated using a digital filter
and can be understood as an operation which filters out Fourier contributions
with negative k values:

cos(2πkx+ ϕ) = 1
2

(
ei2πkx+iϕ + e−i2πkx−iϕ

)
(A.20)

7→ ei2πkx+iϕ . (A.21)

In the above and in what follows, we will focus on small displacements
δj[n] ≡ qj[n]δ0, where qj[n] corresponds to the jth image’s expected PIV shift
defined above, and δ0 is estimated using equation (A.10).
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If δj(x) is a sinusoid with amplitude δ`,j, a Taylor expansion about δ`,j = 0
produces

Pt(x) = sin
(
2πk0 (x+ δ`,j sin(2π`x+ ϕ)) + θ0

)
(A.22)

= sin (2πk0x+ θ0) + δ`,j cos (2πk0x+ θ0) sin(2π`x+ ϕ) (A.23)

=P0(x) +
δ`,j
2

(
sin (2π`+x+ ϕ+) + sin (2π`−x+ ϕ−)

)
, (A.24)

where `± = `±k0, and similarly, ϕ± = ϕ± θ0. For more general δj(x), it will
be useful to decompose δj[n] into its Fourier components,

Pt(x)− P0(x)

=
∑

`∈B

δ`,j
2

(
sin (2π`+x+ ϕ+) + sin (2π`−x+ ϕ−)

)
, (A.25)

where L is the bandwidth of the displacement, and the index n is re-defined
so that n ∈

[
−N

2
, N

2
− 1
]
.

In order for step 1 to be successful, some conditions on the periodic pat-
tern must be met. It is assumed that the varying amplitude A[n] varies slowly
when compared to the sinusoid cos(2πk0

N
[n + δj[n]]). 3 Further, we assumed

that B[n] (which may contain low-frequency information, or higher harmon-
ics of the periodic pattern) is well-separated from A[n] cos(2πk0

N
[n+ δj[n]]) in

Fourier space. In practice, it is relatively easy to set up an experiment in
which both of these assumptions are met.

A.2.1 The three filters

We will introduce three separate types of filters and examine the effect that
each has on the measurement of δj(x). They are the top-hat (or sinc) filter,
the Gaussian, and the flat-response filter. Each of the filters are normalized
so that a real sinusoidal input at k0 will produce a complex exponential
output of the same amplitude (as in equation (A.20)).

In Takeda’s original paper, step 1 was accomplished by performing an
FFT on Ij[n], and then multiplying the signal by a tophat function (also
known as a brickwall filter, also known as an ideal filter) in Fourier space,

3In signal processing terms, the amplitude must satisfy the conditions of Bedrosian’s
theorem [112].
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which we will denote by SW [k]:

SW [k] =

{
2, for k0 −W < k < k0 +W

0, otherwise,
(A.26)

where the bandwidth, W is chosen so that B[n] is eliminated from the re-
sulting signal. This is equivalent to convoluting the signal Ij[n] with a sinc
function sW [n] in position space:

s∆k[n] = 4∆k sinc(2∆kn) exp

(
i2πk0n

N

)
=

sin(2π∆kn)

2π∆kn
exp

(
i2πk0n

N

)
,

(A.27)
which is highly non-local. As we will see, this filtering process produces
excellent results when the image of the pattern Ij[n] has no discontinuities
(including at the boundaries of the image, which the FFT assumes are ad-
jacent). Due to the global support of s∆k, any sharp transitions in Ij[n] will
produce ripples which decay slowly as 1

n
.

The second filter considered has a Gaussian profile, which famously min-
imizes the product of the standard deviation in position space with the stan-
dard deviation in Fourier space:

Ψ[n] =
2k0√

2π
exp

(
−1

2

[
k0n

N

]2
)

e
i2πk0n
N , (A.28)

Since this profile minimizes the ‘uncertainty’ in position and frequency, it
has been a popular choice in so-called wavelet transform profilometry stud-
ies [113, 114], however as we will see this filter produces systematic errors in
the output. The filter presented is designed to have standard deviation of
one full pattern oscillation in position space.

The third filter presented is a generic flat-response FIR filter, designed
to have a steep dropoff in Fourier space, with as few non-zero terms as pos-
sible. The particular case presented is designed using Matlab’s constrained
equiripple FIR filter design function, firceqrip, however any FIR filter with
an approximately flat passband would work similarly. The FIR filter w[n]
is designed to be low-pass and is used as a window function. The result is
multiplied by a complex exponential with the pattern frequency in order to
shift the filter in frequency space:

f [n] = 2w[n] e
i2πk0n
N . (A.29)
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(a) (b)

Figure A.7: Panel (a) depicts the filters used in the FTP procedure in position
space. Note that the traditionally-used top-hat filter has very slow decay, and
can be expected to have poor performance near boundaries.
Panel (b) depicts the mangitude-response of the three filters. The Gaussian
filter drops off sharply from k = 0, causing a reduction in the measured
amplitude of sinusoidal displacements which increases with the displacement
wavenumber.
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The window function presented is designed so that the maximum error in
the pass-band and the stop-band will be 0.1%. The number of terms in the
window (also specified as the order) is chosen so that the pass-band is as
broad as possible in Fourier space, while the width of the filter in position
space is as narrow as possible. In this case, roughly 99% of the filters influence
is within three oscillations of the carrier signal.

Figure A.7 depicts the filters in both position space, and in Fourier space.
The horizontal axis is shifted in Fourier space so that each filter is centered at
k = 0. Comparison of panel (b) in Figure A.7 with equation (A.25) explains
in short-order why the Gaussian filter is problematic. For ` > 0, the ratio
of the measured amplitude of a sinusoid δj,`[n] versus the actual amplitude
(call it δj,`(x)) will decrease proportionally to e−`

2
.

Figure A.8 depicts simulation of the qSNR for various values of ` and
the PIV shift q. The simulation produces a known sinusoidal shift δ1,` and
compares the results to the measured shift using the qSNR equation (A.14).
Another interesting feature of the qSNR estimages in Figure A.8 is that for
large `, the qSNR seems to decrease rapidly even as we approach δj,` =
1[px]. When the amplitudes of sinusoidal displacements are large, and the
small-amplitude expansion (A.25) is no longer valid. For large amplitude
displacements, the composition of sinusoids decomposes into an infinite sum
of Bessel functions. As an example, for general t and x we have [79]:

cos
(
t sin(x)

)
= J0(t) + 2

∞∑

a=1

J2a(t)cos(2kx), (A.30)

where J2a is a Bessel function of the first kind, of order 2a.
Instead of working with infinite series, a useful estimate for the allowable

amplitude of a given displacement can be calculated as follows [115, 68]. For
a general signal, y = eiqx, we always have that q = −i∂xy

y
. So, the phase of our

Hilbert-transformed pattern Ĩj[n] = exp
(
i2πk0
N

[
n+ δj,` sin(2π`n

N
+ ϕ)

]
+ iθ0

)

can be calculated as

(
i2πk0

N

[
n+ δj,` sin

(
2π`n

N
+ ϕ

)]
+ iθ0

)
=
−i∂nĨj[n]

Ĩj[n]
. (A.31)

Ignoring the constant phase shift, we see that the phase of the shifted signal
is roughly given by 2πk0

N
+ 4π2

N2 k0`δj,`. If the filter used in the method has a
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Figure A.8: The qSNR versus pixel displacement for the three filters. The
horizontal axis labels the PIV shift on the bottom, and the pixel shift on
the top. The simulated pattern is sinusoidal, and occupies the entire range
from 0 to N−1. The blue, orange and green-tone points represent the qSNR
for the top-hat, the Gaussian, and the flat-response filters respectively. The
brightness of each color decreases with increasing `.
The top-hat and the flat-response filters perform well for a range of ` values,
while the error of the Gaussian filter increases with the wavenumber of the
optical displacement.
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spectral width of 2∆k, then a faithful reconstruction requires that

4π2

N2
k0δj,`` <

2π

N
∆k, (A.32)

which must be satisfied for each ` when δt(x) =
∑

` δt,` sin(2π`x + ϕ). This
can be simplified further by noting that ∆k = γk0 for some positive number
γ < 1:

δj,`` < γ
N

2π
. (A.33)

If we denote γs as the spectral width of the top-hat filter, and γw as the
width of the flat-response filter, we have, in general

γw < γs < 1. (A.34)

One should note that equation (A.33) indicates that the most important
parameter for measuring large displacements is the number of pixels sampled,
N . Increasing the pattern frequency k0 will help only in that this allows one
to choose a slightly larger value of γ (this is because the spectrum of the B[n]
signal is likely to remain fixed). Figure A.9 depicts the qSNR versus PIV
shift q for larger displacements. We see that when the product `δj,` is large,
the flat-response filter does poorly compared to the top-hat filter. Examining
Figure A.7, we can see that this is due to the comparatively large drop-off of
the flat-response filter in Fourier space.

When the bandwidth L of the displacement field is large, the ideal cutoff
of the top-hat filter enables one to set a larger value of γ while still excluding
the unwanted image artifacts B[n]. However in the experiments conducted,
nearly half of each image is obscurred by the fluid vessel. Figure A.10 depicts
a simulated reconstruction for which the pattern is occluded at the edges and
in the center. The simulated PIV shift is q = 40, and the other parameters
are the same as in figures A.8 and A.9. Figure A.11 shows the qSNR results
of a simulated displacement with an obscurred reference pattern. As can be
seen, the errors are significantly reduced for the relatively local flat-response
filter.
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Figure A.9: The qSNR versus pixel displacement for large displacements.
The simulated pattern is sinusoidal with k0 = 108.3, and occupies the entire
range from 0 to N − 1. The blue and green-tone points represent the qSNR
for the top-hat, and the flat-response filters respectively, and the brightness
of each color decreases with increasing `.
The horizontal axis denotes the apparent shift δj,` in pixels at the top of the
plot, and as a fraction of the period of the pattern on the bottom. Equation
(A.33) is used to define a cutoff. Simulated displacements not meeting the
condition are not shown.
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(a)

(b) (c)

Figure A.10: Panel (a) depicts the simulated displacement δj(x), as well as
the reconstructed displacements for the top-hat filter (blue) and the flat-
response filter (red). The pattern is occluded at the edges and in the center.
The quickly decaying flat-response filter ensures that boundary discontinu-
ities are localized.
Panel (b) depicts magnitude of the error for each filter. Note that the errors
are largest near the occlusion boundaries, however for the top-hat filter these
errors propagate into the center of the reconstruction.
Panel (c) depicts the spectral amplitude of the error. Note that the error oc-
cupies all frequencies, implying that it cannot be easily removed with further
filtering.
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Figure A.11: The qSNR for a pattern obscurred at the boundaries, and in
the center. The blue, and green-tone points represent the qSNR for the top-
hat, and the flat-response filters respectively. The brightness of each color
decreases with increasing `.
The top-hat filter has a poor qSNR due to its lack of locality. However for
large displacements and large `, the flat-response filter performs poorly as
well.
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A.3 Implementation in the shaker experiment,

the inclusion of noise

In this section, the Schlieren FTP method will be introduced, and the equa-
tions used for reconstruction will be given (without derivation). We will also
provide values for the parameters A, k0, N , and δ0 introduced above.

In Takeda’s original FTP paper, the pattern is projected onto a deformed
surface with diffuse reflection, and the relationship between an observed opti-
cal displacement δj[n] and the height profile is simple enough to demonstrate
in a single image (see Figure A.1). If refraction is used instead of reflection
the optical geometry is not so simple, however similar geometric arguments
allow one to relate the gradient of the height field h(x, y) to observed dis-
placements using the optical parameters of the system [83]:

∇h = −h−1
∗ δ~x, (A.35)

where ∇h is the gradient of the height field, δ~x is the vector displacement
(we need to measure two orthogonal displacements, δx and δy in order to
invert the gradient operator), and h∗ is an optical parameter given by

h∗ =

(
1

αhp
− 1

H

)−1

. (A.36)

In the above, hp is the distance between the pattern and the interface, H
is the distance between the pattern and the camera, and α is a constant
function of the index of refraction for both fluids:

α = 1− nupper

nlower

. (A.37)

The first methods utilized to obtain the displacements δx and δy, relied
on digital image correlation (DIC) techniques and random ‘speckle‘ patterns
projected through the fluid interfaces [83]. DIC algorithms are quite complex,
and for large data sets (reconstructing a large number of images) DIC is
computationally expensive (see [116] for a review and further references).
The first proposal to use a two-dimensional Fourier transform procedure to
measure δx and δy can be found in [68], and our implementation is based on
this approach.
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When extended the previous analysis to two dimensions, one must con-
sider two dimensional displacements δj,x(x, y) and δj,y(x, y). The correspond-
ing measurements will be denoted δj,x[m,n] and δj,y[m,n], and it will be useful
to again consider the Taylor expansion for small displacements. For two di-
mensional fields, a two dimensional pattern is required. The exact deformed
pattern can be modeled as

Pt(x, y) = sin
(

2π~k0 ·
(
~x+ ~δ~̀,j sin(2π~̀ · ~x+ ϕ)

)
+ θ0

)
(A.38)

Pt(x, y)− P0(x, y)

=
1

2

∑

`x∈Bx
`y∈By

~δ~̀,t

(
sin
(

2π ~̀+·~x+ ϕ+

)
+ sin

(
2π ~̀−·~x+ ϕ−

))
, (A.39)

where ~̀± = (`x ± k0, `y ± k0)>, and ϕ± = ϕ ± k0. The same bandwidth ar-
guements that applied to the one-dimensional case apply here as well, except
that now we need to make sure that the filter also acomodates the extra
dimension of `y. As it turns out, this is easily accomplished with transforma-
tion called the Mclellan transformation [117], and is implemented in Matlab
using the ftrans2 function from the image processing toolbox.

The three core-steps listed in section A.2 are quite general, however in
our experimental setup it was sensible to modify the general procedure to
better suit our purposes.

The procedure used is as follows:

1. Using the indicator LED described in section 4.3.1, we separate out
roughly 500 images of the system before the shaker-driver is initialized.
This set of images will be denoted J0.

2. We perform the Hilbert Transform on the set IJ0 extracting the complex
x signal, and the complex y signal,

IJ0 7→
{
Ĩx,J0
Ĩy,J0

. (A.40)
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3. Averaging over the set J0, we obtain our complex reference images in
each direction,

Ĩx,0 =〈Ix,J0〉, (A.41)

Ĩy,0 =〈Iy,J0〉. (A.42)

We define our stationary interface relative to these reference values,
which implies that each of Ĩx,0 and Ĩy,0 are noise-free.

4. For all other images in the data set, we perform the same Hilbert
Transform,

Ij 7→ Ĩx,j (A.43)

Ij 7→ Ĩy,j. (A.44)

5. The coordinate transformation from the cartesian grid of the camera
pixels to radial coordinates is accomplished by interpolating the data
as described in section 5.1.2. To save on computational costs, we inter-
polate the data into a cylindrical coordinate system before extracting
the phase differences:

Ĩx,j[m,n] 7→ Ĩx,j[a, b], (A.45)

Ĩy,j[m,n] 7→ Ĩy,j[a, b], (A.46)

where the indices [a, b] represent the polar coordinate grid defined in
5.1.2.

6. The phase shifts δφx,j and δφy,j are computed according to equation
(A.18), and phase-discontinuities are removed using an algorithm based
on solving the Poisson equation using a discrete cosine transform [118,
119].

7. Using equations (A.18) and (A.35), we obtain the gradient of the height
field in the x and y directions

δφx,j[a, b] 7→ ∂xh[a, b], (A.47)

δφy,j[a, b] 7→ ∂yh[a, b]. (A.48)
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8. To prevent unnecessary integration errors at the boundaries, we want
to integrate in the r and θ directions. To do this, we use the differential
transformations,

∂rh =
1

r

(
x∂xh+ y∂yh

)
, (A.49)

∂θh =− y∂xh+ x∂yh. (A.50)

9. The gradient ∇h is converted to a height field h[a, b] by integrating
algebraically in Fourier space. In order to satisfy the periodic boundary
conditions inherent in the FFT, we mirror ∂rh and ∂θh in the radial
direction. We denote these 2Nr × Nθ matrices as ∂�h, and the 2-
dimensional FFT as the operator F:

Fh[kr, kθ] =
−ikrF(∂rh)− ikθF(∂θh)

k2
r + k2

θ

. (A.51)

When extending the previous analysis to accomodate the physical exper-
iment, the estimated minimum measureable displacement in equation (A.10)
needs to be modified to include noise in the images. Since our reference
images are noise free by definition, the noise can be modeled using Ij[m,n]
alone:

Ij[m,n] = +A[m,n]C(n,~δj[m,n]) +B[m,n] + σj[m,n], (A.52)

where σj is some spurious signal unrelated to the interface, and we have

defined ~δj = (δj,x, δj,y), and

C(n,~δj) = cos

(
2πk0

N

[
n+ δj,x[m,n]

])
+ cos

(
2πk0

M

[
m+ δj,y[m,n]

])
.

(A.53)
Here, we have assumed that k0,x = k0,y ≡ k0, and M = N .

The exact magnitude and composition of σj is hard to estimate theoret-
ically, however a measurement of σj from the set of stationary images IJ0
should provide a good approximation. This extension to Ij alters our esti-
mation for the minimum measurable displacement. Since the pixel intensity
still needs to increase by at least 1, we have

Ij[m,n]− I0[m,n] '
⌊

4Ak0

N
· δj[m,n] + σj[m,n]

⌋
≥ 1

=⇒ δj[m,n] >
N

4Ak0

(1 + σj[m,n]) . (A.54)
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Equation (A.54) tells us that when σj ∼ 1 or smaller, the error in our
measurements will be mostly due to the quantization noise already presented,
and our desired signal once again has the form δ0 = N

4Ak0
. On the other hand,

if σj � 1, then the noise that we measure is

σ̃j =
N

4Ak0

σj = σjδ0, (A.55)

and the SNR for a general δj = qjδ0 can therefore be approximated by

SNR =
qjδ0

σjδ0

=
qj
σj
. (A.56)

At first glance, equation (A.56) seems as though it will reduce sensitivity
of the method a great deal, however in the above, we have not considered
the form of σj at all. In general, σj can be written in terms of its Fourier
components.

σj[m,n] =
∑

f

af e
i2πfj
Nt

∑

kx,ky

bkx,ky e
i2π~k·~n
N , (A.57)

where ~n = [m,n], and ~k = [kx, ky]. Because we are careful in our choise
of FTP filters, we know that we can preserve the amplitude of the pattern
as well as the interface waves measured, and in general, the noise of the
system has some spectral spread, usually across all frequencies measured.
This means that the noise level drops whenever we filter. The first instance
of this is in the FTP filtering, where we keep information only around k0.

Figure A.12 depicts the noise for a stationary data set with no fluid
interface. The lack of fluid interface implies that all variations measured in
this data set are inherent in the detection method itself. In what follows, we
will assume that the noise is well-approximated by the standard deviation.
For a general 3-dimensional variable αj[m,n], we define

stdj(αj[m,n]) =
1

Nj

∑

j

(α− µj)2 , (A.58)

where µj represents the mean over the index j.
Since the standard deviation is equivalent to the RMS of a signal when

the mean is zero, the standard deviation can be represented in the frequency
domain as 1√

2
FtFθĨJ0,x[a, b]. This allows us to estimate the spectral noise
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density of the stationary data, and we can see that with each additional
spectral decomposition, we obtain a lower noise-level.

This is important if (for example), we are analysing individual azimuthal
modes in the system across a narrow temporal frequency band. In Figure
A.12, we can see that after two spectral decompositions, the RMS of the
remaining noise spectrum has magnitude of order 10−1.This means that even
when considering a finite band of frequencies, the noise present is likely to
be negligible.
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Figure A.12: Panel (a) depicts the standard deviation in time of all of the
images in the interface-free data set, IJ .
Panel (b) depicts depicts the standard deviation for the same set of images
after we have used the FTP filter in the x direction. Note that the standard
deviation of ĨJ,x is greatly reduced.
Panel (c) shows the standard deviation of the same data in polar coordi-

nates, decomposed into its azimuthal Fourier modes: stdj

(
FθĨj,x[a, b]

)
. The

vertical axis indicates the radial index. The horizontal axis indicates the
azimuthal mode number. Once again, we see that there is a reduction in
the noise level as we have defined it. (The apparent signal is not due to an
interface, since there is no interface present.)
Panel (d) shows the temporal frequency dependence of FtFθĨJ0,x[a, b]. The
strong signal present at 36 Hz is of unknown origin, though it is thought to
be mechanical (and may account for the apparent signal in (c)).

141



Appendix B: Accelerometer calibration
and shaker alignment

In this section, the calibration and vertical alignment procedures for the ac-
celerometer will be detailed. First, the calibration procedure will be detailed.
Then, an example of the alignment process will be given.

B.0.1 Calibration procedure

The accelerometer 1 used is a microelectromechanical device designed to
have low voltage-drift 2 a very low spectral noise density floor of less than
0.1mV

√
Hz [120], as well as a temperature measurement. The accelerometer

measures three orthogonal axes which we will label x1, x2 and x3 (corre-
sponding to x, y and z respecively). Each of the three acceleration outputs,
from here on denoted V1, V2 and V3 have a voltage offset bj (corresponding to
the voltage measured when the acceleration is zero), and a voltage gain Gj

(a linear factor with units of V
ms−2 ). For a given acceleration ~a, the voltage

output of the accelerometer will then be

~V acc (~a) =



G1a1 + b1

G2a2 + b2

G3a3 + b3


 . (B.1)

The device used, powered through the voltage regulated power supply
should produce an offset of bj = 0.900V, and a gain of Gj = 0.0400

9.81
V

ms−2 for
each axes [120], howevever even small deviatitions can produce unaccepatable
errors when leveling the system. 3 In order to eliminate these errors, a
stationary callibration procedure has been developed. The device is mounted
onto a box which is precisely made so that opposite faces are parallel, and
adjacent faces are orthogonal.

1Analog Devices, ADXL354C
2Voltage-drift corresponds to very low frequency (periods of hours and days) variations

in the output voltage for a constant acceleration.
3This was discovered when comparing optical position measurements to the integrated

acceleration measurements. Small deviations in the assumed offset and gain values pro-
duced large deviations in the integrated position.
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Six stationary measurements of the acceleration due to gravity, g are
made (one for each face of the box). If we call the input acceleration for each
of these measurements ±~g1, ±~g2 and ±~g3, then we can obtain the offsets for
each axis by calculating

bj =
1

2

(
~V acc

(
~gj
)

+ ~V acc

(
−~gj

) )
. (B.2)

Similarly, we can separate the gain components. We define

~G
(
~gj
)

=
1

2

(
~V acc

(
~gj
)
− ~V acc

(
−~gj

) )
. (B.3)

Unless the accelerometer is perfectly aligned with the faces of the callibration
box, each axes of the accelerometer will measure some acceleration due to
gravity for each orientation of the box. The magnitude of these measurements
together must equal the acceleration due to gravity. Considering the jth axis
of the accelerometer on its own, we have our equation for the voltage gain in
the xj axis:

−gGj =

√
~G (~g1) · x̂j + ~G (~g2) · x̂j + ~G (~g3) · x̂j. (B.4)

The values for bj and Gj must (in theory) only be determined once. In prac-
tice, this procedure was repeated at the start of every automation process.

B.0.2 Shaker alignment

The following provides an example of the alignment procedure. There are
three adjustment screws, acting as three legs for the shaker (see figure B.1,
and section 4.1). One of them is labeled A, the other B, and the third is held
fixed. To align the shaker, the system is set to shake at a given frequency.

Defining a{x,y,z} to be the acceleration in the x, y, z directions, ã to be
the Fourier transform of the acceleration, and fd to be the driving frequency
(see figure B.2), we set

Rã(fd) =

√
|ãx(fd)|2 + |ãy(fd)|2

|ãz(fd)|
. (B.5)

After each shake, the alignment screws are adjusted to reduce Rã. Table
B.1 provides an example of this procedure, taken from a lab-book entry dated
August, 2020.
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X [fixed]

B

Ay

x

+

+

Figure B.1: Leveling screws
schematic. The indicated x
and y directions represent the
approximate x and y axes
of the accelerometer. The
leveling screws described in
section—4.1 can be turned in
either direction to reduce Rã.

(adjustment) ãx(fd) ãy(fd) Rã(fd)

(start) .0063 .0138 .0087
(B,+1/2) .0067 .0182 .0110
(B,−1) .0064 .0069 .0054
(B,−1/2) .0072 .0028 .0044
(B,−1/2) .0085 .0044 .0055
(B,+1/2) .0073 .0022 .0044
(A,+1/2) .0061 .0021 .0038
(A,+1/2) .0071 .0026 .0044
(A,−1/2) .0065 .0028 .0041

(lock screws) .0065 .0029 .0041

Table B.1: Example alignment steps

The resulting transverse motion in our setup should be compared to
the motion of commercially available industrial shakers. ISO 16063 de-
fines ‘Methods for the calibration of vibration and shock transducers.’ The
standards are given for various different types of setups, the most applicale
probably being ISO 16063-31: ‘Testing of transverse vibration sensitivity.’
According to this document [121],

The amplitude of the transverse acceleration of the fixture due to
transverse motion inherent in the vibration exciter shall be less
than 1% of the acceleration amplitude in the Z-direction at each
of the test frequencies.

However, many companies follow the recommendations of ISO 16063-11,
and 16063-21 for high frequencies, where transverse accelerations under 10%
are tolerated [122], and this is standard followed by manufacturers [123].
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(a)

(b)

Figure B.2: Accelerometer data from the shaker .
Panel (a) depicts the acceleration versus time for each of the three axis. Note
the scale used for ax,y is two orders of magnitude smaller than the scale used
for az. The vertical, dashed lines indicate the window used for the Fourier
transform in panel (b).
Panel (b) depicts the spectral amplitude for each of the three filters. The
spectral amplitude of the x, y and z components are listed, along with the
ratio Rã.
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