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ii. Abstract 

Sustainable intensification is a goal for 21st century agriculture that requires producing more 

food with less damaging outputs, including greenhouse gas emissions. This research observes 

the relationship between the inputs, practices and characteristics of cereal farms and the 

outputs produced. The activities of 336 cereal classified farms from the 2017 Farm Business 

survey were analysed using linear regression. Data on commercial outputs were taken directly 

from the survey. Greenhouse gas output data was derived using the Sustainable Intensification 

research Platforms carbon equivalency coefficients. Data on activity expenses and survey 

questions on specific techniques were used to observe practices. Farm location codes were 

used to observe the locational characteristics. Data collected by the University of Nottingham, 

on Land Grade Classifications, were used to add further detail to the locational characteristics. 

Analyses were performed at three different levels: total farm level output, per hectare output 

and per tonne output. At each level of measurement higher inputs generally led to higher 

outputs. Data on the specific techniques of green manure usage and precision farming proved 

to be significant. The former of these reduced emissions and the latter increased them, but also 

increased yields. This is despite both methods purporting to reduce emissions. These were only 

observable at a per hectare and per tonne level. Inputting data on location and on farm 

characteristics provided limited results. This showcased the limitations with the chosen carbon 

equivalency calculator and correlated with other studies using the same one. Although 

limitations were observed with the dataset, coefficient and with the scope of the research, it 

was found that similar methods could be used by policymakers to analyse trends in greenhouse 

gas mitigation and for individual farmers to improve resource use efficiency. 
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iv. Abbreviations 

Abbreviation Definition 

GHG Green-House Gas 

UK United Kingdom 

CEH Centre for Ecology and Hydrology 

JCA Joint Character Area 

SIP Sustainable Intensification research Platform 

IPCC Inter-continental Panel on Climate Change 

CPP Crop Protection Products 

SOM Soil Organic Matter 
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1.0 Literature review: Greenhouse gas emissions from UK arable agriculture 

 

1.1 Introduction 

Climate Change is one of the most discussed and impactful environmental topics of recent 
history (Jakučionytė-Skodienė et al., 2021). This is due to its damaging impacts on weather and 
other environmental conditions (Kertesz and Madarasaz., 2014). The reduction of greenhouse 
gas (GHG) emissions is required to halt climate change and stop the increase of global 
temperatures (Zheng et al., 2019). A GHG is any gas that can absorb infrared radiation or heat 
energy. In the case of the green-house effect, this energy is sourced from the Sun and reflected 
into the atmosphere from the Earth’s surface (Mann, 2019). GHGs hold the energy in the 
atmosphere, maintaining the Earth’s temperature (Denchak, 2019).  

Increasing the quantity of GHGs in the atmosphere increases the quantity of heat energy 
trapped, also increasing the Earth’s temperature (Denchak 2019). This rise changes the climate 
activities of the world, impacting weather patterns and making them more volatile (Mann, 
2019; Denchak, 2019). The concentrations of GHGs has varied substantially over the Earth’s 
history; this change has been controlled by a variety of factors (Mann, 2019). However, the 
steady increase following the ‘Industrial revolution’ has led to the conclusion that human 
activity is largely responsible for the current level of emissions and the rising global 
temperature (Mann, 2019; Denchak, 2019).  

Agriculture is responsible for the production of all three of the major GHGs, which are carbon 
dioxide, methane, and nitrous oxide, producing over 30% of total global emissions (Gilbert, 
2012). Agriculture has a unique position as being both an emitter of GHGs through production 
yet is also a mitigator of them (Chirinda et al., 2011). This is due to the cyclical nature of the 
emissions, where the output and intake of GHGs form part of a recurring cycle (Lynch et al., 
2020).  

 

1.1.1 Search method 

This literature review focuses on the factors that change GHG output through its mechanism of 
soil microbial activity, such as the climate, weather, and physical factors What follows is a 
literature review outlining these factors and what is currently known about their effects. The 
literature reviewed will primarily be confined to articles concerning UK and European 
agriculture specifically, to provide a level of relevance to the research being pursued and 
homogeneity among the results. Searches were conducted using the databases ‘Sciencedirect’ 
and ‘JSTOR’ between October and December 2020. 

 

1.1.2 Greenhouse Gases 

Carbon Dioxide can take over 200 years to breakdown in the atmosphere, once emitted (Lynch 
et al., 2020). Carbon dioxide’s ability to cause a greenhouse effect is the benchmark by which 
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other gases are measured (Lynch et al., 2020). In the context of agriculture, the quantity of 
carbon stored within soils is as much as three times higher than is found in the atmosphere 
(Cho, 2018; Ontl and Schulte, 2012).). Importantly, a third of this is within the top 20cm, 
meaning that using this land can have a huge impact on its carbon storage (Pries et al., 2018). 
This is unlike the majority of industrial GHG emissions, where carbon that has been stored for 
millions of years is released through the burning of fossil fuels, with no mechanism for its 
breakdown and storage, with carbon dioxide being uniquely long-lived (Halbouty, 2003; Lynch 
et al., 2020). This has occurred by dead organic matter that is broken down by soil microbial life 
as a part of the carbon cycle (Chirinda et al., 2011). At the soil stage of the cycle, the components 
of this breakdown are known as soil organic matter (SOM), with the carbon content being 
specifically referred to as soil organic carbon (SOC) (Heintze et al., 2017). 

Methane has an atmospheric lifespan of 18 years and has 27 times the warming potential as 
carbon (Lynch et al., 2020). Within agriculture, its primary source is from livestock production, 
which is the source of half of all methane emissions in the UK, with the largest contributor of 
methane output coming from enteric fermentation, from flooded rice production and ruminant 
digestion. With regards to arable agriculture, manure management is a significant contributor 
(Heilig,1994), making up 13% of agricultural methane emissions in 2014 (DEFRA, 2014). There is 
criticism over the measurement of methane in comparison to other GHGs. Methane is known 
as a short-lived climate influencer, as opposed to the long-lived gases; nitrous oxide and carbon 
dioxide (Lynch et al., 2020). 

The final gas, nitrogen, is the most important when it comes to arable agriculture. It remains in 
the atmosphere for around 114 years (Thomson et al., 2012) and has 298 times the greenhouse 
potential as carbon (Butterbach-Bahl et al., 2013). Because of this, it accounts for 10% of the 
overall GHG effect, despite making up 0.3% of physical emissions (Thomson et al., 2012). 50% of 
global nitrous oxide emissions are from agriculture and there has been an upward trend in 
emissions over the past 140 years (Thomson et al., 2012), increasing by over 19% since pre-
industrial times (Butterbach-Bahl et al., 2013). 

 

1.1.3 GHGs in UK Agriculture 

Agriculture is responsible for around 10% of UK GHG emissions (DEFRA, 2019). Agricultural land 
has been intensifying and declining in area, though not expanding into untouched ecological 
territory (Dallimer et al., 2013; Norton, 2017). This contrasts with many other countries, whose 
agricultural land has expanded at the expense of land high in SOC and vegetation like 
rainforests (FERN, 2017).  

In the UK, 10 billion tonnes of carbon are estimated to be stored in soils, this has reduced and is 
currently reducing due to intensive practices (Environment Agency, 2019). In 2019, the UK 
environment agency found that arable farming has caused a loss of between 40 and 60% of 
SOC, reducing the amount of carbon stored (Environment Agency, 2019). 

Within the UK, over 70% of nitrous oxide emissions are from the agricultural sector through 
fertilizer use (DEFRA, 2019), making it the most impactful emission from arable agriculture. 
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Management of this output has a commercial gain as fewer emissions lead to more nitrogen 
available for plants, resulting in higher yields and more income. However, this has not been 
enough of a motivational factor to curb emissions, with rates still rising, peaking at 79% of the 
UK’s nitrous oxide inventory in 2016 and 75% in 2019, despite the average of 70% per year 
(DEFRA 2016, 2019). 

An obvious reduction technique would be to limit the use of manures and fertilizers. However, 
current crop yields and levels of food security are fuelled using nitrogen fertilizers, supplemented by 
farmyard manures. An increasing need for food will also increase demand for fertilizers (Chirinda et 
al., 2011). Hence, solutions need to be found that reduce the emissions without compromising 
the yields needed. 

 

1.2 Soil Microbial activity 

The primary sources of each of the GHGs are through soil microbial activity. Both the carbon 
and nitrogen cycles rely on soil microbes to progress through the soil stage (Oertel et al., 2016; 
Chirinda et al., 2011). The breakdown or output of methane also relies on microbes (Chadwick et 
al., 2011). 

Specifically, carbon dioxide emissions from agriculture are caused by respiration of soil 
microbiota, alongside production emissions from the usage of fossil fuels (Cho, 2018). Carbon is 
absorbed by living things, entering the soil through root systems or when they die and 
decompose. When the microbiota has ample access to oxygen, they convert the stored carbon 
into carbon dioxide. More exposure to oxygen leads to higher outputs of carbon dioxide (Oertel 
et al., 2016). 

Methane’s relationship with soil microbiota is different. Under aerobic conditions methane can 
be broken down by soil microbiota, contributing to the soils carbon content (Chadwick et al., 
2011). However, if there is not enough access to oxygen for this reaction, anaerobic respiration 
will take place, emitting methane into the atmosphere. Microbial oxidation in soils is the only 
currently known sink for removing methane from the atmosphere (Tveit et al., 2019). 

The most prominent GHG produced by arable agriculture, nitrous oxide, is also dependant on 
soil microbiota. The nitrogen cycle starts when atmospheric nitrogen is converted into 
ammonia by bacteria within the soil (Senbayram et al., 2019). This is then broken down into 
nitrate (NO3), by way of nitrite (NO2), which is an inorganic compound that plants can utilise 
for growth or converted into atmospheric nitrogen through the process called denitrification, 
also accessible to plants (Senbayram et al., 2019). 

For the nitrogen taken up by plants, it is then either consumed by other organisms or 
decomposes. This decomposition is again performed by bacteria, along with fungi, returning the 
nitrogen to the soil. If the plant is consumed the nitrogen will be excreted by the organism, 
through urine or manure as examples. The remaining nitrogen will also return when the 
organism dies and is also decomposed. The micro-organisms performing these functions all 
respire, contributing to the carbon cycle also (Taft et al., 2018). 
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Nitrous oxide is a by-product of the conversion of ammonia into nitrate, also known as 
nitrification (Butterbach-Bahl et al., 2013). Both these processes are carried out by bacteria 
within the soil. During the nitrification processes, oxygen is required to produce nitrate and 
nitrite. If it is not present the by-product of nitrous oxide will be produced at a higher rate 
(Dong-Gill et al., 2013). This has a lower oxygen requirement. 

Nitrous oxide can also be produced through denitrification, the given name of the conversion of 
nitrate into atmospheric nitrogen (Martens, 2005). Under anaerobic conditions atmospheric 
nitrogen is favoured; whilst nitrous oxide will be favoured when there is oxygen availability (Martens, 
2005). 

Modern agriculture synthesizes organic nitrogen sources in the form of fertilizer, to be applied 
to soils and converted, artificially adding nitrogen into the cycle. It can also be a by-product of 
the process of denitrification, when nitrate is converted or reduced into atmospheric nitrogen, 
again performed by soil bacteria (Butterbach-Bahl et al., 2013). Limited oxygen increases the rate 
of denitrification, causing the conversion of more atmospheric nitrogen and nitrous oxide 
(Oertel et al., 2016). 

 

1.2.1 Soil Conditions 

Soil microbial activity is the primary mechanism responsible for arable GHG emissions, as noted 
in the contexts of the carbon, nitrogen, and methane cycles.  Activities performed that affects 
the output of land based GHGs are because of changing the conditions of the soil’s microbial 
life. Studies investigating methods into reducing GHG emissions found that the soil and weather 
conditions changed the behaviour of the microbes and therefore GHG emissions (Taft et al., 
2018). The microbes responded to external factors such as temperature and rainfall, or internal 
factors including soil types and carbon/nitrogen ratios (Taft et al., 2017; Taft et al., 2018; 
Norberg et al., 2016). These can then be exacerbated by management practice (Taft et al., 
2018; Oertel et al., 2016). 

The UK has over 700 unique soil types and therefore many different environments that 
microbial activity occurs within (Countryside, 2019). These fall into several broad categories: 
Sand, Silt, Clay, Loam, Peat, and Chalk (RHS, 2021). These are based upon the size of the 
particles formed, the methods of its formation, and the raw materials it was formed from, for 
example chalk (RHS, 2021). Sand is made up of particles that are between 0.05mm and 0.2mm, 
Silt particles are between 0.05mm and 0.002mm, with Clay particles being below 0.002mm 
(RHS, 2021). A loam soil has an equal amount of all three particles (RHS, 2021). Peat soils have a 
high presence of SOM, whilst Chalk soils have chalk stones and particles within them (Soil 
Association, 2021; RHS, 2021). These are given distinction due to the uniqueness of their 
composition, for example the high alkalinity that chalk soils inherently have (Soil Association, 
2021; RHS, 2021).  

The actual type of a soil will sit somewhere between these categories, for example a sandy 
loam soil, will have all three particle sizes, but with a higher quantity of sand. Soils are often 
given unique names to describe their specific characteristics. For example, the most common 



12 2020/21 
 

University of Nottingham  John Nunns 
 

soil type in Cornwall is known as ‘Shillet’ which is also a Sandy loam (Cornwall Council, 2020). 
The structure and texture of the soil can also have a prominent effect on the activities within it. 
Different soils have different attributes that benefit crop yield (Soil Association, 2021) and the 
same goes for GHG emissions.  

Soils are also graded by quality, which is known as an Agricultural Land Grade (LRA, 2021). 
These range from grades 1-5, with the most common category being grade 3 or ‘good to 
moderate’ quality. These grades are based upon the limitations of the land for growth. They 
Incorporate both physical and chemical limitations that affect the ability to grow crops on them 
(LRA, 2021). 

Thomson et al. (2012) found that the lack of specific enzymes, known as nitrous oxide 
reductase, causes a reduction in the denitrification rate. This enzyme is dependent on soil 
bacteria producing it (Thomson et al., 2012). Bacteria containing a specific gene (nirK) was 
found to be responsible for this. Overall, Thomson et al. (2012) found that nitrous oxide 
production is dependent on soil microbial activity, with the environmental conditions affecting 
the output.  

 

1.3 Climatic factors 

1.3.1 Temperature 

Temperature is linked to metabolic and respiration rates in living things (Clarke and Fraser, 
2004) inclusive of microbial activity. A study observing the GHG output of peat soils and 
comparing it to the results predicted by emissions factors found a positive relationship between 
temperature and carbon dioxide output (Taft et al., 2017). Specifically, both air and soil 
temperature were highlighted. Whilst this is a scenario with peat soils specific conditions, it 
does point to temperature as being a factor in certain environmental conditions (Taft et al., 
2017). This is of particular interest, given that the emissions factor used, the Intergovernmental 
Panel on Climate Change’s standard (Penman et al., 2017), did not incorporate temperature 
(Taft et al., 2017). 

Butterbach-Bahl et al. (2013) also found that the process of denitrification can be very sensitive 
to temperature changes. This study was based on more generic soils and noted the coupling of 
the carbon and nitrogen cycle. Respiration induced by increased temperature causes a 
depletion in soil oxygen content. This results in an increase in the instance of denitrification, 
causing more nitrous oxide to be emitted (Butterbach-Bahl et al., 2013). This process being directly 
linked to temperature points to it being a significant influence on GHG outputs. 

It is documented by several sources that temperature and water overlap in their effects, with 
respect to their influence on GHG emissions, especially carbon dioxide and nitrous oxide (Shang 
et al. 2020; Krol et al. 2016; Oertel et al. 2016). Both affect the microbial activity in the soil, with 
higher temperatures increasing activity (Dawar et al. 2020). This was noted in a study observing 
the annual emissions, criticising studies or models that did not account for the non-linear 
nature of emissions across a whole year (Shang et al., 2020). They found that within the UK 
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water is the more dominant factor. Temperature does account for some of the variation, 
especially with carbon dioxide output, reinforcing previous observations of this relationship 
(Shang et al., 2020). Whilst water was the more dominant factor in the previous study, 
temperature still held influence. The study was based on testing a specific emissions factors 
‘ΔEF’ in four climatic zones, using the labels ‘warm’, ‘cool’, ‘moist’ and ‘dry’. Moist areas had an 
overall higher level of emissions, with mean results of 0.10 and 0.8 ΔEF for the ‘warm/moist’ 
and ‘cool/moist’ areas. Whereas the ‘warm/dry’ area had a reading of 0.1 ΔEF. A difference was 
noted based on the temperature, but its significance was lower than moisture (Shang et al., 
2020). 

The observation of moisture or rainfall overriding temperatures influence is supported 
by Krol et al. (2016). This study investigated reducing nitrous oxide emissions across different 
soil types, with manure application. Temperature was found to have a significant influence, 
though only with well-drained soils, where water became less of a factor (Krol et al., 2016). 

 

1.3.2 Soil Moisture and Rainfall 

Shang et al. (2020) and Krol et al. (2016) referred to the influence of water on GHG emissions, 
in forms such as rainfall or soil moisture. Water limits oxygen access within soil, changing how 
well respiration can be carried out (Oertel et al., 2016; Fan et al., 2021). This changes the speed 
and outcome of any reaction. For example, in the nitrogen cycle nitrous oxide is produced as 
opposed the more desirable Nitrite and Nitrate, because of its lower oxygen requirement (Fan 
et al., 2021). For manures, methane is produced in higher quantities due to lower aerobic 
breakdown needed to mitigate this (Fan et al., 2021).   

By observing SOC as a method of reducing emissions, Sanchez-Martin et al. (2010) found that 
application of water to soil increases carbon dioxide and nitrous oxide output. The carbon 
dioxide increase was very short-lived. This supports previous studies, pointing to temperature 
and not rainfall or soil moisture as being the factor with more influences over carbon output 
(Krol et al., 2016; Shang et al., 2020). 

Soil moisture and rainfall have been identified as significant factors for nitrous oxide (Abalos et 
al., 2016; Oertel et al., 2016; Krol et al., 2016; Fan et al., 2021). Despite previous studies not 
being conducted within the British Isles, a study based in Ireland found that high nitrous oxide 
emissions always follow rainfall (Krol et al., 2016). Whilst the study aimed at identifying if water 
filled pore spaces (WFPS) in soil were a significant influence on emissions, it was instead 
concluded that rainfall was a more significant factor (Krol et al., 2016). It also documented that 
the period of emissions following rainfall were always longer on lesser draining soils and noted 
that this is consistent with other studies on the same subject, such as Mosier et al. (1998), 
Dobbie and Smith (2001), Luo et al. (2013) and Krol et al. (2016). Although WFPS in soil were a 
less significant influence than rainfall, they did provide explanation for some of the emissions. 
For example, the only time of year that WFPS had significant influence was in the spring, where 
it was higher than other times of year at 60%, 82% and 71% averages at the three sites. In the 
summer (averages of 44%, 48% and 57%) and autumn (53%, 55% and 74%) no significant 
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relationship was found. Drainage and rainfall were explaining the increase in soil moisture at 
the third site and the behaviour of nitrous oxide emissions. This signifies that soil moisture 
levels can affect GHG emissions, but that rainfall is the stronger factor, increasing GHG 
emissions (Krol et al., 2016).   

Other studies have explored increasing the overall soil moisture to affect emissions. Taft et al. 
(2018) proposed changing soil moisture through raising the water table, or the level at which 
groundwater sits beneath the land surface, to reduce GHG emissions from organic soils. Whilst 
it was determined that this may not be a practical process, it did prove to be an effective 
method of reducing soil respiration (Taft et al., 2018). It noted a balance with nitrogen, where 
dramatically increased water could act as an inhibitor for microbial life (Taft et al., 2018). This 
has the effect of increasing the efficiency of nitrification. Partially raising the table to 15cm 
below the surface resulted in higher emissions of nitrous oxide than the control (at around 
30cm below the surface) or bringing the table up to the surface.  

Overall, it appears that a higher soil moisture content can lead to more efficient nitrogen 
fixation. However, soils that experience intermittent/partial wetness or rainfall is less efficient, 
with anaerobic conditions leading to higher nitrous oxide output (Taft et al., 2018; Krol et al., 
2016.) This study also explored the effects of tillage, activity which maintains or prepares soil 
for the plant, through activities such as ploughing, sub-soiling or discing. These activities cause 
soil exposure which increase aerobic activity (Taft et al., 2018). These had little effect on 
emissions, but this could be due to the very wet conditions offsetting any increase in soil 
aerobic activity caused by tillage, as observed by Krol et al. (2016) and Taft et al., 2018.) 

This is supported by other studies, such as Abalos et al.’s (2016) analysis of rainfall effects on 
nitrous oxide emissions within semi-arid conditions. According to Abalos et al. (2016) soils with 
low moisture have higher rates of nitrification but produce more nitrous oxide proportionally. 
Low moisture creates aerobic conditions, encouraging nitrification, yet also causing microbial 
activity to speed up, simultaneously producing more of the needed Nitrites and Nitrates, but 
also more of the by-product nitrous oxide (Abalos et al., 2016). 

Methane is also reactive to soil moisture content. A study into the effects of management 
practices on GHG output in vegetables found methane emissions were suppressed by either 
high or low soil moisture (Fan et al., 2021). This can be attributed to the latter enabling aerobic 
respiration and breakdown (Abalos et al., 2016) not allowing methane emissions, whilst the 
former condition mitigates all respiration and breakdown, similar to how a high-water table 
limits carbon dioxide emission (Taft et al., 2018).  In either scenario methane emissions are 
suppressed (Fan et al., 2021). 

Fan et al. (2021) also noted the activity of nitrogen across these conditions, where the 
emissions are only suppressed in one of these scenarios. In the former case the soil is starved of 
oxygen and the reaction of denitrification produces primarily atmospheric nitrogen (N2). In the 
latter scenario, there is a higher prevalence of oxygen, promoting the production of nitrite and 
nitrate (NO2 and NO3). Conditions between these scenarios lead to the production of nitrous 
oxide (N2O), which sits between the two other scenarios with respect to its oxygen 
requirement (Fan et al., 2021).  
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This is corroborated with a project observing the nitrogen flux of three different arable fields 
and soil types which found rainfall to be the most impactful factor for nitrogen loss in the 
monitored soils (Webb et al., 2000). Specifically, the largest losses occurred following the 
combination of rainfall and recent fertilizer application. This is the result of the combination of 
limited, but not total, unavailability of oxygen, with the prevalence of a nitrogen source (Webb 
et al., 2000). 

The connecting factor between all these scenarios is microbial bacteria (Oertel et al., 2016). The 
changes that effect the output of land based GHGs are the result of changing the conditions of 
the soil’s microbial life. This can be through starving the microbes of the inputs needed to 
produce GHGs including reducing oxygen content through rainfall (Webb et al. 2000). 
Alternatively, it could be inhibiting the metabolic ability to slow down the production, such as 
occurs when increasing overall soil moisture (Oertel et al., 2016). A high-water table or 
increasing soil moisture decreases respiration activity and nitrification rate, thus acting as an 
inhibitor (Oertel et al., 2016; Fan et al., 2021). This changes the overall speed of nitrification, 
making the reactions more efficient at producing nitrite and nitrate whilst reducing nitrous 
oxide output. It also reduces respiration and the emission of carbon dioxide (Taft et al. 2018). 

Whilst rainfall will slow these same reactions downs it is usually not prolonged enough to 
drastically change the activity in the soil, e.g., reducing the microbial population or respiration 
rates (Krol et al., 2016.). Therefore, its main effect is to instantly reduce available oxygen, 
creating a more anaerobic environment. This then reduces the efficiency of the reaction, 
producing more nitrous oxide through nitrification, and promoting denitrification which also 
produces nitrous oxide (Oertel et al. 2016). The Nitrites and Nitrates that are needed for plants 
require more aeration and aerobic conditions (Krol et al., 2016; Fan et al., 2021). 

 

1.3.3 Seasonality 

The aforementioned factors differ greatly by region, but also differ throughout the year. This 
indicates the season as having an impact on both the total rate of emissions and on the 
fluctuating rate along the season. The factors associated with the season (rainfall, temperature 
etc.) will also have an impact. 

While studying the efficacy of a model designed to predict carbon activity and comparing its 
predicted results with field measurements, Flattery et al. (2018) found that respiration rates 
and GHG output change with the seasons. According to their findings, colder soils inhibit 
microbial activity and reduce respiration rates, leading to lower carbon dioxide output. This 
suggests higher GHG emissions are experienced in the Spring and Summer (Flattery et al., 
2018). 

A separate investigation into tillage systems, on Brazilian Soil, agrees to this as their findings 
suggest that emissions changed over the course of seasons (Hungria et al., 2009). This 14-year 
study, which monitored the differing emissions and their dependency of the seasonal activities 
of specific years, also found that microbial activity and composition vary greatly between 
climates and regions (Hungria et al., 2009). 
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This was also found to be the case in the UK climate, with a study observing nitrogen flux from 
arable soils (Webb et al., 2000). In the UK, wetter seasons lead to higher nitrous oxide output, 
with winter rain heavily influencing nitrogen loss. The largest losses occurred when fertilizer 
application and rainfall intersected, creating a scenario perfect for high denitrification rates 
(Webb et al., 2000). 

Taft et al. (2018) also concluded this whilst studying GHG mitigation methods on peat soils; it 
was noted that emissions were strongly influenced by the weather and the seasons. Their 
findings revealed that a higher water table overall can slow down or inhibit soil microbial 
respiration, which increases the efficiency of nitrification, with rainfall being an exacerbator of 
GHG output (Taft et al., 2018). Rainfalls main effect is to instead reduce oxygen content, 
causing a higher production of nitrous oxide, as opposed to Nitrite and Nitrate, but not causing 
the inhibition of microbes. Higher soil moisture is initially less efficient and causes higher 
emissions, until it reaches a level of inhibition (Taft et al., 2018; Webb et al., 2000). 

Production activities such as fertilizer spreading, that occur during the growing season, have 
less impact. This is because the plants in the ground maintain the soils’ structure, reducing the 
impact that the season has on emissions (Taft et al., 2018) through rainfall and temperature. 
This points to the growing season as being an influential factor on emissions. 

 

1.4 Soil Factors 

1.4.1 Soil types 

The studies thus far have concentrated on factors external to the soilthat influence the 
activities of it. Krol et al. (2016) found that soils that have lower drainage ability have a higher 
and longer peak of emissions following large soil disturbance. Drainage is directly correlated 
with soil type and structure, with larger particles, i.e., sand particles, having better drainage 
than alternatives, i.e., clay particles, which hold more moisture (Soil Association, 2021). Thus, a 
sandy type soil will have more drainage and better ability to tackle emissions than a clay soil, 
with inherently worse drainage (Krol et al., 2016). 

Studies have also noted that sandy soils have consistently lower respiration rates (Norberg et 
al., 2016; Oertel et al., 2016; Krol et al., 2016.) For instance, Oertel et al. (2016) found that sand 
type soils respond quicker to nitrification inhibitors and have lower nitrous oxide emissions 
(Oertel et al., 2016). A further study found that even though noticeable differences in emissions 
between different soil types were observed, the results were inconsistent, indicating that other 
factors can override the effects of soil type (Norberg et al., 2016). Webb et al. (2014) 
investigated the different outcomes of manure application to contrasting soil types, also 
concluding this. They found that that soil type may be a significant factor, but that activities 
were more influential than this (Webb et al., 2014). 

In the case of slurry application, Heintze et al. (2017) found that the characteristics of the soil 
were generally more influential than the type of slurry that was being applied. The example 
given was the high emissions from soils with high organic matter, of both nitrous oxide and 
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carbon dioxide (Heintze et al., 2017). This reinforces the link between the carbon cycle and GHG 
output of these two gases. In this case no difference was observed with methane outputs 
(Heintze et al., 2017). This is corroborated by the findings of Oertel et al. (2016) where it was 
noted that soils with high organic matter had higher GHG emissions, but only when the soil was 
low on water content. This is backed by Taft et al. (2017; 2018) where research into peat soils 
high in organic matter concluded that increased moisture could significantly reduce emissions. 
It has also been noted that methane is seen to be unaffected across different soil types and 
being more dependent on its application (Heintze et al., 2017). 

 

1.4.2 Soil pH 

The acidity or pH is a prominent characteristic in soil, controlling available nutrients and the 
ease of which organisms survive. It is an influential factor on soil microbial life and therefore on 
emissions. Although actions can be taken to change pH (Senbayram et al., 2019), this process is 
costly, and its necessity varies from region to region. For example, sandy textured soils acidify 
quicker and generally have a lower pH (Lesturgez et al., 2006). The pH affects the ability of 
living things, such as crop root systems, to grow within soil. It has the same effect on other life 
forms, including soil bacteria whose population declines at lower pH levels (Smith and Doran, 
1996). 

One study observing NI performance noted that pH is an influential factor (Bell et al. 2015). Shen 
et al. (2018) also found pH to be a factor that influenced the results, whilst attempting to create 
a model of nitrous oxide emission flux from slurry application. It was observed that many 
current emissions models omit pH in their inputs, despite its influence (Shen et al., 2018). 

Senbayram et al. (2019) suggest that liming of acidic soils lead to a decrease in emissions, 
pointing to pH being a significant factor. Their findings indicate that long-term liming 
contributes to a reduction in nitrous oxide emissions, but that low quantities of organic Carbon 
within the soil would disrupt its efficacy. According to their study, in some situations the liming 
could increase emissions. This allows the conclusion that pH and attempting to control pH were 
both significant factors, but that the results were variable. 

Thomson et al. (2012) observed correlation between soil bacteria containing a specific gene 
(labelled nirK) and the pH of soil, specifically its link to the content of copper. Soils with both 
low and very high copper content were found to have high nitrous oxide output (Thomson et 
al., 2012). It was proposed that this is a result of the nirK containing bacteria being dependant 
on copper to perform, as well as susceptible to toxicity at high levels (Thomson et al., 2012). 
However, copper retention in soil is also dependant on pH. Therefore, it is unclear whether the 
bacteria are reacting to the copper content or the change of pH (Thomson et al., 2012). Either 
way, pH is an influential factor, whether direct or indirect. (Thomson et al., 2012) 

It is apparent that the structure of the soil can directly affect the emissions produced by it. Soil 
type cannot be changed and varies widely across regions. Farmers are accustomed to adjusting 
their techniques to create the desired soil conditions that will allow crop growth. The emissions 
outside of soil disruption are not significantly different between cultivated and fallow fields 
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(Flattery et al., 2018). Therefore, it is the actions a farmer takes to change soil conditions for the 
sake of production that is influencing emission (Flattery et al., 2018). To mitigate GHGs and 
therefore climate change, farmers will need to act in a similar fashion for their soils microbial 
content, but with the aim of creating the desired conditions for healthy microbial activity 
(Oertel et al., 2016). 

 

1.5 Production Factors 

 

1.5.1 Practices 

GHG emissions are controlled by a multitude of interacting external and internal factors, but 
they are driven by the management choices taken on the land (Taft et al. 2018). Thus far, this 
review has concentrated on factors a farmer has no control over or must adapt to. However, the 
practices a farmer takes for their interests of production, also contribute to the GHG output of arable 
land. 

There are no significant differences in the resting respiration rates of cultivated fields when 
compared to fallow fields but this changes when management activities take place (Flattery et 
al., 2018; Taft et al. 2018). This is because land use is a key driver of changes in soil respiration 
from microbial activity (Oertel et al., 2016). For example, tillage or the cultivation of soil 
increases microbial access to oxygen, increasing its activity and speeding the reaction up (Oertel 
et al., 2016). This leads to an inefficient reaction and high nitrous oxide output (Oertel et al., 
2016). Thomson et al. (2012) concluded that reducing unnecessary tillage in turn reduces GHG 
output. It was stressed that depending on the circumstances, the use of minimum tillage systems 
could be equal or more effective than no tillage with respect to emissions (Thomson et al., 2012). 
The conclusion was reached that optimisation is a more effective solution than minimisation 
(Thomson et al., 2012). 

This idea of soil disturbance being a major contributor to arable GHG emissions is supported by 
research into variability in mitigation techniques over different soils (Kertesz and Madarasaz., 
2014; Thomson et al., 2012; Chadwick et al., 2011; Audsely and Wilkinson, 2014). Soil 
disturbance through actions like tillage or compaction from machinery has been found to be 
accountable for as much as 50% of N2O emissions (Henault et al., 2012). This is corroborated by 
other studies including Audsely and Wilkinson (2014). Their study into general GHG reduction 
across ten crops found that activities attempting to add SOM may contribute more emissions 
than it is mitigating (Audsely and Wilkinson, 2014). Straw incorporation was examined as an 
activity that had a higher output of GHGs than the method was offsetting through the increase 
of SOM and SOC (Audsely and Wilkinson, 2014). 

Systems that significantly reduce their tillage can increase the organic matter content of their 
soil by as much as 19% (Hungria et al., 2009). Whilst incorporation of debris, such as chopping 
and integrating straw, may quicken the process of adding SOM (Audsely and Wilkinson, 2014). 
It is suggested that the impact of further tillage offsets the advantages (Hungria et al., 2009) 
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and that reducing as many interactions with soil as possible was more effective than 
incorporating organic matter (Audsely and Wilkinson, 2014). However, increasing organic 
matter in soil makes for a larger sink of carbon and potential encouragement is needed in this 
area. 

Whilst the actions taken certainly have an impact, the timing of these practices also affect GHG 
output. Seasonality and its consequences, such as rainfall and temperature, are major factors in 
the efficacy, along with the N2O emissions and efficacy of fertilisers generally (Abalos et al., 
2016). This dependency on timing and the weather was outlined in a study observing GHG 
mitigation methods on peatlands (Taft et al., 2018). Practices occurring during growing systems 
has less impact, as the plants in the ground maintain the structure through their roots and act 
as a general sink for carbon (Taft et al., 2018). 

Sanchez-Martin et al. (2010) revealed that application of fertilizer led to a surge in N2O 
emissions, which was more pronounced if it occurred at the same time as rainfall. This is also 
confirmed by a UK-based study, Webb et al. (2000), who investigated nitrogen fluxes in several 
arable fields. During the study it was observed that seasons with higher rainfall had higher GHG 
outputs and specifically that the largest loss of N2O occurs when rainfall and fertilizer 
application happen together (Webb et al. 2000). 

 

1.5.2 Overriding factors 

The practices of a farmer are not only significant to GHG outputs, but they are the factors with 
which they have the most immediate control over. These practices interact and differ in their 
effect depending on other variables, such as NIs reacting differently to different environments 
(Li et al., 2020; Oertel et al., 2017). 

As another example, the type of fertilizer applied can significantly influence emissions, but this 
can be overridden by the soil type, with certain fertilizers being more suited to certain soils 
(Senbayram et al., 2019). Changing to a Nitrate fertilizer and increasing the Nitrate content of 
the soil can have more effect on emissions than attempting to change the physical soil 
characteristics, such as pH (Senbayram et al., 2019).  

Previous studies have suggested that minimum tillage reduces carbon dioxide respiration whilst 
increasing carbon storage in soil (Thomson et al., 2012; Taft et al., 2018.) However, on soils with 
an already high quantity of organic matter the difference made is negligible (Taft et al., 2018).  
Kertesz and Madarasaz (2014) have also found that the effect of reducing tillage varies between 
countries and regions. A further study, looking specifically at tillage systems, found that 
biological factors can override any practice changes, with soil composition and microbial 
activity varying hugely amongst different areas and across different seasons (Hungria et al., 
2009). Therefore, calling for minimum or no-tillage systems as a blanket policy for reducing 
GHG emissions and encourage carbon storage, may be ineffective for some farmers and serve 
only to reduce crop output, decreasing financial stability. 
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1.5.3 Vegetation 

Whilst the actions on a farm clearly influence the output of GHGs, the choice of crop also has an 
impact. The choice of plant species is another input that potentially affects GHG output, root 
respiration being a driver of emissions (Oertel et al., 2016). Different plants have different 
growing requirements and will have different demands from soil. One study looking into nitrogen 
losses noted that they differed significantly from crop to crop, with higher losses for sugar beet when 
compared with winter wheat (Webb et al., 2000). This variation extends to the activities taking 
place on farms.  Crop choice determines the time of year that activities need to take place, thus 
influencing the GHG output (Taft et al., 2018; Hungria et al., 2009). 

Horrocks et al. (2014) noted that vegetation type and quantity had an influence on soil 
temperature, a factor already established as having some effect on emissions, particularly 
carbon dioxide respiration. It was noted that crop residue was a particular influence on soil 
temperature, aligning with other findings (Horrocks et al., 2014; Dawar et al. 2020). This study, 
which examined the costs and benefits of extensification, concluded that there is limited 
knowledge about vegetations’ impacts on GHG emissions and of the general outcomes of 
extensification (Horrocks et al., 2014).  

Sanz-Cobena et al. (2014) found that, within the Mediterranean region, increasing crop residue 
also increases emissions. They also noted a difference in emissions between crops leading to 
the conclusion that crop choice is considered a factor influencing GHG output, or even as a 
mitigation method.  A local study, conducted by Jeswani et al (2018), researching into the 
lifecycles of GHG emissions on organic farms in the UK, found that crop rotations and crop type 
varied dramatically. Their findings revealed that crops such as beans had twice or sometimes 
three times the output of emissions as cereal crops. Whilst the study was confined to only a few 
crops and concentrated on livestock, it points to crop choice and the vegetation being 
considered as significant factors. 

Roots from crops have an important impact on the emissions produced by land (Norberg et al., 
2016). For example, a meta-analysis of background nitrous oxide emissions found that 
vegetable crops have higher output than others, such as cereals with larger root structure or 
pasture with less soil disruption (Dong-Gill et al., 2013). In the context of trees, root depth is 
linked to higher carbon storage, but it is difficult to measure the significance at levels lower than 
20cm, where over a third of soil carbon is stored (Upson and Burgess, 2013; Oertel et al., 2016; 
Pries et al., 2018). The knowledge gap within this area of soil impacts our understanding of root 
respiration and GHG emissions from cereal crops. Cereal roots can extend as far as 2.5 metres 
in depth, reaching below the 30cm topsoil layer (Thorup-Kristensen et al., 2009; Upson and 
Burgess., 2013). 

Overall, a farmer’s crop choices and rotations can impact the sustainability and GHG output of 
their land. Premrov et al. (2010) highlighted the importance of this with the suggestion of the 
need for crop specific emissions factors. 

 

1.5.4 Nitrification inhibitors 
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A method endorsed by the International Panel on Climate Change (IPCC) and several studies is 
the use of Nitrification Inhibitors (NIs) (Cowan et al., 2020; Roder et al., 2013; Abalos et al., 
2016). Roder et al. estimated that the potential for reducing GHG emissions could be as much 
as 20%, when using NIs (Roder et al., 2013).  

NI’s slow the first stage of Nitrification; the change from ammonia to nitrite. They achieve this 
by inhibiting the activity of soil bacteria that would be producing both the nitrites and nitrous 
oxide (Frye, 1981). Slowing this process down means more available oxygen for nitrifying 
bacteria, leading to more Nitrite being produced and less nitrous oxide. 

NI’s are susceptible to many of the same influences as soils in general (Oertel et al., 2017). Bell 
et al. (2015) found that soil and weather conditions not only affected general emissions, but 
also the efficacy of NIs. Under the circumstances of the experiment, the use of a NI was found 
to be overall effective (Bell et al. 2015). 

Dawar et al. (2021) found a direct link between NI efficacy and the conditions of the soil - 
specifically, temperature was found to be significant. NIs ability to perform is also affected by 
external environmental factors, such as rainfall (Li et al. 2020; Abalos et al. 2016). Rainfall is also 
major factor in this, along with the N2O emissions and how effective fertilisers are generally 
(Abalos et al., 2016). In the UK rainfall is found to be a more influential factor whereas in other 
countries heat can be more significant, such as in Pakistan (Li et al., 2020). 

NI’s are a useful tool in making fertiliser usage more efficient, controlling the soil bacteria by 
which nitrous oxide is produced. They are affected by the same factors that change general 
GHG emissions, but are considered effective nonetheless (Roder et al., 2013; Cowan et al., 
2020). 

 

1.5.5 Systems interaction 

The factors influencing micro-bacteria are not acting in isolation. They interact and overlap as 
part of a wider ecosystem. The processes that GHGs are involved with also overlap, influencing 
the outcome for each other (Chadwick et al. 2011). 

One example of two systems influencing each other are the carbon and nitrogen cycles. Oertel 
et al. (2016) concluded that soil carbon/nitrogen ratios are very important and influential over 
GHG emissions from soil. Senbayram et al. (2016) investigated the long-term effects of liming 
on GHG output, finding that raising the pH, to make soils less acidic reduced nitrous oxide 
emissions. However, it also concluded that it was only effective if other factors were first 
addressed, specifically SOC content within the soil (Senbayram et al., 2016). Roche et al. (2016) 
also observed that nitrous oxide emissions are lower from low SOC soils. N2O is released when 
microbial activity is high and oxygen access is limited (Oertel et al. 2016; Webb et al. 2014). SOC 
increases microbial biomass (Prommer, 2019). 

For carbon dioxide emissions, Gao et al. (2020) observed an example of this in the close 
relationship between the carbon and nitrogen cycles, showcasing a clear influence. Carbon 
dioxide is emitted at higher rates from soils with consistently low N content (Gao et al. 2020). 
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Webb et al. (2014) observed that denitrifying microbiota are inhibited by lack of Soil carbon, 
slowing down the process of denitrification. This was seen to be only significant on 
coarse/sandier soil types, with clay soils not having this effect (Webb et al. 2014). This 
observation is consistent with the findings of Taft et al. (2018). It has noted that not enough is 
understood about the interactions between soil nitrogen and carbon dioxide output, with no 
consistent relationship between application of nitrogen fertilizer (Gao et al. 2020). Butterbach-
Bahl et al. (2013) also concluded that there is a need for further research within this area. 

Despite this, Meijide et al. (2010) did observe a relationship between nitrogen fertilizer and 
methane output. They found a flux of methane following the application. This is due to a low 
metabolism during the process of Nitrification, where methane oxidation and breakdown is 
halted following nitrogen fertilizer being spread (Meijide at al. 2010). This occurs because of the 
demand for oxygen in the Nitrification process (Butterbach-Bahl et al.; 2013; Meijide at al. 2010). 

For nitrous oxide outputs, the efficiency of nitrification is dependent on the oxygen availability 
and the microbial activity rate (Oertel et al., 2016). Higher rates of oxygen use, or limited 
oxygen availability mean less efficiency and more nitrous oxide production (Taft et al., 2018; 
Krol et al., 2016). However, for the process of denitrification less oxygen means less nitrous 
oxide produced. In this instance denitrification favours atmospheric nitrogen, continuing the 
nitrogen cycle (Martins, 2005).  

Environmental systems are mostly viewed individually, ignoring the inherent interaction (Smith et al. 
2013). In the case of soil and arable agriculture the interaction of aspects such as the carbon and 
nitrogen cycle or the different reactions to mitigation techniques, demand a holistic approach to 
their monitoring and management (Chadwick et al. 2011). This is on top of the overlapping nature of 
other factors discussed like soil moisture and temperature (Shang et al., 2020; Krol et al., 2016) or 
climate and region in general (Hungria et al., 2009), which are complex systems within themselves. 

 

1.6 Results and implications 

GHG emissions from arable agriculture revolve around the soil usage (Oertel et al. 2016). They 
are affected by external factors (rainfall, temperature, and climate) (Krol et al., 2016; Clarke and 
Fraser, 2004; Hungria et al., 2009) and internal factors (soil type, moisture, and Ph) (Krol et al., 
2016; Taft et al., 2018; Thomson et al. 2012). These in turn are influenced by the choices a land-
user makes, i.e., tillage, crop-choice, fertilizer (Oertel et al., 2016; Webb et al., 2000; Sanchez-
Martin et al., 2010). Some of these factors are within the direct control of the land-user and 
others are not.  

From a climatic perspective, soil temperature is an influential factor on GHG output, but its 
influence is often overridden by soil moisture or rainfall. Temperature is also something a 
grower has limited control over, with its seasonal nature. Moisture and rainfall both affect the 
respiration rate, changing the emissions of all three gases. Both rainfall and soil moisture are 
tied to regional factors with limited controllability, such as the weather, climate, and soil type. 
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As indicated previously, seasonality is an influential factor. Seasonally driven changes in 
temperature or soil moisture influence microbial life and emissions (Hungria et al., 2009; Oertel 
et al., 2016). This is especially relevant as the continued emissions of GHGs will lead to the 
dramatic changing of these seasons, making them more volatile (Kertesz and Madarasaz., 
2014). 

 

1.6.1 Applying context 

The UK has a varied landscape with a multitude of micro-climates and physical conditions 
(Defra 2021). Factors that affect GHG emissions split the country into different character 
regions already, with these characters affecting productivity and financial decisions. This 
impacts food production and crops choices, even between adjacent areas. For example, the 
East Midlands and East of England have different major crops, with the former favouring 
Vegetables and Brassicas (e.g. Oilseed Rape) whilst the latter area grows more cereals and 
tuberous plants (e.g. potatoes and sugar beet) (Defra, 2021). Any analysis must consider the 
regional variation, such as rainfall and landscape differences. 

If you compare the landscape of areas like East Anglia with other parts of the country, you get 
more contrasts. East Anglian soils tend to be high in silt and clay, with depleting peat and chalk 
deposits (Pritchard et al. 2014). On the opposite side of England in Cornwall, the soils are most 
commonly sandy loam with high acidity (Cornwall Council, 2020). Because of the impact of soil 
type (Krol et al. 2016) and soil acidity (Thomson et al. 2012), this implies that the GHG 
emissions will differ between the two areas before accounting for management techniques. 

The Met Office (2021a) definition of the Midlands experience rainfall of around 800mm per 
year, despite being directly adjacent to East England with less than 700mm per year. From the 
perspective of temperature, the Midlands have an annual average temperature of between 8 
and 10 degrees Celsius (Met Office, 2021a). The East of England has less variation and a slightly 
higher average of between 9.5 and 10.5 degrees Celsius (Met Office, 2021b). These differences 
will again affect the GHG output of the regions, giving them different results despite the 
adjacent location. Yet using most current models, the differences between the emissions are 
unlikely to be captured (Terrer et al. 2021).  

The factors known to influence GHG emissions vary across the UK. This indicates that a farms 
location will influence its initial GHG output along with the activities being performed. Policy 
aimed at encouraging GHG reduction must be flexible enough to reflect the variety of scenarios 
across the UK. Likewise, any attempt to predict and model the GHG emissions should reflect the 
previous factors.  

 

1.6.2 Knowledge gaps 

Concerning accuracy, any model or coefficient that seeks to estimate GHG outputs must have 
considered the factors outlined within this literature review to give a significant level of 
accuracy. Emissions factor recommendations vary from the initial IPCC estimate of 1% of 
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nitrogen applied (Penman et al., 2017), to 0.6% in wetter climates in a revised method (IPCC, 
2019). Other studies have found both to be inaccurate, with the correct assumptions being as 
high as 1.83% (Zhou et al. 2017; Velthof et al. 2003). 

There are several areas highlighted through this review that point to the need for further 
research to close knowledge gaps. For example, more effort needs to be put towards 
understanding of the true impact of SOC and N content’s influence on microbial activity, with 
regards to quantifying impact on GHGs (Gao et al., 2020; Butterbach-Bahl et al. 2013). 

Currently there is only a limited understanding of the interaction between plants, GHG 
emissions and specifically the carbon cycle (Horrocks et al., 2014). Terrer et al. (2021) pointed 
to underestimation in literature of plant influence in areas like grassland, but an overestimation 
in others, such as forests. When put under the predicted conditions of the future climate it was 
found that carbon storage unexpectedly increased by 8% on grassland soils but saw limited to 
no increase within forests (Terrer et al. 2021). This was not replicated by any current ecosystem 
model, indicating that current storage projections are not accurate.  

 

1.6.3 Conclusion 

The purpose of this review has been to outline the nature of GHG emissions from arable 
agriculture. It has highlighted the central role of soil microbial life and the influence growers 
can have over its activity. Farmer’s activities have significant influence over arable GHG 
emissions, especially in the forms of fertilizer usage and tillage. Simultaneously, the influence 
uncontrollable factors have over GHG emissions is also clear, in examples such as rainfall and 
temperature. There are limitations to the knowledge available, especially when it comes to 
predicting emissions.  

With the goal of Net Zero, reducing GHG emissions is a necessary step in making agriculture’s 
relationship with the environment sustainable. Historically farms have only been used to 
produce profits, but this is changing (Glendining et al., 2009). For the sustainability of the 
industry, farmers must adapt to the environmental issues of the 21st century. Farming with the 
environment in mind is beneficial to both the external and internal ecosystems involved on a 
farm (Kassam and Brammer, 2013).  It not only benefits the local ecosystem, but also long-term 
production. This also protects the public stake in land, and the production potential for the 
land, meaning that the grower can stay in business for longer.  

Assessing the GHG outputs of farming and food production is necessary for the sustainability of 
the agricultural industry. As illustrated by the gaps in knowledge and complicated inputs 
needed, it is also a difficult task to perform. Whilst it is always going to be more accurate to 
take direct measurements, this is costly and laborious. Farmers are more likely to make changes 
in the form of reduction or optimisation, rather than spending money on changes or expensive 
measurement methods (Feliciano et al. 2017). Innovations must be easily accessible and usable 
if they are to be effective. 
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Overall, more research is needed regarding the measurement of GHGs and the impact that 
practices and farm characteristics have over GHG output. The research that this review 
precedes attempts to address some of the issues presented here. The Farm Business Survey 
(FBS) documents the activities and characteristics of farms across the United Kingdom. 
Combining this information with the Sustainable Intensification research Platform’s (SIP) 
greenhouse gas calculators with allow for this to take place (benchmarkmyfarm.co.uk, 2021). 
Aspects such as the choices made for inputs, technology and land use can be analysed for 
trends. Local characteristics, such as general location, topography and the areas land grading 
can also be used to observe the potential influence of climate and soil attributes. Finally, the 
overall efficacy of the Carbon calculator can be observed, as to whether it captures the 
variation in GHG emissions outlined throughout this literature review. 
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2.0 Sustainable intensification data analysis 

 

2.1 Introduction 

As illustrated by the previous review, reducing GHG emissions is an important issue that the UK 

agricultural industry is attempting to address (DEFRA, 2019; Glendining et al., 2009). To this 

end, farmers will need to rely on carbon measurements to gauge their business output and 

make positive changes via GHG reductions. This project analysed one such carbon accounting 

method, investigating its practical application at farm business level. 

Decreasing the quantity of GHG’s is essential to the sustainability of the agricultural industry 

and the wellbeing of the planet (Kertesz and Madarasaz., 2014). But with agriculture it comes 

with the risk of compromising food security. The concept of sustainable intensification aims to 

combat this, using fewer resources and creating lower negative externalities, whilst maintaining 

or improving food security. Therefore, this project also investigated the GHG output data 

alongside the food output data, in the forms of yield and financial output. 

 

2.2 Aim and Objectives 

The aim of this research was to observe the relationship between UK cereal farm characteristics 

and practices, comparing the relationship with its outputs. Simultaneously, the question asked 

is whether these observed relationships can be useful and to whom. These aims are sourced 

from the preceding review, which found that the climate, farm characteristics and the 

productive choices made by farm managers all impact GHG emissions. How well these are 

represented in the results will be discussed. 

The outputs represent the consequences of farmers actions, being both positive and negative 

towards the environment and productivity. Outputs and therefore dependent variables 

included yields and estimated emissions. The agricultural production inputs, landscape, 

demographics of farmers and decisions made by farmers were included as independent 

variables to determine their influence on the physical (including GHG’s) and financial outputs of 

the farm.  

This research utilises the FBS data on farm business practices. The SIP provides coefficients to 

convert activities recorded in the FBS into carbon equivalent data, estimating the quantity of 

GHGs produced as equivalent to carbon dioxides impact. The project examined outputs from 

several different levels: from a farm level, from a per hectare level and from a per tonne level. 

This can address the impact the level of measurement (the functional unit) can have on results. 

The three areas of important influence identified were the location of a farm from its climate 

perspective (weather, temperature, rainfall), its location from a physical perspective (soil type, 
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Ph, topography), and finally the impact of the farmers decisions (inputs, techniques). This leads 

to the following research questions: 

Can the environmental impact associated with location be observed using FBS data on 

activities? This question was addressed using the Joint character area (JCA) codes from the FBS. 

The location of a farm dictates its climatic conditions, found to be significant in the review. 

Can the impact of the soil properties be observed using FBS data? This question was addressed 

using the land grade data associated with the JCA codes and the Centre for Ecology and 

Hydrology (CEH) codes, also from the FBS. Soil properties influence the productive choices 

made by a farmer and change the microbial environment of the soil, both of which were found 

to significantly influence GHG emissions in other literature. 

Can the impact of decisions made by farmers be observed using the FBS dataset? This question 

was addressed using the data on inputs and surveys for activities, from the FBS. As previously 

stated, a farmers actions impact the conditions of the soil, changing the activities of soil 

microbes and consequently the rates of GHG emissions. This question is also central to whether 

this particular Carbon equivalency coefficient has use towards informing farmers in their 

production choices, besides as a broad-spectrum benchmarking tool. 

2.3 Method 

The data set used contains information from 336 cereal farms. A cereal farm classification is 

given when cereals comprise at least 66% of farm output.  (Number of farm) farms that 

produced no cereal in this year were excluded from the dataset, even if classed as cereal farms. 

Farms that came under the classification of part-time production were also removed. Finally, 

Welsh farms, under the country classification 421, were removed, due to lack of data and 

survey elements not being applicable. The data concerning the outputs of cereal farms are 

available from the 2017 FBS in the case of yields and financial output or derived using the SIP 

multipliers combined with data from the 2017 FBS, for greenhouse gas (GHG) emissions. These 

multipliers were derived from the IPCC’s guidelines on land management (de Klein et al., 2006). 

The year 2017 was chosen as this is the final year that the SIP carbon equivalent multipliers 

were known to have been updated (eip-agri, 2017).  

Linear regression analyses were performed to observe the association between agricultural 

practices and the various outputs of the farms. This model is where multiple independent 

variables (𝑥) have relationships with a dependant variable (𝑦), that is a straight line (Hayes, 

2021). This linear regression model is given by 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 + 𝜀 

where the intercept β0 (constant) and the slope of β1/β2/βn are unknown constants of the 

independent variables and ε is a random error (Hayes, 2021; Ibrahim et al. 2012). β0 and 

β1/β2/βn are then estimated with the data provided (Hayes, 2021). ε is assumed to have a 

mean of zero and unknown variance (Hayes, 2021). This form of regression is also called the 
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least squares regression equation and selects the smallest sum of residual squares to find the 

best fitting line, which is what is presented (Ibrahim et al. 2012). This is where 

∑(𝑦𝑖 − �̂�𝑖)
2

𝑛

𝑖=𝑙

 

represents the minimum sum of residual squares, as calculated by the statistical program used 

(Ibrahim et al. 2012; Hayes, 2021). 

These analyses were performed using the sixteenth edition of the statistical package STATA 

with a maximal model utilising the independent variables. Twenty-five independent variables 

were tested against 4 dependent variables. Independent variables were sorted into three 

groups: Agricultural inputs and activities, decisions and demographics, and finally the farm 

characteristics. The four dependent variables each tested an output of the farm; physical 

(yields; cereals tonnes produced), financial (earnings from yields of cereal), nitrogen-based 

emissions (sourced from fertiliser use in kilograms and using the SIP carbon dioxide multiplier), 

and total direct emissions (including fertiliser/nitrogen emissions but also the other carbon 

emissions from Petrol, Gas and Diesel use, all presented in litres with the respective SIP carbon 

dioxide multiplier). When utilising the per hectare and per tonne models, the variables are 

divided by the respective amount, either the hectares of cereal land or the tonnes of cereal 

produced. 

Models were created and reduced to find the minimal adequate model, as the significance of 

each variable became apparent. Significance is defined as a probability value of less than 0.05 

or 95%. This was performed in three stages. The three stages allow for the impact of each 

category of independent variable to be observed, adding further context to their influence or 

lack thereof. 

When variables cannot be considered independent and represent a high level of multi-
collinearity, they were removed or inserted separately. For example, fertiliser usage is used to 
calculate the nitrogen-based emissions, and so is removed as an independent variable in the 
models concerning nitrogen-based emissions. Similarly, fossil fuel usage (diesel, petrol, gas) is 
used for the calculation carbon emissions, so each is eliminated as an independent variable 
from the total carbon equivalent emissions models. The final example of this is the use of the 
FBS farm size category, which will not be used alongside a farms land area. These would be a 
form of data-based multi-collinearity, where the new dependant variable has been created 
from the other potential variables (Daoud, 2017). 
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2.4 Variable description 

The following section describes the variables used to make the models. It is split into four 

sections divided into the categories previously outlined: the dependant variables, and the three 

categories of independent variables. All are sourced from the 2017 FBS.  

 

2.4.1 Dependant Variables 

The first two dependant variables representing production metrics are the yield and the 

financial outputs produced by each farm. Both are measures of farm productivity. Physical crop 

yield is a contributor to food security yields and are given in metric tonnes. Financial Output is 

the revenue achieved from the sale of cereals and is given in the currency of Pounds sterling 

(£). 

The second two dependant variables representing sustainability metrics are the emissions 

sourced from nitrogen fertilisers and the total direct emissions generated by the farm. Both are 

measures of the impact of farm practices and the farms sustainability. 

Nitrogen-based emissions were calculated from total N fertilizer applied (Kg) multiplied by the 

coefficient (given as 0.0093 from the Country Land and business owners Association Carbon 

Accounting from Land Managements carbon equivalency calculator) to produce a Carbon 

Equivalent figure (the equivalent tonnage of CO2 produced per farm).  

The dataset used for this study has further coefficients concerning carbon equivalent emissions. 

These are sourced using the farms fossil fuel usage. The coefficients used for these estimates 

are sourced from the Department of Energy and Climate Change (DECC). They utilize the 

quantity of the fuels used, in litres, before converting these into CO2 tonne equivalents (Diesel 

in litres multiplied by 0.003, petrol in litres multiplied by 0.0023, and gas in kilowatt-hours 

multiplied by 0.00025). Included in this calculation is the previously outlined Nitrogen sourced 

emissions, give the total direct emissions from each farm.  

 

2.4.2 Table 1. Dependant variables 

Dependant 
Variables: Unit Mean Std. Dev. Range 

Cereal Yield metric tonne 1140.00 1274.00 15726.20 

Cereal Output £ or Pounds sterling 302440.04 312046.56 3221364.00 

Nitrogen-based 
emissions 

Equivalence to tonne of 
Carbon 345.00 372.60 3647.55 

Direct emissions 
Equivalence to tonne of 
Carbon 417.00 436.19 4314.97 
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2.4.3 Agricultural inputs and activities 

Activities associated with emissions were tested to observe their impact on yields and other 

outputs. Key inputs may be influential on yields but also be on other unwanted outputs. The 

three primary inputs of seed, fertiliser, and Crop Protection Products (CPP) are all included. 

Land area is also included in this category, due to the potential influence it will have over total 

yields and outputs. 

Areas such as fuel expense not only represents a direct emission of carbon dioxide, but also 

indicates farm vehicle use. Because of this, they can be used as a marker for field activities, 

including tillage. This data covers amount spent of diesel, petrol, gas, electricity, and heating. 

Other machinery costs and contracting costs represent usage not included in the diesel 

expenditure. For example, contractors represent emissions and tillage, but will pay for their 

own fuel (assumed to be included in the contractor cost as one of their expenses, but not 

directly from the farm).  

Although payments for environmental schemes can be viewed as an output, it is a 

representation of the value of the activities performed. This is as opposed to the market cost of 

the activity, which does not consider the intangible advantage created. Because of this, the 

environmental scheme payments will be used as an independent variable.  

To maintain consistency, these measurements are all costs, so the unit is GBP£ spent/received 

on/for the product or activity. The exception to this is the area used for cereals, which is 

presented in hectares. 

 

2.4.4 Table 2: Agricultural inputs and activities 

Independent 
Variable: Definition Unit: Mean:  Range: Std. Dev: 

Cereals Area Farm area of cereals planted Hectares 143.14 1417.68 136.32 

Fertiliser Quantity spent on Fertilizer GBP£ 32647.71 329402 34045.23 

Seed Quantity spent on Seed GBP£ 16642.23 204810 20169.59 

CPP (Crop 
protection 
products) 

Quantity spent on Crop 
protection products GBP£ 38731.60 473573 45022.33 

Machinery Quantity spent on Machinery GBP£ 57884.51 338167 55548.10 

Contract 
Quantity spent on Contract 
work GBP£ 21508.34 320804 37045.35 

Diesel Quantity spent on Diesel GBP£ 11256.99 111129 14383.84 

Petrol Quantity spent on Petrol GBP£ 2953.65 82954 6377.43 

Gas Quantity spent on Gas GBP£ 88.37 5609 564.67 

Electricity Quantity spent on Electricity GBP£ 3264.62 41186 4615.88 
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Heating Quantity spent on Heating GBP£ 2033.58 22338 3442.36 

Environmental 
payments 

Quantity received for 
Environmental services GBP£ 6412.23 116242 13271.90 

 

2.4.5 Demographics and decisions 

The FBS contains information about the demographics of farm managers and specific 

management decisions that they make. The influence of these variables were observed on the 

dependant variables. 

Specific decisions were tested for their influence over outputs. For example, the relationship 

between decision to be a member of the environmental organisation ‘LEAF’ and environmental 

consequences, could showcase whether membership does or does not encourage the 

sustainable practices that the organisation pushes (LEAF, 2021). Alternatively, precision 

agriculture and nutrient software usage potentially increase efficiency and are presented as 

options to improve agricultural sustainability (Balafoutis et. al, 2017).   

It is worth noting that the survey data is discrete, categorical, usually being distributed between 

three-four answers (yes/no/Partial/not applicable answers). The categories that do not present 

this way use numbers representing scales given in the FBS and listed below. Due to the 

categorical nature of these inputs, dummy variables were created for each outcome. 

 

2.4.6 Table 3: Decisions and Demographics 

Variable 
Descripti
on 

No. 
of 
Leve
ls Definition 

Occurre
nce 

Me
an Mode  Median 

Gender 

Gender of 
cereal 
farmer 

2 (1-
2) 

1/Male 
(base), 
2/Female 

1/323, 
2/13 1.04 1/Male 1/Male 

Age band 

Age 
group of 
cereal 
farmer 

6 (1-
6) 

1/<35 (base), 
2/35-<45, 
3/45-<55, 
4/55-<65, 
5/65-<75, 
6/75+ 

1/9, 
2/33, 
3/74, 
4/100, 
5/92, 
6/28 3.94 4/55-<65 4/55-<65 

Education 
level 

Highest 
level of 
education 
of farm 
manager 

8 (0-
6, 9) 

0/School 
Only (base), 
1/GCSE, 2/A 
level, 
3/Diploma, 

0/33, 
1/34, 
2/18, 
3/149, 
4/83, 2.82 3/Diploma 3/Diploma 
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4/Degree, 
5/Postgrad, 
6/Apprentice
ship, 9/Other 

5/18, 
6/0, 9/1 

Precision 
Farming 

Whether 
the cereal 
farm 
makes 
use of 
precision 
farming 
methods 

4 (1-
4) 

1/No (base), 
2/Yes, 
3/Partial, 
4/N/A 

1/159, 
2/149, 
3/26, 
4/2 1.62 1/No 2/Yes 

Use of 
Nutrient 
software 

Whether 
the cereal 
farm uses 
soil 
nutrient 
software 

4 (1-
4) 

1/No (base), 
2/Yes, 
3/Partial, 
4/N/A 

1/160, 
2/174, 
3/2, 4/0 1.53 2/Yes 2/Yes 

Use of 
Green 
manures 

Whether 
a farm 
uses 
green 
manures  

4 (1-
4) 

1/No (base), 
2/Yes, 
3/Partial, 
4/N/A 

1/268, 
2/56, 
3/12, 
4/0 1.24 1/No 1/No 

Adjusted 
fertiliser 

Whether 
a farm 
adjusts 
fertilizer 
rates for 
manures 

4 (1-
4) 

1/No, 2/Yes, 
3/Partial, 
4/N/A 

1/35, 
2/80, 
3/221, 
4/0 2.55 3/Partial 3/Partial 

Source of 
Knowledge 

Source of 
advice for 
crop 
nutrient 
planning 

5 (1-
5) 

1/Own 
advice (no 
FACTS 
qualification) 
(base), 
2/Own 
advice 
(FACTS 
qualified), 
3/Independe
nt FACTS 
advisor, 
4/Fertilizer 
representativ
e, 5/N/A 

1/63, 
2/30, 
3/159, 
4/84, 
5/0 2.79 

3/Indepen
dent FACTS 
advisor 

3/Indepen
dent FACTS 
advisor 
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Farm 
assurance 
membership 

Whether 
the farm 
has 
members
hip with a 
farm 
assurance 

2 (1-
2) 

1/Not a 
member 
(base), 
2/Member 

1/35, 
2/301 1.9 2/Member 2/Member 

LEAF 
membership  

Whether 
a farm 
has 
members
hip with 
the 
organisati
on, 
'LEAF'. 

2 (1-
2) 

1/Not a 
member 
(base), 
2/Member 

1/300, 
2/36 1.11 

1/Not a 
member 

1/Not a 
member 

 

2.4.7 Farm characteristics data 

The final category of independent variables aims to look at the physical and environmental 

impacts on farms, based upon location and physical characteristics. Because of the overlapping 

nature of these variables, they are added to the models separately. 

The JCA codes are assigned to each farm and group them into areas with similar conditions. 

These data were used to observe the impact of location and the characteristics associated with 

each location on emissions and outputs. JCA code 46, the fens, was used as a base, because of 

the funding provided by East Anglian trusts, a suitable quantity of cereal farms in this survey 

found in the area, and the general interest in carbon emissions of the area.  

The CEH gives farms a code similar to the JCA but sorting each farm into a category describing 

the vegetation and topography of its situation. These data were used to provide an alternative 

indication of the impact of location on emissions and outputs. CEH code 3, described as ‘Flat 

arable land, mainly cereals, little native vegetation’, was used as a base for these categories.  

An area that deserves exploration is the financial capability and general vulnerability of farms in 

relation to eco-system services, such as reducing emissions. One marker of wealth or access to 

resources is a farms size. Because of this, comparing emissions to land area farmed could 

produce interesting results. This would further the idea of farm capability; are larger or more 

wealthy farms better able to reduce emissions. Farms are given a classification of small, 

medium, and large, but there is also information on the Hectares used for cereals and the total 

farm area. 

This dataset was derived using data previously collected on the percentage of each Agricultural 

Land Grade in each of the JCAs. This percentage has then been applied to the area of the farm 
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used for cereals, indicating a farm-wide land quality figure. These data were used to give detail 

to the JCA codes about the characteristics present in each area. The predicted quantity of grade 

1 land was used as a base figure for the other categories. 

 

2.4.8 Table 4: Farms characteristics data 

Variable Definition 

Occurrenc
e 
and 
Levels 

Occurrenc
e Mean Median Mode Range 

Joint 
Character 
Area Code 

Area farm is 
located in, 
sorted into 
shared 
characteristic
s 92/152 N/A N/A N/A N/A N/A 

Centre for 
Ecology and 
Hydrology 
Land 
Classificatio
n Codes 

Description 
of landscape 
and land 
usage 20/32 N/A N/A N/A N/A N/A 

Farm Size 

The FBS 
classification 
of farm size 
(1/Small, 
2/Medium, 
3/Large).  N/A 

1/46, 
2/133, 
3/157  2.33 

Medium/
2 

Large/
3 N/A 

 

Variable Definition Unit: Mean: 
Std: 
Dev: Range: 

Grade 1 
ha (base) 

Estimated quantity of Grade 1 (highest 
quality) land on farm (Used as Base for 
other grades) Hectares 12.92 31.53 120.28 

Grade 2 
ha 

Estimated quantity of Grade 2 land on 
farm Hectares 66.22 50.99 171.18 

Grade 3 
ha 

Estimated quantity of Grade 3 (most 
common quality) land on farm Hectares 160.22 64.13 262.85 

Grade 4 
ha 

Estimated Quantity of Grade 4 land on 
farm Hectares 24.65 28.89 150.36 

Grade 5 
ha 

Estimated quantity of Grade 5 (lowest 
quality) land on farm Hectares 2.49 9.91 115.27 
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3.0 Results 

 

3.1 Results Summary 

The final models (with the highest R-Squared value) created via this process led to the following 

equations:  

3.1.1 Final farm level regression equations: 

Regression model 1: Yield farm total 

𝐶𝑒𝑟𝑇 = 𝛽0 + 𝛽1𝐶𝑒𝑟𝐻𝑎 + 𝛽2𝑆𝑒𝑒𝑑£ + 𝛽3𝐹𝑒𝑟£ + 𝛽4𝐶𝑃𝑃£ + 𝛽5𝑀𝑎𝑐ℎ£ + 𝛽6𝐶𝑜𝑛𝑡£ + 𝛽7𝐷𝑖𝑒£ + 𝛽8𝐸𝑙𝑒𝑐£

+ 𝛽9𝐻𝑒𝑎𝑡£ + 𝜀 

Regression model 3: Financial Output farm total 

𝐶𝑒𝑟£ = 𝛽0 + 𝛽1𝐶𝑒𝑟𝐻𝑎 + 𝛽2𝐹𝑒𝑟£ + 𝛽3𝐶𝑃𝑃£ + 𝛽4𝐸𝑛𝑣£ + 𝛽5𝐸𝑛𝑣£ + 𝛽6𝐹𝑟𝑚𝐺𝑟2 + 𝛽7𝐹𝑟𝑚𝐺𝑟3

+ 𝛽8𝐹𝑟𝑚𝐺𝑟3 + 𝛽9𝐹𝑟𝑚𝐺𝑟4 + 𝛽10𝐹𝑟𝑚𝐺𝑟5 + 𝜀 

Regression model 5: Nitrogen-based emissions farm total 

𝐹𝑒𝑟𝐾𝑔 ∗ 𝐶𝑂2𝑒𝑞

= 𝛽0 + 𝛽1𝐶𝑒𝑟𝐻𝑎 + 𝛽2𝑆𝑒𝑒𝑑£ + 𝛽3𝐶𝑃𝑃£ + 𝛽4𝐺𝑎𝑠£ + 𝛽5𝐹𝑟𝑚𝐺𝑟2 + 𝛽6𝐹𝑟𝑚𝐺𝑟3

+ 𝛽7𝐹𝑟𝑚𝐺𝑟3 + 𝛽8𝐹𝑟𝑚𝐺𝑟4 + 𝛽9𝐹𝑟𝑚𝐺𝑟5 + 𝜀 

Regression model 8: Direct emissions farm total 

𝑃𝑒𝑡𝐿 ∗ 𝐶𝑂2eq + GaskWh ∗ 𝐶𝑂2eq + DiesL ∗ 𝐶𝑂2eq + FerKg ∗ 𝐶𝑂2eq

= 𝛽
0
+ 𝛽

1
𝐶𝑒𝑟𝐻𝑎 + 𝛽

2
𝑆𝑒𝑒𝑑£ + 𝛽

3
𝐶𝑃𝑃£ + 𝛽

4
𝑀𝑎𝑐ℎ£ + 𝜀 

 

3.1.2 Final per Ha regression equations: 

Regression model 2: Yield per hectare 

𝐶𝑒𝑟𝑇

𝐶𝑒𝑟𝐻𝑎
= 𝛽0 + 𝛽1

𝑆𝑒𝑒𝑑£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽2

𝐹𝑒𝑟£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽3

𝐶𝑃𝑃£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽4

𝑃𝑟𝑒𝑐2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽5

𝑃𝑟𝑒𝑐3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽6

𝑃𝑟𝑒𝑐4

𝐶𝑒𝑟𝐻𝑎
+ 𝛽7

𝐹𝑟𝑚𝑆2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽8

𝐹𝑟𝑚𝑆3

𝐶𝑒𝑟𝐻𝑎
+ 𝜀 

 

Regression model 3: Financial output per hectare 

𝐶𝑒𝑟£

𝐶𝑒𝑟𝐻𝑎
= 𝛽0 + 𝛽1

𝑆𝑒𝑒𝑑£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽2

𝐹𝑒𝑟£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽3

𝐶𝑃𝑃£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽4

𝑃𝑟𝑒𝑐2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽5

𝑃𝑟𝑒𝑐3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽6

𝑃𝑟𝑒𝑐4

𝐶𝑒𝑟𝐻𝑎
+ 𝛽7

𝐺𝑟𝑒𝑀2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽8

𝐺𝑟𝑒𝑀3

𝐶𝑒𝑟𝐻𝑎

+ 𝛽9
𝐹𝑟𝑚𝑆2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽10

𝐹𝑟𝑚𝑆3

𝐶𝑒𝑟𝐻𝑎
+ 𝜀 
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Regression model 6: Nitrogen-based emissions per hectare 

𝐹𝑒𝑟𝐾𝑔 ∗ 𝐶𝑂2𝑒𝑞

𝐶𝑒𝑟𝐻𝑎

= 𝛽0 + 𝛽1
𝐶𝑃𝑃£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽2

𝑀𝑎𝑐ℎ£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽3

𝐶𝑜𝑛𝑡£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽4

𝐺𝑟𝑒𝑀2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽5

𝐺𝑟𝑒𝑀3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽6

𝑆𝑜𝑢𝑟2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽7

𝑆𝑜𝑢𝑟3

𝐶𝑒𝑟𝐻𝑎

+ 𝛽8
𝑆𝑜𝑢𝑟4

𝐶𝑒𝑟𝐻𝑎
+ 𝛽9

𝐿𝐸𝐴𝐹

𝐶𝑒𝑟𝐻𝑎
+ 𝛽10

𝐹𝑟𝑚𝐺𝑟2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽11

𝐹𝑟𝑚𝐺𝑟3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽12

𝐹𝑟𝑚𝐺𝑟4

𝐶𝑒𝑟𝐻𝑎
+ 𝛽13

𝐹𝑟𝑚𝐺𝑟5

𝐶𝑒𝑟𝐻𝑎
+ 𝜀 

Regression model 9: Direct emissions per hectare 

𝑃𝑒𝑡𝑙 ∗ 𝐶𝑂2eq + GaskWh ∗ 𝐶𝑂2eq + DiesL ∗ 𝐶𝑂2eq + 𝐹𝑒𝑟𝐾𝑔 ∗ 𝐶𝑂2𝑒𝑞

𝐶𝑒𝑟𝐻𝑎

= 𝛽0 + 𝛽1
𝐶𝑃𝑃£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽2

𝑀𝑎𝑐ℎ£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽3

𝐶𝑜𝑛𝑡£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽4

𝐸𝑛𝑣£

𝐶𝑒𝑟𝐻𝑎
+ 𝛽5

𝑃𝑟𝑒𝑐2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽6

𝑃𝑟𝑒𝑐3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽7

𝑃𝑟𝑒𝑐4

𝐶𝑒𝑟𝐻𝑎

+ 𝛽8
𝐿𝐸𝐴𝐹

𝐶𝑒𝑟𝐻𝑎
+ 𝛽9

𝐹𝑟𝑚𝐺𝑟2

𝐶𝑒𝑟𝐻𝑎
+ 𝛽10

𝐹𝑟𝑚𝐺𝑟3

𝐶𝑒𝑟𝐻𝑎
+ 𝛽11

𝐹𝑟𝑚𝐺𝑟4

𝐶𝑒𝑟𝐻𝑎
+ 𝛽12

𝐹𝑟𝑚𝐺𝑟5

𝐶𝑒𝑟𝐻𝑎
+ 𝜀 

 

3.1.3 Final per Tonne regression equations: 

Regression model 7: Nitrogen-based emissions per tonne 

𝐹𝑒𝑟𝐾𝑔 ∗ 𝐶𝑂2𝑒𝑞

𝐶𝑒𝑟𝑇

= 𝛽1
𝐶𝑃𝑃£

𝐶𝑒𝑟𝑇
+ 𝛽2

𝑀𝑎𝑐ℎ£

𝐶𝑒𝑟𝑇
+ 𝛽3

𝐺𝑟𝑒𝑀2

𝐶𝑒𝑟𝑇
+ 𝛽4

𝐺𝑟𝑒𝑀3

𝐶𝑒𝑟𝑇
+ 𝛽5

𝑆𝑜𝑢𝑟2

𝐶𝑒𝑟𝑇
+ 𝛽6

𝑆𝑜𝑢𝑟3

𝐶𝑒𝑟𝑇
+ 𝛽7

𝑆𝑜𝑢𝑟4

𝐶𝑒𝑟𝑇
+ 𝛽8

𝐿𝐸𝐴𝐹

𝐶𝑒𝑟𝑇

+ 𝛽9
𝐹𝑟𝑚𝐺𝑟2

𝐶𝑒𝑟𝑇
+ 𝛽10

𝐹𝑟𝑚𝐺𝑟3

𝐶𝑒𝑟𝑇
+ 𝛽11

𝐹𝑟𝑚𝐺𝑟4

𝐶𝑒𝑟𝑇
+ 𝛽12

𝐹𝑟𝑚𝐺𝑟5

𝐶𝑒𝑟𝑇
𝜀 

Regression model 10: Direct emissions 

𝑃𝑒𝑡𝑙 ∗ 𝐶𝑂2eq + GaskWh ∗ 𝐶𝑂2eq + DiesL ∗ 𝐶𝑂2eq + 𝐹𝑒𝑟𝐾𝑔 ∗ 𝐶𝑂2𝑒𝑞

𝐶𝑒𝑟𝐻𝑎

= 𝛽0 + 𝛽1
𝑆𝑒𝑒𝑑£

𝐶𝑒𝑟𝑇
+ 𝛽2

𝐶𝑃𝑃£

𝐶𝑒𝑟𝑇
+ 𝛽3

𝑀𝑎𝑐ℎ£

𝐶𝑒𝑟𝑇
+ 𝛽4

𝐶𝑜𝑛𝑡£

𝐶𝑒𝑟𝑇
+ 𝛽5

𝐸𝑛𝑣£

𝐶𝑒𝑟𝑇
+ 𝛽6

𝑃𝑟𝑒𝑐2

𝐶𝑒𝑟𝑇
+ 𝛽7

𝑃𝑟𝑒𝑐3

𝐶𝑒𝑟𝑇
+ 𝛽8

𝑃𝑟𝑒𝑐4

𝐶𝑒𝑟𝑇

+ 𝛽9
𝐿𝐸𝐴𝐹

𝐶𝑒𝑟𝑇
+ 𝛽10

𝐺𝑟𝑒𝑀2

𝐶𝑒𝑟𝑇
+ 𝛽11

𝐺𝑟𝑒𝑀3

𝐶𝑒𝑟𝑇
+ 𝜀 

 

 

 

 

 

 

 

 

 



37 2020/21 
 

University of Nottingham  John Nunns 
 

3.1.5 Table 5: Regression equation variable key 

Variable label Variable definition 

CerT Yield of cereals in tonnes 

Cer£ Financial output of cereals in £/GBP 

FerKg Nitrogen fertilizer used in KG 

PetL Petrol used in Litres 

GaskWh Gas used in kWh 

DiesL Diesel used in Litres 

CO2eq Relevant CO2 equivlant multiplier 

    

CerHa Land used for cereals in Hectares 

Seed£ Quantity spent on seed in £/GBP 

Fer£ Quantity spent on fertilizers in £/GBP 

CPP£ Quantity spent on CPP in £/GBP 

Mach£ Quantity spent on machinery in £/GBP 

Cont£ Quantity spent on contracting in £/GBP 

Dies£ Quantity spent on diesel in £/GBP 

Pet£ Quantity spent on petrol in £/GBP 

Gas£ Quantity spent on gas in £/GBP 

Heat£ Quantity spent on other heating in £/GBP 

Elec£ Quantity spent on electricity in £/GBP 

Env£ 
Quantity received from environmental services in 
£/GBP 

Prec2,..,Prec4 Level of precision farming implementation 

GreM2,..,GreM3 Level of Green Manure implementation 

Sour2,..,Sour5 Source of knowledge for crop nutrition 

LEAF Leaf membership 

FrmS2, FrmS3 Level of farm size 

FrmG2,..,FrmG5 The farms proportional land grade 
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3.2 Regression Results: Production metrics 

3.2.1 Yield 

Farm Level: Regression table 1 
 
For the initial farm level model including activities and inputs, the following variables were 
found to have significant positive association: cereals area (p<0.01, 6.166), fertiliser inputs 
(p<0.01, 0.00633), crop protection inputs (p<0.01, 0.00414), diesel (p<0.01, 0.00681) and 
electricity usage (p<0.05 0.00912). Seed costs (p<0.01, 0.00777), machinery costs (p<0.01, -
0.00405), contract costs (p<0.05, -0.00109) and heating fuel costs (p<0.01, -0.0167) were found 
to have significant negative association. This model has an R-squared value of 0.96. 
 
Neither demographic or decisions-based data nor farm characteristics data added anything 
significant to the model.  
 
 
Per Hectare: Regression table 2 
 
For the initial ‘per Hectare’ model including activities and inputs the following variables were 
found to have significant positive association: fertiliser inputs (p<0.01, 0.00422) and crop 
protection inputs (p<0.01, 0.00592). Seed costs (p<0.01, -0.00639) were found to have 
significant negative association.  This model has an R-squared value of 0.303. 
 
Adding in the demographics and decision-making data found that the use of precision 
agriculture (p<0.05, 0.0484) has significant positive association. This model has an R-squared 
value of 0.328. 
 
Finally, adding in farm characteristics data showed that large farms have a positive significant 
association (p<0.05, 0.487) compared to those classified as medium or small. This model has an 
R-squared value of 0.336. 
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Financial Output 3.2.2 

Farm Level: Regression table 3 
 
For the initial farm level model including activities and inputs the following variables were 
found to have significant positive association: cereals area (p<0.01, 1567), fertiliser (p<0.01, 
1.385) and crop protection (p<0.01, 1.492), and environmental payments (p<0.05, 0.692). Seed 
costs (p<0.01, -1.074) were found to have significant negative association. This model has an R-
squared value of 0.952. 
 
No demographic or decision-making data held any significance when added to this model. 
 
Finally adding in farm characteristics data to the initial model found two categories of the farms 
land grade data, grade’s 3 (p<0.05, -267.6) and 4 (p<0.01, -514.7) to be significant and have a 
negative association. Environmental payments became more significant with this inclusion 
(p<0.01, 0.838). This model has an R-squared value of 0.954. 
 
Per Hectare: Regression table 4 

 
For the initial ‘per Hectare’ model including activities and inputs the variables fertilizer (p<0.01, 
1.280) and crop protection (p<0.01, 1.581) were found to have significant positive association.  
Seed costs (p<0.01, -1.573) were found to have significant negative association. This model has 
an R-squared value of 0.273. 
 
Adding in the demographics and decision-making data found that the use of precision farming 
(p<0.01, 132.6) and of green manures (p<0.05, 138.6) has significant positive association. This 
model has an R-squared value of 0.314.  
 
Finally, adding in farm characteristics data showed that large farms have a positive significant 
association (p<0.01, 167.4) compared to those classified as medium or small. Precision farming 
became less significant with this inclusion (p<0.05, 102.1). This model has an R-squared value of 
0.325. 
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Regression Results tables: Production metrics 
The results are presented below with the coefficient represented, the standard errors in 
parentheses, and the p value given an approximation through a scale of asterisk’s (*** p<0.01, 
** p<0.05). Variables with a p value of more than the required 0.05, but are a part of a 
categorical set, are presented in bold and underlined. 

3.2.3 Yield 
Regression table 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VARIABLES Farm level yields 

  
Cereals area 6.166*** 
 (0.315) 
Seed 0.00777*** 
 (0.00190) 
Fertiliser 0.00633*** 
 (0.00133) 
Crop Protection Products (CPP) 0.00414*** 
 (0.000986) 
Machinery -0.00405*** 
 (0.000570) 
Contract -0.00109** 
 (0.000533) 
Diesel 0.00681*** 
 (0.00170) 
Electricity 0.00912** 
 (0.00425) 
Heating Fuel -0.0167*** 
 (0.00456) 
Constant -53.94** 
 (22.96) 
  
Observations 336 
R-squared 0.960 
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Regression table 2: 

 

 

Precision farming base: 1/does not use precision farming methods 

Farm size base: 1/Small 

  

 Model 1 Model 2 Model 3 
VARIABLES Per ha Yields Per ha Yields Per ha Yields 

    
Seed/ha -0.00639*** -0.00586*** -0.00581*** 
 (0.00177) (0.00179) (0.00178) 
Fertiliser/ha 0.00422*** 0.00390*** 0.00394*** 
 (0.00102) (0.00101) (0.00101) 
CPP/ha 0.00592*** 0.00546*** 0.00514*** 
 (0.000854) (0.000863) (0.000875) 
Precision farming – Yes – 2   0.484*** 0.407** 
  (0.157) (0.164) 
Precision farming = Partial – 3   0.304 0.247 
  (0.287) (0.288) 
Precision farming – N/A - 4  -1.473 -1.405 
  (0.997) (0.994) 
Farm size – Medium - 2   0.373 
   (0.234) 
Farm size – Large - 3   0.487** 
   (0.241) 
Constant 5.955*** 5.857*** 5.591*** 
 (0.248) (0.249) (0.292) 
    
Observations 336 336 336 
R-squared 0.303 0.328 0.336 
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3.2.4 Financial Output 

 

Regression table 3: 

 Model 1 Model 3 
VARIABLES Farm Level Financial Output Farm Level Financial 

Output 

   
Cereals area 1,567*** 1,576*** 
 (82.45) (81.92) 
Seed -1.074** -1.379*** 
 (0.465) (0.476) 
Fertiliser 1.385*** 1.534*** 
 (0.344) (0.347) 
Crop Protection Products (CPP) 1.492*** 1.433*** 
 (0.257) (0.257) 
Environmental payments 0.692** 0.838*** 
 (0.305) (0.308) 
Land Grade 2  -293.1 
  (156.9) 
Land Grade 3  -267.6** 
  (117.1) 
Land Grade 4  -514.7*** 
  (178.2) 
Land Grade 5  -419.9 
  (406.5) 
Constant -11,498** 64,860** 
 (5,667) (32,019) 
   
Observations 336 336 
R-squared 0.952 0.954 

 

Land grade base: 1/quantity of land graded 1 on farm 
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Regression table 4: 

 Model 1 Model 2 Model 3 
VARIABLES Per ha Financial 

Output 
Per ha Financial 

Output 
Per ha Financial 

Output 

    
Seed/ha -1.573*** -1.885*** -1.847*** 
 (0.534) (0.558) (0.555) 
Fertiliser/ha 1.280*** 1.327*** 1.324*** 
 (0.308) (0.306) (0.305) 
CPP/ha 1.581*** 1.561*** 1.444*** 
 (0.257) (0.263) (0.267) 
Precision farming – Yes – 2   132.6*** 102.1** 
  (47.43) (49.30) 
Precision farming – Partial – 3   24.87 2.403 
  (85.96) (86.07) 
Precision farming – N/A – 4   -80.76 -56.24 
  (299.6) (298.3) 
Green manure usage – Yes – 2  138.6** 131.2** 
  (64.57) (64.45) 
Green manure usage – Partial - 3  -225.0   -231.1 
  (119.9) (119.3) 
Farm size – Medium – 2   101.0 
   (70.13) 
Farm size – Large - 3   167.4** 
   (72.19) 
Constant 1,537*** 1,493*** 1,418*** 
 (74.79) (75.42) (87.67) 
    
Observations 336 336 336 
R-squared 0.273 0.314 0.325 

    

 

Precision farming base: 1/does not use precision farming methods 

Green manure base: 1/does not use green manures 

Farm size base: 1/Small 
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3.3 Results interpretation: Productivity metrics 

3.3.1 Yield 

For total yields at a farm level (Regression table 1) increasing the costs of inputs used (seed, 

fertiliser, CPP) also increases output. Similar to this, the more land a farm devotes to cereals the 

higher the total yields. Expenses on machinery and contracting negatively impact yields. The 

assumption could be made that this is representative of smaller farms who are more likely to 

contract out work and will have higher machinery costs when compared to their size and 

potential output. Heating fuel also had a negative impact which could be a result of the types of 

farms using such fuel for activities such as grain drying. For the yield per hectare (regression 

table 2), seed costs instead have a negative impact, but other inputs remain positive. This could 

be because at a farm level (regression table 1), more farmland devoted to the crop results in a 

higher yield, but also higher need for seed, whereas at the per hectare level (regression table 2) 

increasing seed application and expense on seeds is less efficient when it comes to yield 

(Cheema et al. 2013). At this level precision farming shows a positive impact on yields possibly 

due to the ability. This could be due to larger farms, with higher overall yield potential having 

the ability and less risk to implement novel techniques, like precision farming. Finally, the 

category of overall farm size shows that larger farms have a significantly higher yield per 

hectare. 

 

3.3.2 Financial output 

The total financial output (regression table 3) generally increased with the quantity of inputs 

(area of land, CPP, fertiliser). The exception for this is seed, which has a negative correlation, 

which could be linked to higher seed rates resulting in lower quality and a lower price (Granger, 

2018). Total earnings from environmental payments had a positive association with yields. The 

assumption could be made that this is the result of larger farms having more options and the 

ability to earn more through environmental schemes. 

For financial output per hectare (regression table 4), the relationship remains the same with the 

inputs. Both the techniques of precision farming and green manure usage had a positive 

impact.  As mentioned previously concerning precision farming, this could be because of larger 

farms having the ability to utilise the techniques with low risks. However, this positive influence 

could also be attributed to the benefits provided by green manures (gov.uk, 2021, DAERA, 

2021) and precision farming (Pimental and Burgess, 2014; Soto et al. 2019; Balafoutis et al. 

2017). 
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3.4 Regression Results: Sustainability metrics 

3.4.1 Nitrogen-based emissions 

Farm Level: Regression table 5 
For the initial farm level model including activities and inputs the following variables were 
found to have significant positive association: cereals area (p<0.01, 1.667), CPP (p<0.01, 
0.00036) and gas usage (p<0.01, 0.00426). Seed costs (p<0.01, -0.00288) were found to have 
significant negative association. This model has an R-squared value of 0.797. 
No demographic or decisions-based data added anything to the model.  
 
Finally adding in farm characteristics data to the initial model found one category of the farms 
land grade data to be significant and have a positive association (p<0.05, 2.092). Areas with a 
higher quantity of Grade 5 listed land have higher nitrogen-based outputs, but only if the other 
grade variables are included also. This model has an R-squared value of 0.801 
 
Per Hectare: Regression table 6 
 
For the initial ‘per Hectare’ model including activities and inputs the following variables were 
found to have significant positive association: Machinery (p<0.01, 0.0759), contract (p<0.05, 
0.0562) and crop protection (p<0.01, 0.489). This model has an R-squared value of 0.278. 
 
Adding in the demographics and decision-making data found that the following variables held 
significant positive association:  use of precision agriculture (p<0.05, 23.92), and the source of 
knowledge for crop nutrition (p=0.05, 46.05). LEAF membership (p<0.01, -51.3) and green 
manure usage (p<0.05, -36.86), were found to have significant negative association. This model 
has an R-squared value of 0.321. 
 
Finally adding in farm characteristics data to the initial model found one category of the farms 
land grade data to be significant and have a positive association (p<0.01, 1.614).  Areas with a 
higher quantity of Grade 5 listed land have higher nitrogen-based outputs, but only if the other 
grade variables are included also. Adding in this land grade data moves source of knowledge to 
have a more significant impact (p<0.05, 48.23). This model has an R-squared value of 0.336. 
 
Per tonne: Regression Table 7 
 
For the initial ‘per Tonne’ model including activities and inputs the following variables were 
found to have significant positive association: crop protection costs (p<0.01, .00339), gas usage 
(p<0.01, .0245), machinery (p<0.01, .000611) and contract usage (p<0.01, .00065). 
Environmental payments (p<0.01, -.00128) were found to have significant negative association. 
This model has an R-squared value of 0.646. 
 
Adding in the demographic and decision data found significant positive association in the 
source of knowledge (p<0.05, 0.0647).  Green manure usage (p<0.01, -0.0557) and LEAF 
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membership (p<0.05, -0.0545) were found to have significant negative association. Including 
these dropped the significance of the variable’s gas usage and environmental payments. This 
model has an R-squared value of 0.635. 
 
Finally adding in farm characteristics data to the initial model found one category of the farms 
land grade data to be significant and have a positive association (p<0.05, 0.0017). Areas with a 
higher quantity of Grade 5 listed land have higher nitrogen-based outputs, but only if the other 
grade variables are included also. This model has an R-squared value of 0.641. 

 

3.4.2 Direct Emissions 

Farm Level: Regression table 8 
 
For the initial farm level model including activities and inputs the following variables were 
found to have significant positive association: cereals area (p<0.01, 1.491), crop protection 
costs (p<0.01, 0.00343) and agricultural machinery costs (p<0.01, 0.00273). Seed costs (p<0.01, 
-0.00411) was found to have significant negative association. No demographic or decisions-
based data added anything to the model. This model has an R-squared value of 0.843. 
 
Neither demographic or decisions-based data nor farm characteristics data added anything 
significant to the model.  
 
 
Per Hectare: Regression table 9 

 
For the initial ‘per Hectare’ model including activities and inputs the following variables were 
found to have significant positive association: CPP (p<0.01, 0.0038), contract (p<0.01, 0.000839) 
and machinery costs (p<0.01, 0.00245). Environmental payments (p<0.05, -.00134) were found 
to have significant negative association. This model has an R-squared value of 0.410. 
 
Adding in the demographic and decision data found significant positive association in the use of 
precision farming (p<0.05, 0.0271) and significant negative association with LEAF membership 
(p<0.01, -0.489). This model has an R-squared value of 0.426. 
 
Finally adding in farm characteristics data to the initial model found one category of the farms 
land grade data to be significant and have a positive association (p<0.01, 0.0154). Areas with a 
higher quantity of Grade 5 listed land have higher carbon equivalent outputs. Significance was 
maintained if including all grade data or just grade 5 though influence is lowered in the latter 
scenario (p<0.05, 0.0136). The model including all grade data has an R-squared value of 0.445, 
whilst the model only including the grade 5 area has an R-squared value of 0.436. 
 
Environmental payments are only significant in the first (p<0.05, -0.00134) and third iterations 
(p<0.05, -0.0013) of the model, either only including the other initial variables or including all 
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land grade data. 
 
 
Per tonne: Regression table 10: 
 
For the initial ‘per Tonne’ model including activities and inputs the following variables were 
found to have significant positive association: seed costs (p<0.01, 0.00424), crop protection 
costs (p<0.01, 0.0039), machinery usage (p<0.01, 0.00435) and contract expenses (p<0.01, 
0.00192). Environmental payments (p<0.01, -0.00378) and electricity usage (p<0.01, -0.00578) 
were found to have significant negative association. This model has an R-squared value of 
0.883. 
 
Adding in the demographic and decision data found significant positive association with the use 
of precision farming (p<0.01, 0.0386). Green manure usage (p<0.05, -0.0524) and LEAF 
membership (p<0.05, -0.0708) were found to have significant negative association. The variable 
of electricity usage became insignificant once these were added. This model has an R-squared 
value of 0.888. 
 
Finally adding in farm characteristics data to the initial model found one category of the farms 
land grade data to be significant and have a positive association (p<0.05, 0.00218). Areas with a 
higher quantity of Grade 5 listed land have higher carbon equivalent outputs, but only if the 
other grade variables are included also. The variables of precision farming, green manure usage 
and LEAF membership each dropped to insignificant with the inclusion of farm grades in the 
third model. This model has an R-squared value of 0.883. 
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Regression results table – Sustainability metrics 

The results are presented below with the coefficient represented, the standard errors in 
parentheses, and the p value given an approximation through a scale of asterisk’s (*** p<0.01, 
** p<0.05). Variables with a p value of more than the required 0.05, but are a part of a 
categorical set, are presented in bold and underlined. 
 

3.4.3 Nitrogen-based Emissions 

Regression table 5: 

 

 Model 1 Model 3 
VARIABLES Farm Level Nitrogen 

emissions 
Farm Level Nitrogen 

emissions 

   
Cereals area 1.667*** 1.618*** 
 (0.191) (0.193) 
Seed -0.00288*** -0.00270** 
 (0.00104) (0.00106) 
Crop Protection Products (CPP) 0.00360*** 0.00370*** 
 (0.000587) (0.000588) 
Gas expense 0.0426*** 0.0434*** 
 (0.0164) (0.0164) 
Land Grade 2   0.140 
  (0.384) 
Land Grade 3  0.291 
  (0.285) 
Land Grade 4  0.0485 
  (0.438) 
Land Grade 5  2.092** 
  (0.994) 
Constant 11.40 -50.67 
 (13.73) (78.53) 
   
Observations 336 336 
R-squared 0.797 0.801 

 

Land Grade base: quantity of land graded 1 on farm 
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Regression table 6: 

 Model 1 Model 2 Model 3 
VARIABLES Per ha Nitrogen 

emissions  
Per ha Nitrogen 

emissions 
Per ha Nitrogen 

emissions 

    
Machinery/ha 0.0759*** 0.0792*** 0.0737*** 
 (0.0229) (0.0229) (0.0231) 
Contract/ha 0.0562** 0.0570** 0.0591** 
 (0.0278) (0.0276) (0.0276) 
CPP/ha 0.489*** 0.440*** 0.451*** 
 (0.0517) (0.0540) (0.0542) 
Precision farming – Yes – 2  23.92** 26.18** 
  (12.03) (12.02) 
Precision farming – Partial – 3  20.81 21.50 
  (21.78) (21.72) 
Precision farming – N/A – 4  -65.66 -60.68 
  (75.27) (75.36) 
Green manure usage - Yes  -36.86** -32.51** 
  (16.02) (16.14) 
Green manure usage - Partial  13.29 17.02 
  (30.18) (30.35) 
Source of knowledge - 2  46.05 48.23** 
  (23.41) (23.36) 
Source of knowledge - 3  17.45 16.78 
  (15.71) (15.67) 
Source of knowledge - 4  10.12 13.54 
  (17.53) (17.50) 
LEAF member - Yes  -51.30*** -49.63*** 
  (18.48) (18.45) 
Land Grade 2   0.194 
   (0.229) 
Land Grade 3   0.169 
   (0.170) 
Land Grade 4   0.0960 
   (0.264) 
Land Grade 5   1.614*** 
   (0.607) 
Constant 86.75*** 82.56*** 32.40 
 (16.70) (20.11) (50.26) 
    
Observations 336 336 336 
R-squared 0.278 0.321 0.336 
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Green manure base: 1/does not use green manures 

Source of Knowledge base: 1/own knowledge (no FACTS qualification) 

LEAF member base: 1/no LEAF membership 

Land Grade base: quantity of land graded 1 on farm 
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Regression model 7: 

Green manure base: 1/does not use green manures 

Source of Knowledge base: 1/own knowledge (no FACTS qualification) 

LEAF member base: 1/no LEAF membership 

Land Grade base: quantity of land graded 1 on farm 

 Model 1 Model 2 Model 3 
VARIABLES Per tonne 

Nitrogen emissions 
Per tonne 

Nitrogen emissions 
Per tonne 

Nitrogen emissions 

    
CPP/t 0.00399*** 0.00462*** 0.00472*** 
 (0.000512) (0.000493) (0.000495) 
Machinery/t 0.000611*** 0.00125*** 0.00123*** 
 (0.000201) (0.000103) (0.000103) 
Contract/t 0.000650*** 0.000706*** 0.000730*** 
 (0.000250) (0.000226) (0.000227) 
Green Manure Usage – Yes – 2  -0.0557*** -0.0514** 
  (0.0198) (0.0200) 
Green Manure Usage – Partial - 3  0.0333 0.0380 
  (0.0373) (0.0376) 
Source of knowledge – 2  0.0647** 0.0669** 
  (0.0286) (0.0287) 
Source of knowledge – 3   0.0282 0.0277 
  (0.0191) (0.0191) 
Source of knowledge – 4   0.0235 0.0269 
  (0.0213) (0.0213) 
LEAF member – Yes   -0.0545** -0.0512** 
  (0.0226) (0.0227) 
Land Grade 2   0.000113 
   (0.000284) 
Land Grade 3   0.000147 
   (0.000210) 
Land Grade 4   5.86e-06 
   (0.000324) 
Land Grade 5   0.00170** 
   (0.000751) 
Gas/t 0.0245***   
 (0.00663)   
Environmental payments/t -0.00128***   
 (0.000417)   
Constant 0.131*** 0.0539** 0.0139 
 (0.0210) (0.0213) (0.0612) 
    
Observations 336 336 336 
R-squared 0.646 0.635 0.641 
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3.4.4 Direct Emissions 

Regression table 8: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Model 1 
VARIABLES Farm Level  

Direct emissions 

  
Cereals area 1.491*** 
 (0.202) 
Seed -0.00411*** 
 (0.00112) 
Crop Protection Products (CPP) 0.00343*** 
 (0.000605) 
Machinery 0.00273*** 
 (0.000267) 
Constant -19.24 
 (14.78) 
  
Observations 336 
R-squared 0.843 
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Regression table 9: 

 

 

Precision farming base: 1/no use of precision farming techniques 

LEAF member base: 1/no LEAF membership 

Land Grade base: quantity of land graded 1 on farm 

 Model 1 Model 2 Model 3 Model 3.5 
VARIABLES Per ha Direct 

emissions 
Per ha Direct 

emissions 
Per ha Direct 

emissions 
Per ha Direct 

emissions 

     
Machinery/ha 0.00245*** 0.00241*** 0.00239*** 0.00237*** 
 (0.000232) (0.000231) (0.000232) (0.000230) 
Contract/ha 0.000839*** 0.000738*** 0.000876*** 0.000765*** 
 (0.000288) (0.000279) (0.000285) (0.000278) 
CPP/ha 0.00380*** 0.00378*** 0.00362*** 0.00383*** 
 (0.000540) (0.000535) (0.000548) (0.000532) 
Environmental payments/ha -0.00134**  -0.00130**  
 (0.000637)  (0.000636)  
Precision farming – Yes - 2  0.271** 0.298** 0.297** 
  (0.121) (0.121) (0.121) 
Precision farming – Partial - 
3 

 0.170 0.186 0.195 

  (0.219) (0.218) (0.218) 
Precision farming – N/A - 4  -1.382 -1.183 -1.324 
  (0.749) (0.749) (0.744) 
LEAF member – Yes   -0.489*** -0.460** -0.471** 
  (0.186) (0.185) (0.184) 
Land Grade 2   0.00186  
   (0.00229)  
Land Grade 3   0.00199  
   (0.00170)  
Land Grade 4   0.00126  
   (0.00265)  
Land Grade 5   0.0154** 0.0136** 
   (0.00608) (0.00573) 
Constant 0.789*** 0.685*** 0.251 0.636*** 
 (0.177) (0.173) (0.490) (0.173) 
     
Observations 336 336 336 336 
R-squared 0.410 0.426 0.445 0.436 
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Regression table 10: 

 Model 1 Model 2 Model 3 

VARIABLES Per tonne Direct 
emissions 

Per tonne Direct 
emissions 

Per tonne Direct 
emissions 

    
Seed/t 0.00424*** 0.00509*** 0.00405*** 
 (0.00104) (0.00106) (0.00105) 
CPP/t 0.00390*** 0.00327*** 0.00417*** 
 (0.000705) (0.000725) (0.000709) 
Machinery/t 0.00435*** 0.00404*** 0.00407*** 
 (0.000240) (0.000225) (0.000231) 
Contract/t 0.00192*** 0.00178*** 0.00182*** 
 (0.000341) (0.000334) (0.000342) 
Environmental payments/t -0.00378*** -0.00361*** -0.00378*** 
 (0.000590) (0.000586) (0.000602) 
Precision farming – Yes – 2  0.0386**  
  (0.0193)  
Precision farming – Partial – 3  0.0185  
  (0.0348)  
Precision farming – N/A – 4  -0.380***  
  (0.123)  
LEAF member – Yes   -0.0708**  
  (0.0296)  
Green manure usage – Yes – 2   -0.0524**  
  (0.0261)  
Green manure usage – Partial - 3  0.0114  
  (0.0489)  
Electricity/t -0.00578***   
 (0.00203)   
Land Grade 2   0.000204 
   (0.000376) 
Land Grade 3   0.000278 
   (0.000279) 
Land Grade 4   -0.000130 
   (0.000434) 
Land Grade 5   0.00218** 
   (0.000994) 
Constant -0.0631*** -0.0566** -0.132* 
 (0.0234) (0.0257) (0.0789) 
    
Observations 336 336 336 
R-squared 0.883 0.888 0.883 
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Precision farming base: 1/no use of precision farming techniques 

Green manure base: 1/does not use green manures 

LEAF member base: 1/no LEAF membership 

Land Grade base: quantity of land graded 1 on farm 

 

3.5 Results interpretation: Sustainability metrics 

3.5.1 Nitrogen-based emissions 

Inputs had a positive association with total nitrogen-based outputs (regression table 5) 

except for seed expenses. The more land that is devoted to cereals, the more fertilizer is 

needed and emissions occur, leading to cereals area having a positive impact on this model. 

Grade 5 land classification has a positive association nitrogen-based output, meaning that 

areas with a higher quantity of low-grade land have higher nitrogen emissions. This could be 

explained by the need for more fertiliser on low grade land to improve yields and financial 

output, as grade 5 is defined as requiring action to make productive (MAFF, 1988).  

When measuring at a per hectare level (regression table 6) the significant inputs also had a 

positive impact on nitrogen-based emissions. In this model, farms implementing precision 

techniques were emitting higher quantities of nitrogen-based emissions. An assumption 

could be made that this is because precision agriculture is largely being adopted for financial 

and output purposes, or for another environmentally conscious reasons and not to decrease 

emissions (Godwin et la. 2003a). The environmentally focused decisions of LEAF 

membership and green manure usage led to decreases in nitrogen emissions per hectare. 

Persons who are FACTS qualified, and taking their own advice, have a higher output of 

nitrogen emissions. It could be assumed that not taking external advice could lead to over-

application of nitrogen because of previously successful results, leading to a generally higher 

usage of fertilizers and therefore a higher output of nitrogen emissions. The quantity of 

grade 5 land positively impacts this model again. 

At the per tonne level (regression table 7) inputs also had a positive influence over 

emissions. Environmental payments, green manure usage and leaf membership all caused a 

decrease in nitrogen emissions per hectare. This is expected, as reduction in harmful 

emissions is the intent of both decisions (LEAF, 2021). The impact of land grade 5 and the 

source of nutrition knowledge were both positively significant, whilst precision farming had 

no effect at the per tonne level. The quantity of grade 5 land also positively impacts this 

model again. 
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3.5.2 Direct carbon equivalent emissions 

Inputs had a positive association with total direct emissions outputs (regression model 8) 

except for seed expenses. Area devoted to growing cereals increased direct emissions, likely 

due to the need increasing need for further inputs and machinery usage, as land use also 

increases. 

At the per hectare level (regression table 9) all inputs, and activities had a positive impact on 

direct emissions, which is to be expected given the need for machinery to carry out these 

tasks. Both environmental payments and LEAF membership were associated with a 

reduction in direct emissions per hectare, which could be an intended outcome. Precision 

farming has an unexpectedly positive impact on this model. This could be again due to the 

method being used to optimise areas outside of fuel and fertilisers (Godwin et la. 2003a; 

Pimental and Burgess, 2014). The quantity of grade 5 land has a positive association with 

the direct emissions per hectare, meaning that areas with a higher quantity of low-grade 

land have higher nitrogen emissions. This could be explained by the need for more fertiliser 

and tilling activities on low grade land to improve yields and financial output. 

When measuring at a per tonne level (regression model 10) inputs had a positive influence 

over emissions, except for electricity. This matches with the yield results looking at total 

tonnes and possibly indicates the use of electricity instead of fuel for certain activities, for 

example using electric grain dryers instead of gas- or petrol-powered machines. 

Environmental payments, leaf membership also negatively impacted direct emissions per 

tonne. Green manure usage negatively affected direct emissions at a per tonne level. The 

fact that it did not affect direct emissions at a per hectare level indicates that the benefit is 

from increasing the yield relative to direct emissions rather than decreasing those 

emissions. This would be because of the benefits provided by this technique (DAERA, 2021). 

The use of precision farming and the quantity of grade 5 land both positively impact this 

model again. 
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4.0 Discussion 

 

4.1 Level of Measurement 

Measuring per hectare removes the noise created by the influence of total size. At a farm 

level, as the farmland used increases, every input inherently has the potential to increase. 

Analysis at a per hectare level allows for the comparison of the efficiency of each farm’s use 

of the same hectare, regardless of the total land available to them. A future consideration or 

improvement on the models presented here, would be to look at the specific differences to 

models at a farm level created both with and without farm area included. Measuring at a 

per tonne level also observes what a farm uses to get the same tonne of produce.  

Many international governing bodies recommend calculating based on amount of 

equivalent carbon produced per hectare (DPIRD, 2021; EPA, 2021; FAO, 2021). But this 

ignores the food security issue presented by only observing land usage and not production. 

Because of the different aspects of efficiency explored by each measurement (input or land 

usage versus output). Being highly efficient from a hectare perspective may compromise 

yields and therefore food security yet have the appearance of a positive result when 

measured at this level. The same can occur with being highly efficient in tonnes produced, 

where it may come at the cost of permanent environmental damage, but again presents as 

a positive result at the per tonne level. Successful sustainable intensification demands the 

examination of both aspects. 

 

4.2 Location, climate, and environment 

Using the JCA codes yielded insignificant results. This could be linked to a limitation within 

the dataset where the high quantity of categories (366 farms being spread across 92 of 152 

codes) plus the lack of data attached to those categories, limits the readability of the data. 

In the dataset the categories are discrete, whereas in reality, the characteristics of land 

change continuously and gradually. 

Other studies have previously had issue with the environmental variables that affect GHG 

emissions, and the specific carbon equivalent multiplier used for fertiliser-sourced emissions 

in this study. The IPCC tier 1 estimates used for emissions (Sykes et al, 2017) have been 

criticised for their simplicity and lack of specificity (Cardenas et al., 2013). Aspects like the 

fertiliser type used, soil acidity and temperature are not accounted for (Chadwick et al., 

2011; Shen et al., 2018; Taft et al., 2017). Further studies have found that this multiplier fails 

to accurately reflect the influence of climate and landscape on emissions from fertilisers 

(Cardenas et al., 2013; Tian et al., 2017). 

Similarly, the multipliers for carbon emissions do not factor in the nuances of their creation. 

The equation used for both fuel and fertiliser output takes the total input and multiplies it 

by a broad estimate of the emissions produced per unit. In this instance that end figure is 

multiplied to give a carbon equivalent amount. The efficiency of each farm’s fuel 
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consumption is unknown and assumed by the multiplier, in the same way that the local 

climate, soil characteristics and practice that impact nitrous oxide output are assumed 

within the fertiliser carbon equivalent calculator. In reality, fuel consumption and emissions 

differ from machine to machine and changes through the way it is used (Zacharoff & 

Fontaras, 2016). The same occurs with fertiliser use, where practices, climate and soil 

conditions all impact emissions (Krol et al., 2016; Oertel et al. 2016; Hungria et al., 2009). A 

limitation of the nature of these multipliers used in this research is that the only input to the 

equation that is relevant to each individual farm is the resource input itself and not the 

usage. Therefore, the only place for examination and change is this input.  Alternatively, the 

model could be showing that there is no influence from local conditions on GHG emissions 

and production. But this is contrary to the literature and study surrounding the subject 

(Butterbach-Bahl et al. 2013; Krol et al., 2016). 

A final aspect to consider is the nature of farming itself and the impact it has on the local 

conditions that these models were attempting to observe. Farmers deal with homogenous 

products produced from non-homogenous circumstances. The actions taken in production 

aim to homogenise the environment of their land to create the best conditions to produce 

cereals. The data may not reflect the environment that the crops were produced in because 

the farmers have successfully offset its impact on cropping through practices and levels of 

crop production inputs.  

 

4.3 Soil properties 

The data used from the CEH proved insignificant. However, the data on the quantity of each 

land grade present in each farm’s area proved significant in several of the models. This 

indicates that some aspects of land quality, and therefore soil properties, were observable 

within the dataset used. 

For the emissions models, farms with a higher quantity of Grade 5 land in their area had 

higher emissions. Grade 5 is not typically used for cereals, so areas with higher Grade 5 are 

not typical cereal growing areas. This could point to farms in these areas not being typical 

cereal farms and being less efficient with inputs, the land being of lower quality and thus 

requiring overcompensation and thus resulting in inefficiencies in production. 

Whereas for financial output, Grades 3 and 4, the typical cereal grades for lower quality 

cereals, had lower outputs than the base grade of 1, indicating that lower land grade quality 

leads to lower financial output. Overall, this indicates that further data applied to the 

sorting system of the JCA, could lead to more significant results. Further data could be 

attached to JCA or CEH codes, such as giving a numerical value to slopes for topography or 

attaching a new area, such as average rainfall or a similar climatic factor known to be 

significant to GHG output (Krol et al., 2016; Clarke and Fraser, 2004; Hungria et al., 2009). 

The use of each JCA codes average Land grade proportions is a limitation with this research 

that could be improved upon with on farm data about the soil properties or land grades 

present. 
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Factors discussed within the literature review, such as climate and soil properties, also 

inform the land classification code given for an area. This includes the nutritional and 

chemical characteristics of soil (MAFF, 1988) which are known to impact emissions (Taft et 

al., 2017; Gao et al. 2020; Sanbayram et al. 2019). CEH classifications document the 

topography of the farm, a factor that both affects GHG emissions and is not accurately 

accounted for within the IPCC estimations (Cardenas et al. 2013), presenting another 

limitation on the results of this research. 

The influence of the different grades of land was shown across many models, always with 

the indication that lower grade soils performed poorly or had a negative association in 

comparison with the highest grade, used as the base in the models. This indicates the 

importance of the influence of the conditions that the crops are grown in. An implication of 

this, is that farms with lower quality/graded land, which already have commercial outputs, 

may struggle financially if pressured to further reduce GHG emissions. 

A potential future development would be to use a different level of carbon calculation. The 

current tier 1 is described a non-specific default emissions factor, that is based on inputs. 

Tier’s 2 and 3 of the IPCC each offer further detail to close the gap between the accuracy of 

the calculations and the on-farm reality of GHG emissions (Feliciano, et al., 2017). Tier 2 

uses a region or climate specific equation, that incorporates activities performed in its 

calculations. This would account for the lost influence of local climate and weather on GHG 

emissions (Cardenas et al., 2013; Tian et al., 2019). Tier 3 estimates offer further details, 

using local area plot data in its calculations (Feliciano, et al., 2017). Tier 3 is also the only 

level that incorporates soil-carbon dynamics (Feliciano, et al., 2017). 

Overall, the SIP carbon accountancy (benchmarkmyfarm.co.uk, 2021) currently stands a 

useful tool to benchmark input usage efficiency and to encourage action to reduce GHG 

outputs. However, further research based on the farms specific conditions will be needed to 

correctly inform practice changes. It does not have enough specificity to correctly identify 

methods to reduce GHG outputs, besides the reduction of inputs. A future improvement 

could be to use a calculator with a higher tier of the IPCC method or to encourage the 

collection of on farm data to compare to the benchmark created by these multipliers.  

 

4.4 Practices and decisions 

In general higher inputs led to greater outputs. The exception to this across the models has 

been the influence of seed costs. Higher seed rates than necessary can negatively impact 

aspects affecting yield, such as disease resistance and lodging (the crop falling over) 

(Granger, 2018, Cheema et al. 2003). This offers explanation to the models results of a 

generally negative association with outputs. 

Regarding practices, machinery and contract usage costs were consistently significant across 

the per hectare and per tonne GHG models, having an expected positive relationship with 

emissions. Higher machinery usage leads to higher use of fuels by necessity. This also 

implies more activities being performed, such as fertilizer application, again leading to 
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higher outputs of GHG’s. This use in turn incurs costs for maintenance and replacement over 

time, leading to this relationship. Likewise, higher contract costs indicate higher machinery 

usage. However, both variables had a negative impact on yields, which could be assumed as 

the influence of smaller farms, which are more likely to use contractors and have higher 

machinery costs in comparison to output. 

Decisions involving pure environmental motivations had a reductive influence on emissions, 

showcasing that they are working as intended (LEAF membership and expense on 

environmental services). There were further interesting results for the specific 

environmentally focused techniques of precision agriculture and green manure usage. 

Precision farming is often presented as a method to reduce the carbon emissions of farms 

(Soto et al. 2019). When it comes to inputs, the ability to vary the rates of application is a 

key tool in precision agriculture. Variable rate application refers to changing the quantity of 

a product applied depending on the need for that product (Dusadeerungsikul et al. 2020). 

For example, pesticide rates based upon higher or lower incidences of pests and disease 

within the field. 

Regarding fertilisers and precision farming, Godwin et al. (2003b) showcased its use through 

variable rate application. This involved applying more fertiliser on areas experiencing lower 

fertility and less on areas of high fertility. The increase in productivity produced by this 

method correlates with the results of this research, showing that using this precision 

method increases yields and overall financial outputs from cereals. This corroborates with 

the FBS data on farms implenting precision farming techniques.  

However, Godwin et al. (2003b) experienced a reduction of a third of fertiliser quantity 

used, reducing the amount of nitrous oxide available to be emitted. This is supported by 

Balafoutis et al. (2017) where precision techniques such as variable rate nutrient application 

and irrigation were found to significantly reduce usage and mitigate nitrous oxide emissions.    

An explanation of this is that precision farming can be used to tackle a broad range of issues, 

including productive aspects, but also environmentally conscious ones that do not involve 

the significant reduction of GHG’s. Reducing pesticides through precision techniques 

benefits the environment by the reduction and precision of its application (Pimental and 

Burgess, 2014), but will leave the GHG output of a farm unchanged (Croplife, 2012). Because 

of the wide-ranging applications of precision farming, this implies that the cereal farms 

covered in the FBS 2017 dataset which are using the techniques are not doing so in way to 

reduce inputs such as fossil fuel or nitrogen fertilisers, but instead to improve outputs or 

provide other environmental benefits. 

Green manure usage, which is described similarly as mitigating GHG emissions (DAERA), 

2021, was observed to have significant influence within the models created as part of this 

research.  Green manures are plants grown with the explicit purpose of maintaining soil 

structure and fertility between commercial cropping (DAERA, 2021). They negate some of 

the need for inputs, such as nitrogen fertilizer (DAERA, 2021). Because of this, lower 

emissions are derived from fertilisers, explaining the results. They also positively influence 

the financial output of farms, indicating higher quality or quantity of produce from farms 
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using green manures. Green manure usage and cover cropping are often used 

interchangeable (Dyer, 2021). The difference between them is that cover crops are 

harvested, whilst green manures are incorporated into the soil (gov.uk, 2021). Cover 

cropping is currently being promoted as a method of sustainable practice to maintain soil 

health (DAERA, 2021), and green manures are no different. During the lifespan of cover 

crops and green manures, or up until the respective harvest and incorporation, both 

perform similar functions and have similar benefits (gov.uk, 2021).  

Despite both the approaches of green manures and precision farming being pushed as GHG 

mitigating methods, the analysis performed on FBS data from 2017 showcases very different 

outcomes. Overall uptake for precision farming is better than green manure usage, with 44 

percent of farms in this dataset implementing precision farming (see table 3), but the data 

implies that its implementation has not mitigated emissions, instead, farms that have 

implemented it have higher emissions than those that have not. Because of this and the 

previous assumptions that precision agriculture reduces GHG emissions, there is the danger 

of the interpretation of a high uptake of a GHG mitigating activity across the UK and 

therefore a high level of GHG mitigation. Only 17 percent of farms in the sample have 

implemented green manures (see table 3), indicating the desired negative impact on 

emissions. 

As outlined previously, the SIP multipliers are best suited to comparing resource usage and 

not for deriving consequences, such as carbon equivalent outputs. However, for the two 

variables of green manure usage and precision farming, reducing resource usage is the 

desired and predicted outcome (Soto et al. 2019; Balafoutis et al. 2017; Godwin et al., 

2003a). Therefore, the SIP calculators can effectively serve the purpose of monitoring 

techniques that aim to be more resource efficient. For example, an interesting way to 

develop this finding would be to observe the relationships between precision farming and 

other resources, such as pesticides and irrigation.  

A limitation of the research presented here is that it is concentrated on a single year (2017). 

It is possible that farms otherwise utilising precision farming to reduce emissions had to 

adapt in this given year because of unknown variables, such as the weather. Further 

research should be undertaken to observe trends over a longer period to better assess the 

relationships between precision techniques and its consequences on inputs and outputs. As 

outlined with precision agriculture, a further limitatin is the lack of specificity with the 

information on specific activities. For example, the form of precision used or the specific 

uses of green manures within the rotations. 

The FBS concentrates on inputs and outputs, but further collection of information 

concerning specific practices could showcase the efficacy, or lack thereof, of techniques 

with the purpose of making resource usage more efficient in the UK. This could expand from 

current examples such as precision farming, green manures or nutrient software use, to 

include aspects of tillage (minimum or no-till systems), cover cropping, or use of NIs. 
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4.5 Evaluating and measuring Sustainable Intensification  

Sustainable intensification is loosely defined as using the same land to produce more, whilst 

reducing environmental impacts (Struik and Kuyper, 2017; Dicks et al., 2020). The aim is to 

evaluate eco-efficiency, or how efficient a natural resource is being used to meet human 

needs (Dicks et al. 2020). This broad definition allows for a variety of approaches, not just to 

implementation, but to measurement and evaluation (Dicks et al., 2020, Mahon et al. 2016, 

Gunton et al. 2016). Evaluation is performed observing the desired consequences of a farm 

(resource output, eco-system services), comparing this with the undesired consequences 

(emissions, environmental damage, use of inputs) (Dicks et al., 2020). The primary choice 

made is which consequences to measure and compare. 

Focusing on a single area of improvement may compromise other eco-system services, 

leading to a net negative result. One example of this single factor use being limited, is the 

result of precision agriculture in this paper. The face-value conclusion is that this has a 

negative or neutral impact on GHG emissions and therefore sustainable intensification, 

despite literature to the contrary. Measuring other aspects of sustainability on these farms 

would likely reveal its benefits. 

Alternatively, results may show a technique or attitude contributing to the apparent 

sustainability of the entire system but is a neutral or damaging approach to a specific area. 

Despite being an easily readable indicator, presenting a single wide-spanning metric on 

sustainable intensification removes the impact of individual circumstances, especially due to 

variation of productive conditions and financial pressures within a single year (Petersen and 

Snapp, 2015). It also does not allow for the concept that land may be better converted to 

another ecological use, besides agriculture. However, it does allow for targeted approaches, 

with the research presented here showcasing potential use for a single metric. 

The alternative approach is to create a metric that incorporates several indicators, or even 

modelling for all. This creates issues with over fitting and individual factors can be missed, 

due to issues of offsetting. A farm can choose to prioritise intensification and get a better 

than average index, with many parties presenting this as more efficient for sustainable 

intensification (Struik and Kuyper, 2017; Gadanakis et al. 2015). Barnes and Thomson (2014) 

noted this as a weakness and concluded that this is an issue with the definition of 

sustainable intensification, where societal and ethical factors are not integrated despite 

being key tenets in wider sustainability. Social aspects such as gender equity are further 

important metrics of sustainability but are often noticeably absent from literature 

evaluating sustainable intensification (Smith et al., 2017).  

Overall, tighter definitions of sustainable intensification are needed and there are already 

calls for this (Smith et al. 2017). These definitions must incorporate all aspects of 

sustainability, not just commercial and ecological, but social. This will allow more consistent 

measurements and evaluation of sustainable intensification, leading to long-term global 

food security whilst limiting damage to natural resources. Analysing metrics incorporating 

these indicators can provide a gauge to overall progress, whilst individual markers can 

highlight important issues, such as GHG emissions, to address immediate problems. 
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4.6 The Sustainable Intensification of farming systems 

The nature of sustainable intensification allows a farm with a high negative externality, such 

as low diversity, high emissions, or a heavy reliance on chemicals to offset these results with 

high productivity (Gadanakis et al., 2015), leading to the concept being labelled as an 

oxymoron in some instances (Mahon et al., 2017; Smith et al. 2018). Farm systems focusing 

on income are the most effective target of sustainable intensification (Struyk and Kuyper, 

2017). Jourdain et al. (2020) note that they are less likely to uptake such attitudes unless 

they can be convinced of its efficacy without compromising said income. 

The idea of combining the issues of immediate food security and long-term ecological 

stability may limit the ability of the swift progress necessary for the latter issue and 

compromise the former in the future. As previously noted, a farm can choose to prioritise 

intensification to improve efficiency (Struik and Kuyper, 2017), rather than contribute to the 

very immediate needs of reduction. An alternative approach would be to encourage pure 

reduction, rather than comparative reduction. 

A question asked by the literature is whether the intensification side necessary at all. In 

2018, approximately £19 billion worth of food waste was produced in the UK alone (WRAP, 

2020). The sector of cereal production makes up the largest proportion of this at 31% 

(Jeswani et al. 2021). Struik and Kuyper (2017) suggest the definition be split into the 

intensification of current low-output agriculture, specifically referencing the global south 

where intensification is not only necessary but inevitable, whilst also encouraging the de-

intensification of high-output agriculture, to further prioritise eco-system services. 

Considering that a level of intensification is needed to feed the growing population (Firbank, 

2020), this allows for this to occur globally but without putting further pressure on already 

intensely farmed areas. 

An alternative suggestion by Gunton et al. (2016) is that definition be changed to 

maintaining or enhancing the provision of agricultural services, whilst at the same time 

maintaining or enhancing the eco-systems services provided. This would reduce the 

importance of intensification and ability of farms to offset damages, rather than fix them. 

Offsetting permanently damaging issues with temporary provisions to the UK food supply 

chains. 

The concept of sustainability as an important one that must be brought to the forefront of 

UK agricultural practices. However, the necessity of intensification in the UK is debatable. 

Sustainable intensification can provide many benefits if successful, but because of the fluid 

nature of its definition, certain interpretations are flawed and can lead to net negative 

results. 
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4.7 Conclusion 

Reducing emissions and increasing food output is an important goal for agriculture in the 

21st century. Carbon accounting and resource use efficiency tools including the SIP 

benchmarking system have their place in aiding this goal and increasing awareness. As this 

research has shown, it is possible to develop commentary about the practices of UK farms 

and their impact. However, several areas were also highlighted for improvement or further 

development.  

The level of measurement used impacts the outcomes of any analysis and observations. Per 

hectare is used as standard (DPIRD, 2021; EPA, 2021; FAO, 2021), but per tonne offers 

alternative comparison, especially with the need for sustainable intensification. Likewise, 

total contribution is an important characteristic and reduction in GHG emissions should be 

pursued any place that it is possible. A suggestion for future research and observation of UK 

farming GHG output is to collect and compare multiple measures, to better inform decision 

making rather than focusing on a single metric. Efficiency of resource production against 

GHG outputs is important alongside efficiency of resource use. 

The current carbon equivalency model used in this research has limited efficacy, due to the 

simplicity of it. To be easily used, it sacrifices accuracy and does not account for the 

variation in results caused by the diverse factors affecting farmland. It also only accounts for 

direct emissions from fertilisers and fuel, not including soil carbon respiration or methane 

output of manures used in otherwise arable systems. Utilising a more advanced model could 

improve the results. For example, IPCC tier 2 calculations which incorporate greater detail 

on activities and location, or tier 3 which also includes soil carbon dynamics (Feliciano, et al., 

2017). All models come with a compromise, therefore a further suggestion would be to 

encourage on location testing for individual farmers, to compare real results to the derived 

national averages. If incorporated into a government scheme, this could lead to a national 

database on agricultural GHG emissions with greater detail and therefore greater ability to 

make informed decision and actions to reduce the inventory. 

An extension of this suggestion of further detail to the model is the inclusion of further 

detail about the physical characteristics of the farm. Whilst the categorical codes 

representing the location of the farm proved insignificant, the continuous data on each 

areas land grade provided interesting results. Further inclusion of details about farm 

characteristics could better inform farmers, researchers, and policymakers on which GHG 

mitigating techniques to utilise or encourage in the future. This could entail making the land 

grade data in this study farm specific, rather than JCA code specific, or collecting 

information on other characteristics known to influence GHG’s, such as rainfall or 

topography (Krol et al., 2016; Clarke and Fraser, 2004; Hungria et al., 2009). 

The benchmarking models proved useful for monitoring and benchmarking input efficiency 

when it comes to novel techniques aimed at reducing such inputs. The addition of further 

survey information would benefit other farmers and policymakers, by showcasing the 

activities resulting in better resource management and those that are not. A suggestion 

from this would be to add more questions regarding specific techniques in the FBS. For 
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example, including questions about cover cropping, or expanding the precision farming 

category to include which production area is utilising this method, e.g. fertiliser, seed or 

spraying. 

There are limitations to the methods and resources used within this study. There are also 

areas that could benefit from expansion. However, understanding the externalities 

produced by farming are essential to it sustainability as an industry and ability as a food 

provider. Platforms such as the SIP’s benchmarking tool (benchmarkmyfarm.co.uk, 2021) 

contribute information to aid in both these aspects. Further expansion of the detail, scope 

and use for carbon calculators like these will help to inform the future decisions made by 

farmers, researchers, and policymakers, that will aid in the reduction of GHG’s and the 

sustainability of food production.  
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