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ABSTRACT: 

 

Study Question:- What is the best (i.e., easiest, quickest and most effective) 

method for embryo biopsy in a commercial bovine laboratory? Also, can Laser 
Assisted Hatching (LAH) increase the number (proportion) of embryos that hatch 
following cryopreservation?   
Summary answer:- Laser biopsy of trophectoderm (TE) cells is a safe and reliable 

procedure that can be incorporated in a commercial laboratory. Also, LAH advances 
the time of completion of hatching.  
Background:- Embryo biopsy offers a means of retrieving cells for genomic 

evaluation and/or aneuploidy screening with a view to accelerating genetic selection 
and improving pregnancy rates following transfer in cattle. Laser biopsy is rarely 
used in commercial IVP laboratories because it is expensive, relatively time 
consuming and there are concerns that biopsy size may not yield sufficient DNA for 
analyses.  
Study design:- Experiment 1: Biopsy of herniated and non-herniated Day 7 

embryos was undertaken using either a microblade or laser assisted 
micromanipulation. Time taken for each biopsy, as well as ease of procedure, 
survivability and number of cells collected were recorded. Experiment 2: An 

extension of the first experiment, laser biopsy in herniated and non-herniated 
embryos was compared to non-biopsied embryos to establish merits of herniation 
and to assess survival rate following cryopreservation. Experiment 3: The timing and 
extent of hatching was assessed following laser-assisted induction of a hole in the 
zona pellucida on Day 7 relative to non-treated control embryos.  
Results:- Experiment 1: Biopsy of herniated embryos were faster (P<0.001) and 

easier (P=0.001) than those where herniation was not induced independent of 
instrument (i.e., blade vs laser). Proportion of blastocysts that re-expanded after 
3hours was greater in herniated embryos assigned to laser-assisted compared to 
other combinations (P=0.031). Experiment 2: Laser biopsy of herniated embryos 

was quicker (P=0.05) compared to laser biopsy in non-herniated embryos. Survival 
rate in biopsied embryos was similar to non-biopsied controls. Experiment 3: LAH 
increased the proportion of embryos hatching/hatched at 6h (P=0.007) and 30h 
(P=0.048), and that had completely hatched by 40h (P=0.007).  
Limitations:- Further studies that analyse DNA (i.e., genotype, karyotype) from 

biopsies together with analyses of post-transfer embryo survival are required. 
Similarly, the benefits of LAH in terms of enhanced pregnancy rates following 
transfer need to be established.  
Wider implications: - The transfer of high-genetic merit and karyotypically normal 

embryos has the potential to be of great benefit in cattle breeding. In order to 
facilitate this, embryo biopsy procedures need to be straightforward to learn, easy 
and rapid to apply, and have no detrimental effects on embryo survival following 
transfer. The benefits of routine LAH awaits studies to assess post-transfer embryo 
survival. 
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INTRODUCTION 

 

Recent years have seen significant progress in assisted reproductive 

technologies (ART) in cattle. The combination of in vitro embryo production (IVP), 

sexed semen (SS) and genomic selection are now widely used in North and South 

America; and it has been increasing in Europe (Figure 1.3). Technological progress 

achieved during the past years in animal reproduction have resulted in the 

development of a variety of tools. Most of these have aimed to maximize the number 

of offspring from genetically superior animals and disseminate germplasm globally. 

Furthermore, ART allows for the exploitation of donors with sub-fertile conditions for 

safeguarding germplasm from endangered species and domestic breeds, and for 

reducing disease spread. Also, ART supports the selection of embryos for transfer 

based on the diagnosis of chromosomal errors or assistance to implantation which 

can improve pregnancy rates (PR). Several years of improvement has brought gains 

on the number of embryos produced in a Multiple Ovulation Embryo Transfer 

(MOET) and Ovum Pick-UP (OPU) application (Appendix 1) but a small progress 

is seen on PR. 

While the number of MOET produced embryos that are collected and 

transferred worldwide seems to have stabilized in recent years, the transfer of IVP 

embryos continues to grow at an average annual rate of 12%. This is despite the 

higher PR encountered from MOET embryos, typically around 45% vs 37% from an 

IVP (Hansen. 2020). MOET has contributed to improvements in our understanding 

of follicle wave dynamics (Adams. 1994) and synchronization of follicular wave 

emergency (Bó et al., 1995, 2002) improving the number of follicles and oocytes 

collected by OPU for IVP (Appendix 1). In 2019, the number of IVP embryos was 

in excess of one million worldwide, while the number of cattle embryos transferred 

was in the region of 800 K (IETS, newsletter Dec 2020). Bovine IVP can increase 

the selection of genetically superior animals and facilitates the international 

shipment of germplasm in an economically and environmentally sustainable 

manner, which also avoids the transportation of live animals.  Currently it is possible 

to generate similar number of viable embryos from MOET per IVP cycle but, more 

importantly, many more cycles per donor can be undertaken per year (Boni. 2018), 

increasing the number of available embryos for transfer.  

Commented [j1]: Reordered Appendix 1 to show 
improvement over time 
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The implementation of embryo biopsies as an ART tool in livestock production 

facilitates this selection by allowing a few cells to be harvested from the pre-hatching 

embryo from which DNA can be extracted for genotyping. However, the technique 

is relatively slow and laborious, and so commercial uptake requires that it can be 

undertaken at scale without requiring a high degree of technical skill.  

The current series of experiments reported in this thesis has two aims. Firstly, 

to identify the best approach for embryo biopsy in a commercial bovine IVP 

laboratory with the implementation of a faster and easy technique for non-

experienced technicians and, secondly, for non-biopsied embryos, explore the 

benefits of laser assisted hatching (LAH) which could potentially improve pregnancy 

rates following embryo transfer (ET) and promote the uptake of OPU-ET in the UK 

bovine market.  
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1. CHAPTER 1. LITERATURE REVIEW 

 

1.1 Overview of Cattle ART 

 

It is estimated that the global human population will be around 9.7 billion 

people by 2050 (UN 2017). Humanity is already beginning to struggle with food 

production and supply which needs to increase by around 70% (FAO 2009) to meet 

demands whilst preserving wildlife and the environment. Dairy and beef cattle 

production represents a major environmental concern, yet there is an increasing 

demand for dairy and meat (Figure 1.1). Production must therefore increase but in 

a sustainable manner, with fewer, more efficient and productive animals. Genetic 

selection in cattle to date has focussed primarily on production traits such as milk 

yield and growth rates, with little emphasis on reproductive performance and 

environmental sustainability (Egger-Danner et al., 2015).  
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Figure 1.1: Expected production and consumption of meat and dairy products by 2050 (FAO world agriculture 
2012 revision). 

 

ART’s represent the best means by which to achieve higher cattle efficiency 

through genetic selection. Contemporary methodologies integrate genomic 

evaluations which can be undertaken from Day 7 embryo biopsies (Peippo et al., 

2007). This has the advantage of increasing selection intensity for desired traits (e.g. 

milk yield, health and longevity traits) whilst reducing the generation interval (i.e. 

selection decisions can be made prior to embryo transfer); thus increasing response 

to selection. Such technologies also facilitate gene banking (cryopreserved and 

stored gametes and embryos) and biosecure national and international 

dissemination of superior genetics in the form of genomically evaluated embryos 
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(Blodin. 2018, Morrel and Myer. 2017). Artificial Insemination (AI) was the first 

biotechnology successfully established by a Russian called Milovanov who 

described a practical procedure to AI sheep and cattle in 1938 (Foote. 2010). This 

technology has had a huge impact worldwide; a total of 110 million first 

inseminations were reported in a huge survey in 1999 (Thibier et al., 2002) 

demonstrating that AI was the main technology to accelerate genetic dissemination. 

Twenty years later this procedure became increasingly accepted among the public 

enabling the introduction of new biotechnologies focused on genetic progress such 

as SS, IVP, gamete/embryo cryopreservation, ET, nuclear transfer, somatic cell 

nuclear transfer (SCNT), Intracytoplasmatic Sperm Injection (ICSI) and generation 

of genetically modified organism (GMO) where some of these technologies are still 

in progress to demonstrate livestock efficiency gain in a more sustainable 

production.  

 

1.2 In Vivo Derived Embryos (MOET) 

 

ET has been used for many years for genetic selection in individual herds, not 

only for its ability to disseminate superior genes in the herd but also to increase 

pregnancy rates in unfavourable conditions such as during heat stress (Ambrose et 

al., 1999; Baruselli et al., 2011) or for repeat breeders. Non-surgical embryo 

recovery procedures in cattle were introduced in the 1970s (Elsden et al., 1976, 

Greve et al., 1977), followed by non-surgical transfer during the early 1980s 

(Sreenan. 1978, Tervit et al., 1980), and these techniques have largely been used 

since then. In the last 18 years, a wide variety of flushing techniques were practiced 

with apparently comparable success rates; however the number of embryos 

recovered per flush has not increased and the average remains at around 6 

embryos (IETS newsletter 2001-2019). A total of 12,807,347 transferable embryos 

were recovered from 2,009,629 flushes worldwide with a slight increase in the 

recovery average after 2008 (IETS newsletter 2001-2019). This amounts to an 

average of 640 K embryos produced annually. Granleese et al. (2015), analysed 

several breeding programs where the use of MOET could be compared to AI when 

selecting animals for superior genetics. They found that is possible to increase over 

38% the genetic gain in dairy cattle herd by using MOET. In another study using a 

MOET program, two embryo transfers per cow per year elevated the rate of genetic 
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improvement around 30% when compared to AI with selected sires (Nicholas et al., 

1983).  

The great advance in MOET centres on approaches to visualise and regulate 

follicle development in order to increase the number of ovulated follicles. Initially, 

Pregnant Mare Serum Gonadotropin (PMSG) was largely used to stimulate donors 

and induce the ovulation of follicles. This complex gonadotropic hormone was 

normally given on days 9-14 of the oestrous cycle followed a prostaglandin (PGF2α) 

injection 48 h later (Greve. 1976; 1977). However, the use of PMSG was associated 

with a high number of non-ovulated follicles due to its long half-life; approximately 5 

days in peripheral circulation. Callesen et al. (1992) used an antiserum for PMSG in 

order to reduce this effect but did not succeed in increasing embryo recovery and 

quality. Follicle stimulating hormone (FSH) became popular thereafter when Looney 

et al. (1988) reported the successful stimulation of ovaries without exogenous 

luteinizing hormone (LH). However, its short half-life required lots of injections over 

a short period of time. In addition to FSH, equine chorionic gonadotropin (eCG) and 

PGF2α, Porgesterone (P4) devices such as controlled internal drug release (CIDR) 

(Eazi-breedTM  Pfizer®, Zoetis, US),  and progesterone releasing intravaginal device 

(PRID) (Ceva®, France) are now used to increase donor performance before 

embryo collection. These devices help to increase plasma P4 levels and maintain 

follicles under low pulsatile release of LH from the anterior pituitary (Mackmillan and 

Peternson. 1993; Roche et al., 1981); thereby suppressing oestrus and ovulation 

while follicles continue to grow (Mackmillan et al., 1991). After almost 50 years of 

development in MOET programs, many protocols exist, tailored to a certain extent 

to individual breeds and countries (Bo and Mapletoft. 2014). In fact, the use of 

hormonal synchronization programs facilitates herd management routines and can 

fix physiological issues related to postpartum anoestrus and low heat detection 

efficiency.  

Although effective and widely used in the past decades, In vivo derived 

embryos from MOET no longer constitute the majority of embryo production 

worldwide. According to IETS figures from 2020, in vivo derived embryos now 

represents 24% of cattle embryos produced globally, falling from 623,997 to 319,961 

declining by over 48% since 2013 (IETS newsletter), this reduction has been 

succeeded by the exponential growth of OPU-IVP (Figure 1.2). Pregnancy rates 

from MOET continue to be superior to that of IVP embryos (Ferraz. 2016).  
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Figure 1.2: The number of embryos produced worldwide annually illustrating the reduction of embryos produced 
in vivo and increase in IVP embryos produced by OPU according to IETS newsletter reports since 2013.  

 

1.3 In Vitro Embryo Production (IVP) 

 

Bovine IVP is now established as a robust system to deliver embryos 

commercially for farms across the world. Today it is possible to produce embryos 

capable of delivering healthy calves with superior genetics for all different cattle 

breeds. Previous IVP systems resulted in embryos that were less tolerant to 

cryopreservation, using conventional slow-freezing protocols, compared to in vivo 

embryos (Abe et al., 2002), and calves that exhibited abnormal offspring syndrome 

(Farin et al., 2009, Young et al., 1998) that range from changes in gene expression 

to abortion or neonatal death to larger calves (Farin et al., 2014) . After several years 

of research many, but not all, of these problems have been resolved. Contemporary 

IVP media have largely been remodelled to become serum free, and the incidence 

of abnormal calves has reduced when serum was replaced for Bovine serum 

albumin (BSA) (Van Wagtendonk-de Leeuw et al., 2000), increasing the acceptance 

among dairy and beef producers.  

According to the International Embryo Transfer society (IETS Annual 

newsletter Dec, 2019), the number of bovine embryos produced from OPU-IVP is 

increasing sharply. North America has recently surpassed South America in 

embryos produced by this means (Figure 1.3) and has become the largest IVP 

producer in the world. With the technology to accelerate the genetic gain, US have 

drastically increased the number of cattle genotyped, rising to over 2 million dairy 

cattle genotyped since 2011, where over 60% of these are heifers (December 2018; 
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https://www.uscdcb.com). This early selection of higher genetics reduce generation 

interval increasing the selection for more efficient donors in future IVP programs 

accelerating dairy and beef cattle efficiency in the country. 

 

2013 2014 2015 2016 2017 2018 2019

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

1,100,000

1,200,000

IVF embryos produced worlwide

Year

N
u

m
b

e
r 

o
f 

v
ia

b
le

 E
m

b
ry

o
s South America

North America

Ocenia

Europe

Africa

Total

 
Figure 1.3: Number of IVP embryos produced over the world according to IETS data, focused on top three 

continents. IETS data from total number of embryos produced in-vitro since 2013 to 2019, and yearly production 
in South America, North America and Europe. IETS.org 

 

In 2018 approximately 740,000 IVP embryos were transferred worldwide, and 

over 1,018,168 IVP embryos were produced (IETS newsletter 2019); an increase of 

2.6% of transferable embryos produced by IVP from the previous year. There are 

clearly improvements on the IVP system that enhance the production of viable 

embryos. It is due to advances in the synchronization of follicular waves to 

superstimulation of donors which allows a greater number of follicles to emerge at 

each OPU session. Ireland et al. (2008) identified that antral follicular count (AFC) 

during follicular waves predict the increase on morphologically healthier oocytes. 

Also AFC is related to ovarian function and fertility and is a heritable genetic trait 

(Walsh et al., 2014) that can be used to identify more fertile donors improving early 

selection. An alternative to predict AFC is the association of Anti-Mullarian Hormone 

(AMH) that can be measured in the blood before assigning a donor to the program 

(Baruselli et al., 2018, Cardoso et al., 2018).  

It is well known that the dominant follicle (DF) starts to release inhibitors that 

supress ongoing follicle growth and they undergo to a mechanism of atresia 

(Celestino et al., 2018) thus reducing the potential number of good quality cumulus 

oophurus complexes (COC’s) collected and the potential number of embryos 

https://www.uscdcb.com/
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produced. Dominant follicle removal (DFR) potentially increases the ability of 

follicles to continue development thus avoiding atresia. The ablation of the DF 

increases the homogeneity and quality of COCs increasing the number of viable 

embryos obtained (Merton et al., 2003). Besides the preparation on stimulation, the 

superstimulation of donors can greatly impact on the efficiency of IVP embryos. The 

combination of selecting a donor with higher AFC associated to the synchronisation 

and homogeneity of follicles has the ability to increase the number of blastocyst 

following OPU (Taneja et al., 2000, Silva-santos et al., 2014). 

Synchronisation of follicular waves helps to support hormonal circulation 

providing and allowing all nutrients needed to create a more adequate environment 

for a healthier oocyte to develop. Levels of P4, FSH and estradiol (E2) play an 

important role in oocyte development and when synchronized properly helps oocyte 

quality (Figure 1.4). FSH also induces expression of NADPH cytochrome P450 

reductase, which transfer electrons to aromatase; HSD3B2 which converts DHEA 

to androstenedione, and type 1 17β-hydroxysteroid dehydrogenase  (HSD17B1), 

the “estrogenic” 17β-HSD that reduces estrone to oestradiol (McNATTY et al., 

1979). Studies of isolated granulosa cells from preovulatory follicles have shown 

that FSH, but not LH, stimulates oestrogen production. Expression of growth factor 

receptors in the follicle are supported under a pathway of events in order to allow 

follicles to support high quality oocytes. 

Recent studies have shown the utility of granulosa-cell based molecular 

markers as a predictor of oocyte fertilisation, embryo development and competence 

to establish pregnancy (Bettegowda et al., 2008, Assou et al., 2010). Thousands of 

genes are found to be differentially expressed between cumulus/granulosa cells of 

competent and non-competent oocytes but only few of them (HAS2, GREM1 and 

PTGS2) are significantly correlated with the developmental competence of oocytes 

and/or embryos (Assidi et al., 2008, McKenzie et al., 2004, Anderson et al., 2009). 

UDP-glucose pyrophosphorylase-2 (UGP2) and pleckstrin homology-like domain, 

family A, member 1 (PHLDA1) expressed in cumulus cells, have been reported as 

a reliable predictor of pregnancy outcome (Hamel et al., 2010). In addition, 

expression of GA-binding protein transcription factor b1 (GABPβ1) has also been 

found significantly higher in the cumulus of the oocytes belongs to non-pregnancy 

group compared to the pregnancy group. Furthermore, Phosphoglycerate kinase 1 

(PGK1), regulator of G-protein signalling 2 (RGS2), regulator of G-protein signalling 

3 (RGS3) and cell division cycle 42 (CDC42) have also been found to be 
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differentially expressed between the FCs of the follicles leading to the pregnancy 

and those which failed to produce blastocyst (Hamel et al., 2010). 

 

 

Figure 1.4: Pre-granulosa cells originated from ovarian epithelium, block high molecular-weight substances, 
such as low-density lipoproteins (LDL) vital to oocyte quality. Granulosa cells are the key for hormonal 
production The synthesis of these hormones requires a collaborative relationship between theca cells 
surrounding the follicle, which produce androgens (i.e., dehydroepiandrosterone  (DHEA), androstenediol, 
andostrenedione, testosterone) in response to LH, which then diffuse into granulosa cells and are converted to 
estrogens (i.e.,estrone, estradiol), by cytochrome P450 aromatase (CYP19A1) in granulosa cells in response to 
FSH. 

 

Quality control follows where the technician and embryologist in the lab 

ensures that IVP has received the best attention during development and 

cryopreservation.  It is important to note, however, that each step in the process is 

interdependent (Lonergan and Fair. 2008) and highly important to succeed. 

Pregnancy success in cattle after ET using IVP embryos remains suboptimal. 

Reviews on this topic from around 20 years ago indicate that ~50% of pregnancies 

will be maintained to term in IVP embryo recipients (Farin et al., 2001; Rizos et al., 

2002). The situation has not changed much since.   

The possibility to control every step of embryo development increases the 

ability to predict embryo quality based on its morphology. According to the IETS 

Manual (2010), embryos go through 9 stages of development where in each stage 

a quality grade is applied (Table 1.1 and 1.2).  
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Table 1.1 Embryo stage of development according to its structure and visible 

morphology finds under a microscope  
Stage Cells Development Findings after fertilization 

1 1 cell Unfertilized ova (UFO) or degenerating and dying ova 

2 Cleavage 4-16 cells After cleavage, embryos from two to 16 cells 

3 
Cleavage 32 cells 

/Early morula 

Early morulas, embryos have a higher number of cells that start to become 

difficult to count, usually, this is the stage where embryos can easy be 

mistaken with UFO. 

4 Morula 

Full compaction of cells to the centre of the embryo, the cells looks like a 

berry. Cells present in the embryo are visibly compacting into the centre of 

the ZP and a format of a berry can be seen when looking in the edge of 

these cells that are very round. Trophoblast cells are surrounding 

embryoblast cells. 

5 Early blastocyst 

Cells start to distinguish in trophectoderm cells (TE) and Inner-cell mass 

(ICM). A small bag of fluid start to form between both layers. Embryos 

become to create small sack of blastocoele and ICM and TE start to be 

easier identified. 

6 Blastocyst 

A full blastocoele cavity is formed and filled up with Blastocoele fluids 

(BF’s) allowing a clear identification of IMC and TC. Trophoblast cells are 

now compressed against the ZP and ICM is well compacted.  

7 
Expanded 

Blastocyst 

Embryo expanded in size and the Zona Pellucida (ZP) start to get thinner 

prior gastrulation. 

8 Hatching Blastocyst 

A rupture is seen in the ZP and embryo start to hatching out of ZP. Embryo 

is bigger than previous stages and ZP start to become thinner and broken 

in some points to allow the embryo to hatch out. 

9 Hatched Blastocyst 
Embryo is outside the ZP in a full size and capacity to attachment. 

Blastulated, hepiblast and hipoblast cells start to grow. 

Stage of embryo development according to IETS tutorial 2010. 

 

Table 1.2 Embryo grading of quality and its likelihood to undergo freezing 

cryopreservation process. 
Grade Overall Grade Findings Characteristics Freezing 

1 Good/Excellent 

Symmetric blastomeres 

without cells extrusion, 0% 

fragmentation or 

degeneration  

Dense, compact and 

spherical  
Very Good 

2 Fair 
Couple Blastomeres 

extrusion or degeneration 

IMC compacted in 

advanced stages  
Good 

3 Poor 
Few number of defected cells 

and shape deformation  

25% of IMC 

compaction with 

visible degeneration 

Poor 

4 
Dead or 

Degenerating 

Completely degenerated at 

any stage (UFO’s to Blast) 
No development  Fail 

 

Accessing embryos at different stages of development helps to predict the 

quality of these embryos, those cleaving earliest after IVF being more likely to reach 

the blastocyst stage than their later-cleaving counterparts (Basile et al., 2015, Cruz 

et al., 2012, Dinnyés et al., 1999; Lonergan et al., 1999). Many factors can affect 

the developmental competence of IVP embryos, compared to conventional embryos 

(Merton et al., 2003. Camargo et al., 2018). These include stress during pipetting, 

which can cause several rapid changes in proteins and mRNA (Xie et al., 2007). 

Beebe et al. (2002) and Quinn (2004) found that one-step media, without culture 

change and manipulation, gives best results. Several culture changes during IVP 

Commented [j2]: Modified as recommended and 
corrected typos. 
 
Incorporated legend. 
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increase the exposure to the environmental oxygen (O2) and temperatures when 

transferring into different medium dishes. The mammalian uterus has oxygen levels 

of between 3 to 8% (Fisher and Bivester. 1993). Higher exposure to a 20% O2, in 

air is associated with abnormal embryo development (Iwata et al., 1998, Dickey et 

al., 2010) reducing the number of viable embryos. High oxygen environment can 

lead to a reduction in cell division at the 4-cell stage (Lequarré et al,. 2003), reducing 

the quality of these embryos and increasing stress induced sarcosine oxidase 

(SOX), mitochondrial Mn superoxide dismutase  (MnSOD), a regulator of box-α 

(BAX) stress genes (Gutiérrez‐ad et al., 2004). This in turn can lead to epigenetic 

alterations in gene expression that affect subsequent developmental stages, 

including post-transfer development and pregnancy establishment and length (Fang 

et al., 2019, Siqueira et al., 2020). Contemporary molecular biology techniques now 

allow us to analyse DNA from embryo biopsies to assess genetic, epigenetic and 

cytogenic variances that might exist (Niemann et al., 2010; Bermejo-Alvarez et al., 

2008).  

 

1.3.1 In Vitro Maturation (IVM), Fertilisation (IVF) and Culture (IVC) 

 

Typically, for a session of ultrasound guided follicular aspiration or OPU, we 

might expect that around 90% of oocytes retrieved will go into IVM but only 35% of 

these will produce viable grade embryos. Furthermore, only around 50% of 

transferred embryos will give rise to a live calf (Hasler et al., 1995, Hansen. 2020). 

Media for IVM, IVF and IVC have been modified over the years with the aim of 

increasing blastocyst yields and pregnancy outcomes. Back into 1950’s, Whitten 

(1957) confirmed the development of an eight-cell embryo during IVC by using 

bicarbonate as the physiologic saline supplemented with glucose, penicillin G, 

streptomycin and egg white. Many of these components are still used today but the 

egg white was later replaced by bovine serum albumin (BSA).  Another important 

adjustment over the years was the Potassium (K) to sodium (NaCl) ratio in Simplex 

optimized IVC medium (KSOM) (Lawitts and Biggers, 1993), rendering it one of the 

most used media in commercial laboratories. KSOM greatly improved when it was 

supplemented with over 19 amino acids (AAs) (Ho et al., 1995) but it retained BSA. 

This composition in Bovine IVM can lead to some undesired effects in embryos 

(Gardner. 1994; Camargo et al., 2018) such large offspring syndrome (Young et al., 

1998; Sinclair et al., 2016), making serum-free media highly desirable. Serum free 
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media can lead to a greater number of blastocysts when compared to serum 

supplemented media. Brunner et al. (2010) state that embryos cultured in serum-

free media have fewer lipid droplets (LD) in their cytoplasm. Also, histochemical 

examinations have shown that there are more LD in embryos between the morula 

and blastocyst stages when embryos are cultured in the presence of serum (Abe. 

2002), leading to improvements in IVP.  According to Rajput et al. (2020), follistatin 

added to IVM improves embryo development, due to its ability to increase the 

phosphoralisation of b-catenin enhancing signalling during oocyte maturation. This 

molecule helps to ensure normal meiotic progression during IVM and can enhance 

embryo development. 

With regard to IVF media, Summers et al. (2000) showed that the addition of 

AAs to KSOM provided a suitable medium for IVF which increased the percentage 

of blastocysts that hatched, the number of cells in the ICM, and supported a more 

organised extracellular matrix based on the pattern of staining of Collagen IV. 

Further improvements in IVF were also made when L-glutamine was replaced with 

glycyl-L-glutamine (Summers et al., 2005). When L-glutamine was replaced with 

glycyl-L-glutamine, ICM cells developed more rapidly than TE cells, and fragmented 

nuclei in the blastocysts that developed in vitro were reduced. 

Sequential media formulations (whereby media is replaced on 2-3 occasions 

during IVC) can further improve embryo development. These positive effects arise 

by reducing toxic metabolites such as ammonia and free oxygen radicals 

accumulated in culture media during IVC (Hashimoto et al., 2008; Takahashi et al., 

2000). Several paracrine factors, such as epidermal growth factor (EGF), platelet-

activating factors, insulin like growth factors, as well as messenger RNAs (mRNAs) 

and microRNAs (miRNAs) can all be added at different stages during IVC to aid 

embryo development (Stokes et al., 2005; Lopera-Vasquez et al., 2016). Several 

studies have shown that these paracrine factors are packaged into CD9 positive 

membranous micro-vesicles called exosomes, which are secreted or absorbed by 

the preimplantation embryo through exocytosis or endocytosis, respectively (Bobrie 

et al., 2011, Saadelin et al., 2015).  

 

1.3.2 Abattoir Derived Oocytes 

 

The use of abattoir derived ovaries as a source of oocytes for IVP presents an 

opportunity for research, and has become an attractive field for scientists around 



 

pg20 
 

the world. IVP from slaughterhouses ovaries has largely improved the progress and 

understanding of molecular embryology, explaining many physiological processes. 

It was through slaughterhouse ovaries that it became possible to distinguish oocyte 

maturational process from follicular maturational process, making it easier to be 

reproduced in vitro (Thibault, 1977). Media composition and quality can be 

evaluated and tested with larger numbers of oocytes. Once it was established that 

meiosis could be induced by placing aspirated oocytes in culture media (Pincus and 

Enzeman, 1935, Edwards, 1965) it was observed that the rate of metaphase II 

oocytes was over 85% within 24 h (Sirard et al., 1989).  

 

1.3.3 Ovum Pick-Up (OPU) 

 

Ovary aspiration was first performed by a Canadian researcher by endoscopy 

via the right paralombar fossa; he had a higher recovery when using a pump instead 

of a syringe (Lambert et al., 1983). Later a Danish researcher made use of an 

ultrasound to aspirate bovine follicles laterally (Callesen et al., 1987); but only in 

1988 was intravaginal ultrasound-guided follicle aspiration established with a really 

low recovery rate (RR) of 2.3 oocytes per OPU (Pieterse et al.,1988). The number 

of oocytes collected by OPU significantly improved by changing the frequency of 

collection from once to twice weekly (Qi et al., 2013) either stimulated with PMSG 

or non-stimulated. Through the years many protocols to superstimulate were used 

to improve RR. Looney et al. (1994) stimulated with 4-5 mg pFSH for 3 days prior 

to aspiration, increasing oocyte retrieval (to 6.3 COC’s per session) and the number 

of Grade 1–2 embryos per session compared to non-treated animals. A later study 

also show that was possible to increase recovery by twisting the needle during OPU 

compared to simple aspiration, (63.7% vs 33.1%; SASAMOTO et al., 2003). 

Vacuum pressure was also optimised in that study.  

The success of OPU is determined by the quality of COC’s and it is closely 

associated with follicle development (Baruselli et al., 2012). Oocytes from follicles 

>3 mm are competent to undergo maturation and culture having a potential to 

become transferable blastocyst by Day 7 after fertilization. Lonergan et al. (1994) 

found a higher blastocyst yield from follicles >6 mm, despite the use of FSH. One 

advantage seen from OPU is that by DFR it is possible to increase the homogeneity 

of the follicle population, and this has been shown to improve in vitro developmental 

competence (Hagemann et al., 1999, Lussier et al., 1995).  
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1.3.4 Cryopreservation 

 

Improvements in cryopreservation, allowing embryos to be frozen using both 

slow freezing or vitrification processes, facilitates the ability to deliver genetics to 

other continents in a more biosecure way. Vitrification is an ultrarapid cooling 

technique that requires a high concentration of cryoprotectant. Slow freezing is a 

method that uses low concentrations of cryoprotectant and slow cooling rates to 

avoid ice crystallization. Therefore, vitrification does not require specialized 

expensive equipment, and it takes only a few seconds to cool embryos. Embryos 

are firstly placed in the cryoprotectant, secondly, placed in liquid nitrogen, and then 

immediately solidified in vitrification. Instead of ice crystallizing, the embryos are 

visibly solidified by extreme elevation in viscosity during cooling and in direct contact 

with liquid nitrogen, despite rapid procedure it requires longer process to thaw 

before transfer where slow freezing embryos can simply be thawed and directly 

transferred into a recipient. According to IETS (2019), 740,002 IVP embryos were 

transferred worldwide in 2018. Although cryopreservation through slow freezing or 

vitrification has been demonstrated to be successful (Martıńez et al., 2002, Catt et 

al., 2018) approximately 541,615 embryos were transferred fresh.  

Embryos can suffer a number of cryoinjuries during the freezing process, 

including damage to membrane functions, observed as disruption of the plasma 

membrane, changes in mitochondrial cristae, matrix swelling of the rough 

endoplasmic reticulum, and poorly developed desmosomes (Mogas. 2019). Another 

concern in cryopreserving embryos relates to lipid droplets that are formed during 

oocyte growth and maturation.  Tolerance to cryopreservation of bovine embryos 

developed from IVM/IVF oocytes cultured in a serum-supplemented medium can be 

increased after removal of cytoplasmic LD by centrifugation, suggesting that 

cytoplasmic LD may directly affect the sensitivity of embryos to chilling and freezing 

(Ushijima et al., 1999). 

Several approaches can be taken to reduce lipid levels at the point of embryo 

freezing (Ushijima et al., 1999; Braga et al 2019., Abe et al., 2002). Bovine embryos 

cultured in serum-free systems reduces the accumulation of cytoplasmic LD. 

Similarly, removal of excessive intracellular lipids from early embryos significantly 

improves their resistance to cryopreservation. Recently, del Collado et al. (2017) 

reported a reduction in LD accumulation when using cytochalisin B during IVM. 
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Cytochalasin B acts by blocking tranzonal projections (TZP) between cumulus cells 

and the oolemma, reducing the entrance of fatty acid binding protein 3 (FABP3) into 

the oocyte in the first 9 h of maturation. This reduces the risk of poor 

cryopreservation or loss of embryo viability during the process.  

 

1.3.4.1 Cryopreservation and post-thaw viability  

 

Cryopreservation of embryos led to MOET and IVP technologies to becoming 

popular. It enabled embryo shipped across the world with higher biosecurity than 

shipping calves, and didn’t require immediately suitable recipients (Mapletoft 

. 2018). The slow freezing process is widely used today in MOET and can be done 

on farm where all that’s necessary is a freezer machine. Embryos can easily be 

thawed and transferred directly negating the need for an embryologist to access 

embryos before transfer. On the other hand, vitrified embryos allow an over look and 

re-expansion access prior to transfer. New vitrification procedures where embryos 

are put directly into nitrogen is widely used in North America for IVP. Both 

techniques have pros and cons and these are discussed elsewhere (Mandawalla et 

al., 2016). For the slow freezing process embryos are placed in a hypertonic solution 

with low molecular weight permeable cryoprotectants to facilitate partial embryo 

dehydration and therefore avoid intracellular ice crystal formation during 

cryopreservation (Saragusty et al., 2011); while vitrification involves the use of 

highly concentrated aqueous solutions of cryoprotectants to prevent ice crystal 

formation transforming in an amorphous glassy during exceedingly fast cooling 

(Arav and Natan. 2019).   

Zona Pellucida Hardening (ZPH) can be a result of cryopreservation, although 

the trigger of hardening naturally happens after fertilisation. Media presence of 

calcium in the vitrification solution can also cause ZPH in IVP system (Wiesak et al., 

2017). Assisted hatching (AH), an easy procedure to open the ZP discussed further 

in this thesis, may help embryos to be released from their ZP and to implant in the 

uterine wall.  It is known that AH can increase pregnancy rates in humans (Zeng et 

al., 2018). It has been shown that collapsing before vitrification has a positive 

influence on post-thaw blastocyst viability, which makes it possible to increase the 

chance of pregnancy onset after IVP-ET (Chang et al., 2011, Zhu et al., 2011).  In 

summary cryopreserved embryos still have a lower conception rate after 

implantation, AH and optimal methods of freezing can help to improve pregnancies.  
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1.4 Pregnancy Outcomes Following Transfer 

 

As mentioned previously, pregnancy outcomes with IVP embryos are the 

greatest challenge at this time. In vitro culture reduces the number of embryos 

capable of establishing pregnancies (Pontes et al., 2009; Ferraz et al., 2016). 

Compared to previous years, pregnancy rates following ET have not changed by 

much (Hansen. 2020b) (Figure 1.5). In 1992, non-surgical unilateral or bilateral 

transfers in heifers led to a 50%  PR at 21 days and a pregnancy loss of 14% 

between days 35 to 90 (Reichenback et al., 1992). Block and Hansen. (2007) 

observed a PR of 32% when evaluating P4 levels in plasma at day 21, and reported 

a 49% pregnancy loss at day 40 of pregnancy. Stewart et al. (2011) successfully 

achieved 45.5% PR at 30 days but again normal drop of 13% was seen after 40 

days. Not too long ago, Denicol et al., (2013), reported a loss of 19% during summer 

in the US, dropping from 36.4% at 30 days to 29% at 45 days of pregnancy. 

Pregnancy losses seem to be decreasing over the years, however. 

 

 

Figure 1.5. Data from several studies undertaken with Bos taurus and Bos Indicus cattle summarising 

pregnancy outcomes (percentage pregnant) at first pregnancy check after 30 of gestation following embryo 
transfer of either in vivo derived (MOET) or in vitro produced (IVP) embryos. In vivo derived: Lohuis et al (1990); 
Nogueira et al (2002)*; Nogueira et al (2002)C; Nogueira et al (2002)*; Nogueira et al (2002)*; Scenna et al 
(2005); Scenna et al (2005)C; Pontes et al. (2009); Faizah et al (2018); Vettical et al (2019). In vitro produced 
(IVP): Reichenbach et al. (1992); McMillan.(1998) Block et al (2005); Block and Hansen (2007); Loureiro et al. 
(2009); Pontes et al. (2009);  Block et al. (2010); Stewart et al. (2011); Bonilla et al. (2014); Denicol et al. (2014). 
* = Different treatments in a same study, C = Group control. A simple t-test revealed that mean percentages 
differed (SED = 3.99; P=0.019) between embryo groups 
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1.4.1. Possible Reasons for Pregnancy Failure 

 

Pregnancy failure can arise due to inherent deficiencies in the embryo or some 

deficiency in the recipient which undergoes ET. A number of factors are linked to 

recipient management including nutritional status, health, synchrony (with the 

embryo being transferred) and stress (Bo and Mapletoft. 2014, 20182). Stressed 

cows have lower pregnancy rates.  

Many changes in molecular and cellular biology occur in the embryo during the 

IVP, and these can affect pregnancy outcomes following ET (Hansen. 2020). 

Embryos with no visual morphological defects may harbour chromosomal errors 

(aneuploidy), associated with spontaneous abortions (Schmutz et al., 1996). 

Chromosomal abnormalities may also originate by penetration of ovum by more 

than one sperm cell (polyspermia). Mixoploidy, polyploidy and haploidy are all 

aberrations that are encountered frequently in IVP embryos (Viuff et al., 1999). 

Embryo inability to hatch outside the ZP or to implant are significant causes for 

pregnancy failure. Blastocysts formed in vitro have many characteristics that 

differentiate them from those generated in vivo by superovulation, such as oxygen 

consumption, accumulation of intracellular lipids, and changes in gene expression. 

Additionally, IVP embryos are more likely to contain abnormal chromosomes (Viuff 

et al., 1999; Tšuiko et al., 2017). The prevalence of mixoploidy in IVP blastocysts 

was reported to be 72% (Viuff et al., 1999). After the transfer of embryos, there has 

been evidence of reduced trophoblast growth, loss of the embryonic disk, altered 

placental function, and dysregulation of the fetal developmental process (Ealy et al., 

2019). Evidently, there is not yet an efficient method for producing transferrable 

embryos in vitro in a high-throughput manner that overcomes all these challenges. 

On the other hand, tools to identify developmentally competent embryos are 

available today and these can improve pregnancy outcomes following transfer 

(Figure 1.6).  
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Figure 1.6. Different techniques used to ensure embryo quality prior to transfer. Video monitoring (time-lapse) 
can identify late development associated with aneuploid embryos. Assisted hatching can help embryos to hatch 
from the zona pellucida increasing the chances of attachment to the uterine wall. Embryo biopsy can be used 
to identify embryos that contain chromosomal errors or low Genetic estimated breeding values (gEBV), 
increasing not only the chances of a recipient to carry a healthy pregnancy to term but to produce high -genetic 
merit calves. Blastocentesis is considered less invasive than biopsy.  

 

 

1.5. Zona Pellucida Hardening and Assisted Hatching 

 

It is well-known that after fertilization, the ZP surrounding the oocyte 

undergoes a “hardening” process in order to prevent subsequent sperm from 

penetrating. After fertilization glycoprotein changes happens on the ZP, there is an 

increase in the level of calcium that cause ZPH (Sun et al., 2003), the conversion of 

ZP ZP2 to ZPf seems to contribute to ZPH (Schroeder. 1990). 

Recently, failure of the embryonic ZP to rupture following blastocyst expansion 

has been proposed as a possible contributing factor in implantation failure and this 

has been attributed ZPH (Das et al., 2012). LAH can help to reduce the thickness 

of ZP and potentially improve pregnancy outcomes. Assisted hatching (AH) is a 

procedure of which a small hole is made in the ZP it helps the embryo to hatch 

outside the ZP. The most common techniques AH involve the use of a laser beam, 

Tyrode’s solution, microblade or microneedles to ZP drill and aim to weaken the ZP 

for the embryo to hatch.  

 

1.5.1. Zona Pellucida Hardening  

 

ZPH is a natural process that is associated with fertilization (Nichols et al., 1989) 

serving as a block to polyspermy (Austin et al., 1961). The slow block of polyspermy 
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consists of a gradual barrier to sperm entry, as opposed to a fast block, which blocks 

additional sperm from fertilizing the egg initially but temporarily. These vesicles form 

a barrier by fusing cortical granules with the plasma membrane of the oocyte cortex 

(the area directly below the plasma membrane). A sperm-impermeable extracellular 

matrix is formed when the cortical granules are released, modifying the existing 

cellular extracellular matrix (Haley et al., 2004). ZPH per se does not impair the 

ability of the embryo to hatch. The imbalance of calcium within media and lack of 

enzymes involved in proteolytic digestion are more common mechanisms of ZPH 

associated with failure to hatch (Coy et al., 2008). Before fertilization a protein called 

ovastacin is stored in cortical granules, it cleaves ZP protein 2 (ZP2) upon 

fertilization and thereby destroys the ZP sperm ligand and triggers ZPH (Quesada 

et al., 2004; Burkart et al., 2012). Several factors are associated to ZPH in 

conventional IVP related to media used. Some constituents in oviductal fluid are 

known in several species to influence ZPH (Coy et al., 2010). A component of fetal 

bovine serum (FBS), called Fetuin, inhibits ZPH during oocyte maturation. It has 

been proposed that fetuin acts by preventing the proteolytic conversion of ZP2 to 

ZP2f by precociously released cortical granules (Schroeder et al., 1990). Fetuin has 

been shown to be effective in reducing ZPH (George et al., 1993). Heparin-like 

glycosaminoglycans (S-GAGs) can regulate ZP hardening allowing a return to the 

‘‘non-resistant’’ state (Coy et al., 2010).  They can also improve fertilization rate in 

IVP whilst apparently not increasing polyspermy (Dietzel et al., 2016).  

The thickness and structure of the ZP has been widely investigated to predict 

the developmental potential of fertilized oocytes, as well as ART outcomes. It is 

reported that the thickness of ZP varies from 10 to 31 μm in human oocytes and 

influences sperm penetration during fertilization. Fertilisation success is highest for 

oocytes with a ZP <18.6 μm in thickness, and deteriorates above 22 μm (Bertrand 

et al., 1995). Duan et al., 2017, investigated if abnormal ZP thickness would have 

better results in ICSI rather than in vitro fertilization. They found that from 11,799 

cycles of ICSI, fertilisation rate was higher for ICSI than fertilisation in-vitro (85% vs 

64.3%) respectively. However, ICSI is not effective in cattle due to the failure of 

chromatin decondensation and inability to properly activate the egg limiting the 

application of ICSI in a commercial bovine laboratory. Another reason for ZP 

hardening is attributed to freeze-thaw process with oocytes, which can reduce 

fertilisation (Carrol et al., 1990). Bypassing fertilisation the ZPH will lead to 

implantation failure maintaining the embryo trapped into the ZP, cryopreservation of 
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embryos might also induce the endurance of the ZP and its structure changes 

(Moreira da SIlva et al., 2005). 

 

1.5.2 Assisted Hatching  

 

A substantial number of blastocysts after transfer fail to implant. Prolonged 

embryo culture may impair the embryo’s ability to hatch and ultimately implant 

(Malter et al., 1989). AH is a technique of which a small opening in the ZP is 

performed, making holes, slots or thinning of different sizes; drilling, cutting, 

digesting, or melting the zona mechanically, chemically or with a laser beam to 

induce higher hatching and subsequent implantation rates following transfer (Miyata 

et al., 2010). It is poorly understood whether or not AH outcomes vary depending 

on the morphologic characteristics of the blastocyst or it’s ZP. Inferring from the 

evidence that cleavage stage embryos with reduced ZP thickness have higher 

implantation potential, previous studies attempted to determine if the effectiveness 

of AH depends on ZP thickness (Nakasuji et al., 2014, Debrock et al., 2011). Only 

cleavage stage embryos with ZP thickness ≥ 15 μm demonstrated an improvement 

in implantation rate. Moreover, in cattle, the use of AH in lower quality embryos has 

the potential to increase pregnancy rate, and has demonstrated to be an easier 

approach to be performed on farm in ET embryos or when IVP embryos are 

transferred fresh (Taniyama et al., 2011).  

Previous AHs were performed with partial zona dissection (PZD) pipettes, 

similar to a bevel needle of glass used to slice a small piece of the embryo. In this 

technique the embryo is held firmly in position by the holding pipette and an opening 

is made by introducing an injection/dissecting pipette through the ZP, followed by 

rubbing the embryo gently against the holding pipette until the embryo is released 

(Kim et al., 2012).  ZP dissection can also be achieved by chemical ‘drilling’ 

(Handyside. 1991). In fact, the hole created by acidified Tyrode’s depends on 

variables such as the amount of solution deposited, the time of exposure and 

operator skills. Jones et al. (2006) compared laser and acidified Tyrode’s blastocyst 

hatching techniques and found similar results in terms of embryo quality. Tyrode’s 

assisted biopsy, however, can take around 29 min while laser biopsy can be 

performed in 7 min (Geber et al., 2011). Tyrode's acid drilling reduces the number 

of embryos able to reach blastocyst stage due to cytoplasm acidification caused by 

Tyrode’s (Fiorentino et al., 2008). Again, it will depend on the technician and the 
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quantity of Tyrode’s injected during the zona drilling; also, blastomeres are more 

likely to be intact in laser assisted biopsy compared with Tyrode’s.  

 

1.6 Embryo Biopsy 

 

It has been 30 years since the first  embryo biopsy used to obtain a genetic 

sample for identifying embryo sex in cattle [by polymerase chain reaction (PCR)] 

(Thibier and Nibart. 1995; Bredbacka. 1998; Hasler et al., 2002). Nowadays using 

molecular-based genotypic selection techniques, there is a great chance to select 

for multiple production traits (Ponsart et al., 2014; Sirard. 2018). Genomics selection 

makes it possible to estimate the animal genomic breeding value (gEBV) and reduce 

the cost and generation interval compared to traditional testing (Bouquet and Juga. 

2013). It also has the potential to identify poor quality embryos that are aneuploid 

leading to an enhancement in pregnancy rates. Chromosomal abnormalities 

constitute a major cause of embryonic loss in mammals (Jacobs et al., 1990; 

KINKG. 1990). In humans, chromosomal abnormalities lead to implantation failure, 

early pregnancy loss or severe chromosomal diseases such as Down’s and Patau 

syndromes (Viaggi et al., 2013). In a more recent study, aneuploidy bovine embryos 

were related to a slower and regressed development during a time lapse monitoring 

by micro camera, most of the abnormal blastocyst presented mixploidy by 

diploid/triploid combination (Magata et al., 2019).  

 

1.6.1 Preimplantation Genetic Testing (PGT), Biopsy Analysis 

 

PGT previously known as preimplantation genetic screen (PGS) is today a 

well-known and used technique for searching genetic abnormalities on genes and 

chromosomal errors.  Aneuploidy is the most common genetic abnormality in 

humans, and its high incidence in embryos is a major cause of failed implantation, 

pregnancy loss, and congenital defects in infants and children (Nagaoka et al., 

2012). In Cattle, aneuploidy embryos also fail to implant and the identification of 

them has the potential to increase pregnancy rate as suggested by Turner et al. 

(2019) with 100 % concordance between biopsy and offspring single nucleotide 

polymorphism (SNP) analysis. PGT in bovine embryos favour the identification of 

gnomically desired traits that appeal to cattle breeders intensifying bovine earlier 

https://www.sciencedirect.com/science/article/pii/S0378432020304188#bib0165
https://www.sciencedirect.com/science/article/pii/S0378432020304188#bib0025
https://www.sciencedirect.com/science/article/pii/S0378432020304188#bib0050
https://www.sciencedirect.com/science/article/pii/S0378432020304188#bib0155
https://www.sciencedirect.com/science/article/pii/S0378432017303834#bib0015
https://www.sciencedirect.com/science/article/pii/S0378432017303834#bib0015
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selection reducing the costs of an unproductive cow or non-wanted traits in a 

specific breed.  

 

 

1.6.2 Biopsy Technique 

 

Currently, embryo biopsy can be performed with several instruments through 

a variety of techniques.  In the most direct approach, the ZP opening is made by a 

mechanical, chemical or phototermolyses technique and a small number of 

blastomeres are aspirated using a micropipette (Herrera et al., 2016). The use of 

micro blade, aspiration pipette and needle are some common techniques of biopsy 

used for bovine embryos although laser biopsy has become established as a safe 

method recently and will be discussed further in this review. With microblade biopsy, 

5-10 cells are aimed to be recovered, but normally a larger number of cells are 

collected (Peippo et al., 2007).  It is placed on the edge of the embryo and moved 

down to retrieve cells. During the early development stage, blastomeres can be 

recovered from any portion of the embryo. Bredbacka et al. (1995) developed a 

technique to eliminate the need for a holding pipette, making some scratches at the 

bottom of the dishes in order to hold embryos prior biopsy. Lopes et al. (2001) 

successively introduced PBS containing 0.8% BSA to the dish, in order to prevent 

cell attachment to the cutting instruments or dish bottom, thereby improving 

microblade biopsy efficiency. Microblade biopsy is considered to be a more 

straightforward and quicker technique compared to needle and aspiration (Cenariu 

et al., 2012). When an embryo is biopsied at the blastocyst stage, it is important to 

avoid the inner mass cells, and TE cells should be removed preferentially.  

 

1.6.3 Polar Body Biopsy (PBB) 

 

Polar body biopsy (PBB) was used primarily for aneuploidy screening in 

humans (Verlisnky et al., 1996). The major application of PBB is the detection of 

maternally derived chromosomal aneuploidies and translocations in oocytes 

(Montag et al., 2009). In humans it can be used as an alternative when regulations 

prohibit embryo biopsy in a particular region or country (Küpker et al., 2001). 

Potentially less cost effective and limited to errors of maternal origin only, PBB is 

associated with lower implantation rates compared to blastocyst biopsy (Fragouli et 
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al., 2010). In livestock species little progress in PBB is found. Technically simpler to 

do PBB when compared with blastomere or TE cells recovery, a higher number of 

procedures is necessary and consequently a large number of aneuploidy is found. 

Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique used 

to identify chromosomal regions through hybridization of flurescetly-labeled DNA 

and for chromosomal analysis in PGT for chromosomal imbalance, was the most 

common test used for PBB and blastomeres biopsy (Delhanty et al., 1997). The use 

of FISH on blastomeres increases drastically the number of false/positives and 

false/negatives in blastomeres (Harton et al., 2011); the mistaken results can be 

related to mosaicism, that is natural in early embryonic development where the 

chromosome set detected in the biopsied single blastomere may not represent the 

genotype of the embryo (Kuliev et al., 2005). Overlapping signal, split signal, 

chromosomal self-correction and fragmented DNA are all innate processes during 

embryo development (DeUgarte et al., 2008) increasing the chances to discard a 

healthy embryo. PBB may lead to a huge amount of work and a mistaken number 

of embryos potentially likely to implant. A recent study undertook repeated biopsies 

for pre-implantation genetic testing. In case of failed genetic diagnosis in the PBB, 

embryos were re-biopsied during second cleavage or at the blastocyst stage. 

Analyses at each stage yielded different results and predictions of implantation 

success (Priner et al., 2019).  

 

1.6.4 Blastomere Biopsies (Cleavage Zygotes) 

 

Cleavage stage biopsies are usually done at the 4-8 cell stage using a 

mechanical, chemical or laser tool to open the ZP. Usually, one or two cells are 

removed in a cleavage stage biopsy; a higher number of blastomeres retrieved risks 

the formation of the ICM and embryo death (Hardy et al., 1990; Tarin et al., 1992). 

However, biopsy at this stage has been shown to reduce embryonic potential (Scott 

et al., 20131). Cleavage stage embryos are not associated morphologically with the 

extent of euploidy, while blastocyst stage is (Majumdar et al., 2017).  Although 

cleavage stage biopsy still accounts for 90% of all reported PGT cycles in humans 

according to ESHRE PGD (Thornhill. 2019) a few reports of early stage biopsy are 

mentioned in animal practices nowadays, despite to be consider an easier 

procedure to undertake. A higher percentage of intact blastomeres can be collected 

from laser-drilled biopsy and acid Tyrodes (De Vos et al., 2001) specially when free 
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media with Ca++ and Mg++ are used to reduce the cells adhesion and facilitate the 

blastomere removal (Abdelmassih et al., 2001). Another procedure undertaken at 

this stage is called fragment removal; the fragments are commonly seen on embryos 

cleaving at early stage of live and changes in cells physiology were suggested to 

cause this fragmentation (Antczak et al., 1999). Removing this fragmentation can 

improve ART and it’s suggested to be used only in embryos with approximately 15-

35% fragmentation (Halvaei et al., 2018). At this stage embryos are not genetically 

diagnosed if there is no fragmentation to be anlaysed, however if embryos are 

fragmented they should be genetically tested (Hardy et al., 1990; Tarin et al., 1992) 

because the fragments will appear from apoptosis caused by cellular errors. It is 

recommended to use IVP where the embryos are genetically diagnosed before 

transfer (Antczak et al., 1999). In fact this approach is rarely undertaken in bovine 

embryos, firstly due to the unknown number of embryos that would reach the 

blastocyst stage, increasing the time of an embryologist to perform biopsies in 

unknown embryos and secondly due to the imprecision of DNA analysis for traits 

from one or two cells. 

 

1.6.5 Trophectoderm Biopsy 

 

Harvesting TE cells in a blastocyst has not been shown to have any detrimental 

effect on subsequent post-transfer development in humans and animal models such 

as mice (Carson et al., 1993), primates (Summers et al., 1988) and cattle (Agca et 

al., 1998). TE cell biopsy is widely adopted for biopsy because it analyses multiple 

cells of the trophoblast lineage, without reducing the ICM. Blastocyst biopsy is 

becoming more popular due to the higher number of cells collected compared to 

early biopsies and to represent a small proportion of the total number of cells in the 

blastocyst. Blastocyst-stage biopsy can be performed by making a hole in the ZP 

on Day 3-4 in humans (Rubino et al., 2020), however there is no data available in 

cattle. A procedure on Day 6 in cattle would possibly allow the developing TE cells 

to protrude after blastulation, facilitating biopsy. When TE cells are collected a 

higher number of cells and DNA can be harvested. Recently, Oliveira et al. (2017) 

compared biopsy at different stages of blastocyst development and found biopsy at 

the expanded blastocyst stage to give the best results (implantation rate of 61% vs 

38% for earlier stages).  
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De Boher et al. (2004) reported one of the first studies to successfully 

undertake TE biopsy in human embryos, which subsequently led to successful 

pregnancy outcomes following transfer (McArthur et al., 2005). Embryo biopsy at 

blastocyst stage is now becoming more popular (Scott et al., 20132). For blastocyst 

biopsy, McArthur et al. (2005) created a “hatch” on Day 3-4 of embryo development 

to encourage the herniation of TE cells outside the ZP. He applied a 1.48µm diode 

laser or a 500µs pulse to create a hole in the ZP and embryos were biopsied on Day 

5 in the morning. Embryos were held with a holding pipette and extruded cells were 

collected at the 3 o’clock position; cells were collected within 3 to 5 laser pulses 

ranging between 2-9 cells (McArthur et al., 2005). However, this can increase the 

chances of the ICM extruding. Conventional biopsy in cattle is performed around 

Day 7 when TE cells are biopsied following expansion when the ZP becomes thinner 

and TE cells are expressed out. A micropipette is then used to retrieve a certain 

number of cells (Capalbo et al., 2014), thus avoiding embryo stress in previous 

development stages.  

A recent technique uses a quick movement called “flicking”, where the TE cells 

in the aspiration pipette are pressed against the holding pipette (Costa Borges et 

al., 2018). This rapid approach has been gaining in popularity among embryologists. 

Also there appears to be little damage caused to cells after biopsy (Benavent et al., 

2019). It can also reduce the number of laser pulses during biopsy. Thus according 

to Scarica et al. (2018) it reduces the incidence of mosaicism due to laser pulses. 

The number of cells to be collected is one of the most critical factors for TE biopsy 

(Neal et al., 2017). Some researchers believe it must be >5 (Zhang et al. 2016, 

Schoolcraft et al., 2010). However, it is hard to count the exact number of cells when 

retrieving from the TE layer, there has been existing results from preimplantation 

genetic testing PGT of trophectoderm cells, (Adler et al., 2014). 

 

1.7 Summary of Pregnancy Outcomes Following Embryo Biopsy 

 

Blade biopsy is still mostly used in cattle with a higher number of procedures 

done in trophectoderm stage. Pregnancy rate ranges from 30% to 54% (El-Sayed 

et al., 2006, Souza et al., 2017) (Table 1.3 and 1.4); similar to those embryos 

biopsied by laser. In humans, Laser biopsy is first choice representing 75% of all 

biopsies (Moutou et al., 2014). Pregnancy rates range from 25% to 67% (Table 1.5).  
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Table 1.3: Studies employing embryo biopsy by blade on trophectoderm cells from bovine embryos produced in vivo and in vitro. 

A- 190 d8 hatched, Grade 1 and 2 embryos were biopsied. Monolayer culture system + mouse embryonic fibroblast support the growth  of bovine Trophoblast cells. B- 47 
early to expanded blastocysts were biopsied, 23 with linoleic acid t10, c12  and 24 without it. The aim was improve micromanipulation by supplementing media with trans-10, 
cis-12 conjugated linoleic acid. C- 471 embryos were biopsied and had pregnancy rate (PR) compared to 456 biopsied control embryos. D- 74 IVP embryos were biopsied to 
evaluate re-expansion while 134 were biopsied to evaluate the accuracy of genotypes. The PR data are from 57 in vivo biopsied sex -selected embryos transferred singly and 
in pairs. E- 222 embryos were biopsied to evaluate their implantation compared to non-biopsied embryos. F- 110 Grade 1 Blastocyst were used in this experiment, 55 were 
biopsied and 55 were control. G- A total of 138 IVP embryos were biopsied. After re-expansion they were transferred and pregnancy diagnosis checked on days 25, 32, 40 
and 50. H- 42 in vitro blastocysts (cf. 42 fresh embryos), Vitrification - 2 h incubation and evaluation before transfer. 

 
 
 

Biopsy Stage Re expansion after Biopsy 
Re expansion after 

Cryopreservation 
Pregnancy Rate Author 

Blade Trophectoderm 

82%±2.6% (24hs after biopsy) 

 
- - 

(Ramos-Ibeas et al; 

2014)A 

 

Biopsied without 

supplementation 

27.5%±2.5% 

Biopsied with t10,c12CLA 

64.6%±4.4 

 

vitrified 

Biopsied without 

supplementation 

62.5%±7.9% 

Biopsied with t10,c12CLA 

95%±7 

 

- 
(Pereira et al;2008)B 

 

- - 

In vivo Biopsied at 

30d 57.35% 60d 54.21% 

In vivo Control at 

30d 57.64% 60d 55.89% 

IVP Biopsied at 60d 26.37% 

IVP control  60d 19.82% 

(Souza et al; 2017)C 

 

94.6% 

 
- 

Single embryo transfer 44.2% 

Embryo Transferred in pair 

14.3% 

(Peippo et all 2007)D 

 

72.6%±13.8 - 
Biopsied 47.1%±7.9 

Control 42%±8.5 
(Oliveira et al;2017)E 

- 
40% biopsied 

61% Control 
- (Gonzalez et al; 2008)F 

85% - 30% (El-Sayed et al;2006)G 

- - 

57% on Day 45, 43% on 

Day 65 (fresh embryos: 45% 

and 38% respectively) 

 

(Fisher et al; 2012)H 
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Table1.4: Studies using either a laser or aspiration pipette in embryo and evaluation of outcomes. 

Biopsy Stage 
Re expansion after 

Biopsy 

Re expansion after 

Cryopreservation 
Pregnancy Rate Author 

Laser Trophectoderm 

- - 41.4% (Turner et al; 2019)A 

- 

Biopsied  

84.6% 

Control 

69.4% 

Fresh 

54.9% 

Frozen Biopsied  

42.1% 

(Campos-Chillon et al; 2015)B 

Aspiration 

Pipette 

Blastomere 

4-8 cells 

66.7% 

8-16 cells 

73.3%   

- - (Shirazi et al; 2010)C 

- 
Biopsied and vitrified  

 85% 

Biopsied and vitrified  44% 

Frozen  23% 

Fresh    50% 

(Agca et al; 1998)D 

Hatched 

D2 4-8cell  

70% 

D3 4-8cell 

58% 

D4 8-16cell 

53.8% 

- - (Shirazi et al; 2010)E 

Blastocyst of Biopsied 

53.3% and 44.9% 

hatched. 

Blastocyst of control were 

66% and 42.6% hatched. 

- - (Polisseni et al; 2010)F 

- - 47.3% (Lacaze et al; 2009)G 

Trophectoderm - - 62.5% (Lacaze et al; 2009)H 

A- From 111 embryos biopsied, 93 were amplified WGA, 89 SNP typed and 61 fulfil all requirement for Karyomapping. B- Two group of embryos were biopsied, one with 
laser assisted drilling (LAD) and one with Piezo assisted drilling (PAD). The PAD group was cryopreserved within three different methods but they did not differ. C- 
Comparison of bovine embryos at days 2, 3 and 4 of development using aspiration pipette to drill the zona pellucida. D- Embryos biopsied and vitrified in comparison with 
embryos frozen, followed by fresh transfer. E- This study evaluated the quality of bovine blastocyst derived from embryos biopsied at day 2, 3 and 4 by assessment of 
cryosurvivability of the resulting blastocysts. F- Evaluation of 8-16 cell-biopsies by assessing blastocyst development. A total of 92 embryos were submitted to biopsy and 
103 were used as a control G-H- 167 embryos were biopsied followed by direct or frozen transfer. 
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Table 1.5: Evaluation of human blastocysts and cleavage stage embryos biopsied by laser and Tyrode’s acid. 

Biopsy Stage Re expansion after Biopsy 
Re expansion after 

Cryopreservation 
Pregnancy rate Author 

Laser 

Trophectoderm 

100% - 47.6% (Kokkali et al; 2007)A 

- - 43.4% (McArthur; 2008)B 

- - 67% (Ramos et al 2019)C 

Blastomere 

50.4% - 26.7% (Kokkali et al; 2007)D 

- - 25.6% (McArthur; 2008)E 

- - 

Day 3 biopsied 

30.8% 

Day 4 biopsied 

43.8% 

(Kim et al; 2015)F 

Good Quality 

(GI)32.5%(GII)32.6% 

(GIII)32.4% 

Poor Quality 

(GI)67.5%(GII)67.4% 

(GIII)67.6% 

- - (Taylor et al; 2010)G 

Tyrode Blastomere 

BF 

53% 

CF 

58% 

- 

BF 

28% 

CF 

28.5% 

(Magli et al; 2006)H 

48.9% - - (Geber et al; 1995) I 

A- 53 Blastocysts biopsied, with 26 unaffected for β-thalassaemia syndrome, from those 21 were implanted. B-E Embryos biopsied at day 3 and transferred at days 5-6. C- 
55 embryos biopsied where 32 were genetically normal. Only euploid embryos were transferred. D- 101 embryos early stage (6-8 cells) embryos biopsied. 76 embryos gave 
a reliable diagnosis where 47 were unaffected for β-thalassaemia syndrome. 30 blastocysts were implanted. F- Laser biopsy was performed on 126 day 3 and 150 embryos 
on day 4. G- 240 embryos were biopsied and divided in 3 groups of a different pulse length. (GI) 0.604mS, (GII) 0.708mS and (GIII) 1.010mS. Embryo re expansion was 
assessed. H- 47 embryos were biopsied and frozen (BF) and 150 were only frozen (CF). I- 47 embryos were biopsied at the 8 cell stage and followed daily until day 6.
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1.8 Blastocentesis 

 

Blastocentesis is a relatively new technique used to collect DNA from a 

blastocyst-stage embryo by using a fine ICSI pipette which is inserted between two 

TE cells, to minimize trauma and contamination, and blastocoel fluid is aspirated 

(Gianaroli et al., 2014). The technique consists of a rapid procedure to evaluate 

Blastocyst fluid (BF) and replaces current biopsies offering a non-invasive technique 

to identify mosaicism and aneuploidy (Zhigalina et al., 2016). Tsuiko et al. (2019) 

found a high concordance between BF, TE and ICM to karyotype. Despite the 

relatively small amount of BF that is recovered, there was success using the DNA 

from BF for whole-genome amplification and polymerase chain reactions. 

Chromosomal analysis can also be achieved using array comparative genomic 

hybridization (Palini et al., 2013, Zhigalina et al., 2016). Furthermore, next-

generation sequencing of BF-DNA has been successfully completed. Furthermore, 

the sequencing profiles generated from whole-genome amplified products were 

similar to those obtained by the corresponding blastomeres both at the chromosome 

and gene level (Zhang et al., 2016). 

However, there are issues with regard to the yield of DNA and possible 

contamination from the surrounding media that could contribute to diagnostic errors 

(Hammond et al., 2017). Perloe et al. (2013) reported that embryonic DNA can be 

detected in the BF of some embryos, although only three of nine BF samples 

(33.3%) were concordant with the corresponding TE biopsy. In an additional study, 

the discordance in karyotypes reached up to 50% between BF and TE biopsies 

(Tobler et al., 2015). The most likely source of cell free DNA is from embryonic cells 

undergoing apoptosis (Hardy. 1999). Palini. (2013) noted that concentrations of 

DNA less than 5 pg were insufficient for analysis and that the most successful 

samples contained around averaged 10 pg DNA.  

 

1.8.1 Additional Considerations of Biopsy vs Blastocentesis 

 

Additionally blastocentesis is technically easier to perform compared to the 

laser application during a biopsy procedure represents a rapid and replicable 

procedure for DNA analysis. On the other hand, with laser assisted biopsy a number 

of issues concerning the timing, precision and effectiveness of the procedure need 
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to be taken into account; also pregnancy establishment and the risk of congenital 

disorders (Montag et al., 2009b). The laser beam can also induce DNA damage and 

compromise subsequent development (Wang et al., 2018). The temperature profile 

in the beam and vicinity is predicted as a function of laser pulse duration and power 

are important considerations (Douglas-Hemilton et al., 2001). Nd:YAG 

(Neodymium, Yttrium Aluminum Garnet, or Nd:YAG) lasers were initially used for 

ART to trap spermatozoa with a wavelength of 1064 (Tadir et al., 1989); however, 

there are risks associated with these lasers, including UV radiation damage. Later, 

an erbium:YAG laser with a wavelength of 2900 nm was introduced (Feichtinger et 

al., 1992). However, it required direct contact, which raises concerns about damage 

and contamination. Moreover, holmium, yttrium-scandian-gallium-garnet 

(Ho:YSGG) laser using at 2100 nm wavelength exhibited different absorption 

behavior in water than earlier lasers; moreover, it required quartz slides. Assisted 

reproductive technology now includes six types of lasers that use infrared emitting 

diodes currently available in the market for non-contact micro-drilling using a 1480-

nm diode laser (Davidson et al., 2019). Zone breaching and TE biopsy can be 

shortened by using this approach and complexity is reduced. This strategy, 

however, has yet to be evaluated in terms of its potential disadvantages. In addition, 

the toxic compounds released from heat diffusion haven't been determined, which 

must stay below 100°C. However, in a recent experiment using laser biopsy at 400 

mW for 0.25 ms over 41% pregnancy rate was described in cattle following ET 

(Turner et al., 2019), confirming that good results can be achieved. 

 

1.9 Working Hypothesis, Aims and Objectives. 

 

In the series of experiments reported in this thesis, we set out to identify the 

most straightforward and reliable method of embryo biopsy to be adopted in a 

commercial laboratory, considering the practicality of the procedure to be performed 

for a technician inexperienced in micromanipulation. We hypothesise that the use 

of laser to perform embryo biopsy, following herniation of the TE would reduce the 

time taken for each biopsy and improve precision; thereby providing enough cells to 

analyse while preserving embryo integrity. Our second objective was to assess the 

benefits of LAH for IVP embryos in order to ensure the ability of cryopreserved 

embryos to hatch. We hypothesise that LAH would increase the proportion of 

embryos able to hatch.  The aim was to develop LAH as a fast and easy procedure 
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to incorporate into the commercial laboratory, with the longer-term aim of improving 

pregnancy rate
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2. CHAPTER 2: A COMPARISON OF HIGH-THROUGHPUT 

APPROACHES FOR BLASTOCYST BIOPSY INVOLVING EITHER A 

MICROBLADE OR LASER 

 

2.1 Introduction 

 

Embryo biopsy is becoming increasingly used in human assisted reproduction 

due to its ability to identify monogenic disorders by PGD (Sciorio et al., 2020, Spits 

et al., 2009), and to identify inherited genetic diseases, Robertsonian translocations 

and chromosomal aneuploidy through preimplantation genetic testing (PGT-A) 

(Sciorio et al., 2020). Aneuploidy is the most frequent type of chromosomal 

abnormality and can increase pregnancy loss during early development (Vitez et al., 

2019). Many aneuploid embryos can reach the blastocyst stage and often don’t 

arrest until after transfer (Fragouli et al., 2013).  

Several biopsy approaches have been performed since the introduction of 

PGD and these are still debated today to establish the best embryo development 

stage for biopsy reducing the risk of damage to the embryo (Thornhill. 2019, Montag. 

2019, Wang et al., 2018, Magli et al., 2016). Although biopsy at Day 3 post 

fertilization was found to be an easier technique to collect cells for PGT-A among 

different techniques (Tarin and Handdyside. 1993) and was when the majority of 

biopsies was performed (Capalbo et al., 2017), TE cell biopsy has become more 

attractive in recent years and has been replacing cleavage stage biopsies (Zacchini 

et al., 2017) . Scott et al. (2013), in a clinical study, found that biopsied blastocysts 

gave a higher number of live-born infants compared to biopsied cleavage-stage 

embryos. Early cleavage-stage biopsies have several disadvantages such as 1) low 

cell number, 2) choice of blastomeres, 3) possible selection of cells allocated to the 

inner-cell mass, and 4) a higher proportion of embryonic cells removed (Thornhill. 

2019). Recent literature reviews reflect that early-stage biopsies can reduce 

implantation rates by up to 40% while the impact of later stage trophectoderm 

biopsies is less than 2% (Leigh. 2019). Another alternative method used to increase 

the efficiency in human PGT-A is the use of a laser beam pulse given a day prior 

biopsy, thereby allowing the cells to herniate outside the zona pellucida (ZP). As 

describe by McArthur et al. (2005), this approach at the early blastocyst stage can 

facilitate the collection of cells during micromanipulation reducing any procedure 

harm.  
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In cattle, the combination of PGT and reproductive biotechnologies in young 

heifers and genetically superior cows permits a greater rate of genetic progress for 

selected traits (Ponsart et al., 2014). Genomic selection based on single nucleotide 

polymorphism (SNP) has increased the dissemination of more productive cattle 

through early genetic selection, and has led to the ability to derive genetic estimate 

breeding values (gEBVs) at the embryonic stage. Bovine embryo biopsy to facilitate 

this has been found to be a safe (Oliveira et al., 2017), can easily determine embryo 

sex (Sachan et al., 2020), provide a robust estimate of gEBV, (Saadi et al., 2014, 

Mullaart and Wells. 2018), and have no negative effect on pregnancy rates using 

either in vivo derived or IVP embryos (de Souza et al., 2017). However aneuploidy 

is known to be common in IVP embryos. Karyomapping can explore both PGT-A 

and PGD (Turner et al., 2019, Tutt et al., 2021) and lead to higher pregnancies.  

Current embryo biopsy procedures use either a blade, or laser and aspiration 

pipettes (Cenariu et al., 2012). TE cell biopsy provides a good genetic and 

cytogenetic record of the whole embryo (Tutt et al., 2021). However, these 

procedures can be technically challenging, slow, potentially damaging to the embryo 

and expensive. Given the number of cattle embryos that in future are predicted to 

require gEBV and PGT, there is a need to develop a high-throughput system for 

cattle-embryo biopsy.  In this study we evaluated the use of blade and laser assisted 

biopsy in herniated and non-herniated embryos at the blastocyst stage to identify 

the easiest, quickest and most precise procedure for future gEBV and PGT-A 

analyses.  

 

2.2 Materials and Methods 

 

2.2.1 Oocyte Source 

 

Ovaries from regional slaughterhouses in the UK were collected and 

immediately put into a thermal flask (~36°C). No fluid was added to the flask and 

ovaries were transported to the laboratory. At the laboratory, the temperature of the 

flask was measured and maintained at 35°C±2°C in a water bath (Grant, 

Cambridge, UK). Ovaries were then rinsed with aspiration (IVF Bioscience®, 

Copenhagen, Denmark) media and dried with blue roll individually prior aspiration. 

An 18G aspiration needle, attached to a 4mm Brazilian tubbing (Partnar®, Holland, 

USA) in a Rocket Pump R29700 (Watford, England, UK), was used to aspirate the 
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contents of all follicles between 4-10mm of diameter into a 50ml corner tubing. The 

follicular aspirant was rinsed using a filter cup, held in a warmed filter stand (~35°C), 

using IVF Bioscience® media. This aspirant was then searched using a 100mm petri 

dish under a 40X magnification microscope. All cumulus-oocyte complexes (COCs) 

were graded from 1-4 according to IETS manual where COCs with expanded or 

absent cumulus, or with fragmented, pale or irregular cytoplasm were classed Grade 

4 and rejected.  

 

2.2.2 In Vitro Maturation (IVM) 

 

Selected COCs were then placed in 1 ml maturation vials from Boviteq Canada 

Laboratories at ~4 h following collection from the slaughterhouse. Groups of around 

30 COCs were matured for 20-24 h in HEPES buffered TCM199 media 

supplemented with 10% (v/v) FBS, 4 mg/ml fatty acid free BSA, 0.2 mM pyruvate, 

50 µg/ml gentamicin, 5 µg/ml FSH, 0.5 µg/ml LH, 1 µg/mE 2).  During this period, 

COCs were incubated in a Cryologic transportable incubator (Blackbourn, Australia) 

at 38°C. Fertilization dishes were prepared with fertilization media (tyrodes lactate 

media supplemented with 0.6% (w/v) fatty acid free BSA, 1.5 µg/ml heparin, 0.2 mM 

sodium pyruvate, 0.08 mM penicillamine, 0.04 mM hypotaurine, 10 mM epinephrine, 

50 µg/ml gentamicin) and incubated in a Binder® incubator at 38°C, 6.7 CO2 and 

5% O2 to equilibrate for the next day.  

 

2.2.3 In Vitro Fertilization (IVF) 

 

At the end of IVM, COCs were washed 3 times in IVF Bioscience wash media® 

and 5 COCs were placed in each 40 µL drop of fertilisation media in a 30 mm petri 

dish. Prior to insemination, semen were prepared using a gradient of percoll 45% 

and 90% (BovipureTM, Nidacon, Mölndal, Sweden). Semen from a sire with proven 

fertility (Emphaisis Boldi) was used for this experiment at 0.5 X106/ml concentration. 

Frozen straw of semen was thawed in a 37°C water flask for 45 s and placed in a 

small PCR tube with 150 µL of 45% gradient and 150 µL of 90% gradient on the 

bottom. The tube was spun in the centrifuge at the speed of 600rpm for 5 min, the 

supernatant sperm on the top of the tube was removed and 30 µL of the sperm on 

the bottom were transferred into a 400 µL of gradient media in a second PCR tube. 

The tub was spun at 1300 rpm for 3 min. A 30 µL volume containing the sperm pellet 
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was taken from the bottom of the tube and transferred to an empty PCR tube; 2 µL 

of sperm from this tube was inserted into 40 µL of water in another tube for sperm 

counting. Then, 10 µL of the sperm mixed with water was placed in a Neubauer 

chamber (NC) and spermatozoa were counted individually. The total number of 

spermatozoa present in the NC were entered into this formula: n° (number of sperm) 

X 0.042 (expected concentration of sperm) X 28 (total volume of media, remained 

from the 30 µL) = X (total value of the formula) - 28 (total volume of media). The 

result number from the formula represents the amount in µL of gradient medium to 

be added to the sperm tube. A 5 µL aliquot of 1% heparin was added to the 

fertilization drop containing 2 µL of mixture of penicillamine, hypotaurine and 

epinephrine (PHE), and then 2µL of spermatozoa was added to this drop containing 

COCs. Fertilization dishes were placed into a Binder® incubator (Tuttlingen, 

Germany) at 38°C humidified atmosphere with 6.7% CO2 and 5% O2. 

 

2.2.4 In Vitro Culture (IVC) 

 

After 20-22 h, presumptive zygotes (Day 1) were stripped and transferred to a 

14 µl drop of culture media ‘1’ consisting modified SOF based sequential culture 

media (mSOF), as previously described (Nivet et al., 2012), in a humidified 

environment at 6.7% CO2 and 5% O2, at 38°C within a Miri® incubator (Kringelled, 

Denmark). Cleavage was evaluated after 72 h and embryos (Day 4) moved into 14 

µl drops of culture media ‘2’. In the morning of Day 6, embryos were transferred into 

culture media ‘3’, and split into 4 different treatment groups across 4 different 30 

mm petri dishes.  

 

2.2.5 Embryo Biopsy-Treatment Groups  

 

The study involved four biopsy treatments set out in a 2 x 2 factorial 

arrangement (Herniation vs Non-Herniation; and Blade vs Laser). A total of 139 Day 

6 embryos were split into four biopsy-treatment groups. Group I (Non-herniated, 

Blade biopsy): 39 embryos, from the early blastocyst to expanded blastocyst stages, 

were biopsied using a microblade (Bioniche Quebec, Canada) on Day 7 post-

fertilization. Group II (Non-herniated, Laser biopsy): 39 embryos were submitted to 

laser-assisted biopsy on Day 7. Group III (Herniated + Blade biopsy): 30 embryos 

that had their ZP punctured by laser on Day 6 – 6.5 allowing cells to herniate from 
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the ZP, were biopsied on Day 7 using a microblade adapted in the micromanipulator. 

Group IV (Herniated + Laser biopsy): 31 embryos that had their ZP punctured on 

Day 6 – 6.5 (described above) were biopsied on Day 7 with the aid of a laser 

following herniation.  

 

2.2.6 Embryo Biopsy 

 

Prior to biopsy, which used a RI integra 3TM micromanipulator (Knardrupvej, 

Denamrk), embryos were transferred to 50µl drops of culture ‘3’ media equilibrated 

within a biopsy dish (falcon® 50mm X 9mm, BD, USA). There were four drops in 

each dish covered by mineral oil. Each drop contained one embryo for biopsy. In 

Group I, embryos were placed with Inner cell mass (ICM) at the 6 to 9 o’clock 

position held by a holding pipette (Orgio®, MPH-MED-35, USA) at a 35°angle (120-

150µm of diameter outer diameter and 15-20 µm inner diameter). The blade was 

placed horizontally on the edge of the embryo at the 12’ o’clock position. A scratch 

was made on the bottom of the biopsy dish to prevent the embryo rolling during the 

procedure as described elsewhere (Bredbacka et al., 1995), and trophectoderm 

cells were biopsied aiming for no more than 20% of the whole embryo in those not 

herniated. Embryos were released and holding free blade biopsy was performed, 

moving to the next drop until the dish was completed. In Group 2, embryos were 

biopsied on Day 7 post-fertilization using the same type of biopsy dish. Embryos 

were held with a holding pipette with ICM at the 9 o’clock position, and 

trophectoderm cells located at 3 o’clock (Figure 2.1). Using an aspiration pipette 

30°angle (Orgio®,USA) (23-27 µm inner diameter) a few soft pushes were made on 

the ZP to release any attached trophectoderm cells before laser beam shots. 

Between 1 and 3 laser pulses were administered at 164 µw in order to open the ZP. 

The aspiration pipette was then inserted and a target number of ~10 cells were 

aspirated into the pipette. When these cells were located in the pipette another few 

pulses of 164 µw were made in order to detach the sample cells. In Groups III and 

IV, the culture petri dish was kept with lid on and the ZP opening was performed 

without the need of holding pipette. Between Day 6 and 7, at early blastocyst stage 

(stage 5), the ZP was punctured using a laser beam. Embryos that could not have 

the ZP opened on the opposite side of the ICM were then rolled with a handmade 

glass pipette. In order to create a hole in the ZP 1 to 3 laser pulses at 164 µw were 

applied. Embryos were placed back into the culture incubator to be biopsied the 



 

pg44 
 

following day when cells were extruding from the ZP. The extruded cells were 

collected by blade biopsy in Group 3 and aspiration pipette and laser biopsy in 

Group 4 (Figure 2.1). At the end of the biopsy procedure, blastocysts were 

transferred to culture ‘3’ dish in order to re-expand. Re expansion was analysed 

after 3 h following biopsy or accessed on the morning of the following day.  

 

       

Figure 2.1. Embryo biopsies. A. Herniarted blastocyst with IMC at the opposite side of extrusion ready to 
undergo laser biopsy one day after the ZP was punctured at the early stage of blastocyst development (IETS 
Stage 5). B. Non-hernitated blastocyst (IETS Stage 6) on Day 7 ready for laser biopsy with aspirating pipette 
.C. Herniated blastocyst using the blade biopsy procedure; extruded cells are aligned with the scratch on the 
bottom of biopsy dish to avoid embryo rolling. D. Blastocyst ready for biopsy by blade held in the screatch to 
avoid it rolling during procedure. Blastocyst in these images are around 110 µM 

 

2.2.7 Embryo Freezing preparation Following Biopsy  

 

Approximately 3 hours after biopsy embryos were prepared to 

immunostaining.  Embryos that were re-expanded partially or had not re-expanded 

were left to be accessed the next day. After re-expansion all embryos were 

transferred into an Eppendorf ® tube (Hamburg, Germany) of 1% Polyvinyl alcohol 

(PFA) (150 µl Phosphate buffer saline (PBS) and Polyvinylpyrrolidone (PVP) diluted 

in 50µl of 4% PFA), labelled and it was left to rest during 20min before put into a -

10°C freezer.   
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2.2.8 Biopsy Cell Counts 

 

Cells were collected with a striping pipette orgio® EZ-grip 0.09mm 

(Knardrupvej, Denamark) in minimal media and placed on a slide under a NIKON 

SMZ18 microscope. The media was allowed to evaporate (around 10-20 min), and 

1 µl of 70% EtOH was gently placed on top of the sample and also allowed to 

evaporate. Then 0.5 µl of Heamatoxylin was added to pigment the nuclei of the cells. 

Another 5 µl of 5% acetic acid in 70% EtOH was then added on top of the cells and 

allowed to dry. The number of cells collected during biopsy was counted under a 

microscope using a 20X objective lenses (Figure 2.2).  

 

2.3 Statistical Analyses 

 

Analyses were performed using the GenStat statistical package (19th Edition, 

VSN International, 2018; https://www.vsni.co.uk/). All proportion data, associated 

with embryo biopsy and re-expansion, were analysed using generalized linear 

models that assumed binomial errors and used logit-link functions. Terms fitted to 

these models were ‘Replicate’, ‘Herniation (No v Yes)’, ‘Instrument (Blade v Laser)’ 

and interactions between these terms. Cell and laser-pulse count data were 

analysed using the same models but assumed Possion errors. Data are presented 

as adjusted means ± SEM. 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. Biopsy cell counts. A. An 18-cell sample collected by blade biopsy from a herniated blastocyst. It is 
possible to see a high number of cells agglomerated together. B. Red cycles demonstrate were nuclei from cells 

C 

A 

C
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are in the figure a. C. An 11-cell sample collected by laser biopsy from a herniated blastocyst. Cells can be laid 
flat making it easier to count lower numbers. D. Red cycles are showing nuclei cells from laser biopsy more 
distant compared to blade sample.  

 
 
2.4 Results 

 

A total of 4,832 follicles were aspirated and 2,331 (recovery rate 48%) COC’s 

collected, of which 1,072 (78 IETS Grade 1, 281 Grade 2 and 756 Grade 3) were 

placed into maturation. The proportion cleaved of matured averaged 74% 

(796/1072) and the proportion cleaved that reached the blastocyst stage averaged 

24% (186/796). Of these blastocysts, 139 were used in this study, while the other 

47 served for training purposes. 

Embryos that had their ZP breached on Day 6 to 6.5, thus allowing herniation 

of cells, were generally easier (P=0.001) to biopsy compared to those that were not 

induced to herniated; this was independent of the instrument used (i.e., blade vs 

laser) which did not differ statistically (Figure 2.3 A). The criteria for difficulty 

concerned the number of cells recovered (with respect to the target number [5-10 

cells]) and embryo survival after the procedure. Related to the ease of biopsy was 

the fact that induction of herniation reduced (P<0.001) the time taken to undertake 

biopsy on Day 7 (Figure 2.3 B). On this occasion, however, it was evident that 

biopsy time was less (P<0.001) for the microblade compared to the laser. 

A total of 122/139 (88%) embryos re-expanded following biopsy, and this value 

did not differ between biopsy procedures (Figure 2.3 C).  However, there was a 

difference (P=0.031) between herniation and instrument which indicated that the 

proportion blastocysts that re-expanded following biopsy was greater (90%) when 

laser biopsy was undertaken on herniated blastocysts compared to the other biopsy 

combinations (66%) (Figure 2.3 D). 

The number of blastomeres retrieved was associated (P=0.014) on whether or 

not the blastocyst had herniated prior to biopsy; it also differed (P<0.001) between 

biopsy instruments (Figure 2.4). Herniation prior to biopsy led to a small increase in 

the number of cells recovered (13.7 vs 11.5 blastomeres), whereas the use of the 

laser compared to the microblade for biopsy led to a substantial decrease in the 

number of recovered cells (8.9 vs 16.1 blastomeres).  Herniation prior to biopsy also 

increased the proportion of biopsies that contained blastomeres from within the ICM 

(Figure 2.5). 
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Figure 2.3. Operational parameters associated with embryo biopsy. (A) Proportion of biopsy occasions 
classified as being easy, moderately difficult or difficult. (B) Time required for biopsy. (C) Proportion blastocysts 
that had re-expanded within 24 h of biopsy. (D) Proportion blastocysts that had re-expanded with 3 h of biopsy. 

Herniation prior to biopsy was considered easiest (P=0.001) irrespective of which instrument (blade vs laser) 
was used (A). Time required for biopsy was less (P<0.001) for herniated than non-herniated blastocysts and 
when the microblade rather than the laser was employed for biopsy (B). Proportion re-expanded blastocysts 
within 24 h did not differ between biopsy treatment combinations (C). Herniation followed by laser biopsy led to 
a greater proportion re-expanded blastocysts within 3 h (D). * Significant different between herniation and non-
herniation. ** Instrument significant different.  

 

Finally, the cumulative number of laser pulses required for the entire biopsy 

procedure was greatest (P<0.001) when laser-assisted biopsy followed herniation 

(Figure 2.6).  In fact, the application of laser pulses to perform embryo herniation, 

added to the number of laser pulses for biopsy, it is expected to be greater than for 

those embryos where the biopsy was performed by the use of the blade.  

0.0

0.5

1.0

A. Easy of biopsy procedure

P
ro

p
o

rt
io

n Easy

Moderate

Hard

Instrument          Blade       Laser     Blade      Laser

  Herniation                        No                           Yes

0

5

10

15

B. Time taken to Embryo Biopsy

M
in

u
te

s

Instrument          Blade    Laser              Blade   Laser

  Herniation                       No                                  Yes

0.0

0.2

0.4

0.6

0.8

1.0

D. Embryo re-expansion after 3hours
of biopsy

P
ro

p
o

rt
io

n

Instrument          Blade    Laser                Blade  Laser

  Herniation                       No                                 Yes

0.0

0.2

0.4

0.6

0.8

1.0

C. Embryo re-expansion after biopsy

P
ro

p
o

rt
io

n

Instrument          Blade    Laser               Blade  Laser

  Herniation                       No                                Yes



 

pg48 
 

                                                  

0

5

10

15

20

N
u

m
b

e
r 

o
f 

c
e
ll
s

Instrument          Blade     Laser             Blade    Laser

  Herniation                       No                                Yes

 
Figure 2.4. Number of blastomeres present in blastocyst biopsies. Herniation prior to biopsy increased 
(P=0.014), whereas laser biopsy decreased (P<0.001), the number of cells recovered on each occasion. *Laser 
biopsy have significant smaller number of cells in both groups.  
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Figure 2.5. The proportion of biopsies that contained blastomeres from the ICM. Herniation prior to biopsy 
increased (P<0.001) the chance of containing cells from the ICM. *Significant proportion of ICM cells.  
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Figure 2.6. Cumulative number of laser pulses required for each method blastocyst biopsy. The number of laser 
pulses applied was greatest (P<0.001) when laser-assisted biopsy followed herniation. Means with a different 
superscript differed at P<0.05.* Significant number of laser pulses in both groups. 
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2.5 Discussion 

 

In accordance with the more recent literature, we focussed on the blastocyst 

stage where TE cells can provide a sufficient number of cells to be analysed which 

have high concordance to the ICM (Tufekci et al., 2019, Victor et al., 2019, Tutt et 

al., 2021). Also, determined whether the approach influences the speed and 

precision of biopsy. Three main findings emerged from this study. Firstly, our 

hypothesis that herniated TE cells facilitate biopsy for a non-experienced technician, 

and does not lead to any obvious technical harm to the embryo, such as complete 

destruction of the blastocyst or visible embryo disjunction, is supported. Secondly, 

we identified that laser biopsy is more precise in collecting the desired number of 

cells when compared to blade biopsy, making it easier to predict the number of cells 

collected. However, herniation followed by laser biopsy was easier for the non-

experienced technician. Finally, the incidence of ICM inclusion in the section of the 

embryo herniated is increased, and this could have implications for subsequent 

embryo development and survival, although this has yet to be determined.  

 

2.5.1 Herniation vs Non-Herniation 

 

It is clear that herniation of the pre-hatching embryo at the early blastocyst 

stage facilitated the biopsy procedure by reducing the time taken compared to those 

embryos that were not herniated (Figure 2.3 A). This was mainly due to the reduced 

effort of pulling TE cells away from the ZP at the blastocyst stage while holding them 

with a pipette. Aggregated time of embryo exposure to manipulation over four hours 

is sufficient for the occurrence of molecular and morphology changes (Gordon. 

1994); for example, proteins belonging to the family of the heat shock proteins (Hsp) 

of 70 kilodaltons (kDa) are expressed as a reflection of cell stress (Pedersen et al., 

2005). These proteins are one of the first to be produced during embryonic 

development and is of great importance for cell function (Basu et al., 2002). 

Reducing the combined time of blastocyst exposure was one of the key factors to 

avoid molecular (possibly epigenetic) changes. When opening the ZP a day before 

biopsy, the speed of procedure was prioritized to reduce embryo exposure to the 

environment. For this reason we kept the petri dish lid on and ZP opening was 

performed without the holding pipette. Our method of not using a holding pipette for 

ZP drilling accelerated the process of micromanipulation, reducing the time to open 
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the ZP to less than 20 seconds per embryo. It facilitates introduction to a commercial 

laboratory setting during regular media change protocols, without significantly 

increasing the time that embryos are exposed to atmospheric conditions. Capalbo 

et al. (2014) described a non-herniation technique for biopsy of the TE without ZP 

opening prior the procedure. This study showed some benefit for the laboratory 

routine. Because the timing of biopsy for an embryo at hatching stage is critical, 

excess herniation of TE may induce arrest. However, technicians should still avoid 

excessive TE herniation. Continuous observation using time‐lapse monitoring 

technology and direct TE aspiration with non‐assisted hatching may be helpful for 

detecting and preventing early arrest (Campbell et al., 2013). Non‐assisted hatching 

has disadvantages. For example, if blastocyst collapse occurs during TE cell 

aspiration, the biopsy procedure may be difficult and be associated with a higher 

risk of losing the ICM. Furthermore, blastocyst collapse may extend the biopsy time. 

Laser assisted aspiration of TE cells was quicker in herniated embryos overall. 

However, compared to the first three replicates, the average time taken to perform 

laser biopsy in non-herniated embryos reduced by 33% in Replicate 4, confirming 

that experience improves technique speed. Blade biopsies were quick in both 

herniated and non-herniated groups. As described by Bredbacka et al. (1995), we 

made a scratch at the bottom of the biopsy dish in order to avoid embryos rolling 

during the procedure and to increase precision on cell numbers recovered. It was 

efficient in avoiding embryo rolling, but it did not help to accurately predict the 

number of cells collected.  

 

2.5.2 Sample Accuracy 

 

To collect a small number of cells from an embryo may be less invasive but 

increase the risk of amplification failure when analysing DNA (Treff et al., 2011). On 

the other hand, a higher number of cells may lead to a more reliable amplification 

but may be harmful for the blastocyst. In this experiment we found a higher 

proportion of re-expansion at 3 h in those embryos biopsied using the laser 

technique that consequently had a smaller number of cells collected (Figures 2.3. 

and 2.4).  In our study we aimed to collect between 5-10 cells from each embryo, 

following the consensus among researchers (Schoolcraft et al., 2010, Zhanhg et al., 

2016). Also, Fisher et al. (2012) found that single-cell or three-cell sample failed to 

yield enough DNA when genotyping, however the test chosen to amplify DNA has 
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an influence (Munne and Wells., 2017); the number of cells collected should be in 

accordance to the blastocyst biomass (Cimadomo et al., 2018) increasing the 

chances of a more accurate chromosomal analysis. 

Although chromosomal abnormality, a biologic event occurring at any stage of 

embryo development, can have an impact on the accuracy of diagnosis based on 

the analysis of only 5–10 cells from a blastocyst with >100 cells (Capalbob et al., 

2016), biopsy of TE cells is likely to provide a higher yield of DNA and present a 

higher accuracy compared to cleavage stage biopsy (Vera-Rodriguez and Rubio. 

2017; Treff et al., 2017). Although, retrieving a smaller number of embryonic cells 

has a less harmful effect on the embryo development (Treff et al., 2011), Cimadomo 

et al. (2018) showed that eight TE cells were necessary for conclusive DNA 

amplification after biopsy of ~9,000 embryos. Thus, the most suitable cell number 

for biopsy may be 5‐10 cells rather than 1‐5 cells, or more than 10 cells which would 

represent a larger portion of the embryo and could cause a reduction in euploid-

embryo implantation according to Neal et al. (2017). 

Blade biopsy was easy to perform, however it was more difficult to accurately 

predict the number of cells biopsied.  A higher number of cells were collected with 

blade in both herniated and non-herniated embryos compared to the laser plus 

aspiration pipette, as seen in the Figure 2.4. In accordance with de Souza et al. 

(2017), biopsies obtained from the trophoblast of a blastocyst with a microsurgical 

knife had a call rate following whole genome amplification and genotyping similar to 

that obtained with a 30- to 40-cell morula and a 50-cell bisected blastocyst, but this 

larger number of sample cells can reduce the ability of the embryo to continue to 

develop. Laser biopsy provides a more accurate number of desired cells. It was 

possible to observe the cells getting into the aspiration pipette and apply the laser 

beam in the junction of cells to be left behind with lower damaged caused to the 

cells. Biopsy with herniated embryos increases the speed of biopsy and causes no 

severe damage to the embryos.  

 

2.5.3 Inner-Cell Mass Herniation 

 

The ICM can herniate outside the ZP following micromanipulation prior to 

biopsy (Capalbo et al., 2016). However, only a small number of embryos in this 

study had their ICM herniated. We believe that the developmental stage chosen to 

puncture the ZP (i.e., late morula (IETS Stage 4) or early blastocyst (IETS Stage 5) 
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was important in reducing the incidence of ICM extrusion. Generally, ZP opening at 

early blastocyst stage can reduce the incidence of ICM herniation due to the fact 

that, at this stage, the ICM is visible allowing the technician to make the branch on 

the opposite side, once that naturally ZP hatching tend to be near to the embryonic 

pole (Negrón-Pérez et al., 2017). Even so, around 36% of embryos hatch near the 

ICM (Niimura et al., 2010). Physical damage to the ICM during the biopsy can be 

irreversible and may arrest embryo development. Also, a double ZP opening to 

avoid ICM during the biopsy, can increase the time of each biopsy and hinder 

sample collection. In our experiment approximately 24% of embryos that were in 

group III and IV had the ICM extruded. In order to avoid extra ZP opening and ICM 

damage, we collected cells during herniation, collecting TE cells from the single ZP 

gap performed a day before, thereby avoiding an increase in the time of the 

procedure. With existing techniques, when the ICM is herniated a second ZP 

opening is made to biopsy trophectoderm cells and to avoid the ICM (Rubino et al., 

2014). We simply push the TE under the ICM, thereby collapsing the blastocoele 

cavity providing more space to manage the TE through the ZP opening without 

harming the ICM.    

 

2.5.4 Supplementary Findings 

 

Re-expansion of all embryos didn’t differ after biopsy. In fact there was a 

suggestion that laser biopsy could increase re-expansion, either in those herniated 

or not, and it was higher when herniated embryos were biopsied by laser, reaching 

almost 90% re-expansion after approximately 3 hours (Figure 2.3 D). Embryo 

biopsy followed by cryopreservation and thawing, could also lead to identification of 

safe procedures that would help embryos to continue to development and improve 

hatching after implantation. It is necessary to further investigate this technique to 

ensure a high survival rate after standard cryopreservation in ethylene glycol, most 

commonly used for direct transfer practices. 

There is a sense that embryos that receive several laser pulses are not 

adversely affected, even when going from 10-20 laser pulses at 290 µw/s to 40 laser 

pulses at 400 µw/s using an infra-red indiumgallium-arsenic-phosphorous 

(InGaAsP) semiconductor diode laser (Johnson et al., 2019). In our protocol we 

applied a small InGaAsp diode laser pulse length at 164µw/s with as few pulses as 

possible in each technique (Figure 2.5). Its unique absorption characteristics in 
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water and culture media allowed for non-contact application in standard culture 

dishes and avoided mutagenicity and contamination (Davidson et al., 2018).  The 

reason for a small pulse is because the laser pulse can increase the heat emitted in 

the media (Taylor et al., 2010). Thus creating a smaller gap in the ZP, allowing a 

slower and smaller portion of TE cells to be expelled, reduces the need of rigor in 

estimating cells.  

 

2.5.5. Conclusions  

 

Herniation of TE cells help to increase the speed of embryo biopsy when laser 

assisted, but it is unpredictable to collect a desired number of cells when using a 

blade for biopsy. Also, for a non-experienced technician the performance of 

herniated biopsy helps in the reduction of time per biopsy although after a few 

sessions it is basically similar to the non-herniated laser biopsy procedure. We also 

conclude that the use of laser biopsy during the blastocyst stage represents the best 

method for incorporation in a commercial laboratory, accelerating the precision of 

biopsy for DNA analysis. More studies evaluating the speed of biopsy and viability 

after cryopreservation will support the laser biopsy for commercial applications. 
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3. CHAPTER 3. LASER BIOPSY OF HERNIATED AND NON-

HERNIATED TE CELLS ARE EQUALLY SAFE FOR BOVINE 

EMBRYOS AND HAS POTENTIAL USE IN THE COMMERCIAL 

LABORATORY 

 

3.1 Introduction 

 

Biopsy for preimplantation cytogenetic testing (PGT-A) and genetic analyses 

(PGD) has been developed as a clinical tool for increasing implantation rates and 

reducing the risk of miscarriage while helping to identify desired genetic traits in 

cattle (Mullaart and Wells. 2018). However, its effectiveness is still in dispute. There 

are different motivations to use embryo biopsy, such as selection of female embryo 

(Park et al., 2001), high reproductive traits selected by Marker assisted selection 

(MAS) (Ponsart et al., 2014, Humblot et al., 2010), better feed efficiency and other 

traits (Mullaart and Wells. 2018). In addition, there are some other concerns 

regarding the potential harm caused by biopsy for embryo development and 

implantation rate (Makhijani et al., 2021, Zacchini et al., 2017). Several studies have 

shown that the adverse effects of biopsy for PGT/PGD on embryo development and 

pregnancy rate might depend on the stage of embryo development (Zacchini et al., 

2017, Scott et al., 2013, Treff et al., 2011), and some other factors such as cell type, 

the number of cells to be biopsied, instrumentation used and embryo quality, 

(Cenariu et al., 2012, Cimadomo et al., 2018, Cimadomo et al., 2016). Studies have 

also shown that even a single TE biopsy at the blastocyst stage may cause a 

decrease in implantation rate and fetal growth (Rubino et al., 2020), while more 

recent studies have demonstrated that TE cell biopsy can be more accurate than 

early embryo stages causing lower harm to embryo development (Leigh. 2019). In 

our previous experiment (Chapter 2) we showed that the use of laser biopsy has a 

more accurate number of cells biopsied and can lead to a rapid and safe system of 

blastocyst biopsy in a commercial laboratory with embryos recovering after the 

procedure. 

Commercial application of in vitro embryo biopsy relies on the ability to perform 

it accurately within a reduced amount of time in order to avoid higher risks of 

atmospheric exposure which is toxic for embryos (Karagenc et al., 2004, Catt et al., 

2000, Harvey et al., 2007). Also, in reducing the risk of cryopreservation of embryos 
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with an opening in their ZP, IVF embryos are less resistant to cryopreservation 

compared to those produced in vivo due to the higher lipid accumulation (Sanches 

et al., 2018), where lowering the temperature can cause irreversible damage such 

chromosome and DNA abnormalities (Fuijihira et al., 2004, Arav et al., 2008). Also, 

it is debated whether the amount of laser contact with the medium and embryo can 

impact DNA. Herrero et al. (2019) stated that TE biopsy may increase the risk of 

mosaicism while Kelk et al. (2017) concluded that TE biopsy cause no harm to DNA. 

There are many studies claiming that lasers do not have negative effect on DNA 

using different sources of laser from diode to solid-state lasers and some non-laser 

systems have been used in different animal models as well as with human embryos 

(Taylor et al., 2010). 

In our previous chapter we found the optimum time, instrument and number of 

cells to be followed in a commercial laboratory system without cryopreservation of 

the embryos after biopsy. In this experiment we hypothesize that opening the ZP a 

day before the biopsy, could accelerate the procedure on the day of biopsy and 

increase survivability of these embryos that would be shortened exposed to the 

environment and consequently cryopreserved. In the present study we aimed to 

identify the easiest approach for TE biopsy in herniated or non-herniated cells from 

blastocysts, and to investigate if TE biopsy in both groups would affect embryo re-

expansion and survivability after cryopreservation in comparison with non-biopsied 

embryos.  

 

3.2 Material and Methods 

 

3.2.1 Ovaries Preparation and Follicles Aspiration 

 

Fresh slaughterhouse ovaries were collected, when Covid19 regulations 

allowed us to, from a local abattoir in Carlisle, UK, placed in a flask container at 

36°C and transported to the Paragon Veterinary Group laboratory in Penrith, UK 

about 1h away. Prior to follicle aspiration, ovaries were washed with Phosphate 

Buffer Saline (PBS) and IVF Bioscience® (Copenhagen, Denmark) washing media 

warmed to 35°C in a water bath (Grant, Cambridge, UK). A 20G 1/5 inch needle 

attached to a 20ml syringe was used to aspirate follicles between 4-15 mm in 

diameter. 15ml conical tubes were placed in a warmer rack and all aspirants placed 
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into the tube. An average of 177 oocytes were collected from each of the 7 replicates 

where 120 were put into maturation per cycle. 

 

3.2.2 Oocyte Retrieval and Grading 

 

Aspirants were then filtered in 120 ml Emcon filters (Agthech UK) warmed at 

36°C with IVF Bioscience® OPU media also maintained in a warmer water bath at 

36°C. The filter was rinsed with OPU media and poured into a 90 mm petri dish for 

searching under a 40X magnification microscope. All oocytes were collected from 

the dish with a 20 µm pipette and placed into a small 30 mm petri dish containing 

IVF Bioscience® wash media before grading and placed into maturation vials. 

Grade I oocytes were defined in those with compact cumulus investment of more 

than three cell layers surrounding the oocyte. Cytoplasm consistency and colour 

were also evaluated to determine gamete grade. Those classified as Grade II had 

a small number of cumulus layers around the oocyte, typically up to 3 layers of 

cumulus cells. Grade III COCs with fair and consistent cytoplasm, and with very low 

degradation, were also put into maturation despite having only one cumulus cells 

layer. Those oocytes that have no cumulus cells or high degradation on their 

cytoplasm, or those atretic with no cumulus compaction, were discarded.   

 

3.2.3 In Vitro Maturation 

 

Grade I, II and III oocytes were placed in 1 ml maturation vials from Boviteq 

Canada Laboratories at ~4 h following the process described in (Chapter 2) using 

the same equipment. 4 vials containing 30 oocytes each were maturated in a 

Cryologic transportable incubator (Blackbourn, Australia) at 38°C while fertilisation 

medium was incubated in a Binder® incubator at 38°C, 6.7 CO2 and 5% O2 to 

equilibrate medium for the fertilization on the next day, as described in Chapter 2. 

 

3.2.4 In Vitro Fertilisation 

 

COCs were washed 3 times in IVF Bioscience wash media® where 5-6 COCs 

were placed in each 40 µL drop of fertilisation media in a 30 mm petri dish. The 

fertilisation procedure was the same as that used in Chapter 2. In this experiment a 

semen check evaluation was performed 20 hours after fertilisation under the 
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microscope (Olympus SZ 61TR, Tokyo, Japan) to ensure semen quality. Where all 

samples were the same quality with sperms spinning and swimming forwards after 

the period.  

 

3.2.5 In Vitro Culture 

 

After 20 hrs, presumptive zygotes (Day 1) had the cumulus cells detached from 

the ZP with a 3 µl stripping pipette (RI, EZ-GripVITROMED, Wildenbruchstrasse, 

Germany), and transferred to a 14 µl drop of culture media consisting of modified 

SOF based sequential culture media (mSOF), as previously described (Nivet et al., 

2012). They were cultured in a humidified environment at 6.7% CO2 and 5% O2, at 

38°C within a Miri® incubator (Kringelled, Denmark). Cleavage was evaluated after 

72 h and embryos (Day 4) moved to 14 µl drops of culture media ‘2’ (Boviteq, 

Canada). Day 6, embryos were transferred into culture media ‘3’, and split into three 

different treatment groups across four different 30 mm petri dishes, before initiating 

the treatment. Each culture drop followed the minimal volume/embryo suggested (6-

14 µl) by the Boviteq laboratory, in order to provide sufficient nutrients for 

development. All embryos were graded according to IETS manual (2010).  

 

3.3 Treatment Groups  

 

On Day 6 post fertilization, embryos that had developed at least into the morula 

stage were identified and divided in three groups: Group Control (Con), Group II 

Laser (L), Group III Herniation + Laser (H+L). In each group, embryos were 

transferred into a 14µl single drop that allowed individually each embryo to be 

tracked. A table of identification was made in each dish for each group, allowing to 

observe the development of embryos at every assessment individually.  

Group Con 55 embryos were assigned to this group where no biopsy was 

undertaken. Group L, 55 embryos were biopsied on Day 7 post fertilization using 

our laser biopsy system (Chapter 2). Approximately 55% of these embryos were 

biopsied at the mid-blastocyst stage, and 12% and 32% were at early blastocyst 

and expanded blastocyst stages respectively. In Group H+L 51 embryos were 

assigned at the mid-blastocyst, early blastocyst and late morula stages, when the 

beginning of ICM compaction was evident. These embryos had the ZP punctured 

using 1-3 diode laser pulses (at 164µw/s) 16-20 h before embryo biopsy. All groups 
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had their diameter measured across the embryo, with crossing lines at the centre 

using the calliper settings adjusted in microns by the a RI software in the integra 3TM 

micromanipulator (Knardrupvej, Denmark) on Day 6 post fertilisation, Day 7 biopsy 

and before freezing at Day 8.  

 

3.4 Biopsy 

 

Group Con had no biopsies performed, they were assessed at the same stage 

as the other treatment groups on Day 6, 7 and 8 post fertilisation. Group Con 

blastocysts were cryopreserved on Day 8 together with re-expanded embryos from 

Group L and H+L. All embryos were punctured 1-3 times with a 240 µw/s laser beam 

to ablate the blastocoele cavity prior to freezing. In Group H+L, the ZP opening was 

perforated after transferring these embryos into the single culture drop using diode 

laser from a RI integra 3TM micromanipulator (Knardrupvej, Denmark). There was 

no necessity of holding or aspirating pipettes to perform ZP opening, the lid was 

also kept on the dish to reduce environmental exposure and increase speed of 

biopsies per embryo. Day 7 embryos were assessed and graded according to their 

morphology. The embryo and the extrusion of trophectoderm cells outside the ZP 

opening (Figure 3.1 C and D) were measured in the micromanipulator individually.  

Four embryos were placed in individual 50ul drops of culture media in a biopsy dish 

(falcon® 50mm X 9mm, BD, USA) in order to be biopsied. The biopsy was 

performed under the micromanipulator using a holding pipette Orgio® (MPH-MED-

35, USA) at 35°angle (120-150µm of diameter outer diameter and 15-20 µm inner 

diameter), and an aspiration pipette at 30°angle Orgio® (USA) (23-27 µm inner 

diameter). The aspiration pipette was washed in PVP to prevent cells getting 

attached in the internal pipette wall. Embryos were held with the Inner-Cell Mass 

cells at the 9 o’clock position when possible or on the opposite side of the extrusion 

to be biopsied. The aspiration pipette was positioned as close as possible to the 

corner of the extruded cells and a small number of cells were collected. To detach 

TE cells from the embryo, a small number of diode laser pulses were used in a small 

length of 164µw/s. Biopsied embryos were then placed in the culture dish again to 

allow re-expansion until Day 8 and then cryopreserved of biopsied embryos. In the 

morning of Day 8, embryos were cryopreserved in a slow freezing protocol in an 

ethylene glycol freezer.  
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In Group L embryos were biopsied at Day 7 post fertilization using the 

micromanipulator at 37°C. Embryos in this group had no extruded cells (Figure 3.1 

A and B) so ZP opening was performed on the day of biopsy. Embryos were held 

using the holding pipette at the embryonic pole at the 9 o’clock position and 1 to 3 

diode laser beam (164µw/s) was applied to the ZP at the 3 o’clock position in order 

to create an access point for the aspiration pipette. The aspiration pipette was 

positioned against the TE cells and a small number of cells aspirated from the 

embryo. Embryos that had their cells aspirated were placed back into the culture 

dish to re-expand overnight and be cryopreserved on Day 8.  

 

 
Figure 3.1, A. Intact ZP in non-herniated embryo before biopsy with TE cells attached to the internal wall. B. 
TE cells of non-herniated embryos detaching the ZP internal wall. C. Herniated TE cells with small ICM going 
out the ZP. D. Herniated TE cells outside the ZP with a blastocoele fluid enlarging the gap in the ZP. Blastocyst 
diameter in these images are around 104µM 

 

3.5 Cryopreservation 

 

On Day 8 post fertilization, approximately 12-18 hours after biopsy, embryos 

that had re-expanded were cryopreserved using a slow freezing process in an 

Ethylene glycol freezer Biocool® FTS system  (Pensilvania,USA) at -0.5°C/min rate. 

A B 

C D 
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Embryos were measured and blastocoele cavity was collapsed with laser beam 

before embryos were washed in holding and freezing media. No more than 18 

embryos were cryopreserved at each time to respect the time of dehydration on the 

protocol. Each well of a six well dish had a tag to identify each embryo place before 

cryopreservation. Embryos were then transferred to a dish with freezing media and 

kept there for 15 to 25 minutes before being placed in the freezer (Biocool controlled 

FTS System). They remained in the freezer for 10 minutes after seeding and 

temperature reduced at a rate of 0.5°C /min until they reached -34°C. Embryos were 

then placed into a liquid nitrogen tank.  

 

3.5.1 Embryo Thawing and Re-expansion 

 

To assess biopsied embryos after cryopreservation, we rehydrated them with 

holding (Boviteq®) media. Embryos were thawed in a 30°C semen-thaw cup 

(Dairymac, Hempshire-UK), for 30 seconds. Embryo straws were then dried with 

blue roll and the plug containing the information of them was pulled out. The back 

of the embryo straw was cut and embryos was pushed into a 90mm search dish for 

identification and consequently transferred to a 6 well dish. Using a 200ul pipette, 

each embryo was placed in a six-well dish and 50 µl of warm holding media was 

mixed together. After 1 minute, another 100 µl of holding media was added. One 

minute later, 200 µl of holding media was added to the well and each embryo was 

washed one minute later in two 100 µl drops of holding media. After the final wash 

embryos were placed in a 14µl culture drop to allow re-expansion and were 

observed at intervals of 2h until 12h, and then the next day after 24hs. After 2hours 

those embryos that expanded were kept in the culture drop of expansion until 6 

hours then cryopreserved with other embryos that were expanded at 4 or 6 hours 

after placed at the re-expansion culture drop.  

 

3.5.2 Re-Thawing and Immunostaining 

 

After re-expansion, embryos were cryopreserved for a second time to be 

immunostained with fluorescent stain 4’6-diamidino-2-phenylindole (DAPI) at the 

University of Nottingham, Biosciences laboratory.  A total number of 135 embryos 

from L, H+L and Con groups were re-thawed in Boviteq freezing medium in three 

20 µl drops before being washed and placed to incubation for 19h. Embryos that re-
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expanded were submitted to a 1%PFA PCR tube with 16 µl PBS/PVP, 1 µl DAPI 

and 0.1% Triton x100. The staining solution contained 0.1% PVP/PBS + 2 µl of 

1mg/ml of DAPI and 20 µl of 10% Triton. Afterwards, immuno-stained embryos were 

captured under the microscope and cell counting performed using Image J software. 

The Image J settings were adjusted to better identify overlapping cells with process 

of binary and filter image with 12.0 unsharp mask, revealing higher accuracy of cells 

counting. (Figure 3.2) 

 
 
Figure 3.2. Immunostained blastocysts with two different colour,Dapi=Blue and Red=SOX2 of cells that were 
identified by 8 and 16-bit, to increase the accuracy of counting . A. Immunostained embryo from H+L group with 
extruded cells outside the ZP with more blacoele fluid between both structures compared to L and Con groups. 
B. Embryo from Group L.  C. Group Con embryo. Blastocyst diamater in these images were around 98µM. 

 

3.6 Statistical Analysis 

 

Analyses were performed using the GenStat statistical package (19th Edition, 

VSN International, 2018; https://www.vsni.co.uk/). All proportion data, associated 

with embryo biopsy and re-expansion, were analysed using generalized linear 

models that assumed binomial errors and used logit-link functions. Terms fitted to 

these models were ‘Replicate’, and ‘Treatment’. Cell and laser-pulse count data 

were analysed using the same models but assumed Possion errors. Data are 

presented as adjusted means ± SEM. 

 

3.7 Results 

 

Over 7 replicates a consistent number of 120 oocytes were put into maturation 

followed by fertilization 24 hours later. Proportion cleaved averaged 53% (445/840) 

and 36% (163/445) developed to produce Grade I and II blastocysts. A total 163 

embryos were assigned to this experiment, 55 Con, 55 in the L and 51 in the H+L.  

All embryos were approximately 150 microns in diameter at Day 6. By Day 7, 

Embryos from Group H+L were smaller in size compared to those in Group Con and 

L (P<0.01) but were larger by Day 8, when the herniation extruded (Figure 3.3). 

https://www.vsni.co.uk/
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Following biopsy on Day 7, only 6% of embryos in Group H+L were completely 

hatched before freezing compared to 16% from Group Con and L. 
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Figure 3.3: Embryo diameter. A. Day 6 embryos from three treatment groups at the early blastocyst stage. H+L 
embryos were submitted to ZP opening with a 164µw/s. B. Day 7 Con and L groups expanded more (P<0.01) 
than H+L.* H+L Significant smaller 24hs after ZP opening C. Diameter of Day 8 embryos from H+L increased 
rapidly in size compared to Con and L groups; mainly due to herniation that averaged 88 microns reaching 230 
microns in embryo size after biopsy. D. Illustration of the herniation size in microns after ZP opened at Day 6.  

 

Biopsy procedure was faster in Group H+L(P<0.05) compared to Group L (2 

min38 s vs 3 min 37s)  However, during last three replicates, Group L and H+L were 

similar in time taken (2min:51s and 2min50s respectively), indicating that the 

herniation technique might not increase speed when more experience is acquired 

to perform laser biopsy. Time for biopsies at different stages of development did not 

differ (Group H+L [BL and EXBL] vs Group L [BL and EXB] of 2min37s, 2min30s vs 

3min31s, 3min37s) respectively.  

The number of cells collected during biopsy did not differ between treatments. 

The Group H+L mean 9.1 ± 0.79 cells per biopsy compared to 8.2 ± 0.91 from Group 

L. When biopsying Group H+L, EXBL embryos averaged 9.3 ± 1.33 cells compared 

to 7.2 ± 2.09 EXBL embryos from Group L. The number of cells collected during 
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biopsy of BL embryos in H+L and L group were similar at 8.4 ± 0.62 and 9.0 ± 0.57 

respectively.    

The survivability of embryos following biopsy did not differ from the Group Con, 

demonstrating that biopsy is secure and safe to perform in bovine embryos not 

causing any obvious harm to embryo expansion after thawing (Figure 3.4). The 

proportion re-expanded was not significant different. Although the Group I reached 

it maximum re-expansion by 6 h following thawing with 0.8208 ± 0.04825 re-

expanded, Group L and H+L increased between 6 to 12 hours after thawing (Group 

L, from 0.8167 ± 0.04925 to 0.8532±0.04498 and Group H+L from 0.8027 ± 0.05220 

to 0.8218 ± 0.05033). Embryos from Group Con, L and H+L had 0.8205±0.04824, 

0.8542 ± 0.04510 and 0.8410± 0.04876 re-expansion consequently after 24 h.  

Immunostained embryos did not show any difference in cell number between 

the three treatment groups (Figure 3.5). The average number of cells was 100.2 ± 

3.533, 105.4 ± 3.517 and 100.5 ± 3.472 in Group Con, L and H+L respectively. All 

groups had at least 48h of culture after cryopreservation and were thawed twice 

before immunostaining.  
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Figure 3.4: Post thaw re-expansion. A. Two hours after thawing, re-expansion was slightly higher but not 
significantly so in Group L compared to Group Con and H+L. B. A slightly higher proportion of Group Con 
embryos have achieved full re-expansion after thawing compared Group L and H+L. All groups continue to 
increase re-expansion at 4h after thawed. C. Group Con reach the full re-expansion. D All groups achieve full 
re-expansion at this point. E. Full re-expanded groups with non-significant difference, the same can be seen in 
figure F where Group L have a small proportion of the embryos higher expanded followed by Group H+L and 
Con (non-significant)  
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Figure 3.5. Number of cells present in the embryo after second cycle of re-expansion and thawing, with a more 
constant number of cells present in those embryos biopsied compared to control.  

 

3.8 Discussion 

 

The aim of this study was to ensure that laser assisted biopsy does not reduce 

embryo survivability and that it is safe to perform in the commercial laboratory using 

our system. Two main findings emerge from this study. Firstly, that embryo biopsies 

involving herniation or straight laser-assistance are equally quick in the hands of an 

experienced technician in a commercial laboratory. Secondly, that laser biopsy in 

our system inflicts no apparent harm on embryo development.  

 

3.8.1 Biopsy Speed 

 

Generally, single TE cells biopsy needs to be performed within 3 minutes 

(Capalbo et al., 2016) so it can avoid longer period of embryo exposure to the 

environment outside the incubator. This has been demonstrated to be detrimental 

to mammalian embryos (Zhang et al., 2010). In our system, the time spent to 

perform biopsy for the Group H+L was approximately, 2min 38s, considering the 

time of exposure to open the ZP on Day 6, keeping the technique below the 

maximum 3 minutes. In Group L, a longer period was taken to perform the biopsy, 

which exceeds the target to remain under 3 minutes per procedure. However, after 

the second replicate, the time spent per biopsy reduced and it was similar for Group 

L and to Group H+L; maintaining both techniques under the desired time. It is 
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evident that some procedures from Group H+L had the perfect herniation with no 

resistance when taking TE cells accelerating the biopsy to less than 1min30s, where 

Group L had a biopsy that took 11min 00s to perform. It also demonstrates that 

speed of operation with straight laser biopsy increases with experience. Capalbo et 

al. (2016) found among embryologists that about 20 procedures are needed as a 

minimum for training to perform TE biopsy when the embryologist was already 

trained at other biopsies stages. This is similar to what we have found during our 

two replicates with a total of 24 procedures in TE cells biopsy. Group L was 

comparable to herniated embryos from Group H+L once the technician was trained, 

reducing the time for positioning the aspiration pipette on the TE cells accurately, 

and being more confident to apply aspiration force in the pipette. When biopsying 

embryos from Group L, making a small hole between 20-25 µm, helped to 

accelerate the procedure. The aspiration pipette used was between 23-27 µm of 

diameter carefully enlarging the ZP hole to hold TE cells. The small gap improved 

the ability to take the sample with lower laser pulses, without breaking apart the ZP, 

the small hole prevents the embryo from coming out of the ZP when aspirating the 

TE cell, thus reducing the need of several laser beam shots to take the sample.  

Herniated TE cells help to increase the speed of biopsy for the non-

experienced technician but it is crucial that, on the ZP opening, only a small gap of 

between 10-25 µm is performed to avoid a creation of a large extrusion outside the 

ZP. In our experiment, we identified that it is common even performing small holes, 

to have a large herniation that can be sometimes as big as the embryo, reducing 

the ability to collect a more compact sample. However, when extruded cells are not 

in a large herniation the technique improved time efficiency to perform biopsy during 

the early stages of the experiment (i.e., first couple of replicates). However, as 

reported in Chapter 2, the Group H+L, had 17% of extrusions containing ICM.  

There is a hypothesis that ICM splitting could cause monozygotic twining 

during the process of blastulation (Gu et al., 2018). The chorionicity (the number of 

chorionic membranes that surround the fetuses in a multiple pregnancy) and 

aminionicity (the number of amniotic inner mebrane surrounding the foetuses in a 

multiple pregnancy) of the cells also play a significant role in fetal development after 

embryo splitting (McNamara et al., 2016). Additionally, the fate of blastocyst cells is 

already known. Two cell lines, epiblast and primitive endoderm are formed at the 

early blastocyst stage (Morris et al., 2010). Therefore, full attention should be paid 

to TE biopsy to avoid ICM.   
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3.8.2 Re-expansion 

 

In this study we found no difference in re-expansion overall among the three 

groups, enhancing our confidence with the system applied in the laboratory. Also, 

after biopsy no embryo died and 100% of the embryos assigned to the project were 

cryopreserved. All embryos were then collapsed with a laser beam pulse at the 

blastocoele cavity prior to freezing to reduce the possibility of crystal formation and 

consequently cell damage (Mandawala et al., 2016).  

Group L had a slightly higher proportion of re-expansion after two hours 

compared to Group Con and H+L (0.2391 vs 0.1894 and 0.1855) (Figure 3.3 A), 

The shrunken blastocyst requires some time to seal and fill blastocoel (Harper et 

al., 2012, Mc Arthur et al., 2005). Due to the decreased pressure, when collapsing, 

it can alter integrity of tight junctions, causing morphological changes and cell loss, 

as tight junctions are essential to the differentiation or polarization of epithelial cells 

(Cockburn et al., 2010). Nevertheless, in our biopsies, Group L started to re-expand 

earlier but by 24 hours a similar proportion had re-expanded across all three 

treatment groups (Figure 3.3 F). This could also be associated with the smaller 

number of cells retrieved from Group L biopsies compared to Group III (Lauri et al., 

2013), and due to the fact that biopsy can assist embryos to expand and hatch as 

in laser-assisted hatching (Hammadeh et al., 2011). Between the three groups we 

achieved an average re-expansion rate of 83.6%, embryos that fail to re-expanded 

were considered dead. Therefore, either biopsy technique can be used to collect TE 

cells for DNA analysis, both appears to be safe for embryo development.  

 

3.8.3 Number of Cells in the Embryo After Immunostaining 

 

The number of cells collected by biopsy is important.  The general consensus 

is that around 10 cells will yield sufficient DNA for amplification using standard 

methodologies, but also that the number of cells collected in a biopsy needs to be 

limited according to the biomass of the blastocyst (Cimadomo et al., 2018). In this 

experiment we aimed to collect around 10 cells from all embryos (estimated at the 

time of biopsy by observation without actually counting the cells; but then counting 

them retrospectively when immunostained after cryopreservation).  
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We counted the number of cells present in the embryos after staining them 

with DAPI and found no significant difference in the number of cells present in the 

embryos from all groups, despite embryos been biopsied. Mammalian embryos 

before implantation average 100µm and have about 50-100 cells (Eckert and 

Fleming. 2008), where bovine have approximately between 80-200 cells at this 

stage (Valadão et al., 2018). The proportion of cells in all groups was over 100 cells 

(100.2, 105.4, and 100.5). We found no difference in the number of cells present in 

embryos from all groups (Figure 3.5). Interestingly biopsied embryos presented 

equal or similar number of cells from those in Group Con. There is no evidence in 

the literature that embryo biopsy increases the number of cells in an embryo, raising 

the possibility to further investigate the potential increase in cell number after TE 

biopsy. We associate the similar number of cells with the fact that Group II and III 

were exposure for two thawing cycles totally 48 hours which was enough time to 

allow compensation in cell number. 

 

3.9 Conclusions 

 

The application of laser biopsy procedure either in herniated or non-herniated 

embryos take a similar period of time to be performed’ also that both techniques are 

safe and represent an efficient method to perform TE embryo biopsy in a 

commercial laboratory. Although herniated embryos from Group III are initially a 

faster approach to perform TE biopsy, after approximately 20 procedures a non-

experienced technician has the ability to equally perform biopsy between herniated 

and non-herniated blastocyst embryos. 
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4. CHAPTER 4. EFFECTIVENESS OF LASER ASSISTED HATCHING 

TO INCREASE THE HATCHABILITY OF CRYOPRESERVED 

EMBRYOS. 

 
4.1. Introduction  

 

Despite improvements to in vitro embryo production (IVP) and transfer, 

implantation rates in cattle remains low. It has been estimated that between 50-75% 

of bovine blastocysts fail to implant following transfer (Valadão et al., 2018). The 

inability of an embryo to hatch is one of the main reasons for implantation failure 

(Seshagiri et al., 2009). The ability of an embryo to develop and implant depends 

on gamete quality such chromosomal constitution, and the quality of the cytoplasm 

(Huisman et al., 2000).  Although morphologic grading is widely used in animal 

reproduction today to select embryos, it does not represent embryo quality with 

certainty and many of lower grade embryos that are transferred have a lower 

pregnancy rate (Hasler et al., 2001, Erdem et al., 2020). 

Capability to hatch after transfer is a prerequisite for implantation; the embryo 

needs to attach to the uterine wall and initiate placentation (Valadão et al., 2018). 

This process occurs following the increase of blastocoelic pressure in the blastocyst 

(Bergström et al., 1972, Lopata et al., 1989). The capability to hatch is poor if the 

ZP is triggered into a process called “hardening” (ZPH). This is characterized by an 

increased resistance of the ZP to proteolytic digestion not by its stiffness. 

Mechanical forces applied to the ZP lead to ZPH (Papi et al., 2010). These are 

forces applied when pipetting and in the pressure used during an OPU session. ZPH 

naturally happens to protect the gamete from polyspermy by changing the properties 

of ZP after the sperm penetration in the previteline space. ZPH occurs within 

minutes upon syngamy encapsulating the oocyte, preventing any other sperm from 

penetrating the egg (Körschgen et al., 2017). Embryonic and endometrium enzymes 

are essential to the embryo to hatch, (O’Sullivan et al., 2002). One important 

mediator to help embryos to hatch is Prostaglandin (PG) E2; levels of which are 

higher in better quality embryos (Boruszewska et al., 2019). Magata et al., (2019) 

found that embryos with slower development during cleavage had a lower 

hatchability compared from those with normal cleavage. It is known that timing of 

cleavage is a parameter for embryo quality (Lechniak et al., 2008). Increasing 
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evidence indicates that one of the causes of lower implantation with poorer graded 

embryos might be associated with the inability to hatch and implant. 

ZPH can also be triggered during vitrification (Wiesak et al., 2017), mainly due 

to calcium used during cryopreservation and fertilisation medium (Gualtieri et al., 

2011). The absence of calcium in the media leads to improvements in sperm 

penetration in the ZP (Fujiwara et al., 2010). However, when oocytes are exposed 

to dimenthylsulphoxide, ethylene glycol and propylene glycol (Cryoprotectants) 

there is an increase in intramembrane calcium levels resulting in ZPH (Marques et 

al., 2018, Tian et al., 2007). Ethylene glycol for instance is a common cryoprotectant 

used in bovine practices to cryopreserve embryos.  

Cryopreservation of the embryos in an IVP system allow embryos to be thawed 

and transferred whenever suitable recipients are available, improving convenience 

and reducing costs of a synchronisation protocol. The decrease in pregnancy rates 

can be approximately 10 to 13% between fresh and frozen-thawed bovine embryos 

of comparable quality grades (Hasler et al., 2001), but poor-quality embryos are 

known to produce much lower pregnancy rates compared to higher quality grades 

(Kara et al., 2020); and are frequently discarded resulting in considerable economic 

loss. Taniyama et al. (2011) reported an increase in pregnancy rate after assisted 

hatching of poor-quality embryos. Nevertheless, Pryor et al. (2011) concluded that 

laser-assisted hatching (LAH) by its own is beneficial to embryo development 

following cryopreservation. Nevertheless, other studies have found LAH to be 

beneficial for embryo hatching and implantation (Hsieh et al., 2002, Balaban et al., 

2006, and Ueno et al., 2016). Conversely, some studies indicate that LAH produces 

no significant improvement in embryo hatching (Schimmel et al., 2014). 

Currently three LAH methods are used clinically according to the degree of 

invasiveness: Firstly, total ZP opening (a small gap across the inner membrane and 

external ZP layer is performed); secondly, partial ZP opening (where only a small 

proportion of the external area of the ZP is thinned); and thirdly, laser assisted 

thinning of a large portion of the outside part of the zona pellucida to facilitate 

hatching (a procedure known as quarter laser assisted hatching) (Davidson et al., 

2018, Petersen et al., 2005)  

Nowadays the use of LAH is not extensive in commercial bovine IVP 

laboratories. Firstly, due to the cost of reliable equipment for laser application and 

secondly because of the need of trained embryologists to undertake 

micromanipulation.  In the current study we aim to identify whether LAH improves 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169924/#r5
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7169924/#r5
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hatchability of cryopreserved embryos during the first 48 hours following thawing in 

a commercial laboratory setting.  

 

4.2 Material and Methods 

 

4.2.1. Ovary Collection and Follicle Aspiration 

 

Due to pandemic restrictions, slaughterhouse ovaries were collected on only 

three available days from a local abattoir (Carlisle, UK) and the protocol was 

followed as it is in Chapter 3. 

 

4.2.2. Oocyte Recovery and Grading 

 

Contents in the 50ml tube were filtered in a warmed filter cup, held at 36°C 

with IVF Bioscience® OPU media. The filter was rinsed three to four times until the 

fluid in the filter cup remained colourless. Subsequently, the fluid was poured into a 

90 mm petri dish on a warm stage platform at 37°C for searching under a 40X 

magnification microscope (Nikon SMZ10- Japan). All oocytes were collected from 

the dish and placed into a small 30mm petri dish containing IVF Bioscience® wash 

media with antibiotics before grading and placed into maturation.   

Grade I oocytes were defined as those oocytes with a compact cumulus 

investment with more than three cell layers of cumulus cells surrounding the oocyte; 

cytoplasm consistency and colour were evaluated to determine the gametes’ grade. 

Grade I COCs were colour consistent and had no white spots in the nucleus or any 

minimal degeneration in the surrounding layer. Those classified as Grade II were 

also carefully evaluated on their morphology but with a small number of cumulus 

layers around the oocyte, some visible inconsistent cytoplasm or nucleus 

homogeneity. Grade III COCs with good and solid cytoplasm were put into 

maturation despite having only one cumulus cells layer and uneven nucleus colour. 

Those oocytes that had no cumulus cells or degradation of their cytoplasm were 

discarded.  
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4.2.3 In Vitro Maturation 

 

Grade I, II and III COCs were placed in 1 ml maturation media vials with round 

bottom from Boviteq Canada Laboratories at ~4 h after collection from the 

slaughterhouse. Groups of 30 COCs were matured for 23 h in HEPES buffered 

TCM199 media supplemented with 10% (v/v) FBS, 4 mg/ml fatty acid free BSA, 0.2 

mM pyruvate, 50 µg/ml gentamicin, 5 µg/ml FSH, 0.5 µg/ml LH, 1 µg/mE 2). COCs 

were incubated in a Cryologic transportable incubator (Blackbourn, Australia) at 

38°C. Fertilization dishes were prepared with fertilization media (Tyrodes lactate 

media supplemented with 0.6% (w/v) fatty acid free BSA, 1.5 µg/ml heparin, 0.2 mM 

sodium pyruvate, 0.08 mM penicillamine, 0.04 mM hypotaurine, 10 mM epinephrine, 

50 µg/ml gentamicin) and incubated in a Binder® incubator at 38°C, 6.7 CO2 and 

5% O2 to equilibrate medium for the fertilization on the next day.   

 

4.2.4 In Vitro Fertilization 

 

After 22 hours of IVM, COCs were washed 3 times in IVF Bioscience wash 

media®. Five COCs were placed in each 40 µL drop of fertilisation media in a 30 

mm petri dish. Prior to fertilization, semen was prepared using a gradient of percoll 

45% and 90% (BovipureTM , Nidacon, Mölndal, Sweden). Semen from the same bull 

(Boldi Emphasis) was used for this experiment at 0.5 X106/ml concentration in a 

0.5ml straw. Frozen semen was thawed in a 37°C semen-thaw cup (Dairymac, 

Hempshire-UK per 45s and placed in a small PCR. The sperm was evaluated prior 

fertilisation to ensure motility. After certifying as prior described in Chapter 3, the 

aliquoted sperm was added to the oocytes in the fertilisation drops containing 5 µL 

aliquot of 1% heparin and 2 µL of PHE. Fertilisation dishes were placed into a 

Binder® incubator (Tuttlingen, Germany) at 38°C humidified atmosphere with 6.7% 

CO2 and 5% O2. 

 

4.2.5 In Vitro Culture 

 

Grade I, II and III COCs were placed in 1 ml maturation vials from Boviteq 

Canada Laboratories at ~4 h following the process described in Chapter 3. 
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4.2.6 Treatments  

 

On Day 7 post fertilization, embryos were placed under a 40X objective 

microscope and assessed morphologically. Only Grade 1 and 2 blastocysts (BL, 

Stage 6) and expanded blastocysts (EXBL, Stage 7) were assigned to either the 

treatment or control group.  

Treatment group: Embryos were kept in the culture dish with lid on and were 

placed under the micromanipulator RI (as described in Chapter 1). When required, 

a round glass pipette was used to turn blastocysts into the desired position. Their 

zona pellucida was then opened horizontally with 2 or 3 diode laser beams at 

120µm/s. ZP opening was performed on the abembryonic pole near the TE cells 

with approximately ¼ of distance from the ICM in a total ZP opening. TE cells and 

Blastocoele fluids (BF’s) were intact in all 88 embryos.  

All embryos were cryopreserved immediately afterwards using the protocol 

described in Chapter 3. They were graded and labelled, then frozen in a direct 

transfer system of cryopreservation in ethylene glycol at -0.5°C /min and kept in a 

nitrogen tank. Embryos were dehydrated with holding medium (Boviteq Canada) 

before freezing and subsequently washed four times in frozen medium before 

loading into straws. 

 

4.2.7 Thawing and Expansion/Hatching Evaluation 

 

Frozen embryos were thawed in a semen-thaw cup (Dairymac, Hempshire-

UK) at 30°C per 30 s. The straw containing the embryo was dried with blue roll and 

using a scissors, the back of the embryo straw was cut. Embryos were pushed with 

a rod into a 90 mm search dish. Using a 200µl pipette, the embryo was placed in a 

six-well dish and 50µl of warm holding media (Boviteq® Canada) was mixed 

together, after 1 minute, another 100ul of holding media was added to the embryo. 

One minute later, 200µl of holding media was added to the well and after 1 minute 

each embryo was washed in two 100µl drops of holding media. After the final wash, 

embryos were placed in a 14µl culture drop to allow re-expansion after thawing and 

were observed for an interval of 6, 24, 30, 40 and 48 h.  
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4.3 Statistical Analysis 

 

GenStat (19th Edition, VSN International, 2018; http://www.vsni.co.uk/) was 

used for the analysis. Generalized linear models with binomial errors and logit-link 

functions were used to analyse all proportion data associated with embryos hatching 

and hatched. This model was fitted with the terms 'replicate' and 'treatment'. Data 

are presented as adjusted means ± SEM. 

 

4.4 Results 

 

Overall, three replicates were performed undertaking COC classification and 

embryo development (Table 1.6), before blastocyst stage on day 7 was determined 

(Table 1.7).  

 

Table 1.6 Number of oocytes and COC’s quality  

Number of Oocytes GI % GII % GIII % Cleavage % Embryos% 

330 17 44 39 70.2(231/330) 38(88/231) 

 

Table 1.7 Stage of embryo development assigned to each group 

Number of 

Embryos 

BL % EXBL % BL 

LAH % 

EXBL 

LAH % 

Control 

BL % 

Control 

EXBL % 

88 42 (37/88) 57.9(51/88) 48.6(18/37) 50.9(26/51) 51.3(19/37) 49(25/51) 

 

The proportion of viable embryos following 6 h thawing was 0.941 ± 0.0398 

and 0.883 ± 0.0760 for EXBLs from assisted hatching (AH) and Control groups 

respectively; while the proportion viable BLs from AH and Controls were 0.922 ± 

0.0524 and 0.824 ± 0.1091 with no difference between groups or embryo stage 

(Figure 4.1A). By 6 h, the proportion hatched embryos was greater (P=0.011) for 

EXBL compared to BL and following AH (P = 0.007) compared to controls (Figure 

4.1B). These treatment-group differences were broadly maintained up to 30 h post 

thawing (Figure 4.1C, D), but treatment differences were not evident thereafter 

(Figure 4.1E, F).  Numerically, by 48 h post thaw, the highest proportion of hatched 

embryos were for EXBL that had undergone AH (0.892 ± 0.0597).   

The pattern for embryos that had completely hatched and out of the ZP (Figure 

4.2) matched that for hatching and hatched embryos presented in Figure 4.1, 

although effect of stage of embryo development (i.e., BL vs EXBL) was less evident. 
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A positive effect of AH was evident (P=0.007) up to 40 h post thaw (Figure 4.2D). 

There was an indication (P=0.059) that the portion of embryos that failed to hatch 

after 48 h was reduced following AH (Figure 4.2F).  
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Figure 4.1. Proportion of embryos that were hatching or had hatched at different time points following thawing. 

Proportion of viable embryos after 6 h A. Proportion embryos hatching or hatched after 6 h B, 24 h C, 30 h D, 

40 h E, and 48 h F.  
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Figure 4.2. A. Proportion embryos hatching or hatched after 24 h B, 30 h C, 40 h D and 48 h E. Finally, the 

proportion embryos that failed to hatch after 48 h. 

 

4.5 Discussion 

 

The current study evaluated the ability of LAH to increase the proportion bovine 

BL and EXBL that hatched at different time points following cryopreservation in 

ethylene glycol. The main finding to emerge from this study was the tendency of 

LAH embryos to hatch faster during the first few hours compared to the control 
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group, confirming its significance at 40 hours after thawing. Although the number of 

hatched embryos did not differ after 48 hours between both groups, there was also 

a tendency for embryos to die because of their inability to hatch from the ZP; and 

LAH helped to reduce this proportion (Figure 4.2E). 

 

4.5.1. Faster Hatching in LAH Embryos 

 

LAH promotes a rapid release of the embryo from the ZP derived by bovine 

IVP. The presence of a complete artificial gap in the ZP facilitates hatching. The 

proportion of embryos that start hatching during the first 6 hours was significant 

higher in those at the expanded blastocyst stage from the LAH group (Figure 4.1 

B). This can be accredited to the development of good quality embryos that develop 

faster compared to lower quality embryos associated with aneuploidy; and also to 

poorer quality embryos that when assisted improve hatchability (Campbell et al., 

2013, Chawla et al., 2015, Magata et al., 2019). 

In our experiment we prioritized blastocyst and expanded blastocyst stage 

embryos in order to increase the accuracy of the position for LAH. According to 

Negrón-Pérez & Hansen (2017) a higher number of embryos start hatching at the 

abembryonic pole (i.e., the opposite side of ICM position). This was the chosen area 

to undertake LAH. It not only to avoid direct laser beam contact with the ICM, but it 

also reduces heat generated in the procedure. A larger number of pulses in a larger 

laser length may increase medium temperature up to 366ºC (Douglas-Hamilton and 

Conia. 2001). We aimed at a lower time in the TE cell using a 120mW with 2ms 

duration diode laser pulse to undertake LAH. Pulse durations over 5ms has been 

shown to increase temperature by over 160°C when 100mW laser power was 

applied. To avoid damage to the embryos it is preferred to secure the diode laser 

lower than λ 1,480nm. (Hartshorn et al., 2005, Hsieh et al., 2002); that is about 

148mW, but most important is ensuring the time is less than 5ms.  

LAH was cautiously applied, thereby avoiding any TE cells. This technique has 

been demonstrated to allow complete hatching compared to partial or ZP thinning. 

It has been reported, using time-lapse imaging in a mouse model, that zona thinning, 

unlike partial hatching, does not facilitate hatching but results in an increased 

incidence of multiple hatching sites and incomplete hatching (Schimmel et al., 

2014). It is important to remember that the inner pressure caused by the embryo 

can help the ZP to break but most important is that ZP hatching is mainly 
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characterised by the enzymes that work to facilitate hatching.  After 30 hours the 

proportion of control group embryos hatching was smaller than EXBL embryos LAH 

(Figure 4.1 D), Morishita et al. (1993) suggested that protein synthesis in the 

hatching embryos is higher than in the embryos that failed to hatch. Furthermore, 

the TE secretes trypsin-like substances, plasmin, glutamine, insulin and epidermal 

growth factor, which are products of amino acids. Protein synthesis in embryos is 

considered a critical factor in blastocyst hatching. 

Embryos were produced in vitro using conventional medium (Boviteq® 

Canada). Medium composition is undeclared but fetal calf serum (FCS) is added 

during maturation and is likely to contain calcium. Calcium is one of the major 

components that leads to ZPH.  Cryopreservation in ethylene glycol could trigger 

ZPH as well (Dobrinsky. 1996). Both elements that could trigger ZPH were present 

in the experiment and in our commercial laboratory system. We could increase the 

proportion of embryos to fully hatch compared to those in the control group (Figure 

4.2 C). The LAH before cryopreserving BL and EXBL embryos accelerates hatching.  

 

4.5.2 Re-expanded Embryos Unable to Hatch 

 

An interesting finding in this experiment arose when a proportion of the 

embryos in both groups achieved full re-expansion after thawing but were unable to 

hatch. These embryos formed a blastocoele at timepoints when they began to 

degenerate and they were effectively dead by 48 hours. We also identified a small 

proportion of embryos that were trapped in the ZP following LAH compared to the 

group control (Figure 4.2 E).  

 

4.5.3 Summary 

 

In Summary LAH is a safe and rapid procedure to perform, however there was 

no difference in the proportion of embryos that hatched after 48 hours. The approach 

can accelerate hatching. Good and fair quality EXBL and BL embryos can benefit 

from LAH to accelerate hatching in a commercial bovine laboratory setting. This 

could lead to improved pregnancy rates following embryo transfer, but this awaits to 

be determined. 
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5. CHAPTER 5 GENERAL DISCUSSION  

 

5.1 Project Outcomes 

 

In accordance with our hypothesis, laser biopsy of herniated TE cells 

increased the speed of the procedure in a commercial bovine IVP laboratory setting. 

Herniated TEs are sometimes used for biopsy in humans (McArthur et al., 2005) but 

not used at a commercial scale in cattle. We found that the technique requires less 

sophisticated skill with regard to laser biopsy compared to non-herniated embryos 

irrespective of whether a blade or laser was used. Working with herniated TEs is 

relatively straightforward. We found that it’s easier and quicker to place the embryo 

in the best position and recover a consistent number of cells. Laser biopsy is a safe 

approach for commercial embryos and did not reduce the proportion of embryos that 

survived and re-expanded. Non-herniated TE biopsy requires more refined work. 

The biopsy requires to be detached from the ZP and can lead to the collapse the 

blastocoele cavity making it harder to identify the TE from the ICM; thereby 

increasing the time required (Aoyama et al., 2020). It is also possible to detach the 

TE by the application of medium with a fine pipette in the periviteline space creating 

a gap as reported by Capalbo et al. (2014) and Aoyama et al. (2020); but this 

requires greater technical skill.  

To allow herniation on Day 7 it was necessary to assess the embryos one day 

prior to biopsy. However, on Day 6 there was a scheduled medium change when all 

embryos were assessed. Herniated embryos received a higher number of laser 

pulses compared to non-herniated embryos and have the risk of medium 

temperature to rising which could induce epigenetic changes (Honguntikar et al., 

2017), despite the fact that embryo development might not be affected (Taylor et 

al., 2010). Also, the size and position of the ZP opening was crucial to allow a 

precise number of cells to be extruded.  

 

5.1.1 What was Different about this Project?  

 

The project was performed in the commercial laboratory using standardised 

protocols so that it could be incorporated in practice. In the Industry embryologists 

have to integrate learning and new techniques/skills with ongoing protocols. 

Normally there is a group of people with specific roles and the process is undertaken 
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quickly to avoid adverse embryo exposures. When undertaking biopsies, a few 

things were considered such as new dish preparation during routine work and 

equipment calibration prior biopsy (where the laser needs to be calibrated before 

each cycle (day)). These procedures increase the cumulative hours of work.  

 

5.1.2 Economic Aspects in a Commercial Laboratory 

 

Despite the benefits of the laser biopsy the laser and associated equipment 

represents an expensive investment for a small laboratory. A micromanipulator 

requires servicing annually to ensure its integrity and operation. The diode laser has 

an operational lifespan of between 25,000 to 50,000 hours. It is therefore important 

to identify the return on investment when applying such procedures in a commercial 

laboratory. Further larger-scale laser applications are therefore required to balance 

this investment. Selection of high gEBV embryos associated with low levels of 

chromosomal abnormalities represents one such key application (Mullaart and 

Wells. 2018, Mclean et al., 2020).  

On the other hand, the microblade has the potential to perform the procedure 

but potentially at lower cost. It is also a fast approach but it is not as precise as laser 

biopsy and requires more experience in order to develop a high-throughput system 

that avoids collecting excess cells and compromising embryo development. 

However, biopsy at any scale prevents embryos from being exported. Current 

regulations do not accept embryos with incomplete ZP due to possible disease 

transmission (Mapletoft. 2018), thereby reducing the market for export of high 

quality and genomically evaluated embryo.  

 

5.1.3 Embryo Survival Following Biopsy 

 

We found no difference in embryo survival following biopsy by herniation or 

non-herniation and cryopreservation. We conclude that laser biopsy of either 

herniated or non-herniated TE is the easier method to rapidly learn without 

compromising embryo integrity; an observation consistent with others (Oliveira et 

al., 2017, Turner et al., 2019). Normally farmers express concern in discarding low 

quality embryos if they have any potential recipients, and they are likely to transfer 

poor quality embryos. We found no difference in embryo survivability after laser 

biopsy in comparison to blade biopsy and non-biopsied embryos. It can be attributed 
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to the minimally invasive nature of this procedure and the precise thermal control of 

the micromanipulator (Wheat et al., 2014).  

 

5.1.4 Future Considerations for Embryo Biopsy 

 

Further applications of TE laser biopsy would benefit from a formal return on 

investment considering the cost of preparing recipients for embryos prone to fail and 

technician transfer fees. Early embryo selection (based on gEBVs and/or aneuploidy 

screening) may of greater interest to UK cattle breeders once new incentives for 

livestock production materialise (Gov UK, 2020, AHDB, 2020). There are 6.9 million 

female cattle in the UK (Defra farming statistics. 2021). Selection within 1.9 million 

dairy cows with a replacement rate of 30% could increase returns by 

£20/heifer/annum or £11.3 million pa. The genotyping of TE cells could accelerate 

cattle production efficiency across the UK, moving towards achieving the plan of net 

zero CO2 by 2050 (UNFCC, 2015).   

The commercial application of laser biopsy can also benefit the earlier 

selection of bulls. The use of bull semen is today the most used reproductive 

technology where the field is expected to reach USD 5.86 billion by 2027 (Size, 

2021). A few years ago the selection of a bull was entirely depended on the proven 

history of a substantial number of daughters, what could take up to 7 years to reach 

80% reliability. Today a newly born calf can start life with 70% reliability based on 

DNA analysis. DNA genotyping test can be performed from embryo biopsies, further 

advancing the onset of decision making and avoiding the birth of unwanted calves.  

 

5.2 Laser Assisted Hatching (LAH) 

 

LAH is a relatively straightforward technique and easily applied in the 

commercial laboratory.  We had no difficulty in implementing the technical aspects 

of LAH. However, there are several incidents recurrent from a small ZP opening 

such as abnormal expansion of the embryo, trapping phenomena, with only few TE 

projections outside the ZP, and incomplete zona hatching (Alteri et al., 2018). 

However, we encountered no such incidents. On the other hand, we found a higher 

proportion of embryos following LAH hatch and hatching earlier. Earlier hatching 

could overcome the challenge of a slightly asynchronous uterus. From our data we 

predict a potential increase of 6% pregnancy rate (following transfer). Also, the 
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possible LAH could benefit low grade embryos, reducing number trapped in the ZP, 

leading to higher PR in the field. 

 

5.2.1 Application of LAH in the Field  

 

We currently have agreed a contract with interested partners to progress our 

investigation of LAH embryos to consider ET under field conditions. We will provide 

a LAH service for OPU- IVP embryos and collect field data from pregnancy 

diagnosis.  

 

5.3 Final Conclusion 

 

We conclude that the application of laser biopsy following TE herniation is a 

safe and precise option to be introduced to a commercial laboratory and that this 

can be followed by laser biopsy in non-herniated embryos once some experience is 

acquired. We also conclude that application of LAH has the potential to speed up 

the hatching process of embryos and may help embryos to implant. LAH is a safe 

and quick procedure to adopt in order to potentially improve pregnancy rates 

following ET. 
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APPENDIX 1:  

 

Table A1: Demonstrate the number of viable embryos flush in beef and dairy 

cattle donors along the years 
Embryos per Flushing Breed Article 

6.8 Holstein (Lohuis et al 1993) 

7.4 Beef cattle (Villanueva et al 1995)BeefIS 

5.8 Guzera (Penna et al 1998) 

6.3 Holstein Heifers (Sartori et al 2003) 

5.6 Holstein Heifers (Ax et al 2005) 

7.9 Guzera (Bos indicus) (Neto et al 2005) 

11.5 Guzera (Bos Indicus) (Neto et al 2005)Beef** 

8.3 Limousion (Neto et al 2005)  

12.7 Limousin (Neto et al 2005)Beef** 

9.8 Nelore (Bos Indicus) (Baruselli et al 2006)Beef! 

8.6 Ayshire and Holstein Frisian  (Korhonen et al 2012) 

Beef** shown higher embryo recovery rate by double flushing, after finishing flushing 1L of media was filled in 
the whole uterus to a second flush. BeefIS, a selection of donor to reduce inbreeding was prioritized. Beef! 

Average between 2 protocols that did not differ (CIDR+7 days or 7.5 days, pLH day 8 and AI 12 to 24hs later) 
were combined in the results. 

 

Table A2: Several studies demonstrating the number of oocytes collected after OPU 
and blastocyst rate from the number of oocytes put into maturation 

OPU 
Follicles 

Aspirated 

Oocytes 

retrieved 

Into  

maturation 

Blastocyst 

Rate  
Author 

133 - 818 659 29% (Heyman et al 2003) 

171 - 980 844 34.97% (Heyman et al 2003)a 

21 564 330 153 - (Petym et al 2003)b 

32 792 369 191 - (Petym et al 2003) 

656 - 20,848 15,747 34% (Pontes et al 2011)c 

- 3234 1241 152 32.2% (Reis et al 2002)d 

25 - 743 743 23% (Lopes et al 2006)e 

6 - 66 35 34% (Ruiz et al 2013)f 

a OPU performed in cloned and twins cows bos Taurus with the use of  Crestar to stim program b-Two different 

systems were used, continuously(OPU performed through the period of OPU proposed) and 
discontinuously(OPU restrict between day 0 and day 12),  of OPU to evaluate oocyte recovery and ovary effect 
in bos taurus non-stimulated. c OPU in a huge scale Bos indicus non-stimulated, d- Bos Taurus Simental cows 
had in vivo maturation of oocytes between OPU session, a 4-week rest period between embryo collection and 
the first aspiration procedure and, following the second OPU, a 6-week rest period before the next 15-week 
cycle began Stimulated. e- Different stage of lactation cows from 3 farms are analysed together, all oocytes 
retrieved including grade IV were put into maturation. f- 2 bos Taurus dairy cows had OPU followed pregnancy 
non-stimulated.  

 

 

 

 


