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ABSTRACT 

Alphaviruses such as Chikungunya Virus (CHIKV) and O’Nyong-Nyong Virus (ONNV) present 

an increasing problem in the world, with an increased vector efficacy allowing infection in 

previously uninfected areas such as southern Europe and a total infection count of over 5 

million in the last 20 years. Most infected patients experience acute pain and a significant 

proportion go on to develop chronic rheumatoid-like arthritis whose mechanisms remain 

unclear. One potential target and source of mechanistic insight are the sensory dorsal root 

ganglia (DRG) that detect peripheral events and propagate nociceptive action potentials for 

recognition as pain in the CNS. This study aimed to determine if alphaviruses can infect 

DRGs and if so, which neuronal subpopulations are preferentially infected.  

DRGs were excised from C57BL/6J mice (6-8wo) and cultured with growth media and 4uM 

aphidicolin on coverslips for 24h. ONNV-coverslips were infected with an aliquot of the virus 

(6.25x105 TCID50/ml) which had mCherry tagged to nsp3. Mock infection coverslips (CTRL) 

were not infected and both groups were incubated for 24h, 48h or 72h. Two 

immunohistochemistry experiments were performed on the DRG cultures with the following 

primary antibody target combinations: myelinated neurons (NF200+) and peptidergic 

neurons (CGRP+), as well as non-peptidergic neurons (IB4+) and neurons (NeuN+). Coverslips 

were imaged using a fluorescent microscope with cell counts analysed using ImageJ and 

GraphPad Prism. 

No significant differences were found between CTRL and ONNV DRGs when considering 

total cell count. A statistically significant decrease in the mean relative percentage of CGRP-

NF200- cells was found between CTRL and ONNV DRGs at 48h, (-11.86%, p = 0.0332), and 

72h (-17.63%, p = 0.0024), as well as IB4-NeuN- cells at 72h (-21.31%, p = 0.0220). This 

occurred in parallel with an increase in ONNV infection in these populations. The numbers 

and percentages of peptidergic neurons were significantly increased in ONNV infected 

coverslips compared to CTRL at 72h. 

This study has shown that ONNV can infect DRG neurons which may explain the 

manifestation of pain. Using mCherry labelled ONNV it was shown that ONNV preferentially 

infects myelinated peptidergic neurons and non-neuronal cells between 24h and 72h post 

infection, resulting in a significant increase in the relative proportion of peptidergic neurons, 

and a decrease in non-neuronal cells. Further research is required to categorise the 

mechanisms underlying this infection, including the mechanism of axon transport, DRG 

responses to infection, and viral products released after cell death. 
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INTRODUCTION 

ALPHAVIRUSES 
Alphaviruses, such as Chikungunya (CHIKV) and O’nyong-nyong (ONNV) contain single-

strand RNA genomes and are part of the Group IV Togaviridae family of the Alphavirus 

genus from sub-Saharan Africa. Both CHIKV and ONNV, discovered in Tanzania and Uganda 

respectively, (Robinson, 1955; Johnson, 1988), infect humans via sylvatic transmission 

(Althouse et al., 2018, Thiberville et al., 2013), using the Aedes Spp. (all) and Anopheles Spp. 

(ONNV-only) mosquito vectors (Franz et al., 2015). The common vector Aedes albopictus 

present in 20 European Union countries, (Medlock et al., 2012), and adapted to better infect 

hosts at lower temperatures (Zouache et al., 2014), these viruses are becoming a greater 

threat to public health in previously incompatible regions (Amraoui & Failloux, 2016). CHIKV 

alone has infected at least 5 million people in the last 20 years (World Health Organisation, 

2017). These outbreaks have occurred all over the world, spreading from Kenya (Kariuki 

Njenga et al., 2008) to Reunion Island and Mauritius (Pyndiah et al., 2012), Italy (Rezza et al., 

2007), France (Granddam et al., 2011; Delisle et al., 2014) and Brazil (WHO, 2019). Leta et al, 

(2018), recently estimated that 78% of all countries and territories around the world were 

suitable for alphavirus infection (figure 1). 

Alphavirus infection is self-limiting with symptoms including fatigue, low-grade fevers, 

headaches, muscle aches and a maculopapular rash (Rezza et al., 2017). A hallmark feature 

of CHIKV and ONNV infection is Rheumatoid Arthritis-like polyarthralgia, (Miner et al., 

2015), involving the wrists, ankles, elbows, and knees due to anti-viral immune response 

inhibition from reduced internal temperatures (Prow et al., 2017). In a prospective 

observational study of the outbreak in Brazil between 2014 and 2016, Brito Ferreira et al, 

(2020), evidenced that this polyarthralgia occurs in up to 85% of patients. Symptoms 

Figure 1: Global CHIKV fever occurrence and risk at the 

country level. Distribution extends to temperate regions 

including some European countries, source Leta et al, 

(2018).  
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typically subside after two weeks (Heath et al., 2018), however for a lot of patients 

polyarthralgia develops into a chronic state (van Aalst et al., 2017). 

Both acute and chronic presentations result in diminished quality of life, by causing not only 

pain but significant socioeconomic stress due to work absences (Marimoutou et al., 2012). 

Uncovering alphavirus-induced pain pathophysiology is vital to not only increase patient 

quality of life, but also uncover novel mechanisms for potential therapeutic target 

development. To achieve this, we must first have a comprehensive understanding of the 

neurobiology of pain including the pain-sensing (nociceptive) mechanisms and pathways 

which will be discussed and evidenced in the following literature review. 

THE PAIN EXPERIENCE 
Pain is defined as an unpleasant sensory and emotional experience associated with, or 

resembling that associated with, actual or potential tissue damage (Raja et al., 2020). Tissue 

damage and noxious stimuli are detected via nerve fibres via process of nociception. 

However, pain is the result of complex and dynamic neurophysiologic interactions that 

enable the conscious subjective experience of those events (Woolf & Ma, 2007). This 

experience is determined by a combination of biology, psychology, and social environment, 

and whilst pain is detected via nociceptive pathways and mechanisms, it is important to 

remember that sensory input does not directly predict perceived pain levels (Raja et al., 

2020).  

Pain can be categorised by the stimulus (stimuli) that provokes it; chemical, mechanical, or 

thermal; the pathologic cause, inflammatory or neuropathic or by the length of time it is 

experienced; either acute or chronic (Basbaum et al., 2009). Acute pain typically lasts no 

more than a few days to a week and has a defensive role to alert and protect the individual 

(Gupta et al., 2010). Chronic pain is pain that outlasts its underlying cause, is solely 

detrimental to the individual and persists or reoccurs for more than 3 months (Treede et al., 

2019, Nicholas et al., 2019). Inflammatory pain arises from local surrounding tissue damage 

and peripheral events that initiate inflammation, presents both acutely and chronically, 

(Świeboda et al., 2013), whereas neuropathic pain arises from direct nerve damage that 

causes nerve changes and also can present chronically (Jensen et al., 2011). 

PERIPHERAL NOCICEPTION 
Primary afferent sensory neurons in the Peripheral Nervous System (PNS) transduce 

external mechanical, thermal and chemical stimuli into action potentials at nerve terminals 

in target tissues, such as skin, muscle, and bone (Pace et al., 2017). Briefly, this activation 

initiates a series of downstream events that open voltage-gated sodium ion channels (Nav), 

resulting in the formation of an action potential (AP), (Julius & Basbaum, 2001). These APs 

travel afferently via the nociceptor cell bodies in the Dorsal Root Ganglia (DRG) and into the 

dorsal horn (Gemes et al., 2013). In the dorsal horn of the spinal cord these terminations 

synapse with second order neurons of the spinal cord within the Central Nervous System 

(CNS), (Julius & Basbaum, 2001). The second order neurons integrate inputs and convey 
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outputs to the brain for the processing of location, magnitude, and time (spatio-

discriminatory) and emotive (affective) characteristics (Bushnell et al., 2013). Finally, after 

processing, the brain can bi-directionally modulate dorsal horn excitability via descending 

systems which synapse with both first and second order neurons (Samineni et al., 2017). 

Afferent sensory fibres are highly heterogenous and consist of three main types. Aβ fibres 

are the largest sensory fibre type, important for somatosensation and proprioception, but 

are non-nociceptive and thus will not be discussed extensively. Meanwhile, nociceptors can 

be classified into Aδ and C fibres (Basbaum et al., 2009). Thinly myelinated and fast 

conducting Aδ fibres relay first sharp and acute pain sensations (Andoh et al., 2018). 

Unmyelinated, slow conducting C-fibres relay second dull and chronic pain sensations 

(Zhang et al., 2013). Both types can be categorised by AP conduction speed dictated by 

myelination level, stimuli modality dictated by the receptors expressed, and 

neurotransmitters used to pass APs across the synaptic cleft to second order neurons to 

enter the CNS. 

Αδ fibres can be identified alongside their conduction velocity and cell size via positive 

heavy chain 200kD neurofilament (NF200) expression, an important cytoskeletal protein 

(Albisetti et al., 2017). They can be subcategorised into high and low threshold variants of  

mechanoreceptors, (Lenoir et al., 2018), and capsaicin-insensitive polymodal A-mechano-

heat (AMH) receptors; AMH-I (Slimani et al., 2018), and AMH-II (Armstrong & Herr, 2019). 

C fibres can be divided into 2 major classes. The first subset innervates deeper dermal 

tissues as well as muscles and bone, use signalling neuropeptides Substance P (SP) and 

calcitonin gene-related peptides (CGRP), bind nerve growth factor (NGF), (Samanta et al., 

2018) and are termed peptidergic. The second subset innervates the epidermis, feature 

ATP-binding purinergic receptors (P2XR), bind glial-derived neurotrophic factor (GDNF), and 

in rodents can be labelled by the binding of the plant iso-lectin B4 (IB4; Basbaum et al., 

2009; Pinto et al., 2019).  
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Most C fibres are polymodal 

and can be activated by many 

different stimuli including 

mechanical pressure, thermal 

fluctuations (noxious heat and 

cold), inflammatory mediators 

(interleukins, prostaglandins, 

bradykinin, histamine), markers 

of cellular destruction (H+ and 

ATP), but also inhibited via the 

endocannabinoid system (Kaur 

et al., 2020) and G protein-

gated inward-rectifying 

potassium channels (GIRK3), 

(Luján et al., 2014), shown in 

figure 2. High and low threshold 

mechanoreceptors (C-HTMRs 

and C-LTMRs) that confer blunt 

pressure are the second largest population (Kuehn et al., 2019). Finally, between 10% and 

25% are silent adaptive thermoreceptors which only become sensitive to mechanical inputs 

when activated by noxious heat (Andoh et al., 2018). 

AP INITIATION - VOLTAGE-GATED ION CHANNELS 
Ion channels present on the surface of nociceptors have key roles in the activation and 

propagated of action potentials, governed by the influx of sodium ions (Na+) and efflux of 

potassium ions (K+) along nerve axons (Lodish et al., 2000).  

The 9 subtypes of voltage-gated sodium channels (Nav1.1-1.9) activate to allow the entry of 

Na+, increasing membrane potential and depolarising neurons forming an action potential 

(figure 3). Of these 9, Nav1.4 is absent from the PNS, being found in skeletal muscle 

(Trimmer et al., 1989), with Nav1.3 and Nav1.5 being expressed in low quantities in adult 

DRGs (Cummins et al., 2007). Three subtypes have been extensively implicated in 

nociception, Nav1.7, 1.8 and 1.9, with these being recently evidenced to delineate silent 

from normal C-nociceptors (Jonas et al., 2020). Nav1.7 has slow closed activation and 

recovery, is found on 90% of C fibres and 40% of Aδ fibres and important in maintaining 

voltage thresholds (Djouhri et al., 2003). As such the presence of loss of function (LOF) 

genetic mutations of the SCN9A gene that encodes Nav1.7 leads to congenital indifference 

to pain due to the lack of sodium entry and an ablation of C-fibres in cutaneous tissues 

(McDermott et al., 2019). Nav1.8 has an important role in the rising phase of activation and 

SCN10A mutations such as G1662S have been evidenced to impair fast activation, causing 

the development of compensatory mechanisms such as increased resurgent currents that 

result from the blockage of open channels during repolarisation (Bant & Raman, 2010). 

These resurgent currents and increased firing frequency contribute to increased excitability 

(Xiao et al., 2019). Luiz et al, (2019), used Nav1.8 negative cre-recombinase mouse models 

Figure 2: Schematic of common receptors present on 

the cell surface membranes of polymodal C-fibre 

terminals, source McPartland (2008). Abbreviations 

can be found in Appendix 1. 
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and cold plates to provide evidence that the sensation of prolonged extreme cold (-5°C) is 

potentially mediated by Nav1.8, as the deficient mice did not exhibit any jumping behaviour 

indicative of stimuli-aversive behaviour. Nav1.9 has recently been shown to play an integral 

role in cold sensation through upregulation in 

cold-sensing neurons, in which the excitation 

switches to a subthreshold activity pattern, 

enabling AP amplification (Lolignier et al., 

2015). 

Voltage-gated potassium channels (figure 3) 

regulate the frequency of action potentials by 

allowing K+ efflux, causing neuronal 

repolarisation or even hyperpolarisation 

(Tsantoulas & McMahon, 2014). The 

stabilisation of neuronal resting membrane 

potentials is predominantly achieved by two 

pore K+ channels (Gada & Plant, 2018). The 

low threshold rapidly inactivating transient A-

type channels (IA), Kv1, Kv4 and Kv7, are involved in regulating basal membrane excitability 

(Manis, 2015). Kv7 channels can be inhibited by downstream inflammatory events, such as 

bradykinin binding to the bradykinin receptor, BK2, leading to the PLC activation cascade 

(Liu et al., 2010), PIP2 depletion, (Zhang et al., 2003), and Ca2+ release from the endoplasmic 

reticulum (Gamper et al., 2005). High threshold Kv3 channels control AP duration whilst 

slower Kv2 channels regulate inter-AP duration to inhibit neuronal firing, but spinal nerve 

ligation causes downregulation, decreased inhibition and thus causing hyperexcitability 

(Tsantoulas et al., 2014). Finally, Ca2+-activated K+ channels are opened following 

repolarisation (BK) and hyperpolarisation (SK), (Tsantoulas & McMahon, 2014). In line with 

this, SK channels have been evidenced to reduce nociceptive DRG input to the spinal cord if 

sufficiently activated (Bahia et al., 2005). 

SYNAPTIC TRANSMISSION – VOLTAGE-GATED CALCIUM CHANNELS 
Voltage-gated calcium channels (VGCC) play an integral role in nociception by enabling 

calcium influx into neurons (Castro-Junior et al., 2018). At DRG central terminals, this 

initiates the vesicle-mediated exocytotic release of excitatory neurotransmitters such as 

glutamate, CGRP and SP from the pre-synaptic bulb to the synaptic cleft of second-order 

neurons to continue the AP propagation into the CNS (Park & Luo, 2010). 

MECHANICAL SENSATION – PIEZO CHANNELS 
Both Aδ and C-HTMRs and LTMR are involved in the detection and transduction of 

mechanical stimuli. The mechanisms of this were unknown, until a recent study that used 

optogenetic activation of the ion channel Channelrhodopsin-2 in PIEZO2+ neurons to 

evidence painful behaviours such as paw licking in mice. This was further developed upon 

using von Frey filaments which when applied to PIEZO2 knockout mice, resulted in impaired 

cutaneous mechanosensitivity compared to wild type. Furthermore, using 

Figure 3: Depiction of sequential 

engagement of K+ channels during 

an AP with typical effects of 

activation on AP waveforms, from 

Tsantoulas & McMahon, (2014). 
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electrophysiological recording of ex vivo saphenous skin-nerves, the authors found reduced 

Aδ and C-fibre activity in the first 3 seconds of vF application at the highest force used of 

400mN. This implicated PIEZO2 channels as an important mediator of Aδ and C-fibre firing 

frequency and contributes to nociceptive mechanosensation (Murthy et al., 2018).  

TEMPERATURE SENSATION - TRANSIENT RECEPTOR POTENTIAL CHANNELS 
Transient receptor potential (TRP) channels are non-specific cation transmembrane 

channels that can be activated 

by cytokine and chemokine 

binding as well as protons and 

subcategorised by additional 

sources of transducing stimuli 

(Szallasi et al., 2007). TRP 

Vanilloids 1 to 4  (TRPV1-4) are 

sensitive to heat between 33°C 

and 52°C, TRPV1 is specifically 

sensitive above 43°C (Caterina 

et al., 1997). TRPV1 (figure 4) is 

activated by protein kinases, 

heat and protons resulting from cytokine binding and inflammatory responses, as well as 

capsaicin (Szallasi et al., 2007). Capsaicin binding to an S4 and S5 transmembrane pocket 

opens an activation gate, increasing Ca2+ membrane permeability and initiating an action 

potential conferring pain (Hay et al., 2017). 

TRP melastatin 8 (TRPM8) can be activated by menthol as well as temperatures below 26°C 

and is involved in the detection of noxiously cold stimuli (Bautista et al., 2007). TRPM8 has 

been shown to be coexpressed on NF200+ neurons, unlike TRPV and TRPA channels 

(Kobayashi et al., 2005). Long TRP ankyrin protein 1 (TRPA1) is a polymodal receptor that 

can be sensitised by both hot and cold stimuli and formalin, alongside inflammatory 

mediators, and nitric oxide like other TRP channels (Miyamoto et al., 2009). TRPA1 is 

expressed mostly in non-peptidergic C-fibres (Barabas et al., 2012) and implicated in 

neuropathic pain mechanisms such as mechanical hypersensitivity and allodynia (Souza 

Monteiro de Araujo et al., 2020).  

CHEMICAL SENSATION - ACID-SENSING ION CHANNELS 
Acid-sensing ion channels (ASICs) are activated by low pH levels of pH4-6 (Alvarez de la Rosa 

et al., 2002). This is in comparison to the activation of TPRV1 which is limited to pH6.0 

(Alawi & Keeble, 2010). Cellular destruction releases large amounts of protons, lowering 

extracellular pH dramatically and this means that ASICs are among the first channels to be 

activated channels following peripheral tissue injury (Sun & Chen, 2015). Using a mouse 

model of peripheral nerve injury, Papalampropoulou-Tsiridou et al, (2020), found that 

different ASICs were expressed in different nociceptor subpopulations, with ASIC1 and 

ASIC3 expressed in peptidergic fibres, ASIC2a in non-peptidergic fibres and ASIC2b in both. 

Alongside these findings, ASIC1 and ASIC 3 in L4 and L5 peptidergic afferents respectively 

Figure 4: Schematic representation of a TRPV1 

signalling within peripheral nociceptor 

terminals. Source Szallasi et al, (2007) 
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were upregulated following peripheral nerve injury, conferring greater neuronal excitability 

(Papalampropoulou-Tsiridou et al., 2020). 

ASIC gene knockout studies performed on mice younger than 9 weeks old have shown that 

the absence of these channels, confirmed by the lack of corresponding RNA, are involved in 

thermal analgesia and formalin-induced pain behaviours. ASIC3 knockout mice displayed a 

small reduction in tail withdrawal latency compared to wild-type at 52°C, and ASIC1 and 

ASIC2 knockout mice showed increased spontaneous pain during the second phase of the 

formalin test (Staniland and McMahon, 2009), which is subsequently resolved by 

endogenous inhibitory mechanisms (Azhdari-Zarmehri et al., 2014). 

ATP AND P2X RECEPTORS 
The P2X3 receptor is part of the ATP-gated cation channel P2X group of receptors (P2XR). 

These are expressed in about 40% of DRGs, 70% of those being monomodal 

thermoreceptors and 30% monomodal mechanoreceptors (Vulchanova et al., 2001). P2X 

receptors are colocalised with IB4, Mrgprd and GDNF and are thus present in non-

peptidergic C fibres (Chen et al., 1995). Chen et al, (2020) used fluoro-gold retrograde trace 

labelling to indicate that P2X receptors modulate neuronal sensitivity in neuropathic pain 

states by changing expression in different subpopulations, evidenced by P2X3 upregulation 

in medium Aδ fibres, and P2X2 downregulation in non-peptidergic C-fibres.  

THE ROLE OF NGF IN SENSORY NERVE FUNCTION 
NGF is a neurotrophin and is important for postnatal neuronal development and for the 

survival and maintenance of adult neurone subpopulations. NGF+ neurons can be identified 

by the prevalence of its low-affinity p75 receptor but more substantially by its high-affinity 

receptor, TrkA, constituting up to 40% of adult rat DRGs (Averill et al., 1995). NGF is 

released, alongside cytokines and chemokines, following acute peripheral tissue injury by 

activated mast cells, macrophages, and neutrophils as part of normally restorative 

Figure 5: 

The 

pronocice

ptive 

actions of 

Nerve 

Growth 

Factor. 

Source 

Schmelz 

et al, 

(2019). 
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inflammatory processes (Thacker et al., 2007). NGF binding to TrkA causes the complex to 

be internalised by clathrin-mediated endocytosis (Uren & Turnley, 2014). Retrograde 

transportation to the DRG cell bodies occurs followed by a series of internal 

phosphorylation events that can increase the expression of a variety of receptors including 

TRPV1, ASICs 2 and 3, and the neurotransmitters CGRP and SP (Cohen et al., 2016). This 

binding can also lead to changes in gene expression, causing neurite outgrowth (Allen et al., 

2013). These events lead to TrkA+ nociceptors being sensitised both peripherally via 

receptor upregulation causing reduced activation thresholds and neurite outgrowth causing 

larger receptor fields, and centrally via increasing the production of CGRP and SP, as well as 

voltage gated ion channels, summarised in figure 5 (Schmelz et al., 2019). 

The potency of NGF as an inflammatory mediator can be shown by the recent studies 

conducted by Schrenk-Siemens et al, (2019). The experiments conducted in this paper 

evidenced that NGF-binding to the 50% of peptidergic neurons in deep tissue that express 

nicotinic acetylcholine receptor subunit alpha-3 (CHRNA3) elicited the awakening of silent 

thermoreceptors to detect mechanical events via the PIEZO2 ion channels. Masuoka et al, 

(2020), evidenced that during chronic inflammatory states, NGF increases group I 

metabotropic glutamate receptor-expressing nociceptors via phosphorylating A‐kinase 

anchoring protein 5 and activating TRPV1 channels to increase thermal pain levels. 

DRG CELL BODIES AND CENTRAL TERMINATIONS 
DRG neurons are surrounded by satellite glial cell (SGC) lipid sheaths that serve as 

supportive environmental regulators (Pannese, 2013). SGCs have wide-ranging roles 

including the production of neural growth factors and TNFα to modulate DRG excitability via 

K+ channel regulation (Takeda et al., 2009). Normally, these cells are supportive of neurons, 

however in injured states, SGCs become reactive, indicated by increased glial fibrillary acidic 

protein (GFAP) expression, and increase pro-inflammatory responses which leads to 

heightened neuronal activity and facilitated noxious inputs (Kim et al., 2016, Liu et al., 

2018). 

After passing the cell body in the DRG, APs travel along short central terminals which 

synapse with a heterogeneous population of second order neurons in the dorsal horn of the 

spinal cord. These include non-nociceptive specific and nociceptive-specific neurons, 

interneurons that modulate afferent excitability, as well as wide dynamic range neurons 

that synapse with all fibre types and include interneurons and projection neurons which 

convey information to the brain. The APs are transferred between neurons through the 

release of neurotransmitters from DRGs which bind to various receptors on the post 

synaptic membrane of second order neurons (Basbaum et al., 2009). 
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SENSORY NEUROTRANSMITTERS 

Glutamate 
Glutamate is the main excitatory neurotransmitter 

of the nervous system, expressed by all DRG 

neurones and is essential in the passage of 

nociceptive APs from DRGs to second order 

neurons (fig 6, Liu et al., 2010). Glutamate is stored 

in synaptic vesicles by three vesicular glutamate 

transporter (VGluT) proteins 1, 2 and 3, of which 

VGluT2 is highly expressed in DRGs and the spinal 

cord (Brumovsky et al., 2007). When an action 

potential arrives at DRG presynaptic termini, 

voltage-gated Ca2+ channels open allowing influx of 

this ion which causes VGLuT2 fusion with the 

presynaptic membrane, releasing glutamate into 

the synaptic cleft. Glutamate can bind to two 

classes of receptors, the first of which are 

ionotropic (iGlur) fast activating α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid, (AMPA) 

receptors, and slow activating N-methyl-D-

aspartate (NMDA) receptors (Larsson, 2009) as well 

as metabotropic receptors. After release, 

glutamate is very quickly reabsorbed back to the 

presynaptic terminal using transporter proteins 

such as EEAC1 (Rothstein et al., 1994). Peripheral 

inflammation has been shown to increase the 

responses of AMPAR+ DRG neurones, subsequently 

causing pain (Galan et al., 2004). Conversely, the 

reduction or block in AMPA receptors on second order neurons has been shown to reduce 

pain from nerve injury (Chen et al., 2013). Applying the antagonist ketamine to spinal NMDA 

receptors results in reduced pain by blocking afferent signals to nociceptor-specific and wide 

dynamic range neurons (Neugebauer et al., 1993). 

G-protein coupled metabotropic receptors (mGlur) constitute the other glutamate binding 

receptor type. 8 subtypes have been identified of which groups II and III are expressed on 

presynaptic membranes and group I are expressed on postsynaptic membranes (Pereira & 

Goudet, 2019). mGlur5, an important group 1 receptor, has been evidenced to inhibit A-

type Kv4.2 channels in second order neurons, resulting in neuronal hyperexcitability and 

increased pain (Hu et al., 2007). Conversely, due to the expression of group III receptors on 

presynaptic membranes, activation of these receptors leads to a reduction of glutamate 

received from PAFs to second order neurons, resulting in less pain signals and thus less pain 

experienced (Zhang et al., 2009). 

Figure 6: Neurotransmitters 

involved in peptidergic afferent 

signal transduction and their 

associated receptors in the post-

synaptic cleft of second order 

projection neurons found in the 

Substantia Gelatinosa. Source 

Mantyh et al, (2011). 
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Peptidergic Neurotransmission 
Alpha Calcitonin gene-related peptide (αCGRP) is a regulatory product of the calcitonin 

gene, serving as an excitatory neurotransmitter for peptidergic neurons found within both 

the PNS and CNS (Lou & Gagel, 1998). CGRP is stored in large dense core vesicles (Kummer, 

1992), diffusely released into the synaptic cleft via calcium-dependent exocytosis mediated 

by SNARE proteins (Meng et al., 2007). The peptides form glycoprotein complexes with one 

of three receptor-activity-modifying proteins (RAMP) and bind to calcitonin receptor-like 

receptors (CLRs) on the post-synaptic cleft. CLR-RAMP 1 binds to the high affinity CGRP 

receptor, which activates adenylyl cyclase, converting ATP into cAMP activating protein 

kinase A and resulting in a post-synaptic action potential (Iyengar et al., 2017).  Substance P 

(SP) is a nociceptive neuropeptide that is expressed by 20% of DRGs and binds to Neurokinin 

(NK1) receptors (Krug et al., 2019). SP can be released via axogenic reflex to recruit immune 

cells by upregulating cytokines and can be involved 

in inflammatory pathways in a positive feedback 

loop of constant peripheral inflammation 

(Mashaghi et al., 2016). This axogenic reflex of 

substance P causes an increase the level of 

neurogenic inflammation in the skin (Holzer, 1998).  

CENTRAL MECHANISMS OF PAIN 

All nociceptors synapse with second order neurons 

and travel up the spinal cord via the spinothalamic 

tract to the posterior thalamus and somatosensory 

cortices for the processing of spatial area, time, and 

intensity of the painful stimulus, termed the sensory-

discriminative aspect of pain (Mantyh & Hunt, 2001). 

Within the spinothalamic tract, Aδ fibres terminate in dorsal 

horn Rexed laminas I and V, whilst peptidergic C-fibres 

terminate within laminae I and II outer, and non-peptidergic 

to II inner, shown in figure 7 (Serpell, 2005).  C-fibres, 

consisting of mostly peptidergic fibres also synapse with 

second order neurons and ascend the spinoparabrachial 

pathway which innervates the periaqueductal grey (PAG) and 

parabrachial nuclei (PBN) , (Braz et al., 2005). The PBN further 

projects to the hypothalamus and amygdala (figure 8) to 

confer emotive, memory and behavioural responses, termed the 

affective aspect of pain (Bushnell et al., 2013). Signals from 

these affective areas can inhibit dorsal horn excitability to 

modulate afferent pain signals through the PAG and rostral 

ventromedial medulla (RVM), (Mantyh & Hunt, 2001). These 

structures control many of the GABAergic inhibitory and 

glutamatergic excitatory interneurons which synapse with first and second order neurons to 

change excitability (Tobaldini et al., 2018). 

Figure 7: PAF terminations in the 

dorsal horn of the spinal cord. 

Source Mantyh & Hunt, (2001). 

Figure 8: Illustration 

of nociceptive 

pathways within the 

brain, from Bushnell 

et al., 2013) 
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SENSITISATION 
Previous research into pain mechanisms have characterised numerous sensory phenomena 

that develop from normal pain responses, including, sensitisation, hyperalgesia, and 

allodynia (Basbaum et al., 2009).  

Sensitisation is the term given to describe the nociceptor adaptations that follow sufficient 

exposure to a stimulus either in duration or intensity (Slimani et al., 2018). Specifically, 

action potential thresholds are decreased, 

and receptor fields are increased. 

Sensitisation results in the development of 

increased pain sensitivity, termed 

hyperalgesia, and can occur either 

peripherally via nociceptor changes alone 

or centrally in chronic conditions via 

alterations in central nociceptors or 

processing (Gold & Gebhart, 2010). 

Primary hyperalgesia is that which occurs 

within the injury area and can lead to both 

thermal and mechanical pain and is 

mediated by peripheral sensitisation 

(Slimani et al., 2018). Secondary 

hyperalgesia occurs in uninjured tissue 

surrounding the site via central 

sensitisation, which only increases 

perception of mechanical pain (Van den 

Broeke et al., 2016). This central 

sensitisation can cause allodynia, pain elicited by normally innocuous mechanical stimuli (fig 

9, Wilbrink et al., 2017).  

ALPHAVIRUS CELLULAR AND MOLECULAR PROPERTIES 
Now that we have a contextual understanding of nociceptive pathways and mechanisms, let 

us apply it to alphavirus infection. After mosquito feeding, E1 and E2 glycoproteins present 

on the capsid surface enable virus attachment and fusing with the plasma membranes of 

target cells, (Petitdemange et al., 2015), such as those in the epithelium (van Duijl-Richter et 

al., 2015). Alphaviruses enter through clathrin-mediated endocytosis, (Hoornweg et al., 

2016), then release four non-structural proteins, (nsp 1 to 4), (Gorchakov et al., 2008), to 

hijack intracellular translation processes to replicate and repackage the positive-sense single 

strand RNA genome (Rougeron et al., 2015), releasing new particles (virions) into the 

extracellular space, as summarised in figure 10 (Rashad et al., 2013).  

Figure 9: Illustration of how tissue injury 

causes peripheral sensitisation which leads 

to a leftward response shift resulting in an 

increased sensitivity to painful stimuli 

(hyperalgesia) and painful events arising 

from normally innocuous sensations 

(allodynia). Source Cervero et al, (1996). 
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These virions enter the blood and infect cells of other tissues (muscle, bone) in a silent 

incubation phase (Maucourant et al., 2019). 

Infected cells can identify and halt viral RNA 

replication via viral pattern recognition 

receptors at key infection stages. The 

intermediary double strand RNA produced in 

viral replication can be detected by Toll-lke 

receptors (TLRs), cytosolic Retinoic Acid-

Inducible Gene I (RIG-I) and melanoma 

differentiation-associated protein 5 (MDA5), 

(Goffic et al., 2006). Activation of TLRs, RIG-I 

and MDA5 cause downstream release of 

inflammatory molecules such as type 1 

interferons (IFN), cytokines and chemokines 

(Olagnier et al., 2014).  

TLR3 has specifically been implicated as a 

major mechanism of Chikungunya virus 

replication. This was established by Her et al, 

(2014), who used a TLR3 knockout mouse model with CHIKV infection to evidence a 1 log 

increase in viremia 2 to 12 days post infection compared to wild type, alongside a sustained 

infection past day 18 which wild type had eliminated by day 12. This resulted in higher levels 

of CHIKV found in most tissues with reduced viral clearance being specifically due to 

impaired E2 glycoprotein recognition from TLR3. Knee joint immunohistochemistry further 

showed that symptomatic joint swelling was due to large scale myeloid cell infiltration into 

the tissues.  

The release of these inflammatory molecules initiates the acute inflammatory phase, where 

immune system components such as natural killer (NK) cells and neutrophils (Costantini & 

Cassatella, 2010) infiltrate infected sites, destroy infected cells, and clean up cellular debris 

to halt viral replication and restore normal tissue function (Maucourant et al., 2019).  

These inflammatory processes in turn produce more molecules, including ATP, protons, 

ions, and nitric oxide (NO) from direct cellular destruction, bradykinin release from infected 

cells (Rust et al., 2012) and prostaglandins via increased COX2 expression because of 

macrophage-mediated interleukin (IL) 8 and IL-1β release, (Verri et al., 2006). All of these 

molecules can directly sensitise nociceptors to cause pain by activating TRP channels, 

decreasing pH to activate ASICs and increasing extracellular ion concentrations to facilitate 

prolonged signalling from ion influx with voltage-gated ion channels (see the AP initiation, 

temperature sensation and chemical sensation sections). 

USEFULNESS OF RODENT DRG NEURONS AS HUMAN DRG SURROGATES 
In recent years, the study of human DRGs (hDRG) has become possible, highlighting that 

there are many differences between rodent model DRGs (mDRG) and human DRGs. Distinct 

Figure 10: Schematic Representation of the 

CHIKV life cycle, from Rashad et al, (2013). 
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neuronal subpopulation 

differences have been 

identified, with cutaneous 

silent C-fibres in humans being 

around 25% of the total 

(Schmidt et al., 1995), whereas 

in mice the proportions are 

below 10% (Wetzel et al., 

2006). Differences in 

subpopulations have also been 

identified, for example IB4 

does not bind to human DRGs 

(Davidson et al., 2014). 

Rostock et al, (2018) showed 

that hDRGs have a larger 

population of TRPV1+ 

peptidergic C-fibres (figure 11) when compared to rodent DRGs.  

Recent advances in RNA transcriptomics have permitted more detailed comparisons. Shiers 

et al, (2020), used RNAscope in-situ hybridisation to elucidate that hDRGs have 25% more 

CGRP+ fibres, 40% more TRPV1+ fibres, 30% less TRPA1+ fibres and near complete overlap 

between CGRP+ (50.4%) and P2X3+ (48.3%) neurons in comparison to mDRGs that have 

distinct populations.  

However, these results rarely consider the impact of evolution in their assessment of 

differing expression, and many gene families are highly conserved between mice and 

humans with mouse models being faithful models of human DRGs (Ray et al., 2018). Given 

the inherent complexity of multiple interacting systems and the ethical considerations of in-

vivo testing, in-vitro cultures are one experimental approach that yields isolated insight into 

nociceptive mechanisms with defined immunohistochemical methods (Price & Flores, 2007). 

As a result, this project used in-vitro primary mouse DRGs as a comparable model of human 

physiology. 

AIM OF PROJECT 
Given the important role of DRGs in peripheral nociception, the aim of this project was to 

investigate whether alphavirus infection preferentially infects nociceptive and non-

nociceptive DRG subpopulations using immunofluorescence. To achieve this goal ONNV was 

used as a comparably safer alphavirus for infection due to being classed as a Containment 

Level 2 biological agent compared to CHIKV being CL3 (The Approved List Of Biological 

Agents, 2016). 

The objective of this study was to use mCherry-labelled ONNV to identify which cell 

subpopulations were preferentially infected by ONNV in the acute stage and how neuronal 

Figure 11: Humans have a higher percentage of 

PIEZO2+/TrkA+ neurons compared to mice DRGs. A and 

B show dual colour FISH probes detecting TrkA and 

PIEZO2 in red and green respectively. C shows 

comparisons between dual-labelled cells expressed as 

population percentages in humans (N=3) and mice 

(N=4) respectively. Source Rostock et al, (2018). 
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and glial populations changed over the course of three hour-post-infection (hpi) timepoints: 

24hpi, 48hpi and 72hpi. 

HYPOTHESIS 

“Alphaviruses such as ONNV preferentially infect peptidergic nociceptors to cause 

pain” 

METHODS 

ANIMAL MODELS 
C57BL/6J mice between the ages of 49 and 55 days and weight of 24g to 26g were 

purchased from Charles River UK, Ltd. These experiments were conducted in accordance 

with the Animal (Scientific Procedures) Act (1986). Mice were housed for a maximum of 14 

days in a temperature and light controlled environment (21-23°C, 12h light/dark cycle) and 

provided with food and water ad libitum.  

COVERSLIP PREPARATION 
13mm Ø coverslips (VWR, 631-1578) were prepared by washing in 10% Decon 90  for 30 

minutes, rinsed in ddH2O 5x, immersed in HCl for 30 minutes, rinsed in ddH2O 5x and 

autoclaved. Coverslips were incubated in 300ul of poly-DL-ornithine (2h, 37°C) before being 

washed with H2O and dried. The coating agent, laminin was added (20ul of 20ug/ml, Sigma-

L-2020) for incubation (2h, 37°C), with the coverslip being washed in ddH2O and dried. 

DRG PREPARATION 
Animals were humanely killed using an approved schedule one method. Whole mice were 

then immersed in 70% IMS for 1 minute to reduce bacterial load and wet the fur before 

being transferred to a laminar flow hood with a dissecting microscope. The head, spine and 

dorsal muscular tissue were removed to expose the laminae. DRGs were removed using fine 

scissors and forceps and washed once in phosphate buffer solution free of calcium and 

magnesium (PBS 0.1M, pH7.4, Sigma D8537). 

DRGs were disassociated by collagenase solution incubation (2h, 37°C, 5% CO2). The 

collagenase solution consisted of  0.25% w/v collagenase (Sigma C5138) dissolved in 

Neurobasal media (NBM) containing 10% FCS, glutamine 2 mM, penicillin (200 units/ml) and 

streptomycin (200µg/ml). This was followed by three gravity PBS washes and incubation 

with 2ml trypsin stock (25g/L of porcine trypsin - 25,000-60,000 BAEE U/mL, Sigma T4549, 

diluted to 1:20) for 15 minutes at 37°C. 16% BSA 1ml aliquot (Sigma A7906) titration was . 

The cell suspension was layered on top of 3ml of BSA solution and centrifuged at 1200rpm 

for 10 minutes. The top layers were removed before adding 230ul of complete media to the 

cell pellet which is resuspended. 10uL of DRGs were then pipetted onto the centre of the 
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coated coverslips, placed into a 24 well plate (Corning incorporated, ref 3524) and incubated 

for 15 minutes at 37°C, 5% CO2, after which 390µl of complete media was added to the 

coverslip wells for incubation overnight. 

The complete media consisted of NBM (Invitrogen 21103049) containing B27 supplement 

(Fisher Scientific, 17504044, final conc. 1:50 of stock), glutamine 2 mM, penicillin (200 

units/ml) and streptomycin (200µg/ml), NGF (Sigma N6009, final conc. 50ng/ml), GDNF 

(Sigma G1401, 50ng/ml) and the mitotic inhibitor aphidicolin (final concentration 4mM). It is 

important to note that this concentration of NGF and GDNF could cause neuronal 

sensitisation. NGF is known to play an important role in the replication of Influenza, which 

can be blocked with TrkA inhibitors (Kumar et al., 2011). Should this also be true of 

alphavirus replication mechanisms, then ONNV infectivity would be increased further by the 

addition of growth factors.  

An aliquot of ONNV, with a fifty percent tissue culture infective dose concentration (TCID50) 

of 6.25x105 TCID50/ml, was retrieved from the freezer (-80°C). This was added to NBM for 

final virus-media dilution factor of 1:80 and added to the ONNV-designated cell cultures 

after the removal of complete media. This dilution was decided upon after a series of 72h 

in-vitro infection experiments in which lower viral dilutions (1:20 and 1:40) killed too many 

cells and higher dilutions (1:160 and 1:320) did not infect many cells. 1:80 was chosen as it 

provided a significant level of infection with normal cell growth, but without skewing the 

infected population from excessive cell death at 72h. After incubation, DRGs were washed 

3x with warm Hanks buffered saline solution (HBSS, pH7.4), to remove dead cells and fixed 

with 4% paraformaldehyde (PFA) for 30 minutes. Cells were washed for 3x in PBS before 

adding PBS containing 0.01% w/v sodium azide for storage in the fridge (4°C). 

IMMUNOCYTOCHEMISTRY 
Cultured DRG coverslips were transferred to 0.1M pH7.4 PBS-filled wells in a new 24 well 

plate (Corning incorporated, ref 3524). DRGs were incubated with 500uL of permeabilising 

and blocking solution consisting of 0.3% Triton X100, 10% NDS (Sigma, D9663) in PBS, pH7.4, 

for 1 hour at RT on an orbital shaker (OS, 100rpm). DRGs were then incubated with 2 

primary antibody combinations (table 1). These consisted of 1; Sheep anti-CGRP (1:1000, 

Enzo Life Sciences, BML-CA1137-0100) and mouse anti-NF200 (1:1000, Sigma, N5389) or 2; 

IB4-AlexaFluor488 (1:500, Invitrogen, mp21410) and mouse anti-NeuN (1:1000, Merck 

Millipore, MAB377); in a solution containing 5% NDS in PBS overnight at 4°C on a rocker. 

Secondary-only control coverslips were incubated in 5% NDS in PBS. The following day, the 

DRGs were washed for 50 (5 x 10) minutes (RTOS). DRGs were incubated with AF-conjugated 

fluorescent secondary antibodies (1:500, table 2) in 5% NDS in PBS for 2 hours in the dark 

(RTOS), before being washed in PBS for 5 x 10 minutes. Coverslips were incubated with 

150uL of Vecta TrueVIEW autofluorescence quenching media (Vector labs, SP-8400) for 3 

minutes (RTOS) and counterstained with 4′,6-diamidino-2-phenylindole (DAPI, 1:200) for 15 

minutes (RTOS). Phosphate Buffer (0.1M, pH7.4) was used to wash for 2 x 10 minutes before 

coverslips were removed from wells, inverted, and placed atop a 10uL droplet of 
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VECTASHIELD Vibrance (Vector Labs, H-1700) mounting media on a labelled gelatinised 

slide. Slides were stored at 4°C until imaging. 

PRIMARY ANTIBODY COMPANY CATALOGUE REFERENCE DILUTION 

SHEEP ANTI-CGRP Enzo Life Sciences BML-CA1137-0100 1:1000 
MOUSE ANTI-NF200 Sigma N5389 1:1000 

IB4-AF488 Invitrogen mp21410 1:500 
MOUSE ANTI-NEUN Merck Millipore MAB377 1:1000 

 

 

 

MICROSCOPY 

 

Images were captured using a CoolSNAP MYO 14-bit CCD camera mounted to a Zeiss 

Axiovert 200M fluorescent microscope controlled using Microscope Manager v1.4.21. 

Channels captured included white light/brightfield (BF) and the following filtered 

wavelengths; 405nm (DAPI), 488nm (FITC/AF488), 568nm (TRITC/mCherryONNV), 647nm 

(Cy5/AF647).  

3 fields of view (FOV) per coverslip with 3 coverslips per condition were acquired except for 

2 FOVs from a 72h CTRL coverslip from the CGRP and NF200 dataset and were excluded due 

to a lack of cells from excessive handling pressure, resulting in a total of 52 images and 

6,050 cells. For the NeuN and IB4 experiment, 1 of the 24h CTRL coverslips and 2 of the 72h 

ONNV coverslips shattered while mounting, leading to a total of 45 images and 5, 306 cells. 

Each coverslip prep was a mix of 2 mice,  thus the final n number for these comparisons was 

2. 

STATISTICAL ANALYSIS 
All images were processed in Image J v2.52.  Images of primary antibody combinations and 

secondary only antibody coverslips of the same condition and timepoint were visually 

compared. Manual dynamic ranges were set for each channel individually via look up table 

(LUTs) alteration, such that FITC (CGRP or IB4) and Cy5 (NF200 or NeuN) channels were 

negative in secondary-only images to comparatively eliminate autofluorescence. The TRITC 

(mcherryONNV) channel was set such that no expression was seen in the control condition. 

SECONDARY ANTIBODY COMPANY CATALOGUE REFERENCE DILUTION 

DONKEY ANTI-SHEEP-488 Invitrogen A21202 1:500 
DONKEY ANTI-MOUSE-647 Invitrogen 

 
A31571 1:500 

DONKEY ANTI-MOUSE-647 Jackson Labs 715-605-150 1:500 

Table 1: Primary antibodies used in primary mouse DRG immunocytochemistry 

Table 2: Alexa-conjugated secondary antibodies used in primary mouse DRG immunocytochemistry 



 
Alphavirus Infection and Nociception: Differential Effects on Primary Mouse Dorsal Root Ganglia 

Ben Katz  Page | 21 

Dynamic ranges were applied to each set of timepoints due to differing levels of intensity 

between sets. 

Cell numbers were quantified manually via the multi-point tool. The area of each cell was 

calculated by drawing around each cell body in the brightfield channel using the freehand 

drawing tool and subsequently measuring the soma area for comparison. All measurements 

were saved using the ROI manager plugin. 

It should be noted that the use of manual quantification does introduce the possibility of 

measurement bias. Attempts at automation through the generation of workflow pipelines in 

Cell Profiler v3.1.0 were made, however due to the counting being restricted to white pixel 

area values of single greyscale images, this provided no contextual interpretation of positive 

cells with overlapping markers of different intensities. To put this plainly, if a CGRP+ axon 

passed over an NF200+ soma, Cell Profiler would have incorrectly counted this as 

CGRP+NF200+. Additionally, due to the lack of ability to contextually integrate 

brightfield/DIC into the cell counts, same-intensity nuclei or cells situated next to each other 

were counted as one object. Automating the cell counts accurately would allow for an 

unbiased, much clearer understanding of the images at a much faster rate, but to this 

author’s knowledge, no such software yet exists. 

Cell counts were taken from 3 FOVs per coverslip of NF200, CGRP and IB4 neuronal 

subpopulations, with non-neuronal cells being determined by NeuN versus DAPI staining 

and ONNV infection determined by ONNV versus DAPI staining. These cell counts were 

converted into percentages of each subpopulation and averaged into a single data point per 

condition and timepoint. The respective results from each condition and timepoint were 

statistically analysed in GraphPad Prism (version 9.2) and tested for parametric normality 

with the Shapiro-Wilk test as the n was too small for D’Agostino and Pearson omnibus 

normality test. ONNV and control cell counts from the CGRP and NF200 dataset were 

compared using two-way ANOVA, with mixed effects models used for the IB4 and NeuN 

dataset due to the missing 72h ONNV coverslip values. ONNV infection levels were 

compared using One Way ANOVA tests. All multiple comparisons were followed by Šidák 

corrections to minimise type 1 errors. Cell counts, relative percentages and ONNV infection 

levels were presented as the mean of coverslip FOV averages with the standard error of the 

mean (±SEM). 

RESULTS 

The ability of ONNV to infect different sub-categories of neurons was investigated through 

two separate experiments, one using the peptidergic marker CGRP and heavy neurofilament 

marker NF200 (fig 12 and 13), and another using the non-peptidergic marker IB4 and 

neuronal nuclei marker NeuN (fig 14 and 15). These markers were chosen as they are 

established in the immunofluorescence literature, having strong accuracy and specificity of 

their respective subpopulation delineations, with CGRP labelling peptidergic C-fibres 

nociceptors, NF200 labelling myelinated neurons, a combination of CGRP and NF200 
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labelling nociceptive Aδ fibres, IB4 labelling non-peptidergic neurons in rodents and NeuN 

labelling neuronal nuclei to definitively identify the whole neuronal population from non-

neuronal cells.  

Comparing the individual subpopulations against each other alongside NeuN would be 

beneficial for reliable and exact quantification of population percentages and ONNV 

infection levels. However, due to limited supply of DRG tissue, time, and the fact that both 

NF200 and NeuN are raised in rabbit meant that this was not possible. Future 

experimentation investigating these differences in a more comprehensive approach would 

be advantageous. 

Brightfield images (fig 12 and 16) are included to clearly illustrate the levels of infection 

(mCherry expression) without the multiple non-brightfield channels masking over this 

expression. The non-brightfield channel combinations (fig 13 and 17) are also included to 

show the relative expression levels of the different neuronal markers between conditions 

and across timepoints with statistical analysis on the following pages.  
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CGRP & NF200 BRIGHTFIELD IMAGES 

 

ONNV expression inside all cells was very low, and mainly concentrated within non-neuronal 

cells at the 24h timepoint, shown by the  (figure 12). However, infection quickly increased at 

48h and was evident in many cells at 72h,  accompanied by a marked reduction in non-

neuronal cells with no changes seen in the control group (CTRL).  

 

 

 

Figure 12. Representative 20x brightfield images of ONNV-infected and CTRL coverslips at 24h, 

48h and 72h post infection (hpi). Labelling for the nuclear marker DAPI (blue) and mcherryONNV 

(red) from the CGRP and NF200 dual labelling experiment. Orange arrows show infected non-

neuronal cells with black arrows indicating infected neurons with Scale bar: 100μm.  
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CGRP & NF200 FLUORESCENT CHANNELS 
 

 

Compared to CTRL, there was an increase in the number of infected CGRP+ cells (green) and 

a marked reduction in the numbers of NF200+ neurons between 24h and 72h in the ONNV 

condition, with no change in the CTRL group. 

 

DAPI CGRP ONNV NF200 

24h 

CTRL 
24h 

ONNV 

48h 

CTRL 
48h 

ONNV 

72h 

CTRL 
72h 

ONNV 

Figure 13. Representative 20x fluorescent images of ONNV-infected and CTRL coverslips at 24h, 

48h and 72h  post infection (hpi). Labelling for the nuclear marker DAPI (blue), peptidergic 

marker CGRP (green), mcherryONNV (red) and heavy neurofilament marker NF200 (magenta), 

from the CGRP and NF200 dual labelling experiment. Orange arrows show infected non-neuronal 

cells with yellow arrows indicating infected neurons with Scale bar: 100μm. 
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ONNV INFECTION INCREASES CGRP+ PEPTIDERGIC NEURONS 
 

There were significant increases in the percentage (11.97, p = 0.0006) of peptidergic (CGRP+) 

neurons relative to total cell count in the ONNV-infected group (14.84±2.64) compared to 

the CTRL group (2.863±0.66) at 72h (fig 14A). Interestingly, the proportion of CGRP+ cells at 

24h was decreased in ONNV coverslips compared to CTRL, although this was not significant. 

No significant differences could be found between the percentage of CGRP- NF200+ 

myelinated neurons at any timepoint although there was a decreasing trend between ONNV 

timepoints (fig 14B). The number of dual-labelled CGRP+NF200+ myelinated peptidergic 

neurones, counted as a discreet population, did increase between 24h (2.07±0.4) and 48h 

(9.14±1.51) in ONNV coverslips, with the 48h timepoint being significantly different (p = 

0.0325) between CTRL (2.77±0.70) and ONNV conditions (9.14±1.51, fig 14C). This data 

suggests that the percentage of peptidergic C-fibres increases because of ONNV infection, 

with an unchanging level of myelinated CGRP- fibres, and a slight increase in the number of 

peptidergic Aδ nociceptors (CGRP+NF200+) from 24h to 48h, possibly as a result of non-

neuronal cell death or specific division of these cells. 

 

 

 

 

Figure 14. Analysis of peptidergic (CGRP+), non-nociceptive (NF200+) and myelinated 

nociceptive (CGRP+NF200+) DRG cell populations following ONNV infection at 24h, 48h, 

and 72h post infection (n= 3 per condition and timepoint). Percentage of total cells that 

are CGRP+ (A), NF200+ (B), and CGRP+ NF200+ (C). * = p<0.05, *** = p<0.001 
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ONNV SIGNIFICANTLY INFECTS CGRP+NF200+ NEURONS 

 

The percentage of peptidergic and myelinated neuronal subtypes that were infected with 

mcherryONNV were calculated to compare infection levels. At the 24h timepoint, no 

CGRP+NF200- peptidergic C-fibres were infected by ONNV (fig 15A). If the mean values are 

taken into consideration, there is a clear increase from 24h to 72h (19.47± 7.73), however 

this did not reach significance (p = 0.2666). An increase in the infection of myelinated 

neurons (NF200+) was also seen between 24h (4.94±2.38) and 72h (27.75±13.86, fig 15B) 

however this increase did not reach significance (p = 0.5951) due to large variability and 

small sample sizes. Significant differences (p = 0.0439) were found in the infection of 

myelinated peptidergic (CGRP+ NF200+) neurons (fig 15C) between 24h (3.70±3.49) and 72h 

(45.95±13.44). This data suggests that whilst ONNV can infect all three of these fibre types, 

the virus preferentially infects myelinated peptidergic neurons (CGRP+NF200+) during the 

acute phase of infection.  

Figure 15. The percentage of peptidergic (CGRP+), non-nociceptive (NF200+) and 

myelinated nociceptive (CGRP+NF200+) DRG cell populations infected by ONNV at 24h, 

48h, and 72h post infection (n= 3 per condition and timepoint). ONNV-infected CGRP+ 

(A), NF200+ (B), and CGRP+NF200+ (C) neurons. * = p<0.05 
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NEUN & IB4 BRIGHTFIELD IMAGES 
 

 

In the NeuN and IB4 labelling experiment, there was no difference between the total 

number of cells between CTRL and ONNV conditions, however non-neuronal cells were 

significantly reduced in ONNV-infected FOVs, with no change in the mock infection (CTRL). 

ONNV expression increased from 24h to 72h particularly in non-neuronal cells, with marked 

reductions in the numbers of these cells compared to control coverslips.  

 

Figure 16. Representative 20x brightfield images of ONNV-infected and CTRL coverslips at 24h, 

48h and 72h  post infection (hpi). Labelling for the nuclear marker DAPI (blue) and mcherryONNV 

(red) from the IB4 and NeuN dual labelling experiment. Black arrows indicate infected neurons 

with orange arrows showing infected non-neuronal cells. Scale bar: 100μm.  
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NEUN & IB4 FLUORESCENT CHANNELS 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

During microscopy, no difference was detected in the numbers of either non-peptidergic 

neurons or neurons as a whole population between intra-condition timepoints. There were 

also remarkably more non-peptidergic neurons and fewer non-neuronal cells in the ONNV 

coverslip at the 72h timepoint compared to CTRL cultures. 

 

 

DAPI IB4 ONNV NeuN 
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CTRL 
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ONNV 
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Figure 17. Representative 20x fluorescent images of ONNV-infected and CTRL coverslips at 24h, 

48h and 72h. Labelling for the nuclear marker DAPI (blue), non-peptidergic marker IB4 (green), 

mcherryONNV (red) and neuronal nuclei marker NeuN (magenta), from the IB4 and NeuN dual 

labelling experiment. Blue arrows indicate infected neurons with orange arrows showing 

infected non-neuronal cells. Scale bar: 100μm.  
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ONNV INFECTION DOES NOT ALTER NON-PEPTIDERGIC NEURONS 

 

The percentage of neurons as a whole population (NeuN+) and non-peptidergic (NeuN+ IB4+) 

neurons were calculated using an overlay of the DAPI channel. This analysis showed and 

that there were no significant differences in the percentages of total neurons as a whole 

population (NeuN+, fig 18A) or non-peptidergic neurons (IB4+, fig 18B) between ONNV and 

CTRL coverslips at any timepoint. Interestingly, there was also no statistically significant 

difference in the numbers or percentages of IB4- neurons (fig 18C) between ONNV and CTRL 

coverslips at any timepoint, suggesting that as a total population, peptidergic neuron 

infection does not increase over time. Perhaps this was due to the fields of view and limited 

72h ONNV coverslip numbers. These results indicate that ONNV infection does not change 

the relative levels of neurons as a whole population, or non-peptidergic neurons specifically.  

 

 

 

 

 

 

 

 

Figure 18. The percentage of (A) all neurones (NeuN+), (B) non-peptidergic (IB4+) and 

(C) peptidergic (non-IB4+) DRG cell populations following ONNV or mock infection at 

24h, 48h, and 72h post infection timepoint. N= 3 per condition and timepoint, 

excluding 24h CTRL (2)  and 72h ONNV (1) due to lack of viable coverslips. 
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ONNV DOES NOT SIGNIFICANTLY INFECT NON-PEPTIDERGIC NEURONS 

 

The infection of neurons as a whole population (NeuN+) and non-peptidergic (NeuN+ IB4+) 

neurons were calculated using overlays of the nucleic DAPI channel and the TRITC channel 

showing mCherry-labelled ONNV nsp3. The infection of neurons as a whole population (fig 

19A) increased significantly between 24h (1.82± 0.91) and 72h (13.54±5). In agreement with 

the insignificance of IB4+ population changes, no significant difference in ONNV infection 

was seen in non-peptidergic neurons, however there was an increasing trend between 

timepoints and between 2.5% and 5% of IB4+ neurons were infected (fig 19B). Furthermore, 

in agreement with the CGRP and NF200 labelling experiment, there was a significant 

increase (p = 0.0319) in the ONNV infection of IB4- neurons (fig 19C) between 24h (1.67± 

1.05) and 72h (20.19) . This data indicates that ONNV minimally infects non-peptidergic 

neurons and most neuronal infection occurs in peptidergic neurones. 

 

Figure 19. The percentage of NeuN+ cells (A), IB4+ neurons (B), and IB4- neurons (C),  infected by 

ONNV at 24h, 48h, and 72h timepoints. N= 3 per condition and timepoint, excluding 24h CTRL (2)  

and 72h ONNV (1) due to lack of viable coverslips.* = p<0.05, ** = p<0.01 
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ONNV INFECTS AND REDUCES NON-NEURONAL CELLS SIGNIFICANTLY  

 

To investigate whether non-neuronal cells were infected with the virus, a combination of 

neuronal brightfield and negative neuronal labelling was used during image analysis. There 

were significant reductions in non-neuronal populations (NeuN-, fig 20A) between CTRL 

(118.67±14.58) and ONNV (75.33±15.57) at 72h (p = 0.0220). ONNV infection of non-

neuronal cells (NeuN-) also significantly increased, (p= 0.0325), between 24h (4.73±1.51) 

and 72h (28.68), shown in figure 20B. This indicates that ONNV significantly infects non 

neuronal cells and that this results in large reductions in cell numbers possibly via viral-

induced apoptosis. 

Figure 20. Non-neuronal (NeuN-) cell counts expressed as a percentage of total DAPI+  

cell counts with SEM (A) and percentage of NeuN- cells infected by ONNV with SEM (B). 

Individual datapoints consist of coverslip FOV averages with non-neuronal cell counts 

being determined via non-labelled nuclei counting. N= 3 per condition and timepoint, 

excluding 24h CTRL (2)  and 72h ONNV (1). * = p<0.05 
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ONNV INFECTION DOES NOT SIGNIFICANTLY CHANGE TOTAL CELL COUNTS 
 

 

The total cell counts were obtained via positive DAPI expression inside cell nuclei and 

compared between ONNV and CTRL coverslips. There was a clear trend for reduced mean 

numbers in ONNV-infected DRG cultures (98±11) compared to control (124±14) at 72h in 

the CGRP and NF200 dataset, however this did not reach significance with the small sample 

size (fig 21A). A clear trend was also found between control (139±15) and ONNV coverslips 

(82±14) in the NeuN and IB4 dataset (fig 21B), although due to a lack of replicate coverslips 

and statistical power, this difference was not statistically significant, and a Mann Whitney U-

test could not be performed. Overall, whilst these experiments have yielded no statistically 

significant reduction in total cell numbers from ONNV infection, these trends indicate that 

ONNV may reduce total cell count, perhaps due to the large reduction in non-neuronal cells 

evidenced in figure 20. 

 

 

Figure 21. Total DAPI+ Cell Counts (A) CGRP & NF200 experiment with SEM, (B) IB4 

& NeuN experiment with SEM. Individual datapoints consist of coverslip FOV 

averages, N= 3 per condition and timepoint, excluding 24h CTRL (2) and 72h ONNV 

(1) of the IB4 & NeuN experiment due to lack of viable coverslips. 
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CELL AREA ANALYSIS 
The soma areas of positively labelled cells in the CTRL 

coverslips were acquired and compared to elucidate 

whether there were any differences between neuronal cell 

sizes. It should be noted that neurones that were positive 

for both CGRP and NF200 were counted as a distinct 

population, independent of other cell areas and values. 

Throughout all the timepoints in control cultures, no 

differences were found between the soma size of neuronal 

subpopulations, however myelinated neurons (NF200+) 

and myelinated peptidergic neurons (CGRP+NF200+) were 

slightly larger than C-fibre positive markers (CGRP and IB4).  

This data reinforces the knowledge from the literature that 

DRGs are highly heterogeneous and cannot be 

differentiated by cell size alone. 

SUMMARY 
ONNV differentially infected the neuronal subpopulations from primary mice DRG cultures, 

most notably myelinated peptidergic neurons, as well as non-neuronal cells. These data 

further show that ONNV infection does not significantly increase between 24h and 72h in 

peptidergic and non-peptidergic C-fibres, nor myelinated neurons (NF200+) that were CGRP-. 

Non-neuronal infection was accompanied by a reduction in the percentage of non-neuronal 

cells. The percentage of myelinated peptidergic neurons significantly increased between at 

48h, with the relative percentage of peptidergic neurons being significantly increased at 

72h. 

DISCUSSION 

Alphavirus infection is known to involve a peripheral immune response (Maucourant et al., 

2019), with acute pain typically manifesting from the release of inflammatory mediators 

that sensitise nociceptors (Costantini & Cassatella, 2010). This acute pain is experienced by 

most CHIKV-infected patients with at least 16% progressing to chronic rheumatoid arthritis-

like polyarthralgia (van Aalst et al., 2017). Uncovering the mechanisms behind alphavirus-

induced pain is thus of key importance in both immediately improving patient quality of life 

and eventual development of novel therapeutics. However, the question of whether DRGs 

could be infected by ONNV to cause pain remained elusive. This study has evidenced that 

alphaviruses such as ONNV can infect DRGs, and that infection increases in myelinated 

peptidergic neurons (CGRP+NF200+) between 24h and 48h post infection, as well as non-

neuronal cells at 24h, 48h and 72h timepoints. 

This infection induces significant increases in the relative percentage of peptidergic C-fibres 

(fig 15A) and myelinated peptidergic fibres (fig 15C) at the 48h timepoint and in addition to 

Figure 22. Area Analysis 

of neuronal 

subpopulations from 

CTRL coverslips across 

all timepoints. 
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non-neuronal cells (fig 21A) after 72h of in-vitro incubation. No significant changes could be 

seen between the percentages or infection levels of CGRP- myelinated neurons (fig 15B and 

16B) nor non-peptidergic fibres (fig 18B and 19B). However, these peptidergic 

subpopulation changes do not contribute to a significant reduction in neurons as a whole 

population. Nevertheless, the reduction in non-neuronal cells could explain the reduction 

seen at the 72h timepoint. 

ONNV-INDUCED SUBPOPULATION CHANGES 
The PAF cell bodies are found in the DRG and synapse with second order neurons and 

interneurons in the dorsal horn to propagate action potentials for recognition, reaction, and 

experience in the brain (Basbaum et al., 2009). Neuropathic pain is caused by direct nerve 

injury resulting in neuronal hypersensitivity and sensitisation (Slimani et al., 2018), and is 

another mechanism by which pain can be experienced in other alphaviruses such as the 

Semliki Forest Virus (Vernon & Griffin, 2005) and Sindbis virus (Burdeinick-Kerr et al., 2009).  

This study has evidenced that ONNV can infect all DRG cells and that ONNV may 

preferentially infect subpopulations of neurons as evidenced by increasing levels of viral 

nsp3 tagged by mCherry within neuronal cell bodies. Alphavirus nsp3 has a key role in 

facilitating viral RNA translation in cells (Rougeron et al., 2015), and is an ideal target for the 

fluorescent tracking viral replication. The insertion of the red fluorescent mCherry protein 

into recombinant viruses is an effective method to study viral infection levels (Marzook et 

al., 2014), which does not alter viral infectivity as shown by successful lethal infection 

(Nogales et al., 2015). 

PEPTIDERGIC NEURONS (CGRP+) 
 

Alphaviruses enter target cells through clathrin-mediated endocytosis after incorporation 

via the fusion of E1 and E2 glycoproteins with the cell membrane (Fox et al., 2015). The virus 

then releases four non-structural proteins to replicate and package the single strand RNA 

into more virions which are released via exocytosis, (Rashad et al., 2013), or after cell death 

(Krejbich‐Trotot et al., 2010).  

 

The significant increase in the relative percentage of peptidergic C-fibres (CGRP+) could have 

occurred because of the reduction in non-neuronal cells through infection potentially due to 

viral-mediated cell death assisted by nsp2 halting antiviral responses (Ahola and Merits, 

2016). Intriguingly, ONNV infection did not significantly increase between 24h and 72h 

timepoints, however given the large population increase, perhaps infection increases at 

later timepoints in future research. 

 

The terminals of peptidergic C-fibres are found in the deeper dermal layers (Pace et al., 

2017), with high expression in bone, being significantly activated in rodent models of 

osteoarthritis (Morgan et al., 2019). Thus, it is possible that this increase in the proportional 

percentage of peptidergic cells due to non-neuronal cell death may contribute to the 
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development of both acute and chronic pain polyarthralgia seen as a hallmark of alphavirus 

infection (Miner et al., 2015). CGRP is also a potent vasodilator, (Brain et al., 1985), and 

plays a significant role in headaches, which are a common symptom of alphavirus infection 

(Rezza et al., 2017). CGRP+ fibres have also been implicated in itch sensation (Rogoz et al., 

2014), with the maculopapular rash seen in ONNV-infected patients (Rezza et al., 2017) also 

supports a role of this subpopulation of sensory afferents.  

 

We know that peptidergic C-fibres are heavily involved in the development and 

maintenance of both acute and chronic pain states through the release of nerve growth 

factors such as NGF, which although not labelled in this study, overlap almost entirely 

(Shiers et al., 2020).  

 

NGF has been implicated in the replication of influenza, and if this is the mechanism by 

which alphaviruses replicate, then increased levels of NGF release as a result of ONNV 

infection and replication within peptidergic fibres would thus cause neuronal sensitisation 

and the development of acute pain. We also know that the release of peptidergic 

neurotransmitters such as CGRP to second order neurons in the dorsal horn facilitates the 

transmission of pain signals to the CNS for the experience of pain to be realised. Thus, the 

increased population of myelinated CGRP+ neurons seen at 48h, and peptidergic C-fibres at 

72h, may start to explain the acute pain experienced by this infection.  

 

Future experiments could use an in-vivo longitudinal cohort of infected and mock mouse 

models to elucidate these findings, potentially uncovering significant reduction in NF200+ 

(fig 15B) and CGRP+NF200+ (fig 15C) populations that are shown as a trend in this study. 

Additionally, infection levels of other tissues such as skin epithelia for initial infection 

mechanisms, surrounding muscle and bone in the knee for polyarthralgia monitoring and 

behavioural analysis with paw withdrawal thresholds and weight bearing asymmetry could 

be conducted for an all-encompassing analysis of infection that is not possible from human 

clinical data. 

MYELINATED NEURONES (NF200+) 
The percentage of myelinated (NF200+CGRP-) neurons was not significantly different 

between 24h and 72h and mCherryONNV infection also did not differ significantly between 

24h and 72h. Due to a lack of additional labelling such as SP or IB4, it is not possible to 

categorically define this population as non-nociceptive, and the mean cell areas indicate 

that the majority are likely to be Aδ fibres involved in fast pain signal transmission. The 

insignificant differences between 24h and 72h and lack of increased infection in these acute 

timepoints implies that the pain that patients experience from ONNV infection is not a 

result of this myelinated population of neurons.  
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NON-PEPTIDERGIC NEURONS (IB4+) 
The percentage of mCherryONNV infected cells did not increase significantly in non-

peptidergic (IB4+) C-fibres between 24h and 72h timepoints, implying that ONNV does not 

significantly infect these neuronal subpopulations. This further implies that the itching seen 

from rashes in patients may be mediated by peptidergic fibres, independent from MrgprD+ 

non-peptidergic fibres (Dong & Dong, 2018). 

NON-NEURONAL CELLS IN DRG 
There were significant increases in the percentage of non-neuronal cells that were infected 

by ONNV perhaps due to cellular division of infected cells, as well as significant reductions in 

the relative numbers of non-neuronal cells between 24h and 72h timepoints. This indicates 

that that ONNV may use non-neuronal cells for replication, killing and leaving them to infect 

other cells, such as the myelinated or unmyelinated peptidergic neurons. The death of non-

neuronal cells would release sensitising agents such as protons and algogens into the 

extracellular space that could bind to nociceptors to increase pain signals (Costantini & 

Cassatella, 2010) to the CNS contributing to acute pain. Additionally, these inflammatory 

molecules would activate remaining glia, leading to the facilitation of immune responses, 

and increasing the coupling of action potentials (Lemes et al., 2018) to further increase pain 

signals in a neuropathic pain state that could contribute to polyarthralgia experienced by 

patients. 

LIMITATIONS AND IMPROVEMENTS 

Protocol optimisation was a 

particular challenge for this project, 

specifically minimising 

autofluorescence.  To address this, 

the permeabilization and blocking 

buffer steps were combined. The 

1% BSA was replaced with 10% 

Normal Donkey Serum (NDS) in the 

blocking buffer and Triton X100 was 

increased from 0.1% to 0.3% to 

improve permeabilization, as this 

had proved effective in the labelling 

of glial cells (Wang et al., 2019).  

Figure 21: non-specific binding of GS ab49873 in CTRL 

48h coverslips. (A)Mouse anti-NeuN (Merck Millipore, 

1:100) labelling with 100μm scale bars. (B) Rabbit-anti 

Glutamine Synthetase (abcam, ab49873, 1:250).  



 
Alphavirus Infection and Nociception: Differential Effects on Primary Mouse Dorsal Root Ganglia 

Ben Katz  Page | 37 

The presence of large quantities of SGCs 

during culturing hampered the 

quantification of the infection of 

neurons, this was addressed by the 

inclusion of the mitotic inhibitor 

aphidicolin to reduce proliferation. 

Multiple attempts were made to 

selectively label glial cells, however 

labelling of neuronal somas by 

glutamine synthetase (GS, ab49873) at 

20x on the Zeiss 200M (fig 21) and 60x 

by confocal microscopy (fig 22) 

prevented this. If time had been 

permitting, nestin could be used as an 

indicator of SGCs in-vitro as evidenced in 

Wang et al., (2019). Some impact of autofluorescence was still suspected at the latter stages 

of the study, which were remedied by increasing the number of PBS washes from 3x to 5x to 

improve antibody clearance, the addition of 0.3M glycine to the blocking buffer, adding 

Vecta TrueVIEW autofluorescence quenching media (kit from Vector labs, SP-8400), after 

post-secondary antibody PBS washes, and replacing fluoromount (Sigma-Aldrich, F4680) 

with VECTASHIELD Vibrance (Vector Labs, H-1700) mounting media. 

All coverslips incubated for the 24h and 48h timepoints were from one animal, and thus 

despite multiple FOVs of multiple cultured coverslips, the N number for this study was very 

low (n=1). Additionally, due to an error with DRG preparation, the DRGs used for 72h 

timepoint coverslips were from a different animal than 24h and 48h, which may explain the 

stark differences in counts between these timepoints. A fragile batch of coverslips for the 

final IB4-and-NeuN-label experiments meant that considerable numbers of 72h ONNV-

infected coverslips were lost at the beginning and end of the experiments. This removed the 

possibility of any further experimentation using the final DRG preps, in addition to 

necessitating a fixed effects (type 3) analysis for the IB4 and NeuN dual labelling experiment 

compared to a two-way ANOVA for the CGRP and NF200 dual labelling experiment. 

Additionally, this further resulted in the imaging of one 72h ONNV coverslip for the IB4 and 

NeuN experiment, invalidating any statistical differences between ONNV and CTRL at this 

timepoint. 

It had been intended that an in-vivo ONNV infection animal study would be performed, but 

this was postponed due to the university closure at the end of March 2020 because of the 

SARS-Cov-2 pandemic. This would have provided significant insight into the effect of in-vivo 

infection and the potential quantification of axonal transport mechanisms. In response to 

this closure, the decision was made to postpone these experiments until the university 

reopened. However, the requirements for social distancing in the lab and the impact on 

time available resulted in the decision that in vivo studies would not be performed to allow 

focus on the in vitro study.  There was a more general impact of the pandemic arising from 

Figure 22: Intranuclear neuronal GS ab49873 labelling 

in CTRL 48h coverslips by confocal microscopy. (A) 

Primary antibody combination: NeuN (1:100) and GS 

(1:250). (B) Secondary-only labelling with 10μm scale 

bars. 
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essential colleagues involved in my training and support being absent from work and my 

absence from the lab (both due to isolation requirements) which meant that my training 

was slowed and this resulted in less useable data being generated.  

The results of this study suggest multiple avenues of research that could be further 

investigated. The significance of some of the findings is limited by the small number of the 

coverslips used for this study, future experiments involving larger datasets would elaborate 

upon these results and provide a more comprehensive view of ONNV infection in DRGs. 

FUTURE WORK  

This study only quantified non-neuronal cell counts and infection via brightfield 

morphological analysis. Future research with a successful glial antibody candidate would 

provide a categorical distinction between neurons, glia and other non-neuronal 

subpopulations such as immune cells.  

Whilst this study evidenced significant increases in the infection of non-neuronal cells and 

CGRP+NF200+ neurons with significant increases in CGRP+ neurons and reductions in non-

neuronal cell counts, the exact mechanism of ONNV infection and following cell death 

remains elusive. Future experiments could use a marker of cell death such as cleaved 

caspase 3 to determine apoptotic events and immune markers for macrophage-mediated 

destruction (Kennedy et al., 2018).  

A microfluidics chamber could also be used to establish exactly how ONNV infects sensory 

nerve fibres. Perhaps this could include a marker for the TrkA trafficking protein CD2AP, 

which has been evidenced to interact with CHIKV nsp3 (Mutso et al., 2018), to elucidate 

whether NGF is responsible for axonal translocation of virions to the DRG from the 

periphery. 

STATEMENT OF IMPACT 

Alphaviruses infections that cause acute and chronic pain are becoming more common, 

reducing patient quality of life. Understanding alphavirus pain mechanisms is vital to limiting 

pain for patients and providing the downstream possibility of therapeutic development. 

CONCLUSION 

In conclusion, this study has evidenced that alphaviruses such as ONNV can infect DRGs, 

preferentially infecting myelinated peptidergic fibres and non-neuronal cells that results in 

an increased peptidergic C-fibre population and reduced non-neuronal population. The 

infection of DRG populations could play an important role in the development of pain states 

alongside inflammatory pain in the acute phase of infection and provides a mechanism by 

which acute pain may transition to chronic pain through peripheral sensitisation. Additional 
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research is needed to define the more intricate mechanisms of viral replication in DRGs and 

fully comprehend the effect of alphavirus infection on the PNS and CNS. 
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APPENDIX 1 

ABBREVIATIONS 
 

ACRONYM FULL DESCRIPTION 

CHIKV Chikungunya Virus 

AMH A-Mechano-Heat Receptor 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 

AP Action Potential 

ASIC Acid-sensing ion channels  

ATP Adenosine Triphosphate 

AΒ A-beta fibres 

AΔ A-delta fibres 

BK Big Potassium Channel 

CAMP Cyclic Adenosine Monophosphate 

CGRP Calcitonin gene-related peptide 

CHRNA3 Nicotinic acetylcholine receptor subunit alpha-3 receptor 

C-HTMR C-fibre High Threshold Mechanoreceptors 

CL Containment Level 

CLR Calcitonin receptor-like receptors  

C-LTMR C-fibre Low Threshold Mechanoreceptors 

CNS Central Nervous System 

DNA Deoxyribose Nucleic Acid 

DRG Dorsal Root Ganglia 

GABA Gamma-aminobutyric acid. 

GDNF Glial-derived neurotrophic factor  

GFAP Glial Fibrillary Acidic Protein  

GIRK3 G protein-gated inward-rectifying potassium channels  

HDRG Human Dorsal Root Ganglia 
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IA inactivating transient A-type Potassium channels 

IB4  Isolectin B4 

IGLUR Ionotropic Glutamate Receptor 

KV Voltage-gated Potassium Channel 

LOF Loss Of Function 

MDRG Mouse Dorsal Root Ganglia 

MGLUR Metabotropic Glutamate Receptor 

NAV Voltage-gated Sodium Channel 

NF200 Heavy Chain Neurofilament 200 

NGF  Nerve Growth Factor 

NK1 Neurokinin Receptor 

NMDA N-methyl-D-aspartate Receptor 

ONNV O’Nyong-Nyong Virus 

P2XR Purinergic receptor type 2  

PAF Primary Afferent Fibre 

PAG Periaqueductal Grey  

PBN Parabrachial Nuclei  

PLC Phospholipase C 

PNS Peripheral Nervous System 

RAMP Receptor-activity-modifying proteins  

RNA  Ribonucleic Acid 

RVM Rostral Ventromedial Medulla  

SGC Satellite Glial Cell 

SK Small-conductance Potassium Channel 

SP Substance P 

TNFΑ Tumour Necrosis Factor α 

TRKA Tropomyocin Kinase A 

TRP Transient receptor potential channels 

TRPA1 Long transient receptor potential ankyrin protein 1  

TRPM8 Transient receptor potential melastatin 8 channel 

TRPV Transient receptor potential vanilloid channels 

VGCC Voltage-Gated Calcium Channels 

VGLUT Vesicular Glutamate Transporter  
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