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MULTI-TEMPORAL, MULTI-SENSOR LAND USE/LAND COVER MAPPING: 

GOOGLE EARTH ENGINE AND RANDOM FOREST FOR THE 

CLASSIFICATION OF THE SCOTTISH FLOW COUNTRY 

 

Abstract: Long-term monitoring of Land Use/Land Cover (LULC) dynamics is fundamental for 

implementing effective policy and mitigating the effects of climate change. In the UK, the 

Scottish Flow Country represents an area of ~4000km
2  

spanning Caithness and Sutherland, 

encompassing 25% of global blanket bogs. There is a need to understand these peatland 

ecosystems in a broader context, appreciating their importance within evolving landscapes. 

Frequent advances in remote sensing (RS) have provided a means for large-scale LULC mapping 

to be executed with increasing temporal and spatial resolutions. In addition, cloud-computing 

services such as Google Earth Engine (GEE) have enabled the processing and analysis of 

geospatial data, allowing various stakeholders to address challenges with the assistance of “Geo 

Big Data”. This study looks to assess how the LULC mapping can take advantage of geospatial 

data, cloud-computing and machine learning for the monitoring of peatland ecosystems within a 

broader economic and environmental policy-driven context. The following objectives were 

defined: (1) determine the optimal combination of optical, radar and topographic data for LULC 

mapping of the Scottish Land Use Strategy; (2) assess their application in GEE; and (3) evaluate 

Random Forest for classification of LULC classes. Results suggest a combination of optical, 

radar and topographic features is necessary for comprehensive LULC mapping (LUSTOR 

OA=0.823 and KA=0.792), particularly when delineating ecologically, hydrologically and 

geomorphologically heterogenous landscapes. Finally, RF performance was evaluated, future 

improvements were outlined and the effectiveness of LULC mapping for policy assessments is 

discussed. 

 

Keywords: Google Earth Engine (GEE), Random Forest (RF), Sentinel, Peatland, Land Use 

Land Cover Mapping (LULC), Pixel-Based Image Classification 
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1 – INTRODUCTION 

 

The effective monitoring and management of peatland ecosystems is fundamental in the fight 

against climate change. An ever-expanding community is exploring global peatlands for their 

invaluable ecosystem services, notably their remarkable biodiversity, irreplaceable wildlife 

habitats, significance as carbon stocks and socio-economic value (Page and Baird, 2016). 

Contemporary research appreciates that comprehensive long-term monitoring projects are 

critical in the conservation and restoration of these ecosystems in the face of mounting pressures 

from environmental and anthropogenic changes (Hird et al., 2017; DeLancey et al., 2019). To 

assess these dynamic, often-transitional changes, research needs to simulate and project change 

in the context of the complex landscapes they reside within (Mitsch and Gossilink, 2000; Alonso 

et al., 2016; Hird et al., 2017). Peatlands should not be viewed as isolated features but spaces 

where complex ‘human-natural systems’ intertwine, with environmental, economic and social 

drivers balancing the costs and benefits of interventions. In the face of mounting demands, these 

processes need to be better understood so that long-term management can sustain the benefits 

of peatland ecosystems while maximising their responsible use for future generations (Alonso et 

al., 2016). 

 

1.1 – Peatlands: Definition, Formation and Carbon Storage 

 

Peat can be broadly defined as a soil type consisting of sedentarily accumulated, partially 

decomposed organic material, derived from vegetation that has been preserved through anoxic 

waterlogged conditions induced by precipitation. Peat is formed in layers and builds up with 

increased accumulation and decomposition of surface plants and organic material (Joosten and 

Clarke, 2002; Page and Baird, 2016). Peat, which locks carbon sequestered by the vegetation its 

partially decomposes, builds up to result in incremental increases in soil formation and 

consolidation (Gorham, 1991). Peatland represents an area with or without surface vegetation 

within which naturally accumulated layers of peat have formed over sizeable expanses (Minasny 

et al., 2019). Peatland can largely be found in the northern hemisphere, occurring in the boreal 

and temperate climates of North America, Europe and Russia. Northern peatlands have formed 

over millennia, varying in the rates of accumulation (averaging 18.6 g C m−2 yr) forming part of 

a global wetland carbon sink that equates to 90% of the global carbon pool (Yu et al., 2010; 

DeLancey et al., 2019).  
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Covering 3% of the Earth’s surface, peat-forming systems play a pivotal role in mitigating the 

effects of greenhouse gases (GHGs) and represent a significant source of stored carbon (C) (Yu 

et al., 2010). This can be equated to 113-612 Gigatonnes (Gt) of C, containing more C than 

tropical rainforests biomass (360 Gt)(Pan et al., 2011) and representing half the C in the 

atmosphere (750 Gt)(Grace, 2004) (Köchy, Hiederer and Freibauer, 2015; Jackson et al., 2017). 

Understanding the delicate hydrological dynamics of peat accumulation and degradation required 

for such ecosystems to continue to store carbon is of the upmost importance in determining 

their future effectiveness as mitigators of climate change (Gorham, 1991). The benefits of 

healthy peatland ecosystems are wide-ranging, including: improved water regulation; biodiversity 

protection; flood-risk mitigation; food production; fuel and socio-cultural experiences (Page and 

Baird, 2016; Sloan et al., 2018; Lees et al., 2021). The quantification of these benefits is vital for 

the appropriate management and targeted intervention within peatland landscapes, from which 

assessments of appropriate use and interaction can be determined. 

 

Understanding the numerous actors involved in peatland monitoring and management is 

fundamental to assess appropriate intervention for their restoration and long-term conservation. 

The complex coupling of ‘human-natural systems’ has resulted in the marked degradation of 

global peatland areas, with agriculture, horticulture, forestry and energy sourcing significantly 

damaging peatland’s long-term resilience to climate changes (Alonso et al., 2016). However, 

research into the prolonged restoration of peatland has struggled to distinguish between climatic 

and anthropogenic factors responsible for their formation, highlighting the growing need to 

separate these two systems to best understand peatland dynamics (Tipping, 2008; Gallego-Sala et 

al., 2016; Page and Baird, 2016; Pimm et al., 2019). Lees et al. (2021) states the need for 

increasing research into the resilience of peatland by viewing climatic and anthropogenic stresses 

independently, assessing their ability to respond to climate change and our ability to accomplish 

sustainable use (Chambers, Allen and Cushman, 2019; Lees et al., 2021). Future research trends 

are looking to document (1) how peatland will respond to rapid, short-term disturbances and to 

gradual, long-term changes in climate; (2) how scientists and policy makers can incorporate 

climatic and anthropogenic changes effectively into peatland monitoring ; and (3) how these 

changes can be modelled and mapped to aid conservation and restoration practices going 

forward (Page and Baird, 2016). 
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1.2 – Scottish Peatland: The Flow Country and Scotland’s Land Use Strategy 

 

In the UK, the Scottish Flow Country represents an area of ~4000km
2  

spanning Caithness and 

Sutherland, containing 25% of the worlds blanket bog, peat-forming mires on undulating terrains 

with frequent precipitation, high atmospheric humidity, cool mean temperatures and minimal 

evapotranspiration (Lindsay et al., 1988). Under such ombrotrophic conditions, Sphagnum 

mosses and acidophilous vegetation grow in near-natural conditions, providing the organic 

material from which peat can continue to form(Lees et al., 2019). Within the Flow Country, this 

formation can ranges from 0.5m upwards of 10m in depth (Scottish Natural Heritage, 2015b). 

Subject to harmful commercial forestry policies from the Scottish government throughout from 

the 1950’s-1980’s, historical interventions within the Flow Country have altered the health of 

Scottish peatlands, including: drainage, peat cutting, afforestation, agriculture, sport estate 

management and burning (Lindsay et al., 1988; Warren, 2000; Wallage, Holden and McDonald, 

2006; Hambley et al., 2018; Lees et al., 2019). These interventions have dramatically scarred the 

Flow Country, with 80% of Scottish peatland now designated as degraded and in need of 

restoration (Scottish Government, 2020). 

 

With greater appreciation for the significant role a green recovery and restoring biodiversity plays 

in the fight against climate change, policies supporting the consolidation and restoration of 

Scottish peatland and its accompanying biodiversity have materialised. The Scottish 

Government’s ambitious Update to the Climate Change Plan looks to: reduce emissions 75% by 

2030 resulting in net-zero by 2045; expand funding for Scottish Forestry to afforest 18,000 

hectares of conifers annually by 2024; increase investment for agricultural technology to 

maximise efficient food production and reduce emissions; and restore 40% (over 250,000 

hectares) of Scotland’s degraded peatland by 2032 (Scottish Natural Heritage, 2015b; Scottish 

Government, 2020). In addition, the Scotland Land Use Strategy, in its third iteration entitled 

Scotland’s Third Land Use Strategy 2021-2026: Getting the Best from Our Land, aims to takes a holistic 

approach to land use management by recognising the intrinsic links between Scotland’s various 

industries and its natural land (Scottish Government, 2021). This novel approach relies on 

landowners, land users and government bodies working in collaboration to come to shape future 

transformations of peatlands and their surrounding landscapes (Fig. 1) (ClimateXChange, 2021; 

Scottish Government, 2021). This all revolves around coordinated research being undertaken to 

determine where strategic interventions are required and what necessary trade-offs are expected. 

For this to be undertaken, land use mapping must be employed to determine suitable areas of 
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change to meet the pioneering climate and socio-economic goals outlined by the Scottish 

Government. 

 

 

 

 

Figure 1: ‘Scotland Now’ and ‘Scotland Future’ – Scotland’s Third Land Use Strategy 

2021-2026: Getting the Best from our Land 

 

1.3 – Land Use Mapping: Challenges and Opportunities 

 

Determining where strategic restoration in peatland can be undertaken relies on the accurate 

mapping and monitoring of land-cover (LC) and subsequent land use (LU), recording 

distribution, quality and quantity of peatland ecosystems (Adam, Mutanga and Rugege, 2010). 
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Land-cover mapping is vital in examining changes to surface vegetation, soil decomposition, 

water dynamics and geomorphology. In contrast, land use mapping looks to assess how human-

derived alterations and modifications have impacted landscapes and resulted in discernible 

changes (Farda, 2017; Kolli et al., 2020). From this, inventories and models can determine 

courses of action and resource allocation. It is also vital this information respects the spatial 

variability and heterogeneity of land use / land-cover (LULC) classes that are visible throughout 

the landscape (Mahdianpari, Brisco, et al., 2020). LULC maps are vital in determining not only 

natural changes, but document anthropogenic disturbances in peatland landscapes, while 

providing a means of examining these at regional-to-global scales (Liu et al., 2018; Chaves, Picoli 

and Sanches, 2020). LULC mapping utilising temporally- and spatially-rich information is vital to 

quantify land capability, land suitability and the optimisation of future policies for peatland 

conservation (Dóka, Kiss and Bárány-Kevei, 2019; De Feudis et al., 2021). 

 

Long-term monitoring is fundamental in tracking changes to peatland health, with land-cover 

and land use dynamics vital indicators in the condition of Flow Country blanket bogs. The need 

for dynamic seasonal and long-term processes to be understood requires the collection of 

decades of data that can examine the variability in both hydrological and ecological responses of 

peatland (Hancock et al., 2018). In addition, regional and national spatial analyses of peat is vital 

in quantifying carbon storage and valuing socio-economic strategies (Hermosilla et al., 2018; 

DeLancey et al., 2019; Mahdianpari, Salehi, et al., 2020). However, traditional mapping methods 

have largely relied on in-situ measurements and field surveys to document peatland conditions, 

resulting in significant challenges regarding scale and coverage. Limitations in cost, time and 

access have acted as barriers to mapping peatland ecosystems inventories, with traditional in-situ 

practices insufficient in providing necessary temporal coverage (Lees et al., 2019; Mahdianpari et 

al., 2019). In addition, such methods have struggled to contextualise peatlands within a spatially 

vast and varied setting, underappreciating peatland boundaries and proximities with its 

connected landscape. As stated by DeLancey et al. (2019), “Their large geographic extent, natural 

heterogeneity, and cultural and socio-economic value makes accurate identification and mapping 

of peatlands both critical and challenging”.  This necessitates the development of contemporary 

methods to advance the study and documentation of peatland ecosystems. 

 

To combat these challenges, research has looked to exploit remote sensing (RS) techniques to 

provide improved spatial and temporal coverage of peatlands and their associated environments 

(Gallant, 2015; Mahdavi et al., 2018). Through the exploitation of Earth Observation (EO), 
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largely optical, radar and LiDAR datasets, peatland ecosystems can be mapped effectively and 

efficiently. In comparison to the limitations of ‘traditional’ soil and LULC mapping techniques, 

RS is viewed as a more practical, economical and replicable method for documenting various 

ecosystems (Adam, Mutanga and Rugege, 2010; Mahdavi et al., 2018). RS allows research to 

integrate vast amounts of multi-temporal satellite imagery into assessments of land use, allowing 

larger areas to be studied concurrently and for results to assess change over defined time periods 

(Amani et al., 2019). In the context of LULC mapping, RS provides a means for changes to be 

documented within  environmental, social and economic contexts, determining trends over 

decades and observing where policy has been pivotal in changing the landscape (Kolli et al., 2020; 

Lees et al., 2021). Such an ability is useful for understanding the changes within the Scottish Flow 

Country, as immediate policies look to drastically change the land composition of the highlands 

and implement a balanced Land Use Strategy to combat climate change. 

 

1.4 – The advent of ‘Geo Big Data’, Cloud Computing and Machine Learning 

 

LULC mapping has benefitted significantly from the increased availability of open-source EO 

data, allowing for peatland ecosystems to be monitored and managed with almost real-time, 

spatially comprehensive coverage. The term “Big Data”, emerging from the tech-boom of the 

mid-1990’s, describes data of significant volume, variety and velocity, while ‘Geo Big Data’ 

expands this principle to appreciate the scale of geospatial formats, characteristics and structures 

(Laney, 2001; Tamiminia et al., 2020). ‘Geo Big Data’ includes data collected from terrestrial 

surveying, earth observation, and mobile-mapping procedures, dynamic in scale and contrasting 

in detail. The European Space Agency’s (ESA) Copernicus series, NASA’s Landsat series and 

other international government bodies have made vast volumes of geospatial data available 

through associated portals, allowing data to be downloaded and processed by a remarkably 

broader community of expert and non-expert users. However, this data cannot be viewed in 

isolation, but part of a growing field of computer science where technology has evolved to 

process and analyse this information seamlessly. Developments in cluster-based high 

performance computing (HPC), data storage and cloud computing have come to the forefront of 

RS and EO research (Ma et al., 2015; Leinenkugel et al., 2019). Advances in computation for 

peatland monitoring have resulted in reduced dependency on user expertise, less pressure on 

local systems, fewer storage limitations and increasing access to machine learning tools 

(Mahdianpari, Brisco, et al., 2020). 
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The advances of cloud-computing services such as Google Earth Engine (GEE), NASA’s Earth 

Exchange (NEX) and Amazon Web Service (AWS) has significantly increased the ability for 

geospatial research to be implemented for specific applications at regional and global scales (Hird 

et al., 2017; Pimple et al., 2018). With reference to GEE, computational barriers to the processing 

and automation of global remote sensing data are dramatically reduced, allowing various 

stakeholders to address challenges and determine solutions through ‘Geo Big Data’.  GEE, 

established in 2010, allows users to: access petabytes of pre-processed and georeferenced data; 

browse a public catalogue of geospatial and auxiliary datasets; extract and process functions 

through GEE’s parallel processing; write code in an integrated JavaScript / Python IDE web-

app; and apply algorithms at regional-to-global scales (Gorelick et al., 2017; Kumar and Mutanga, 

2018; Alonso, Muñoz-Carpena and Kaplan, 2020; Tamiminia et al., 2020; Wu, 2020). Ultimately, 

GEE has enabled expert and non-expert users to apply machine learning on vast quantities of 

geospatial data to determine features, assess change and implement findings (DeLancey et al., 

2019). 

 

Accompanying the vast capabilities of GEE are the numerous integrated machine learning 

algorithms that enable ‘Geo Big Data’ data to be processed, analysed and applied for specific 

purposes (Carrasco et al., 2019; Tamiminia et al., 2020). Still in its infancy for peatland and LULC 

mapping, GEE provides opportunities to combine various datasets to classify LULC, exploiting 

high-temporal and spatial resolutions to determine land classes and quantify changes within 

peatland ecosystems. Machine Learning (ML) in GEE supports numerous parametric and non-

parametric supervised classification algorithms (i.e., maximum likelihood, k-Nearest Neighbors 

(kNN), decision trees (DT), support vector machines (SVM), and random forest (RF), all of 

which can determine LULC classes based on their detectable spectral and hydrological 

characteristics. However, the effectiveness of ML classification relies on a delicate balance 

between the appropriate selection of input features, the sourcing of representative training data 

and the configuration of a suitable supervised learning algorithm (Thanh Noi and Kappas, 2017; 

Yang et al., 2021). With an ever-growing need for peatland policies to address current and future 

climate conditions, research must accurately map landscapes with a considerable degree of 

accuracy, from which policies can be implemented with confidence. Through detailed LULC 

mapping, the dynamics of land use can be traced to assess threats, priorities and opportunities 

for future climate change mitigation.  
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1.5 – Aims and Objectives 

 

The Third Scottish Land Use Strategy (LUS) has outlined ambitious plans for the re-

appropriation of Scottish landscapes, changing vast amounts of land to deliver economic and 

environmental targets. These changes need to be documented and quantified to understand the 

effectiveness of land use changes and quantify their benefits. However, this can only be done 

through the accurate and precise mapping of the current state of Scottish environment. LUS 

outlines seven classes within which land use has been grouped and policies have been defined: 

‘Settlements’, ‘Enclosed Farmland, ‘Semi-Natural Land’, ‘Rivers and Waterbodies’, ‘Coastal’, 

‘Islands’ and ‘Marine’ (Scottish Government, 2021). By documenting the configuration and 

changes of these classes, broad assessments of policy attainment could be undertaken and targets 

could be evaluated. In the context of peatland, the LUS (in accordance with the National 

Peatland Action Plan and IUCN Peatland Code ) determines; how peatlands will be restored; 

where investment is needed; and what environmental (carbon storage) and socio-economic value 

can be derived (Scottish Natural Heritage, 2015a; IUCN UK Peatland Programme, 2017). LULC 

policy mapping can determine which policies have ensured change, quantify results and act as a 

precursor for policy analysis and future amendments.  

 

Therefore, this study will assess how LULC mapping can take advantage of geospatial data, 

cloud-computing and machine learning for the monitoring of peatland ecosystems within a 

broader economic and environmental policy-driven context. The specific objectives of this study 

are to: (1) determine the optimal combination of optical, radar and topographic data for LULC 

mapping of the Scottish Land Use Strategy; (2) assess their application in GEE; and (3) evaluate 

Random Forest for classification of LULC. The resulting LULC maps will determine how 

effectively Scottish policymakers can implement LULC mapping and how frameworks can 

exploit these maps for future monitoring and management of peatland landscapes. 
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2 – LITERATURE REVIEW 

 

An established consensus that RS provides an effective means of monitoring peatland 

ecosystems has been well-documented within wetland literature (Khatami, Mountrakis and 

Stehman, 2016; Tamiminia et al., 2020), yet cloud-computing remains an emerging field for 

researchers, organisations and governments managing these ecosystems in broader contexts 

(DeLancey et al., 2019). The determination of methodologies resulting in applicable LULC maps 

has looked to manipulate vast spatial and temporal resolutions to determine health and monitor 

progress through LULC change (Mahdavi et al., 2018; Minasny et al., 2019; Lees et al., 2021). For 

LULC mapping, an appreciation for the spectral and spatial characteristics of differing classes is 

needed, understanding methods to discriminate these classes based on ecology, hydrology and 

geomorphology (Adam, Mutanga and Rugege, 2010). RS data, obtained through satellite imagery, 

such as the Sentinel and Landsat series, is vital for the representation of class vegetation, soil 

composition and water features. 

 

2.1 – Optical Data and Spectral Indices 

 

Research assessing peat ecosystems and peatland LULC mapping have exploited high-resolution 

optical data to determine effective bands that identify unique characteristics of both peat soils 

and its surface vegetation (Berhane et al., 2018). This is done by determining the spectral 

reflectance of certain vegetation and soil types, delineating these from one another through 

visible, near- and mid-infrared wavelengths (Krankina et al., 2008). In LULC mapping; urban, 

agricultural, forested and peatland classes will display markedly different characteristics, which 

can be detected and used to determine classes in optical imagery. Research into peatland 

mapping has exploit the unique spectral signature of peat and its associated vegetation, using red-

edge, near- (NIR) and shortwave-infrared (SWIR) to determine shallow-watered wetlands, 

wetland soil moisture and sphagnum vegetation absorption (Harris and Bryant, 2009; Dvorett, 

Davis and Papeş, 2016; Mahdianpari et al., 2019). In addition to peatland mapping, LU mapping 

has exploited optical data for the identification of LU features, determining areas and boundaries 

of urban settlements by targeting Red, Green and Blue bands (RGB) (Zhang et al., 2021). To 

further delineate these classes, the combination of these band into targeted indices are 

instrumental in detecting vegetation greenness, moisture contents and soil exposure for LU 

mapping. 
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Spectral indices (SI’s), calculated through the manipulation of optical bands, have proven critical 

for LULC mapping, targeting classes intrinsic sensitivities and maximising their detection 

through manipulating wavelengths. Notable SI’s used in LULC mapping include: the Normalized 

Difference Vegetation Index (NDVI); Normalized Difference Water Index (NDWI); Enhanced 

Vegetation Index (EVI); and Soil Adjusted Vegetation Index (SAVI), modified and evolved for 

additional purposes. These SI’s allow for rapid and long-term changes to be assessed 

comprehensively, with research demonstrating their effective use in LC change in heterogenous 

landscapes (Huang et al., 2017; Zhang et al., 2020), tidal inundations of mangrove wetlands (Chen 

et al., 2017), phenological variation estimations (Zhang et al., 2019) and monitoring deforested 

regions (Schultz et al., 2016). Soil-specific SI’s, which exploit sensitivities of soil types, have also 

proven critical in class delineation. With reference to peatland ecosystems, this derived spectral 

information can be used determine carbon fluxes (Lees et al., 2020), Sphagnum moisture 

(Letendre, Poulin and Rochefort, 2008; Harris and Bryant, 2009) and peatland scale (Alonso et 

al., 2016). The use of optical data for classification necessitates the balanced inclusion of 

uncorrelated variables, reflective of the sensitivities present within peatland landscapes. 

 

2.2 – Synthetic Aperture Radar (SAR) 

 

While optical data provides numerous benefits for LULC mapping, its inability to penetrate 

dense surface vegetation, cloud cover, atmospheric haze or night-time conditions means 

additional data is require to comprehensively map peatland landscapes with high-temporal and 

spatial resolution (Gallant, 2015; Dvorett, Davis and Papeş, 2016). This requires supplementary 

data that can complement existing datasets and provide complete coverage of defined research 

areas. Synthetic Aperture Radar (SAR) similarly plays an important role in peatland mapping, 

allowing for the determination of surface moisture and soil conditions. The use of SAR as a 

means of evaluating peatland processes allows not only for the assessment of hydrology, but the 

resilience of peatland ecosystems to changing land uses (Lees et al., 2021). Sentinel 1, equipped 

with dual-polarization C-band SAR sensors at 10-m resolution, has been used for “marine 

monitoring, shoreline detection, and mapping land cover, climate change, rice fields, and 

disasters such as flood monitoring” (Tamiminia et al., 2020; European Space Agency, 2021a). 

 

The application of SAR for peatland mapping has exploited these benefits to provide a data 

source that can combat the near-constant cloud cover experienced in northern peatland 

landscapes and to interpret the varying hydrological dynamics present with peatland ecosystems 
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(Mahdianpari et al., 2019). Several studies have highlighted the significant improvements of SAR 

as a replacement/compliment to optical satellite imagery (Li and Chen, 2005; Mahdavi et al., 

2018). SAR provides opportunities to assess the hydrological and elastic processes experienced 

within peat soils, including appreciation of surface roughness, moisture, inundation and water-

table depths (Adeli et al., 2020; Lees et al., 2021). When utilised for LULC mapping , C-Band SAR 

has shown capabilities to supplement optical data to provide additional features for classification 

at regional scales when incorporated into a comprehensive model that reflects all dynamic 

characteristics of peatland landscapes (Moreira et al., 2013; Mahdavi et al., 2018; Karlson et al., 

2019; Minasny et al., 2019). 

 

2.3 – Topography and Geomorphology 

 

As evident from research examining peatland mapping, it is clear that SAR and optical data 

should not be used in isolation, but accompanied by topographic features which take into 

consideration peatland geomorphology (Karlson et al., 2019). Global wetlands reside within 

markedly different topographies, which has in turn shaped the formation and function of peat-

forming ecosystems (Mahdavi et al., 2018; Belcore, Piras and Wozniak, 2020). For Scottish 

peatland, characterised by undulating blanket bogs, the subtle changes in elevation, slope and 

flow are important predictors in the separation of peatland classes from other LULC classes 

(Anderson et al., 2010). (In)SAR-derived DEMs such as ASTER-GDEM and Shuttle Radar 

Topography Mission (SRTM), from which topographic metrics can be extracted, have proved 

vital for the delineation of waterbodies and vegetation. Several studies have determined 

topographic features to be the most important in wetland classification at regional scales, with 

the resolution of the generated Digital Elevation Model (DEM) determining its weight in 

subsequent classification models (Hird et al., 2017; Minasny et al., 2019; Liu et al., 2020). In 

addition, research has determined increasing spatial resolution obtained through LiDAR-derived 

DEM’s and topographic features provides markedly better classification results of wetland 

ecosystems situated in a dynamic anthropogenic and climatic areas (Mahdavi et al., 2018). 

 

Much like optical and radar data inputs, topographic datasets can generate indices that delineate 

peatlands based on proximity and hydrological impacts. The inclusion of topographic features 

and indices has shown to significantly improve classification of heterogenous wetland 

ecosystems, with the Topographic Wetness Index (TWI), Topographic Position Index (TPI) and 

Deviation from Mean Elevation (DEV) notable examples (De Reu et al., 2013; Farda, 2017; 
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Berhane et al., 2018; DeLancey et al., 2019). When combined with both optical and radar datasets, 

a comprehensive assessment of peatland ecology, hydrology and geomorphology can be 

undertaken, with sufficient uncorrelated variables from which machine learning can be 

undertaken. LULC mapping relies on the accurate assessment of various anthropogenic and 

climatic conditions, which must appreciate subtle variations for effective classification and 

accurate results. 

 

2.4 – Multi-Temporal, Multi-Sensor Analysis 

 

For LULC mapping to determine strategies to mitigate climate change and increase socio-

economic value, as outlined within the Land Use Strategy, an appreciation for multi-temporal 

analysis is fundamental. Research must incorporate multi-temporal, seasonally-adjusted input 

which can be maximise the differences between classes when conditions are optimal (Munyati, 

2000; Mahdavi et al., 2018; Karlson et al., 2019). Assessment of multi-temporal or time-series 

imagery for classification has highlighted the accuracy obtained with composite stacks vs. single-

date images, a process implemented by 96% of GEE research (Tamiminia et al., 2020). Decisions 

related to image selection should reflect local vegetation, crop phenology and climate trends for 

classes to be accurately defined (Huang et al., 2020). Temporal aggregation, using statistical 

methods to generate cohesive images, can combine vast quantities of geospatial data, reflecting 

seasonal and annual changes for LULC mapping whilst mitigating the various limitations of 

varying data sources (Carrasco et al., 2019). Once generated in sufficient resolution, suitable for 

the scale of the targeted area, LULC mapping can accurately determine classes, quantify changes 

and assess future policies. 

 

Research has dictated the need for peatland ecosystems and their associated landscapes must be 

assessed through multiple data types, using optical, radar and topographic products to 

comprehensively cover ecology, hydrology and geomorphology (Minasny et al., 2019; Tamiminia 

et al., 2020). This detail, coupled with model parameterization, allows for the creation of unique 

features suitable for supervised learning algorithms (DeLancey et al., 2019). Multiple sensors 

provide a means of addressing limitations of singular inputs by assessing their collective 

implementation within climatically challenging and heterogenous regions (Mahdianpari et al., 

2019; Poggio, Lassauce and Gimona, 2019). However, the importance of each feature has been 

proven to vary depending on the area mapped, with variable importance and overall accuracy 

ranging for different models (Hird et al., 2017; Karlson et al., 2019). This necessitates models to 
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quantitively evaluate performance and weight features in resulting LULC outputs (Poggio, 

Lassauce and Gimona, 2019). Through this combination, classifiers can be fed with spatially-rich, 

temporally-ranging uncorrelated features that allow for LULC maps to be generated effectively 

(Dobrinić, Medak and Gašparović, 2020). 

 

2.5 – Supervised Learning and Random Forests  

 

For LULC maps to derive meaningful results from amalgamated data sources, the appropriate 

choice of machine learning (ML) classifier is of critical importance (Thanh Noi and Kappas, 

2017). Research has shown the use of ML algorithms to be affective for capturing LULC 

changes and determining management policies, with different classifiers being compared for their 

individual strengths. Support Vector Machines (SVM), k-Nearest Neighbour (kNN) and 

Classification and Regression Tree-based (CART) algorithms have been frequently used for both 

peatland and LULC classification, demonstrating comparable overall accuracy with varying 

training datasets and parameter tuning  (Thanh Noi and Kappas, 2017; Abdi, 2020; Li et al., 

2020). GEE provides a collection of integrated classification algorithms, scriptable within the 

IDE and customisable to classify specific climatic and anthropogenic changes for LULC 

mapping (Farda, 2017). Research denotes classification choice to be case-specific, determining 

the best suited algorithm based on the quality and quantity of input features, training data and 

resulting outputs (Maxwell, Warner and Fang, 2018; Shetty et al., 2021). 

 

Among the supervised learning algorithms used for LULC studies, Random Forest (RF), an 

ensemble CART-based parametric classifier, has proven the most popular (Breiman, 2001; 

Tamiminia et al., 2020). RF has been recommended for: handling high-dimensionality data; 

accommodating heterogenous training data; modelling through user-defined parameters; and its 

integrated weighted variable importance (Maxwell, Warner and Fang, 2018; Berhane et al., 2019; 

Diniz et al., 2019). RF is an effective classifier for LULC mapping when dealing with a 

combination of input data sources, providing comparable accuracies to SVM, yet remains easier 

to implement, tune and provides resilience to noise and overtraining (Rodriguez-Galiano et al., 

2012; Mahdianpari et al., 2017; Whyte, Ferentinos and Petropoulos, 2018). However, the use of 

RF must be accompanied with statistical error assessments to combat its inherent limitations, 

notably: dealing with outliers; determining appropriate training data size; distribution and class 

proportionality; and mitigating spatial autocorrelation of out-of-bag accuracy (Millard and 

Richardson, 2015; Belgiu and Drăgu, 2016; Berhane et al., 2018). RF within GEE is well 
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established, and the exploration of integrating multiple sensory inputs for LULC mapping will 

contribute to the growing field determining approaches tuning algorithms for this unique 

landscapes. 
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3 – METHODOLOGY 

 

Through the exploitation of ‘Geo Big Data’, cloud computing and machine learning, the 

following methodology has been designed to assess the optimal configuration of data sources for 

the monitoring and management of the Scottish Land Use Strategy. The objectives for this 

research, as stated in the Introduction, are repeated here: (1) determine the optimal combination 

of optical, radar and topographic data for LULC mapping of the Scottish Land Use Strategy; (2) 

assess their application in GEE; and (3) evaluate Random Forest for classification of LULC. The 

resulting LULC models will determine which combination of features can best map LULC 

dynamics and how effectively policies targeting peatland conservation and restoration can exploit 

RS as part of long-term monitoring and management practices. 

 

3.1 – Study Area 

 

The study area (Figure 2), located in the North-East of the Scottish Highlands, presents a perfect 

case study for the implementation of LULC mapping through GEE. All-bar-one Land Use 

Strategy class is represented in this region (excl. Islands), allowing for an effective assessment of 

policy mapping to be undertaken in the context of the LUS. The region follows the eastern 

coastline from Dunbeath up to Wick, heading inland to encapsulate a significant proportion of 

Scotland’s Flow Country, an area of protected peatland amassing ~1,400km
2
. The total area of 

this region is ~892km
2
, centred at 58.4°N, -3.36°W. This area is characterised by a cool, oceanic 

climate, with annual rainfall of 971mm and mean temperatures in summer and winter averaging 

10.7°C and 3.9°C respectively (Hancock et al., 2018). The biodiversity of this region 

demonstrates some of the most natural blanket bogs and peat-forming systems on the globe, and 

provides numerous examples of healthy, deteriorated, and restored peatland. This will be critical 

for this classification and an important discussion of the classifier’s success delineating these 

ecosystems. The region presents diverse vegetation and habitat types, including various 

grasslands, heathers, mosses and agricultural lands. In addition, several areas of deforestation are 

present around Camster, which has undergone forest-to-bog restoration or conversion for wind-

farming. 
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Figure 2 – Study Area 

3.2 – Land Use Strategy Classes 

 

The aim of this work is to classify a specific area of Scottish peatland into LU classes in 

accordance to the Scottish Land Use Strategy, which looks to balance ever-growing climate and 

anthropogenic needs to achieve sustainable land use practices. The LUS has separated Scotland 

into the following categories, within which key policies have been determined: ‘Settlements’, 

‘Enclosed Farmland’, ‘Semi-Natural Land’, ‘Rivers and Waterbodies’, ‘Coastal’, ‘Marine and 

Islands’ (Scottish Government, 2021). These classes are compiled based on land productivity and 

potential, grouping of various land covers and soil types that share similar economic and 

environmental value. While some classes consist of narrowly defined purposes (e.g. Settlements, 

Rivers and Waterbodies, Marine), others demonstrate marked variation and compilation of 
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LULC subclasses. For example, Enclosed Farmland represents landscapes responsible for food 

production, livestock and “environmentally beneficial habitats” (Scottish Government, 2021, p. 

21). Additionally, Semi-Natural Land, encompassing Scotland’s “quintessential scenery”, looks to 

represent mixed farmland, forest, hills, mountains and moors (Scottish Government, 2021, p. 

22). Whilst LU class heterogeneity is likely present, their detection as a collection of subclasses is 

beneficial, with their similar spectral reflectance, moisture content and terrains enabling their 

grouping into these eight land use categories.  

 

However, this study shall add two important classes to determine the effectiveness of the 

Scottish Land Use Strategy in meeting its targets as part of the ambitious climate goals set out by 

the Update to the Climate Change Plan 2018-2032 (Scottish Government, 2021). Firstly, a class at the 

heart of this research, ‘Peatland’ is an important collection for the assessment of LULC change 

as part of a broader climate change plan. A significant proportion of the study area includes Flow 

Country peatland ecosystems, and the understanding of their interaction with surrounding LULC 

classes is of critical importance for future monitoring. Secondly, ‘Forestry’ represents an 

important class for the Scottish Governments Update to the Climate Change Plan 2018-2032. 

Hoping to average planting 18,000 hectares annually by 2024, this represents a significant land-

cover that needs to be monitored to assess how effectively Scottish climate policies have been 

achieved. Furthermore, with significant areas undergoing forest-to-bog restoration, the changes 

in this LULC class will provide critical information for the conservation and restoration of 

Scottish peatland. A ‘Forestry’ class shall be determined by any land covered by coniferous trees, 

whilst forest-to-bog shall be classified as ‘Peatland’ upon removal of canopy cover (Scottish 

Natural Heritage, 2015b; Scottish Government, 2020). These classes shall be extracted from the 

‘Semi-Natural Land’ LUS class and made into their own independent classes. As the study area 

includes no ‘Islands’, this class shall be removed leaving eight LUS classes. 

 

3.3 – Training Data: Collection, Pre-processing and Sampling 

 

For these classes to be well represented, training data is needed to feed a Random Forest 

classifier, with the quality of this data determining the accuracy that pixels are allocated to the 

specified classes. Soil mapping collects information regarding numerous soil features: “parent 

material, major soil group, and soil sub-groups, drainage and (for phases), texture, stoniness, land 

use, rockiness, topography and organic matter” (The James Hutton Institute, 2021). LULC 

mapping can use soil mapping data for training, as this provides accurate assessments of land 
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capability (an agricultural metric) and land suitability (a sustainability metric) (De Feudis et al., 

2021; The James Hutton Institute, 2021). When in-situ data collection is impractical, sampling 

existing soil maps with sufficient accuracies and coverage has been adopted as a suitable 

approach for LULC mapping, yet must appreciate limitations of the derived data (Zhang and 

Roy, 2017; Hermosilla et al., 2018; Abdi, 2020). Collected from the 1938 to 1986, the Macaulay 

Institute for Soil Research’s Soil Survey of Scotland undertook a systematic survey of Scottish 

soils, from which 1:10,000 up to 1:250,000 scale maps were generated (Lilly et al., 2015). Now 

organised by the James Hutton Institute (JHI), resulting land capability and peatland probability 

maps have been generated, with the 1:25,000 map being used to determine the ‘Peatland’ training 

data (The James Hutton Institute, 2021). This map denotes peatland of >50cm depth, which was 

chosen to define the ‘Peatland’ class.  

 

In addition, the UK Centre for Ecology and Hydrology’s (UKCEH) Land Cover Maps from 

2017, 2018 and 2019, using the UK Biodiversity Action Plan Broad Habitats classes (Jackson, 

2000), derived training data for the other seven classes of the LUS. The Broad Habitats report 

dictates 21 classes, which were grouped in accordance with the LUS classes. The UKCEH’s 

maps generated results suitable for sampling of training data, determining overall accuracies of 

78.6%, 79.6% and 79.4% for the 2017, 2018 and 2019 maps respectively, justifying their 

inclusion and combination with the JHI peatland set (UK Centre for Ecology and Hydrology, 

2020). Both datasets were acquired in ESRI Shapefile format and imported into QGIS for 

processing (QGIS., 2021). While GEE allows for vector data to be imported as personal assets, 

the functionality of QGIS vector tools and manipulation functionalities required dedicated GIS 

software. An initial cleaning of the individual land-cover maps was undertaken, resulting in a 

single dissolved polygons from which points were extracted. 

 

Multiple strategies exist for sampling LULC maps as training data proxies. Stratified Random 

Proportional Sampling has been shown effective for RF where singular classes dominate 

landscapes, but is less suited to classification with multiple balanced classes (Belgiu and Drăgu, 

2016; Shetty et al., 2021). As our eight classes appear fairly evenly distributed throughout out 

landscape, Stratified Random Sampling is an appropriate sampling technique to address both 

larger class (E.g. Peatland, Enclosed Farmland) and minority classes (e.g. Marine, Inland Water, 

Coastal) with RF (Maxwell, Warner and Fang, 2018; Shetty et al., 2021). A common metric to 

determine the number of training data points equates to 0.25% of the total region area, (~400 

points per class), therefore a collection of 500 points for each class was extracted from the JHI 
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and UKCEH LULC maps (Thanh Noi and Kappas, 2017). These points were collected with a 

minimum separation of 100m. This resulted in 4,000 training points representing the eight LUS 

classes. These points were then saved and imported into GEE as individual FeatureCollections in 

preparation for classification, then split 70:30 for training and validation purposes (Huang et al., 

2020; Li et al., 2020).  

 

3.4 – Google Earth Engine 

 

GEE is a platform capable of planetary-scale analysis, exploiting the advances of cloud-

computing to divide computational power over numerous servers. This allows geospatial analysis 

to be undertaken by expert and non-expert users within a fully integrated environment. GEE 

provides an extensive integrated data catalogue, storing vast amounts of geospatial and auxiliary 

data including the ESA’s Copernicus Sentinel Series and NASA’s Landsat series. In addition, 

GEE allows users to import/export data as assets in various geospatial formats, allowing 

personal data to be processed within the GEE Application Programming Interface (API). This 

API (accommodating both JavaScript and Python programming languages) allows users to 

undertake computation in its built-in web-based Interactive Development Environment (IDE) 

which provides the ability to interact with the numerous algorithms, datasets and visualisations. 

All data was accessed within (Senintel-1 and -2) or imported into (LULC training data and 

NASADEM topographic indices) GEE for analysis, using Google Drive for data storage and 

exporting (Gorelick et al., 2017). Individual codes were written using JavaScript to handle 

individual processes of the classification workflow, compiled when the full workflow was 

executed. Figure 3 demonstrates the workflow undertaken to prepare data and create features in 

preparation for the Random Forest classification. 
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Figure 3 – Google Earth Engine Workflow 

 

3.5 – Optical: Sentinel-2 Multi-Spectral Instrument (MSI) 

 

The ESA’s Sentinel-2 provides Multi-Spectral optical imagery obtained through two 

complimentary sensors (-2A and -2B), with global coverage every five days. The dual Multi-

Spectral Instruments (MSI) record 13 optical bands, ranging from visible to Shortwave Infrared 

(SWIR). Sentinel-2 (S2) data can be provided in 10m, 20m and 60m resolutions, the best spectral, 

temporal and spatial resolutions available from current optical satellite data (Zhang et al., 2020). 

Sentinel-2A imagery comes in both Top-of-Atmosphere (Level-1C) and Surface Reflectance 

(Level-2A) collections. The latter, chosen for this study due to its superiority in removing 

atmospheric haze, provides orthorectified atmospherically corrected imagery for the period 

assessed. Sentinel Level-2A data has coverage starting from March 2017, which allows for the 

assessment of monthly, seasonal and yearly analysis. To accurately reflect the study area, it was 

decided a year’s worth of S2 data (1
st
 January 2020 - 31

st
 December 2020) would be used to 

assess the LUS classes. Using multiple optical scenes allows for the mitigation of inherent optical 

limitations, notably cloud cover, atmospheric haze, shadows and snow. Sentinel images for these 

date ranges were selected within GEE, with a resulting ImageCollection of 146 images being 

acquired for the defined study area. 
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As the study area experiences frequent cloud cover and snow during various seasons, a custom 

cloudmasking script was written and mapped over the ImageCollection to remove cloud-covered 

pixels. This involved the exploitation of S2’s Coastal Aerosol (B1) and QA60 cloud mask quality 

bands, both of which allow for the identification and removal of cirrus, opaque and shadow 

cloud cover (Carrasco et al., 2019; Belcore, Piras and Wozniak, 2020). A threshold of >1500 for 

B1 was used in accordance to existing peatland classification mapping (DeLancey et al., 2019). 

For this data range to be evaluated collectively, compositing of the ImageCollection is needed to 

create a statistically coherent, singular cloud-free image from which band values can be extracted 

for classification. Compositing refers to the statistical process of combining spatially-overlapping 

images into a singular aggregated image. Through this process, a whole period can be 

represented, and individual image flaws can be mitigated. Once cloud and shadow pixels had 

been removed from each image, a singular temporal composite was obtained using the GEE 

.median() reducer, eliminating outlying pixels while maintaining the integrity and spatial variability 

of the 146 S2 images.  

 

3.6 – Spectral Indices 

 

As discussed, spectral indices derived from optical bands provide important information for the 

delineation of classes, enabling ecological, hydrological and geomorphological features to be 

identified. The selection of suitable indices should look to assist the classification of key LUS 

class characteristics, specifically greenness, wetness and soil-sensitive spectral properties. 

Numerous indices have been used for peatland and LULC mapping, but an identifiable pattern 

denotes using a balanced selection of uncorrelated indices that reflects the heterogeneity of the 

landscape in question. This typically includes a vegetation-based (e.g. NDVI, EVI), moisture-

based (e.g. NDMI), water-based (e.g. mNDWI) and soil-based (e.g. OSAVI, NDBI) index 

(Rouse et al., 1974; Rondeaux, Steven and Baret, 1996; Huete et al., 2002; Gerard et al., 2003; Zha, 

Gao and Ni, 2003; Xu, 2006). For the following study, Figure 4 shows the indices calculated and 

their calculations from the S2 Level-2A optical data. 

 

While certain indices have been well-established within literature (e.g. NDVI and EVI), 

derivatives of established indices have been included here based on their effectiveness for 

detecting classes within the study area. OSAVI looks to appreciate the colour and reflectance of 

soil types, tuning of the X variable (to 0.16) which can best determine darker peat soils 

(Rondeaux, Steven and Baret, 1996). Furthermore, Xu (2006) determine a modified NDWI can 
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provide enhanced quality delineating water features, which has been an important alteration for 

wetland and water mapping (Xu, 2006; Li et al., 2020). GEE provides numerous integrated 

features to calculate spectral indices, with the .normalizedDifference() function a convenient way of 

determining spectral indices. Each formula from Figure 4 was implemented into a single 

function and mapped over every image in the Sentinel-2 ImageCollection prior to compositing (Fig. 

3). This allowed for the resulting composition to calculate medians of all the spectral indices in 

preparation for the final classification features. 

 

Spectral Indices Author(s) Equation for Sentinel-2 

NDVI Rouse et al. (1974) (B8 – B4)/(B8 + B4) 

EVI Huete et al. (2002) 2.5*(B8 − B4)/(B8 + 6*B4 − 7.5*B2 + 1) 

NDMI Gerard et al. (2003) (B8 - B11)/(B8 + B11) 

mNDWI Xu et al. (2006) (B3 - B11)/(B3 + B11) 

OSAVI Rondeaux et al. (1996) 1.16*B8 – B4/B8 + B4 + 0.16 

NDBI Zha et al. (2003) (B11 – B8)/(B11 + B8) 

 

Figure 4 – Spectral Indices derived from Sentinel-2 Level-2A Multi-Spectral Imagery 

 

3.7 – Radar: Sentinel-1 GRD C-Band Synthetic Aperture Radar 

 

To accompany Sentinel-2 and its derived indices, ESA’s Sentinel-1 (S1) Ground Range Detected 

(GRD) C-Band Synthetic Aperture Radar (SAR) was utilised within GEE. S1 provides 

Interferometric Wide Swath data at a spatial resolution of 10m, with a coverage every six days 

over northern latitudes. S1 provides single-polarized vertically transmitted (VV) or dual-polarized 

vertically transmitted and horizontally received (VV/VH) data (European Space Agency, 2021c). 

S1 C-Band SAR, a formation of two side-looking sensors (-1A and -1B), is vital for the 

penetration of cloud cover, vegetation and soil to derive additional information for peatland and 

LULC mapping (Karlson et al., 2019; Lees et al., 2021). As part of its integrated pre-processing 

(Sentinel-1 Toolbox), data undergoes: thermal noise removal; radiometric calibration; terrain 

correction using  SRTM30 or ASTER DEM; and conversion of backscatter coefficient to 

decibels (European Space Agency, 2021b). Accessing S1 SAR in GEE provides data after initial 

processing in a complete ImageCollection with documentation instructing how images can be 

filtered based on inherent metadata properties. 

 

To prepare S1 SAR for classification, the same date range (1
st
 January 2020 – 31

st
 December 

2020) was used to determine an ImageCollection of scenes within the study area. Metadata filters 
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determined scenes with dual-polarization of VV and VH bands, resulting in 330 total scenes. For 

each scene, two new bands were calculated to determine the Normalized Polarization (NormPol) 

and Polarization Difference (PolDiff)of the VV and VH bands. NormPol was created using the 

.normalizedDifference() function similar to the spectral indices obtained for S2 (Hird et al., 2017; 

DeLancey et al., 2019; Poggio, Lassauce and Gimona, 2019). Determined by the following 

equation, values should theoretically range between -1 and +1:  

 

!" − !!
!" + !! 

 

PolDiff defines the difference between the single co-polarised VV and dual-band co-polarised 

VH bands (Carrasco et al., 2019), defined below:   

 

!! − !" 

 

Once bands had been added to each scene within the S1 ImageCollection, a per-pixel .mean() 

reducer was used to aggregate all bands into a single composite image, including the polarization 

equations as new bands. With identical spatial resolution, this was then combined with the S2 

data by adding the S1 bands into a singular composite. This marked the completion of the 

optical and radar preparation within GEE, creating a pool of 34 bands in preparation for 

Random Forest classification. 

 

3.8 – Topography: NASADEM and Topographic Indices 

 

Topography is an important addition to peatland and LULC classification, particularly as wetland 

formation is highly dependent on local topographic character (Karlson et al., 2019). Whilst terrain 

varies only slightly on the site, with a maximum elevation of 284m above sea-level, topographic 

derivates such as elevation, slope and aspect are vital for the metrics to determine flow, 

hydrology and geomorphology (Gallant and Wilson, 2000). Historically, Digital Elevation 

Model’s (DEMs) such as NASA’s Shuttle Radar Topography Mission (SRTM) and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer-Global Digital Elevation Model 

(ASTER-GDEM) allow for the analysis of vast geographies for LULC mapping.  However, the 

recent release of NASADEM, a modernized DEM broadly based on the SRTM, has reprocessed 

the original SRTM signals with the Ice, Cloud, and Land Elevation Satellite (ICESat) Geoscience 

Laser Altimeter System (GLAS) and Advanced Spaceborne Thermal Emission and Reflection 
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Radiometer (ASTER) instruments. This has provided near-global elevation data (+80%) through 

interferometry SAR (InSAR) and LiDAR sensors to increase accuracy and fill gaps present 

within the original SRTM DEM (Buckley et al., 2020). NASADEM provides a resolution of 1-arc 

second, equating to roughly 30 metres. This DEM was used to determine the elevation, slope, 

aspect and topographic indices of the ROI. 

 

Derived from a base DEM, topographic indices provided considerable detail about a ROI’s 

hydrological and geomorphological processes, notably its flow patterns, flow accumulation and 

catchment. The Topographic Wetness Index (TWI), based on slope and upslope contributing 

area, is considered a proxy for soil moisture within a particular vicinity, a significant feature for 

wetland and peat mapping (Hird et al., 2017; Poggio, Lassauce and Gimona, 2019). TWI can be 

determined through the following equation: 

 

%&' = )*	 ,
tan 0 

 

Where a is the upslope contributing area and tanb represents the local slope gradient (Beven and 

Kirkby, 1979). Areas with high TWI scores are expected to be wetter than those with lower 

scores, representing soils with greater water retention. The implementation of this equation 

followed the System for Automated Geoscientific Analyses (SAGA) workflow of Mattivi et al. 

(2019), executed in QGIS. This require the calculation of fill sink, flow accumulation, and flow 

width and specific catchment area, which were then used as proxies to calculate the TWI (Mattivi 

et al., 2019). In addition, the Topographic Position Index (TPI) was calculated to accompany 

TWI as an additional derived topographic index. TPI measures the topographic position of a 

central cell in relation to the average elevation of its neighbouring cells, a pre-defined radius 

specified by the user (Gallant and Wilson, 2000). TPI can be calculated using the following 

equation: 

%1' = 2! −	2̅"(!) 
 

Here, Zi is the elevation of i
th
 cell and ZR(I) is the mean elevation with the specified radius (50m). 

Similarly, SAGA was used within QGIS to determine this calculation. TPI values ranged from -

14.40 depicting cells significantly lower than their surroundings, to 10.65 representing those 

above their neighbouring cells. Once completed, both indices were exported from QGIS, 

imported into GEE as user assets and combined with the NASADEM derivatives.  
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3.9 – Random Forest: Variable Selection, Hyperparameter Tuning and Accuracy 

Assessment 

 

Once optical, radar and topographic datasets were derived, preparation of three individual 

models was undertaken. This work looks to compare the significance of optical, radar and 

topographic features, and therefore three models were outline: LUSTO (Topographic and 

Optical), LUSTR (Topographic and Radar) and LUSTOR. (Topographic, Optical and Radar). The 

creation of three models will allow for the contrasting of input feature importance, the weight of 

individual bands/indices and the performance of RF. These combinations were based on the 

importance of topography within the literature, which justified its use as a constant within each 

model. Each model was determined suing the same RF classification scheme, individually tuned 

to obtain the strongest overall accuracy based on the input features selected. While the removal 

of correlated features is a useful step to improve RF classification, to maintain consistency 

grouped input features shall remain unchanged throughout each of the three models, meaning 

comparisons can be made between each model upon tuning completion. Figure 5. shows the 

combination of input features for the LUSTO, LUSTR and LUSTOR models. Once the bands were 

selected, the RF classifier was run in GEE independently for each model, each using the same 

the training data FeatureCollection. 

 

Model Input Features 

LUSTO 

Topographic: Elevation, Slope, Aspect, TWI, TPI 

Optical: B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12, NDVI, 

NDMI, NDBI, mNDWI, OSAVI 

LUSTR 
Topographic: Elevation, Slope, Aspect, TWI, TPI 

Radar:  VV, VH, NormPol, PolDiff 

LUSTOR 

Topographic: Elevation, Slope, Aspect, TWI, TPI 

Optical: B2, B3, B4, B5, B6, B7, B8, B8A, B9, B11, B12, NDVI, 

NDMI, NDBI, mNDWI, OSAVI 

Radar:  VV, VH, NormPol, PolDiff 

 

Figure 5: LUSTO, LUSTR and LUSTOR Model Input Features 

 

The tuning of a Random Forest classifier has been shown as a significant prerequisite for its 

successful use. This tuning includes the selection of a suitable number of decision trees (Ntree) 

and the determination of nodes (Mtry). RF provides built-in measures to determine the success 

of these parameters and classification iterations are necessary to produce the best accuracy 

(Maxwell, Warner and Fang, 2018). Each model was run independently to determine the best 

parameters for each input feature combination. The choice of RF Ntree and Mtry parameters 
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were determined based on iterations of the RF classifier with each model. These iterations began 

with an Ntree value of 10 and iterated in 10 Ntree increments up to 500, from which the Ntree 

value producing the highest overall accuracy was selected. The determination of an appropriate 

Mtry value resulted in established use of the square root of the quantity of input variables (Belgiu 

and Drăgu, 2016). As noted previously, a significant strength of RF is its built-in variable 

importance metric, which determines the weighted importance of input features in a 

classification. For each model, LUSTO, LUSTR and LUSTOR, variable importance, NTree iterations, 

Confusion Matrix and class area were obtained to evaluate the performance of input features. 
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4 – RESULTS 

 

 

The following results depict the classification of three models, LUSTO, LUSTR and LUSTOR , in 

accordance with the classes of the Scottish Land Use Strategy. To determine the accuracy of 

models, several accuracy metrics were calculated. This included Overall Accuracy (OA), 

Producer Accuracy (PA), User Accuracy (UA) and Kappa Accuracy (KA). OA dictates the 

overall accuracy of the model for predicting classes based on the input training data. Kappa 

denotes the overall accuracy of a classification appreciating that results can occur by chance, 

producing an accuracy slightly less than that of OA. PA and UA can be distinguished through 

the following statement: “User's accuracy is a measure of class reliability derived from the 

fraction of correctly classified pixels in relation to all pixels classified as this class in the map, 

[while] Producer's accuracy is the fraction of correctly classified pixels with regard to all pixels of 

a particular class in the validation dataset” (Karlson et al., 2019, p.5).  

 

Additionally, for each model; a confusion matrix depicting misclassifications; RF hyperparameter 

tuning through Ntree iterations; and the variable importance of input features were determined. 

A confusion matrix has been used to depict the confusion experienced in the classifier, providing 

useful information to determine where there are misclassifications and which classes can be 

improved for future alterations. Furthermore, variable importance has been calculated to 

determine “out-of-bag” error (rfOOBe) (Breiman, 2001). This error is calculated by using 

withheld training data during classification to determine the mean decrease in accuracy when an 

input feature is not in the decision tree construction. The inclusion of this metric allows for the 

identification of variables that are significant in the classification, pointing to others that can be 

removed or amended for future models (Millard and Richardson, 2015). 

 

4.1 – LUSTO – Land Use Strategy (Topography and Optical) 

 

The results for the first classification model incorporating the derived topographic and optical 

data are displayed in Figure 6a. This model incorporated the bands outline in Figure 5., creating a 

collection of 21 bands for the RF classifier. After initial iterations of the RF classifier were run, 

the hyperparameter tuning (Fig. 6c) determined 70 trees would provide the best overall accuracy. 

Once run with 70 trees, an overall accuracy of 0.789 was obtained. This suggests that almost 

8/10 pixels were accurately classified when determined with the RF classifier. Upon visual 

inspection, the map has determined classes adequately, recognising the major features within the 
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landscape. A confusion matrix was used to determine the misclassification of the eight classes, 

including the UA and PA (Fig. 6b). This matrix showed ‘Marine’ (UA=0.987, PA=0.979), 

Forestry (UA=0.929, PA=0.917) and ‘River and Waterbodies’ (UA=0.978, PA=0.950) to be the 

strongest delineated classes.  

 

Whilst other UA’s and PA’s were comparable, ‘Semi-Natural Land’ presenting markedly poorer 

PA (0.543). On assessment of variable importance (Fig. 6d), ‘Elevation’ was determined as the 

most important feature with the least rfOOBe. while remaining variables can be deemed 

comparable in importance. The mNDWI, used to delineate bodies of water and its reluctance 

properties, was the second most important feature, evident from the strong classification of the 

‘Marine’ and ‘Rivers and Waterbodies’ classes in the confusion matrix. However, two of the five 

topographic inputs were deemed the least helpful for classification, which is unsurprising in this 

geomorphologically flat, undulating terrain. These classification results demonstrate the strength 

that optical data brings to LULC mapping, critical for the separation of vegetation and soil based 

on spectral reflectance properties.  
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Figure 6b: LUSTO Classification Results 

LUS_TO
Land	Use	Strategy	(Topography	and	Optical)

Marine
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Semi-Natural	Land
Settlements
Coastal
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LUSTO Marine Enclosed 
Farmland Forestry Peatland 

Rivers and 
Water-
bodies 

Semi-
Natural 

Land 
Settlements Coastal Producer 

Accuracy 

Marine 137 0 0 0 0 0 0 3 0.979 

Enclosed 
Farmland 1 121 0 10 0 5 10 5 0.796 

Forestry 0 1 143 2 0 10 0 0 0.917 

Peatland 0 15 7 242 3 31 0 1 0.809 

Rivers and 
Waterbodies 0 1 0 2 134 1 1 2 0.950 

Semi-
Natural 

Land 
0 8 4 54 0 82 0 3 0.543 

Settlements 0 9 0 0 0 1 50 7 0.746 

Coastal 2 5 0 4 0 2 4 72 0.808 

User 
Accuracy 0.987 0.756 0.929 0.771 0.978 0.621 0.770 0.774 0.821 

 
Figure 6b: LUSTO Confusion Matrix 

 

 
Fig 6c: LUSTO Hyperparameter Tuning for the number of Random Forest Trees (Ntree) 
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Figure 6d: LUSTO Random Forest Variable Importance  

 
Figure 6e: LUSTO Class Area (km2) 
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4.2 – LUSTR – Land Use Strategy (Topography and Radar) 

 

The second classification model, LUSTR, included the topographic and radar features as 

described in Table 1. This fed 9 bands, the least of the three models, into the RF classifier for 

initial assessment of classification performance. A preliminary test for the best hyperparameters 

dictated 210 Ntree would produce the best OA of 0.786 and KA of 0.748. This parameter was 

then set along with the Mtry (3) the determine the LULC classification results, confusion matrix 

and variable importance. Upon inspection of the confusion matrix, trends are evident in the 

classification of ‘Marine’, ‘Forestry’ and ‘Rivers and Waterbodies’, showing comparable UA and 

PA scores. Differences were identified in the poor UA experienced by LUSTR in classifying 

‘Enclosed Farmland’ and ‘Semi-Natural Land’, showing confusion with ‘Peatland’. As SAR and 

its derivatives are used to detect soil saturation and surface moisture, there are likely explanations 

for these misclassifications. With a comparably smaller number of input features, for a 

supervised learning algorithm capable and suited to high-dimensionality analysis, it is expected 

that LUSTR would produce reduced OA than LUSTO.  

 

Upon visual inspection and comparison to LUSTO, the misclassifications become more visible. 

Firstly, LUSTR has significantly more speckling than LUSTO, a product of the greater 

misclassifications seen in the confusion matrix. However, delineation between ‘Peatland’ and 

‘Semi-Natural Land’ classes shows less definable boundaries when compared to LUSTO, which 

may be indicative of the presence of similar soil types. As ‘Peatland’ was defined as peat soils ³ 

50cm, radar may have identified areas as ‘Semi-Natural Land’ with ‘peaty’ soils with similar soil 

saturation and moisture content to that of the ‘Peatland’ class. However, LUSTR has misclassified 

a significant portion of peatland in the north-east of the ROI identified by the other models. In 

terms of the LULC map’s application for LUS policy assessments, the misclassification of 

significant areas of peatland demonstrates a problematic flaw, suggesting at the need for 

additional features to improve classification. Assessing variable importance, elevation is 

repeatedly the most important feature, while other variables presented comparable importance. 

Notably, slope and aspect were the least useful variables in both the LUSTO and LUSTR models. 

This model demonstrates the ability for radar derivatives to determine areas of peatland and 

determine LULC classes, importantly identifying soil characteristics and water features. 
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Figure 7a: LUSTR  Classification Results 
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LUSTR Marine Enclosed 
Farmland Forestry Peatland 

Rivers and 
Water-
bodies 

Semi-
Natural 

Land 
Settlement

s Coastal Producer’s 
Accuracy 

Marine 136 0 0 0 0 0 0 4 0.9714 

Enclosed 
Farmland 0 93 5 25 1 15 9 4 0.612 

Forestry 0 5 142 3 0 6 0 0 0.910 

Peatland 0 28 7 236 3 24 1 0 0.789 

Rivers and 
Waterbodi

es 
0 1 0 1 139 0 0 0 0.986 

Semi-
Natural 

Land 
0 13 2 56 1 77 1 1 0.510 

Settlement
s 0 13 1 3 2 0 42 6 0.627 

Coastal 3 8 0 0 1 0 3 74 0.831 

Users 
Accuracy 0.978 0.577 0.904 0.728 0.946 0.631 0.750 0.831 0.786 

 
Figure 7b: LUSTR Confusion Matrix 

 

 
Fig 5: LUSTR Hyperparameter Tuning for the number of Random Forest Trees (Ntree) 
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Figure 5: LUSTR Random Forest Variable Importance  

 
Figure 7e: LUSTR Class Area (km2) 
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4.3 – LUSTOR - Land Use Strategy (Topography, Optical and Radar) 

 

The final classification model, LUSTOR , combined the topographic, optical and radar data, 

resulting in 25 bands input into the RF classifier (Table 1). As with the other classification 

models, an initial classifier was run to determine the best number of trees to run in the RF 

classifier. This resulted in an Ntree value of 350, representing 350 decisions trees. The obtained 

OA and KA were 0.823 and 0.792 respectively. This accuracy is almost identical to that of the 

LUSTO model, suggesting the inability of radar to provide any significant advantages on top of 

the LUSTO model when all combined without reduction. The derived confusion matrix (Fig. 8a) 

shows similar trends to that of LUSTR and LUSTO, with ‘Marine’, ‘Forestry’ and ‘Rivers and 

Waterbodies’ with strong PA and UA scores. Due to their unique spectral signatures, these 

features result in highly accurate identification and delineation in RF classification.  

 

Similar to LUSTO, ‘Semi-Natural Land’ produced the lowest PA and UA scores, suggesting at the 

spectral similarity between these features and ‘Peatland’ pixels. While peat soils and other soil 

types may have significantly different compositions, such differences are unlikely to be detected 

remotely, requiring accurate soil samples to separate these classes. This limitation needs to be 

explored to determine the effectiveness of LULC mapping of heterogenous landscapes. Upon 

visual inspection of the LUSTOR  map, evident strengths can be seen in the separation of urban 

settlements, including the identification of roads, houses and even windfarms. Furthermore, 

areas of forestry have not only been well classified, but areas of forest-to-bog restoration have 

suggested at the partial return of forested soils to ‘Semi-Natural’ soils (Fig. 8f). This identification 

process could be important in the assessment of Scottish forestry policies as part of the Land 

Use Strategy and Update to the Climate Change Plan. 

 

Fig. 8d shows the variable importance of the LUSTOR bands in the RF classifier. Much like the 

previous two models, an identifiable trend is present. Slope and aspect were the least useful 

bands in each of the three classifiers, likely due to the consistent topography of the ROI, while 

mNDWI was an important input feature for both LUSTO  and LUSTOR models. As previously 

stated, this is evident from the strength of the water-based classes, with mNDWI a modified 

water index for delineating inland and oceanic water features. However, contrary to the OA 

determined for LUSTR , VH, VV, PolDiff and NormPol were weighted higher than many of the 

optical bands and derived indices (Fig.12). This suggests that improvements to the processing 

and preparation of radar derivatives may lead to better classification.
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Figure 8a: LUSTOR Classification Results 
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LUSTOR Marine Enclosed 
Farmland Forestry Peatland 

Rivers and 
Water-
bodies 

Semi-
Natural 

Land 
Settlement

s Coastal Producer’s 
Accuracy 

Marine 137 0 0 0 0 0 0 3 0.979 

Enclosed 
Farmland 0 121  11 1 4 9 6 0.796 

Forestry 0 1 144 2 0 8 1 0 0.923 

Peatland 0 13 8 247 4 27 0 0 0.826 

Rivers and 
Waterbodi

es 
0 1 0 1 136 2 0 1 0.964 

Semi-
Natural 

Land 
0 8 4 58 0 78 1 2 0.517 

Settlement
s 0 11 0 0 0 0 48 8 0.716 

Coastal 2 5 0 3 1 2 5 73 0.820 

Users 
Accuracy 0.986 0.756 0.923 0.767 0.958 0.644 0.774 0.785 0.823 

 

Table 8b: LUSTOR Confusion Matrix 

 

Fig 8c: LUSTR Hyperparameter Tuning for the number of Random Forest Trees (Ntree) 
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Figure 8d: LUSTR Random Forest Variable Importance  

 

Figure 8e: LUSTOR Class Area (km2) 
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5 – DISCUSSION AND FUTURE DEVELOPMENTS 

 

In this study, an evaluation of how LULC mapping could be informative for policy assessment 

was undertaken using Scotland’s Third Land Use Strategy 2021-2026: Getting the Best from our Land. 

This policy outlines the specific targets set out by The Scottish Government to combat climate 

change, reverse biodiversity loss and provide a sustainable future. With reference to peatland, 

LUS looks to restore peatland ecosystems while balancing the uses of surrounding landscapes to 

meet both climate-driven and economic goals. The LUS classes were altered to specifically 

include ‘Peatland’ and ‘Forestry’, two important LULC classes for the attainment of Scottish 

climate goals. This research placed a particular emphasis on peatland delineation and the 

detection of features necessary for monitoring peatland restoration, a focus which needs to be 

explored to determine the effectiveness of LULC mapping for peatland management. The 

methodology used demonstrates the procedural use of cloud-computing, open-source geospatial 

data and machine learning algorithms for combining data sources for classification. Upon 

assessment of results, an evaluation of the methodology is needed, including: (1) the creation and 

implementation of the training data; (2) the importance of each input feature for the LUS classes; 

(3) the capability of RF with the outline tuning; and (4) the application of GEE for LULC policy 

mapping. 

 

5.1 – Training Data: Quantity and Quality 

 

A well-established census within machine learning research dictates that the quality and quantity 

of training data to be one of the most important factors in classification accuracy. This includes 

the determination of appropriate sample size, sampling method (e.g. random or proportional), 

spatial autocorrelation and class heterogeneity (Millard and Richardson, 2015; Shetty et al., 2021). 

The increasing of training data quantity has shown to result in lower rfOOBe scores and greater 

classification accuracy, highlighting a potential area for improvement of the current methodology 

(Maxwell, Warner and Fang, 2018). Using 500 points per LUS class, 4,000 training data points 

were used for an area of ~892 km2. This number was chosen in accordance to the 0.25% of the 

study area per class (~400 points) and also the limitations experienced within GEE, with 

computation timing out at 5,000 points. Undoubtedly, increasing the number of quality training 

points would have increased the overall classifications for each of the three models. In addition, 

while stratified random sampling was used to extract training data points, other sampling 

methods may have been appropriate. The clear dominance of predicted ‘Peatland’ and ‘Enclosed 
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Farmland’ within the ROI (Fig. 6e, 7e, 8e), coupled with the input data’s strength delineating 

‘Marine’, ‘Forestry’ and ‘Rivers and Waterbodies’ classes, may justify the use of proportional 

sampling (Shetty et al., 2021).  

 

To accompany increases in training data quantity, an assessment of training data quality 

demonstrates a clear need for this research. Whilst acquiring training data from existing LULC 

maps has been undertaken extensively (Zhang and Roy, 2017; Hermosilla et al., 2018; Shetty et al., 

2021), it is important to note that errors from the original classification will be inherited (Abdi, 

2020). Training data was sampled from the UKCEH 2019 LULC map, which had an overall 

accuracy of 79.4%. However, this map inherited its training data from the UKCEH 2018 LULC 

map (OA 79.6%), which had sampled the UKCEH 2017 LULC map (78.6%). A process the 

UKCEH termed ‘bootstrap sampling’, this will have likely instilled errors in the training data 

used for the three model’s classification (UK Centre for Ecology and Hydrology, 2020). With the 

Scottish Land Use Strategy looking to make ambitious changes to the landscape in a short period 

of time, including drastic landcover changes (notably afforestation and forest-to-bog restoration), 

the use of training data from a previous year may not provide the necessary quality for training. 

Therefore, a need for in-situ sampling is necessary either as replacement training data or a quality 

control metric to determine the accuracy of the derived training data. 

 

Furthermore, whilst training data quality must reflect the heterogeneity of individual classes, 

inherent similarities between LUS classes has led to observed misclassifications. The notable 

confusion in all three models between ‘Semi-Natural Land’ and ‘Peatland’, resulted in the lowest 

UA (LUSTO, LUSTOR) and PA (LUSTO, LUSTR, LUSTOR) scores for each model. As the ‘Peatland’ 

class was originally derived from the ‘Semi-Natural Land’ class to assess dynamic peatland 

changes within the ROI, it is evident similarities between the classes lead to misclassification. 

This is likely due to the similarities of peat (>50cm) compared to peaty (<50cm) soils derived 

from the UKCEH 2019 map. This demonstrates a ‘fine-line’ between class heterogeneity and 

class similarity that must be clarified when undertaking peatland classification (Berhane et al., 

2019). In addition, the visible confusion in areas of forest-to-bog restoration (Fig. 9) reaffirms 

the need for accurate training data that can delineate not only peatland from other classes, but 

the properties, condition or stage of peatland restoration (DeLancey et al., 2019; Mahdianpari et 

al., 2019). For Scottish peatland to be monitored effectively using LULC mapping, it is clear 

training data must determine: (1) the type of peatland (e.g. bog, fen, marsh, mire etc.) ; (2) the 

condition of the peat (e.g. drained, cut, burnt); and (3) the restoration process it is/has 
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undergone (e.g. forest-to-bog, rewetting). These tasks undoubtedly require a greater focus on the 

peatland and tailored models to target peat ecosystems, moving away from a general LULC 

assessment such as the one outlined in this study. 

 

 

Figure 9: LUSTOR Visual Inspection of Forest-to-Bog Windfarm at Camster 

 

5.2 – Evaluating Input Features: Optical, Radar and Topographic 

 

The strength of optical inputs in the LUSTO and LUSTOR models mirrors results obtained within 

LULC mapping and peatland mapping research (Minasny et al., 2019; Chaves, Picoli and Sanches, 

2020). LUSTO  (OA= 0.821) outperformed LUSTR (OA=0.786), suggesting the superiority of 

optical inputs over radar, a trend identified by Mahdianpari et al. (2019). Sentinel-2 provided data 

at a 10m resolution, the highest spatial resolution open-source optical data available, which 

performed remarkably well when delineating important features (e.g. airfields, field boundaries, 

roads, windfarms, streams, pools)(Fig.10). S2 also provided the most derived input features, 

including 11 bands and 5 indices. Examining the importance of the optical bands (Fig. 6d, 7d 

and 8d) indicates no discernible pattern to their weight, suggesting at the possible need for a 
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reduction or removal of uncorrelated features for better classification. Similarly, spectral indices 

were dispersed throughout the variable importance graphs for both LUSTO and LUSTOR  models, 

similar to results obtained by other wetland classification studies (Berhane et al., 2018). However, 

the mNDWI index presented high variable importance scores in both  LUSTO and LUSTOR 

models. The influence of this metric for inland water, wetland and LULC mapping is well 

established, but further work is needed to confirm its ability to detect peat-specific ecosystems 

(Xu, 2006; Abdi, 2020; Yang et al., 2021). 

 

 

 
Figure 10: LUSTOR Visual Inspection of Afforestation outside Wick 

 

The inclusion of Sentinel-1 SAR data into a multi-sensor classification model marks an emerging 

trend within LULC mapping, exploiting the increasing availability of open-source SAR datasets 

(Dobrinić, Medak and Gašparović, 2020). While established in wetland mapping, the exploration 

of additional SAR derivatives could prove useful to increase its effectiveness when combined 

with optical and topographic data (Adeli et al., 2020). This might include the refinement of SAR 

through polarisation, orbit selection (e.g. ascending or descending), instrument (IW, EW or SM), 

or decomposition mechanisms (Hird et al., 2017). The SAR features included in both the LUSTR 
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and LUSTOR models, customisable through metadata filters within GEE, are limited however by 

the polarizations obtained in northern latitudes. With regards to peatland mapping, the 

emergence of Interferometric SAR (InSAR) techniques for the monitoring and classification of 

Scottish peatland point to the increasing possibilities of mapping landscapes based on surface 

motion and seasonal subsidence (Alshammari et al., 2018, 2020). Applicable to both Sentinel-1 

and -2 datasets, investigation of seasonal composites is necessary to determine whether the LUS 

classes can be separated with greater accuracy during drier or wetter seasons. Furthermore, the 

addition of textural features (e.g. the Gray Level Co-occurrence Matrices) has shown to 

drastically improve OA, effective in wetland classification and the delineation of vegetation 

surface roughness (Khatami, Mountrakis and Stehman, 2016; Berhane et al., 2018; Belcore, Piras 

and Wozniak, 2020). 

 

The importance of topographic features within each classifier cannot be understated, with 

elevation the most important variable in each of the three models (Fig. 6d, 7d and 8d). The use 

of the NASADEM provides a suitable base from which additional datasets can be added, 

however refinement of the derived features needs to be undertaken. Both TWI and TPI allow 

for parameters to be changed and processes to be defined to improve the performance of the 

derived index. Changing the TWI depression, flow accumulation and specific catchment 

algorithms will determine different TWI scores, whilst changing the neighbourhood size (100m) 

of the TPI will similarly change results (Hird et al., 2017; Mattivi et al., 2019). Both these 

processes were areas of uncertainty within this research, and further investigation into each 

model is needed to tune the indices and derive enhanced results. Furthermore, the inclusion of 

slope and aspect were consistently the least important features within each classifier, justifying 

their exclusion in future iterations.  

 

Significant improvements in topographic accuracies have been observed with the substitution of 

SAR-based DEM’s with Light Detection and Ranging (LiDAR) DEM’s, particularly for mapping 

boreal wetland and northern peatlands (Lang et al., 2013; Karlson et al., 2019; Wu et al., 2019). 

LiDAR provides finer spatial resolution for topography, wetland inundation and surface 

vegetation, critical for our study area with: low topographic variation; peatland ecosystems which 

exhibit ‘bog-breathing’; and forested peatlands experiencing expansion and subsidence (Lindsay 

et al., 1988; Lang et al., 2013). Conversely, Minasny et al. (2019) have argued the superiority of 

LiDAR is yet to be comprehensively supported for peatland mapping, suggesting flatter areas 

like this area benefit from coarser resolution DEMs depicting local relief (Minasny et al., 2019). 
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NASADEM was chosen as the topographic data source due to its improvements in accuracy 

when compared to ASTER GDEM and SRTM, and due to the lack of Scottish LiDAR data 

covering the defined region. However, as open-source LiDAR products become increasingly 

available through ‘Open Data’ policies, their application for peatland and LULC mapping can be 

examined and trialled (Lang et al., 2013; Hird et al., 2017).  

 

5.3 – Random Forest: Performance and Optimization 

 

The justification for using Random Forest over comparable machine learning algorithms was 

based on the following: (1) its ability to deal with the high dimensionality input; (2) its 

customisable parameters (Ntree and Mtry); (3) its comparable insensitivity to noise; and (4) its 

integrated variable importance metrics. Sensitive to the quality and quantity of the training data, 

RF still provided reasonably strong OA’s (LUSTO=0.821, LUSTR=0.786, LUSTOR=0.823) even 

with the highlighted limitations of the UKCEH LULC 2019 map. For each model, iterations of 

the classifier were run with incremental Ntree values, with an additional 10 trees added per 

classification starting from 10 up to 500. This determined the best number of decision trees for 

each model. As denoted by the research, this allows for the optimisation of each RF classifier 

resulting in varying classification accuracies and variable importance scores (Millard and 

Richardson, 2015). However, this process was only run for Ntree and did not take into 

consideration the Mtry value. Whilst the square root of the total number of input features is 

standard (LUSTO=Ö22, LUSTR=Ö9, LUSTOR=Ö26), optimisation of this metric could improve 

classification performance. Zhang et al. (2021) defined a systematic method to tune the Mtry 

parameter using Bayesian optimization, which outperformed both SVM and RF with default 

parameters (Zhang et al., 2021). This suggests the current RF Mtry methodology can be 

improved and accuracy can be increased. 

 

Variable importance allows for the identification of input dependency when Ntree’s are run 

within the RF classifier, a unique feature of RF and one that can highlight where variables are 

under-performing. Each model produced three contrasting variable importance charts (Fig. 6d, 

7d and 8d), suggesting no identifiable pattern in most of the input features (excl. Elevation, Slope 

and Aspect). When run through the multiple iterations necessary to determine the Ntree 

parameter, these variable importance rankings varied upon each classification.  This significantly 

limited the ability to determine feature strength and prevented feature reduction. Millard and 

Richardson (2015) determined variable importance to be a highly unstable metric when run 
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through multiple iterations, creating a McNemar test to statistically map importance over an 

iterative classification model. This allowed for the identification of important variables based on 

ranked appearances in the top five positions. This suggests variable importance can be 

determined effectively when multiple iterations are part of the RF classification process. 

Exploration of how iterations of Ntree, Mtry and variable importance can be implemented into 

GEE is a notable gap in the research. 

 

Variable reduction was not undertaken for the any of the RF models to maintain consistency of 

input features over each model. However, research suggests the need for variable reduction to 

obtain the best classification scores within RF classification (Millard and Richardson, 2015). 

Principal Component Analysis (PCA), which transforms correlated features into un-correlated 

features, has been utilised within GEE to improve LULC classification and probabilistic 

mapping wetland ecosystems (Maxwell, Warner and Fang, 2018; DeLancey et al., 2019). An 

assessment of its effect on the included datasets is required to determine if classification accuracy 

would be improved in any of the models. To summarise, RF performed well for the classification 

of the LUSTO, LUSTR and LUSTOR models. There is considerable room for the improvement of 

the RF classifier model for this LULC mapping application, and future comparisons with other 

machine learning algorithms should be undertaken to statistically justify selection. 

 

5.4 – Google Earth Engine: Application and Possibilities 

 

Google Earth Engine has been proven an interactive and capable tool for the analysis of LULC 

mapping, providing seamless access to vast amounts of geospatial data, computational power 

and integrated algorithms. In addition, GEE allowed data to be imported and exported in 

various file formats (GeoTIFF and ESRI Shapefile) to complete computation in other tools. 

Furthermore, GEE’s accompanying web-based IDE enabled JavaScript code to be organised, 

accessed and run instantly with no limitations. For non-expert users, GEE’s accompanying 

documentation and data catalogue makes the identification of algorithms and examples simple, 

providing numerous scripts that can be amended for specific purposes. Still in its relative infancy 

as a GIS tool, certain capabilities required additional software (notably QGIS) for the processing 

of training data, topographic indices creation and visualisation, a limitation found within other 

LULC studies (Zhang and Zhang, 2020). In addition, regular memory issues were experienced 

when algorithms were run on vast amounts of data, with scaling and reducing of datasets 

necessary for tasks to be executed sufficiently (Gorelick et al., 2017; Tamiminia et al., 2020). The 
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definable benefit of cloud-based computing is access to a wealth of computational power, 

shielding the user from the resource allocation, parallelism, and data distribution. As stated by 

Gorelick et al. (2016): “The price of liberation from these details is that the user is unable to 

influence them: the system is entirely responsible for deciding how to run a computation” 

(Gorelick et al., 2017, p. 25).  

 

The growing body research exploiting GEE for LULC mapping, and its use for peatland 

mapping, highlights the capabilities of cloud-computing for supervised classification. To meet 

this demand, increases in the number of GEE algorithms and auxiliary datasets are needed to 

accommodate improvements in research deliverables (Huang et al., 2017). Specifically for image 

classification, advances in GEE object-based analysis can allow for machine learning results 

better interpret and present LULC mapping products (Dronova, 2015). Object-based analysis 

allows for; the removal of ‘salt-and-pepper’ speckling of resulting classification images; the 

contextualisation of pixels on spectral, textural and spatial features; and tailored segmentation 

and clustering (Amani et al., 2019; Mahdianpari et al., 2019). Tamiminia et al. (2019) highlight the 

significant lack of object-based (2%) vs. pixel-based (98%) studies within GE due to the current 

lack of functionality (Tamiminia et al., 2020). While options for object-based analysis within GEE 

remain limited, improved accuracies for LULC and wetland mapping using RF have been 

achieved using object-based algorithms such as Simple Non-Iterative Clustering (SNIC)(Amani et 

al., 2019; Mahdianpari et al., 2019). In addition, tile-based segmentation has shown its use in 

delineating spectrally and spatially heterogenous LULC classes, which might address the 

misclassification of confused classes in the current research (Zhang et al., 2020). Although the 

computational complicity of the proposed methods should always be considered prior to 

selecting a classification method, the implementation of object-based analyses is a logical next 

step for this research, allowing for areas to be more accurately segmented and for features within 

the landscape to be better understood. 

 

Finally, GEE’s data catalogue is ever-expanding, which can provide meaningful datasets for 

LULC mapping and analysis. The integration of supplementary datasets such as climate, socio-

economic and population density have aided the detection of peatlands, identification of land use 

change drivers and been incorporated into policy decisions (Connolly et al., 2011; Minasny et al., 

2019; Liu et al., 2020). In the context of The Flow Country and the Land Use Strategy, socio-

economic datasets reflecting population, agricultural land capability and carbon storage could 

dramatically enhance the derived LULC mapping applications. For the LULC classification maps 
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to be effective for policy assessment, a framework within which additional data can be updated 

and simulated to address prospective policies and trending dynamics is desirable. Future 

developments of possible datasets that could supplement the existing models to improve 

application as policy tools should be undertaken, from which an assessment of feasibility can be 

assumed.   

 

5.5 – LULC Policy Mapping: Function and Implementation 

 

The execution of this study looked to assess how LULC models could aid the implementation 

and future progress of the Scottish Land Use Strategy. Outlining ambitious alterations to the 

structure of Scottish landscapes, the need for tools to quantify these changes and determine 

actions were identified, with the resulting model acting as indicators of LULC dynamics. The 

obtained results have calculated areas allocated to each of the eight defined LUS classes, which 

can in turn be used to determine the feasibility of policies and the attainability of  yearly targets 

(Fig. 6e, 7e and 8e). For example, an assessment of Scottish Forestry objectives, looking to 

afforest 18,000 hectares of conifers annually by 2024, can use the obtained model to determine 

suitable LUS classes for transformation based on spatial proximities, available area and likely 

trade-offs. It has been noted that the inclusion of auxiliary data would drastically improve the 

classification and application of the defined LULC model, notably soil mapping, socio-economic 

and stored carbon datasets. From this, assessments of land capability and land suitability could 

be derived, determining the productivity of lands for agriculture and horticultural use.  

 

The procedure outlined for the creation of LULC maps demonstrates a functional workflow for 

monitoring Scottish policy, with future versions benefitting from model refinement, 

supplementary data and enhanced features. It is important to note that the obtained accuracies 

(LUSTO=0.821, LUSTR=0.786, LUSTOR=0.823) are currently insufficient for meaningful policy 

assessment, however, once the model workflow is amended to correct existing limitations, 

several approaches can be undertaken to improve its application. Firstly, once the classifier has 

been tuned to provide sufficient accuracy, classification of multiple historical composites can 

determine historical assessments of LULC change and provide projections based on statistical 

trends. This process has been used to determine failed historical LULC changes and where 

policy corrections were successful (Kolli et al., 2020). In relation to peatland mapping, statistical 

modelling could amend the existing model workflow to obtain peatland occurrence probability 

maps (DeLancey et al., 2019). Applications of LULC maps for policy mapping are wide-ranging, 
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yet require detailed assessment to provide meaningful results. This methodology has provided a 

broad example of what is capable using cloud-computing and GEE, but it is evident a narrower 

focus on specific LULC classes could result in great application. For mapping Scottish peatland, 

the spatial variability of peatland ecosystems requires particular attention, with greater focus on 

the unique hydrological and ecological properties needed for meaningful monitoring and 

management. 
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6 – CONCLUSION 

 

Long term monitoring of LULC change is vital for implementing effective policy and mitigating 

climate change. In the Scottish Flow Country, peatland ecosystems present significant benefits 

such as rich biodiversity, carbon storage and water regulation. There is a need to understand 

these systems in a broader context, appreciating peatland within an evolving landscape. This has 

necessitated the outlined methodology, taking advantage of cloud-computing, ‘Geo Big Data’ 

and machine learning to automate the detection of LULC changes with high-temporal and 

spatial resolution. This study assessed the combination of multiple sensors for accurate LULC 

mapping based of the Scottish Land Use Strategy, using optical, radar and topographic input 

features to determine their strength within a RF classifier. Results suggest a combination of 

optical, radar and topographic features is best for accurate LULC mapping (LUSTOR OA=0.823 

and KA=0.792), particularly when delineating ecologically, hydrologically and 

geomorphologically challenging landscapes classes such as peatland. 

 

In addition, the use of Random Forest has shown its capability in handling high dimensionality 

data and integrating heterogenous training data. However, more research is needed to determine 

its how increases in quality training data, enhanced tuning of hyperparameters (Ntree and Mtry) 

and determination of variable importance could further improve the defined LUS classification 

model. Furthermore, comparisons between the outlined methodology and other machine 

learning algorithms are needed to justify RF selection over similar supervised classification tools. 

The advent of cloud-computing for expert and non-expert users marks a significant opportunity 

in LULC mapping, with GEE providing numerous datasets, tools and functionality for 

geospatial analysis. With ever increasing access to new datasets (e.g. LiDAR, climate, economic) 

and image processing algorithms, the capability for LULC mapping outputs to be more intuitive 

and helpful in policy assessments is an exciting future direction of this work. Finally, this work 

has determined where LULC mapping can be implemented for future policy assessment, acting 

as a tool form which preliminary results can be determined. The methodology outlined, once 

improved, can provide a useful model for specific class analysis (e.g. land capability or peatland 

probability map) or append data to assist general investigations into LULC monitoring and 

management. 
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Introduction and Scope 
 
The purpose of this data management plan (DMP) is to set up a coherent approach to data issues pertaining to 
the aforementioned MRes in Geospatial Data Science. This document shall act as a record of data management 
requirements going forward and outlines a structure for regular amendments as the project develops. The data 
management objectives are to ensure that:  
 
• A framework for detailed explanation of input and generated data is outlined  
• Data production, archiving, and quality processes are understood and documented 
• Resulting code and output data can be validated and rigorously tested  
• Datasets are made available to users where and when appropriate for further use 
• Iterations of the DMP can build upon previous versions as the project develops 
 
Roles and Responsibilities 
 
The data created and shared within this project will be implemented, managed and updated by the principal 
investigator as specified above. The principal investigator will be responsible for making data available when 
necessary and organising future uses of the resulting products. The execution of these actions shall seek 
consultation from both supervisors listed and advice shall be reflected in updated versions of the DMP. 



 
 
Data Generation Activities 
 
The project outlined uses Google Earth Engine, a cloud-computing platform for scientific analysis and valuation 
of geospatial data. Within this platform, numerous geospatial datasets are provided in open access formats, 
including LANDSAT and Copernicus Sentinel satellite imagery. These datasets are stored in Google Cloud as 
part of the Google Cloud public data program. GEE also supports the upload of proprietary / auxillary data for 
analysis in various file formats (including GeoTIFF and Shapefiles). In addition, the results of any analysis 
(source / algorithmic) code created through the GEE API is owned by the user and can be shared appropriately. 
Result or output data can be freely downloaded and shared through open-access standards. The following table 
outlines the current datasets to be used within GEE: 
 
Datasets 
 

Name 
Research 

Data Type / 
Classification 

Data 
Type / 
Format 

Date 
Generat

ed 
Owner Data 

Size Re-Use Plan Preservation 
Plan 

Sentinel-2 
MultiSpectral 

Imagery 

Secondary / 
Derived-
Complied 

GeoTIFF 
19th 

August 
2021 

European 
Space 

Agency 
(ESA) 

N/A 

Open-source 
and stored 
within GEE 
Cloud Storage 

N/A 

Sentinel-1 
Synthetic 
Aperture 

Radar  

Secondary / 
Derived-
Complied 

GeoTIFF 
19th 

August 
2021 

European 
Space 

Agency 
(ESA) 

N/A 

Open-source 
and stored 
within GEE 
Cloud Storage 

N/A 

NASADEM 
Secondary / 

Derived-
Complied 

GeoTIFF 
19th 

August 
2021 

NASA N/A 

Open-source 
and stored 
within GEE 
Cloud 
Storage. 
Additional 
processing 
completed on 
local server 
and stored in 
designated 
hard drive 

Open-source 
data to be 
stored on 
personal 
computer in 
accordance to 
open-license 

 
In addition, training data has been derived by several open-source soil maps, specified below: 
 

Name 
Research 

Data Type / 
Classification 

Data 
Type / 
Format 

Date 
Generated Owner Data 

Size Re-Use Plan Preservation 
Plan 

Carbon and 
Peatland map 

2016 

Secondary / 
Derived-
Complied 

ESRI 
Shapefile 

19th August 
2021 

The 
James 

Hutton 
Institute 

7.5M
B 

Open-source 
and stored 
within GEE 
Cloud Storage 

Open-source 
data to be 
stored on 
personal 

computer in 
accordance to 
open-license 

UKCEH 
Landcover 
map 2017, 

2018 and 2019  

Secondary / 
Derived-
Complied 

ESRI 
Shapefile 

19th August 
2021 

UK 
Centre 

for 
Ecology 

and 

N/A 

Open-source 
and stored 
within GEE 
Cloud Storage 

N/A 



Hydrolog
y 

NASADEM 
Secondary / 

Derived-
Complied 

GeoTIFF 19th August 
2021 NASA N/A 

Open-source 
and stored 
within GEE 
Cloud 
Storage. 
Additional 
processing 
completed on 
local server 
and stored in 
designated 
hard drive 

Open-source 
data to be 
stored on 
personal 
computer in 
accordance to 
open-license 

 
Data shall be collected and created using the following approaches: 
 
• Software Code - This will be created primarily using the Google Earth Engine Code Editor, utilising the 

JavaScript programming language.  
• Data can be exported from GEE into various formats (.shp or GeoTIFF), which were both utilised 
 
In-Project Data Management Approach 
 
A complete dataset catalogue shall be recorded and amended regularly throughout the Research Data lifecycle. 
This will be the gateway to all project data and metadata, and to all relevant information links. This shall be 
stored within a designated University of Nottingham or funder-specific data centre upon completion of the 
project. The data centre will be the primary source of reference regarding the data archive and will be updated as 
new information is available.  
 
Metadata and Documentation 
 
The ISO 19115-2:2019 Geographic Information metadata standards shall be adopted for the following project.  
This document outlines the necessary information required for each dataset, which shall be stored in a .txt or 
.csv file to encourage open-access. The metadata shall look to include: 
 
• The research questions, project outline and designated aims of the research 
• Any environmental conditions relevant to the data including positioning and timing  
• The instruments used to obtain the data, any specification, calibration and error details 
• The methodology undertaken in sufficient detail for replication of processes 
• A data dictionary to define variables including units, formats, definitions, abbreviations and codes 
• PI contact information  
 
Data Quality Assurances 
 
To determine data quality, two processes shall be carried out on any generated data. Firstly, a ‘checklist’ to 
determine confidence within the datasets used. Secondly, an ‘audit trail’ will determine the processes undertaken 
with the data to determine any potential problems and document the results of an executed checks. These shall 
both be appended to this DMP and featured within the metadata for each dataset.  
 
Ethics and Legal Compliance 
 
Currently no ethical issues exist regarding personal or commercial data. In the event personal information is 
required, data shall be stored in accordance with GDPR / Data Protection Act 2018. While GEE is open-source 
software, all software used from proprietary sources shall hold appropriate licenses and guidelines.  



Storage and Backup 
 
The University of Nottingham provides 5TB of free-at-point-of-use Research Data storage for postgraduate 
students through Microsoft OneDrive. This storage shall be sufficient for the outlined project, as data is largely 
stored within the Google Cloud Storage platform and therefore Microsoft OneDrive shall be able to provide 
adequate storage for personal primary and secondary datasets.  
 
In addition, several backups shall be taken during the project’s lifecycle, following the recommended 3-point 
backup guidelines. This shall include two separate hard-drive back-ups each with 1TB of storage, one of which 
shall provide automatic daily backups, the other providing weekly backups. This proposed storage and backup 
plan shall safeguard data against hardware and software failures. Access shall be restricted, and password 
protected to maintain file-naming conventions and structure within the DDS. 
 
Data Preservation, Access and Publication 
 
The aim of this project is that data created data will provide long-term value, and therefore actions must be 
outlined to determine the preservation of data throughout the defined project. This DMP is focussed on the 
FAIR principles for Research Data, encouraging transparency of data practices through the Research Data 
lifecycle. This requires ease of access with persistent identifiers; links to necessary metadata; appropriate formats 
for open data access and exchange; and licensing covering future use. 
 
The data will be made available at the end of the funded project period in September 2021. Data shall be stored 
in a suitable data repository, either through the University of Nottingham or a funder-specific data centre. This 
process shall also assess what can be shared / restricted, how this data shall be stored (format requirements) and 
a determination of timescale. To document the software code acquired through GEE, GitHub shall be used as a 
repository to document updates and versions created throughout the project. Furthermore, this will allow for 
the sharing of GEE source code and processes for other researchers to explore. 
 
Version Control 
 
The DMP is a dynamic process and is expected to be regularly amended during the Research Data lifecycle. This 
is a first amendment of the DMP, with additional versions being stored in the DDS for reference and 
documented for alterations. The next amendment shall be on submission of the project, after feedback has been 
received on the project and this accompanying DMP. 
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