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Abstract 
 

 Kuantan is emerging as a dynamically developing region supported by the mega-
economic development projects such as the East Coast Economic Development Plan in 
conjunction with the extension of China-Malaysia bilateral industrial parks and establishment 
of East Coast Rail Link (ECRL), a part of the great Belt and Road Initiative (BRI). Such a rapidly 
developing region requires a robust spatial analysis to understand the changing landscape 
pattern and its socio-environmental impacts to guide sustainable development. Addressing 
the lack of research focused on this key economic development region, this study aims to 
characterise and evaluate the historic and future projection of land use land cover (LULC) 
change patterns to understand the dynamics of the regional development process and to 
identify potential future land use conflicts. The methodology for this research includes 
construction of coarse-scale land cover classes by using Landsat 5 TM and Landsat 8 OLI data 
based on a combination of Random Forest classifier on Google Earth Engine (GEE) platform 
and manual refinement to construct fine-scale LULC maps by using auxiliary reference data. 
The produced timeseries imageries’ overall accuracy assessment scored at an average of 83%. 
Subsequently, to further assess and model the future LULC change pattern, the Land Change 
Modeler (LCM) in TerrSet was utilized by training the multilayer perceptron (MLP) neural 
network and using the Markov chain analysis. 
 

The study shows that the region’s land cover will be largely altered by human 
intervention driven by urbanisation and the region’s evolving economic vision. Overall, the 
LULC timeseries for the years 2010 to 2020 revealed a prominent increase in oil palm 
plantation, followed by mining, residential, and industrial site expansion, with a consequent 
decline in forest and disturbed vegetation cover. The future land use projection for the year 
2030 also revealed similar land use development patterns. Both the historical remote sensing 
data and future projections showed that industry, mining, and residential are clustered and 
growing in close proximity while expanding extensively, which may likely be a cause of future 
land use conflict. Although modelled future projections may contain many uncertainties, 
having the ability to envision future possible scenarios provide key insights into the current 
and evolving future patterns of land use changes and predicting their impacts on people and 
the environment. This will assist government bodies, stakeholders, and policy makers by 
providing information essential for future planning and sustainable development decisions.  
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Chapter 1: Introduction 
 
1.1. Problem Statement and Scope of Research 

 
To centralise and enhance the development in the East Coast Economic Region (ECER), 

Kuantan city and its surrounding region have been made a focus for development, known as 
the East Coast Economic Region Special Economic Zone (ECER-SEZ) (ECER Master Plan 2.0, 
2019). Kuantan is acknowledged as the Port City and gateway to the Asia-Pacific markets that 
bring in various investment and trade opportunities with advancing high-profile 
manufacturing sectors and lead bilateral trade relation ventures between Malaysia and China 
(Nur Fatin, 2016; The Report Malaysia, 2012). In addition, to the thriving industrial and also 
logistic sector developments such as the construction of East Coast Rail Link (ECRL) track in 
Kuantan, the region is also known for its abundant natural resources, namely for its 
agricultural produce and bauxite resources which are locally processed and exported (Naz 
Karim & Shah, 2016). Hence, Kuantan is playing a vital role in the ECER-SEZ and aspires to 
become a central location for development in South East Asia; offering various opportunities, 
to transform the region into a vibrant trading centre, a potential resource and manufacturing 
base, an export platform equipped with great infrastructure and logistics hub, and also as a 
major local tourism destination for its cultural and natural attraction (ECERDC, 2010). The 
implementation of these high-impact development plans and continuous exploitation of 
natural resources in Kuantan have resulted in major land cover changes over the past 
decades, as such rapid economic growth is often interconnected with a record of increased 
land use changes (Chen et al., 2020). Overtime, the various growing land use profiles in that 
development concentrated region have also led to land use conflicts, mainly affecting on the 
surrounding environment and people’s livelihood (Aw & Awale, 2015). 

 
In order to support spatial planning in dynamic regions such as Kuantan, an important 

first step is characterising historical land use change using remote sensing to understand the 
past and present physical properties of landscapes (Lechner, Foody & Boyd, 2020; Ngo et al., 
2020). The Landsat satellite series has one of the longest timeseries of historical imagery and 
along with supervised classification methods and its medium resolution data, it represents as 
one of the most established methods to accurately map and monitor the dynamic changes in 
LULC distribution (e.g., Coppin et al., 2004; Lu et al., 2004; Lu & Weng, 2007; Singh, 1989; Tso 
& Mather, 2009). Such mapping can provide details on the intensification, conversion, and 
abandonment of specific regions, and the socio-environmental impacts of these 
transformations (Ang et al., 2021; Gyawali et al., 2004; Lechner et al., 2019; Yiran et al., 2012). 
Hence, in this study, Landsat satellite imagery was used accompanied with the Random Forest 
classification method in the Google Earth Engine (GEE) and ArcGIS software to analyse and 
characterise the historical land use change activities. Additionally, multiple sources of 
ancillary data were also used for land use detection and interpretation due to constraint of 
using Landsat sourced 30m resolution data. 
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Using historical maps of LULC change, it is possible to model future LULC changes 
based on historical patterns of change to support spatial land use planning. Future LULC 
modelling can predict key LULC change patterns by discerning the potential socioeconomic 
and biophysical forces that influence the rate and spatial patterns of LULC change and 
urbanisation processes (Aburas et al., 2018; Al-sharif & Pradhan, 2014; Shivamurthy et al., 
2013; Yang et al., 2012). Common methods of land change modelling include: (1) machine 
learning, (2) cellular-based, (3) spatial modelling, (4) agent-based approaches (Han et al., 
2015; Yang et al., 2012), and (5) hybrid approaches (Wang & Maduko, 2018). One common 
approach to modelling land change is using the Land Change modelling system, part of the 
TerrSet software, which integrates a multilayer perceptron (MLP); a feed-forward neural 
network that calculates the weights/influence of input variables and Markov Chain (MC) 
modelling (Hasan et al., 2020). It is an extensively used modelling procedure to forecast future 
LULC change based on the transition probabilities of historic land use change activities (Hasan 
et al., 2020). These methods have been applied to analyse the spatio-temporal patterns and 
predict the LULC change and urban growth (Han et al., 2015; Mas et al., 2014; Ozturk, 2015; 
Sundara Kumar et al., 2015; Wang & Maduako, 2018). Therefore, this method is replicated in 
this study too for the similar purposes; analysing both the historical and future spatio-
temporal patterns and determining possible factors to land use conflicts due to coexisting 
different land use profiles. 

 

1.2. Aim and Objectives of Research 
 
This research aims to characterise spatio-temporal land use land cover (LULC) changes 

over the rapidly developing region of Kuantan using remote sensing and land change 
modelling methods. The main objectives of this research are to (1) map the patterns of LULC 
change over the past two decades using Landsat satellite imagery, (2) identify the land use 
classes which significantly changed in the region and are likely to have significant socio-
environmental impacts, and to (3) model the possible future land use change of the study 
area. These objectives will be achieved by creating a timeseries LULC maps, analysing the land 
use change activities, and modelling the future LULC change patterns. The results are used to 
understand the dynamics of the urbanisation process and to identify potential land use 
conflicts to assist the land use planners make an informed decision, regulate strategic land 
use development spatial planning, support sustainable development in Kuantan, and 
ultimately to understand the types of development challenges for fast-growing developing 
regions in Southeast Asia. 
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Chapter 2: Literature review 
 

2.1. Land Use Land Cover (LULC) Change in Malaysia 
 
Urban land expansion is one of the most visible, irreversible, and rapid type of LULC 

change process in human history, largely driven by urbanisation, both directly through the 
transformation of existing land cover to settlements and indirectly through the consumption 
of resources (Gao & O’Neill, 2020; Nuissl & Siedentop, 2021). This large-scale global 
environmental change is led by the exponential growth in population, demographic changes, 
and socio-economic development activities (Spyra et al., 2021). Currently, developing 
countries are experiencing a considerably faster rate of urbanisation than the developed ones 
(Carneiro Freire et al., 2019) resulting in extensive LULC change patterns (Yao et al., 2015). 
Large developing countries with emerging market economies like China and India have 
experienced rapid land use changes from being an agricultural based-country to an 
industrialized country (Rathee, 2014; Shi et al., 2018). Similarly among the East Asia region, 
Malaysia is exemplified as one of the fastest urbanising developing countries and is emerging 
as a new industrialized country while expanding its market economy in service, 
manufacturing, mining, and agricultural sectors (Abu Dardak, 2015; Samat et al., 2020).  
 

A key dimension of the Malaysian government’s economic strategy focuses on 
balancing the uneven regional development throughout the country by creating new 
development centres in resource frontier regions. Development in these regions is based on 
utilizing local natural resources of the less-developed states in support of the national 
economic development, while strengthening rural agricultural and industrial sectors (Ngah, 
2011b). Hence, the Malaysian government is particularly focused on addressing the disparity 
in economic development between the west and east coast of Peninsular Malaysia, through 
the establishment of an economic corridor in the east coast known as the East Coast Economic 
Region (ECER) (Huam et al., 2018). Over the past 2 decades, such economic corridors are 
recognized as a vehicle for sub-regional economic development advancement and in 
promoting equitable regional growth by providing economic connectivity between major 
metropolitan centres (Athukorala & Narayanan, 2018; Yeo & Rimmer, 2015). Realizing the 
importance of providing an efficient and effective logistics system to expand the economic 
connectivity between these different regions and Southeast Asia, the Malaysian government 
along with international financiers is developing the 620km long East Coast Rail Link (ECRL) 
project (Huam et al., 2018). The ECRL project is a part of China’s Belt and Road Initiative (BRI) 
that will act as a major land bridge in connecting the ECER region to the rest of the country, 
whilst boosting the local tourism sector (ECER Master Plan 2.0, 2019), but potentially having 
negative environmental and social impacts (Lechner et al., 2019; Ng et al., 2020; Teo et al., 
2019).  
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In recent decades, researchers have made substantial progress in empirically 
addressing the various forms of land use changes to determine the major land-use conversion 
and occurring land use conflicts (Elias et al., 2012; Nuissl & Siedentop, 2021; Winkler et al., 
2021), as LULC change have a significant impact on the environment and society (Gao & 
O’Neill, 2020). To promote long-term sustainable regional development, better knowledge of 
how development alters the local environment is required (Kivinen et al., 2018a) and this is 
especially important for rapidly changing regions like Kuantan and other locations across 
rapidly developing South East Asia. With the lack of study encompassing the spatial changes 
of this rapidly developing region of Kuantan, this research’s aim and objectives are envisioned 
to deliver more knowledge on the extent and rate of land use changes, and in understanding 
the land use dynamic and arising land use conflict between different land use profiles. 
Characterising spatio-temporal LULC patterns will assist policy and decision-makers in 
analysing the causes and consequences of land use dynamics and in supporting the 
implementation of strategic land use spatial planning (Verburg et al., 2004). Strategic land use 
spatial planning can contribute to meeting the current and future societal needs while 
addressing land use conflict (Brown & Raymond, 2014; Lechner et al., 2020).  

 

2.2. Kuantan 

Kuantan is located in the eastern part of Peninsular Malaysia at the latitude of 3° 48' 
27.72" N and longitude of 103° 19' 33.60" E and is the capital city of Pahang with a population 
approaching half a million people (DOSM, 2021). The topography of Kuantan mainly consists 
of lowlands and the city extends along the coast. The city is rich with local culture, known for 
its natural and heritage tourism attractions, and also for the abundant natural resources. 
These attributes have shaped the various livelihood opportunities for the people of Kuantan. 
The early economy for many Kuantan locals was dependent on agricultural activities 
(comprised of oil palm plantation, rubber plantation, orchards), marine and freshwater 
fisheries sectors, small businesses such as craft production, small-scale manufacturing, and 
also local tourism activities (ECER, 2016). 

 
Kuantan is a fast-growing region that is an integral part of the East Coast Economic 

Region‘s development plan (ECERDC, 2010). Its strategic geographic location of facing the 
South China Sea and being in one of the world’s main shipping lanes and trading routes was 
a significant factor for the city being chosen as the focal point in the ECER-SEZ development 
project (Huam et al., 2018; Nur Fatin, 2016). The five key economic drivers focused in the 
ECER master plan for this region are namely tourism, oil and gas, petrochemical, 
manufacturing; agriculture and agro-based industry, and human capital development 
(ECERDC, 2010). These key economic drivers are expected to create economic growth in the 
region, raise the knowledge capacity of the population, and generate 200,000 jobs (ECER 
Master Plan 2.0, 2019). The recent discovery of Kuantan land being rich in gibbsite minerals 
has also led to the acceleration of mining activities fulfilling China’s growing demand for 
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bauxite resources (Lines, 2015). The extent of the study area (Figure 1) chosen for this 
research includes these thriving development activities within the region. The key drivers to 
the rapid development within the study area are the growing industrial sectors, vast 
agricultural activities, bauxite mining excavation, and also encompassing the future ECRL 
track.  

 
 

 
Figure 1. Map of Kuantan city in Peninsular Malaysia (on the bottom right corner) and the 
research’s study area in Kuantan. The labelled locations within the study area indicate some 
of the important economical and urbanisation nodes; A: Cherating, B: Gebeng, C: Kuantan 
Port, D: Balok, E: Beserah, F: Bukit Goh. 
 
 
 
 
 
 
 



12 
 

Chapter 3: Methods 
 

3.1. Methods Overview 
 
 The methodology for this research includes the use of remote sensing data to produce 
a historic timeseries LULC map for the years 2010, 2015, and 2020 through a process of image 
pre-processing and Random Forest classification using the Google Earth Engine (GEE) and 
ArcGIS. The classified LULC maps are refined further with finer land use categories by manual 
digitization using various sources of auxiliary reference data for interpretation (Lechner et al., 
2019). The following timeseries classification methodologies is specifically delineated in 
Section 3.2 and 3.3 ahead. Moving on to Section 3.4, it will cover the methodology to land 
use change analysis and future land use modelling using the Land Change Modeler (LCM) 
modelling system in the TerrSet software by training the multilayer perceptron (MLP) neural 
network and using a stochastic modelling method, Markov chain. Accuracy assessment and 
validation process are carried out to determine the reliability of the classified historical LULC 
maps and the simulated future LULC maps. 
 

3.2. Remote Sensing Data 
 
 The satellite imagery for this study was derived from the GEE platform. The GEE 
application is a web-based remote sensing platform commonly used for the provision and 
analysis of data. In this project, GEE was used to carry out spatial and temporal assembling of 
satellite imagery collections (Sidhu et al., 2018). Its advanced analyses and cloud computing 
capabilities are particularly well-suited to perform the time-series analysis in this study 
(Gorelick et al., 2017; Mutanga & Kumar, 2019). The satellite imagery dataset of the study 
area was sourced from both USGS Landsat 8 OLI (for 2015 and 2020) and Landsat 5 TM sensor 
(for 2010) (Table 1a).  
 
 Using GEE, a multi-temporal mosaic dataset was created based on specific annual date 
ranges within the study area extent. One of the essential criteria of the years chosen for each 
timestep was to provide fair coverage over key periods for the development of each sector 
(i.e. plantation, industrial, and bauxite mining sectors) in the study area. The choice of years 
was also influenced by the availability of the least cloudy scenes (with a maximum of 5% cloud 
cover) for better visualisation and classification process. The multitemporal mosaic was 
composed of the median pixel value from atmospherically corrected and cloud masked 
Landsat satellite surface reflectance data for the chosen 2010, 2015, and 2020 timesteps (Ang 
et al., 2021) (Table 1b).  
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Table 1. Landsat sensor and bands used, and image dates for classification of timeseries and the 
auxiliary reference data used as ground truth and to support the classification of specific land cover 
classes. 

a) Landsat Satellite Data 

Landsat Bands Wavelength range (μm) Imagery Dates (Month/ Date) 

LS 8 OLI  Coastal 0.43–0.45 2019 (10/01) - 2020 (04/10) 
 

Blue 0.45–0.51 2014 (01/01) - 2015 (12/31) 
 

Green 0.53–0.59 
 

 
Red 0.64–0.67 

 

 
NIR 0.85–0.88 

 

 
SWIR1 1.57–1.65 

 

 
SWIR2 2.11–2.29 

 

    
LS 5 TM Green 0.5–0.6 2009 (01/01) - 2010 (12/30) 
 

Red 0.6–0.7 
 

 
NIR 1 0.7–0.8 

 

 
NIR 0.8–1.1 

 

 

b) Auxiliary Reference Data 

Name Sensor Data type Pixel size Date Source 

Satellite Imagery  Landsat 4,5,7 & 8 Raster 30m  2020,2015, 
2010 

USGS 

Basemap Worldview 2 True 
Colour 

0.5m 2020 ArcGIS 

Basemap Worldview 2 True 
Colour 

0.5m 2020, 2015, 
2010 

Google Earth Pro 

Global Forest Change Landsat 4,5,7 & 8 Raster 100m 2020, 2015, 
2010 

Hansen et al., 2013  

Annual Oil Palm Plantation 
Maps in Malaysia and 
Indonesia from 2001 to 2016 

ALOS PALSAR, 
ALOS-2 PALSAR-2 & MODIS 
NDVI 

Raster 100m 2020, 2015, 
2010 

Xu et al., 2020   
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3.3. Classification of the Historic LULC Timeseries  
 
A multi-step land cover classification was carried out to characterize the LULC classes 

related to key existing and emerging land use development activities based on two major 
steps: (1) a supervised classification to identify the coarse-scale land covers and (2) manual 
digitization using auxiliary reference data to facilitate the identification of fine-scale LULC 
which are significant drivers of land cover change in this study (Figure 2). The first step 
involves the categorization of coarse-scale land covers that could be distinguished through 
supervised classification such as bareland, waterbody, built-up, mining sites, forest, and 
secondary vegetation. Carrying out the supervised classification with Landsat data had some 
limitations, as it could not precisely distinguish fine-scale classes that share similar spectral 
properties. For example, in distinguishing different vegetation types such as oil palm 
agricultural land with other disturbed vegetation, and also in differentiating different built-
up types (i.e. residential area with industrial sites). Hence, a second step was required, 
where some of the broad-scale classes were divided into fine-scale classes through manual 
attribution with the aid of auxiliary data (Table 1b).  
 
 

 
Figure 2. The land use classification methodology to produce the timeseries maps. 
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3.3.1. Step 1 Image Pre-processing, Supervised Classification, and Accuracy     
Assessment 

 

The Random Forest classifier is a machine learning algorithm used to enhance the 
classification accuracy for land cover classification based on user-defined parameters, thus, 
this classifier was used to carry out the supervised classification process in GEE using the pre-
processed multi-temporal mosaic imagery to distinguish the coarse-scale LULC classes that 
frame the dominant land covers in the study area (Table 2). These coarse-scale classes were 
identified as the land covers, which represent the direct observation of the physical material 
at the surface of the earth (Fisher & Unwin, 2005). This first step is essential to record and 
categorize the pixels with homogenous characteristics that depict the spectrally distinct land 
cover types. The auxiliary data from Table 1b were used as ground-truth for classifying these 
land covers; a commonly practiced validation method (Foody, 2002; Liu et al., 2002; Plourde 
& Congalton, 2003). The 0.5m to 30m resolution auxiliary reference data such as Google Earth 
Pro was predominantly used for ground truth, while the extent of primary forest cover was 
particularly identified using Global Forest Change 2000 – 2014 data by referring to Hansen et 
al. (2013). Additionally, the ArcGIS base map with a higher resolution at 0.5m was also used 
specifically for the classification of year 2020 map. Using these datasets a minimum of at least 
130 training points for each of the six coarse-scale land cover classes were identified. 
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Table 2. Description of the coarse-scale land cover classes identified for the first classification step 
and fine land use classes that were manually digitized in the second classification step. 
Coarse-scale land 
cover classes 

Description Fine-scale land 
use classes 

Description 

Bareland Exposed-ground areas in a barren state with 
little to no vegetation cover, not including 
mining surfaces 

- 

Mining Sites Bauxite mining sites with largely exposed red 
dust ground 

- 

Built-up Residential/settlements, industrial, 
commercials, urban, and related 
infrastructure. 

Residential Residential/settlements and other 
public amenities (i.e. Schools, hospitals, 
shops, etc.) 

  
Industrial Sites Industrial factories and large 

commercial infrastructures, including 
the industrial park and Kuantan port 

  
Roads Highways and main roads from  

OpenStreetMap (OSM) data 

Forest Primary forest and Permanent Forest 
Reserves 

- 

Other Vegetation All vegetation covers, not including primary 
forest and permanent forest reserves 

Oil Palm  
Plantation 

Oil palm plantation of big and 
smallholders 

  
Disturbed 
Vegetation 

Sparse natural vegetation, scrublands,  
emerging secondary vegetation, and  
small unidentified croplands 

Waterbody Sea, rivers, lakes, and reservoirs - 

 
 
A key challenge for classifying historical data was to adequately classify historic land 

covers for training and validation. The quality of resolution for historical auxiliary data reduces 
as it goes further back in time and for the earlier years, Landsat data had to be used for ground 
truth as the high resolution auxiliary data were not always available, especially at years 
matching the mapping dates. Hence, to interpret these imageries, different band 
combinations were used to support the visual assessment (Appendix A.). For Landsat 8 
satellite imagery particularly, the band combination of 4, 3, and 2 (true colour) and also 7, 6, 
and 4 (short-wave infrared) distinguished the different classes well. While, short-wave 
infrared composites using SWIR-2 (7), SWIR-1 (6), and red (4) display denser vegetation and 
sparse vegetation as darker and lighter shades of green respectively, the urban areas are 
displayed as blue and different types of soils with various shades of brown. As for Landsat 5 
satellite imagery, the band combination 3, 5, and 7 and also 7, 5, and 3 worked the best. This 
specified band combination provides an image with a “natural-like” appearance, clearly 
distinguishing between vegetation, urban features, different top soils, and waterbody (Quinn, 
2001). 
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The training points assigned for the coarse-scale classes were divided into a ratio of 
70:30 where 70% of the training points were assigned for the Random Forest classification, 
while the remaining 30% were reserved for accuracy assessment as field data used in training 
Landsat imagery, shouldn’t be combined in the method validation (Figure 3). There was a total 
of 546 training points and 234 accuracy assessment points. The training points assignment 
and supervised classification steps were refined iteratively until a satisfactory accuracy level 
was obtained. The output generated for accuracy assessment was interpreted as the overall 
accuracy, producer’s accuracy, and user’s accuracy. The produced classified imagery was then 
exported from GEE to ArcGIS for manual alteration and refinement with the aid of auxiliary 
reference data in the next step (Table 1b). 

 
 

 
Figure 3. Allocated training points for supervised classification and validation process for each 
timestep. 
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3.3.2. Step 2 Classification of Fine-scale LULC Timeseries Mapping 
 

The second step involves a post-classification process (Figure 2), where we manually 
refined and updated the produced LULC classification map with fine-scaled classes through 
manual digitization. At this stage, some of the coarse-scale classes were further classified into 
multiple fine-scale land use types as shown in Table 2. This post-classification process is 
necessary as certain fine-scale land uses share similar spectral properties and can hardly be 
distinguished through the supervised classification methods alone (i.e. residential with 
industrial sites and among different vegetation types). Hence, it is highly essential to have 
additional ancillary data and the aid of auxiliary reference data (Table 1b) in this step to 
identify the spectrally similar fine-scale land use classes. Throughout this post-classification 
process, a grid was overlaid on the maps to work as a guide and ensure that digitization efforts 
were distributed equally across and systematically over the large study area extent.  

 
The post-supervised classification process for the vegetation covers and roads 

required additional steps. Manual interpretation using the high to medium resolution 
auxiliary reference data alone to classify the oil palm plantation cover was insufficient to 
differentiate between the different tree covers. Hence, additional ancillary reference data 
from the Annual oil palm plantation maps in Malaysia and Indonesia from 2001 to 2016 by Xu 
et al. (2020) was utilized as a reference to digitize the oil palm plantation cover within the 
study area. The dataset provided a good reference point despite its lower resolution at 100m, 
and with the additional reference using Google Earth Pro, it was effective in determining the 
extent of oil palm plantation cover. While to improve the accuracy of the roads, vectors from 
Open Street Map (OSM) were used to identify highways and main roads. 

 
The updated land use classes layers from step 2 were mosaicked with the initial land 

cover classified imagery from step 1 to create the LULC classification maps. Starting with the 
2020 LULC classification imagery, these two classification steps (Figure 2) were repeated, by 
consecutively taking into account the previously classified imagery to replicate the 
classification process for the remaining timesteps. This procedure was essential to ensure 
cohesion between the time series imagery (Ang et al., 2021). The final product was a 
timeseries of 3 classified images which was used in the next processing stage. 
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3.4. Analysing Land Use Changes and Future Land Use Projection using TerrSet 
 

TerrSet (formerly known as IDRISI) is a geospatial software system widely used for 
monitoring and modelling the Earth system (TerrSet Geospatial Monitoring and Modeling 
Software, 2021). In this study, we used one of TerrSet’s embedded modelling system called 
the Land Change Modeler (LCM), which is an integrated application for analysing the past land 
cover change, modelling potential future land use change, and evaluating planning 
interventions for maintaining ecological sustainability (Eastman, 2016). In this study, we used 
the LCM modelling system that utilizes a combination of MLP neural network and Markov 
chain analysis modelling techniques to model the land use change transition probabilities and 
produce future LULC change projections. To further assess the trend of land use change and 
predict future land use change activities of the study area, the following 3 steps were carried 
out in such order: (1) change analysis, (2) model validation, and (3) change prediction as 
shown in Figure 4. 

 

3.4.1. Land Use Change Analysis 
 
In step 1, the historical LULC maps were analysed as pairs (i.e. 2010 with 2015; 2015 

with 2020) to obtain the transition area matrix to highlight the dominant land use transition 
between each class across the timeseries (Figure 4); by providing a quantitative assessment 
of land use change in terms of gains and losses or net change of each LULC class (Megahed et 
al., 2015).  Based on this analysis, the model produced a series of transition potentials maps. 
Transition potential expresses the relative potential of a pixel to transition from one class to 
another in the form of a continuous value from 0-1. In this step basic quantitative information 
about the total areas of different classes changing between dates was described. 

 

3.4.2. Modelling Land Use Projection for Validation and Future Scenario 
 
In step 2 the quality of the future LULC modelling was assessed by comparing a 

predicted map against a reference map. In another word, simulating a 2020 LULC projection 
using the 2010 and 2015 land cover maps and comparing this to the classified 2020 LULC map 
(Figure 4). Firstly, the drivers of the transition potential produced from step 1 were estimated 
using a MLP neural network for a range of explanatory variables (Eastman, 2006), to describe 
the estimated probability of each pixel’s persistence or conversion to another land cover 
(Dzieszko, 2014). These explanatory variables were selected based on their potential 
influence on the development activities such as industrial site expansion, mining, and urban 
sprawl (Figure 5 and Table 3).  
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The explanatory variables mainly consist of topographic and proximity factors. 
Topographic factors such as the digital elevation model (DEM), slope, and landform dataset 
acquired from Farr et al. (2007) and Theobald et al. (2015) for this study, are generally 
considered as one of the most significant factors affecting urban sprawl, influencing city size 
and spatial distribution (Hasan et al., 2020). The population density dataset from Gaughan et 
al. (2013), was also included as it drives urbanisation growth. These datasets were 
downloaded from the GEE platform using respective sources. Additional explanatory 
variables including soil and lithology datasets sourced from Law (1968) and, Hartmann and 
Moosdorf (2012) are important determinants of potential mining and agricultural land areas. 
Whereas, proximity factors are also drivers for urban sprawling due to the likelihood of having 
neighbourhood effects where non-built up areas are transformed to build up areas through 
the introduction of convenience and access towards resources and everyday needs (Hasan et 
al., 2020). By training the MLP neural network with these explanatory variables, the model 
produces the LULC transition probabilities included with information regarding the relative 
power of the explanatory variables through LCM’s backward stepwise analysis by 
consecutively eliminating the weakest explanatory variable one by one. This analysis assesses 
the best combinations of explanatory variables that influence the modelling sensitivity in 
projecting the transition probability of each LULC class. 
 

Having the transition probability as a foundation (Dzieszko, 2014), LCM uses the 
Markov chain analysis, to model the expected quantity of change using a competitive land 
allocation model to determine scenarios for the year 2020. At this stage, two versions of 
predictions are made by the model: (1) hard prediction and (2) soft prediction. The hard 
prediction map projects the land cover map with each class representing their most likely 
probability of land cover class in 2020 (Ayele et al., 2019; De Alba, 2011; Megahed et al., 
2015). Whereas, the soft prediction projects a vulnerability map, determining the probability 
of the pixels changing to another land category (Adepoju et al., 2006; Ayele et al., 2019; De 
Alba, 2011). 

 
In order to validate the accuracy of the model, differences between the simulated and 

the actual map of the year 2020 was assessed using the Kappa Index Agreement (KIA) 
approach, which is extensively used in LULC change prediction measure agreement (Kitada & 
Fukuyama, 2012; Parsa et al., 2016; Mishra & Rai, 2016; Subedi et al., 2013). This KIA 
validation assessment is done by measuring the accuracy and skill of the modelling system 
that accounts for all the transitions and persistence of the pixels during the MLP training 
process (Eastman & Toledano, 2018). The steps 1 and 2 discussed above were replicated in 
the final step 3 but with the 2015 and 2020 LULC maps instead without including the model 
validation processes to project the LULC map for the year 2030 (Figure 4). 
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Figure 4. Land use change assessment and future land cover projection using the TerrSet 
software. 
 

     
 

 
Figure 5. Explanatory variable maps layers that were inserted in the land change modeler 
(LCM). The type of map layers presented in this figure are described in Table 3. 
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Table 3. The explanatory variables inserted in the land change modeler (LCM). 
 

      a) Topographic Factors Data 

Data Type Dataset Description Resolution   Source 

(a) Digital   
      Elevation 
      Model (DEM) 

A high resolution digital topographic database 
capturing the Digital Terrain Elevation Data (DTED) 
through the Shuttle Radar Topography Mission 
(SRTM) 

30m   Farr et al., 2007 
   

(b) Slope Dataset of digital elevation data obtained through 
the Shuttle Radar Topography Mission (SRTM) 

30m   Farr et al., 2007 
   

(c) Landform Dataset of landform classes created by combining 
Continuous Heat-Insolation Load Index and the 
multi-scale Topographic Position Index datasets 

30m   Theobald et al., 2015 
   

(d) Population Census-based population counts matched to a 
range of geospatial covariate layers depicting the 
estimated population density in each grid cell 

100m    
 (resampled at 30m using the 
Nearest Neighbour method) 

  Gaughan et al., 2013 
   

(e) Soil Category A reconnaissance soil map of Peninsular Malaysia 
Series L40A gathered under the European Digital 
Archive of Soil Maps (EuDASM) 

Resampled at 30m using the 
Nearest Neighbour method 

  Law, 1968 
   

(f) Global     
     Lithology 
     Map (GLiM) 

A high resolution global lithology map representing 
rock types of the Earth surface by assembling 
lithological information translated from existing 
regional geological maps and literature 

Resampled at 30m using the 
Nearest Neighbour method 

  Hartmann &  
  Moosdorf, 2012 
   

b) Proximity Factors Data   
 

Data Type Data Description 

(g) Distance to Roads Dataset was produced by using the Euclidean Distance tool in ArcGIS 

(h) Distance to Residential  

(i)  Distance to Industrial Sites  

(j)  Distance to Mining Sites  

(k) Distance to Disturbed Vegetation  

(l)  Distance to Oil Palm Plantation  
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Chapter 4: Results 
 
4.1. Timeseries of Classification Map and Accuracy Assessment 
 

The classified LULC maps for the years 2010, 2015, and 2020 are shown in Figure 6, 
while Figure 7 delineates the area (km2) of the LULC classes for each timestep. The spatial 
distribution of the LULC in the study area changed continuously throughout the time series, 
with the largest LULC extents made up of oil palm plantation, forest cover, disturbed 
vegetation, and waterbody which includes the ocean and standing freshwater bodies. These 
classes are also the LULC that have experienced the most land use change activities over time 
(Figure 7). Towards the southeast region of the study area, the minor LULC classes (Figure 6) 
such as industrial sites, residential, and mining sites are clustered together within a highly 
developing and dynamic region. The constant expansion among these minor LULC classes has 
increased the proximity to each other. Other LULC such as waterbody and roads did not 
exhibit significant changes in their total area. 
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Figure 6. The classified remote sensing LULC maps for (a) 2010, (b) 2015, and (c) 2020 
timesteps. 
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Figure 7. The graph indicates the area (km2) of each LULC class for each remotely sensed 
mapped timestep. 
 

The accuracy assessment for the timeseries takes into account the coarse scaled land 
cover classes, namely, built-up, bareland, waterbody, forest cover, and disturbed vegetation. 
The calculated accuracy score indicates a reasonable level of overall accuracy at an average 
of 83%. In some cases, the accuracies were as low as 60% for bareland in the year 2020, and 
66% for built-up in the year 2010 (Table 4). This may be due to inaccurate classification and 
the comparatively coarse resolution of auxiliary data used as a reference. Due to Landsat’s 
30m-by-30m resolution, LULC classes smaller than the satellite’s sensor’s pixel will be difficult 
to be detected and distinguished. The complete accuracy assessment matrix is presented in 
Table 4 for further reference. 

 
Table 4. A compilation of accuracy assessment results for all three LULC timesteps from the 
classification process using the Google Earth Engine (GEE) platform. 

Year  2010 2015 2020 

Kappa Coefficient   87% 84% 79% 

Overall Accuracy 
 

92% 89% 83% 

Producer Accuracy Build Up 66% 99% 88% 
 

Bareland 84% 79% 60% 

 Mining Sites - 73% 92% 
 

Waterbody 97% 93% 100% 
 

Primary Vegetation 99% 80% 78% 
 

Secondary Vegetation 93% 87% 86% 
     
User Accuracy Build Up 73% 94% 86% 
 

Bareland 77% 94% 78% 

 Mining Sites - 92% 92% 
 

Waterbody 98% 90% 97% 
 

Primary Vegetation 92% 90% 81% 
 

Secondary Vegetation 97% 78% 80% 
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4.2. Land Use Land Cover Change Analysis 
 

4.2.1. Land Use Change Analysis Involving the Gain and Losses of LULC 
 

The trend of land use changes from 2010 to 2020 is shown in Figure 8 and Table 5. 
From 2010 to 2015, the forest cover had the largest net reduction in area by 46.00 km2. The 
disturbed vegetation and bareland classes also experienced a decrease, but at a relatively 
lower rate. In contrast, oil palm plantations had an exponential growth with a net increase of 
39.13 km2, occupying a large extent of the study area, especially towards the west region, 
where the region is less developed. Other minor LULC classes such as the residential and 
mining sites also expanded with a net increase of 9.08 km2 and 8.91 km2 respectively, followed 
by the industry which recorded only a gradual increase. The expansion of these minor LULC 
classes was mainly concentrated near the coastal region where it is more populated and 
focused on infrastructure development. 

 
The overall land use change in the following years of 2015 to 2020 exhibited a 

moderate trend in change. The net change in disturbed vegetation was recorded as the 
highest among the classes for this change period, with a net decline of about 9.44 km2. The 
decreasing trend in land use area is followed by the forest cover and oil palm plantation but 
at a lower rate. Mining sites on the other hand continued to expand further by 8.00 km2, 
followed by a gradual net increase in residential, industrial site, and bareland classes. 
Waterbody and roads LULC classes had no significant changes throughout the three 
timesteps. This is because the waterbody largely represented the ocean, coastline, and other 
standing freshwater bodies which did not change. Whereas for the roads, no major additional 
highways and main roads development took place.  

 
In summary, the dominant LULC changes for the whole study period between 2010 to 

2020 include a reduction in forest cover and disturbed vegetation, and increases in oil palm 
plantation, mining, and residential areas. Hence, the region’s natural land cover is largely 
altered by the increase in land use development with different development types growing 
in proximity to each other (Figure 6). Such a trend of different land uses clustering together 
increases the likelihood of causing land use conflicts due to various socioeconomic 
incompatibility and potential environmental degradation, i.e. residential areas near industry. 
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Figure 8. Gain and losses of LULC (on the upper row) depict the expansion and reduction rate 
of land use area while the net changes of LULC (on the lower row) depict the dominant trend 
that trades off from the interchange between the gain and losses of each land use classes, all 
in km2. (a) and (c) represent years 2010-2015 and figures (b) and (d) represent years 2015-
2020. 
 

      
Table 5. The total area of net change, and gains and losses of each LULC class in km2. The 
shaded boxes indicate a declining trend in the net changes. 

                               2010-2015 2015-2020 
 Gain Loss Net Change Gain Loss Net Change 
Bareland 16.98 -20.21 -3.23 18.25 -16.99 1.26 
Residential 12.22 -3.14 9.08 8.37 -6.25 2.12 
Industrial Sites 3.99 -2.44 1.55 5.82 -3.74 2.08 
Roads 0.07 - 0.07 0.20 - 0.20 
Waterbody 2.18 -1.89 0.29 2.35 -2.18 0.17 
Forest 12.90 -58.90 -46 21.97 -24.98 -3.01 
Disturbed Vegetation 58.07 -67.75 -9.68 31.53 -40.97 -9.44 
Oil Palm Plantation 51.06 -11.93 39.13 8.47 -9.76 -1.29 
Mining Sites 8.91 - 8.91 11.65 -3.73 7.92 
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4.2.2. LULC Transition Assessment 
 

The transitions among different LULC classes for this study are delineated in Figure 9, 
presenting the different LULC being converted to one another over time. Based on Figure 9, 
forest cover, disturbed vegetation, and bareland experienced the highest land use conversion 
from the year 2010 to 2015. About 40.60 km2 of forest cover was degraded and converted to 
disturbed vegetation due to forest clearing and encroachment. Such high trend of forest cover 
loss can be observed at the largest patch of forest in the study area (Figure 6). Subsequently, 
a smaller but notable amount of forest was converted to oil palm plantation (9.10 km2) and 
bareland (6.04 km2). Disturbed vegetation transitioned into a range of land use classes 
including 37.67 km2 of oil palm plantations and it also significantly contributed to the increase 
in bareland by 7.51 km2, residential by 5.87 km2, and mining sites by 3.63 km2. Bareland also 
contributed to the increase of disturbed vegetation, residential and oil palm plantation areas, 
but at a relatively lower rate. 

 
The land use change activities in 2015 to 2020 were more dynamic with increased area 

of land use transition for each class. Among all the LULC classes, disturbed vegetation 
continued to be the land use with the greatest amount of change, contributing to an increase 
in 19.76 km2 of forest cover, indicating secondary forest regrowth, 9.23 km2 bareland, 4.30 
km2 of oil palm plantation, and a range of other LULC classes such as residential and mining 
sites, but at a minor scale. Whereas, the extent of forest cover conversion was lower 
compared to the year 2010 to 2015, only transitioning 17.44 km2 of forest cover to disturbed 
vegetation and 4.90 km2 to bareland. Bareland had noticeably experienced a large amount of 
change to disturbed vegetation by 6.70 km2, and industrial sites and residentials by 3.37 km2 
and 3.10 km2 respectively. Meanwhile, oil palm plantation was converted to mining sites by 
6.41 km2.  

 
Overall, the greatest amount of land use transition was from or to forest, disturbed 

vegetation, and bareland (Figure 9). The conversion of forest and disturbed vegetation to 
other land uses shows a decline in the natural green spaces and an increase in other 
developing land use classes. Although the land use conversion for the rest of the LULC classes 
were rather minor, they generally represented an increasing trend to an increase in land use 
area, except for oil palm plantation which exhibited a large decrease in the year 2015 to 2020 
(Figure 9b). Finally, the very small changes in land use for waterbody and roads are mainly 
due to small differences associated with misclassification. 
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Figure 9. Transition matrix of LULC area (km2) for (a) 2010 - 2015 and (b) 2015 - 2020. The 
cumulative bar chart shows the various LULC in the former year (ie: 2010/2015) being 
converted into the respective LULC on the x-axis in the latter year (ie: 2015/2020). The value 
on top of each bar refers to the overall area (km2) involved in the LULC conversion. 
 
 

4.3. Future LULC Change Projection  
 

4.3.1. Transition Probability Modelling and Model Sensitivity Analysis 
 

The modelling sensitivity can be understood through the backward stepwise analysis 
that eliminates the weakest explanatory variables one by one to test the influence of the 
explanatory variables on the skill measure and accuracy of the modelling system to predict 
class transitions and persistence. The result in Table 6 shows that the model with all 12 
explanatory variables is the best model combination that results in 58.19% of accuracy rate 
and 0.5471 of skill measure. Hence, all 12 layers were shown to significantly contribute to 
train the MLP neural network in producing the transition probability maps. 
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Table 6. The result of MLP with backward stepwise constant forcing together with the 
description for each explanatory variable. 

Explanatory Variables Map Description 

var.[1] Landform 

var.[2] DEM 

var.[3] Slope 

var.[4] Study Area Population 

var.[5] Soil Category 

var.[6] Lithology 

var.[7] Distance to Disturbed Vegetation 

var.[8] Distance to Roads 

var.[9] Distance to Residential 

var.[10] Distance to Oil Palm Plantation 

var.[11] Distance to Mining Sites 

var.[12] Distance to Industrial Sites 

 

Model Variables included Accuracy (%) Skill measure 

With all variables All variables 58.19 0.5471 

Step 1: var.[1] constant [2,3,4,5,6,7,8,9,10,11,12] 58.07 0.5457 

Step 2: var.[1,3] constant [2,4,5,6,7,8,9,10,11,12] 57.86 0.5435 

Step 3: var.[1,3,4] constant [2,5,6,7,8,9,10,11,12] 57.20 0.5363 

Step 4: var.[1,3,4,5] constant [2,6,7,8,9,10,11,12] 55.39 0.5167 

Step 5: var.[1,3,4,5,2] constant [6,7,8,9,10,11,12] 51.32 0.4726 

Step 6: var.[1,3,4,5,2,8] constant [6,7,9,10,11,12] 46.94 0.4252 

Step 7: var.[1,3,4,5,2,8,6] constant [7,9,10,11,12] 44.61 0.4000 

Step 8: var.[1,3,4,5,2,8,6,12] constant [7,9,10,11] 40.67 0.3573 

Step 9: var.[1,3,4,5,2,8,6,12,9] constant [7,10,11] 33.50 0.2796 

Step 10: var.[1,3,4,5,2,8,6,12,9,11] constant [7,10] 26.97 0.2088 

Step 11: var.[1,3,4,5,2,8,6,12,9,11,7] constant [10] 15.91 0.0890 
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4.3.2. Model Validation 
 
Model validation was conducted to determine the quality of the 2030 simulated map 

by first evaluating the difference between the simulated and actual LULC map in the year 
2020. The visual comparison between the classified and simulated LULC maps for the year 
2020 is shown in Figure 10 and the area statistics of both the maps are presented in Figure 
11. Based on Figure 11, most of the LULC classes share a similar trend in land use area 
statistically, except for the forest cover and oil palm plantation. The simulated model 
overestimated the forest cover loss and oil palm plantation expansion in contrast to the 
classified 2020 LULC map. The incoherency between the simulated and classified LULC maps 
is assumed to be due to the abrupt changes experienced by these two classes in terms of their 
land use change activity in the years 2010 to 2015 compared to 2015 to 2020. Forest and oil 
palm plantation classes were among the ones that had the most dynamic land use change 
activity in 2010 to 2015, followed by a lower rate of land use change in the later years of 2015 
to 2020 (Figure 7). The simulated map also failed to estimate the extent of mining sites as per 
the 2020 classified LULC map and projected more mining sites to grow near the industrial 
region (Figure 10), although statistically the differences in land use area between the 
simulated and classified LULC maps was low (Figure 11).  

 
To further verify the simulated map, a more detailed quantitative analysis is 

accomplished using the Kappa index assessment (KIA). The KIA for both actual and simulated 
map of the year 2020 in this study resulted in the following; 𝐾!"= 0.7886, 𝐾#"$%&'"!= 0.802, 
𝐾(&%!)%*)= 0.7658.  Here, 𝐾!" indicates the overall agreement of the simulation run, whereas, 
𝐾#"$%&'"! indicates the extent to which the two maps agree in terms of the location of each 
category, and	𝐾(&%!)%*)  indicates the proportion of simulation assigned correctly versus the 
proportion that is correct by chance. Hence, with the K values scoring an average of 0.7896, 
the model is considered to have a reasonable level of agreement between the actual and 
simulated maps. Despite overestimating land use changes and failure to estimate the extent 
of future land use changes spatially as in Figure 10, the K value of the model suggests that the 
simulation was able to capture the expected magnitude of land use change activities.  
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Figure 10. Classified (a) and simulated (b) LULC map for the year 2020. 
 
 
 
 

 
Figure 11. Area (km2) of the actual and simulated LULC maps for 2020. 
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4.3.3. Projection of Future Land Use Map 
 
 The projected future LULC map for the year 2030 is shown in Figure 12 in two forms; 
hard and soft projection. Here, the hard projection illustrates the potential land use scenario  
based on the most likely future land use change activities, while the soft projection shows a 
continuous map of vulnerability of an area to change based on the degree to which a pixel 
belongs to each of the land use class (Eastman, 2016). Additionally, the statistical record of 
the projected 2030 LULC map in comparison to the earlier timestep years (2010, 2015, and 
2020) is shown in Figure 13. Overall, the model predicts an increase among all the LULC classes 
except for the forest cover and disturbed vegetation. These two classes were simulated to 
decrease following a similar trend to the earlier years, however, at a slower rate. Some of the 
distinct changes found in the year 2030 compared to the observed trends in previous years 
are the large increase in mining sites and oil palm plantation, by 30.41 km2 and 283.61 
km2	respectively. These two classes are projected to expand further towards the east of the 
study area and further encroach the residential area and industrial sites (Figure 12). As the 
2030 projections in Figure 12 indicate, the southeast region of the study area is more 
vulnerable to land use change activities; mainly involving the rapid expansion of mining sites, 
oil palm plantation, and reduction in forest cover.  
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Figure 12. Simulated LULC map in 2030 as (a) hard projection and (b) soft projection. The hard 
projection in (a) shows the projected 2030 land use scenario while in (b) it illustrates the 
vulnerability of an area to land use change; the range provided on the upper right corner of 
(b) indicates the probability of the pixels changing to another land use category where 0 to 1 
represent a lower to higher rate of pixel changing probability respectively.  
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Figure 13. Area (km2) of each LULC class for every timestep derived with remote sensing 
(2010, 2015, and 2020) and the land use simulation (2030). 
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Chapter 5: Discussion 

5.1. Historic and Future Trends in LULC Change 

 
 Our analysis showed great spatial and temporal changes throughout the timeseries 
among the LULC classes especially for the forest cover, oil palm plantation, and disturbed 
vegetation as these three classes were observed to constantly experience trade-offs between 
them. As shown in Figure 6 and Figure 7, oil palm plantation has had the largest land use area 
increase over the years through conversions of other LULC classes; mainly from disturbed 
vegetation, forest cover, and bareland  (Figure 8). Oil palm plantations are biophysically highly 
suitable to be established in coastal and lowland areas. Hence, with the nearby palm oil 
processing and exporting facilities at Kuantan Port, it makes Kuantan a well-suited location 
for the mass plantation (Shevade & Loboda, 2019). The large extent of oil palm plantation 
found in the study area also resonates with the fact that oil palm is one of the most important 
agricultural crops in Malaysia and the conversion of natural forests to oil palm is one of the 
key drivers of biodiversity loss (Shevade & Loboda, 2019; Wilcove & Koh, 2010).  
 

The next largest land cover in the region is forest and disturbed vegetation that 
occupied 35% of the study area throughout the year 2010 till 2020. Both these classes 
experienced a constant reduction and were cleared for oil palm plantation, bareland, and 
other LULC classes; disturbed vegetation and bareland represent as transitional land cover 
classes to other land use developments. Major deforestation was observed at the existing 
largest patch of forest in Figure 6Figure 12 which contains protected areas such as the Balok 
and Beserah forest reserves. The consistent and significantly diminishing vegetation cover in 
the study area will likely persist into the future based on the timeseries analysis and future 
projection. This is concerning as the land use changes are causing forest fragmentation and 
reduction in natural green spaces. Forest fragmentations will be a threat to the natural 
biodiversity and existing wildlife as it leads to a reduction in viable habitat areas and increased 
human disturbance due to edge effects from the surrounding land use development activities 
that gradually expand surrounding the remnant forest cover (Figure 6) (Sodhi et al., 2010; Tee 
et al., 2018).  
 

A dynamic trend of different LULC classes’ expansion was found mainly in the 
southeast of the study area (Figure 6Figure 12) involving residential, mining, and industrial 
sites growing in closer proximity to each other. The increasing trend among these land use 
classes indicates the growing urbanisation and industrialisation activities of the Kuantan 
region, which if not sustainably managed, may negatively affect the urban ecosystem services 
and potentially exacerbate pollution while inducing land use conflicts among the locals 
(Lechner et al., 2020; Lourdes et al., 2021). 
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 Figure 12 portrays how the historical land use changes likely lead to the future LULC 
pattern of the region in 2030. Based on the statistical analysis of the year 2030 projection in 
Figure 13, oil palm plantation is projected to dominate about 41% or equivalent to 283.61 
km2 of the study area. While other leading expanding LULC classes are projected to keep 
growing into closer proximity to each other, i.e. the mining sites with industrial sites and 
residential. The simulated locations for the expansion of mining sites overlapped with the 
lithology map in Figure 5 and project that mining sites will be found from Bukit Goh to the 
coastal area due to the underlying basic volcanic rocks which are dominated by basalt 
(Hartmann & Moosdorf, 2012), the parent rock to the mineral composition of bauxite 
resources found in Kuantan (Najwa et al., 2019). Residential areas are also projected to 
increase to keep up with the population growth as the area develops (ECER Master Plan 2.0, 
2019). Whereas, the projection for the industrial sites shows a minimal increase due to the 
slower rate of expansion recorded in the historic LULC maps. Overall, the projection suggests 
that the expanding development activities may engulf a large part of the forest cover and 
other natural green areas. Finally, land use conflicts are more likely to occur in areas of LULC 
with very different development profiles (i.e. mining versus residential). 
 

5.2. Extent of ECER Development  
 
 The study region of this research falls in one of the important Key Development Areas 
(KDAs) or Nodes called the ECER Special Economic Zone (ECER-SEZ). The Malaysian 
government established the nodes to accelerate the region’s development through the rural-
urban integration strategy by focusing on the region’s economic strength and rich resources 
(ECER Master Plan 2.0, 2019). This is in line with the strategies adopted by the Malaysian 
government to correct the uneven regional development through “in-situ” rural development 
by the dispersal of industrialization and commercialization to the less developed region and 
the creation of townships such as the Federal Land Development Authority (FELDA) which 
supports large-scale agriculture development (Alden & Awang, 1985; Ngah, 2011a). 
Additionally, the ECRL track will also be introduced to run along the ECER region connecting 
to the west coast of Peninsular Malaysia and other main trade routes (Tat, Chin & Chew, 
2018). These complexities can be observed in the land change modelling in terms of increased 
urbanisation, conversion of natural areas to oil palm, and even more intensive land uses like 
mining and industrialisation. In a way, the Kuantan region represents a microcosm of some of 
the main land use challenges occurring in Malaysia and other developing regions in Southeast 
Asia. 
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5.2.1. Projection of the 2030 LULC Map in Comparison to the Envisioned Future 
of Kuantan as the ECER-SEZ 

 
The agricultural sector is recognised as a major economic sector in the ECER region 

that has and will contribute to a significant proportion of GDP growth through current 
productivity and the development of new areas (ECERDC, 2010). This can be seen in the 
mapping of oil palm plantations, as the largest and highest expanding land use in the study 
area region (Figure 13). However, the region’s development vision has shifted its focus more 
towards the industrialization and commercialization sectors, mainly involving the industrial 
and mining activities, which have been predicted to accelerate rapidly in the future (ECER 
Master Plan 2.0, 2019; Lines, 2015). Although these classes only exhibit a gradual expansion 
in the projected 2030 LULC map comparing to the other larger LULC classes, they are 
envisioned to bring in more dynamic and intense development in the neighbouring areas.  
 

The projected LULC map for the year 2030 in Figure 12 accounted for the land use 
change patterns that occurred for the past decade of 2010 to 2020. Hence, on this basis, the 
validation process for the projection resulted in a reasonable level of modelling predictability. 
However, the simulated 2030 LULC map will likely differ from what is expected to be seen in 
the actual year 2030, especially for the projected three main dynamically changing economic 
activities framed in the study area: oil palm plantation, industrial, and mining sites. This is due 
to external factors and policies that were not recorded in the past land use changes trend and 
future land use planning that may take place but were not accounted for in our modelling. 
For example, oil palm plantation expansion is likely to reduce in Kuantan following the 
government’s planning to cap the extent of Malaysian’s palm oil estate at 6 million hectares 
(Butler, 2019). Hence, although the oil palm plantation’s expansion rate in the study area 
region from the year 2015 to 2020 had a decreasing trend, the simulated projection for year 
2030 rather showed an overestimation in the expansion rate (Figure 13). 
 

In contrast to older less profitable and more traditional industries which provide a 
small number of jobs (i.e. small-scaled business and agricultural activities, and fisheries 
sector), mining and industrial sites can be expected to expand exponentially with the future 
development project plans and promising job opportunities (ECER Master Plan 2.0, 2019), 
although the simulated 2030 map did not highlight a major increase for the industrial sites 
(Figure 13). According to the Hong Kong Trade Development Council (2017) and the local 
district plan draft of the Kuantan Municipal Council (2015), the industrial park in Gebeng will 
expand to over 3,500 acres to establish MCKIP 2 and MCKIP 3, making way for more high-end 
technology development, petrochemical and chemical manufacturing companies, and multi-
purpose development including light industry, commercial property, residential areas, and 
tourism parks. Such high-impact projects will spur more future industrial activities to take 
place, leading to the expansion of Kuantan Port into a deepwater port - the New Deep Water 
Terminal (NDWT) project. The NDWT project will fulfill the demand for doubling the capacity 
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of the port by 52 million freight weight tonnes (FWT) and to allow more industries and enable 
larger ships to berth (Foon, 2017). 
 

As for the mining industry in Kuantan, the industrial experts suggest that mining is 
expected to thrive as new sources of bauxite are required to fulfill China’s and other 
industries' growing demand for bauxite resources and aluminum production (Lines, 2015; 
Tan, 2016). Kuantan is rich in gibbsite minerals (required for bauxite) which are mainly located 
near Batu Goh towards the coast of Kuantan where basalt, the parent rock of bauxite is found 
(Najwa et al., 2019; Ismail et al., 2018; Jusopp, 2016). The rest of this region can be expected 
to be further exploited with the increased demand and interest in this lucrative business, 
likely causing oil palm and fruit orchard owners to sell off their lands to mining companies 
(Alagesh, 2019). 
 

Kuantan is also home to the game-changing ECRL project which will run along the ECER 
region connecting the west coast of Peninsular Malaysia and other main trade routes (Huam 
et al., 2018). The planned 620 km ECRL route is expected to catalyze the local and national 
economy by improving the logistical issues between the Klang and Kuantan ports, reducing 
the shipping time, and enhancing connectivity between Malaysia and China (Lopez, 2016). 
The ECRL track within the study area will contain 3 stations planned to be situated at 
Cherating; a major tourism spot, and 2 more stations near the Kuantan Port which is projected 
to primarily benefit mass freight weight transportation (i.e. mineral and agricultural 
commodities such as bauxite and palm oil products, and also manufacturing and chemical 
liquid goods, and marine produce), as it is expected to accommodate 70% of cargo and 30% 
of passengers (Malaysia Rail Link, 2019; Zainuddin, 2019). Additionally, the proposed route 
may also boost the tourism sector by significantly reducing the traveling time within the 
Peninsular (Loke, 2019). While the footprint of the train route is relatively small as they 
promised to significantly reduce traffic congestion around the busy ports and in reducing 
carbon emissions (Malaysia Rail Link, 2019), the future track is likely to be a key driver of land 
use change in the surrounding area by accelerating the industrial activities and bauxite 
excavation. The ECRL track will also have potential negative impacts on the natural 
environment and wildlife and lead to habitat loss and fragmentation in some of the 
Peninsular’s central forests (Mayberry, 2017). 
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5.3. Arising Land Use Conflicts and Spill-over Effect from the Industrial Sites and 
Bauxite Mining Activities 
 

The study area is an evolving dynamic arena with these various development 
occurring in parallel. However, the expansion of these developing regions may lead to the rise 
in land use conflicts. Land use conflicts occur when there is an incompatible interest among 
the land use stakeholders as a result of land use development that has conflicting negative 
effects on the surrounding environment and society (Von Der Dunk et al., 2011). Land use 
conflicts in coastal regions like Kuantan are likely to be greater as the implementation of mega 
infrastructural projects will compete with coast-dependent economic activities like fisheries, 
tourism, and residential development as well as environmental and agricultural interests 
(Susman et al., 2021). The current coexistence of industrial and mining sites with the other 
LULC has already spurred land use conflicts and disputes among the locals due to the growing 
proximity and extensive negative spill-over impacts from the developing sites. Degraded 
environments and pollution from existing industrial and mining activities deteriorate 
environmental conditions and impose negative effects on the locals especially affecting the 
livelihood of fishermen and the surrounding tourism sectors (Aw & Awale, 2015; Sobahan et 
al., 2013).  Such contrasting land uses are key challenges for land-use planning and decision 
making globally (Everingham et al., 2018; Hilson, 2002; Ocelík et al., 2019).  
 

The spill-over environmental effects from developing industrial sites have been shown 
to cause deterioration in the surrounding environment including within existing residential 
areas, affecting people’s health both directly and indirectly (Hossain et al., 2012). This issue 
has been raised in various case studies in the region, news reports, and research (had all the 
citations below here as well). According to one recent study by Hossain et al. (2012), the water 
bodies near the operating industrial areas in Gebeng, namely at Pengorak, Tunggak, and Balok 
rivers, and Pengorak beach, experienced an abnormal level of heavy metal and aluminium 
concentrations with traces of radioactive materials suspected to originate from the nearby 
industrial and bauxite mining sites (Hossain et al., 2012). Other similar studies have also found 
that the rivers located in the vicinity of industrial sites contained higher contaminants mainly 
from industrial pollutants and the rivers were degraded due to geomorphology and 
anthropogenic factors such as urbanisation and industrialisation (Ata et al., 2018; Yaakub et 
al., 2018; Sobahan et al., 2013). Local residents also have mixed feelings towards the 
operating industries such as the rare earth processing plant known as Lynas Advanced 
Material Plant (LAMP) at Gebeng (Ali, 2014; Baharom, 2018; Bodetti, 2019; Golingai, 2018; 
Ibrahim, 2017; Lipson & Hemingway, 2019; Megahed et al., 2015; Samsudin, 2019). Despite 
the LYNAS’s claim of being hazardous-free, environmentalists and some local residents are 
worried about the fate of the generated waste products that contain low-level radioactive 
materials on the health of 700,000 people living within a 30 km radius of the LAMP plant and 
its potential to contaminate the surrounding natural environment especially the groundwater 
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through the leakage of heavy metals from Lynas’ onsite waste storing (Bodetti, 2019; New 
Straits Times, 2019; Raman & Abdul Kader, 2019).  
 

Bauxite mining has resulted in many land areas being turned into large red wastelands. 
Several cases have been identified where bauxite runoffs caused by heavy downpour and 
“bauxite washing” processes have generated effluents with traces of heavy metals such as 
arsenic, mercury, and aluminium, especially in the water samples taken near Bukit Goh and 
Kuantan (Abdullah et al., 2016; Academy of Sciences Malaysia, 2017). Analysis of these 
effluents indicated that they’ve breached the recommended guidelines and are likely to be 
hazardous to the aquatic ecosystem and human health (Mohd Kusin et al., 2016). A group of 
scientists also reported that a fish sampled in the Pengorak river had high levels of arsenic 
ranging from 70.8 to 104.5g/kg, exceeding the permissible level which is by 1mg/g (Naz Karim 
& Shah, 2016). During the peak of bauxite mining activities in 2015, an incident headlined as 
the “red sea” phenomenon in local newspapers, happened along the shores of Balok and Batu 
Hitam beach, where the seawater turned red due to bauxite residues allegedly being swept 
from nearby bauxite stockpiles at Kuantan Port into nearby rivers and eventually flowed into 
the sea (Alagesh, 2015). Similarly in that year, the main source of domestic water supply in 
Kuantan was disrupted at the Sungai Kuantan basin due to increased sediment load from the 
surrounding unregulated mining activities (Academy of Sciences Malaysia, 2017). 
 
                 The red dust from bauxite is also another environmental problem caused by the 
improper management of mining activities. According to a report, the level of air pollution 
from the bauxite dust recorded by monitoring the 24-hour PM10 levels in Bukit Goh, Beserah 
(just outside residents’ homes), and the Gebeng Industrial Estate, exceeded the standard 
levels of 150 μg/m3, under the 24-hour Malaysian Ambient Air Quality Standard for PM10, by 
a record of 222.13 μg/m3 (Bukit Goh), 164.05 μg/m3 (Beserah) and 276.79 μg/m3 (Gebeng) 
(Naz Karim & Shah, 2016). Lorries transporting bauxite ores release suspended red dust in the 
air, which covers the surrounding residential areas, roads, and plantations. This led to some 
of the locals suffering from frequent respiratory and skin rash problems due to their daily 
exposure to the bauxite dust (Abdullah et al., 2016; Academy of Sciences Malaysia, 2017). 
Some of the oil palm plantation and fruit orchard owners also are concerned as their lands 
turned infertile due to the nearby ongoing mining activities (Alagesh, 2019). The discussed 
land use conflicts from the spill over effects of the industrial and bauxite mining activities are 
expected to increase as non-complementary land uses expand within closer proximity to each 
other. 
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5.4. Limitations and Future Study Recommendations 

The mapping of LULC changes and findings from this study provides an insight into 
how land use development has altered and will likely continue to alter the region’s vulnerable 
environment. However, remote sensing by nature is limited to only providing spatial 
information up to a given level of resolution. In addition, there is potential for the remote 
sensing classification error to propagate and impact on the land use change projections. 
However, the findings from the literature review was also able to support the mapping and 
modelling results in the study, but it had limited information concerning the scale and 
consequences of certain land use development processes. In order to improve the spatial 
analysis and to obtain more detailed information on the current land use development 
progress and further insight on the occurring land use conflict, the public participation 
geographic information (PPGIS) method can be incorporated as a further step to this research.  

PPGIS is a crowdsourcing and spatially explicit method where GIS and digital 
communication technologies are used to engage the public and local stakeholders through a 
collaborative effort to acquire local knowledge and perspective of specific locations 
(Fagerholm et al., 2011). PPGIS has been proven to significantly contribute to understanding 
how local people perceive and experience the landscape, as they are regarded as the true 
experts of their environment and they could provide knowledge that may not be able to be 
derived from the process of mapping, modelling, and literature reviews alone (Costanza et 
al., 1997; Fagerholm et al., 2011; Kivinen et al., 2018b; Nedkov & Burkhard, 2012; Stephenson, 
2008; Willemen et al., 2008). Hence, to understand the implications of the land use 
development activities and arising land use conflicts, a combination of the mapping, 
modelling, and PPGIS methods could serve as a great tool in framing the land use patterns 
and determining the land use conflicts and impacts of land use change activities from a local’ 
‘in-situ’ perspective whilst allowing them to be engaged in future land use planning decision 
making. 
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Chapter 6: Conclusion 
 
 This research represents one of the few studies in Malaysia on regional mapping of 
LULC changes using remote sensing and future land change modelling to assess and quantify 
the spatio-temporal pattern and draw links to socio-environmental impacts from the LULC 
changes. A high-accuracy time series of the region in Kuantan between 2010 to 2020 was 
successfully characterized using the Landsat satellite imagery with a combination of Random 
Forest classification in GEE and manual digitization. With the aid of multiple ancillary data, 
key fine thematic resolution land uses were extracted from the coarse land use satellite 
imagery of the study region. Using LCM the dynamic changes in land use were modelled for 
2030, highlighting significant temporal trends in LULC change activities.  

The study showed that by 2020 the region had experienced major land use changes 
following 2010, mainly from the expansion of oil palm plantation, mining, industry, and 
residential at the expense of declining natural green spaces with an increase in forest and 
disturbed vegetation clearing. According to the 2030 projection, forest cover and disturbed 
vegetation will continue to decline tremendously as oil palm plantation and mining sites 
continue to expand widely. However, future land use policies of reducing oil palm plantation 
expansion and mega project development planning encouraging rapid urbanisation and 
industrialisation process may change these projected futures. Both historical remote sensing 
data and future projections show that industry, mining, and residential are clustered and 
growing into closer proximity while expanding extensively, which may likely be a cause of 
future land use conflict. In conclusion, the study shows that the region’s land cover will be 
largely altered by human intervention driven by the interest in urbanisation and the region’s 
evolving economic vision. Although the future projection may contain many uncertainties, 
having the ability to envision future possible scenarios granted key insights in understanding 
the current and evolving future patterns of land use changes and predicting their impacts on 
people and the environment. This will assist government bodies, stakeholders, and policy 
makers by providing information essential for future planning and sustainable development 
decisions. 
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Appendix 
 

Appendix A. 
 

 

 

Figure A.1. Landsat satellite imageries with different band combinations used to support the 
visual assessment; (a) and (b) refers to Landsat 8 satellite imageries with the band 
combination 4,3,2 and 7,6,4 respectively, while (c) and (d) refers to Landsat 5 satellite 
imageries with the band combination 3,5,7 and 7,5,3 respectively. 
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