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Abstract

New developments in theoretical approaches to calculating electrostatic inter-

actions between charged polarisable particles are presented and applied to a

wide range of charged systems to test the versatility of the solution. Here, the

theory behind the expansion of the many-body polarisable electrostatic solution

(Lindgren et al., 2018) has been expanded to include non-homogeneous surface

charge densities in the form of point charges, and also the introduction of

external electric fields. A wide range of trends are explored, along with testing

of the implementation of this new development. The model is then applied to

applications that test the model against a wide range of experimental data,

including: the atmospheric physics involved with cloud formation in the upper

atmosphere; the aggregation of bipolar pharmaceutical aerosols found in dry

powder inhalers; the self-assembly behaviour of bipatchy microcolloids; and

the study of the role of counterions in the spontaneous formation of dimers

between hydrophilic macroanions in solution. The model displays its robustness

not only by providing solutions to problems on multiple length-scales (nano-

and meso-scale in this work), but it also handles a range of mediums with

both systems in solution and in vacuum/air are studied. The work is finally

concluded, with a host of scenarios provided as possible future work.
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Chapter 1

Introduction

Electromagnetism is the branch of physics concerned with the study of the

electromagnetic force—the physical interaction that occurs between electrically

charged particles. The electromagnetic force is propagated via the electromag-

netic field, which includes contributions from both electric and magnetic fields.

The electric field component is generated by the presence of static charges in

the system (electrostatics) whereas the magnetic component comes from the

presence of moving charges (electrodynamics). The electrical phenomenon is

the result of a fundamental property: the presence of electric charge in matter.

While most matter is generally neutral, it is possible for it to gain electric

charge through atoms either possessing a deficit (positive) or excess (negative)

of electrons. The electromagnetic interaction is the interaction acting between

electrically charged particles and, along with gravity, governs the majority of

interactions seen in day-to-day life.

Electric phenomena have been observed and been the cause of wonder for

millenia, with examples such as thunder and lightning, caused by a huge build

up of charge in clouds, being thought to be caused by the weapons of angry

gods such as Zeus’s thunderbolt to punish ancient Greeks [1] or Thor’s hammer,

Mjölnir, in Norse mythology [2]. Due to the perception of lightning being

caused by a higher power, these events were considered to be sacred; this led

1
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to many holy sites across the globe being constructed at the place of lightning

strikes.

The effects of electric charges at rest (electrostatics) have been known about for

much longer than electric currents (electrodynamics). Credit for the coining of

the terminology can be traced back to the times of Thales of Miletus in ancient

Greece (c. 600 B.C.), who is the earliest known person to document the effects

of static electricity [3, 4]. The word “electricity” is derived from the word

“elektron”, the Greek word for amber. He noted that when a piece of amber

is rubbed with cloth or wool, it would begin to attract small, light objects

such as dust or hair. He also noted that trying to remove these fibres generally

made the situation worse, leading early philosophers to wonder about the cause.

In the 17th century, Jean-Antoine Nollet—as well as discovering the phe-

nomenon of osmosis in natural membranes—produced a wide range of ex-

perimental demonstrations which gave a deeper insight in to the effects and

behaviour of electricity; one such demonstration was his experiment named

“Electric boy”, where a young man was suspended from the ceiling using an

insulation material (such as silk cords) and electrified [5]. It caused the man’s

body to accumulate charge, causing objects to become attracted to him, and

close proximity to a grounded person would lead to sparks. He also performed

an experiment in 1746 to test the speed of the propagation of electricity. He

gathered around two hundred monks in a circle with a circumference of about

a mile, connected each with pieces of iron wire, and then discharged a battery

of Leyden jars through this human chain; each man reacted to the electric

shock at practically the same time, leading to his conclusion that the speed

was “very high” [6]. Nollet was also the first to report on the electrospraying

phenomenon in 1750, when he noted the aerosolisation of water flowing from

a vessel when the vessel is electrified and placed near electrical ground [7].

He took this observation further and also noted that “a person, electrified by
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connection to a high-voltage generator, would not bleed normally if he were to

cut himself; blood would spray from the wound”.

Around the same time across the Atlantic Ocean, big steps in the understand-

ing of electrical phenomena were being undertaken by US Founding Father

Benjamin Franklin. Prior to the American Revolutionary War, Franklin was

theorising about the nature of electricity and famously established that light-

ning is electricity by using kites during thunderstorms to collect electrical

charge in Leyden jars [8]. He was a strong advocate of a ‘single fluid’ model of

electric charge which states that an object with an excess of fluid would have

one charge, whereas a deficit would lead to the opposite charge. The other

model was a ‘two fluid’ model, which had positive and negative fluids moving

around. The debate eventually was settled to side with Franklin over a century

later [9]. He was also responsible for a range of electrical terms still in use

today: battery, charge, conductor, positively, negatively, among others.

One notable example of electrostatic effects in nature occurred in the US during

the Dust Bowl in the 1930s during the Great Depression [10, 11]. The Dust

Bowl was a period of time where a series of severe dust storms devastated a

150,000 square mile region spanning across Oklahoma, the Texas Panhandles,

and parts of Colorado, Kansas, and New Mexico. In the decade following

World War I, new gasoline-powered machinery allowed farmers to increase their

workload substantially. This increase in the work of the land, and poor farming

practices led to the over-ploughing of the topsoil which, in conjunction with

one of the most severe droughts in centuries, resulted in the desertification

of farm land across the south. This produced the perfect conditions for huge

dust clouds to form—sometimes miles in height—and travel over the multiple

states. The dust particles within the cloud gained charge due to triboelectric

effects, leading to huge amounts of static electricity building up between the

dust and the ground; this led to situations where people with cars drove with a
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chain dragging behind, and mothers hugging their children could be met with

a static shock rendering both unconscious. The fine nature of the particles also

caused a huge amount of health issues, with residents exhibiting signs of silicosis.

1.1 Basics of Electrostatic Theory

Coulomb’s Law

Charles-Augustin de Coulomb was a French physicist who discovered the

experimental law that describes the force between two electrically charged

particles. The law—named after him as Coulomb’s law—was discovered in

1785, and states that:

“The magnitude of the electrostatic force of attraction or repulsion

between two point charges is directly proportional to the product of

the magnitudes of charges and inversely proportional to the square

of the distance between them.” — Charles-Augustin de Coulomb

(1785) [12]

This is shown in the scalar form, where the magnitude of the force between

two point charges q1 and q2 separated by the distance r is

|F| = K
|q1q2|
r2

, (1.1)

where K is the constant of proportionality in Coulomb’s law, known as

Coulomb’s constant and is equal to 1/(4πε0), where ε0 is the electric per-

mittivity of free space, K ≈ 8.987 551 792 × 109 N m2 C−2 [13]. While this

gives only the magnitude of the interaction, taking the sign of the product q1q2

reveals whether the interaction is attractive (q1q2 < 0) or repulsive (q1q2 > 0).

In vector form, a system with 2 point charges (i = 1, 2) in a vacuum, each with

their own charge qi and position ri, experiences an electrostatic force F1 on
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point charge 1 equal to

F1 =
q1q2

4πε0

r1 − r2

|r1 − r2|3
=

q1q2

4πε0

r̂12

|r12|2
(1.2)

where r12 = r1 − r2 and r̂12 = r12
|r12| , a unit vector from point charge 2 to point

charge 1. The force between two charges acts along the vector between the

two and—obeying Newton’s third law of motion—is equal in magnitude and in

opposite directions on each charge (F2 = −F1).

The Coulomb force F on any charged particle can also be seen as being equal

to the product of the electric field E and the charge of the particle q, and is

given as

F = qE. (1.3)

The electric field Ei generated at an arbitrary position r0 by point charge qi at

position ri is given by

Ei(r0) = K
qi

|r0 − ri|2
r̂0i. (1.4)

Coulomb’s law can be extended to many-body problems including multiple

point charges as it follows the law of superposition, and can be written as a

linear addition of functions (f(x + y + ...) = f(x) + f(y) + ...). Using the

superposition principle, the total electric field E at an arbitrary position r0 in

a system with M point charges is

E(r0) = K
M∑
i

qi
|r0 − ri|2

r̂0i. (1.5)

This leads to the electrostatic force acting on point charge qi Fi positioned at
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ri in a system with M point charges in the form

Fi(ri) = qiE(ri) = qiK

M∑
j 6=i

qj
|ri − rj|2

r̂ij. (1.6)

Up until now, the charges have been treated as discrete point charges, whereas

it is generally more appropriate to consider these charges as continuous charge

distributions. There are 3 ways of representing total charge as a continuous

distribution:

q =

ˆ
λ d`′ λ = linear charge density (1.7)

q =

ˆ
σ da′ σ = surface charge density (1.8)

q =

ˆ
ρ dτ ′ ρ = volume charge density (1.9)

where d`′, da′ and dτ ′ are the infinitesimal elements of length, surface and

volume respectively. Taking the volume charge density ρ as an example, we

gain a description of the electric field E at an arbitrary position r0 produced

by M volume charge distributions:

E(r0) = K
M∑
i

ˆ
Ri

ρi(ri(τ)) dτ

|r0 − ri(τ)|2
r̂0i, (1.10)

where Ri is a region containing all the points where ρi > 0, ri(τ) is the vector

describing τ . These equations allow for the electric field to be solved for systems

where all of the charge distributions are known.

Maxwell’s equation for the divergence of such a field is given as: [14]

∇ · E =
ρ

ε0

. (1.11)

As electric potential Φ is a scalar function, calculating Φ has advantages over

directly calculating the electric field. E can then be directly calculated from
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Φ, given that electric fields are the negative gradient of the electric potential

(E = −∇Φ). Using this relationship, Equation (1.11) can be rewritten as a

Poisson equation in the form

∇ · (−∇Φ) =
ρ

ε0

,

∇2Φ = − ρ

ε0

.

(1.12)

This is fine for non-polarisable distributions, but once polarisation occurs (such

as in conductors and dielectrics) the charge density distribution is no longer

known and needs to be solved for.

While the Poisson equation is extensively used in electrostatic models, the

study of charged particles in an electrolyte solution requires an extension that

takes into account the charge density and electric potential generated by a

distribution of electrolyte ions. The freedom of movement of the ions in solution

is well described by Maxwell-Boltzmann statistics, with a local ion density c

defined by

c = c0 · exp

(
−U
kBT

)
, (1.13)

where c0 is the bulk ion concentration, U is the potential energy of an ion

brought to the surface (qΦ), kB is the Boltzmann constant, and T is the tem-

perature in Kelvins [15].

When c0 is the bulk concentration of ions, the densities of the positive ions c+

and negative ions c− are given by

c+ = c0 exp
−qpΦ
kBT

(1.14)
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and

c− = c0 exp
qnΦ

kBT
, (1.15)

where qp and qn are the charge of the positive and negative ions respectively.

Substituting Equations (1.14) and (1.15) into the local charge density ρe as

ρe = qe(c
+ − c−) = qec0

(
exp
−qpΦ
kBT

− exp
qnΦ

kBT

)
, (1.16)

which can be used as the charge distribution in the Poisson equation (1.12) to

find the potential Φ generated by the electrolyte solution.

1.2 Polarisation of Dielectric Materials

In nature, there are two main classes of materials with distinct properties:

conductors and insulators (also known as dielectrics). A material is considered

an electrical conductor when there are charge carriers within the material that

are free to move in one or more directions through the bulk of the material when

exposed to an electric field. Dielectrics, on the other hand, have their charges

bound to the atoms within the material, meaning that they are electrically

insulating and poor conductors of electric charge. In a dielectric material, the

charge is split into two types of charges, “free” and “bound”. Free charge is

the charge that is present in excess and can move into electrostatic equilibrium.

Bound charge, on the other hand, is due to the polarisation of atoms or

reorientation of polar molecules to create a series of dipoles aligned within a

field, as shown in Figure 1.1.
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Figure 1.1: An exaggerated visualisation of a particle composed of a polar molecule
in the absence of an electric field (left) and exposed to an electric field (right).

Polarisation in a dielectric material comes in 4 main forms:

• Electronic - The production of atomic dipoles composed of positive
nuclei and negative electron clouds.

• Ionic - The displacement of positive and negative ions under the influence
of a field in an ionic crystal.

• Orientational - The alignment of molecular dipoles with the field (as in
Figure 1.1).

• Interfacial/Space Charge - An electric field causing the aggregation of
charge between two different regions within a material or at the interface
between two materials.

One of the earliest recorded observations of electrostatic interactions between

dielectric materials was in the late 16th/early 17th century when William

Gilbert—while investigating a description of the behaviour of magnetic and

electrostatic phenomena—noticed that when in the presence of a charged piece

of amber, a droplet of water distorted into a cone. This early observation

showed evidence of the effect of electric fields on dielectric materials [16].

The atomic quantity described as the polarisability α is the tendency of the

charge density of an atom to be distorted from its natural shape by the pres-

ence of an external electric field. α is defined by the relationship between the

magnitude of an induced dipole moment p and the electric field E causing the

induction.
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The Clausius-Mossotti relation describes the bulk quantity of dielectric constant

k (relative permittivity εr) in terms of the atomic quantity of polarisability α

[17, 18]:

(
k − 1

k + 2

)
=
Nα

3ε0

, (1.17)

where N is the number density of the atoms/molecules and k is the dielectric

constant (ε/ε0).

The electric susceptibility χe is a dimensionless constant of proportionality that

gives an indication towards the degree of polarisation of a dielectric material

when exposed to an electric field E, where χe = k − 1 (χe = 0 for a vacuum).

χe relates the electric field E to the induced dielectric polarisation density P

by:

P = ε0χeE. (1.18)

The electric displacement field D within a dielectric material is related to P by

D = ε0E + P = ε0(1 + χe)E = kε0E (1.19)

where, following Gauss’s law, ∇ ·D = ρf .

1.2.1 Method of Image Charges

One of the earliest developed methods to deal with the interactions between

charged particles and polarisable interfaces is the method of image charges.

The method is a mathematical tool for the solving of differential equations,

and gets its name from the domain of the sought function (Φ) being extended

by the addition of its mirror image across the interface [13].
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(a) Specified problem. (b) Equivalent image charge

Figure 1.2: A visualisation of a system involving (a) a point charge with a con-
ducting infinite plate, and (b) the equivalent image charge problem.

Consider a system with a point charge q at a distance d above an infinite

grounded conducting plane. The problem involves solving Poisson’s equation

in the region z > 0, with a point charge q at (0, 0, d) (see Figure 1.2a), obeying

the boundary conditions:

1. V = 0 at z = 0 (since the conducting plane is grounded), and

2. V → 0 at large distances from the charge.

The first uniqueness theorem, which states that:

“The solution to Laplace’s equation in some volume V is uniquely

determined if Φ is specified on the boundary surface S” - David J.

Griffiths [13],

guarantees only one function that meets these requirements, and all that’s

needed to find this function is either a trick or a clever guess; the trick, in this

case, is to completely disregard the actual problem and study a different one.

This new configuration contains the original point charge +q at r1 = (0, 0, d)

and a point charge with the opposite charge −q at r2 = (0, 0,−d) and the

absence of the conducting plane all together (see Figure 1.2. In this case, the

computation of the potential Φ at an arbitrary point r0 is simple, with

Φ(r0) =
1

4πε0

[
q

|r0 − r1|
− q

|r0 − r2|

]
, (1.20)
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which also follows the conditions:

1. V = 0 at z = 0,

2. V → 0 for |r0 − r1,2| � d,

and the only charge present in the system z > 0 is the charge +q at (0, 0, d).

These three conditions are identical to those of the system discussed earlier,

leading to the system with two point charges happening to produce the exact

same potential in the region of interest (z > 0). While it’s different for z < 0,

this doesn’t matter as it doesn’t represent any region of space we’re interested

in. This allows us to conclude that the potential of a point charge q above

an infinite grounded conductor is equal to Equation (1.20) when z ≥ 0. The

surface charge density σ at position (x, y, 0) on a conducting plane in the

vicinity of a point charge q at (0, 0, d) is given by:

σ(x, y) =
−qd

2π(x2 + y2 + d2)3/2
. (1.21)

When the plane is no longer conducting and dielectric in nature, the method

of image charges is still valid.

When the plane is dielectric—as opposed to conducting—it can be treated

almost in the same way with slight differences. In this case, charge of the image

q′ produced by a point charge q is no longer −q, and is determined by the

permittivity of both the plane k1 and the medium that encompasses the point

charge k0, using the relationship

q′ =
k0 − k1

k0 + k1

q. (1.22)

Using this relationship, we can deduce that there are 3 possible interactions.

The first is an attractive interaction, where the plate is more polarisable than

the medium (k1 > k0) leading to an opposite-charge interaction. If the opposite

is true, and the medium is more polarisable than the plate (k0 > k1), the image
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charge q′ becomes the same sign as the source charge q and the interaction

with the plate becomes repulsive. When the polarisabilities of the medium and

plate are equal (k0 = k1), q′ becomes 0 leading to no interaction with the plate.

The method of image charges works extremely well for simple systems with one

polarisable boundary, but even increasing the complexity to two polarisable

boundaries leads to an infinite set of image charges being needed to compute Φ.

This makes increasing the complexity to many-body interactions increasingly

inefficient with a high computational cost.

1.2.2 Electrostatic analysis of the interactions between

charged particles of two dielectric materials

In 2010 Bichoutskaia et al. [19] published a general solution to the problem of

calculating the electrostatic force between charged dielectric particles, which

is based upon a multipole expansion in Legendre polynomials using spherical

coordinates. The solution considers the interaction between two dielectric

spheres (i = 1, 2) suspended in a dielectric medium k0, each with their own

charge qi, radius ai and dielectric constant ki, separated by a surface-to-surface

separation s (s = h− a1 − a2 where h is the centre-to-centre separation). The

model treats the free charge of a dielectric particle to be uniformly distributed

on the surface of the particle—σf = q/(4πa2)—where there is no charge present

in the volume of the sphere.

In addition to the condition that the electric potential Φ vanishes at infinity,

there are 3 additional boundary conditions applied in this model. The first is

that the tangential component of the electric field is continuous at the surface

due to the continuity of the electric potential on the surface of each sphere

n̂×
(
Eri=a

+
i
− Eri=a

−
i

)
= 0. (1.23)
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The normal component of the electric field is discontinuous at boundary due to

the presence of a total charge density on the surface of each sphere

n̂ ·
(
Eri=a

+
i
− Eri=a

−
i

)
=
σ

ε0

. (1.24)

The normal component of the electric displacement field is discontinuous due

to the presence of a free charge on the surface of each sphere

n̂ ·
(
Dri=a

+
i
−Dri=a

−
i

)
= σf . (1.25)

where n̂ is a unit vector perpendicular to a point on the surface of a sphere,

and the subscripts a+
i and a−i denote radial positions on the outside and the

inside of the sphere, respectively.

The electrostatic force between two spheres F12 with the presence of surface

charge on each is calculated from a generalisation of Equation (1.2) and is

given by

F12 = K

ˆ
dq1(r1)

ˆ
dq2(r2)

r̂12

|r1 − r2|2
, (1.26)

where r1 and r2 are position vectors at the surface of spheres 1 and 2 respectively,

K is Coulomb’s constant, and dq1(r1) and dq2(r2) are the corresponding charge

elements. The first term
´
dq1(r1) accounts for the charge on sphere 1, as in

Equations (1.7) to (1.9), whereas the rest of the equation accounts for the

electric field generated by the charge on sphere 2, similar to Equation (1.4).

From this, the electrostatic force F12 is evaluated using a Legendre polynomial

expansion of the electric potential Φ generated by each sphere as they interact.

The total surface charge distribution is evaluated as a function of h. Integrating

the charge over the the surface leads to an analytical expression for the force
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in the form

F12 = − 1

K

∞∑
l=0

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

, (1.27)

where a negative value for F12 indicates attraction, and repulsion for positive

values. The multipole moment coefficients A1,l account for the dependence

of F12 on h, and also describe the mutual polarisation of interacting spheres

as a function of their charges (q1/q2), dielectric constants (k1/k2) and radii

(a1/a2), with the equations describing A1,l deduced in Bichoutskaia et al. [19],

and leading to the force being expressed as

F12 = K
q1q2

h2
− q1

∞∑
m=1

∞∑
l=0

A1,l
(k2 − 1)m(m+ 1)

(k2 + 1)m+ 1

× (l +m)!

l!m!

a2m+1
2

h2m+l+3
− 1

K

∞∑
l=1

A1,lA1,l+1
(k1 + 1)(l + 1) + 1

(k1 − 1)a2l+3
1

.

(1.28)

The first term in Equation (1.28) accounts for the monopole-monopole interac-

tion, which is functionally equivalent to Coulomb’s law with the interaction

between point charges at the centre of each particle. The second and third

terms account for the mutual polarisation of the charge densities of the particles,

and is always attractive in vacuum, with the magnitude of the interaction being

a function of the dielectric constant k. In the case of like-charged particles,

particular combinations of q, a, and k can cause attractive polarisation interac-

tions that overcome the repulsion of the coulombic interactions sufficiently so

that the overall force is attractive between like-charged particles.

In the 11 years since the publication of this two-body solution, there has been a

large amount of development to the model, increasing its versatility and range

of applications, shown in Table 1.1.
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Table 1.1: Further developments of the electrostatic model of two particle interactions in vacuum [19].

Development Methodology Description Reference
Particle-Plane Interac-
tions

A solution to this problem using a bispherical coordinate system; this solution has
greater versatility than using spherical coordinates, with the capability to model
particle-planar interactions, although the drawback to this is slower convergence.

[20]

Interactions in Elec-
trolyte Solution

Accounts for interactions in a polarisable medium that’s a dilute solution of a strong
electrolyte, solving within the Debye-Hückel approximation using the boundary
condition of constant potential, with the solution being finalised in 2018.

[21, 22]

Inhomogeneous Surface
Charge Density

An expansion to include a new definition of the surface charge density, providing a
solution to the interaction between two particles with inhomogeneous surface charge
distributions, represented as point charges on the surface. The point charges are
represented as Dirac-delta functions and the options for multiple orientations allows
for a more in-depth analysis of interactions.

[23]

Interactions Between
Spheroidal Particles

Theory for the interaction between particles with spheroidal geometries with the
particles now also being able to take the shape of oblate or prolate spheroids. The
model gives the expected charge density distributions from analytical solutions for
isolated particles, while also matching the expected interactions between the limiting
cases involving rods (prolate limit) and disks (oblate limit).

[24]

Generalisation to Many-
Body Interactions

A many-body generalisation of the two-body solution was produced that used an
integral equation approach to be able to calculate the interaction between an arbitrary
number of particles in three-dimensional space, with the algorithmic complexity
being only linearly scaling with respect to the number of particles in the system
through the use of a modified fast multipole method.

[25]

Many-Body Dynamics Implementation of the many-body solution as the force field in dynamics simulations.
The set of differential equations representing the classical equations of motion have
been integrated previously using the Euler method and more recently with the Verlet
method.

[26]
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Table 1.2: Applications of the electrostatic solution.

Application Description Reference
Coulomb Fission Use of the two-body solution to model the behaviour of like-charged dielectric spheres

in conditions similar to those found in the Coulomb fission process present in the
electrospray phenomenon. Kinetic energy releases were determined experimentally and
confirmed using computational simulations.

[23, 27, 28]

Aerosol Aggrega-
tion on Titan

A study into the aggregation of negatively-charged particles in the atmosphere if Saturn’s
moon Titan. The aggregation of polar and non-polar materials is compared, with the
energy barriers for polar molecules calculated to be ∼kT for asymmetric systems.

[25]

Polyoxometalate
(POM) Adsorption

A study into the effect of the solvent on the interaction between a neutral POM and
a charged plane. Solvents with high polarisability lead to a repulsive polarisation
interactions between charged and neutral species.

[29]

Microparticle
Aggregation

Two series of dynamics simulations investigating experimental studies. The first relates
to experiments on the assembly of polymer particles subjected to tribocharging with
the simulations successfully reproducing many of the observed patterns of behaviour. A
second study explores events observed following collisions between single particles and
small clusters composed of charged particles derived from a metal oxide composite.

[26]

Bipatchy Microcol-
loid Self-Assembly

Analysis of the interaction between particles with pairs of oppositely charged patches
on the surface. The calculations show that chain formation is driven by a combination
of attractive electrostatic interactions between oppositely charged patches.

[30]

Cloud Microphysics A study of the coalescence between like-charged dust and ice particles in the upper
mesosphere to lower thermosphere (MLT) region of the atmosphere using point-charge
descriptions of the charge.

[31]

Superlattice Stabil-
ity

A series of studies looking at the many-body polarisation effects in superlattices.
The first investigates the electrostatic interaction energy for varying particle size
combinations for a range of structures, from AB-type to AB13-type. The second looks
into a binary collection of X@C60 endohedral fullerenes in many types of AB and AB2

lattice structures.

In prep.
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1.3 Aims and Objectives

The work in this thesis presents a deep investigation into the interactions

between polarisable particles and pushes the theory developed in 2018 by Lind-

gren et al. [32] to a wider range of applications. The work begins in Chapter 2

with the theory behind the expansion of the many-body solution to include

non-homogeneous surface charge densities in the form of point charges, and

also the introduction of external electric fields.

Following this, numerical tests are performed in Chapter 3 to demonstrate the

full range of capabilities of the many-body model and its expansions. Two-body

phenomena, such as like-charge attraction, are followed by tests of many-body

arrangements. Also presented are tests of non-uniform charge distributions

in the form of two-dimensional Gaussian distributions on the surface of the

particles and an investigation in to the limitations to the size of the Gaussian

and also analysis of higher-order distributions. The point-charge solution is

then tested against Coulomb’s law, as well as used to reproduce the results in

2019 by Filippov et al. [23]. A very small Gaussian is then used and compared

with the results from the point charge distribution to test whether a small

Gaussian width can be used to replicate the results from the point charge

solution.

Chapter 4 presents the work produced in Baptiste et al. [31] which is an

investigation of the processes behind the aggregation of nanoscale dust and

ice particles in the mesosphere to lower thermosphere (MLT) region of the

atmosphere. The interactions between the particles are modelled using the

newly-developed point charge solution from Chapter 2, with the point charge

oriented either in the same direction or away from each other. The project looks

into the effect of particle size and composition on the likelihood of aggregation

based on the size of the electrostatic energy barrier for the collision and the
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energy well of the aggregation.

Chapter 5 is a study into the effects of bipolar charge on the electrostatic

cohesion of pharmaceutical particles, and investigates the effects of particle

size and charge on the charge-scavenging nature of particles in an aerosol

airflow. The pair interactions are primarily studied, with large scale dynamic

simulations being used to investigate the effectiveness of the scavenging of

particles of varying size.

Chapter 6 presents the work produced in Naderi Mehr et al. [30] which is a

study into the self-assembly behaviour of oppositely charged inverse bi-patchy

micro-colloids. The patches on the particles in these calculations are represented

by smaller spheres, and the energy is analysed for a range of orientations of

monopatch and bipatchy particles.

Finally, Chapter 7 studies the role of counterions in the self-assembly of poly-

oxometalates into macroanionic “Blackberry” structures. Here the focus is

on the formation of a dimer, with the interactions being between POMs with

charges within a specified range of charges expected based on the pH, with

discrete counterions stabilising the interaction. In this chapter the effect of the

polarisability of the solvent is also investigated, with the aim of providing a

theoretical explanation for experimental observations.



Chapter 2

The many-body electrostatic

problem of charged polarisable

particles: An extension to

point-charge distributions and

external electric fields

Included in this chapter are new developments in the many-body electrostatic

theory developed in 2018 by Lindgren et al. [25] which extend the solution

to consider non-homogeneous surface charge densities in the form of smooth

analytical functions and as a point charge. Also included in this section is

the implementation of an external electric field into the model. The devel-

opments included have been developed as part of a collaboration with Prof.

Benjamin Stamm and Dr. Stefanie Braun at RWTH Aachen University and,

Dr. Muhammad Hassan now of Sorbonne Université.

20
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2.1 Surface point charge and external electric

field solutions

There are a large number of applications where a uniform surface charge density

is not an appropriate representation of the charge present in a system. When

the charge on a particle is of the order of ±1e, or charge given by a small

cluster of metal ions on the surface of the particle, the charge density is best

represented by the singularity of a point charge distribution. A patch of charge

imprinted onto the surface of a neutral particle as in Naderi Mehr et al. [30] is an

example of a distribution unsuitably modelled by a uniform distribution, with

a more suitable representation being that of Gaussian or Kent distributions, or

that of a step function.

2.1.1 Formulation of the Problem

We consider a physical system of M non-intersecting dielectric spherical par-

ticles, defined by their radii {ai}Mi=1, centers {xi}Mi=1, and dielectric constants

{ki}Mi=1, immersed in a background medium (solvent) which has dielectric

constant k0 ≥ 1.

For the purpose of this article, we will view the physical system at a particular

snapshot in time so that, in effect, the physical system is considered at rest.

The spherical particles are described as open balls denoted by {Ωi}Mi=1 with

surfaces {Γi}Mi=1. The surfaces of the dielectric particles represent the boundary

Γ between the interior Ω− and the exterior Ω+ of the particles. Note that the

global values for both the boundaries Γ0 and the particles Ω0 are defined as

Γ0 = Γ1 ∪ . . . ∪ ΓM ,

Ω0 = Ω1 ∪ . . . ∪ ΩM .

We assume that this surface Γ carries a given free charge distribution σf and

that there is no charge in the interior of the particles, i.e., in Ω−. (See Ap-
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Figure 2.1: Geometric representation of the system comprised of M non-overlapping
spherical particles Ω1, . . . ,ΩM with radius ai, dielectric constant ki, and centred at
xi, surrounded by a homogeneous medium of dielectric constant k0.

pendix A.1 for a precise mathematical description of these quantities).

To account for the point-charge contribution to the surface free charge, the free

charge σf is split into two contributions

σf = σs + σp. (2.1)

Here σs corresponds to the square-integrable part of the surface charge, whereas

σp is the point-charge contribution to the free charge represented by a linear

combination of np Dirac delta distributions δ per particle:

σp =
M∑
i=1

np,i∑
j=1

qi,jδzi,j , where zi,j ∈ Γi and for all j = 1, . . . , np,i. (2.2)

Next, we define an external potential Φext with associated external electric

field Eext := −∇Φext, and we do not impose the constraint that Φext(x)→ 0 as

|x| → ∞. We consider the external potential to be harmonic, i.e. ∆Φext = 0,
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so that we do not describe the charges creating the external field within the

considered system but we do not restrict the external electric field Eext to be

uniform. Finally, we assume that the system of dielectric particles does not

affect the external field Eext, for instance, through polarisation, which justifies

the use of our terminology external.

Our aim is to now to determine the net surface charge on each dielectric particle

after taking into account both the free charge σf as well as the bound charges

resulting from polarisation effects due to the presence of charged neighbouring

particles and the effect of the external electric field. Using the net surface

charge, we will be able to deduce the other physical quantities of interest,

namely, the electrostatic forces and energy resulting from the interaction of

the M charged dielectric spheres both with each other and with the external

electric field.

In order to determine the net surface charge, we will first derive governing

equations for the net electrostatic potential. As we shall see, the net electrostatic

potential can be used to deduce the required net surface charge as well as the

subsequent physical quantities of interest. The main challenges in achieving

our aim are to work with the singular nature of the point-charges σp and the

external potential Φext which does not necessarily decay to zero at infinity.

2.1.2 Formulation of the problem based on a partial dif-

ferential equation (PDE)

The problem of electrostatic interaction between M charged dielectric spheres

can be described by a PDE-based transmission problem. Here, we define

the total potential Φtot = Φext + Φ and the corresponding total electric field

Etot := Eext + E, where E is the perturbation of Eext due to the presence of the

dielectric charged spheres, and Φ is the corresponding perturbation potential
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so that E = −∇Φ. As in Section 1.2.2, standard arguments from the theory

of electrostatics in dielectric media imply that the total potential Φtot satisfies

the following conditions:

∆Φtot = 0 in each Ωi, (2.3)

JΦtotK = 0 on Γ0, (2.4)

Jk∇ΦtotK = σf on Γ0. (2.5)

Here, Ω+ denotes the space outside the particles, k is the dielectric function

which takes value ki on the ball Ωi and value k0 on Ω+, and JΦtotK and Jk∇ΦtotK

are jump discontinuities defined by

JΦtotK|Γi(z) :=Φtot(z)|Ωiη(z)− Φtot(z)|Ω+η(z), (2.6)

Jk∇ΦtotK|Ωi(z) :=ki∇Φtot(z)|Ωi · η(z)− k0∇Φtot(z)|Ω+ · η(z), (2.7)

where η(z) is the normal unit vector at z ∈ Γ0 pointing towards the exterior of

the particles.

In general, Equations (2.3)-(2.5) are ill-posed as can be seen, for instance,

by observing that if σf ≡ 0, then any constant function Φtot will satisfy this

equation. In order to obtain the correct total potential Φtot, we make use

of the relation Φtot = Φext + Φ and first derive a well-posed equation for the

electrostatic potential Φ. Using decomposition (2.1), elementary algebra yields
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Φ that satisfies the following transmission problem

∆Φ = 0 in each Ωi, (2.8)

JΦK = 0 on Γ0, (2.9)

Jk∇ΦK = σs + σp − (k − k0)∂nΦext on Γ0, (2.10)

|Φ| → 0 as |x| → ∞, (2.11)

where ∂nΦext denotes the normal derivative of Φext on the boundary Γ0. PDEs

similar to the transmission problem (2.8)-(2.11) have been previously considered

in the literature (see, e.g., [33, 34]), however the key novelty of Equations (2.8)-

(2.11) is in the addition of contributions due to the external electric field and

the presence of point-charges on the surface of the dielectric particles. These

additional terms require a significant modification of the earlier definitions [34–

36] of the electrostatic forces and interaction energy for the M -body charged

dielectric spheres, and they present additional challenges in the efficient numer-

ical implementation.

In addition to the presence of the highly non-regular point-charge term σp,

another difficulty in solving the transmission problem (2.8)-(2.11) is the fact

that the equation is posed on the entire space R3. Indeed, since the potential Φ

a priori decays only as |x|–1, a naive truncation of the computational domain

in an effort to use classical algorithms such as the finite element method leads

to significant errors. The usual approach to circumventing this problem is to

appeal to the theory of integral equations and reformulate the transmission

problem (2.8)-(2.11) as a so-called boundary integral equation (BIE) posed on

the interface Γ0. This is the subject of the next subsection.
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2.1.3 Formulation of the problem based on an integral

equation

In order to describe the integral equation-based approach to the problem of

electrostatic interaction between M charged dielectric spheres we require some

additional notions. First, we define the single layer potential of σ, denoted Sσ,

as the mapping with the property that

(Sσ)(x) :=

ˆ
Γ

σ(y)

4π|x− y|
dy, ∀x ∈ Ω0 ∧ x 6= y, (2.12)

which also satisfies the following conditions

JSσK = 0; J∇SσK = σ.

As a consequence, it is possible to consider the restriction of the single layer

potential defined through Equation (2.12) on the boundary Γ and thereby

define the so-called single layer boundary operator, denoted V as the improper

integral

(Vσ)(z) :=

ˆ
Γ

σ(z′)

4π|z− z′|
dz′, ∀ z ∈ Γ0 ∧ z 6= z′.

Note, that occasionally it will be necessary to consider the “local” single layer

potential and boundary operators defined on an individual sphere Ωi. We will

denote these as Si and Vi respectively.

The surface electrostatic potential λ is now described by the following boundary

integral equation:

λ− V
(
k0 − k
k0

DtNλ

)
=

1

k0

V
(
σs + σp

)
+
k0 − k
k0

V(∂nΦext). (2.13)

Here, the notation DtN is used to denote the local Dirichlet-to-Neumann (DtN)
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map on the surface Γ (see Appendix A.1 for further details).

An equivalent reformulation of the BIE (2.13) for the induced surface charge

can be achieved by applying V−1 to both sides of the equation, and defining

σ := V−1λ which yields the following BIE

σ − k0 − k
k0

DtNVσ =
1

k0

(
σs + σp

)
+
k0 − k
k0

(∂nΦext). (2.14)

In Equation (2.14), the quantity of interest σ, which we often call the induced

surface charge, represents (up to a scaling factor) the total surface charge on

each dielectric particle after taking into account both the free charge σf as

well as the bound charges resulting from polarisation effects due to the pres-

ence of charged neighbouring particles and the effect of the external electric field.

More precisely,

• σf represents the free charge on each particle;

• σb := (k0 − k)
(
DtNVσ + ∂nΦext

)
represents the bound charge on each

particle;

• k0σ = σf + σb represents the total charge on each particle.

A simple manipulation of Equation (2.14) yields the following relation between

the surface charge σ and the surface electrostatic potential λ:

σ =
k0 − k
k0

DtNλ+
1

k0

(
σs + σp

)
+
k0 − k
k0

(∂nΦext). (2.15)

Equation (2.15) implies that once λ is known, the charge distribution σ can be

computed using the purely local DtN map.

We also remark here that the relation between the PDE (2.8)-(2.11) and the

BIE (2.13) representations of the electrostatic potential can be clearly estab-

lished since λ is simply the restriction (more precisely the Dirichlet trace)
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of the electrostatic potential Φ on the boundary Γ. Thus, for any point

x ∈ Ω, we have Φ(x) =
(
SV−1λ

)
(x) = (Sσ)(x), and we therefore also have

Φtot(x) = Φext(x) + (Sσ)(x).

As emphasised above, an important technical difficulty in the analysis of

Equation (2.13) is the presence of the low-regularity point-charge term σp,

which requires special treatment in the design of efficient numerical methods.

Previously, the BIE (2.13) has been the subject of extensive analysis in the much

simpler case when both point-charges and the external field are absent, i.e.,

when σp ≡ 0 and Φext ≡ 0. We first briefly summarise the existing methodology

and explain how the BIE (2.13) can be solved in this simple case before turning

our attention to the more complex problem (Section 3) describing surface

point-charges and an external electric field.

2.1.4 Existing methodology in the absence of surface

point-charges and external fields

In the absence of the point-charge contribution to the surface free charge and

an external electric field, the boundary integral Equation (2.13) reads as

λ̃− V
(
κ0 − κ
κ0

DtNλ̃

)
=

1

κ0

Vσs. (2.16)

Equation (2.16) is solved using a Galerkin discretisation with an approximation

space constructed from the span of finite linear combinations of local spherical

harmonics on each sphere Ωi (exact definitions of the spherical harmonics and

the approximation space WN can be found in Appendix A.1). More precisely,

the Galerkin discretisation of the integral Equation (2.16) reads as follows: let

N be a fixed discretisation parameter, we seek the Galerkin solution λ̃N which
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satisfies for all test functions ψN the equation

(
λ̃N − V

(
κ0 − κ
κ0

DtNλ̃N

)
, ψN

)
L2(Γ)

=
1

κ0

(Vσs, ψN)L2(Γ) . (2.17)

The Galerkin solution λ̃N and the test function ψN can be expanded as a finite

linear combination of basis functions. This ansatz allows us to reduce the

Galerkin discretisation (2.16) to a linear system of equations for the unknown

expansion coefficients of λ̃N . More precisely, Equation (2.16) yields the linear

system

Aλ̃ = f̃ , (2.18)

where the solution matrix A and the vector f̃ are defined as

[Aij]
mm′

``′ :=

(
Yj`′m′ − V

(
κ0 − κ
κ0

DtNYj`′m′
)
,Y i`m

)
L2(Γi)

,

[fi]
m
` :=

1

κ0

(
Vσs,Y i`m

)
L2(Γi)

,

(2.19)

where Y i`m denotes the spherical harmonic of degree ` and order m on the sphere

Ωi and the indices i, j ∈ {1, . . . ,M}, `, `′ ∈ {0, . . . , N} and |m| ≤ `, |m′| ≤ `′.

A more detailed definition of Y i`m can be found in Appendix A.1.

A detailed explanation of how to compute the entries in the solution matrix A

and vector f̃ can be found in Lindgren et al. [25]. Here, we simply remark that

apart from the diagonal terms (i = j), computing the entries of the solution

matrix requires evaluating a double integral on the unit sphere while computing

the entries of the vector requires evaluating a single integral on the unit sphere.

Both cases typically require the use of numerical quadrature, for which purpose

Lebedev grid points are used.

It is also possible to use a modification of the classical Fast Multipole Method
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(FMM) to speed up the computation of the vector f̃ and matrix-vector products

involving the dense solution matrix A. Essentially, the FMM allows computing

the action of the single layer boundary operator V on an arbitrary element of

the approximation space in linear scaling computational cost (with respect to

M). In view of the fact that the DtN map is a purely local operator (and in

fact diagonal in the basis of local spherical harmonics), the solution matrix

A does not need to be explicitly computed and stored, and its action on an

arbitrary vector can be calculated in linear scaling cost. Further details on the

FMM implementation can be found in [25, 36].

Once the vector f̃ has been computed and the solution matrix A set up, the

linear system (2.18) can be solved using a Krylov subspace solver such as

GMRES (see [35] for a detailed convergence analysis of GMRES as applied to

this linear system). We can now turn our attention to the calculation of the

discrete electrostatic energy and forces. Indeed, the approximate electrostatic

interaction energy of the M -body system is given by

ŨN
int :=

1

2

(
σs, λ̃N

)
L2(Γ)

− 1

2

M∑
j=1

(
σs,j, λ̃

jj
N

)
L2(Γj)

, (2.20)

where σs,j = σs|Γj and λ̃jjN ∈ WN (Γj) is the approximate, so-called self-potential

generated by the free charge σs,j only on the sphere Γj in the absence of the

other spheres. It is defined as the solution to the local Galerkin discretisation

(
λ̃jjN − VjDtNj

(
κ0 − κj
κ0

λ̃jjN

)
, ψjjN

)
L2(Γj)

=

(
1

κ0

Vjσs,j, ψjjN
)
L2(Γj)

.

Consider Definition (2.20) of the electrostatic interaction energy. The first term

in Equation (2.20) can be interpreted as the total electrostatic energy of the

system whilst the second term, involving the summation, can be seen as the

self energy.
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Next, we derive an expression for the discrete electrostatic forces. As a first

step, if λ̃N denotes the solution to the Galerkin discretisation (2.17) for a given

free charge σs, then we define the approximate induced surface charge σ̃N as

the unique element of the approximation space WN (defined in Appendix A.1)

that satisfies

(
Vσ̃N , ψN

)
L2(Γ)

=
(
λ̃N , ψN

)
L2(Γ).

(2.21)

In other words, σN is simply an approximation of the exact induced surface

charge σ, which we remind the reader physically represents the net charge on

the dielectric spheres that includes polarisation effects. We will therefore use

σN to derive an expression for the discrete electrostatic forces acting on the

dielectric particles.

In practice, σ̃N is not determined using Equation (2.21), which requires the

computationally expensive inversion of the single layer boundary operator V.

Instead, a careful examination of the Galerkin discretisation (2.17) reveals that

σ̃N satisfies the relation (c.f., Equation (2.15))

σ̃N =
κ0 − κ
κ0

DtNλ̃N +
1

κ0

σNs , (2.22)

where σNs is the best approximation (in the L2-sense) of σs in the approxima-

tion space WN . Consequently, once the linear system (2.18) has been solved,

only purely local operations involving the Dirichlet-to-Neumann operator are

required to obtain σ̃N .

The discrete approximation to the electrostatic force acting on the dielectric

particle is now given by

FN
i := κ0

(
σ̃N ,E

i
exc

)
L2(Γi)

. (2.23)
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Here, Ei
exc is the i-excluded electric field generated by the approximate induced

surface charge σN , i.e., the vector field given by

Ei
exc(x) = −∇

(
SσN

)
(x)−∇

(
Siσi,N

)
(x), (2.24)

where σi,N := σN |Γi , and ∇ denotes the usual gradient taken with respect to

Cartesian coordinates. The i-excluded electric field Ei
exc is the part of the total

electric field generated by the approximate induced charge σN that interacts

with (i.e., exerts a net electrostatic force on) the dielectric particle Ωi.

Consider Definitions (2.20) and (2.23) of the discrete electrostatic interaction

energy and forces respectively. A key result in [36, Supplementary material]

establishes that these are related by the identity

−∇xiU
N
int = FN

i ,

where ∇xi denotes the the gradient taken with respect to the location of the

center xi of the sphere Ωi.

The Galerkin nature of the method we have presented allows for a precise

mathematical analysis in terms of accuracy with respect to N and complexity

with respect to M as presented in the series of articles [34–36]. This model,

however, is limited to the assumptions we made at the beginning of Section 2.1.4.

In particular, it does not account for the presence of surface point-charges and

the effect of an external electric field. This extension and generalisation is the

subject of the following section.
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2.1.5 Effects of an external electric field and surface

point-charges

We now turn our attention to the boundary integral Equation (2.13), central to

this study, which describes the electrostatic interaction of the dielectric spheres

in the presence of both an external electric field and a point-charge contribution

to the free charge residing on the particle surface.

Galerkin discretisation in the presence of point-charges and external

fields

We define the external charge as σext := −(k − k0)∂nΦext, which is simply the

external electric field contribution to the right-hand side of the BIE (2.13). The

Galerkin discretisation of the integral equation (2.13) can be written as

(
λ`max − V

(
k0 − k
k0

DtNλ`max

)
, ψ`max

)
L2(Γ0)

=
1

k0

(V(σs + σext + σp), ψ`max)L2(Γ0) . (2.25)

As before, the Galerkin discretisation (2.25) yields a linear system of equations

for the unknown local spherical harmonics expansion coefficients of λ`max , and

the resulting linear system reads as

Aλ = f , (2.26)

where the solution matrix A is defined precisely as before through Equa-

tion (2.19) and

[λi]
m
` :=

(
λ`max , Y i`m

)
L2(Γi)

, (2.27)

where ` ∈ {0, . . . , `max} and |m| ≤ `. On the other hand, determining the new

right-hand side vector f requires some additional work due to the presence of

the point-charge term σp.
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To this end, let zj ∈ Γj ⊂ Γ0 be fixed and consider the Dirac delta function

δzj . The definition of the single layer boundary operator V implies that for any

q ∈ R and all x in Γ0 with x 6= zj we have

V(qδzj)(x) =

ˆ
Γj

qδzj(y)

|x− y|
dy =

q

|x− zj|
,

and hence,

V(σp)(x) =
M∑
j=1

nkp∑
k=1

qj,k
|x− zj,k|

,

and therefore the right-hand side vector f in Equation (2.26) can be defined as

[fi]
m
` :=

1

k0

(
V
(
σs + σext

)
+ V(σp) , Y i`m

)
L2(Γi)

. (2.28)

Since the solution matrix A is exactly as before (see Section 2.1.4), one can use

the same linear solver routine to approximate the solution to Equation (2.26).

Having solved the underlying linear system, we can now turn our attention to

computing other (discrete) physical quantities of interest.

2.1.6 Energy and forces in the presence of external fields

and point charges.

The approximate total electrostatic interaction energy of the system is given by

UN
int :=

1

2

(
σs + σp + σext, λN

)
L2(Γ)

+
(
σs + σp, λ

N
ext

)
L2(Γ)

+
1

2

(
σext, λ

N
ext

)
L2(Γ)

− 1

2

M∑
j=1

(
σs,j + σp,j, λ

jj
N

)
L2(Γj)

, (2.29)

where we denote σs,j = σs|Γj , σp,j := σp|Γj , and we write λNext for the best

approximation of λext := Φext|Γ and λjjN ∈ WN(Γj) for the approximate self-

potential only on the sphere Γj in the absence of the external field Eext and all
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other spheres, which is formally defined as the solution to the local Galerkin

discretisation

(
λjjN − VjDtNj

(
k0 − kj
k0

λjjN

)
, ψjjN

)
L2(Γj)

=

(
1

k0

(
Vjσs,j + σp,j

)
, ψjjN

)
L2(Γj)

.

It is important to emphasise that total electrostatic interaction energy we define

here through Equation (2.29) includes both the energy due to the interaction

between the dielectric particles themselves as well as the energy arising from

the interaction of the particles with the external electric field.

Consider again the formal definition (2.29) of the electrostatic interaction

energy. The combination of the first three terms in Equation (2.29) can be

interpreted as the total electrostatic energy of the system whilst the fourth

term, involving the summation can be seen as the self electrostatic energy

of the system. We emphasise that, due to the presence of the point-charge

contribution σp, both the total energy and the self-energies are infinite as in the

case of fixed Coulomb point-charges. However, when writing the interaction

energy as

UN
int :=

1

2

M∑
j=1

(
σs,j + σp,j, λN − λjjN

)
L2(Γj)

+
1

2

(
σext, λN

)
L2(Γ)

+
(
σs + σp, λ

N
ext

)
L2(Γ)

+
1

2

(
σext, λ

N
ext

)
L2(Γ)

,

each of the terms is finite and thus the interaction energy is a well-defined

quantity.

It is possible to rewrite Equation (2.29) for the electrostatic interaction energy

in a more physically intuitive form in terms of the electric fields that appear in

the PDE formulations (2.3)-(2.5) and (2.8)-(2.11) leading to the following.
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Let λext denote the restriction of Φext on Γ, and let λ denote the solution to

the boundary integral Equation (2.13) for a given free charge σf = σs + σp and

external electric field Eext. Then for any open ball Ba of radius a > 0 which is

large enough to contain Ω−, the exact electrostatic interaction energy of the

system, denoted Uint, satisfies the relation

Uint :=
1

2

(
σs + σp + σext, λ

)
L2(Γ)

+
(
σs + σp, λext

)
L2(Γ)

+
1

2

(
σext, λext

)
L2(Γ)

− 1

2

M∑
j=1

(
σs,j + σp,j, λ

jj
)
L2(Γj)

(2.30)

=
1

2

ˆ
Ba

k(x)Etot(x) · Etot(x) dx− 1

2

M∑
j=1

ˆ
Ba

k(x)Ejj(x) · Ejj(x) dx

− 1

2

ˆ
Ba

k0Eext(x) · Eext(x) dx−
ˆ
∂Ba

k0∂nΦ(x)Φext(x) dx

− 1

2

ˆ
∂Ba

k0

(
∂nΦ(x)Φ(x)−

M∑
j=1

∂nΦjj(x)Φjj(x)

)
dx. (2.31)

Here, λjj is the exact self-potential only on the sphere Γj in the absence of the

external field Eext and all other spheres, and it is defined as the solution to the

local BIE

λjj − VjDtNj

(
k0 − kj
k0

λjj
)

=
1

k0

(
Vjσs,j + σp,j

)
,

and Ejj is the “self electric field” of the j-th dielectric particle, i.e., the electric

field produced only due to the sphere Γj in the absence of both the external

field Eext as well as the other spheres.

The five terms in Equation (2.31) which constitute Uint all have physical in-

terpretations. Indeed, the first integral can be seen as the total electrostatic

energy associated with the electric field Etot, and the second integral can be

interpreted as the self-energy associated with the free charge σf = σs + σp on

the particle surface. The third term is the self energy of the external electric
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field Eext. Finally, the last two terms can be interpreted as the boundary terms

that, in general, may not vanish if one takes the limit a → ∞ but yield an

expression independent of a and accounts for the arbitrary choice of a.

Essentially, the above theorem establishes that in the exact case, i.e., when we

take the discretisation parameter N →∞, the definition of the interaction en-

ergy derived from the integral equation formalism and given by Equation (2.29)

coincides with the definition of the interaction energy (up to some additional

boundary terms) in any open ball Ba that is large enough to contain Ω− as

derived from the PDE picture and given through Equation (2.31).

Next, we turn our attention to the discrete electrostatic forces. To this end,

if λN denotes the solution to the Galerkin discretisation (2.25) for a given

free charge σf = σs + σp and external electric field Eext, then we define the

approximate induced surface charge σN that generates the surface electrostatic

potential λN as

(
VσN , ψN

)
L2(Γ)

=
(
λN , ψN

)
L2(Γ)

. (2.32)

In practice, σN can be determined again using the following relation (c.f.,

Equation (2.22)), which can be deduced from the Galerkin discretisation (2.25):

σN =
k0 − k
k0

DtNλN +
1

k0

(
σNs + σNp + σNext

)
, (2.33)

where σNs , σ
N
p , and σNext are the best approximations or projections (in the

L2-sense) of σs, σp, and σext in the approximation space WN defined in Ap-

pendix A.1. The approximate net electrostatic force acting on the dielectric

particle described by the open ball Ωi is now given by

FN
i := k0

(
σN ,E

i
exc + Eext

)
L2(Γi)

. (2.34)
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Consider Definitions (2.29) and (2.34) of the discrete electrostatic interaction

energy and forces respectively. As before in Section 2.1.4, it is possible to

demonstrate that the electrostatic forces are indeed realised as the negative

sphere-centered gradients of the interaction energy. Indeed, we have the follow-

ing theorem.

Let UN
int denote the discrete interaction energy and FN

i , denote the discrete

electrostatic force acing on the dielectric particle Ωi as given by Definitions

(2.30) and (2.34) respectively. Then it holds that

−∇xiU
N
int = FN

i , (2.35)

where ∇xi denotes the the gradient taken with respect to the location of the

center xi of the sphere Γi.
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2.2 Molecular dynamics

In this work, the electrostatic solution presented in the previous section has

been implemented as the force field for molecular dynamics simulations. The

Verlet method was used to integrate Newton’s equations of motion in this work

over the Euler method previously used in Lindgren et al. [26] due to its second

order accuracy. The use of dynamic simulations allows for the identification of

features within a system that can better help to gain a qualitative understanding

of processes involved with self-assembly mechanisms. In order to avoid any

accumulated errors, timestep sizes were kept small relative to overall simulation

times, with all simulations having at least 40000 timesteps per simulation—

enough for the time-frame to cover the desired observations. The computational

routine also included a collision handler to ensure that particles did not overlap.

A coefficient of restitution CR is incorporated into the equations of motion in

order to facilitate the self-assembly behaviour; it is included such that linear

momentum is conserved, but some portion of the kinetic energy is lost to the

system. CR is defined as:

CR =
relative speed post-collision

relative speed pre-collision

The velocities of the particles in all systems simulated are negligible in com-

parison with the speed of light c so the magnetic component to the total

electromagnetic interactions have been ignored. The systems modelled using

dynamic simulations are mesoscale, therefore there are no considerations of the

system constituting a canonical (NVT) ensemble through the assignment of

a temperature; this was justified by the fact that in these simulations, in the

interactions between the charged particles U � kBT where kB is the Boltzmann

constant and T is a temperature. All simulations were performed in the absence

of any external forces (i.e. gravity, drag, etc.).
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General numerical results

In this chapter, fundamental aspects of the model are tested, displaying the

trends that we see throughout the work in this thesis. New implementations

(non-homogeneous charge densities and external electric fields) are tested to

ensure correct implementation, and robustness of the model.

3.1 Interactions between pairs of like-charged

particles

The electrostatic interaction between two like-charged dielectric particles in a

vacuum over a range of separations can be generalised into two main contri-

butions; the repulsive interaction which dominates at longer ranges, and the

attractive interactions which have the biggest effect on the electrostatic nature

at short separation. The magnitude of the attractive interactions between

two like-charged polarisable spheres is dependent upon four major variables:

the ratio of the sizes of the two spheres, a1/a2; the ratio of the charges in

the spheres, q1/q2; the separation between the surfaces of the two spheres, s;

and the dielectric constants of the spheres, ki. The attraction between two

like-charged spheres when one sphere has a larger surface charge density than

the other occurs due to the mutual polarisation causing a redistribution of

surface charge densities sufficiently large enough to create regions of opposite

40
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charge on the sphere with a lower surface charge density, inducing an attractive

interaction. The magnitude of the repulsive interaction is dependent only on

the charges (q1 and q2) and centre-to-centre separation, h = a1 + a2 + s.

Here, the preferred size and charge ratios that lead to attraction between

like-charged dielectric spheres are explored. The surface charge density of one

of the spheres will be altered in two different ways. The first is by increasing

the size of one of the spheres, and the other is by increasing the charge of one

of the spheres. Figure 3.1 shows the calculated electrostatic force between two

dielectric particles with a dielectric constant ki of 20. The charges of both

spheres (q1,2 = 1e) and the radius of sphere 1 (a1 = 1 nm) in all plots are

kept consistent, with the only variable between the plots being the radius of

sphere 2. The plot where a1 = a2 (solid) shows a purely repulsive force with

no attractive regime due to symmetric nature of the interaction. The dashed

and dotted plots in Figure 3.1 show an increase in the attractive contribution

at short separation as the size of a2 increases. This is due to the asymmetry

of the two spheres increasing which causes the surface charge density on the

larger sphere to reduce, making it much more susceptible to polarisation. The

stability of the system at zero separation can be determined from plots present

on the electrostatic interaction energy graph in Figure 3.2. These three plots

relate to the same three systems in Figure 3.1 but show how increasing asym-

metry of the system affects the total energy of the system at the point of contact.
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Figure 3.1: F as a function of s for the interaction between two dielectric particles
with a1 = 1 nm, q1,2 = 1e, ki = 20 and k0 = 1. a2 = 1 nm (solid), 2 nm (dashed)
and 5 nm (dotted).

Unstable (solid) – No attraction, always separates.

Metastable (dashed) – The is a local minimum at the point of contact.

Stable (dotted) – This is where the energy of the system at the point of

contact is more energetically favourable than the separated system.

Unlike increasing a2, which only increases the magnitude of the attractive

contribution to the force, increasing the charge of q2 increases both the attractive

multipolar contribution—due to the increase in polarisation from the increased

charge density—and also the repulsive contribution to the electrostatic force

(q1q2/h
2). These effects lead to similar overall results when compared to the

varying particle size results, although the increased repulsion leads to a much

larger energy barrier for the particles to come together, as shown in Figure 3.3.

The nature of the electrostatic force between two dielectric spheres over a range

of combinations of size and charge ratios at a fixed dielectric constant and

separation is presented in Figure 3.4. The figure presents a contour plot of a

series of calculations for the force as a function of the both a2/a1, from 0.1 to
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Figure 3.2: U as a function of s for the interaction between two dielectric particles
with a1 = 1 nm, q1,2 = 1e, ki = 20 and k0 = 1. a2 = 1 nm (solid), 2 nm (dashed)
and 5 nm (dotted).

10, and q2/q1, from 0 to 10.

The nature of the interaction is determined by the colour of the area on the

plot, with the redder areas signifying an attractive interaction between spheres,

whereas the bluer areas represent configurations with a repulsive interaction.

The plot can be roughly split into three major zones:

i) The light red area which covers the majority of the top half of Figure 3.4

where a2 >> a1. This area is only lightly attractive, with interaction forces

between 0 pN and -100 pN, and accounts for the configurations where both a2

and q2 are both much larger than a1 and q1 respectively. This light attraction

is present as the surface charge density on the sphere 1 is still sufficiently high

in comparison to the surface charge density on sphere 2 to induce polarisation,

even when the total charge on sphere 2 approach 10 times that of the charge of

sphere 1.
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Figure 3.3: U as a function of s for the interaction between two dielectric particles
with a1,2 = 1 nm, q1 = 1e, ki = 20 and k0 = 1. q2 = 1e (solid), 2e (dashed) and 5e
(dotted).

ii) The blue region which covers the majority of the middle portion of the plot

where a2 ≈ a1. In this area, the surface charge densitie of the two spheres are

similar and therefore the magnitude of the polarisation contribution begins to

diminish, leaving the contribution due to Coulomb repulsion as the dominant

component of the net force.

iii) The final region is the darker red region positioned below region (ii) where

a2 is similar in size to or smaller than a1, and has a much bigger total charge,

q2, in comparison. The configurations within this region represent a strong

attractive interaction (F < −500 pN) between the spheres, with the very high

surface charge density on sphere 2 causing the polarisation effects to dominate

the nature of the interaction between the sphere.

The combinations of radius and charge ratios in region (iii) are the configura-

tions which tend to lead to the biggest magnitude for the attractive terms and

thus show the most preferred combinations for strong attraction.
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Figure 3.4: A contour plot showing the electrostatic force (in pN) between a pair of
like-charged spheres, with dielectric constants k1 = k2 = 10. The force is plotted as a
function of size ratio a2/a1 and the charge ratio q2/q1, with s = 0.1 nm, a1 = 1 nm
and q1 = 1e. The regions of attraction are displayed as in red whereas the regions
with repulsive forces are represented in blue.

The nature of the electrostatic interaction between two like-charged dielectric

spheres at a specific surface-to-surface separation, s, is predominantly governed

by the size of the spheres in relation to their separation. This effect that system

geometry has on the interactions between like-charged particles was explored in

2014 [20]; the paper proposes that a dimensionless geometric parameter, s∗, can

be calculated to give a good idea to the nature of the electrostatic interactions

s∗ ≡ s

2a
, (3.1)

where s is the surface-to-surface separation of the spheres and 2a is the distance

between two inverse points in a bispherical coordinate system [37].

From this, we can deduce that if the separation s becomes much bigger than

the radii of the spheres, s∗ → 1 and the interactions within the system begin

to start behaving like the interactions present between point charges, where

the monopolar terms dominate the sphere-to-sphere interactions; conversely,
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when the separation of the spheres becomes much smaller than the radii of the

spheres, s∗ → 0, with the system tending to behave like two charged planes or

two large spheres in close proximity, where the multipolar terms have a huge

contribution to the overall interaction. Figure 3.5 shows a visual representa-

tion of the physical nature of the interactions between spheres as a function of s∗.

Figure 3.5: A geometric representation of various two sphere systems between s∗

values of 0 and 1. separated by 1 nm. The radii of the spheres in the examples are:
(i) a1 = a2 = 5 cm, (ii) a1 = 0.5 nm and a2 = 0.75 nm, and (iii) a1 = a2 = 5 pm.
The range of values of s∗ from 0 to 1 corresponds to a continuum of the values for
all possible combinations of sphere size and separation distances.

Figure 3.6 is a contour plot showing the electrostatic force (in pN) between

a pair of equal-sized (a1 = a2 = 1 nm), like-charged dielectric spheres, with

dielectric constants (k1 = k2 = 20). The force is plotted as a function of the

scaled surface-to-surface separation (s∗) and the charge ratio (q2/q1) with the

interactions always being positive at larger separation. The plot shows that

as the charge ratio increases, the larger the separation can be in order for the

polarisation terms to still be the dominant factors in the force equation.
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Figure 3.6: A contour plot showing the electrostatic force (in pN) between a pair of
equal-sized, like-charged spheres, with dielectric constants k1 = k2 = 20. The force
is plotted as a function of the scaled surface-to-surface separation s∗ and the charge
ratio q2/q1, with a1 = a2 = 1 nm and q1 = 1e. The regions of attraction are displayed
in red whereas the regions with repulsive forces are represented in blue.

The dielectric constant k is defined as the permittivity of the material ε relative

to permittivity of a vacuum ε0 = 8.854 187 817 6× 10−12 F m−1

k =
ε

ε0

.

This value is generally governed by the polarity of the molecule, for exam-

ple, the large dipole moment in the O-H bonds of water cause the molecule

to be sizeably polarisable, leading to an overall bulk dielectric constant ki

of 80, whereas a non-polar molecule such as benzene, which essentially has

no overall dipole moment has a dielectric constant of just 2.3. A slight is-

sue with using the dielectric constant, is that the value represents the extent

that a bulk material concentrates electric flux, which loses significance when

scaling down away from bulk to the level of nanoclusters, although the value

can be used as a parameter that suggests the overall polarisability of the cluster.
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The size of the dielectric constant of a molecule has a significant effect on the

magnitude of the polarisation of dielectric spheres in this study, with materials

that have higher dielectric constants being more susceptible to polarisation,

inducing a greater contribution to the attractive force caused by the multipole

coefficient terms.

(a) (b)

Figure 3.7: The interaction in a vacuum (k0 = 1) between two particles with
varying dielectric constants. Shown are (a) U and (b) F between a pair of charged
dielectric particles: q1 = 1e, q2 = 2e, a1 = 0.63 nm, a2 = 0.84 nm, with dielectric
constants ki = 1.1, 2, 4, 6, 8, 10, 20 represented by black, red, orange, yellow, green,
blue and purple respectively.

This relationship can be seen in Figure 3.7 with a clear relationship being

shown between the magnitude of the dielectric constant and the polarisability

of the sphere. This is evident as on the ki = 1.1 plot which looks very similar

to interaction between point charges due to the low dielectric constant leading

to a negligible contribution from polarisation effects. Increasing values of ki

lead to more attractive/less repulsive plots as a whole.

The lack of polarisation of the surface charged density, even at very short

separation due to a low dielectric constant can be seen in Figure 3.8 which

shows the charge density distributions at a separation of 0.1 nm for a range of

dielectric constants.
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Figure 3.8: Charge density σ as a function of sweeping angle for two equally charged
spheres at a separation of 0.1 nm. The solid lines indicate the values of σ for particle
1, with the dashed line indicating the values for particle 2. ki = 1 (black), 2 (orange),
4 (yellow), 8 (green), a1 = 0.63 nm, a2 = 0.84 nm, q1 = q2 = 1.0 e. On each particle
β = 0 is the point on the surface of the particle closest to the other sphere.
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3.2 Non-Uniform Charge Distributions

In its lowest energy form, the free charge of a particle q is spread over the

surface of the particle to give a uniform free charge density σs in the form

σs =
q

4πa2
. (3.2)

Despite this, there are many situations where a uniform distribution is an un-

suitable representation of a charged system; here we introduce the application

of non-uniform surface charge densities to the particles in the forms of both

point charge distributions and Gaussian distributions.

The point charge distribution is a many-body generalisation of the two-body

solution introduced in 2019 by Filippov et al. [23] and is used to replicate the

kinetic energy release values from that paper. The model is also verified against

Coulomb’s law to test the basic accuracy of the implementation.

The Gaussian distribution is tested using both standard and higher order

distributions to find the limit of the standard deviation of the distribution, and

then a small width Gaussian is also used as an approximate representation of a

point charge and tested against the point charge solution.
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3.2.1 Gaussian Distribution

If charge is localised to a specific region of the surface, the distribution is no

longer uniform. In cases like this, functions such as Gaussian distributions can

be used to describe the shape and magnitude of the charge density distribution.

In 1 dimension, a Gaussian distribution f(x) is

f(x) =
1

τx
√

2π
exp

(
−1

2

(x− µx)2

τx2

)
(3.3)

where τ in this section is the standard deviation (usually denoted by σ) and µ is

the expected value [38]. When placing a Gaussian on a surface, the distribution

becomes elliptical and the product of two individual 1-dimensional Gaussians

(P (x, y) = P (x)P (y)), each with their own individual expected values (µx, µy)

and standard deviations (τx, τy).

f(x, y) =
1

τx
√

2π
exp

(
−1

2

(x− µx)2

τ 2
x

)
1

τy
√

2π
exp

(
−1

2

(y − µy)2

τ 2
y

)
. (3.4)

If τ = τx = τy, the distribution gains circular symmetry. When this is the case,

the distribution can be simplified to

f(d) =
1

2πτ 2
exp

(
−d

2

τ 2

)
(3.5)

where d is the distance from the expected coordinate (µx, µy).

To transform this normalised distribution into a Gaussian surface charge den-

sity distribution σg, the distribution is scaled by the total charge qg of the

distribution.

σg,i(d) =
qg

2πτ 2
exp

(
−d

2

τ 2

)
on Γi. (3.6)
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For a particle i with ng,i Gaussian distributions, the surface charge density at

a point on the surface σg,i(z) due to multiple Gaussian distributions is

σg,i(z) =

ng,i∑
k=1

qg,k
2πτ 2

k

exp

(
−dk

2

τk2

)
on Γi. (3.7)

where dk = |z− µk|, where µk = (µx,k, µy,k).

The shape of the Gaussian distribution can be adjusted by using a modified

version of the Gaussian in the form

f(d) =
1

2πτ 2
exp

(
−
(
d2

τ 2

)P)
, (3.8)

where P = 1 for standard Gaussians, and increasing P leads to an increasingly

more flat-topped Gaussian distribution [39]. When P 6= 1, the integral of

the distribution deviates from the normalised value, and therefore the distri-

bution needs to be corrected by dividing f(x, y) by its own surface integral
˜
s
f(x, y) dS. The effect of increasing P is shown clearly in Figure 3.9.

As the Gaussian function is designed for flat surfaces, rather than spherical

surfaces, the solution can only be solved within the diameter of the sphere

(0 ≤ d ≤ 2a). In order to ensure that all of qg is being placed on the particle,

it is important to make sure that f(d) is negligible at d = 2a, otherwise, the

amount of charge present on the particle will not equal the charge expected by

the integral of the Gaussian function. Placing a Gaussian distribution designed

for a flat 2D surface on a sphere also leads to deviations from the expected

value due to the curved nature of the surface, although this effect is negligible

for distributions with widths smaller than the particle’s radius.

As τ increases, the distribution become wider, and the value for σ at f(2a)
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(a) P = 1 (b) P = 2

(c) P = 5 (d) P = 10

(e) P = 20

Figure 3.9: Higher order Gaussian distributions using Equation (3.8) where τ = 1
and (µx, µy) = (0, 0) for a range of P values.
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becomes more significant, up until a point where it is no longer negligible, as in

Figure 3.10b. This distribution has a large value where β = ±180◦—the point

where d = 2a.

(a) (b)

Figure 3.10: A plot of σ as a function of β for a single non-polarisable particle
a = 1.0 nm with a Gaussian distribution of charge qg = 1e with (a) τ = 0.4 nm and
(b) τ = 1.0 nm.

Figure 3.11 shows the interaction between two non-polarisable particles (a1,2 =

1 nm), one carrying a Gaussian distribution of charge q = 1e and the other

uniform q = −1e, separated by a surface-to-surface separation s = 1000 nm.

The Gaussian distribution on particle 1 is centred pointing towards particle

two, and τ is varied from 0.1 to 2. Here, τrel = τ/a1, and gives a generalised

limit of τ relative to the size of the particle.

From Figure 3.11, in the case of a normal Gaussian (P = 1), τrel is limited to a

maximum value of ∼ 0.5, whereas a higher order Gaussian (P = 5) is able to

more than double this while still keeping its charge. It is clear to see why this

is the case in Figure 3.12, there the patch in 3.12a shows a much more diffuse

distribution than in 3.12b. The higher order distribution allows for the ability

to create patches of charge on the surface of a particle with a more uniform

distribution of charge within the patch’s radius, as opposed to the more diffuse

nature of the normal Gaussian.
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Figure 3.11: A plot of U as a function of τrel for a normal Gaussian distribution
(solid, P = 1) and a higher order Gaussian distribution (dashed, P = 5). The
interaction energy between two point-charges at this separation is displayed as the
dotted line to show the expected value.

(a) (b)

Figure 3.12: Visual representations of the surface charge density on the surface
of two non-polarisable spheres (a = 1.0 nm) with Gaussian surface charge density
distributions with τ = 0.4 nm and qg = 1e. (a) is a normal Gaussian (P = 1) and
(b) is a higher order Gaussian (P = 5).
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3.2.2 Point-Charge Distribution

There are times where the charge present on a sphere is best represented as a

localised point on its surface, such as when q = ±1e or the charge is situated

on metal ions deposited on a point of the surface. In this section that accuracy

of the model is investigated against a Coulomb’s law and a previous implemen-

tation of the solution.

In order to validate the point charge solution implementation, it is tested

against Coulomb’s law. Here, the two dielectric spheres with radii a = 5 nm

have dielectric constants k = 1 and are placed in a vacuum k0 = 1 with point

charges positioned on the boundary in the same direction along the vector

between the centres of the particles. The particles’ permittivity being equal to

that pf the medium allows us to look purely at the interactions between the

point charges without polarisation contributions to the interaction energy U .

The energy between these two particles should be equal to the equivalent set

up using Coulombs law. The agreement shown in Figure 3.13 indicates that

our implementation perfectly matches the expected results, and allows us to

move forward to more intensive tests.

In order to validate the point-charge implementation, a comparison with

similar work is presented. In 2019, a solution to the problem of representing

non-homogeneous surface charge density as a point charge was developed by

Filippov et al. [23]. This model was used to further investigate the electrospray

problem in Harris et al. [28], where the experimental kinetic energies releases

(KER) during the Coulomb fission process were predicted using the maximum

value in the energy-separation profile. The model was used to include an orienta-

tional analysis of the process, leading to a range of energy profiles with differing

characteristics. Here we calculated values of kinetic energy release using the

dielectric particle model point charge implementation. The systems chosen were
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(a) Dielectric Particle Model (b) Coulomb’s equation

Figure 3.13: U as a function of s for the interaction between two non-polarisable
dielectric particles (k = k0 = 1, a1 = a2 = 5 nm) with point charges (q1 = 1e, q2 = 2e
(solid), q2 = 1e (dotted)) positioned in the same direction as the vector between
the particles (a), and the equivalent calculation using Coulomb’s law (b). Here
s = hp − 2a2, where hp is the distance between the point charge locations.

Table 3.1: A comparison between point charge and Gaussian solution for benzene
results.

Orientation Point Charge Model Gaussian Distribution Difference
KER (eV) KER (eV) (%)

II 0.571 0.571 0
III 0.714 0.714 0
IV 47.432 46.424 2.12
V 0.831 0.830 0.01

the system in Figure 5 in Filippov et al. [23] looking at a low dielectric material

in benzene (k = 2.28). The corresponding values for each arrangement of the

point charges is shown in Table 3.1. When compared with the calculated values

from Filippov et al., the values consistently differ by ∼ 0.1% for all calculations.

While the values should match exactly, this small difference is likely a conse-

quence of the precision used for constants in calculations being slightly different.

Table 3.1 also shows the difference between using the point charge solution and

a very small Gaussian (τ = 1 pm) to simulate a point charge. Here it shows

that even in an extreme case, such as in orientation IV, where the point charges

are directed towards each other at a separation of 10 pm, the biggest error is

just 2%, with most cases < 0.01%, indicating that a small Gaussian is a very

good approximation of a point charge distribution.
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3.3 Neutral particles in external electric fields

Here the validity of the implementation of the external electric field solution to

the model is tested. It is tested for neutral particles against the expected results

from the literature for the induction of a dipole and subsequent interactions

between these induced dipoles against the solution in Stone [18].

The problem considers the interaction between two neutral dielectric particles

(i = 1, 2) suspended in a dielectric medium separated by a surface-to-surface

distance s being exposed to a uniform external electric field.

The electric dipole moment p of two oppositely-charged point charges is

p = qd (3.9)

where q is the magnitude of the charge of the point charges, and d is the vector

between the point charges from negative to positive. When a neutral dielectric

particle is placed in a uniform electric field, there is a redistribution of charge

density on the surface of the particle. This redistribution can be represented

as a dipole in the direction of the applied field in the form

p = 4πε0

(
κ− 1

κ+ 2
a3

)
E (3.10)

where E is the external field vector, a is the radius of the sphere and κ is the

relative permittivity of the particle with respect to the medium (κ = kp/k0).

The surface charge density on the sphere due to the presence of a uniform

external electric field σext is given by

σext = 3ε0

(
κ− 1

κ+ 2

)
E∞ cos θ =

1

V
p · R̂ (3.11)

where E∞ is the magnitude of the electric field strength, θ is the angle on
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(a) Equation (3.11) (b) Dielectric Particle Model

Figure 3.14: σext as a function of θ for a 5 µm particle (k = 10) in a vacuum
k0 = 1 exposed to a uniform external electric field with a strength of 200,000 V/m.

the sphere relative to the electric field vector and R̂ is the unit vector in the

direction of the electric field.

Although the redistribution of surface charge density of a single neutral dielectric

particle by a uniform field leads to no overall force on the particle, the presence

of a second particle can lead to interaction energies and forces between the two.

From Stone [18], interaction energy between two dipoles Epp is given by

Epp =
R2p1 · p2 − 3 (p1 ·R12) (p2 ·R12)

4πε0k0R5
(3.12)

where R is the distance between the centres of the two dipoles, R12 is the

vector between the two and k0 is the dielectric constant of the medium.

Using Equation (3.11) we can calculate the theoretical values for σext as a func-

tion of θ and compare it with the σext produced using our model, as shown in

Figure. 3.14a. The particle is a 5 µm radius dielectric particle with a dielectric

constant of 10 suspended in a vacuum (k0 = 1) exposed to a uniform external

electric field with a strength of 200,000 V/m. We see a perfect agreement to

theory in our test of the model’s ability to predict σext. E and the particle’s

radius a can be used in Equation (3.10) to gain a theoretical value for p which,

in this particular case, gives a value of 2.0862 fC.µm. In Equation (3.11) we
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Figure 3.15: Interaction energy as a function of s between two neutral dielectric
particles (k = 10, a = 5 µm) in a vacuum in a uniform electric field with a strength
of 200 kV m-1. The solid lines indicate the energies calculated using the dielectric
particle model, whereas the dotted lines indicate the results using Equation (3.12).
The particles are aligned parallel (red) or perpendicular (blue) to the electric field
vector.

can use the maximum value of σext to find a calculated value of p of 2.0862

fC.µm, matching the theoretical value.

As stated in earlier in this Section, adding another particle to the system leads

to an interaction between the two. This effect can be seen in Figure 3.15 where

the polarisable electrostatic model is compared against the analytical solution

in Equation (3.12) for the interaction between two of the particles previously

discussed (k = 10, a = 5 µm) in vacuum.

The difference between our model and the theoretical model in Figure 3.15 is

due to the dielectric particle model accounting for dipole-induced multipole

on the particles, whereas Equation (3.12) accounts for the pure interaction

between dipoles. It demonstrates the need to consider the polarisation of the
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(a) Stone Dipole-Dipole interaction (b) Dielectric particle model

Figure 3.16: A comparison of the energy profiles for the interaction between a pair
of 5 µm polarisable particles with radii with kp = 10 and k0 = 1 in external electric
field strengths of 100 kV m-1 (red) and 200 kV m-1 (black) using Equation 3.12 (a)
and the dielectric particle model (b). The particles are either aligned parallel (solid)
or perpendicular (dotted) to the electric field vector.

particles, as opposed to just looking at the dipole-dipole interaction, as even

when the dielectric constant is only 10, the interaction can be increased by

∼ 90% in the parallel orientation.

From Equation (3.10), we can see that the size of the dipole p is directly pro-

portional to the magnitude of the external electric field E∞. Consequently we

should expect the energy calculated from Equation (3.12) to be proportional to

E∞
2. Figure 3.16 shows this effect for both our model and the results calculated

using Equation (3.12), as when the field strength is halved, the interaction

energy is reduced by a factor of exactly 4 in both cases, as expected.

The dielectric constant of both the particles and the medium play a critical

role in the nature of the interaction. The relationship between ki and k0 can

be defined as κ where κ = ki/k0. When looking at just a single particle we can

use Equation (3.10) to find the limits of p, which are:

i) When kp � k0, κ→∞, p→ 4πε0E

ii) When kp � k0, κ→ 0, p→ −2πε0E

iii) When kp = k0, κ = 1, p = 0
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This effect can be seen in Figure 3.17, as when kp = 1 and κ = 10−3, the

theoretical value for the energy is roughly 1/4 of the value where kp = 106 and

κ = 103, indicating that the magnitude of the individual dipoles are doubled

as κ increases from 10−3 to 103. The difference in the energies between the

calculations using our code and those using Equation 3.12 is due to the effects

from polarisation, which are explained in Lindgren et al. [29].

Figure 3.17: Interaction energy as a function of kp in a system containing two neu-
tral dielectric particles with radii 5 µm suspended in a dielectric medium (k0 = 1000),
separated by a surface-to-surface separation of 5 µm calculated using our model (solid)
and 3.12 (dotted)

Figure 3.18 shows the effect of keeping kp constant and changing k0. This has

two effects: the first is where κ influences the magnitude and direction of the

dipole; the second is the effect of the screening from the polarisable medium

on the magnitude of the interactions, as the energies are proportional to 1/k0,

as when k0 increases, the magnitude of the interaction is heavily reduced. The

same energy differences between the dielectric particle model and theory can

be seen due to the same effects in Lindgren et al. [29].
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(a) Full Plot (b) Zoomed in

Figure 3.18: Interaction energy as a function of k0 in a system containing two
neutral dielectric particles (kp = 100) with radii a = 5 µm suspended in a dielectric
medium, separated by a surface-to-surface separation of 5 µm calculated using our
model (solid) and Equation 3.12 (dotted)

The angle between the vectors of the inter-particle displacement and external

electric field θ has a strong effect on the nature of the interaction between

the particles. Previously, the particles were similar in nature (both particles’

dielectric constant kp either above or below k0). In these cases, if the alignment

of the particles is parallel to the field (θ = 0◦, 180◦), the interaction is attractive

due to the head to tail orientation of the dipoles, whereas if the particles

are aligned perpendicularly (θ = 90◦), the interaction is repulsive due to a

parallel orientation. This can be seen in Figure 3.19 where the energy when

the dipoles are parallel the field is exactly twice the magnitude of the energy of

the perpendicular case for the pure dipole-dipole interaction, with our model

deviating slightly due to increased attraction from polarisation effects.

When the particles are dissimilar in nature (κ1 > 1, κ2 < 1) as seen in the

dotted case Figure 3.19, we get the same relationship in the relative magnitudes

of interactions as we got in the similar case, but the sign is flipped. When the

particles are aligned parallel with the field, the dipoles are oriented head-to-

head, leading to a strong, repulsive interaction. In the perpendicular orientation

they are aligned anti-parallel next to each other, leading to a weaker, attractive

interaction.
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Figure 3.19: Interaction energy U as a function of θ for two neutral dielectric
particles with a surface-to-surface separation of 5 µm. a = 5 µm. k0 = 10, k = 20
(solid), k = 5 (dashed), k1 = 20, k2 = 5 (dotted). E∞ = 200 kV m-1. θ is the angle
between the electric field vector and inter-particle vector.

The direction and relative magnitude of the force for the three systems in Fig-

ure 3.19 are shown in Figure 3.20, where the relative magnitude is normalised

against the interaction with the largest magnitude. Here we see the influence

on the nature of the interactions based on the relative polarisabilities of the

particles and the medium. In each case, the electric field vector E is directed

in the positive x-axis, and the dielectric constant of the medium is kept as

10, with the particles either being 20 or 5, leading to values of κ equal to 2

or 0.5 respectively. In Figure 3.20, (a) and (b) show similar trends, although

the relative strength of the repulsive interaction when the particles are aligned

perpendicular to the field give slight variations. This is due to the trend seen in

Lindgren et al. [29] where mediums more polarisable than the particles leads to

a repulsive charge-induced interaction; this leads to the trend in Figure 3.20b

where the stronger attractive interaction is reduced and the weaker repulsive

interaction is increased. As mentioned before, Figure 3.20c gives the expected

result, where the most repulsive interaction in when the dipoles are pointed



Chapter 3. Neutral particles in external electric fields 65

(a) κ1 > 1, κ2 > 1 (b) κ1 < 1, κ2 < 1

(c) κ1 < 1, κ2 > 1

Figure 3.20: A normalised plot of the force vectors for θ = 0◦-90◦ for two neutral
dielectric particles with radii a = 2.5 µm separated by a surface-to-surface separation
of 5 µm and an external electric field E in the positive x-axis. Shown are the cases
where both the particles are (a) more polarisable and (b) less polarisable than the
medium. (c) is the case where one particle is more polarisable than the medium,
whereas the other is less polarisable.

towards each other; the normalised magnitude of the interaction when θ = 90◦

is between those of (a) and (b) due to the conflicting effects of the attractive

contribution for the particle with κ > 1 and the repulsive contribution for the

particle with κ < 1 cancelling each other.

Dynamic Simulation of Neutral Particles in an External Electric

Field

A two-dimensional dynamics simulation was performed of 50 polarisable par-

ticles (k = 20) with radii a = 5 µm in a polarisable medium (k0 = 10) in

random positions within a square simulation box with 150 µm length walls.
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The particles have a coefficient of restitution CR of 0.6 in collisions with each

other and CR = 1 in collisions with the wall. Each particle began the simulation

with a speed of 1 m s-1 in a randomised direction. The particles are exposed to

a static external electric field directed in the positive x direction with a field

strength of 200 kV m-1. In this study, only 1 simulation was performed, and

the final geometry was obtained after 75 s of simulation time and is shown in

Figure 3.21. As the system was losing kinetic energy after each collision, the

speeds of the particles slowed down fairly rapidly, allowing for the time-step

length to be increased periodically.

Figure 3.21: Screen-shot of the final structure after 75 s of simulation time produced
by a molecular dynamics simulation of 50 randomly positioned dielectric particles
(k = 20) with a = 5 µm and speeds of 1 m s–1 in a dielectric medium (k0 = 10).
The particles are exposed to an external electric field in the positive x direction with
E∞ = 200 kV m–1 .

In this figure, we see a range of local geometries, with the general trend being

a strong affinity for the particles being in a linear geometry aligned with the

electric field vector E. 6 local geometries are shown in Figure 3.22, with a

set of three-body (I and II), four-body (III, IV and V) and seven-body (VI)

structures. The interaction energy of each of these local structures is shown in

Table 3.2. Structures II and VI are orientations where their energies have no
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dependence on the rotational angle of the particle with respect to E, whereas

III and IV are the same geometry, but with their major axis aligned either

parallel (III) or perpendicular (IV) to E, leading to a rotational dependence

on the energy. Going from structure II to structure III or IV is achieved by

the addition of a particle in a position either parallel (III) or perpendicular

(IV) to E. The energies in Table 3.2 suggest the reasoning for the prevalence

of structure III over structure IV in the simulations; the energy of structure III

is lower in energy than structure II, whereas structure IV is higher in energy.

Table 3.2: Energies of six orientations in Figure 3.22.

Local Structure U (aJ)
I -2.20
II -0.81
III -2.25
IV -0.51
V -3.44
VI -3.50

By far the most common orientation of particles is a linear arrangement parallel

with the direction of the external field. As shown in Figures 3.19 and 3.20,

when the particles are similar in composition, the strongest interaction is when

the particles are aligned parallel with the field due to the dipoles created on

the particles all being aligned in the same direction with respect to each other.

Figure 3.23 shows the energy associated with adding a particle to the end

of a linear chain, where Uadd(M) = U(M)− U(M − 1). The justification for

accounting for the many-body effects is clearly displayed here, as the energy

of adding a third particle to the chain is ∼10% lower than that of adding a

50th particle. This clearly shows the many-body effect of adding a particle

to the end of a shorter chain as opposed to a longer chain, as longer chains

can redistribute the effects over a longer chain, almost to the point where the

many-body effects can be neglected for long chains.
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(a) I (b) II

(c) III (d) IV

(e) V (f) VI

Figure 3.22: A simplified visualisation of a collection of 6 local geometries seen
at the end of the molecular dynamics simulation in Figure 3.21. Shown are (a,b) a
pair of three-body configurations, (c,d,e) three four-body configurations, and (f) a
seven-body hexagonal configuration.
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Figure 3.23: Uadd for a linear arrangement of M neutral particles with a = 5 µm,
k = 20, k0 = 10 for values of M from 3-50 in an electric field strength E∞ = 200 kV
m-1 parallel to the chain axis.



Chapter 4

The influence of surface charge

on dust agglomeration growth

in the mesosphere

The work in this chapter was performed as part of a collaboration with As-

trophysicist Prof. Ingrid Mann at UiT The Arctic University of Norway. A

presentation given at an ISSI team meeting on the “Electrostatic Aggregation

of Dust in the Lunar Regolith” in Bern sparked discussions about whether this

could be expanded to the dust and ice particles in the higher reaches of the

atmosphere, more specifically in the upper mesosphere and lower thermosphere

region.

4.1 Introduction

A significant fraction of the cosmic dust and meteoroid material that hits the

Earth remains in the atmosphere for extended periods of time and is a source

of solid dust particles, denoted as meteoric smoke particles (MSP) [40, 41]

MSP are formed by an ablation process, whereby meteoroids colliding with

atmospheric particles experience strong deceleration and are heated to evap-

oration temperatures. Meteoric and atmospheric species form an expanding

70
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column of partially ionised gas behind the meteoroid, which is observed as a

meteor, see e.g. [42]. Part of the meteoroid material vaporises, and the released

small solid particles and gaseous species are incorporated into the atmosphere

where they grow further to form MSP, see e.g. [40, 43]. The coalescence or

condensation mechanisms leading to dust agglomerates is considered to be an

important aspect of atmospheric physics and chemistry. A better understand-

ing of these mechanisms could help to establish the significance of particles

containing refractory materials that are present in the upper mesosphere and

lower thermosphere, in short, the MLT region of 60 to 130 km. These small

solid particles could also play a role in the formation of ice clouds by providing

a core for heterogeneous condensation that is more effective than homogeneous

nucleation. During summer, at high and mid latitudes the temperature near

the mesopause reaches a minimum and can fall below the freezing point of

water [44], and clouds of ice particles, polar mesospheric clouds (PMC), can

form at heights of 80 to 85 km [45]. These are also observed from Earth after

sunset and are known as noctilucent clouds (NLC). Because NLC may be an

indicator of climate change [46], it is important to understand the possible role

of meteoric smoke in the coalescence of ice particles, although the growth of

the meteoric smoke is an interesting topic of research in itself.

Models of coagulation [40, 43, 47] take into consideration the convection of

dust particles in global atmospheric circulation, the influence of gravitational

force, and Brownian motion. The models also assume that particles stick

together after a collision, which is not always the case. The outcome can

depend on the relative velocity of the colliding particles and the elasticity of a

collision as defined by the coefficient of restitution, which can vary according

to the composition of a particle. Dust charging, which can cause particles to

experience either strong attractive or repulsive forces, could also play a role

in the growth process. This consideration has not previously been included in

modelling the collisional dust growth in the MLT, but has been studied for



Chapter 4. Introduction 72

droplets in tropospheric clouds [48].

In this chapter the influence of surface charge on particle agglomeration pro-

cesses is studied. The point charge development in Chapter 2 is used to represent

the ice, metal oxide and silica particles. This model can be combined with other

theories to predict collision outcomes according to the variables of particle size,

charge, dielectric constant, relative kinetic energy, collision geometry and the

coefficient of restitution. The presence of negative, positive and neutral particles

in the MLT region implies that Coulomb forces between oppositely charged

objects are the main attractive component of any electrostatically-driven dust

agglomeration process. However, in addition to the strong attractive interaction

between oppositely charged particles, attractive interactions between particles

of the same sign of charge can also take place at small separation distances,

leading to the formation of stable aggregates. This attractive force is governed

by the polarisation of surface charge, leading to regions of negative and positive

surface charge density close to the point of contact between colliding particles

[49]. The strength of the resulting attractive electrostatic force depends on

particle composition as the value of the dielectric constant determines the extent

of polarisation of bound surface charge. Previously, the model has successfully

explained the effects of like-charge attraction in a range of coalescence processes

such as agglomeration of single particles and small clusters derived from a

metal oxide composite [32], aerosol growth in the atmosphere of Titan [50] and

self-assembly behaviour of charged micro-colloids [30]. Interactions between

pairs of neutral and charged particles also depend on the polarisation of surface

charge, but these take place in the absence of a Coulomb barrier (see below). In

atmospheric science, the method of image charges (described in Section 1.2.1)

is routinely used to study collision outcomes if particles can be approximated

by conducting spheres (or having the dielectric constant greater than 80).

The focus of this work is on aggregation processes relevant to mesospheric
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conditions and in particular at high latitudes. The MLT region offers unique

conditions in terms of the electrostatic environment, composition and physical

parameters such as temperature and pressure. The pressure at 60 km is less

than 1 hPa and decreases further with increasing altitude; therefore, particles

interact essentially in vacuum, and, consequently, in these simulations the

dielectric constant of the surrounding medium is taken to be one. To investi-

gate the growth of meteoric smoke particles, we consider charged and neutral

metal oxides particles with radii ranging from 0.2 nm to 5 nm as shown in

Table 4.1. To simulate the growth of ice onto the meteoric smoke, we examine

the interactions between metal oxide particulates and large ice particles ranging

in size from 10 nm to 100 nm and with charges 0 to -5e. As these particles

typically possess a low charge (or single charge arising, for example, from either

a photoionisation event that removes a single electron from a molecule on

the particle or the attachment of an ambient air ion) the charge distribution

is best represented by a point free charge residing on the surface. For this

case, we have extended the numerical method developed in Lindgren et al.

[25] to allow for description of particle charge in the form of point charge(s)

residing on its surface, similar to a solution proposed in Filippov et al. [23] but

based on a numerical method. Comparisons with a uniform distribution of free

surface charge, as described in Bichoutskaia et al. [19], shows that for particles

with radii greater than 10 nm, the choice of a specific form of surface charge

distribution does not affect the calculated electrostatic energy between parti-

cles; however, the difference does become important for sub-nanometer particles.

The remaining parts of the chapter are organised as follows. In Section 4.2, we

describe the ionospheric dusty plasma in the region where we study dust growth.

In Section 4.3, the range of relative velocities for collisions leading to aggregation

is calculated for all collision scenarios that are considered suitable to describe

the interactions between ice and dust particles in the mesosphere. These

velocity ranges are subsequently used to calculate the percentage aggregation
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Table 4.1: Common particulates found in the MLT region which are considered in
this study.

Particle Composition Dielectric Density, Size range, Charge,
constant g cm-3 nm e

Ice, H2O 100 0.92 3 - 100 0, -1 to -5
Silicon Dioxide, SiO2 3.9 2.65 0.2 - 5 0, -1, -2
Magnesium Oxide, MgO 9.6 3.58 0.2 - 5 0, -1, -2
Iron Oxide, FeO 14.2 5.74 0.2 - 5 0, -1, -2

outcome. The orientational geometry of the collisions is discussed, and a

quantitative estimation of the electrostatic interaction energy profile is presented

for collisions between like-charged particles. Section 4.4 focuses on specific cases

of aggregation between like-charged dust and ice particles, and Section 4.5 deals

with aggregation between small charged dust particulates. A brief discussion

of the results is provided separately in Section 4.6.

4.2 Ionospheric dusty plasma conditions

The MLT overlaps with the D-region ionosphere where the major ionisation

process under quiet conditions above 80 km is due to solar radiation and

geo-coronal UV radiation, and galactic cosmic rays become an important source

of ionization below 80 km. At high latitudes, where ice clouds can form,

the precipitation of high-energy electrons and protons that form in the Sun-

magnetosphere interactions and enter the ionosphere during geo-magnetically

perturbed conditions promote further ionisation. This increases the ionization

rate by up to several orders of magnitude [51].

The dust particles in the MLT are hence embedded in a low-pressure atmo-

sphere with a small but highly variable degree of ionization. They collect and

emit electrons and ions and some of the dust particles acquire a net equilibrium

surface charge in a balance when the currents of incoming and outgoing charged

particles are equal. The number density of plasma particles is variable. The
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impact of photons causes photoelectron emission and the detachment of elec-

trons from negatively charged dust. Photoionising solar X-ray, EUV and UV

fluxes can be variable, and other sources of ionising radiation include aurora

and geo-corona, as well as elves and sprites formed in the atmosphere [52]. The

dust number density is of similar order as that of the free electrons and ions; all

particles with charge collectively form a dusty plasma. In model calculations,

the dust charge has been simulated by taking into account the capture of

plasma particles, photo detachment and photoionization [53, 54]. The time to

reach equilibrium charge varies from around 100 s in quiet conditions to less

than 1 s in a meteor [42, 55].

Different assumptions have been made regarding the composition of particles.

Hervig et al. [56] describe the polar mesospheric cloud particles that are observed

with extinction measurements, as a mixture of ice and meteoric smoke and

suggest wüstite and magnesiowüstite as possible smoke materials. To simulate

dust conditions in the laboratory, Plane et al. [57] consider olivine and pyroxene

and Duft et al. [58] iron silicate. A number of laboratory experiments and ion

chemistry considerations could also constrain expected MSP dust composition,

revealing that FeO and MgO are rapidly oxidized by O3 and O2, and recombine

with H2O and CO2 [57]. Hence the existence of these oxides as pure particles

is unlikely. Bearing this in mind, we chose our sample materials mentioned

above as analogues for materials with different dielectric constants. There has

been no successful analysis made so far of the composition of collected MSPs,

which is because of difficulties in the collection process and because of different

sources of contamination [59]. Rapp et al. [41] used in-situ rocket observations

to constrain the workfunction of the MSP material and from that inferred Fe

and Mg hydroxides as possible initial compounds. Robertson et al. [60] pointed

out that rocket measurements of dust particles using charge detection can

be misinterpreted when there are approximately equal numbers of positively

and negatively charged MSPs; they also point out the importance of charge
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interactions for understanding the coagulation process.

4.3 Framing the problem

Temperatures in the MLT region typically fall in the range of 130 K to 150 K,

however observational studies have shown this to be variable [44]. Such low

temperatures have a significant effect on the nature of water droplets, as ac-

cording to the appropriate phase diagram [61, 62], ice particles are in a ‘soft

ice’ state and may absorb some of the kinetic energy present during a collision.

This possibility has implications for the outcome of all collisions between small

metal oxide particulates and ice particles, which at short separation distances

can exhibit a strong attraction, even when both particles have a charge of the

same sign [19]. However, for like-charged particles with low velocities, this

attractive region is largely inaccessible due to the presence of a large repulsive

Coulomb energy barrier (ECoul) which prevents their aggregation. In addition

to the Coulomb barrier, other factors affect aggregation during a collision; these

include the binding energy as defined by the interaction energy at the point

of contact (E0), the coefficient of restitution (CR), the Maxwell-Boltzmann

distribution of particle velocities at a defined temperature, and the composition

of colliding particles (as defined by the dielectric constant and particle density).

The total kinetic energy of a system containing two colliding particles is the

sum of the relative kinetic energy with respect to the centre of mass (Krel) and

the kinetic energy of the centre of mass (Kcm)

Ktot =
1

2
µ|vrel|2 +

1

2
Mv2

cm (4.1)

where µ = m1m2

m1+m2
is the reduced mass of the colliding particles, M = m1 +m2,

vrel = v1−v2, and vcm =
∑
mjvj
M

(j = 1, 2). The kinetic energy of the centre of



Chapter 4. Framing the problem 77

mass is unaffected by changes in the inter-particle interaction energy. However,

due to the law of conservation of energy, the loss or gain of electrostatic interac-

tion energy between the colliding particles leads to corresponding changes in the

relative kinetic energy. At the point where the electrostatic interaction energy is

at the maximum (the Coulomb barrier, ECoul), the relative kinetic energy of the

colliding pair is at the minimum. Once over the barrier and immediately before

the collision the kinetic energy is at its highest, i.e. Kbefore
rel = K initial

rel −E0, and

in an inelastic collision, it is reduced to Kafter
rel = CR

2 ×Kbefore
rel . If CR = 1, the

collision is elastic and the kinetic energy does not change during the collision.

The minimum relative initial velocity colliding particles require to overcome

the Coulomb barrier is therefore

vmin
rel =

√
2ECoul

µ
. (4.2)

If the loss of kinetic energy during a collision (Kbefore
rel −Kafter

rel ) is greater than

the excess kinetic energy as compared to the Coulomb barrier (K initial
rel −ECoul),

then the particles are trapped behind the barrier. The maximum relative

initial velocity (vmax
rel ), above which coalescence is not possible, is derived from

the situation where, during a collision, insufficient kinetic energy is removed

through the action of the coefficient of restitution and the particles fly apart.

This maximum initial velocity is given by:

vmax
rel =

√
2[(ECoul − E0)/C2

R + E0]

µ
. (4.3)

The above collision scenarios are illustrated in Figure 4.1 based on an example

case of a small SiO2 particle colliding with a larger ice particle both carrying a

negative charge of q1 = q2 = −1e. Three possible outcomes are described. If the

relative kinetic energy of the colliding particles is smaller than the height of the
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Coulomb barrier (case 1) then the particles always repel one another without

energy loss. If the particles collide inelastically with a relative kinetic energy

sufficient to overcome the Coulomb barrier, the loss of kinetic energy during a

collision may prevent their subsequent separation and lead to the formation of

a stable, or metastable, aggregate (case 2). If the energy loss during such a

collision is not sufficient to stabilise the pair, the particles rebound and separate

(case 3). The latter case may be applicable in warmer regions of the atmosphere

where particles move with higher velocities. In this work, we consider a wide

range of particle velocities in order to identify a wide range of possible collision

outcomes. The probability distribution for the relative velocity of two colliding

particles in the form of a Maxwell-Boltzmann distribution at temperature T is

given by

P (vrel) =

√
2

π

( µ

kT

)3/2

v2
rele
−µv

2
rel

2kT . (4.4)

In Figure 4.2, representative examples for the Maxwell-Boltzmann distribu-

tion of the relative velocities are shown for collisions between SiO2 particles

carrying a charge of q2 = -1e and ice particles with q1 = 0, -1e, and -2e at

T = 150 K. If the surface charge is represented by a point charge residing on

the particle’s surface then the orientational geometry of a collision becomes

important. Figure 4.3 shows the geometries considered in this study, both

for collisions between ice particles and small metal oxide particulates (Fig-

ure 4.3a) and for collisions between metal oxide particles (Figures 4.3b and 4.3c).

Previous studies by Bichoutskaia et al. [19] have shown conclusively that, be-

tween like-charged particles, attraction is strongly size-dependent, such that

particles carrying the same amount of charge should have dissimilar sizes.

This effect becomes more noticeable with the increase of the ratio of particle

radii, a1/a2; as the ratio increases, surface charge polarisation becomes more
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Figure 4.1: Possible outcomes for a collision between like charged particles. The
total energy is schematically split into two components: the electrostatic interaction
energy (solid) and the relative kinetic energy (dashed). The electrostatic interaction
energy profile is calculated for a collision between ice particle (a1 = 3 nm) and SiO2

particle (a2 = 0.5 nm) both carrying the charge of q1 = q2 = -1e.

Figure 4.2: Aggregation probability, indicated by the shaded area, for a collision
between SiO2 particle (a2 = 0.2 nm, q2 = -1e) and ice particle (a1 = 30 nm) as
defined by the Maxwell-Boltzmann distribution of the relative velocity at T = 150 K:
(a) the case of neutral ice particle (q1 = 0), the probability of aggregation is one
as P (vrel) is integrated in the velocity range of [0,1192] ms−1; (b) q1 = -1e, the
probability of aggregation is 0.293 as P (vrel) is integrated in the velocity range of
[295,1219] ms−1; (c) q1 = -2e, the probability of aggregation is 0.034 as P (vrel) is
integrated in the velocity range of [450,1260] ms−1. The values of vmin

rel and vmax
rel are

taken from Table 4.2
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Figure 4.3: Position of the point charge on the surface of colliding particles depicted
by a small open circle: (a) ice particle (1) and small oxide particulate (2); (b) and
(c): both particles (1 and 2) are oxides.
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pronounced, leading to strong attraction at short separation distances and

a reduction of the Coulomb barrier. This effect is illustrated in Figure 4.4a,

which shows electrostatic interaction energy profiles as a function of separation

distance for collisions between like charged ice and SiO2 particles (q1 = q2 = -1e)

as the size of the ice particle varies between a1 = 10 nm, 20 nm and 30 nm.

As the ice particle becomes larger, the height of the Coulomb barrier decreases,

which in turn can affect the outcome of a collision. Note that Figure 4.4

refers to a collision geometry shown in Figure 4.3a which favours the attractive

interaction between two particles, each with a point charge located on their

surface.

In this example, the SiO2 particle approaches the ice particle from the direction

opposite the location of the point charge on the latter, and this collision

corresponds to the least repulsive interaction. An equivalent scenario has been

considered assuming a uniform distribution of surface charge on both particles,

following the approach described in Bichoutskaia et al. [19]. The height of

the Coulomb barrier obtained using a uniform distribution of surface charge is

depicted in Figure 4.4 by horizontal lines. For the size of particles considered

in this work, these two approximations give very similar results. Although the

height of the Coulomb barrier is strongly influenced by the size of the large

ice particle (Figure 4.4a), it shows no change with variation in sizes of SiO2

particles considered here. The height of the Coulomb barrier is affected even

more greatly when the charge of colliding particles is changed. In the case

considered in Figure 4.4b, the charge on ice particle was increased from q1 =

-1e to -5e to show almost linear dependence of the barrier on charge variation,

in accordance with the leading Coulomb energy term E ∝ q1q2
h

.The variation of

the electrostatic energy with particle size shown in Figure 4.4a is a more subtle

effect related to surface charge polarisation (note in Figure 4.4b the change of

scale along y-axis).
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Figure 4.4: Electrostatic interaction energy as a function of the separation distance
between an ice particle and a SiO2 particle (a2 = 0.2 nm, q2 = -1e) in the geometry
shown in Figure 4.3a, as calculated by the point charge model analogous to Filippov et
al. [##]. Horizontal lines indicate the value of the Coulomb energy barrier obtained
using the uniform surface charge model: (a) the charge of the ice particle is q1 = -1e,
and the radius varies as a1 = 10 nm (line 1), 20 nm (line 2) and 30 nm (line 3); (b)
the radius of the ice particle is a1 = 30 nm, and the charge varies as q1 = -1e (line
3), -2e (line 4) and -5e (line 5). Note the change of scale on the y-axis.
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4.4 Aggregation of oxide and ice particles

Consider first the aggregation of negatively charged metal oxide and ice par-

ticles. Table 4.2 shows values of vmin
rel and vmax

rel calculated using equations

(2) and (3) with CR = 0.9. Integrating the probability distribution shown

in Figure 4.2 between these limits gives the probability of aggregation, and

the results are presented in Table 4.2, where aggregation is expressed as a

percentage of all collisions. Table 4.2 summarises results for the aggregation of

a metal oxide particle, with a fixed size and charge, with ice particles of varying

size and charge. These data show that large ice particles with low charge have

the highest probability of coalescence with like-charged metal oxide particles.

However, in many cases the Coulomb barrier prevents aggregation of particles

with the kinetic energies typically found in the MLT region (kT = 12.9 meV at

T = 150 K), assuming that thermal motion is the predominant contribution to

velocity. The barrier can be overcome by a small number of high kinetic energy

particles found in the tail of the Maxwell-Boltzmann distribution of molecular

speeds at 150 K. For these particular interactions, the free charge on the surface

of both colliding particles is described by a point charge with the geometry

shown in Figure 4.3a, and the change in electrostatic interaction energy is due

to a redistribution of bound charge (polarisation effects). Note that for ice

particles with higher charges, a uniform distribution of free charge might be

more appropriate. As mentioned previously, if the initial relative velocity of

the incoming particles is smaller than vmin
rel the two like charged particles repel

(case 1 shown in Figure 4.1), however if it is greater than vmax
rel the particles

do not coalesce but instead fly apart due to the residual excess kinetic energy

(case 3). Therefore, only collisions with a relative initial velocity greater than

vmin
rel and smaller than vmax

rel lead to coalescence. In these examples, a change of

the coefficient of restitution would not affect the probability of aggregation as

CR only reduces vmax
rel , and values of the latter that fall within the temperature

range appropriate for these calculations have extremely low probabilities.
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Table 4.2: Energetic considerations and the percentage of aggregation for SiO2 - ice
collisions at T = 150 K and CR = 0.9 (the surface point charge model). SiO2 particle
has the fixed radius and charge (a2 = 0.2 nm, q2 = -1e), and the size and charge of
ice particle is varied. The collision geometry is shown in Figure 4.3a.

ice particle Coulomb barrier, vmin
rel , vmax

rel , agg,
ECoul, meV m s-1 m s-1 %

a1 = 30 nm; q1 = 0 0 0 1192 100
a1 = 30 nm; q1 = -1e 23.8 293 1219 29.9
a1 = 30 nm; q1 = -2e 55.3 447 1260 3.57
a1 = 20 nm; q1 = 0 0 0 1235 100
a1 = 20 nm; q1 = -1e 35.7 361 1275 13.7
a1 = 20 nm; q1 = -2e 82.9 547 1333 0.50
a1 = 10 nm; q1 = 0 0 0 1251 100
a1 = 10 nm; q1 = -1e 71.3 511 1330 1.15
a1 = 10 nm; q1 = -2e 165.8 780 1441 0

Table 4.3: Energetic considerations and the percentage of aggregation for FeO - ice
collisions at T = 150 K and CR = 0.9 (the surface point charge model). FeO particle
has the fixed radius and charge (a2 = 0.2 nm, q2 = -1e), and the size and charge of
ice particle is varied. The collision geometry is shown in Figure 4.3a

ice particle Coulomb barrier, vmin
rel , vmax

rel , aggregation,
ECoul, meV m s-1 m s-1 %

a1 = 30 nm; q1 = 0 0 0 1007 100
a1 = 30 nm; q1 = -1e 23.7 199 987 34.7
a1 = 30 nm; q1 = -2e 55.3 303 1012 5.2
a1 = 20 nm; q1 = 0 0 0 1094 100
a1 = 20 nm; q1 = -1e 35.7 244 1059 17.4
a1 = 20 nm; q1 = -2e 82.9 372 1092 0.91
a1 = 10 nm; q1 = 0 0 0 1267 100
a1 = 10 nm; q1 = -1e 71.3 345 1165 1.91
a1 = 10 nm; q1 = -2e 165.9 526 1225 0

Figure 4.5 shows coalescence results where the size of the ice particle has

been increased to 100 nm. These data reinforce the fact that, for like-charge

collisions, an increase in the size of the ice particle from 10 nm to 100 nm can

lead to an order of magnitude increase in the probability of aggregation. Also

given in Figure 4.5 are data calculated for a charge of -2e on the ice particle. In

this case, the probability of aggregation is increased from zero (for a1 < 20 nm)

to more than 40% (for a1 ≈ 100 nm), thus providing a mechanism whereby ice
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Table 4.4: Energetic considerations and the percentage of aggregation for MgO -
ice collisions at T = 150 K and CR = 0.9 (the surface point charge model). MgO
particle has the fixed radius and charge (a2 = 0.2 nm, q2 = -1e), and the size and
charge of ice particle is varied. The collision geometry is shown in Figure 4.3a

ice particle Coulomb barrier, vmin
rel , vmax

rel , aggregation,
ECoul, meV m s-1 m s-1 %

a1 = 30 nm; q1 = 0 0 0 1341 100
a1 = 30 nm; q1 = -1e 23.7 252 1311 29.9
a1 = 30 nm; q1 = -2e 55.3 384 1340 3.57
a1 = 20 nm; q1 = 0 0 0 1481 100
a1 = 20 nm; q1 = -1e 35.7 309 1425 13.7
a1 = 20 nm; q1 = -2e 82.9 470 1465 0.50
a1 = 10 nm; q1 = 0 0 0 1776 100
a1 = 10 nm; q1 = -1e 71.3 436 1607 1.15
a1 = 10 nm; q1 = -2e 165.9 665 1676 0

particles can increase their charge, but still participate in aggregation processes.

4.5 Aggregation of oxide particles

The abundant presence of metal oxide and silica particles in meteoric smoke

in the MLT region [57] leads to a possibility that these may also aggregate,

and with radii ranging from 0.2 nm to 5 nm, these are amongst the smallest

particles found in this region of atmosphere. Their size means that if the

point charge approximation is used to describe the surface charge, then the

exact location of the point charge on the surface of each colliding particle

becomes very important because, as shown previously by Filippov et al. [23],

collision geometry can alter the strength of the electrostatic interaction. This

statement does not apply to most like-charged interactions because, as shown

in Table 4.5, the height of the Coulomb barrier prevents very small like-charged

particles (less than 5 nm radius) from aggregating. Note that collisions between

like-charged silica particles have lower energy barriers than those calculated

for collisions between iron oxide particles. For collisions involving larger par-

ticles (a1 = 5 nm), despite the lower energy barriers the minimum initial

velocity (vmin
rel ) required to overcome the barriers for SiO2 are still higher than
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Figure 4.5: Aggregation probability, presented as percentage, for a collision between
SiO2 particle (a2 = 0.2 nm, q2 = -1e) and ice particle (q1 = -1e and q1 = -2e) whose
size varies from a1 = 1 nm to 100 nm.

those for FeO particles. These effects arise from differences in density and mass.

For collisions between charged and neutral particles the Coulomb barrier is

always zero, and their aggregation is driven by polarisation effects. Again,

orientation of the particles becomes important and here two limiting cases are

considered. Table 4.5 corresponds to the case where the point charge on the

surface of particle 2 faces the neutral particle 1 (geometry shown in Figure 4.3b,

but we now assume that particle 1 is neutral). In this configuration, there is

strong attraction as the point charge approaches the neutral particle leading to

a re-distribution (polarisation) of surface charge on the latter. This leads to a

significant increase in the binding energy between the particles (E0) and results

in coalescence through the subsequent action of the coefficient of restitution.

Irrespective of particle composition, the absence of a Coulomb barrier results

in aggregation for all of the examples examined in Table 4.5.
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Table 4.5: Energetic considerations and the percentage of aggregation for SiO2 -
SiO2 and FeO - FeO collisions at T = 150 K and CR = 0.9 (the surface point charge
model). Particle 2 has the fixed radius and charge (a2 = 0.2 nm, q2 = -1e), and the
size and charge of particle 1 is varied. The collision geometry is shown in Figure 4.3b.

SiO2 - SiO2 Coulomb barrier, vmin
rel , vmax

rel , agg,
ECoul, meV (m s-1) (m s-1) %

a1 = 0.2 nm; q1 = 0 0 0 8112 100
a1 = 1.0 nm; q1 = 0 0 0 3914 100
a1 = 5.0 nm; q1 = 0 0 0 2187 100
a1 = 0.2 nm; q1 = -1e 2889 4566 9168 0
a1 = 1.0 nm; q1 = -1e 622 1504 4156 0
a1 = 5.0 nm; q1 = -1e 125 671 2273 0.02

FeO - FeO
a1 = 0.2 nm; q1 = 0 0 0 2876 100
a1 = 1.0 nm; q1 = 0 0 0 1811 100
a1 = 5.0 nm; q1 = 0 0 0 1307 100
a1 = 0.2 nm; q1 = -1e 3056 3175 4150 0
a1 = 1.0 nm; q1 = -1e 679 1068 2055 0
a1 = 5.0 nm; q1 = -1e 136 476 1376 0.03

The data displayed in Table 4.6 correspond to the case least favourable to

aggregation between neutral and charged particles. Here, the point charge on

the surface of particle 2 faces away from the neutral particle 1 (geometry shown

in Figure 4.3c but particle 1 is neutral). In this orientation, collisions with

the smallest charged particles (a2 = 0.2 nm) strongly favour aggregation often

resulting in a 100% coalescence outcome, even though the maximum relative

initial velocity of colliding particles required for coalescence is significantly

lower. When the charged particle is very small, the interaction resembles a

point charge - neutral particle case which is always attractive. Note that the

aggregation remains almost complete (100%) even when both charged and

neutral particles are extremely small (a1 = a2 = 0.2 nm) and highly polarisable

(FeO, MgO). In general, there are distinct differences between the aggregation

outcomes for SiO2 particles and the more polarisable FeO particles, with the

FeO collisions consistently having higher percentage aggregation and MgO par-

ticles lie somewhere between the two. For the geometry shown in Figure 4.3c,

the aggregation percentage drops very significantly as the size of the charged



C
h
ap

ter
4.

A
ggregation

of
ox

id
e

p
articles

88

Table 4.6: Energetic considerations and the percentage of aggregation for SiO2 - SiO2 and FeO - FeO collisions at T = 150 K and CR = 0.9 (the
surface point charge model). Particle 2 has the fixed charge (q2 = -1e) and particle 1 is neutral (q1 = 0), and the size of both particles is varied. The
collision geometry is shown in Figure 4.3c.

SiO2 - SiO2 FeO - FeO MgO - MgO
vmax

rel , m/s aggregation,% vmax
rel , ms−1 aggregation,% vmax

rel , ms−1 aggregation,%
a2 = 0.2 nm; a1 = 0.2 nm 364 58.3 445 96.0 495 93.1
a2 = 0.2 nm; a1 = 1.0 nm 569 99.7 625 100 714 100
a2 = 0.2 nm; a1 = 5.0 nm 737 100 748 100 869 100
a2 = 1.0 nm; a1 = 0.2 nm 34.2 0.29 29.8 0.49 29.3 0.29
a2 = 1.0 nm; a1 = 1.0 nm 14.6 9.75 18.0 36.3 20 30.4
a2 = 1.0 nm; a1 = 5.0 nm 22.8 57.2 25.2 91.4 28.7 88.4
a2 = 5.0 nm; a1 = 0.2 nm 9.00 0.01 0.0∗ 0.0∗ 0.0∗ 0.0∗

a2 = 5.0 nm; a1 = 1.0 nm 1.42 0.02 1.15 0.04 1.24 0.03
a2 = 5.0 nm; a1 = 5.0 nm 0.59 1.01 0.72 4.78 0.80 3.81

∗ zero within the accuracy of our calculations
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particle 2 grows. This is because any surface polarisation response on the

neutral particle due to the presence of a point charge on the surface of particle

2 is now hindered by the volume of the charged particle itself. Finally, when

the charged particle is large and the neutral one is very small, the surface

polarisation effects on the neutral particle are negligible and aggregation does

not occur. This can be illustrated by comparing two examples: if a2/a1 = 10

(radius of charged particle is ten time bigger than that of neutral particle) the

aggregation is 0%, and if a1/a2 = 10 (radius of neutral particle is ten time

bigger than that of charged particle) the aggregation is 100% (Table 4.6).

Finally, if the results given in Tables 4.5 and 4.6 for percentage aggregation are

compared, it can be seen that there are differences that depend on how the

point charges are orientated on these particles, all of which have comparatively

low dielectric constants. In all instances where a charge is pointing towards a

large polarisable particle (Table 4.5, when q1 = 0 and q2 = −1e), aggregation

is 100%. However, when in Table 4.6 the charge is located at 180° from the

adjacent particle (case 4.3c in Figure 4.3), aggregation drops to 58% when in

the least polarisable particle pair, SiO2, the neutral particle has a radius of

0.2 nm. As the dielectric constant increases on moving to MgO and FeO the

particles become more polarisable and the percentage aggregation increases.
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4.6 Brief discussion of main results and con-

clusions

This work is focused on the description of basic principles underpinning the

coalescence of ice and dust particles in thermal motion. Specific examples

considered in this study examine coalescence between particles, commonly

found in the mesosphere, at the temperature T = 150 K which is typical to

this region of atmosphere. Pair interactions of charged particulates follow the

Coulomb law with an additional contribution from the attraction between

like-charged and neutral-charged pairs driven by induced polarisation of the

particle surface charge. The latter interactions can be significant at short

separation distances between interacting particles. Low temperatures in the

MLT region imply that the colliding particles are not very energetic, and for a

like-charged pair, the relative kinetic energy is often insufficient to overcome

the Coulomb barrier. However, the high energy tail of the Maxwell-Boltzmann

distribution of the relative velocity at T = 150 K provides an adequate amount

of collisions leading to aggregation both between like-charged particles of ice

and dust and between dust particulates themselves.

The like-charged attraction is more common (and stronger) between particles

with low charge. This collision scenario can be described by a localised, point

surface charge model and one where the charge is assumed to be uniformly

distributed over the entire surface of a particle. An earlier study by Filippov

et al. [23] of the interaction between positively charged particles, showed that,

for particles with low dielectric constants, there is a difference in predicted

behaviour between these two models. As the dielectric constant increases in

value, results from the two models became equivalent. Similarly, differences in

orientational geometry of a collision (extreme scenarios are shown in Figures 4.3b

and 4.3c) were also found to be evident at low dielectric constants; but again

these disappeared as the value of the dielectric constant increased.



Chapter 5

Charged particle dynamics in

dry powder inhalers: Evidence

of particle scavenging

The work in this chapter is a collaboration with the Inhaled Delivery team

at GSK (Dr. David Prime, Cheng Pang and Melanie Hamilton) in Ware.

The study focuses on the electrostatic cohesion of pharmaceutical aerosols by

investigating aggregation pathways via both static and dynamic analysis.

5.1 Introduction

Drug delivery to the lungs in the form of aerosolised fine particles has signifi-

cant advantages over other forms of administration. The lungs present a large

permeable membrane where the active ingredients can be readily absorbed,

meaning that, in comparison to other delivery systems, lower doses can be as

effective. Delivery is achieved through a metered dose inhaler (MDI) or dry

powder inhaler (DPI), within which the particulate drug becomes aerosolised

and carried into the lungs by the human breath. However, it is recognised that

in order to achieve the desired result, the particles—consisting of a mixture

of the active pharmaceutical ingredient (API) and excipients (lactose)—are
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required to have diameters in the range 0.5 µm to 10 µm. Any smaller than

0.5 µm and the particles are exhaled and those larger than 10 µm become

lodged in the throat and never reach the lungs [63].

Table 5.1: The effect of particle diameter d on the deposition quality of particles
within the lungs. [64]

d (µm) Outcome

d > 10 Impaction with throat

0.5 < d < 10 Deposition in lungs

d < 0.5 Expelled upon exhalation

The powder particles within a DPI inherently possess bipolar charge due to

triboelectrification in the manufacturing process. This bipolar charge is both

a blessing and a curse, with the charge increasing the quality of deposition

within the lungs, but also increasing the likelihood of aggregation of particles

into larger clusters which are less able to make it to the lungs [64, 65].

The overall aim of this project is to be able to use computational methods to

accurately represent—both statically and dynamically—the interactions present

in the airflow of particles shortly after the particles exit the blisters within the

manifold of a DPI in order to gain an insight into the aggregation patterns

between charged pharmaceutical powder particles. The aim is to achieve this

using data collected from experiments conducted using the Dekati® BOLAR™

device in collaboration with the many-body electrostatic model to create models

for various systems, including systems ranging in size from 2 body interactions

to systems with over 300 particles.

BOLAR™

The Dekati® Bipolar Charge Meter, or BOLAR™, (shown in Figures 5.1 and

5.2 [66]) measures the bipolar charge of aerosolised particles as a function of
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Figure 5.1: Schematic of the Dekati® BOLAR™. [67]

particle size. Inhaled drug product is aerosolised at 60 L/min flow rate; the

dose is then divided six ways by the flow divider and aerodynamically sized

prior to entering a detector tube below the impactor stages. The impactor

arrangement with differing size cut-offs determines the size of the particles

reaching the detector. Five detectors measure positive and negative charge

for the various size fractions (Table 5.2), whilst the sixth detector which acts

similarly to a Faraday Pail measures the net charge and serves as a control.

The inner surfaces are positively charged to +1 kV which attract negatively

charged particles and the outer detectors, held at ground potential, attract

positively charged particles. Furthermore, the BOLAR technique allows mass

recovery of the formulation components (APIs and excipients) to determine

the charge to mass ratios [67].

The action of manufacturing and processing pharmaceutical powders cause

the particles to collide both with each other and their containers, causing

the powder to gain electrical charge via the triboelectric effect. The charge

carried by inhalation aerosols has been found to have an effect on both the
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Figure 5.2: Dekati® BOLAR™ internal components. [67]

performance of the inhaler device itself and—as previously stated—deposition

of particles within the lungs due to the aggregation of powder particles into

larger aggregates, lessening their ability to flow effectively down the airways

[68]. The BOLAR is an instrument designed to replicate the inhalation of

powders at a controllable flow rate and is used to measure the mass and the

amount of bipolar electrical charge for the range of particle size fractions shown

in Table 5.2 [67].

Table 5.2: A table showing the size fractions corresponding to each of the compart-
ments within the BOLAR equipment, and also the diameters equal to the midpoint
of the size fraction. [68]

Detector Tube Size Fraction Average Particle

(µm) Diameter (µm)

1 d < 0.95 0.48

2 0.95 < d < 2.60 1.78

3 2.60 < d < 4.17 3.39

4 4.17 < d < 7.29 5.73

5 7.29 < d < 11.57 9.43
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Figure 5.3: A visualisation of the relative sizes of particle with diameters of 9.43 µm,
5.73 µm, 3.39 µm, 1.78 µm and 0.48 µm from left to right.

The average particle diameter in Table 5.2 is calculated by assuming an equal

distribution of particle sizes passing through each of the size fractions, therefore

taking the midpoint of each size fraction as the average particle diameter. The

relative sizes for typical particles from each of the size fractions are shown in

Figure 5.3.

5.2 Framing the computational problem

5.2.1 Two-body collisions

Consider the problem of two oppositely charged powder particles colliding and

subsequently separating in a constant airflow, where the Coulombic attraction

of the charged particles works against the kinetic energy of the separation

immediately after collision. This system is analogous to escape velocities in

physics, where gravitational forces between two bodies oppose the kinetic

energy of an escaping object; if the object has an initial velocity faster then

the escape velocity ve it will overcome the gravitational pull of the larger body.

ve can be calculated for when the kinetic energy of the object is equal to the

total gravitational potential energy at the surface of the larger body. This
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relationship is shown by

EK = EGP

1

2
mv2

e =
GMm

r

ve =

√
2GM

r

where EK is the kinetic energy of the escaping object, EGP is the gravitational

potential energy on the surface, G is the gravitational constant, M is the mass

of the larger object, m is the mass of the escaping object and r is the radius of

the larger object. In our case, EK is replaced by the internal kinetic energy of

the separating particles immediately after the collision EIK and the attraction

due to the gravitational potential energy is exchanged with the electrostatic

interaction energy at the point of contact Eelectrostatic. The outcome of a collision

between particles is dependent upon the relationship between the magnitudes

of both EIK and Eelectrostatic, where

if |EIK| > |Eelectrostatic|; No coalescence, (5.1)

if |EIK| < |Eelectrostatic|; Particles will coalesce. (5.2)

Eelectrostatic is the electrostatic interaction energy calculated at the point of

contact where the surface-to-surface separation s = 0 µm, and is calculated

using the uniform model proposed in 2018 by Lindgren et al. [32].

The internal kinetic energy of a system EIK is the kinetic energy of the individual

components of a many-body system in the centre of mass reference frame. In

the case of two particles with the same speed colliding, EIK depends on 4

parameters: the particles initial speed vj; the mass of each particle mj; the

angle between the velocity vectors of the particles 2θ; and the coefficient of

restitution of the particles CR. Calculating the internal kinetic energy requires

knowledge of the momentum of the collision. In the case considered here (shown
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in Figure 5.4), the particles are travelling at the same velocity in the y-axis, so

the only contribution to the collision’s momentum is due to the differences of

the velocities in the vector of collision, where the initial particle velocities in

this vector vj,i depend on vj and θ.

v1,i = v1 sin (θ) (5.3)

v2,i = −v2 sin (θ) = −v1,i (5.4)

Figure 5.4: A visual representation of a collision between two particles with opposite
charges (negative = blue, positive = red) and different radii. Each particle has linear
speed vj travelling at an angle θ either side of the y-axis moving in the direction of
the arrows shown.

These initial velocities can be used to calculate the overall momentum of the

colliding system. The law of conservation of momentum states that the overall

momentum of the system does not change as shown in (5.5).

m1v1,i +m2v2,i = m1v1,f +m2v2,f (5.5)

In order to be able to calculate the velocities in the collision vector after the
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impact for each particle vj,f , the kinetic energy lost in the collision also needs

to be accounted for. This is resolved by considering the coefficient of restitution

CR, where

CR =
v2,f − v1,f

v1,i − v2,i

(5.6)

with CR ≈ 0.5–0.8 for pharmaceutical powders [69]. Combining (5.5) and (5.6)

gives solutions to v1,f and v2,f in terms of m1, m2, v1,i, v2,i and CR.

v1,f =
m1v1,i +m2v2,i −m2 CR (v1,i − v2,i)

m1 +m2

(5.7)

v2,f =
m1v1,i +m2v2,i +m1 CR (v1,i − v2,i)

m1 +m2

(5.8)

In order to calculate the internal kinetic energy of the system, the velocity of

each particle needs to be considered in relation to the system’s centre of mass

velocity vCM.

vCM =
1

M

∑
j=1,2

mjvj,f (5.9)

Knowledge of vCM leads to a solution for EIK in the form

EIK =
1

2

∑
j=1,2

mj (vj,f − vCM)2 (5.10)

By using this approach, it is possible to evaluate the internal kinetic energy

of the interaction over a range of initial speeds vj and incoming angles θ for

collisions between particles of any given mass. This data can then be used to

predict whether or not a collision between two charged particles will aggregate

by using Eelectrostatic as a reference point. Once EIK has been calculated (5.1)

and (5.2) can be used to determine the outcome of the interaction.

The molecular dynamic simulations in this Chapter were all run with a timestep

of 0.05 ns for total simulation times ranging from 15 to 200 µs using the method
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described in Section 2.2.

5.3 Electrostatic cohesion of colliding powder

particles

The data analysed in this section looks at the interaction between particles

consisting solely of particles composed of lactose. Experimental BOLAR™ data

used in this section was produced by the Inhaled Delivery team at GSK. The

interaction considered from this data consists of lactose particles with bipolar

charge with a dielectric constant kj of 2.9, of radius aj and charge qj, colliding

in air (k0 = 1). The coefficient of restitution CR is given a values of 0.8 and 0.5

for relevant calculations.

Figure 5.5: Eelectrostatic as a function of the number of terms used N for two charged
lactose particles where k1,2 = 2.9, a1,2 = 1.0 µm, q1 = +100e, q2 = −100e interacting
in air (k0 = 1.0).

The low dielectric constant of lactose may lead to the assumption that the

pure non-polarisable coulombic interactions would be sufficient to represent the
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electrostatic interactions between the spheres. Looking at an example of an elec-

trostatic interaction between two oppositely-charged lactose particles—as shown

in Figure 5.5—the monopolar interaction between non-polarisable particles

(N = 0) gives an interaction energy of -7.18 eV. Introducing just a single term

to the model (N = 1) to represent the charge-induced dipole interactions results

in an interaction energy of −7.57 eV—a 5% increase in the interaction energy—

with the interaction converging to within 1 meV at just 8 terms to an increase

in the interaction energy of 8%. This rapid convergence in Eelectrostatic allows

for the use of a low number of terms while still retaining a high level of accuracy.

The amount of charge present on the surface of the particles in each size fraction

qj was calculated by dividing the total charge for a compartment—shown in

Figure 5.6—by the number of particles for each compartment.

The number of particles for each compartment is found by dividing the total

Table 5.3: A table showing the average charge per particle qj for the outer detector
(OD) and inner detector (ID) for each compartment in the BOLAR™.

Compartment qj (×10–3 fC) Compartment qj (×10–3 fC)

OD1 +20.24 ID1 −5.85

OD2 +626.28 ID2 −521.68

OD3 +1315.05 ID3 −1136.76

OD4 +2930.00 ID4 −2101.45

OD5 +7096.67 ID5 −6575.20

mass of each size fraction by the mass density of lactose (1520 kg m–3) to find

the total volume of lactose present and then dividing this total volume by the

volume of a single spherical particle using the diameters from Table 5.2. The

values of qj for particles in each compartment are shown in Table 5.3. The raw

mass data used to calculate these values is presented in Table 5.4.

Eelectrostatic at the point of contact is calculated for each combination of oppo-
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Figure 5.6: Charge data from a BOLAR™ run showing the total positive (red),
negative (blue) and net (green) charge for lactose particles in each size fraction within
the BOLAR™.

Table 5.4: Mass data obtained from the outer detector (OD) and inner detector (ID)
for each compartment in the BOLAR™. Averages for the smallest size bin exclude
the 0 µg results.

Mass per compartment / µg
Prep OD1 OD2 OD3 OD4 OD5 ID1 ID2 ID3 ID4 ID5

1 0.19 3.83 8.06 16.05 17.35 0.00 4.38 8.21 18.30 18.96
2 0.14 4.18 8.41 18.98 15.93 0.54 3.86 9.25 28.25 12.13
3 0.00 2.74 5.97 14.44 12.28 0.00 3.03 6.57 15.07 14.16
4 0.20 3.82 9.28 17.10 13.51 0.00 4.68 9.04 23.31 12.65

Ave. 0.18 3.64 7.93 16.64 14.77 0.54 3.99 8.27 21.23 14.47

sitely charged particles and shown in Table 5.5. These are the values used as

the baseline for the determination of the outcome of a collision between two

particles—as stated in Equations (5.1) and (5.2)—with the relative magnitude

of EIK in relation to the magnitude of Eelectrostatic determining the outcome of

the collision.

A plot of EIK as a function of θ for the two most asymmetrically-sized particles

with radii of 0.24 and 4.72 µm and CR = 0.8 travelling with linear velocities

vj = 6 m s–1 is shown below in Figure 5.7. The plot displays a value for EIK
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Table 5.5: A table showing Eelectrostatic at the point of contact in eV for all possible
combinations of oppositely charged particles.

OD1 OD2 OD3 OD4 OD5

ID1 -16 -224 -244 -325 -481

ID2 -563 -11198 -16079 -24367 -38792

ID3 -693 -16837 -26857 -44193 -74946

ID4 -786 -21411 -36975 -65543 -118872

ID5 -1528 -43619 -80827 -153836 -299633

for a head on collision (θ = 90◦) of around 25 keV which is around 20-50 times

the magnitude of Eelectrostatic for the relevant interactions shown in Table 5.5.

This is a clear example of a collision with too much energy that would lead to

a complete separation of the particles. A closer look at the plot given inset in

Figure 5.7 that shows the regions where EIK is more comparable to Eelectrostatic.

This region clearly shows points of intersection between EIK and Eelectrostatic that

signify the critical angles (θcrit) where where any deviation from this angle will

alter the outcome of the collision for two particles with this speed. For the inter-

action between particles from OD1 and ID5 (red plot, Eelectrostatic = −1528 eV),

θcrit is around 15◦, whereas for the weaker interaction for particles from OD5

and ID1 (blue plot, Eelectrostatic = −482 eV) has a much lower value for θcrit of 8◦.

The contour plots in Figure 5.8 show EIK for a range of colliding systems.

In each of the figures, the collisions resulting in a value of EIK lower than

Eelectrostatic are coloured yellow or red, whereas those above this value are in the

blue region. The interactions between similarly sized particles are shown in

Subfigures 5.8a and 5.8d; these interactions show very small critical angles even

at lower velocities vj of 5 m/s (θcrit < 3◦), indicating a very low probability of

particles aggregating in the event of a collision.

In contrast, the interactions between asymmetrically sized particles, presented
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Figure 5.7: A plot showing the internal kinetic energy of the system EIK as a
function of θ for the collision between the largest (a1 = 4.72 µm) and smallest
(a2 = 0.24 µm) particles with vj = 6 m s–1 (black line). Also shown is Eelectrostatic

for the interactions between particles where q1 = −6575 aC and q2 = +20.24 aC
(red) and q1 = +7097 aC and q2 = −5.85 aC (blue). The inset data shows the region
where the 3 plots are comparable in magnitude, indicated by the green rectangle on
the main plot.

in Subfigures 5.8b and 5.8c, show much larger values of θcrit with fairly signifi-

cant values (θcrit ≥ 5◦) even at larger values of vj up to 20 m/s. This observation

supports the idea that larger charged particles will be more likely to scavenge

a collection of smaller particles across its surface after a series of collisions. As

the dielectric properties of the APIs used in the inhalers are comparable with

those of lactose, it can be assumed that API/Lactose containing mixtures will

behave in similar ways. The particle sizes for each of the APIs are generally

smaller than those of lactose implying that, after a series of collisions within

the inhaler’s manifold, smaller API particles will typically be deposited across

the surface of larger lactose particles.

The coefficient of restitution is speed of separation of two colliding particles

relative to the speed of approach as shown in (5.6). Analysis of both the critical

angles θcrit and critical velocities vcrit for constant vj and θ respectively for two

systems that are identical with the exception of their values for CR are shown
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(a) a1,2 = 0.24 µm, q1 = +20.24 aC,
q2 = −5.85 aC

(b) a1 = 0.24 µm, a2 = 4.72 µm,
q1 = +20.24 aC, q2 = −6575 aC

(c) a1 = 4.72 µm, a2 = 0.24 µm,
q1 = +7097 aC, q2 = −5.85 aC

(d) a1,2 = 4.72 µm, q1 = +7097 aC,
q2 = −6575 aC

Figure 5.8: 2D plots of EIK as a function of vj and θ for 4 different colliding systems.
The interactions presented are those between the smallest (a), most asymmetric (b)
and (c), and largest (d) lactose particles. For each interaction, Eelectrostatic is
represented for each plot as the black contour line, cohesive collisions are indicated
by the red/yellow region, whereas the blue region indicates separation.
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in Figure 5.9, with the plots shown in Subfigures 5.9a and 5.9b showing the

results for CR values of 0.8 and 0.5 respectively.

(a) CR = 0.8 (b) CR = 0.5

Figure 5.9: A comparison of the 2D plots for 2 systems containing a pair of colliding
asymmetrically-sized lactose particles (a1 = 4.72 µm, a2 = 0.24 µm,
q1 = +7097 aC, q2 = −5.85 aC). The systems are identical with the exception of
the coefficient of restitution CR. The white horizontal and vertical dashed lines are
placed in identical positions in each subfigure for constant vj and θ respectively.

At a first glance the two plots look extremely similar, but a closer look at the

plots show a clear difference in the points of intersection between the dashed

lines and the black contour line for Eelectrostatic. The horizontal dashed lines in

Figure 5.9 represent EIK for when vj = 5 m s–1, where the intersection point

with the black line indicates the value of θcrit in each case; when CR = 0.8,

θcrit ≈ 18◦, whereas when CR is given a lower value of 0.5, θcrit increases to

∼ 30◦. A similar pattern is observed with the vertical dashed lines at θ = 10◦,

revealing critical velocities of ∼ 8 m s–1 and ∼ 13 m s–1 for CR values equal to

0.8 and 0.5 respectively.

5.4 Dynamics simulations of charge scaveng-

ing mechanisms

Dynamic analysis was performed to verify the observations made in Section 5.3.

Both systems in this section have linear velocities vj of 6.5 m s–1, but the

particles involved and values for θ are varied.
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(a) a1,2 = 0.24 µm, q1 = +20.24 aC,
q2 = −5.85 aC

(b) a1 = 0.24 µm, a2 = 4.72 µm,
q1 = +20.24 aC, q2 = −6575 aC

Figure 5.10: 2D plots of EIK as a function of vj and θ for 2 systems containing
colliding lactose particles. The interactions presented are those between symmetrically-
and asymmetrically-sized lactose particles. The yellow markers correspond to the
input values for vj and θ in the two dynamic simulations performed for each collision.

In the first simulation, the interaction is between the two smallest particles from

OD1 and ID1 with vj = 6.5 m s–1 and θ = 5◦; here, the two particles collide

and then separate with no aggregation. This result agrees with the results

shown in Figure 5.10a, where the values used in this simulation correspond to

a point in the blue region of the plot, above θcrit.

The second simulation displays the interaction between two asymmetrically

sized particles from OD1 and ID5 with θ = 10◦; despite the increase in the

angle, the particles still aggregate after the collision. This result also agrees

with the results shown in Figure 5.10b, where the values used in this simulation

corresponds to a result in the red region, below θcrit.

In an airflow of particles, turbulence is likely to occur causing an increase in

collision frequency of particles within the aerosol. Some of these collisions

can lead to the formation of small charged aggregations. These aggregates

are larger in size than their components, and therefore have a larger collision

cross-section and leads to a higher likelihood of being impacted by another

particle. In a collision between an aggregate and another particle, there are a

range of possible outcomes: the particle can coalesce with the aggregate; the

particle can completely break up the aggregate; or the particle can break part
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(a) t = 0 µs. a1,2 = 0.24,
q1 = −5.05 aC, q2 = +20.24 aC.

(b) t = 20 µs. a1,2 = 0.24,
q1 = −5.05 aC, q2 = +20.24 aC.

(c) t = 0 µs. a1 = 4.72, a2 = 0.24,
q1 = −7097 aC, q2 = +20.24 aC.

(d) t = 8 µs. a1 = 4.72, a2 = 0.24,
q1 = −7097 aC, q2 = +20.24 aC.

Figure 5.11: Screenshots of dynamic simulations at (a) 0 and (b) 20 µs for the
dynamic simulations of the system described in Figure 5.10a (a1,2 = 0.24 µm, q1 =
+20.24 aC, q2 = −5.85 aC, v = 6.5 m s–1, θ = 5◦). Screenshots at (c) 0 and (d) 8 µs
for the dynamic simulations of the system described in Figure 5.10b (a1 = 0.24 µm,
a2 = 4.72 µm, q1 = +20.24 aC, q2 = −6575 aC v = 6.5 m s–1, θ = 10◦).

of the aggregate off and coalesce with the remainder. A dynamic simulation of

a system containing a particle from compartment ID5 impacting an aggregated

pair of particles from OD1 and ID1 was performed for a total simulation time

of 15 µs.

Figure 5.12 shows the direct impact of the particle on the cluster results in the

aggregated particles initially moving away from the impacting particle, although

after around 5.5 µs the aggregate separates, with the positively charged particle
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(a) t = 0.0 µs (b) t = 0.5 µs

(c) t = 5.5 µs (d) t = 14.0 µs

Figure 5.12: Screenshots at various timestamps for the dynamic simulation of
a small two-body cluster (a1,2 = 0.24 µm, q1 = +20.24 aC, q2 = −5.85 aC) being
impacted by the impact of a larger particle (a3 = 4.72 µm, q3 = −6575 aC) with an
initial velocity of 1 m s–1.

being attracted back towards the larger particle, eventually aggregating with

the larger particle. This supports the results shown in Figure 5.8, where the

likelihood of an aggregation of asymmetric particles is higher than that of

similarly-sized particles.

The scavenging of small aerosolised droplets and particles via the presence of a

larger charged particle has been observed throughout nature, for example in

cloud formation and in charged volcanic ash clouds, as well as commonly used

in industrial processes. Due to the size range of the particles in a DPI, this

same phenomenon can be assumed to be present within the particle airflow,

with larger charged particles travelling slower within the airflow and being

overtaken by smaller, bipolarly charged particles. In order to simulate this scav-
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Table 5.6: Total number of positive n+ and negative n− particles within the phar-
maceutical aerosol cloud with radius a.

a (µm) n+ n−

0.24 100 100

0.89 40 40

1.70 10 10

enging, the aerosol cloud requires a large number of particles (M > 100). For a

system of this size, the fast multipole method (FMM) technique—mentioned in

Section 2.1.4—is ideal for reducing the computational cost of the simulations,

and so was used for the following larger systems.

The simulations of the charge-scavenging process run in this study were of an

aerosolised cloud of 300 lactose particles with bipolar charge passing over a

singular larger particle with a diameter around twice that of the particles from

largest size fraction in the BOLAR™, with a = 10 µm. The cloud contains

particles from each compartment in the 3 smallest size fractions randomly

positioned within the volume of a cube with edge length of 73.1 µm, with the

number of each type of particle shown in Table 5.6. The size and charge of

each particle are taken from Tables 5.2 and 5.3 respectively. Based on the

numbers of particles calculated from the mass data in Table 5.4, a uniform

density of particles within this volume would expect to contain just 1 or 2

particles, although the regions in the DPI manifold close to the powder blister

location contain areas of high turbulence which allow for increased particle

densities.

Each dynamics simulation was run for a total simulation time of 200 µs with

a time step of 0.05 ns using the Verlet integration method. The scavenging

particle was placed 5 µm from the cloud in the positive x-direction with a

velocity of 5.5 m s–1 in the same direction. The particles within the cloud were
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all given the same velocity of 6.5 m s–1 in the positive x-direction. CR in the

simulations is 0.8. The only interactions in the simulations were electrostatically

driven, with no influence from air resistance and gravity. Due to the random

placement of aerosol particles within the initial cloud, 99 simulations were run

for each of the scavenging particles in Table 5.7 to gain an average over multiple

simulations. The charges assigned to particles I and III in Table 5.7 were

assigned to be in line with the surface charge densities seen for the negative

and positive particles in Table 5.3 respectively, whereas scavenging particle II

is half the charge of particle I.

Table 5.7: Scavenging particle parameters

Scavenging Particle a (µm) q (fC)

I 10 -38.5

II 10 -19.3

III 10 +46.3

Figure 5.13 shows the aggregation data for the simulations run for scavenging

particle I. In all simulations for this particle, no negatively-charged particles

were observed as being scavenged, ruling out the theory of any like-charged

attraction present in the system between the lactose particles; this is due to

the very low dielectric constant of 2.9 for lactose and also the similarity of the

surface charge densities of the particles. Figure 5.13a gives the expected result,

where the aerosol particles from compartment 1 are most numerous and will

therefore have the largest aggregation by numbers, and the cloud particles from

compartment 3 have the smallest. When this same value is considered as a

percentage (Figure 5.13b) of the particles of that size within the cloud, the

results for particles from compartments 1 and 2 give similar percentages at the

end of the simulation, with the main difference being the fact that the larger

particles of the two take longer to reach this value. This is explained simply

by the higher charge per mass ratio q/m of the smaller particles, with the

q/m for particles from tube OD1 being ∼1.6 times that of particles from tube
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OD2, and ∼5.5 times that of particles from tube OD3. The overall charge of

the scavenging particle and its aggregates is shown in Figure 5.13d, where the

scavenging of oppositely-charged particles leads to a decrease in the magnitude

of the cluster charge.

(a) (b)

(c) (d)

Figure 5.13: Aggregation data over the entire 200 µs dynamic simulations of a cloud
of 300 aerosol particles passing over scavenging particle I (a = 10 µm, q = −38.5 fC).
Shown is the data for the (a) number and (b) percentage of aerosol particles coalesced
on the scavenging particle with radii of 0.24 µm (blue), 0.89 µm (red) and 1.70 µm
(green), as well as the (c) total number of particles coalesced and the (d) total cluster
charge. Each plot shows the mean and standard deviation for the sample size.

Figure 5.14 shows the comparison between the percentage aggregation data

of aerosol particles from compartment 1 for scavenging particles I and II

(Figure 5.14a), and I and III (Figure 5.14b) for identical aerosol clouds. The

influence of the magnitude of the charge of the scavenging particle on its

ability to scavenge aerosol particles is shown in Subfigure 5.14a, where the

only difference between the two systems is that particle II possesses 50% of
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the charge of particle I. The total aggregation at the end of the simulation

for particle II is around half of that of particle I, which is expected from a

particle with half the charge. In these calculations, the maximum scavenging

rate (obtained from the steepest gradient) of particle I is around 2.5 times that

of particle II.

(a) (b)

Figure 5.14: A comparison of percentage aggregation of the smallest particles over
the entire 200 µs dynamic simulations (a = 0.24 µm) between scavenging particles
with a = 10 µm (a) I (q = −38.5 fC, blue) and II (q = −19.3 fC, red), and (b) I
(q = −38.5 fC, blue) and III (q = −46.3 fC, red). Each plot shows the mean and
standard deviation for the sample size.

Figure 5.6 shows a consistent net positive charge at all sizes detected. The

effect of this asymmetry in the bipolar charge within the aerosol is studied

in Figure 5.14b, where scavenging particles I and III are compared. Despite

particle III having a larger magnitude of charge than particle I, Figure 5.14b

shows particle I as having a higher maximum scavenging rate and larger overall

aggregation of the smallest particles (a = 0.24 µm). This trend is due to these

positive aerosol particles being higher in charge than the equivalent negative

particles where the positive particles are almost quadruple that of the negative

(Table 5.3) and have much stronger interactions with oppositely-charge particles

(Table 5.5).
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5.5 Concluding remarks

In this chapter the effect of bipolar charge on the aggregation of lactose particles

has been studied. The static analysis indicates that asymmetry in particle size

tends to produce the most likely aggregates, indicating a charge scavenging

mechanism, whereas the dynamics simulations gave further context into the

mechanisms, highlighting that the scavenging is driven towards the scavenging

of particles with a high charge-to-mass ratio.



Chapter 6

Self-assembly behavior of

oppositely charged inverse

bi-patchy micro-colloids

The work in this chapter represents a collaborative project with Prof. Alexander

Böker, Dr. Dmitry Grivoriev and the rest of the Multifunctional Colloids and

Coatings team at the Fraunhofer Institute for Applied Polymer Research (IAP)

in Potsdam-Golm, Germany. This chapter focuses more on the theoretical

calculations associated with the project; more detailed description of the

experimental method and techniques performed by our collaborators associated

with characterising the particles and finding yields can be found in Naderi Mehr

et al. [30].

6.1 Introduction

A directed attractive interaction between pre-defined “patchy” sites on the

surfaces of anisotropic microcolloids can provide them with the ability to

self-assemble in a controlled manner to build target structures of increased

complexity. An important step towards the controlled formation of a desired

superstructure is to identify reversible electrostatic interactions between patches
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which allow them to align with one another. The formation of bi-patchy particles

with two oppositely charged patches fabricated using sandwich microcontact

printing is reported. These particles spontaneously self-aggregate in solution,

where a diversity of short and long chains of bi-patchy particles with different

shapes, such as branched, bent and linear, are formed. Calculations show that

chain formation is driven by a combination of attractive electrostatic interac-

tions between oppositely charged patches and the charge-induced polarization

of interacting particles.

In this work, sandwich microcontact printing was used to produce bi-patchy

melamine formaldehyde (MF) microparticles with oppositely charged patches

consisting of either poly (methyl vinyl ether-alt-maleic acid) (PMVEMA) or

polyethylenimine (PEI). The successful attachment of these polymers to the

particle poles is demonstrated by different microscopic methods, where the

measurements show that the yield of bi-patchy particles was improved. Here,

we concentrate on the study of the self-aggregation behaviour of the patchy

particles in solution. From a comprehensive statistical analysis of variable

chains, such as short and long, branched, bent and linear, we can show that

chain formation through the connections between patches is due to electrostatic

attractions between oppositely charged patchy particles. These interactions

can be weakened or even eliminated by increasing the ionic strength of the

medium.

6.2 Bi-patchy particles with two oppositely-

charged patches

Multivalent, oppositely charged polymers, PMVEMA as well as PEI, can be

attached to the surfaces of MF particles as the isoelectric point (IEP) of the

latter has been found to have approximately neutral pH [70]. A localized
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change in the pH to either acidic or basic at the contact surface of the MF

particles and the polymeric inks leads to their attachment through electrostatic

attraction (Figure 6.1a).

For sandwich µCP, two stamps were spin-coated with water solutions of

PMVEMA and PEI, respectively. A monolayer of particles, prepared by

drop-casting a dispersion of MF particles on a glass substrate, was pressed

against the first stamp, which was spin-coated with PMVEMA. To generate

second patches made of PEI on the opposite side of MF particles, the second

stamp was pressed against the first stamp with particles immersed in PMVEMA

layer. Finally, bi-patchy particles were released in acetone from the second

stamp.

Patchy particles, as particular types of anisotropic microcolloid, are increas-

ingly attracting attention due to their non-uniformity, often asymmetric shape,

and characteristic properties. They are designed for controlled self-assembly

allowing a diversity of complicated target superstructures, such as chains and

rings, as well as two-dimensional (2D) and three-dimensional (3D) structures,

such as squares, pyramids, tetrahedra, twisted shapes and even diamonds

[71–73]. Since not all of these structures have been achieved experimentally,

considerable interest is focused on the mechanism of their formation and on

the corresponding interactions between patchy particles. Size, number and

spatial distribution of patches play a crucial role in the formation of the fi-

nal constructs; this stimulates computational simulations aimed at predicting

the form and three-dimensionality of the resulting structures by changing the

patch parameters [74–76]. Simulations by Guo and co-workers [77, 78] have

shown that DNA strand-like helices could be generated through the assembly

of tri-patchy particles, and the distribution of patches defines the diameter

of the final helix. Furthermore, a simpler model has been developed for the

formation of polymer-like chains of bi-patchy particles with patches at the
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Figure 6.1: a) Scheme of the generation of oppositely charged patches on the surface
of an MF particle made of prelabeled PMVEMA and PEI with Rhodamine 6G and
FITC, respectively. b) SFM height image of a PMVEMA patch. c) SEM image of a
PEI patch. d) SEM image and e,f) fluorescence and the overlaid microscope images
of bipatchy MF particles with patches made of PMVEMA and PEI that are coloured
red and green, respectively. Scale bars: 1 µm



Chapter 6. Bi-patchy particles with two oppositely-charged patches 118

particle poles [79]. In addition to these computational simulations, patchy

particles with two (Janus particles) or more patches have also been prepared

in recent experimental work [80, 81]. However, self-assembly of these particles

into chains or helices has not been reported [80, 82]. Patchy colloids with more

than two patches can be produced by the colloidal fusion of a liquid core out

of a pressure-deformed cluster of particles [80]. The chemistry of the patches

on the particles can be used to control the strength and the directionality

of the interactions between colloidal building blocks [83] when symmetrical

clusters made from just a few spherical colloidal particles (called as “colloidal

molecules”, CMs) are created.

The patchy particles were characterized by various microscopy methods (Fig-

ure 6.1b-f). To achieve a clear visualization of the patches for fluorescence

microscopy, the polymers PMVEMA and PEI were labelled with Rhodamine

6G and Fluorescein isothiocyanate (FITC) tags, respectively. Information

about the morphology and surface properties of the patches was obtained by

scanning electron (SEM) and scanning force microscopy (SFM). As one can

clearly see (Figures 6.1b–6.1d), there are distinct borders between the patches

and the bare surface of particles, enabling an exact measurement of the patch

size. Using several tens of SEM and SFM images, the following values for patch

size were obtained: 2.33 ± 0.16 µm and 2.4 ± 0.2 µm for PEI and PMVEMA

patches, respectively.

6.2.1 Electrostatic interactions between patchy parti-

cles

Self-aggregation of patchy particles can be better understood through the

accurate evaluation of the electrostatic interaction energy between pairs of

charged patchy particles in different relative orientations. In the general case of
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Table 6.1: The parameters used in the computations of electrostatic inter-action
energies: k is the dielectric constant, a is the radius, and q is the charge; km is
30.05 (90:10 mixture of ethanol and water). A particle graphic representation is also
included for clarity.

Substance k a / µm q / fC
MF 8.0 2.59 0
PEI 3.8 1.295 +0.734
PMVEMA 3.5 1.295 -0.923

a two-body electrostatic interaction between polarisable (dielectric) particles,

electric charge on one of the particles creates an electric field that induces

a redistribution of surface charge and the polarisation of bound charge on

a second particle, which, in turn, generates its own electric field, prompt-

ing complementary polarisation effects on the first particle. This iterative

process results in an equilibrium state where both particles acquire a static

charged configuration that can lead to either an attractive or repulsive force be-

tween the interacting particles, which can be readily calculated analytically [19].

In the considered case of particles having patches of different charge and dielec-

tric constant, the many-body solution presented in Chapter 2 has been used. In

this work, each bi-patchy particle is represented by three spheres: the central

sphere corresponding to the MF carrier and two smaller ones on either side

representing the patches. The input parameters, summarised in Table 6.1, were

either measured experimentally (sizes of patches and particles) or derived on

the basis of well-established theoretical concepts using the data from the litera-

ture (e.g. charges on patches were calculated from the data on electrophoretic

mobility or zeta-potential according to the Smoluchowski approximation, see

[70] and references therein). These parameters were used in computation of the
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Figure 6.2: a) Fluorescence and b) optical microscope images of the self-assembly
of bipatchy particles. c) Six possible connection types which could be formed via
random interactions between patchy and nonpatchy surfaces of particles, together
with statistics of experimentally observed connections in the aggregates formed by MF
bipatchy particles. The fraction of PEI patch interactions is larger than the fraction
of PMVEMA interactions due to the higher yield of PEI patches.
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surface charge distribution on the particles and the electrostatic interaction

forces driving their self-aggregation at all relative orientations and separations.

The action of charges under their mutual polarisation influence is obtained

from Gauss’s law that couples uniquely the surface potential with the distri-

bution and magnitude of electrical charge on the surface of the particles. The

effect of the surface charge is integrated to numerically obtain the electrostatic

force acting on the particles at arbitrary separations and orientations using a

Galerkin approximation of an integral equation formulation [32]. The effect

of the solvent on the self-assembly behaviour is captured by the dielectric

constant of the ethanol:water (90:10) medium, taken to be 30.05, as no charge

screening is present in the solution (large Debye screening length). The effect

of an increased ionic strength on self-aggregation behaviour of patchy particles

has been studied previously in [70] by adding a saturated solution of NaCl in

ethanol/water (90:10).

The strongest attractive interaction energy, below -0.05 fJ at short separation

distances, is predicted for a pair of bi-patchy particles with the PMVEMA-PEI

connection type (Figure 6.7a); this interaction is dominated by a Coulomb

attractive force between patches of opposite charge, which constitutes 65%

of the overall interaction outcomes found experimentally (see Figure 6.2c).

Similar electrostatic behaviour is observed if a mono-patchy and a bi-patchy

particle interact directly through either PMVEMA-PMVEMA, PEI-PEI or

PMVEMA-PEI connections (Figure 6.5). Much weaker attractive interactions

(Figure 6.7b), attenuated by polarisation of neutral MF particles by the charged

patches and polarisation effects of the solvent [29], account for a further 12% of

the attractive interaction outcomes observed in the experiment (Figure 6.2c).

Note that this attractive regime only occurs if the patches on the opposite

(outer) sides of the interacting pair are identical. The overall interaction be-

tween a bi-patchy particle and a mono-patchy particle remains repulsive if the

outer patches have different sign of charge and chemical composition, which
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Figure 6.3: Overlay of fluorescence and optical microscope images of a) the branched,
b) bent, and c) linear chains, which are formed via electrostatic attraction between
oppositely charged PMVEMA and PEI patches. For a better visualization, connections
between bipatchy particles are represented with white lines, PMVEMA and PEI patches
are additionally highlighted with red and green colored half-circles, respectively. Scale
bars: 10 µm.

affects the value of the dielectric constant and hence the strength of the total

electrostatic force and charge induced polarisation.

Although electrostatic interactions between two individual bi-patchy particles

with PMVEMA-PMVEMA and PEI-PEI patch contacts are always repulsive,

these connections might be still observed experimentally in small self-assembled

clusters, such as those shown in Figure 6.3. Such connections could arise from

the complexity of subtle changes in the density of charge residing on the surface

of each particle as a consequence of charge-induced polarisation effects, as seen

in many-body systems [26, 49]. An attraction between objects carrying the

same sign of charge is even possible in the pairwise interaction and results from

a mutual polarisation of charge density close to the region where they are in

contact [49]. To generate an attractive interaction between like-charged objects

it is not only necessary for one object with a high charge density to polarise
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Figure 6.4: Overlay of the optical and fluorescence microscope images of the bipatchy
particles a) before and b) after addition of a solution of NaCl. The elimination of self-
aggregation can also be observed by the unaided eye. In solution, the white sediment
of the large aggregates at the bottom of the Eppendorf tube (inset (a)) converts upon
increase of the ionic strength to a turbid dispersion of small aggregates and single
particles (inset (b)). c) Statistics for long and short chains as well as single particles
in a dispersion of bipatchy particles before and after addition of the NaCl solution in
comparison with the statistics obtained for a sample of untreated MF particles. Scale
bars: 25 µm.



Chapter 6. Conclusion and Outlook 124

Figure 6.5: The calculated electrostatic interaction energy (in fJ) as a function of
the surface-to-surface separation between a pair of colloids: solid lines correspond to
the interaction between bi-patchy particles shown in the figure; dashed lines correspond
to the interaction between a bi-patchy particle and a mono-patchy particle with the
outer patch removed (in case C, negative PMVMEA patch shown in red is removed);
dash-dotted line corresponds to case C with the (green) positive PEI patch removed

another, but there has to be a reciprocal displacement of density on the second

object, too [49]. In the case of small clusters (many-body systems) as observed

here, the polarisation of charge density and its mutual redistribution is essen-

tially more complex, leading finally to the induction of an opposite charge on

the location close to or within one of the apparently equally charged patches [49].

The rotational barrier between the repulsive PMVEMA-PMVEMA and PEI-

PEI orientations and the stable the PMVEMA-PEI orientation decreases with

distance between the interacting particles, but remains higher than 0.04 fJ

even when the surface-to-surface separation distance reaches 4 µm (Figure 6.6).

Such a high barrier eliminates the possibility of a thermally induced rotation

of particles in the ethanol-water medium during self-assembly.

6.3 Conclusion and Outlook

Oppositely charged polymeric patches on the surfaces of polymer MF particles

have successfully been fabricated with a reasonable yield. The effect of the
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Figure 6.6: Calculated rotational barriers for re-orientation from the repulsive
PEI-PEI connection (bottom right) to the stable the PMVEMA-PEI configuration
(left). Images at the bottom of the figure show the calculated distribution of the surface
charge on the particles and patches.

concentration of the polyelectrolyte ink on the yield of the bi-patchy particles

has been studied, and a standard concentration of 2 wt% has been chosen

for further investigation. In solution, the bi-patchy particles spontaneously

self-aggregated and mostly connect via PMVEMA and PEI interactions. As

a result, a variety of short and long chains of bi-patchy particles grew, which

could be branched, bent or linear. In addition to electrostatically driven

attraction between patches of opposite charge, attractive forces also arise

through charge-induced polarization interactions between charged patches and

the neutral surfaces of particles; the latter amounts to 12% of the interaction

outcomes, for connection types PMVEMA-MF and PEI-MF. These attractive

forces are driven by an instantaneous re-distribution of charge on the neutral

surfaces of interacting particles due to the presence of a charged patch in close

proximity; however, these forces are significantly weaker (up to an order of

magnitude) than those due to opposite charge attraction. Moreover, 20% of the

observed interactions are connections between initially equally charged patches
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Figure 6.7: Electrostatic interaction energy (in fJ) as a function of the surface-to-
surface separation between: a) two bipatchy particles and b) bipatchy and monopatchy
particles. PMVEMA and PEI patches are highlighted by red and green colors, respec-
tively.

PMVEMA-PMVEMA and PEI-PEI and are a consequence of charge-induced

polarisation and charge re-distribution effects in many-body systems.

To understand further the relation between electrostatic interactions and the

formation of chains, a variety of statistics have been performed, with the relia-

bility of the latter being tested against a known sample size. To examine if the

formation of chains via oppositely charged patches is as a result of electrostatic

interactions, the ionic strength of the dispersion has been changed through

the addition of a saturated solution of NaCl. As a result, self-aggregation was

either eliminated or weakened due to reduced electrostatic attraction. However,

a comparison of statistics for the latter with a reference sample of MF particles,

shows a higher number of short chains even after the addition of the salt. This

observation may indicate that there are still other types of interaction between

bi-patchy particles, for example hydrogen bonds, which were not influenced by

a change in ionic strength.

Almost half of all connections observed in aggregates are connections where

directional contacts between oppositely charged patches are absent. This is the

most important feature of electrostatic interaction as the main driving force

for the self-assembly of patchy particles: polarisation and re-distribution of

charge especially in many-body systems leads to a much more complicated
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localisation of charge in these systems (not only on the patches) and to a

“blurring” of directional interactions. This effect is further enhanced by the

relatively large size of patches especially in comparison with the size of patchy

particles, causing a more complex spatial distribution of the electric field when

compared to point charges. Also, the lower charge density in patches compared

to point charges leads to a less expressed polarisation of induced charges and

to stronger delocalisation.

A theoretical calculation of electrostatic interactions between patchy micropar-

ticles used experimentally demonstrated a significant prevalence of electrostatic

energy over the energy of thermal motion (kT), however the barrier is of the

same order of magnitude as the kinetic energy of particle movement in, for

example, a local laminar flow.

These observations show that bipatchy microparticles with oppositely charged

patches, obtained by microcontact printing, are less suitable for directed self-

assembly than particles with other types of patch-to-patch binding (covalent,

hydrophobic etc.). This conclusion is a consequence of the complicated elec-

trostatic interactions and re-distribution of initial charge and charge induced

polarisation found in complex many-body systems. To improve the directional

character of particle self-assembly via electrostatics, the size of particles should

be decreased to submicrometer to essentially reduce disruption from their

kinetic energy due to randomly distributed mechanical noise. In addition,

the size of charged patches produced by microcontact printing is too large

compared to the particles themselves. These issues can partially be addressed

using Gaussian distributions, as shown in Section 3.2.1. The charged patches

should be more localised and possess higher charge densities in order to improve

the directionality of electrostatically driven interactions.



Chapter 7

The role of counterions in the

initial stage of macroanion

self-assembly: An example of

the {Mo72Fe30}

polyoxometalate

The work in this chapter is an investigation into the driving forces behind the

self-assembly behaviour of macroanions in solution. The work is based on the

experimental observations widely reported in the literature on the self-assembly

of polyoxometalates into “blackberry” macrostructures.

7.1 Introduction

The idea of how systems in nature can—with no external influences—arrange

themselves into ordered, functional units has been of great interest for years in

the understanding of biological systems, such as in cell boundary formation

[84] and the folding of proteins [85–87], and how the phenomenon can be

manipulated for use in man-made applications, such as creating a cheap and

128
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versatile way of applying a surface coating using self-assembled mono-layers

[88]. A broad definition given for self-assembly is that it is a mechanism where

the individual components of a system assemble themselves spontaneously via

an interaction to form a larger functional unit. This general description covers

a wide range of interactions; therefore, a more concise set of conditions are

needed to clarify the set of interactions that are of interest. There are 3 major

ideas that underpin these types of interactions. The first idea states that the

self-assembled structure must have a higher order than the isolated components;

this is generally the opposite of what happens in a chemical reaction, where

systems tend to move towards more disordered products due to the second

law of thermodynamics. The second idea states that the only interactions

involved are weak, excluding covalent, ionic and metallic bonding. This places

emphasis on weaker interactions being the driving force, such as hydrogen

bonding, pi-pi stacking, hydrophobic effects and van der Waals interactions.

The third idea states that the individual building blocks of the self-assembled

structures are not just simple molecules or atoms, but cover a wide range of

nanostructures with different shapes, chemical compositions, and functionalities.

The interactions involved in colloidal dispersions have long been described in

the chemical sciences. The Debye-Hückel theory was developed in the 1920s to

account for the non-ideal behaviour of solutions of electrolytes and plasmas,

even at low concentrations [89]. Debye-Hückel theory is a good approximation

for simple systems where the electrolytes are low in concentration, charge and

are spherical in nature [90]. The DLVO theory is a more robust solution to

the problem of describing colloidal dispersions in electrolyte solutions and

has found an increase in popularity in recent years due to its applicability in

emerging fields, like in the behaviour of nanoparticles such as fullerenes. This

theory provides an explanation for the aggregation of aqueous dispersions in

a quantitative way and describes the force as a combination of both van der

Waals forces, and the double layer force. DLVO theory has its shortcomings in
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describing systems where addition forces play a role in processes, such as the

behaviour and stability of colloidal crystals [91]. The approach in this Chapter

looks purely at the electrostatic interactions between POMs in solution in the

presence of discrete hydrated counterions, as opposed to the averaging of the ef-

fect of electrolytes in the system used in both Debye-Hückel and DLVO theories.

The self-assembling system considered in this Chapter is that seen in the

behaviour of polyoxometalates (POMs). POMs consist of a large group of

metal oxide clusters and have broad applications in the fields of photoelectronic

materials [92], biologically active materials in drug delivery [93] and in catalysis

[94–96]. It has been observed that, despite their hydrophilicity, POMs in aque-

ous solutions will self-assemble over time to form hollow vesicle macrostructures

known as “blackberries”. This behaviour has led to much speculation as to

the driving forces involved in their aggregation. The individual POM building

blocks are typically a few nanometres in diameter and can carry up to 30

units of negative charge. POM nanostructures are formed via the linkage of

orthometalates in the form MOx
z+, where M is a high oxidation metal centre

(usually Mo, W, V or Nb) generally with a d0 electron configuration and x

accounts for the number of oxygen atoms coordinated around the metal centre

(usually in the range of 4-7). Due to the versatility of the choices, chemists

can use a variety of combinations of initial orthometalates to create POMs

with a range of sizes, shapes and topologies [97]. POMs have a well-defined

molecular structure with a uniform shape and although they are highly charged

molecules, the intramolecular charges do not interact with each other, this

makes them ideal to use in the understanding of macroionic solutions such as

those found in biomacromolecular systems (e.g., DNA and proteins interacting

in the formation of virus capsids). An example of a notable group of POMs are

a spherical and symmetrical subset of polyoxometalates known as Keplerates.

Keplerates in chemistry get their name due to their similarities in structure to

the mathematical structures of the same name which contain both Platonic and
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Archimedean solids, one inside the other. Examples of these geometries range

from simple structures such as tetrahedrons and cubes, to larger structures

such as icosahedrons. Most notable of these Keplerates is an icosahedral polyox-

omolybdate with a simplified formula of {Mo72Fe30} [98].The 72 molybdenum

metal centres of {Mo72Fe30} are split into 12 pentagonal {(Mo)Mo5} subunits

with each subunit placed at the vertices of an icosahedron. The 30 iron centres

are placed on each of the 30 edges of the icosahedron, with each of these iron

centres acting as singular deprotonation sites, leading to a total of 30 deproto-

nation sites on each {Mo72Fe30}. Due to an excess of oxo ligands surrounding

the metal centres, POMs generally have a high negative charge which lead to

the macrostructures to be soluble in solution. The amount of charge present is

tuneable with a variation of the pH of the solution. Despite this large negative

charge, aqueous POM macroions can slowly come together—sometimes over the

course of months [97, 99–105]––to self-assemble into supramolecular structures,

such as the ‘blackberry’ structures seen in Yin et al. [97]. For this self-assembly

to occur, there needs to be driving force for the attraction between the two

like-charged nanostructures.

7.1.1 Framing the problem

The overall aim of this Chapter is to develop a realistic model that can provide

an explanation for the self-assembling nature of {Mo72Fe30} ions from single

macroanions to the huge hollow blackberry structures found in conditions

that are seemingly counter-intuitive due to factors such as their high charges

and solubility, and the occurrence of blackberry structures at very low POM

concentrations (< 10 mg mL–1) [101]. Developing a quantitative understanding

of the growth of these assemblies is desirable as it may lead to the possibility

of fine-tuning the process to produce structures with well-defined surface or

magnetic properties.
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In this work, the source of the attractive interaction between the POMs in

solution is investigated to determine the role of counterions in the formation of

blackberry structures. The interactions studied in this Chapter are the most

primitive interactions in the formation of “blackberries”—the formation of a

dimer; the problems studied consider interactions that follow the basic form:

2{Mo72Fe30} −→ {Mo72Fe30}2

Each set of results looks at a different type of dimer system. The initial set of

results consider the purely electrostatic interactions between two {Mo72Fe30}

macroions in both a vacuum and in water, and the effect that polarisation

has on the electrostatic force at short separation in each of these cases. The

remainder of the Chapter introduces counterions to the system to investigate

the effect the presence of ionic species in the solution has on the interaction

between POMs.

A couple of key assumptions have been made in the calculations in this project.

The major assumption is the use of a dielectric continuum model for the solvent

system which removes the computational cost of modelling each individual

solvent molecule, at the cost of losing the solvent-structural information, and

assuming that they can be modelled simply by an equilibrium average of the

effects from each of the individual solvent molecules to have a dielectric constant

equal to that of the bulk material.

A second assumption made is that there is no chemical interaction between

POM structures and the counterions. In realistic situations, it is possible for

some of the larger counterions – which have smaller hydrated radii due to

their smaller solvation shells – to be able to displace hydrogen atoms at the

deprotonation sites on the POM. This problem is reduced as much as possible

by only looking at systems including the smaller counterions least affected by
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Figure 7.1: A geometric representative of a system containing two spherical
macroions with a counterion between them.

this issue. While we don’t have any considerations for the chemical interactions

involved, it is well-established that electrostatic interactions are the dominating

driving force in the aggregation of POMs into blackberry structures [106]. Also

neglected are any van der Waals interactions; these are ignored due to the lack

of blackberry formation in systems comprised solely neutral POMs [97, 106].

7.2 Methodology

Simple Model

POM association is mediated by the presence of counterions; we therefore

consider a simple model with two POMs and a counterion in between them. In

case of non-polarisable particles, the position of the single counterion on the

z-axis going through the centres of POMs is intuitively clear as it corresponds to

the minimum of energy. In case of polarisable particles and ionised surrounding

the localisations of counterions will be discussed later.

Therefore, the force acting on the first POM F1 is proportional to the following
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expression:

F1 ∝
Q1q

k0r2
1

− Q1Q2

k0 (r1 + r2)2 (7.1)

where k0 = εm/ε0. When r1 = r2 = r, Q1 = Q2 = Q and F = 0, 4qr2 = Qr2.

When the r2 terms cancel we get an attractive force when 4q > Q, where the

force is attractive when its projection on the z-axis is positive. (7.1) gives some

qualitative explanation for observations of the effects that increasing counterion

charge has on the aggregation of POMs in the formation of blackberries.

While the simple model gives some qualitative explanation for trends experimen-

tally observed, it is unable to account for some of the more complex interactions

present in the system, such as the effects of polarisation on the interactions

between the molecules and the medium. These effects have previously been

investigated by Lindgren et al. [29], where a charged POM in the vicinity of an

oppositely charged plate can experience a repulsive interaction with an when

interacting in a highly polarisable medium. We have used the same polarisable

force field to investigate the interactions between POMs and counterions.

Charge State Determination

The building blocks of many self-assembling nanoparticles, such as POMS,

contain functionalised acid groups on their surface that, when placed in a polar

medium such as water, release protons. This causes the nanoparticles to acquire

a structure with a net negative charge. Due to this dissociation of H+ when

placed in solution, POMs can be treated to behave as polyprotic acids; this

means that the amount of deprotonation, and therefore negative charge present,

of each building block is dependent upon a range of variables, such as: the pH

of the solution, the number of acid sites present on the particles surface and the

dissociation constant. Due to the nature of the acid groups in polyoxometalates,
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they can be treated to be weak acids, with a dissociation constant K of around

10−5 − 10−4 [97]. The dissociation of a polyprotic acid with n-acid sites follows

a multistep proton loss process and can be described in terms of a sequence of

equilibria, with each proton loss i being characterised by a dissociation constant

Ki with each successive proton loss having a smaller constant than the previous.

Individual dissociations are given by [107]:

Hn−i+1A(i−1)− 
 Hn−iA
i− + H+

with associated dissociation constants Ki taking the form:

Ki =

[
Hn−iA

i−] [H+
][

Hn−i+1A(i−1)−
]

For a polyprotic acid with n-acid sites that has dissociated i-times, the fractional

concentration α of acid Hn−iA
i− is given by:

αHn−iA
i− =

[
H+
]n−i∏i

j=0Kj∑n
i=0

[[
H+
]n−i∏i

j=0Kj

]
Here, approximations of Ki are done on a purely statistical basis, with the

deprotonating acid sites present on the surface assumed to be both identical

to each other and independent of one another. The negative charge produced

from the release of protons is assumed to have no influence on the release of

further protons. These considerations lead to an equation for Ki in the form:

Ki =
(n− i+ 1)

i
K

where n is the number of acid sites present on the surface, i is the dissociation

step number and K is the intrinsic dissociation constant. K1 = nK which

represents that the first dissociation step is equal to the number of acid sites
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available for deprotonation multiplied by intrinsic dissociation constant and

Kn = K/n which reflects the total number of sites available for protonation.

7.3 Results and Discussion

7.3.1 Determination of parameters

As stated before, one of the first considerations that needs to be made before

any calculations are performed is the range of the charges that are available to

the POMs depending on its dissociation constant and the pH of the medium.

A pH of 3 was chosen to determine the charge states present, due to the largest

macrostructures in literature being produced at lower pHs [97, 99–101, 106, 108].

The pKa of the POM in question, {Mo72Fe30}, has been calculated to be 3.9

[108], and the number of available charge states on the surface of this POM

is known to be 30, with each of the 30 iron centres being coordinated to a

water molecule that can act as a possible point of deprotonation [101, 109].

This combination of dissociation constant, number of charge states and pH

gives a range of charges of between 0 and −10e for the interacting parti-

cles as shown in Figure 7.2. This knowledge of the range of charges present

in the solution is used as the guideline for the values of the charges of the POMs.

The values for the radii and dielectric constant for both the POM, {Mo72Fe30},

and the counterions K+ and Mg2+, are kept consistent for all calculations

considered in this Chapter. The radius used for the counterions are 0.33 nm

(K+) and 0.4 nm Mg2+ respectively, values consistent with their hydrated radii

[17]. The dielectric constant of the counterion kc was given to be equal to that

of the medium k0 to be treated as a non-polarisable point charge at the centre

of the hydrated sphere, with the medium being water unless otherwise stated

(k0 = 80). The radius of the POM used is that of the experimentally known

value of 1.25 nm [97]. A value of 10 was used for the dielectric constant of



Chapter 7. Results and Discussion 137

Figure 7.2: Fractional concentrations of {Mo72Fe30}i− where i is the number of
deprotonations for pHs of 2.5 (blue/solid) and 3.0 (orange/dotted).

the POM to represent a molecule that is reasonably polarisable. The charge

on the modelled POMs is, in isolation, assumed to be spread uniformly over

the surface, with the overall charge density distribution being altered by the

presence of an electric field produced by other particles.

7.3.2 Dimer interactions

The initial interaction in the self-assembly of polyoxometalates is the coming

together of two monomer POM structures to create a dimer, 2 {Mo72Fe30} −→

{Mo72Fe30}2. The formation of these dimers and other small oligomers is seen

as the rate-determining step in the formation of blackberry structures [97]. For

all calculations performed in this work, the dielectric constant, ki, of the POMs

is given an arbitrary value of 10. The charge states were chosen as −1e and −7e

for POMs 1 and 2 respectively due to the increased effects of polarisation in

interactions between systems with large charge asymmetry. For simplicity, the

first calculations were performed in a vacuum or air with a dielectric constant
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Figure 7.3: Interaction energy as a function of s between {Mo72Fe30}– and
{Mo72Fe30}7– in a vacuum (k0 = 1).

k0 = 1 as a way of seeing what the interaction between the two particles is

like without any solvent interference. This calculation gave rise to the energy

profiles present in Figure 7.3.

In this profile, there is an evident attractive interaction between the two

particles at very short separation (<0.7 nm), which would be expected in a

self-assembling dimeric system; the size of the barrier that the particles need to

overcome, on the other hand, is huge (> 75 kT at 298 K). This barrier would

lead to the particles finding it impossible to ever get close enough to experience

this attraction in a vacuum.

The dielectric constant of the medium, k0, reflects the tendency of the medium

to shield charged species from each other, and is 1 in a vacuum, around 20 in

acetone and 80 in water. Polar solvents, especially water, are very efficient at

shielding the effective charges of ions in solution, reducing the size electrostatic

forces between ions. Therefore, when the particles are placed in a more realistic

environment, such as in water, k0 = 80, there will be a shielding effect of

the effective charges from the polar medium and therefore a reduction in the
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Figure 7.4: Interaction energy as a function of s between {Mo72Fe30}– and
{Mo72Fe30}7– in water (k0 = 80).

electrostatic interactions. The energy profile for the interaction between two

{Mo72Fe30} monomers in water is shown below in Figure 7.4.

This system shows a massive reduction in the electrostatic interactions present

in the system due to the medium, which consequently leads to a substantial

reduction in the size of the energy barrier needed for the POMs to come to-

gether with a maximum interaction energy of just over 2 kT. The issue with

this energy profile is that it is completely repulsive, with no attractive region

at short separation, unlike the interactions in a vacuum. This is due to the

dielectric constant of the medium being much larger than that of the interact-

ing POMs, therefore causing the medium to be more polarisable than the POMs.

Although the medium causes the electrostatic interaction to be reduced be-

tween the two interacting monomer units, there still seems to be an effect

on the energy occurring due some form of polarisation effects. This increase

in repulsion is caused due to the effects seen in [29], where the effect from

polarisation is inverted due to the high polarisation of the medium. In this

system, the polarisation effects lead to an increase in the repulsive energy of

∼ 25%, when compared to the expected coulombic interaction.
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7.3.2.1 Counterion influence

The experimental data primarily suggests that the driving force for the self-

assembling nature of POMs is the effect of the presence of counterions in the

solution alongside the POMs [98–101, 104–106, 110–112]. The interactions

between large metal-oxide polyanions and their counterions are seen to be

significant in the self-assembling nature of macroanions in polar solvents due

to the presence of a moderate ion-pairing effect and a loose distribution of the

counterions around the macroions. This hints to the driving force for the self-

assembly process being the interactions between macroanions and counterions.

Before any dimer interactions can be calculated with the counterion, the elec-

trostatic interaction of the counterion association needs to be considered. The

counterion used for the initial calculations was a Mg+ ion, which has a hydrated

radius of ∼0.4nm [17]. Counterions are generally thought to be more-or-less

non-polarisable [107], therefore the dielectric constant for the counterions kc

used in this section are set to being equal to the dielectric constant of the

medium k0, kc = k0 = 80. This interaction is shown in Figure 7.5.

Figure 7.5 shows the results that would be expected for the interaction of the

association between a single POM and a counterion; the higher the charge of

the POM, the stronger the association. An interesting observation is that the

interaction between a POM with a charge of −1e, and a Mg2+ counterion has

an attraction below kT at 298 K, providing a possible explanation for the lack

of blackberry formation at low pH; in Figure 7.2 a low pH ∼ 2.5 leads to the

charges of the POMs being mainly between in the range of 0 and −2e, leading

to an increased number of interactions between negative particles with no

counterions which—as established in Figure 7.4—will not lead to an attractive

interaction in water.
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(a) km = 80 (b) qPOM = −7e

Figure 7.5: Interaction energy as a function of s for a range of POM-counterion
interactions. (a) shows the interaction between a Mg2+ counterion with {Mo72Fe30}i
with i = -1e (solid), -3e (dash), -5e (dash-dot) and -7e (dot) in water (k0 = 80). (b)
shows the interaction between a Mg2+ counterion with {Mo72Fe30}7– in a range of
polar mediums. k0 = 80 (solid), 40 (dash) and 20 (dash-dot).

From (7.1) we get F1 ∝ 1/k0. A similar dependency was observed experimen-

tally for the growth of blackberry radius (Rh) with the inverse of the dielectric

constant. The polarisability of the medium k0 is known to have significant

effects on the formation of ‘blackberries’, with their size being inversely propor-

tional to the dielectric constant of the medium. As a result, the effect of k0

on counterion association is investigated. Fig. 7.6 shows the binding energy

as a function of separation between the POM with the most abundant charge

state at pH 3.0 {Mo72Fe30}3– and a single counterion (Mg2+/K+) interacting

in mediums with varying polarisabilities.

Figure 7.7 shows the electrostatic interaction energy as a function of counterion

position for a hypothetical configuration of two POMs with a charge of −7e sepa-

rated by a surface-to-surface separation of 1.5 nm and a single Mg2+ counterion.

It gives an insight into the positional preference of counterions around the POMs

in this configuration; while the most preferential position is that placed directly

in between the POMs, there is also reasonably stable areas on the far sides of

the POMs, indicating a stability for counterions to aggregate all over the POMs.
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Figure 7.6: The effect of the dielectric constant of the medium on the binding energy
between a pom and a counterion. {Mo72Fe30}3− + K+ (solid) and {Mo72Fe30}3− +
Mg2+ (dashed) interaction, k0 shown, kPOM = 10, kc = k0 = 80.

The charge density of POMs in solution is reduced by the presence of counte-

rions association with the molecules. The number of counterions in solution

is in a large excess when compared with the number of POMs, therefore the

only limiting factor for binding is the energetics of the coordination of the

counterions. The number of counterions aggregated to a POM varies depending

on the POM’s charge. Considered in Figure 7.8 is the relative abundance of

POM-counterion aggregates with a certain overall charge, based on the binding

energies of up to 7 Mg2+ counterions to {Mo72Fe30}i – molecules (i = 0, 1, . . . , 9).

The location of counterions around the POM is chosen so that the energetics

of the aggregates are minimised by placing them as far from each other on the

surface as possible. The figure shows that, although there is a dynamic equilib-

rium between states, there is a clear energetic preference for the formation of

overall positively charged aggregates.

The formation of a dimer requires an attraction between two aggregates. To

produce an attractive interaction, aggregates of opposite charge are required.

In this section only aggregates with overall charges of +1e and −1e were
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Figure 7.7: A contour plot of the electrostatic interaction energy as a function of
Mg2+ counterion position in a system containing two {Mo72Fe30}7– ions separated
by a surface-to-surface separation of 1.5 nm in water (k0 = 80.

considered for simplicity. The charges of the POMs in each dimer formation

was chosen to be equal in each of the interactions, with those charges being

−1e, −3e, −5e and −7e, and given the corresponding number of counterions

to produce aggregates with both +1e and -1e overall charges. The counterions

are arranged so that, in the dimer, they’re positioned on the surface in a low

energy configuration, with linear orientations (−1e & −3e) as well as staggered

trigonal planar and tetrahedral formations (−5e & −7e respectively) shown

in Figure 7.9. This figure displays the interaction energy as a function of the

separation between the surfaces of the POMs. The interesting observation of

this figure is there is only small attraction between the monomer units (∼kT)

regardless of the charge of the POM, with the binding energy increasing as

qPOM increases. The energy tends to converge for all pairs of monomer clusters

as the separation increases, indicating the monomers approximate to +1e and

−1e point charges at larger separations, regardless of qPOM. As previously
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Figure 7.8: Fraction concentrations of [Mg2+
x {Mo72Fe30}i−]z for pHs of 2.5 (or-

ange/dotted) and 3.0 (blue/solid).

stated, at pH=2.5—where no blackberries form—we can see from Figure 7.2

that the majority of the POMs have charge states between 0 and −2e; the

smaller binding energy for these lower charges leads to the assumption that the

formation of dimers and larger oligomers is much less likely in systems with a

lower pH.

7.4 Concluding remarks

The work presented in this Chapter aims to develop a realistic model for the

counterion driven formation of {Mo72Fe30} dimers. It represents the POMs as

uniformly charged and polarisable whereas the counterions are represented as

uniformly charged and non-polarisable. The calculations for the interaction

without counterions leads to purely repulsive interactions, with attraction only

occurring once counterions are introduced to the system, which highlights the

importance of counterions in the attraction, agreeing with the results expected

from the literature.

It is clear that, for pairs of [Mgx
2+{Mo72Fe30}i – ]z clusters with z = +1e and
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Figure 7.9: Energy as a function of s (left) for the 4 dimer systems considered
(right).

z = −1e, that higher levels of deprotonation of {Mo72Fe30} lead to a stronger

interaction. This leads to the assumption that higher pHs will generally have a

stronger dimer interaction due to their increased loss of protons, as shown in

Figure 7.2, although this also translates to higher charged clusters in general

which is likely be an electrostatic barrier to further growth past the dimer.

Further calculations of the formation of larger oligomers are needed to verify

this hypothesis.
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Conclusions and Future Work

8.1 Conclusions

The work in this thesis has tested the robustness and demonstrated the versa-

tility of the many-body polarisable electrostatic solution proposed by Lindgren

et al. [25] in 2018, with a clear focus on the recent developments involving the

implementations of point charge surface distributions, Gaussian distributions

and external electric fields.

Chapter 3 demonstrates a variety of trends, beginning with a wide range of

two-body systems that show the fundamental interactions seen throughout the

work in the thesis. Following this, the implementation of non-uniform charge

distributions and their limitations were tested against the expected results

from Coulomb’s law and previous implementations. The implementation of

the external electric field is tested against expected values from theory, such

as the dipole-dipole interaction in Stone. After verifying the implementation,

a dynamics simulation of 50 particles was performed; here, the stability and

abundance of a range of microstructures within the final arrangement were

analysed and compared.

In Chapter 4, a method was produced to compare the aggregation interactions

146
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between a range of oxide particles with either other oxides, or large ice particles.

The work showed that smaller particles only aggregate in opposite-charge or

charge-neutral interactions, whereas small oxides interacting with large ice

particles could also aggregate via like-charge interactions.

A pharmaceutical application was studied in Chapter 5 with regards to the

electrostatic cohesion of pharmaceutical aerosols. The aim of the project

was to investigate the aggregation behaviour of particles with sizes, charges

and compositions similar to those found within dry powder inhalers, and

from the BOLAR™. The general trend observed for the aggregation is for the

asymmetrically-sized particles aggregating over a wider range of velocities and

angles, which shows the preference of asymmetry in size for the majority of

aggregations; this indicates a charge-scavenging mechanism which was the

subject of dynamic simulations. These simulations showed the preference for

the scavenging of particles with the highest charge-to-mass ratios, which tended

to be the smallest particles due to the surface charge density staying relatively

constant.

Chapter 6 represents a collaborative project with Prof. Alexander Böker at

the Fraunhofer Institute for Applied Polymer Research looking in to the self-

assembly behavior of oppositely charged inverse bi-patchy micro-colloids. The

collaborators successfully fabricated oppositely charged polymeric patches on

the surfaces of polymer MF particles. The electrostatic interactions between

patchy microparticles observed were calculated theoretically, which demon-

strated a significant prevalence of electrostatic energy over the energy of thermal

motion (kT). The work was published in 2020 in the journal Small.

The final application in Chapter 7 considers the formation of dimers as a

first step in to the investigation of the blackberry structure formation of poly-

oxometalates. The Chapter emphasises the importance of the presence of
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counterions in the system as it studies the interaction both with, and with-

out counterions. The effect of pH and polarisability of the medium on the

association of counterions was also investigated, with higher pHs leading to

larger charges on the POMs, and aggregates with a higher charge, whereas a

larger dielectric constant of the medium leads to a weaker interaction in general.

Chapters 4-7 demonstrate the versatility of the electrostatic model with a wide

range of applications. The applicability of the model is tested in applications

involving both polarisable (Chapters 6 & 7) and non-polarisable (Chapters 4

& 5) mediums, as well as interactions on different size scales, including the

nanoscale (Chapters 4 & 7) and the mesoscale (Chapters 5 & 6).
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8.2 Future Work

The work in this Thesis covers a wide range of applications, although with more

time there are a large number of new topics and extensions to studied topics

that would be of great interest with regards to the testing of the capabilities of

the electrostatic model presented. Here, a selection of possible future work is

presented for each Chapter.

Chapter 2

The current description of the force is only applicable to uniform surface charge

distributions as it only considers the force as a translational force. In order to

consider non-uniform charge distributions, there needs to be a separation of

the force in to translational and rotational (torque) components. While this is

enough for static calculations, when dynamic simulations are concerned, a range

of additional problems need to be addressed, such as the rotational friction

of particles colliding other particles, surfaces or rotating in a medium. These

implementations would extend the applicability of the model much further than

the span of this thesis.

Chapter 3

While a wide range of tests were covered here, there are a large number of

additional tests that would be interesting to investigate. In addition to the tests

in Chapter 3, it would be interesting to investigate the interactions involved in

the interactions between many-body non-uniform charge distributions. One

such idea would be to look at the interaction between endohedral fullerenes;

the charge density distribution on the surfaces of these cages can be calculated

using DFT, and using curve-fitting techniques it is possible to create a function

that matches the distribution that can be input as the starting σs value in

electrostatic simulations. This could be used with the existing model to

analyse the formation of clusters and lattices, and be compared with uniform
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distributions to give an insight in to the effect of non-uniform distributions on

the interactions. Another test of non-uniform charge distributions is to look

into systems containing Janus particles. These particles have two hemispheres

with different properties that can be designed to aggregate into specific types

of structures. This could be achieved using the flat nature of the higher-order

Gaussian distributions to produce two hemispheres with different charges,

although the dielectric nature of the two halves can’t be defined as varying

within a particle with current methods. In order to study the dynamics of these

types of systems, the particles would need to be able to rotate freely which leads

to the consideration of the torques discussed earlier to be an implementation

that would greatly increase the range of applications that can be investigated.

While the interactions between neutral particles in an external electric field has

been studied in Section 3.3, the same types of studies with charged particles

would be a very interesting topic to delve in to, with applications such as the

melting of ionic lattice structures through the use of strong external electric

fields.

Chapter 4

In Chapter 4, the work is fairly comprehensive in terms of the overall scope

of the project; one thing that could be expanded upon would be to look at a

wider range of materials, particle sizes and temperatures, which would allow a

more nuanced discussion of the systems involved.

Chapter 5

The work in Chapter 5 covers a wide range of systems, from two-body inter-

actions covering the fundamentals to large-scale dynamic simulations which

observe and validate the two-body results, although there are more tests that

could be added to further the depth of the study. Firstly, additional studies

investigating a range of particle sizes, charges, impact angles and cluster sizes
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would need to be added to the aggregation impaction section. The collision

between two aggregates would also be an interesting topic to investigate to

study the transfer or release of particles in collisions. Concerning the charge

scavenging calculations, the sample size for each system was chosen to be 99,

due to the computational cost of each simulation. While this gives a reasonable

estimation for the overall charge scavenging mechanism, a larger sample size

(i.e. 1000-2000) would give a more robust estimation. The shape and size of

the cloud could also be modified to investigate the effect of cloud density, or

to add many more particles to the system. While this is linearly scaling with

respect to the number of particles, the number of particles needed to fully

neutralise the particles in these systems would increase the computational cost

substantially. It would also be very interesting to investigate the impact of

having two clouds of particles pass over each other and to see the amount of

aggregation that occurs between particles from the same and different clouds,

this was something that I have wanted to investigate for a while, although the

number of particles required (∼500) would mean that the computational cost

would be too high. Recent improvements in the computational speed of the

calculations mean that this would now be an achievable project to perform.

Chapter 6

In Chapter 6, the patchy particles are represented as three spheres, a central

neutral sphere representing the MF particles in between a pair of oppositely-

charged spheres that represent the charged patches. While these give a good

approximation of the interactions, our model has since been updated to include

the capability to represent the charge distributions as non-uniform distributions.

As the patches are printed on the surface uniformly, the ideal representation

would be a higher-order Gaussian distribution as discussed in Section 3.2.1,

this would give a much more realistic representation of the particles, with the

Gaussian distributions being able to a closer the particles’ actual compositions.
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As the interactions in this work only consider purely electrostatic interactions,

there are no considerations for interactions that could aid coalescence, such as

van der Waals interactions; adding these types of attractive interactions could

provide explanations for other observed interactions, such as the aggregations

seen in systems with only monopatchy particles of the same charge, which our

current model can’t explain on its own.

Chapter 7

The work performed in the Chapter 7 solely considered the formation of

polyoxometalate (POM) dimers, where all particles are treated as uniformly

charged. One way of more realistically representing the charge density of the

POMs would be to add the charge by placing small Gaussian distributions

with charges of −1e at i random Fe-O sites for each {Mo72Fe30}i- molecule.

The size of the system was kept to the formation of a dimer; this was due

to the high computational cost at the time of considering larger systems in

a comprehensive fashion. With more time and with the recent lowering of

computational cost in FMM calculations, larger systems would be able to be

fully explored, allowing for the study of larger oligomers (trimer, tetramers

and even larger 2D flakes). One potential way of lowering the computational

cost even further would be to implement a method that treats the potential

produced by the counterion as a point charge at the centre of the particle, as

opposed to the current method of calculating the potential from a number of

integration points across its surface, which equal to that of the POM. This

would allow for the study of much larger POM systems such as POMs that form

in to large spherical micelles with charges around −300e; these micelles come

together to aggregate in to flat sheets at electrodes. The high charge on these

micelles leads to the need for hundreds of counterions in the system to stabilise

the interactions and drive the aggregation, which is extremely inefficient in the

current implementation of the model due to the non-polarisable counterions
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each having as many integration points as the micelles. Implementing this

change and reducing the counterions to just a single integration point at the

centre of the particle would drastically reduce the computational cost of these

larger systems and would allow for thousands of counterions to be efficiently

introduced into the system with very little computational cost. A final point

is that the dissociation has only been calculated for deprotonations in water.

Experimental results show that increasing the percentage of acetone in the

solvent leads to the same outcome as lowering the pH of the solution [113]; both

changes lead to less deprotonation and therefore POMs with lower charges. An

effective way of calculating the dissociations of POMs in mixed solvents would

be a good way of providing a more widely-reaching explanation of multiple

trends seen with just one model.
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Appendix A

Theory

A.1 Mathematical considerations

This section contains some additional mathematical considerations such as

more details about our mathematical assumptions, the properties of the math-

ematical objects used in this thesis and a precise definition of the Galerkin

approximation space that is used.

To begin with, we always assume that the external harmonic potential we

consider satisfies Φext ∈ H1
loc(R

3) with the associated external electric field

Eext := −∇Φext ∈ L2
loc(R

3), where L2
loc(R

3) and H1
loc(R

3) denote the spaces of

locally square integrable functions and locally square integrable functions with

locally square integrable first derivatives, respectively.

Next, we emphasise that, as is common in the mathematical literature, the

solution to the PDE (2.8)-(2.11), i.e., the perturbed electrostatic function Φ, is

typically understood as an element of the space H1(Ω) and is therefore not, in

general, continuous. Strictly speaking therefore, the transmission conditions in

Equations (2.8)-(2.11) must be understood in the sense of so-called Dirichlet

and Neumann traces in the Sobolev spaces H
1
2 (λ) and H−

1
2 (λ) respectively.

A detailed description of trace operators and fractional Sobolev spaces is be-
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yond the scope of this article and can, for instance, be found in [114, Chapter 2].

Concerning the mapping properties of the single layer potential and boundary

operators, it can be shown that for any s ∈ R, the mapping S extends as

a bounded linear map from the Sobolev space Hs(λ) to H
s+3/2
loc (R3) and the

operator V extends as an invertible, bounded linear map from Hs(λ) to Hs+1(λ)

(see, e.g., [114, Chapter 2] for a concise exposition on Sobolev spaces and [114,

Chapter 3] for precise definitions and properties of the single layer potential).

“Local” versions of the single layer potential and boundary operators which we

have used frequently in this thesis are formally defined as follows: For each

i ∈ {1, . . . , N}, we have

(Siσi)(x) :=

ˆ
λi

σi(y)

4π|x− y|
dy, ∀x ∈ Ωi ∪ R3 \ Ωi, ∀σi ∈ Hs(λi), s ∈ R,

(Viσi)(x) :=

ˆ
λi

σi(y)

4π|x− y|
dy, ∀x ∈ λi, ∀σi ∈ Hs(λi), s ∈ R.

In addition, we have used extensively in this article, the so-called Dirichlet-

to-Neumann map, denoted DtN. Mathematically, the map DtN: Hs(Γ) →

Hs−1(λ), s ∈ R is defined as follows: Given some boundary function λ ∈ Hs(λ),

let uλ denote the harmonic extension of λ in Ω−. Then DtNλ ∈ Hs−1(λ)

is the normal derivative of uλ on the boundary λ. We emphasise that in

contrast to the single layer potential and boundary operator, the DtN map

is a purely local operator, i.e., for any λ ∈ Hs(λ), DtNλ|λi depends only on λ|λi .

Concerning the regularity of solutions to the BIE (2.13), we recall from Equa-

tions (2.8)-(2.11) that the point-charge contribution σp to the free surface

charge is assumed to be a linear combination of Dirac delta distributions. It is

possible to show therefore that σp is an element of the Sobolev space Hr(λ) for

every r < −1. In view of the regularising property of the single layer boundary

operator V, we can conclude that the right-hand side of the BIE (2.13) is, in

general, an element of Hr(λ) for every r < 0. This implies in particular that
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solutions to the BIE (2.13) are not, in general, square integrable functions. On

the other hand, we recall that σs ∈ L2(λ) by assumption so that solutions to

the BIE (2.16) can be readily understood as elements of the Sobolev space

H1(λ).

Finally, let us state the definition of the approximation space used in our

proposed Galerkin discretisation.

Definition A.1 (Spherical Harmonics). For every integer ` ∈ N ∪ {0} and

m ∈ {−`, . . . , `} we define Ym` : S2 → R as the real-valued L2-orthonormal

spherical harmonic of degree ` and order m on the unit sphere S2 (see [115]

for a precise, constructive definition).

We remind the reader here that the set of spherical harmonics is dense in L2(S2)

and is therefore well-suited for the choice of basis functions in the Galerkin

discretisation of BIE (2.16).

Definition A.2 (Approximation Spaces). Let N ∈ N be a discretisation pa-

rameter. First, on each sphere λi, i = 1, . . . , N we define a local approximation

space WN(λi) as

WN(λi) :=
{
u : λi → R

such that u(x) =
N∑
`=0

m=+`∑
m=−`

[u]`mY i`m(x) with [u]m` ∈ R
}
,

where we introduced for notational convenience the basis functions Y i`m : λi → R

as

Y i`m(x) := Ym`
(

x− xi
|x− xi|

)
∀x ∈ λi.

Moreover, we define the global approximation space WN(λ) as

WN(λ) :=
{
u : Γ→ R such that ∀i ∈ {1, . . . , N} : u|λi ∈ WN(λi)

}
.
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A.2 Mathematical Proofs

In this section we provide proofs of ideas from Section 2.1.5, beginning with

the proof of 2.31. This result shows that the definition of the interaction

energy that we have provided in this article uses quantities of interest from the

integral equation (2.13) and is consistent with the electric field-based definition

of the interaction energy as derived directly from the PDEs (2.3)-(2.5) and

(2.8)-(2.11). Throughout this section, we will use the notation and setting

introduced in Sections 2.1.2, 2.1.3 and 2.1.5.

Proof. Let j ∈ {1, . . . , N} and let Br be an open ball large enough so that

Ω− ⊂ Br. We begin by defining precisely Ejj, i.e., the electric field produced

only due to the sphere λj in the absence of both the external field Eext as well

as the other spheres. Maxwell’s equations imply that Ejj := −∇Φjj where the

self-potential Φjj satisfies the PDE (c.f., Equation (2.8)-(2.11))

−∆Φjj = 0 in Ωj ∪ R3 \ Ωj

JΦjjK = 0 on Γj,

Jκ∇ΦjjK = σs,j + σp,j on Γj,

|Φjj| → 0 as |x| → ∞,

(A.1)

where we remind the reader that σs,j := σf |λj and σp,j := σp|λj .

Next, to aid the subsequent exposition, we define the auxiliary quantity

U r
PDE,int :=

ˆ
Br

κ(x)Etot(x) · Etot(x) dx

−
N∑
j=1

ˆ
Br

κ(x)Ejj(x) · Ejj(x) dx−
ˆ

Br

κ0Eext(x) · Eext(x) dx. (A.2)

We may now use simple algebra and the fact that Φtot = Φ + Φext (see Section
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2.1.2) to deduce that

U r
PDE,int =

ˆ
Br

κ(x)
∣∣∇Φ(x)

∣∣2 dx + 2

ˆ
Br

κ(x)∇Φ(x) · ∇Φext(x) dx

−
N∑
j=1

ˆ
Br

κ(x)
∣∣∇Φjj(x)

∣∣2 dx +

ˆ
Br

(κ(x)− κ0)
∣∣∇Φext(x)

∣∣2 dx.
Next, we recall from the PDEs (2.3)-(2.5) and (2.8)-(2.11) that Φ is harmonic

on Ω− ∪ Ω+, Φext is harmonic on R3, and Φjj is harmonic on Ωj ∪ (R3 \ Ωj).

Therefore we can appeal to Green’s first identity to simplify the above integrals

as

ˆ
Br

κ(x)
∣∣∇Φ(x)

∣∣2 dx =

ˆ
λ

J[κ∇ΦK(x)Φ(x) dx +

ˆ
∂Br

κ0∂nΦ(x)Φ(x) dx,

2

ˆ
Br

κ(x)∇Φext(x) · ∇Φ(x) =2

ˆ
λ

J[κ∇ΦK(x)Φext(x) dx

+ 2

ˆ
∂Br

κ0∂nΦ(x)Φext(x) dx,

ˆ
Br

N∑
j=1

κ(x)
∣∣∇Φjj(x)

∣∣2 dx =
N∑
j=1

ˆ
λj

(κj − κ0)∂nΦjj(x)Φjj(x) dx

+
N∑
j=1

ˆ
∂Br

κ0∂nΦjj(x)Φjj(x) dx,

ˆ
Br

(κ(x)− κ0)
∣∣∇Φext(x)

∣∣2 dx =

ˆ
λ

(κ(x)− κ0)∂nΦext(x)Φext(x) dx.

Recalling the interface conditions from the PDEs (2.8)-(2.11) and (A.1), we

can further simplify several of these integral as

ˆ
λ

J[κ∇ΦK(x)Φ(x) dx =
(
σs + σp + σext,Φ

)
L2(λ)

,

2

ˆ
λ

J[κ∇ΦK(x)Φext(x) dx =2
(
σs + σp + σext,Φext

)
L2(λ)

,

N∑
j=1

ˆ
λj

(κj − κ0)∂nΦjj(x)Φjj(x) dx =
N∑
j=1

(
σs,j + σp,j,Φ

jj
)
L2(λj)

,

ˆ
λ

(κ(x)− κ0)∂nΦext(x)Φext(x) dx =−
(
σext,Φext

)
L2(λ)

,

where we remind the reader that σext = −(κ− κ0)∂nΦext. Using the fact that
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λ, λext and λjj are the restrictions on the spheres of the potentials Φ,Φext, and

Φjj respectively, we can deduce that

U r
PDE,int =

(
σs + σp + σext, λ

)
L2(λ)

+ 2
(
σs + σp, λext

)
L2(λ)

+
(
σext, λ

N
ext

)
L2(λ)

− 1

2

N∑
j=1

(
σs,j + σp,j, λ

jj
)
L2(λj)

+

ˆ
∂Br

κ0

(
∂nΦ(x)Φ(x)−

N∑
j=1

∂nΦjj(x)Φjj(x)

)
dx

+ 2

ˆ
∂Br

κ0∂nΦ(x)Φext(x) dx = Uint.

Comparing this final expression with Equation (A.2) allows us to deduce the

required result (2.31).

Next, we will prove that Equation (2.34) of the approximate electrostatic forces

is consistent with the usual notion in the chemistry literature of the forces as

the negative sphere-centered gradients of the electrostatic interaction energy.

In order to present a concise and well-structured proof, we will first prove two

lemmas.

Lemma A.1. Let λN denote the solution to the Galerkin discretisation (2.25)

for a given free charge σf = σs+σp and external electric field Eext. Additionally,

let σN denote the approximate induced surface corresponding to λN and let

Ei
exc, i ∈ {1, . . . , N} denote the i-excluded electric fields generated by σN as

defined through Definition 2.24. Then for each i ∈ {1, . . . , N} it holds that

1

2
∇xi

(
σs + σp + σext, λN

)
L2(λ)

= −κ0

(
σN ,E

i
exc

)
L2(λi)

+
(
∇xiσext, λN

)
L2(λi)

.

Proof. Let i ∈ {1, . . . ,M} be fixed. A simple application of the product rule

yields that

1

2
∇xi

(
σs + σp + σext, λN

)
L2(λ)

=
1

2

(
∇xi (σs + σp + σext) , λN

)
L2(λ)

+
1

2

(
σs + σp + σext,∇xiλN

)
L2(λ)

.
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Using the fact that both σs and σp are independent of changes in the locations

{xi}Ni=1 of the sphere centres locations (in the sense which is specified precisely

in [115, Chapter 5]), we further obtain that

1

2
∇xi

(
σs + σp + σext, λN

)
L2(λ)

=
1

2

(
∇xiσext, λN

)
L2(λ)

+
1

2

(
σs + σp + σext,∇xiλN

)
L2(λ)

.

Finally, it is straightforward to see that in fact

1

2

(
∇xiσext, λN

)
L2(λ)

=
1

2

(
∇xiσext, λN

)
L2(λi)

so that we obtain the expression

1

2
∇xi

(
(σs + σp + σext) , λN

)
L2(λ)

=
1

2

(
∇xiσext, λN

)
L2(λi)

(A.3)

+
1

2

(
(σs + σp + σext) ,∇xiλN

)
L2(λ)

.

Consequently, it remains to compute the sphere-centred gradient of λN . This is

a slightly technical task so to aid the subsequent exposition, we first introduce

some additional notation.

Notation: We define the vectors and matrices σ,σext,DtNκ and V as

[σi]
m
` :=

(
σs + σp,Y i`m

)
L2(λi)

,

[σext
i ]m` :=

(
σext,Y i`m

)
L2(λi)

,

[DtNκ
ij]
mm′

``′ :=δij

(
κj − κ0

κ0

DtNYj`′m′ ,Y
i
`m

)
L2(λi)

,

[Vij]mm
′

``′ :=
(
VYj`′m′ ,Y

i
`m

)
L2(λi)

,

where i, j ∈ {1, . . . , N}, `, `′ ∈ {0, . . . , N} and |m| ≤ `, |m′| ≤ `′. Addition-

ally, we recall that the Galerkin discretisation (2.25) is equivalent to the linear
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system of equations

Aλ := (I− VDtNκ)λ = F, (A.4)

where λ and F are defined by (2.27) and (2.28) respectively.

Equipped with notation introduced above, we now take the gradient on both

sides of Equation (A.4). Using the product rule together with the fact that the

Dirichlet-to-Neumann map is independent of changes in the locations {xi}Ni=1

of the sphere centers, we obtain that

∇xiλ+
(
∇xiV

)
DtNκλ+ VDtNκ∇xiλ =

1

κ0

(
∇xiV

)(
σ + σext

)
+

1

κ0

V∇xiσ
ext,

or equivalently, after collecting terms

A∇xiλ =
1

κ0

(
∇xiV

)(
σ + σext − κ0DtNκλ

)
+

1

κ0

V∇xiσ
ext. (A.5)

Next, recalling that σN satisfies Equation (2.33), it is easy to deduce that

1

κ0

(
∇xiV

)(
σ + σext − κ0DtNκλ

)
=
(
∇xiV

)
σ,

where

[σi]
m
` :=

(
σN , Y i`m

)
L2(λi)

,

with indices i ∈ {1, . . . , N}, ` ∈ {0, . . . , N} and |m| ≤ `. We therefore

conclude from Equation (A.5) that

∇xiλ = A−1
((
∇xiV

)
σ
)

+
1

κ0

A−1
(
V∇xiσ

ext
)
.

Recalling now the last term on the right-hand side of Equation (A.3), we deduce
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that

1

2

(
σs + σp + σext,∇xiλN

)
L2(λ)

=
1

2

(
σ + σext,∇xiλ

)
`2

=
1

2

(
σ + σext,A−1

((
∇xiV

)
σ
) )

`2

+
1

2

(
σ + σext,

1

κ0

A−1
(
V∇xiσ

ext
))

`2

=
1

2

((
AT
)−1(

σ + σext
)
,
(
∇xiV

)
σ
)
`2

+
1

2

1

κ0

((
AT
)−1(

σ + σext
)
,V∇xiσ

ext
)
`2
.

Next, a direct calculation and comparison with the Galerkin discretisation

(2.25) and the definition of σN as given by Equation (2.32) reveals that

(
AT
)−1(

σ + σext
)

= κ0σ.

We thus obtain that

1

2

(
σs + σp + σext,∇xiλN

)
L2(λ)

=
1

2
κ0

(
σ,
(
∇xiV

)
σ
)
`2

+
1

2

(
σ,V∇xiσ

ext
)
`2

=
1

2
κ0

(
σ,
(
∇xiV

)
σ
)
`2

+
1

2

(
λ,∇xiσ

ext
)
`2

=
1

2
κ0

(
σN ,

(
∇xiV

)
σN

)
L2(λ)

+
1

2

(
λN ,∇xiσext

)
L2(λ)

=
1

2
κ0

(
σN ,

(
∇xiV

)
σN

)
L2(λ)

+
1

2

(
λN ,∇xiσext

)
L2(λi)

(A.6)

Finally, a direct computation (see [115, Theorem 5.18] or [36, Supplementary

Materials] for details) can be used to show that

1

2
κ0

(
σN ,

(
∇xiV

)
σN

)
L2(λ)

= −κ0

(
σN ,E

i
exc

)
L2(λi)

. (A.7)

Combining therefore the developments (A.6) and (A.7) with Equation (A.3)

now completes the proof.

Lemma A.2. For a given external electric field Eext = −∇Φext ∈ L2
loc(R

3),
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let σext = −(κ − κ0)∂nΦext, and let ψ ∈ H
1
2 (λ) be arbitrary. Then for each

i ∈ {1, . . . , N} it holds that

(∇xiσext,Ψ)L2(λi)
= −(κi − κ0) (∇xiλext,DtNΨ)L2(λi)

. (A.8)

Proof. Recall the notation λext := Φext|λ ∈ H
1
2 (λ) and let [λext,i]

m
` and [Ψi]

m
` ,

` ∈ N0, |m| ≤ ` denote the local spherical harmonics expansion coefficients

of λext and Ψ on the sphere λi. Since Φext is harmonic in R3 and therefore in

particular on Ωi, it follows that we can write

(∇xiσext,Ψ)L2(λi)
= −(κi − κ0) (∇xi∂nΦext,Ψ)L2(λi)

= −(κi − κ0) (DtNλext,Ψ)L2(λi)

= −(κi − κ0)r2
i

`=∞∑
`=0

m=+`∑
m=−`

(
∇xi

`

ri
[λext,i]

m
`

)
[Ψi]

m
`

= −(κi − κ0)r2
i

`=∞∑
`=0

m=+`∑
m=−`

(
∇xi [λext,i]

m
`

)( `
ri

[Ψi]
m
`

)
= −(κi − κ0) (∇xiλext,DtNΨ)L2(λi)

.

We are now ready to state the proof of Equation (2.35). Before proceeding to

the proof, let us simply remark that the Equation (2.35) remains true if exact

quantities are considered, i.e., if the force defined by (2.34) is built upon the

exact induced charge σ being solution to the BIE (2.14) and where the energy

corresponds to Uint as defined by (2.30).

Proof of Equation (2.35). Let i ∈ {1, . . . , N} be fixed. By the definition of the
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approximate electrostatic interaction energy, we have

−∇xiU
N
int =−1

2
∇xi

(
σs + σp + σext, λN

)
L2(λ)︸ ︷︷ ︸

:=(I)

−∇xi

(
σs + σp, λ

N
ext

)
L2(λ)︸ ︷︷ ︸

:=(II)

−1

2
∇xi

(
σext, λ

N
ext

)
L2(λ)︸ ︷︷ ︸

:=(III)

+
1

2
∇xi

N∑
j=1

(
σs,j + σp,j, λ

jj
N

)
L2(λj)︸ ︷︷ ︸

:=(IV)

.

We now simplify each of the terms (I), (II), (III), and (IV). First, we observe

that self energy term (IV) is defined entirely through functions that are indepen-

dent of changes in the location of the center xi of the sphere λi. Consequently,

we obtain that (IV) ≡ 0.

Next, we use Lemmas A.1 and A.2 to write the term (I) as

(I) = −1

2
∇xi

(
σs + σp + σext, λN

)
L2(λ)

= κ0

(
σN ,E

i
exc

)
L2(λi)

−
(
∇xiσext, λN

)
L2(λi)

(Using Lemma A.1)

= κ0

(
σN ,E

i
exc

)
L2(λi)︸ ︷︷ ︸

:=(IA)

+ (κi − κ0)
(
∇xiλext,DtNλN

)
L2(λi)︸ ︷︷ ︸

:=(IB)

. (Using Lemma A.2)

(A.9)

Next, we simplify the term (IB). Indeed, a direct calculation shows that

(IB) = (κi − κ0)
(
∇xiλext,DtNλN

)
L2(λi)

= (κi − κ0)

ˆ
λi

(∇xiΦext)DtNλN dx

= (κi − κ0)

ˆ
λi

(∇Φext)DtNλN dx = −(κi − κ0)

ˆ
λi

EextDtNλN dx

= −(κi − κ0)
(
DtNλN ,Eext

)
L2(λi)

. (A.10)

In order to simplify the term (II), we again recall that the free charges σs, σp

are independent of changes in the location of the center xi of the sphere λi.
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Consequently, we obtain

(II) = −∇xi

(
σs + σp, λ

N
ext

)
L2(λ)

= −
(
σs + σp, ∇xiλ

N
ext

)
L2(λ)

= −
(
σs + σp, ∇xiλ

N
ext

)
L2(λ)i

. (A.11)

Therefore, using a calculation similar to the one used to obtain Equation (A.10),

we deduce that

(II) = −
(
σs + σp, ∇xiλ

N
ext

)
L2(λi)

=
(
σNs + σNp , Eext

)
L2(λi)

, (A.12)

where σNs and σNp are the best approximations in WN(λ) of σs and σp respec-

tively.

Next, we attempt to simplify the term (III). A simple application of the product

rule together with Lemma A.2 yields that

(III) =− 1

2
∇xi

(
σext, λ

N
ext

)
L2(λ)

= −1

2
∇xi

(
σext, λ

N
ext

)
L2(λi)

=− 1

2

(
∇xiσext, λ

N
ext

)
L2(λi)

− 1

2

(
σext, ∇xiλ

N
ext

)
L2(λi)

=(κi − κ0)
(
DtNλext,∇xiλ

N
ext

)
L2(λi)

− 1

2

(
σext, ∇xiλ

N
ext

)
L2(λi)

=−
(
σext, ∇xiλ

N
ext

)
L2(λi)

.

Once again, a direct calculation of the form used to obtain Equation (A.10)

allows us to conclude that

(III) = −
(
σext, ∇xiλ

N
ext

)
L2(λi)

=
(
σNext, Eext

)
L2(λi)

. (A.13)
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Combining now Equations (A.9), (A.10), (A.12), and (A.13) we obtain that

−∇xiU
N
int = (IA) + (IB) + (II) + (III)

= κ0

(
σN ,E

i
exc

)
L2(λi)

− (κi − κ0)
(
DtNλN ,Eext

)
L2(λi)

+
(
σNs + σNp , Eext

)
L2(λi)

+
(
σNext, Eext

)
L2(λi)

= κ0

(
σN ,E

i
exc

)
L2(λi)

+
(
− (κi − κ0)DtNλN + σNs + σNp + σNext,Eext

)
L2(λi)

= κ0

(
σN ,E

i
exc

)
L2(λi)

+ κ0

(
σN ,Eext

)
L2(λi)

.

where the last equality follows from Equation (2.33). This completes the

proof
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