

# **A Conserved Non-Coding Element Is**

# Sufficient But Not Essential For *c-myb*

# **Expression During Zebrafish**

# Haematopoiesis

Jawaher Almulhim

Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy

July 2021

### Acknowledgements

First and foremost, I would like to thank "**Allah**" Almighty for giving me the strength, knowledge, ability and opportunity to undertake this research study and to persevere and complete it satisfactorily. Without blessings of Allah, this achievement would not have been possible.

I am incredibly grateful to my supervisor **Dr. Martin Gering** for the continuous support of my PhD study and related research, for his patience, motivation, and immense knowledge. His guidance helped me in all the time of research and writing of this thesis. Thank you, Sir, I could not have imagined having a better supervisor and mentor. Without your guidance, this project would not have been possible.

I would like to deeply thank my **parents**, who have always believed in my abilities, it is your love and prayers **mum** and **dad** (May Allah rest his soul in peace) that have brought me this far. A special and profound thanks to my **sisters** and **brothers** for their encouragement and prayers. Thank you all.

To my kids, **Abdulaziz**, **Fajer**, **Abdulrahman** and **Meznah** for all the happiness and smiles that they gave to me, to get me out of the work pressure and stress. My kids, I am sorry for every single day and the moment I spent it away from you. This journey would not have been possible without you, and I dedicate this thesis to you all. I love you.

At most, I would like to thank my husband **Abdullah** for supporting and encouraging me for everything throughout this experience.

I would like to express my gratitude to my best friend, **Fatemah**. A massive thank you for all the fun we have had in the last four years. Brilliant friend Fatemah, you have made my PhD experience a cherishable one.

Exceptional gratitude goes out to all down at **Saudi Arabia** government for helping and providing the funding for this work.

My heartfelt gratitude to **Dr Joanna Richens** and **Yasmin Hough** that have always encouraged me and who have been there for me in good times and bad also it was fantastic to have the opportunity to work with you.

I would also like to thank all of the lab members for making my stay more enjoyable and for sharing their knowledge - **Peter**, **Mariam**, **Farah**, **Aisha**, **Amal** and **Jawaher**.

## List of Abbreviations

| AGM       | Aorta-Gonad-Mesonephros                             |
|-----------|-----------------------------------------------------|
| ALM       | Anterior Lateral Mesoderm                           |
| BA        | Branchial Arches                                    |
| BM        | Bone Marrow                                         |
| Вр        | Base Pair                                           |
| Cas9      | CRISPR Associated Protein 9                         |
| ChIP-seq  | Chromatin Immunoprecipitation (ChIP) Followed by    |
|           | Sequencing                                          |
| СНТ       | Caudal Haematopoietic Tissue                        |
| CNE       | Conserved Non-Coding Element                        |
| CpGIs     | CpG (Cytosine Followed by Guanine and Linked        |
|           | Together By Phosphate) Islands                      |
| CREs      | Cis-Regulatory Elements                             |
| CRISPR    | Clustered Regularly Interspaced Short Palindromic   |
|           | Repeats                                             |
| СТСГ      | CCCTC-Binding Factor                                |
| dHSCs     | Definitive Haematopoietic Stem Cells                |
| dHSPCs    | Definitive Haematopoietic Stem and Progenitor Cells |
| DNA       | Deoxyribonucleic Acid                               |
| DNaseI HS | DNaseI Hypersensitive                               |
| DSB       | Double-Strand Break                                 |
| ECs       | Endothelial Cells                                   |
| EGFP      | Enhanced Green Fluorescent Protein                  |
| ЕНТ       | Endothelial to Haematopoietic Transition            |

| EMPs    | Erythromyeloid Progenitors                |
|---------|-------------------------------------------|
| ePreN   | Early Neutrophil Progenitors              |
| FO      | Founding Generation                       |
| F1      | First Generation Offspring                |
| F2      | Second Generation Offspring               |
| FACS    | Fluorescence-Activated Cell Sorting       |
| FL      | Foetal Liver                              |
| FSC     | Forward Scatter                           |
| gRNA    | Guide RNA                                 |
| H3K4me1 | Mono-Methylation Of Lysine 4 On Histone 3 |
| H3K4me3 | Tri-Methylation Of Lysine 4 On Histone 3  |
| hCNE1   | Human Conserved Non-Coding Element One    |
| HECs    | Haemogenic Endothelium Cells              |
| hpf     | Hours Post-Fertilisation                  |
| hRE1    | Human Regulatory Element One              |
| HSCs    | Haematopoietic Stem Cells                 |
| HSPCs   | Haematopoietic Stem and Progenitor Cells  |
| ІСМ     | Intermediate Cell Mass                    |
| Kb      | kilobase                                  |
| КМ      | Kidney Marrow                             |
| LT-HSC  | Long-Term Haematopoietic Stem Cell        |
| мнв     | Mid/Hindbrain Boundary                    |
| mRE1    | Mouse Regulatory Element One              |
| mRNA    | Messenger RNA                             |
| Neuts   | Neutrophils                               |
| NHEJ    | Non-Homologous End Joining                |

| ОР        | Olfactory Placode                 |
|-----------|-----------------------------------|
| P/Ms      | Promyelocytes and Myelocytes      |
| РАМ       | Protospacer Adjacent Motif        |
| PBI       | Posterior Blood Island            |
| PCR       | Polymerase Chain Reaction         |
| PCV       | Posterior Cardinal Vein           |
| PEs       | Potential Enhancer Elements       |
| pf        | Days Post Fertilisation           |
| PF5       | Promoter Fragment Five            |
| PND       | Pronephric Duct                   |
| prRBCs    | Primitive Red Blood Cells         |
| RBI       | Rostral Blood Island              |
| Re        | Retina                            |
| RNA       | Ribonucleic Acid                  |
| RT        | Room Temperature                  |
| scRNA-Seq | Single-Cell RNA Sequencing        |
| SNPs      | Single-Nucleotide Polymorphisms   |
| SNs       | Segmented Neutrophils             |
| SSC       | Side Scatter                      |
| TADs      | Topologically Associating Domains |
| TAE       | Tris Acetate EDTA Buffer          |
| TE        | Tris EDTA Buffer                  |
| TF        | Transcription Factor              |
| TS        | Target Site                       |
| t-SNE     | t-Stochastic Neighbour Embedding  |
| UMI       | Unique Molecular Identifier       |

| vDA  | Ventral Wall of the Dorsal Aorta  |
|------|-----------------------------------|
| WISH | Whole-mount In Situ Hybridisation |
| WKM  | Whole Kidney Marrow               |
| ωт   | Wild-Type                         |
| YS   | Yolk Sac                          |
| zRE1 | Zebrafish Regulatory Element One  |

## **Table of Contents**

| Acknowledgements                                                                                                                                                                          | I                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| List of Abbreviations                                                                                                                                                                     | III                      |
| Table of Contents                                                                                                                                                                         | VII                      |
| List of Figures                                                                                                                                                                           | XII                      |
| List of Tables                                                                                                                                                                            | XV                       |
| List of Appendix Figures                                                                                                                                                                  | XVI                      |
| List of Appendix Tables                                                                                                                                                                   | XVII                     |
| Abstract                                                                                                                                                                                  | XVIII                    |
| 1 Introduction                                                                                                                                                                            | 1                        |
|                                                                                                                                                                                           | 5                        |
| 1.1.1 Haematopoiesis in mouse                                                                                                                                                             | 5                        |
| 1.1.1.1Primitive haematopoiesis in mouse1.1.1.2The intermediate wave of mouse haematopoiesis giveserythromyeloid progenitors in the yolk sac1.1.1.3Definitive haematopoiesis in mouse     | 7<br>rise to<br>9<br>9   |
| 1.1.2 The zebrafish as a model for haematopoiesis                                                                                                                                         | 12                       |
| 1.1.3 Haematopoiesis in zebrafish                                                                                                                                                         | 13                       |
| 1.1.3.1Primitive haematopoiesis in zebrafish1.1.3.2Erythromyeloid progenitors arise in the posterior blood(PBI) during the intermediate wave1.1.3.3Definitive haematopoiesis in zebrafish | 13<br>island<br>17<br>20 |
| <b>1.2</b> Non-coding <i>cis</i> -regulatory elements                                                                                                                                     | 25                       |
| 1.2.1 Promoters                                                                                                                                                                           | 25                       |
| 1.2.2 Enhancers                                                                                                                                                                           | 27                       |
| 1.2.3 Insulator                                                                                                                                                                           | 30                       |
| <b>1.3</b> Conserved non-coding elements (CNEs)                                                                                                                                           | 33                       |
| 1.4 c-Myb and its importance during haematopoiesis                                                                                                                                        | 34                       |

| <b>1.5</b> Identification and testing of <i>c-myb</i> promoter-proximal                                                   |
|---------------------------------------------------------------------------------------------------------------------------|
| regulatory sequences43                                                                                                    |
| 1.6 Testing of potential c-myb distal regulatory elements in<br>zebrafish transgenic lines identified CNE1 as a conserved |
|                                                                                                                           |
| 1.7 Identification of H3K4me1 and H3K4me3 sites in the zebrafish genome55                                                 |
| 1.8 CRISPR/Cas9 system as a tool for gene editing58                                                                       |
| 1.9 Background61                                                                                                          |
| 1.10 Aims and objectives63                                                                                                |
| 2 Materials and Methods65                                                                                                 |
|                                                                                                                           |
| 2.1 Materials65                                                                                                           |
| 2.1.1 Buffers and solutions                                                                                               |
| 2.2 Methods68                                                                                                             |
| 2.2.1 Single-cell gene expression profile                                                                                 |
| 2.2.1.1The 10x Genomics Chromium system682.2.1.1.1Preparation, constructing and sequencing of single-cell gene            |
| expression of zebrafish kidney marrow68                                                                                   |
| 2.2.1.2Cell Ranger analysis702.2.1.3Re-analysis of Dinh and colleague' and Grassi colleagues'published data71             |
| 2.2.2 Targeting interest regions of downstream of <i>c-myb</i> gene using CRISPR/Cas9 system                              |
| 2.2.2.1Single guide RNA (sgRNA) design                                                                                    |
| 2.2.3 Establishment of stable human regulatory element one<br>(hRE1) zebrafish transgenic line                            |
| 2.2.3.1 Generation of a GFP reporter construct containing human <i>C</i> - <i>MYB</i> CNE1 81                             |

| 2.2.4 Mol                                                | lecular biology methods88                                                                                                                                           |
|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2.4.1<br>2.2.4.2<br>2.2.4.3<br>hybridisatio<br>2.2.4.4 | Fin clipping of adult zebrafish88<br>Genomic DNA isolation from embryos and fin clip biopsies88<br>gDNA extraction from embryos after whole-mount RNA in situ<br>on |
| 2.2.4.5<br>2.2.4.6<br>2.2.4.7                            | Polymerase chain reaction (PCR)92<br>Agarose gel electrophoresis                                                                                                    |
| 2.2.4.8<br>2.2.4.9<br>2.2.4.10                           | Ligation9:<br>Transformation and Mini/Midi-preparation of plasmid DNA94<br>Restriction enzyme digest                                                                |
| 2.2.4.11<br>2.2.4.12<br>2.2.4.13                         | Measuring DNA and RNA concentration                                                                                                                                 |
| 2.2.4.14<br>2.2.5 Zet                                    | sgRNAs synthesis for Microinjection98<br>orafish methods100                                                                                                         |
| 2.2.5.1<br>2.2.5.2<br>2.2.5.3<br>2.2.5.4<br>2.2.5.4.1    | Maintenance of zebrafish and husbandry                                                                                                                              |
| 2.2.5.4.2                                                | Fluorescence activated cell sorting (FACS)10                                                                                                                        |
| 2.2.5.5<br>2.2.5.6                                       | Microinjection needle preparation108<br>Microinjection                                                                                                              |
| 2.2.6 Ima                                                | aging109                                                                                                                                                            |
| Results.                                                 |                                                                                                                                                                     |

| 3.1                    | Sin                    | gle-cell RNA Sequencing (scRNA-Seq) data suggests                                                                                  |
|------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| that                   | all G                  | FP+ cells isolated from whole kidney marrow (WKM)                                                                                  |
| of a                   | dult 1                 | 「g( <i>c-myb-</i> zRE1:PF5 <i>:egfp</i> ) <sup>qmc85</sup> zebrafish are                                                           |
| neut                   | roph                   | ilic granulocytes110                                                                                                               |
| 3.:                    | L.1                    | Isolation of single GFP <sup>+</sup> cells from the adult WKM of four                                                              |
| Tg                     | ( <i>c-m</i> )         | /b-zRE1:PF5: <i>egfp</i> ) <sup>qmc85</sup> fish110                                                                                |
| 3.:                    | L.2                    | All single GFP <sup>+</sup> kidney marrow cells of Tg( <i>c-myb-</i>                                                               |
| zR                     | E1:PF                  | 5: <i>egfp</i> ) <sup>qmc85</sup> fish express neutrophil genes                                                                    |
| 3.:<br><i>qn</i><br>ma | L.3<br>nc85:<br>aturat | The single-cell RNA Sequencing (scRNA-Seq) analysis of GFP <sup>+</sup> kidney marrow cells reveals distinct neutrophil ion stages |

3

| 3      | .2                   | Ver                   | ification of the DNA sequence of the region                                                                                                               |
|--------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| d      | own                  | stre                  | am of the <i>c-myb</i> gene139                                                                                                                            |
| 3<br>u | .3<br>sing           | Del<br>CR             | etion of zRE1 from the wild-type zebrafish genome<br>ISPR/Cas9142                                                                                         |
| 3      | .4                   | Atte                  | empted CRISPR/Cas9-mediated deletion of three                                                                                                             |
| р      | oter                 | ntial                 | enhancers (PEs) downstream of zebrafish <i>c-myb</i> gene                                                                                                 |
|        |                      | 156                   |                                                                                                                                                           |
| 3      | .5                   | Suc                   | cessful CRISPR/Cas9-mediated deletion of four                                                                                                             |
| р      | oter                 | ntial                 | enhancers downstream of <i>c-myb</i> from the wild-type                                                                                                   |
| Z      | ebra                 | fish                  | genome160                                                                                                                                                 |
| 3      | .6                   | Lyz                   | and c-myb genes expression levels were unaffected in                                                                                                      |
| t      | he co                | omp                   | ound heterozygous <i>c-myb</i> <sup>t25127/qmc193</sup> or <i>c-</i>                                                                                      |
| n      | 1yb <sup>t2</sup>    | 25127/                | <sup>/qmc194</sup> mutant zebrafish embryos175                                                                                                            |
|        | 3.6.<br>com          | 1<br>ipou             | <i>Lyz</i> and <i>c-myb</i> genes expression levels were normal in the nd heterozygous <i>c-myb</i> <sup>t25127/qmc193</sup> mutant zebrafish embryos 181 |
|        | 3.6.<br>unc<br>zeb   | .2<br>hang<br>rafisl  | The expression level <i>of lyz</i> and <i>c-myb</i> genes were ged in the compound heterozygous <i>c-myb</i> <sup>t25127/qmc194</sup> mutant h embryos    |
| 3      | .7                   | Hur                   | man regulatory element one (hRE1) is able to drive                                                                                                        |
| G      | iFP ε                | expr                  | ession in the zebrafish adult kidney189                                                                                                                   |
|        | 3.7.<br>(hR          | .1<br>E1) z           | Establishment of stable human regulatory element one zebrafish transgenic line192                                                                         |
|        | 3.7.<br>PF5<br>cells | .2<br>:egfj<br>s of t | Zebrafish embryos that carry the Tg(c-myb-hRE1-<br>o)qmc195 transgene display GFP reporter gene expression in<br>the caudal haematopoietic tissue         |
|        | 3.7.<br>hae          | .3<br>mato            | The <i>c-myb</i> -hRE1-PF5: <i>egfp</i> expression is retained in adult point poietic cells in the <i>qmc195</i> kidney201                                |
| 4      | Dis                  | scu                   | ssion206                                                                                                                                                  |
|        |                      |                       |                                                                                                                                                           |
| 4      | .1                   | Sun                   | nmary                                                                                                                                                     |
|        |                      |                       |                                                                                                                                                           |

|   | 4.2<br>marr  | Single-cell RNA Sequencing (scRNA-Seq) of whole kidney<br>ow (WKM) of adult zebrafish Tg( <i>c-myb</i> -zRE1:PF5: <i>egfp</i> ) <sup>qmc8!</sup><br>207 |
|---|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 4.3<br>zCNE  | Deletion of zebrafish conserved non-coding element<br>1 and potential enhancers (PEs) by CRISPR/Cas9 system<br>216                                      |
|   | 4.4<br>one ( | Incomplete functional conservation of human regulatory hRE1) in zebrafish transgenic line                                                               |
| 5 | 5 Co         | nclusion235                                                                                                                                             |
| 6 | 6 Ap         | pendices237                                                                                                                                             |
|   | 6.1          | Appendix figures237                                                                                                                                     |
|   | 6.2          | Appendix Tables                                                                                                                                         |
| 7 | ' Re         | ferences                                                                                                                                                |

## **List of Figures**

| Figure 1.1 Adult haematopoietic hierarchy                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 1.2 Embryonic haematopoietic sites in mouse embryos                                                                                                                                |
| Figure 1.3 Timeline of zebrafish haematopoiesis                                                                                                                                           |
| Figure 1.4 Schematic illustration of human neutrophils                                                                                                                                    |
| Figure 1.5 Schematic representation of the effects of <i>cis</i> -regulatory elements: promoters, enhancers and insulators                                                                |
| Figure 1.6 Pathway of C-MYB transcription factor network                                                                                                                                  |
| Figure 1.7 The expression pattern of <i>c-myb</i> during zebrafish embryogenesis                                                                                                          |
| Figure 1.8 PF1-PF6 promoter-proximal elements are able to direct the EGFP expression of <i>c-myb</i> gene in non- haematopoietic tissues                                                  |
| Figure 1.9 Genomic sequence comparisons between vertebrate species identified a number of conserved non-coding elements (CNEs) in the <i>c</i> - <i>myb</i> locus                         |
| Figure 1.10 A map of the putative regulatory elements' fragments used to make the constructs to generate transgenic zebrafish lines                                                       |
| Figure 1.11 zRE1 and mRE1 are able to drive reporter genes expression in the different promoters to haematopoietic cells                                                                  |
| Figure 1.12 Identification of potential enhancers (PEs)                                                                                                                                   |
| Figure 1.13 CRISPR-Cas adaptive immunity in bacteria                                                                                                                                      |
| Figure 2.1 Identification of suitable Cas9 target sites (TSs)                                                                                                                             |
| Figure 2.2 sgRNA design and synthesis                                                                                                                                                     |
| Figure 2.3 Successful cloning of the TS7, 16 and 17 linkers                                                                                                                               |
| Figure 2.4 Amplification of hRE1 and cloning in pGEM-Teasy                                                                                                                                |
| Figure 2.5 Generation of the hRE1-zPF5: <i>egfp</i> reporter transgene – Part 1<br>                                                                                                       |
| Figure 2.6 Generation of the hRE1-PF5: <i>egfp</i> reporter transgene – Part 2<br>                                                                                                        |
| Figure 2.7 Gating strategy for the flow cytometric analysis of adult zebrafish whole kidney marrow (WKM) cells                                                                            |
| Figure 3.1 Isolation of single GFP <sup>+</sup> cells from the adult kidneys of four Tg( $c$ - $myb$ -zRE1:PF5: $egfp$ ) <sup>qmc85</sup> fish114                                         |
| Figure 3.2 Calling cell barcodes118                                                                                                                                                       |
| Figure 3.3 Single-cell RNA Sequencing of zebrafish whole kidney marrow neutrophils of Tg( <i>c-myb</i> -zRE1:PF5: <i>egfp</i> ) <sup>qmc85</sup> identified nine neutrophil cell clusters |

Figure 3.4 t-SNE visualization of single GFP+ kidney marrow cells of Tg(c*myb*-zRE1:PF5:*egfp*)<sup>qmc85</sup> coloured by the number of UMI counts per cell Figure 3.5 Single-cell RNA Sequencing reveals that all GFP<sup>+</sup> cells that were isolated from the kidney marrow of  $Tq(c-myb-zRE1:PF5:eqfp)^{qmc85}$  fish Figure 3.7 MA plots comparing human early neutrophil progenitors (ePreN) Figure 3.8 Comparison of Dinh and colleagues' data with our human Figure 3.9 Up-regulation of the gene expression levels of human orthologues of zebrafish genes of cluster one in comparison of promyelocytes and myelocytes (P/Ms) relative to the segmented neutrophils (SNs)......137 Figure 3.10 Up-regulation of the gene expression levels of human orthologues of zebrafish genes of cluster two in comparison of the segmented neutrophils (SNs) relative to the promyelocytes and myelocytes (P/Ms)......138 Figure 3.11 Verification of the DNA sequence downstream of *c-myb*...141 Figure 3.12 *c-myb* 2&7 sqRNAs successfully produced deletion in the target sites 2 and 7 ......144 Figure 3.13 Germline transmission of the *c-myb* TS2 and TS7 zRE1 deletion allele......148 Figure 3.14 Identify homozygous mutants in F2 embryos ......150 Figure 3.15 Identification of F2 homozygous *qmc193* mutants' adult fish Figure 3.16 Lyz and c-myb expression were maintained in 34-36 hpf and 4 dpf *qmc193/qmc193* embryos ......155 Figure 3.17 *c-myb* 16&2 sqRNAs successfully produced deletion in the target sites 16 and 2 .....158 Figure 3.18 Successful CRISPR/Cas9-mediated deletion of three putative enhancer elements as well as zRE1 downstream of the *c-myb* gene....162 Figure 3.19 Establishment of a zebrafish line that carries the deletion allele amc194 that lacks three potential enhancer elements as well as zRE1 downstream of *c-myb* ......166 Figure 3.20 Identification of homozygous *qmc194* mutant embryos in the Figure 3.21 Identification of adult homozygous *qmc194* carriers in the progeny of two *qmc194* heterozygous fish......170 Figure 3.22 Lyz and c-myb expression are unaffected in 34-36 hpf and 4 dpf *qmc194/qmc194* embryos, respectively......174

| Figure 3.23 The expression of $lyz$ and $c$ - $myb$ are missing in the $c$ - $myb^{t25127/t25127}$ embryos                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 3.24 Reduced /or loss of the expression of some genes in the <i>c</i> - <i>myb</i> <sup>t25127/t25127</sup>                                                                                        |
| Figure 3.25 <i>Lyz</i> expression was maintained in 34-36 hpf in <i>c-myb</i> <sup>t25127/qmc193</sup> embryos                                                                                            |
| Figure 3.26 <i>c-myb</i> expression was maintained in 3 dpf <i>c-myb</i> <sup>t25127/qmc193</sup> embryos                                                                                                 |
| Figure 3.27 The expression level of $lyz$ in 34-36 hpf was not changed in the compound heterozygote of $c$ - $myb$ <sup>t25127/qmc194</sup> embryos                                                       |
| Figure 3.28 The expression level of <i>c-myb</i> at 4 dpf was not altered in the compound heterozygote of $c$ - $myb$ <sup>t25127/qmc194</sup> embryos                                                    |
| Figure 3.29 Localisation of the conserved non-coding element one downstream of human <i>C-MYB</i> gene191                                                                                                 |
| Figure 3.30 Establishment of the stable human regulatory element one (hRE1) zebrafish transgenic line by injecting the Tol2 pJHE1- <i>egf</i> p193                                                        |
| Figure 3.31 Expression of EGFP reporter gene in in the caudal haematopoietic tissue (CHT) of 2-day old embryos of Tg( <i>c-myb</i> -hRE1-PF5: <i>egfp</i> ) <sup>qmc195</sup> transgene                   |
| Figure 3.32 Expression of <i>GFP</i> mRNA in CHT of Tg( <i>c-myb</i> -hRE1-PF5: <i>egfp</i> ) <sup>qmc195</sup> transgenic zebrafish embryos. (A-D)                                                       |
| Figure 3.33 Flow cytometric analysis show that Tg( <i>c-myb</i> -hRE1:PF5: <i>egfp</i> ) <sup>qmc195</sup> transgenic fish carry GFP+ haematopoietic progenitor and myelomonocytic cells in kidney marrow |
| Figure 4.1 Single-cell RNA Sequencing of Tg( <i>c-myb-</i> zRE1:PF5: <i>egfp</i> ) <sup>qmc85</sup> of zebrafish kidney marrow reveals that cluster one cells express stem or early progenitor genes      |
| Figure 4.2 Putative binding sites of transcription factors on conserved non-<br>coding element one (CNE1)232                                                                                              |
| Figure 4.3 Putative binding sites of transcription factors on individual sequences of zebrafish, mouse and human conserved non-coding element one (CNE1)                                                  |
| Figure 4.4 Localisation of the sites of DNase1 HS within the conserved non-<br>coding element one downstream of human <i>c</i> - <i>MYB</i> gene234                                                       |

## List of Tables

| Table 1.1 A list of potential <i>c-myb</i> downstream enhancers (PEs) identified as H3K4me1 binding sites in chromatin isolated from 24 hpf zebrafish embryos in a CHIP-Seq experiment published by Aday et al., 2011 57 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 2.1 List of buffers and solutions                                                                                                                                                                                  |
| Table 2.2 Sample QC  70                                                                                                                                                                                                  |
| Table 2.3 Library Preparation QC  70                                                                                                                                                                                     |
| Table 2.4 List of the sequences and oligonucleotides used for targets site                                                                                                                                               |
| Table 2.5 List of primers used for genotyping of C-MYB hRE1     81                                                                                                                                                       |
| Table 2.6 List of primers used for genotyping and sequencing of <i>c-myb</i> mutants                                                                                                                                     |
| Table 2.7 PCR primers of <i>c-myb</i> map and locations                                                                                                                                                                  |
| Table 2.8 PCR thermocycling conditions  92                                                                                                                                                                               |
| Table 2.9 PCR reaction volumes                                                                                                                                                                                           |
| Table 2.10 The general ligation reaction  94                                                                                                                                                                             |
| Table 2.11 The general restriction digest reaction  95                                                                                                                                                                   |
| Table 2.12 The ligation mix to insert the linker into the pDR274 vector 97                                                                                                                                               |
| Table 2.13 The Mixture reaction to make in vitro transcription                                                                                                                                                           |
| Table 2.14 Incubation times in Proteinase K of embryos varied with the ageof embryos102                                                                                                                                  |
| Table 2.15 List of WISH probes used in this project103                                                                                                                                                                   |
| Table 3.1 Total transcript (UMI) counts in the entire cohort of 2246 GFP <sup>+</sup> kidney marrow cells isolated from adult $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ fish                                                     |
| Table 3.2 Identified Tg( <i>c-myb</i> -hRE1-PF5: <i>egfp</i> ) transgenic founders195                                                                                                                                    |

## List of Appendix Figures

Appendix figure 6. 1 A sequence of the human *C-MYB* locus. Orange bars represent the PCR product. Grey boxes present the polymorphisms....237 Appendix figure 6.2 Single-cell RNA Sequencing of Tg(c-mybzRE1:PF5:*eqfp*)<sup>qmc85</sup> of zebrafish kidney marrow express neutrophil genes Appendix figure 6.3 A sequence of the zebrafish *c-myb* locus. Orange bars represent the PCR products. Grey boxes present the polymorphisms. .239 Appendix figure 6. 4 lyz expression was maintained in 34-36 hpf gmc193 Appendix figure 6.5 *c-myb* expression was maintained in anterior primitive myeloid and posterior primitive erythroid progenitors of all 15 ss gmc193 Appendix figure 6. 6 *c-myb* expression was maintained in 30 hpf *amc193* Appendix figure 6. 7 *c-myb* expression was maintained in 2 dpf *amc193* Appendix figure 6.8 *c-myb* expression was not altered in 4 dpf *amc193* Appendix figure 6.9 lyz expression is unaffected in 34-36 hpf gmc194 Appendix figure 6.10 *c-myb* expression was similar in all 15 ss embryos Appendix figure 6.11 The level of *c-myb* expression was comparable in all 30 hpf embryos derived from an incross of *amc194* heterozygous carriers Appendix figure 6.12 The level of *c-myb* mRNA was similar in all 2 dpf embryos derived from an incross of *qmc194* heterozygous carriers ....255 Appendix figure 6.13 *c-myb* expression is unaffected in 4 dpf *qmc194* Appendix figure 6.14 *c-myb* expression was unaffected in 15 ss *t25127* Appendix figure 6.15 *c-myb* expression was maintained in 30 hpf *t25127* Appendix figure 6.16 *c-myb* expression was maintained in 2 dpf *t25127* Appendix figure 6. 17 Lyz expression was maintained in 34-36 hpf in c-Appendix figure 6.18 *c-myb* expression was maintained in 3 dpf in *c*-Appendix figure 6.19 The expression level of lyz in 34-36 hpf was not changed in the compound heterozygote of c-mvb<sup>t25127/qmc194</sup> embrvos .262

Appendix figure 6.20 The expression level of c-myb in 4 dpf was not altered in the compound heterozygote of c-myb<sup>t25127/qmc194</sup> embryos......263

Appendix figure 6.21 Identification of Tg(*c-myb*-hRE1-PF5:*egfp*) transgenic founders......264

## List of Appendix Tables

Appendix table 6.1 List of the differently expressed (p<0.05) genes that Appendix table 6.2 List of the differently expressed (p < 0.05) genes that Appendix table 6.3 The list of human orthologues of cluster one-specific Appendix table 6.4 The list of human orthologues of cluster two-specific Appendix table 6.5 The list of the human orthologues of cluster one-specific zebrafish genes that were found within the Dinh et al dataset in SeqMonk. Appendix table 6.6 List of human orthologues of cluster one-specific zebrafish genes that were significantly upregulated in human ePreNs Appendix table 6.7 The list of the human orthologues of cluster two-specific zebrafish genes that were found within the Dinh et al dataset in SeqMonk. Appendix table 6.8 List of human orthologues of cluster two-specific zebrafish genes that were significantly upregulated in human Neuts relative to ePreNs in the Dinh et al. dataset......291

Appendix table 6.9 List of transcription factors (TFs) harbouring conserved binding sites in conserved non-coding element one (CNE1)......293

## Abstract

Haematopoiesis is the process by which all blood cell types form in a vertebrate organism. c-myb is an essential transcription factor that is widely expressed in haematopoietic stem and progenitor cells and is known to induce leukaemia when overexpressed. During normal haematopoiesis, it plays important roles during stem cell formation, self-renewal, maintenance, proliferation and differentiation of HSCs/ progenitors. To gain a deeper insight into the transcriptional regulation of this key transcription factor, it is important to learn more about the cis-regulatory DNA elements that control its expression. Cis-regulatory DNA elements, like promoters and enhancers, are generally less conserved than the corresponding coding sequences. Nevertheless, long-range genomic DNA sequence alignments have identified a conserved non-coding DNA element (CNE1) downstream of the *c-myb* gene that is remarkably conserved from fish to man. Testing the zebrafish regulatory element (zRE1) containing zebrafish conserved non-coding element (zCNE1) and its mouse equivalent mRE1 in stable transgenic zebrafish lines, named gmc85 and gmc156, has revealed that both are sufficient to direct zebrafish *c-myb* promoter activity to haematopoietic cells. Both lines display GFP expression in blood cells of the larval caudal haematopoietic tissue and the adult kidney marrow (KM). In this study, single cell RNA-sequencing (scRNA-Seq) was used to determine the gene expression profile and, thereby, the nature of the GFP+ KM cells in the *qmc85* line. The scRNA-Seq data revealed that all of the cells expressed lysozyme, a marker for neutrophilic granulocytes. Gene transcripts that are usually associated with other blood cell lineages were not found at significant levels. Instead, the cells expressed numerous additional neutrophil genes at levels that correlated with those of the lysozyme mRNA. Further analysis shows that the neutrophils were at different maturation stages. To investigate whether zRE1 containing zCNE1 and three potential cisregulatory elements (PEs) are necessary for endogenous *c-myb* expression, CRISPR/Cas9 technology was used to delete the elements from the zebrafish *c-myb* locus. Successful deletion of zRE1 alone and in combination with all three PEs yielded the mutant alleles qmc193 and qmc194, respectively. Embryos homozygous for the two mutant alleles did not display an obvious reduction in *c-myb* expression in blood cells of the CHT, and neither did embryos that were compound heterozygous for either *qmc193* or *qmc194* and the previously published *c-myb* null allele *t25127*. Larvae that are homozygous for *qmc193* and *qmc194* were viable and could be raised to adulthood. These data suggest that zCNE1, though sufficient to direct *c-myb* promoter activity to haematopoietic cells (neutrophil lineage) but is not essential for *c-myb* expression in those cells. Testing the human hRE1 element containing hCNE1 in the stable transgenic line qmc195 revealed that hCNE1 is able to

direct transgene expression in embryonic haematopoietic progenitors and in the adult kidney marrow.

## **1** Introduction

Haematopoiesis is the process of blood cell generation that is maintained by haematopoietic stem cells (HSCs). HSCs are immature cells that can self-renew and are multipotent. HSCs give rise to all lineage-committed haematopoietic progenitors with enormous proliferative potential (Drissen et al., 2016) (Figure 1.1). In mammals, HSCs reside in the bone marrow of adults, maintaining the adult haematopoietic system throughout life. Because of these multipotency and self-renewal characteristics of HSCs, they can be used to treat blood diseases. They can be transplanted into the patient after chemotherapy (used to eliminate abnormal cells) to restore blood formation after the treatment (Birbrair and Frenette, 2016). Clinically, HSCs are important in transplantation procedures used for the treatment of blood disorders or cancers such as leukaemia and lymphoma (Laurenti and Göttgens, 2018). Currently, HSCs used for transplantation are obtained from bone marrow, peripheral blood after mobilisation, and the umbilical cord. In an allogeneic stem cell transplant, the donor stem cells produce immune cells, which helps destroy any leukaemia cells in the recipient after chemotherapy treatment. This is called the graftversus-cancer effect. Despite the importance of HSC in medicine, graft versus host disease, a condition resulting from an allogeneic transplant, has remained a significant problem complication of haematopoietic stem cells transplantation (reviewed in (Jeevani,

2011)). Some of these complications could be resolved by reprogramming somatic cells to induced pluripotent stem cells (iPSCs) through modulation of the expression of some TFs. The derived iPSCs could be transfused back to the patient for the treatment process (Alsayegh et al., 2019).

In vertebrates, the formation of HSCs requires the coordinated action of many transcription factors (TFs) (Jagannathan-Bogdan and Zon, 2013). c-Myb is an essential transcription factor involved in the formation of HSCs during development and is expressed in HSCs and progenitors (Bengtsen et al., 2015, Lorenzo et al., 2011). Expression of the *c-myb* gene is tightly regulated by the interaction between TFs with *c-myb's cis*-regulatory elements (CREs) (Zhang et al., 2016). In general, CREs include promoter and enhancer elements that are typically located in non-coding genomic sequences (Andersson and Sandelin, 2019, Pennacchio et al., 2013). Identifying the CREs and their function is fundamental and will help us to understand the regulation of *c-myb* in HSCs during embryonic development. The formation of HSCs was studied by analysing the regulation of the *cmyb* gene in zebrafish embryos during haematopoiesis. In vertebrates, numerous CRE sequences have been conserved during evolution and are often referred to as conserved non-coding elements (CNEs) (Nelson and Wardle, 2013). Recently, we have studied the role of the distal conserved non-coding element one (CNE1) downstream of *c-myb* that was previously identified in our

lab. This CNE1 has been tested in combination with the *c-myb* promoter and an enhanced green fluorescent protein (EGFP) reporter gene in transgenic zebrafish lines. In zebrafish, CNE1 was able to drive reporter gene expression in sites of definitive haematopoiesis, such as the caudal haematopoietic tissue (CHT), kidney and thymus (Hsu, 2010).



#### Figure 1.1 Adult haematopoietic hierarchy

In this model, HSCs give rise to multipotent progenitors (MPPs), which differentiate into either common myeloid progenitors (CMPs) or lymphoid-myeloid primed progenitors (LMPPs). CMPs placed upstream of erythroid-megakaryocyte-primed multipotent progenitors (EMkMPPs), and pre-neutrophil-monocytes (preNMs). EMkMPP can give rise to megakaryocyte-erythrocyte lineage (MegE) that can differentiate into erythrocytes and platelets or eosinophil-mast cell progenitors (EoMPs) that can differentiate into basophil/mast cells and eosinophils. LMPPs placed upstream of common lymphoid progenitors (CLPs) and preNMs. The CLPs can give rise to B-cells, T-cells and natural killer (NK) cells. The preNMs can differentiate into neutrophil-monocyte progenitors (NMPs) which can give rise to neutrophils and macrophages (Image from (Drissen et al., 2016)).

## **1.1 Haematopoiesis**

Haematopoiesis is the process that forms all types of blood cells. In vertebrates, it is an evolutionarily conserved process through which blood cells are created and maintained throughout life. It begins during embryogenesis and continues throughout the lifetime of an organism. This section will focus on the different waves of haematopoiesis in the mouse and the zebrafish.

#### 1.1.1 Haematopoiesis in mouse

Haematopoiesis takes place in various anatomical sites that change spatially and temporally in vertebrates. Haematopoiesis is conserved across all vertebrates with only minor differences. In the embryo, the mesodermal germ layer is responsible for producing the HSCs that give rise to the adult haematopoietic system. In mammalian embryos, haematopoiesis occurs by sequential events that originates extra-embryonically. Subsequently, the aorta-gonadmesonephros (AGM) region is the site where intra-embryonic haematopoiesis occurs. Here, the earliest HSCs emerge. HSCs subsequently migrate to the foetal liver (FL) where they remain until birth. Around the time of birth, HSCs seed the bone marrow (BM), which is the main niche for adult HSCs throughout life (Figure 1.2) (Dzierzak and Medvinsky, 1995, Medvinsky and Dzierzak, 1996, de Bruijn et al., 2000a, Frame et al., 2013). In mammalian embryogenesis, haematopoiesis is divided into three waves: the primitive wave, the intermediate wave and the definitive wave.



#### Figure 1.2 Embryonic haematopoietic sites in mouse embryos

The primitive haematopoietic cells are found extra-embryonically before E8.0 in the yolk sac blood islands. After E9.0, pre-definitive erythromyeloid progenitors arise and seed the foetal liver from E9.75 onwards. Cells from the HSC lineage are generated in the AGM region and also colonise the foetal liver where all the progenitors develop and become mature. Finally, at E16.5, the bone marrow is colonised by HSCs and becomes the main haematopoietic niche throughout adult life (Image from (Costa et al., 2012)).

#### 1.1.1.1 Primitive haematopoiesis in mouse

The primitive wave is the initial and transitory wave of haematopoiesis; it is rapidly replaced by adult-type haematopoiesis that is called definitive. In the mouse, it begins at embryonic day 7 (E7.0) and gives rise to primitive erythrocytes and some of the myeloid cells. Primitive erythrocytes contain haemoglobin and are required for the immediate supply of oxygen, which is needed for rapid development (Orkin and Zon, 2008a).

During mouse development, the first primitive haematopoietic cells arise from the extra-embryonic YS (Yamane, 2018). This consists of two layers of cells, the visceral endoderm and the extra-embryonic mesoderm. The latter gives rise to the endothelium and the blood cells of the YS (Silver and Palis, 1997). In sites of primitive haematopoiesis and based on the emergence of the close relationship between haematopoietic and endothelial cells in the mouse foetus, it is believed that the blood and endothelial lineages derive from a common bipotential progenitor known as the haemangioblast. During gastrulation, haemangioblasts were first detected at the mid-streak stage then peaked in number during the neural plate stage (Huber et al., 2004). YS-derived mesoderm cells that are haemangioblasts and have the ability to give rise to transient haematopoietic cells and endothelial cells (Fraser and Baron, 2009, Gritz and Hirschi, 2016). These common progenitors may also produce smooth muscle cells (Ema et al., 2003). Molecular

analysis of *in vitro* blast colony-forming cells (BL-CFCs) derived from E7.0-7.5 mouse embryo indicates that haemangioblasts express genes related to haematopoiesis such as Scl, Gata1 and BH1 globin and vascular development genes including Flk-1 and VEcadherin (Huber et al., 2004). At E7.5, haemangioblasts begin to differentiate into primitive haematopoietic cells. These cells can give rise to erythrocytes, macrophages and megakaryocytes. In mice, the levels of Gata1 and Pu.1 (now known as Spi1 in mouse) transcription factors are important for controlling the primitive erythroid or myeloid cell fates (Cantor and Orkin, 2002). Between E8.0 and E9.0, the blood island in the YS contains clusters of erythroid cells, which are known as primitive erythrocytes (primitive red blood cells (prRBCs)) and are surrounded by endothelial cells. These prRBCs are naturally large in size, are nucleated and contain the embryonic type of haemoglobin and establish an oxygen supply in the developing foetus (Kingsley et al., 2004). At the same time, blood vessels form and become connected, allowing the haematopoietic progenitor cells to enter the primitive circulation. At E9.5, and in addition to the erythroid cells, megakaryocytes and macrophages have been observed in the YS. Macrophages can form the microglial precursors, which then move to the developing central nervous system. None of these progenitors is pluripotent and loses their self-renewal (Tober et al., 2006, Palis et al., 1999).

# **1.1.1.2** The intermediate wave of mouse haematopoiesis gives rise to erythromyeloid progenitors in the yolk sac

The intermediate wave is a transient wave of haematopoiesis that is less characterised but clearly distinct and precedes the start of the definitive wave. It occurs in the YS and leads to the generation of erythromyeloid progenitors (EMPs) (Ferkowicz et al., 2003, Palis et al., 1999). In the yolk sac, EMPs are developed, giving rise to foetal erythrocytes, tissue-resident macrophages, megakaryocytes and granulocytes and can stay around for longer than E16.5 (Palis et al., 1999, Perdiguero et al., 2015, Soares-da-Silva et al., 2021). At E9, a population of cells isolated from the yolk sacs of mice lacking circulation were able to give rise to a subset of lymphoid B-cells upon transplantation (Yoshimoto et al., 2011). At around the time of E9.5, EMPs seed the FL, meaning that they can be present in the embryo before the definitive haematopoietic stem cells (dHSCs) and progenitors emerge. Unlike dHSCs, the EMPs are not capable of selfrenewal and long-term repopulation (Bertrand et al., 2007, Chen et al., 2011, McGrath et al., 2011).

#### 1.1.1.3 Definitive haematopoiesis in mouse

Definitive haematopoiesis is the third wave of haematopoiesis in the mouse embryo. It is the wave that forms long-term haematopoietic stem cells (LT-HSC). In this wave, the first HSCs are linked with the presence of cell clusters in the aorta, umbilical artery, and vitelline artery in mouse embryos (de Bruijn et al., 2000b). The definitive

HSCs produced in AGM at E10.0 were examined using the long-term repopulating activity (LTRA) assay (Medvinsky and Dzierzak, 1996). The definitive HSCs were also produced from both the dorsal aorta and its surrounding mesenchyme as well at the urogenital ridge from dissected AGM at E10 and E11, respectively, by organ culture and transplantation experiments (de Bruijn et al., 2000b). At E10.0 to E10.5, HSC progenitors appear in the ventral wall of the dorsal aorta (vDA) in the AGM region (Taoudi and Medvinsky, 2007). The vDA is the site of development and emergence of HSCs in all other vertebrates studied so far (Medvinsky et al., 2011, Sugiyama et al., 2011). HSCs are derived from the endothelial cells that line the vDA via a process known as endothelial to haematopoietic transition (EHT) (Ottersbach, 2019). These endothelial cells are called haemogenic endothelium cells (HECs) (Boisset et al., 2010, Jaffredo et al., 1998). HECs have the ability to give rise to HSCs during a process that is highly conserved among vertebrates (Carroll and North, 2014, Sturgeon et al., 2013). Therefore, during the definitive wave, these cells are responsible for the formation of all blood cell types.

After the HSC progenitors are generated in the AGM region, they leave the vDA and enter the dorsal aorta before joining the circulation. They subsequently migrate to colonise the FL. Several studies suggest that the FL does not produce haematopoietic cells itself but is colonised by EMPs and HSCs that come from both YS and

AGM between E9.0 and E11.0 (Cumano and Godin, 2007, Sugiyama et al., 2011). At around the time of E13.5, the number of HSC increases dramatically in the FL, and the HSCs mature and differentiate into various haematopoietic cell types. Pu.1 is a factor belonging to the ETS family of transcription factors that regulates the maintenance and development of HSCs in the FL (Rybtsov et al., 2016). After E16.5 and before birth, HSCs progressively migrate to the BM, the main adult haematopoietic organ, where they seed (Mazo et al., 2011). Runx1 knockout mice fail to generate the definitive erythroid, myeloid and lymphoid cells demonstrating the importance of *Runx1* in definitive haematopoiesis (Okuda et al., 1996, Wang et al., 1996). Runx1 transcription factor (also known as AML1, Cbfa2, or Pebp2a) is absolutely essential for definitive haematopoiesis in the mouse (Yzaguirre et al., 2017). Cells derived from AGM of the Runx1-null embryos failed to generate definitive HSCs in irradiated mice after transplantation, suggesting the importance of Runx1 for functional HSCs (Cai et al., 2000). Runx1 is essential master regulator of endothelial-to-hematopoietic an transition (ETH) (Chen et al., 2009). The expression of Runx1 was observed in the endothelial cells at all sites of haematopoietic cluster formation, confirming that it is required for the ETH process (North et al., 1999, Yzaguirre et al., 2017). It has been found that the mouse embryos with a homozygous mutation in *Runx1* had normal primitive erythrocytes and endothelial cells, which were derived from the blood islands of the yolk sac but were deficient in foetal liver haematopoiesis and died at around E12.5 (Okuda et al., 1996). Notch1 signaling plays an essential role in the development of definitive hematopoietic cells. In mice, Notch1-null cells fail to contribute to long-term definitive haematopoiesis (Hadland et al., 2004). In addition, the c-Myb transcription factor is also required for definitive haematopoiesis. *c-Myb*-null mouse embryos suffer from severe anaemia and die due to impaired definitive haematopoiesis, however primitive haematopoiesis is normal in these mouse embryos (Mucenski et al., 1991).

#### **1.1.2** The zebrafish as a model for haematopoiesis

During the past 20 years, the zebrafish system has served as a powerful model for research into vertebrate haematopoiesis. Compared to other vertebrate models, the zebrafish model has several advantageous characteristics, it displays external development, has a short life cycle, and is amenable to genetic manipulation. In addition, large numbers of embryonic offspring can make phenotype-based, forward genetics studies possible (de Jong and Zon, 2005). Another advantage of zebrafish is that their embryos are transparent, making visualisation of the early stages of vivo development possible. Furthermore, the in external development of zebrafish facilitates the simple injection of enzymes, nucleotides and morpholinos into one-cell-stage embryos enabling its use in genetic experiments. Most importantly, they are similar to

other "higher-order" vertebrates in cellular structure, signalling and physiology. In addition, many of the gene functions are conserved in mammals, making the zebrafish an ideal model for biological research. Understanding the functionality of the hematopoietic system in zebrafish will also help to improve the understanding of the human hematopoietic system and the functions of particular genes in human blood diseases (Berghmans et al., 2005, Gore et al., 2018, Shafizadeh and Paw, 2004). New knowledge obtained from the zebrafish can provide insights that are also applicable to mice and humans. For example, the generation of HSC progenitors is a reasonably conserved process analogous in fish and mammals (Veldman and Lin, 2008).

#### 1.1.3 Haematopoiesis in zebrafish

During zebrafish embryogenesis, as in other vertebrates, haematopoiesis occurs in three waves from the mesodermal germ layer with shifting sites, the primitive, intermediate and the definitive waves each of which will be explained in this section (Figure 1.3). However, unlike in the mouse, all the waves take place intraembryonically in zebrafish.

#### **1.1.3.1** Primitive haematopoiesis in zebrafish

In zebrafish, primitive haematopoiesis is the first wave of blood development and starts at 10 hours post-fertilisation (hpf) (Carroll and North, 2014). The generation of HSCs requires the processes from the gastrulation stage when the three germ layers (ectoderm, mesoderm and endoderm) are formed at 5 hpf. In particular, during the segmentation period, the ventral lateral mesoderm produces bipotent haemangioblasts.

Within the ventral lateral mesoderm, the anterior lateral mesoderm (ALM) is the predominant site of primitive myelopoiesis, whereas the posterior lateral mesoderm (PLM) is the major site of the primitive erythroid cell (primitive red blood cells (prRBCs) development in the embryo (Paik and Zon, 2010). In addition, whereas the angioblasts of the ALM produce the head vasculature, those of the PLM form the trunk and tail vessels, including the dorsal aorta (DA) and the axial vein, which are also called the posterior cardinal vein (PCV) (Gering et al., 1998, Gore et al., 2012). Around the 2-somite stage (10 hpf), haemangioblasts are identified as cells that express several genes characteristic for haematopoietic cells (such as scl, Imo2, gata2) and vascular cells (for example, *fli1* and *flk1*) and can be detected in both the ALM and the PLM (Brown and Wittwer, 2000, Chen and Zon, 2009, Davidson and Zon, 2004, Patterson et al., 2007). The transcription factor *scl* is expressed in primitive haematopoietic cells and is required and sufficient to drive blood cell development by activating the expression of myeloid genes such as *pu.1* in the ALM as well as erythroid genes such as *gata1* in the PLM. The loss of both primitive and definitive hematopoietic cell lineages has been found in *scl* morphants in the zebrafish embryos (Dooley et al., 2005). It has been shown that the over-expression of *scl* in zebrafish leads to an increase in the number of haematopoietic and endothelial cells (Gering et al., 1998). The expression of *scl* is reduced in the zebrafish *cloche* mutant, which defects both blood and endothelial cells (Liao et al., 1998, Stainier et al., 1995). A study in *cloche* indicates that transcription factor Npas4 regulates the early stage of endothelial and haematopoietic progenitor differentiation (Reischauer et al., 2016).

At the 4-somite stage (11 hpf), within the ALM, the formation of either myeloid cells or endothelial (vascular) cells have been identified by the expression of *pu.1* and *flk-1*, respectively (Bennett et al., 2001, Lieschke et al., 2002). At the 6-somite stage (12 hpf), the cells with myelopoietic ability can be found as the pu.1 expressing cells emerge in the rostral lateral plate mesoderm (RLPM) of the ALM (Lieschke et al., 2002). At around 14-somite stage (16 hpf), the pu.1 + cells display medial migration around the yolk sac then gather at the midline between the eyes and above the developing heart in a region known as the rostral blood island (RBI) (Bennett et al., 2001, Paik and Zon, 2010). In the RBI, embryonic myelopoiesis in zebrafish occurs, and the myeloid progenitors then differentiate to give rise to either macrophages or neutrophils (Le Guyader et al., 2008). The level of *pu.1* can determine the choice of macrophage or neutrophil lineage. A high level of *pu.1* has been indicated to favour macrophage differentiation over neutrophil
differentiation. In contrast, the low level of *pu.1* is sufficient and essential for neutrophil development (Jin et al., 2012). During neutrophil development in zebrafish, runx1 regulates embryonic myeloid fate decisions by promoting granulocytic over macrophage lineage. Runx1 binds to *pu.1* promoter and suppresses *pu.1* expression (Jin et al., 2012). At around 18 hpf, once at the midline, myeloid cell differentiation begins. The myeloid progenitor cells start to express *I-plastin* in macrophages and *mpx* (myeloperoxidase) in granulocytes (neutrophil committed cells) (Galloway et al., 2005, Lieschke et al., 2001). Jin and colleagues demonstrated that the *cebp1* (CCAAT/enhancer-binding protein 1) gene can be detected at 18 hpf and is the earliest neutrophil marker in the RBI. It was also found that the expression of *cebp1* significantly preceded that of *lyz* (lysozyme C encodes a primary and secondary granule protein in granulocytes) and mpx, are considered to be neutrophil specific markers in zebrafish (Jin et al., 2012). The transgenic reporter lines for the mpx (mpx:GFP) (Renshaw et al., 2006) and lyz (Lyz:dsRed) (Hall et al., 2007) marker can be used to study the neutrophils and their behaviour during inflammation. Upon initiation of embryonic circulation, the primitive myeloid cells enter the circulation and later are distributed throughout the zebrafish embryonic tissues (Hall et al., 2007).

In the PLM, the haemangioblasts that give rise to endothelial and erythroid cells can be identified by the expression of *scl*. In the PLM,

at the 6-somite stage (12 hpf), the emergence of the erythrocyte is marked by the expression of *qata1* (Galloway *et al.*, 2005). At the 10-somite stage (14 hpf), the erythroid progenitors and endothelial progenitors of the PLM begin to migrate medially to the midline between the notochord, the endoderm and the somites to form the intermediate cell mass (ICM) in the trunk and the posterior blood island (PBI) in the tail region of the zebrafish embryo (Paik and Zon, 2010). Moreover, between 10 and 20 somites stage, *pu.1* can be detected in the ICM blood cells which then express *mpx* and *l-plastin* as granulocyte and macrophage markers, respectively (Bennett et al., 2001). At 22 hpf, the onset of heart contractions occurs. By 24 hpf, the ICM gives rise to the erythroid cells, the dorsal aorta and the posterior cardinal vein. While in circulation, *gata1*<sup>+</sup> cells continue to mature, expressing genes involved in erythrocyte development, such as  $\beta$ -globin (Brownlie et al., 2003). The primitive erythrocytes enter into the circulation between 24 and 26 hpf, after the cardinal vein is formed.

# **1.1.3.2** Erythromyeloid progenitors arise in the posterior blood island (PBI) during the intermediate wave

During the second wave in the zebrafish embryo and similar to the mouse embryo, haematopoiesis shifts to a transient wave that gives rise to a population of erythromyeloid progenitors (EMPs) after the initiation of circulation. This wave occurs in the PBI, a posterior extension of the ICM (Bertrand et al., 2007). In the PBI, the EMPs have erythroid and myeloid differentiation potential but lack lymphoid potential. The EMPs arise before HSC emerge in the AGM and, unlike the HSCs, lack the capacity for self-renewal (Ciau-Uitz et al., 2014, Jin et al., 2007). The EMPs fate is controlled by cross-antagonism between transcription factors: Gata1, which is essential for erythroid differentiation and Pu.1, which is required for the differentiation of myeloid cells (Rhodes et al., 2005). However, while the transient population of EMPs might give rise to a fraction of embryonic myeloid cells, the EMPs do not colonise the thymus and populate the kidney marrow (KM) (Carroll and North, 2014).



#### Figure 1.3 Timeline of zebrafish haematopoiesis

The development of blood cells of the primitive wave starts at 10 hpf when prRBCs emerge in the posterior lateral mesoderm (PLM), and the macrophage and neutrophil progenitors emerge in the anterior lateral mesoderm (ALM) (orange). By 14 hpf, all of the PLM cells migrate to the intermediate cell mass (ICM) (yellow). At 24 hpf, after circulation begins, haematopoiesis moves temporarily to the posterior blood island (PBI) (purple) where the erythroid-myeloid progenitors (EMPs) emerge. The definitive wave begins in the aorta-gonad-mesonephros (AGM) (light blue) at 30 hpf, where haemogenic endothelial cell (HEC) transition occurs. By 3 days post fertilisation (dpf), haematopoietic stem cells (HSCs) migrate to the caudal haematopoietic tissue (CHT) (green) and thymus (grey) to differentiate. By 4 dpf, cells migrate to the kidney (red).

### 1.1.3.3 Definitive haematopoiesis in zebrafish

In the zebrafish, definitive haematopoiesis begins at approximately 30 hpf, which includes the generation of definitive haematopoietic stem cells (dHSCs) that maintain the blood system throughout life (Kissa et al., 2008). In the AGM region of the zebrafish embryo, this wave starts when haemogenic endothelial cells (HECs) in the ventral wall of the dorsal aorta (vDA) undergo a runx1 transcription factordependent endothelial mesenchymal transition as to thev differentiate into haematopoietic cells, through a process known as endothelial to haematopoietic transition (EHT) (Ciau-Uitz et al., 2014, Moore et al., 2018). During this transition, the endothelial cells change their shape from a spindle (long and flat) to a rounded form. These cells leave the lining of the vDA and enter the underlying mesenchyme (sub-aortic space) before migrating into the axial vein known as the posterior cardinal vein (PCV) (Kissa and Herbomel, 2010, Kissa et al., 2008). During this process, these cells are identified as HSCs and are able to differentiate into all the blood cell lineages, including the lymphoid lineage (Jagannathan-Bogdan and Zon, 2013). The process of dHSCs emerging from HECs (a common precursor of definitive haematopoietic cells) in the ventral wall of the dorsal aorta in AGM region is equivalent to the other vertebrates (Chen et al., 2011, Gordon-Keylock et al., 2013). Transcription factors Runx1 c-myb associated with definitive and are haematopoiesis. The runx1 + cells sit in the vDA. It has been shown that the *c*-*myb* expression is probably seen before the cells leave the vessel (Gering and Patient, 2005). In zebrafish, it has been demonstrated that in *runx1* morphant embryo, there is a complete absence of the definitive haematopoietic cells (Kalev-Zylinska et al., 2002). The *runx1* lies downstream of Notch signalling network. In zebrafish *mindbomb* (mib) mutant, a deficiency in the Notch signalling pathway leads to a defect in definitive haematopoiesis but do not affect primitive haematopoiesis (Itoh et al., 2003). In addition, in runx1 morphant zebrafish embryo, it has been found that the loss of *runx1* expression causes a loss of *c-myb* expression in definitive progenitors (Gering and Patient, 2005). Studies have also demonstrated that the expression of both *runx1* and *c-myb* is an important regulator of HSC formation in the AGM region of other vertebrates as well (Bertrand et al., 2010, North et al., 2009). By 32-48 hpf, the first HSC progenitors join the circulation via the dorsal wall of the cardinal vein (CV) in the zebrafish. Through the circulation, they reach the tail mesenchyme, which then becomes the larval definitive haematopoietic site, the caudal haematopoietic tissue (CHT). The function of this tissue is likely to be similar to the FL in mammalian embryos (Murayama et al., 2006), it is the transient site for definitive HSC development, where HSCs divide and give rise to progenitors that then differentiate (Tamplin et al., 2015). At 3-4 days post fertilisation (dpf), the HSCs join the circulation via the tail veins from the CHT and begin to seed the thymus and kidney.

At 3 dpf, T cell progenitors first appear in the thymus, where they subsequently differentiate into T-lymphocytes (Jagannathan-Bogdan and Zon, 2013). The expression of *rag1* (recombination activating gene) can be detected in T lymphocytes within the developing thymus at the beginning of 4 dpf via whole-mount in situ hybridisation (Willett et al., 1997). By 4 dpf, the HSCs migrate to the KM (the marrow of the head kidney). In zebrafish, the kidney is responsible for maintaining adult HSCs and is analogous to the mammalian bone marrow (Kulkeaw and Sugiyama, 2012, Medvinsky et al., 2011). Flow cytometry analysis of whole kidney marrow (WKM) revealed the observation of several haematopoietic lineages; erythroid, lymphoid, precursors and myeloid, can be resolved by light-scatter characteristics (Traver et al., 2003b). Transplantation of adult gata<sup>GFP</sup> zebrafish WKM into gata<sup>-/-</sup> mutant resulted in the embryo that lacks the lethal phenotype, thus also generating both lymphoid and myeloid cell types (Traver et al., 2003b). These confirm the critical role of the zebrafish WKM as a main site of hematopoiesis in adult zebrafish. Light and electron microscopy have confirmed the kidney as the primary site of granulopoiesis in the adult zebrafish due to the presence of neutrophil granulocytes and their progenitors' cells (Lieschke et al., 2001). In mammals, neutrophils are short-lived in the blood, and so, they are continuously being replenished from progenitors in the bone marrow till they reach maturation at different stages of differentiation (Grassi et al., 2018). In humans, neutrophils with a regular production rate of ~10<sup>11</sup> (70% of all leukocytes cells) per day are the most abundant type of leukocytes, and they play a significant role in the innate immune system (Figure 1.4) (Strydom and Rankin, 2013). In zebrafish, more than 90% of blood granulocytes are neutrophils (Traver et al., 2003a). The maturation of neutrophil precursors in the zebrafish kidney shares many of the characteristics of neutrophil development in human bone marrow (Bennett et al., 2001). The development of neutrophils and their lobulated nuclei in zebrafish is also conserved among vertebrates (Gaines et al., 2008, Hoffmann et al., 2007, Lieschke et al., 2001, Lian et al., 2018).



#### Figure 1.4 Schematic illustration of human neutrophils.

Neutrophils are generated in the bone marrow, and after several stages of differentiation, they can reach the bloodstream. Myeloblasts (MB) can proliferate, followed by maturation, then gradually moving through promyelocytes (PM), myelocytes (MC), metamyelocytes (MM), band neutrophils (BC), and finally segmented neutrophils (SN). Segmented neutrophils are released into the peripheral bloodstream as mature polymorphonuclear neutrophils (PMNs) (Image from (Cowland and Borregaard, 2016)).

### 1.2 Non-coding cis-regulatory elements

During embryonic development, the expression of a gene is controlled accurately, both spatially and temporally. This control occurs via the interaction of particular transcription factors (TFs) with *cis*-regulatory elements (CREs). The main classes of noncoding *cis*-regulatory elements in the genome include promoters, insulators, enhancers and silencers. (Nelson and Wardle, 2013, Raab and Kamakaka, 2010, Latchman, 2015 ).

### **1.2.1 Promoters**

All eukaryotic genes have promoters that are approximately 100-1000 base pairs long, primarily located at 5' of a gene's coding sequence and crucial for gene regulation (Wright, 2019). One of the most important functions of the promoter is its interaction with the transcription initiation machinery. Promoters are usually located either upstream of the transcription start site (TSS) or overlapping with it. The TSS is the location where gene transcription is initiated. In order for transcription to be initiated, specific sequence elements are required to be bound by RNA polymerase II. In many eukaryotic genes, the TATA box is the most crucial element of polymerase II promoters and is located at -35 to -20 in front of the initiator (INR) that contains the TSS. The consensus sequence of the TATA box is TATAAA. The TATA box is recognised and bound by TBP (TATAbinding protein) and other transcription factors. Once they bind into the TATA box, the recruitment of RNA polymerase II and together

they orchestrate the initiation of gene transcription (Albert, 2015, Lenhard et al., 2012). TATA box and INR are the core promoter elements. Other elements such as the CAAT box and GC box, also referred to as promoter-proximal elements, are located within 200 bp upstream from the transcriptional start site. They are actively involved in the transcriptional regulation of various genes. CAAT box is a region with a consensus sequence of GG<u>CCAATCT</u>, which binds <u>CAAT-binding</u> protein (CBP). GC box is a region with a consensus sequence of GGGCGG recognised by Sp1s (a member of a large family of zinc-fingers TFs) which enhances the assembly of the transcriptional machinery (Dolfini et al., 2009, Godbey, 2014). CpG (cytosine followed by guanine and linked together by phosphate) islands (CpGIs) are well-known regions of genomic regulation inside and outside promoters. Majority of the promoters of the housekeeping genes which are constantly being expressed in the mammalian genome co-localise with CpGIs around TSS. CpGI regions remain unmethylated in active genes. The methylation (addition of a methyl group -CH<sub>3</sub> group to a nucleotide base) is a genomic modification that acts to inactivate gene transcription. CpGIs are regularly marked by tri-methylation of lysine 4 on histone 3 (H3K4me3), a signature of active promoters. The appearance of high levels of H3K4me3, acetylation of histone 3 at lysine 27 (H3K27ac), and the small numbers of mono-methylation of lysine 4

on histone 3 (H3K4me1) are also particular distinctive of promoters (Ernst et al., 2011).

#### 1.2.2 Enhancers

An enhancer is a short region of DNA that is typically 50-1500 bp in length (Wright, 2019). An enhancer usually contains several binding sites for transcription factors (TFs) that range between of 6 to 12 bp in size. Enhancers can be bound by multiple transcription factors TFs aiming to enhance the transcription of a particular gene (Spitz and Furlong, 2012). When the TFs binds to the enhancer, general transcription factors (mediators), as well as chromatin remodelers, are recruited, facilitating enhancer-promoter interaction, which ultimately activates the gene transcription (Visel et al., 2009) (Figure Enhancers are commonly located either upstream or 1.5). downstream of a gene in the intergenic regions or in the introns of the genes. Enhancers are capable of regulating transcription in an orientation and distance independent manner (Ong and Corces, 2011). They can be located very far distance from the targeted gene. For example, a highly conserved limb-specific enhancer is located within the intron of the neighbouring gene *Lmbr1* and 1Mb away from its target Sonic Hedgehog (Shh) gene (Lettice et al., 2003). A typical gene can have multiple enhancers that often work independently and bind to particular TFs allowing the gene to be expressed in different cell types. For example, at least six enhancers are associated with the human apolipoprotein E (APOE) gene that controls other tissues (i.e kidney, liver, skin and brain) of *APOE* expression (reviewed in (Visel et al., 2007)). Certain genes can also be regulated by several enhancers that drive similar or overlapping activity patterns named redundant enhancers. For instance, redundant enhancers regulate the *Gli3* gene expression in limb on mice (Osterwalder et al., 2018).

Over the years, progress has been made on enhancer study as a result of advances in sequencing technology and high-throughput approaches that have helped to find and validate candidate enhancers (Ryan and Farley, 2020). Genome-wide based studies putative are used to detect enhancers. Chromatin Immunoprecipitation followed by high-throughput sequencing (ChIP-seq). ChIP-seq uses antibodies targeting a specific TF to ascertain the location of its binding sites within enhancers (Johnson et al., 2007, Robertson et al., 2007). ChIP-seq with particular antibodies against some histone modifications (i.e., H3K4me1 and H3K27ac) can be used to identify active enhancers (Bonn et al., 2012, Rada-Iglesias et al., 2011). Active enhancers can be found within open or accessible chromatin that the nucleosomal DNA is unwrapping. DNase I digestion can be used to detect the accessible chromatin followed by high-throughput sequencing (DNase-seq) (Boyle et al., 2008, Thurman et al., 2012). Open chromatin can also be identified by assay for transposase-accessible chromatin using sequencing (ATAC-seq), which inserts sequencing adapters into accessible DNA regions using Tn5 transposase (Buenrostro et al., 2013).

Enhancers can act in far away distances when they are brought close to the promoter by the formation of a chromatin loop to regulate a particular target gene. The physical enhancer-promoter interactions have been shown in vivo using the chromatin conformation capture (3C) technique and its high throughput derivatives assays 4C (circularised 3C), 5C (carbon-copy 3C) and Hi-C (reviewed in (Ryan and Farley, 2020)). The human and mice genomic analysis of the genomes using Hi-C showed that it is widely organised in megabasesize sections named topologically associating domain (TAD) (Dixon et al., 2012). Within the same TAD, regulatory elements and genes especially interact, suggesting that the boundaries (CTCF sites) of TADs can work to restrict the influence of enhancers (Dixon et al., 2012). In mammals, TAD boundaries are largely conserved across different cell types and even between species. In mouse embryonic stem cells, approximately 2,200 TADs are organised within more than 90% of the genome with a median size of ~880 kb (Dixon et al., 2012). In the zebrafish genome, approximately 1,700 TADs have been identified with a median size of  $\sim$ 500 kb (Kaaij et al., 2018).

Deletion or change in the enhancer sequence may cause effects in gene regulation. For example, mutations in the enhancer regulate the expression of the sonic hedgehog (*SHH*) gene, resulting in

different limb skeletal defects in mice (Lettice et al., 2008). In zebrafish, gata2a expression is driven by the i4 (intron four) which important to enhancer, is program haematopoietic endothelium (HE) in embryos. Homozygous gata $2a^{\Delta i4/\Delta i4}$  larvae at 5 dpf revealed normal numbers of haematopoietic stem and progenitor cells (HSPCs) (Dobrzycki et al., 2020). The reduction of *gata2b* and *runx1* expressions after the deletion of the enhancer was recovered by the activities of Notch signalling, which drives the expression of both genes in HE. However, the homozygous gata $2a^{\Delta i4/\Delta i4}$  adults showed phenotypic abnormalities such as heart-swelling, skin infection and kidney marrow failure (Dobrzycki et al., 2020).

#### 1.2.3 Insulator

In eukaryotes, chromatin is classified into accessible and inaccessible regions, called euchromatin (actively transcribed regions) and heterochromatin (silenced parts), respectively. Both accessible, as well as inaccessible regions are involved in gene regulation. In general, the insulator is a *cis*-regulatory element that targets one gene, preventing it from interfering with a neighbouring gene. They act to prevent enhancers or silencers from interacting with the promoter (Figure 1.5). The insulator is typically 300-2000 bp in length and has been categorised into two types; insulator barriers and enhancer blockers. Insulator barriers protect active genes from the spread of heterochromatic chromatin flanking them.

They, thus, keep the chromatin open. Enhancer-blocking insulators prevent the interaction between an enhancer and the promoters of neighbouring genes that lie beyond the insulator on the same chromosome. In vertebrates, the majority of insulators are bound by CTCF (CCCTC-binding factor), which is thought to be the primary part of the activity of insulators (Allison, 2007, Krivega and Dean, 2012, Raab and Kamakaka, 2010).



# Figure 1.5 Schematic representation of the effects of *cis*-regulatory elements: promoters, enhancers and insulators

(A) The enhancer binds to an activator that joins to transcription factor (TF) in the promoter leading to upregulation of the target gene. (B) The insulator interacts with the activator of an enhancer to block its binding to the promoter, which in turn inhibits gene expression (Rojano et al., 2019).

## **1.3 Conserved non-coding elements (CNEs)**

Genome sequencing of various species has revealed that several regions of non-coding DNA sequence have remained conserved over millions of years of evolution. Multi-species alignment of genomic sequences allows detection of these elements which have been called conserved non-coding elements (CNEs) (Nelson and Wardle, 2013). CNE can be classified based on the degree of conservation between two or more organisms, conserved non-coding elements (60-70% sequence identity) (Li et al., 2010), highly conserved non-coding elements (HCNE) (70-98%) (Woolfe et al., 2004) and ultraconserved elements (UCNE) (95-100%) (Bejerano et al., 2004).

It has been reported that two *cis*-regulatory elements at the sequence level are conserved between (i.e., earthworms and insects) and deuterostomes (invertebrates and vertebrates) (Clarke et al., 2012). In addition, a series of TF binding sites can be identified in that conserved sequence (Clarke et al., 2012). CNEs can act as *cis*-regulatory CREs which control the expression of genes during the normal development of the embryo. Remarkably, CNEs are present in large numbers in the region around the genes which are responsible for encoding transcriptional regulators or factors that participate in embryonic development. CNEs also indicate that the conservation of these sequences is due to their consistent gene regulator function (Li et al., 2010). Many CNEs function as

developmental enhancers, and any alteration of this elements sequence may lead to phenotypic changes.

### 1.4 c-Myb and its importance during haematopoiesis

The c-Myb protein is a transcription factor (TF) that is encoded by the *c-Myb* gene. It regulates the expression of many genes and helps to coordinate the proliferation and differentiation of cells in different normal cell types (Ramsay, 2005). It is one of the most essential regulators of haematopoiesis and is highly conserved in vertebrates. c-Myb is expressed in stem and progenitor cells of all hematopoietic lineages, including erythroid, myeloid, and lymphoid cells (Lieu and Reddy, 2009, Sumner et al., 2000, Thomas et al., 2005, Vegiopoulos et al., 2006). c-Myb is a member of the Myb (myeloblastosis) TF family in vertebrates, first identified as proto-oncogenes involved in the development of avian leukaemia (Baluda and Reddy, 1994). c-Myb is a 75-kDa protein that consists of three functional domains; amino-terminal DNA-binding domain (DBD), а central an transactivation domain (TAD) and a negative regulatory domain (NRD). The DBD binds to the DNA  $^{T}/_{C}AAC^{G}/_{T}G$  sequence. The c-Myb interacts with proteins CBP and p300 to activate transcription. These proteins provide a link between c-Myb and the transcription machinery (Greig et al., 2008). There are three members of the Myb transcription factor family A-Myb, B-Myb and c-Myb. Knockout studies of genes that encode these TFs show that they play different functions during their expression in the development process. The

A-Myb (encoded by *MYBL1* gene) is required during spermatogenesis. B-Myb (encoded by *MYBL2* gene) plays an important role in all dividing cells (Mucenski et al., 1991, Tanaka et al., 1999, Toscani et al., 1997).

The *c-Myb* gene is highly expressed in immature proliferating haematopoietic cells and is down-regulated as soon as these cells differentiate, suggesting that *c*-*Myb* is essential during the transition between proliferation and differentiation (Gonda and Metcalf, 1984). Transcriptional regulation of the *c-Myb* gene typically begins at the transcriptional start site (TSS) of the promoter upstream of the first exon. The *c*-*MYB*' upstream promoter sequence has been found to be GC rich and lacks both TATA box and CAAT box. Many Sp1 (specificity protein 1) factor binding sites (GC box) were also found both upstream and downstream of the TSS. The *c*-*Myb* transcription is initiated by the Sp1 binding factor ( $Dvo\lambda a \epsilon k$  et al., 1989). The Sp1 factor activates the RNA polymerase II by binding to promoter sequences to initiate the transcription of the *c*-*MYB* gene. It has been found that the GC-rich regions (2 CpG islands) noticed in the promoter-proximal upstream sequence play an important role in *cmyb* gene transcriptional activation (Hsu, 2010). This *c-myb* promoter fragment can direct the expression of green fluorescent protein (GFP) in several tissues in the zebrafish transgenic line (Hsu, 2010).

The regulation of c-Myb can also involve other transcription factors. Within the TSS, there are two binding sites, E2 Factor (E2f) and Nuclear Factor kappa B (NF- $\kappa$ B), which are activators of c-MYB expression in T-cells. Deleting conserved E2F and NF-κB binding sites results in the elimination of MYB transcription in these cells (Lauder et al., 2001). The expression of c-MYB is also regulated by an attenuator site (stem-loop) within the intron one sequence that controls transcriptional elongation. Mutations in the MYB intron one attenuator region were found responsible for the overexpression of c-MYB protein in colorectal cancer cells (Hugo et al., 2006). The c-Myb gene is also regulated by distant enhancers. It has been found that the distal enhancer (-28kb) controls the regulation of the *c-Myb* gene expression during the differentiation of myeloid cells in mice (Zhang et al., 2016). During mouse erythroid differentiation, enhancers within the *Myb-Hbs11* intergenic region interact with the *c-MYB* promoter and the first intron by forming an active chromatin hub (Stadhouders (ACH) et al., 2012). Upon erythroid differentiation, the ACH is lost, and the expression of the *c*-*Myb* is downregulated (Stadhouders et al., 2012). Genomic sequence comparisons between vertebrate species identified conserved noncoding element one (CNE1) in their *c-myb* loci that regulate the c*myb* gene expression (Hsu, 2010). Several putative TF binding sites identified in CNE1, such as Ets, Gata, Runx1, and c-Myb, play an essential role during the development of haematopoietic cells (Hsu,

2010). During haematopoiesis, the expression level of c-myb may be influenced by specific microRNAs (miRNAs), which act in posttranscriptional regulation. Interactions of miR-126 with the 3'-UTR of *c-myb* act to down-regulate *c-myb* post-transcriptionally. A knockdown of miR26 in zebrafish embryos revealed that there was an upregulation in erythropoiesis and a downregulation in thrombopoiesis as a result of the high levels of c-Myb protein (Grabher et al., 2011).

c-MYB is part of a complex genetic network that consists of several proteins which are involved in the c-MYB transcriptional factor network (Figure 1.6). The start of haematopoietic activities is coordinated by major transcription factors that regulate the haematopoietic expression of the genes during activities (Jagannathan-Bogdan and Zon, 2013). In haematopoiesis, the c-Myb protein work with various transcription factors by binding to promoters or enhancers of a number of genes to regulate their expression (Ness, 1999). For instance, *mim-1* gene's promoter is activated in a combination of c-Myb and C/EBPB for the regulation in the differentiation of immature myeloid cells (Ness et al., 1993). The promoter region of Rag-2 gene has binding sites for c-Myb and Pax-5 that regulate the activities of RAG-2 in immature B cells (Kishi et al., 2002). The c-Myb TF can also act as either a transcriptional repressor or activator at the CD4 silencer and promoter, respectively, in T-cell development (Allen III et al., 2001). c-Myb

and HES-1 (a known transcriptional repressor) form a multifactor interaction complex during the transcription process to mediate the function of the CD4 silencer (Allen III et al., 2001). The TFs c-myb and runx1 are essential for granule-related genes (*lyz, mpx, npsn* and *srgn*) expression in neutrophil maturation in zebrafish embryonic myelopoiesis. These TFs bind to these genes' promoters and interact to cooperatively regulate their expressions (Huang et al., 2021). During neutrophil differentiation, c-myb and cebp1 work in parallel and synergetically by regulating granular protein gene transcription in zebrafish embryos (Jin et al., 2016).

In the mouse embryo, although *c-Myb* expression was found at a low level in primitive haematopoiesis in the YS at E7.5 (Palis et al., 1999), c-Myb plays an essential role in definitive haematopoiesis. It is expressed in the mouse foetal liver, a site of definitive wave (Sitzmann et al., 1995). Upon deletion of *c-Myb*, mouse embryos appear normal until E13.0, indicating that it is dispensable for primitive haematopoiesis. By E15.0, mice suffer from severe anaemia, and homozygous mice do not survive beyond day 21 (Mucenski et al., 1991).

During zebrafish embryogenesis, *c-myb* is expressed at a different time point in different haematopoietic and non-haematopoietic tissues. The expression is initiated in the ALM and the PLM at 4 to 5-somite stage. The expression of the *c-myb* gene is normally detected around 10 to 12-somite stage in the ALM and the PLM. At 12-somite

stage, *c*-myb expression is detected in the primitive pu.1+ myeloid progenitors in the ALM. At 18 hpf, the expression of *c-myb* is observed in erythrocytes of the ICM. Around 26 hpf, c-myb is expressed in *runx1*-expressing cells in the vDA. At about 2-3 dpf, cells expressing *c-myb* reaches the tail region to colonise the CHT. At 4-5 dpf, c-myb<sup>+</sup> cells migrate to seed the thymus and the kidney, which is the adult site of haematopoiesis in zebrafish (Murayama et al., 2006). During zebrafish embryonic development, between 1-5 dpf, *c-myb* is also expressed in several non-haematopoietic tissues such as retina, midbrain, olfactory epithelium and pharyngeal arches (Hsu, 2010) (Figure 1.7). In zebrafish, homozygous *c-myb* mutants produce normal primitive erythrocytes suggesting that c-myb is not essential for early erythropoiesis in the zebrafish either. By approximately 20 dpf, the number of blood cells was reduced, and no erythrocytes were detected in the blood vessels. Although *c-myb* homozygous null zebrafish display severe anaemia, they are able to survive for 2-3 months. These mutant fish are capable of surviving for that long, presumably due to their ability to perform gas exchange by diffusion through the skin (Soza-Ried et al., 2010). It has been observed that the number of lymphocyte progenitors is reduced, and the thymus is not colonised in *c-myb*-null embryos (Hess et al., 2013). In *c-myb* mutant embryos, in the RBI, it has been found that whilst primitive myelopoiesis appeared to be independent of *c*-*myb* as shown by the normal expression of *pu.1*,

primitive neutrophils but not macrophages are dependent on its expression. Nevertheless, early neutrophil markers, for instance, *cebp1* are unaffected in *c-myb-/-* embryos. By contrast, the expression of some neutrophil markers like *mpx*, *srgn* and *lyz* is reduced or lost in the zebrafish mutant embryos (Jin et al., 2016).



### Figure 1.6 Pathway of C-MYB transcription factor network.

This pathway is derived from the latest BioPAX3 version of the Pathway Interaction Database (PID) curated by NCI/Nature. Created Jun 26, 2018. Homo Sapien. Source: (<u>https://home.ndexbio.org</u>) v2.5.1. Feb 2021 <u>http://public.ndexbio.org/#/network/b7c01161-795c-11e8-a4bf-0ac135e8bacf</u>.



# Figure 1.7 The expression pattern of *c-myb* during zebrafish embryogenesis.

(A) At the 5-somites stage, *c-myb* expression can be observed (pink arrow) in the posterior lateral mesoderm (PLM) during primitive haematopoiesis. (Bi) At 10-15 somites *c-myb* expression is detectable in the myeloid progenitors (maroon arrow), and in the retina (red arrow). (Bii) *c-myb* expression is still observed in the PLM cells as they migrate towards the midline at 15-somites stage. (C) *c-myb* is expressed in the posterior blood island (PBI) (right green arrow), vDA (left green arrow), pronephric duct (purple arrow), midbrain (yellow arrow) and retina at 24-26 hpf. (D) At 34 hpf, *c-myb* is also expressed in the olfactory system (blue arrow), retina, midbrain, surface skin cells (brown arrow), and the PBI (green arrow). (E) *c-myb* expression is seen in the pharyngeal arches (white arrow), CHT, retina, midbrain and pronephric duct at 3 dpf. (F) At 5 dpf, *c-myb* expression can be detected in the olfactory system, kidney (pink arrow), retina and thymus (black arrows) (Hsu, 2010).

## **1.5 Identification and testing of** *c-myb* **promoterproximal regulatory sequences**

In order to examine the transcriptional regulation of c-myb in the zebrafish embryo, a previous PhD student, Jui-Cheng Hsu tested both promoter-proximal and distal regulatory elements of the zebrafish *c-myb* gene in transgenic zebrafish lines by generating EGFP reporter transgenes (Hsu, 2010) (Figure 1.8A). The first promoter fragments (PFs) tested were called promoter fragments PF1 and PF2. They harboured upstream sequences of ~10 and ~5.3 kb, respectively. In the transgene constructs, the EGFP reporter gene was inserted into exon 1 of *c-myb* downstream the *c-myb* ATG start codon. In stable transgenic zebrafish generated with the transgene, low levels of EGFP expression were found in the retina, olfactory placode, pronephric duct and tubules in transgenic zebrafish lines and significant ectopic expression was observed in some tissues, for example, in the spinal cord (Figure 1.8B).

A further four promoter fragments (PF3-PF6) were tested. They differed from PF1 and PF2 in that they contained the complete exon 1 and intron 1 sequences and had the GFP reading frame inserted in exon 2. The transgenic reporter lines carrying the PF3, PF4, PF5 and PF6 promoter fragments showed variable levels of EGFP expression in the non-haematopoietic tissues like the retina, the olfactory placodes and the branchial arches (Figure 1.8C). The levels of reporter expression were higher in the PF3, PF4 and PF5 lines and lower in the PF6 line. The expression of the reporter gene was more robust in these lines than in the lines generated with PF1 and PF2, suggesting that intron 1 of c-*myb* plays an important role in the transcriptional regulation of zebrafish *c-myb*. The PF3-PF6 lines also showed less ectopic expression and tighter control over the promoter activity. Disappointingly, none of the transgenic lines that carried different promoter fragments displayed any EGFP expression in haematopoietic cells. This suggested that the CREs directing *c-myb* expression to haematopoietic sites were neither located immediately upstream of *c-myb* nor in intron 1 of *c-myb*. Elements in other introns or downstream or distal enhancer elements had to be responsible for *c-myb* expression in the haematopoietic cells.



# Figure 1.8 PF1-PF6 promoter-proximal elements are able to direct the EGFP expression of *c-myb* gene in non-haematopoietic tissues

(A) A schematic representation of all the *c-myb* promoter fragments (PF1-PF6) cloned to generate transgenic lines. Black vertical lines indicate *c-myb* exons. The green arrows show the green fluorescent protein GFP reporters. The grey boxes show the Tol2 sequence. Horizontal black lines represent the promoter sequences. (B) Images depict Tg(*c-myb*-PF1:*egfp*) and Tg(*c-myb*-PF2:*egfp*) embryos showing weak reporter gene expression in the retina (Re) (grey arrow), olfactory placode (OP) (black arrow), spinal cord (white arrowhead) and pronephric duct (PND) (purple arrow) at 2 dpf. (C) Images show Tg(*c-myb*-PF3:*egfp*)-Tg(*c-myb*-PF6:*egfp*) embryos, eGFP is detected in the Re, OP, PND, the brain (BR) (yellow arrow) and rhombomeres (yellow arrowheads) at 1 dpf. The figure has been kindly provided by Dr. Martin Gering.

# 1.6 Testing of potential c-myb distal regulatory elements in zebrafish transgenic lines identified CNE1 as a conserved haematopoietic enhancer

As the GFP expression was not detected in haematopoietic tissues in any of the previous transgenic zebrafish lines, it was assumed that the promoter itself and intron 1 were insufficient to drive gene expression in haematopoietic cells and that a distal regulatory element controlled haematopoietic *c-myb* expression. Analysis of the sequence surrounding the *c*-*myb* locus was performed to uncover any potential regulatory elements (REs). Conserved sequences were identified in the downstream *c-myb* gene among eight species, including species of fish to human, using the M-LAGAN software (Multi-Limited Area Global Alignment of Nucleotides). M-LAGAN is an applied method for creating alignments of many multiple genomic sequences at any evolutionary distance (Brudno et al., 2003). Firstly, two of the conserved non-coding elements (CNEs) were found downstream of the *c-myb* gene in all fish species (Figure 1.9A). Then the sequence alignment was extended to include vertebrates. Interestingly, sequence alignments that included sequences from all major vertebrate clades revealed that the zebrafish conserved non-coding element one (zCNE1) (formerly known as CNE8 (Hsu, 2010)) is conserved in all species from fish to man (Figure 1.9B). Subsequently, the DNA sequence of the *c-myb* locus was examined for the presence of CpG islands. For this

purpose, the identification of CpG islands was performed as a region of 200 bp windows with a GC content of over 49% and the calculated an 'observed/expected' ratio of more than 0.6 using the web- based CpG island Searcher.



# Figure 1.9 Genomic sequence comparisons between vertebrate species identified a number of conserved non-coding elements (CNEs) in the *c-myb* locus

In the above of (A and B) maps of the medaka and zebrafish *c-myb* locus, respectively. The horizontal lines show the *c*-myb locus on medaka and zebrafish chromosomes 24 and 23, respectively. The vertical blue lines represent exons of the *c-myb* and *hbs1* genes. (A) Vista blots highlighting regions of sequence identity that were found in pairwise sequence alignments of the medaka *c-myb* sequence with that of zebrafish, stickleback, tilapia, fugu and tetraodon. (B) Vista blots highlighting regions of sequence identity that were found in pairwise sequence alignments of the zebrafish *c-myb* sequence with that of medaka, xenopus, chick and human. The coloured peaks were higher than 70%. Blue peaks show conserved sequences in coding exons. Pink peaks show conserved noncoding elements. The numbering of nucleotides is done relative to the transcription start sites of medaka and zebrafish *c-myb*. The red line shows conserved non-coding elements of neighbouring gene *hbs1*. The light blue line shows conserved non-coding elements upstream of the *c-myb* gene promoter. The yellow arrow shows a non-coding element in intron 1. The light blue arrows show non-coding elements within introns. The dark blue arrow shows CNE1 that is conserved across species. The green arrow indicates CNE that is conserved in fish species only. The orange arrow shows the start codon ATG. Black boxes in the bottom are CpGIs in zebrafish. The figure has been kindly provided by Dr. Martin Gering.

Nine CpGIs were located in the region of the *c-myb* locus, with some being isolated and others occurring in clusters. One of the CpGIs, was located close to CNE1. Based on the finding of the sequence alignments and CpGIs analysis, DNA fragments that carry CNEs with or without CpGIs were defined as putative regulatory elements (REs) that were subsequently tested to see whether they possessed enhancer activity in haematopoietic cells. For this purpose, the putative REs were cloned upstream of the small PF6 *c-myb* promoter fragment in the EGFP reporter transgene construct. The constructs were used to generate stable zebrafish transgenic lines that were examined for EGFP expression (Figure 1.10). The zebrafish RE1 (zRE1) contained the zCNE1 and together with a neighbouring CpGI.



# Figure 1.10 A map of the putative regulatory elements' fragments used to make the constructs to generate transgenic zebrafish lines

At the top, the vertical black lines represent exons of the *c-myb* locus. The *c-myb* promoter Indicated by the orange arrow, and the yellow arrow signifies intron 1. The blue arrow indicates zCNE1 that is conserved across species. The red line points to numerous conserved sequences that were tested in reporter constructs. Black boxes are CpGIs. The horizontal blue line indicates the putative regulatory element that was identified and tested for enhancer activity. At the bottom, the grey boxes show *Tol2* sequences. The blue lines represent the putative regulatory element. The promoter fragments (PF5, PF6 and hsp70) are shown as black lines. The figure has been kindly provided by Dr. Martin Gering.

The *Tg(c-myb-z*RE1-PF6-*egfp)*<sup>qmc76</sup> transgenic line showed strong EGFP expression in the retina, olfactory placodes and pronephric duct. Interestingly, there was an expression in the definitive blood cells below the vDA and in the CHT, which was not found in the transgenic line that contained PF6 alone. The expression of EGFP in HSC progenitors in the vDA was observed at 30 hpf and peaked by 2 dpf. It declined by 3 dpf because of the migration of cells and seeding of the CHT (Hsu, 2010). EGFP expression in *qmc76* was also observed in the cells of the larval kidney and was maintained during adulthood. The cells analysed were haematopoietic cells (Figure 1.11Ai-Aiii) (Savage, 2012).

Because the PF6 gave weaker expression, a new construct was generated contained promoter fragment five (PF5), which would provide stronger reporter gene expression in blood cells than PF6 when combined with zRE1. This line was named *qmc85*. In the Tg(*c*-*myb*-zRE1-PF5-*egfp*)<sup>qmc85</sup> transgenic line, zCNE1 was able to direct robust EGFP expression in blood cells in the CHT at 3 dpf (Figure 1.11Bi). In addition, FACS analysis on cells from the adult kidney revealed that approximately 22% of GFP+ cells were found in the kidney of Tg(*c*-*myb*-zRE1-PF5-*egfp*)<sup>qmc85</sup>. Moreover, the EGFP expression was found in myeloid, lymphoid and progenitor cells (Figure 1.11Bii) (Savage, 2012).
To examine the ability of the zCNE1 to regulate different promoters and to verify what expression pattern could be observed, a transgenic line was generated that contained other promoters combined with zRE1. This line had the heterologous heat-shock 70 promoter (HSP70) which contained zRE1 and EGFP and was named qmc94. In the Tg(*c*-*myb*-zRE1-hsp:*egfp*)<sup>qmc94</sup> transgenic line, EGFP reporter gene expression was observed in the CHT definitive blood cells (Figure 1.11C). Some of the individual EGFP+ cells were observed in the circulation at 4 dpf seeded the kidney and the thymus via circulation (Tsikandelova, 2013). In addition, *qmc*146 line was generated which contains the regulatory element zRE1 fused to a zebrafish PF5 and a *mCherry* reporter (Figure 1.11D).

To examine the evolutionary conservation of RE1 (that contains CNE1), the mouse orthologue (mRE1) (which contains mCNE1) was used in combination with zebrafish promoter PF5 to generate an EGFP transgenic line. It has been found that mRE1 is able to direct zebrafish *c-myb* promoter activity to definitive haematopoietic cells in the zebrafish transgenic line  $Tg(c-myb-mRE1-PF5:egfp)^{qmc156}$  (data not shown) (Mohamed, 2015).



### Figure 1.11 zRE1 and mRE1 are able to drive reporter genes expression in the different promoters to haematopoietic cells

(Ai) Confocal live image from a  $Tg(c-myb-zRE1-PF6:egfp)^{qmc76}$  embryo at 30 hpf depicts *egfp* expression in the vDA (green arrow) and (pronephric duct) PND (purple arrow). (Aii) At 30 hpf, EGFP is expressed in the trunk of  $Tg(c-myb-zRE1-PF6:egfp)^{qmc76}$  embryo as verified via whole-mount in situ (WISH). Transverse section from the WISH confirms that the expression of *gpf* can be detected in the under of vDA and the PND at 30 hpf. (Aiii) By immunohistochemistry, expression of *egfp* is observed vDA and the PND of the trunk of a  $Tg(c-myb-zRE1-PF6:egfp)^{qmc76}$  embryo. A transverse section has also been confirmed. EGFP expression is obvious in vDA and the CHT (green bracket) between 2 dpf and 3 dpf. (Bi) The expression of EGFP can be observed in vDA, the CHT, olfactory placode (OP) (black arrow) and branchial arches (BA) (orange arrow) in a  $Tg(c-myb-zRE1-PF5:egfp)^{qmc85}$  embryo at 3 dpf. (Bii) Flow cytometric analysis of whole marrow kidney cells from  $Tg(c-myb-zRE1-PF5:egfp)^{qmc85}$  embryo. (C) EGFP expression can be seen in vDA, the CHT, lens (brown arrow)

and brain (BR) (yellow arrow) in a  $Tg(c-myb-zRE1-hsp:egfp)^{qmc94}$  embryo at 3 dpf. **(D)** Expression of mCherry can be detected in PND, OP, vDA, the CHT, BA and retina (Re) (grey arrow) in a  $Tg(c-myb-mRE1-PF5:mCherry)^{qmc146}$  embryo at 3 dpf. The images have been kindly provided by Dr. Martin Gering.

### **1.7 Identification of H3K4me1 and H3K4me3 sites in the zebrafish genome**

In addition to zRE1, other enhancer sequences may also be present downstream of the zebrafish *c-myb* gene. A study published by Nathan Lawson's lab used a CHIP-Seq approach, an experiment in which chromatin immunoprecipitation was followed by deep sequencing, to determine the genome-wide binding profile of trimethylated (H3K4me3) and mono-methylated (H3K4me1) lysin 4 on histone 3 in the chromatin of whole zebrafish embryos at 24 hpf (Aday et al., 2011) (Figure 1.12). These marks had previously been shown to mark promoters and enhancers, respectively (Akkers et al., 2009, Barski et al., 2007). The Lawson data are available as a track on the Zv9 assembly of the zebrafish genome sequence on the UCSC genome browser (https://genome-euro.ucsc.edu). Close inspection of these data for information on regulatory elements present in the *c*-myb locus shows that there are several candidates for enhancer elements downstream of the *c*-myb gene. Table 1.1 A list of potential *c-myb* downstream enhancers (PEs) identified as H3K4me1 binding sites in chromatin isolated from 24 hpf zebrafish embryos in a CHIP-Seq experiment published by Aday et al., 2011 provides the exact coordinates of these potential enhancer elements (PES). Interestingly, one of the sequences enriched by H3K4me1 partially overlaps with zRE1.



#### Figure 1.12 Identification of potential enhancers (PEs)

The panel shows an overview of the zebrafish *c-myb* gene along chromosome 23. The track on the UCSC browser displays data from a genome-wide analysis that investigated the presence of H3K4 mono and trimethylation throughout the zebrafish genome at 24 hpf (UCSC Genome Browser on Zebrafish Jul. 2010 (Zv9/danRer7)). The potential enhancers (PEs) of *c-myb* downstream are surrounded by a light blue frame. Black boxes in the top show the PEs, from left to right; MP40036-, MP40036, MP40037 and MP40037+, respectively. The zebrafish regulatory element one (zRE1) of *c-myb* downstream is surrounded by a light pink frame.

# Table 1.1 A list of potential *c-myb* downstream enhancers (PEs) identified as H3K4me1 binding sites in chromatin isolated from 24 hpf zebrafish embryos in a CHIP-Seq experiment published by Aday et al., 2011

Two PEs, MP40036 and MP40037, were called by the authors' algorithm. Two others, MP40036- and MP40037+, can be deduced by interrogating the data track on the UCSC genome browser. The data track can be found on the Zv9/danRer7 version of the zebrafish genome assembly.

| UCSC      | Genomic Location        |
|-----------|-------------------------|
| #elements |                         |
| MP40036-  | chr23 32070369 32070599 |
| MP40036   | chr23 32073399 32073899 |
| MP40037   | chr23 32075776 32076247 |
| MP40037+  | chr23 32079264 32079585 |

#### 1.8 CRISPR/Cas9 system as a tool for gene editing

CRISPR/Cas is a natural adaptive immune system used by prokaryotes to protect against invading nucleic acids, such as viruses and plasmids. Upon infection, the information of foreign invaders is saved in short DNA sequences called protospacers that are repeated and inserted within a CRISPR locus in the genome of bacteria. These short DNA sequences serve as a type of immune system memory. The protospacers are expressed as short guide RNAs that help Cas endonucleases to find a complementary sequence next to a protospacer adjacent motif (PAM). The invading DNA is cleaved by the Cas nuclease to prevent recurrent infections (Bhaya et al., 2011, Wiedenheft et al., 2012, Ran et al., 2013) (Figure 1.13).

The CRISPR/Cas system has been modified to allow genetic engineering in a variety of species. There are different types of CRISPR systems. Because of its efficiency, simplicity and multiplexing potentials, type II from *Streptococcus pyogenes* was used in this project as a genome-editing tool (Gupta and Musunuru, 2014, Shmakov et al., 2015). Two primary components are required for genome editing. They are CRISPR-associated Cas9 nuclease and a single guide RNA (gRNA). The gRNA contains two different segments of RNA: CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA). The crRNA contains a 18-20 bp sequence that is complementary to the DNA sequence of the target site for Cas9. The

tracrRNA acts as a scaffold for the crRNA-Cas9 interaction. It has been shown that crRNA and tracrRNA can be fused to a single guide RNA (sqRNA) that retains the activity of the two individual RNAs. Suitable target sites for Cas9 are 20 bp sequences that lie upstream of a protospacer adjacent motif (PAM) (NGG) (Gupta and Musunuru, 2014, Jinek et al., 2012, Cong et al., 2013). Guided to the target by the sgRNA, Cas9 introduces a double-strand break (DSB) 3 bps upstream of the PAM sequence. The DSB generated by Cas9 activates one of two repair mechanisms. One of them is nonhomologous end joining (NHEJ), which generally produces insertions/deletions (indels) disrupting a target gene. The other one is homology-directed repair (HDR). This is a process whereby a DSB is repaired by homologous recombination using a DNA template (Sander and Joung, 2014, Chang et al., 2017). In zebrafish, several studies have successfully used the CRISPR/Cas9 technology to generate gene editing with high rates in several genomic loci (Chang et al., 2013, Irion et al., 2014, Jao et al., 2013).



#### Figure 1.13 CRISPR-Cas adaptive immunity in bacteria

(A) Adaptation. During infection, the bacteria is invaded by foreign DNA. Numerous of Cas genes are expressed and bind proteins of the invading DNA (protospacers). Protospacers are incorporated into the spacer region of CRISPR locus and stored in the genome. (B) Expression and Interference. Upon subsequent infection, the CRISPR region is transcribed to produce individual spacer-repeat unites of RNA, called CRISPR RNA (crRNA). Then, the Cas -nuclease binds the crRNA. Interference occurs when the Cas-crRNA complex recognises a protospacer sequence that is complementary to the spacer, and Cas-nuclease cleaves the invading DNA. The figure was obtained from (Duroux-Richard et al., 2017).

#### 1.9 Background

It was previously reported that the majority of non-coding DNA is so-called 'junk' DNA. However, large-scale genome studies such as the ENCODE (Encyclopaedia of DNA Elements Project) has revealed the functional role of some of these non-coding DNA (Consortium, 2007, Doolittle, 2013). These previously believed non-functional DNA regions have important roles in transcription and gene regulation. Some of these non-coding DNA (elements) are evolutionally conserved among vertebrates of different species. For instance, 22% of these non-coding elements in human are also conserved in zebrafish (Hiller et al., 2013). Various conserved noncoding elements (CNEs) can act as *cis*-regulatory elements that are associated with gene regulation. The nature of different cell types in vertebrates is based on genomic regulatory information. Regulatory information is controlled by specific gene regulatory networks (GRNs) created by TFs that cooperate to activate or repress the expression of target genes (Nowick and Stubbs, 2010). The activation and gene expression of GRNs are supported by cisregulatory elements such as promoters and enhancers, which both contain specific DNA motifs to which TFs binds. Enhancers containing specific DNA binding motifs form a link between TFs and the target gene within the GRNs (Spitz and Furlong, 2012). c-Myb is an important TF that is evolutionally conserved in vertebrates during haematopoiesis (Soza-Ried et al., 2010). *c-myb* is a proto-oncogene,

whose expression produces a transcription factor that is involved in the differentiation and proliferation of neutrophil cells during haematopoiesis. However, the overexpression of *c-myb* gene could be a major health issue that may lead to leukaemia and other cancers like breast and colon cancer (Mitra, 2018). The expression of the *c-myb* gene is controlled by regulatory elements including enhancers (Zhang et al., 2016). Since the c-Myb transcription factor is essential for regulating the haematopoietic process, it will be interesting to understand how the *cis*-regulatory elements associated to the *c*-myb gene expression carry out the regulation of haematopoiesis. This study attempts to elucidate some of the important functional roles of CNE in the expression of c-Myb transcriptional regulation in zebrafish model organism. Zebrafish share about 70% of their genetic structure with humans (Howe et al., 2013). Understanding the regulation of haematopoiesis in zebrafish will also help us to understand the regulation of haematopoiesis in humans. Findings from this study, once published, will provide molecular insight into the functions of the regulatory elements in enhancing the expression of the *c*-myb gene for the regulation of the haematopoietic process. Information and data to be generated from this study could be relevant to studies on cisregulatory elements as well as to researchers, clinicians, and educators.

#### 1.10 Aims and objectives

c-Myb is an important TF that is evolutionally conserved in vertebrates during haematopoiesis. It plays a vital role in maintaining haematopoietic progenitors and regulating their differentiation (Soza-Ried et al., 2010). The expression of the *c-myb* gene is controlled by regulatory elements, including enhancers (Zhang et al., 2016). Enhancers are *cis*-regulatory elements that are important in the gene expression of specific cell types. Enhancers are usually bound by specific TFs to increase the transcription of a gene. Distal enhancers (-28 kb) are bound by the TFs Hoxa9 and PU.1 and play an important role in the regulation of the expression of *c-Myb* gene during mouse myeloid differentiation (Zhang et al., 2016). During erythroid differentiation in mice, the transcription regulation of *c-Myb* gene is controlled by distal enhancers that are bound by specific TFs like KLF1 and the GATA1/TAL1/LDB1 complex (Stadhouders et al., 2012). Previous work has shown that the downstream *c-myb* enhancer is sufficient to enhance the *c-myb* promoter activity in definitive haematopoietic cells in zebrafish embryos and adults (Hsu, 2010). Since our enhancer downstream of the zebrafish *c-myb* gene is sufficient to direct *c-myb* promoter activity in the definitive haematopoietic cells, we wanted to know whether this element was essential for *c-myb* expression during zebrafish haematopoiesis and whether it was functionally conserved

among vertebrates. To achieve this aim, we carried out the following objectives;

- We examined the exact nature of the haematopoietic cells that express our reporter transgene in the adult kidney using single-cell RNA sequencing (scRNA-Seq).
- 2. We deleted the zCNE1 from the *c-myb* locus using the CRISPR/Cas9 system to determine whether the zCNE1 is also necessary for *c-myb* expression in the definitive blood cells.
- 3. We also deleted nearby potential enhancers (PEs) downstream of zebrafish *c-myb* gene that have been identified through the identification of histone modification. We wanted to see whether the PEs contributed to *c-myb* expression in definitive blood cells.
- 4. We tested whether the conserved human enhancer is able to drive *c-myb* promoter activity to definitive haematopoietic cells in the embryo and the adult zebrafish.

#### **2** Materials and Methods

#### 2.1 Materials

#### 2.1.1 Buffers and solutions

#### Table 2.1 List of buffers and solutions

All buffers and solutions used were listed including their ingredients and the temperature they were stored at.

| Number | Buffers/<br>solutions                                       | Ingredients                                                                                               | Store |
|--------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------|
| 1      | 0.03% PTU                                                   | 0.3g U-Phenylthiourea (PTU) (Sigma, P7629) in 1 L sterile $dH_2O$ .                                       | 4°C   |
| 2      | 0.2X SSCTw                                                  | 5 ml 2xSSC, 45 ml dH2O; 225 µl<br>20%Tween20                                                              | RT    |
| 3      | 10mg/ml<br>Proteinase K                                     | Proteinase K from Tritirachium album<br>(Sigma, P2308 100 MG, 30 units/mg)<br>in glycerol storage buffer. | -20°C |
| 4      | 1X HBSS<br>buffer                                           | 10XHBSS (GIBCO, 4065049); sterile dH <sub>2</sub> O                                                       | RT    |
| 5      | 1X<br>Phosphate<br>buffered<br>saline<br>(PBS)              | 10X PBS (GIBCO, 14190250); sterile<br>dH <sub>2</sub> O                                                   | RT    |
| 6      | 1X<br>Phosphate<br>buffered<br>saline<br>Tween20<br>(PBSTw) | 1xPBS; 0.1% Tween20                                                                                       | RT    |
| 7      | 20X Saline<br>Sodium<br>Citrate<br>(SSC) pH7                | 3 M NaCl; 0.3 M Sodium Citrate                                                                            | RT    |
| 8      | 2X SSC<br>Tween20<br>(SSCTw)                                | 5 ml 20xSSC; 45 ml dH2O; 225 µl<br>20%Tween20                                                             | RT    |
| 9      | 4%<br>paraformald<br>ehyde (PFA)                            | 2 g paraformaldehyde (Sigma, 15812-7); 1M NaOH; 1xPBS                                                     | 4°C   |
| 10     | 50mM NaOH                                                   | 0.1 ml of 1 M NaOH in 2 ml of $dH_2O$                                                                     | RT    |
| 11     | 50X TAE<br>buffer<br>(stock)                                | Tris Base; glacial acetic acid; 0.5 M EDTA (pH8); $dH_2O$                                                 | RT    |
| 12     | 5X base<br>buffer                                           | 0.5 g NaOH; 2 ml 0.5 M EDTA (pH8) bring up the volume to 100ml with sterile $dH_2O$                       | RT    |

| Number | Buffers/<br>solutions                                                | Ingredients                                                                                                                                                                                          | Store                         |
|--------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 13     | 5X<br>Neutralisatio<br>n<br>Solution                                 | 3.15  g 1 M Tris-HCl (pH8) in 100 ml of sterile dH <sub>2</sub> O                                                                                                                                    | RT                            |
| 14     | 60x E3<br>Buffer                                                     | 34.4 g NaCl; 1.52 g KCl; 5.8 g CaCl <sub>2</sub> .2H2O; 9.8 g MgSO <sub>4</sub> .7H <sub>2</sub> O made up to 2 L with dH <sub>2</sub> O.                                                            | RT                            |
| 15     | Ampicillin-<br>containing<br>LB-Medium<br>(100µg/ml)                 | 300 μl of Ampicillin (100 mg/ml) in<br>300 ml of LB-Medium                                                                                                                                           | 4°C                           |
| 16     | BCL3 Buffer                                                          | 0.1 mM Tris-HCl (pH9.5); 0.1 mM<br>NaCl; 50 mM MgCl2; 0.1% Tween20                                                                                                                                   | RT (up to<br>2 weeks<br>only) |
| 17     | DNA loading dye                                                      | 6X gel loading dye (NEB, B7024S)                                                                                                                                                                     | RT                            |
| 18     | E3 Buffer<br>(working<br>solution)                                   | 15 $\mu I$ of 60x E3 Buffer & 500 $\mu I$ of methylene blue in 900 ml of dH2O                                                                                                                        | RT                            |
| 19     | Embryo Lysis<br>Buffer (ELB)<br>stock<br>solution                    | 10 ml 1M Tris-HCl pH8.5; 0.4ml 0.5 M EDTA pH8.0; 10 ml 10% Tween 20 $(0.5\%)$ in 200 ml sterile dH <sub>2</sub> O                                                                                    | RT                            |
| 20     | Embryo lysis<br>buffer (ELB)<br>working<br>solution ProK<br>(10mg/m) | ELB stock solution; 300 µg/ml<br>Proteinase K to be added fresh only at<br>the time of use                                                                                                           | Make up<br>fresh              |
| 21     | Ethidium<br>bromide                                                  | Ethidium bromide solution for fluorescence, $\sim 1\%$ in H <sub>2</sub> O (Sigma cat. #E1510)                                                                                                       | RT                            |
| 22     | FCS/PBS                                                              | 4.5 ml of 10xPBS; 2.5 ml of FCS and 45 ml sterile dH <sub>2</sub> O                                                                                                                                  | -20°C                         |
| 23     | Hybe <sup>-/-</sup><br>Buffer<br>(pH6.0)                             | 50% Formamide (Sigma, F9037); 5X SSC (pH7); 9.2 mM Citric acid; 0.1% Tween20; sterile $dH_2O$                                                                                                        | -20°C                         |
| 24     | Hybe <sup>+/+</sup><br>Buffer<br>(pH6.0)                             | 50% Formamide (Sigma, F9037); 5X<br>SSC (pH7); tRNA (50 mg/ml) (torula<br>yeast, Type VI; Sigma, R6625) 50 -2<br>mg/ml Heparin; 9.2 mM Citric acid (1<br>M); 0.1% Tween20; sterile dH <sub>2</sub> O |                               |
| 25     | Kanamycin -<br>containing<br>LB-Medium                               | - 150 μl of Kanamycin (50 μg) in 300 4°C ml of LB-Medium                                                                                                                                             |                               |
| 26     | LB- Medium                                                           | 10 g Bacto-Tryptone; 5 g Bacto-yest extract; 10 g NACI; dH <sub>2</sub> O up to 1 liter                                                                                                              | RT                            |
| 27     | MAB Block                                                            | 2% Roche-Boehringer Blocking<br>reagent TM in MAB                                                                                                                                                    | -20°C                         |
| 28     | MABTw                                                                | 50 ml MAB Buffer; 250 µl 20%<br>Tween20 (0.1%) added<br>when needed                                                                                                                                  | 4°C                           |

| Number | Buffers/<br>solutions                                          | Ingredients                                                                                                               | Store            |
|--------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------|
| 29     | Maleic Acid<br>Buffer (MAB)<br>pH7.5                           | 0.1 M Maleic acid; 0.15 M NaCl sterile $dH_2O$ ; adjust pH to 7.5 using NaOH pellets; autoclave                           | 4°C              |
| 30     | MS222 4g/L<br>pH7-7.5                                          | 4 g Ethyl 3-aminobenzoate (Tricaine)<br>methanesulfonate (MS222) (Sigma,<br>A5040-100G) adjust pH with Tris-<br>HCl pH9.5 | 4°C              |
| 31     | PBSTw 20<br>mM<br>EDTA                                         | PBSTw; 0.5 M EDTA pH8                                                                                                     | RT               |
| 32     | Proteinase K<br>working<br>solution for<br>WISH<br>experiments | Use 0.5 µg/ml of PBSTw; i.e. 1 µl of<br>stock of Proteinase K (10 mg/ml) in 1<br>ml of PBSTw.                             | Make up<br>fresh |
| 33     | SOC Medium                                                     | Tryptone 2% (w/v); Yeast extract 0.5% (w/v); NaCl 10 mM; KCl 2.5 mM; MgCl2 10 mM; Glucose 20 mM                           | RT               |
| 34     | Tween20                                                        | 10 ml Tween 20; 40 ml dH <sub>2</sub> O                                                                                   | RT               |

#### 2.2 Methods

#### 2.2.1 Single-cell gene expression profile

#### 2.2.1.1 The 10x Genomics Chromium system

## 2.2.1.1.1 Preparation, constructing and sequencing of single-cell gene expression of zebrafish kidney marrow

The kidney of transgenic zebrafish line *gmc85* was prepared as described in 2.2.5.4 and 3.1.1. Gated GFP-Positive cells were sorted using flow cytometry then sent to Deep Seq unit, University of Nottingham Next Generation Sequencing Facility. These steps were performed by Dr Nadine Holmes in the School of Life Sciences' Deep Seq unit. In summary, the procedure used by deep seq involved the preparation of a single cell 3' Whole Transcriptome Sequencing library from a dissociated cell suspension using the Chromium Single Cell 3' Library and Gel Beak Kit v2, the Chromium Single Cell A Chip Kit and the Chromium Multiplex Kit, 96 reactions (10X Genomics; PN-120267, PN-1000009 and PN-120262). Cell counts and viability estimates were obtained using the LUNA-II Automated Cell Counter (Logos Biosystems), Trypan Blue Stain (0.4%) and Luna Cell Counting Slides (Logos Biosystems; T13001 and L12001). Cells that are not stained with Trypan blue are live cells, while those stained with Trypan blue are dead cells. In LUNA-II Cell Counter, live cells were labelled with green circles, and dead cells were labelled with red circles, making it easy to confirm the accuracy of each count. Because the viability of 82% was only just below the 90%

recommended by the manufacturer https://kb.10xgenomics.com/hc/en-us/articles/115001800523-What-is-the-minimum-number-of-cells-that-can-be-profiled-, it was decided to carry on the experiment (Table 2.2). The number of input cells targeted was 5000 cells per sample, with the aim of generating sequencing libraries from  $\sim 2,500$  single cells. The 10x Genomics Chromium system uses microfluidics to combine individual cells with Single Cell 3' v2 Barcoded Gel beads (Gel Bead-In-EMulsions (GEMs)) in tiny water droplets in oil. In these droplets, the cells were lysed to release their RNA and the 3' ends of the polyadenylated RNAs were reverse transcribed and marked with a cell-specific barcode as well as a transcript-specific unique molecular identifier (UMI). All the steps, including GEM Generation and Barcoding, Post GEM-RT Clean-up and cDNA Amplification and Library Construction, were performed according to the Chromium Single Cell 3' Reagents Kits v2 User Guide. Variable steps of this protocol included using 12 cycles of cDNA amplification and 14 cycles of library amplification. Amplified cDNA was quantified using the Oubit Fluorometer and the Qubit dsDNA High Sensitivity (HS) Assay Kit (ThermoFisher Scientific; Q32854), and fragment length profiles were assessed using the Agilent 2100 Bioanalyzer and Agilent High Sensitivity DNA Kit (Agilent; 5067-4626). Completed sequencing libraries were quantified using the Qubit Fluorometer and the Qubit dsDNA HS Assay Kit and fragment length distributions assessed using the Agilent 4200 TapeStation and the HS D1000 ScreenTape Assay (Agilent; 5067-5584, 5067-5585) (Table 2.3). This library was pooled in equimolar amounts and the final library pool was quantified using the KAPA Library Quantification Kit for Illumina Platforms (Roche; KK4824). Libraries were sequenced on the Illumina NextSeq 500 using a NextSeq 500 High Output v2.5 150 cycle kit (Illumina; 20024907) to generate > 50,000 raw reads per cell for each sample, using custom sequencing run parameters described in the protocol. All sequences were then analyzed with cell ranger version 2.1.1.

#### Table 2.2 Sample QC

| Sample              | Cell conc.<br>(cells/µl) | Viability % | Amount<br>cells used<br>(µl) | Amount<br>H2O |
|---------------------|--------------------------|-------------|------------------------------|---------------|
| Martin_Zfish_Kidney | 1200                     | > 82        | 5                            | 28.8          |

| Table 2.3 Library | Preparation QC |
|-------------------|----------------|
|-------------------|----------------|

| Sample                  | No. cycles<br>cDNA Amp | cDNA –<br>conc.<br>Qubit<br>HS<br>(ng/µl) | No.<br>cycles<br>Library<br>Amp | Library<br>conc.<br>Qubit<br>HS<br>(ng/µl) | Dilution<br>factor for<br>HSD1000 | Av<br>frag<br>size<br>TS | nM     |
|-------------------------|------------------------|-------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|--------------------------|--------|
| Martin_Zfish_<br>Kidney | 12                     | 1.74                                      | 14                              | 36.3                                       | 15                                | 444                      | 123.87 |

#### 2.2.1.2 Cell Ranger analysis

Cell Ranger is a set of pipelines that are used to process output from Chromium single-cell data. Cell Ranger version 2.1.1 was used to align reads, generate feature-barcode matrices followed by clustering and gene expression analysis of our 10x Chromium singlecell RNA-seq output (2.2.1.1.1) The processes of the Cell Ranger constitute the conversion of Illumina raw's base call files (BCLs) into FASTQ files using 10x Cell Ranger mkfastq. The FASTQ files were then imported into Cell Ranger Count to generate the gene cell matrix. Here, the sequences of barcode and UMI were extracted and aligned to the transcriptome. The non or duplicated barcodes and UMIs were then filtered. The clustering differential expression gene was run by the following steps; Principal Component Analysis (PCA) was run on filtered gene cell matrix to reduce the number of genes, graph-based (Louvain) and K-means clustering were then performed identify clusters of cells, t-SNE (t-stochastic neighbour to embedding) dimensionality was then run to create the twodimensional projection, sSeq (a bioinformatic tool for differential gene expression) analysis was then used to find the genes that differentially characterize each cluster. These steps were performed by Dr Fei Sang, a bioinformatician based in Deep Seq. 10x Genomics' Loupe Cell software (version 3.1.0) was then used to visualize the files produced by Cell Ranger.

## 2.2.1.3 Re-analysis of Dinh and colleague' and Grassi colleagues' published data

In order to re-analyse Dinh and colleagues' data (Dinh et al., 2020), the Short Read Archive (SRA) files for their data were obtained from NCBI, which was deposited in the Gene Expression Omnibus (GEO) under the accession number GSE153263 and imported to CyVerse online analysis platform (<u>https://www.cyverse.org/</u>). In CyVerse, the SRA files were converted into FASTQ files using NCBI-SRA-Fastq2.8.1 application. The sequence reads were then mapped against the human reference genome and gene annotation (GRCh38.p13) to obtain Binary Alignment Map (BAM) files using HISAT2-index-align-2.1 application. The BAM files then were imported into the SeqMonk program (v1.47.1) using Homo sapiens GRCH38\_v97 for visualization and analysis data. Regarding Grassi and colleagues' study, the comma separated values (CSV) tables were obtained from their data then imported to GraphPad PRISM (v9.0.0 (121)) software for more analysis (Grassi et al., 2018).

## 2.2.2 Targeting interest regions of downstream of *c-myb* gene using CRISPR/Cas9 system

#### 2.2.2.1 Single guide RNA (sgRNA) design

Suitable target sites (TSs) within the region downstream of *c-myb* of zebrafish (upstream and downstream of zRE1) were identified CRISPRscan UCSC using the track tool (<u>https://www.crisprscan.org/</u>) (Moreno-Mateos et al., 2015) (Figure 2.1A). The CRISPRscan tool identifies target sites as 20-bp sequences that start with a GN/NG dinucleotide and are followed by an NGG PAM sequence. All suitable TSs must have sequences of either 5'-GN-( $N_{18}$ )-PAM-3' or 5'-NG-( $N_{18}$ )-PAM-3'. In the sgRNA, these sequences are modified to a 5'-GG-N18-3' sequence. The PAM sequence at the 3' end is required by Cas9. The GN/NG dinucleotide at the 5' end is needed to allow efficient in vitro transcription of the

single guide RNA gene by T7 RNA polymerase once the TS sequence was cloned into the sgRNA expression vector pDR274 that was created by Joung lab's (Hwang et al., 2015). Primers were designed and they contain 5' overhangs to allow the integration into the *BsaI* digested pDR274 vector fragment. All oligonucleotides were ordered from Sigma-Aldrich (Figure 2.1B). Table 2.4 shows all TSs sequences and primers designed.





#### Figure 2.1 Identification of suitable Cas9 target sites (TSs)

(A) The location of candidate TSs 16, 17, 2 and 7 are indicated by orange, purple, blue and light green lines, respectively. The zebrafish conserved noncoding element number one (zCNE1) is shown as a red box. A pink box shows the zebrafish regulatory element one (zRE1). The light blue boxes show the potential enhancers MP40036-, MP40036, MP40037 and MP40037+. The latter PE MP40037+ overlaps with zRE1. (B) Sequences of suitable Cas9 target sites are shown as they appear on the plus strand of chromosome 23. Please note that TSs 16 and 17 are on the minus strand while TSs 2 and 7 are on the plus strand of chromosome 23. Blue letters indicate the dinucleotides at the 5'-ends of target sites. These dinucleotides are required to be GG, GN or NG sequences. In the guide RNA expression constructs, GN and NG sequences are modified to GG dinucleotides to allow the efficient use of the T7 promoter in the in vitro transcription reaction. Red letters represent the protospacer adjacent motif (PAM) sequences.

#### Table 2.4 List of the sequences and oligonucleotides used for targets site

| TS | Strand | Sequence 5'→3'<br>with <u>PAM</u><br>A = Point of SNP T>A | Score<br>value | Off-<br>target<br>site | Gering Lab Data<br>Base (DB) #<br>Foreword<br>Primers/Revers<br>Primers | Oligos sequence<br>(F)5'→3'/(R)3'→5'<br>with overhangs |
|----|--------|-----------------------------------------------------------|----------------|------------------------|-------------------------------------------------------------------------|--------------------------------------------------------|
| 2  | +      | GATGGTAGCGGGTGGGGAGG                                      | 92             | 0                      | DB978                                                                   | taGgTGGTAGCGGGTGGGGAGG                                 |
|    |        |                                                           |                |                        | DB979                                                                   | aaacCCTCCCCACCCGCTACCA                                 |
| 7  | +      | GTAGCCACTCCTCGTTCCAC <u><b>TGG</b></u>                    | 44             | 0                      | DB1263                                                                  | taGgAGCCACTCCTCGTTCCAC                                 |
|    |        |                                                           |                |                        | DB1264                                                                  | aaacGTGGAACGAGGAGTGGCT                                 |
| 16 | -      | <b>CCA</b> TTATATACATAGTTGTGCTC                           | 42             | 0                      | DB1363                                                                  | taGgGCACAACTATGTATATAA                                 |
|    |        |                                                           |                |                        | DB1364                                                                  | aaacTTATATACATAGTTGTGC                                 |
| 17 | -      | <b><u>CCC</u></b> CACAGTATATTATATCTACA                    | 51             | 0                      | DB1367                                                                  | tagGTAGATATAATATACTGTG                                 |
|    |        |                                                           |                |                        | DB1368                                                                  | aaacCACAGTATATTATATCTA                                 |

#### 2.2.2.2 The generation of the complementary sgRNA

To clone the TS sequences into pDR274, two complementary TS sequence oligonucleotides were made that carried additional sequences at their 5' ends that generated cohesive ends that were compatible with the 5' overhangs that were generated by cutting the pDR274 vector with the BsaI restriction endonuclease as described in section 2.2.4.13 (Figure 2.2Ai-ii). The oligonucleotide pairs were annealed and then ligated with the *BsaI*-digested vector fragment (Hwang et al., 2013b) (Figure 2.2Aiii). Successful *BsaI* digestion of the vector had been confirmed by agarose gel electrophoresis (Figure 2.2Aiiii). The ligation products were used to transform chemically competent E.coli. Kanamycin-resistant bacteria were identified on Kanamycin-containing agar plates. Plasmid DNA was prepared from these bacteria. The DNA was digested with BsaI and DraI. Plasmids that contained a TS sequence insert were expected to be digested with DraI but not with BsaI as the integration of the TS sequence should abolish the BsaI restriction sites in the vector (Figure 2.2B). The DNA sequences of the plasmids were subsequently confirmed by Sanger sequencing (Figure 2.2C). Plasmids that contained the correct TS sequence were used to generate sqRNA run-off transcripts. For this purpose, DraI was used to linearise the sgRNA vector as described in section 2.2.4.14 Figure 2.2D-F). Next, T7 RNA polymerase was used to *in vitro* transcribe the plasmid and generate a sgRNA (Figure 2.2G). In this project, all

gRNAs were designed and produced using the same procedure (Figure 2.3A-J).



#### Figure 2.2 sgRNA design and synthesis

sgRNA of *c-myb* TS2 is used as an example. **(A)** the diagram shows the cloning of TS2 into the pDR274 vector. **(i)** Generation of the TS2 linker with pDR274-compatible sticky ends. **(ii)** Generation of the pDR274 vector fragment by BsaI digestion. **(iii)** A sequence of the recombinant pDR274 plasmid that carries the TS2 linkers after ligation (blue letters). **(iiii)** A representative agarose gel after electrophoresis of a restriction digest of

plasmid DR274 with BsaI. After transformation of E.coli with the ligation mix, plasmids were prepared and digested with the restriction enzymes BsaI and DraI. These digests were used to identify the colonies that carry the plasmid with the TS2 insert. Successful cloning of the TS sequence eliminates the BsaI restriction sites from the plasmid. Thus, plasmids with TS sequences can be digested with DraI but not with BsaI. (B) A representative gel of plasmid DNAs digested using *BsaI* and *DraI* enzymes. Lane 1 shows undigested plasmid. Lane 2 depicts *BsaI* digest. Lane 3 show plasmid digested with DraI. (C) Sanger sequencing with primer DB627 shows the presence of TS2 within the pDR274 plasmid. (D) Map of the pcmybTS2 plasmid containing *c-myb* TS2 insert. (E) Map of *c-myb* TS2 plasmid linearised with DraI which contains T7 promoter. (F) Shows representative gel of *c-myb* TS2 plasmid digested using *DraI* enzyme. A red arrow refers to the DraI fragment. (G) Shows representative agarose gel after electrophoresis of the *c-myb* TS2 sgRNA product generated in an in vitro transcription reaction with T7 RNA polymerase. Please note that a DNA ladder was used here. As single-stranded RNA migrates through the gel faster than double-stranded DNA of the same size, sizes are not directly comparable.



#### Figure 2.3 Successful cloning of the TS7, 16 and 17 linkers

(A) Map of plasmid pDR274. (B, E and H) Maps of the recombinant pDR274 plasmids that carry the TS7 (green arrow), TS16 (orange arrow) and TS17 (purple arrow), respectively. (C, F and I) Sanger sequencing with M13 forward primer confirms the presence of TSs 7, 16, 17 within the pDR274 plasmid. (D, G and J) Show representative agarose gel after

electrophoresis of the *c-myb* TS7, 16 and 17 sgRNAs products generated by *in vitro* transcription with T7 RNA polymerase.

## 2.2.3 Establishment of stable human regulatory element one (hRE1) zebrafish transgenic line

### 2.2.3.1 Generation of a GFP reporter construct containing human *C-MYB* CNE1

The hRE1 fragment was PCR amplified on the genomic DNA isolated from human embryonic stem cells using primers DB1216 and DB1217 (Table 2.5) with a genomic of human embryonic stem cells. The cells were obtained from cell line of male HUES7 hESCs which were maintained in Essential 8<sup>™</sup> (E8) medium with 278 supplements (#A1517001) on Matrigel<sup>™</sup>-coated tissue culture flasks at 37 °C with 5 % CO2. The genomic DNA of human embryonic stem cells was prepared and kindly provided by Abdulkadir Abakir from Dr Alexey Ruzov's lab.

| Gering Lab Data Base<br>(DB) # | Sequence 5'-3'         |
|--------------------------------|------------------------|
| Primer/Reverse Primer          |                        |
| DB1216                         | GGGGTTGGAGCAGGAATAATT  |
| DB1217                         | AAGTTTGGTAGCTTCAGTTTGG |

 Table 2.5 List of primers used for genotyping of C-MYB hRE1

The PCR amplification generated a 1 kb fragment. Its sequence was confirmed by Sanger sequencing. The sequence also revealed the presence of three SNPs relative to the reference sequence (Appendix figure 6. 1). Next, this 1 kb hRE1 fragment was cloned in a two-step process into the Tol2 *c-myb* reporter construct. First, it was inserted into pGEM-Teasy to introduce ApaI and SbfI restriction sites at its ends. Then, these sites were used to clone the fragment in the place of zRE1 in the *Tol2 c-myb* reporter construct on pJC117.

To perform the first cloning step, the 1 kb hRE1 fragment was ligated to the linear pGEM-T Easy plasmid using T4 DNA ligase (Figure 2.4A). Chemically competent E. coli were transformed with the ligation mix. Plasmid DNA was prepared from the transformants and was digested with the restriction enzyme *EcoRI* to confirm that the fragment had been cloned. The newly generated plasmid, called pJHB, was expected to carry 3 *EcoRI* restriction sites, one of which is present in the hRE1 fragment (Figure 2.4B). Agarose gel electrophoresis revealed three bands representing the expected  $\sim 3$ kb vector fragment, as well as  $\sim$ 700 bp and  $\sim$ 300 bp fragments. The *EcoRI* digests verified the presence of three *EcoRI* restriction sites, suggesting that the new plasmid construct carried the hRE1 insert (Figure 2.4B). In addition, the DNA sequence of the plasmid was confirmed by Sanger sequencing (Figure 2.4C). The sequence also revealed the orientation of the hRE1 fragment in the pGEM-Teasy vector.



#### Figure 2.4 Amplification of hRE1 and cloning in pGEM-Teasy

(A) The 1 kb human regulatory element one (hRE1) was amplified by PCR using the primers DB1216 and DB1217 on human genomic DNA. PCR products were separated on a 1% agarose gel and visualised with ethidium bromide (EtBr). The fragment that had the expected size of  $\sim$ 1 kb was purified from the gel. The purified hRE1 fragment was ligated with the linear pGEM-Teasy vector using T4 DNA ligase. Chemically competent *E. coli* were transformed with the ligation mix and plated on Ampicillin-containing agar plates. (B) Plasmid DNA was extracted from Ampicillin-

resistant bacteria and digested with *EcoRI*. The products of the restriction digests were analysed by agarose gel electrophoresis. A representative agarose gel is shown here. Lane 1 shows a 1 kb ladder. Lane 2 shows the undigested plasmid. Lane 3 depicts the DNA of the *EcoRI* digest. **(C)** Sanger sequencing using M13F reveals the presence of hRE1 fragment and its orientation within the pGEM-Teasy plasmid. The plasmid was called pJHb. Its restriction map is shown.

In the second step, the *ApaI* and *SbfI* restriction sites that flank the hRE1 fragment were used to replace the zRE1 fragment in the transgene construct on plasmid pJC117. For this purpose, both plasmids were digested with ApaI and SbfI (Figure 2.5A). Following digestion, preparative gel electrophoresis was carried out to separate the digestion products and to isolate the hRE1 fragment of pJHb and the vector fragment of pJC117 (Figure 2.5B). The two DNA fragments were ligated, and the ligation mix was used to transform *E. coli.* Ampicillin-resistant colonies were identified (Figure 2.5C). Plasmid DNA isolated from resistant bacteria were then subjected to restriction digestion with ApaI and SbfI to determine whether the hRE1 insert had been ligated into the pJC117 vector. Gel electrophoresis was then performed. The gel revealed a large DNA fragment of approximately 14 kb that corresponded to the pJC117 vector fragment. The small  $\sim 1$  kb fragment represented the hRE1 insert (Figure 2.6A). Because zRE1 and hRE1 have a similar size, BsaI restriction digests were used to distinguish between the two REs. The original pJC117 plasmid carries three *BsaI* restriction sites, one of which is present in zRE1. Unlike zRE1, hRE1 does not possess

a *BsaI* site. Thus, the new hRE1-containing plasmid was expected to have only 2 *BsaI* sites (Figure 2.6B). The *BsaI* digests confirmed the presence of only two *BsaI* restriction sites, suggesting that the new plasmid construct, called pJHE1, carried the hRE1 insert (Figure 2.6B). Sanger sequencing with primer DB307 confirmed the presence of the hRE1 insert (Figure 2.6C). It is worth noting that the orientation of the hRE1 sequence in pJHE1 was identical to that of zRE1 and mRE1 in their respective *Tol2* plasmids. In all three reporter constructs, the orientation of the CNE1 is flipped relative to the orientation of the EGFP reporter gene.

The co-injection of Tol2 vectors and transposase mRNA were performed by injecting solution mix. This solution was prepared by adding 1 µl of the Tol2 plasmid (with concentration 450 ng/µl) and 0.5 µl of transposase mRNA (with concentration 467 ng/µl), then dH<sub>2</sub>O was added to a final volume to 10 µl. One-cell stage wt embryos were injected with 0.5 µl of this solution. The generation of stable hRE1 transgenic line was explained in detail in 3.7.1.



### Figure 2.5 Generation of the hRE1-zPF5:*egfp* reporter transgene – Part 1

(A) Plasmids pJC117 and pJHb were digested using the restriction enzymes *ApaI* and *SbfI*. The diagram shows the restriction maps of pJC117 (vector) and pJHb, as well as the maps of the pJC117 vector and pJHb hRE1 fragments. (B) Agarose gel electrophoresis was used to separate the restriction fragments. Lane 1 shows a 1 kb ladder. Lanes 2 and 4 show undigested pJC117 and pJHb plasmids, respectively. Lanes 3 and 5 depict the *ApaI* and *SbfI* digests. Red boxes highlight the ~14 kb pJC117 (vector) and the ~1 kb hRE1 fragment (insert) that were purified from the gel and ligated using T4 DNA ligase. The ligation mix was used to transform *E. coli*.





### Figure 2.6 Generation of the hRE1-PF5:*egfp* reporter transgene – Part 2

(A) Agarose gel electrophoresis of the *ApaI* and *SbfI* double digest of the newly generated plasmid pJHE1. (B) Agarose gel electrophoresis of the *BsaI* digest of plasmid pJHE1. (C) Sanger sequencing with primer DB307 confirms the presence of hRE1 in pJHE1.
### 2.2.4 Molecular biology methods

### 2.2.4.1 Fin clipping of adult zebrafish

To collect fin clip biopsies, adult fish were anaesthetised in a tank that contained 200 ml facility water to which approximately 6 ml of 4 g/L MS222 was added. To make sure that the fish was fully anesthetised, it was observed for a while until it turns its belly up. The anaesthetised fish was then carefully transferred onto a petri dish or clean surface using a plastic spoon. Next, a fin clip biopsy was obtained using sterilised surgical scissors at a point not more than halfway between the tip of the fin and the point where the scales end. The fin clip was carefully transferred into a 1.5 ml Eppendorf tube, and the tube was placed on ice for further processing. Individually, fully recovered fin clipped fish are housed in a narrow tank. Health monitored daily for one week.

# 2.2.4.2 Genomic DNA isolation from embryos and fin clip biopsies

Anaesthetised embryos (0.7ml 4 g/l MS222 in 25ml E3 buffer) or fin clip biopsies were moved to tubes. The surplus liquid was removed, and proteinase K working solution (ProK) (see Table 2.1) was added: 20µl to an individual embryo and 50µl per fin clip biopsy. Tissues were incubated overnight at 55°C in a hot block. The next morning, the tubes were vortexed and centrifuged. To inactivate proteinase K, the tube's content was heated at 100°C for 20 minutes. After 20 min, the tubes were cooled for 5 minutes, and sterile distilled water was added to a final volume of 100  $\mu$ l. 1  $\mu$ l of the gDNA solution was used in a 25  $\mu$ l PCR reaction for genotyping.

# 2.2.4.3 gDNA extraction from embryos after whole-mount RNA in situ hybridisation

After staining in a whole-mount RNA in situ hybridisation experiment (see 2.2.5.3), embryos are fixed and then washed into 80% glycerol/ 20% PBSTw. Embryos then photographed. Those embryos that were meant to be genotyped were transferred individually into 1.5 ml Eppendorf tubes. The embryos were then slowly washed out of 80% glycerol/PBSTw. Embryos were incubated for 5 min each in 50% and then in 30% glycerol (in PBSTw). Finally, three 5-minute washes in 1X PBSTw followed. The PBSTw was removed after the final wash and embryos were then incubated in 100 µl of a 300 mM NaCl solution at 65°C for 4 hours. The NaCl was discarded and 25 µl 1X Base buffer were added to each embryo before the tubes were incubated at 95°C for 20 min. Next, the tubes were cooled for a minute. Then, 25 µl 1X neutralisation solution was added. At 3000 rpm and for 5 min, the tubes were vortexed and centrifuged at 3000 rpm for 5 min in a microcentrifuge. The gDNA is in the supernatant, and a 2-3  $\mu$ l of gDNA used in a 25  $\mu$ l PCR reaction.

### 2.2.4.4 Primer design

Primers for all PCR reactions were designed using Primer 3 web

(version 0.4.0) (<u>http://bioinfo.ut.ee/primer3-0.4.0/</u>) (Table 2.6) and

(Table 2.7).

| Table 2.6 List of primers | used for genotyping | and sequencing of c- |
|---------------------------|---------------------|----------------------|
| <i>myb</i> mutants        |                     |                      |

| Mutant                         | Gering Lab Database (DB) #<br>Forward Primers/Reverse<br>Primers |           | Sequence 5'-3'           |
|--------------------------------|------------------------------------------------------------------|-----------|--------------------------|
| <i>c-myb</i> <sup>t25127</sup> | External                                                         | DB827     | TTGGAAGAACTTGAGGGTGAG    |
|                                | primers                                                          | DB828     | AGAGCAAGTGGAAATGGCAC     |
|                                | Internal                                                         | DB980     | GGAAGAACTTGAGGGTGAGTAAA  |
|                                | Primers                                                          | DB981     | TGTGTTGCTTGGTGTGTGAT     |
|                                | Sequencing<br>Primer                                             | RP/DB1446 | TTGTAGTTCAGGAGGTGAGGTTT  |
| c-mybqmc193                    | External                                                         | DB1436    | AAAACCCCACACACCTGCT      |
|                                | primers                                                          | DB1437    | GGGGGAAATACCCTTTTCAA     |
|                                | Internal                                                         | DB871     | CACACCTGCTCTCTGTCTGA     |
|                                | Primers                                                          | DB899     | GCTTTGTGTGCGTCAAGTGT     |
| <i>c-myb</i> <sup>qmc194</sup> | External                                                         | DB1365    | TCTTTTCCACTTTGCATCTCC    |
|                                | primers                                                          | DB1437    | GGGGGAAATACCCTTTTCAA     |
|                                | Internal                                                         | DB1371    | CTTAGTATCCAAATCCATTTTGAG |
|                                | Primers                                                          | DB732     | TGCAGCATTGGATCTTTCAC     |

### Table 2.7 PCR primers of *c-myb* map and locations

A list of all primers used in PCR amplifications and the genomic locations (Ensembl Release 94 October 2018 GRCz11) of all PCR fragments downstream of the c-myb gene.

| PCR<br>Number | Gering Lab Data<br>Base (DB) #<br>Forward Primers | Sequence 5'-3'                                        | Genomic Location<br>(Ensembl Release 94 October |
|---------------|---------------------------------------------------|-------------------------------------------------------|-------------------------------------------------|
| оп мар        | Reverse Primers                                   |                                                       | 2018 GRC211)                                    |
| 1             | FP DB1365<br>RP DB1366                            | TCTTTTCCACTTTGCATCTCC<br>TTTGTTTCTATGCGTGTGTGC        | chr23 31830040 31830535                         |
| 2             | FP DB885<br>RP DB1370                             | ATTATTCAGGGGTCGGCACA<br>ATAGCAGCAAGGGCAGGATA          | chr23 31830547 31831223                         |
| 3             | FP DB930<br>RP DB931                              | CTTGTTGAAGCTGCTGTGGT<br>TGTTGCAATCGGTTTCCTCA          | chr23 31831665 31832418                         |
| 4             | FP DB887<br>RP DB888                              | CACCTGCAGCTTCTCTACGA<br>ATGGGCACACATATGAACGC          | chr23 31831781 31832866                         |
| 5             | FP DB928<br>RP DB929                              | TGTCCAAACACTGACTACGTT<br>ATGCCCTAGTAGAGCTTTATGTC      | chr23 31834618 31835606                         |
| 6             | FP DB889<br>RP DB890                              | GTCACCTCTGCATTGAAGGC<br>TTGCCAGTGACCCGGTAAAT          | chr23 31835863 31836242                         |
| 7             | FP DB891<br>RP DB892                              | CATTTGGCGATGCAGGTGT<br>GAGACCCGAGCAGAGTTTCT           | chr23 31836409 31837379                         |
| 8             | FP DB932<br>RP DB933                              | CAGCAGAAATGATAAAGGCCCA<br>CACACACACACCCTCATTGA        | chr23 31836881 31837869                         |
| 9             | FP DB966<br>RP DB967                              | GGGTTACAGGAATGGAAAGGC<br>TGGGGTTCGGATTCTCTTCC         | chr23 31837912 31838471                         |
| 10            | FP DB895<br>PR DB894                              | GGAAGAGAATCCGAACCCCA<br>AGTTACGTCCTCAGGCTATTG         | chr23 31838388 31839226                         |
| 11            | FP DB101<br>RP DB080                              | CTGGGAAACATCTACACACACA<br>CTAGTCCAAACCACAGGAAATC      | chr23 31840170 31841222                         |
| 12            | FP DB1192<br>RP DB1193                            | TATTAGCCGGATGTTGCAGC<br>TGCAGCATTGGATCTTTCACA         | chr23 31840991 31841281                         |
| 13            | FP DB1251<br>RP DB1252                            | CCAATGCTGCAGTAAACTTGA<br>CATTTTAGTGAGCACTTCCGTA       | chr23 31841237 31841695                         |
| 14            | FP DB1253<br>RP DB1254                            | TTTGTGACATCCCCATGTGT<br>CAGGAACTAACAAAGAACGACA        | chr23 31842038 31842560                         |
| 15            | FP DB1255<br>RP DB1256                            | CCACCTAAGCTCACATACTGAGA<br>TA<br>AAATTATGAGGCCCCCTTTG | chr23 31842265 31843055                         |
| 16            | FP DB1257<br>RP DB1258                            | CATTAACTGGCAGGTTAGGGTAA<br>AGACTGGCTTTGTGAGTTGGA      | chr23 31842707 31843365                         |
| 17            | FP DB900<br>RP DB901                              | ACCTGGCCAATTGAGAGACA<br>GGCGGGAATTGAATTTGGGT          | chr23 31843498 31844473                         |
| 18            | FP DB934<br>RP DB935                              | CACACACACACTGACCCCAA<br>TAGTTTGCAACCACTTACCACT        | chr23 31846610 31847598                         |
| 19            | FP DB902<br>RP DB903                              | TCCACCCCACATTAGACACG<br>CCCAGTGACAGGTTTTGCAT          | chr23 31848547 31848804                         |

### 2.2.4.5 Polymerase chain reaction (PCR)

PCR is a method generally used in genetic screening, for genotyping or to amplify a DNA fragment of interest. In this project, it was carried out in 0.2 ml PCR tubes with a reaction volume of  $25-50 \mu$ l using a TECHNE TC-512 thermocycler (Bibby Scientific). The reaction components and cycling conditions used in this PCR are summarised in Table 2.8 and Table 2.9:

#### Table 2.8 PCR thermocycling conditions

| Components                          | Total volume 25 µl |
|-------------------------------------|--------------------|
| 10X Standard Taq reaction buffer    | 2.5 μl             |
| dNTPs (2 mM)                        | 2.5 μl             |
| Forward primer (10 $\mu$ M)         | 1 µl               |
| Reverse primer (10 µM)              | 1 µl               |
| DNA template (100 ng/µl)            | 1 µl               |
| NEB Taq DNA polymerase (1.25 units) | 0.5 μl             |
| dH <sub>2</sub> O                   | 16.5               |

Table 2.9 PCR reaction volumes

| Thermocy     | cler Steps | Temperature | Time      |
|--------------|------------|-------------|-----------|
| Initial dena | ituration  | 94 °C       | 2 min     |
| 40 Cycles    | Melting    | 94 °C       | 15 sec    |
|              | Annealing  | 55-65 °C    | 30 sec    |
|              | Extension  | 72 °C       | 1 min/1kb |
| Final Exten  | sion       | 72 °C       | 5 min     |
| Hold         |            | 4 °C        |           |

### 2.2.4.6 Agarose gel electrophoresis

PCR products were examined by agarose gel electrophoresis. In general, agarose gels were prepared by dissolving agarose powder (Thermo Fisher Scientific, Waltham, MA, USA) (1-2 % based on the size of the expected PCR fragment) in 0.5x (for DNA) or 1.0x (for

RNA) Tris-acetate-EDTA (TAE) buffer in a microwave. Once gel cooled down, 0.5 mg/ml of ethidium bromide (EtBr) was added then gel solution was poured into a gel tray. DNA loading dye (0.1 x volume) was added to all samples before they were loaded into the gel. One kb or 100 bp NEB DNA Ladder were run with samples as markers. separate DNAs of different size То sizes, the electrophoresis performed at 100 V for 30 min in an Advance Mupid®-ex electrophoresis chamber. Preparative gels used to isolate specific DNA fragments were run more slowly at 50 V for 1 hour to achieve better fragment resolution. The DNA fragments were visualized on a UV transilluminator (Bio-Rad Chemi XRS Gel Documentation system).

#### 2.2.4.7 DNA extraction from agarose gel

To obtain DNA, the band of interest was cut out using a scalpel while the gel was placed on a UV illumination box. A GenElute PCR Clean-Up Kit (Sigma cat. #NA1020) was used to extract DNA from the agarose, following the manufacturer's instructions.

#### 2.2.4.8 Ligation

DNA ligations were prepared using NEB T4 DNA ligase (NEB). The DNA of interest was ligated into the vector at a molecular ratio of 1:3 vector to insert as followed Table 2.10:

| Component                | 10µl Reaction |
|--------------------------|---------------|
| 10x T4 DNA ligase buffer | 1µl           |
| Vector                   | 50 ng         |
| Insert DNA               | 150 ng        |
| T4 DNA ligase            | 0.5 µl        |
| dH <sub>2</sub> O        | up to 10 µl   |

 Table 2.10 The general ligation reaction

The ligation reaction mixture was incubated at room temperature for 4 hours or at 16 °C overnight and used to transform chemically competent *E.coli* cells the following day.

# 2.2.4.9 Transformation and Mini/Midi-preparation of plasmid DNA

A 50  $\mu$ I aliquot of competent subcloning efficiency *E.coli* (DH5a, NEB, Cat. #C2987H) or 20 $\mu$ I of *E.coli* (5-alpha *E.coli* high efficiency, NEB, Cat. #C2987I) were transformed with ligation mixes or established plasmid DNAs. Cells were thawed on ice for 15 min. Two to five  $\mu$ I of ligation mix or a small volume of plasmid DNA solution (e.g. 0.5  $\mu$ I of a 200 ng/ $\mu$ I solution) were added to the competent cells. The tube was flicked carefully 4–5 times to mix cell and plasmid DNA. The suspension was kept on ice for 30 min and then heated shocked at 42°C for 40–90 seconds (based on plasmid size). The mix was placed again on ice for 5 minutes. Subsequently, 500  $\mu$ I of SOC Medium were added to the bacteria cells. The cell mixture was then incubated at 37°C in a shaking incubator for 1 hour to achieve phenotypic expression. Next, 150–200  $\mu$ I of the culture was plated out on LB agar plates that contained Kanamycin (50 $\mu$ g/mI) or Ampicillin (100µg/ml) depending on the resistance encoded by the plasmid vector. The plates were incubated at 37°C overnight. The next day, single colonies were picked on a fresh agar plate and used to inoculate liquid cultures, 3 ml cultures for plasmid mini-preps or 100 ml cultures for plasmid midi-preps. The liquid LB media contained 50 µg/ml kanamycin or 100 µg/ml ampicillin depending on the antibiotic resistance encoded by the plasmid vector. The plasmid DNA was isolated using the Sigma GenElute Plasmid Miniprep Kit (PLN-70) or the Nucleobond Xtra MidiPrep Kit (NucleoBond Xtra Midi Plus, cat. #740412.10) for plasmids of interest.

### **2.2.4.10** Restriction enzyme digest

DNA Restrictions were typically carried out in a total reaction volume of 20 µl (Table 2.11). All restriction digests were prepared using the manufacturer's recommended buffer. Most reactions were incubated for 2 h at 37°C or at the recommended temperature. All restriction enzymes and buffers were from New England Biolabs (NEB).

| Components         | Total volume 20 µl |
|--------------------|--------------------|
| Restriction enzyme | 10 units           |
| DNA template       | 1 µg               |
| 1x Buffer          | 2 µl               |
| dH <sub>2</sub> O  | up to 20 µl        |

Table 2.11 The general restriction digest reaction

### 2.2.4.11 Measuring DNA and RNA concentration

The concentrations of purified DNA and RNA were determined using a Nanodrop Spectrophotometer ND-1000 (ThermoFisher Scientific, UK). An A260/280 absorbance ratio was considered to indicate high purity of DNA ( $\approx$ 1.8–2.2) and RNA ( $\approx$ 1.7–2.0).

### 2.2.4.12 DNA Sequencing

For Sanger sequencing, 5  $\mu$ l of purified PCR product (1 ng/100 bp) or plasmid DNA (100 ng/ $\mu$ l), as well as 5  $\mu$ l of the appropriate primer solution (10  $\mu$ M) were sent to Source BioScience Ltd. (Nottingham, UK).

### 2.2.4.13 Cloning of the target site linker in pDR274

The pDR274 plasmid was digested with *BsaI* (NEB, cat #R3535L) at 37°C for overnight. On the following day, the sample was run on 1% agarose gel to check that the DNA had been digested. Then, the vector fragment was isolated from the agarose gel. Next, to make a double-stranded DNA linker, 10  $\mu$ l of each of the two DNA oligos (100  $\mu$ M) encoding the target site were mixed and heated at 95 °C for 5 min and subsequently cooled to RT to allow the oligos to hybridise to form the linker. The linker was ligated to the *BsaI* vector fragment using T4 DNA ligase overnight at 16°C. The ligation mix is shown in (Table 2.12)

| Components          | 10 µl Reaction |
|---------------------|----------------|
| Annealed linkers    | 2 µl           |
| pDR274 Bsal free    | 5 µl           |
| 10x ligation buffer | 1 µl           |
| dH2O                | 1.5 µl         |
| T4 DNA ligase       | 0.5 μl         |

Table 2.12 The ligation mix to insert the linker into the pDR274 vector

The next day, the mixture was used to transform subcloning efficiency *E.coli* (DH5a, NEB, Cat. #C2987H). After the heat shock and after phenotypic expressed the cells were plated on LB/kanamycin (50 µg/ml) plates as previously described in section 2.2.4.9. Several colonies grown on the plate were picked on a fresh plate and used to inoculate 3 ml LB medium liquid cultures that were incubated overnight in a shaking incubator at 37 °C. From these cultures, plasmid DNA was extracted using the miniprep kit as described previously. The restriction digest was then performed from the extracted plasmid DNA using *DraI* (NEB, cat. #R0129L) and *BsaI* to confirm that the bacterial colonies carry a plasmid with the correct TS sequence. DNA concentration was measured by using the Nanodrop spectrometer. The samples were sent for sequencing using M13F primer. This was to verify the sequence of the TS sequence. Subsequently, plasmid midi preps were performed on bacteria grown in 100 ml overnight cultures as described in the previous section.

#### **2.2.4.14 sgRNAs synthesis for Microinjection**

To cut the *DraI* fragment from plasmid, 10 µg of the customized sgRNA vector DNA of interest was linearized using the DraI enzyme. To confirm the digestion, 2  $\mu$ l of the reaction mixture was run on 1% analytical agarose gel. The *DraI*-digested DNA was used to produce sgRNA by in vitro transcription using T7 polymerase as shown in (Table 2.13). The reaction was incubated at 37 °C for overnight. At the end of the incubation, 1 µL of TURBO DNase (mMESSAGE mMACHINE, Cat no. AM1344) was added to digest the DNA template then the reaction was incubated at 37 °C for another 15 min. To stop the reaction, 15 µL of 5 M ammonium acetate, 100mM EDTA (mMESSAGE mMACHINE, Cat no. AM1344) was added and then add 35  $\mu$ L of dH<sub>2</sub>O. The RNA product was then purified using phenol:chloroform:isoamyl alcohol (25:24:1) extraction to remove all enzyme and most of the free nucleotides. The mix was then vortexed and centrifuged at 13.000 rpm for 10 minutes. Next, the upper aqueous phase was collected and transferred to a fresh Eppendorf tube. Subsequently, an equal volume of а chloroform: isoamyl alcohol (24:1) mix was added, vortexed and centrifuged at 13.000 rpm for 10 minutes. The upper phase was transferred to a fresh Eppendorf tube and 1 volume of 100% isopropanol was added.

The sample was vortexed and incubated for 30 minutes at -80 °C. Then, the sample was centrifuged for 10 minutes at 13.000 rpm to pellet the RNA. Next, the supernatant was discarded, and the RNA pellet was washed with 200  $\mu$ L of 70% ethanol and then dried. The dried pellet of RNA was resuspended in 15  $\mu$ l of nuclease-free water. Finally, the concentration of sgRNA was measured by using Nanodrop spectrometer. To make sure that the sgRNA is not degraded, a mix of 2  $\mu$ L of the sgRNA, 5  $\mu$ L of RNA loading day (mMESSAGE mMACHINE, Cat no. AM1344) and 3  $\mu$ L of dH<sub>2</sub>O was incubated at 65°C for 10 minutes then placed in ice for 1 minute. The mixture was run on a 1.5% agarose gel (in 1.0x TAE buffer) and the product was kept at -80°C.

| Components                                    | 100 µl |
|-----------------------------------------------|--------|
| 5x transcription buffer                       | 20 µl  |
| DTT                                           | 10 µl  |
| RNasin (Promega, cat. #N251A)                 | 1 µl   |
| Unlabeled rNTPs (25mM)<br>(NEB, cat. #N0446S) | 2 µl   |
| RNA polymerase (T7)<br>(NEB, cat. #M0251L)    | 2 µl   |
| DNA fragment (1-2 µg)                         | Χμl    |
| dH <sub>2</sub> O                             | Χ μΙ   |

 Table 2.13 The Mixture reaction to make in vitro transcription

### 2.2.5 Zebrafish methods

### 2.2.5.1 Maintenance of zebrafish and husbandry

Adult wild-type (WT) zebrafish (Danio rerio), transgenic and mutant lines were maintained in the Marine Biotech Recirculating System aquarium facility in the Biomedical Support Unit of the University of Nottingham. The fish were kept at a temperature of 28.5 °C, at dissolved oxygen levels of 7.4  $\pm$  0.5 ppm and at a pH of 7.2  $\pm$  0.5. The fish were fed twice daily with brine shrimp. They were raised on a 14h light and 10 h dark cycle. Eggs were laid and fertilised after the light came on. Fertilised eggs were collected with a tea strainer from individual crosses and raised in Petri dishes in 1x E3 buffer containing methylene blue to prevent fungal growth (Westerfield, 1993). Under a light microscope, morphological features were used to stage embryos, according to Kimmel and colleagues (Kimmel et al., 1995). All embryos were kept at 28°C, and only phenotypically normal larvae were raised beyond the free-feeding stage and were taken to the fish aquarium at 5 dpf. All project experiments were performed under UK Home Office regulations and were accepted by the local ethical review board under project license numbers; 40/3457, 30/3378 and 30/3356 and personal license number; ID711FEEE.

## 2.2.5.2 Mutant and transgenic zebrafish lines used in this study

All transgenic fish lines were maintained as described (2.2.5.1). Carriers of the transgenic line *c-myb*<sup>qmc85</sup> were maintained as heterozygous carriers (provided by Dr Martin Gering). *c-myb*<sup>t25127</sup> (Soza-Ried et al., 2010) embryos were kept as heterozygous carriers. Once fish reached sexual maturity, they were crossed to each other to obtain 25% homozygous progeny which were identified by genotyping.

### 2.2.5.3 Whole-mount *in situ* hybridization (WISH)

WISH is a technique widely used to determine the expression pattern of genes on whole-mount zebrafish embryos using 'antisense' digoxigenin (DIG)-labeled RNA probes. If embryos older than 24 hpf were required for WISH, they were treated with PTU (1.5 ml 0.3% PTU in 25 ml E3 buffer) to prevent the development of pigmentation. Embryos were collected at the desired time points. Embryos older than 18 hpf were dechorionated. Embryos were then fixed in 4% paraformaldehyde (PFA) in phosphate-buffered saline tween 20 (PBSTw). Tubes were incubated on a rocker overnight at 4°C (not more than 25 embryos per 1.5 Eppendorf tube). Fixed embryos were washed 3 times for 5 minutes at room temperature (RT) in PBSTw. Next, they were dehydrated and permeabilised slowly through 5 minutes washes in 25%, 50% and 75% Methanol in PBSTw. Finally, the embryos were washed twice in 100% methanol and stored in - 20°C at least overnight until use. All washes were done using 500 μl of solutions and shaking gently on the rocking table (Labnet GyroTwister or Grant-bio, PSM3D).

In situ experiments on zebrafish embryos were carried out over three consecutive days.

On the first day of WISH, embryos that had been stored in MeOH at -20°C were selected for an *in situ* and were rehydrated by washing 5 minutes in 75%, 50% and 25% Methanol in PBSTw followed by 3x5 minute PBSTw washes. Embryos older than 24 hpf were permeabilised further by treating them with 10 µg/ml of Proteinase K in PBSTw at RT according to the age of the embryos (Table 2.14).

Table 2.14 Incubation times in Proteinase K of embryos varied with the age of embryos

| Age of embryo | Incubation times in Proteinase K |
|---------------|----------------------------------|
| 25-36 hpf     | 5-7 minutes                      |
| 2 dpf         | 15-20 minutes                    |
| 3 dpf         | 30-35 minutes                    |
| 4 dpf         | 45 minutes                       |
| 5 dpf         | 1 hour                           |

Following permeabilisation with Proteinase K, embryos were washed twice for 5 minutes with 100% PBSTw to dispose of the proteinase K. Then the embryos were refixed in 4% PFA for 20 minutes at RT. After 20 minutes, PFA was discarded, and embryos were then rinsed 5 times for 5 minutes in PBSTw. The embryos were then prepared for pre-hybridisation by washing them once in 50% PBSTw and 50% Hybe<sup>+/+</sup> for 5 minutes. The embryos were then introduced into 100% Hybe<sup>+/+</sup> and incubated for 1 hour at 65°C. The Hybe<sup>+/+</sup> was then replaced by a hybridisation mix containing Hybe<sup>+/+</sup> with the probe in a 1:200 dilution (Table 2.15). For probe hybridisation, the tubes were incubated in the probe solution overnight at 65°C in a heat block and laid on its side.

| In situ<br>Probes | Reference<br>#Gering lab database |
|-------------------|-----------------------------------|
| c-myb             | In-house (plasmid #77)            |
| Lyz               | In-house                          |
| GFP               | In-house (plasmid #308)           |
| rag-1             | In-house (plasmid #21)            |
| srgn              | In-house (plasmid #478)           |
| трх               | In-house                          |

Table 2.15 List of WISH probes used in this project

On the second day of WISH, the probe was recovered, and the embryos were pre-washed for 10 minutes each in 100%, 75%, 50%, 25% Hybe<sup>-/-</sup> in 2xSSCTw at 65°C. Then, the embryos were washed in 100% 2xSSCTw for 10 minutes. Following a wash in 0.2xSSCTw, 4X15 minutes, the embryos were incubated at 65°C. Subsequently, and at RT the embryos were washed in 75%, 50%, 25% 0.2xSSC in MABTw, followed by a wash in 100% MABTw, 5 minutes per wash. The embryos were then blocked in MAB Block for at least 1 hour at RT. A solution of the alkaline phosphatase-conjugated anti-DIG antibody (Roche, cat. #11093274910) was diluted 1:5000 in MAB Block. Embryos were incubated in this antibody solution on a rocker overnight in the cold room.

On the third day of WISH, the antibody solution was removed, and any excess antibody was washed off in 8  $\times$  15 min washes with

MABTw at RT. The embryos were then washed 3X in the developing buffer BCL3 for 5 minutes per wash. Next, the embryos were placed in the mix of BM Purple:BCL3 (1:1). BMP Purple is the substrate for alkaline phosphatase (Sigma, cat. #11442074001). Embryos were left on a rocker in the dark at RT until they developed colour. To stop the reaction, embryos were washed in PBSTw containing 20mM EDTA 3X for 5 minutes. The embryos were then fixed in 4% PFA at RT for 20 minutes or at 4°C overnight followed by washing in PBSTw 3 times for 5 minutes. The embryos were then gradually washed into 80% glycerol, by washing once each for 5 minutes with 30%, 50% and finally into 80% glycerol in PBSTw. Embryos were stored in 80% glycerol at 4°C indefinitely.

#### 2.2.5.4 Adult Zebrafish Kidney FACS Analysis

#### 2.2.5.4.1 Whole kidney marrow (WKM) cells isolation

Adult fish to be analysed by FACS (Fluorescence-activated cell sorting) were selected and then euthanised using an overdose of AquaSed as recommended by the manufacturer (one measuring pump (1.5 ml) per litre of water). The kidneys of individual fish were dissected as described by (Gerlach et al., 2011) and placed into 2 ml of cold 1xHBSS Buffer on ice. Next, the cells were flushed out of the kidney by pipetting up and down several times for approximately 3 minutes on ice using a P1000 pipette with a blue tip. Then, 5 ml of FCS/PBS were added. The suspension was strained into 50 ml falcon tubes placed on ice using 40 µm cell strainers (Scientific Laboratory

Supplies, cat. #352340). The tube containing the flushed blood cells was spun at 4°C for 5 minutes at 1500 rpm (Heraeus Multifuge 3SR Plus cat. #75004371). Next, the supernatant was discarded, and the cell pellet was resuspended in 300 µl of FCS/PBS. The kidney cell solution was transferred into 15 ml tubes, which were directly placed on ice and transported to the FACS sorter machine. The cells were analysed on a Beckman Coulter Astrios EQ FACS sorter using the Kaluza software.

#### 2.2.5.4.2 Fluorescence activated cell sorting (FACS)

FACS analysis allows fluorescently labelled cells to be sorted based on their light scattering and fluorescence characteristics. This is done by passing fluorescently labelled cells expressing, for example, an enhanced green fluorescent protein (EGFP) or a red fluorescent protein (dsRed) in a fluid stream through a laser beam. The laser beam (a) is scattered by the cells and (b) excites the fluorescence of the fluorophores. Physical properties of the cell, such as size (forward scatter (FSC)) and density or granularity (side scatter (SSC)), can be used in order to resolve the cell populations (Brown and Wittwer, 2000). Once past the laser, the fluid stream is broken into droplets that are set to each contain a single cell. Application of a small charge allows the subsequent deflection of the drop, allowing the sorting of cells that fall into particular gates that the user defines on the flow cytometer. All gates that were set with the help of the wt non-transgenic control cell samples. The same settings were

subsequently applied to the WKM samples of the transgenic fish to make all data sets comparable. First, in order to completely exclude the dead auto-fluorescing cells from the analysis, the WKM cell preparation (from above section 2.2.5.4.1) was treated with SYTOX (red 3:10) (5 µM stock). FSC area versus SYTOX red height were used for excluding dead cells and debris (Figure 2.7A). Then, to exclude cell debris and restrict our analysis to live cells a region was manually gated on the FSC/SSC plot of the wild-type WKM sample. To show only live cell population, the wt sample was then gated for live cells and a region was selected to exclude for dead cells (Figure 2.7B). Cell doublets were excluded by comparing SSC height versus SSC area values for every event (Figure 2.7C). Next, single cells were gated for GFP+ cells and to remove cells that displayed autofluorescence in multiple channels (Figure 2.7D). Because different blood cell populations of the zebrafish kidney marrow have been shown to display different FSC versus SSC characteristics (Traver et al., 2003b) light scatter characteristics allow us to identify specific cell types of interest such as myelomonocyte, erythrocyte and progenitor cells (Figure 2.7E). Samples were analysed on a Beckman Coulter Astrios EQ operated by Nicola Croxall.



### Figure 2.7 Gating strategy for the flow cytometric analysis of adult zebrafish whole kidney marrow (WKM) cells

Gates were set on the FSC area/SYTOX red height, FSC/SSC, SSC height/SSC area and GFP height/ dsRed height plots of the WT sample. (A) The WT sample was plotted on the channel FSC area versus SYTOX red height to exclude dead cells and debris. (B) The FSC/SSC plot allows the exclusion of cell debris and the identification of the live cell population (A). (C) SSC height/SSC area plot allow the detection of singlets and the exclusion of cell doublets. (D) GFP height/ dsRed height plot to select GFP+ cells and exclude autofluorescent cells. (E) The plot shows the light scatter characteristics of all live cells. GFP fluorescence is excited with a 488 nm laser. The emitted light is detected with the help of a 513/26 nm band pass filter. SYTOX Red is excited at 640 nm and detected with an emission filter at 670/30 nm. The light scatter analysis was done using the 488 nm laser.

### 2.2.5.5 Microinjection needle preparation

The micropipette puller (Sutter Instrument, Novato, CA) was used to prepare the microinjection needles by pulling the glass capillaries (HARVARD, GC 100F-15, cat. #30-0020) with an internal filament. Because the needle puller settings change with every new puller filament and can change during the lifetime of an existing filament, the reader is advised to consult the manufacturer's instructions to adjust the puller settings. The injection needles were backloaded using Microloader pipette tips (Eppendorf, cat. #E270445J). Needle tips were broken (directly before use) with a clean tweezer to enable the delivery of the injected solution. Drop sizes were adjusted on the microscope with the help of a graticule placed in one of its eyepieces.

#### 2.2.5.6 Microinjection

In total volume of 5 µl of the injection's mixture was prepared by mixing of 1.5 µl Cas9 protein (BioLabs Kit, cat. #M0646T), 0.5 µl buffer (1x Cas9 Nuclease Reaction Buffer) and 1.5 µl mini ruby (33mg/ml were used diluted 1:6) then 80-90 ng of the pair of prepared sgRNAs were added. The mixture then was incubated for 5 minutes at 37°C to reconstitute active Cas9 protein and sgRNAs (Burger et al., 2016). Injections were performed into one-cell stage embryos. For this purpose, the collected fertilised embryos were lined up against a microscope slide in a petri dish lid and kept moist with E3 buffer. Embryos were orientated so that their animal poles faced the microinjection needle. Volumes of 1 µl of the solution were

injected per embryo. All injections were performed on the stage of a stereomicroscope equipped with the microinjector (picospritzer® III, Parker, Ohio, USA).

### 2.2.6 Imaging

To study the expression of EGFP in zebrafish embryos in the transgenic line, the embryos were anaesthetised by adding 650 µl of MS222 (4g/L) to 25 ml of E3 buffer. Embryos were moved onto a 1% agarose surface in E3 buffer. A tiny hole was introduced into the agarose surface, and the embryo was placed with its yolk into this hole so that the rest of the body comes to lie in a horizontal plane, optimal for visualisation of trunk and tail structures in a single focal plane. Live transgenic embryos were imaged and EGFP expression was observed using a fluorescent dissection microscope (Nikon, model. SMZ1500, Japan) equipped with 100W super high-pressure mercury lamp (Nikon, 100 W, C-SHG1, Japan) and FITC, TRITC and Cyan filter sets to detect fluorescence. All bright images of embryos were taken using a digital camera (Nikon DS-5MC, Japan) attached to a dissecting microscope. Images of *in situ* stained embryos were taken with the same digital camera. Images were acquired with Nikon's ATC-2U software. Images were edited and assembled in Adobe Photoshop Software (version CC 20.0.4).

### **3 Results**

3.1 Single-cell RNA Sequencing (scRNA-Seq) data suggests that all GFP+ cells isolated from whole kidney marrow (WKM) of adult Tg(*c-myb-*zRE1:PF5*:egfp*)<sup>qmc85</sup> zebrafish are neutrophilic granulocytes.

The transgenic line *qmc85* which carries the *gfp* reporter gene downstream of zRE1 and promoter PF5 displays GFP expression in blood cells in the CHT at 3 dpf (Hsu, 2010). Flow cytometric analysis also revealed GFP expression in cells of the adult kidney. Light scatter analysis suggest that these GFP+ cells included myeloid and progenitor cells (Savage, 2012). The exact nature of the GFP+ cells remained to be determined. Here, single-cell RNA Sequencing (scRNA-Seq) was used to gain a deeper insight into the nature of the GFP+ cells.

# 3.1.1 Isolation of single GFP<sup>+</sup> cells from the adult WKM of four Tg(*c-myb*-zRE1:PF5:*egfp*)<sup>qmc85</sup> fish

In order to sort the cells that express the GFP, Fluorescence-Activated Cell Sorting (FACS) was performed on WKM cells of adult fish of the *qmc85* line. For this purpose, four *qmc85* transgenic and one WT control fish were euthanised and their kidneys dissected (Figure 3.1A). Blood cells were flushed out of the kidneys and were analyzed on a Beckman Coulter Astrios EQ fluorescence-activated cell sorter. Sytox red was employed to exclude dead cells. Gates that were set with the help of the non-transgenic WT cell sample (Figure 3.1B) were then applied to the WKM samples of the *qmc85* transgenic fish. Light scatter characteristics were examined to distinguish cells from cell debris and to tell single cells from cell doublets (the gating strategy is illustrated in (2.2.5.4.2 and Figure 2.7). Green fluorescent single cells were then sorted from all four *qmc85* transgenic WKM cell samples (Figure 3.1Ci-iv). Figure 3.1Ci show that the enrichment percentage of the GFP+ cells from the four fish was 24.70%, 15.26%, 26.73% and 30.77%, respectively. Forward versus side scatter analyses revealed that the vast majority of these GFP+ cells fell into the myelomonocyte gate (87.92%, 82.17%, 93.58% and 93.48%) of the wt whole KM light scatter profile (Figure 3.1Cii) as defined by Traver and colleagues (Traver et al., 2003a). These cells were characterised by large cell size and high granularity. In Figure 3.1Ciii, forward and side scatter characteristics were performed to know the different distribution patterns of the all cells. The myelomonocytic gated cells were then analysed by green versus red fluorescence (Figure 3.1Civ). This shows that the enrichment percentage of the GFP+ cells within the myelomonocyte from four fish was 85.67%, 71.39%, 86.02% and 91.17%, respectively. The enriched GFP+ cells of all the four fish were then combined and subsequently purified, as shown in Figure 3.1Di. The percentage of the enriched, combined and purified GFP+ cells was 83.57%. Among the pooled and purified GFP+ cells, the percentage of the myelomonocytic gated cells was 90.10% (Figure 3.1Dii). A small fraction (6.31%) of GFP+ cells displayed the light scatter characteristics of progenitor cells. The GFP+ cells within the myelomonocyte cells after pooled and purified from the four fish was 98.67%, as shown in Figure 3.1Div. Figure 3.1E shows the dot plot of the percentage of the gated myelomonocyte and GFP+ cells before and after enrichment in each of the four *qmc85* zebrafish transgenic biological replicate. Overall, approximately 1.5 million single GFP+ cells were isolated from the adult WKM of four Tg(*c-myb-z*RE1:PF5:*egfp*)<sup>qmc85</sup> fish. The cells were stained with Trypan blue. Live cells (>82%) are unstained, while dead cells are blue and LUNA recognise that. Approximately 6000 cells of the sample were then used in the scRNA-Seq analysis (Table 2.2).





### Figure 3.1 Isolation of single GFP<sup>+</sup> cells from the adult kidneys of four $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ fish

(A) The scheme shows the preparation of the kidney from an adult zebrafish. Kidney marrow (KM) cells were flushed out of the kidneys. FACS was used to sort single GFP<sup>+</sup> cells from each of the four kidneys. (B) Flow cytometric analysis of adult wt fish (non-transgenic). The right panel shows the light scatter characteristics of all cells for the wt control fish. The left panel shows a density plot that displays green versus red fluorescence in the KM cells of wt fish. (Ci-iv) Flow cytometric analysis of adult kidneys of four *gmc85* transgenic fish. (Ci) Panels show density plots that display green versus red fluorescence as detected in the KM cells of each of the four fish analysed. (Cii) Panels show the light scatter characteristics of all cells for the GFP+ cells identified in the four transgenic fish. (Ciii) Panels show the light scatter characteristics of all cells in the four transgenic fish. (Civ) Panels show density plots that display green versus red fluorescence detected in the myelomonocytic gated cells of the KM cells of each of the four fish analysed. Following an initial enrichment of the GFP+ cells of each four transgenic fish, the GFP+ cells from all four fish were combined and subsequently purified. (Di-iv) Plots reveal the extent of enrichment achieved in the purification step. (Di) Panel shows density plot that displays green versus red fluorescence as detected in the KM cells of all pooled four transgenic fish analysed. (Dii) Panel shows the light scatter characteristics of all cells for the GFP+ cells identified in the pooled four transgenic fish. (Diii) Panel shows the light scatter characteristics of all cells in the pooled four transgenic fish. (Div) Plot of pooled purified GFP+

cells reveals that most of the myelomonocytes in *qmc*85 transgenic fish are GFP+. **(E)** Dot plot graph showing the percentage of gated myelomonocytes and GFP+ cells in each enriched *qmc*85 zebrafish transgenic sample before and after enrichment. The percentage of the combined and purified myelomonocytic cells within the GFP+ cells was over 90% (big black dot). The percentage of the combined and purified GFP+ cells within the myelomonocytes was over 98% (big blue square). **Shapes**: black dots represent wt, and blue squares represent *qmc*85 (1, 2, 3 and 4). The overall number of cells and those in the particular gates and the corresponding percentages are shown under each panel. Gates from left to right: [c]= time AND live AND cells; [GFP]= time AND live AND cells AND GFP. [Cells]= time AND live AND cells; [Myelom]= time AND live AND cells AND Myelom. The cell sorting was performed on a Beckman Coulter Astrios EQ operated by Nicola Croxall.

### 3.1.2 All single GFP<sup>+</sup> kidney marrow cells of Tg(*c-myb*zRE1:PF5:*egfp*)<sup>qmc85</sup> fish express neutrophil genes

The 10x Genomics Chromium system was used to determine the gene expression profile of the single GFP<sup>+</sup> cells that were collected from the adult WKM of the four  $Tq(c-myb-zRE1:PF5:eqfp)^{qmc85}$  fish. The cells were separated and lysed, and the cDNA was prepared by marking with cell-specific barcodes and transcripts were labelled with unique molecular identifiers (UMIs). The cDNAs were then pooled and amplified, and libraries were generated and paired-end sequenced on Illumina sequencer. The sequence analysis was performed using the Cell Ranger pipeline. More than 191 million sequence reads were collected, of which over 90% mapped to the zebrafish genome (GRCz11). The number of UMIs per barcode was determined, and all barcodes that displayed at least 0.1 times as many different UMIs as the top 1 percentile of barcodes were subsequently considered cells (Figure 3.2). This reduced the number of analysed barcodes to 2246 cells. For these cells, a mean number of 85,099 reads were collected, and a median number of 937 genes were found to be represented (Figure 3.2).

The gene expression profiles of the 2246 cells that were analysed through the Cell Ranger bioinformatics pipeline were visualised in the Loupe Cell Browser (version 3.1.0). The 10x Genomics' Loupe Cell browser displays the data in the t-SNE plot that is a twodimensional representation of the multi-dimensional data set. In Loup Cell browser, t-SNE plot reveals that most cells fall into a large elongated cell cloud. There are also a few small additional cell clusters. Graph-based cluster analysis, which uses the Louvain clustering algorithm, identifies seven subclusters within the large cloud (Figure 3.3). Projecting overall gene transcript accumulation onto the t-SNE plot reveals the position of those cells that had the highest and lowest UMI counts (Figure 3.4).

To determine whether the large cloud and clusters represent different blood cell lineages, the gene expression levels of the individual lineage-specific marker was projected onto the t-SNE plot. These results reveal that all of the 2246 cells (Figure 3.5A) expressed the neutrophil granulocyte gene lysozyme. None of the genes that are specific for other haematopoietic cell types, such as macrophage (*mfap4, mpeg1.1*), red blood (*gata1*) and T cells (*rag1*) were expressed (Figure 3.5B-E). Since other neutrophil markers, like *lect2l, npsn, srgn, cpa5* and *abcc13* were also widely expressed in our cell cohort (Figure 3.5F-J), it can be concluded that all of the *qmc85*:GFP+ belong to the neutrophil cell lineage.



### Figure 3.2 Calling cell barcodes.

(A) The plot illustrates the number of UMI counts mapped to each barcode. Barcodes determine cell-associated based on their UMI counts or by their RNA profiles. UMI counts are shown on the y-axis ranging from 0 to over 20k in log scale. On the x-axis, barcodes are ranked in descending order based on the number of UMIs associated with them. Barcodes attributed to cells are highlighted in green. The table shown in (B) displays the number of cells detected, the fraction of reads in cells, the mean number of reads per cell, the median number of genes detected per cell, the total number of genes detected overall and the median UMI counts per cell.



### Figure 3.3 Single-cell RNA Sequencing of zebrafish whole kidney marrow neutrophils of $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ identified nine neutrophil cell clusters.

Two-dimensional visualization (t-SNE) plot of 2246 kidney marrow neutrophils of  $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$  shows nine distinct clusters across the Loupe Cell Browser visualization. Coloured squares highlight specific cell clusters.



# Figure 3.4 t-SNE visualization of single GFP+ kidney marrow cells of $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ coloured by the number of UMI counts per cell

The plot shows the RNA content of the single GFP+ kidney marrow cells of  $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ . The heatmap reflects the number of UMIs associated with the cells.



### Figure 3.5 Single-cell RNA Sequencing reveals that all GFP<sup>+</sup> cells that were isolated from the kidney marrow of $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ fish express neutrophil genes

The single-cell RNA-Seq data for 2246 cells were analyzed by a clustering algorithm, the t-stochastic neighbour embedding (t-SNE) algorithm, that clusters cells based on their gene expression profile and provides a twodimensional representation of the multi-dimensional data set. A heat map representation of log2 values of the number of transcripts (UMI) counts for individual genes is projected for every single cell depicted in the t-SNE plot. Panel **(A)** shows the expression of the *lyz* gene. The panels show in **(B-J)** display the expression of a number of selected genes. The selected genes were typically expressed in blood cells such as macrophage (*mfap4*, *mpeg1.1*), red blood (*gata1a*), T cells (*rag1*) and neutrophil (*lect2l*, *npsn*, *srgn*, *cpa5* and *abcc13*).

Summing up, all UMI counts in the entire cell cohort revealed that five neutrophil-specific genes were among the top ten genes with the highest transcript counts (Table 3.1). Another three genes encoded actin or actin-binding proteins, the expression of which is most likely related to the migratory behaviour of neutrophils. Another seven neutrophil marker genes had decent overall transcript counts while erythroid, macrophage, T-cell and thrombocyte genes displayed hardly any. There is a clear correlation between the level of Lyz expression and the level of expression of other neutrophil markers, as shown in Table 3.1. Interestingly, our data revealed that there is a highly positive correlation between Lyz and some of the neutrophil markers, for instance, *lect2l* and *npsn*, suggesting that the neutrophil markers were widely expressed in our *qmc85*:GFP+ cell cohort of WKM sample (Figure 3.6). Our cells also express other genes that are specific for neutrophil lineage, such as cxcr4b, rac2, wasb, cebpb, cfl1, illr4, mpx and ncf1 (Appendix figure 6.2). Altogether these data suggest that the GFP-positive cells isolated from the kidney marrow of the  $Tq(c-myb-zRE1:PF5:eqfp)^{qmc85}$  fish express neutrophil genes and most likely represent cells of the neutrophil granulocyte lineage.
### Table 3.1 Total transcript (UMI) counts in the entire cohort of 2246 GFP<sup>+</sup> kidney marrow cells isolated from adult Tg(*c-myb-*zRE1:PF5:*egfp*)<sup>qmc85</sup> fish

Transcript (UMI) counts for every gene were added up over the entire cohort of 2246 *qmc85*:GFP+ kidney marrow cells. Genes were ranked in descending order of their overall UMI counts. The table shows the top 10 genes, a set of 7 other neutrophil markers, as well as a set of genes that are typically expressed in other blood cell types. The boxes coloured with yellow depict the genes whose expression correlates with that of *lyz* (linear regression analysis: $r^2 \ge 0.70$ ).

| Rank  | Gene ID            | Gene name        | total umi | Protein                  | r <sup>2</sup> |
|-------|--------------------|------------------|-----------|--------------------------|----------------|
| 1     | ENSDARG00000057789 | lyz              | 853850    | Lysozyme                 | 1.00           |
| 2     | ENSDARG00000037870 | actb2            | 465598    | Actin 2b                 | 0.29           |
| 3     | ENSDARG00000033227 | lect2l           | 313353    | Chemotaxin 2             | 0.70           |
| 4     | ENSDARG00000099970 | CR383676.1       | 244445    | IncRNA                   | 0.12           |
| 5     | ENSDARG00000077777 | tmsb4x           | 209597    | Thymosin                 | 0.49           |
| 6     | ENSDARG00000010423 | npsn             | 143801    | Nephrosin                | 0.84           |
| 7     | ENSDARG00000088091 | pfn1             | 134905    | Profilin                 | 0.46           |
| 8     | ENSDARG00000101479 | BX908782.2       | 123247    | CD59 Glycoprlike         | 0.29           |
| 9     | ENSDARG00000092807 | si:dkey-151g10.6 | 111472    | Ribosomal Pr.            | 0.19           |
| 10    | ENSDARG00000077069 | srgn             | 101973    | Serglycin                | 0.83           |
|       |                    |                  |           |                          |                |
| 16    | ENSDARG00000042725 | cebpb            | 57268     | Cebpb TF                 | 0.32           |
| 86    | ENSDARG00000021339 | cpa5             | 28279     | Carboxypeptidase A5      | 0.79           |
| 121   | ENSDARG00000019521 | mpx              | 17211     | Myeloperoxidase          | 0.52           |
| 146   | ENSDARG0000000767  | spi1b            | 11588     | Pu.1 TF                  | 0.13           |
| 293   | ENSDARG0000036074  | cebpa            | 4241      | Cebpa TF                 | 0.28           |
| 338   | ENSDARG0000062519  | abcc13           | 3583      | Abcc13                   | 0.78           |
| 1322  | ENSDARG00000053666 | myb              | 610       | Myb TF                   | 0.17           |
|       |                    |                  |           |                          |                |
| 9199  | ENSDARG00000056407 | irf8             | 10        | Irf8 TF                  | <0.001         |
| 9373  | ENSDARG0000087646  | runx1            | 9         | Runx1 TF                 | <0.001         |
| 9565  | ENSDARG00000090783 | mfap4            | 8         | Microfibril-assoc. pr. 4 | <0.001         |
| 10272 | ENSDARG00000019930 | scl/tal1         | 5         | Scl/Tal1 TF              | <0.001         |
| 11529 | ENSDARG00000055290 | mpeg1.1          | 2         | Macrophage-expr. 1.1     | <0.001         |
| 13770 | ENSDARG00000013477 | gata1a           | 0         | Gata1a TF                | <0.001         |
| 13770 | ENSDARG00000113599 | hbbe1.1          | 0         | β-embryonic Globin       | <0.001         |
| 13770 | ENSDARG00000052122 | rag1             | 0         | Rag1 Recombinase         | <0.001         |
| 13770 | ENSDARG00000102986 | csf1ra           | 0         | CSF1-Receptor a          | <0.001         |
| 13770 | ENSDARG00000018687 | itga2b - cd41    | 0         | Integrin a2b - CD41      | <0.001         |

Genes that are known to be expressed in:

Neutrophils Macrophages Erythrocytes Lymphocytes Thrombocytes Genes that encode actins or actin-interacting proteins



Figure 3.6 The correlation of selection of neutrophil markers

A strong positive correlation between *Lyz* and *lect2I*, and *Lyz* and *npsn* genes expressions in the entire cohort of 2246 qmc85:GFP+ kidney marrow cells.

# 3.1.3 The single-cell RNA Sequencing (scRNA-Seq) analysis of *qmc85*:GFP<sup>+</sup> kidney marrow cells reveals distinct neutrophil maturation stages

In the previous section, the FACS reveal that the majority of *qmc85* GFP positive cells are found in the myelomonocyte gate (Figure 3.1). In our lab, it has been found that the *qmc85* GFP+ cells, which were sorted by FACS, cytospun and Giemsa stained, are neutrophils in different maturation stages (segmented and not segmented nucleus) using a light microscope (data not published). In our scRNA-Seq study, the analysis of qmc85:GFP+ kidney marrow cells showed that all 2246 cells were neutrophils (Figure 3.5). Further analysis revealed that these cells were grouped into a large cloud (seven clusters) and other small clusters. These structured clusters could mean that the cells are in different maturation stages. Here, because the vast majority of our cells (1816) are within the large cloud (Figure 3.4), we focused on this cloud. Within this cloud, different maturation stages could occur in all the subclusters. The two extreme end clusters, one and two, were selected for further analysis to understand the possible maturation development among all clusters. To do this, we looked at the gene expression levels for the different maturation stages of the cells in clusters one and two, then compared with similar previous studies on different maturation stages. In zebrafish, there is a lack of antibodies against some of the surface markers (Moore et al., 2016). This has made it difficult to

sort the different neutrophil maturation stages. There are no data on the gene expression profiles of neutrophils in different maturation stages in zebrafish to compare with our scRNA-Seg findings. In contrast, several mouse and human studies have used antibodies to separate cells into different neutrophil maturation stages based on the expression of neutrophil surface markers (Dinh et al., 2020, Evrard et al., 2018, Grassi et al., 2018, Zhu et al., 2018). We used the most recent study on the human bone marrow to compare with our scRNA-Seg findings (Dinh et al., 2020). In their study, human bone marrow neutrophils were grouped into four different subsets based on their different level of maturation. To group these subsets, they used the surface marker expression, morphology, proliferating assays (use to characterise neutrophil progenitor) and bulk RNAsequencing analyses. The earliest neutrophil progenitor (ePreN) was grouped as the first subset while the most matured neutrophil (Neuts) as the last subset (Dinh et al., 2020). They found out that the neutrophil maturation was gradually developing along with the identified subsets (Dinh et al., 2020). The RNA-seg data of the ePreN and Neuts from Dinh and colleagues' study were re-analysed (2.2.1.3) in order to compare them with our scRNA-Seq data from clusters one and two, respectively (Figure 3.4). The human RNA-seq data of each subset were then imported into the SeqMonk program (v1.47.1) using Homo sapiens GRCH38\_v97. In the SeqMonk program, these data were then organised for visualisation and analysis. Each gene subsets of the RNA-seq data then were mapped to an MA plot (Figure 3.7A). In SeqMonk, DESeq analysis (p<0.05) was conducted to identify genes that were differentially expressed between the ePreN and Neuts subsets data. The genes that were displayed in the +Log2 difference of the MA plot were more highly expressed in ePreN (immature), while those at the -Log2 difference of the MA plot were more highly expressed in Neuts (mature) (Figure 3.7B).



### Figure 3.7 MA plots comparing human early neutrophil progenitors (ePreN) and neutrophils (Neuts) (Dinh et al., 2020).

The MA plots represent each gene with a dot. **(A)** The M (Y-axis) represents the log2 fold change between ePreN and Neuts subsets, and A (X-axis) represents the average expression of the overall samples. Plot (B) was obtained from the plot (A). **(B)** The plot illustrates the differentially expressed genes (p<0.05) within the two groups: ePreN (top) and Neuts (bottom), of gene expression counts. Red dots represent differential expressed genes, while blue dots represent non-differential expressed genes (p<0.05). The black horizontal line at zero provides genes with similar expression values in ePreN and Neuts groups.

To compare Dinh and colleagues' data subsets (ePreN and Neuts) with our clusters one and two data, human orthologues of both clusters-specific zebrafish genes of scRNA-Seq data were used. To achieve this, the Loupe browser of our zebrafish scRNA-seq data was used to select the set of genes that were identified to be differentially expressed in cells of cluster one relative to cells in cluster two (p<0.05) (Appendix table 6.1). The same process was repeated by selecting the genes of cluster two relative to those in cluster one (Appendix table 6.2). For both sets, the human orthologues of both cluster-specific zebrafish genes were determined in BioMart database (ENSEMBL 102) (Appendix table 6.3 and Appendix table 6.4). The set of genes (72) of our human orthologues of cluster onespecific zebrafish genes were then visualised in SegMonk. Sixtyseven (67) (Appendix table 6.5) out of 72 genes were found in the data set of Dinh and colleagues' human neutrophil genes (Figure 3.8A). From the 67 genes, 40 (~64%) were differentially expressed within the ePreN (immature) and Neuts (mature) of Dinh and colleagues' data (Appendix table 6.6), while 24 (~36%) were nondifferentially expressed genes. Interestingly, most of the differentially expressed genes (40 out of 43) were significantly upregulated in human ePreN relative to Neuts, and three were found in the human Neuts group of Dinh and colleagues' data (Figure 3.8B). The majority of these genes were genes encoding ribosomal proteins (Appendix table 6.6). In the same manner, the set of genes

(205) of our human orthologues of cluster two-specific zebrafish genes were visualised in the SeqMonk. One hundred and ninety-five (195) (Appendix table 6.7) out of 205 genes were found in the data set of the human neutrophil genes (Figure 3.8A). From the 195 genes, 75 (~39%) were differentially expressed within the Neuts (mature) and ePreN (immature) of Dinh and colleagues' data (Appendix table 6.8), while 120 (~62%) were non-differential expressed genes. Remarkably, most of the differentially expressed genes (58 out of 75) were significantly upregulated in human Neuts relative to ePreN, and 17 were found in the human ePreN group of Dinh and colleagues' data (Appendix table 6.8) (Figure 3.8C). Several genes were found in cluster two that were specific for mature neutrophils. Overall, this result suggests that the comparison of the genes of clusters one and two with that of Dinh and colleagues' data (ePreN and Neuts) reveals that the different cell clusters of our scRNA-Seg could represent different stages of neutrophil maturation (Figure 3.8D & E). Together, our results highlight that clusters one and two within the large cloud represent the immature and mature neutrophils, respectively. This could mean that there is a gradual maturation across the clusters from extreme cluster one to extreme cluster two.



### Figure 3.8 Comparison of Dinh and colleagues' data with our human orthologues of zebrafish clusters one and two genes.

The (A, B, C and D) MA plots were generated by comparing MA plot (figure 3.7B) of Dinh and colleagues' data with our human orthologues of zebrafish clusters one and two genes of scRNA-seq of zebrafish whole kidney marrow neutrophils of  $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ . The MA plots represent each gene with a dot. The M (Y-axis) represents the log2 fold change between

ePreN and Neuts groups, and A (X-axis) represents the average expression of the overall samples. (A) MA plot of the Log2 fold change of all human orthologues of zebrafish clusters one and two genes. The red dots indicate human orthologues of zebrafish genes of cluster one (67 genes), and the green dots indicate human orthologues of zebrafish genes of cluster two (195 genes). MA plots (B & C) were obtained from the plot (A). (B) The plot depicts the differentially expressed human orthologues of zebrafish genes of cluster one. The red dots indicate the genes in ePerN (top) (Log2 fold change  $\geq 2.5$ ), and the green dots indicate the genes in Neuts (bottom) (Log2 fold change  $\leq$  -2.5). (C). The plot shows the differentially expressed human orthologues of zebrafish of cluster two. The red dots indicate the genes in Neuts (bottom) (Log2 fold change  $\leq$  -2.5), and the green dots indicate the genes in ePerN (top) (Log2 fold change  $\geq$  2.5). Blue dots represent differentially expressed genes, while grey dots represent nondifferential expressed genes (p < 0.05) (plots A, B and C). (D) The plot depicts the differentially expressed human orthologues of zebrafish genes of both clusters one and two. The blue and red dots indicate the genes of cluster one in ePerN (top) (Log2 fold change  $\geq$  2.5) (40 genes) and in Neuts (bottom) (Log2 fold change  $\leq$  -2.5) (3 genes), respectively. The green and orange dots indicate the genes of cluster two in Neuts (bottom) (Log2 fold change  $\leq$  -2.5) (58 genes) and in ePerN (top) (Log2 fold change  $\geq$  2.5) (17 genes), respectively. Grey dots represent differentially expressed genes, while the White space around the horizontal line represents non-differential expressed genes (p < 0.05). The black horizontal line at zero provides genes with similar expression values in ePreN and Neuts groups. (E) Venn diagram shows the number of genes of the overall differentially expressed genes identified in (D).

To further demonstrate the presence of neutrophil maturation stages in our clusters one and two, Grassi and colleagues' data (Grassi et al., 2018) of human neutrophils were examined to see whether they were in agreement with our Dinh-based cell stage allocation data (Dinh et al., 2020). In Grassi colleagues' study, five stages of human neutrophil differentiation were analysed to gain insight into their functions and regulation. These were the promyelocytes and myelocytes (P/Ms), metamyelocytes (MMs), band neutrophils (BNs), segmented neutrophils (SNs) and the blood circulating polymorphonuclear neutrophils (PMNs) (Grassi et al., 2018). Bulk RNA-seq was used to characterise and compare the gene expression profiles of different neutrophil maturation stages. The gene expression analysis result was integrated with epigenetic analysis during five neutrophil maturation stages. The result revealed that correlation between epigenomic there was а strong and transcriptomic profiles their differentiation at stages from progenitors to mature cells (Grassi et al., 2018). The website (https://blueprint.haem.cam.ac.uk/neutrodiff/), which houses the analysed result used in Grassi and colleagues' data, was used to validate some of the genes that were found to be differentially expressed in our clusters one and two. In our study, with regards to cell cluster maturation stages, two of Grassi colleagues' cell types were selected for comparison with our Dinh-based cell stage differentiation data, i.e., the P/Ms and SNs. P/Ms were chosen to

present the gene expressions as immature neutrophils in the human bone marrow to compare with our Dinh-based cluster one genes as an immature group in zebrafish kidney marrow. In the same manner, the SNs group was selected as mature neutrophils in the human bone marrow to compare with our Dinh-based cluster two genes as a mature group in zebrafish kidney marrow. Comparing the Grassi and colleagues' data with our Dinh-based data revealed that the most significant differentially expressed genes in cluster one were more highly expressed in P/Ms. This could represent an immature stage of neutrophil differentiation, including ribosomal genes (Figure 3.9). Likewise, a comparison of the two studies revealed that the majority of significant differentially expressed genes in cluster two were more highly expressed in SNs, including some of specific neutrophil genes i.e., chemokine receptor CXCR1. This could also represent the mature stage of neutrophil differentiation (Figure 3.10). Our findings concerning the differentiation stage allocation of up-regulated genes in clusters one and two concur with Grassi and colleagues published data. In summary, our analysis of scRNA-Seq data suggest that different cell clusters represent different neutrophil differentiation stages. Together, our results further highlight that clusters one and two could represent the immature and mature neutrophils, respectively. This could mean that the change in gene expression from one cluster to another suggests that the clusters of zebrafish scRNA-Seq data could show different gradual maturation stages.



## Figure 3.9 Up-regulation of the gene expression levels of human orthologues of zebrafish genes of cluster one in comparison of promyelocytes and myelocytes (P/Ms) relative to the segmented neutrophils (SNs)

Graphs show the mean levels of genes in P/Ms and SNs, alongside the standard deviations for the biological replicates. (*t*-test corrected p values are indicated in the figure: ns, nonsignificant, \*p < 0.05 and \*\*p < 0.01).



## Figure 3.10 Up-regulation of the gene expression levels of human orthologues of zebrafish genes of cluster two in comparison of the segmented neutrophils (SNs) relative to the promyelocytes and myelocytes (P/Ms).

Graphs show the mean level of genes in SNs and P/Ms, alongside the standard deviations of the biological replicates. (*t*-test corrected p values are indicated in the figure: \*\*p < 0.01, \*\*\*p < 0.001 and \*\*\*\*p < 0.001).

### **3.2 Verification of the DNA sequence of the region downstream of the** *c***-***myb* **gene**

To find out whether zRE1 is necessary for endogenous *c-myb* expression in haematopoietic cells, we decided to delete the zRE1 from the genomic DNA downstream of the *c-myb* gene. For this purpose, Cas9 target sites were defined, and guide RNAs were designed and generated. Before identifying these sites, the DNA sequence downstream of the *c-myb* was verified in our Nottingham zebrafish. The wt *c-myb* gene lies on chromosome 23 of the (Danio rerio) zebrafish genome and consists of sixteen coding exons (Ensembl: ENSDARG00000053666) (Figure 3.11). To verify the sequence, large stretches of DNA in a region of approximately 17 Kb downstream of the *c-myb* gene were amplified in small pieces using PCR on wild-type genomic DNA isolated from fin clips of six wild type fish. The small pieces covered the sequences around potential Cas9 target sites. All PCR products (1-19 fragments) shown in (Table 2.7) were sequenced. Their sequence was compared to that published in ENSEMBL (GRCz11, October 2018) in order to identify the presence of any single nucleotide polymorphisms (SNPs) in the *c*-myb locus of our Nottingham wild-type fish. Several SNPs were identified in the region downstream of *c-myb* gene (Appendix figure 6.3). There were, however, no SNPs in most of the target sites of interest except for TS2. The SNP was found in TS2 in the position of the third nucleotide upstream of the PAM sequence. The sequence of TS2 was

modified by changing the nucleotide T of the SNP to A. All the primers that were used to amplify the whole of the downstream region of the c-myb are listed in (Table 2.7).



#### Figure 3.11 Verification of the DNA sequence downstream of *c-myb*

Genomic map of the wild-type zebrafish *c-myb* locus (the black line on the top of the figure) showing the primary *c-myb* transcript. Within the transcript, boxes represent the 16 exons of the *c-myb* gene. Coding sequences are depicted as black boxes, 5' and 3' UTRs as white boxes. The red and pink boxes represent the zCNE1 and zRE1 sequences, respectively. The light blue boxes show the potential enhancers MP40036-, MP40036, MP40037 and MP40037+. Fragments that were amplified and sequenced are shown as orange rectangles numbered from 1-19. The fragments were amplified using the primers listed in (Table 2.7).

### 3.3 Deletion of zRE1 from the wild-type zebrafish genome using CRISPR/Cas9

Having shown that zRE1 (includes zCNE1), which acts as zebrafish regulatory element, is sufficient to direct *c-myb* promoter activity and therefore reporter gene expression to definitive haematopoietic cells in transgenic zebrafish (Hsu, 2010), it remained to be determined whether this zRE1 was also necessary for endogenous *c-myb* expression in these cells. To address this question, the CRISPR/Cas9 was used to delete zRE1 from the zebrafish genome.

A volume of 1 µl of a mix of gRNAs TS2 and TS7, Cas9 protein and the fluorescent dye mini ruby was injected into 1-cell stage wild-type zebrafish embryos. At approximately 5 hpf, the embryos were checked by fluorescent microscopy to confirm the success of the injection (Figure 3.12A). Only successfully injected embryos were grown on. At 24 hpf, the genomic DNAs of 12 single embryos, one uninjected and 11 injected embryos, were extracted and then used as a template for nested PCR amplification. The primers (external pair (DB1436 and DB1437) and internal pair (DB871 and DB899)) were designed to allow the amplification of a DNA fragment across the fusion site between TS2 and TS7 on the deletion allele (Figure 3.12B & C). The expected nested PCR fragment was ~470 bp in size. The expected PCR fragment of  $\sim$ 470 bp was detected in 10 out of 11 injected embryos. As expected, a similar PCR product could not be generated on the wild-type control DNA. To confirm that the PCR product amplified on the genomic DNA

of the injected embryos corresponded to the sequence of the expected deletion allele of *c-myb*, the PCR product that was amplified on the genomic DNA of embryo number 2 was isolated, purified and sequenced using primer DB899. The sequencing results showed that the sequence did indeed correspond to the sequence downstream of the *c-myb* gene. Closer analysis of the sequence revealed that in this sequence, the first 13 bp of TS2 were fused to the last two nucleotides of the PAM sequence of TS7, suggesting that exactly 2976 bp had successfully been deleted between the two TSs (Figure 3.12D). Because the sequencing suggested that guide RNAs 2 and 7 could successfully target Cas9 to their target sites and delete the sequence between them, the rest of injected embryos were raised to adulthood.



### Figure 3.12 *c-myb* 2&7 sgRNAs successfully produced deletion in the target sites 2 and 7

(A) Wild-type (wt) zebrafish were incrossed, and one cell stage zebrafish embryos were microinjected with the sgRNAs 2 and 7, the Cas9 protein and the fluorescent dye mini ruby. At 5 hours post fertilisation (hpf), fertilised red

fluorescent embryos were sorted. (B) At 24 hpf, genomic DNA was isolated from individual uninjected and successfully injected embryos and was used as a PCR template. PCR amplification on genomic DNAs was carried out using primers (external pair (DB1436 and DB1437) and internal pair (DB871 and DB899)). It was expected to yield a ~470bp fragment on genomic DNA that had the sequence between TS2 and 7 deleted. The red rectangle refers to the embryo that was genotyped. (C) Schematic illustrating the genomic DNA editing by the Cas9/TS2 and 7 sgRNA complexes. The inserts in the top show Sanger sequencing of TS2 and 7 within the DNA of wt zebrafish. Grey scissors indicate CRISPR/Cas9 deletion breakpoints. Blue and green arrows show TS2 and 7, respectively. The red box represents a conserved noncoding element one (zCNE1). The light blue box shows potential enhancer (PE) MP40037+ (Aday et al., 2011). A pink box shows regulatory element one (zRE1). Position of the (DB1436-DB1437) and (DB871- DB899) as (forward-reverse) primers used in the PCR reaction are shown with the size of the fragment amplified. (D) Sanger sequencing of the DNA of embryo number 2 with primer DB899 shows the deletion breakpoints (indicated by the red dashed line) in the mutant allele identified in the genomic DNA of injected embryo number 2. The retained sequences of TS2 is shown between the brackets. The retained two nucleotides of the PAM sequence of TS7 is shown between the black box. The PCR products were analysed on a 1.5% agarose gel.

At 3-4 months, F0 adult fish grown from injected embryos with sgRNAs 2 and 7 were screened for transmission of the deletion allele through the germline. To this end, putative founders were outcrossed to wildtype fish (Figure 3.13A). From the individually successful cross, a group of 11 single embryos were randomly selected and genotyped as described before using nested PCR with external oligos (DB1436-DB1437) and internal oligos (DB871-DB899) at 24 hpf. PCR amplification showed the presence of the approximately 470 bp band in 10 out of 11 embryos that derived from the outcross of one of the putative founders. The PCR product of sample number 5 was gelextracted and sequenced. The Sanger sequencing result verified that 2974 bp of sequence between the two TSs were deleted. In addition, an 8 bp insertion (CATCCAGT) and a single nucleotide polymorphism (A>C) were observed in the sequence. (Figure 3.13B). This deletion allele was called *qmc193*. The male that carried the deletion allele in its germline was crossed to a wild-type female. Their progeny established the *qmc193* line.

When the F1 *qmc193* fish were fertile adults, potential heterozygotes were anaesthetised and fin-clipped. Nested PCR as described before, was used to determine the heterozygous individuals. Four out of five F1 fin-clipped fish carried the *qmc193* mutation, and DNA sequence of fish number 5 confirmed that (Figure 3.13C).



### Figure 3.13 Germline transmission of the *c-myb* TS2 and TS7 zRE1 deletion allele

(A) Embryos injected with *c-myb* sgRNAs 2 and 7 were raised to adulthood and then outcrossed to wild-type fish. (B) At 24 hpf, eleven F1 embryos were collected for DNA extraction and genotyped using nested PCR as described in Figure 3.12 using primers (external pair (DB1436 and DB1437) and internal pair (DB871 and DB899)). Genomic DNA of one of F0 injected embryos was used as a positive control. The expected 479 bp is found in nine out of ten of F1 embryos. Sanger sequencing was used to characterise the deletion in embryo number five, an eight base pair insertion (CATCCAGT) and one single nucleotide polymorphism (A>C) were detected in the sequence. (C) The remaining embryos of F1 progeny are raised to adulthood. Caudal fin clips were taken from five adult F1 fish. Fin clip No.5 was genotyped and sequenced to identify adult heterozygous F1 carries the mutant *c-myb*<sup>qmc193</sup> allele. The retained sequences of TSs 2 and 7 are shown between the brackets. The retained sequences of PAM of TS7 is shown between the black box. The PCR products were analysed on a 1.5% agarose gel. To generate F2 *qmc193* homozygous fish and to determine the ratio of the wt and qmc193 alleles in the progeny, heterozygous qmc193 adult fish were incrossed. At 24 hpf, a group of 14 single embryos were collected and genotyped. The genomic DNA was extracted and used as a template to identify wt, qmc193 heterozygous and qmc193 homozygous embryos. Here, two PCR amplification experiments were performed. The first PCR experiment used primers DB1190 and DB1191 that hybridise to the genomic sequence upstream of TS7. It yields a 271 bp PCR fragment that can only be generated on the wt allele. The second, PCR amplification was carried out to detect the 479 bp mutant allele, using the same primer pairs that were used before with F0 and F1 progeny (Figure 3.14A & B). Analysis of the genotyping data from 14 embryos revealed that the incross of two qmc193 heterozygous fish yielded 4 (28%) wt embryos, 5 (36%) heterozygous and 5 (36%) homozygous embryos, confirming that expected genotypes were present in the progeny. The rest of the F2 progeny was raised to adulthood.





#### Figure 3.14 Identify homozygous mutants in F2 embryos

(A) Schematic illustrating the genomic DNA editing by the Cas9/TS2 and TS7 sgRNA complexes as shown previously in (Figure 3.12C). Position of the primers (external pair (DB1436 and DB1437) and internal pair (DB871 and DB899)) as forward and reverse primers, used in the PCR reaction, are shown with the size of the mutant allele fragment amplified. The wt allele was amplified using primers DB1190 and DB1191. (B) Diagram of a *c-myb*<sup>qmc193</sup> fish incross yielding 28% wt embryos and 36% for both heterozygous and homozygous embryos. PCR amplification on genomic DNA extracted from 24 hpf embryos obtained from the incross, using (DB1190- DB1191) primers to amplify wt allele (top gel) and primer pairs DB1436 and DB1437 as well as DB871 and DB899 for the mutant allele (bottom gel). The PCR products were analysed on a 1.5% agarose gel.

At ~3-4 months, fin-clips were taken, and genomic DNA was used to identify the *qmc193* F2 fish using PCR amplification under the same conditions as described before. Among the 26 fish analysed, 5 (19%) were wt fish, 14 (54%) were heterozygous for *qmc193*, and 7 (27%) were homozygous for *qmc193* (Figure 3.15A). The results suggest that all genotypes were present in the expected Mendelian ratios ( $X_2$ -test; P<0.9). In addition and to confirm that the homozygous *qmc193* are fertile and carry *qmc193* alleles, one of the identified homozygous *qmc193* was outcrossed to a wt fish, and then 10 of the offspring were genotyped to check the presence of wt and *qmc193* alleles. All the progeny were found to be heterozygous for *qmc193* (Figure 3.15B). The results suggest that homozygous *qmc193* were fertile and fully viable. The identified fish showed no phenotypic abnormalities.



### Figure 3.15 Identification of F2 homozygous *qmc193* mutants' adult fish

(A) The bar shows the number of genotyped adult F2 fish that had been derived from an incross of heterozygous *qmc193* carriers. (B) Diagram of *c*-*myb*  $^{qmc193/qmc193}$  fish outcross yields 100% heterozygous embryos. The genomic DNAs of individual embryos were tested for the presence of wt and *qmc193* mutant alleles. The PCR experiments used primers DB1190 and DB1191 for the wt allele (top gel) and primer pairs DB1436 and DB1437 as well as DB871 and DB899 for the mutant allele (bottom gel). The PCR products were analysed on a 1.5% agarose gel.

Next, whole-mount in situ hybridisation experiments were performed to study neutrophil development in *qmc193* homozygous embryos. Loss of *c-myb* expression has recently been shown to interfere with neutrophil development in the early zebrafish embryo (Jin et al., 2016). As zRE1 directed *c-myb* promoter activity to embryonic and adult neutrophil progenitors, it was conceivable that loss of zRE1 interfered with neutrophil development. To address this question, 34-36 hpf embryos derived from an incross of heterozygous *qmc193* carriers were stained in a WISH experiment with a probe against lyz mRNA. This experiment did, however, not reveal any differences in staining in a batch of 20 embryos. Genotyping 8 of the embryos identified a homozygous *qmc193* carrier that displayed the same level of *lyz* mRNA that was present in wt and heterozygous qmc193 siblings (Figure 3.16Ai-iii and Appendix figure 6. 4), suggesting that embryonic neutrophil development is normal in the early homozygous qmc193 embryos.

In the absence of an obvious phenotype, it remained to be seen whether the loss of zRE1 had any effect on the level of *c-myb* expression in the blood cells of the developing embryo. To address this question, the expression of *c-myb* was studied in the primitive blood cells in embryos homozygous for the *qmc193* allele. For this purpose, whole-mount *in situ* hybridisation experiments were performed on embryos obtained from a *qmc193* heterozygous incross at 15 somites, 30 hpf and 2 dpf (Appendix figure 6.5, Appendix figure 6. 6 and Appendix figure 6. 7). Remarkably, *c-myb* expression was retained in all embryos at all the different stages. This suggests that the zRE1 may not be required for the normal level expression of the *c*-myb gene in primitive blood cells. Next, WISH experiments were performed to study the level of *c-myb* expression in definitive blood cells of the caudal haematopoietic tissue. For this purpose, 18 embryos derived from an incross of heterozygous *amc193* carriers were stained using a probe against *c-myb* mRNA. This experiment did not reveal any obvious differences in the level of *c-myb* expression at 4 dpf compared to the wild type embryos that had the normal expression of the c-myb gene at the same time point (Figure 3.16Bi-iii and Appendix figure 6.8). Genotyping 9 of these embryos identified 3 homozygous *qmc193* carriers that displayed no obvious reduction in *c-myb* expression, suggesting that while zRE1 is sufficient to direct *c-myb* promoter activity to haematopoietic cells of the CHT, this element is not essential for the expression of the *c*-*myb* gene in these cells.



### Figure 3.16 *Lyz* and *c-myb* expression were maintained in 34-36 hpf and 4 dpf *qmc193/qmc193* embryos

WT, *qmc193* heterozygous, and homozygous embryos are showing *lyz* and *c*-*myb* mRNA expression detected by WISH. Embryos were obtained from an incross of *qmc193* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudal haematopoietic tissue (CHT).

# 3.4 Attempted CRISPR/Cas9-mediated deletion of three potential enhancers (PEs) downstream of zebrafish *c-myb* gene

In addition to eliminating the zRE1 from the wild-type zebrafish genome, we attempted to delete a potential *cis*-regulatory region of the genomic DNA downstream of the *c-myb* gene in order to find out whether the PEs MP40036-, MP40036 and MP40037 (see Figure 1.12 and Table 1.1) were required for endogenous *c-myb* expression in haematopoietic cells. For this purpose, Cas9 target site 16 (TS16) with a score 42 was identified using the CRISPRscan track. Then, its guide RNA was designed and generated using the previously described procedure (see Figure 2.3). The sequence of TS16 is located on the reverse strand 325 bp downstream of the exon 16 as shown in (Figure 2.1). Deletion of the sequence between this target site and TS2 that had been used before to generate *qmc193* mutant allele was expected to remove the region between exon 16 of *c-myb* gene and zRE1.

At a one-cell stage, embryos that were collected from a wt incross were injected with 1 µl of a mixture containing gRNAs against TS16 and TS2, Cas9 protein and the fluorescent dye mini red ruby (Figure 3.17A). The presence of red fluorescence in the embryonic blastomeres confirmed the successful injection of the embryos. At 24 hpf, ten injected embryos and one uninjected embryo were randomly collected for genotyping to examine whether the CRISPR/Cas9 system had efficiently deleted the region of interest. The genomic DNA was extracted from the embryos and was then used as a template for nested PCR amplification using first the external primers DB1371 and DB967 and then the internal primers DB1418 and DB968. The nested PCR fragment was expected to have a size of ~265 bp (Figure 3.17B & C). The results showed that the expected PCR fragment of approximately 265 bp was detected in 7 out of 10 injected embryos. The PCR product of embryo number nine was isolated, purified and sequenced using primer DB1371. Sanger sequencing analysis verified that the amplified DNA was derived from the *c-myb* locus and confirmed the absence of the PEs MP40036-, MP40036 and MP40037+ downstream of *c-myb* in the deletion allele (Figure 3.17D). The mutant allele carried a deletion of 7,853 bp with the breakpoints located in TS16 and TS2. The PAM sequence of TS16 on the reverse strand was fused to the last 2 bp upstream of the PAM sequence of TS2 on the forward strand. The sequencing result verified that the CRISPR/Cas9 system successfully delete all three PEs from the *c*-myb locus, and as a result, the siblings of the genotyped embryos were raised to adulthood.

When the F0 injected fish were sexually mature, the fish were outcrossed with wild-type fish to find a founder that carried the deletion allele in its germ cells (Figure 3.17E). At 24 hpf, gDNA of individual embryos was then extracted and genotyped using established nested PCR protocol. Unfortunately, no founder was detected within 33 putative founders that were genotyped.



### Figure 3.17 *c-myb* 16&2 sgRNAs successfully produced deletion in the target sites 16 and 2

(A) Wild-type (wt) zebrafish were incrossed, and one cell stage zebrafish embryos were microinjected with the sgRNAs 16 and 2, the Cas9 protein and

the fluorescent dye mini ruby. At 5 hpf, fertilised red fluorescent embryos were sorted. (B) At 24 hpf, genomic DNA was isolated from individual uninjected and successfully injected embryos and was used as a PCR template. PCR amplification on genomic DNAs was carried out using primers (external pair (DB1418 and DB968) and internal pair (DB1371 and DB967)). The PCR products were analysed on a 1.5% agarose gel. PCR amplification was expected to yield a  $\sim$ 265bp fragment on genomic DNA that had the sequence between TS16 and 2 deleted. The red rectangle highlights the PCR fragment that was extracted from the gel and was sequenced. (C) Schematic illustration of the genomic DNA editing caused by the successful injection of the Cas9/TS16 and 2 sqRNA complexes. The inserts in the top show Sanger sequencing of TS16 and 2 within the DNA of wt zebrafish. Grey scissors indicate CRISPR/Cas9 deletion breakpoints. Orange and blue arrows show TS16 and 2, respectively. The light blue boxes show potential enhancers (PEs) MP40036-, MP40036 and MP40037. The positions of the forward and reverse primers used in the PCR reaction are shown together with the sizes of the expected PCR fragments. (D) Sanger sequencing of the forward strand of the PCR product of embryo number 9 with primer DB1371 revealed the deletion breakpoints (indicated by the red dashed line) in the mutant allele. The retained sequence of TS2 is shown between the brackets. The PAM sequences of TS16 and TS2 are shown in the black boxes. (E) At ~3-4 months, progeny were scanned for germ transmission by outcrossing the F0 injected fish to wt fish. The progeny were genotyped using the same nested PCR protocol to check for the presence of a deletion allele. None of the F0 adults had transmitted the mutation to their progeny.
# 3.5 Successful CRISPR/Cas9-mediated deletion of four potential enhancers downstream of *c-myb* from the wild-type zebrafish genome

As we did not detect any phenotypic abnormalities in the *qmc193* homozygous fish, it remained to be seen whether the three PEs and the zRE1 (Hsu, 2010) might act as a super-enhancer (Whyte et al., 2013) and whether their combined deletion had any effect on the expression of the *c-myb* gene during zebrafish embryogenesis. To answer this question, CRISPR/Cas9 genome editing was used to delete the entire region from the genomic DNA downstream of the *c-myb* gene. A new TS (TS17) was defined using the CRISPRscan. Its guide RNA was generated using the previously described protocol (see Figure 2.2 and Figure 2.3). TS17 is located 965 bp downstream of the exon 16 (Figure 2.1) and has a score value of 51. By targeting this TS and TS7 that had previously used to generate the *qmc193* mutant allele, the deletion of the sequence between the two TSs was expected to delete an approximately 10 kb fragment that encompasses the three PEs as well as zRE1.

A volume of 1 µl of a mix of guide RNAs 17 and 7, Cas9 protein and the fluorescent dye mini ruby was injected into the one-cell stage wildtype embryos (Figure 3.18A). Under the fluorescent dissecting microscope, successfully injected embryos were identified by the red fluorescence. To determine whether the region of interest (~10 kb) was deleted successfully, nine injected embryos and one uninjected

embryo were randomly collected at 24 hpf. Genomic DNA was extracted from individual embryos and used for PCR amplification using first the external primers DB1365 and DB1437 and, subsequently, the internal primers DB1371 and DB732 in nested PCR reactions. When the nested PCR products were analysed by agarose gel electrophoresis, there were PCR fragments of different sizes visible in the agarose gel, including a ~880 bp fragment which potentially correspond to the expected mutant c-myb allele (Figure 3.18B). Seven out of nine injected embryos showed the ~880 bp fragment. The PCR product for embryo number one was extracted from the agarose gel and sequenced using primer DB732 (Figure 3.18C & D). The analysis showed that the fragment represented a *c*-*myb* deletion allele. The deletion encompassed 10,181 bps. The sequencing revealed that the nucleotides of the PAM sequence of TS7 were fused to the last three nucleotides of TS17 that were followed by the PAM sequence of the TS17. The result indicated the successful deletion of the potential *cis*regulatory region downstream of *c-myb* locus from the wildtype zebrafish genome. Therefore, the remaining injected embryos were grown to adulthood.



## Figure 3.18 Successful CRISPR/Cas9-mediated deletion of three putative enhancer elements as well as zRE1 downstream of the *c*-*myb* gene

(A) Wild-type (wt) zebrafish were incrossed and one cell stage zebrafish embryos were microinjected with the sgRNAs 17 and 7, the Cas9 protein and the fluorescent dye mini ruby. At 5 hpf, fertilised red fluorescent embryos were sorted. (B) At 24 hpf, genomic DNA was isolated from individual uninjected and successfully injected embryos and was used as a PCR template. PCR amplification on genomic DNAs was carried out using first external (DB1365 and DB1437) and then internal primers (DB1371 and

DB732)). The PCR reaction was expected to yield a ~880 bp fragment on genomic DNA that had the sequence between TS17 and 7 deleted. The PCR products were analysed by electrophoresis on a 1.5% agarose gel. The red rectangle refers to the embryo that was genotyped. (C) Schematic illustrating the genomic DNA editing by the Cas9/TS17 and 7 sgRNA complexes. The sequencing chromatograms show Sanger sequencing reads of the DNA around the TSs 17 and 7 determined on wt zebrafish genomic DNA. Grey scissors indicate CRISPR/Cas9 deletion breakpoints. Pink and green arrows show the TSs 17 and 7, respectively. The red and pink boxes represent the zCNE1 and zRE1 sequences, respectively. The light blue boxes show the potential enhancers MP40036-, MP40036, MP40037 and MP40037+. The positions of the primers DB1365, DB1437, DB1371 and DB732 are indicated. The sizes of the expected PCR fragments are shown. (D) The chromatogram illustrates the result of the Sanger sequencing experiment on the nested PCR product amplified on the genomic DNA of embryo number 1. Primer DB732 was used in the sequencing experiment. The red line shows the deletion breakpoints in the mutant allele identified in the genomic DNA of injected embryo number 1. The retained sequences of TS17 is shown above the double arrow. The PAM sequences of TS17 and TS7 are shown in the black boxes.

To identify a putative founder, adult F0 fish were screened to identify those that carried the deletion allele in their germline. For this purpose, the F0 fish were outcrossed to wild-type fish, and their offspring were analysed for the presence of the mutant allele (Figure 3.19A). At 24 hpf, a group of 10 single embryos were collected, and their gDNAs were extracted for genotyping. Nested PCR amplification revealed the presence of an ~880 bp fragment in 6 of the 10 embryo samples obtained from a male founder. Fragment number six was isolated from the agarose gel and was sequenced. The sequence corresponded to *cmyb* sequence and showed that 10,181 bp were deleted between the two TSs. Closer analysis of the sequence showed that in this sequence, one extra nucleotide had been added (C nucleotide) between the remaining TS7 and TS17 sequences (Figure 3.19B). This deletion allele that lacked the PEs MP40036-, MP40036, MP40037 and MP40037+ downstream of *c-myb* was called *qmc194*. The *qmc194* male founder was crossed to a wt female, and their progeny were raised to adulthood.

Once the F1 *qmc194* fish reached sexual maturity, fin-clips were taken from the putative heterozygotes to identify the *qmc194* allele carrier. Nested PCR, as described before, was used to find the heterozygous individuals. Five out of 10 F1 fin-clipped fish carried the *qmc194* mutation, and DNA sequence of fish number one verified that (Figure 3.19C).



## Figure 3.19 Establishment of a zebrafish line that carries the deletion allele *qmc194* that lacks three potential enhancer elements as well as zRE1 downstream of *c-myb*

(A) Embryos injected with *c-myb* sqRNAs 17 and 7 were raised to adulthood and then outcrossed to wild-type fish. (B) At 24 hpf, ten F1 embryos were collected for DNA extraction and genotyped using nested PCR as described in Figure 3.18. Genomic DNA of one of the F0 injected embryos was used as a positive control. The expected 882 bp was found in six out of ten F1 embryos. The chromatogram illustrates the outcome of the Sanger sequencing experiment performed with primer DB732 on the PCR product amplified on the embryo 6 genomic DNA sample. The mutant allele was named *qmc194*. (C) The remaining siblings were raised to adulthood. Caudal fin clips were taken from ten adult F1 fish. Genomic DNA was prepared from each sample and used in a nested PCR reaction. The PCR products were analysed by electrophoresis in a 1.5% agarose gel. The PCR product of the fin clip from fish number 1 was sequenced to confirm that the fish carried the mutant c*myb*<sup>qmc194</sup> allele. The retained TS7 sequence is shown above the doubleheaded arrow. The nucleotides of the PAM sequences of TS17 and TS7 are shown inside the black boxes.

In order to see whether *qmc194* homozygous fish were viable, F2 qmc194 homozygous embryos were derived from an incross of adult fin-clipped heterozygous *qmc194* carriers. A group of 20 embryos was collected and genotyped at 24 hpf. For this purpose, gDNA was extracted and used as a template to amplify the wt and mutant alleles to identify wt, qmc194 heterozygous and qmc194 homozygous embryos. To this end, two PCR amplification experiments were carried out. The first PCR experiment was performed with primers DB1190 and DB1191 to generate a 271 bp PCR fragment that can only be amplified on the wt *c-myb* allele. The second PCR experiment was done to amplify the 882 bp mutant allele fragment, using the same primers pairs that were used for genotyping F0 and F1 progeny (Figure 3.20A & B). The results of the genotyping PCR experiments showed that among the 20 genotyped embryos, wt, qmc194 heterozygous and homozygous progeny were present at roughly the expected Mendelian ratios. The rest of the F2 progeny was raised to adulthood.





#### Figure 3.20 Identification of homozygous *qmc194* mutant embryos in the F2 progeny of two heterozygous *qmc194* F1 carriers

(A) Schematic illustrating the genomic DNA editing by the Cas9/TS17 and TS7 sgRNA complexes as shown previously in (Figure 3.18C). The position of the external and internal primers used in the nested PCR reaction are shown. The size of the expected mutant PCR fragment is indicated. The wt allele was identified by PCR amplification of a 271 bp fragment with primers DB1190 and DB1191. (B) Diagram of a *c-myb* qmc194/+ fish incross. Twenty embryos were genotyped by PCR amplification of the *qmc194* mutant and the wt PCR fragments. The diagram summarises the number of wt, heterozygous and homozygous embryos identified. The images of the two agarose gels below illustrate the outcome of the wt and *qmc194* mutant allele-specific PCR experiments that were performed on the genomic DNA that was isolated from the twenty embryos at 24 hpf. The PCR products were analysed on a 1.5% agarose gel.

To check whether qmc194 homozygous fish can survive to adulthood, siblings of the 20 embryos that were genotyped at 24 hpf were finclipped at ~3-4 months. Their genomic DNAs were used as templates in PCR reactions in which the wt and gmc194 mutant DNAs were amplified as described above. Among the 26 fish analysed, 8 (31%) were wt fish, 10 (38%) were heterozygous, and 8 (31%) were homozygous for *qmc194* (Figure 3.21A), suggesting that all genotypes were present in near Mendelian ratios ( $X_2$ -test, p-value 0.7). Besides, and to confirm that the homozygous *qmc194* are fertile, one of the adult fish that was found to carry two qmc194 alleles was outcrossed with wt, and then 10 embryos were genotyped to check the presence of wt and *qmc194* alleles. All the 10 progeny were identified as heterozygous for *qmc194* (Figure 3.21B). The results suggest that the homozygous *qmc194* fish survive to adulthood and are fertile. The identified fish revealed no phenotypic abnormalities.





### Figure 3.21 Identification of adult homozygous *qmc194* carriers in the progeny of two *qmc194* heterozygous fish

**(A)** Heterozygous *qmc194* F1 carriers were crossed, and the progeny was raised to adulthood. The adult F2 fish were fin-clipped and genotyped. The bar chart gives the number of *wt*, *qmc194* heterozygous and *qmc194* homozygous fish in the cohort of 26 fish. **(B)** The diagram illustrates an outcross of *c-myb*  $^{qmc194/qmc194}$  fish with a wt fish. The genomic DNAs of individual embryos derived from this cross were tested for the presence of wt and *qmc194* mutant alleles. The PCR experiments used primers DB1190 and DB1191 for the wt allele (top gel) and primer pairs DB1365 and DB1437 as

well as DB1371 and DB732 for the mutant allele (bottom gel). The PCR products were analysed on a 1.5% agarose gel.

Next, neutrophil development was studied in embryos homozygous for the *qmc194* allele. For this purpose, whole-mount *in situ* hybridisation experiments were carried out on embryos derived from a *qmc194* heterozygous incross. A digoxigenin-labelled antisense RNA probe against the *lyz* mRNA was used to stain these embryos at 34-36 hpf. The *lyz* gene has previously been shown to be expressed in developing neutrophils at this stage (Jin et al., 2016). WISH experiment reveals that there was no change in staining in a batch of 21 embryos that were derived from an incross of heterozygous *qmc194* carriers. Genotyping 12 embryos revealed that 3 of them were homozygous *qmc194* carriers that showed the same level of *lyz* mRNA that was present in wt and heterozygous *qmc194* siblings (Figure 3.22Ai-iii and Appendix figure 6.9). This suggests that embryonic neutrophil development is normal in the early homozygous *qmc194* embryos.

Then, WISH was performed to study the expression of *c-myb* in primitive and definitive blood cells of the developing of homozygous *qmc194* embryo obtained from a *qmc194* heterozygous incross. First, embryos were collected at 15 somites, 30 hpf and 2 dpf. These embryos were then stained using a probe against *c-myb* mRNA. The WISH experiments showed that the expression of *c-myb* was unaffected in all embryos at all 3 stages (Appendix figure 6.10, Appendix figure 6.11 and Appendix figure 6.12). To examine the level of *c-myb* more specifically in definitive blood cells of the CHT at the time when zRE1 is able to direct *c-myb* promoter activity to blood cells

in the transgenic reporter lines, an additional WISH experiment was performed on 20 embryos at 4 dpf. This experiment too, did not show any noticeable differences in the levels of *c-myb* expression between the stained embryos (Figure 3.22Bi-iii and Appendix figure 6.13). When 10 of these 20 embryos were genotyped, 2 turned out to be *qmc194* carriers, confirming homozygous that wt, *qmc194* heterozygous and homozygous embryos showed similar levels of c*myb* mRNA expression in the CHT at 4 dpf. Thus, there was no obvious reduction in *c-myb* expression in the tested primitive and definitive blood cells in homozygous *qmc194* embryos. These results suggest that while zRE1 is sufficient to direct *c*-*myb* promoter activity to definitive blood cells in the CHT, zRE1 alone and in combination with the upstream PEs may not essential for the expression of the *c-myb* gene in these cells.



#### Figure 3.22 *Lyz* and *c-myb* expression are unaffected in 34-36 hpf and 4 dpf *qmc194/qmc194* embryos, respectively

Embryos were derived from an incross of *c-myb*<sup>qmc194/+</sup> carriers. Embryos were collected at different stages and stained by in situ hybridisation using probes against *lyz* and *c-myb* mRNA. All embryos are presented in a lateral view with anterior facing to the left and dorsal up. Green bracket: caudal haematopoietic tissue (CHT).

3.6 Lyz and c-myb genes expression levels were unaffected in the compound heterozygous cmyb<sup>t25127/qmc193</sup> or c-myb<sup>t25127/qmc194</sup> mutant zebrafish embryos

The WISH experiments on the progeny of incrosses between heterozygous carriers of *qmc193* and *qmc194* fish suggested that the levels of *lyz* and *c-myb* mRNA were unaffected in blood cells of homozygous *qmc193* and *qmc194* embryos. To see whether a complete lost of one copy of *c-myb* would cause *lyz* and *c-myb* mRNA expression in the presence of the *qmc193* or *qmc194* alleles and, thereby, reveal a role of the enhancer elements, the *qmc193* and *qmc194* mutant fish were crossed to a heterozygous carrier of the loss-of-function allele *t25127* of *c-myb* (Soza-Ried et al., 2010). The expression levels of *lyz* and *c-myb* were studied in the progeny.

The *c-myb*<sup>t25127</sup> mutant allele carries a thymidine/adenine (T/A) transversion at nucleotide position 15 of exon 6 of the *c-myb* locus on zebrafish chromosome 23. This mutation leads to an amino acid change from isoleucine (IIe) to asparagine (Soza-Ried et al., 2010) (Figure 3.23A). This missense mutation affects the DNA binding domain of zebrafish c-Myb protein. The mutant protein cannot interact with the c-Myb binding site on the DNA (Soza-Ried et al., 2010). In zebrafish, primitive red blood cell formation is not affected in *c-myb*<sup>t25127/t25127</sup> embryos (Appendix figure 6.14, Appendix figure 6.15 and Appendix figure 6.16). By contrast, homozygous fish are incapable of surviving

to adulthood because of a loss of blood cells during definitive haematopoiesis (Hess et al., 2013).

Here, to confirm the previously published expression patterns, embryos derived from an incross of heterozygous *t25127* carriers were stained by WISH using probes against lyz and c-myb mRNA at 30-32 hpf and 4 dpf, respectively. At 30-32 hpf, lyz mRNA was lost in primitive neutrophil cells in *c-myb*<sup>t25127</sup> homozygous embryos (Figure 3.23Bi-Bii). In addition, *c-myb* expression was greatly diminished in the caudal haematopoietic tissue (CHT) at 4 dpf in the c-myb<sup>t25127</sup> mutants, indicating a reduction in the number of c-myb<sup>+</sup> HSPCs (Figure 3.23Ci-Cii). By contrast, in siblings, normal expression of lyz and c*myb* mRNAs were detected in neutrophils and in definitive blood cells in the CHT, respectively (Figure 3.23Bi and Ci). From 17 lyz and 18 c*myb*-stained embryos, 7 embryos each were chosen for genotyping based on the level of gene expression to confirm the presence of homozygous carriers of the c-myb<sup>t25127</sup> allele. To amplify the DNA sequence mutated in the t25127 allele, nested PCR was performed using the external primers DB827 and DB828 in the first and the primers DB980 and DB981 in the second step to amplify a 280 bp fragment that was subsequently sequenced using primer DB1446 (Figure 3.23D). The Sanger sequencing confirmed that the two embryos with reduced staining that were chosen from each batch were the homozygous carriers of the *c-myb*<sup>t25127</sup> mutation.



#### Figure 3.23 The expression of *lyz* and *c-myb* are missing in the *c-myb*<sup>t25127/t25127</sup> embryos

(A) Schematic representation of the c- $myb^{t25127}$  allele at the exon 6 of c-myblocus on zebrafish chromosome 23. The pairs of primers around the mutation site (external and internal primers (DB827- DB828 and DB980-DB981, respectively)) using to identify the *c-myb*<sup>t25127</sup> mutant allele. Red letters indicate the transversion of thymidine to adenine (T>A) in *c*-myb<sup>t25127</sup> allele (Soza-Ried et al., 2010). (Bi) Lateral view of embryos obtained from an incross of c-myb<sup>t25127</sup> heterozygous and stained in a WISH using lyz probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. (Bii) The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Bi). (Ci) Lateral view of embryos obtained from an incross of *c-myb*<sup>t25127</sup> heterozygous and stained in a WISH using *c-myb* probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. The numbers of embryos with phenotypes over the total numbers of embryos analysed are provided on the panels. Green bracket: caudle haematopoietic tissue (CHT) and green arrowhead: missing expression in CHT. (Cii) The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Ci). (D) PCR amplification of the *c-myb*<sup>t25127</sup> mutant allele. The PCR product was analysed on a 1.5% agarose gel. Genotyping of some of the WISH embryos was done to distinguish wt, *c-myb*<sup>t25127</sup> and *c-myb*<sup>t25127/t25127</sup> alleles of *c-myb*. The panels show sanger DNA sequencing reads of the template strand of the wt, heterozygous and homozygous alleles of *c-myb*. The sequences have been read using a DB1446 primer. The transversion of T to A in *c-myb*<sup>t25127</sup> allele (indicated by a small black box). Red arrow depicts the presence of T and A within the c-myb<sup>t25127</sup> heterozygous sequence of WISH embryos.

In addition to the *lyz* gene, the expression of two additional neutrophil markers was analysed at 36 hpf. These markers were the *srgn* and *mpx* genes. The WISH experiments revealed that 4 out of 18 embryos stained with a probe against *srgn* mRNA had lost anterior *srgn* expression in cells over the yolk cell. The same embryos also displayed reduced defuse staining in the PBI, similar to what had previously been reported by (Jin et al., 2016) (Figure 3.24). Similarly, 4 out of 20 embryos displayed reduced levels of *mpx* expression. Their expression levels were also drastically decreased in *c-myb*<sup>t25127</sup> mutant embryos. In addition, the expression of the lymphoid marker *rag-1* was absent in the developing thymus in *c-myb*<sup>t25127</sup> mutant embryos at 5 dpf (Figure 3.24). These differences between siblings and *c-myb*<sup>t25127</sup> homozygous mutant embryos were consistent with previously published data (Soza-Ried et al., 2010, Zhang et al., 2011).

#### **Chapter 3**



#### Figure 3.24 Reduced /or loss of the expression of some genes in the *c-myb*<sup>t25127/t25127</sup>

Lateral view of embryos obtained from an incross of *c-myb*<sup>t25127</sup> heterozygous and stained in whole-mount RNA in situ hybridizations (WISH) using different probes of markers. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Black arrow: thymus and black arrowhead: missing expression in thymus. The numbers of embryos with phenotypes over the total numbers of embryos analysed are provided on the panels.

# 3.6.1 *Lyz* and *c-myb* genes expression levels were normal in the compound heterozygous *c-myb*<sup>t25127/qmc193</sup> mutant zebrafish embryos

In order to investigate whether the deletion of zRE1 in *qmc193* has a significant effect on blood cell development in embryos that also carry the *c-myb*<sup>t25127</sup> loss-of-function allele, the expression of *lyz* and *c-myb* were examined by WISH in compound heterozygous *c-myb*<sup>t25127/qmc193</sup> zebrafish embryos. Embryos were obtained by crossing a *qmc193* heterozygous carrier to a *t25127* heterozygous zebrafish (Figure 3.25A). After WISH staining, embryos displayed variable levels of *lyz* expression at 34-36 hpf (Figure 3.25Bi and Appendix figure 6. 17). Eleven of the embryos displayed high levels of *lyz* mRNA. Nine embryos showed lower levels of staining. Genotyping 4 of the well and 3 of the weakly stained embryos showed that there was no clear correlation between the observed phenotype and the genotype of the embryos (Figure 3.25Bii).

Next, *c-myb* expression was examined at 3 dpf in 15 embryos obtained from the same previous cross using WISH analysis. The WISH experiment shows that all embryos showed staining in the CHT (Figure 3.25Ai and Appendix figure 6.18). In 12 embryos, this staining was higher than in the remaining 3 embryos. Genotyping 6 of the strongly stained and all weakly stained embryos revealed that there was no clear correlation between the phenotype and the genotype (Figure 3.25Aii). Both results suggest that the *lyz* and *c-myb* expression were maintained at relatively normal levels even in those embryos that carried the two *c-myb* alleles *qmc193* and *t25127*. The differences in staining that were observed in the WISH experiments may be due to technical issues or may be caused by stage differences between embryos. Despite, all embryos were collected at the desired time points using morphological features under a light microscope (Kimmel et al., 1995), some of these embryos developed at different embryonic stages.



#### Figure 3.25 *Lyz* expression was maintained in 34-36 hpf in *cmyb*<sup>t25127/qmc193</sup> embryos

(A) A crossing of a three *qmc193* heterozygous carrier males to a three *t25127* heterozygous females zebrafish using breeding beach style tank. (Bi) Lateral view of embryos obtained from (A) stained in a WISH using *lyz* probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. (Bii) The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Ai).



#### Figure 3.26 *c-myb* expression was maintained in 3 dpf *c-myb*<sup>t25127/qmc193</sup> embryos

**(Ai)** Lateral view of embryos obtained from outcrosses of c- $myb^{t25127}$  and c- $myb^{qmc193}$  heterozygous stained in a WISH using c-myb probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudal haematopoietic tissue (CHT). **(Aii)** The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Ai).

# 3.6.2 The expression level *of lyz* and *c-myb* genes were unchanged in the compound heterozygous *c-myb*<sup>t25127/qmc194</sup> mutant zebrafish embryos

In order to find out whether the deletion of all potential enhancers MP40036-, MP40036, MP40037 and MP40037+ in *qmc194* have a notable effect on blood cell development in embryos that also carry the c- $myb^{t25127}$  loss-of-function allele, the expression of lyz and c-mybexamined by WISH in a compound heterozygous *c*were *myb*<sup>t25127/qmc194</sup> zebrafish embryos. Embryos were obtained by crossing a *qmc194* heterozygous carrier to a *t25127* heterozygous zebrafish (Figure 3.27A). Lyz expression was examined at 34-36 hpf using WISH analysis. WISH-stained embryos presented variable levels of lyz in a batch of 20 embryos (Figure 3.27Bi and Appendix figure 6.19). Eleven embryos were presented with high levels of lyz mRNA. Nine embryos displayed reduced levels of staining. Genotyping 4 of the highest and 3 of the weakest stained embryos showed that there was no obvious correlation between the detected phenotype and the genotype of the embryos (Figure 3.27Bii).

Next, the *c-myb* expression was analysed at 4 dpf in 17 embryos which were obtained from the same previous cross using the WISH experiment. The WISH analysis revealed that all embryos showed staining in the CHT (Figure 3.28Ai and Appendix figure 6.20). Within 17 embryos, 12 embryos were slightly higher staining than in the remaining 5 embryos. Genotyping all embryos indicate that there was no clear correlation between the phenotype and the genotype (Figure 3.28Aii). Both results suggest that the expression of *lyz* and *c-myb* were unaffected at relatively normal levels even in those embryos that carried both the *qmc194* and *t25127 c-myb* alleles. The high number of *qmc194* and compound heterozygous, *c-myb*<sup>t25127/qmc194</sup> embryos that were present in the stained embryos could be due to the way that the embryos where randomly picked from the breeding beach style tank.



#### Figure 3.27 The expression level of *lyz* in 34-36 hpf was not changed in the compound heterozygote of c-myb<sup>t25127/qmc194</sup> embryos

(A) A crossing of a three *qmc194* heterozygous carrier males to a three *t25127* heterozygous females zebrafish using breeding beach style tank. (Bi) Lateral view of embryos obtained from (A) stained in a WISH using the *lyz* probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. (Bii) The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Ai).



### Figure 3.28 The expression level of *c-myb* at 4 dpf was not altered in the compound heterozygote of c-myb<sup>t25127/qmc194</sup> embryos

**(Ai)** Lateral view of embryos obtained from outcrosses of c- $myb^{t25127}$  and c- $myb^{qmc194}$  heterozygous stained in a WISH using the c-myb probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudal haematopoietic tissue (CHT). **(Aii)** The bars show the numbers of genotyped embryos with phenotypes over the total numbers of embryos analysed in (Ai).

## 3.7 Human regulatory element one (hRE1) is able to drive GFP expression in the zebrafish adult kidney

The regulatory element one of zebrafish (zRE1) and mouse (mRE1) drives the expression of GFP in the caudal haematopoietic tissue (CHT) at 3 dpf in zebrafish embryos and the adult kidney marrow when combined with the zebrafish *c-myb* promoter fragment five (PF5). It was interesting to find out whether the human regulatory element that includes the human conserved non-coding element one (hCNE1) can also direct GFP expression in haematopoietic cells in zebrafish embryos and adult kidney marrow cells. A 1 kb size of the human regulatory element (hRE1) sequence was tested in this study in order to compare it with the zRE1 of a previous study (Hsu, 2010) where a sequence of 1 kb size including the zCNE1 was able to direct the expression of GFP in haematopoietic tissues when combined with the zebrafish *c-myb* promoter. The investigation of regulatory information deposited in ENSEMBL GRCh 37.p13 revealed that a DNaseI hypersensitive site (DNaseI HS) had previously been identified in the human myelogenous leukaemia cell line K562 (https://www.encodeproject.org/annotations/ENCSR611VZD/) that is located downstream of the human *C-MYB* gene and overlapped with hCNE1 (Figure 3.29A & B). K562 cells have some proteomic similarity to both undifferentiated granulocytes and erythrocytes (Aktuna, 2018, Andersson et al., 1979). Therefore, primers DB1216 and DB1217 were designed to amplify a DNA fragment called hRE1 that included both the hCNE1 and the DNaseI HS sequences in a 1 kb sequence (Figure 3.29B).



#### Figure 3.29 Localisation of the conserved non-coding element one downstream of human *C-MYB* gene.

(A) The panel shows an overview of human C-MYB (protein-coding) that is depicted as a golden bar along chromosome 6. The vertical red line presents the location of the interesting region downstream of human *C-MYB* gene. (B) A close up of (A). The diagram depicts the human conserved non-coding element one (hCNE1) within human regulatory element one (hRE1) on chromosome 6 in human, as shown on the ENSEMBL database with custom tracks. It refers that it contains a DNaseI hypersensitive site (red box) within the human genome. Ensembl Homo sapiens version 98.37 (GRCh 37.p13) Chromosome 6: 135,601,373-135,602,674.

## **3.7.1** Establishment of stable human regulatory element one (hRE1) zebrafish transgenic line

To test whether the newly generate transgene *cmyb*-hRE1-PF5:*egfp* showed expression in haematopoietic cells in zebrafish, plasmid pJHE1 was co-injected with Tol2 transposase mRNA into one-cell stage wt zebrafish embryos (Figure 3.30A). The next day, injected and uninjected embryos were examined under a fluorescence microscope for mosaic GFP fluorescence in their developing tissues. Fluorescent images of injected and uninjected embryos were taken between 1-3 dpf (Figure 3.30B-E). Besides auto-fluorescent pigment cells that were present in both injected and uninjected embryos, injected embryos displayed green fluorescence in cells of the retina and in the olfactory placodes, tissues in which promoter fragment PF5 drives reporter gene expression. At 3 dpf, green fluorescence was also detected in ectopic places such as the muscle fibres (Figure 3.30D & E). Embryos that displayed transient GFP expression were grown up to adulthood in the hope that they would carry the Tg(*c-myb*-hRE1-PF5:*egfp*) transgene in their germline.



### Figure 3.30 Establishment of the stable human regulatory element one (hRE1) zebrafish transgenic line by injecting the Tol2 pJHE1-*egf*p

(A) Wild-type (wt) zebrafish were incrossed and one-cell stage zebrafish embryos were co-injected with the pJHE1 DNA construct and the *Tol2* transposase mRNA. At 1-3 days post fertilisation (dpf), normal embryos were then analysed under a fluorescent microscope for GFP fluorescent protein. (B and D) Show WT control uninjected embryo at 1-3 dpf. These are siblings of the injected embryo in C and D. (C) Depict the expression of transient GFP in olfactory placodes (OP) (blue arrow), the retina (Re) (Red arrow). (D and E) At 3 dpf, auto-fluorescence was observed in the pigment cells (grey arrowheads) and in the yolk cell (grey asterisk) in the uninjected controls (D) and in injected embryos (E).

#### 3.7.2 Zebrafish embryos that carry the Tg(c-myb-hRE1-PF5:egfp)qmc195 transgene display GFP reporter gene expression in cells of the caudal haematopoietic tissue

germline transmission of the *c-myb*-hRE1-PF5:*egfp* verifv То transgene, adult fish that had successfully been injected with the transgene construct were crossed with wild-type fish. Embryos derived from these crosses (non-transgenic and transgenic) were examined for GFP expression under the fluorescent microscope in 1-4 days post fertilisation (Figure 3.31A-Hiii). Out of 24 potential founders successfully crossed with wt fish, 4 transgenic founders were identified. These were founders of the *qmc191*, *qmc195*, *qmc196* and *qmc197* lines (Table 3.2). On days 1 to 4, transgenic embryos were identified based on the PF5-driven GFP expression pattern, i.e., the expression in the mid/hindbrain boundary (MHB), the retina (Re), the olfactory placodes (OP), the branchial arches (BA) and the pronephric ducts (PND). Interestingly, in one of these lines, the *qmc195* line, weak GFP fluorescence was also observed in cells of the CHT of these embryos by 2 dpf (Figure 3.31Diii), suggesting that hRE1 is able to enhance PF5 activity in definitive zebrafish blood cells. At 3-4 dpf, GFP expression was still obvious in the CHT, albeit not at the same level (Figure 3.31Fiii and Hiii). Noticeably, the level of the GFP expression in the CHT was found to be low and extremely variable between embryos, suggesting that the embryos carried a variable number of transgene copies.

| <i>c-myb</i> -hRE1-PF5: <i>egfp</i> Identified founders |                             |                     |                |                               |                           |                                         |                         |                                         |                     |
|---------------------------------------------------------|-----------------------------|---------------------|----------------|-------------------------------|---------------------------|-----------------------------------------|-------------------------|-----------------------------------------|---------------------|
| Founder<br>Name                                         | GFP <sup>+</sup><br>embryos | Level of expression | Retina<br>GFP+ | Olfactory<br>GFP <sup>+</sup> | Brain<br>GFP <sup>+</sup> | Pronephric<br>ducts<br>GFP <sup>+</sup> | CHT<br>GFP <sup>+</sup> | Branchial<br>arches<br>GFP <sup>+</sup> | Line<br>established |
| qmc191*                                                 | 13                          | Low                 | Yes            | Yes                           | Yes                       | No                                      | No                      | Yes                                     | No                  |
| qmc195                                                  | 28                          | Strong              | Yes            | Yes                           | Yes                       | Yes                                     | Yes<br>(weak)           | Yes                                     | Yes                 |
| qmc196*                                                 | 60                          | Low                 | Yes            | Yes                           | Yes                       | No                                      | No                      | Yes                                     | No                  |
| qmc197*                                                 | 55                          | Extremely<br>low    | Yes            | Yes                           | Yes                       | No                                      | No                      | Yes                                     | No                  |

#### Table 3.2 Identified Tg(*c-myb*-hRE1-PF5:*egfp*) transgenic founders

\*(see appendix 5.20)
### Chapter 3





## Figure 3.31 Expression of EGFP reporter gene in in the caudal haematopoietic tissue (CHT) of 2-day old embryos of Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> transgene

(A) Lateral view of non-transgenic sibling of the Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> embryo shown in Bi-iii. Anterior is to the left, posterior to the right, dorsal is up. (**Bi-iii**) Embryos were characterised as transgenic based on the GFP expression in the retina (Re) (red arrow), the olfactory placode (OP) (blue arrow) and the mid/hindbrain boundary (MHB) (yellow arrow). This GFP expression is driven by the PF5 promoter fragment. Weak expression in the pronephric ducts (PND) (purple arrow) was observed at 1 dpf. (**C**) Control non-transgenic embryo at 2 dpf. (**Di-iii**) A transgenic embryo shows reporter expression in the OP, Re and MHB at 2 dpf. The

expression of the reporter gene can be slightly observed in caudal haematopoietic tissue (CHT) (green arrow). **(E)** Control non-transgenic embryo at 3 dpf. **(Fi-iii)** A transgenic embryo displays GFP expression in OP, BR, MHB and the branchial arches (BA) (white arrow) at 3 dpf. The expression of the reporter gene can be seen in the CHT region at a low level. **(G)** The image depicts the control non-transgenic embryo at 4 dpf. **(Hi-iii)** Embryo displaying expression in the OP, MHB and CHT at 4 dpf.

In order to confirm that GFP expression was observed in the CHT of the Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> in live transgenic embryos, WISH experiments with an *egfp* mRNA probe were performed on wt (Figure 3.32Ai-iii), *qmc85* (Figure 3.32Bi-iii) and *qmc195* embryos (Figure 3.32Ci-iii), at 3 dpf. GFP mRNA was detected in the retina and in the olfactory placode of transgenic embryos of the *qmc85* and *qmc195* lines but not in any of the wt embryos. In addition, it was noticed that GFP mRNA was also present in cells of the caudal haematopoietic tissue of *qmc85* (Figure 3.32Biii) and *qmc195* transgenics (Figure 3.32Ciii) at 3 dpf. This suggests that the green fluorescence observed in the cells of the CHT of Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> transgenic embryos was indeed due to the presence of GFP protein.



#### Figure 3.32 Expression of *GFP* mRNA in CHT of Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> transgenic zebrafish embryos. (A-D)

Whole mount in situ hybridisation on zebrafish embryos at 3 dpf. Overstaining in the head regions of these embryos was needed to get the nice staining in the CHT region. (Ai-Ci) Embryos are present in dorsal views and (Aii-Cii) in lateral views with anterior to the left and dorsal up. (A) Show non-transgenic embryo as a negative control. (Bi and Ci) GFP mRNA expression in non-haematopoietic tissues was observed in embryos Tg(*c-myb*-zRE1-PF5:*egfp*)<sup>qmc85</sup> carrying the and the Tg(*c-myb*hRE1:PF5:*eqfp*)<sup>qmc195</sup> transgenes in olfactory placodes (OP) (blue arrow) and retina (Re) (red arrow). (Bii) GFP expression is observed in cells of the caudal haematopoietic tissue (CHT) (green bracket) in Tg(c-myb-zRE1-PF5:egfp)qmc85 embryos. (Cii) GFP expression is detected in cells of the CHT in  $Tg(c-myb-hRE1-PF5:egfp)^{qmc195}$  embryos. (iii) A close-up of the CHT of the embryos in (ii).

### 3.7.3 The *c-myb*-hRE1-PF5:*egfp* expression is retained in adult haematopoietic cells in the *qmc195* kidney

The presence of *qmc195:GFP*+ cells in the CHT, the larval site of haematopoiesis, suggested that there may also be *qmc195:GFP*+ haematopoietic cells in the adult site of haematopoiesis, the kidney marrow. In order to examine this, the kidneys of wild-type fish, *qmc85* and *qmc195* transgenic fish, were dissected. Blood cells were flushed out and then analysed on a Beckman Coulter Astrios EQ fluorescence-activated cell sorter. Sytox red was used to exclude any dead cells. Non-transgenic WT cell samples (Figure 3.33Ai-iii) were used to set the gates that were then applied to the WKM replicates of the *gmc85* (1, 2 and 3) and *gmc195* (1, 2 and 3) transgenic fish. The flow cytometric data on two of the *qmc85* replicates (2 and 3) were generated by Martin Gering in a previous experiment and were re-analysed in the context of this study. The analysis of the green versus red fluorescence of *qmc85* replicates 1, 2 and 3 revealed that the percentage of GFP+ cells gated was 1.76%, 1.43% and 6.41%, respectively, with an average 3.2% (Figure 3.33Bii). To identify the type of cells that expressed GFP, forward and side scatter characteristics of the GFP+ cells were analysed. These indicate the cells' size and granularity, respectively. The FSC and SSC analysis of GFP+ cells gated for *qmc85* replicates show that an average of 13.6% of these cells fell inside the progenitor gate, while an average

of 84.6% of the cells was found in the myelomonocyte gate (Figure 3.33Biii). The investigation of *qmc195* replicates 1, 2 and 3 show that the percentage of GFP+ cells gated was 0.13%, 0.45% and 0.07%, respectively, with an average of 0.22% (Figure 3.33Cii). FSC and SSC characteristics of GFP+ cells gated for *qmc195* replicates show that an average of 69.6% fell into the progenitor gates. Also, the analysis of *qmc195* replicates shows that the GFP+ cells gated found in the myelomonocytic gate were an average 21.4% (Figure 3.33Ciii). Thus, the flow cytometry revealed that there was a difference in the percentage of progenitors and myelomonocytes among the GFP+ cells of the zebrafish whole kidney marrow in qmc195 compared to qmc85 control (Figure 3.33D & E). These results suggest that the hRE1 could be sufficient to direct transgene expression in the definitive haematopoietic progenitor cells of the zebrafish embryos and adult kidney marrow. Unlike the zebrafish orthologue, it does not appear to drive convincing expression in more mature myelomonocytes.



203 | Page



## Figure 3.33 Flow cytometric analysis show that Tg(*c-myb*-hRE1:PF5:*egfp*)<sup>qmc195</sup> transgenic fish carry GFP+ haematopoietic progenitor and myelomonocytic cells in kidney marrow

Flow cytometric analysis of haematopoietic cells isolated from the kidney marrow of wt,  $Tg(c-myb-zRE1-PF5:egfp)^{qmc85}$   $Tg(c-myb-hRE1-PF5:egfp)^{qmc195}$  transgenic fish. n = 1 (wt), 3 (*qmc85*) and 3 (*qmc195*). (Ai-

iii) Flow cytometric analysis of KM adult wt fish (non-transgenic). (Ai) The panel shows the light scatter characteristics of all cells for the wt control fish. (Aii) The panel shows a density plot that displays green versus red fluorescence in the kidney marrow cells of wt fish. (Aiii) The panel shows the light scatter characteristics of all cells for the GFP+ cells identified in the wt fish. (Bi-iii and Ci-iii) Flow cytometric analysis of adult kidneys of qmc85 and qmc195 transgenic fish replicates. (**Bi and Ci**) Panels show the light scatter characteristics of all cells in the transgenic fish of *qmc85* and qmc195 replicates. (Bii and Cii) Panels show density plots that display green versus red fluorescence as detected in the kidney marrow cells of each of the transgenic fish replicates analysed. (Biii and Ciii) Panels show the light scatter characteristics of all cells for the GFP+ cells identified in the transgenic fish of amc85 and amc195 replicates. (D) The dot plot graph showing the percentage of GFP+ cells gated in wt, gmc85 and qmc195 replicates. (E) The dot plot graph showing the percentage of progenitors and myelomonocyte cells within the GFP+ cells gated in wt, *qmc85* and *qmc195* replicates. The mean values proved to be statistically different. (*t*-test: \*\*p<0.01). **Shapes:** black circle represents wt; blue squares (with and without black border) represent *qmc85* replicates and red triangles (with and without black border) represents qmc195 replicates. The overall number of cells and those in the particular gates and the corresponding percentages are shown under each panel. Gates from left to right: [Cells] = time AND live AND cells; [c] = time AND live AND cells; [GFP]= time AND live AND cells AND GFP. The cell sorting was performed on a Beckman Coulter Astrios EQ operated by Nicola Croxall.

### **4** Discussion

#### 4.1 Summary

Previous analysis has shown that the regulatory element one CNE1 downstream of the *c*-myb gene is conserved in vertebrates (Hsu, 2010). Zebrafish regulatory element one (zRE1), which contain zebrafish conserved-non coding element one (zCNE1) tested in Tg(c*myb-*zRE1-PF5*:eqfp*)<sup>qmc85</sup> line, demonstrate that zCNE1 is sufficient to direct *c-myb* promoter activity to haematopoietic cells. This *qmc85* line displays GFP expression in blood cells of the CHT embryo and adult zebrafish kidney marrow. In this study, we carried out a Single-cell RNA Sequencing (scRNA-Seq) to learn more about the exact nature of the GFP+ haematopoietic cells of zebrafish in the adult kidney marrow of the Tg(*c-myb-z*RE1-PF5:*egfp*)<sup>qmc85</sup> zebrafish line. The flow cytometric analysis had revealed that the majority of GFP+ cells were in the myelomonocytic gate and that most of the myelomonocytes were GFP-positive. The scRNA-Seq analysis showed that the GFP+ cells of *qmc85* were neutrophils at different maturation stages. We used the CRISPR/Cas9 editing system to delete the zRE1 containing zCNE1 alone (*qmc193*) and in combination with the three potential elements (PEs) (*qmc194*) from the zebrafish *c-myb* locus to investigate whether the zCNE1 and other elements are essential for the of *c-myb* expression during zebrafish haematopoiesis. The homozygous embryos showed normal 206 | Page

*c-myb* expression in blood cells of the caudal haematopoietic tissue at four days post fertilisation, and the adults were viable and fertile. Our findings revealed that though zCNE1 is sufficient to drive the activity of the *c-myb* promoter in neutrophil cells, it is not necessary for the expression of the *c-myb* gene. The human regulatory element one (hRE1) containing human conserved-non coding element one (hCNE1) was tested in our newly generated stable Tg(*c-myb*-hRE1-PF5:*egfp*)<sup>qmc195</sup> line to investigate whether the hCNE1 is sufficient to direct transgene expression to haematopoietic cells in the embryo and adult kidney marrow. The result suggests that the hCNE1 can direct the expression of *c-myb* gene to definitive haematopoietic cells in the zebrafish embryos and adult kidney marrow. However, in the *qmc195* line, the expression of GFP was low, and the number of GFP+ myelomonocyte cells was small compared to the *qmc85* line.

### 4.2 Single-cell RNA Sequencing (scRNA-Seq) of whole kidney marrow (WKM) of adult zebrafish Tg(*c-myb*-zRE1:PF5:*egfp*)<sup>qmc85</sup> line

In the *qmc85* zebrafish transgenic line, GFP-positive kidney marrow cells are neutrophils. The transcriptome analysis shows that all the GFP+ cells express the neutrophil granulocyte gene lysozyme *(lyz)*. This was consistent with the GFP-positive cells found within the myelomonocyte gate of the wt whole KM light scatter profile as defined by Traver and colleagues (Traver et al., 2003a). These

myelomonocytic cells displayed typical neutrophil morphology (segmented and non-segmented nucleus) when these cells were isolated, cytospun and stained with Giemsa, as found in the previous microscopic study in our lab (unpublished). To explore further whether the myelomonocytic cells were neutrophils, *qmc85* was crossed to the Lyz:dsRed line (generated in Crosier's lab (Hall et al., adult zebrafish double 2007)). In of transgenic *lyz:dsRed:qmc85:GFP*, flow cytometric analysis of kidney marrow revealed that most of the myelomonocytic cells were positive for both fluorescent transgenes. Our findings show that all these cells express Lyz, a neutrophil-specific gene, which encodes zebrafish lysozyme enzyme (Yang et al., 2012). This could imply that the *qmc85* GFP+ cells belong to the neutrophil cell lineage. Neutrophils are the first responders to migrate towards the inflammation, tissue damage and to kill microbes (Lieschke et al., 2001, Jenne et al., 2018). In zebrafish, it has been found that lysozyme, which is a key component of neutrophil granules, is expressed in the primitive and definitive neutrophils (Athanasiadis et al., 2017, Hall et al., 2007, Liu and Wen, 2002). Lysozyme has an antibacterial activity that helps to break specific linkages in the bacterial cell wall (Gordon et al., 1974). In the study of Jin and colleagues, homozygous carriers of *cmyb* mutant allele, called *hkz3*, display a specific defect in primitive neutrophil development which fail to initiate the expression of the neutrophil marker lyz (Jin et al., 2016). A number of neutrophil markers, like npsn, srgn, lect2l expressed in our cell cohort were selected in comparison with *lyz* based on the highest total number of UMI and r<sup>2</sup> values. They were widely expressed and are known as neutrophil-specific genes. Neutrophil marker, *srgn* (serglycin), is an intracellular proteoglycan of hematopoietic cells that help to localise and packing of granule proteins in neutrophils (Niemann et al., 2007). The zebrafish marker npsn (nephrosin) is a neutrophilspecific granzyme used for host defence against microbial infections (Di et al., 2017). Similar to mammals, *lect2l* (leukocyte cell-derived chemotaxin 2) plays a significant role against microorganism infection in neutrophils (Huo et al., 2019). Some of the neutrophil specific genes, such as *cxcr4b*, *rac2* and *wasb* were also expressed in our cells. These genes were also confirmed to be specific for neutrophils in the studies of Furze and Rankin, Rosowski and colleagues and Kumar and colleagues, respectively (Furze and Rankin, 2008, Kumar et al., 2012, Rosowski et al., 2016). Athanasiadis and colleagues' study further confirm that these genes (*cxcr4b*, *rac2* and *wasb*) are specific to neutrophils (Athanasiadis et al., 2017). Our GFP+ qmc85 cells also expresses, cebpb, cfl1, illr4, mpx and ncf1 genes. This was in agreement with the study of Athanasiadis and colleagues on the upregulation of these genes in the neutrophil cells branch (Athanasiadis et al., 2017). In their study,

they used FACS index sorting with single-cell RNA Seq to show the gene expression profile of a number of blood cells using different zebrafish transgenic reporter lines. The blood lineage tree of the zebrafish generated was organised along their differentiation path due to their transcriptional differences. The morphology of sorted cells was also found to match the cell type branches (Athanasiadis et al., 2017). Our scRNA-Seq data also reveal that the markers which are characteristic for other blood cell lineages such as macrophage, red blood and T cells were absent across all the *qmc85:GFP*+ (2246) cells. This probably suggests that the CNE1 under the control of the *c-myb* promoter (PF5) could direct haematopoietic stem cell to myelomonocytes (neutrophil granulocytes) transition. In our adult zebrafish, the flow cytometric analysis of the kidney marrow cells in *qmc85* transgenic line suggests that zRE1 drives GFP expression into myelomonocytes and progenitors. In most of the haematopoietic system models, myeloid cell development begins with the common myeloid progenitor (CMP), which separate early from the lymphoid lineage and gives rise to the granulocyte-monocyte progenitor (GMP). These are bipotent progenitors which differentiate to monocyte-macrophages and neutrophil granulocytes (Iwasaki and Akashi, 2007, Orkin and Zon, 2008a, Orkin and Zon, 2008b, 2011). However, even Stachura and Traver, though the monocyte/macrophage and granulocyte generated arose from a common cell branch GMP, none of the macrophage markers was expressed across all our *qmc85:GFP*+ cells.

The GFP-positive neutrophils in the kidney marrow of *qmc85* transgenic include cells at different maturation stages. Further analysis of the scRNA-Seq data of the neutrophils cells shows that the cells were grouped into different cell clusters of gene expression profile, implying different maturation stages. The gene expression profiles of our zebrafish scRNA-Seq analysis were compared with the most recent study on humans (Dinh et al., 2020). We took advantage of this study because they used different methods that confirmed that the cells were at different maturation stages. In their study, they used FACS, microscopy, in-vitro and in-vivo progenitor proliferation analysis and bulk RNA-Seq (Dinh et al., 2020). Their analysis gave us more information and a clear understanding of the different maturation stages of the neutrophil cells. We chose the study of Dinh and colleagues in our comparison in place of Athanasiadis and colleagues' study because, in the latter study, they used a small number (~337) of neutrophil cells as compared to our 2246 cells. The analysis of the maturation or differentiation stages of the neutrophils was not included in Athanasiadis and colleagues' study. To know what each cell cluster represents, we compared the gene expression profiles of our results with that of Dinh and colleagues by re-analysing their RNA-Seg data obtained from NCBI

database. The comparison shows that the cells were at different stages of maturation. This was in agreement with the study of Grassi and colleagues' on human neutrophils differentiation (Grassi et al., 2018). They found out that there was a gradual maturation from P/Ms to SNs in the human bone marrow. The findings of Dinh and colleagues' study as well as those of Grassi's and colleagues and our Dinh-based analysis, were in agreement with our findings that there could be a gradual maturation across the different clusters from extreme cluster one to extreme cluster two. Cluster one could imply immature neutrophils, and cluster two mature neutrophils. During neutrophil differentiation, the various maturation stages encompass the transition of the immature (progenitors) cells to mature cells. Most of this development takes place in mammalian bone marrow or in zebrafish kidney, where the precursors of these cells reside (Bainton et al., 1971, Lieschke et al., 2001). The most significant differentially expressed genes in cluster one were found to be highly expressed in the earliest neutrophil progenitor (ePreN) of Dinh and colleagues' study and the P/Ms (immature neutrophils) of Grassi and colleagues' study. This cluster probably represents an immature stage of neutrophil differentiation. Some of the cells in cluster one also expresses pes (Pescadilo) and fbl (Fibrillarin) genes, which are involved in the generation of ribosomes and are important for stem cell survival (Figure 4.1). This was in agreement with the findings of Athanasiadis and colleagues' study, where they identified these genes as stem cells (HSCs) markers (Athanasiadis et al., 2017). The presence of ribosomal genes in cluster one may be due to the protein synthesis which immature neutrophil cells needed during the proliferation and differentiation processes. The conservation analysis between zebrafish and humans suggested that there was a strong similarity between the ribosomal gene expression in human HSCs and the zebrafish progenitor population, i.e., GMP (Athanasiadis et al., 2017). They also found out that there was a gradual downregulation of the ribosomal genes during lineage-specific differentiation. The expression of *c-myb* gene was found in a subset of cluster one, which further confirms that the cells in cluster one may represent immature neutrophils (Figure 4.1). The level of *c-myb* expression has been found to be high in immature haematopoietic cells and gradually is repressed as soon as they differentiate during their hematopoietic maturation (Gonda and Metcalf, 1984, Shen et al., 2013). Cluster two could probably represent the mature stage of neutrophil differentiation. The most significant differentially expressed genes in cluster two were found to be highly expressed in the mature neutrophils (Neuts) of Dinh and colleagues' study and the SNs (mature) of Grassi and colleagues' study. For example, CXCR1, CXCR4, which are expressed on the surface of mature neutrophils, direct their migration to infected or damaged tissues (Holmes et al., 1991, Link, 2005). The CXCL8-CXCR1 and CXCL12-CXCR4 ligand-receptor pairs are conserved between zebrafish and human (Oehlers et al., 2010, Tulotta et al., 2016). The functionality of mature neutrophils also relates to the functions of the immune system function and the processes of vesicle transport (Grassi et al., 2018).

Our scRNA-Seq analysis has shed light on the different maturation stages of neutrophils in zebrafish. There is also a need to carry out an in-depth analysis of the rest of the clusters (from 3 to 9) and compare the results with Dinh and colleagues' study. Evolutionary studies could be carried out to determine if there is any conservation of the differentially expressed gene in our zebrafish neutrophil cells with orthologues in other vertebrate species.



# Figure 4.1 Single-cell RNA Sequencing of $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$ of zebrafish kidney marrow reveals that cluster one cells express stem or early progenitor genes

The single-cell RNA-Seq data for 2246 cells were analysed by a clustering algorithm, the t-stochastic neighbour embedding (t-SNE) algorithm, that clusters cells based on their gene expression profile and provides a twodimensional representation of the multi-dimensional data set. A heat map representation of log2 values of the number of transcripts (UMI) counts for individual genes is projected for every single cell depicted in the t-SNE plot. The panels **(A-C)** show the expression of *pes, fbl and c-myb* genes in a subset of cells in cluster one.

### 4.3 Deletion of zebrafish conserved non-coding element zCNE1 and potential enhancers (PEs) by CRISPR/Cas9 system

The zCNE1 is sufficient but not essential to direct the expression of *c-myb* gene to the haematopoietic blood lineage of neutrophils in both embryo and adult zebrafish. In this study, we carried out three deletions involving zRE1 alone, three PEs (MP40036-, MP40036 and MP40037+ (table 1.1)), and a combination of zRE1 with the three PEs downstream of the *c-myb* gene using the CRISPR/Cas9 system. The deletion of zRE1 alone and in combination with the three PEs were successfully transmitted to the next generation of zebrafish founders. This was comparable with a previous study where the high efficiency of zebrafish founder embryo was observed (Hwang et al., 2013a). The mutant fish *qmc193* (from zRE1 deletion) and *qmc194* (from combine zRE1 and PEs deletion) did not show any phenotypic abnormalities. Regarding the third deletion (three PEs alone), no mutant was established since the mutant allele was not transmitted to the next generation. Possible reasons for this could be that the targets sites (TS7 and TS16) having a low average score could have affected the efficiency for Cas9 to generate a double-strand break (DSB). The sgRNAs target sites with a high score are more efficient in generating Cas9 DSB (Moreno-Mateos et al., 2015). Another possibility could be that the mutagenesis rate might have been affected by the injection time of the Cas9-sgRNA complex. The

earlier Cas9-sgRNA introduces the DSB and non-homologous end joining (NHEJ) repairs the damage during embryonic development, the higher the chances that mutagenesis will occur in the germ cells for transmission to the next generation. The time for assembly of Cas9 and sgRNA could be essential with its rapid cell division and development (Zhang et al., 2018). In zebrafish, during the blastula stage (1k-cell), there are only approximately four germ cells (Raz, 2003). The occurrence of Cas9-induced mutagenesis around the blastula stage may result in a high probability of targeting the somatic cells than the germ cells (Jao et al., 2013). These drawbacks could be overcome by designing another sgRNA target site with a high score value in an attempt to delete the three PEs downstream of the *c-myb* gene. Also, a large number of embryos could be injected with Cas9-sgRNA complex.

The lack of any phenotypic abnormalities in our mutants *qmc193* and *qmc194* could imply that other elements could be playing a redundant role in driving the expression of *c-myb* in neutrophils. The absence of any phenotypic abnormalities after the deletion of regulatory elements could be attributed to enhancer redundancy (Antosova et al., 2016, Osterwalder et al., 2018, Sagai et al., 2017). In the same manner, as gene redundancy has proven to be responsible for the lack of phenotypes associated with gene deletion, enhancer redundancy could also offer a similar explanation for the

lack of phenotypic abnormalities with the deletion of enhancer (Ahituv et al., 2007). In the study of Osterwalder and his colleagues, no phenotypic abnormalities were observed when they used CRISPR/Cas9 system to individually delete ten mouse embryonic enhancers with each controlling robust limb activity in transgenic reporter assays (Osterwalder et al., 2018). Ahituv and his colleague carried out an experiment by deleting four CNE (which act as enhancers) to address whether they were necessary to regulate genes expression (Ahituv et al., 2007). They found out that the mice lacking these conserved sequences were viable, fertile, and had no noticeable morphological abnormalities (Ahituv et al., 2007).

Though zCNE1 is sufficient to drive *c-myb* promoter activity to neutrophil cells, we found out that the level of expression of both *lyz* and *c-myb* mRNA was normal in the developing embryos carrying *qmc193/qmc194* and *c-myb*<sup>t25127</sup> loss-of-function alleles in the WISH experiment. The loss of *c-myb* gene expression in mutant alleles *t25127* (Soza-Ried et al., 2010) and *hkz3* (Zhang et al., 2011) has been previously described. Also, The loss of the *lyz* and *c-myb* genes expression in *c-myb*<sup>t25127</sup> mutant has been reported previously (Hess et al., 2013). In our lab, it has been proven that the zRE1 in the *qmc85* transgenic line drives the expression of *c-myb* gene to the blood cells in the CHT at 3 dpf (Hsu, 2010). In our study, there were no obvious changes in the expression level of *c*-

*myb* gene in all our mutant embryos at 4 dpf compared with the wide type where there was a normal expression at the same developmental time. The study of the expression of *c-myb* gene at a different time in the developmental stages of wt zebrafish embryos revealed that the expression of *c-myb* gene in CHT was strong between 4-6 dpf (Murayama et al., 2006).

Since the deletion of zRE1 alone and in combination with the three PEs did not affect the *c-myb* expression in CHT, future studies could investigate the probable role of PEs in directing the expression of *cmyb* in other haematopoietic cells, such as prRBCs. For this, the three PEs could be cloned separately upstream of the *c-myb* promoter in the GFP reporter transgene construct. The constructs could then be used to generate stable zebrafish transgenic lines, and the expression of GFP could be tested. There could be a need for further analysis to study the neutrophil kidney marrow cells in qmc193/194 homozygotes. This study could involve the cross between the double transgenic line *qmc85;Lyz:dsRed* with *qmc193/194* homozygous generate *qmc193/194* to *qmc85;Lyz:dsRed* lines. The neutrophil kidney marrow cells labelled with *qmc85;Lyz:dsRed* could then be characterised using flow cytometry to find out whether the number of neutrophils is normal. If the number of cells is abnormal, the *GFP+:dsRed+* cells could be FACS sorted for further analysis. Cytocentrifugation of the sorted

cells followed by Giemsa staining could then be used to show any changes in morphology and the number of neutrophil cells. Since the deletion of the zCNE1 did not affect the expression of the *c-myb* gene, the presence of another enhancer with similar tissue specificity (enhancer redundancy) could be the reason for the absence of phenotypic abnormalities observed. It will be interesting to search for other potential regulatory elements (enhancers) that could be driving the expression of the *c*-myb gene in the haematopoietic blood cells. These potential enhancers could be located in the introns within the *c*-myb gene or far away from *cmyb* locus. A previous alignment study carried out in our lab (Hsu, 2010) shows several non-coding elements in the *c*-myb locus, which are conserved in zebrafish and other species. Also, a number of intronic regions of the *c*-*myb* locus have been found to be conserved between other fish species (medaka, stickleback, tilapia and fugu) (Hsu, 2010). Thus, this could represent a potential enhancer in the introns of the *c-myb* gene in zebrafish. Further study could, however, be needed to determine if potential enhancers are embedded in these regions. The bioinformatics tool, PEGASUS (Predicting Enhancer Gene Association Using Synteny) (Clément et al., 2018), could be used to search for other potential intron or remote enhancers. PEGASUS work by first defining regulatory elements based on sequence conservation then links them with

targeting genes using a synteny conservation score. The analysis result could also be compared with Hsu (Hsu, 2010) (zCNE1) and (Aday et al., 2011) (PEs) findings in the vicinity of *c-myb*. Alternative enhancers that regulate the expression of *c-myb* in granulocytes could be located a distance away from the *c*-*myb* gene vicinity, thus enabling promoter-enhancer- *c-myb* interaction. An enhancer that regulates Shh expression in mouse limbs was found in approximately 1 Mb of the Shh targeting gene (Lettice et al., 2003). The deletion of this enhancer leads to loss of limb Shh expression (Sagai et al., 2005). The interaction between promoters and distal enhancers by chromatin looping is essential for transcriptional regulation of gene expression (Amano et al., 2009). This leads to a three-dimensional (3D) chromatin folding in different cell types, which could further be organised into topologically associating domains (TADs) (Dixon et al., 2012). In mammals, the C-Technologies, 3C (Dekker et al., 2002), 4C, 5C, and Hi-C (Lieberman-Aiden et al., 2009) have been used to study the 3D genome organisation, which confirm the long-range interaction between genomic loci within TADs. Just as in mammals, Hi-C has also been used to study 3D genome organisation in whole zebrafish (Gómez-Marín et al., 2015, Kaaij et al., 2018). The different number of cells ranging from 1-3 million (Franke et al., 2020) to approximately 10 million (Gómez-Marín et al., 2015) from whole zebrafish embryo could be used as input cells for the Hi-C experiment. For specific cell types such as granulocytes as in our study, many biological replicates may be needed to achieve the high number of cells for this assay.

## 4.4 Incomplete functional conservation of human regulatory one (hRE1) in zebrafish transgenic line

Due to the important role of c-myb in haematopoiesis, several studies have been carried out previously to analyse the regulatory elements that control *c-myb* gene expression during haematopoiesis (Hsu, 2010, Mukai et al., 2006, Stadhouders et al., 2012, Zhang et al., 2016, Wahlberg et al., 2009). Previous studies in our lab have shown that both regulatory elements, zRE1 and mRE1, are able to direct the expression of the *c-myb* gene in haematopoietic cells in zebrafish transgenic lines (Hsu, 2010, Mohamed, 2015). In this study, hRE1 has been shown to direct the expression of *c-myb* gene to progenitors and myelomonocytes of adult kidney marrow in zebrafish transgenic line. In this study, we generated stable transgenic zebrafish to explore whether hRE1, including the hCNE1, can direct the expression of the *c*-*myb* gene in haematopoietic cells in the embryo and adult zebrafish. The hRE1 with an opposite orientation was placed at the upstream position of the promoter of the *c-myb* gene. Despite the orientation of the hRE1 in the construct, it was still capable of driving the expression of GFP to hematopoietic cells, which also suggests a degree of positional independence. Enhancers can activate transcription remotely by using distant promoters, therefore acting in an orientation-independent manner (Ong and Corces, 2011). In the *qmc195* line, GFP reporter gene expression was found in cells of the CHT between 2 and 4 dpf. There was a weak expression of GFP in both the embryonic and adult cells of our line. The GFP mRNA expression was detected in the CHT of 3 dpf embryos in *in-situ* hybridisation experiments. We carried out the WISH experiment to confirm that the weak expression of the GFP observed in CHT was due to the presence of GFP protein and not caused by auto-fluorescence. Though there was a low GFP expression in our *qmc195*, hCNE1 may be responsible for directing the expression of *c-myb* gene in hematopoietic progenitor and myelomonocytes. Flow cytometric analysis was used to confirm the presence of the GFP expression in the adult WKM of zebrafish. The analysis also shows that the hCNE1 can also drive the expression of GFP in progenitors and in a few myelomonocytes. We compare the GFP expression pattern with that of *qmc85*, and it shows that they both have two populations of progenitors and myelomonocytes. However, in *qmc195*, the number of progenitors cells were more than those of myelomonocytes in *qmc85* and vice versa.

We studied the functional conservation of orthologues CNE1 by considering data from previous studies in our lab whose regulatory element activity has been tested in zebrafish. To have a better understanding of the functional conservation of zCNE1, we did sequence alignment of similar vertebrates (dog, mouse, chicken, opossum, human and frog) (Figure 4.1A). Multiple sequences alignment has previously demonstrated that the CNE1 sequence is largely conserved among eight species, including mice and humans (Hsu, 2010). The qmc85 line has shown that the combination of zebrafish *c-myb* PF5 and zRE1 line were able to drive transgene expression in the CHT in zebrafish embryos and blood cells (progenitors and myelomonocytes) of the adult kidney (Hsu, 2010). The mouse orthologue mRE1 (*qmc156*) study from our lab has been shown to be functionally conserved and able to direct the expression of zebrafish *c-myb* promoter to haematopoietic cells (Mohamed, 2015). The alignment revealed that the zebrafish CNE1 sequence has a 72.9%, 70%, 68.6%, 68.6, 62.9 and 57.1% sequence match similarity with those of frog, human, opossum, chicken, mouse, and dog, respectively (Figure 4.1B). We carried out an *in-silico* analysis of the conserved sequences of the aligned vertebrate (7) species to determine if CNE1 may contain putative TF binding site motifs that could play a role in regulating the expression of the *c*-myb gene during haematopoietic activities. Conserved TF binding site motifs among the species were selected based on the statistical significance (P < 0.05) (Figure 4.1C). Conserved motif sequences on all species

were then further analysed with two databases, JASPAR (Sandelin et al., 2004a) and TRANSFAC (Matys et al., 2003) (Appendix table 6.9). These databases could have some limitation in that they predict TF binding motifs rather than doing actual analysis of the motifs. They also openly obtain TF binding motifs information from both internal and external sources. These sources could have some biases depending on the nature of the data and the form of the analysis. From the analysis, the following putative TF binding sites; Pu1, Gabpa, Hsf1, Cebpa, Zfx, Tp53, Meis1, Cebpa, Runx1, Atf4, Cad, Pou6f1, Tbp, Irf1, Irf2 and Stat1 that could be involved in the regulation of haematopoietic activities were selected. These putative TF binding sites are conserved in most of the aligned species and are likely to be involved in regulating the *c-myb* expression in haematopoietic cells (Azcoitia et al., 2005, Cvejic et al., 2011, Huang et al., 2010, Liu and Patient, 2008, Pillay et al., 2010, Song et al., 2011, Wei et al., 2016). For example, previous studies have shown that some of these TF factors, pu.1 (Jin et al., 2012), cebpa (Jin et al., 2016) and runx1 (Huang et al., 2021) can be involved in the regulation of the neutrophils. In zebrafish, it has been reported that cebpa and runx1 probably synergise with pu.1 in the transcriptional regulation of lyz during zebrafish myelopoiesis by binding to the -2.4 kb lyz promoter (Kitaguchi et al., 2009). This may suggest the role of zCNE1 in directing the expression of *c*-*myb* gene in neutrophil

cells. A previous study has also identified a number of putative TF binding sites, such as, ets, gata, runx1, and c-myb on CNE1 of the conserved sequences of eight species (Hsu, 2010).

We analysed the sequence of zCNE1, mCNE1 and hCNE1 to determine whether a loss of TF binding motifs is responsible for the difference in the expression of the GFP in the zebrafish qmc85, qmc156 and qmc195 transgenic lines (Figure 4.2). One AML1 (Runx1) putative TF binding site as predicted by the databases (JASPAR and TRANSFAC) had TCTGTGTTC sequence for zCNE1 and AAGCACAGT sequence for mCNE1, while none in hCNE1. In vertebrate, the consensus sequence for AML1 (Runx1) is TGT/CGGT or ACCA/GCA. The ACCA was found in the analysis of our mCNE1 sequence while none of the consensus sequences were found in the analysis of our zCNE1 sequence. Runx1 is an essential factor for the emergence of HSC and is expressed in HSCs (North et al., 1999). In zebrafish, runx1 can regulate embryonic myeloid fate decisions by promoting granulocytic over macrophage lineage during neutrophils development (Jin et al., 2012). The presence of runx1 TF binding site in zCNE1 of qmc85 line could explain the nature of the GFP+ granulocytes (neutrophils) at different maturation stages of our scRNA-Seq results. This could imply that the runx1 TF binding site activates the transgene during the differentiation of the neutrophils. GFI (growth factor independent 1) putative TF binding site was

detected in mCNE1 and hCNE1 but not in zCNE1. In mammals, there are two forms of these transcription repressors, Gfi1 and Gfi1b. They play essential roles in HSCs (Möröy et al., 2015). A Gfi1 is also required during the differentiation of the granulocytes (Karsunky et al., 2002). In zebrafish, there are three gfi1 paralogues. The paralogous *gfi1aa* and *gfi1ab* are important during primitive erythropoiesis, while gfi1b plays a crucial role in definitive haematopoiesis (Moore et al., 2018, Thambyrajah et al., 2016). The presence of GFI TF binding site in the hCNE1 of *amc195* line could explain the possible reason for getting the low level of GFP expression. It could suggest that the GFI is likely to switch the transgene in *qms195* off, and no GFP expression could be detected when the cells differentiate to granulocytes. It could be argued, therefore, that the deletion of a particular GFI motif from the hCNE1 may lead to the detection of a higher level of GFP expression in the granulocyte cells. The TF binding site IRF1 (Interferon regulatory factor 1), was observed in mCNE1 and hCNE1 but not in zCNE1. IRF1 is primarily involved during host immune response (Huang et al., 2010). IRF1 is activated during the control of normal haematopoiesis (Choo et al., 2006). Even though IRF1 TF binding site was detected in hCNE1, no population of GFP+ lymphoid cells was observed in our *qmc195* line. It has been reported that IRF1 is required during the maturation of lymphoid (T-cells) (Ohteki et al.,

1998). The GATA-1 TF putative binding site was seen in the three elements (zCNE1, mCNE1 and hCNE1). Six TF putative binding sites of GATA-1 were observed in the hCNE1 sequence, while three in zCNE1 and one in mCNE1. GATA-1 is essential for the commitment, differentiation, and survival of erythroid cells (Fujiwara et al., 1996). The presence of several GATA-1 TF binding sites in hCNE1 could be an indication of the important role of the *c*-MYB gene in human erythropoiesis (Vegiopoulos et al., 2006). However, since the expression of GFP is recapitulated endogenous *c-myb* in some tissues, we have not detected the expression of GFP in erythroid cells of the embryo and adult of *qmc195*. This could suggest there might be other factors that play a role in initiating the expression of *c*-*myb* in erythroid blood cells in transgenic lines. In human, it has been identified open chromatin structure of the HBS1L-MYB intergenic region in human erythroid cells expressing *c*-*MYB* that could be essential in haematopoiesis by controlling c-MYB gene expression (Wahlberg et al., 2009). In a previous study of zebrafish transgenic lines, none of the regulatory elements that were identified in the intergenic region of *hbs1l-myb* was able to drive the expression of *c-myb* in blood cells (Hsu, 2010). In the same manner, GFP expression was also not observed in the primitive red blood cells in ICM in *qmc85* line (Hsu, 2010) and in the adult kidney marrow of *qmc85* (Savage, 2012).

The evolutionary distance between living teleosts and mammals from their common ancestors is about 430 million years (Powers, 1991). Despite the massive evolutionary distance between zebrafish and humans, the development and function of the blood system are curiously conserved (Robertson et al., 2016). Even though there was incomplete functional conservation of hCNE1 in relation to zCNE1 in the transgenic line, it was able to drive the expression of *c-myb* in hematopoietic cells of the zebrafish transgenic line. This suggests that the CNE1 was existent in the common ancestor, and it was preserved by selective forces which maintain its function. The different TF binding sites observed in the two elements (hCNE1 and zCNE1) could be responsible for the different expression of GFP+ cells and their distribution among progenitors and myelomonocytes populations.

Further analysis of the TF binding sites motifs could be carried out *in vivo* to better understand the mechanisms underlying *c-myb* expression in hematopoietic cells. This could be done by deleting single or multiple TF binding sites and then testing the *c-myb* gene expression in the context of a transgenic reporter construct in live zebrafish. In addition, confocal analysis of the zebrafish embryos double transgenic lines *qmc195;Lyz:dsRed* could be carried out to check for any visible overlap in expression pattern between the two transgenic lines in the CHT of the embryos. To further characterise, it will be interesting to carry out the flow cytometric analysis of the kidney marrow cells of those double transgenic line *qmc195:Lyz:dsRed* to better understand what cells population are being labelled with double transgenics. Since the DNase1 HS region relates to transcriptional activity, it might be interesting to extend the sequence of hRE1 in a new transgenic line that might include the expression of other blood lineages during haematopoiesis (Figure 4.2).


### Figure 4.2 Putative binding sites of transcription factors on conserved non-coding element one (CNE1)

(A) A table showing the features of the species with a list of C-MYB downstream conserved non-coding element one (CNE1), direction (strand) of the gene expression, the genomic location from Ensembl genome browser (v 102) and the length (bp) of their sequences. (B) Shows multiple sequences alignment of CNE1 C-MYB genes of frog, human, opossum, chicken, mouse, and dog with reference to the zebrafish sequence. Coloured nucleotides represent the region of conservation matched to the zebrafish reference sequence using MegAlign Pro (v 17.2.1). The sequences of the species are arranged in the order in which they match the reference sequence from highest to lowest conservation. (C) The graphic representation of the transcription factor binding motif that was identified by MEME (Multiple Expectation maximisations for Motif Elicitation) (Bailey et al., 2009). STAMP online tool (Mahony and Benos, 2007) was used to characterise the identified motifs. Each of the motifs were further screened against JASPAR (v 2010) and TRANSFAC (v 11.3) database to mark binding sites for important transcription factors.



# Figure 4.3 Putative binding sites of transcription factors on individual sequences of zebrafish, mouse and human conserved non-coding element one (CNE1)

Sequence view showing the putative TF binding sites among zCNE1, mCNE1 and hCNE1. ConSite database (<u>http://consite.genereg.net/cgi-</u>

<u>bin/consite</u>) was used for this analysis, which uses the JASPAR datasets (TF score cutoff 80%) (Sandelin et al., 2004b).



## Figure 4.4 Localisation of the sites of DNase1 HS within the conserved non-coding element one downstream of human *c- MYB* gene

The diagram shows the human conserved non-coding element one (hCNE1) within human regulatory element one (hRE1) on chromosome 6 in human, as shown on the ENSEMBL database with custom tracks. The diagram also illustrates a DNaseI hypersensitive site (green box) within the human genome. Ensembl Homo sapiens version 99.38 (GRCh 38.p13) Chromosome 6: 135,208,074-135,281,675.

#### **5** Conclusion

The previous study has shown that the zebrafish regulatory element one (zRE1) containing zebrafish conserved-non coding element one (zCNE1) in *qmc85* stable transgenic line is sufficient to direct *c-myb* promoter activity to haematopoietic cells (Hsu, 2010). My work has contributed to our understanding of the regulation of the *c*-*myb* gene in three aspects. Firstly, the scRNA-Seq analysis of the GFP+ kidney marrow cells in the qmc85 line shows that all these cells expressed lysozyme and several neutrophil granulocyte markers. Additional analysis reveals the presence of GFP+ neutrophils at different maturation stages. Secondly, the deletion of the zCNE1 alone and in combination with all three potential *cis*-regulatory elements (PEs) using the CRISPR/Cas9 system reveals that though the zCNE1 is sufficient to direct the expression of *c-myb* gene, they are, however, not essential. Thirdly, CNE1 was found to be conserved among different vertebrates. The human conserved-non-coding element one (zCNE1), tested in a stable zebrafish transgenic line *qmc195*, is able to direct *c*-*myb* gene expression to haematopoietic cells though there was weak GFP expression compared to qmc85 line. A comparison of putative transcription factor binding sites revealed differences between the zebrafish and the human CNE1 sequences that could explain the differences in the observed GFP expression patterns in the stable qmc85 and qmc195 transgenic lines. It will be interesting to search for other essential regulatory elements that might be responsible for directing *c-myb* gene expression to haematopoietic cells.

#### **6** Appendices

#### **6.1** Appendix figures

**Appendix figure 6.1** A sequence of the human *C-MYB* locus. Orange bars represent the PCR product. Grey boxes present the polymorphisms.





## Appendix figure 6.2 Single-cell RNA Sequencing of Tg(*c-myb*-zRE1:PF5:*egfp*)<sup>qmc85</sup> of zebrafish kidney marrow express neutrophil genes

The single-cell RNA Seq data for 2246 cells were analysed by a clustering algorithm, the t-stochastic neighbour embedding (t-SNE) algorithm, that clusters cells based on their gene expression profile and provides a twodimensional representation of the multi-dimensional data set. A heat map representation of log2 values of the number of transcripts (UMI) counts for individual genes is projected for every single cell depicted in the t-SNE plot. The panels **(A-H)** display the expression of a number of neutrophil genes. **Appendix figure 6.3** A sequence of the zebrafish *c-myb* locus. Orange bars represent the PCR products. Grey boxes present the polymorphisms.

















#### Chapter 7



### Appendix figure 6. 4 *lyz* expression was maintained in 34-36 hpf qmc193 embryos

WT, qmc193 heterozygous and homozygous embryos were showing *lyz* mRNA expression detected by WISH. Embryos were derived from an incross of qmc193 heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up.



## Appendix figure 6.5 *c-myb* expression was maintained in anterior primitive myeloid and posterior primitive erythroid progenitors of all 15 ss qmc193 embryos

WT, qmc193 heterozygous and homozygous embryos were derived from an incross of qmc193 heterozygous fish and stained by WISH using a cmyb probe. All (i) embryos are presented in anterior view. All (ii) embryos are presented in a dorsoposterior view.



#### Appendix figure 6. 6 *c-myb* expression was maintained in 30 hpf *qmc193* embryos

WT, *qmc193* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. Embryos were derived from an incross of *qmc193* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up. The coloured symbols represent expression in specific tissues: mid/hindbrain (yellow arrow), olfactory placodes (blue arrow), retina (red arrow), the ventral wall of the dorsal aorta (green arrow) and posterior blood island (red bracket).



### Appendix figure 6. 7 *c-myb* expression was maintained in 2 dpf *qmc193* embryos

WT, *qmc193* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. Embryos were derived from an incross of *qmc193* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6.8 *c-myb* expression was not altered in 4 dpf *qmc193* embryos

WT, *qmc193* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. Embryos were derived from an incross of *qmc193* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6.9 *lyz* expression is unaffected in 34-36 hpf *qmc194* embryos

WT, *qmc194* heterozygous and homozygous embryos showing *lyz* mRNA expression detected by WISH. Embryos were derived from an incross of *qmc194* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up.



### Appendix figure 6.10 *c-myb* expression was similar in all 15 ss embryos derived from an incross of *qmc194* heterozygous carriers

WT, *qmc194* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. All (i) embryos are presented in anterior view. All (ii) embryos are presented in a dorsoposterior view.



### Appendix figure 6.11 The level of *c-myb* expression was comparable in all 30 hpf embryos derived from an incross of *qmc194* heterozygous carriers

WT, *qmc194* heterozygous and homozygous embryos showing *c*-*myb* mRNA expression detected by WISH. All embryos are presented in a lateral view with anterior facing the left and dorsal up. The coloured symbols represent expression in specific tissues: mid/hindbrain (yellow arrow), olfactory placodes (blue arrow), retina (red arrow), the ventral wall of the dorsal aorta (green arrow) and posterior blood island (red bracket).



## Appendix figure 6.12 The level of *c-myb* mRNA was similar in all 2 dpf embryos derived from an incross of *qmc194* heterozygous carriers

WT, *qmc194* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6.13 *c-myb* expression is unaffected in 4 dpf *qmc194* embryos

WT, *qmc194* heterozygous and homozygous embryos showing *c*-*myb* mRNA expression detected by WISH. Embryos were derived from an incross of *qmc193* heterozygous fish. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6.14 *c-myb* expression was unaffected in 15 ss *t25127* embryos

WT, *t25127* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. All (i) embryos are presented in anterior view. All (ii) embryos are presented in a dorsoposterior view.



### Appendix figure 6.15 *c-myb* expression was maintained in 30 hpf *t25127* embryos

WT, *t25127* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. All embryos are presented in a lateral view with anterior facing the left and dorsal up. The coloured symbols represent expression in specific tissues: mid/hindbrain (yellow arrow), olfactory placodes (blue arrow), retina (red arrow), the ventral wall of the dorsal aorta (green arrow) and *posterior blood island* (red bracket).



### Appendix figure 6.16 *c-myb* expression was maintained in 2 dpf *t25127* embryos

WT, *t25127* heterozygous and homozygous embryos showing *c-myb* mRNA expression detected by WISH. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6. 17 *Lyz* expression was maintained in 34-36 hpf in *c-myb*<sup>t25127/qmc193</sup> embryos

Lateral view of embryos obtained from crossing a qmc193 heterozygous carrier t25127 heterozygous zebrafish stained in a WISH using *lyz* probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up.



#### Appendix figure 6.18 *c-myb* expression was maintained in 3 dpf in *c-myb*<sup>t25127/qmc193</sup> embryos

Lateral view of embryos obtained from crossing a qmc193 heterozygous carrier t25127 heterozygous zebrafish stained in a WISH using c-myb probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



## Appendix figure 6.19 The expression level of *lyz* in 34-36 hpf was not changed in the compound heterozygote of c-myb<sup>t25127/qmc194</sup> embryos

Lateral view of embryos obtained from crossing a qmc194 heterozygous carrier t25127 heterozygous zebrafish stained in a WISH using *lyz* probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up.



## Appendix figure 6.20 The expression level of *c-myb* in 4 dpf was not altered in the compound heterozygote of c-myb<sup>t25127/qmc194</sup> embryos

Lateral view of embryos obtained from crossing a qmc194 heterozygous carrier t25127 heterozygous zebrafish stained in a WISH using c-myb probe. All embryos are presented in a lateral view with anterior facing the left and dorsal up. Green bracket: caudle haematopoietic tissue (CHT).



### Appendix figure 6.21 Identification of Tg(*c-myb*-hRE1-PF5:*egfp*) transgenic founders

(Ai,Bi and Ci) Lateral view of the *qmc191*, *qmc196* and *qmc197* embryos at 1 dpf. Anterior is to the left, posterior to the right, dorsal is up. Transgenic embryos show reporter expression in the OP, Re and BR at 1 dpf. (Aii, Bii and Cii) Transgenic embryos display eGFP expression in OP, and BA at 3 dpf. (Aiii, Biii and Ciii) The images depict embryos at 3 dpf and the expression of the reporter gene cannot be seen in the CHT region. The coloured symbols represent expression in specific tissues: mid/hindbrain (BR) (yellow arrow), olfactory placodes (OP) (blue arrow), retina (Re) (red arrow) and branchial arches (BA) (white arrow).

#### 6.2 Appendix Tables

### Appendix table 6.1 List of the differently expressed (p<0.05) genes that are more highly expressed in cluster one than cluster two.

| No  | Genes ID           | Gene<br>Name           | Cluster 1<br>Average | Cluster 1 Log2<br>Fold Change | Cluster 1<br>P-Value |
|-----|--------------------|------------------------|----------------------|-------------------------------|----------------------|
| 1-  | ENSDARG00000039579 | cfd                    | 1.519419439          | 4.355198228                   | 3.93E-07             |
| 2-  | ENSDARG00000023290 | fabp3                  | 1.988860141          | 4.257949094                   | 2.99E-12             |
| 3-  | ENSDARG00000062519 | abcc13                 | 2.202341295          | 3.337854584                   | 4.66E-10             |
| 4-  | ENSDARG00000075664 | si:ch1073-<br>429i10.1 | 11.23499033          | 3.153248219                   | 6.31E-10             |
| 5-  | ENSDARG0000080010  | adh5                   | 1.109884164          | 3.002004112                   | 3.15E-08             |
| 6-  | ENSDARG00000057789 | lyz                    | 509.7439827          | 2.939715046                   | 1.83E-09             |
| 7-  | ENSDARG00000021339 | cpa5                   | 17.87686829          | 2.817644836                   | 2.61E-08             |
| 8-  | ENSDARG00000056200 | abcb9                  | 1.41703562           | 2.735254576                   | 2.08E-07             |
| 9-  | ENSDARG00000058734 | prdx1                  | 2.326508905          | 2.590974571                   | 5.71E-07             |
| 10- | ENSDARG00000010244 | rpl22l1                | 4.828377329          | 2.58954865                    | 6.53E-07             |
| 11- | ENSDARG00000094845 | MFAP4 (1<br>of many)   | 1.071762529          | 2.549532146                   | 1                    |
| 12- | ENSDARG0000008155  | sms                    | 4.745598923          | 2.380894123                   | 2.13E-06             |
| 13- | ENSDARG00000014165 | ssr3                   | 2.494244098          | 2.376854499                   | 4.01E-06             |
| 14- | ENSDARG00000099572 | hmgn2                  | 27.42688237          | 2.34367546                    | 2.51E-05             |
| 15- | ENSDARG00000036966 | hsd3b7                 | 1.033640895          | 2.183227345                   | 3.93E-05             |
| 16- | ENSDARG00000102640 | pdia3                  | 2.122830457          | 2.086052524                   | 4.63E-05             |
| 17- | ENSDARG00000053990 | hmgb2b                 | 1.659924893          | 2.014559694                   | 0.00028377           |
| 18- | ENSDARG00000069100 | aldh9a1a.1             | 1.556451884          | 1.939253025                   | 0.00015181           |
| 19- | ENSDARG00000026369 | dbi                    | 2.616233329          | 1.926685458                   | 0.00013644           |
| 20- | ENSDARG00000019444 | ssr4                   | 2.162041281          | 1.875837742                   | 0.00023169           |
| 21- | ENSDARG0000007697  | fabp7a                 | 1.280886925          | 1.767976689                   | 0.00100909           |
| 22- | ENSDARG0000005821  | ncf2                   | 1.504170785          | 1.755694402                   | 0.0006279            |
| 23- | ENSDARG00000010423 | npsn                   | 69.41949675          | 1.74622968                    | 0.00025589           |
| 24- | ENSDARG0000003795  | idh2                   | 1.604376225          | 1.711169787                   | 0.00079062           |
| 25- | ENSDARG00000011201 | rplp2l                 | 29.86884537          | 1.707970154                   | 0.00034173           |
| 26- | ENSDARG0000005926  | ak2                    | 3.768595885          | 1.677161061                   | 0.0008713            |
| 27- | ENSDARG00000036875 | rps12                  | 31.00051332          | 1.611101438                   | 0.00078171           |
| 28- | ENSDARG0000005230  | ssr2                   | 2.303635924          | 1.595342969                   | 0.00209182           |
| 29- | ENSDARG00000028335 | hmga1a                 | 2.082530443          | 1.577075404                   | 0.00348088           |
| 30- | ENSDARG00000105116 | p4hb                   | 1.032551705          | 1.575986858                   | 0.00906009           |
| 31- | ENSDARG00000019230 | rpl7a                  | 25.74517368          | 1.569038893                   | 0.00103203           |
| 32- | ENSDARG0000003032  | eif4a1b                | 1.553184316          | 1.565854763                   | 0.00246127           |
| 33- | ENSDARG0000003599  | rpl3                   | 21.26206944          | 1.556066186                   | 0.00122777           |
| 34- | ENSDARG00000038728 | ch25hl2                | 4.875212481          | 1.496238974                   | 0.00363358           |
| 35- | ENSDARG0000007320  | rpl7                   | 22.26085627          | 1.494701881                   | 0.00188917           |
| 36- | ENSDARG00000056119 | eef1g                  | 11.24697142          | 1.478482939                   | 0.00329034           |
| 37- | ENSDARG00000116491 | h2afvb                 | 2.988736159          | 1.462808972                   | 0.00719418           |
| 38- | ENSDARG00000076532 | si:ch211-<br>222l21.1  | 5.824985779          | 1.461966826                   | 0.00438204           |
| 39- | ENSDARG00000056600 | papss2b                | 2.102135855          | 1.435517298                   | 0.00619765           |

| 40- | ENSDARG00000102291 | eef1da     | 3.892763495 | 1.433857781 | 0.00515629 |
|-----|--------------------|------------|-------------|-------------|------------|
| 41- | ENSDARG00000014690 | rps4x      | 20.75232873 | 1.394375957 | 0.0040869  |
| 42- | ENSDARG00000035692 | rps3a      | 19.19369847 | 1.3839303   | 0.00452839 |
| 43- | ENSDARG00000042708 | tuba8l     | 3.903655391 | 1.379589018 | 0.02255185 |
| 44- | ENSDARG00000070426 | chac1      | 3.646606654 | 1.359613332 | 0.00930759 |
| 45- | ENSDARG00000044521 | eef1b2     | 11.26222007 | 1.346962661 | 0.00842578 |
| 46- | ENSDARG00000076568 | sec61b     | 2.500779235 | 1.343916119 | 0.0103632  |
| 47- | ENSDARG0000009285  | rpl15      | 23.4262891  | 1.319676296 | 0.00692521 |
| 48- | ENSDARG00000029533 | rpl18      | 24.61023816 | 1.309398862 | 0.00756047 |
| 49- | ENSDARG00000058451 | rpl6       | 18.30491978 | 1.304885748 | 0.00797929 |
| 50- | ENSDARG00000054155 | pcna       | 1.189395002 | 1.294373439 | 0.03675172 |
| 51- | ENSDARG00000051783 | rplp0      | 34.50770371 | 1.277080684 | 0.00926127 |
| 52- | ENSDARG00000030408 | rps26l     | 16.0699028  | 1.275904613 | 0.00985129 |
| 53- | ENSDARG00000043848 | sod1       | 1.500903217 | 1.267132416 | 0.01855365 |
| 54- | ENSDARG00000055996 | rps8a      | 21.73804528 | 1.266867403 | 0.01008126 |
| 55- | ENSDARG00000037350 | rpl9       | 18.35937926 | 1.251512554 | 0.01101999 |
| 56- | ENSDARG00000015862 | rpl5b      | 8.427059643 | 1.228924873 | 0.01949359 |
| 57- | ENSDARG00000020197 | rpl5a      | 6.688713102 | 1.214623052 | 0.02086569 |
| 58- | ENSDARG00000042566 | rps7       | 25.73428179 | 1.200470218 | 0.01585113 |
| 59- | ENSDARG00000011405 | rps9       | 21.63348309 | 1.197226231 | 0.01690495 |
| 60- | ENSDARG00000104011 | rps17      | 11.02804432 | 1.184144428 | 0.01787099 |
| 61- | ENSDARG00000090697 | eif3ea     | 2.170754798 | 1.17654245  | 0.03079487 |
| 62- | ENSDARG00000101844 | mibp2      | 7.01764835  | 1.142316889 | 0.03280915 |
| 63- | ENSDARG00000100371 | eef2b      | 7.66353776  | 1.122044646 | 0.03718342 |
| 64- | ENSDARG00000092807 | RPL41      | 72.72954383 | 1.112617731 | 0.02796234 |
| 65- | ENSDARG00000025073 | rpl18a     | 26.81149026 | 1.111202234 | 0.02872562 |
| 66- | ENSDARG00000042905 | rpl10a     | 20.58459354 | 1.109712224 | 0.02897586 |
| 67- | ENSDARG00000041619 | rack1      | 16.99244636 | 1.097890245 | 0.03076302 |
| 68- | ENSDARG00000014867 | rpl8       | 23.78572166 | 1.091993176 | 0.03184113 |
| 69- | ENSDARG0000036629  | rps14      | 19.13270385 | 1.081905065 | 0.03366779 |
| 70- | ENSDARG00000034897 | rps10      | 16.56221648 | 1.072642497 | 0.03566248 |
| 71- | ENSDARG00000057556 | rpl17      | 20.85362336 | 1.071889636 | 0.03569184 |
| 72- | ENSDARG00000019778 | rps6       | 22.78475645 | 1.068253018 | 0.03675172 |
| 73- | ENSDARG00000043453 | rps5       | 22.82069971 | 1.067899127 | 0.03641769 |
| 74- | ENSDARG00000033170 | sult2st1   | 5.612593814 | 1.05637     | 0.0560572  |
| 75- | ENSDARG00000046157 | zgc:114188 | 12.0627744  | 1.054167638 | 0.04018721 |
| 76- | ENSDARG00000099380 | rpl13      | 19.33093635 | 1.053938774 | 0.03996739 |
| 77- | ENSDARG00000053457 | rpl23      | 28.79272608 | 1.046302671 | 0.04205813 |
| 78- | ENSDARG00000041182 | rpl4       | 10.14035482 | 1.045529693 | 0.04302683 |
| 79- | ENSDARG00000021864 | rplp1      | 37.88419135 | 1.039625671 | 0.04299335 |
| 80- | ENSDARG00000029500 | rpl34      | 22.89367541 | 1.03877136  | 0.04286911 |
| 81- | ENSDARG00000099022 | faua       | 16.19842717 | 1.034265059 | 0.0455082  |
| 82- | ENSDARG00000034291 | rpl37      | 32.81728151 | 1.026411425 | 0.04669993 |
| 83- | ENSDARG00000043509 | rpl11      | 25.59813309 | 1.026086542 | 0.04718108 |
| 84- | ENSDARG00000054818 | rpl32      | 25.78329532 | 1.022342759 | 0.04781362 |

| No  | Gene ID            | Gene Name             | Cluster 2<br>Average | Cluster 2<br>Log2 Fold<br>Change | Cluster 2<br>P-Value |
|-----|--------------------|-----------------------|----------------------|----------------------------------|----------------------|
| 1-  | ENSDARG00000017299 | fabp11a               | 1.53635652           | 7.13919071                       | 0.00927853           |
| 2-  | ENSDARG00000091996 | si:ch211-<br>117m20.5 | 9.44685239           | 6.3770975                        | 2.69E-59             |
| 3-  | ENSDARG00000052088 | cxcr1                 | 1.98881103           | 5.30889087                       | 1.38E-44             |
| 4-  | ENSDARG00000026500 | xkr9                  | 1.07892998           | 5.09519773                       | 5.95E-36             |
| 5-  | ENSDARG00000102435 | plekhf1               | 3.12740534           | 4.94504361                       | 1.40E-42             |
| 6-  | ENSDARG00000090730 | cfbl                  | 3.13237737           | 4.66631163                       | 1.40E-42             |
| 7-  | ENSDARG00000013598 | tnfb                  | 2.15288794           | 4.5715062                        | 3.37E-27             |
| 8-  | ENSDARG00000055723 | hsp70l                | 3.81354515           | 4.50317036                       | 2.47E-30             |
| 9-  | ENSDARG00000025903 | lgals9l1              | 1.75512573           | 4.44314659                       | 1.31E-31             |
| 10- | ENSDARG00000026726 | anxa1a                | 1.43194394           | 4.42918275                       | 1.38E-26             |
| 11- | ENSDARG00000025428 | socs3a                | 1.16842648           | 4.36719773                       | 7.55E-21             |
| 12- | ENSDARG00000099411 | zgc:158343            | 1.32753136           | 4.32034626                       | 1.76E-17             |
| 13- | ENSDARG00000074851 | s1pr4                 | 6.86139805           | 4.31728399                       | 2.11E-41             |
| 14- | ENSDARG00000056499 | ca6                   | 1.99378306           | 4.26619049                       | 6.76E-34             |
| 15- | ENSDARG00000056783 | raraa                 | 3.30639834           | 4.20682076                       | 2.00E-35             |
| 16- | ENSDARG00000092362 | hsp70.2               | 5.8421324            | 3.90085097                       | 2.02E-22             |
| 17- | ENSDARG00000024746 | hsp90aa1.2            | 13.5139709           | 3.83064247                       | 7.33E-31             |
| 18- | ENSDARG00000045549 | bik                   | 1.03915376           | 3.7699569                        | 5.46E-20             |
| 19- | ENSDARG00000029688 | hsp70.1               | 2.24238444           | 3.56222987                       | 3.58E-17             |
| 20- | ENSDARG00000087623 | BX649485.1            | 1.43691597           | 3.54472453                       | 3.87E-21             |
| 21- | ENSDARG00000089706 | ANPEP (1 of many)     | 2.95338438           | 3.5069225                        | 2.65E-25             |
| 22- | ENSDARG00000021924 | hsp70.3               | 5.6084471            | 3.50245693                       | 2.38E-19             |
| 23- | ENSDARG00000098761 | rgs2                  | 2.2175243            | 3.47342559                       | 3.29E-21             |
| 24- | ENSDARG00000111188 | cdaa                  | 4.96208352           | 3.3549194                        | 2.65E-25             |
| 25- | ENSDARG00000068784 | vsir                  | 7.29396445           | 3.29523972                       | 2.48E-25             |
| 26- | ENSDARG00000075261 | timp2b                | 5.37973383           | 3.26863245                       | 1.92E-24             |
| 27- | ENSDARG00000074262 | nck1a                 | 1.86451034           | 3.19268879                       | 3.65E-20             |
| 28- | ENSDARG00000079903 | si:ch73-<br>343l4.2   | 1.20323067           | 3.19094367                       | 3.31E-18             |
| 29- | ENSDARG00000025254 | s100a10b              | 17.9440475           | 3.13395497                       | 2.95E-19             |
| 30- | ENSDARG00000039034 | marcksl1a             | 1.16345445           | 3.08423143                       | 1.73E-16             |
| 31- | ENSDARG0000005481  | nfkbiaa               | 4.18147519           | 2.93112727                       | 1.04E-15             |
| 32- | ENSDARG00000056874 | lygl1                 | 1.44686002           | 2.90721341                       | 4.03E-14             |
| 33- | ENSDARG00000104474 | il6r                  | 9.40707617           | 2.89902559                       | 8.29E-20             |
| 34- | ENSDARG00000101482 | hk2                   | 1.01429362           | 2.89869022                       | 8.74E-15             |
| 35- | ENSDARG00000093124 | scpp8                 | 11.3063907           | 2.88646499                       | 9.14E-20             |
| 36- | ENSDARG00000114451 | mmp13a                | 39.7165563           | 2.86657392                       | 3.59E-18             |
| 37- | ENSDARG00000042816 | mmp9                  | 20.54939             | 2.84682567                       | 2.27E-19             |
| 38- | ENSDARG00000077499 | plekho1b              | 1.03418174           | 2.82626434                       | 2.31E-13             |
|     |                    | ctv11a                | 1 75015371           | 2.70015154                       | 1 23E-14             |

### Appendix table 6.2 List of the differently expressed (p < 0.05) genes that are more highly expressed in cluster two than cluster one.

267 | Page
| 40- | ENSDARG00000103720 | zgc:162730            | 2.17774808 | 2.69628499 | 6.89E-14   |
|-----|--------------------|-----------------------|------------|------------|------------|
| 41- | ENSDARG00000041394 | dnajb1b               | 3.82846123 | 2.67754937 | 4.59E-15   |
| 42- | ENSDARG00000011934 | gyg1a                 | 2.77439139 | 2.66784269 | 9.77E-15   |
| 43- | ENSDARG00000054543 | samsn1a               | 5.1758807  | 2.60465445 | 1.39E-15   |
| 44- | ENSDARG00000079387 | si:ch211-<br>102c2.4  | 2.85394383 | 2.6042197  | 7.93E-15   |
| 45- | ENSDARG00000078824 | si:ch211-<br>66e2.3   | 3.90304165 | 2.59149161 | 3.03E-15   |
| 46- | ENSDARG00000059049 | zgc:174904            | 2.14791591 | 2.57253021 | 1.84E-13   |
| 47- | ENSDARG00000093193 | chia.6                | 3.43567105 | 2.5589267  | 2.34E-14   |
| 48- | ENSDARG00000090552 | si:dkey-<br>7j14.6    | 1.24797892 | 2.51841814 | 5.05E-12   |
| 49- | ENSDARG00000041060 | lgals9I3              | 1.11373418 | 2.49892971 | 4.10E-11   |
| 50- | ENSDARG00000044852 | wbp2nl                | 5.30515342 | 2.47750601 | 3.12E-14   |
| 51- | ENSDARG00000075666 | tsc22d3               | 3.72902068 | 2.41123401 | 2.70E-12   |
| 52- | ENSDARG00000055186 | ccr9a                 | 2.92355221 | 2.40697865 | 2.28E-09   |
| 53- | ENSDARG00000031745 | si:busm1-<br>266f07.2 | 1.46674813 | 2.40009433 | 1.19E-10   |
| 54- | ENSDARG00000035858 | cnn2                  | 2.12305577 | 2.34149889 | 1.74E-11   |
| 55- | ENSDARG00000068434 | h3f3b.1               | 3.65941229 | 2.31605252 | 5.18E-12   |
| 56- | ENSDARG00000018569 | tnfrsf1a              | 1.73523762 | 2.27865351 | 1.43E-10   |
| 57- | ENSDARG00000104077 | fcer1gl               | 23.3337254 | 2.27503359 | 2.15E-12   |
| 58- | ENSDARG00000098787 | cd7al                 | 9.39713211 | 2.26660413 | 6.66E-12   |
| 59- | ENSDARG00000035557 | gabarapa              | 2.39154526 | 2.25867995 | 6.48E-11   |
| 60- | ENSDARG00000090767 | si:ch211-<br>136m16.8 | 2.09819564 | 2.24773016 | 1.64E-10   |
| 61- | ENSDARG00000030440 | rsrp1                 | 5.24548909 | 2.23928456 | 2.12E-11   |
| 62- | ENSDARG00000086337 | si:dkey-<br>102g19.3  | 5.42945411 | 2.19559276 | 6.48E-11   |
| 63- | ENSDARG00000014348 | stk17b                | 2.99813263 | 2.18022516 | 1.57E-10   |
| 64- | ENSDARG00000067916 | lyn                   | 1.09384607 | 2.17199706 | 9.55E-09   |
| 65- | ENSDARG00000098774 | si:zfos-<br>741a10.3  | 1.62088099 | 2.15443694 | 2.84E-09   |
| 66- | ENSDARG00000037091 | asah1a                | 1.14356634 | 2.14192568 | 9.82E-09   |
| 67- | ENSDARG00000033735 | ncf1                  | 11.5897963 | 2.13633228 | 3.66E-10   |
| 68- | ENSDARG00000041505 | itm2bb                | 6.65257289 | 2.13210376 | 1.34E-10   |
| 69- | ENSDARG00000056615 | cybb                  | 1.60099288 | 2.11950532 | 5.03E-09   |
| 70- | ENSDARG00000010317 | gpr183a               | 1.01429362 | 2.109587   | 3.42E-08   |
| 71- | ENSDARG00000039269 | arg2                  | 3.89806962 | 2.09937056 | 6.90E-09   |
| 72- | ENSDARG00000098722 | si:ch73-<br>170d6.3   | 1.81976209 | 2.08992081 | 4.18E-09   |
| 73- | ENSDARG00000094485 | si:dkey-<br>27h10.2   | 1.71534951 | 2.08824117 | 7.32E-09   |
| 74- | ENSDARG00000089362 | grn1                  | 3.75885285 | 2.08736579 | 0.22052235 |
| 75- | ENSDARG00000057698 | ctsd                  | 2.49595784 | 2.0825934  | 2.66E-05   |
| 76- | ENSDARG00000055365 | si:dkey-<br>25e12.3   | 3.16718156 | 2.06153785 | 2.99E-09   |
| 77- | ENSDARG00000074782 | adgrg3                | 1.41702786 | 2.03652671 | 3.33E-08   |
| 78- | ENSDARG00000088040 | si:dkeyp-<br>27c8.2   | 1.4965803  | 2.03538186 | 2.61E-08   |
| 79- | ENSDARG00000030938 | fermt3b               | 1.07892998 | 2.01066422 | 1.17E-07   |
| 80- | ENSDARG00000044125 | txn                   | 3.37600672 | 2.0019283  | 1.06E-08   |

| 81-  | ENSDARG00000036967 | smox                 | 1.91423062 | 1.99937431 | 5.41E-08   |
|------|--------------------|----------------------|------------|------------|------------|
| 82-  | ENSDARG00000058348 | scinlb               | 5.04163596 | 1.99858128 | 3.56E-09   |
| 83-  | ENSDARG00000089368 | hopx                 | 2.86885991 | 1.98488065 | 1.25E-08   |
| 84-  | ENSDARG0000008363  | mcl1b                | 4.75823039 | 1.98296774 | 7.75E-09   |
| 85-  | ENSDARG00000034187 | calm1b               | 2.74455922 | 1.97871746 | 1.35E-08   |
| 86-  | ENSDARG00000077975 | si:ch73-<br>343l4.8  | 4.5444332  | 1.97822822 | 6.77E-09   |
| 87-  | ENSDARG00000056532 | serinc2              | 1.10379012 | 1.97466705 | 1.73E-07   |
| 88-  | ENSDARG00000018146 | gpx1a                | 5.40459397 | 1.96753557 | 8.93E-09   |
| 89-  | ENSDARG00000043555 | tmem30ab             | 1.18334256 | 1.95143489 | 1.83E-07   |
| 90-  | ENSDARG00000104118 | antxr2a              | 3.01802074 | 1.95112248 | 2.07E-08   |
| 91-  | ENSDARG00000044694 | fybb                 | 2.38160121 | 1.93960016 | 3.56E-08   |
| 92-  | ENSDARG00000067797 | spi1a                | 1.25295095 | 1.9343683  | 3.35E-07   |
| 93-  | ENSDARG00000087152 | sowahd               | 1.24797892 | 1.93345564 | 1.88E-07   |
| 94-  | ENSDARG00000063905 | mt-co1               | 25.238012  | 1.90744622 | 1.31E-08   |
| 95-  | ENSDARG0000008075  | illr4                | 6.08078972 | 1.8810943  | 3.56E-08   |
| 96-  | ENSDARG00000117781 | CABZ01073<br>834.1   | 2.17774808 | 1.86503945 | 2.24E-07   |
| 97-  | ENSDARG00000021059 | alas1                | 1.82970615 | 1.85449041 | 3.76E-07   |
| 98-  | ENSDARG0000007823  | atf3                 | 2.38160121 | 1.85348026 | 7.37E-07   |
| 99-  | ENSDARG00000099839 | si:ch211-<br>9d9.1   | 14.8514464 | 1.85344189 | 5.56E-08   |
| 100- | ENSDARG00000088641 | grn2                 | 2.23741241 | 1.85223091 | 0.25431069 |
| 101- | ENSDARG00000012513 | sdcbp2               | 4.69856606 | 1.83467658 | 1.30E-07   |
| 102- | ENSDARG00000019033 | tmem59               | 1.25792298 | 1.82938318 | 9.83E-07   |
| 103- | ENSDARG00000078619 | pnp5a                | 2.78433544 | 1.82299591 | 4.43E-07   |
| 104- | ENSDARG00000010384 | lpar5a               | 1.97389495 | 1.81880401 | 6.56E-07   |
| 105- | ENSDARG00000098443 | zfand6               | 2.36668512 | 1.81839726 | 3.71E-07   |
| 106- | ENSDARG00000078547 | si:ch211-<br>264f5.2 | 2.93349627 | 1.81080814 | 3.44E-07   |
| 107- | ENSDARG00000063914 | mt-nd3               | 5.29520937 | 1.80523405 | 1.99E-07   |
| 108- | ENSDARG00000071251 | ppp1r18              | 1.37725164 | 1.80010974 | 1.35E-06   |
| 109- | ENSDARG00000032631 | ltb4r                | 2.51584595 | 1.78929339 | 4.81E-07   |
| 110- | ENSDARG00000088283 | si:ch73-<br>248e21.5 | 3.90801367 | 1.78423429 | 2.63E-07   |
| 111- | ENSDARG00000113899 | zgc:77650            | 11.8682298 | 1.77494972 | 2.14E-07   |
| 112- | ENSDARG00000015887 | b2ml                 | 3.99253814 | 1.76324356 | 4.80E-07   |
| 113- | ENSDARG0000007682  | ppdpfa               | 9.18830696 | 1.75849378 | 3.88E-07   |
| 114- | ENSDARG00000104636 | si:dkey-<br>112a7.4  | 2.13797186 | 1.75166312 | 1.66E-06   |
| 115- | ENSDARG00000086996 | si:ch73-<br>234b20.5 | 1.71534951 | 1.74925791 | 1.61E-06   |
| 116- | ENSDARG00000007098 | itm2ba               | 1.2976992  | 1.74674219 | 4.08E-06   |
| 117- | ENSDARG00000068233 | zgc:64051            | 4.56929334 | 1.71081233 | 1.09E-06   |
| 118- | ENSDARG00000114387 | CU499336.2           | 4.67370592 | 1.70659334 | 1.24E-06   |
| 119- | ENSDARG00000031317 | ppdpfb               | 2.44623757 | 1.70627195 | 3.30E-06   |
|      |                    |                      |            |            |            |

| 121- | ENSDARG00000038068 | ddx5                  | 4.23616749 | 1.69739466 | 1.30E-06   |
|------|--------------------|-----------------------|------------|------------|------------|
| 122- | ENSDARG0000008735  | atp6ap2               | 2.26724457 | 1.69686421 | 3.20E-06   |
| 123- | ENSDARG00000018283 | cyba                  | 5.08638421 | 1.6861452  | 1.67E-06   |
| 124- | ENSDARG00000105530 | si:dkey-<br>19b23.14  | 1.57613274 | 1.66498734 | 1.37E-05   |
| 125- | ENSDARG00000105068 | SMIM22                | 3.33125847 | 1.66227402 | 2.45E-06   |
| 126- | ENSDARG00000098293 | si:dkey-<br>27i16.2   | 6.86637008 | 1.65319543 | 4.43E-06   |
| 127- | ENSDARG00000099970 | CR383676.1            | 192.168866 | 1.64580308 | 1.94E-06   |
| 128- | ENSDARG00000053836 | si:ch211-<br>284o19.8 | 1.95897886 | 1.63827574 | 1.33E-05   |
| 129- | ENSDARG00000092870 | BX936337.1            | 1.00434957 | 1.6360112  | 3.96E-05   |
| 130- | ENSDARG00000073718 | si:ch73-<br>233k15.2  | 1.16345445 | 1.6310588  | 2.59E-05   |
| 131- | ENSDARG00000016939 | itgb2                 | 2.00372711 | 1.62161876 | 9.99E-06   |
| 132- | ENSDARG00000099175 | hmgb1a                | 2.7594753  | 1.62094089 | 7.56E-06   |
| 133- | ENSDARG00000045490 | ndufb2                | 1.48663624 | 1.60645817 | 2.80E-05   |
| 134- | ENSDARG00000053136 | b2m                   | 17.5114811 | 1.60536535 | 5.29E-06   |
| 135- | ENSDARG00000036588 | mhc1zba               | 7.18955187 | 1.60169457 | 6.22E-06   |
| 136- | ENSDARG00000063917 | mt-nd4                | 5.44437019 | 1.59390208 | 8.02E-06   |
| 137- | ENSDARG0000006266  | stat1a                | 1.71534951 | 1.59171663 | 2.49E-05   |
| 138- | ENSDARG0000063895  | mt-nd1                | 5.16096462 | 1.58758884 | 1.00E-05   |
| 139- | ENSDARG00000030012 | lrrfip1a              | 1.90925859 | 1.58141622 | 1.98E-05   |
| 140- | ENSDARG00000018145 | mid1ip1l              | 2.15785997 | 1.57917859 | 2.70E-05   |
| 141- | ENSDARG00000093313 | ubb                   | 3.90304165 | 1.57456121 | 1.30E-05   |
| 142- | ENSDARG00000036282 | rnaset2               | 4.92727933 | 1.57313667 | 1.24E-05   |
| 143- | ENSDARG00000105096 | si:ch1073-<br>67j19.1 | 1.19328662 | 1.56650228 | 0.04599819 |
| 144- | ENSDARG00000042927 | mapre1a               | 6.55810437 | 1.56334209 | 1.07E-05   |
| 145- | ENSDARG0000004311  | ldlrap1a              | 1.55624463 | 1.55777421 | 4.11E-05   |
| 146- | ENSDARG00000013655 | tpd52l2b              | 1.6954614  | 1.54756448 | 3.10E-05   |
| 147- | ENSDARG00000012874 | snap23.1              | 1.30267122 | 1.54443329 | 5.98E-05   |
| 148- | ENSDARG00000057853 | atp6v0ca              | 1.45183205 | 1.5437009  | 7.06E-05   |
| 149- | ENSDARG0000001452  | adam8a                | 3.65444027 | 1.54364943 | 2.05E-05   |
| 150- | ENSDARG00000100729 | tln1                  | 1.49160827 | 1.54209713 | 5.12E-05   |
| 151- | ENSDARG00000091902 | b3gnt2b               | 1.18831459 | 1.52964257 | 8.75E-05   |
| 152- | ENSDARG00000074656 | ctss2.1               | 5.89185267 | 1.52728885 | 2.94E-05   |
| 153- | ENSDARG00000104181 | tmsb1                 | 19.4207397 | 1.52578517 | 1.76E-05   |
| 154- | ENSDARG00000063912 | mt-co3                | 41.0788918 | 1.50635517 | 2.16E-05   |
| 155- | ENSDARG00000033614 | rasgef1ba             | 2.40148932 | 1.50580514 | 9.75E-05   |
| 156- | ENSDARG00000062049 | hmha1b                | 1.7302656  | 1.50022067 | 6.58E-05   |
| 157- | ENSDARG00000070792 | lrrc15                | 1.91423062 | 1.49900198 | 7.36E-05   |
| 158- | ENSDARG00000042824 | nfe2l2a               | 1.54132855 | 1.49422162 | 9.02E-05   |
| 159- | ENSDARG00000015657 | zgc:77112             | 1.4965803  | 1.4867612  | 0.00014079 |
| 160- | ENSDARG0000007693  | nfkbiab               | 6.50341207 | 1.48328355 | 9.53E-05   |
| 161- | ENSDARG00000067751 | si:rp71-<br>68n21.9   | 1.05406985 | 1.48091217 | 0.00018759 |

| 162- | ENSDARG00000055504 | si:ch211-<br>212k18.7 | 4.30577588 | 1.45302949 | 6.09E-05   |
|------|--------------------|-----------------------|------------|------------|------------|
| 163- | ENSDARG00000015551 | fth1a                 | 9.63578944 | 1.45100805 | 0.00011365 |
| 164- | ENSDARG00000069461 | rnaseka               | 2.48601379 | 1.4411342  | 0.00010512 |
| 165- | ENSDARG0000007377  | odc1                  | 9.50154469 | 1.44065313 | 9.04E-05   |
| 166- | ENSDARG00000069175 | vps4b                 | 1.2976992  | 1.44034027 | 0.00019477 |
| 167- | ENSDARG00000039490 | pitpnaa               | 1.23803487 | 1.4296795  | 0.000257   |
| 168- | ENSDARG00000017320 | f11r.1                | 2.71472706 | 1.4239659  | 0.00013072 |
| 169- | ENSDARG00000063295 | myh9a                 | 1.67060126 | 1.41920785 | 0.00021759 |
| 170- | ENSDARG0000000906  | skap2                 | 3.52019552 | 1.41862203 | 0.00010144 |
| 171- | ENSDARG00000094673 | rhoab                 | 4.60409753 | 1.41206331 | 0.00013332 |
| 172- | ENSDARG00000103483 | litaf                 | 2.62523056 | 1.40715957 | 0.00015051 |
| 173- | ENSDARG00000063908 | mt-co2                | 50.7644015 | 1.39545038 | 0.00011052 |
| 174- | ENSDARG0000006468  | grap2a                | 1.15848242 | 1.39358102 | 0.00049778 |
| 175- | ENSDARG0000006029  | lta4h                 | 5.50403452 | 1.39334956 | 0.00016618 |
| 176- | ENSDARG0000063899  | mt-nd2                | 4.66376186 | 1.39020486 | 0.00018329 |
| 177- | ENSDARG00000055120 | ctsba                 | 1.34741947 | 1.38067354 | 0.00155121 |
| 178- | ENSDARG00000053979 | chmp2a                | 1.84959426 | 1.37047422 | 0.00034876 |
| 179- | ENSDARG00000101785 | laptm5                | 4.94219541 | 1.36711409 | 0.00023088 |
| 180- | ENSDARG00000096331 | si:ch73-<br>248e21.7  | 5.08638421 | 1.36561361 | 0.00024306 |
| 181- | ENSDARG00000021113 | ptmaa                 | 7.62211827 | 1.36346777 | 0.00025982 |
| 182- | ENSDARG00000035018 | thy1                  | 4.8328108  | 1.35640289 | 0.00031534 |
| 183- | ENSDARG0000009753  | sf3b6                 | 1.41702786 | 1.35618105 | 0.00048021 |
| 184- | ENSDARG00000057867 | lasp1                 | 4.72839822 | 1.34256482 | 0.00031361 |
| 185- | ENSDARG00000063924 | mt-cyb                | 13.2603975 | 1.34223414 | 0.00025982 |
| 186- | ENSDARG00000027249 | btg1                  | 4.72342619 | 1.34020367 | 0.00034775 |
| 187- | ENSDARG00000103118 | cib1                  | 1.25792298 | 1.3344753  | 0.00073641 |
| 188- | ENSDARG00000052082 | gabarapb              | 3.34617456 | 1.32893375 | 0.00033034 |
| 189- | ENSDARG0000000767  | spi1b                 | 8.52702729 | 1.31190168 | 0.00042642 |
| 190- | ENSDARG00000086332 | bri3                  | 1.07892998 | 1.30932254 | 0.00116704 |
| 191- | ENSDARG0000089838  | si:dkey-<br>262k9.4   | 2.31199282 | 1.30602915 | 0.00059489 |
| 192- | ENSDARG00000101849 | adipor2               | 1.441888   | 1.30378055 | 0.0009487  |
| 193- | ENSDARG00000094396 | CR848841.1            | 1.00434957 | 1.29958353 | 0.00153348 |
| 194- | ENSDARG00000021647 | gnai1                 | 2.58048231 | 1.29597023 | 0.00061711 |
| 195- | ENSDARG00000103718 | chmp5b                | 1.38719569 | 1.29190961 | 0.00110098 |
| 196- | ENSDARG00000041878 | rab11ba               | 2.69483894 | 1.27262331 | 0.00077381 |
| 197- | ENSDARG00000068214 | ccni                  | 4.5444332  | 1.27191535 | 0.00079754 |
| 198- | ENSDARG0000007347  | degs1                 | 1.27283906 | 1.26877801 | 0.00152447 |
| 199- | ENSDARG00000039830 | gng5                  | 3.02299276 | 1.26286531 | 0.00077693 |
| 200- | ENSDARG00000116058 | rhoac                 | 1.32255933 | 1.2598484  | 0.00143935 |
| 201- | ENSDARG00000102482 | zgc:165573            | 2.43132148 | 1.25899498 | 0.00097496 |
| 202- | ENSDARG0000009313  | zgc:63831             | 2.72467111 | 1.25361101 | 0.00096088 |
| 203- | ENSDARG00000033466 | tagIn2                | 4.91236324 | 1.24607786 | 0.00108436 |

| 204- | ENSDARG00000100823 | selenok             | 1.08390201 | 1.24210504 | 0.00253803 |
|------|--------------------|---------------------|------------|------------|------------|
| 205- | ENSDARG00000112087 | ube2l3a             | 1.05904187 | 1.22949386 | 0.0025956  |
| 206- | ENSDARG00000039914 | gapdhs              | 11.7837053 | 1.2294836  | 0.00111226 |
| 207- | ENSDARG00000075963 | mhc1uba             | 6.33933516 | 1.22919421 | 0.00140251 |
| 208- | ENSDARG00000058366 | si:dkey-<br>222f8.3 | 1.4070838  | 1.22621707 | 0.00204363 |
| 209- | ENSDARG00000019062 | arpc5b              | 1.58110477 | 1.21469464 | 0.00239486 |
| 210- | ENSDARG00000018174 | gnai2a              | 1.67557329 | 1.20866331 | 0.00250226 |
| 211- | ENSDARG00000025522 | sgk1                | 1.74518168 | 1.20563417 | 0.00289029 |
| 212- | ENSDARG00000058128 | msna                | 4.53946117 | 1.20406113 | 0.0018836  |
| 213- | ENSDARG00000071203 | sptssa              | 1.03915376 | 1.20227239 | 0.00344227 |
| 214- | ENSDARG00000017602 | ccng2               | 1.84959426 | 1.20054922 | 0.0040168  |
| 215- | ENSDARG00000068367 | nfkbie              | 1.38719569 | 1.19793346 | 0.003209   |
| 216- | ENSDARG00000022456 | eno1a               | 2.66500678 | 1.19442822 | 0.00225268 |
| 217- | ENSDARG00000088439 | gm2a                | 1.09384607 | 1.19153725 | 0.00408352 |
| 218- | ENSDARG00000033144 | psme2               | 1.51646841 | 1.18971681 | 0.00340747 |
| 219- | ENSDARG00000054063 | arpc4               | 3.43567105 | 1.18603719 | 0.00191461 |
| 220- | ENSDARG00000099624 | chmp1b              | 1.53635652 | 1.1849944  | 0.00311006 |
| 221- | ENSDARG0000004301  | rhogb               | 1.74020965 | 1.18294074 | 0.00318185 |
| 222- | ENSDARG00000103735 | elovl1b             | 3.09260115 | 1.18037038 | 0.00212183 |
| 223- | ENSDARG00000012972 | cfl1l               | 6.10564986 | 1.17738431 | 0.00253686 |
| 224- | ENSDARG00000101127 | map1lc3b            | 1.15848242 | 1.17271607 | 0.00477544 |
| 225- | ENSDARG00000041959 | cxcr4b              | 30.5879136 | 1.1726207  | 0.00221808 |
| 226- | ENSDARG00000026865 | fam107b             | 1.4070838  | 1.1698346  | 0.00422947 |
| 227- | ENSDARG00000020645 | slc7a3a             | 1.43691597 | 1.1676868  | 0.00461117 |
| 228- | ENSDARG00000097478 | qkia                | 1.21814676 | 1.16750698 | 0.00502756 |
| 229- | ENSDARG00000013968 | psap                | 1.441888   | 1.16285543 | 0.00439119 |
| 230- | ENSDARG0000000069  | dap                 | 1.72529357 | 1.16237149 | 0.00330895 |
| 231- | ENSDARG00000054578 | arl6ip1             | 3.06276899 | 1.16064943 | 0.00274136 |
| 232- | ENSDARG00000026712 | rab5c               | 1.15848242 | 1.16054136 | 0.00465858 |
| 233- | ENSDARG00000089043 | ptpn6               | 1.59104882 | 1.16048471 | 0.00430914 |
| 234- | ENSDARG00000058593 | sri                 | 6.17525825 | 1.15058828 | 0.00329506 |
| 235- | ENSDARG00000052438 | actr2a              | 1.11373418 | 1.15015265 | 0.00628106 |
| 236- | ENSDARG00000039980 | ppt1                | 3.32628645 | 1.1488454  | 0.00414379 |
| 237- | ENSDARG00000026829 | cotl1               | 14.3293835 | 1.14258815 | 0.00302068 |
| 238- | ENSDARG00000019881 | bsg                 | 1.33250339 | 1.13751569 | 0.0052145  |
| 239- | ENSDARG00000070822 | cnp                 | 2.40148932 | 1.12944305 | 0.00409555 |
| 240- | ENSDARG00000013979 | ndfip1              | 1.18831459 | 1.12898899 | 0.00635697 |
| 241- | ENSDARG00000012729 | hcls1               | 1.30267122 | 1.12851637 | 0.00597069 |
| 242- | ENSDARG00000101169 | grap2b              | 1.59602085 | 1.127894   | 0.00524879 |
| 243- | ENSDARG00000070161 | vamp3               | 1.02920971 | 1.12721091 | 0.00726589 |
| 244- | ENSDARG00000012688 | eif1b               | 3.8582934  | 1.11788021 | 0.00390439 |
| 245- | ENSDARG00000029353 | serpine2            | 1.31261528 | 1.11072164 | 0.0069804  |

| 246- | ENSDARG00000063911 | mt-atp6               | 12.3157123 | 1.10680805 | 0.00464922 |
|------|--------------------|-----------------------|------------|------------|------------|
| 247- | ENSDARG00000075758 | ywhabb                | 2.03355928 | 1.10458632 | 0.00552051 |
| 248- | ENSDARG00000022315 | atp6v1g1              | 1.9291467  | 1.10387213 | 0.00638974 |
| 249- | ENSDARG00000102320 | mob1a                 | 2.5059019  | 1.08165465 | 0.0061621  |
| 250- | ENSDARG00000044254 | anxa3b                | 2.25730052 | 1.0780792  | 0.00751513 |
| 251- | ENSDARG00000101626 | arf6a                 | 1.96892292 | 1.07315576 | 0.00780143 |
| 252- | ENSDARG00000103340 | clic1                 | 2.42137743 | 1.07270446 | 0.00736577 |
| 253- | ENSDARG0000004034  | arhgdig               | 6.36419529 | 1.06821828 | 0.00721699 |
| 254- | ENSDARG00000055064 | prdx5                 | 7.66686652 | 1.06743294 | 0.00722665 |
| 255- | ENSDARG00000102741 | sumo2b                | 2.74455922 | 1.06731138 | 0.00786382 |
| 256- | ENSDARG00000077777 | tmsb4x                | 155.828316 | 1.06029807 | 0.0068771  |
| 257- | ENSDARG00000044573 | cdc42                 | 2.35176904 | 1.05971718 | 0.00773191 |
| 258- | ENSDARG00000020893 | slc25a55a             | 1.27781109 | 1.05667031 | 0.01249793 |
| 259- | ENSDARG00000026845 | rhoaa                 | 1.43691597 | 1.05656446 | 0.01081984 |
| 260- | ENSDARG00000090454 | gnb1a                 | 1.72529357 | 1.05239865 | 0.00963738 |
| 261- | ENSDARG00000038010 | rac2                  | 7.61217421 | 1.024728   | 0.01070707 |
| 262- | ENSDARG00000099672 | capgb                 | 5.73274779 | 1.01868553 | 0.0119111  |
| 263- | ENSDARG00000068436 | h3f3b.1               | 2.25232849 | 1.01436341 | 0.01289305 |
| 264- | ENSDARG00000015343 | pgd                   | 2.05344739 | 1.01120262 | 0.01369742 |
| 265- | ENSDARG00000104372 | gnb1b                 | 2.35176904 | 0.99558684 | 0.0146374  |
| 266- | ENSDARG00000040158 | cdc42l                | 2.30204877 | 0.99448852 | 0.01490678 |
| 267- | ENSDARG00000102632 | ubc                   | 8.6911042  | 0.99369036 | 0.01468794 |
| 268- | ENSDARG00000020929 | fam49ba               | 1.62585302 | 0.99179962 | 0.01871876 |
| 269- | ENSDARG00000010279 | scamp2                | 1.39216772 | 0.98850384 | 0.01928791 |
| 270- | ENSDARG00000071384 | slc7a11               | 1.00434957 | 0.98614417 | 0.02695107 |
| 271- | ENSDARG00000029036 | rab32a                | 1.21814676 | 0.97776179 | 0.0232693  |
| 272- | ENSDARG00000104782 | oaz1b                 | 2.23244038 | 0.97502124 | 0.01774407 |
| 273- | ENSDARG00000068708 | ifrd1                 | 1.04412579 | 0.96064975 | 0.0284844  |
| 274- | ENSDARG00000043608 | eif4ebp1              | 1.6407691  | 0.95576897 | 0.02696043 |
| 275- | ENSDARG00000099690 | vaspa                 | 1.14853837 | 0.95021826 | 0.02910939 |
| 276- | ENSDARG00000022303 | higd1a                | 3.29148225 | 0.94960464 | 0.02091581 |
| 277- | ENSDARG00000058225 | arpc4l                | 2.70975503 | 0.93567688 | 0.02369118 |
| 278- | ENSDARG00000036456 | anxa4                 | 3.99253814 | 0.9291555  | 0.0232693  |
| 279- | ENSDARG0000000690  | sypl2b                | 1.01926565 | 0.92898042 | 0.03697662 |
| 280- | ENSDARG00000045248 | h3f3d                 | 6.63765681 | 0.9275501  | 0.02691138 |
| 281- | ENSDARG00000075768 | sdhb                  | 1.06898593 | 0.91474234 | 0.03917282 |
| 282- | ENSDARG0000069846  | zgc:162944            | 2.51584595 | 0.91462765 | 0.03015787 |
| 283- | ENSDARG0000002369  | si:ch211-<br>202a12.4 | 2.38160121 | 0.90082578 | 0.03343797 |
| 284- | ENSDARG0000009505  | prelid3b              | 2.55065015 | 0.89944825 | 0.03278284 |
| 285- | ENSDARG0000007323  | chmp4bb               | 1.34741947 | 0.89741781 | 0.04163467 |
| 286- | ENSDARG00000052674 | csnk1a1               | 1.04412579 | 0.89486634 | 0.04571591 |

| 287- | ENSDARG00000095451 | si:ch211-<br>196l7.4 | 1.84959426 | 0.87783938 | 0.04394859 |
|------|--------------------|----------------------|------------|------------|------------|
| 288- | ENSDARG00000104068 | gstp1                | 2.17277605 | 0.87497307 | 0.0418767  |
| 289- | ENSDARG00000012987 | gpia                 | 2.03355928 | 0.87437054 | 0.040575   |
| 290- | ENSDARG00000101479 | BX908782.2           | 62.6376034 | 0.87403201 | 0.04031942 |
| 291- | ENSDARG00000043154 | ucp2                 | 2.66997881 | 0.86843948 | 0.04192688 |
| 292- | ENSDARG00000099766 | myl12.1              | 8.36295038 | 0.86598379 | 0.04249427 |
| 293- | ENSDARG00000005162 | tpm3                 | 3.24176198 | 0.86350824 | 0.03870404 |
| 294- | ENSDARG00000054755 | alox5ap              | 6.50838409 | 0.8551587  | 0.04953143 |
| 295- | ENSDARG00000074340 | serf2                | 4.0571745  | 0.83681886 | 0.04669993 |

| Appendix table 6.3 The    | ist of human | orthologues | of | cluster | one- |
|---------------------------|--------------|-------------|----|---------|------|
| specific zebrafish genes. |              |             |    |         |      |

| No  | Zebrafish Cluster 1 genes<br>ID | Zebrafish<br>Cluster 1<br>genes<br>name | Human homologous<br>genes ID | Human<br>homologous<br>genes name |
|-----|---------------------------------|-----------------------------------------|------------------------------|-----------------------------------|
| 1.  | ENSDARG0000003599               | rpl3                                    | ENSG00000100316              | RPL3                              |
| 2.  | ENSDARG0000003795               | idh2                                    | ENSG00000182054              | IDH2                              |
| 3.  | ENSDARG0000005230               | ssr2                                    | ENSG00000163479              | SSR2                              |
| 4.  | ENSDARG0000005821               | ncf2                                    | ENSG00000116701              | NCF2                              |
| 5.  | ENSDARG0000005926               | ak2                                     | ENSG0000004455               | AK2                               |
| 6.  | ENSDARG0000007320               | rpl7                                    | ENSG00000147604              | RPL7                              |
| 7.  | ENSDARG0000007697               | fabp7a                                  | ENSG00000164434              | FABP7                             |
| 8.  | ENSDARG0000008155               | sms                                     | ENSG00000102172              | SMS                               |
| 9.  | ENSDARG0000009285               | rpl15                                   | ENSG00000174748              | RPL15                             |
| 10. | ENSDARG00000010244              | rpl22l1                                 | ENSG00000163584              | RPL22L1                           |
| 11. | ENSDARG00000014165              | ssr3                                    | ENSG00000114850              | SSR3                              |
| 12. | ENSDARG00000014867              | rpl8                                    | ENSG00000161016              | RPL8                              |
| 13. | ENSDARG00000015862              | rpl5b                                   | ENSG00000122406              | RPL5                              |
| 14. | ENSDARG00000019230              | rpl7a                                   | ENSG00000148303              | RPL7A                             |
| 15. | ENSDARG00000019444              | ssr4                                    | ENSG00000180879              | SSR4                              |
| 16. | ENSDARG00000019778              | rps6                                    | ENSG00000137154              | RPS6                              |
| 17. | ENSDARG00000020197              | rpl5a                                   | ENSG00000122406              | RPL5                              |
| 18. | ENSDARG00000021339              | cpa5                                    | ENSG0000091704               | CPA1                              |
| 19. | ENSDARG00000021864              | rplp1                                   | ENSG00000137818              | RPLP1                             |
| 20. | ENSDARG00000023290              | fabp3                                   | ENSG00000121769              | FABP3                             |
| 21. | ENSDARG00000025073              | rpl18a                                  | ENSG00000105640              | RPL18A                            |
| 22. | ENSDARG00000026369              | dbi                                     | ENSG00000155368              | DBI                               |
| 23. | ENSDARG00000029500              | rpl34                                   | ENSG00000109475              | RPL34                             |
| 24. | ENSDARG00000029533              | rpl18                                   | ENSG0000063177               | RPL18                             |
| 25. | ENSDARG00000030408              | rps26l                                  | ENSG00000197728              | RPS26                             |
| 26. | ENSDARG00000034291              | rpl37                                   | ENSG00000145592              | RPL37                             |
| 27. | ENSDARG00000035692              | rps3a                                   | ENSG00000145425              | RPS3A                             |
| 28. | ENSDARG00000036629              | rps14                                   | ENSG00000164587              | RPS14                             |
| 29. | ENSDARG00000036875              | rps12                                   | ENSG00000112306              | RPS12                             |
| 30. | ENSDARG00000036966              | hsd3b7                                  | ENSG0000099377               | HSD3B7                            |
| 31. | ENSDARG00000037350              | rpl9                                    | ENSG00000163682              | RPL9                              |
| 32. | ENSDARG00000039579              | cfd                                     | ENSG00000197766              | CFD                               |
| 33. | ENSDARG00000041182              | rpl4                                    | ENSG00000174444              | RPL4                              |
| 34. | ENSDARG00000041619              | rack1                                   | ENSG00000204628              | RACK1                             |
| 35. | ENSDARG00000042566              | rps7                                    | ENSG00000171863              | RPS7                              |
| 36. | ENSDARG00000042905              | rpl10a                                  | ENSG00000198755              | RPL10A                            |
| 37. | ENSDARG00000043453              | rps5                                    | ENSG0000083845               | RPS5                              |
| 38. | ENSDARG00000043509              | rpl11                                   | ENSG00000142676              | RPL11                             |
| 39. | ENSDARG00000043848              | sod1                                    | ENSG00000142168              | SOD1                              |
| 40. | ENSDARG00000044521              | eef1b2                                  | ENSG00000114942              | EEF1B2                            |

|     |                    | 00017              | 510000000000000000000000000000000000000 | 55617       |
|-----|--------------------|--------------------|-----------------------------------------|-------------|
| 41. | ENSDARG00000046157 | RPS17              | ENSG00000182774                         | RPS17       |
| 42. | ENSDARG00000051783 | rplp0              | ENSG0000089157                          | RPLP0       |
| 43. | ENSDARG00000053457 | rpl23              | ENSG00000125691                         | RPL23       |
| 44. | ENSDARG00000054155 | pcna               | ENSG00000132646                         | PCNA        |
| 45. | ENSDARG00000054818 | rpl32              | ENSG00000144713                         | RPL32       |
| 46. | ENSDARG00000055996 | rps8a              | ENSG00000142937                         | RPS8        |
| 47. | ENSDARG00000056119 | eef1g              | ENSG00000254772                         | EEF1G       |
| 48. | ENSDARG00000056200 | abcb9              | ENSG00000150967                         | ABCB9       |
| 49. | ENSDARG00000056600 | papss2b            | ENSG00000198682                         | PAPSS2      |
| 50. | ENSDARG00000057556 | rpl17              | ENSG00000265681                         | RPL17       |
| 51. | ENSDARG00000058451 | rpl6               | ENSG0000089009                          | RPL6        |
| 52. | ENSDARG00000058734 | prdx1              | ENSG00000117450                         | PRDX1       |
| 53. | ENSDARG00000062519 | abcc13             | ENSG00000243064                         | ABCC13      |
| 54. | ENSDARG00000069100 | aldh9a1a.1         | ENSG00000143149                         | ALDH9A1     |
| 55. | ENSDARG00000070426 | chac1              | ENSG00000128965                         | CHAC1       |
| 56. | ENSDARG00000076568 | sec61b             | ENSG00000106803                         | SEC61B      |
| 57. | ENSDARG00000080010 | adh5               | ENSG00000197894                         | ADH5        |
| 58. | ENSDARG00000090697 | eif3ea             | ENSG00000104408                         | EIF3E       |
| 59. | ENSDARG00000094845 | zmp:000000<br>1323 | ENSG00000166482                         | MFAP4       |
| 60. | ENSDARG00000099022 | faua               | ENSG00000149806                         | FAU         |
| 61. | ENSDARG00000099380 | rpl13              | ENSG00000167526                         | RPL13       |
| 62. | ENSDARG00000099572 | hmgn2              | ENSG00000118418                         | HMGN3       |
| 63. | ENSDARG00000102291 | eef1da             | ENSG00000104529                         | EEF1D       |
| 64. | ENSDARG00000102640 | pdia3              | ENSG00000167004                         | PDIA3       |
| 65. | ENSDARG00000104011 | rps17              | ENSG00000182774                         | RPS17       |
| 66. | ENSDARG00000105116 | p4hb               | ENSG00000185624                         | P4HB        |
| 67. | ENSDARG00000116491 | h2az2b             | ENSG00000105968                         | H2AZ2       |
| 68. | ENSDARG00000033170 | sult2st1           | ENSG00000197165                         | SULT1A2     |
| 69. | ENSDARG00000033170 | sult2st1           | ENSG00000196502                         | SULT1A1     |
| 70. | ENSDARG00000014690 | rps4x              | ENSG00000198034                         | RPS4X       |
| 71. | ENSDARG00000034897 | rps10              | ENSG00000124614                         | RPS10       |
| 72. | ENSDARG00000034897 | rps10              | ENSG00000270800                         | RPS10-NUDT3 |

#### Appendix table 6.4 The list of human orthologues of cluster twospecific zebrafish genes.

| No  | Zebrafish Cluster 1<br>genes ID | Zebrafish<br>Cluster 1<br>genes<br>name | Human<br>homologues genes<br>ID | Human<br>homologues<br>genes name |
|-----|---------------------------------|-----------------------------------------|---------------------------------|-----------------------------------|
| 1.  | ENSDARG0000000767               | spi1b                                   | ENSG0000066336                  | SPI1                              |
| 2.  | ENSDARG0000000906               | skap2                                   | ENSG0000005020                  | SKAP2                             |
| 3.  | ENSDARG0000001452               | adam8a                                  | ENSG00000151651                 | ADAM8                             |
| 4.  | ENSDARG0000004311               | ldlrap1a                                | ENSG00000157978                 | LDLRAP1                           |
| 5.  | ENSDARG0000006029               | lta4h                                   | ENSG00000111144                 | LTA4H                             |
| 6.  | ENSDARG0000006468               | grap2a                                  | ENSG00000100351                 | GRAP2                             |
| 7.  | ENSDARG00000007098              | itm2ba                                  | ENSG00000136156                 | ITM2B                             |
| 8.  | ENSDARG0000007347               | degs1                                   | ENSG00000143753                 | DEGS1                             |
| 9.  | ENSDARG0000007377               | odc1                                    | ENSG00000115758                 | ODC1                              |
| 10. | ENSDARG0000007823               | atf3                                    | ENSG00000162772                 | ATF3                              |
| 11. | ENSDARG0000008363               | mcl1b                                   | ENSG00000143384                 | MCL1                              |
| 12. | ENSDARG0000008735               | atp6ap2                                 | ENSG00000182220                 | ATP6AP2                           |
| 13. | ENSDARG0000009753               | sf3b6                                   | ENSG00000115128                 | SF3B6                             |
| 14. | ENSDARG00000010317              | gpr183a                                 | ENSG00000169508                 | GPR183                            |
| 15. | ENSDARG00000010384              | lpar5a                                  | ENSG00000184574                 | LPAR5                             |
| 16. | ENSDARG00000011934              | gyg1a                                   | ENSG00000163754                 | GYG1                              |
| 17. | ENSDARG00000012513              | sdcbp2                                  | ENSG00000125775                 | SDCBP2                            |
| 18. | ENSDARG00000012874              | snap23.1                                | ENSG0000092531                  | SNAP23                            |
| 19. | ENSDARG0000013598               | tnfb                                    | ENSG00000232810                 | TNF                               |
| 20. | ENSDARG00000013598              | tnfb                                    | ENSG00000226979                 | LTA                               |
| 21. | ENSDARG00000013655              | tpd52l2b                                | ENSG00000101150                 | TPD52L2                           |
| 22. | ENSDARG00000014348              | stk17b                                  | ENSG0000081320                  | STK17B                            |
| 23. | ENSDARG00000015551              | fth1a                                   | ENSG00000167996                 | FTH1                              |
| 24. | ENSDARG00000016939              | itgb2                                   | ENSG00000160255                 | ITGB2                             |
| 25. | ENSDARG00000017320              | f11r.1                                  | ENSG00000158769                 | F11R                              |
| 26. | ENSDARG00000018283              | cyba                                    | ENSG0000051523                  | CYBA                              |
| 27. | ENSDARG00000018569              | tnfrsf1a                                | ENSG0000067182                  | TNFRSF1A                          |
| 28. | ENSDARG00000019033              | tmem59                                  | ENSG00000116209                 | TMEM59                            |
| 29. | ENSDARG00000021059              | alas1                                   | ENSG0000023330                  | ALAS1                             |
| 30. | ENSDARG00000021647              | gnai1                                   | ENSG00000127955                 | GNAI1                             |
| 31. | ENSDARG00000021924              | hsp70.3                                 | ENSG00000126803                 | HSPA2                             |
| 32. | ENSDARG00000024746              | hsp90aa1.2                              | ENSG0000080824                  | HSP90AA1                          |
| 33. | ENSDARG00000025254              | s100a10b                                | ENSG00000163221                 | S100A12                           |
| 34. | ENSDARG00000025428              | socs3a                                  | ENSG00000184557                 | SOCS3                             |
| 35. | ENSDARG00000025903              | lgals9l1                                | ENSG0000006659                  | LGALS14                           |
| 36. | ENSDARG00000026500              | xkr9                                    | ENSG00000221947                 | XKR9                              |
| 37. | ENSDARG00000026726              | anxa1a                                  | ENSG00000135046                 | ANXA1                             |
| 38. | ENSDARG00000027249              | btg1                                    | ENSG00000133639                 | BTG1                              |

| 39. | ENSDARG00000029688 | hsp70.1               | ENSG00000126803 | HSPA2    |
|-----|--------------------|-----------------------|-----------------|----------|
| 40. | ENSDARG00000030012 | lrrfip1a              | ENSG00000124831 | LRRFIP1  |
| 41. | ENSDARG00000030440 | rsrp1                 | ENSG00000117616 | RSRP1    |
| 42. | ENSDARG00000030938 | fermt3b               | ENSG00000149781 | FERMT3   |
| 43. | ENSDARG00000032631 | ltb4r                 | ENSG00000213903 | LTB4R    |
| 44. | ENSDARG00000033614 | rasgef1ba             | ENSG00000138670 | RASGEF1B |
| 45. | ENSDARG00000033735 | ncf1                  | ENSG00000158517 | NCF1     |
| 46. | ENSDARG00000035018 | thy1                  | ENSG00000154096 | THY1     |
| 47. | ENSDARG00000035858 | cnn2                  | ENSG0000064666  | CNN2     |
| 48. | ENSDARG00000036967 | smox                  | ENSG0000088826  | SMOX     |
| 49. | ENSDARG00000037091 | asah1a                | ENSG00000104763 | ASAH1    |
| 50. | ENSDARG00000038068 | ddx5                  | ENSG00000108654 | DDX5     |
| 51. | ENSDARG00000039269 | arg2                  | ENSG0000081181  | ARG2     |
| 52. | ENSDARG00000039490 | pitpnaa               | ENSG00000174238 | PITPNA   |
| 53. | ENSDARG00000039830 | gng5                  | ENSG00000174021 | GNG5     |
| 54. | ENSDARG00000041505 | itm2bb                | ENSG00000136156 | ITM2B    |
| 55. | ENSDARG00000041878 | rab11ba               | ENSG00000185236 | RAB11B   |
| 56. | ENSDARG00000042816 | mmp9                  | ENSG00000100985 | MMP9     |
| 57. | ENSDARG00000042824 | nfe2l2a               | ENSG00000116044 | NFE2L2   |
| 58. | ENSDARG00000042927 | mapre1a               | ENSG00000101367 | MAPRE1   |
| 59. | ENSDARG00000043555 | tmem30ab              | ENSG00000112697 | TMEM30A  |
| 60. | ENSDARG00000044039 | stx11a                | ENSG00000135604 | STX11    |
| 61. | ENSDARG00000044125 | txn                   | ENSG00000136810 | TXN      |
| 62. | ENSDARG00000044694 | fybb                  | ENSG0000082074  | FYB1     |
| 63. | ENSDARG00000044852 | wbp2nl                | ENSG00000183066 | WBP2NL   |
| 64. | ENSDARG00000045490 | ndufb2                | ENSG0000090266  | NDUFB2   |
| 65. | ENSDARG00000045549 | bik                   | ENSG00000183066 | WBP2NL   |
| 66. | ENSDARG00000052088 | cxcr1                 | ENSG00000163464 | CXCR1    |
| 67. | ENSDARG00000053136 | b2m                   | ENSG00000166710 | B2M      |
| 68. | ENSDARG00000053979 | chmp2a                | ENSG00000130724 | CHMP2A   |
| 69. | ENSDARG00000054543 | samsn1a               | ENSG00000155307 | SAMSN1   |
| 70. | ENSDARG00000055120 | ctsba                 | ENSG00000164733 | CTSB     |
| 71. | ENSDARG00000055186 | ccr9a                 | ENSG00000173585 | CCR9     |
| 72. | ENSDARG00000055504 | si:ch211-<br>212k18.7 | ENSG00000129226 | CD68     |
| 73. | ENSDARG00000055723 | hsp70l                | ENSG00000126803 | HSPA2    |
| 74. | ENSDARG00000056499 | ca6                   | ENSG00000131686 | CA6      |
| 75. | ENSDARG00000056532 | serinc2               | ENSG00000168528 | SERINC2  |
| 76. | ENSDARG00000056615 | cybb                  | ENSG00000165168 | СҮВВ     |
| 77. | ENSDARG00000057853 | atp6v0ca              | ENSG00000185883 | ATP6V0C  |
| 78. | ENSDARG00000057867 | lasp1                 | ENSG0000002834  | LASP1    |

| 79.  | ENSDARG00000059049 | zgc:174904            | ENSG00000152672 | CLEC4F   |
|------|--------------------|-----------------------|-----------------|----------|
| 80.  | ENSDARG00000062049 | arhgap45b             | ENSG00000180448 | ARHGAP45 |
| 81.  | ENSDARG00000063295 | myh9a                 | ENSG00000100345 | MYH9     |
| 82.  | ENSDARG00000067916 | lyn                   | ENSG00000254087 | LYN      |
| 83.  | ENSDARG00000068214 | ccni                  | ENSG00000118816 | CCNI     |
| 84.  | ENSDARG00000068233 | zgc:64051             | ENSG00000143119 | CD53     |
| 85.  | ENSDARG00000068784 | vsir                  | ENSG00000107738 | VSIR     |
| 86.  | ENSDARG00000069175 | vps4b                 | ENSG00000119541 | VPS4B    |
| 87.  | ENSDARG00000069461 | rnaseka               | ENSG00000219200 | RNASEK   |
| 88.  | ENSDARG00000070792 | lrrc15                | ENSG00000164342 | TLR3     |
| 89.  | ENSDARG00000071251 | ppp1r18               | ENSG00000146112 | PPP1R18  |
| 90.  | ENSDARG00000074656 | ctss2.1               | ENSG00000163131 | CTSS     |
| 91.  | ENSDARG00000074782 | adgrg3                | ENSG00000182885 | ADGRG3   |
| 92.  | ENSDARG00000074851 | s1pr4                 | ENSG00000125910 | S1PR4    |
| 93.  | ENSDARG00000075261 | timp2b                | ENSG0000035862  | TIMP2    |
| 94.  | ENSDARG00000075666 | tsc22d3               | ENSG00000157514 | TSC22D3  |
| 95.  | ENSDARG00000077499 | plekho1b              | ENSG0000023902  | PLEKHO1  |
| 96.  | ENSDARG00000078547 | si:ch211-<br>264f5.2  | ENSG00000162897 | FCAMR    |
| 97.  | ENSDARG00000078619 | pnp5a                 | ENSG00000198805 | PNP      |
| 98.  | ENSDARG00000078824 | si:ch211-<br>66e2.3   | ENSG0000076662  | ICAM3    |
| 99.  | ENSDARG00000086332 | bri3                  | ENSG00000164713 | BRI3     |
| 100. | ENSDARG00000087152 | sowahd                | ENSG00000187808 | SOWAHD   |
| 101. | ENSDARG00000089368 | hopx                  | ENSG00000171476 | НОРХ     |
| 102. | ENSDARG00000089706 | si:ch211-<br>276a23.5 | ENSG00000172901 | LVRN     |
| 103. | ENSDARG00000091902 | b3gnt2b               | ENSG00000170340 | B3GNT2   |
| 104. | ENSDARG00000092362 | hsp70.2               | ENSG00000126803 | HSPA2    |
| 105. | ENSDARG00000093313 | ubb                   | ENSG00000150991 | UBC      |
| 106. | ENSDARG0000000069  | dap                   | ENSG00000112977 | DAP      |
| 107. | ENSDARG0000000690  | sypl2b                | ENSG00000143028 | SYPL2    |
| 108. | ENSDARG0000002369  | UBB                   | ENSG00000170315 | UBB      |
| 109. | ENSDARG0000004034  | arhgdig               | ENSG00000111348 | ARHGDIB  |
| 110. | ENSDARG0000004301  | rhogb                 | ENSG00000177105 | RHOG     |
| 111. | ENSDARG0000005162  | tpm3                  | ENSG00000143549 | TPM3     |
| 112. | ENSDARG0000007323  | chmp4bb               | ENSG00000101421 | CHMP4B   |
| 113. | ENSDARG0000009313  | napsa                 | ENSG00000131400 | NAPSA    |
| 114. | ENSDARG00000009505 | prelid3b              | ENSG00000101166 | PRELID3B |
| 115. | ENSDARG00000010279 | scamp2                | ENSG00000140497 | SCAMP2   |
| 116. | ENSDARG00000012688 | eif1                  | ENSG00000173812 | EIF1     |
| 117. | ENSDARG00000012729 | hcls1                 | ENSG00000180353 | HCLS1    |
| 118. | ENSDARG00000012987 | gpia                  | ENSG00000105220 | GPI      |

| 119. | ENSDARG00000013968 | psap     | ENSG00000197746 | PSAP     |
|------|--------------------|----------|-----------------|----------|
| 120. | ENSDARG00000013979 | ndfip1   | ENSG00000131507 | NDFIP1   |
| 121. | ENSDARG00000015343 | pgd      | ENSG00000142657 | PGD      |
| 122. | ENSDARG00000017602 | ccng2    | ENSG00000138764 | CCNG2    |
| 123. | ENSDARG00000018174 | gnai2a   | ENSG00000114353 | GNAI2    |
| 124. | ENSDARG00000019062 | arpc5b   | ENSG00000162704 | ARPC5    |
| 125. | ENSDARG00000019881 | bsg      | ENSG00000172270 | BSG      |
| 126. | ENSDARG00000020645 | slc7a3a  | ENSG00000165349 | SLC7A3   |
| 127. | ENSDARG00000022315 | atp6v1g1 | ENSG00000136888 | ATP6V1G1 |
| 128. | ENSDARG00000022456 | eno1a    | ENSG0000074800  | ENO1     |
| 129. | ENSDARG00000025522 | sgk1     | ENSG00000118515 | SGK1     |
| 130. | ENSDARG00000026829 | cotl1    | ENSG00000103187 | COTL1    |
| 131. | ENSDARG00000026865 | fam107b  | ENSG0000065809  | FAM107B  |
| 132. | ENSDARG00000029036 | rab32a   | ENSG00000118508 | RAB32    |
| 133. | ENSDARG00000029353 | serpine2 | ENSG00000135919 | SERPINE2 |
| 134. | ENSDARG00000033144 | psme2    | ENSG00000100911 | PSME2    |
| 135. | ENSDARG00000033466 | tagln2   | ENSG00000149591 | TAGLN    |
| 136. | ENSDARG00000036456 | anxa4    | ENSG00000196975 | ANXA4    |
| 137. | ENSDARG00000038010 | rac2     | ENSG00000128340 | RAC2     |
| 138. | ENSDARG00000039914 | gapdhs   | ENSG00000105679 | GAPDHS   |
| 139. | ENSDARG00000039980 | ppt1     | ENSG00000131238 | PPT1     |
| 140. | ENSDARG00000041959 | cxcr4b   | ENSG00000121966 | CXCR4    |
| 141. | ENSDARG00000043154 | ucp2     | ENSG00000175567 | UCP2     |
| 142. | ENSDARG00000043608 | eif4ebp1 | ENSG00000187840 | EIF4EBP1 |
| 143. | ENSDARG00000044254 | anxa3b   | ENSG00000138772 | ANXA3    |
| 144. | ENSDARG00000044573 | cdc42    | ENSG0000070831  | CDC42    |
| 145. | ENSDARG00000045248 | h3f3d    | ENSG00000188375 | H3-5     |
| 146. | ENSDARG00000052438 | actr2a   | ENSG00000138071 | ACTR2    |
| 147. | ENSDARG00000052674 | csnk1a1  | ENSG00000113712 | CSNK1A1  |
| 148. | ENSDARG00000054063 | arpc4    | ENSG00000241553 | ARPC4    |
| 149. | ENSDARG00000054755 | alox5ap  | ENSG00000132965 | ALOX5AP  |
| 150. | ENSDARG00000055064 | prdx5    | ENSG00000126432 | PRDX5    |
| 151. | ENSDARG00000058128 | msna     | ENSG00000147065 | MSN      |
| 152. | ENSDARG00000058593 | sri      | ENSG0000075142  | SRI      |
| 153. | ENSDARG0000063911  | mt-atp6  | ENSG0000198899  | MT-ATP6  |
| 154. | ENSDARG00000068367 | nfkbie   | ENSG00000146232 | NFKBIE   |
| 155. | ENSDARG0000070161  | vamp3    | ENSG00000049245 | VAMP3    |
| 156. | ENSDARG00000070822 | cnp      | ENSG00000173786 | CNP      |
| 157. | ENSDARG0000071203  | sptssa   | ENSG00000165389 | SPTSSA   |
| 158. | ENSDARG00000071384 | slc7a11  | ENSG00000151012 | SLC7A11  |
| 159. | ENSDARG00000074340 | serf2    | ENSG00000140264 | SERF2    |

| 160. | ENSDARG00000075758 | ywhabb               | ENSG00000166913 | YWHAB      |
|------|--------------------|----------------------|-----------------|------------|
| 161. | ENSDARG00000075768 | sdhb                 | ENSG00000117118 | SDHB       |
| 162. | ENSDARG00000077777 | tmsb4x               | ENSG00000205542 | TMSB4X     |
| 163. | ENSDARG00000088439 | gm2a                 | ENSG00000196743 | GM2A       |
| 164. | ENSDARG00000089043 | ptpn6                | ENSG00000111679 | PTPN6      |
| 165. | ENSDARG00000090454 | gnb1a                | ENSG00000078369 | GNB1       |
| 166. | ENSDARG00000099624 | chmp1b               | ENSG00000255112 | CHMP1B     |
| 167. | ENSDARG00000099672 | capgb                | ENSG0000042493  | CAPG       |
| 168. | ENSDARG00000099690 | vaspa                | ENSG00000125753 | VASP       |
| 169. | ENSDARG00000099766 | myl12.1              | ENSG00000101335 | MYL9       |
| 170. | ENSDARG00000100823 | selenok              | ENSG00000113811 | SELENOK    |
| 171. | ENSDARG00000101169 | grap2b               | ENSG00000100351 | GRAP2      |
| 172. | ENSDARG00000101626 | arf6a                | ENSG00000165527 | ARF6       |
| 173. | ENSDARG00000102320 | mob1a                | ENSG00000114978 | MOB1A      |
| 174. | ENSDARG00000102632 | ubc                  | ENSG00000150991 | UBC        |
| 175. | ENSDARG00000102741 | sumo2b               | ENSG00000188612 | SUMO2      |
| 176. | ENSDARG00000103340 | clic1                | ENSG00000213719 | CLIC1      |
| 177. | ENSDARG00000103735 | elovl1b              | ENSG0000066322  | ELOVL1     |
| 178. | ENSDARG00000104068 | gstp1                | ENSG00000084207 | GSTP1      |
| 179. | ENSDARG00000104372 | gnb1b                | ENSG0000078369  | GNB1       |
| 180. | ENSDARG00000104782 | oaz1b                | ENSG00000143450 | OAZ3       |
| 181. | ENSDARG00000068708 | ifrd1                | ENSG0000006652  | IFRD1      |
| 182. | ENSDARG00000101127 | map1lc3b             | ENSG00000258102 | MAP1LC3B2  |
| 183. | ENSDARG00000101127 | map1lc3b             | ENSG00000140941 | MAP1LC3B   |
| 184. | ENSDARG00000086337 | si:dkey-<br>102g19.3 | ENSG00000234465 | PINLYP     |
| 185. | ENSDARG00000091996 | tcnbb                | ENSG00000134827 | TCN1       |
| 186. | ENSDARG00000022303 | higd1a               | ENSG00000131097 | HIGD1B     |
| 187. | ENSDARG00000018146 | gpx1a                | ENSG00000211445 | GPX3       |
| 188. | ENSDARG0000007682  | ppdpfa               | ENSG00000125534 | PPDPF      |
| 189. | ENSDARG00000034187 | calm1b               | ENSG00000160014 | CALM3      |
| 190. | ENSDARG00000036282 | rnaset2              | ENSG0000026297  | RNASET2    |
| 191. | ENSDARG00000036282 | rnaset2              | ENSG00000249141 | AL159163.1 |
| 192. | ENSDARG00000041394 | dnajb1b              | ENSG00000172404 | DNAJB7     |
| 193. | ENSDARG00000041394 | dnajb1b              | ENSG00000132002 | DNAJB1     |
| 194. | ENSDARG0000057698  | ctsd                 | ENSG00000117984 | CTSD       |
| 195. | ENSDARG0000057698  | ctsd                 | ENSG00000250644 | AC068580.4 |
| 196. | ENSDARG00000067797 | spi1a                | ENSG00000269404 | SPIB       |
| 197. | ENSDARG0000022303  | higd1a               | ENSG00000181061 | HIGD1A     |
| 198. | ENSDARG00000026712 | rab5c                | ENSG00000108774 | RAB5C      |
| 199. | ENSDARG00000026712 | rab5c                | ENSG00000267261 | AC099811.2 |
| 200. | ENSDARG00000054578 | arl6ip1              | ENSG00000170540 | ARL6IP1    |

| 201. | ENSDARG00000054578 | arl6ip1            | ENSG00000260342 | AC138811.2 |
|------|--------------------|--------------------|-----------------|------------|
| 202. | ENSDARG00000112087 | ube2l3a            | ENSG0000185651  | UBE2L3     |
| 203. | ENSDARG00000090552 | si:dkey-<br>7j14.6 | ENSG00000149516 | MS4A3      |
| 204. | ENSDARG00000090552 | si:dkey-<br>7j14.6 | ENSG00000110077 | MS4A6A     |
| 205. | ENSDARG00000090552 | si:dkey-<br>7j14.6 | ENSG00000166927 | MS4A7      |

# Appendix table 6.5 The list of the human orthologues of cluster one-specific zebrafish genes that were found within the Dinh et al dataset in SeqMonk.

| No  | Gene Name   | Gene ID         |
|-----|-------------|-----------------|
| 1-  | RPL11       | ENSG00000142676 |
| 2-  | FABP3       | ENSG00000121769 |
| 3-  | AK2         | ENSG0000004455  |
| 4-  | RPS8        | ENSG00000142937 |
| 5-  | PRDX1       | ENSG00000117450 |
| 6-  | RPL5        | ENSG00000122406 |
| 7-  | SSR2        | ENSG00000163479 |
| 8-  | ALDH9A1     | ENSG00000143149 |
| 9-  | NCF2        | ENSG00000116701 |
| 10- | RPS7        | ENSG00000171863 |
| 11- | DBI         | ENSG00000155368 |
| 12- | EEF1B2      | ENSG00000114942 |
| 13- | RPL32       | ENSG00000144713 |
| 14- | RPL15       | ENSG00000174748 |
| 15- | SSR3        | ENSG00000114850 |
| 16- | RPL22L1     | ENSG00000163584 |
| 17- | RPL9        | ENSG00000163682 |
| 18- | ADH5        | ENSG00000197894 |
| 19- | RPL34       | ENSG0000109475  |
| 20- | RPS3A       | ENSG00000145425 |
| 21- | RPL37       | ENSG00000145592 |
| 22- | RPS14       | ENSG00000164587 |
| 23- | RACK1       | ENSG00000204628 |
| 24- | RPS10-NUDT3 | ENSG00000270800 |
| 25- | RPS10       | ENSG00000124614 |
| 26- | RPL10A      | ENSG00000198755 |
| 27- | HMGN3       | ENSG00000118418 |
| 28- | FABP7       | ENSG0000164434  |
| 29- | RPS12       | ENSG00000112306 |
| 30- | CPA1        | ENSG0000091704  |
| 31- | RPL7        | ENSG00000147604 |
| 32- | EIF3E       | ENSG0000104408  |
| 33- | EEF1D       | ENSG0000104529  |
| 34- | RPL8        | ENSG00000161016 |
| 35- | RPS6        | ENSG0000137154  |
| 36- | SEC61B      | ENSG0000106803  |
| 37- | RPL7A       | ENSG00000148303 |
| 38- | PAPSS2      | ENSG0000198682  |
| 39- | EEF1G       | ENSG00000254772 |
| 40- | FAU         | ENSG00000149806 |
| 41- | RPS26       | ENSG00000197728 |
| 42- | RPLP0       | ENSG0000089157  |
| 43- | ABCB9       | ENSG0000150967  |
| 44- | CHAC1       | ENSG0000128965  |
| 45- | PDIA3       | ENSG0000167004  |
| 46- | RPL4        | ENSG0000174444  |
| 47- | RPLP1       | ENSG0000137818  |
| 48- | RPS17       | ENSG00000182774 |

| 49- | IDH2    | ENSG00000182054 |
|-----|---------|-----------------|
| 50- | SULT1A2 | ENSG00000197165 |
| 51- | SULT1A1 | ENSG00000196502 |
| 52- | HSD3B7  | ENSG0000099377  |
| 53- | RPL13   | ENSG00000167526 |
| 54- | MFAP4   | ENSG0000166482  |
| 55- | RPL23   | ENSG00000125691 |
| 56- | P4HB    | ENSG0000185624  |
| 57- | RPL17   | ENSG00000265681 |
| 58- | CFD     | ENSG00000197766 |
| 59- | RPL18A  | ENSG0000105640  |
| 60- | RPL18   | ENSG0000063177  |
| 61- | RPS5    | ENSG0000083845  |
| 62- | PCNA    | ENSG0000132646  |
| 63- | SOD1    | ENSG00000142168 |
| 64- | RPL3    | ENSG0000100316  |
| 65- | SMS     | ENSG0000102172  |
| 66- | RPS4X   | ENSG00000198034 |
| 67- | SSR4    | ENSG0000180879  |

#### Appendix table 6.6 List of human orthologues of cluster onespecific zebrafish genes that were significantly upregulated in human ePreNs relative to Neuts in the Dinh et al. dataset.

| No  | Gene Name       | Gene ID         | Log2 Fold Change<br>( <i>qmc85</i> -CL1 on<br>DESeg p<0.05) |
|-----|-----------------|-----------------|-------------------------------------------------------------|
| 1-  | NCF2            | ENSG00000116701 | 4.160583973                                                 |
| 2-  | SULT1A2         | ENSG00000197165 | 3.584739447                                                 |
| 3-  | SULT1A1         | ENSG00000196502 | 2.923308611                                                 |
| 4-  | RPS10-<br>NUDT3 | ENSG00000270800 | -1.803654075                                                |
| 5-  | RPS10           | ENSG00000124614 | -2.145505905                                                |
| 6-  | SOD1            | ENSG00000142168 | -2.365692377                                                |
| 7-  | PDIA3           | ENSG00000167004 | -2.509667635                                                |
| 8-  | RPL9            | ENSG00000163682 | -2.548565626                                                |
| 9-  | PCNA            | ENSG00000132646 | -2.602244377                                                |
| 10- | PRDX1           | ENSG00000117450 | -2.668878794                                                |
| 11- | SSR3            | ENSG00000114850 | -2.800568819                                                |
| 12- | RPL7            | ENSG00000147604 | -2.818050146                                                |
| 13- | RPL11           | ENSG00000142676 | -2.835545301                                                |
| 14- | RPL7A           | ENSG00000148303 | -3.077988625                                                |
| 15- | RPS14           | ENSG00000164587 | -3.10406661                                                 |
| 16- | AK2             | ENSG0000004455  | -3.108836174                                                |
| 17- | RPL18           | ENSG0000063177  | -3.23916769                                                 |
| 18- | RPL32           | ENSG00000144713 | -3.289279222                                                |
| 19- | RPL23           | ENSG00000125691 | -3.291668892                                                |
| 20- | RPL15           | ENSG00000174748 | -3.330591202                                                |
| 21- | RACK1           | ENSG00000204628 | -3.398004055                                                |
| 22- | RPS3A           | ENSG00000145425 | -3.495939493                                                |
| 23- | RPL8            | ENSG00000161016 | -3.496892452                                                |
| 24- | RPS6            | ENSG00000137154 | -3.563730955                                                |
| 25- | EIF3E           | ENSG00000104408 | -3.887967587                                                |
| 26- | RPL3            | ENSG00000100316 | -4.032348156                                                |
| 27- | RPS5            | ENSG0000083845  | -4.100712776                                                |
| 28- | RPS8            | ENSG00000142937 | -4.546203136                                                |
| 29- | EEF1G           | ENSG00000254772 | -4.554638863                                                |
| 30- | SSR4            | ENSG00000180879 | -4.604718685                                                |
| 31- | IDH2            | ENSG00000182054 | -4.669121265                                                |
| 32- | P4HB            | ENSG00000185624 | -4.732108116                                                |
| 33- | RPL10A          | ENSG00000198755 | -4.835008144                                                |
| 34- | RPS4X           | ENSG00000198034 | -4.844734192                                                |
| 35- | RPLP1           | ENSG00000137818 | -4.871033192                                                |
| 36- | EEF1B2          | ENSG00000114942 | -4.879534721                                                |
| 37- | RPL4            | ENSG00000174444 | -4.892151356                                                |
| 38- | RPL18A          | ENSG00000105640 | -4.926548958                                                |
| 39- | RPS12           | ENSG00000112306 | -5.037570953                                                |
| 40- | RPL13           | ENSG00000167526 | -5.282867908                                                |
| 41- | RPL5            | ENSG00000122406 | -5.833559513                                                |
| 42- | RPLP0           | ENSG0000089157  | -6.536200523                                                |
| 43- | HMGN3           | ENSG00000118418 | -6.678925514                                                |

Appendix table 6.7 The list of the human orthologues of cluster two-specific zebrafish genes that were found within the Dinh et al dataset in SeqMonk.

| No Gene Name |            | Gene ID         |
|--------------|------------|-----------------|
| 1-           | FTH1       | ENSG00000167996 |
| 2-           | S100A12    | ENSG00000163221 |
| 3-           | B2M        | ENSG00000166710 |
| 4-           | MMP9       | ENSG00000100985 |
| 5-           | VSIR       | ENSG00000107738 |
| 6-           | ARHGDIB    | ENSG00000111348 |
| 7-           | CTSD       | ENSG00000117984 |
| 8-           | ITGB2      | ENSG00000160255 |
| 9-           | EIF1       | ENSG00000173812 |
| 10-          | COTL1      | ENSG0000103187  |
| 11-          | СҮВА       | ENSG00000051523 |
| 12-          | CNN2       | ENSG0000064666  |
| 13-          | PSAP       | ENSG00000197746 |
| 14-          | ALOX5AP    | ENSG00000132965 |
| 15-          | ICAM3      | ENSG0000076662  |
| 16-          | RAC2       | ENSG00000128340 |
| 17-          | AC068580.4 | ENSG00000250644 |
| 18-          | BTG1       | ENSG00000133639 |
| 19-          | ADGRG3     | ENSG00000182885 |
| 20-          | RNASET2    | ENSG0000026297  |
| 21-          | GNAI2      | ENSG00000114353 |
| 22-          | HCLS1      | ENSG0000180353  |
| 23-          | SPI1       | ENSG0000066336  |
| 24-          | TSC22D3    | ENSG00000157514 |
| 25-          | ITM2B      | ENSG0000136156  |
| 26-          | RHOG       | ENSG00000177105 |
| 27-          | TPM3       | ENSG00000143549 |
| 28-          | NCF1       | ENSG00000158517 |
| 29-          | PGD        | ENSG00000142657 |
| 30-          | CTSS       | ENSG00000163131 |
| 31-          | TMSB4X     | ENSG00000205542 |
| 32-          | UBC        | ENSG00000150991 |
| 33-          | MAP1LC3B   | ENSG00000140941 |
| 34-          | ADAM8      | ENSG00000151651 |
| 35-          | ATP6V0C    | ENSG00000185883 |
| 36-          | MCL1       | ENSG00000143384 |
| 37-          | PPT1       | ENSG00000131238 |
| 38-          | RNASEK     | ENSG00000219200 |

| 39- | AL159163.1 | ENSG00000249141 |
|-----|------------|-----------------|
| 40- | ASAH1      | ENSG00000104763 |
| 41- | DDX5       | ENSG0000108654  |
| 42- | RAB5C      | ENSG0000108774  |
| 43- | LYN        | ENSG00000254087 |
| 44- | MYH9       | ENSG00000100345 |
| 45- | VASP       | ENSG00000125753 |
| 46- | CHMP2A     | ENSG00000130724 |
| 47- | CXCR4      | ENSG00000121966 |
| 48- | ARPC4      | ENSG00000241553 |
| 49- | CAPG       | ENSG00000042493 |
| 50- | PTPN6      | ENSG00000111679 |
| 51- | SERF2      | ENSG00000140264 |
| 52- | LRRFIP1    | ENSG00000124831 |
| 53- | TXN        | ENSG0000136810  |
| 54- | BSG        | ENSG00000172270 |
| 55- | ARPC5      | ENSG00000162704 |
| 56- | IFRD1      | ENSG0000006652  |
| 57- | YWHAB      | ENSG00000166913 |
| 58- | MSN        | ENSG00000147065 |
| 59- | STK17B     | ENSG0000081320  |
| 60- | CCNI       | ENSG00000118816 |
| 61- | AC099811.2 | ENSG00000267261 |
| 62- | MT-ATP6    | ENSG00000198899 |
| 63- | CDC42      | ENSG00000070831 |
| 64- | SOCS3      | ENSG00000184557 |
| 65- | CALM3      | ENSG00000160014 |
| 66- | S1PR4      | ENSG00000125910 |
| 67- | PRDX5      | ENSG00000126432 |
| 68- | FYB1       | ENSG0000082074  |
| 69- | CD53       | ENSG00000143119 |
| 70- | MAPRE1     | ENSG00000101367 |
| 71- | UBB        | ENSG00000170315 |
| 72- | ENO1       | ENSG00000074800 |
| 73- | RAB11B     | ENSG00000185236 |
| 74- | CXCR1      | ENSG00000163464 |
| 75- | LASP1      | ENSG0000002834  |
| 76- | TPD52L2    | ENSG00000101150 |
| 77- | DNAJB1     | ENSG00000132002 |
| 78- | FERMT3     | ENSG00000149781 |
| 79- | SAMSN1     | ENSG00000155307 |
| 80- | STX11      | ENSG00000135604 |

| 81-  | TMEM59     | ENSG00000116209 |
|------|------------|-----------------|
| 82-  | ATP6V1G1   | ENSG00000136888 |
| 83-  | SELENOK    | ENSG00000113811 |
| 84-  | ARF6       | ENSG00000165527 |
| 85-  | ATP6AP2    | ENSG00000182220 |
| 86-  | RAB32      | ENSG00000118508 |
| 87-  | GYG1       | ENSG00000163754 |
| 88-  | BRI3       | ENSG00000164713 |
| 89-  | ELOVL1     | ENSG0000066322  |
| 90-  | CSNK1A1    | ENSG00000113712 |
| 91-  | ANXA1      | ENSG00000135046 |
| 92-  | CCNG2      | ENSG00000138764 |
| 93-  | ACTR2      | ENSG00000138071 |
| 94-  | GNG5       | ENSG00000174021 |
| 95-  | SKAP2      | ENSG0000005020  |
| 96-  | SCAMP2     | ENSG00000140497 |
| 97-  | TNFRSF1A   | ENSG0000067182  |
| 98-  | DAP        | ENSG00000112977 |
| 99-  | SDHB       | ENSG00000117118 |
| 100- | UCP2       | ENSG00000175567 |
| 101- | VPS4B      | ENSG00000119541 |
| 102- | GPX3       | ENSG00000211445 |
| 103- | VAMP3      | ENSG00000049245 |
| 104- | ANXA3      | ENSG00000138772 |
| 105- | CD68       | ENSG00000129226 |
| 106- | HSP90AA1   | ENSG0000080824  |
| 107- | SF3B6      | ENSG00000115128 |
| 108- | MOB1A      | ENSG00000114978 |
| 109- | СҮВВ       | ENSG00000165168 |
| 110- | LTA4H      | ENSG00000111144 |
| 111- | PLEKHO1    | ENSG0000023902  |
| 112- | F11R       | ENSG00000158769 |
| 113- | SNAP23     | ENSG0000092531  |
| 114- | RSRP1      | ENSG00000117616 |
| 115- | ODC1       | ENSG00000115758 |
| 116- | FAM107B    | ENSG00000065809 |
| 117- | GM2A       | ENSG00000196743 |
| 118- | NFKBIE     | ENSG00000146232 |
| 119- | CHMP1B     | ENSG00000255112 |
| 120- | UBE2L3     | ENSG00000185651 |
| 121- | GPI        | ENSG00000105220 |
| 122- | AC138811.2 | ENSG00000260342 |

| 123- | NDFIP1    | ENSG0000131507  |
|------|-----------|-----------------|
| 124- | NFE2L2    | ENSG00000116044 |
| 125- | HIGD1A    | ENSG00000181061 |
| 126- | PITPNA    | ENSG00000174238 |
| 127- | B3GNT2    | ENSG00000170340 |
| 128- | DEGS1     | ENSG00000143753 |
| 129- | GNB1      | ENSG0000078369  |
| 130- | ARL6IP1   | ENSG00000170540 |
| 131- | SGK1      | ENSG00000118515 |
| 132- | TCN1      | ENSG00000134827 |
| 133- | SRI       | ENSG0000075142  |
| 134- | TIMP2     | ENSG0000035862  |
| 135- | SUMO2     | ENSG00000188612 |
| 136- | GSTP1     | ENSG0000084207  |
| 137- | CNP       | ENSG00000173786 |
| 138- | MAP1LC3B2 | ENSG00000258102 |
| 139- | MS4A6A    | ENSG00000110077 |
| 140- | TMEM30A   | ENSG00000112697 |
| 141- | SERINC2   | ENSG00000168528 |
| 142- | PRELID3B  | ENSG00000101166 |
| 143- | CHMP4B    | ENSG00000101421 |
| 144- | PSME2     | ENSG00000100911 |
| 145- | EIF4EBP1  | ENSG00000187840 |
| 146- | PPDPF     | ENSG00000125534 |
| 147- | ARG2      | ENSG0000081181  |
| 148- | CTSB      | ENSG00000164733 |
| 149- | ALAS1     | ENSG0000023330  |
| 150- | ANXA4     | ENSG00000196975 |
| 151- | NDUFB2    | ENSG0000090266  |
| 152- | SOWAHD    | ENSG00000187808 |
| 153- | SPIB      | ENSG00000269404 |
| 154- | HSPA2     | ENSG00000126803 |
| 155- | SDCBP2    | ENSG00000125775 |
| 156- | НОРХ      | ENSG00000171476 |
| 157- | TAGLN     | ENSG00000149591 |
| 158- | SMOX      | ENSG0000088826  |
| 159- | PNP       | ENSG00000198805 |
| 160- | SLC7A11   | ENSG00000151012 |
| 161- | DNAJB7    | ENSG00000172404 |
| 162- | GPR183    | ENSG00000169508 |
| 163- | SPTSSA    | ENSG00000165389 |
| 164- | MYL9      | ENSG00000101335 |

| 165- | GNAI1    | ENSG00000127955 |
|------|----------|-----------------|
| 166- | RASGEF1B | ENSG00000138670 |
| 167- | NAPSA    | ENSG00000131400 |
| 168- | CLIC1    | ENSG00000213719 |
| 169- | OAZ3     | ENSG00000143450 |
| 170- | LDLRAP1  | ENSG00000157978 |
| 171- | GRAP2    | ENSG0000100351  |
| 172- | MS4A3    | ENSG00000149516 |
| 173- | SYPL2    | ENSG00000143028 |
| 174- | ATF3     | ENSG00000162772 |
| 175- | SERPINE2 | ENSG00000135919 |
| 176- | LVRN     | ENSG00000172901 |
| 177- | LGALS14  | ENSG0000006659  |
| 178- | LPAR5    | ENSG00000184574 |
| 179- | FCAMR    | ENSG00000162897 |
| 180- | THY1     | ENSG00000154096 |
| 181- | WBP2NL   | ENSG00000183066 |
| 182- | SLC7A3   | ENSG00000165349 |
| 183- | HIGD1B   | ENSG00000131097 |
| 184- | PINLYP   | ENSG00000234465 |
| 185- | XKR9     | ENSG00000221947 |
| 186- | MS4A7    | ENSG00000166927 |
| 187- | GAPDHS   | ENSG00000105679 |
| 188- | CA6      | ENSG00000131686 |
| 189- | CCR9     | ENSG00000173585 |
| 190- | LTB4R    | ENSG00000213903 |
| 191- | CLEC4F   | ENSG00000152672 |
| 192- | TLR3     | ENSG00000164342 |
| 193- | PPP1R18  | ENSG00000146112 |
| 194- | LTA      | ENSG00000226979 |
| 195- | TNF      | ENSG00000232810 |

#### Appendix table 6.8 List of human orthologues of cluster twospecific zebrafish genes that were significantly upregulated in human Neuts relative to ePreNs in the Dinh et al. dataset.

| No  | Gene Name | Gene ID         | Log2 Fold<br>Change<br>( <i>qmc85</i> -CL2<br>on DESeq<br>p<0.05) |
|-----|-----------|-----------------|-------------------------------------------------------------------|
| 1.  | CXCR1     | ENSG00000163464 | 11.6435661                                                        |
| 2.  | MMP9      | ENSG00000100985 | 9.15347195                                                        |
| 3.  | NCF1      | ENSG00000158517 | 8.31669617                                                        |
| 4.  | ADAM8     | ENSG00000151651 | 8.30516911                                                        |
| 5.  | FTH1      | ENSG00000167996 | 7.83515692                                                        |
| 6.  | S100A12   | ENSG00000163221 | 7.52459621                                                        |
| 7.  | CD53      | ENSG00000143119 | 7.07229948                                                        |
| 8.  | SOCS3     | ENSG00000184557 | 6.30383968                                                        |
| 9.  | CTSS      | ENSG00000163131 | 6.27276659                                                        |
| 10. | CYBB      | ENSG00000165168 | 5.71180725                                                        |
| 11. | IFRD1     | ENSG0000006652  | 5.70418787                                                        |
| 12. | SGK1      | ENSG00000118515 | 5.48315382                                                        |
| 13. | ITGB2     | ENSG00000160255 | 5.30169725                                                        |
| 14. | CCNG2     | ENSG00000138764 | 5.0957799                                                         |
| 15. | PLEKHO1   | ENSG00000023902 | 5.0955267                                                         |
| 16. | HCLS1     | ENSG00000180353 | 5.02369213                                                        |
| 17. | CXCR4     | ENSG00000121966 | 4.84272289                                                        |
| 18. | SAMSN1    | ENSG00000155307 | 4.83191538                                                        |
| 19. | VSIR      | ENSG00000107738 | 4.76494741                                                        |
| 20. | STK17B    | ENSG0000081320  | 4.47524977                                                        |
| 21. | ITM2B     | ENSG00000136156 | 4.28421259                                                        |
| 22. | LYN       | ENSG00000254087 | 3.93346882                                                        |
| 23. | COTL1     | ENSG00000103187 | 3.90150738                                                        |
| 24. | MCL1      | ENSG00000143384 | 3.79999948                                                        |
| 25. | MAP1LC3B2 | ENSG00000258102 | 3.77855134                                                        |
| 26. | ALOX5AP   | ENSG00000132965 | 3.45562172                                                        |
| 27. | GPX3      | ENSG00000211445 | 3.41144419                                                        |
| 28. | ICAM3     | ENSG0000076662  | 3.32475519                                                        |
| 29. | SKAP2     | ENSG0000005020  | 3.2325685                                                         |
| 30. | SELENOK   | ENSG00000113811 | 3.22844458                                                        |
| 31. | ADGRG3    | ENSG00000182885 | 3.22148561                                                        |
| 32. | MAP1LC3B  | ENSG00000140941 | 3.21004939                                                        |
| 33. | FYB1      | ENSG0000082074  | 3.16017032                                                        |
| 34. | CHMP1B    | ENSG00000255112 | 3.1503768                                                         |
| 35. | BTG1      | ENSG00000133639 | 3.04834247                                                        |
| 36. | TCN1      | ENSG00000134827 | 3.01011825                                                        |
| 37. | S1PR4     | ENSG00000125910 | 2.95764041                                                        |
| 38. | CNN2      | ENSG0000064666  | 2.80556202                                                        |
| 39. | VASP      | ENSG00000125753 | 2.78748322                                                        |
| 40. | VPS4B     | ENSG00000119541 | 2.73154044                                                        |
| 41. | MYH9      | ENSG00000100345 | 2.66449857                                                        |
| 42. | CHMP4B    | ENSG00000101421 | 2.65666389                                                        |

| 43. | PSAP     | ENSG00000197746 | 2.62612081 |
|-----|----------|-----------------|------------|
| 44. | VAMP3    | ENSG0000049245  | 2.62347651 |
| 45. | CHMP2A   | ENSG00000130724 | 2.61271286 |
| 46. | SNAP23   | ENSG0000092531  | 2.59181261 |
| 47. | ASAH1    | ENSG00000104763 | 2.55898738 |
| 48. | ARPC5    | ENSG00000162704 | 2.55402398 |
| 49. | RAC2     | ENSG00000128340 | 2.47340345 |
| 50. | LASP1    | ENSG0000002834  | 2.43020105 |
| 51. | TPD52L2  | ENSG00000101150 | 2.3720932  |
| 52. | MSN      | ENSG00000147065 | 2.30453134 |
| 53. | B3GNT2   | ENSG00000170340 | 2.29135203 |
| 54. | STX11    | ENSG00000135604 | 2.14012074 |
| 55. | RHOG     | ENSG00000177105 | 2.09859133 |
| 56. | SPI1     | ENSG0000066336  | 1.94632483 |
| 57. | NFE2L2   | ENSG00000116044 | 1.93107986 |
| 58. | PITPNA   | ENSG00000174238 | 1.8041141  |
| 59. | RAB32    | ENSG00000118508 | -1.7882421 |
| 60. | CD68     | ENSG00000129226 | -1.8551776 |
| 61. | UBB      | ENSG00000170315 | -2.0249305 |
| 62. | SERF2    | ENSG00000140264 | -2.240526  |
| 63. | ATF3     | ENSG00000162772 | -2.6856265 |
| 64. | ANXA1    | ENSG00000135046 | -2.7538369 |
| 65. | PNP      | ENSG00000198805 | -2.9758272 |
| 66. | MT-ATP6  | ENSG00000198899 | -3.0278051 |
| 67. | ENO1     | ENSG0000074800  | -3.1827567 |
| 68. | PINLYP   | ENSG00000234465 | -3.5205438 |
| 69. | HIGD1B   | ENSG00000131097 | -3.8843133 |
| 70. | GPI      | ENSG00000105220 | -4.2378497 |
| 71. | MS4A7    | ENSG00000166927 | -4.3068972 |
| 72. | NDUFB2   | ENSG0000090266  | -4.3869758 |
| 73. | EIF4EBP1 | ENSG00000187840 | -4.5625925 |
| 74. | GSTP1    | ENSG0000084207  | -7.5476856 |
| 75. | MS4A3    | ENSG00000149516 | -8.6479082 |

## Appendix table 6.9 List of transcription factors (TFs) harbouring conserved binding sites in conserved non-coding element one (CNE1).

Coloured boxes represent the transcription factor binding motifs that were screened against JASPAR and TRANSFAC database (Figure 3.23C). Note: All genes encoding the TFs are expressed in the subset of GFP+ kidney marrow cells of  $Tg(c-myb-zRE1:PF5:egfp)^{qmc85}$  of scRNA-Seq gene expression profile.

| TFs    | Description                                                                      | Databases |
|--------|----------------------------------------------------------------------------------|-----------|
| Pu.1   | Purine-rich termed the PU box.1                                                  | JASPAR    |
| Gabpa  | GA binding protein transcription factor subunit alpha                            | JASPAR    |
| Hsf1   | Heat shock factor 1                                                              | JASPAR    |
| Cebpa  | CCAAT enhancer-binding protein alpha                                             | TRANSFAC  |
| Zfx    | Zinc finger protein X-linked                                                     | JASPAR    |
| Tp53   | Tumour protein p53                                                               | JASPAR    |
| Meis1  | myeloid ecotropic viral integration site-1                                       | TRANSFAC  |
| Cebpa  | CCAAT enhancer-binding protein alpha                                             | JASPAR    |
| Runx1  | Runt-related transcription factor 1                                              | JASPAR    |
| Atf4   | Activating transcription factor 4a                                               | TRANSFAC  |
| Cad    | carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase | JASPAR    |
| Pou6f1 | POU class 6 homeobox 1                                                           | TRANSFAC  |
| Tbp    | TATA box binding protein                                                         | TRANSFAC  |
| Irf1   | Interferon (IFN) regulatory factor 1                                             | JASPAR    |
|        |                                                                                  | TRANSFAC  |
| Irf2   | Interferon (IFN) regulatory factor 2                                             | JASPAR    |
|        |                                                                                  | TRANSFAC  |
| Stat1  | Signal transducer and activator of transcription                                 | JASPAR    |

### 7 References

- ADAY, A. W., ZHU, L. J., LAKSHMANAN, A., WANG, J. & LAWSON, N. D. 2011. Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites. *Dev Biol*, 357, 450-62.
- AHITUV, N., ZHU, Y., VISEL, A., HOLT, A., AFZAL, V., PENNACCHIO, L. A. & RUBIN, E. M. 2007. Deletion of ultraconserved elements yields viable mice. *PLoS biology*, 5.
- AKKERS, R. C., VAN HEERINGEN, S. J., JACOBI, U. G., JANSSEN-MEGENS, E. M., FRANCOIJS, K. J., STUNNENBERG, H. G. & VEENSTRA, G. J. 2009. A hierarchy of H3K4me3 and H3K27me3 acquisition in spatial gene regulation in Xenopus embryos. *Dev Cell*, 17, 425-34.
- AKTUNA, A. Y. 2018. Tendency of K562 chronic myeloid leukemia cells towards cell reprogramming. *Turkish Journal of Hematology*, 35, 260.
- ALBERT, B., JOHNSON, A., LEWIS, J., MORGAN, D., RAFF, M., ROBERTS, K., WALTER, P. 2015. *The Cell*, New York, US, Garland Science.
- ALLEN III, R. D., KIM, H. K., SARAFOVA, S. D. & SIU, G. 2001. Negative regulation of CD4 gene expression by a HES-1–c-Myb complex. *Molecular and cellular biology*, 21, 3071.
- ALLISON, L. A. 2007. Fundamental molecular biology, Blackwell Pub.
- ALSAYEGH, K., CORTÉS-MEDINA, L. V., RAMOS-MANDUJANO, G., BADRAIQ, H. & LI, M. 2019. Hematopoietic differentiation of human pluripotent stem cells: HOX and GATA transcription factors as master regulators. *Current genomics*, 20, 438-452.
- AMANO, T., SAGAI, T., TANABE, H., MIZUSHINA, Y., NAKAZAWA, H. & SHIROISHI, T. 2009. Chromosomal dynamics at the Shh locus: limb budspecific differential regulation of competence and active transcription. *Developmental cell*, 16, 47-57.
- ANDERSSON, L. C., NILSSON, K. & GAHMBERG, C. G. 1979. K562—a human erythroleukemic cell line. *International journal of cancer*, 23, 143-147.
- ANDERSSON, R. & SANDELIN, A. 2019. Determinants of enhancer and promoter activities of regulatory elements. *Nature Reviews Genetics*, 1-17.
- ANTOSOVA, B., SMOLIKOVA, J., KLIMOVA, L., LACHOVA, J., BENDOVA, M., KOZMIKOVA, I., MACHON, O. & KOZMIK, Z. 2016. The gene regulatory network of lens induction is wired through Meis-dependent shadow enhancers of Pax6. *PLoS genetics*, 12, e1006441.
- ATHANASIADIS, E. I., BOTTHOF, J. G., ANDRES, H., FERREIRA, L., LIO, P. & CVEJIC, A. 2017. Single-cell RNA-sequencing uncovers transcriptional states and fate decisions in haematopoiesis. *Nature communications*, 8, 1-11.
- AZCOITIA, V., ARACIL, M., MARTÍNEZ-A, C. & TORRES, M. 2005. The homeodomain protein Meis1 is essential for definitive hematopoiesis and vascular patterning in the mouse embryo. *Developmental biology*, 280, 307-320.
- BAILEY, T. L., BODEN, M., BUSKE, F. A., FRITH, M., GRANT, C. E., CLEMENTI, L., REN, J., LI, W. W. & NOBLE, W. S. 2009. MEME SUITE: tools for motif discovery and searching. *Nucleic acids research*, 37, W202-W208.
- BAINTON, D. F., ULLYOT, J. L. & FARQUHAR, M. G. 1971. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow origin and content of azurophil and specific granules. *Journal of Experimental Medicine*, 134, 907-934.

- BALUDA, M. A. & REDDY, E. P. 1994. Anatomy of an integrated avian myeloblastosis provirus: structure and function. *Oncogene*, 9, 2761-2774.
- BARSKI, A., CUDDAPAH, S., CUI, K., ROH, T. Y., SCHONES, D. E., WANG, Z., WEI, G., CHEPELEV, I. & ZHAO, K. 2007. High-resolution profiling of histone methylations in the human genome. *Cell*, 129, 823-37.
- BEJERANO, G., PHEASANT, M., MAKUNIN, I., STEPHEN, S., KENT, W. J., MATTICK, J. S. & HAUSSLER, D. 2004. Ultraconserved elements in the human genome. *Science*, 304, 1321-1325.
- BENGTSEN, M., KLEPPER, K., GUNDERSEN, S., CUERVO, I., DRABLØS, F., HOVIG, E., SANDVE, G. K., GABRIELSEN, O. S. & ESKELAND, R. 2015. c-Myb binding sites in haematopoietic chromatin landscapes. *PLoS One*, 10, e0133280.
- BENNETT, C. M., KANKI, J. P., RHODES, J., LIU, T. X., PAW, B. H., KIERAN, M.
  W., LANGENAU, D. M., DELAHAYE-BROWN, A., ZON, L. I. & FLEMING, M.
  D. 2001. Myelopoiesis in the zebrafish, Danio rerio. *Blood, The Journal of the American Society of Hematology*, 98, 643-651.
- BERGHMANS, S., JETTE, C., LANGENAU, D., HSU, K., STEWART, R., LOOK, T. & KANKI, J. P. 2005. Making waves in cancer research: new models in the zebrafish. *Biotechniques*, 39, 227.
- BERTRAND, J. Y., CHI, N. C., SANTOSO, B., TENG, S., STAINIER, D. Y. & TRAVER, D. 2010. Haematopoietic stem cells derive directly from aortic endothelium during development. *Nature*, 464, 108-11.
- BERTRAND, J. Y., KIM, A. D., VIOLETTE, E. P., STACHURA, D. L., CISSON, J. L. & TRAVER, D. 2007. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. *Development*, 134, 4147-56.
- BHAYA, D., DAVISON, M. & BARRANGOU, R. 2011. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. *Annu Rev Genet*, 45, 273-97.
- BIRBRAIR, A. & FRENETTE, P. S. 2016. Niche heterogeneity in the bone marrow. Annals of the new York Academy of Sciences, 1370, 82.
- BOISSET, J.-C., VAN CAPPELLEN, W., ANDRIEU-SOLER, C., GALJART, N., DZIERZAK, E. & ROBIN, C. 2010. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. *Nature*, 464, 116-120.
- BONN, S., ZINZEN, R. P., GIRARDOT, C., GUSTAFSON, E. H., PEREZ-GONZALEZ, A., DELHOMME, N., GHAVI-HELM, Y., WILCZYŃSKI, B., RIDDELL, A. & FURLONG, E. E. 2012. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. *Nature genetics*, 44, 148-156.
- BOYLE, A. P., DAVIS, S., SHULHA, H. P., MELTZER, P., MARGULIES, E. H., WENG, Z., FUREY, T. S. & CRAWFORD, G. E. 2008. High-resolution mapping and characterization of open chromatin across the genome. *Cell*, 132, 311-322.
- BROWN, M. & WITTWER, C. 2000. Flow cytometry: principles and clinical applications in hematology. *Clin Chem*, 46, 1221-9.
- BROWNLIE, A., HERSEY, C., OATES, A. C., PAW, B. H., FALICK, A. M.,
  WITKOWSKA, H. E., FLINT, J., HIGGS, D., JESSEN, J. & BAHARY, N.
  2003. Characterization of embryonic globin genes of the zebrafish.
  Developmental biology, 255, 48-61.
- BRUDNO, M., DO, C. B., COOPER, G. M., KIM, M. F., DAVYDOV, E., GREEN, E. D., SIDOW, A., BATZOGLOU, S. & PROGRAM, N. C. S. 2003. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome research, 13, 721-731.
- BUENROSTRO, J. D., GIRESI, P. G., ZABA, L. C., CHANG, H. Y. & GREENLEAF, W. J. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nature methods*, 10, 1213.

- BURGER, A., LINDSAY, H., FELKER, A., HESS, C., ANDERS, C., CHIAVACCI, E., ZAUGG, J., WEBER, L. M., CATENA, R. & JINEK, M. 2016. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. *Development*, 143, 2025-2037.
- CAI, Z., DE BRUIJN, M., MA, X., DORTLAND, B., LUTEIJN, T., DOWNING, J. R. & DZIERZAK, E. 2000. Haploinsufficiency of AML1 affects the temporal and spatial generation of hematopoietic stem cells in the mouse embryo. *Immunity*, 13, 423-431.
- CANTOR, A. B. & ORKIN, S. H. 2002. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. *Oncogene*, 21, 3368.
- CARROLL, K. J. & NORTH, T. E. 2014. Oceans of opportunity: Exploring vertebrate hematopoiesis in zebrafish. *Experimental hematology*, 42, 684-696.
- CHANG, H. H. Y., PANNUNZIO, N. R., ADACHI, N. & LIEBER, M. R. 2017. Nonhomologous DNA end joining and alternative pathways to double-strand break repair. *Nat Rev Mol Cell Biol*, 18, 495-506.
- CHANG, N., SUN, C., GAO, L., ZHU, D., XU, X., ZHU, X., XIONG, J.-W. & XI, J. J. 2013. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. *Cell research*, 23, 465.
- CHEN, A. T. & ZON, L. I. 2009. Zebrafish blood stem cells. *Journal of cellular biochemistry*, 108, 35-42.
- CHEN, M. J., LI, Y., DE OBALDIA, M. E., YANG, Q., YZAGUIRRE, A. D., YAMADA-INAGAWA, T., VINK, C. S., BHANDOOLA, A., DZIERZAK, E. & SPECK, N. A. 2011. Erythroid/myeloid progenitors and hematopoietic stem cells originate from distinct populations of endothelial cells. *Cell stem cell*, 9, 541-552.
- CHEN, M. J., YOKOMIZO, T., ZEIGLER, B. M., DZIERZAK, E. & SPECK, N. A. 2009. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. *Nature*, 457, 887-891.
- CHOO, A., PALLADINETTI, P., PASSIOURA, T., SHEN, S., LOCK, R., SYMONDS, G. & DOLNIKOV, A. 2006. The role of IRF1 and IRF2 transcription factors in leukaemogenesis. *Current gene therapy*, 6, 543-550.
- CIAU-UITZ, A., MONTEIRO, R., KIRMIZITAS, A. & PATIENT, R. 2014. Developmental hematopoiesis: ontogeny, genetic programming and conservation. *Exp Hematol*, 42, 669-83.
- CLARKE, S. L., VANDERMEER, J. E., WENGER, A. M., SCHAAR, B. T., AHITUV, N. & BEJERANO, G. 2012. Human developmental enhancers conserved between deuterostomes and protostomes. *PLoS genetics*, 8.
- CLÉMENT, Y., TORBEY, P., GILARDI-HEBENSTREIT, P. & CROLLIUS, H. R. 2018. Enhancer–gene maps in the human and zebrafish genomes using evolutionary linkage conservation. *Nucleic Acids Research*.
- CONG, L., RAN, F. A., COX, D., LIN, S., BARRETTO, R., HABIB, N., HSU, P. D., WU, X., JIANG, W., MARRAFFINI, L. A. & ZHANG, F. 2013. Multiplex genome engineering using CRISPR/Cas systems. *Science*, 339, 819-23.
- CONSORTIUM, E. P. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. *nature*, 447, 799.
- COSTA, G., KOUSKOFF, V. & LACAUD, G. 2012. Origin of blood cells and HSC production in the embryo. *Trends in immunology*, 33, 215-223.
- COWLAND, J. B. & BORREGAARD, N. 2016. Granulopoiesis and granules of human neutrophils. *Immunological reviews*, 273, 11-28.
- CUMANO, A. & GODIN, I. 2007. Ontogeny of the hematopoietic system. *Annu Rev Immunol,* 25, 745-85.
- CVEJIC, A., SERBANOVIC-CANIC, J., STEMPLE, D. L. & OUWEHAND, W. H. 2011. The role of meis1 in primitive and definitive hematopoiesis during zebrafish development. *Haematologica*, 96, 190.
- DAVIDSON, A. J. & ZON, L. I. 2004. The 'definitive'(and 'primitive') guide to zebrafish hematopoiesis. *Oncogene*, 23, 7233-7246.

- DE BRUIJN, M. F., SPECK, N. A., PEETERS, M. C. & DZIERZAK, E. 2000a. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. *Embo j*, 19, 2465-74.
- DE BRUIJN, M. F., SPECK, N. A., PEETERS, M. C. & DZIERZAK, E. 2000b. Definitive hematopoietic stem cells first develop within the major arterial regions of the mouse embryo. *The EMBO journal*, 19, 2465-2474.
- DE JONG, J. L. & ZON, L. I. 2005. Use of the zebrafish system to study primitive and definitive hematopoiesis. *Annu Rev Genet*, 39, 481-501.
- DEKKER, J., RIPPE, K., DEKKER, M. & KLECKNER, N. 2002. Capturing chromosome conformation. *science*, 295, 1306-1311.
- DI, Q., LIN, Q., HUANG, Z., CHI, Y., CHEN, X., ZHANG, W. & ZHANG, Y. 2017. Zebrafish nephrosin helps host defence against Escherichia coli infection. *Open biology*, **7**, 170040.
- DINH, H. Q., EGGERT, T., MEYER, M. A., ZHU, Y. P., OLINGY, C. E., LLEWELLYN, R., WU, R. & HEDRICK, C. C. 2020. Coexpression of CD71 and CD117 Identifies an Early Unipotent Neutrophil Progenitor Population in Human Bone Marrow. *Immunity*, 53, 319-334. e6.
- DIXON, J. R., SELVARAJ, S., YUE, F., KIM, A., LI, Y., SHEN, Y., HU, M., LIU, J. S. & REN, B. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. *Nature*, 485, 376-380.
- DOBRZYCKI, T., MAHONY, C. B., KRECSMARIK, M., KOYUNLAR, C., RISPOLI, R., PEULEN-ZINK, J., GUSSINKLO, K., FEDLAOUI, B., DE PATER, E. & PATIENT, R. 2020. Deletion of a conserved Gata2 enhancer impairs haemogenic endothelium programming and adult Zebrafish haematopoiesis. *Communications biology*, 3, 1-14.
- DOLFINI, D., ZAMBELLI, F., PAVESI, G. & MANTOVANI, R. 2009. A perspective of promoter architecture from the CCAAT box. *Cell cycle*, **8**, 4127-4137.
- DOOLEY, K. A., DAVIDSON, A. J. & ZON, L. I. 2005. Zebrafish scl functions independently in hematopoietic and endothelial development. *Developmental biology*, 277, 522-536.
- DOOLITTLE, W. F. 2013. Is junk DNA bunk? A critique of ENCODE. *Proceedings* of the National Academy of Sciences, 110, 5294-5300.
- DRISSEN, R., BUZA-VIDAS, N., WOLL, P., THONGJUEA, S., GAMBARDELLA, A., GIUSTACCHINI, A., MANCINI, E., ZRIWIL, A., LUTTEROPP, M. & GROVER, A. 2016. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. *Nature immunology*, 17, 666.
- DUROUX-RICHARD, I., GIOVANNANGELI, C. & APPARAILLY, F. 2017. CRISPR-Cas9: A revolution in genome editing in rheumatic diseases. *Joint Bone Spine*, 1, 1-4.
- DVOAAÉK, M., URBÀNEK, P., BARTYUÈK, P., PAĊES, V., VLACH, J., PEĊCNKA, V., ARNOLD, L., TRÀVNFĊEK, M. & PIMAN, J. 1989. Transcription of the chicken myb proto-oncogene starts within a CpG island. *Nucleic acids research*, 17, 5651-5664.
- DZIERZAK, E. & MEDVINSKY, A. 1995. Mouse embryonic hematopoiesis. *Trends Genet*, 11, 359-66.
- EMA, M., FALOON, P., ZHANG, W. J., HIRASHIMA, M., REID, T., STANFORD, W. L., ORKIN, S., CHOI, K. & ROSSANT, J. 2003. Combinatorial effects of Flk1 and Tal1 on vascular and hematopoietic development in the mouse. *Genes & development*, 17, 380-393.
- ERNST, J., KHERADPOUR, P., MIKKELSEN, T. S., SHORESH, N., WARD, L. D., EPSTEIN, C. B., ZHANG, X., WANG, L., ISSNER, R. & COYNE, M. 2011. Mapping and analysis of chromatin state dynamics in nine human cell types. *Nature*, 473, 43.
- EVRARD, M., KWOK, I. W., CHONG, S. Z., TENG, K. W., BECHT, E., CHEN, J., SIEOW, J. L., PENNY, H. L., CHING, G. C. & DEVI, S. 2018. Developmental analysis of bone marrow neutrophils reveals populations

specialized in expansion, trafficking, and effector functions. *Immunity*, 48, 364-379. e8.

- FERKOWICZ, M. J., STARR, M., XIE, X., LI, W., JOHNSON, S. A., SHELLEY, W. C., MORRISON, P. R. & YODER, M. C. 2003. CD41 expression defines the onset of primitive and definitive hematopoiesis in the murine embryo. *Development*, 130, 4393-4403.
- FRAME, J. M., MCGRATH, K. E. & PALIS, J. 2013. Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. *Blood Cells, Molecules, and Diseases*, 51, 220-225.
- FRANKE, M., DE LA CALLE-MUSTIENES, E., NETO, A., ACEMEL, R. D., TENA, J. J., SANTOS-PEREIRA, J. M. & GOMEZ-SKARMETA, J. L. 2020. CTCF knockout in zebrafish induces alterations in regulatory landscapes and developmental gene expression. *bioRxiv*.
- FRASER, S. T. & BARON, M. H. 2009. Embryonic fates for extraembryonic lineages: New perspectives. *J Cell Biochem*, 107, 586-91.
- FUJIWARA, Y., BROWNE, C. P., CUNNIFF, K., GOFF, S. C. & ORKIN, S. H. 1996. Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. *Proceedings of the National Academy* of Sciences, 93, 12355-12358.
- FURZE, R. C. & RANKIN, S. M. 2008. Neutrophil mobilization and clearance in the bone marrow. *Immunology*, 125, 281-288.
- GAINES, P., TIEN, C. W., OLINS, A. L., OLINS, D. E., SHULTZ, L. D., CARNEY, L. & BERLINER, N. 2008. Mouse neutrophils lacking lamin B-receptor expression exhibit aberrant development and lack critical functional responses. *Experimental hematology*, 36, 965-976.
- GALLOWAY, J. L., WINGERT, R. A., THISSE, C., THISSE, B. & ZON, L. I. 2005. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. *Developmental cell*, 8, 109-116.
- GERING, M. & PATIENT, R. 2005. Hedgehog signaling is required for adult blood stem cell formation in zebrafish embryos. *Dev Cell*, 8, 389-400.
- GERING, M., RODAWAY, A. R., GOTTGENS, B., PATIENT, R. K. & GREEN, A. R. 1998. The SCL gene specifies haemangioblast development from early mesoderm. *Embo j*, 17, 4029-45.
- GERLACH, G. F., SCHRADER, L. N. & WINGERT, R. A. 2011. Dissection of the adult zebrafish kidney. *J Vis Exp*.
- GODBEY, W. T. 2014. An Introduction to Biotechnology : The Science, Technology and Medical Applications, Oxford, UK, Elsevier Science & Technology.
- GÓMEZ-MARÍN, C., TENA, J. J., ACEMEL, R. D., LÓPEZ-MAYORGA, M., NARANJO, S., DE LA CALLE-MUSTIENES, E., MAESO, I., BECCARI, L., ANEAS, I. & VIELMAS, E. 2015. Evolutionary comparison reveals that diverging CTCF sites are signatures of ancestral topological associating domains borders. *Proceedings of the National Academy of Sciences*, 112, 7542-7547.
- GONDA, T. J. & METCALF, D. 1984. Expression of myb, myc and fos protooncogenes during the differentiation of a murine myeloid leukaemia. *Nature*, 310, 249-251.
- GORDON-KEYLOCK, S., SOBIESIAK, M., RYBTSOV, S., MOORE, K. & MEDVINSKY, A. 2013. Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. *Blood, The Journal of the American Society of Hematology*, 122, 2338-2345.
- GORDON, S., TODD, J. & COHN, Z. 1974. In vitro synthesis and secretion of lysozyme by mononuclear phagocytes. *The Journal of experimental medicine*, 139, 1228-1248.
- GORE, A. V., MONZO, K., CHA, Y. R., PAN, W. & WEINSTEIN, B. M. 2012. Vascular development in the zebrafish. *Cold Spring Harbor perspectives in medicine*, 2, a006684.

- GORE, A. V., PILLAY, L. M., VENERO GALANTERNIK, M. & WEINSTEIN, B. M.
   2018. The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 7, e312.
- GRABHER, C., PAYNE, E. M., JOHNSTON, A. B., BOLLI, N., LECHMAN, E., DICK, J. E., KANKI, J. P. & LOOK, A. T. 2011. Zebrafish microRNA-126 determines hematopoietic cell fate through c-Myb. *Leukemia*, 25, 506-514.
- GRASSI, L., POURFARZAD, F., ULLRICH, S., MERKEL, A., WERE, F., CARRILLO-DE-SANTA-PAU, E., YI, G., HIEMSTRA, I. H., TOOL, A. T. & MUL, E. 2018. Dynamics of transcription regulation in human bone marrow myeloid differentiation to mature blood neutrophils. *Cell reports*, 24, 2784-2794.
- GREIG, K. T., CAROTTA, S. & NUTT, S. L. 2008. Critical roles for c-Myb in hematopoietic progenitor cells. *Semin Immunol*, 20, 247-56.
- GRITZ, E. & HIRSCHI, K. K. 2016. Specification and function of hemogenic endothelium during embryogenesis. *Cellular and Molecular Life Sciences*, 73, 1547-1567.
- GUPTA, R. M. & MUSUNURU, K. 2014. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest, 124, 4154-61.
- HADLAND, B. K., HUPPERT, S. S., KANUNGO, J., XUE, Y., JIANG, R., GRIDLEY, T., CONLON, R. A., CHENG, A. M., KOPAN, R. & LONGMORE, G. D. 2004.
  A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. *Blood*, 104, 3097-3105.
- HALL, C., FLORES, M. V., STORM, T., CROSIER, K. & CROSIER, P. 2007. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. *BMC developmental biology*, 7, 42.
- HESS, I., IWANAMI, N., SCHORPP, M. & BOEHM, T. 2013. Zebrafish model for allogeneic hematopoietic cell transplantation not requiring preconditioning. *Proceedings of the National Academy of Sciences*, 110, 4327-4332.
- HILLER, M., AGARWAL, S., NOTWELL, J. H., PARIKH, R., GUTURU, H., WENGER, A. M. & BEJERANO, G. 2013. Computational methods to detect conserved non-genic elements in phylogenetically isolated genomes: application to zebrafish. *Nucleic acids research*, 41, e151-e151.
- HOFFMANN, K., SPERLING, K., OLINS, A. L. & OLINS, D. E. 2007. The granulocyte nucleus and lamin B receptor: avoiding the ovoid. *Chromosoma*, 116, 227-235.
- HOLMES, W. E., LEE, J., KUANG, W.-J., RICE, G. C. & WOOD, W. I. 1991. Structure and functional expression of a human interleukin-8 receptor. *Science*, 253, 1278-1280.
- HOWE, K., CLARK, M. D., TORROJA, C. F., TORRANCE, J., BERTHELOT, C., MUFFATO, M., COLLINS, J. E., HUMPHRAY, S., MCLAREN, K. & MATTHEWS, L. 2013. The zebrafish reference genome sequence and its relationship to the human genome. *Nature*, 496, 498-503.
- HSU, J.-C. 2010. *Trancriptional regulation of the stem cell/progenitor c-myb gene.* University of Nottingham.
- HUANG, B., QI, Z. T., XU, Z. & NIE, P. 2010. Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution. *BMC immunology*, 11, 1-28.
- HUANG, Z., CHEN, K., CHI, Y., JIN, H., LI, L., ZHANG, W., XU, J. & ZHANG, Y. 2021. Runx1 regulates zebrafish neutrophil maturation via synergistic interaction with c-Myb. *Journal of Biological Chemistry*, 296, 100272.
- HUBER, T. L., KOUSKOFF, V., FEHLING, H. J., PALIS, J. & KELLER, G. 2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. *Nature*, 432, 625.
- HUGO, H., CURES, A., SURAWEERA, N., DRABSCH, Y., PURCELL, D., MANTAMADIOTIS, T., PHILLIPS, W., DOBROVIC, A., ZUPI, G. & GONDA, T. J. 2006. Mutations in the MYB intron I regulatory sequence increase

transcription in colon cancers. *Genes, Chromosomes and Cancer*, 45, 1143-1154.

- HUO, X., LI, H., LI, Z., YAN, C., AGRAWAL, I., MATHAVAN, S., LIU, J. & GONG,
   Z. 2019. Transcriptomic profiles of tumor-associated neutrophils reveal prominent roles in enhancing angiogenesis in liver tumorigenesis in zebrafish. *Scientific reports*, 9, 1-11.
- HWANG, W. Y., FU, Y., REYON, D., GONZALES, A. P., JOUNG, J. K. & YEH, J.-R. J. 2015. Targeted mutagenesis in zebrafish using CRISPR RNA-guided nucleases. *CRISPR.* Springer.
- HWANG, W. Y., FU, Y., REYON, D., MAEDER, M. L., TSAI, S. Q., SANDER, J. D., PETERSON, R. T., YEH, J. J. & JOUNG, J. K. 2013a. Efficient genome editing in zebrafish using a CRISPR-Cas system. *Nature biotechnology*, 31, 227-229.
- HWANG, W. Y., FU, Y., REYON, D., MAEDER, M. L., TSAI, S. Q., SANDER, J. D., PETERSON, R. T., YEH, J. R. & JOUNG, J. K. 2013b. Efficient genome editing in zebrafish using a CRISPR-Cas system. *Nat Biotechnol*, 31, 227-9.
- IRION, U., KRAUSS, J. & NUSSLEIN-VOLHARD, C. 2014. Precise and efficient genome editing in zebrafish using the CRISPR/Cas9 system. *Development*, 141, 4827-30.
- ITOH, M., KIM, C.-H., PALARDY, G., ODA, T., JIANG, Y.-J., MAUST, D., YEO, S.-Y., LORICK, K., WRIGHT, G. J. & ARIZA-MCNAUGHTON, L. 2003. Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. *Developmental cell*, **4**, 67-82.
- IWASAKI, H. & AKASHI, K. 2007. Myeloid lineage commitment from the hematopoietic stem cell. *Immunity*, 26, 726-740.
- JAFFREDO, T., GAUTIER, R., EICHMANN, A. & DIETERLEN-LIÈVRE, F. 1998. Intraaortic hemopoietic cells are derived from endothelial cells during ontogeny. *Development*, 125, 4575-4583.
- JAGANNATHAN-BOGDAN, M. & ZON, L. I. 2013. Hematopoiesis. *Development*, 140, 2463-2467.
- JAO, L. E., WENTE, S. R. & CHEN, W. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. *Proc Natl Acad Sci U S A*, 110, 13904-9.
- JEEVANI, T. 2011. Stem cell transplantation-types, risks and benefits. *J Stem Cell Res Ther*, 1, 114.
- JENNE, C. N., LIAO, S. & SINGH, B. 2018. Neutrophils: multitasking first responders of immunity and tissue homeostasis. *Cell and Tissue Research*, 371, 395-397.
- JIN, H., HUANG, Z., CHI, Y., WU, M., ZHOU, R., ZHAO, L., XU, J., ZHEN, F., LAN, Y. & LI, L. 2016. c-Myb acts in parallel and cooperatively with Cebp1 to regulate neutrophil maturation in zebrafish. *Blood*, 128, 415-426.
- JIN, H., LI, L., XU, J., ZHEN, F., ZHU, L., LIU, P. P., ZHANG, M., ZHANG, W. & WEN, Z. 2012. Runx1 regulates embryonic myeloid fate choice in zebrafish through a negative feedback loop inhibiting Pu. 1 expression. *Blood, The Journal of the American Society of Hematology,* 119, 5239-5249.
- JIN, H., XU, J. & WEN, Z. 2007. Migratory path of definitive hematopoietic stem/progenitor cells during zebrafish development. *Blood*, 109, 5208-14.
- JINEK, M., CHYLINSKI, K., FONFARA, I., HAUER, M., DOUDNA, J. A. & CHARPENTIER, E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. *Science*, 337, 816-21.
- JOHNSON, D. S., MORTAZAVI, A., MYERS, R. M. & WOLD, B. 2007. Genomewide mapping of in vivo protein-DNA interactions. *Science*, 316, 1497-1502.

- KAAIJ, L. J., VAN DER WEIDE, R. H., KETTING, R. F. & DE WIT, E. 2018. Systemic loss and gain of chromatin architecture throughout zebrafish development. *Cell reports*, 24, 1-10. e4.
- KALEV-ZYLINSKA, M. L., HORSFIELD, J. A., FLORES, M. V. C., POSTLETHWAIT, J. H., VITAS, M. R., BAAS, A. M., CROSIER, P. S. & CROSIER, K. E. 2002.
  Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. *Development*, 129, 2015-2030.
- KARSUNKY, H., ZENG, H., SCHMIDT, T., ZEVNIK, B., KLUGE, R., SCHMID, K. W., DÜHRSEN, U. & MÖRÖY, T. 2002. Inflammatory reactions and severe neutropenia in mice lacking the transcriptional repressor Gfi1. *Nature genetics*, 30, 295-300.
- KIMMEL, C. B., BALLARD, W. W., KIMMEL, S. R., ULLMANN, B. & SCHILLING, T.
   F. 1995. Stages of embryonic development of the zebrafish. Developmental dynamics, 203, 253-310.
- KINGSLEY, P. D., MALIK, J., FANTAUZZO, K. A. & PALIS, J. 2004. Yolk sacderived primitive erythroblasts enucleate during mammalian embryogenesis. *Blood*, 104, 19-25.
- KISHI, H., JIN, Z.-X., WEI, X.-C., NAGATA, T., MATSUDA, T., SAITO, S. & MURAGUCHI, A. 2002. Cooperative binding of c-Myb and Pax-5 activates the RAG-2 promoter in immature B cells. *Blood, The Journal of the American Society of Hematology,* 99, 576-583.
- KISSA, K. & HERBOMEL, P. 2010. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. *Nature*, 464, 112-115.
- KISSA, K., MURAYAMA, E., ZAPATA, A., CORTÉS, A., PERRET, E., MACHU, C. & HERBOMEL, P. 2008. Live imaging of emerging hematopoietic stem cells and early thymus colonization. *Blood, The Journal of the American Society of Hematology,* 111, 1147-1156.
- KITAGUCHI, T., KAWAKAMI, K. & KAWAHARA, A. 2009. Transcriptional regulation of a myeloid-lineage specific gene lysozyme C during zebrafish myelopoiesis. *Mechanisms of development*, 126, 314-323.
- KRIVEGA, I. & DEAN, A. 2012. Enhancer and promoter interactions—long distance calls. *Current opinion in genetics & development*, 22, 79-85.
- KULKEAW, K. & SUGIYAMA, D. 2012. Zebrafish erythropoiesis and the utility of fish as models of anemia. *Stem cell research & therapy*, 3, 1-11.
- KUMAR, S., XU, J., PERKINS, C., GUO, F., SNAPPER, S., FINKELMAN, F. D., ZHENG, Y. & FILIPPI, M.-D. 2012. Cdc42 regulates neutrophil migration via crosstalk between WASp, CD11b, and microtubules. *Blood, The Journal of the American Society of Hematology*, 120, 3563-3574.
- LATCHMAN, D. S. 2015 Gene Control, New York USA, Garland Science.
- LAUDER, A., CASTELLANOS, A. & WESTON, K. 2001. c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of T cells and is required for PKB-mediated protection from apoptosis. *Molecular and Cellular Biology*, 21, 5797.
- LAURENTI, E. & GÖTTGENS, B. 2018. From haematopoietic stem cells to complex differentiation landscapes. *Nature*, 553, 418-426.
- LE GUYADER, D., REDD, M. J., COLUCCI-GUYON, E., MURAYAMA, E., KISSA, K., BRIOLAT, V., MORDELET, E., ZAPATA, A., SHINOMIYA, H. & HERBOMEL, P. 2008. Origins and unconventional behavior of neutrophils in developing zebrafish. *Blood, The Journal of the American Society of Hematology,* 111, 132-141.
- LENHARD, B., SANDELIN, A. & CARNINCI, P. 2012. Metazoan promoters: emerging characteristics and insights into transcriptional regulation. *Nature Reviews Genetics*, 13, 233-245.
- LETTICE, L. A., HEANEY, S. J., PURDIE, L. A., LI, L., DE BEER, P., OOSTRA, B. A., GOODE, D., ELGAR, G., HILL, R. E. & DE GRAAFF, E. 2003. A longrange Shh enhancer regulates expression in the developing limb and fin

and is associated with preaxial polydactyly. *Human molecular genetics*, 12, 1725-1735.

- LETTICE, L. A., HILL, A. E., DEVENNEY, P. S. & HILL, R. E. 2008. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. *Human molecular genetics*, 17, 978-985.
- LI, Q., RITTER, D., YANG, N., DONG, Z., LI, H., CHUANG, J. H. & GUO, S. 2010. A systematic approach to identify functional motifs within vertebrate developmental enhancers. *Developmental biology*, 337, 484-495.
- LIAN, J., CHEN, J., WANG, K., ZHAO, L., MENG, P., YANG, L., WEI, J., MA, N., XU, J. & ZHANG, W. 2018. Alas1 is essential for neutrophil maturation in zebrafish. *haematologica*, 103, 1785.
- LIAO, E. C., PAW, B. H., OATES, A. C., PRATT, S. J., POSTLETHWAIT, J. H. & ZON, L. I. 1998. SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. *Genes & development*, 12, 621-626.
- LIEBERMAN-AIDEN, E., VAN BERKUM, N. L., WILLIAMS, L., IMAKAEV, M., RAGOCZY, T., TELLING, A., AMIT, I., LAJOIE, B. R., SABO, P. J. & DORSCHNER, M. O. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. *science*, 326, 289-293.
- LIESCHKE, G. J., OATES, A. C., CROWHURST, M. O., WARD, A. C. & LAYTON, J. E. 2001. Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. *Blood, The Journal of the American Society of Hematology*, 98, 3087-3096.
- LIESCHKE, G. J., OATES, A. C., PAW, B. H., THOMPSON, M. A., HALL, N. E., WARD, A., HO, R. K., ZON, L. I. & LAYTON, J. E. 2002. Zebrafish SPI-1 marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. *Developmental biology*, 246, 274-295.
- LIEU, Y. K. & REDDY, E. P. 2009. Conditional c-myb knockout in adult hematopoietic stem cells leads to loss of self-renewal due to impaired proliferation and accelerated differentiation. *Proc Natl Acad Sci U S A*, 106, 21689-94.
- LINK, D. C. 2005. Neutrophil homeostasis. Immunologic research, 32, 169-178.
- LIU, F. & PATIENT, R. 2008. Genome-wide analysis of the zebrafish ETS family identifies three genes required for hemangioblast differentiation or angiogenesis. *Circulation research*, 103, 1147-1154.
- LIU, F. & WEN, Z. 2002. Cloning and expression pattern of the lysozyme C gene in zebrafish. *Mechanisms of development*, 113, 69-72.
- LORENZO, P. I., BRENDEFORD, E. M., GILFILLAN, S., GAVRILOV, A. A., LEEDSAK, M., RAZIN, S. V., ESKELAND, R., SAETHER, T. & GABRIELSEN, O. S. 2011. Identification of c-Myb Target Genes in K562 Cells Reveals a Role for c-Myb as a Master Regulator. *Genes Cancer*, 2, 805-17.
- MAHONY, S. & BENOS, P. V. 2007. STAMP: a web tool for exploring DNA-binding motif similarities. *Nucleic acids research*, 35, W253-W258.
- MATYS, V., FRICKE, E., GEFFERS, R., GÖBLING, E., HAUBROCK, M., HEHL, R., HORNISCHER, K., KARAS, D., KEL, A. E. & KEL-MARGOULIS, O. V. 2003. TRANSFAC®: transcriptional regulation, from patterns to profiles. *Nucleic* acids research, 31, 374-378.
- MAZO, I. B., MASSBERG, S. & VON ANDRIAN, U. H. 2011. Hematopoietic stem and progenitor cell trafficking. *Trends in immunology*, 32, 493-503.
- MCGRATH, K. E., FRAME, J. M., FROMM, G. J., KONISKI, A. D., KINGSLEY, P. D., LITTLE, J., BULGER, M. & PALIS, J. 2011. A transient definitive erythroid lineage with unique regulation of the beta-globin locus in the mammalian embryo. *Blood*, 117, 4600-8.

- MEDVINSKY, A. & DZIERZAK, E. 1996. Definitive hematopoiesis is autonomously initiated by the AGM region. *Cell*, 86, 897-906.
- MEDVINSKY, A., RYBTSOV, S. & TAOUDI, S. 2011. Embryonic origin of the adult hematopoietic system: advances and questions. *Development*, 138, 1017-1031.
- MITRA, P. 2018. Transcription regulation of MYB: a potential and novel therapeutic target in cancer. *Annals of translational medicine*, 6.
- MOHAMED, T. 2015. The Transcriptional Regulation of c-myb in Zeprafish Haematopoiesis MRes, University of Nottingham.
- MOORE, C., RICHENS, J. L., HOUGH, Y., UCANOK, D., MALLA, S., SANG, F., CHEN, Y., ELWORTHY, S., WILKINSON, R. N. & GERING, M. 2018. Gfi1aa and Gfi1b set the pace for primitive erythroblast differentiation from hemangioblasts in the zebrafish embryo. *Blood advances*, 2, 2589-2606.
- MOORE, F. E., GARCIA, E. G., LOBBARDI, R., JAIN, E., TANG, Q., MOORE, J. C., CORTES, M., MOLODTSOV, A., KASHETA, M. & LUO, C. C. 2016. Singlecell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish. *Journal of Experimental Medicine*, 213, 979-992.
- MORENO-MATEOS, M. A., VEJNAR, C. E., BEAUDOIN, J.-D., FERNANDEZ, J. P., MIS, E. K., KHOKHA, M. K. & GIRALDEZ, A. J. 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. *Nature methods*, 12, 982.
- MÖRÖY, T., VASSEN, L., WILKES, B. & KHANDANPOUR, C. 2015. From cytopenia to leukemia: the role of Gfi1 and Gfi1b in blood formation. *Blood, The Journal of the American Society of Hematology,* 126, 2561-2569.
- MUCENSKI, M. L., MCLAIN, K., KIER, A. B., SWERDLOW, S. H., SCHREINER, C. M., MILLER, T. A., PIETRYGA, D. W., SCOTT JR, W. J. & POTTER, S. S. 1991. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. *Cell*, 65, 677-689.
- MUKAI, H. Y., MOTOHASHI, H., OHNEDA, O., SUZUKI, N., NAGANO, M. & YAMAMOTO, M. 2006. Transgene Insertion in Proximity to thec-myb Gene Disrupts Erythroid-Megakaryocytic Lineage Bifurcation. *Molecular and cellular biology*, 26, 7953-7965.
- MURAYAMA, E., KISSA, K., ZAPATA, A., MORDELET, E., BRIOLAT, V., LIN, H. F., HANDIN, R. I. & HERBOMEL, P. 2006. Tracing hematopoietic precursor migration to successive hematopoietic organs during zebrafish development. *Immunity*, 25, 963-75.
- NELSON, A. C. & WARDLE, F. C. 2013. Conserved non-coding elements and cis regulation: actions speak louder than words. *Development*, 140, 1385-95.
- NESS, S. A. 1999. Myb binding proteins: regulators and cohorts in transformation. *Oncogene*, 18, 3039-3046.
- NESS, S. A., KOWENZ-LEUTZ, E., CASINI, T., GRAF, T. & LEUTZ, A. 1993. Myb and NF-M: combinatorial activators of myeloid genes in heterologous cell types. *Genes & development*, **7**, 749-759.
- NIEMANN, C. U., ABRINK, M., PEJLER, G., FISCHER, R. L., CHRISTENSEN, E. I., KNIGHT, S. D. & BORREGAARD, N. 2007. Neutrophil elastase depends on serglycin proteoglycan for localization in granules. *Blood*, 109, 4478-4486.
- NORTH, T., GU, T.-L., STACY, T., WANG, Q., HOWARD, L., BINDER, M., MARÍN-PADILLA, M. & SPECK, N. A. 1999. Cbfa2 is required for the formation of intra-aortic hematopoietic clusters. *Development*, 126, 2563-2575.
- NORTH, T. E., GOESSLING, W., PEETERS, M., LI, P., CEOL, C., LORD, A. M., WEBER, G. J., HARRIS, J., CUTTING, C. C. & HUANG, P. 2009. Hematopoietic stem cell development is dependent on blood flow. *Cell*, 137, 736-748.
- NOWICK, K. & STUBBS, L. 2010. Lineage-specific transcription factors and the evolution of gene regulatory networks. *Briefings in functional genomics*, 9, 65-78.
- OEHLERS, S. H., FLORES, M. V., HALL, C. J., O'TOOLE, R., SWIFT, S., CROSIER, K. E. & CROSIER, P. S. 2010. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. *Developmental & Comparative Immunology*, 34, 352-359.
- OHTEKI, T., YOSHIDA, H., MATSUYAMA, T., DUNCAN, G. S., MAK, T. W. & OHASHI, P. S. 1998. The Transcription Factor Interferon Regulatory Factor 1 (IRF-1) Is Important during the Maturation of Natural Killer 1.1+ T Cell Receptor– $\alpha/\beta$ +(NK1+ T) Cells, Natural Killer Cells, and Intestinal Intraepithelial T Cells. *The Journal of experimental medicine*, 187, 967-972.
- OKUDA, T., VAN DEURSEN, J., HIEBERT, S. W., GROSVELD, G. & DOWNING, J. R. 1996. AML1, the target of multiple chromosomal translocations in human leukemia, is essential for normal fetal liver hematopoiesis. *Cell*, 84, 321-30.
- ONG, C.-T. & CORCES, V. G. 2011. Enhancer function: new insights into the regulation of tissue-specific gene expression. *Nature Reviews Genetics*, 12, 283-293.
- ORKIN, S. H. & ZON, L. I. 2008a. Hematopoiesis: an evolving paradigm for stem cell biology. *Cell*, 132, 631-44.
- ORKIN, S. H. & ZON, L. I. 2008b. SnapShot: hematopoiesis. *Cell*, 132, 712. e1-712. e2.
- OSTERWALDER, M., BAROZZI, I., TISSIÈRES, V., FUKUDA-YUZAWA, Y., MANNION, B. J., AFZAL, S. Y., LEE, E. A., ZHU, Y., PLAJZER-FRICK, I. & PICKLE, C. S. 2018. Enhancer redundancy provides phenotypic robustness in mammalian development. *Nature*, 554, 239-243.
- OTTERSBACH, K. 2019. Endothelial-to-haematopoietic transition: an update on the process of making blood. *Biochemical Society Transactions*, 47, 591-601.
- PAIK, E. J. & ZON, L. I. 2010. Hematopoietic development in the zebrafish. *Int J Dev Biol*, 54, 1127-37.
- PALIS, J., ROBERTSON, S., KENNEDY, M., WALL, C. & KELLER, G. 1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. *Development*, 126, 5073-84.
- PATTERSON, L. J., GERING, M., ECKFELDT, C. E., GREEN, A. R., VERFAILLIE, C. M., EKKER, S. C. & PATIENT, R. 2007. The transcription factors Scl and Lmo2 act together during development of the hemangioblast in zebrafish. *Blood*, 109, 2389-98.
- PENNACCHIO, L. A., BICKMORE, W., DEAN, A., NOBREGA, M. A. & BEJERANO, G. 2013. Enhancers: five essential questions. *Nat Rev Genet*, 14, 288-95.
- PERDIGUERO, E. G., KLAPPROTH, K., SCHULZ, C., BUSCH, K., AZZONI, E., CROZET, L., GARNER, H., TROUILLET, C., DE BRUIJN, M. F. & GEISSMANN, F. 2015. Tissue-resident macrophages originate from yolksac-derived erythro-myeloid progenitors. *Nature*, 518, 547-551.
- PILLAY, L. M., FORRESTER, A. M., ERICKSON, T., BERMAN, J. N. & WASKIEWICZ, A. J. 2010. The Hox cofactors Meis1 and Pbx act upstream of gata1 to regulate primitive hematopoiesis. *Developmental biology*, 340, 306-317.
- POWERS, D. A. 1991. Evolutionary genetics of fish. *Advances in genetics.* Elsevier.
- RAAB, J. R. & KAMAKAKA, R. T. 2010. Insulators and promoters: closer than we think. *Nature Reviews Genetics*, 11, 439-446.
- RADA-IGLESIAS, A., BAJPAI, R., SWIGUT, T., BRUGMANN, S. A., FLYNN, R. A. & WYSOCKA, J. 2011. A unique chromatin signature uncovers early developmental enhancers in humans. *Nature*, 470, 279-283.

- RAMSAY, R. G. 2005. c-Myb a stem-progenitor cell regulator in multiple tissue compartments. *Growth Factors*, 23, 253-261.
- RAN, F. A., HSU, P. D., WRIGHT, J., AGARWALA, V., SCOTT, D. A. & ZHANG, F. 2013. Genome engineering using the CRISPR-Cas9 system. *Nature protocols*, *8*, 2281-2308.
- RAZ, E. 2003. Primordial germ-cell development: the zebrafish perspective. *Nature Reviews Genetics*, 4, 690-700.
- REISCHAUER, S., STONE, O. A., VILLASENOR, A., CHI, N., JIN, S.-W., MARTIN, M., LEE, M. T., FUKUDA, N., MARASS, M. & WITTY, A. 2016. Cloche is a bHLH-PAS transcription factor that drives haemato-vascular specification. *Nature*, 535, 294-298.
- RENSHAW, S. A., LOYNES, C. A., TRUSHELL, D. M., ELWORTHY, S., INGHAM, P.
  W. & WHYTE, M. K. 2006. A transgenic zebrafish model of neutrophilic inflammation. *Blood*, 108, 3976-3978.
- RHODES, J., HAGEN, A., HSU, K., DENG, M., LIU, T. X., LOOK, A. T. & KANKI, J.
  P. 2005. Interplay of pu. 1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. *Developmental cell*, *8*, 97-108.
- ROBERTSON, A. L., AVAGYAN, S., GANSNER, J. M. & ZON, L. I. 2016. Understanding the regulation of vertebrate hematopoiesis and blood disorders-big lessons from a small fish. *FEBS letters*, 590, 4016-4033.
- ROBERTSON, G., HIRST, M., BAINBRIDGE, M., BILENKY, M., ZHAO, Y., ZENG, T., EUSKIRCHEN, G., BERNIER, B., VARHOL, R. & DELANEY, A. 2007. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. *Nature methods*, 4, 651-657.
- ROJANO, E., SEOANE, P., RANEA, J. A. & PERKINS, J. R. 2019. Regulatory variants: from detection to predicting impact. *Briefings in bioinformatics*, 20, 1639-1654.
- ROSOWSKI, E. E., DENG, Q., KELLER, N. P. & HUTTENLOCHER, A. 2016. Rac2 functions in both neutrophils and macrophages to mediate motility and host defense in larval zebrafish. *The Journal of Immunology*, 197, 4780-4790.
- RYAN, G. E. & FARLEY, E. K. 2020. Functional genomic approaches to elucidate the role of enhancers during development. *Wiley Interdisciplinary Reviews: Systems Biology and Medicine*, 12, e1467.
- RYBTSOV, S., IVANOVS, A., ZHAO, S. & MEDVINSKY, A. 2016. Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. *Development*, 143, 1284-1289.
- SAGAI, T., AMANO, T., MAENO, A., KIYONARI, H., SEO, H., CHO, S.-W. & SHIROISHI, T. 2017. SHH signaling directed by two oral epithelium-specific enhancers controls tooth and oral development. *Scientific reports*, 7, 1-11.
- SAGAI, T., HOSOYA, M., MIZUSHINA, Y., TAMURA, M. & SHIROISHI, T. 2005. Elimination of a long-range cis-regulatory module causes complete loss of limb-specific Shh expression and truncation of the mouse limb. *Development*, 132, 797-803.
- SANDELIN, A., ALKEMA, W., ENGSTRÖM, P., WASSERMAN, W. W. & LENHARD, B. 2004a. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. *Nucleic acids research*, 32, D91-D94.
- SANDELIN, A., WASSERMAN, W. W. & LENHARD, B. 2004b. ConSite: web-based prediction of regulatory elements using cross-species comparison. *Nucleic acids research*, 32, W249-W252.
- SANDER, J. D. & JOUNG, J. K. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. *Nat Biotechnol*, 32, 347-55.
- SAVAGE, A. 2012. *MRes Thesis*. University of Nottingham.
- SHAFIZADEH, E. & PAW, B. H. 2004. Zebrafish as a model of human hematologic disorders. *Current opinion in hematology*, 11, 255-261.

- SHEN, L.-J., CHEN, F.-Y., ZHANG, Y., CAO, L.-F., KUANG, Y., ZHONG, M., WANG, T. & ZHONG, H. 2013. MYCN transgenic zebrafish model with the characterization of acute myeloid leukemia and altered hematopoiesis. *PloS one*, 8, e59070.
- SHMAKOV, S., ABUDAYYEH, O. O., MAKAROVA, K. S., WOLF, Y. I.,
  GOOTENBERG, J. S., SEMENOVA, E., MINAKHIN, L., JOUNG, J.,
  KONERMANN, S., SEVERINOV, K., ZHANG, F. & KOONIN, E. V. 2015.
  Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas
  Systems. *Mol Cell*, 60, 385-97.
- SILVER, L. & PALIS, J. 1997. Initiation of murine embryonic erythropoiesis: a spatial analysis. *Blood*, 89, 1154-1164.
- SITZMANN, J., NOBEN-TRAUTH, K. & KLEMPNAUER, K.-H. 1995. Expression of mouse c-myb during embryonic development. *Oncogene*, 11, 2273-2279.
- SOARES-DA-SILVA, F., FREYER, L., ELSAID, R., BURLEN-DEFRANOUX, O., ITURRI, L., SISMEIRO, O., PINTO-DO-Ó, P., GOMEZ-PERDIGUERO, E. & CUMANO, A. 2021. Yolk sac, but not hematopoietic stem cell-derived progenitors, sustain erythropoiesis throughout murine embryonic life. *Journal of Experimental Medicine*, 218.
- SONG, H., YAN, Y.-L., TITUS, T., HE, X. & POSTLETHWAIT, J. H. 2011. The role of stat1b in zebrafish hematopoiesis. *Mechanisms of development*, 128, 442-456.
- SOZA-RIED, C., HESS, I., NETUSCHIL, N., SCHORPP, M. & BOEHM, T. 2010. Essential role of c-myb in definitive hematopoiesis is evolutionarily conserved. *Proceedings of the National Academy of Sciences*, 107, 17304-17308.
- SPITZ, F. & FURLONG, E. E. 2012. Transcription factors: from enhancer binding to developmental control. *Nature reviews genetics*, 13, 613-626.
- STACHURA, D. L. & TRAVER, D. 2011. Cellular dissection of zebrafish hematopoiesis. *Methods in cell biology*, 101, 75-110.
- STADHOUDERS, R., THONGJUEA, S., ANDRIEU-SOLER, C., PALSTRA, R. J., BRYNE, J. C., VAN DEN HEUVEL, A., STEVENS, M., DE BOER, E., KOCKX, C. & VAN DER SLOOT, A. 2012. Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. *The EMBO journal*, 31, 986-999.
- STAINIER, D., WEINSTEIN, B. M., DETRICH, H. R., ZON, L. I. & FISHMAN, M. C. 1995. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. *Development*, 121, 3141-3150.
- STRYDOM, N. & RANKIN, S. M. 2013. Regulation of circulating neutrophil numbers under homeostasis and in disease. *Journal of innate immunity*, 5, 304-314.
- STURGEON, C. M., DITADI, A., CLARKE, R. L. & KELLER, G. 2013. Defining the path to hematopoietic stem cells. *Nat Biotechnol,* 31, 416-8.
- SUGIYAMA, D., INOUE-YOKOO, T., FRASER, S. T., KULKEAW, K., MIZUOCHI, C. & HORIO, Y. 2011. Embryonic regulation of the mouse hematopoietic niche. *The Scientific World Journal*, 11, 1770-1780.
- SUMNER, R., CRAWFORD, A., MUCENSKI, M. & FRAMPTON, J. 2000. Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. *Oncogene*, 19, 3335-3342.
- TAMPLIN, O. J., DURAND, E. M., CARR, L. A., CHILDS, S. J., HAGEDORN, E. J., LI, P., YZAGUIRRE, A. D., SPECK, N. A. & ZON, L. I. 2015. Hematopoietic stem cell arrival triggers dynamic remodeling of the perivascular niche. *Cell*, 160, 241-252.
- TANAKA, Y., PATESTOS, N. P., MAEKAWA, T. & ISHII, S. 1999. B-myb is required for inner cell mass formation at an early stage of development. *Journal of Biological Chemistry*, 274, 28067-28070.

- TAOUDI, S. & MEDVINSKY, A. 2007. Functional identification of the hematopoietic stem cell niche in the ventral domain of the embryonic dorsal aorta. *Proceedings of the National Academy of Sciences*, 104, 9399-9403.
- THAMBYRAJAH, R., UCANOK, D., JALALI, M., HOUGH, Y., WILKINSON, R. N., MCMAHON, K., MOORE, C. & GERING, M. 2016. A gene trap transposon eliminates haematopoietic expression of zebrafish Gfi1aa, but does not interfere with haematopoiesis. *Developmental biology*, 417, 25-39.
- THOMAS, M. D., KREMER, C. S., RAVICHANDRAN, K. S., RAJEWSKY, K. & BENDER, T. P. 2005. c-Myb is critical for B cell development and maintenance of follicular B cells. *Immunity*, 23, 275-286.
- THURMAN, R. E., RYNES, E., HUMBERT, R., VIERSTRA, J., MAURANO, M. T., HAUGEN, E., SHEFFIELD, N. C., STERGACHIS, A. B., WANG, H. & VERNOT, B. 2012. The accessible chromatin landscape of the human genome. *Nature*, 489, 75-82.
- TOBER, J., KONISKI, A., MCGRATH, K. E., VEMISHETTI, R., EMERSON, R., DE MESY-BENTLEY, K. K., WAUGH, R. & PALIS, J. 2006. The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis. *Blood*, 109, 1433-1441.
- TOSCANI, A., METTUS, R. V., COUPLAND, R., SIMPKINS, H., LITVIN, J., ORTH, J., HATTON, K. S. & REDDY, E. P. 1997. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. *Nature*, 386, 713-717.
- TRAVER, D., HERBOMEL, P., PATTON, E. E., MURPHEY, R. D., YODER, J. A., LITMAN, G. W., CATIC, A., AMEMIYA, C. T., ZON, L. I. & TREDE, N. S. 2003a. The zebrafish as a model organism to study development of the immune system. *Advances in immunology*, 81, 253.
- TRAVER, D., PAW, B. H., POSS, K. D., PENBERTHY, W. T., LIN, S. & ZON, L. I. 2003b. Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. *Nat Immunol*, 4, 1238-46.
- TSIKANDELOVA, R. 2013. *Cis-regulation of cmyb in zebrafish.* MRes University of Nottingham.
- TULOTTA, C., STEFANESCU, C., BELETKAIA, E., BUSSMANN, J., TARBASHEVICH, K., SCHMIDT, T. & SNAAR-JAGALSKA, B. E. 2016. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. *Disease models & mechanisms*, 9, 141-153.
- VEGIOPOULOS, A., GARCÍA, P., EMAMBOKUS, N. & FRAMPTON, J. 2006. Coordination of erythropoiesis by the transcription factor c-Myb. *Blood*, 107, 4703-4710.
- VELDMAN, M. B. & LIN, S. 2008. Zebrafish as a developmental model organism for pediatric research. *Pediatr Res,* 64, 470-6.
- VISEL, A., BRISTOW, J. & PENNACCHIO, L. A. Enhancer identification through comparative genomics. Seminars in cell & developmental biology, 2007. Elsevier, 140-152.
- VISEL, A., RUBIN, E. M. & PENNACCHIO, L. A. 2009. Genomic views of distantacting enhancers. *Nature*, 461, 199-205.
- WAHLBERG, K., JIANG, J., ROOKS, H., JAWAID, K., MATSUDA, F., YAMAGUCHI, M., LATHROP, M., THEIN, S. L. & BEST, S. 2009. The HBS1L-MYB intergenic interval associated with elevated HbF levels shows characteristics of a distal regulatory region in erythroid cells. *Blood, The Journal of the American Society of Hematology*, 114, 1254-1262.
- WANG, Q., STACY, T., BINDER, M., MARIN-PADILLA, M., SHARPE, A. H. & SPECK, N. A. 1996. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive

hematopoiesis. *Proceedings of the National Academy of Sciences*, 93, 3444-3449.

- WEI, Y., XU, J., ZHANG, W., WEN, Z. & LIU, F. 2016. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish. *Development*, 143, 2103-2110.
- WESTERFIELD, M. 1993. The zebrafish book; a guide for the laboratory use of zebrafish (*brachydanio rerio*). 2nd ed. Eugene, University of Oregon Press.
- WHYTE, W. A., ORLANDO, D. A., HNISZ, D., ABRAHAM, B. J., LIN, C. Y., KAGEY, M. H., RAHL, P. B., LEE, T. I. & YOUNG, R. A. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. *Cell*, 153, 307-19.
- WIEDENHEFT, B., STERNBERG, S. H. & DOUDNA, J. A. 2012. RNA-guided genetic silencing systems in bacteria and archaea. *Nature*, 482, 331-8.
- WILLETT, C. E., ZAPATA, A. G., HOPKINS, N. & STEINER, L. A. 1997. Expression of zebrafish rag genes during early development identifies the thymus. *Dev Biol*, 182, 331-41.
- WOOLFE, A., GOODSON, M., GOODE, D. K., SNELL, P., MCEWEN, G. K., VAVOURI, T., SMITH, S. F., NORTH, P., CALLAWAY, H. & KELLY, K. 2004. Highly conserved non-coding sequences are associated with vertebrate development. *PLoS Biol*, 3, e7.
- WRIGHT, J. 2019. *Gene Control,* United King dome, Essex, ED-Tech Press.
- YAMANE, T. 2018. Mouse yolk sac hematopoiesis. *Frontiers in Cell and* Developmental Biology, 6, 80.
- YANG, C.-T., CAMBIER, C., DAVIS, J. M., HALL, C. J., CROSIER, P. S. & RAMAKRISHNAN, L. 2012. Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. *Cell host & microbe*, 12, 301-312.
- YOSHIMOTO, M., MONTECINO-RODRIGUEZ, E., FERKOWICZ, M. J., PORAYETTE, P., SHELLEY, W. C., CONWAY, S. J., DORSHKIND, K. & YODER, M. C. 2011. Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. *Proceedings of the National Academy of Sciences*, 108, 1468-1473.
- YZAGUIRRE, A. D., DE BRUIJN, M. F. & SPECK, N. A. 2017. The role of Runx1 in embryonic blood cell formation. *RUNX proteins in development and cancer*, 47-64.
- ZHANG, J., HAN, B., LI, X., BIES, J., JIANG, P., KOLLER, R. P. & WOLFF, L. 2016. Distal regulation of c-myb expression during IL-6-induced differentiation in murine myeloid progenitor M1 cells. *Cell death & disease*, 7, e2364e2364.
- ZHANG, Y., JIN, H., LI, L., QIN, F. X. & WEN, Z. 2011. cMyb regulates hematopoietic stem/progenitor cell mobilization during zebrafish hematopoiesis. *Blood*, 118, 4093-101.
- ZHANG, Y., ZHANG, Z. & GE, W. 2018. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing. *Journal of Biological Chemistry*, 293, 6611-6622.
- ZHU, Y. P., PADGETT, L., DINH, H. Q., MARCOVECCHIO, P., BLATCHLEY, A., WU, R., EHINGER, E., KIM, C., MIKULSKI, Z. & SEUMOIS, G. 2018. Identification of an early unipotent neutrophil progenitor with pro-tumoral activity in mouse and human bone marrow. *Cell reports*, 24, 2329-2341. e8.