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Abstract

Connected and Autonomous Vehicles (CAVs) have expanded fast in recent
years and have started to affect people’s daily lives. It is believed that CAVs
could bring benefits, including improving traffic efficiency, reducing accidents
and emissions. However, the development of CAVs still faces several technical
and social challenges. Issues such as cyber security have become predomi-
nant, forming an essential part of the complications of CAV deployment. The
increasing number of autonomous and connected functions, however, means
that CAVs are exposed to more cyber security vulnerabilities. Unlike com-
puter cyber security attacks, cyber attacks on CAVs could lead to not only
information leakage but also physical damage. According to the UK CAV
Cyber Security Principles released in 2017, preventing CAVs from cyber se-
curity attacks needs to be considered at the beginning of CAV development.
There is, however, no universally agreed upon or recognized framework for
Connected and Autonomous Vehicles Cyber Security (CAVCS). The main aim
of this thesis is to develop a machine learning-based anomaly detection CAVCS
framework to detect potential attacks on CAVs.

In the thesis, new CAVCS terminology is defined to establish the theoretical
foundation of the framework. A large set of potential attacks within the frame-
work, are then investigated and evaluated based on a newly proposed severity
assessment method from the aspects of target assets, risks and consequences.
The severity assessment results show that the DoS attack and Fuzzy attack are
the most severe cyber attacks among all the defined attacks. Besides, this spe-
cific CAVCS assessment method could be extendable for evolving technologies
applied to CAVs in the future.

Based on the assessed potential attacks, four new CAVCS data sets are sim-
ulated and collected in the thesis. CAV-KDD data set generated from cyber
security benchmark KDD99 covers potential attacks to inter-vehicle commu-
nications; Simulated Simu-CAN data set and real world KCAN-CAV data
set cover DoS attacks and Fuzzy attacks on in-vehicle communication; Self-
collected CAV-RW data set addresses the limitations of these three data sets,
restoring the DoS and Fuzzy attacks scenarios to the greatest extent in the real
world. In addition to filling the research gap of lacking CAVCS data sets, the
four new data sets could help build machine learning models and thus provide
secured CAVs in simulated environments and real world usage.

To build and assess the performance of machine learning-based anomaly de-
tection on CAVCS, classifiers Decision Tree and Naive Bayes are introduced to
each of the four new data sets. The comparison is made based on specific met-
rics, including accuracy, false positive rate and runtime. The results indicate
that machine learning models could help to detect attacks on CAVs, among
which the Decision Tree model is superior to the Naive Bayes model. How-
ever, the runtime is not sufficient for dynamic driving environments, further
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enhanced performance improvements are needed on machine learning models.

To shorten the runtime without negative impacts on accuracy, feature selection
methods, including Info Gain, Gain Ratio, CFS (Correlation-based Feature
Selection), and Pearson method, are then adapted to machine learning mod-
els. Experimental results show that feature selection methods improve the
performance of models on inter-vehicle communication data set CAV-KDD
significantly due to a large number of features. While in other data sets, the
impact of feature selection is not evident due to the limited number of fea-
tures. Among all these, the Decision Tree remains to be the best-performance
detection model. The most important attributes towards different attacks in
different situations are also suggested to provide guidance for further research.

Thus, the thesis builds a new machine learning-based anomaly detection frame-
work for CAVCS, which incorporates severity assessment, data collection,
attacks detection and performance improvement. The framework has been
adapted and validated in the simulated and real world environments, showing
it to be effective for assessing and detecting CAV cyber attacks. The frame-
work could provide guidance and a baseline for further CAVCS researches.
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Chapter 1

Introduction

1.1 Background

Connected and autonomous vehicles (CAVs), a subset of the Intelligent Trans-

portation System, use hardware such as electronic control units (ECUs) and

sensors, software such as entertainment systems and decision-making units,

and data to conduct driving tasks with different levels of automation. Using

these components, CAVs have the potential to not only drive without human

assistance but also navigate, communicate with and react to their surround-

ings. The automation of CAVs is achieved by the installed sensors around the

vehicle body that gather environment information to make decisions. Connec-

tivity allows communication with vehicles, infrastructures and other road users,

as well as guides navigation and vehicle reactions. The CAV is a combination

of ‘Connected Vehicles (CVs)’ and ‘Autonomous Vehicles (AVs)’, forming the

ability of CAVs to communicate with surroundings and conduct driving activ-

ities without human beings [1].

A variety of companies focus on the research and development of CAVs. One

of the biggest Chinese Internet company Baidu released an open source au-

tonomous driving platform named Apollo, which aims to address the challeng-

ing issues of precise sensing and decision making [2]. Tesla released its Au-

topilot for assistant driving and Summon system for assisted parking in 2015

1



Chapter 1. Background 2

and 2016, respectively [3]. An introduction to an enhanced Autopilot system,

which could achieve autonomous driving in certain scenarios (on highways, for

example), is found on Tesla’s website [4]. As one of the biggest Internet compa-

nies in the world, Google is also a competitive player in the field of connected

and autonomous driving. Google set up a company Waymo in 2009 to support

the research and development of CAVs, and has already completed more than

2 million miles of road tests [5]. Another Internet company Uber, known for

its taxi-hailing application, has also tested its own CAVs on public roads in

the state of Arizona [6]. Except from Internet companies and electric vehicle

companies, traditional vehicle manufactures such as Audi and Mercedes Benz

have announced CAV initiatives as well. Audi has conducted 550km on-road

test, based on its autonomous vehicle, “Jack” [7]. Mercedes Benz began to

develop CAVs in the 1980s. Its latest S-class Benz vehicle has completed a

100km road trial in Germany [8].

To accelerate the development, governments also took actions to support by

publishing relevant regulations and laws. In the US, regulations and laws on

CAVs are established at the state level [9]. The Chinese government’s ten-year

plan, “Made in China 2025”, proposes mastery of the key technologies of CAVs

by 2025 [10]. In addition, the Chinese government has launched an abundance

of CAV demonstration projects in China and established the Jiading district

in Shanghai as the country’s first public test area for CAVs [11].

Moreover, several CAV competitions sponsored by academic organizations,

companies and governments have been held around the world. In the US, the

DARPA Grand challenge was held in 2004 and DARPA Urban Challenge in

2007 [12]. In China, a competition focusing on the future challenges of intelli-

gent vehicle competition has been held since 2008, sponsored by the National

Natural Science Foundation of China [13]. Given the increasing number of

research organizations participating, these competitions not only provide plat-

forms for researchers to communicate but also raise public interest in CAV

developments.
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According to a survey conducted by the Boston Consulting Group, 55% of

the public would like to try an autonomous vehicle or even buy one [14]. The

majority of current CAV researches mainly focus on the functions of automa-

tion or connectivity. However, the CAV cyber security, a fundamental part

of their development, is not sufficiently addressed. Cyber security is related

to the functional safety of CAVs, which will have a direct influence on public

trust and CAV commercialisation. According to the newly released UK CAV

Cyber Security Principles [15], CAV cyber security should be considered at an

early stage of CAV development (such as the design phase) and encompass the

entire supply chain. This could prevent cyber security issues from arising in

subsequent stages.

As probably the biggest mobile device people would use in the near future,

CAVs however may cause severe consequences in people’s lives, including not

only private information leakage but also potentially fatal physical damages.

Though the CAVs have not been commercialised yet, they have been involved

in accidents several times and have already caused fatalities. In early 2018,

an Uber autonomous vehicle hit a cyclist during road testing [16]. It is also

reported that in the US [17] and China [18], Tesla vehicles have caused fatal

incidents. Tesla announced that the driver’s hands were not detected on the

steering wheel for 6 seconds before the US accident. Although it was said that

the Autopilot system was engaged, the Tesla vehicle should only be classified

as a driver assistance system rather than a fully autonomous system according

to the definitions of automation levels in Table 2.1.

Even more severe attacks “happened” to vehicles. In the US, white hat hackers

have already attacked the Grand Cherokee successfully. They took control of

the vehicle remotely from ten miles away and stopped it on a highway [19]. In

2019, the Tencent Keen Lab also announced that the researchers successfully

took control of the Tesla S vehicles [20]. They used three dots installed on the

road to mislead the testing vehicle and forced it to drive to the opposite lane.

These accidents suggest that there may be severe and even life-threatening
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consequences if CAVs are not designed and equipped with appropriate cyber

security protection mechanisms. There is a pressing need to investigate CAV

cyber security issues, even at this early stage in their development.

There has been little development of automation and communication-based

technologies in traditional vehicles, and the issue of cyber security has often

been neglected or considered less important. Although several mature stan-

dards and methods relating to cyber security exist in the field of computer

science, they cannot be applied directly to CAVs. Compared to traditional

networks, mobile networks, or traditional automobile networks, CAV cyber se-

curity has its own specific characteristics, which are shown in Table 1.1. Given

these differences, the cyber security of CAVs should be considered specifically;

cyber security strategies applicable to traditional networks or automobile net-

works cannot be employed directly.

Table 1.1: Comparison of CAVs with Traditional Vehicles/Mobile Networks

Compared to Traditional Vehicles Compared to Computer Network/ Mo-
bile Network

1. There are more ECUs and more code
in the CAVs [21], which means more
data to be processed.

1. Besides information leakage, CAVs
could cause physical damage or even fa-
tal injuries.

2. There are multiple communica-
tion protocols in CAV, such as Con-
troller Area Network (CAN) [22], 5G
and DSRC [23], and therefore multiple
data formats in the vehicles, requiring
more processing time.

2. CAV requires a higher detection
rate as well as a shorter data processing
time. In the Europe METIS project, la-
tency is expected to be less than 5ms,
and accuracy is expected to be 99.999
% when transmitting a 1600-bytes data
package [24].

3. There are more connected functions,
which means that the number of poten-
tial attack points is also increasing [25].

3. The application scenarios are more
complicated. CAVs are more likely to
drive in unregulated areas such as park-
ing lots, highways and rural areas.

1.2 Research Motivations

Due to these specific characteristics of CAVs outlined in Table 1.1, the research

of CAV cyber security is of high importance and urgency. The UK published
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the first CAV cyber security principles in the world [15]. The government,

CAV companies and organizations are also looking for cyber security solutions.

Innovate UK [26] has opened several Call for Proposals on CAV cyber security

in recent years as have other organizations, such as the ESA (European Space

Agency) [27].

The following considerations highlight the research significance of CAV cyber

security:

1. The data and information transmitted by CAVs include not only commu-

nications within the vehicles (e.g., CAN) but also communications in V2V,

V2I, V2C and everything in the CAV network. The specific characteristics of

this complicated network must be captured and considered in a well-defined

cyber security framework that can support future developments in cyber se-

curity protection. In addition, the framework should also guide the protection

of newly-adopted technologies on CAVs.

2. The functions and commercialisation of CAVs have been researched for

several years. It is believed that the CAVs could be ready for consumers

in the 2020s [9]. Cyber security needs to be considered as soon as possible,

and before the commercialisation, to protect the information and users’ safety.

However, currently there is no universal standard and regulation for CAV

cyber security. The protection mechanism could not be guaranteed. The lack

of relevant security data also poses challenge for further studies on autonomous

detection on attacks to CAVs.

3. Secure communication is the foundation for the successful development

of CAVs, to avoid both private information leakage and physical damage to

properties or people. The CAV cyber security needs to be emphasised across

different sectors and throughout the entire supply chain of the automobile

industry.
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1.3 Research Aims and Objectives

The aim of this thesis is to provide a new Anomaly Detection Framework that

will enhance CAV cyber security through the adoption of machine-learning

methods for CAVs by defining and assessing attacks, collecting data from sim-

ulated and real world environments, adapting machine learning models, and

improving the performance by feature selection methods.

The Objectives of this research are as follows:

1. Critically review existing cyber security frameworks and mechanisms for

use in CAVs. Because CAV cyber security is a new and emerging research

field, other relevant literature, including cyber security of traditional networks,

traditional automobiles, and Vehicular Ad hoc Network (VANET), will also

be reviewed to support the interdisciplinary research of CAVs. The gaps and

limitations of current research on CAV cyber security will then be identified

for further in-depth analysis and investigations.

2. Define the terminology related to CAV cyber security and assess potential

attacks on CAVs by specific CAVs cyber security severity assessment method.

As there is no general definition of CAV cyber security, the research domain

must be properly defined. In addition, cyber security research must identify

and define the types of attacks that could occur. A new universal CAV cyber

security attack severity assessment method will be proposed, which could help

to understand the priority for protecting against and responding to attacks.

3. Collect new CAV cyber security data sets within the new CAV framework.

Because CAV cyber security data sets are lacking in the existing literature,

new CAV cyber security data sets will be collected from both simulated and

real world environment. These data sets will cover different attack types to

CAVs, and help to build machine learning models as well as evaluate them in

real world usage.

4. Develop and evaluate machine learning models for CAVs based on new CAV

cyber security data sets. Machine learning models will be adapted to each of
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the data set to assess their performance on detecting different cyber attacks

to CAVs in various situations. The performance of the accuracy, false positive

(FP) rate and runtime will then be compared, the most appropriate model will

be suggested.

5. Improve the performance of the models by feature selection methods. Fea-

ture selection methods are to be investigated to enhance accuracy, lower the FP

rate, and decrease detection time of machine learning models on CAV attack

detection. The selected features towards different attacks will be investigated,

which could help to understand the importance of each feature.

1.4 Research Methods and Procedures

The focus of this thesis is to develop a framework for the cyber security of

CAVs. Within the new framework, potential attacks could be defined and

machine learning methods could then be used to detect them, thus enhancing

CAV cyber security. The proposed solution basically follows the cyber secu-

rity framework introduced by the NIST (National Institute of Standards and

Technology) [28]. The NIST framework core consists of five main functions:

identify, protect, detect, respond and recover. However, the framework is de-

signed for companies or organizations to conduct commercial risk assessments

to reduce cyber security risks to an acceptable level. For CAVs, the framework

is adapted and changed based on specific characteristics of CAVs outlined in

Table 1.1.

This work acknowledges that cyber security attacks on CAVs may cause severe

physical damage. Thus, after identifying the potential cyber attacks on CAVs,

a new severity assessment method needs to be proposed to consider more CAV

specific factors.

Once potential cyber attacks are identified, the detection of attack represents

the next important key issue. Machine learning tools have been identified

to be highly successful and powerful in the recognition of patterns in data.
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This research generates and labels new CAV data sets, including in-vehicle

and inter-vehicle data, to train machine learning models for CAV anomaly

detection. The trained machine learning models that recognized the patterns

between data could be adapted to new data sets to detect the anomalies.

This work also acknowledges the demand for high accuracy and low latency in

CAVs responses to real world driving situations. These are often dynamic and

unpredictable. After the construction of the machine learning models, feature

selection methods are used to reduce the number of attributes in the data set,

thus to reduce the runtime without affecting the accuracy of the model. With

the attributes selected through the feature selection process, the models are

shown to be well adapted to achieve better performance. The models are also

adapted to a real world data set to evaluate their applicability in new and

complex scenarios.

The overall structure and methodologies of the thesis are outlined in Figure

1.1. A more detailed description will be given in Section 1.6.

1.5 Contributions of the Research

The contributions of this research are listed below. The main contribution of

the thesis is to build a new machine learning-based anomaly detection frame-

work for CAV cyber security, which incorporates severity assessment, data

collection, attacks detection and performance improvement. The framework

has been adapted and validated in the simulated and real world environment,

showing it to be effective for assessing and detecting CAV cyber attacks. It

provides guidance and a baseline for further CAV cyber security researches.

a. A new proposed severity assessment method specific to CAV cyber security.

The new set of terminology of CAV cyber security, including CAV cyber secu-

rity, CAV network, and CAV cyber attacks, is defined to build the theoretical

foundation of the CAV cyber security framework. The priority of each attack

could then be understood and the most severe attacks could be resolved with
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Figure 1.1: Thesis Structure and Methodology

a higher priority by adapting the proposed assessment method. Besides, this

newly proposed assessment method is also extendable in the fast evolving area

of CAV research and development. This contribution provides guidance for

CAV cyber security severity assess, which could help researchers understand

the attacks and then take corresponding reactions towards them.

b. Four new CAV cyber security data sets covering potential attacks in simu-

lated and real world environment. CAV-KDD data set generated from cyber

security benchmark KDD99 covers potential attacks to inter-vehicle commu-

nications; Simulated Simu-CAN data set and real world KCAN-CAV data

set cover DoS attacks and Fuzzy attacks on in-vehicle communication environ-

ments; Self-collected CAV-RW data set addresses the limitations of these three

data sets, restoring the DoS and Fuzzy attacks scenarios to the greatest extent

in the real world. These data sets help build and evaluate machine learning

models towards different attacks, filling the research gap of lacking relevant
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data sets in the field of CAV cyber security. Other researchers could also use

these data sets to conduct relevant research and compare the results.

c. Machine learning models, Decision Tree and Naive Bayes, to detect the

CAV cyber attacks on the new data sets. The machine learning models are

built and evaluated on the data sets to assess the performance of accuracy,

FP (False Positive) rate and runtime. It is found that machine learning is

effective to detect CAV cyber attacks. The comparison results show that the

performance of Decision Tree model is superior than that of Naive Bayes. The

possibility of using machine learning models is evaluated in the thesis, based

on which other researchers could use different machine learning algorithms to

compare and improve the results.

d. Improved performance of machine learning models by feature selection

methods. The feature selection methods provide a possible solution for dy-

namic driving environments. In data set with enough number of attributes,

the feature selection methods are considered to be effective. Besides, feature

selection methods also help to prioritise the importance of attributes, by which

only crucial attributes are collected if data storage and computation power are

limited. It is found that time frequency and data field content are the most im-

portant attributes in detecting DoS and Fuzzy attack, respectively. The best

performance model and important attributes towards different attacks are also

suggested, which could provide a baseline for further research. In addition, the

important attributes could also provide guidance for CAVs data collection in

future research.

1.6 Thesis Overview and Structure

The rest of the thesis is organised as follows.

Chapter 2 presents an overview of researches on CAVs as well as CAV cyber

security. The existing research emphasises that cyber security is a fundamen-

tal part of the deployment of CAVs. Components of building cyber security
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framework are also reviewed from the aspects of risk assessment, related data

sets, anomaly detection and feature selection. The research gaps with respect

to existing research are highlighted in this chapter.

Chapter 3 describes the preliminary development of the proposed CAV cyber

security framework. In this chapter, the terminology of CAV cyber security is

firstly defined followed by the potential attacks on CAVs, which are defined,

analysed and categorised from the perspective of automation and connectivity.

A new CAV cyber security severity assessment method is proposed, in which a

new set of severity assessment criteria is provided to support the categorisation

and priority of potential attacks. Based on the criteria, the most severe attacks

on CAVs are identified, and corresponding mitigation methods are suggested

to resolve them.

Chapter 4 introduces all the data sets newly collected and analysed in the

thesis. These four different data sets cover most severe attacks defined in

Chapter 3 in simulated and real world environments. The newly retrieved data

set CAV-KDD is generated from the traditional network benchmark data set

KDD99 by removing redundant data and irrelevant attributes. The Simu-CAN

data set is simulated using a CAN tool, and attack scenarios are simulated to

inject the attack data into the data set. Real world data sets, including KCAN-

CAV data set of inter-vehicle communication, and self-collected CAV-RW data

set from a real CAV, are used to validate the performance of machine learning

models in the real world environment. The data sets in this chapter support

the follow-up machine learning research in the thesis.

Based on these data sets, two machine learning models, namely Decision Tree

and Naive Bayes, are built and evaluated in Chapter 5. The performance met-

rics of accuracy, FP rates and runtime are then discussed and compared. This

chapter demonstrates the applicability of machine learning models to detect

the anomalies on CAV cyber security with a concern of further improvement

on model’s performance.

In Chapter 6, feature selection methods based on the specific characteristics
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of CAVs (i.e., the highly dynamic environment and low fault tolerance) are

used to improve the performance of machine learning models. The accuracy,

FP rate and detection time of each data set are compared with where feature

selection methods are not applied, in order to demonstrate any improvements

gained through the use of the methods. In addition, the best performance

model and important attributes are also suggested to provide guidance for

further research.

Chapter 7 presents the conclusion of the thesis. The limitations of the research,

the challenge ahead of CAV cyber security and future work are also discussed.



Chapter 2

Literature Review

2.1 Overview

The automobile industry has developed for several centuries, and the number of

ECUs (Electronic Control Units) installed in vehicles has also been increasing

in the past few years. The development of CAVs is becoming a major priority

of the automobile industry. They have spent a huge amount of money on their

development, and all car manufactures are competing for the leading position

in the area of CAVs [29]. Nowadays, an increasing number of sensors and

applications are used on vehicles to build a more efficient and reliable driving

environment. It is said that one modern vehicle now could have more than

100 million lines of code [30] to support its driving functions.

Some initial applications of CAVs have already been installed on modern vehi-

cles. For example, the ADAS (Advanced Driving Assistant System) has been

installed and used in many commercialised vehicles [31]. Vehicle platooning

technology is also used in the lorries [32]. Besides the applications on vehi-

cles, the whole driving environment, such as infrastructures, is becoming more

intelligent as well. With wireless communication technology usage, such as

RFID (Radio Frequency Identification) [33], passing vehicles could be charged

automatically at parking lot entrances and toll stations on highways without

stopping, improving traffic efficiency greatly. Traffic control systems such as

13
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traffic light control system [34] to avoid congestion are being used in cities

around the world as well. The concept of VANET (Vehicular Ad hoc Net-

work), which is a crucial part of the intelligent transportation system, is also

adapted into real world usages in certain scenarios to increase the efficiency of

the whole driving system [35].

All of these technologies try to improve the automation level and connection

degree of modern vehicles, and help the vehicles make driving decisions in-

dependently without human. However, more vulnerabilities will be exposed

on CAVs with the installation of new ECUs and applications as the number

of ports to outsides is increasing as well. With wireless communication, all

the vehicles in the communication range could become the attack targets [25],

which is even worse than wired communications.

This chapter introduces the background of CAVs and existing studies on CAV

cyber security. It also reviews the relevant literature on potential attacks on

CAVs and the mitigation methods that could be used against these attacks.

The current CAVs standards and industry reports are also reviewed in this

chapter. Finally, relevant approaches and methods of building a cyber security

framework, including risk assessment, data sets, anomaly detection and feature

selection, are reviewed in this chapter as well.

2.2 Connected and Autonomous Vehicles

The SAE J3016 Standard is a de facto standard for autonomous driving nowa-

days. The category of automation defined by J3016 has been widely used.

The SAE International defined “driving automation” as that the system could

conduct part or all DDT (Dynamic Driving Tasks) continuously [36]. DDT

is defined as three different levels by the SAE J3061 standard, namely op-

erational functions, tactical functions and strategic functions. The relations

of these three functions are illustrated in Figure 2.1 [36]. Operational func-

tions contain basic motion control, including lateral and longitudinal motion
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controls. Tactical functions contain all the operational functions plus OEDR

(Object and Event Detection and Response). In current DDT performance,

the strategic functions, including destination and waypoint planning, are not

included.

Figure 2.1: Schematic View of Driving Tasks Showing DDT Portion

The response by either users or the system to perform DDT when a system

failure happens is defined as DDT fallback by SAE International. ODD (Oper-

ational Design Domain) is considered as the driving system requiring a specific

running environment, including environmental, geographical or time restric-

tions. For example, some autonomous driving vehicles only operate or test in

a closed environment [37], which indicates that the vehicle is still designed un-

der a limited ODD. Based on the DDT performance, DDT fallback and ODD,

SAE International then defines the vehicle automation into 6 different levels,

which are shown in Table 2.1 [36].

The definition of CAVs varies in different descriptions. In the UK, the gov-

ernment set up a government centre called the “Centre for Connected and

Autonomous Vehicles” in 2015 [38]. This centre published a report on Con-

nected and autonomous vehicle research and development projects in 2018 [39].

The House of Lords also published the report “Connected and Autonomous

Vehicles: The future” in 2017 [40]. Other organizations, including the British
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Table 2.1: SAE Automation Levels

Level Name
DDT

DDT Fallback ODD
Sustained
Motion Con-
trol

OEDR

0 No Driving Au-
tomation

Driver Driver Driver N/A

1 Driver Assis-
tance

Driver and
System

Driver Driver Limited

2 Partial Driving
Automation

System Driver Driver Limited

3 Conditional
Driving Au-
tomation

System System Fallback-
ready user
(becomes the
driver during
fallback)

Limited

4 High Driving
Automation

System System System Limited

5 Full Driving Au-
tomation

System System System Unlimited

Standard Institution (BSI) in the UK, also published a standards strategy

report on CAVs in 2017 [41].

Some publications have also used the name of Connected and Automated Vehi-

cles. For example, the Transport Systems Catapult [42], an innovation centre

in the UK, used the term Automated on its website. As a rapidly developing

subject, the naming of CAVs is not consistent in the literature, at present.

The thesis therefore use the term ‘Connected and Autonomous Vehicle’, which

is the same as ‘Connected and Automated Vehicles’ in the literature.

CAVs are attributed with the features of wireless connectivity and automa-

tion. Connected means that the vehicles rely on data sent from other vehicles

or infrastructure to plan their routes and communicate with other surround-

ing vehicles within a connected network. Full automation means that these

vehicles can comprehensively conduct dynamic driving tasks and recovery ac-

tions automatically, in real-time, without driver’s intervention [43]. In [44],

the authors concluded that a modern autonomous vehicle normally contains

three crucial elements, which are sensors, on-board computers and actuators.
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These elements could help the vehicle to understand surroundings and make

corresponding reactions.

CAVs could bring many benefits to current transportation and people’s daily

life. First of all, traffic safety could be enhanced by CAVs. It is reported that

90% of traffic accidents are caused by drivers’ fault, which means that by using

CAVs, the same proportion of accidents could be avoided [9]. Secondly, traffic

efficiency could be significantly improved by CAVs. Using CAVs could increase

the road capacity, because the car spacing could be shortened when driving

[45]. Thirdly, fuel consumption could also be reduced, and the air pollution

caused by vehicles could be controlled. The car-sharing program could also be

expanded. It is studied that one sharing CAV could replace eleven traditional

vehicles on car-sharing rental programs, which could help to reduce the emis-

sions [46]. In [47], the authors conducted a comprehensive research about the

implications that may be caused by CAVs, including fuel consumption, travel

choices, public health, etc. With the increasing of automation, the impacts

would also be multiplied.

Though the development of CAVs could bring lots of benefits to our daily life, it

could also cause some problems such as reliability or safety. These unintended

concerns may reduce the customers’ acceptance to CAVs. Many researches

emphasised the possible consequences on safety. In [48], the authors said that

though CAVs could reduce human errors, the machine faults still cannot be

avoided. Several fatal accidents around the world indicated the unreliability

of CAVs. In [49], the authors found out that if CAVs and traditional vehicles

were mixed on the road, the number of conflicts would even increase in certain

areas such as the intersections or low car spacing roads. The transition period

from traditional vehicles to CAVs would be dangerous. In [50], the author

said that though safety is crucial to CAVs, functional safety has already been

inappropriate for CAVs as security also needs to be considered.

It could be seen that all the researches agreed that the development of CAVs

is promising and will be beneficial to several aspects in our daily life and the
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whole society. However, there still exists several challenges ahead to overcome,

in which CAVs cyber security needs to be considered first as it could impact

both safety and security.

CAV cyber security is an important issue in the development of CAVs, and

also a big challenge. In the next section, CAV cyber security will be reviewed

and discussed.

2.3 Cyber Security Research on CAVs

Though the technical research of CAV cyber security is still developing and no

mature technologies has been applied to CAVs yet, the cyber security are still

accounted of by governments around the world. Several regulations, laws and

best practices have been published by governments.

In the US, the NHTSA (National Highway Traffic Safety Administration) pub-

lished best practice of modern vehicles in 2016 [51]. One year later, in 2017, the

second version of the safety report was also published [52], which was named

“a vision for safety”. Both of the reports tried to define and regulate relevant

issues on vehicle cyber security. However, they are not specific to CAVs. The

best practice focused on modern vehicles and the safety report only focused

on automated driving. Another regulation called the “Spy Car Act”, which

was published by the US government in 2015, also aims to protect the privacy

and security of self-driving vehicles [53]. At the state level, several states, in-

cluding California and Massachusetts, introduced or updated new and existing

laws to ensure cyber security for CAVs [54]. Other states such as Georgia and

Michigan also passed new laws to ensure cyber security in general rather than

specific to CAVs [54].

ENISA (European Union Agency for Cybersecurity) in the EU also published

relevant researches on CAV cyber security. In 2017, a report on cyber secu-

rity and resilience was published [55], listing all the vulnerable parts of smart

vehicles and possible threats to them. In addition, the GDPR (General Data
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Protection Regulation), which took effects from 25 May 2018, was also an ad-

vanced approach for privacy protection in Europe [56]. In 2019, a new good

practice for security was published to improve vehicles’ safety [57]. Both of

these two documents are guidelines and suggestions, but not compulsory. It is

still a signal that the EU paid attention to the cyber security of CAVs. The

GDPR regulates the use of personal data in the EU, which is a model for

the data protection law for other areas. As CAVs would store highly sensi-

tive personal data such as the usual locations or bank account information for

payments, GDPR will be definitely used in future CAVs.

In the UK, new CAV cyber security principles had been proposed [15], which

made the UK the first country to consider CAV cyber security at the national

level. However, these principles are only guidelines, which are very general. In

Asia, China and Japan also updated the existing laws to secure cyber security

and privacy. In China, the Cyber Security Law of the People’s Republic of

China had enacted in 2017, which requires the enhancement of cyber security.

In late 2017, China has introduced another guideline for developing Intelligent

and Connected Vehicle, which emphasised the importance of CAV cyber se-

curity [58]. The guideline clearly pointed out that cyber security standards of

CAVs, including the technical and privacy requirements, need to be built. In

Japan, the Personal Information Protection Commission would monitor and

protect the personal information [54].

It could be seen that the governments have realised the importance of CAV

cyber security. However, as the technology is not mature, governments still

do not force automakers and OEM suppliers to take compulsory actions. But,

initial attempts about CAV cyber security need to be considered carefully, and

protection mechanisms need to be proposed to ensure not only security but

also safety on CAVs.

Researchers have emphasised that the protection of cyber security is the most

important requirements of users to use CAVs [59]. There are various attempts

to discuss CAV cyber security. In [60], the authors discussed the possible cyber
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security attacks on autonomous vehicles. After listing all the possible attacks,

the authors then gave mitigation solutions to each attack. It is recommended

that it is important to keep sufficient redundancy in autonomous vehicles.

Sufficient sensors data could help vehicles to know the surroundings and posi-

tions. They believed that GNSS spoofing and fake message injection are the

most threatening risks among all these attacks. Both of these attacks will put

threats to passengers’ lives. They believed that anti-spoofing hardware and

authentication methods are needed in autonomous vehicles.

In [61], the authors divided the attacks to vehicles into two classifications.

One is the attack to the entertainment system on the vehicles, including the

audio system or the mobile applications installed on the vehicles. The other

classification is the attack to the CAN, which is even more dangerous to the

vehicles. Unlike the computer DoS attack focusing on communications, the

DoS attacks to vehicles could be different. For example, if the attackers at-

tack the heating function of the driver’s seat, the power of the vehicles would

be consumed quickly at a short time. This could be extremely dangerous,

especially to electric vehicles.

In [62], the authors discussed cyber security in connected vehicles. The au-

thors believed that the vehicles would be more vulnerable with the increasing

connectivity. This paper described the possible attack scenarios, including

USB update attacks, communication attacks and malicious application instal-

lation. A system using machine learning methods was then built to detect the

anomaly behaviours in CAN-Bus (Controller Area Network) and the operating

system.

In [63], the authors attempted to use the categories of cyber security in com-

puter science to describe the possible attacks in CAV. The possible attacks

were divided into passive attacks and active attacks. The passive attack is

easy to prevent but difficult to detect, while the active attack is easy to detect

but difficult to prevent. In the thesis, mitigation methods were recommended,

including authentication and encryption.
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In [64], the authors pointed out that the current vehicle safety standard ISO26262

did not consider the security issues to avoid both unintentional and intentional

attacks. Currently, there is no existing universal security or safety standard

for CAVs. Therefore, a systematic definition of attacks and attack analysis

methods is highly desirable for the development of CAVs.

In [65], the authors assumed that connected vehicles were similar to all the

Internet devices, and cyber security should be considered as a fundamental part

of connected vehicles development. The authors then discussed the potential

cyber attacks on V2I (Vehicle to Infrastructure) communication and proposed

a novel cyber security architecture called CVGuard to detect the attacks in

V2I. In this paper, the CVGuard reduced 60% DDoS (Distributed Denial of

Service) attacks created vehicle conflicts.

In [25], the researchers pointed out that modern cars were already new tar-

gets for hackers. Engines, doors and brakes could all be possible vulnerable

points. In addition, nowadays, the attackers did not need to approach the tar-

get vehicle physically. All the vehicles in the communication range could be

hacked. The authors also listed OBD (On-Board Diagnostics) threat, DSRC

communication, Malware and automobile apps as the most vulnerable parts

on vehicles. The authors also offered solutions to address the cyber security is-

sues, including OTA (Over-the-Air Technology) solution, cloud-based solution

and layer-based solution.

Real attacks have also happened several times. White hackers from Tencent

Keen Lab have successfully attacked Tesla [66]. The attack was conducted in

September 2016. A remote attack to Tesla Model S had successfully conducted

both in driving and parking modes. The white hackers accessed the Tesla

vehicle from Wi-Fi, and modified the CAN message successfully. After this

attack, Tesla published an OTA update immediately to fix the problem.

Three years after this attack, in 2019, the Keen lab conducted another suc-

cessful attack to disrupt the rain wipers of Tesla [20]. The lane recognition

function was also hacked by sticking three white round dot stickers on the
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road only. With wrong lane recognition, the vehicle drove to the opposite

lane. In addition, the white hackers also showed that the steering wheel could

be controlled by a gamepad, even when the Autopilot was not running.

Because CAV is a newly-developed research topic, the amount of cyber security

research on CAV is limited. Except for the cyber security in CAV, there is

also research on the VANET (Vehicular Ad hoc Networks), which shares a lot

in common with the connected functions of CAVs.

VANET uses V2V communication and V2I communication to help vehicles

gathering traffic information [67], while CAVs extend the boundaries to V2X

communication. VANET is a mobile ad hoc network, where the vehicles are the

mobile nodes [68]. In [68], the authors listed the possible privacy and security

challenges to the safety of VANET, including the attacks on confidentiality,

integrity or data trust. They claimed that encryption is important to VANET.

In [69], the authors concluded that the VANET has three specific character-

istics: frequent vehicle movement, time-critical response, and hybrid archi-

tecture. Other listed attacks include bogus information, DoS attacks, Mas-

querade, GPS spoofing, etc. The authors also proposed several mitigation

methods, including public key, certificate revocation approaches and ID-based

cryptography.

As it could be seen from the literature listed above, the majority of the re-

searchers believed that cyber security is a fundamental part of the develop-

ment of CAV, which needs more research and investigations. On the other

hand, most authors agreed that increasing connected and automated func-

tions will increase the possibilities of cyber attacks. However, these papers

only discussed cyber attacks on one aspect, either on connected functions or

autonomous functions. The in-vehicle cyber security and inter-vehicle cyber

security were discussed separately. There were attempts to discuss the most

severe attacks, but there were no systematic evaluation criteria. Without clear

definition of CAV cyber security and supportive data set, the detection of cy-

ber attacks towards CAVs could not be conducted. Meanwhile, the literature
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on CAV cyber security was limited, and this topic needs more investigation

and research efforts. Awareness of cyber security in CAV should also be raised.

2.4 Components of Cyber Security Framework

Relevant researches on building a cyber security framework were reviewed from

four aspects: Firstly, the risk assessment, which could help to enhance the CAV

cyber security framework after definitions of attacks. The risk assessment

could help to understand and prioritize the potential attacks. Then, as the

indispensable part of the detection, relevant cyber security data sets were

reviewed. The methods of intrusion detection were also reviewed to discuss

the research gaps in the detection of CAV cyber security attacks. Finally,

feature selection methods were reviewed, aiming to improve the performance

of intrusion detection models.

2.4.1 Risk Assessment

Risk assessment is the initial step in a proposed cyber security framework

because it requires the definitions of all the potential attacks to the target.

Only by knowing and understanding potential attacks could corresponding

detection mechanisms and corresponding reactions be taken. Meanwhile, the

severity of each risk would also be evaluated. Some researches discussed the

risk assessment of potential attacks to CAVs or vehicles. The attempts of these

researches helped to identify the attacks and severity of different risks system-

atically. However, as the number of relevant researches of risk assessment in

CAVs is limited, the risk assessment from information security or traditional

vehicles have also been investigated to gain a comprehensive understanding of

risk assessment.

In [70], the researchers discussed existing risk assessment on information se-

curity in the field of computer science. The researchers pointed out that the

main aim of risk assessment is to investigate all the potential risks to the
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system. After that, all the risks should be evaluated carefully so that the

mitigation methods could be proposed appropriately. This paper also defined

the differences between risk, threat and vulnerabilities, because normally these

definitions are misused in risk assessment in the entire cyber security frame-

work. In this study, the researchers defined that the potential attack targets,

or the assets, had vulnerabilities. The attackers could make use of the vul-

nerabilities, which will pose threats to the system. The possible relationship

between vulnerabilities and threats was then called risks.

In [71], the authors built a risk assessment framework for smart vehicles. The

smart vehicle is the initial concept of the CAV. The authors tried to evaluate

the importance of different assets. The evaluation was from three aspects:

safety, privacy, and operational. After analysing the importance of assets, the

threat or the vulnerabilities would be calculated based on different severity

levels. The authors assigned a numeric value to each threat and vulnerabil-

ity. The risk was then calculated based on it. The numeric value could help

evaluate the risk and prioritise different risk, by which mitigation methods

could be proposed. In addition, as it is impossible to conduct all the potential

attacks on smart vehicles, it is also crucial to calculate the risk before the

developments. However, the framework built in this paper only discussed the

evaluation of risks. It did not discuss the potential attacks on smart vehicles.

In [72], the authors proposed a systematic way to analyse the risk to the vehicle

IT system. The paper introduced a well-adapted equation that risk equals the

probability of an accident and the possible losses through the accident in the

field of engineering. The authors then defined the possible losses into three

different categories: safety, financial, and operational. Damage to these three

aspects could cause risks to the vehicle. In the paper, the authors also ranked

the damages from three aspects into 4 levels. Each level has its own factor

from 0 to 1000, which helped to understand the severity of each risk. The

paper also pointed out that in the current automotive standards, such as the

ISO26262, risk assessment was not enforceable, and there was no universal



Chapter 2. Components of Cyber Security Framework 25

standard to set the baseline of risks.

In [73], the authors introduced the threat analysis and risk assessment in tra-

ditional vehicle cyber security. In the paper, the severity was based on safety-

related components and privacy-related components. Each component has five

different levels, from S0 to S4. The authors also emphasised that though there

were standards to assess the hazard and risks in vehicles, the cyber security

issues were not considered carefully. Thus, privacy and safety should be con-

sidered at the same time on the developments. Meanwhile, it should also be

noted that in the paper, the definitions of threat and risk were not clearly

classified.

In [74], the authors tried to propose a novel method to conduct the hazard

analysis and risk assessment for CAVs on Level 4, which means that the vehicle

could perform the driving tasks without people in a controlled environment.

The new assessment method was designed to protect the functional safety of

CAVs. The authors defined relevant terminology, including hazard, hazardous

events, to CAVs, as current terminology is all designed for traditional vehicles.

Then, the safety goals of different operational functions were set. The authors

also emphasised that the terminology definition is an important part of risk

assessment. However, the paper only discussed functional safety, which is

more related to the automation functions. The connected functions were not

considered in this paper.

There were also some published patents for the risk assessment for CAVs. In

[75], the researchers invented a new method to assess CAVs risk by collecting

and storing sensor data and operational data. These two types of data were

then combined and compared so that the driving environment could be sim-

ulated. Based on the reproduced driving events, the risk of loss of the CAVs

could be evaluated. In [76], the researchers proposed a new method to assess

the vehicle’s risk based on the location. This method is especially useful when

there is a financial transaction, such as the car renting situation. The method

could help to check the safety level of the current location of vehicles and
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evaluate the transaction risks.

Based on the above risk assessment researches, several conclusions could be

drawn.

First of all, all the researchers agreed that terminology definition is a crucial

part of the risk assessment, which is also an irreplaceable part of the CAV

cyber security framework as currently there is no universal definition of CAV

cyber security terminology. Even in some studies, the terminology was mis-

used. For example, smart vehicles, CAVs, and automated vehicles were used

interchangeably in several descriptions. However, the concepts are different

distinctly. Only CAVs focus on both automation and connection at the same

time.

Secondly, though there were risk assessments for CAVs, it was still mainly on

the automation functions, indicating that only functional or operational risks

were considered. While in CAVs, the connected functions would also bring

new risks to the drivers and users. In order to build a more comprehensive

framework, both connected and automated functions of the vehicles need to

be carefully considered.

Thirdly, the current risk assessment method was based on the experience of

experts or researchers. The severity of risks could not be calculated system-

atically. In addition, the potential risks and attacks to CAVs were not fully

investigated as well. Though there were studies related to the systematic risk

assessment or the potential attack investigation, the studies did not combine

the two parts.

Based on the above conclusions, it could be found that to build a CAV cyber

security framework, the risk assessment is crucial, which will establish the solid

foundation of the whole framework. Only by defining attacks and assessing

the risks can the cyber security framework be systematic and reliable.
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2.4.2 Related Data Sets

Being the most fundamental part of building a robust attack detection model

and completing a comprehensive CAV cyber security framework, the experi-

ments and tests on CAVs are essential. However, considering the special char-

acteristics of CAVs, especially the potentially life-threatening consequences of

CAV cyber security, it is impossible to conduct the attack detection directly

on CAVs without first collecting attack data sets. To conduct the attack de-

tection on CAVs, attack data sets need to be collected first. Some researchers

have discussed attack detection, and they have used various attack data sets.

In [77], the authors reviewed 65 papers related to CAV cyber security based on

three main categories: threat, solution, and research. From their review, they

found that 37 of the studies used simulated data sets. However, the in-vehicle

data sets and vehicle communication data sets were investigated separately

rather than combined. In addition, the safety data of the CAVs was missing.

Most of the studies only focused on the connected data. It should be noted

that, though in this research, 37 pieces of research used different data sets to

perform cyber security research, all the data sets are not open source. It is not

easy to obtain the data sets directly, and it is difficult to obtain permission to

use them in this research.

Car manufactures, car hackers and internet companies also conducted attacks

on real world vehicles or CAVs, as mentioned in Section 2.3. Vehicle attack

data sets must be collected during the attacks, but most of the data sets could

be extremely difficult to obtain due to safety or commercial issues.

In [78], the Hacking and Countermeasure Research Lab in Korean published

the car hacking data sets on its website. The OTIDS (CAN Data set for intru-

sion detection) contained three different attack types, which are DoS attack,

Fuzzy attack and Impersonation attack. Besides the attacks data, one attack

free data set was also provided in the data sets. The total amount of attack

data and normal data are beyond 5 million. It should also be noted that these
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data sets were collected from a traditional vehicle, so they are lack of some

certain data types. Though the data types and attack types are limited, it

is still a good attempt to evaluate the models in data sets collected from real

world. These data sets will be introduced and analysed in detail in Chapter 4.

Data is a necessary part of the attack detection of CAV when using machine

learning algorithms. However, the lack of CAV cyber security data presents a

research gap for current CAV cyber security research. Except for the data sets

mentioned above, current CAV data sets mainly focus on the maps or sensor

data collected by CAVs. There are some well-known data sets provided by

different research organizations or companies, which are listed in Table 2.2.

It could be found from the table that almost all the data sets focused on the

autonomous functions of CAVs, including the functions and sensor data. How-

ever, the connected functions of CAVs are important as well. Since there is no

universal standard for the attacks to the communications of CAVs currently,

the related data sets of attacks to traditional network communication are also

reviewed. Several benchmarks of network attack detection are introduced be-

low.

1. KDD99 data set:

KDD99 is the most well-known benchmark for intrusion detection [92]. It

was first published in the Third International Knowledge Discovery and Data

Mining contest, the aim of which is to build an intrusion detection system.

Though the KDD99 data set has been published for more than 20 years, it is

still used in current researches. The training set has 4,898,431 instances and

the testing set has 2,984,154 instances [93]. It also provided a 10% data set

with the same proportions as the original data set. 39 different attacks belong

to 4 main types: DoS (Denial of Service), R2L (Remote to Local), U2R (User

to root), and probing. Each data in KDD99 has 41 attributes. A more detailed

description of KDD99 can be found in Chapter 4.

2. NSL-KDD

The NSL-KDD data set evolved from the KDD99 data set, which was first



Chapter 2. Components of Cyber Security Framework 29

Table 2.2: Current CAVs-related Data Sets

Data Set Provider Data Type
KITTI [79] Karlsruhe Institute

of Technology;
Tyota Technolog-
ical Institute at
Chicago

Stereo sequences data; 3D
point clouds; 3D GPS/IMU
data; Calibration; 3D ob-
ject labels

Audi Autonomous Driv-
ing Dataset (A2D2) [80]

Audi 2D semantic segmentation;
3D point clouds; 3D bound-
ing boxes; Vehicle bus data

Waymo Open [81] Google 3D LiDAR point clouds; 2D
camera images; urban and
suburban area 2s sequences
data

Apollo [82] Baidu Trajectory dataset; 3D Per-
ception Lidar Object Detec-
tion and Tracking dataset

Lyft [83] Lyft Raw Lidar and camera in-
pus

Ford Autonomous Vehi-
cle Dataset [84]

Ford 3D maps; 3D Lidar point
clouds; Calibration

BDD100K (Berkeley
Deep Drive Dataset) [85]

Berkeley Images and videos

Mapillary Vistas Dataset
[86]

Mapillary Research images; object cat-
egories; different
time/season/weather data

Cityscapes Dataset [87] Cityscapes Team Images; GPS Coordinates;
Ego-motion data; Tem-
perature data; Different
cities/time/season/weather
data

nuScenes [88] Motional (Aptiv’s
expertise in auto-
motive technology
and Hyundai Motor
Group)

Camera images; Lidar and
Radar data; Object detec-
tion bounding box

CamVid [89] the University of
Cambridge

Video sequences; Labelled
images;

H3D (Honda 3D
Dataset) [90]

Honda 360 degree Lidar point
cloud; interactive traffic
scenes; 3D bounding box
labels; Traffic participants

Oxford Robotcard
Dataset [91]

Robots Camera images; Li-
dar, GPS, INS ground
truth; Different
time/season/weather data
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published in 2009 [94]. Some drawbacks still exist in the KDD99 data set.

The NSL-KDD overcame the limitations and deleted all the redundant data

in KDD99, so the data frequency could not affect the prediction results. As

in KDD99, the NSL-KDD also contains 39 different attacks. The data in the

NSL-KDD contains 41 attributes.

3. UNSW-NB15

Compared with KDD99 and NSL-KDD, UNSW-NB15 is the latest intrusion

detection data set, which was published in 2015 [94]. Unlike the KDD99 data

set, this set has 49 features and 9 different attacks, including Reconnaissance,

shellcode, exploit, fuzzers, worm, DoS, Backdoor, Analysis, and Generic [94].

Because KDD99 and NSL-KDD data sets have limitations such as data bias,

a research group from the Australian Center for Cyber Security used a tool

called IXIA to generate this new data set [95]. Compared with other data

sets, this data set has more attacks representing low footprint attacks [92]. It

should also be noted that in KDD99, there are 14 unseen attacks in the testing

set, while in UNSW-NB15, the attack types are the same in both the training

and testing sets [94].

After reviewing all the relevant data sets, it could be found that there is a

lack of real CAVCS data, which is due to the confidentiality of the organiza-

tions or car manufactures as well as the difficulties in conducting cyber attacks

on CAVs. Collecting cyber security data on CAVs is an irreplaceable step to

conduct further studies. In addition, as there are no universal CAV commu-

nication standards, communication attack data for CAVs is also difficult to

obtain. Though there exist network attack data sets, the data cannot be used

without processing due to the differences between CAVs and networks. To

address the research gaps, there is a need to collect real CAVs data, simulate

attacks in a controlled situation, and process the network communication data

to be suitable to CAV communication.
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2.4.3 Anomaly Detection

As CAVs can collect huge amounts of data per second, it is impossible to

detect attacks manually. In addition, the driving environment is dynamic, so

the detection time requirement is crucial for CAVs. The delay of detection

or missing detection can both result in terrible consequences. In satisfying

these requirements, IDS (Intrusion Detection System) is an appropriate way

to detect attacks during driving. As an efficient way to detect attacks and

misuses, IDS has been widely adopted in several fields, including traditional

networks [96], wireless sensor networks [97] and the Internet of Things [98, 99].

The concept of IDS has been introduced in computer and network security

[100]. IDS is an application or device used to monitor and protect an entire

system and its communications. It can help to detect attacks and help manage

the whole system. According to different data sources from different parts of

the system, the IDS system can be classified as Host-based, Network-based,

Hybrid, and Network Behaviour Analysis IDS [101]. In these categories, IDS

monitors and detects the behaviours in the system logs or the networks.

There is another method to classify IDS based on different detection meth-

ods taken during the process. In this classification, IDS can be classified as

signature-based, anomaly-based, or specification-based [102].

Signature-based IDS is also called misuse IDS [103]. It is named due to the fact

that IDS is based on previously known attacks and flaws. Signature-based IDS

has high accuracy on known attacks without generating large volumes of data

[104]. However, the method cannot detect unknown attacks because the new

attack pattern does not exist in the known data set. In addition, in a signature-

based IDS, the updates of the attack data set can also be a challenge as the

attack and intrusion can evolve quickly, which could cost even more time and

human sources. Besides, the CAVs contain various ECUs, which make the

data format complicated. This complex format shows that it is not efficient

to update and maintain a large attack data set when using signature-based
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IDS. A typical example of a signature-based IDS system is rule-based IDS.

Rule-based IDS needs users to acquire the rules of the data first, which could

be completed by designing algorithms or by decisions by experts. Because of

this, the limitation of rule-based IDS is obvious. The limitation of experts’

knowledge could lead to unsatisfactory results. In addition, the data set needs

to be updated frequently, and it is impossible to collect all the possible attack

types initially.

The other IDS is anomaly-based. This IDS can monitor the whole system, and

analyse the network and activities of the system. It can analyse the normal

pattern of the system so that when an attack happens, the IDS can recognise

the difference between the attack and normal use. The anomaly-based IDS

can help to detect unknown attacks [105]. However, the detection may not be

as accurate as signature-based IDS because the anomaly-based IDS is more

likely to recognise a normal activity as an attack, which will increase the false

alarm rate. In addition, setting up the baseline of normal use is difficult.

A large amount of data must be collected to help the system to learn the

normal pattern of CAVs. Specification-based IDS is similar to anomaly-based.

However, instead of using methods such as machine learning, the specification-

based IDSs use specification defined by experts. It could reduce the false alarm

rate. However, the time of defining the specifications will be long [106].

Considering the characteristics and requirements of CAVs, the technology is

still evolving, and the attackers can always find new ways to attack. Anomaly-

based IDS is more suitable for CAV cyber security attack detection than

signature-based IDS.

In order to conduct anomaly detection, there are several methods to choose

from, including knowledge-based anomaly detection, statistical-based anomaly

detection and machine learning-based detection. Knowledge-based detection

shares similarities with signature-based IDS. For example, both methods de-

pend heavily on experts’ opinions [102]. However, the methods of these two

IDS are different. The signature-based IDS requires all the detailed patterns
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of attacks while knowledge-based IDS does not. The statistical-based anomaly

detection uses statistics to analyse the data, which is quick but it requires

accurate statistics distributions [107]. In a real world situation, the data could

not be both independent and low dimension as required.

Among these methods, machine learning-based anomaly detection has been

widely used, as machine learning methods can fit into different applications by

learning normal patterns from collected data. It has lower data requirements

since data can be labelled or not, which is more similar to real world collected

data. However, currently the amount of machine learning-based anomaly de-

tection on CAVs research is limited. The studies on anomaly-based IDS on

traditional computers and networks are reviewed, which could guide CAV IDS

research as well.

In [108], the authors proposed a new method to conduct anomaly detection

on network traffic data by using artificial neural networks. The experiment

data types include traffic data, image data, and system data like log files. The

authors found that the proposed method achieved a high accuracy of over 98%

when detecting anomalous data. In addition, the false positive rate was below

2% at the same time. Compared with signature-based IDS, this newly proposed

method improved detection significantly. Though the anomaly detection of the

proposed method was not real time, it still showed the possibility of applying

machine learning methods on anomaly detection.

In [109], the authors collected data, including sequence length and window

length, to build a user profile. When an attack happened, the system com-

pared the anomalous activities with the collected normal data to classify user

behaviours. The experiment also collected empirical data to classify the be-

haviour. The authors found that the machine learning approach could help to

conduct anomaly detection. However, there are still several drawbacks. For

example, more algorithms need to be used to achieve higher accuracy. In addi-

tion, setting the baseline of normal activities is also a challenge, especially that

the normal pattern might change. In order to make machine learning-based
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anomaly detection suitable, data needs to be collected on normal behaviours,

and the machine learning algorithms need to be suitable for the applications.

In [110], the authors emphasised the importance of anomaly detection, which

is a fundamental step in securing the information in network communication.

In this study, deep neural networks were used to build the model to detect

attacks in the NSL-KDD data set, and the trained model was then adapted

to the NSL-KDD testing data set to be evaluated. This research aimed to

examine the suitability of the deep neural network model because the anomaly

detection environment is always changing. The authors found that deep neural

networks could help anomaly detection obtain good results. Deep conventional

neural networks and Recurrent Neural networks achieved 85% and 89% accu-

racy respectively on the NSL-KDD testing data set. The authors also believedd

that feature selection methods could improve the performance of the models

further.

In [111], the authors proposed that the signature-based IDS could not detect

unknown attacks such as zero-day cyber attacks. The anomaly detection IDS

was then developed to detect this kind of attack. In this paper, SVM (Sup-

port Vector Machine) was used as an enhanced unsupervised machine learning

approach with a low FP (false positive) rate. In the study, normal packets

were collected by Self-organized Feature Map. Because the data is not la-

belled, unsupervised learning were used. Feature selection methods using the

Genetic Algorithm were also used to identify the most relevant features in the

collected data. Time frequencies of data were considered during the detection.

The study found that the enhanced support vector machine method is effective

in classifying attacks in network traffic.

Among all the literature and studies mentioned above, machine learning-based

anomaly detection is a useful and powerful way to detect anomalies in the net-

work. Because CAVs are like mobile personal computers in the future, though

there are several different characteristics and requirements, the characteristics

of traditional networks are still worth learning. In addition, the researchers
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also did various work on machine learning-based anomaly detection to detect

anomalies on CAVs.

In [112], the authors comprehensively reviewed the current adversarial attacks

on CAVs using machine learning algorithms. The potential attacks were di-

vided into several categories, including the application layer, network layer,

system level, privacy breaches, and sensors attack, etc. The authors also em-

phasised that the intrusion detection of cyber attacks is of high importance in

the development of CAVs.

In [113], the authors built a scheme based on the machine learning algorithm

CatBoost and a Morsel supple filter to predict the location, and detect the

jamming attack. With the anti-jamming scheme, the performance of vehicular

communication was increased, with better accuracy and a lower packet loss

ratio. The authors concluded that the machine learning-based scheme works

effectively against the jamming attacks on the CAV location.

The authors in [77] did a comprehensive survey of 65 related papers on anomaly

detection research on connected vehicles. They found that most of the studies

were performed based on simulated data. The in-vehicle and communication

data were considered separately in almost all the reviewed researches. In ad-

dition, the baseline of anomaly detection was not clear, which made the evalu-

ation difficult to conduct. Several existing problems with CAV cyber security

studies were listed in the paper. Same as mentioned in Section 2.4.2, though

most of the researches used simulated data sets, the data sets were still not

available online, which also poses a new challenge.

In [114], the authors proposed a new method for detecting the anomalies of

driving manoeuvres based on smart phone data and GPS data. The proposed

method built a model combining the vehicle, the driver and sensors on mobile

phones. The experiment data set was collected from several vehicle models on

different driving traces from over 4800 users. The user behaviours were com-

pared with normal driving behaviours in order to classify them. The metrics

of dangerous manoeuvres were also introduced in this study. It was found that
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this method could help to detect risky driving manoeuvres, and it could be

adapted to different vehicles in different driving situations. However, the data

was acquired from traditional vehicles. In addition, risky driving behaviours

play only a small part in CAVs as CAVs do not require “the driver”. Com-

pared with detecting drivers’ anomalous manoeuvres, detecting the CAV itself

is even more important.

In [115], the authors found that IoVs (Internet of Vehicles) could generate

large amounts of driving data, which makes anomaly detection possible. This

detection can help to increase vehicle safety. In this large amounts of data,

the authors proposed a new online unsupervised approach called SafeDrive

to detect abnormal behaviours by setting normal behaviours as a baseline.

The behaviours include, but are not limited to, speed, gear, acceleration, and

other basic driving functions. To evaluate the performance of the proposed

SafeDrive, it was adapted to a system with more than 29,000 vehicles. The

results have shown that SafeDrive is an efficient method to detect abnormal

behaviours in large amounts of vehicle data.

In [62], the authors proposed a machine learning-based method to protect the

connected vehicle from the vehicle network, CAN, and OS. With the extracted

data from these ports on the vehicles, the model learned the normal behaviours,

which were then used as a baseline to classify the anomalies. The data was

collected from a well-known simulator SUMO (Simulation of Urban Mobility).

A Hidden Markov Model was trained on the extracted data to learn the normal

behaviours. A regression model was then built based on time frequencies to

detect the attacks. The authors also defined several terminology, including

“event” and “story” to classify the driving scenarios clearly. 4,000 drivers

around the city were simulated, and the system recorded the activities of each

driver. To enhance the reliability of the simulated data and to simulate an

environment like the real world, noise data was also added to the data set.

Several types of attacks, including out of order, update attack, communication

attack, and malicious updates, were also defined. In the end, it was found that
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the built model is effective in detecting attacks, which was also adaptive to

other new interfaces.

As described above, currently, researchers have realised the importance of

securing CAVs. The researchers also agreed that machine learning-based

anomaly detection can be a good and effective solution to cyber security issues

on CAVs. However, there still exist several challenges and limitations. First of

all, though anomaly detection developed maturely on traditional networks, the

research on CAVs is still in its initial phases, and many studies are still carried

out on simulated data. The data sets are also not open source online, making

the evaluation and comparison of the data sets difficult for other researchers.

Moreover, the baseline to evaluate the anomaly detection results is not clear.

All these research gaps still need further investigations.

2.4.4 Feature Selection

In order to improve the performance of anomaly detection by machine learn-

ing, feature selection is a widely-used solution. The detection accuracy can

be improved by using feature selection methods, and the detection time can

normally be shortened. In the CAVs application, the high dynamic environ-

ments demand fast detection time. Feature selection is irreplaceable in the

CAV cyber security framework.

In [116], the authors tried to improve the intrusion detection system by using

feature selection methods. The NSL-KDD data set was used in this experi-

ment. Because NSL-KDD has 41 attributes, the feature selection helped re-

duce computation time. The training set was used to select feature subsets,

and then the subsets were evaluated on the testing set. Two feature selection

subsets were chosen, selecting 25 and 35 features, respectively. All the feature

selection methods achieved lower accuracy and false negative rates as well.

The best performance was achieved by a Decision Tree-based classifier with 35

features. The NSL-KDD data set includes various types of attacks. However,
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only binary classification was used. Localising the attack precisely in CAVs

is highly important, mitigation methods need to be conducted based on it.

Therefore, the binary classification is not appropriate for CAV cyber security

anomaly detection.

In [117], the authors compared and analysed three different feature selection

methods to evaluate the performance of malicious detection. The experiments

were conducted on a benchmark data set, KDD99. The authors emphasised

that as the data amount is always large in the network, data mining is of high

importance. Feature selection methods, including fuzzy rough subset eval-

uation with the Hill Climber search method, correlation attribute evaluation

with the ranker search method, and CFS (Correlation-based Feature Selection)

subset evaluation with best first search method, were used on KDD99. After

comparing these results to the results without feature selection methods, the

study found that the feature selection methods had no significant effects on

detection. However, it should be noted that, in this research, the performance

was only evaluated on accuracy. The results still need to be further analysed.

More experiments and more feature selection methods need to be conducted

and used.

In [118], the authors proposed a new hybrid intrusion detection model. The

model achieved a high accuracy in a short time. The experiments were con-

ducted on the NSL-KDD data set, and the accuracy of the new model achieved

99.81% and 98.56%, respectively, for binary and multi-class classification.

Though the accuracy was high, the false positive rate and false negative rate

were not satisfactory, indicating that the model did not perform well. In order

to improve the performance of the model on false positive and false negative

rate, wrapper feature selection methods were used on Decision Tree, SVM,

Naive Bayes and the proposed hybrid model. The study found that the fea-

ture selection could improve the performance of the models. In this research,

the effects of feature selection methods have been proved from different dimen-

sions, including accuracy, false positive rate and false negative rate.
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The authors in [119] had also emphasised the importance of feature selection

in improving the performance of models. As there is an increasing demand

for the network, security issues are increasing as well. In this study, the au-

thors proposed an intrusion detection system with adapting feature selection

methods. The KDD99 data set was also used in this research. As there are 41

attributes in the data set, not all the attributes are useful for attack classifica-

tion. In order to increase the efficiency of the model, which is the Decision Tree

in the research, the most relevant attributes need to be selected. A new hybrid

feature selection method combining the linear correlation coefficient and the

cuttlefish algorithm named FGLCC-CFA was proposed, which selected the 10

most relevant attributes from the data set. Compared with the original linear

correlation coefficient algorithm and the other three feature selection methods,

the proposed feature selection method increased accuracy and decreased the

false positive rate at the same time.

In [120], the authors pointed out that there are many irrelevant and redundant

features in the data set, which increase the computational burden during the

intrusion detection process and the time necessary to carry it out. Recent

studies have shown that a comprehensive intrusion detection system should

contain a reliable machine learning model and a powerful feature selection

method. In the paper, the authors introduced a feature selection algorithm

called Flexible Mutual Information Feature Selection, which reduced redun-

dant features. The new feature selection method was then used with a least

square SVM method to conduct the intrusion detection on data sets including

KDD99, NSL-KDD and Kyoto 2006+. This study found that the combina-

tion of the proposed feature selection method and machine learning model

achieved better performance on criteria, including accuracy, false positive rate

and F-measure, compared to other intrusion detection models.

Among all the researches mentioned above, it could be found that feature

selection methods have positive effects on the performance of machine learning

models. It speeds up the model to achieve faster runtime with little impact
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on accuracy. In addition, it can reduce the false positive rate. These qualities

indicate that feature selection is irreplaceable in intrusion detection.

However, in all the studies, there still exist several research gaps. First of

all, although there are various papers discussing the use of feature selection

methods to improve the performance of machine learning models, the real use

of feature selection methods in a real CAV cyber security environment is still

missing. Compared with existing studies, the results could be different when

adapting to CAVs.

In addition, as there exists a large number of feature selection methods, some

researches only discussed a few types of the methods. In CAVs anomaly de-

tection, more feature selection methods need to be assessed. The comparison

of more feature selection methods could help to build a more robust intru-

sion detection system for CAVs. Moreover, CAVs intrusion detection requires

even higher performance than normal network traffic data, indicating that the

processing time of feature selection methods also needs to be considered. All

these research gaps should be considered during the experiments that form the

research for the thesis.

2.5 Summary

In this chapter, related papers and researches on CAV cyber security have been

carefully reviewed. First of all, the concepts and the current CAVs researches

have been introduced. Then, the attacks to CAVs were also discussed, includ-

ing commercial companies such as JEEP and specific vehicle hackers such as

Tencent Keen Lab. To prevent CAVs from being attacked, researchers have

tried to define possible attacks and take corresponding reactions to them.

To build a comprehensive CAV cyber security framework, process of risk as-

sessment, related data sets, anomaly detection and feature selection, were re-

viewed, respectively. It was found that risk assessment is the initial step to

build a cyber security framework, as it defines the potential attacks and as-
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sesses the severity. Besides, there exists no open CAV cyber security data set,

which is a major research gap now. Relevant researches on the intrusion detec-

tion system and anomaly detection were then reviewed. Studies also showed

that the machine learning-based anomaly detection method is an efficient and

automatic way to detect the abnormal behaviour of vehicles, which can also

help to detect unseen attacks on CAVs. In addition, the feature selection

methods were reviewed because they can improve the performance of anomaly

detection.

It could be seen that there is not enough research related to CAV cyber secu-

rity. After reviewing relevant attacks and papers, several research gaps have

been identified as follows to build a comprehensive CAV cyber security frame-

work, which could be summarised as “3D”, including “Definition”, “Data”,

and “Detection”.

1. Definition: Though some studies listed potential attacks to CAVs, most

of these researches were theoretical. In most of the literature, the concepts

of CAV, connected vehicles, smart vehicles, and IoT vehicles were used in-

terchangeably. The difference between CAVs and other concepts needs to be

clarified to support further research on CAV cyber security. The definitions

and terminology of cyber security of CAVs were not well-defined, and it is

urgent to define the concepts. Meanwhile, in addition to the concepts, the

severity of different attacks needs to be clarified. In most of the research,

there are only descriptions of possible attacks, but no systematic ways to eval-

uate the possibility or consequences of the attacks. Defining the severity of

each attack could help researchers prioritize the possible attacks, and make

corresponding reactions better.

2. Data: Data is of high importance in CAV cyber security research, since

without data, anomaly detection could not be trained or conducted. After

surveying the studies, it could be found that open source CAV cyber security

data is difficult to acquire, due to confidential reasons. It is also difficult

to conduct an attack in the real world environment and collect data, due to
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safety reasons. Thus, most of the studies used simulated data. Meanwhile,

the contents of the data are also worth investigating. Collecting specific CAV

cyber security data is a major research gap in current research.

3. Detection: After reviewing the studies, it could be found that there were sev-

eral attempts applying the machine learning method to detect attacks. How-

ever, the evaluation metrics and baselines of the machine learning models need

to be clarified. In addition, because the data is multi-sourced on CAVs, dif-

ferent machine learning algorithms may be suitable for different application

scenarios, which also needs to be investigated. Meanwhile, feature selection

methods have been identified to be effective in improving the performance of

detection models. The effectiveness of feature selection to different models also

need to be evaluated in real usage.

In the following chapters, the research gaps mentioned in this chapter will

be addressed. A systematic CAV cyber security framework will be built ad-

dressing the “3D” research gaps. Definitions of CAV cyber security will be

introduced, severity of each attack will be assessed, and relevant data will be

collected within the framework. In addition, machine learning-based detection

mechanisms will be proposed and evaluated in the new CAV cyber security

data sets. The performance will then be improved by feature selection meth-

ods. The best machine learning models and important attributes will also be

suggested through the experiments.
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CAV Cyber Security Framework

3.1 Overview

To establish a solid foundation of the CAV cyber security framework in the the-

sis, terminology of CAV cyber security is defined, followed by the investigation

of potential attacks. This chapter begins by analysing and gaining an under-

standing of UK CAV cyber security principles [15]. In the thesis, the total

eight principles are categorised into three stages: before, during and after the

attacks. The definitions of CAV cyber security and other relevant terminology

are then proposed to provide insight into what CAV cyber security is and what

CAV cyber security contains. This could help to build the foundation of the

new framework and also address the identified research issues. Based on the

definitions of CAV cyber security terminology, a UML based CAV structure

is built to help identify the vulnerabilities and potential attacks to CAVs. A

more detailed list of potential attacks is then presented, based on which CAV

attack severity criteria are proposed to rank the potential attacks in CAVs.

To mitigate the attacks, five mitigation methods are suggested, which would

be further explored in the following chapters by CAV cyber attack detection.

The main content of this chapter has been published in the Journal of Ad-

vanced Transportation, titled “Towards a Severity Assessment Method for Po-

tential Cyber Attacks to Connected and Autonomous Vehicles”, in September

43



Chapter 3. UK CAV Cyber Security Principles 44

2020.

3.2 UK CAV Cyber Security Principles

In June 2017, the UK government published an official document, “Key Prin-

ciples of Vehicle Cyber Security for Connected and Automated Vehicles” [15].

In this document, the UK government published eight principles in CAV cy-

ber security, covering the whole life cycle of CAVs, and providing guidance

of protection from sub-contractors, suppliers and potential third parties on

hardware, software, and data. This document emphasises the importance of

research on CAV cyber security and highlights the necessity of this thesis.

These eight principles are summarised and categorised in this thesis from [15],

the structure of which is presented in Figure 3.1.

As it can be seen in Figure 3.1 that Principle 1 is the most important

and fundamental, as it defines the requirements of top level design concerning

CAV cyber security. In addition to Principles 1.2 and 1.3 that consider human

factors, Principle 1.4 considers the design during the research stage. Among

all four sub principles, Principle 1.1 on security program is the focus of the

thesis, which divides the protection process into three stages:

1. Before the attacks happen. Relevant organizations and manufactures

need to define what kind of attacks could happen and their mitigation methods.

2. When the attacks happen. The system could monitor the whole CAV,

and detect attacks as soon as possible. The system should also be robust

enough to face attacks.

3. After attacks happen. The system could respond to attacks appropriately

and recover from attacks.

In the current literature, there is no widely adapted framework in CAV cyber

security [121], based on which attack points could be defined and efficient pro-

tection methods could be developed. According to the UK CAV cyber security

principles categorized in Figure 3.1, the most fundamental parts of CAV cyber
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Figure 3.1: UK CAV Cyber Security Principles Structure

security are defence-in-depth approach covering physical, technical and admin-

istrative controls (Principle 5), software (Principle 6), and data (Principle 7).

Before the cyber security attacks happen, risks of the CAV system could be

defined, assessed and managed (Principles 2.1 and 2.3); During the operation

of CAVs, monitoring the CAV system could help to maintain security over the

lifecycle (Principles 3.1 and 3.3). The CAV system could also respond and

support effective solutions appropriately after an attack (Principles 3.2 and

8).

The CAV cyber security could thus be divided into the security of hard-

ware, software and data. Besides hardware, software and data generated by

CAVs, CAVs are also connected to the outside world via data exchanges with
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other vehicles, infrastructures, or pedestrians, which makes the communication

channel an attack target as well. The relationships between these components

also need to be defined.

3.3 CAV Cyber Security Terminology and Def-

initions

With the CAV cyber security principles, various terminology and definitions

need to be provided, which are quite often vague in the existing literature.

Because of the unique characteristics of CAVs and the dynamic driving envi-

ronments, cyber security definitions in computer science can not be used for

CAVs directly. Although the UK government has published CAV cyber secu-

rity principles to strategically guide the development of CAV cyber security,

the terminology still needs to be defined more clearly. Even in the field of

computer science, security-related terminology, such as information security

and cyber security, are misused frequently [122]. To conduct interdisciplinary

research across the fields of the CAVs and cyber security, it is essential to

offer a universal definition of cyber security for CAVs. Relevant terminology

and definitions within the CAV cyber security framework are provided in this

section.

Parts of the content in this section has been published on the Forum on Co-

operative Positioning and Service (CPGPS), titled ”Survey on cyber security

of CAV”, in May 2017. This paper has also been selected as the best student

paper award on the Forum.

CAV Cyber Security (CAVCS): CAV cyber security protects the CAV Net-

work from attacks, intrusion, interruption, damage or unauthorized usage by

taking appropriate protection methods. The aim of CAVCS is to maintain the

stability of the CAV Network and maintain the confidentiality, integrity and

availability of the data in CAV Network. The personal safety of users thus
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could also be guaranteed. This terminology is modified from the well-adapted

computer cyber security definition [123] and US National policy [124].

CAV Network: CAV Network is formed by nodes including CAVs and other

information terminals such as smart infrastructures, the cloud platform and

pedestrians, etc. These nodes collect, store, transmit, exchange and process

data to retrieve information. The edges in the CAV network represent the

communication between these nodes. These different statuses of nodes and

communication form the dynamic driving scenarios.

CAV Data: CAV data contains all the data collected, stored, transmitted,

exchanged and processed in the CAV Network. Terminals could retrieve rel-

evant information from the processed data to help to make driving decisions.

This terminology is based on [125], which is a detailed description document

of UK CAV cyber security principles. The more detailed data types are listed

in Section 3.6.

In addition, vulnerabilities, threats and attacks are used interchangeably

in several descriptions. However, the concepts are different distinctly [122].

Defining and understanding the differences between the three concepts could

help to a clear and precise understanding of CAVCS. The relationships between

vulnerability, threat and attack are shown in Fig 3.2.

CAVCS Vulnerability: Vulnerabilities are the potential flaw or weakness in

CAV design and implementation. Vulnerabilities, if exploited, will lead to

threats to the CAV system and network.

CAVCS Threats: Threats are potential attacks to the CAV system and CAV

network. Vulnerabilities will expose the CAV system to potential threats to

the system and network.

Figure 3.2: Relationship between Vulnerability, Threat and Attack
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CAV Cyber Attack: CAV cyber attacks refer to actions to attack, intrude,

interrupt, damage to the CAV system. It could also include unauthorised

access to the CAV network to monitor or eavesdrop, and steal information

from data. The definition of CAV cyber attack is derived from the US National

policy [124]. The CAV cyber attacks could be categorised into two main types,

namely passive attacks and active attacks [63]. More detailed potential attacks

are investigated in Section 3.6.

Passive attacks include eavesdropping or monitoring the transmissions be-

tween users, where the attackers cannot modify or change the content in the

transmission, and would not interact with the data transmitted [126]. Pas-

sive attacks most probably faced by CAV include eavesdropping, the release

of the information and traffic analysis. Normally, passive attacks are difficult

to identify because the attackers do not modify the contents in the commu-

nication data. Therefore, to deal with passive attacks in CAV, defending and

protecting is more important than detecting passive attacks.

Active attacks are to modify or jeopardize the messages and the data trans-

mitted [127]. These could cause much more severe damage than passive at-

tacks, especially in the CAV environment, and even cause fatal injuries. In

CAV, active attacks include spoofing, reply attacks, modifications and DoS

(Denial of Services). Detection is effective to mitigate this kind of attack.

3.4 UML-based CAV Structure

Unified Modeling Language (UML) is widely used in software engineering to

define and model the structure of a system [128]. In UML, the class diagram is

used to build the concept structure of a system, showing both main components

and their relation with other components in the system.

In Figure 3.3, the UML based CAV cyber security framework is developed

to define the relationship between each component and the structure in CAV,

including hardware, software and their generated data, which help vehicles
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function well. Based on the framework, different types and points of potential

CAV cyber attacks can be analysed and categorised. The main classes in this

UML based CAV framework include Vehicle Data, Data Processor and Vehicle

Functions.

Figure 3.3: UML based CAV Structure

3.4.1 Vehicle Data

CAVs make decisions and implement relevant vehicle functions based on data,

thus Vehicle Data presents the most fundamental component in the CAV struc-

ture. In the Vehicle Data class, the data could be divided into local data and

external data. Class Vehicle Data refers to Principles 5 to 7 in Figure 3.1.

Local data has two sub-classes, which are hardware data and software data.

These two sub-classes include not only data generated by hardware and soft-

ware, but also the operation condition data of hardware and software. Class

HardwareData is the sensors data collected from vehicle surroundings by vari-

ous CAV sensors including Radar, GNSS(Global Navigation Satellite Systems),

and camera [129], for example, GNSS and image data which determine the cur-

rent position of CAVs. In addition, VehicleID contains the data to identify the
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vehicle, such as the electric plate (a unique number or letters assigned by the

government department). As CAVs exchange data and information with other

entities, including other CAVs, infrastructures and pedestrians, VehicleID also

contains a unique pair of a public key and private key, which will be used to

encrypt messages and check the identification of vehicles [130]. Class HOP-

condition is the operation condition data of hardware.

Class SoftwareData in Local Data includes the data collected by the soft-

ware in CAVs, such as on-board entertainment system. CAVs will be very

likely an important smart mobile device people use in the future [131]. They

not only provide decision support or solutions such as the shortest driving

route from place A to place B, but also service users’ preferences such as ‘the

most beautiful route’, or ‘the quietest route’. Class UserPreference contains

such preference data of users preferences, based on which CAVs make the

best decision for the specific users. Class ServiceAgreement defines protocols

that the software will comply, including privacy protection and other services

protocols. Class SOPcondition is the operation condition data of software.

Class External Data is received from other entities such as other CAVs and

intelligence infrastructures in the CAV network. All the data is received via

communication channels such as V2V (Vehicle to Vehicle), V2I (Vehicle to

Infrastructure) communication, which is the Class Communication Channel.

As each entity has its own ID stored in its local data, the external data will

also need this information to guarantee the legal identification of the data

sender, and Class eID contains senders’ ID information. In external data,

after identifying senders’ ID, messages will be divided into either private or

general, based on Principle 7.2 which states that data should be managed

appropriately. In certain scenarios, vehicles or infrastructures need to send

private data such as users’ preferences. This could only be accessed by specific

users and is stored in Class ePrivate. Class eGeneral stores data that everyone

could access, such as position data and vehicle size data.
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3.4.2 Data Processor

CAVs deal with a massive amount of data every day. It is reported that

each CAV on itself produces up to 4000 GB from just one-hour driving per

day [132]. In addition, adding a V2V communication system to a vehicle

may require 10 messages per second [133], which will also increase the data

processors workload. How the data is processed is even more important than

how it is collected. CAVs are equipped with a data processor to clean data

and support making appropriate decisions. Class Data Processor is related to

Principles 2.3, 3.1 and 3.3 in Figure 3.1.

Class DataProcessor contains four basic data processing methods, and this

class relies on the Class Vehicle Data. Class Generator gathers data from dif-

ferent sources, and the formats from multiple data sources need to be regulated

and fused for processing. Class Processor processes the data, including clean-

ing or annotating the data for analysis. Class Verification includes components

that ensure the data is secure, fulfilling the cyber security requirements in the

CAV system. During these processing steps, the CAV system also needs to

be able to detect abnormal situations in hardware, software and data. Class

AnomalyDetection detects any such vulnerabilities and anomalies in the CAV

system.

3.4.3 Vehicle Functions

If there is no anomaly behaviour in the CAV system, relevant data will be used

to make decisions using Class Vehicle Functions after being processed. Class

Vehicle Functions is related to Principles 3.1, 3.2, 5, 6 and 8 in Figure 3.1, and

is defined accordingly as shown in Figure 3.3.

The functions of CAVs could be divided into Classes Hardware and Software

in the CAV structure, as shown in Figure 3.3. A variety of different driving

tasks and operations have been categorized based on SAE J3016, which was

introduced in Section 2.2.
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After a CAV detects its surrounding objects, it uses operational functions

to respond. Based on SAE J3016, Class Hardware is divided into Class Op-

erational and Class Tactical. Class Operational has two sub-classes, which

are longitudinal and lateral. These two sub-classes include relevant hardware

functions when the vehicles are in longitudinal or lateral motions. Class Tacti-

cal also has two sub-classes. Class Detection is to monitor objects and events

around through sensors including Radar, Lidar and cameras. Class Manoeuver

is to take relevant manoeuvers such as turning the indicators on.

Beside hardware functions, software functions, such as entertainment system

and mobile applications, are also essential parts of CAVs. In addition, Class

Communication supports all the receiving and sending data functions. Class

Strategic is to plan the whole trip including the best route, travel time and

destinations, which is defined based on the strategic functions in SAE J3016.

In addition to Classes Hardware and Software, Class Response takes relevant

actions based on the data from the hardware and software. Class Recovery is

to fallback when a system failure happens, making sure CAVs are resilient and

fail-safe.

3.4.4 Possible Attack Points

Cyber attacks in computer networks could be categorized into different types

including viruses, worms, buffer overflows, DoS attacks, network attacks, phys-

ical attacks, password attacks and information gathering attacks [134]. In tra-

ditional automobile vehicles, the points of attacks have been categorized into

two types [135], namely attacks to the audio system or mobile applications,

and attacks to CAN (Controller Area Network), which is an inner vehicle com-

munication network for micro-controllers and devices. As CAN is connected

to all the in-vehicle hardware components including brakes, air conditioner,

steel and wheels, the second type of attacks is more dangerous than the first

one.
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Compared with computer networks and traditional automobiles, CAVs are

equipped with both physical parts and software, and they are connected within

the overall transportation infrastructure, thus all the above attacks to automo-

bile could happen to CAV. Moreover, with the increasing number of autonomy

and connectivity functions, there will be more vulnerabilities or attack points

on CAVs. As it is described in Section 3.3, CAVCS is to protect the whole CAV

network from cyber attacks affecting the performance remotely or physically

to guarantee the personal safety. It is necessary to identify, define and classify

possible types of attacks to CAVs at early stage. Based on the UML based

CAV structure established in Figure 3.3, four types of possible CAV attacks

and sub-attacks are listed below.

1. Vehicle physical parts. These CAV physical parts include the windscreen,

wheels or even brake. It is already reported that hackers could take control of

brakes or air conditioners on Nissan [136] and JEEP. JEEP even recalled more

than 1.4 million vehicles to install security patches due to this type of hacking

[137]. The attacks towards hardware may be conducted physically or remotely.

The attack methods including misleading the hardware to make wrong driving

decisions, or hacking into the hardware to eavesdrop the activities.

There are several attack points on the CAVs hardware. The mainstream

sensors on CAVs include cameras, Lidars (Light Detection and Ranging) and

radars as included in Table 3.1. All of these sensors could be attacked physi-

cally or remotely. For example, the cameras would be misled by fake images or

the radar signal could be jammed. Attackers could even hack into the camera

system to monitor the vehicle’s activities. Moreover, the GNSS system would

also be attacked by experienced attackers. For example, the GNSS system

could be jammed, and then the vehicle may not receive the GNSS signal to

navigate and locate its position.

2. Vehicle software. CAVs could be installed with more than 100 million

lines of code, while a Boeing’s new 787 dreamliners is equipped with only 6.5

million lines of code [138]. This leads to a larger number of vulnerabilities in
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CAVs. The entertainment system, the installed mobile applications, and the

audio system onboard, could all be potential attack points for attackers. After

taking control of the software, the data exchange could be monitored, or even

the hardware could be harmed if software is taken control.

3. Data. CAVs data stored on the vehicle is transferred between CAVs,

vehicle to infrastructure or to pedestrians and cyclists. Attacks to data, in-

cluding local vehicle data such as vehicle ID including electronic platform or

vehicle model, personal data like users preferences, could lead to data leakage.

In addition, because CAVs may support payment services, such as toll service,

private data such as payment transfers could also be an attack point in CAVs.

External data received from other users in the communication range would

also be attack points. Modification on communication data or injecting fake

messages will cause not only problems of information leakage but also traffic

congestion or even collisions.

4. Communication channel. The potential attacks may also target the com-

munication channels. The attack points can be via V2V (Vehicle to Vehicle),

V2I (Vehicle to Infrastructure), V2C (Vehicle to Cloud) and V2X (Vehicle

to Everything) communication. The communication channel would be easily

blocked if attackers send huge amount of messages at the same time. In ad-

dition, eavesdropping communication channels would also cause information

leakages.

Based on the analysis, the possible attack points to CAVs are summarized in

Table 3.1. As the technologies adapted on CAVs are still evolving, these attack

points will definitely increase in the future. However, as the attack points are

within the scope of physical parts, software, data and communication channels,

the table is extendable to include and categorise different types of new attacks

In this thesis, more detailed attack points will be analysed and assessed in

Section 3.6.
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Table 3.1: Possible Attack Points to CAVs

Category Attack points
Physical Parts Sensors(LiDAR, Radar, Camera), GNSS device, vehicle

system (OBD, CAN-bus, power system) etc.
Software Mobile applications installed on the vehicle, in-vehicle

system (entertainment system), data processing system,
decision making system etc.

Data local data (vehicle ID, payment information, userś per-
sonal information), Exchange data (Vehicle’s speed,
brake status) etc.

Communication
Channel

V2I (Vehicle to Infrastructure), V2V (Vehicle to vehi-
cle), V2C (Vehicle to Cloud), V2X (Vehicle to every-
thing) etc.

3.5 A New Severity Assessment Method of CAV

Cyber Security

The potential attack points or attack ports are analysed firstly. For each

potential attack, the following criteria will then be evaluated to define the

severity of the attack.

The criteria are chosen based on a well-adapted formula in engineering risk

assessment for transportation and infrastructure [139], information technology

system [140], and civil aviation [141], as is shown in Equation 3.1:

Risk = Asset ∗ V ulnerability ∗ Threat (3.1)

According to the formula, the criteria are divided into three parts, namely

asset for the possible attack targets, vulnerability for the possible risks to

the attack targets, and threat for the possible consequences. However, as it

is mentioned in Chapter 1, there are several differences between traditional

automobile network cyber security and CAV cyber security, only appropriate

criteria are chosen here. For example, to evaluate the severity of the risk, CAVs

should consider not only information leakage level but also physical damage

level.

Asset:
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1) Asset Name: In computer security, ISO/IEC 13335-1:2004 defines that

assets contain all the hardware or software parts on computers that could be

an attack target such as a data set, one piece of hardware or software code

[122]. In CAVs, as there are lots of ECUs and sensors on the vehicle, there

will also be an abundance of possible targets. More detailed assets will be

introduced in Section 3.6.

2) Asset Importance: The importance of each asset is divided into three

levels:

a. Low: The breakdown of this asset will not affect the operational function

and tactical functions of the whole system. In the SAE J3016 standard [36],

operational functions includes lateral and longitudinal vehicle motion control.

The operational functions are the most basic functions of a vehicle, which

include starting, stopping, driving and controlling [142]. The tactical functions

contain the OEDR, which are introduced in Chapter 2.

b. Medium: The breakdown of this asset might influence tactical functions of

the vehicle. But the breakdown would not have direct effects on the operational

functions. In addition, the asset function could be replaced by other assets on

the vehicle. For example, if cameras on CAVs break down, the vehicle could

still use other sensors to detect the surroundings.

c. High: The breakdown of this asset may cause damage to operational

functions of the vehicle directly. For example, the in-vehicle system, which

could send instructions to ECUs to maintain the vehicle speed or stop the

vehicle in needed situations, is of high importance.

Vulnerability:

1) Risk Name: To each asset, there may be more than one risk. In this

criterion, specific risks to each asset will be analysed, more details are presented

in Section 3.6.

2) Difficulty of Conduction: The difficulty of conducting an attack varies

regarding the attack characteristics. Some attacks may require attackers with

sufficient knowledge in specific areas such as GPS spoofing or fake identifi-
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cation. Some devices are securely protected such as GNSS satellites, which

are protected by the governments. Hacking into these devices may need not

only knowledge but also sufficient time and money. The Difficulty of conduc-

tion is considered from knowledge, time and budget needed. The difficulty of

conduction are then graded into three levels listed as below.

a. Low: Attackers do not need to acquire relevant knowledge to conduct the

attack or the target asset is easy to be obtained/bought on the market. The

attack is not time-consuming.

b. Medium: Attackers only need to spend a short time (weeks/months)

to learn the required knowledge. Hacking into the target asset needs to be

purchased at a high price, or the hacking process is time-consuming.

c. High: Attackers need to have extensive knowledge on the target asset or

need to spend years to learn relevant knowledge. The target asset is difficult

to find in the market or costs an astronomical figure.

3) Detection Possibilities: This criterion is to define the level of detection

possibilities of attacks by the users or the system on the vehicle. In computer

science, the attacks are divided into two main categories, namely passive at-

tacks and active attacks [143]. Passive attacks will not interrupt the system

but will monitor or eavesdrop it to steal information. Active attacks will inter-

rupt the system functions directly by methods such as injecting fake messages.

In general, passive attack is difficult to detect but easy to defend, while active

attack is difficult to defend but easy to detect [63]. Though passive attack may

not cause harmful effects on system functions, the information leakage could

also be a severe risk because CAVs will be the ultimate personal mobile de-

vices in the future [144], which means they could store sensitive data including

personal home address, contact numbers and financial information. Based on

this, it is essential to know the detection possibilities of different attacks. The

levels of detection possibilities are divided into three levels as listed below.

a. Low: The attacks will not affect any function (whether operational or

tactical functions) of the CAV system. It is difficult to detect the attack in
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normal use. The best solution is to prevent the attacks from happening in

advance with encryption or authentication.

b. Medium: The attacks will not affect the operational functions of CAV

system so the users would not notice the attacks immediately. But the attacks

would affect some parts of the tactical or strategic functions. The system will

detect the abnormal behaviour afterwards and warn users.

c. High: The attacks will influence the operational function immediately

so the users could notice the attacks immediately. For example, if the vehicle

suddenly stopped on the road, the users would notice the abnormal situation

immediately. In addition, if the cameras around the vehicle break down, the

system will notice this abnormal situation promptly.

Consequences:

1) Consequence Name: To each possible risk, there may be more than one

consequence. The consequences will be listed and then be analysed, more

details are presented in Section 3.6.

2) Severity of Information Leakage: Information leakage has been a cyber

security problem in the field of computer science. Information leakage attacks

usually damage the confidentiality, integrity and availability of the system

[122]. The severity is based on the scale and importance of the leaked infor-

mation.

a. Low: The attack will not leak any private information.

b. Medium: The attack will leak small-scaled personal information or unim-

portant information not related to confidential information. For example, the

attacker would know the preference of the passenger on choosing route or on

the entertainment system. This type of information leakage will not cause

further harm directly.

c. High: The attack will leak high-importance confidential information such

as the financial information, the home address or the personal ID. By knowing

this information, the attackers could conduct further harmful actions to the

victims. In another situation, this information leakage would cause larger scale
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information leakage such as personal data stored in the cloud.

3) Severity of physical damage: Compared with traditional networks, CAVs

could lead to physical damage to people directly. Tesla vehicle has already

caused fatal incidents on a straight road with good visibility in a good weather

[145]. On March 2018, a Uber autonomous driving vehicle struck and killed a

pedestrian crossing the road in Arizona, US [146]. The Uber test vehicle failed

to detect the pedestrian in the low visibility environment and didn’t conduct

any corresponding actions. As a big metal machine, the CAV could cause

hazards or even be exploited as a weapon. Based on the possible consequences,

the severity of physical damage are graded as below.

a. Low: The attacks are not likely to cause physical damage to human or

other vehicles, and infrastructures.

b. Medium: The attacks are likely to cause small hazards. These hazards

could cause damage to infrastructures or vehicles, but would not cause fatal

injuries to people.

c. High: The attacks have a high possibility to cause fatal injuries incidents.

4) Combined Severity Level: The method to evaluate the combined severity

is adapted from the risk management in information system [140]. In infor-

mation system, the risks are determined by the likelihood and impact. To the

combined severity levels to CAVs, a new severity matrix is built based on the

severity of information leakage and physical damage. It is shown in Table 3.2,

which is adapted from [140].

In this table, if the severity of information leakage and physical damage

are in same level, then the combined severity will be in same level as well.

For example, if the severity of information leakage and physical damage are

both low, then the combined severity of this risk will also be low. However,

considering the importance of severity of physical damage, if the severity of

physical damage is high, the combined severity level will be high as well.

5) Recovery Time: This criterion is to evaluate the time needed to recover

to normal situation after the attack has been detected.
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Table 3.2: Combined Severity Level Matrix for CAVs

Information Leakage/Physical Damage Low Medium High
Low Low Low High

Medium Low Medium High
High Medium High High

a. Low: After the detection, the damage caused by the attack could be fixed

in a timescale of seconds to minutes.

b. Medium: After the detection, the damage caused by the attack could be

fixed in a minutes to hours timescale.

c. High: After the detection, the damage caused by the attack could be

fixed in a timescale of hours to days.

Based on these criteria, possible attacks in different scenarios are analysed

in Section 3.6. It should also be noticed that this thesis aims to discuss the

possible cyber security attacks to a full CAV (Level 5). It indicates that all the

possible attacks could be conducted through wireless communication remotely.

In this case, the physical access of attacks were not considered when evaluating

the severity. These criteria may not be comprehensive and exclusive, and some

parts could be further considered and investigated. This thesis presented the

first attempt to define and rank the possible attacks severity in CAV scenarios.

This would also be a starting point to raise public and CAV practitioners’

awareness towards CAVCS.

3.6 Possible Attacks and Severity Assessment

In this section, possible attacks of CAVs will be listed. Following the criteria

defined in Section 3.5, severity of each attack will be analysed.

Detailed potential attacks will be analysed from these two aspects namely

the connectivity and automation covering the in-vehicle and inter-vehicle com-

ponents including hardware, software, and data in CAVs. The list of potential

attacks is presented in Table 3.3.
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Automation:

Different autonomous levels may have different attack possibilities. Accord-

ing to the SAE automation level [36], this thesis will focus on the attacks to

a fully automation vehicle (level 5). It indicates that the CAV is capable of

all the DDT under all circumstances. It is also assumed that all the vehicles

on the road are CAVs. In real world situations, there will be a mix of fully

CAVs and traditional vehicles for certain period of time. In addition, it is

obvious that CAVs will keep evolving and more technologies will be adapted.

This thesis only discusses attacks with existing CAV technologies. However,

as the attacks are categorized on automation and connectivity in-vehicle and

inter-vehicle, the list of possible attacks could be extended if new technologies

are adapted to CAVs.

In current CAV development, all the vehicles from different companies have

installed multiple sensors. The mainstream sensors include LiDAR, Radar and

camera [147, 148]. For example, Google Waymo vehicles are installed with a

360-degree camera on the roof as the vision system, several LiDAR sensors

and Radar sensors around the vehicle body [149]. There are also supplemental

sensors such as sound detection sensors.

The possible attack target assets are listed below.

1) Audio/Entertainment Devices: Audio devices have already been used in

modern automobiles widely. It evolved to a colourful touchable screen showing

more information in vehicles [150]. In CAVs, the audio/video system could be

used to warn users about anomaly or abnormal behaviours detected in the

system or surrounding environments.

a. Loud volume. The first possible attack is to suddenly increase the volume

of the voice such as background music on board. This attack could distract the

passengers’ attention. Sudden loud sound could even cause passengers’ panic

in certain situations. The severity of information of leakage is low but the

severity of physical damage is medium, which means that the overall severity

is low.
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b. Fake sound. The attacker could use the audio system to make fake noise

such as crash sound. This attack might cause passengers’ panic as well. But

this attack is not likely to cause information leakage.

c. Remote control. This attack already happened in real world environment.

Two white hackers in USA hacked into the entertainment system on a Jeep

Great Cherokee from 10 miles away and then stopped the vehicle on a highway

road through the entertainment system [136]. This is because the vehicle CAN

and entertainments system are combined together. If an attacker could control

the vehicle remotely through the audio/entertainment system, the severity of

physical damage could be high. In addition, the risk of information leakage will

also be severe because the attackers could send remote instructions to gather

private information. Moreover, in CAVs, the remote control attacks might

happen on other components of the vehicle, which makes the attack severe.

2) Cameras: Cameras provide the vision data, an indispensable part in

CAVs. To detect the surrounding objects and position the vehicle, camera is

a fundamental sensor on CAVs. However, the camera’s function could still be

replaced by other sensors if cameras break down, thus camera is of medium

importance. There are successful attacks to cameras to fool vehicles already

[151].

a. Blind vision. Blind vision attack could be easily achieved by physical

access. However with the connectivity of the vehicle, it is even easier for the

attackers. The attackers could disable the camera by controlling a strong light

resource remotely. The attack would not leak the private information of the

vehicle. And this attack would not cause fatal injuries as well because the

attack is easy to be detected, and the CAV contains multi-sensors data. If the

cameras break down, other sensors could still help to ‘see’ the environment.

Based on this, the overall severity level of the attack is low.

b. Mislead camera (Fake images): With the possibility of controlling the

cameras remotely, the attackers could inject fake image information to mislead

the cameras. This kind of attack is more dangerous than the blind vision attack
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because the detection possibility is lower. For blind vision attack, the system

or the user could easily find the abnormal situation. While in the mislead

camera attack, it may take longer time to detect. In addition, the system

might make decisions based on the fake images, the severity of physical attack

is thus higher, and the overall severity is medium.

3) Battery System: Currently, the number of electric vehicles on road is

increasing. As an environment-friendly transportation method, it is believed

that the future CAVs would be electric vehicles. The vehicles’ battery system

would then be an attack target.

The most possible attack to battery system is DoS (Denial of Services)

attack. In computer science, the aim of DoS attack is to exhaust all the

resources of the target to make the computer, server or communication channel

unavailable. In CAVs, DoS attack could target the energy sources to exhaust

the power sources, such as heating the seats on the vehicle. DoS attack could

be really dangerous to the battery system. It could trigger different parts

to consume battery power in a short time. Sudden battery loss could cause

damage to the basic functions of the vehicle. The severity of physical damage

is medium to high, and the combined severity level is high as well.

4) LiDAR (Light Detection and Ranging): LiDAR is the most fundamental

sensor in CAVs and it has already been used in localisation and parking-

assistance [152]. It uses light reflection point cloud to detect the distance and

boundaries of surrounding obstacles and environments [153]. The importance

of LiDAR is medium. There are successful attempts to attack the LiDAR

[151].

a. Jamming. This attack is to jam the LiDAR by using strong lights. The

attackers would use stronger light to reflect the origin light. The attackers

could not gather any information through this attack. However, there are

possibilities of physical damage because the detection performance of LiDAR

will decrease.

b. Hidden Objects. Because LiDAR uses the reflection of light to detect the



Chapter 3. Possible Attacks and Severity Assessment 67

surrounding environments, the attackers may use special materials to absorb

the light to avoid detection. This attack would not cause any information

leakage directly. But in some situations, if the object is covered by special

reflection materials, the vehicle would not observe it, thus lead to an accident.

This could cause physical damage or even fatal injuries to the target vehicle.

The combined severity of this attack is thus medium.

c. Fake Objects. The attackers could use light reflection to simulate a fake

object in front of the vehicle such as a barrier. The target vehicles would stop

or change direction based on the false detection. If multiple vehicles detect

this fake object, it could cause a severe traffic congestion. Moreover, if there

are multiple fake objects on the roads, this attack could cause physical damage

when CAVs try to avoid them. But as there are other detection methods on

the vehicle, the possibility of causing fatal injuries of this attack exists but is

low. The severity of physical damage is medium and the combined severity is

medium as well.

5) Radar: Though Radar and LiDAR have similar names but Radar uses

radio waves instead of light to detect the surroundings. Currently, there are

two types of Radar used on CAVs, millimeter Radar [154] and Ultrasonic Radar

[155]. Now, the millimeter radar is used on objects detection [156]. Ultrasonic

radar is used in short distance scenarios such as parking assistance system

[157]. This is because the speed of ultrasonic radar is slow, which would lead

to poor detection rate in high speed movements. Radar is also of medium

importance.

a. Jamming. This attack is similar to the LiDAR jamming attack. In

radar jamming attack, the attackers would use noise to degrade the signal

of radar. Then, the radar system might not work properly and the vehicle

could not detect the surrounding environments. If the noise source influences

multiple CAVs, the traffic flow would be disturbed or it could even cause traffic

collisions. This attack would not cause information leakage directly, but might

cause physical damage. The combined severity of this attack is medium.
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b. Hidden Objects. Currently, there are existing technologies to hide ob-

jects from radar detection, which are already adapted to military aerospace

area [158]. The planes or the objects would hide by changing the regular

reflection shape or using radar absorbing materials. In military usage, the

mitigation method is already developed, which is called Radar Anti Stealth

Technology [158] to strengthen the radar signal. This attack would not cause

information leakage but might cause physical damage (not directly to people).

The combined severity level of this attack is medium.

c. Fake Objects. To conduct this attack, the attackers might broadcast fake

radar signals. Other vehicles would then detect the false signal and conduct

corresponding reactions. This attack would not cause information leakage, but

might cause physical damage to infrastructures e.g. collisions when vehicles are

trying to avoid fake objects. The combined severity of this attack is medium.

6) GNSS (Global Navigation Satellite System): The most well used GNSS

system is GPS (Global Positioning System) from the US [159]. Currently,

there are other Commonwealth or countries developing their own GNSS, such

as Beidou from China, Galileo from Europe Union and Glonass from Russia

[160]. GNSS system could help to locate and navigate the vehicles. Hacking

into this system requires high-level knowledge. GNSS system is a major re-

source for positioning and navigation, but as the positioning and navigation

are cooperated via V2V communication, the importance of GNSS system is

medium.

a. Spoofing. GNSS spoofing is to send similar GNSS signals to target CAVs

to mislead the receivers. The attackers could use these devices to perform

attacks and lead the vehicle to false location or wrong route. In 2013, re-

searchers from the University of Texas at Austin successfully fool a 80 million

dollar super-yacht by their GPS spoofing devices [161]. Compared with GNSS

jamming attack, GNSS spoofing attack would be more dangerous. Because

without the GNSS signals, CAVs would use other methods such as V2V com-

munication or SLAM (Simultaneous Localization and Mapping) to navigate
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and avoid the possible hazards such as collisions. However if the information

is wrong and not detected, CAVs would trust the wrong GNSS information

and take wrong reactions, which may lead to collisions and fatal injuries. In

addition, a vehicle that has been spoofed successfully could respond private

information such as the location information and historic route information to

the attackers, which would also cause information leakage. In that case, the

severity of information leakage is medium and the severity of physical damage

is high.

b. Jamming. In GNSS jamming attack, the attackers will send stronger

power signal to the CAV receiver. The GNSS signal is normally weak when

they approach the receivers, and it could be easily covered by the jamming

signal. The real GNSS signal will then be ignored. In addition, the jamming

attack is also difficult to be detected because the GNSS signal is likely to

decrease due to interference or limited satellite [162]. CAVs could not navigate

and locate without the GNSS signal. However, V2V communication could

help to navigate coordinately as a redundancy method. According to this, the

severity levels of both information leakage and physical damage are medium.

7) In-vehicle System: In-vehicle system contains the micro-controllers and

devices communication instructions in the vehicle sent by CAN (Controller

Area Network) or other communication methods such as WiFi, Bluetooth.

The in-vehicle system is related to all the operational functions, thus is of high

importance.

a. Injection. The attackers would inject non-existing information or even

malware to the system through ports such as USB ports. Based on the fake

information, CAVs might make wrong decisions leading to physical damage.

As an active attack, injection could also cause leakage of sensitive data. The

combined severity of this attack is medium.

b. Eavesdropping. Eavesdropping attack is a passive attack, which means

that it is difficult to be noticed. The main target of this attack is not to cause

physical damage but to gain access to valuable data. Thus, the severity of
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information leakage is high and the severity of physical damage is low.

c. Traffic analysis. Traffic analysis attack is also a passive attack. The

attackers will monitor and observe the data, then try to identify the pattern

in the data flow. As a passive attack, traffic analysis attack would not cause

physical damage directly and the information leakage scale is limited. The

combined severity of this attack is low.

d. Modification. Modification attack is to modify the messages sent between

different components and units. The wrong messages could lead to the wrong

decision and action of the vehicle. The severity of this attack is medium.

Connectivity:

There are three main types of vehicle communication in CAV network. V2V

(Vehicle-to-Vehicle) is the communication between vehicles via wireless net-

work. V2I (Vehicle-to-Infrastructure) is the communication between vehicles

and infrastructures via wireless network and V2X (Vehicle-to-Everything) con-

tains V2V, V2I and communication between vehicles and other entities such

as the cloud database or the pedestrians [163]. Compared with traditional au-

tomobiles, these communication methods could help to improve the accuracy

of location in rural area and prevent accidents efficiently. Nowadays, many

communication technologies are being used to fulfill the CAV network such as

DSRC (Dedicated Short Range Communication), LTE (Long Term Evolution)

and 5G [164].

The possible attack target assets of connectivity are listed below.

8) V2V Communication (With other vehicles): V2V communication is a

crucial part in future CAVs. However, there is no general adapted communi-

cation standards for V2V communication. Currently, the V2V communication

standard in USA is DSRC, which is based on IEEE 802.11p standard [165]. In

Europe, there is ITS-G5 for V2V communication [166]. V2V communication

could help to navigate or warn vehicles.

a. DoS. Like the DoS attacks might happen in the battery system, DoS

attack could also happen in the V2V communication. The attackers could
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send huge amount of data to block the communication channel of the target

vehicle by wireless communication so that the target vehicle could not acquire

information from outside. This attack would not cause information leakage

but might cause physical damage especially in the rural area, in which the

V2V communication is the main data source for vehicle planning.

b. Modification on Message/ Fake message. The communication between

vehicles would send different types of information including position coordi-

nates, speed, and head angle, etc. If the attackers send fake message, the

target vehicle would take wrong reactions. In addition, if the target vehicle

trusts the fake message, it may send response to the attacker, which could lead

to information leakage. Based on this, the overall severity is medium.

c. Hidden vehicle. This attack is also a type of passive attack. The attackers

would disable their own message sender to hide their activities. This would

not cause information leakage directly, but might cause physical damage if the

vehicle hide its activities and approach the target vehicle silently.

9) V2I Communication (With Infrastructure): V2I communication is the

communication between CAVs and the infrastructures. Nowadays, there are

some initial usage of V2I communication. For example, the ETC (Electronic

Toll Collection) on roads and bridges use RFID (Radio Frequency Identifica-

tion) to charge vehicles [167]. Beside the communication channel, which is

similar to the V2V communication, there are other attack types in V2I com-

munication.

a. Change infrastructure sign. The infrastructure signs are important in

transportation to help vehicles to navigate, locate or control speed. CAVs

could ‘read’ the sign and take corresponding actions. If the attackers change

the infrastructure signs such as the road direction sign, it will lead the ve-

hicle to wrong destination. In addition, if multiple traffic lights are changed

intentionally, it could cause severe traffic congestion or even traffic collisions.

b. Block/ remove sign. The infrastructure signs could also be blocked

or removed physically or remotely. If an emergency alert sign is removed
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intentionally, this could cause traffic congestion and accidents. But this attack

will not cause information leakage. The combined severity of this attack is

medium.

10) V2X Communication (Mainly on Cloud)

a. Cloud ID Data set. Authority is important in CAV network. Each

CAV would be assigned an unique ID such as an electronic plate. In order to

confirm the reliability of the communication, only the information from the

trusted CAVs in the data set could be accepted. All the communication and

information exchange are based on the authority from the CAV cloud.

b. Cloud Real Time Traffic Database. Cloud database collects the traffic

data to provide transportation guidance. It will include the real time traffic

congestion data and accident data to inform all the CAVs to avoid relevant

areas. If the attackers inject fake message or modify message, all the vehicle in

the cloud database would receive wrong information. In addition, the attackers

could also gather valuable information from the data set.

Based on the criteria, all the attacks are then divided into four categorises,

which are shown in Table 3.4. Four attacks are ranked as critical, which are

remote control, DoS attacks on battery system, GNSS spoofing attacks and

authority attacks. All these four attacks could cause life-threatening conse-

quences. In addition, except for DoS attacks on battery system, other three

methods belongs to Fuzzy attack. Fuzzy attacks intend to inject modified data

into communication to cause unexpected behaviours on vehicles. Thus, DoS

attacks and Fuzzy attacks the most severe attacks on CAVs.

3.7 Possible Mitigation Methods

For each of the attacks mentioned above, the mitigation methods will be dif-

ferent. According to the mitigation methods in information security [140], the

majority types of mitigation methods could be divided into five categories.

To CAVs, the mitigation methods could be similar but need to be considered
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Table 3.4: Attack Categories of Attack Types to CAVs

Level Description Attack Types
1 Critical Remote control (Audio/Video devices); DoS attack

(Battery system); Spoofing (GNSS); Fake Identity
(Cloud authority)

2 Important Mislead cameras/Fake vision (Cameras); Hidden Ob-
jects (LiDAR); Fake objects (LiDAR); Injection (In-
vehicle system); Modification (In-vehicle system);
Fake/ Ghost message (V2V communication); Change
infrastructure sign (V2I communication); Injection
(Cloud data set); Modification (Cloud data set)

3 Moderate Blind vision (Cameras); Jamming (LiDAR); Jam-
ming (Radar); Jamming (GNSS); Eavesdropping (In-
vehicle system); Traffic analysis (In-vehicle system);
DoS attack (Infrastructure sign); Block/remove sign
(Infrastructure sign); Road line changing (Road)

4 Minor Loud volume (Audio/Video devices); Fake sound
(Audio/Video devices)

based on CAV characteristics.

1) Prevention: Prevention is to prevent the attacks from influencing the

whole vehicle system negatively. The prevention could be achieved by encrypt-

ing the communication channel and messages, or detecting the active attacks

in the systems. In addition, all the CAV users could be authorized with the

credibility of the messages. For example, to the eavesdropping attacks in in-

vehicle system, if the communication channel and messages are encrypted, it

is much more difficult for attackers to make use of the information.

2) Reduction: Reduction is to reduce the possibility or feasibility of the

attack. It could also be reducing the possible impacts of the attacks to a

controllable level. In CAVs, the reduction methods include the redundancy

sensors. If one sensor breaks down, the vehicle could still rely on the data

from other sensors. In this case, the impact of each sensor could decrease. For

example, to the blind vision attack in camera, the vehicle could then use other

sensors to help after detecting abnormal attacks.

3) Transference: Transference is to share the possible risks with others, such

as a reliable third-party organization. The third-party organization could be
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governments and insurance companies. For example, in the Cloud of V2X

communication, the authority of each CAV’s identity should be assigned by

the government or relevant legitimate organizations. All the CAVs information

should also be stored safely and monitored by the trusted third-party. Not all

the attacks could be solved through transference. In CAVs, this mitigation

method could only be used when a single vehicle manufacturer or a supplier

could not handle all the information safely.

4) Acceptance: Acceptance is to retain the risks caused by the attacks.

This mitigation method could be used to the attacks with limited negative

impacts on CAVs. On the other hand, the attack might not have a proper

countermeasure and the impact is at an acceptable level. For example, to

the traffic analysis attack in in-vehicle communication, the leaked information

could only be the size and timing of the communication package and it is not

likely to cause physical damage. In addition, the traffic analysis attack, which

is a passive attack, could not be prevented by message and communication

channel encryption. In that case, the traffic analysis attack could be tolerated.

5) Contingency: Contingency is to consider the possible reactions if the

attacks happen. A contingency plan need to be prepared to recover the system

if an attack happens. In CAVs, there could be countermeasure plans to recover

the system. For example, to the DoS attack in the battery system, if the system

detects an abnormal battery loss, it could pull up to a safe place.

Based on the potential attacks listed in Section 3.6, the prevention method

within the framework could be achieved. It is an initial attempt to understand

the vulnerabilities and risks of CAVs, the mitigation methods could be more

detailed after further researches. This could help the system designers to

prevent the possible attacks forehead.

However, as the CAV is a complicated system containing various sensors

and ECUs, it is for sure that not all the attacks could be identified before the

attacks happen. Besides, the data amount to be processed in CAVs is huge

and time-consuming. It is crucial to have an automatic system to detect the
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known attacks quickly and also to detect unknown attacks. This could help

to reduce the possibility and severe consequences of attacks, which could be

regarded as the prevention and reduction mitigation methods defined in this

section. Besides, the defined potential attacks could also help designers, auto

makers and suppliers to decide the severity of each attack and the obligation

arrangement, which will help the transference and acceptance mitigation meth-

ods. The attacks could be mitigated by the responsible suppliers. Moreover,

the attacks with low severity could be accepted. Finally, if the attacks could

be detected, the response of the system and recovery are important. The con-

sideration could be regarded as the contingency mitigation method. Based on

different characteristics of attacks, appropriate reactions could be designed to

response.

To develop better mitigation methods, the thesis will continue to investigate

automatic anomaly detection of the attacks of the defined possible attacks

within the CAVCS framework.

3.8 Summary

In this chapter, after structuring the UK CAV Cyber Security Principles, ter-

minology, including CAVCS, CAV network, CAV vulnerability and CAV at-

tacks, was then defined, which helps to avoid the misunderstandings in the

research of CAVCS. In the UML based CAV framework, data types gathered

by the CAV system were classified and vulnerabilities of CAV systems were

identified. The detailed potential cyber security attacks were investigated from

the aspects of target assets, risks and consequences based on vulnerabilities in

the thesis.

The severity of each type of attack was then analysed based on these clearly

defined criteria. Though the risks could not be quantified, it is still necessary

to understand the severity of each possible attack, which could help us to

prioritise attacks and provide corresponding mitigation methods. The levels of
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severity for the attacks can be categorised as critical, important, moderate and

minor. It was found that remote control, Denial of Service attack to the battery

system, GNSS spoofing attack and attacks to cloud database authority are the

most dangerous and of the highest vulnerabilities in CAVCS. Additionally,

all the most severe attacks belong to DoS attack and Fuzzy attack, thus make

these two kinds of attacks dangerous, which need to be solved at a high priority.

Mitigation methods including prevention, reduction, transference, accep-

tance and contingency were then suggested. In this thesis, a defence-in-depth

attack resistant system is being built. This chapter made the first step to

defining the possible attacks and severity. In the following chapters, machine

learning-based anomaly detection methods will be developed and analysed on

the processed data sets within the framework and evaluate for real world us-

age.



Chapter 4

CAV Cyber Security Data Sets

4.1 Overview

After defining the possible attacks of CAVs in Chapter 3, detecting the known

attacks is the most crucial issue in building the CAV cyber security framework.

However, as mentioned in Chapter 2, there exists no open CAV cyber security

data set now. It is also a major research gap in the current CAVCS research.

To address this issue, several countermeasures were taken in the thesis. In

this chapter, four CAVCS data sets were established, which contain simulation

data and real world data, in-vehicle data and communication data. The first

data set CAV-KDD, covering possible communication attacks, was generated

from a computer security benchmark named KDD99; The second data set,

named Simu-CAN data set, was simulated in Virtual Machine on possible

attacks targeting in-vehicle communication. Two real world data sets were

then introduced, KCAN-CAV data set retrieved from a car hacking data set

provided by the Korean University, and real world CAV-RW data set generated

from a real CAV at Wuhan University. These four data sets cover possible

attacks targeting in-vehicle and communication channels. Besides, the data

sets are from both simulation and real world to capture different characteristics

in simulation and real scenarios.

77
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4.2 CAV-KDD Data Set

As a fast developing topic, CAV is yet to be fully developed before they can

drive safely on roads. In the existing literature on CAVs, it is difficult to access

and obtain well processed and labelled data sets, especially on CAV cyber

attacks. In this thesis, the widely used KDD99 benchmark data set [168] on

network intrusion detection is adapted to build a CAV communication-based

cyber attack data set named CAV-KDD based on the types of CAV cyber

attacks and the UML based CAV framework established in Chapter 3.

This section has been published in the Journal Mathematics, titled “Ma-

chine Learning-Based Detection for Cyber Security Attacks on Connected and

Autonomous Vehicles”, in August 2020.

4.2.1 The KDD99 Data Set

The KDD99 data set is a well-known benchmark for online intrusion or attack

detection. It was first made available at the Third International Knowledge

Discovery and Data Mining Tools Competition in 1999 [168]. The KDD99

data set contains normal connection data and simulated attack or intrusion

data in a military network environment. Since 1999, the data set has been the

most widely used attack detection data set in the research literature [169].

KDD99 has approximately 5 million data records, each with 42 attributes

(or also known as features). The 42nd attribute is the label of either normal or

attack. KDD99 also provides a 10% data set with about 500 thousands data

recorded for training and testing, for those who find the origin data set too

big for data processing. The attacks in KDD99 are of four major types and 39

sub-attacks [170] as follows [171]:

1. PROBE, which is the Probing attack. This type of attacks monitor

or scan the system vulnerabilities to gather information from the system. In

KDD99, the sub-attacks of PROBE include ipsweep, mscan, nmap, portsweep,

saint and satan.
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2. DOS, which is the Denial of Service attack. DoS attacks disrupt the

normal use or communication in the system by occupying all the resources,

so that the system or communication channel are not available for normal

use. Typically, the attackers would send a huge amount of data to flood

the communication channel and system. In KDD99, the DoS attacks include

apache2, back, land, mailbomb, Neptune, pod, processtable, smurf, teardrop,

and udpstorm.

3. U2R, which is the User to Root (U2R) attack. Attackers conducting U2R

attacks aim to gain access to superuser accounts. They find vulnerabilities of

the system and then gain the access to the root of the system. In KDD99, the

U2R attacks contain buffer overflow, httptunnel, loadmodule, perl, ps, rootkit,

sqlattack, and xterm.

4. R2L, which is Remote to Local attack. As the name indicates, the attack-

ers aim to gain access to the system and send packets using remote connection.

The attackers do not have authorized account in the system, but could gain

local access to the system. In KDD99, these include ftp write, guess passwd,

imap, multihop, named, phf, send mail, snmpgetattack, snmpguess, spy, warez-

client, warezmaster, worm, xlock, and xsnoop.

It is noticeable that there are 39 sub-attacks in the four major attacks,

however, only 22 sub-attacks are included in the training data set. The other

17 attacks only appear in the testing set. Testing and validation on these data

sets thus also provide a measurement of robustness of detection techniques

including the machine learning algorithms proposed and tested in Chapter 5.

KDD99 provides a comprehensive data set that covers a variety of attack

types in computer networks. However, the data set could not be used directly

for CAV cyber security due to the distinct characteristics of CAVs mentioned in

Chapter 1. The thesis adapts and processes the KDD99 data set by removing

irrelevant attack types based on the CAV framework established and possible

attack points identified in Chapter 3. The possible attack types in KDD99

which may also happen in CAV are shown in Table 4.1.
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Table 4.1: KDD99 Sub-Attacks Possibility

Attack Type Possibility Attack Types Possibility

PROBE

ipsweep H

U2R

ps I
mscan P rootkit P
nmap H sqlattack P
portsweep P xterm I
saint P

R2L

ftp write H
satan P guess passwd H

DOS

apache2 P imap I
back P multihop P
land P named P
mailbomb H phf I
neptune H sendmail P
pod H snmpgetattack P
processtable P snmpguess P
smurf H spy P
teardrop H warezclient P
udpstorm H warezmaster P

U2R

buffer overflow H worm H
httptunnel H xlock P
loadmodule I xsnoop H
perl I

In Table 4.1, the possible types of CAV cyber attacks are classified into three

levels, namely H for High, P for Possible and I for Irrelevant. After the data

processing, the total number of CAV attack types is reduced from 39 to 14,

with 19 types of possible CAV attacks and 6 types of irrelevant attack. The

justifications of data processing on the attack types are listed as follows.

1. The attacks are without a clear definition. As the data are from the

KDD99 data set, the definitions of attacks are referred to their original de-

scriptions. The KDD99 data set was retrieved and processed from the DARPA

intrusion detection evaluation data set collected by the MIT Lincoln Lab [172].

All the descriptions of the attacks are referenced from the official description

at the MIT Lincoln Lab web site [173]. Some sub-attacks are lack of clear

definitions, thus could not be classified as type Y in CAV cyber attacks. The

attack type of them could be changed once a clear definition is available.

2. The attacks do not fit into the CAVCS framework. In Chapter 3, a UML

based CAV structure is built to define different data in CAV communication
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and functions. However, as KDD99 is a data set on computer and network

security, protocols of which are different from those in CAVs. For example,

in KDD99, the attack ‘land‘ only happens in older TCP/IP protocols, and

can only be found in an old Linux operating system named SunOS 4.1. Once

the protocol and environment expired, the possibility of this attack may also

disappear. This type of attacks does not fit into the CAV framework, thus

have been removed.

3. The attacks are not compatible with the CAV potential attacks. To

conduct an attack, except for the physical damage, attackers need to find one

of the vulnerable points as identified in Chapter 3 in a CAV system. These

attack points could be in hardware, software, data or communication channel.

In KDD99, some attacks can only happen in specific conditions and platforms,

thus are not applicable to the CAV attack points. The possibilities of these

attacks to CAV are low. For example, attack apache2 only happens in an

Apache Web Server. If a CAV does not use the Apache Web Server, the

attack cannot be conducted.

4.2.2 CAV-KDD Data Set

The KDD99 data set has more than 4 million data records, and is too big

for data processing on personal computers. In this thesis, the training data

set with 10% selected KDD99 data is used. After removing duplicates and

irrelevant attack types, a new data set which is compatible to the new CAV

cyber security framework, named CAV-KDD, is established. The amount of

normal data and attack data in both the training and testing data sets is

presented in Tables 4.2 and 4.3.

Table 4.2: Amount of Normal and Attack Data in the 10% KDD99 and CAV-KDD
Training Data Sets

10% KDD99 Data CAV-KDD Data
Attacks 396743 54485
Normal 97278 87832
Total 494021 142317
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Table 4.3: Amount of Normal and Attack Data in the 10% KDD99 and CAV-KDD
Data Sets

10% KDD99 Test Data CAV-KDD Test Data
Attacks 250436 23348
Normal 60593 47913
Total 311029 71261

In addition, to each sub-type attack, the amount in CAV-KDD training and

testing sets are shown in Table 4.4.

Table 4.4: Amount of Sub-type Attacks in KDD99 and CAV-KDD

10% KDD99
Training
Data Set

CAV-KDD
Training
Data Set

10% KDD99
Testing Data
Set

CAV-KDD
Testing Data
Set

0 NORMAL 97278 58716 60593 47913

PROBE
1 ipsweep 1247 341 306 155
2 nmap 231 158 84 80

DOS

3 mailbomb / / 5000 308
4 neptune 107201 12281 58001 20332
5 pod 264 40 87 45
6 smurf 280790 199 164091 936
7 teardrop 979 199 12 12
8 udpstorm / / 2 2

U2R
9 buffer overflow 30 5 22 22
10 httptunnel / / 158 146

R2L

11 ftp write 8 8 3 3
12 guess passwd 53 53 4367 1302
13 worm / / 2 2
14 xsnoop / / 4 4

KDD99 data set has 41 attributes and 1 label indicating the attack types.

The detailed attributes could be found in Table 4.5. The 41 attributes could

be classified to 4 types as follows [174]:

1. Basic connection attributes: From Attribute 1 (duration) to Attribute 9

(urgent), these attributes contain basic information about the connection such

as duration, protocol types etc.

2. Connection content attributes: In the four major attack types in KDD99,

DoS will show a strong time frequency change in the data flow. However,

PROBE, U2R and R2L will not show the same symptom when there is an

attack, the data flow will be same as the normal situation. In order to detect

these kinds of attacks, the contents of the data should also be analysed, such
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Table 4.5: Types of 41 Attributes in KDD99 Data Set

Type Attributes
Basic duration, protocol type, service, flag, src bytes,

dst bytes, land, wrong fragment, urgent
Connection Content hot, num failed logins, logged in, num compromised,

root shell, su attempted, num root, num file creations,
num shells, num access files, num outbound cmds,
is host login, is guest login

Traffic Attributes
based on Time

count, srv count, serror rate, srv serror rate,
rerror rate, srv rerror rate, same srv rate,
diff srv rate, srv diff host rate

Traffic Attributes
based on Host

dst host count, dst host srv count,
dst host same srv rate, dst host diff srv rate,
dst host same src port rate,
dst host srv diff host rate, dst host serror rate,
dst host srv serror rate, dst host rerror rate,
dst host srv rerror rate

as the time of failed login. In KDD99, attribute 10 (hot) to attribute 22

(is guest login) are connection content attributes.

3. Traffic attributes based on times: Time is important in detecting attacks.

For example, the DoS attack will have a much faster message frequency than

normal data. Analysing attributes based on time could help to understand

the connections and detect the abnormal situation. Attribute 23 (count) to

attribute 31 (srv diff host rate) belong to this kind of attributes. There are

two types of features: “same host” and “same service”, which indicate the

same host or same service connection with the current connection.

4. Traffic attributes based on host: In some situation, attackers may scan

ports or hosts to conduct an attack, which is known as probing. In the Probe

attack, the time frequency will not be much different like the DoS attacks, so

the traffic attributes based on host will be helpful to detect the attacks. It

could help to find the same host connection in the past 100 connections with

the current connection. Attribute 32 to attribute 41 are traffic attributes based

on host.

In CAVCS, because there is no standard guidance of connections, some of the

attributes for KDD99 may not be suitable for CAV attack detection. However,
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all the attributes will be kept for the first data process. Because in Chapter 6,

the feature selection methods will be used to find the most relevant features

with the results. In case relevant features being deleted mistakenly, all the

features will be used.

CAV-KDD data is then preprocessed in Weka in the following steps:

1. The normal and 14 sub-attacks are labelled as 0 to 14, as shown in Table

4.1.

2. As the data ranges of each attribute in the CAV-KDD data set and

its testing set are different, some continuous data are normalized, such as

duration and src bytes. The unsupervised-attribute-normalize algorithm in

Weka is used to conduct the normalization. The value range is set as 0 to 20.

3. The data then needs to be discretized. The unsupervised-attribute-

discretize algorithm in Weka is used to discretize the normalized data. To other

categorized attribute data such as protocol type, service, the unsupervised-

attribute-numerictonominal algorithm is used.

4. The attributes with only one value are deleted from the attribute list.

These are num outbound cmd, and is host login. These attributes make no

impacts on the detection as they stay the same all the time. There are, there-

fore, 39 attributes left in CAV-KDD.

The CAV-KDD data set is more suitable for the current experiment envi-

ronment. It covers the possible communication attacks, which could help to

train the machine learning models to detect the attacks. This will also help

the anomaly detection in V2X communication based on the universal commu-

nication features. In addition, the features will be selected and reduced based

on the importance of features. This would provide guidance for real world

vehicle communication feature collection. The experiments on the CAV-KDD

data set will be presented in the following chapters.
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4.3 Simulated CANData Set: Simu-CANData

Set

CAN protocol is widely used in today’s in-vehicle communication to control

the response to the users’ commands. This makes CAN data crucial to CAV

Cyber Security, because with V2X communication in the future, attackers

might take control of the vehicles remotely. However, currently, there are no

fully autonomous vehicles to conduct the tests, and it is risky to conduct real

world experiments directly on vehicles. It is because that firstly, real world

tests might expose threats to both people and hardware. Secondly, the require-

ments of the tests are high to conduct a cyber attack experiment, which could

only be fulfilled by a limited number of organizations and governments. Initial

attempts are carried in the simulated environment of vehicles in computers.

By doing this, it could reduce the risk of conducting real world experiments. In

addition, the experiments conducted on computers could also be a validation

process and guidance to help future real world experiments.

The in-vehicle data is collected from a CAN simulator called ICSim [175]. As

the simulator could only be used in Linux operating systems, Ubuntu VMware

is used to build the Linux virtual environment.

The illustration of the main interface (a vehicle dashboard) and control units

are shown in Fig 4.1.

(a) Dashboard (b) Control Unit

Figure 4.1: CAN Data Generator Simulator
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Figure 4.1 (a) displays the speedo meters and the vehicle body that could

show the lights and doors status of the vehicle. Figure 4.1 (b) displays the

control units of the simulator. In the thesis, the relevant units are controlled

by corresponding keys on a keyboard, as shown in Table 4.6.

Table 4.6: Control Units of Vehicle Simulation Tools

Keyboard Control Units
up/down Speedo Meter
Left/Right Lights
Right Shift+X/A/B Open Door
Left Shift+X/A/B Close Door

In the virtual machine, the CanDump tool is used to view and record the

CAN messages in the simulation tool. With the starting instructions, the CAN

simulated communication start, and messages then could be recorded as Figure

4.2.

Figure 4.2: Simulated CAN Messages

Based on the simulated CAN communication messages, the data could be

divided into four parts. The first part is the time stamp of each message. The

second part is the CAN port of the messages. In this simulated data set, only

one CAN port is used, which is vcan0. This attribute is useless in the thesis

Figure 4.3: CAN Message Format
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for detection as there is only one value. The third part is the CAN ID of each

message. Different CAN IDs will correspond and control different parts of the

vehicles, which will be used in the detection. The final parts of the messages

are the contents of CAN messages, containing 8 bytes of CAN message.

This simulated tool is then run for three minutes to gather simulated vehicle

data. The total amount of gathered data is 19493 messages. The messages

are then saved and transferred into a csv file, the format of which is shown in

Figure 4.3.

Because CAN messages do not contain defined attributes and labels, the

features of the messages need to be defined for further analysis. The generated

CAN messages are then pre-processed and labelled. The steps to define the

attributes and labels are listed below:

1. Each part of the message will be regarded as one attribute in the final

data set to conduct the following data processing. Because CAN port has only

one value in this data collection, which is vcan0, this part will not be regarded

as an attribute and will be removed from the data set. In the fourth part,

the length of all the CAN contents in the collected data is 8 bytes. Then,

each byte in CAN contents will be one attribute in the final data set, which

becomes the attributes started from c0 to c7, indicating the different value in

the CAN messages. In total, the whole data set will have 10 attributes, which

are “Timestamp”, “ID”, “c0”, “c1”, “c2”, “c3”, “c4”, “c5”,“c6”,“c7”. The

value of each attribute in CAN content from c0 to c7 varies.

2. In the collected data, values of “c0” to “c7” are hexadecimal, which are

difficult to be processed for the machine learning models. These values are

then transferred to decimal as shown in Fig 4.3.

3. All the data are then be labelled as “T”, which means normal data in

this data set.

These data collected from the CAN Simulator is in normal situations, in-

dicating no attack data in the data set. Simulated attack data will then be

added to the data set. As explained in Chapter 3, normally, attackers try
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to modify the messages or block the communication channel. Both of these

attacks could cause severe consequence such as physical damage and fatal ac-

cident. As identified in Chapter 3, the majority of the most severe attacks are

related to Fuzzy attack and DoS attack. Besides, both types of attacks are

active attacks, and are suitable to detect. The attack scenarios are built based

on the following steps in the simulation process. Two types of attacks, namely

DoS attack and Fuzzy attack, are simulated.

Attack scenario:

1. DoS Attack: Attackers inject a huge amount of data into the target CAN

system in a short period. As CAN protocol is not built with any security

mechanism, attackers could inject a huge amount of useless or harmful mes-

sages through unauthorised access. In addition, because CAN has only one

single communication channel, the injected messages could block the whole

communication channel so that the vehicle instructions could not be trans-

mitted to relevant units on board. The vehicle would then not respond to

users’ commands or even respond in an opposite way. For example, the ve-

hicle might increase the speed while the commands are reducing speed. In a

dynamic environment, this could raise a life-threatening problem for the users.

In order to simulate the DoS attack, the collected data is analysed first to

understand the normal pattern of the data. As the DoS attack aims to occupy

the whole communication channel, it has a much quicker time frequency than

normal data. In the collected data, most of the time interval between messages

falls between 0.002 to 0.004 seconds. Only time intervals are changed in the

DoS attacks. Simulated DoS attack data is then injected into the commu-

nication on a 0.0002 time interval. The IDs and the message are randomly

generated to simulate the real world situation. In total, 5000 DoS simulated

messages are injected into the data set. It should be noted that attributes c0

to c7 are not changed in DoS attacks because this type of attack would not

change the value in c0 to c7. The injected attack data is labelled D, indicating

the DoS attacks in the data set.



Chapter 4. Simulated CAN Data Set: Simu-CAN Data Set 89

2. Fuzzy Attack: Attackers inject fake messages into the communication

channel with normal time frequency. The attacker will generate messages with

random ID and bytes. The attacker might target key units in the vehicles in

Fuzzy attacks, such as braking or steering. Compared with DoS attacks sim-

ulated in the first scenario, Fuzzy attack aims to interrupt the basic functions

of the vehicle rather than blocking the communication channel.

In order to simulate Fuzzy attacks, random attack messages are injected into

the data set. In the original CAN simulation data set, most of the data time

interval falls between 0.002 to 0.004 second. Based on this, in the simulated

attack data, the time interval is set to 0.003 seconds. In addition, because the

CAN simulated data is with different CAN ID, and has different value range

of c0 to c7. For example, CAN ID 133 only has one value on c4, the value of

other attributes is all 0. In this situation, the Fuzzy attack data is simulated

with the following process.

a. All the data is analysed based on different CAN ID. To each CAN ID, the

value range in different attributes is analysed. In the simulated attack data,

the value ranges of c0 to c7 are changed.

b. Based on the value ranges of different CAN IDs, corresponding Fuzzy

attack data is generated for different attributes using two types of Fuzzy attack

simulation methods. The first is to generate all the random value for c0 to c7.

For example, CAN ID 095 only has value for attribute c0,c2 and c3, but all

the values of c0 to c7 in the attack simulations are generated randomly from 0

to 255. The second method generates specific value for specific attributes. For

example, for CAN ID 133, only attribute c4 has a different value generated from

0 to 255 randomly while all the other attributes for c0 to c7 are set to 0. These

simulation methods could increase detection difficulties. In addition, in real

world attacks, the attackers might also analyse the data first and then conduct

pertinence attacks, especially when the CAN IDs of vehicle basic functions are

known.

c. The injected attack data is then labelled as F, indicating Fuzzy attack.
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With these two types of attacks, the simulated normal data are extended

to be the simulated CAN attack data set named Simu-CAN data set in the

thesis. Thus, the amounts of different labels of the Simu-CAN data set are

shown in Table 4.7.

Table 4.7: Amount of Data in Simu-CAN Data Set

Label Number of Data
Normal data 17850

DoS attack data 4725
Fuzzy attack data 16243

Total 38818

Simu-CAN simulated the most severe potential attacks defined in Chapter

3. The data set provides the training and testing data for machine learning.

The simulated data set could also be extended with new attacks if CAN is used

in the vehicles. In addition, this data set also provides experiment data for

further simulated attack research in real world environments. The experiments

on the Simu-CAN data set will be introduced in the following chapters.

4.4 KCAN-CAV Data set

Despite the CAV-KDD data set focusing on communication, the data trans-

mitted in the vehicles are also important. With the data exchange in V2X

communication, in-vehicle data could also become vulnerable to cyber attacks,

which is not the case for traditional vehicles. In Section 4.3, the Simu-CAN

data set is generated and introduced to train and test machine learning mod-

els. However, real world environment generated data is of high importance,

due to the reason that the simulation could not be exactly the same as real

world situation, the data value might be different from the real world.

There is a lack of well-prepared open source CAVCS data sets in the liter-

ature. The CAN hacking data set named OTIDS provided by Hacking and

Countermeasure Research Lab in South Korea is used in this research based

on the literature review [78]. It is the most relevant open source cyber attack
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data set collected from real world in the existing literature. The data set con-

tains more than 5 million data, covering different types of attacks. Based on

the OTIDS data set, a new data set named KCAN-CAV on CAN attacks to

CAVs is generated and processed.

4.4.1 OTIDS Data Set

This data set focuses on the attacks on the CAN in vehicles. The four different

data sets contain four types of attacks to CAN, namely DoS attacks, Fuzzy

attacks, spoofing the drive gear attacks and spoofing the gauge attacks. Based

on the severity assessment in Chapter 3, the most severe attacks are related

to DoS and modification messages. In this thesis, the DoS attack and Fuzzy

attack data set are processed to conduct further experiments.

The OTIDS data set is generated from the real world environment. The

results obtained are thus more reliable and close to real world situations. A

Hyundai’s YF Sonata is used for generating the CAN data through the OBD-

2 port of the vehicle. A Raspberry Pi3 and a laptop are also connected to

acquire the data. The Simu-CAN data set and the OTIDS data sets both

cover in-vehicle communications. However, the real world data in OTIDS

might still be different from that of the Simu-CAN simulations. The evaluation

of the machine learning models in real world automatic detection is of high

importance.

Besides, the OTIDS data set has a much larger volume of data than that

of the Simu-CAN data set, which would help to build and investigate more

reliable machine learning models suitable for real world environments.

The data format of OTIDS is shown in Figure 4.4. The first attribute is

also the time stamp of CAN messages. The second part and third part are

the ID and bytes number of each CAN message, respectively. Then the next

8 attributes, c0 to c7, represent the content of CAN data. The last attribute

of the data set is the label of i.e. attack or not. In OTIDS, label R represents
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Figure 4.4: OTIDS Data Format

normal data while label T represents the attack data. The amount of different

subsets in OTIDS are shown in Table 4.8.

Table 4.8: Amount of the OTIDS Data set

Attack Type Total Message Normal Mes-
sages

Injected Attack
Messages

DoS Attack
Data Set

3,665,771 3,078,250 587,521

Fuzzy Attack
Data Set

3,838,860 3,347,013 491,847

Spoofing the
drive gear Data
Set

4,443,142 3,845,890 597,252

Spoofing the
gauge Data Set

4,621,702 3,966,805 654,897

GIDS: Attack-
free (normal)
Data Set

988,987 988,872 -

In Table 4.8, the first subset of OTIDS is the DoS attack data set, which

contains a large amount of CAN data with a specific CAN ID 0x000 in a short

period. The time frequencies of the injected DoS attack data are every 0.3

milliseconds, which is much higher than the time frequencies of normal data.

The second subset in the OTIDS data set is the Fuzzy attack data set, with a

huge amount of injected attack data with random IDs and random data value

in the CAN data fields. The time frequencies of the injected Fuzzy attack data

are every 0.5 milliseconds. Other two attacks, namely the spoofing the drive

gear and gauge data sets, are not used in generating the new data set in the

thesis.
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The 4 types of attacks in OTIDS are generated and stored separately, and

can be used as a binary classification problem for intrusion detection methods.

However, these originally separate OTIDS sub data sets cannot be directly

used for CAVs, as they still need to be pre-processed.

The research in the thesis aims to classify attacks of different categories. In

addition, the whole OTIDS data set has more than 10 million data containing

four data sets of different attacks and one attack free subset. Even for the DoS

attacks and Fuzzy attacks, there are more than 7 million data, which is too

big for a normal computer to process in this thesis or other research. Based on

these factors, a new data set called KCAN-CAV is generated from the OTIDS

data set and used in this research.

4.4.2 KCAN-CAV Data Set

Irrelevant and redundant data in the OTIDS data set is firstly deleted. DoS

and modification are the most severe attacks based on the severity assessment

in Chapter 3. Therefore, only the DoS attacks and the Fuzzy attacks in the

OTIDS data set are retained to evaluate the performance of the proposed

machine learning models. The data sets are then pre-processed to form a new

data set called KCAN-CAV Data set.

In the processed KCAN-CAV data set, the third attribute, the bytes number

of CAN messages, is removed from the original OTIDS data set as the value is

same in all the CAN data. Thus, there are 10 attributes plus 1 label indicating

the attack types in the KCAN-CAV data set, which is the same format as the

Simu-CAN data set.

In the KCAN-CAV data set, the DoS attack and Fuzzy attack data sets are

not combined because the CAN IDs are different in both attacks. The results

could be unreliable if the two data sets were directly combined together. In

addition, as the injected attack data has its own unique CAN ID, for example,

all the DoS attacks have the same 0x000 ID. The proposed machine learning
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models might classify the attacks only based on the IDs. The DoS attack and

Fuzzy attack thus remain as two separate data sets. The amount of normal

data and different attack data in the KCAN-CAV data set are presented in

Table 4.9 and Table 4.10 respectively.

Table 4.9: Amount of Normal and DoS Attack in the KCAN-CAV Data Set

Data amount
Normal 807,619

DoS 233,004
Total 1,040,623

Table 4.10: Amount of Normal and Fuzzy Attack in the KCAN-CAV Data Set

Data amount
Normal 79,991
Fuzzy 3,350
Total 83,341

The attacks in the processed KCAN-CAV data set cover the most severe

attack types defined in Chapter 3, and are collected and generated from real

vehicles in real world environment to evaluate the machine learning models in

Chapter 5.

4.5 Real World CAVCS Data Set: CAV-RW

Data Set

The KCAN-CAV data set is collected from real world environment with com-

mercial vehicles. This research explores further to collect real world data from

real connected and autonomous vehicles.

Besides, the KCAN-CAV data set still has its limitations. For example,

all the DoS attacks have the same CAN ID, and the attacks are generated

separately, which all demand real CAVCS data of more crucial and urgent use

for the literature and in this research.

Due to the lack of equipment and restrictions of COVID-19, the data collec-

tion process could not be completed at the University of Nottingham. With
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the agreement of relevant research organizations, the real CAVCS data is col-

lected from LIESMARS (State Key Laboratory of Information Engineering in

Surveying, Mapping and Remote Sensing), Wuhan University.

The data collection vehicle is modified by Prof Bijun Li’s research team

at Wuhan University. The vehicle is a Changan model vehicle with all the

essential CAV sensors installed, including Lidar, radar, GPS, etc. The photo

of the experiment CAV is shown in Figure 4.5 (a). In the experiments, all the

data is collected via the CANAnalyst Second Generation hardware, which is

designed for CAN communication data collection. The hardware is shown in

Figure 4.6. The cable is connected from the CAN-bus port on the vehicle to

the computer, which is shown in Figure 4.5 (b).

(a) CAV at Wuhan University (b) Data Collection Process

Figure 4.5: CAV Data Collection

The USB-CAN Tool software is used to record the CAN communication

messages. The data collection user interface is shown in Figure 4.7. As it

could be seen from the user interface, the CAN message is set into the standard

format with 8 bytes and in hexadecimal. The status of all the CAN messages

is ”received” (as shown in the 4th red column), as currently there is no injected
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Figure 4.6: CANAnalyst Second Generation Hardware

Figure 4.7: USB CAN Tool software User Interface

data.

In the original unprocessed data, there are 10 attributes, as shown in Figure

4.7.

The first attribute is the serial number of the received messages (as shown

in the first red column). The second attribute is the system time of each CAN
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message (as shown in the left of the second red column), which is the computer

system time in this experiment. The third attribute is the time stamp of each

CAN message (as shown in the right of the second red column), which is shown

in hexadecimal. The fourth attribute is the CAN communication channel (as

shown in the third red column). In this experiment, only the ch1 channel has

been used. The fifth attribute is the CAN communication direction (as shown

in the fourth red column). As mentioned, all the value are “received” in this

experiment. The next attribute is the CAN ID of each message, which is also

shown in hexadecimal. The seventh to ninth attributes (as shown in the sixth

to eighth red column) show that all the CAN messages are in standard data

format of 8 bytes. The last attribute is the content of the 8 bytes message.

However, not all these attributes could be used in anomaly detection, and

currently, there is no attack data in this data set. The original data set needs to

be pre-processed with injected attack data to generate the anomaly detection

data set with the following steps:

1. Irrelevant and redundant attributes are removed from the data set. For

example, the communication channel attribute only has one value, ’ch1’. This

attribute value would not have any impact on the classification results.

2. All the CAN contents data are processed. In the original data set, the

last attribute is the CAN content of each message. Each CAN message has

8 different bytes. These 8 bytes are split into eight different attributes. In

addition, all the CAN bytes in hexadecimal are transferred into decimal.

3. The time stamps of all the CAN messages are processed. In the original

data set, there are two attributes for the communication time. The first at-

tribute is the system time of the message, which depends on the record system.

This attribute is not used in the processed data set. The time stamp attribute

is kept and transferred to decimal. The unit of the time stamp is milliseconds

in the data.

4. All the data is then be labelled as T, indicating that they are normal

data in anomaly detection.
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Figure 4.8: CAV-RW Data Set Format

The processed data set now has 10 attributes in total, as shown in Fig 4.8.

The first attribute is the time stamp of each attribute, the unit of which is

milliseconds. The second attribute is the ID of each CAN message. The third

to tenth attributes are the eight different bytes of CAN messages.

Based on the processed data set of normal CAN communications, anomalous

data, which is the attack data, are injected. Same as the previous simulations,

the DoS attacks and Fuzzy attacks are injected into the data set.

1. DoS Attacks. DoS attacks inject a huge amount of data into normal

communication, leading to traffic jam in data exchange. This is extremely

dangerous in a dynamic driving environment. The simulation of DoS attacks

is the same as in the Simu-CAN data set.

Firstly, the normal data is analysed. Time frequency is the most important

factors in DoS attacks, which is also the key attribute to define the potential

DoS attacks. The normal time frequencies between the CAN messages are

analysed firstly. It could be found that the time frequencies of messages in

this communication range from 2 milliseconds to 51 seconds. The simulated

DoS attack time frequency is thus set to 1 millisecond. In total, 100,000

simulated messages are injected into the original data set. The simulated DoS

attacks are divided into two parts, each of 50,000 messages. Adhering to the

characteristic of DoS attacks, the content of CAN messages stays the same as

the original CAN messages, including the CAN ID and the byte contents in
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attributes C0 to C7. The two sets of DoS attacks are injected into the data

set after the 15,000th data and 200,000th data in the originally collected data

set, respectively.

2. Fuzzy attacks do not modify the time frequency of CAN messages but

will modify the contents of the messages. In CAV communications, the mod-

ification of message contents could be extremely dangerous because it could

interfere with the operations of basic vehicle functions, including steering, ac-

celerating or braking. The simulations of Fuzzy attacks conducted based on

different contents in CAN messages.

As known from the original data set, there are 25 different CAN IDs. With

different CAN IDs, the contents of CAN vary as well. Two different simulation

methods are used to simulate Fuzzy attacks as follows.

a. All the contents are randomly generated in the range of 0 to 255. For

some CAN IDs, different value range exists for the majority of attributes c0 to

c7. For example, all the attributes of c0 to c7 for CAN ID 0208 messages are

randomly generated from 0 to 255. Because in the content of CAN ID 0208,

the value range of each attribute varies a lot.

b. Values of attributes from c0 to c7 for some data are generated from 0 to

255, while the rest of the attributes stay the same. According to the analysis

of the original CAN data set, it could be found that only some parts of the

majority of the CAN messages are changed to conduct the relevant driving

tasks. To simulate the Fuzzy attacks of these messages, not all the attributes

but just some parts are randomly generated. For example, all the attributes

of CAN ID 0298 are 0 except for attribute c3, only c3 is randomly generated

to simulate the Fuzzy attack.

It should be noticed that some CAN IDs were not simulated in the Fuzzy

attacks. It is because that the original samples of these messages are too small.

For example, there are only 2 records of CAN ID 0108. If more data with this

ID are generated, it could then be analysed and simulated in future research.

The original data set was then processed regarding different CAN IDs. The
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amount of simulated data is almost the same as that of the normal data,

resulting in a data set of less bias when detecting attacks.

All the simulated data are labelled ‘F’, indicating the Fuzzy attacks. After

injecting all the Fuzzy attacks, the size of the data set is increased to 696861

messages. With the DoS simulated attacks labelled with ‘D’, the total amount

of normal data and attack data are increased to 796861 messages. The total

amount of normal data and attack data are shown in Table 4.11.

Table 4.11: Amount of Normal and Attack Data in the CAV-RW Data set

Data Number
Normal Data 357,159
DoS Attack 100,000
Fuzzy Attack 339,701

In the processed data set with the injected simulated data, the attributes

stay the same. The first attribute is the timestamp of each CAN message. The

second attribute is the CAN ID, followed by the content of CAN message c0

to c7. The last attribute is the label T, F or D indicating normal or attack

data. The real world CAVCS data set is then named CAV-RW, overcoming

the limitations of KCAN-CAV, which will be further analysed and processed

in Chapter 5 and Chapter 6.

4.6 Summary

In this chapter, 4 different data sets covering in-vehicle and communication

were introduced within the CAVCS framework, addressing the research gap of

lacking open source CAVCS data sets. The detailed information of these four

data sets was shown in Table 4.12.

From the table, CAV-KDD data set covers the possible communication at-

tacks to CAVs, which was generated and processed from a widely-used com-

puter cyber security benchmark data set KDD99.As the data set was generated

and collected from network communication environment, there was no vehicle

sensor used in the data set. Simulated data set Simu-CAN is then generated
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Table 4.12: Summary of Four CAVCS Data Sets

Data Set Attack Type
Covered

Collection Environ-
ment

Sensors Used

CAV-
KDD

Communication
Attack

Communication Envi-
ronment

No Vehicle Sensor
Used

Simu-
CAN

DoS and Fuzzy
Attack

Computer Simulation
Environment

Limited Traditional
Vehicle Sensors

KCAN-
CAV

DoS and Fuzzy
Attack

Real World Vehicle
Data Environment

Traditional Vehicle
Sensors

CAV-RW DoS and Fuzzy
Attack

Real World CAV En-
vironment

CAV sensors

on computer simulation tool ICSimulator. This data set covers possible DoS

attacks and Fuzzy attacks to in-vehicle communications. Because the simu-

lation tool is basic, which only covers the steering, braking and door-opening

functions and relevant sensors on the vehicle.

As real world data is crucial to CAVCS researches, two real world data sets,

namely KCAN-CAV and CAV-RW data sets, were introduced. KCAN-CAV

data set was generated from the OTIDS data set, which is provided by the

Korean University on their website. After processing, the KCAN-CAV data

set covers DoS attacks and Fuzzy attacks in CAN communication.It should

be noticed that KCAN-CAV data set was collected from a traditional vehicle,

indicating that there is no Lidar, Radar and other CAV sensors in the vehicle.

Self-collected CAV-RW data set was collected at Wuhan University by using

a real CAV. The CAV-RW data set combined DoS attacks and Fuzzy attacks

into one data set, making up the limitation of KCAN-CAV. In CAV-RW data

set, the sensors including Lidar, Radar, Cameras and GPS receiver were used,

which increase the data variety. These four data sets provided the platforms

to build machine learning models to conduct anomaly detection in CAVCS. In

Chapter 5 and Chapter 6, the data sets will be further discussed and analysed.
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Anomaly Detection based on

Machine Learning

5.1 Overview

In this chapter, machine learning algorithms including Decision Tree and Naive

Bayes were used to build intrusion detection machine learning models. The

models were tested and evaluated on the first two simulated data sets intro-

duced in Chapter 4, namely CAV-KDD and Simu-CAN to detect the attacks.

Then, the machine learning models were adapted to the real world data sets

KCAN-CAV and CAN-RW introduced in Chapter 4. Evaluation criteria in-

cluding accuracy, false positive rate, model building time and testing time were

analysed and compared.

The experiments have been carried out on an Intel Core i3, 3.70GHz com-

puter with 64 bits Windows Operating System. WEKA is an open source

data mining software developed by the machine learning group, at University

of Waikato [176], and has been widely used in industry and research to conduct

analysis and develop machine learning models.

The experiments on CAV-KDD data set in this chapter have been published

in Journal Mathematics, titled “Machine Learning-Based Detection for Cyber

Security Attacks on Connected and Autonomous Vehicles”, in August 2020.

102
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5.2 Machine Learning Algorithms

In WEKA, the machine learning algorithms Naive Bayes and Decision Tree

were used to build the two classification models to classify and detect CAV

cyber attacks.

Decision Tree is one of the mostly used classification models of a good read-

ability [177]. It is one of the classification models structured as a tree of

nodes and branches connected by one-directional edges. Each internal node of

the Decision Tree (with branches leading to child nodes) represents a decision

variable upon an attribute, and each branch represents a decision taken on the

attribute, leading to the child nodes of different attribute values. The leaves

of the tree (with no branches and child nodes) represent the classifications.

Decision Tree is selected to build the model based on its good readabil-

ity, which could help to understand the priority of different attributes in the

CAVCS data sets, which is useful because the research of CAVCS is still at

an early stage. In addition, as currently the amount of CAV data is limited,

Decision Tree could help deal with a smaller scale of data. The Decision Tree

could process both numeric and nominal data, which is also helpful for CAVCS

anomaly detection.

In WEKA, the Decision Tree algorithm uses the C4.5 technique to build

the Decision Tree model. C4.5 conducts the classification by calculating the

information gain ratio of each attribute, and chooses attributes with the biggest

information gain ratio as the root node. To calculate the information gain ratio

precisely, entropy carried by a data set of possible distribution values V is first

calculated using Equation 5.1 as follows [178]:

Entropy(V ) = −
n∑

i=1

pi · log(pi) (5.1)

Where n is the number of partitions (classification labels) of the data set,

and pi refers to the proportion of the i-th partition. Thus, the information

gain could be calculated in Equation 5.2 as follows:
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Gain(V, a) = Entropy(V )−
J∑

j=1

|Vj|
|V |

Entropy(Vj) (5.2)

Where a is the attribute, |Vj| is the number of distributions in partition j

and |V | is the number of distributions in V . Thus, the information gain ratio

could be calculated in Equation 5.3 as follows:

GainRatio(V, a) =
gain(V, a)

IV (a)
(5.3)

In which, IV (intrinsic value) is calculated in Equation 5.4 as follows:

IV (a) = −
J∑

j=1

|Vj|
|V |

log2
|Vj|
|V |

(5.4)

Then, each value of the attribute will become a branch of this tree and the

data could be split into different classes or tree leaves. The process will be

repeated until the information gain ratio reach the threshold [179], which is

set to 0.25 as default in the experiments. For example, in CAV-KDD data set,

the 39 attributes are the possible distribution values. After calculating the

information gain of all the attributes, the attribute dst host srv serror rate of

the highest information gain is chosen to be the root node.

Naive Bayes is built based on the Bayesian probability model. Naive Bayes

was selected to use because it spends less time on processing data, which

fulfills the requirement of short processing time in highly dynamic driving

environment. It assumes that all the attributes in the data are independent,

meaning that each attribute has no impact on the other attributes [180]. Naive

Bayes model calculates the conditional probabilities of classes, the class with

a high probability is the prediction result [181]. The equation of Naive Bayes

is presented in Equation (5) as follows [182]:

P (c|X) =
P (X|c)P (c)

P (X)
(5.5)

In Equation (5), P (c|X) is the posterior probability of class c when giving
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predictors X. X is the data set of attributes x1, x2, ..., xn. P (X|c) is the class

conditional probability of predictors X when given class c. P (c) is the prior

probability of class c and P (X) is the prior probability of predictors X. For

example, in CAV-KDD, c is the label of normal or attack data. X is the data

set of 39 chosen attributes. Based on attributes of each data in the testing

data set, the possibilities of them belonging to different label is calculated.

Each data then is classified to the label with the highest possibility.

5.3 Evaluation Methods

Currently, there is no international standard to normalize the baseline of

CAVCS performance, which adds to the difficulty of assessing the performance

of the models. To better evaluate the current CAVCS models, however, cri-

teria must be first set. This thesis will evaluate the performance of machine

learning models based on accuracy, FP rate, and runtime.

Accuracy: accuracy is a widely used method for evaluating the performance

of models. As shown in Equation 5.6 [183]. The Npred represents all the

correctly classified data. Accuracy is indicated by the percentage of correct

classifications against the total data.

Accuracy =
Npred

N total
(5.6)

FP rate: the false positive rate indicates that the data is not an attack,

but the model classified it incorrectly as an attack. FP rate could thus be

calculated using the following Equation 5.7 [183]:

FPRate =
FP

FP + TN
(5.7)

Where FP represents the false positive, which is the data incorrectly clas-

sified as negative data. The current label data are regarded as positive data,

while others are negative data. The TN represents the true negative, which is
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the correctly classified negative data.

Runtime: Runtime is crucial in CAVCS evaluation due to the environment’s

real-time and dynamic feature. Even a one-second delay could have severe

consequences. To avoid delay, the detection should be as fast as possible.

In this thesis, two kinds of runtime, namely time to build the model and

time to test the model, are evaluated. The time required to build the model

indicates the model’s complexity. If an inordinate amount of time is needed

to train a model, it might be too complicated to process, or it could be over-

fitted. The time required to test the model is even more important than the

time required to build it. That is because, in real time data processing, the

model only needs to be built once, while it needs to be tested multiple times.

To evaluate the performance of the models, both building and testing time will

be considered, although the testing time of the model is of higher importance.

5.4 Machine Learning Process

Figure 5.1: Machine Learning Process

The building process of machine learning models was conducted based on
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the following steps, shown in Figure 5.1.

1. The data sets were first pre-processed and divided into two parts, namely

training set and testing set. In the CAV-KDD data set, as there already existed

a testing set, the whole original data set was considered as the training set.

The other three data sets were split into 66% for training and 34% for testing.

2. The machine learning algorithms, including Decision Tree and Naive

Bayes, were then adapted into the training set to build corresponding machine

learning models. Two machine learning models were built in the four data sets

to detect anomalies.

3. The models were then adapted to the testing sets to evaluate the perfor-

mance. As discussed in Section 5.3. Multiple evaluation methods were selected

to evaluate the performance of the models, and also avoid the problem of over-

fitting. The results will then be obtained from the performance of models on

testing sets.

In the thesis, Decision Tree and Naive Bayes were used to build the machine

learning models. CAV-KDD, Simu-CAN, KCAN-CAV, and CAV-RW data

sets were used to build and evaluate the model. The results will be listed in

the following sections. Moreover, the results will also be further improved by

adapting the feature selection methods, which will be discussed in Chapter 6.

5.5 Experiments on CAV-KDD Data Set

As mentioned in Chapter 4, after processing the original KDD99 data, the

number of attack types was reduced to 14 in CAV-KDD. CAV-KDD training

data set was used to build the detection models, which were tested on the

CAV-KDD testing data set. To avoid the overfitting problem, the training

set firstly used 10-folds validation to build the model. Then the machine

learning model was validated in the CAV-KDD testing data set. The overall

accuracy, precision and runtime of the Decision Tree and Naive Bayes net

models were compared in Table 5.1. The accuracy indicates the ratio of correct
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classifications of attacks against the total amount of data.

Table 5.1: Accuracy and Runtime of the Machine Learning Model on CAV-KDD

Accuracy on
10-folds Vali-
dation

Accuracy on
the Testing
Data set

Time to Build
Model (s)

Time on the
testing Data
set (s)

Naive Bayes 99.42% 95.66% 0.15 3.38
Decision Tree 99.80% 97.04% 2.42 0.94

From Table 5.1, it can be seen that the Decision Tree model achieved the

higher accuracy of the two models, while the runtime varied. In a real time

driving environment, especially when CAVs are travelling at high speed, time

is crucial, as a long distance of more than 30 meters can be travelled in less

than a second. With almost the same accuracy, Naive Bayes needed a longer

time to identify the attacks and, thus, Decision Tree was more efficient for

CAV cyber security.

In addition, due to the specific characteristics of CAVs, the FP (false pos-

itive) rate of attacks classification is also a crucial metric to evaluate the

performance of the models. In real world situations, if a machine learning

models classifies the attack data as normal data, the consequences could be

life-threatening. Based on this, the false positive rate is shown in Table 5.2.

The precision of each model based on the following Equation 5.8, could also

be analysed, as shown in Table 5.2.

Precision =
TP

TP + FP
(5.8)

It could be seen that, with 10-folds cross validation, as all the attack types

were analysed and trained, the false positive rate was much lower compared to

the false positive rate on testing data set. The false positive rate of both models

were similar on the testing data set and both models achieved a precision over

94% (94.84% and 94.64%, respectively). Based on these results, the false

positive rate was acceptable for both models.

The accuracy and false positive rate of detecting normal and anomalous data
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Table 5.2: FP Rate and Precision of Machine Learning Models on CAV-KDD

FP on 10-
folds Cross
Validation

FP on the
Testing Data
Set

Precision on
Testing Data
Set

Naive Bayes 0.1% 5.2% 94.84%
Decision Tree 0.1% 5.6% 94.64%

of each sub-types of attacks is listed in Table 5.3.

Table 5.3: Accuracy of Sub-Attacks Types Obtained by Machine Learning Models

DT Ac-
curacy

DT FP
rate

NB Ac-
curacy

NB FP
rate

0 NORMAL 99.7% 8.3% 98.2% 7.6%

PROBE
1 ipsweep 96.1% 0% 97.4% 0%
2 nmap 100% 0% 100% 0.1%

DOS

3 mailbomb 0% 0% 0% 0%
4 neptune 99.1% 0.1% 97.6% 0%
5 pod 88.9% 0% 93.3% 0.1%
6 smurf 99.6% 0% 99.9% 0.8%
7 teardrop 100% 0.1% 91.7% 0.1%
8 udpstorm 0% 0% 0% 0%

U2R
9 buffer overflow 59.1% 0% 9.1% 0.1%
10 httptunnel 0% 0% 0% 0%

R2L

11 ftp write 0% 0% 0% 0.3%
12 guess passwd 0% 0% 2.3% 0.3%
13 worm 0% 0% 0% 0%
14 xsnoop 0% 0% 0% 0%

From Table 5.3, it can be seen that both machine learning classification

models had high accuracy when identifying CAV cyber attacks. The FP rates

were low in all the attack data. When identifying the PROBE attacks, Naive

Bayes performed excellently, while Decision Tree did not perform as well when

detecting the ipsweep attacks. When identifying the DoS attacks, both models

performed similarly; while, when detecting the pod attacks, the accuracy of

Decision Tree was much higher. Both models performed poorly under the U2R

and R2L attacks, due to the limited number of records of the U2R and R2L

attacks in the training data sets. However, it can be seen that Naive Bayes

still successfully detected 2.3% guess passwd attacks, the accuracy of which
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was slightly higher than that of the Decision Tree model.

It was noticeable that both machine learning algorithms performed poorly

on attack types which were only included in the testing data set; namely mail-

bomb, udpstorm, httptunnel, worm, and xsnoop. The accuracy of identifying

these five attack types were all zero, meaning none of them are detected. This

is due to the fact that both Decision Tree and Naive Bayes build models using

supervised learning and, thus, are not able to detect unseen new attack types.

Further investigations on building classification models or clustering models

on unseen types of attacks remain an interesting work for future research.

Based on the results, it can be summarised that Decision Tree achieved bet-

ter results, regarding to the communication-based attacks in the CAV envi-

ronment. In the experiments, the Decision Tree model could detect the attack

in a short time with good accuracy. However, it should also be noticed that

both models obtained unsatisfactory results when predicting unseen attacks,

which needs more investigations in the future studies.

5.6 Experiments on Simu-CAN Data Set

As described in Chapter 4, after simulating the attack scenarios and pre-

processing, the Simu-CAN data set contains 42277 instances in total, including

17644 Fuzzy attacks and 5162 DoS attacks. The following experiments used

Simu-CAN to build the detection models in CAN communication, which were

tested by splitting the data set into 66% training set and 34% testing set.

The Decision Tree methods and Naive Bayes methods were used to build

the detection models. The overall accuracy and runtime of these two models

were compared in Table 5.4.

From Table 5.4, it could be seen that the accuracy of both models was not

satisfactory. The Decision Tree could only achieve less than 95% accuracy

while the Naive Bayes was even worse. Based on these results, the accuracy of

each sub-attacks was also analysed, the results of which were shown in Table
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Table 5.4: Accuracy and Runtime of Machine Learning Models on Simu-CAN

Accuracy FP Rate Time to Build
Model (s)

Time on the
Testing Data
Set (s)

Naive Bayes 69.7% 30.3% 0.1 0.06
Decison Tree 94.2% 5.8% 0.48 0.01

5.5.

Table 5.5: Sub-Attacks Accuracy and FP Rate on Simu-CAN

T (Normal) F (Fuzzy Attack) D (DoS Attack)

Accuracy
Naive Bayes 93.4% 63.2% 0%
Decision Tree 88.7% 98.6% 90.7%

FP Rate
Naive Bayes 49.5% 6.4% 0%
Decision Tree 1.1% 1.4% 5.20%

It was found that the Naive Bayes failed to detect the DoS attack. In

Decision Tree model, though the accuracy of detecting DoS attacks was fairly

high, it could be found that the false positive rate of DoS attack detection

was much higher than the other two types. It could be deduced that the DoS

detection should be improved. The current machine learning models were not

good enough to detect the DoS attacks.

Based on the Characteristic of DoS attack, the time is the most important

attribute to detect the possible DoS attack. In the simulation of DoS attack

in Simu-CAN data set, the time frequencies of each CAN message are shorten.

Thus, two new attributes WithID and WithoutID were added into the data

set to better detect the DoS attack.

The first attribute WithID is the time frequency between the current CAN

message with last same ID CAN message. The value of WithID of first CAN

message was set to 0 in the data set.

The second attribute WithoutID is the time frequency between current CAN

message with last CAN message, the CAN ID could be same or different. The

value of WithoutID of the first CAN message was set to 0 in the data set.

After adding these two attributes, the whole data set thus has 12 attributes

illustrated in Figure 5.2. The machine learning algorithms Decision Tree and
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Naive Bayes were then adapted to the data set to build the machine learning

models. The results of these two models were compared and analysed in Table

5.6.

Figure 5.2: Data Format with New Attributes of Simu-CAN

Table 5.6: Accuracy and Runtime of Machine Learning Models with New Attributes

Accuracy FP Rate Time to Build
Model (s)

Time on the
Testing Data
Set (s)

Naive Bayes 73.5% 26.5% 0.13 0.14
Decision Tree 97.8% 2.2% 0.91 0.05

Table 5.7: Sub-Attacks Accuracy and FP Rate on Simu-CAN with New Attributes

T (Normal) F (Fuzzy Attack) D (DoS Attack)

Accuracy
Naive Bayes 79.0% 64.9% 82.1%
Decision Tree 98.2% 99.0% 92.4%

FP Rate
Naive Bayes 18.0% 5.30% 15.7%
Decision Tree 2.4% 0.6% 0.6%

As seen from Table 5.6, the overall accuracy of Decision Tree and Naive

Bayes were 97.8% and 73.5%, respectively. Compared with the accuracy with-

out new attributes, it could be seen that the accuracy of two algorithms were

both increasing. Regarding the FP rates, the FP rates were also decreasing to

2.2% and 26.5%, respectively. Both accuracy and FP rate indicated that the

new attributes were useful to detect the attacks.

Besides the overall accuracy and FP rate, the performance of individual at-

tack improved as well. Because the new attributes were more related to the
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time frequency of the messages, the DoS attack detection would be affected

more significantly. As seen from the results in Table 5.7, to the DoS attack

detection through Naive Bayes, before adding the new attributes, the model

could not detect the DoS attack, while now the detection accuracy raises to

82.1%. Though the FP rate was still not satisfactory. As for the DoS attacks

detected by Decision Tree model, the accuracy increased and the FP rate de-

creased as well, which indicated the improvement by the new attributes. Even

for the Fuzzy attack detection, the accuracy and FP rates had improvements.

Based on these, the new attributes were necessary for the attack detection in

CAV cyber security, and will be used in future experiments.

In addition, regarding the two machine learning models, the performance of

Decision Tree was much better than that of Naive Bayes method. After adding

two new attributes, the accuracy of Decision Tree model achieved 97.8% and

the FP rate was 2.2%. While after adding the two new attributes, the accuracy

of Naive Bayes was still low, which was only 73.5%. The FP rate of Naive Bayes

was unacceptable as well.

As for the runtime, the building time of Decision Tree was 0.91s and the

testing time was 0.05s. Considering that only 33% data were testing data,

the testing time needs to increase as the data amount in real world would be

larger. In Naive Bayes, the testing time is usually longer than building time.

In this situation, the testing time of Naive Bayes was 0.14s, which was almost

triple that of Decision Tree, which also indicated that Decision Tree was more

appropriate for the attack detection.

Compared with CAV-KDD, the runtime of building and testing model of

Simu-CAN were much quicker. It was because that the amount of data in

Simu-CAN was much smaller than that of CAV-KDD. In the real driving en-

vironment, the data amount would be much larger, the limitation of the data

amount could be evaluated when generating data in the real world environ-

ment, which will be further analysed in Section 5.6 and Section 5.7.
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5.7 Experiments on KCAN-CAV Data Set

The machine learning algorithms have been applied to the KCAN-CAV data

set. However, as the original OTIDS data set were collected separately on DoS

attacks and Fuzzy attacks, the attack IDs were different and the attack were

not continuous. Thus, the algorithms might detect the attack only based on the

time stamps and attack IDs. For example, all the Fuzzy attacks happened after

the DoS attacks. The algorithm would then classify all the abnormal data after

certain time as Fuzzy attacks, which is misleading. In the experiments, the

detection of attacks in the data sets were conducted separately on DoS attacks

and Fuzzy attacks. Besides, the new attributes WithID and WithoutID were

also injected into KCAN-CAV data set to help the detection.

The accuracy, FP rate and runtime of detection of Fuzzy attack were shown

in Table 5.8. As seen from the table, the overall accuracy rates of Decision

Tree model and Naive Bayes were both high, which were 99.9% and 99.4%,

respectively. The accuracy of Naive Bayes was slightly lower than that of

Decision Tree model.

However, it did not mean that both models achieved good results. From the

FP rate results, it could be seen that the FP rate of the Decision Tree model

was 1.32%, which was acceptable. However, the FP rate of Naive Bayes was

high, which was 44.8%, indicating that nearly half of the data were classified

incorrectly. In real world driving situation, this could lead to fatal conse-

quences. Naive Bayes was thus not suitable for the detection of Fuzzy attack

in CAVs.

Table 5.8: Accuracy and FP Rate on KCAN-CAV Fuzzy Attack

All T (Normal) F (Fuzzy Attack)

Accuracy
Naive Bayes 99.4% 99.6% 55%
Decision Tree 99.9% 99.9% 97.1%

FP Rate
Naive Bayes 44.8% 45% 0.4%
Decision Tree 1.32% 2.9% 0%

In the previous experiments, such as the CAV-KDD, though the Naive Bayes
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has a lower accuracy, the runtime was much shorter than that of Decision

Tree. However, as seen from Table 5.10, the testing time on Fuzzy attacks

of Naive Bayes was more than twice of the testing time of Decision Tree.

Though the building time of Naive Nayes is much faster than that of Decision

Tree. The quicker building time does not impact on and benefit in dynamic

driving situations. The amount of the KCAN-CAV data set is less than a

million, however, in real world situation, the amount might increase. As for

the testing time, the Decision Tree model was still not fast enough, and needed

to be improved. More detailed analysis of feature selection for improving the

efficiency will be presented in Chapter 6.

Table 5.9: Accuracy and FP Rate on KCAN-CAV DoS Attack

All T (Normal) D (DoS Attack)

Accuracy
Naive Bayes 97.8% 97.2% 100%
Decision Tree 99.9% 100% 100%

FP Rate
Naive Bayes 2.2% 0% 2.8%
Decision Tree 0.03% 0% 0%

Beside the discussed Fuzzy attacks, the accuracy, FP rate and runtime of

the detection of DoS attack were shown in Table 5.9. Both machine learning

models achieved good results. The accuracy of Decision Tree model was 99.9%,

where only 1 message was classified incorrectly among all the 1040623 data.

The FP rate was only 0.03%, as there was only one incorrectly classified data.

For the sub-attacks, either normal data (T) and DoS attack data (D) both

achieved fairly high results.

However, in real world, it is not easy to achieve such a good result. Because

in KCAN-CAV data set, all the DoS attacks use same CAN ID, 0x000, which

could mislead the machine learning models. To further analyse the potential

overfitting issue in the Decision Tree model, more detailed results based on

feature selection will be discussed in Chapter 6.

For Naive Bayes results on accuracy and FP rate, it could also be seen

that the accuracy was 97.71% and the FP rate was 2.19%, which were both

acceptable, especially compared with the performance of Naive Bayes on the
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Simu-CAN data set. For each subset, the normal data had an accuracy rate

of 97.2% with a FP rate of 0%, while the DoS attack had an accuracy rate of

100% with a FP rate of 2.8%. The reason that the accuracy of Naive Bayes

was high was that the model classified some normal data as DoS attacks, it

means some of the correct information cannot be sent to the vehicle.

Table 5.10: Runtime of Machine Learning Models on KCAN-CAV Data Set

Building Time (s) Testing Time (s)

DoS Attack
Naive Bayes 2.88 1.8
Decision Tree 29.01 0.67

Fuzzy Attack
Naive Bayes 2.98 2.57
Decision Tree 83.25 1.17

The runtime of DoS attacks by both machine learning models was shown

in Table 5.10. The testing time of Naive Bayes model was slower than that

of Decision Tree model, which was 1.8 seconds, while Decision Tree only used

0.67 seconds. With more than 3 million data in the testing set, the testing

time of these two models was acceptable. In addition, it is also believed that

the testing time could be decreased with more powerful computing facilities

installed on the vehicles.

Based on all of these results, the Decision Tree is more suitable to detect

the DoS attacks. Similar results were obtained in the other experiments as

well. However, accuracy were too high in the results, indicating a potential

overfitting issue with the Decision Tree model. This will be further analysed.

The runtime could also be shortened with other techniques such as feature

selection methods to remove less irrelevant attributes. This will be analysed

in Chapter 6.

The separate detection of DoS attacks and Fuzzy attacks in the KCAN-CAV

data set achieved a high accuracy. Based on the characteristics of the models

and the data set, the reasons could be summarised as follows.

Firstly, in each subset, there was only one type of attack, either DoS attacks

or Fuzzy attacks. Compared with the multiple classifications in the CAV-

KDD data set, the classification in the KCAN-CAV data set is binary, which
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requires simpler models. The model could also classify the normal and attack

data quicker than other data set.

Secondly, the Decision Tree model achieved a better result with the well-

structured attributes. In the data structure, the CAN contents, including

c0 to c7, all have a certain value range. When an attack happens, the value

range would change dramatically, thus can be easily detected by Decision Tree.

Because in the Decision Tree model, the overall value range of 0 to 255 for tree

nodes is divided for each attribute into smaller parts, the attack value could

be easily localised by the model.

Some limitations of the machine learning models were also found. Firstly,

the accuracy rates of both models were high. However, the Naive Bayes model

incorrectly classified lots of normal data as attacks. Although the overall

accuracy was high, the FP rate was high as well. The overall accuracy should

not be used as the only evaluation metric in the performance evaluation. More

metrics need to be introduced to build a better and more suitable anomaly

detection model.

In addition, the data in the data set were not balanced. There are 807,619

normal data and 233,004 DoS attack data. The percentage of normal and

attack data was acceptable for the DoS attack, as DoS attacks only cover a

short period of interruptions to the communication. However, as for the Fuzzy

attacks, there are 799991 normal data against only 3350 Fuzzy attacks. Due

to the bias in the data set, the result of Fuzzy attack was less reliable and

difficult to improve. With more Fuzzy attack data, the model could be more

reliable with improved performance on detecting Fuzzy attacks.

Besides, as the two data sets were collected separately on different time

periods, it was difficult to combine the two data sets. The CAN IDs of data

in the data sets were different. In addition, the different periods of attack

time mean that the detection of attacks can be made based on only the attack

time, which will definitely obstruct the performance of the models. Because

of this, the experiments were conducted separately. However, in real world
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situation, it is possible that attacks are made in various and complicated way.

In the experiments of KCAN-CAV data set, the detection of multiple types of

attack is not conducted in this thesis. It posed a new challenge to collect the

DoS and Fuzzy attack during the same time period from the same vehicles.

Furthermore, the KCAN-CAV data sets were collected and simulated from a

traditional vehicle, more results need to be analysed on real CAVs with self-

collected CAV attack data set CAV-RW data set in the Section 5.7.

Finally, all the simulated DoS attacks used the same ID 0x000. This ID was

not used in normal data. This posed a problem that the model can detect the

DoS attacks based on just their CAN IDs. However, in real world situation,

the attackers could use the various CAN IDs in normal data to prevent the

detection. This problem will be discussed in the CAV-RW data set explained

in Section 5.7.

5.8 Experiments on CAV-RW Data Set

The Decision Tree and Naive Bayes models were built to detect the DoS attack

and Fuzzy attacks in the CAV-RW data set. Because there is no specific testing

set, the CAV-RW data set was thus divided into two parts: 66% training data

and 34% testing data.

Compared with the other real world data set KCAN-CAV, CAV-RW data

set addressed several limitations. First, the data bias problem in KCAN-CAV

was solved. CAV-RW then combined DoS attacks and Fuzzy attacks instead

of classifying attacks separately. In addition, the only ID used in DoS was also

changed in CAV-RW data set to make the attacks more similar to real world

attacks.

The existing attribute Time helped to detect the DoS attacks. Like in the

Simu-CAN and KCAN-CAV data set, the existing attributes were still not

enough for attack detection. New attributes WithID and WithoutID were in-

jected into the data set. The WithID indicated that time frequency between
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CAN messages with same CAN ID. The WithoutID represented the time fre-

quency between the CAN messages without considering the CAN IDs.

As mentioned in Chapter 4, there were 25 different CAN IDs in the CAV-RW

data set. The data set was then split into 25 sub-data sets to analyse the time

frequency of specific CAN ID. To each CAN ID, the first CAN message was

marked as 0 because there was no former message. The time interval of the rest

of the CAN messages were calculated, and this attribute were named ‘WithID’,

indicating the consideration of their ID information. With the newly generated

attributes, the accuracy, FP rate and runtime of each machine learning model

were shown in Table 5.11 and 5.12, respectively.

Table 5.11: Accuracy and FP Rate of Machine Learning Models on CAV-RW Data
Set

All Normal
Data

Fuzzy
Attack

DoS
Attack

Accuracy
Decision Tree 99% 98.5% 99.6% 98.6%
Naive Bayes 61.21% 63.1% 56.0% 72.1%

FP Rate
Decision Tree 0.4% 0.5% 0.01% 0.8%
Naive Bayes 21.9% 32.8% 2.1% 15.7%

Table 5.12: Runtime of Machine Leaning Models on CAV-RW Data Set

Building Time (s) Testing Time (s)
Decision Tree 68.31 0.6
Naive Bayes 1.56 1.27

It could be seen that the Decision Tree model achieved a satisfactory ac-

curacy with an acceptable runtime. To all the attack detection in the data

set, the overall accuracy achieved 99% by Decision Tree and 61.21% by Naive

Bayes, respectively. The FP rate of Decision Tree model was only 0.4%. To

different sub-attacks, Decision Tree also achieved good accuracy with low FP

rate. In the detection of the Fuzzy attacks and DoS attacks, the Decision Tree

model achieved 99.6% and 98.6% on accuracy, with 0.01% and 0.8% on false

positive rate, respectively.

However, Naive Bayes model performed poorly on both accuracy and FP

rate. The overall accuracy was only 61.21%, the accuracy of Fuzzy attacks
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was even lower. The FP rate of Naive Bayes was also unsatisfactory, indicating

that Naive Bayes was not suitable for the Fuzzy and DoS attacks detection in

real world.

Regarding the runtime including model building time and testing time,

Naive Bayes model was much quicker than Decision Tree in model building

time. Decision Tree used 68.31 seconds to build the model, while Naive Bayes

only used 1.56 seconds. However, the building time is not as important as

the testing time. Because in the real world usage, the machine learning model

only needs to be built once while the testing procedure needs to be conducted

several times. As seen from the table, Naive Bayes was slower than Decision

Tree in testing the model on the testing set. Naive Bayes used 1.27 seconds

to test on the testing data set, while the Decision Tree model only used 0.6

seconds when using the same experiment environments.

In general, the Decision Tree was much appropriate for the real world attack

detection in CAVs. As it could achieve a high accuracy rate with a short

testing time. It could also be confirmed that the runtime could reduce when

high performance computers are used. As currently due to the experiment

limits, only personal computers with limited computing power were used.

The Naive Bayes model performed poorly on the detection. This was due to

the characteristics of Naive Bayes, which requires the independence between

the attributes. However, in the data set, the attributes were correlated, which

will have negative impacts on the performance of Naive Bayes model. From

the experiment results, Naive Bayes performed poorly on all the in-vehicle

data sets. This indicated that Naive Bayes is not suitable for the detection on

in-vehicle data.

Decision Tree model was suitable for Fuzzy attack because the value range in

all the attributes were fixed. If a Fuzzy attack happens, the data would not fall

into the normal value range. The characteristics of Decision Tree could help

to classify the value range quickly. In this case, Decision Tree could achieve

good results in detecting Fuzzy attacks.
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The experiments on CAV-RW data set mitigate the limitations of the other

real world data set KCAN-CAV. First, CAV-RW data set was collected from a

real CAV, indicating that the CAN data would be more various as there were

more sensors and ECUS installed on the vehicle. Then, the DoS attack and

Fuzzy attack were combined in the CAV-RW data set. Compared with binary

classification on KCAN-CAV data set, the detection on CAV-RW data set was

more complicated and more similar to real world environment.

5.9 Summary

In this Chapter, all the four CAVCS data sets, namely the CAV communication

data set CAV-KDD, simulated data set Simu-CAN, real world data set KCAN-

CAV and self-collected real CAV data set CAV-RW were tested by the Decision

Tree and Naive Bayes machine learning models.

From the results of the experiments, several conclusions could be made.

First, the machine learning models could effectively help detect attacks in the

CAVCS data sets. The experiments of detection on CAVCS indicated that

Decision Tree achieved better results, compared with Naive Bayes model. Re-

garding the accuracy in all the data sets, the Decision Tree model achieved

higher accuracy rates. As for the runtime, the Decision Tree model needed

longer model building time, compared with that of Naive Bayes models. How-

ever, the testing time of Decision Tree was shorter than that of Naive Bayes.

As the testing time is more important than the building time, Decision Tree

could achieve better results. However, the runtime of either model was still

not quick enough for highly dynamic CAV driving environment. Much faster

runtime is needed, and also maintaining a similar accuracy and a satisfactory

FP rate.

In general, Decision Tree model achieved much better results than Naive

Bayes model. This was due to the characteristics of Naive Bayes, which de-

mands the independence between each attribute. However, in the data sets,
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some attributes were correlated tightly, which will weaken the performance

of Naive Bayes model. From the experiment results, Naive Bayes performed

poorly on all the in-vehicle data sets, including Simu-CAN, KCAN-CAV, and

CAV-RW. This indicated that Naive Bayes is not suitable for the detection on

in-vehicle data. Decision Tree model was suitable for detecting attacks because

the majority of the value range in the attributes were fixed, especially for the

Fuzzy attack. If an attack happens, the data would not fall into the normal

value range. The characteristics of Decision Tree could then help to classify

the value range quickly.

Feature selection methods could help to shorten the testing time for CAVCS

detection while retaining a high accuracy. They could also reduce the irrelevant

attributes and increase the efficiency of the models. The improved performance

of the machine learning models with feature selection will be discussed in

Chapter 6.

Moreover, as discussed in this chapter, the newly added attributes WithID

and WithoutID on the time frequencies between data were useful when de-

tecting DoS attacks and Fuzzy attacks. Feature selection methods could also

help to select the most relevant attributes. If the new attributes could help

the model to detect attacks, the feature selection methods would also identify

the high correlation between the newly added attributes and classifications by

selecting them. Further improvements were needed and will be discussed in

Chapter 6.



Chapter 6

Enhanced Anomaly Detection

by Feature Selection

6.1 Overview

The total amount of data in the CAV-KDD, Simu-CAN, KCAN-CAV and

CAV-RW data sets is more than millions. However, the amount of data is still

likely to increase in real world usage. The electronic control units (ECUs) in

traditional vehicles can produce 2000 CAN messages per second [22], and that

number is likely to increase in well-equipped CAVs of the future. Further-

more, the channels that CAVs use to communicate with the outside environ-

ment, such as V2V and V2I, also generate large volumes of data per second.

The performance of current models to deal with the large amounts of data

constantly entering and exiting CAVs is still not satisfactory.

Due to these large volumes of data, machine learning models built in Chapter

5 are expected to detect the anomalies more quickly to protect CAVs in life-

critical situations. Therefore, both the accuracy and runtime, as well as general

efficiency, of the machine learning models should be improved to deal with

greater quantities of data.

Feature selection methods in machine learning could help to address these

issues by reducing irrelevant features (or also known as attributes). More-

123



Chapter 6. Feature Selection Methods 124

over, understanding and choosing the most relevant features would also help

real world data collection and further analysis to focus on meaningful fea-

tures. This chapter proposes and analyses feature selection methods suitable

for CAVCS. It also applies and compares mainstream feature selection methods

in its search to find the most appropriate feature selection method for CAVCS.

The most effective model and important attributes are then suggested based

on the analysis.

6.2 Feature Selection Methods

Feature selection methods can be classified into three main streams, namely

filter, wrapper, and embedding.

1. Filter: Filter feature selection methods do not consider the machine learn-

ing models into the evaluation [184]. They choose the feature subsets first and

then adapt the machine learning models. These methods only evaluate the

features based on filter parameters such as distance, information, and correla-

tion. The filter methods generate different feature subsets based on different

methods. Because machine learning models and features are independent in

filter methods, time consumption under filter method will be lower [185].

2. Wrapper: Wrapper feature selection methods do consider the machine

learning models as part of their evaluations. The performance of machine

learning models on test sets will be evaluated to choose feature sets [184]. If

the machine learning model could not be changed in some situations, wrapper

methods would be a good choice to conduct the feature selection process.

The feature subsets normally could lead to good results and fewer selected

features because they are evaluated by specially selected machine learning

models. However, when compared with filter methods, wrapper methods are

more time-consuming because the machine learning models would have to be

retrained several times [186].

3. Embedding: In filter and wrapper methods, the feature selection pro-
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cess is independent of the training and testing of machine learning models,

which means that these methods could be applied to any machine learning

models if appropriate. In embedding methods, the feature selection methods

are combined with the training and testing of machine learning models. Some

machine learning models already have feature selection functions inside the

model to conduct feature selection methods automatically [187]. However, the

complexity of the model could increase. Besides, not all machine learning al-

gorithms could use embedding feature selection methods. For example, in the

Decision Tree model, the Gain Ratio has been calculated, indicating that the

embedding feature selection method is already in the model.

In this thesis, filter methods (Info Gain and Gain Ratio, the Pearson Method),

wrapper methods (CFS) and embedding methods (Decision Tree) were used

and compared. More detailed results and discussions will be shown in Section

6.3.

6.3 Experiments

The assessment of feature selection models takes the following six steps, shown

in Figure 6.1:

1. Original input features: In this step, all features in the data set will

be included in the selection. For example, in the CAV-KDD data set, there

are 41 features plus 1 label; In the other three data sets, including Simu-CAN,

KCAN-CAV and CAV-RW, there are 10 features plus 1 label. The experiments

will first generate the results with all the features.

2. Feature subset selection: All features will be considered in correlation

with the classifications based on different feature selection methods. The most

related features will be placed into feature subset.

3. Machine learning algorithms adaption: The chosen features will be used to

re-train the machine learning models with the new selected attributes. Decision

Tree and Naive Bayes will be served as the machine learning algorithms in the
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Figure 6.1: Feature Selection Process

feature selection process.

4. Performance evaluation: The performance of each feature selection method,

including information gain, Gain Ratio, CFS (Correlation-based feature selec-

tion), and the Pearson Method, will be compared and analysed.

5. Improvement: If the results from Step 4 are improved based on the

proposed feature selection method, the feature subset will be chosen as the

final set to detect attacks in CAVs. Otherwise, the process return to step 2 to

process again.

6. Final feature set output: The final feature set will be used to detect

the attacks in CAVs and guide for real world CAV data collection. If not all

the features in data set could be collected due to limited data storage and

computation power, the feature set chosen by the most appropriate feature

selection method should be collected first.

In the thesis, several feature selection methods were chosen to analyse and

compare. The three filter methods (Pearson, Info Gain, and Gain Ratio) and

the wrapper method (CFS), are chosen. The reason to choose these methods is
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based on the characteristic of the machine learning models built in Chapter 5,

namely Decision Tree and Naive Bayes. Decision Tree uses Information gain

and Gain Ratio to select the nodes and conduct the training. Naive Bayes

requires that all the features are independent, as does the CFS method. In

addition, the attributes are mainly numeric. Thus, the Pearson method could

help to calculate the correlation and rank the features. Based on the charac-

teristics of these two machine learning models, the feature selection methods

mentioned are chosen to conduct the process.

The concepts of Info Gain and Gain Ratio were introduced in Section 5.2.

These two methods calculate and rank the Info Gain and Gain Ratio of each

feature. Because of this, the Ranker search method was used in these two

methods. The Ranker method will help the feature selection methods to rank

the value of info gain and Gain Ratio value, which is also a default search

method for these two feature selection methods.

The correlation-based feature selection (CFS) method is a wrapper method

that evaluates the feature subsets using heuristics. The focus of CFS is on

feature subsets rather than individual features. The heuristic method assumes

that a good feature is highly correlated with the classes but not correlated with

other features. This characteristic matches that of Naive Bayes, which requires

the independence of each feature. The CFS equation is shown in Equation 6.1

[188]:

MeritS =
krc̄f

k + k(k − 1)rf̄f
(6.1)

Where MeritS represents the the evaluation to a feature subset S with k

features. rc̄f represents the average feature – class correlation in the subset,

and rf̄f represents the average feature – feature correlation. In Equation 6.1,

it should be noticed that all the variety should be normalised, which needs to

be completed in the data pre-processing step.

The CFS method uses three kinds of search methods: best first search,
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forward selection, and backward elimination. To achieve better accuracy and

understand the importance of each attribute, the best first search method was

chosen in the experiments.

The best first search method is a type of beam search. It first calculates the

feature-class and feature-feature correlation. Then, it searches all the feature

subsets. It starts with an empty feature subset, then adds the highest merit

feature into the subset repeatedly. If the merit value of later features is higher

than before, the later feature will be kept. Otherwise, it will be removed from

the subset. After all features are considered, the highest merit value feature

subset is obtained [189].

Another feature selection method used in feature selection is the Pearson

method. In the WEKA software, the Correlation Attribute Evaluation feature

selection method is based on the Pearson correlation. Because of this, the

name Pearson method was used in the experiments.

The Pearson method is a simple and easy-to-understand feature selection

method. It is based on the linear relationship, and is, therefore, very fast. The

Pearson method is also a filter feature selection method. The ranker method

was used to evaluate the correlation of different selected attributes. The initial

result of the Pearson method is in a specific value range, from -1 to 1. A value

of 0 means that the correlation between the selected attribute and classification

is not related linearly. A value close to 1 indicates that the attribute and the

classification have a positive correlation. A Pearson value close to -1 indicates

that the selected attribute and classification are negatively correlated. The

Pearson method is used on the in-vehicle data sets because all the attributes

in the data sets are within a specific value range, and are more likely to be

linearly correlated in the classification.

The formula of the Pearson method is shown in Equation 6.2 [190]:

ρ(X, Y ) =

∑
(X − µx)(Y − µY )√∑

(Xi − µx)2
√∑

(Yi − µy)2
(6.2)
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Where X and Y represents the two variables. X usually represents the

attribute, and Y usually represents the classification, µx is the mean value of

X and µy is the mean value of Y .

In CAV-KDD data set, the thesis proposed a method of gathering the inter-

section of attributes selected by other methods, because CAV-KDD data set

has more attributes than other data sets. However, the proposed method could

not be used in other data sets due to the limited number of the attributes.

6.3.1 CAV-KDD Data Set Feature Selection Results

All the features of the CAV-KDD data set, excluding the features with only

one value, were used in the experiments. There are 39 attributes in total.

With different feature selection methods, different feature subsets were cho-

sen, as shown in Table 6.1.

Table 6.1: Selected Feature Subsets on CAV-KDD

FS Method Selected Features
CFS service, flag, wrong fragment, num failed logins,

logged in, count, same srv rate, dst host count,
dst host srv diff host rate, dst host srv serror rate

Gain Ratio wrong fragment, num failed login,
dst host srv serror rate, dst host serror rate, ser-
ror rate, srv serror rate, same srv rate, flag, logged in,
urgent, count(48%)

Info Gain service, same srv rate, flag, count,
dst host same srv rate, dst host srv rate, ser-
ror rate, dst host serror rate, dst host srv serror rate,
srv serror rate, logged in

Proposed Method flag, logged in, same srv rate, dst host srv serror rate

It should be noticed that only features with more than 50% correlation

value in filter methods (Info Gain and Gain Ratio) were chosen to conduct

the feature selection experiments. Because the CAV-KDD data set has 41 at-

tributes in total, two of which only have one value. The remaining 39 features

were sufficient to conduct feature selection experiments. When applying the

Wrapper method (CFS), the number of features was set to 10 because ad-

ditional features did not improve performance in this method. Additionally,
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both filter methods chose 10 or 11 features, showing high correlations with the

labels. As it could be seen in Table 6.1, CFS and Gain Ratio both chose 10

features, Info Gain chose 11 features. Among these, the intersection method

chose four most important features, which were attribute 4(flag), attribute

12 (logged in), attribute 27 (same srv rate) and 37 (dst host srv serror rate).

Attribute 21 (count) also showed a high correlation with the labels. In Gain

Ratio, however, the correlation value of attribute 21 was only 48%. To evalu-

ate whether attribute 21 was important or not, the performance of accuracy,

FP rate and runtime was also evaluated. It was found that after adding the

attribute 21 (count), the results became worse. Therefore, the proposed inter-

section feature selection method did not contain attribute 21 to conduct the

following experiments.

The irrelevant features were then removed from the CAV-KDD data set. The

machine learning models were adapted to the CAV-KDD data set by using the

chosen feature subsets. In the experiments, the thesis used the CAV-KDD

training set for training and the CAV-KDD test set for testing.

Table 6.2: Accuracy, FP Rate and Runtime of Feature Selection on CAV-KDD by
Decision Tree

Accuracy FP Rate Building Time (s) Testing Time (s)
CFS Method 96.6% 5.5% 0.39 0.29
Gain Ratio 95.6% 8.8% 0.43 0.23
Info Gain 96.9% 4.5% 0.27 0.57
Proposed Methods 95.9% 8.4% 0.15 0.13

Table 6.3: Accuracy, FP Rate and Runtime of Feature Selection on CAV-KDD by
Naive Bayes

Accuracy FP Rate Building Time (s) Testing Time (s)
CFS Method 96.6% 5.2% 0.04 0.5
Gain Ratio 92.6% 12.2% 0.02 0.53
Info Gain 95.7% 5.1% 0.03 0.55
Proposed Methods 95.8% 8.4% 0.02 0.23

The accuracy, FP rate and runtime of the Decision Tree model and Naive

Bayes model are shown in Table 6.2 and Table 6.3, respectively.
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It could be seen from the tables that the runtime of the models decreased

with negligible impacts on accuracy. In Decision Tree model detection, the

runtime of all feature selection methods was reduced from around 1 second us-

ing all the features to less than 0.6 seconds when applying the feature selection

method while the detection rate decreased within 1.5%.

In the Decision Tree model, all the feature selection methods achieved an

accuracy of 95.6% or higher. Accuracy reached 97.04% when all the features in

the testing set were used, as shown in Table 5.1. However, the high accuracy

rate was built on high time consumption. The building time of the model was

2.42 seconds and the testing time was 0.94 seconds.

After the feature selection methods were applied, both building time and

test time dropped significantly in the Decision Tree model. All the building

times were less than 0.5 seconds, which decreases of at least 1.9 seconds. The

testing times were all less than 0.6 seconds, showing a reduction of at least 0.37

seconds. The fastest building and testing times, 0.15 and 0.13, respectively,

were both achieved by the proposed intersection method. These results showed

that the building time decreased 94% and the testing time decreased 86%

compared with the Decision Tree model without any feature selection method.

With the decrease in runtime, the accuracy of the detection was affected

but not significantly. As it could be seen from Table 6.2, after applying the

feature selection methods, all the accuracy rates were still above 95%. The

lowest accuracy rate was 95.6% with Gain Ratio, and the highest accuracy

rate was achieved by Info Gain, which was 96.9%. The proposed intersection

method achieved 95.9%, a decrease of 1.24% compared with the Decision Tree

model without any feature selection method. Based on the results, Decision

Tree model with feature selection achieved improved performance.

The results of the Naive Bayes model were shown in Table 6.3. The building

time of this model also decreased by at least 0.11 seconds. Considering the

consumption limitation of the experiment platform, it could be deduced that

if the performance of the processors on CAVs were higher, the building time
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would be negligible. The fastest building time is 0.02 using the Gain Ratio

and the proposed method. The testing time of the Naive Bayes model with

feature selection methods reduced as well. After applying feature selection

models, the testing time decreased from 3.38 seconds to at least 0.55 seconds,

which means that the results improved a lot. The proposed method achieved

the fastest testing time, which was 0.23 second.

Regarding the accuracy of Naive Bayes with feature selection methods, which

was also shown in Table 6.3, it could be seen that the accuracy still decreased,

but on a smaller scale. Compared with the accuracy of 95.66% using all the

features in Table 5.1, all the other feature selection methods, excluding Gain

Ratio, still maintained an accuracy higher than 95%. The proposed method

achieved a high accuracy rate of 95.8%. The worst accuracy result was from

the Gain Ratio method, which was only 92.6%. The accuracy of other feature

selection methods increased as well.

After analysis of the results from the tables, the accuracy of both Decision

Tree and Naive Bayes with feature selection methods achieved acceptable rates

of accuracy. It could be seen that the accuracy of the Decision Tree was more

stable than that of Naive Bayes, as the accuracy of all the feature selection

methods was higher than 95%. In conclusion, it could be seen that except

for Naive Bayes with Gain Ratio, all other feature selection methods could

achieved acceptable accuracy rates.

In addition to accuracy, the other performance evaluation criterion, the run-

time, was satisfactory as well. Before applying the feature selection methods,

the building time of Naive Bayes was much faster than that of Decision Tree.

After using feature selection methods, however, though the building time of

Decision Tree was still higher than that of Naive Bayes, the testing time of De-

cision Tree was only half of that of Naive Bayes. In building time, the quickest

results of Decision Tree and Naive Bayes were 0.15 and 0.02, respectively. In

testing time, the fastest results of Decision Tree and Naive Bayes were 0.13

and 0.23, both of which were achieved by the proposed method.
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As mentioned in the performance evaluation in Chapter 5, testing time is

more important than building time. This is because the machine learning

models only need to be trained once, while they need to be tested every time

to detect attacks. The Decision Tree with feature selection method was more

suitable for attack detection. The Naive Bayes model showed poor performance

in testing time. That is mainly because that Naive Bayes has a limitation that

it assumes that all the features are independent in a data set. When the

features are correlated, the efficiency of the model decreases instead. The

results of the experiments also showed this. After applying feature selection

methods with a decreasing number of features, the correlation between features

increased instead. Besides, in the real world environment, it is not realistic that

all data is independent, which would have negative impacts on performance.

Though Naive Bayes is quick, it is still not the most appropriate model with

feature selection applied to attack detection on CAVs.

The performance of the Decision Tree model was improved by the feature

selection methods. It could be seen that the runtime decreased 94% and 86%

in building and testing time with a decreased accuracy rate of only 1.5% or less.

It could be deduced that with the feature selection methods, the performance

of the Decision Tree model could be improved, and the accuracy could be

more stable in all methods, which means that the Decision Tree could be more

suitable for feature selection.

The proposed intersection feature selection method achieved good perfor-

mance in both Decision Tree and Naive Bayes. The decreased of accuracy was

within 1.16%, but the runtime decreased significantly both in building and test-

ing time. It could be said that the proposed method had good performance in

attack detection. The proposed method could shorten the runtime with lim-

ited impacts on accuracy. It should also be noticed that the runtime is based

on the experiment platform when using feature selection methods. If CAVs

with high-performance processors could train and test the model in a shorter

period in the real world environment, the runtime could be further shortened.
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All the results still need to be evaluated in the real world environment.

In CAV-KDD data set, the best performance model is the Decision Tree

with the proposed intersection model. Based on the model, it could also be

deduced that the most important attributes are the selected attributes by the

proposed intersection method. The four attributes, including flag, logged in,

same srv rate, dst host srv serror rate, indicate the connection and login sta-

tus, and also the same service in the communication.

6.3.2 Simu-CAN Feature Selection Results

The feature selection methods were also applied to the Simu-CAN data set

based on the steps mentioned in Section 6.2. After applying different feature

selection methods, different feature subsets were chosen, which are listed in

Table 6.4.

Table 6.4: Selected Feature Subsets on Simu-CAN

FS Method Selected Feature
CFS Time,C2,C7,WithID,WithoutID
Gain Ratio WithID,Time,WithoutID,C5
Info Gain -30% WithID,Time,WithoutID,C7,C3
Info Gain - 50% WithID,Time,WithoutID
Pearson C7, Time, C5

Like the CAV-KDD data set, the CFS, Gain Ratio and Info Gain methods

as well as the Pearson method were chosen to compare the results. It was

found that the Gain Ratio had poor selection results. The correlations of the

attributes were low. In addition, when applying the Info Gain method, two

correlation values, 50% and 30%, were chosen because there are only three

attribute correlation values that are over 50%.

As it could be seen from Table 6.5 and Table 6.6, for overall accuracy, the

feature selection did not achieve good results. The accuracy of the Naive

Bayes models was lower than the original results. The Decision Tree models

achieved even lower accuracy after applying feature selection methods. Only

the accuracy of the CFS method and Info Gain method with 30% correlation
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Table 6.5: Accuracy and FP Rate of Feature Selection on Simu-CAN by Decision
Tree

FS Method All True Fuzzy DoS

Accuracy

CFS 95.5% 97.1% 94.3% 93.5%
Gain Ratio 88.8% 77.9% 99.6% 93.3%
Info Gain-30% 96.2% 96.0% 97.3% 93.4%
Info Gain-50% 88.1% 76.9% 98.7% 94.2%
Pearson 85.8% 82.8% 85.1% 99.9%

FP Rate

CFS 4.5% 5.8% 1.1% 0.8%
Gain Ratio 11.2% 1.8% 16.4% 0.8%
Info Gain-30% 3.5% 3.5% 2.2% 0.7%
Info Gain-50% 11.9% 2.3% 17.1% 0.9%
Pearson 8.5% 11.6% 6.1% 0.5%

Table 6.6: Accuracy and FP Rate of Feature Selection on Simu-CAN by Naive Bayes

FS Method All True Fuzzy DoS

Accuracy

CFS 65.5% 59.3% 65.7% 88.5%
Gain Ratio 66.0% 92.5% 33.5% 77.6%
Info Gain-30% 71.6% 75.6% 65.4% 77.9%
Info Gain-50% 60.0% 83.2% 28.5% 80.9%
Pearson 71.3% 95.9% 64.2% 0%

FP Rate

CFS 14.2% 12.9% 13.3% 22.5%
Gain Ratio 23.8% 47% 2.7% 8.1%
Info Gain-30% 28.4% 20.2% 14.7% 10.3%
Info Gain-50% 40.0% 37.8% 7.8% 17.2%
Pearson 28.8% 49.1% 0.4% 0%

value decreased slightly, from 97.8% to 95.5% and 96.2%, respectively. The

accuracy of the other method was less than 90%, which dropped significantly

compared with the original accuracy.

The FP rates increased as well, indicating that the amount of incorrectly

classified data was also growing. The CFS method and the Info Gain method

with 30% correlation value achieved the lowest FP rates within all the feature

selection methods at 4.5% and 3.5%, respectively, while others were all around

10% by Decision Tree.

As for the sub-classifications in the data set of Decision Tree model, the

results also varied. For detecting the normal data, only the accuracy rates of

the CFS method and Info Gain method with 30% correlation were acceptable.

Though some feature selection methods, including Gain Ratio and Info Gain
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with 50%, achieved a lower FP rate, their accuracy rates were low. For ex-

ample, the FP rate of the Gain Ratio method was only 1.8%, which was the

lowest among all the normal data detection rates. However, the accuracy was

only 77.9%, indicating that this is not a good model to use. In detecting Fuzzy

attack, all the accuracy was satisfactory except that of the Pearson method,

which was only 85.1%. The FP rates of the CFS method and Info Gain with a

30% correlation value, were both low, which were 1.1% and 2.2%, respectively.

However, the accuracy of CFS was 94.3%, which was lower than that of Info

Gain.

In detecting the DoS attacks by Decision Tree, as opposed to the Fuzzy

attacks, the Pearson feature selection method achieved the best accuracy of

99.9% with the lowest FP rate of 0.5%. Compared with the original accuracy

of detecting DoS attacks (92.4%), the accuracy of all models increased slightly

after applying feature selection methods. It is also noticeable that the FP rates

of models only increased slightly, which means that the models could classify

the DoS attack data precisely.

After applying the feature selection methods to Naive Bayes model, it could

be seen that the results were not good. Although the original results were

insufficient as well (73.5%). All accuracy rates were just over 60%, lower than

the original one. The accuracy rates of the Pearson method and the Info Gain

method with 30% correlation value were not much affected, which were 71.3%

and 71.6%, respectively. The accuracy of the rest of the models was under

70%, which was too low to detect the attack.

Among all the models, after feature selection methods were used, the CFS

achieved the lowest FP rate at 14.20%, while the highest FP rate was 39.98%

when applying the Info Gain method with a 50% correlation value. The two

most accurate methods, namely the Pearson method and Info Gain with a 30%

correlation value, only achieved 28.75% and 28.40%, respectively, on FP rates,

which were all slightly higher than the original rates. It could be seen from

these results that the feature selection methods did not help to improve the
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overall performance of the Naive Bayes model.

Each sub-classification, including normal data, Fuzzy attack and DoS at-

tack, also showed various performance levels. For normal data, two feature

selection methods, namely the Gain Ratio method and the Pearson method,

achieved high accuracy of 92.5% and 95.9%, respectively. However, the FP

rates of these two models were also the highest, which were 47% and 49.1%,

respectively. These high FP rates indicate that the models classified massive

amounts of data incorrectly, which would be dangerous in a real world situ-

ation. Because of this, the high accuracy rates of the models are useless in

real world applications. Only the FP rate of the CFS method was lower than

the original one (18.0%). However the accuracy was only 59.3%, which is not

acceptable for attack detection. Based on this, all the methods performed

poorly on detecting the normal data. In the previous experiments on the De-

cision Tree model, the accuracy and FP rate of normal data were crucial to

the overall performance of different models.

For Fuzzy attack data, all the models performed poorly on accuracy, espe-

cially the Gain Ratio method and the Info Gain method with 50% correlation

value, the accuracy of which was only 33.5% and 28.5%, respectively. The other

three models achieved acceptable accuracy, two of which had even higher ac-

curacy than that of the original model (64.9%). These are the CFS method

(65.70%) and the Info Gain method with a 30% correlation value (64.20%).

However, it could also be seen that the FP rates of these two models were

the highest, which indicates that the performance was not acceptable. The

poor accuracy suggests that none of the models could detect the Fuzzy attack

accurately.

But after applying the Pearson method, the FP rate of detecting Fuzzy

attack was only 0.4%, and the accuracy was 64.2%, which was only a slight

decrease compared with the original one. This indicates that the feature subset

selected by the Pearson method is highly correlated with the classification of

Fuzzy attack. Based on this, feature subsets were investigated, and the Pearson
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method selected attributes that including c7, Time and c5. However, as it

could be known from the characteristics of Fuzzy attacks, the time frequency

did not change in the whole data transmission. Thus, the attributes of c7 and

c5 are key features to detect the Fuzzy attack. After analysing the entire data

set, it was found that in most of the data, the data value changed in c7 and

c5 while the rest of the CAN content value normally stayed the same. As

this attack was simulated from a CAN simulator, this still needs to be further

investigated in real driving data.

For the DoS attack in the Simu-CAN data set, the accuracy is much higher

than that of the Fuzzy attack. However, it was interesting that the Pearson

method could not detect the DoS attack completely. Compared with other

feature subsets, the Pearson method did not select related features of the

DoS attack, while all the other feature selection methods selected WithID or

WithoutID. The missing key features made the detection impossible.

Among all the models, the CFS method achieved the highest accuracy in de-

tecting DoS attack, which is 88.5%, even higher than the original one (82.1%).

After analysing the features selected by the CFS method, it was found that

the CFS method was the only method that chose WithID and WithoutID. As

DoS attack is highly correlated with time frequencies, these two new added

attributes could improve the performance. However, the FP rate of the CFS

method, which was 22.5%, was not satisfactory. The high FP rate indicated

that the method classified normal or Fuzzy attack data into the DoS attack,

which is still not adequate for the classification. Other two models achieved

accuracy of 77.6% and 77.9%, respectively. The corresponding FP rates were

8.1% and 10.3%. These two models achieved similar accuracy and FP rates.

Based on all the results, the performance of detection on DoS attack is better

than on Fuzzy attacks. However, as the poor performance of Naive Bayes, the

accuracy of these models was not as high as that of Decision Tree, which

indicates that Decision Tree is more satisfactory for detection on Simu-CAN

data set.
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In the CAV-KDD data set, the runtime of Decision Tree and Naive Bayes

had a distinct time difference. However, in the Simu-CAN data set, though

the building time of the models still varied, the testing time showed that Naive

Bayes was slower than the Decision Tree, which is same as that of the CAV-

KDD data set.

Table 6.7: Runtime of Feature Selection on Simu-CAN

Model FS Method Building Time (s) Testing Time (s)

Decision Tree

CFS 0.72 0.01
Gain Ratio 0.45 0.01
Info Gain-30% 0.64 0.02
Info Gain-50% 0.31 0.01
Pearson 0.33 0.01

Naive Bayes

CFS 0.04 0.05
Gain Ratio 0.03 0.04
Info Gain-30% 0.04 0.05
Info Gain-50% 0.03 0.04
Pearson 0.02 0.02

After applying the feature selection methods, the runtime dropped signif-

icantly in detection by the Decision Tree model. As seen in Table 6.7, all

the models achieved 0.01 second except for the Info Gain method with a 30%

correlation value, the testing time of which was 0.02 second. It should also be

noted that the minimal time unit in WEKA is 0.01, which indicates that the

testing time could have been even quicker. However, the data amount in the

Simu-CAN data set was not large, leading to a short testing time.

The building time also decreased, though it did not affect the performance

of the models. Among all the feature selection applied to the Decision Tree

model, the Info Gain method achieved the best result. The accuracy was the

highest with the lowest FP rate, and the testing time was acceptable as well.

However, compared to the original model, the results were not good enough,

as the testing time was only a little faster while the accuracy and FP rates

were affected.

In the experiments of the Naive Bayes model, the testing time also decreased,

but not as much as that of the Decision Tree model. The Pearson method had
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the fastest testing time. However, as discussed in the previous analysis, the

Pearson method performed poorly on DoS attack detection, which is com-

pletely unacceptable in real usage. The rest of the models all took 0.04 or 0.05

seconds, slower than the 0.01 second achieved by Decision Tree models. Based

on the runtime, Decision Tree is still more suitable for CAV cyber security

detection than the Naive Bayes method.

After analysing the results, it could be concluded that in the Simu-CAN

data set, the Decision Tree model was more suitable than the Naive Bayes

model, no matter whether it was evaluated by accuracy, FP rate, or runtime.

This is because that the attributes in the data set have a specific data range,

especially the data in the CAN field. As the Decision Tree model classifies the

data based on different value ranges to build the tree, the performance of the

Decision Tree model was good in attack detection.

However, the feature selection methods did not improve the performance

of the models. First of all, the number of attributes in this data set is not

as large as that of the CAV-KDD data set. The number of attributes is 39

in CAV-KDD, while that of the Simu-CAN data set is only 10. The fewer

attributes indicate that the relationship between attributes and classification

is more closed, which means that if the attributes are deleted, the results would

be more affected.

In addition, it was also found that every method had chosen the attribute

‘WithID’, indicating that this attribute is highly correlated with the classi-

fication label. Because DoS attack is related to the time frequencies of the

data, the attribute WithID helped better recognise the DoS attacks. In some

situations, the time frequencies of data changed to send multiple commands

simultaneously. This was probably not a DoS attack but might be incorrectly

recognized as such if only the time stamp of each data was used. The new

attribute WithID helped to prevent this incorrect classification in certain cir-

cumstances. In this experiment on detecting DoS attack, after removing less

relevant features such as the CAN content, which is useless in DoS attacks, the
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model recognised the DoS attacks more accurately. That is why the accuracy

rates in detecting DoS attacks rise after applying feature selection.

6.3.3 KCAN-CAV Feature Selection Results

Based on the previous results, feature selection methods need to be applied

to improve the performance of the models and overcome the limitations men-

tioned in Chapter 5. As the DoS attack and Fuzzy attack were detected

separately in the detection process, the feature selection methods were also ap-

plied separately. Several feature selection methods, including the CFS method,

Pearson method, Gain Ratio and Info Gain method, were adapted to the ex-

periments. Different feature subsets were selected by different feature selection

methods. For each feature selection method, the full training data set was used

to conduct the experiments, and the attribute ‘Label’ was set to be the target

label. The chosen feature subsets are listed in Table 6.8 and Table 6.9 for DoS

attack and Fuzzy attack, respectively.

Table 6.8: Selected Feature on KCAN-CAV DoS Attack

FS Method Selected Attributes
CFS C0,C1,C3,C5,C6,C7,WithID
Pearson-20% C5,C1,C3,C7,ID,C0,C2,C4,C6
Pearson-30% C0,C2,C4,C6
Gain Ratio C5,C0,C1,C4,C3
Info Gain-20% ID,WithID,Time,C5,C0,WithoutID,C1,C4,C3
Info Gain-30% ID,WithID,Time

Table 6.9: Selected Feature on KCAN-CAV Fuzzy Attack

FS Method Selected Attributes
CFS C1,C3,C6,WithID
Pearson WithID,C6,C2,C1

It should be noticed that when applying the Pearson method and Info Gain

method, different correlation values were chosen with which to compare the

results. Correlation values of 30% and 20% were chosen in both the Pearson

and the Info Gain methods for comparison. As it could be seen from Table
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6.10 and Table 6.11, the feature selection methods are effective in detecting

DoS attack.

Table 6.10: Accuracy and FP Rate of Feature Selection on KCAN-CAV DoS Attack
by Decision Tree

All Normal Data DoS Attack

Accuracy

CFS 99.9% 100% 100%
Pearson-20% 99.9% 97.2% 100%
Pearson-30% 100% 100% 100%
Gain Ratio 97.23% 96.4% 100%
Info Gain-20% 100% 100% 100%
Info Gain-30% 100% 100% 100%

FP Rate

CFS 0% 0% 0%
Pearson-20% 0% 0% 0%
Pearson-30% 0% 0% 0%
Gain Ratio 0.8% 0% 3.6%
Info Gain-20% 0% 0% 0%
Info Gain-30% 0% 0% 0%

Table 6.11: Accuracy and FP Rate of Feature Selection on KCAN-CAV DoS Attack
by Naive Bayes

All Normal Data DoS Attack

Accuracy

CFS 97.8% 97.2% 100%
Pearson-20% 97.8% 97.2% 100%
Pearson-30% 91.3% 88.8% 100%
Gain Ratio 96.7% 95.8% 100%
Info Gain-20% 96.8% 95.8% 100%
Info Gain-30% 100% 100% 100%

FP Rate

CFS 0.6% 0% 2.8%
Pearson-20% 0.6% 0% 2.8%
Pearson-30% 2.5% 0% 11.2%
Gain Ratio 0.9% 0% 4.2%
Info Gain-20% 0.9% 0% 4.2%
Info Gain-30% 0% 0% 0%

Table 6.12: Accuracy and FP Rate of Feature Selection on KCAN-CAV Fuzzy Attack
by Decision Tree

All Normal Data Fuzzy Attack

Accuracy
CFS 99.9% 100% 98.3%
Pearson 99.9% 99.9% 97.6%

FP Rate
CFS 1.7% 1.7% 0%
Pearson 2.4% 2.4% 0%

When applying feature selection methods on DoS attack by Decision Tree

models in Table 6.10, the models all achieved high accuracy except the Gain
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Table 6.13: Accuracy and FP Rate of Feature Selection on KCAN-CAV Fuzzy Attack
by Naive Bayes

All Normal Data Fuzzy Attack

Accuracy
CFS 99.6% 99.9% 31.6%
Pearson 99.6% 99.9% 37.1%

FP Rate
CFS 68.2% 68.4% 0.1%
Pearson 62.7% 62.9% 0.1%

Table 6.14: Runtime of Feature Selection on KCAN-CAV DoS Attack

Model FS Method Building Time (s) Testing Time (s)

Decision Tree

CFS 23.33 0.41
Pearson-20% 10.19 0.28
Pearson-30% 2.95 0.25
Gain Ratio 6.51 0.26
Info Gain-20% 23.39 0.27
Info Gain-30% 5.07 0.19

Naive Bayes

CFS 1.73 1
Pearson-20% 2.11 1.3
Pearson-30% 1.15 0.87
Gain Ratio 1.37 0.76
Info Gain-20% 2.02 1.1
Info Gain-30% 0.61 0.58

Table 6.15: Runtime of Feature Selection on KCAN-CAV Fuzzy Attack

Model FS Method Building Time (s) Testing Time (s)

Decision Tree
CFS 26.8 0.21
Pearson 42 0.49

Naive Bayes
CFS 0.88 0.66
Pearson 1.01 0.75

Ratio method, the accuracy of which was 97.23% with an FP rate of 0.8%. The

accuracy of the CFS method and the Pearson method with 20% correlation

was 99.9%, and the rest of the models achieved 100%. However, the accuracy

of 100% was not precise enough for analysing the results, as the amount of

data was huge. Some incorrectly classified data was ignored when calculating

the accuracy percentages. Based on this reason, the amounts of incorrectly

classified data were listed in Table 6.16. As it could be seen, though the

accuracy of each method was nearly the same, the numbers of incorrectly

classified data were not the same. Except for the Gain Ratio, the numbers are

all low.
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Table 6.16: Number of Incorrectly Classified Data on KCAN-CAV DoS Attack

FS Method Number of Incorrectly Classifications
CFS 68
Pearson-20% 1
Pearson-30% 0
Gain Ratio 9772
Info Gain-20% 1
Info Gain-30% 0

In addition, as it could be seen from the Table 6.10, the FP rates after

applying all the methods were fairly low, all the methods except for the Gain

Ratio method achieved an FP rate of 0%. Combining the FP rate and accuracy

results, though the performance was improved, the results were unrealistic in

the feature selection process. After analysing the selected features, it could

be found that if the feature selection method chose the attribute ‘ID’, the

accuracy and FP rate became extremely high. Only 1 or even 0 data were

classified incorrectly in the data set. As discussed in Chapter 4, all the DoS

attack data use the same CAN ID ‘0x000’ in the data set. The models were

built to be based solely on the CAN ID attribute.

In order to further analyse this, only the attribute ID was kept in the data

set, and the accuracy was still 100% with an FP rate of 0%, which indicates

that the feature selection methods are not suitable for this data set. Even if

the model could achieve fairly high accuracy with a low FP rate, it still could

not be used in real world attack detection. The same situation happened to

Naive Bayes model as well, which made the results useless in the experiments.

Regarding the feature selection results of the Fuzzy attack seen in Table 6.9,

the Gain Ratio and Info Gain methods were removed from the experiments

because after conducting the feature selection process, it was found that all

the correlation values between the attributes and the classifications were under

10%. This indicated that the feature selection results would not be good. Only

CFS and Pearson methods were used in the Fuzzy attack data set. It should

also be noticed that when applying the Pearson method, the correlation value
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was set to be 10% as only the correlation value of the attribute ‘WithID’ was

over 30%. If there was only one attribute left in the data set, though the

runtime would be shortened, the accuracy would not be acceptable.

As it could be seen from Table 6.12, compared with the previous experi-

ments, the overall accuracy of the Decision Tree models achieved 99.9%, though

both the overall FP rates increased as well. However, with regard to accuracy

and FP rate of normal and Fuzzy attack data, the accuracy of detecting Fuzzy

attack increased to 97.6% and 98.3%, respectively, and both saw a decrease in

FP rate to 0%.

The testing time dropped significantly after applying the feature selection

methods shown in Table 6.15. The testing time of the Pearson method by

Decision Tree was only half the original one and the testing time of CFS is

even lower, which was only 0.21.

When applying the feature selection methods on Fuzzy attacks by Naive

Bayes models, the accuracy of both models also increased, as shown in Table

6.13. However, FP rates of Naive Bayes models were too high, at 68.2% and

62.7%, respectively. It was found that the reason that FP rates were high was

because that the model classified a great deal of normal data into attack data,

which means that feature selection methods were not suitable for the Naive

Bayes model.

The testing time of the Naive Bayes models was not good enough compared

with that of the Decision Tree model. CFS achieves a testing time of 0.66

seconds, which is three times as much as that of Decision Tree models. The

Pearson method is even slower than that of CFS.

Several conclusions have been made after analysing the results of the feature

selection methods adapted to the KCAN-CAV data set.

First, the feature selection methods are not suitable for DoS attack detec-

tion in the KCAN-CAV data set. This is because all the attacks use the same

ID, which means that all the attacks could be easily classified using one single

ID value. However, in a real world situation, the DoS attack could be more
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deceitful with multiple IDs and other attributes. Thus, the accuracy of de-

tecting DoS attacks is too high, which is caused by over-fitting. It could be

deduced that this model could not be applied to other data set if the attack ID

changed. In order to solve this problem and better test the reliability of the

machine learning model, more complex and detailed DoS attack data needs to

be collected and analysed.

Second, in detecting Fuzzy attacks, the CFS achieved better results than

the Pearson method. CFS method achieved higher accuracy with a very short

testing time. However, the same problem with the DoS attack also needs to

be considered here. The format of Fuzzy attack data in the KCAN-CAV data

set is almost the same. Moreover, the amount of Fuzzy attack data is not

sufficient to build a well-performing model. More Fuzzy attacks need to be

added to the data set to build a more comprehensive and reliable model.

Third, it was also found in the experiments that not all the feature selection

methods could achieve better results in this data set. The number of the

attributes in KCAN-CAV is not as high as that of the CAV-KDD data set,

almost all the attributes were important. Meanwhile, the Naive Bayes method

achieved poor results in the majority of the methods. This is because the

attributes are not independent, which goes against the characteristics of the

Naive Bayes. Because of this, the Naive Bayes results were even worse than

the former results.

Based on these results and limitations, it was found that the current open

source CAV attack data set was not enough for anomaly detection. The limi-

tations need to be addressed.

6.3.4 CAV-RW Feature Selection Results

Since the number of attributes in the CAV-RW data set is more than ten, and

not all the attributes are correlated tightly with the normal and attack classi-

fications, the feature selection process was also conducted aiming to improve
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the performance of these two models.

Several feature selection methods were chosen to conduct the experiments,

including CFS, Pearson method, Info Gain, Gain Ratio and Decision Tree.

The reason of choosing these methods is because that they are all related

to the characteristics of the machine learning models. For example, the Info

Gain and Gain Ratio are important parameters in the Decision Tree model.

In addition, the Decision Tree algorithm is also a feature selection method.

During the model building period, the most important features were selected

by the Decision Tree model. The CFS and the Pearson methods are related to

the Naive Bayes models. It should also be noted that the CFS used the best

first search method. Decision Tree did not use search methods while the others

used Ranker search methods. The selected features of the methods were listed

in Table 6.17. These feature selection method cover the three mainstream

feature selection methods: filter, wrapper and embedding.

Table 6.17: Selected Feature Subesets on CAV-RW

FS Method Selected Attributes
CFS Time,c0,c1,c5
Decision Tree WithoutID,WithID,c5,c2
Pearson-20% c6,c5,c0,c2,c1,c4
Pearson-30% c6,c5,c0
Info Gain-30% c5,Time,c2,c1,c6,c0
Info Gain-40% c5,Time,c2,c1

All the results for accuracy, FP rate, and runtime after applying these feature

selection methods are shown in Table 6.18.

Two feature subsets were chosen by the Pearson feature selection method

and Info Gain method, while other feature selection methods chose only one

feature subset. In the Info Gain method, when the Info Gain value was set to

be over 40%, only attribute ‘c5’ and attribute ‘time’ were selected. In order

to get more reliable and comprehensive results, the Info Gain value was set

to 30% to gather another subset of features. Two feature subsets were chosen

by the Pearson method as well, the correlation values of which were over 30%
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and 20%, respectively.

Table 6.18: Accuracy and FP Rate of Feature Selection on CAV-RW by Decision
Tree

All Normal Data Fuzzy Attack DoS Attack

Accuracy

CFS 94.70% 95.2% 92.6% 99.9%
Decision Tree 94.60% 95.6% 94% 92.8%
Pearson-20% 86.66% 98.7% 98.4% 3.3%
Pearson-30% 85.55% 99.5% 95.8% 0.3%
Info Gain-30% 98.2% 97.5% 98.5% 99.9%
Info Gain-40% 92.1% 93.3% 88.5% 99.9%

FP Rate

CFS 3.3% 5.3% 1.5% 1.7%
Decison Tree 2.1% 5.5% 1.8% 1.6%
Pearson-20% 10.6% 23.2% 0.2% 0.5%
Pearson-30% 11.8% 25.9% 0.3% 0.1%
Info Gain-30% 0.7% 1.1% 0.01% 1.3%
Info Gain-40% 5.3% 8.4% 3.1% 1.7%

Table 6.19: Runtime of Feature Selection on CAV-RW by Decision Tree

Building Time (s) Testing Time (s)
CFS 40.1 0.49
Decision Tree 60.14 0.48
Pearson-20% 37.65 0.36
Pearson-30% 20.42 0.34
Info Gain-30% 31.65 0.37
Info Gain-40% 22 0.45

Table 6.20: Accuracy and FP Rate of Feature Selection on CAV-RW by Naive Bayes

All Normal Data Fuzzy Attack DoS Attack

Accuracy

CFS 58.3% 89.1% 42.9% 0.1%
Decision Tree 47.2% 51.5% 30.1% 90.4%
Pearson-20% 67.6% 84.0% 70.3% 0%
Pearson-30% 65.2% 81.4% 67.1% 0%
Info Gain-30% 69.5% 78.8% 70.4% 32.9%
Info Gain-40% 63.9% 78.2% 67.6% 0%

FP Rate

CFS 33.5% 64.8% 10.3% 0.1%
Decison Tree 23.8% 34.3% 10.4% 31.8%
Pearson-20% 25.7% 42.7% 15.4% 0%
Pearson-30% 27.7% 44.7% 17.8% 0%
Info Gain-30% 22.7% 34.8% 15.7% 2.6%
Info Gain-40% 28.1% 43.5% 19.9% 0%

The highest accuracy rate of Decision Tree was achieved by the Info Gain

with a 30% correlation value, which is 98.2%, with 31.65 seconds building
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Table 6.21: Runtime of Feature Selection on CAV-RW by Naive Bayes

Building Time (s) Testing Time (s)
CFS 1.23 1.13
Decision Tree 0.97 0.93
Pearson-20% 1.35 1.03
Pearson-30% 0.75 0.69
Info Gain-30% 1.26 0.94
Info Gain-40% 0.82 0.63

time and 0.37 second testing time. The lowest accuracy rate was achieved by

Pearson method with a 30% correlation value, which was 85.55%, with a 20.42

second model building time and a 0.34 second testing time. Though the testing

time is low, and it is almost half the testing time before feature selection, the

accuracy is too insufficient to conduct the detection. It should also be noted

that the Pearson methods with a 20% correlation value showed poor accuracy,

which was only 86.66%. The FP rate of the Pearson method also increased

from the original 0.4% to 10.6% and 11.8%, respectively. These all indicated

that the Pearson feature selection method is not appropriate for the Decision

Tree model.

In addition to each sub-attack, it could be seen from the table that the

Pearson method showed poor accuracy in the detection of DoS attacks. The

Pearson’s accuracy is only 3.3% on 20% correlation and 0.3% on 30% correla-

tion, respectively. After analysis and comparison with other feature selection

methods, it could be found that the Pearson method was the only method

that does not select attributes: timestamp, WithID and WithoutID. As the

DoS attack is highly related to the time frequency between messages, this fea-

ture selection led to a bad result, indicating that the Pearson feature selection

method is not suitable for anomaly detection.

All the feature selection methods chose attribute c5, and the majority of

the methods chose c0, c1, c2, c6, and timestamp. This indicates that in this

collected data set, most CAN message values were changed in these attributes.

However, only the Decision Tree chose WithID and WithoutID together. In
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addition, from the tree structure built by Decision Tree, these two attributes

were the most related attributes to the classifications.

Normally, the feature selection methods could help to decrease the runtime

without decreasing the accuracy significantly. However, as shown in Table 6.18,

all the feature selection methods show a decreasing trend in accuracy. Even

the highest accuracy achieved, by the Info Gain method, was only 98.2%.

The runtime of models after applying each method was quicker than in the

original model, as shown in Table 6.19. But the decreases in runtime were

more significant on the model building time than testing time. As said in

the performance evaluation, model building time is not as important as the

testing time, indicating that the feature selection methods are not good enough

to improve the performance.

As for the FP rate, it could be seen from Table 5.11 that before feature selec-

tion, the FP rates in general and for sub-attacks were low enough, which are all

below 1%. After applying feature selection methods, almost all the FP rates

increased greatly, some of which are even beyond 20%. This indicates that

massive data were classified falsely, which might cause severe consequences in

the CAV dynamic driving environment. Only the Info Gain with a 30% cor-

relation value achieved an FP rate of 0.7%. Regarding the accuracy, building

time and testing time, the performance of Info Gain with a 30% correlation

value is the most satisfactory.

Based on all these criteria, it was found that for real world CAV data, fea-

ture selection would not provide more efficiency or improvement to the original

model. This is because all the CAN fields from c0 to c7 are important in mak-

ing driving decisions. Hence, any missing attribute could cause the wrong

classification of the data. In addition, time is an indispensable attribute in

detecting DoS attacks. It could be seen from the Pearson method, without

any time attribute such as WithID or WithoutID, that the detection accuracy

of DoS is terrible. Even worse, no DoS attack were detected without time

attributes in Pearson with a 30% correlation value method. Based on this, it
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was found that for real world CAN data, the integrity of the data is important.

Only through contents attributes and time attributes could the attacks be de-

tected. It should also be noted that the Decision Tree achieved a high accuracy

rate, but its testing time is still not good enough to be applied to CAVs. More

efficient methods to improve the time consuming is of high importance, which

need to be further investigated.

6.3.5 Discussions

According to all the experiments on the four data sets, the performance of ac-

curacy, FP rates and runtime were compared. Thus based on different attacks

in the four data sets, the best performance model and important attributes

are listed in Table 6.22.

Table 6.22: Best Models and Important Attributes of Feature Selection Results

Data Set the Best Perfor-
mance Model

Important Attributes

CAV-KDD Proposed intersec-
tion method

flag, logged in,
same srv rate,dst host srv serror rate

Simu-CAN Decision Tree
model with Info
Gain

DoS Attacks: Time, WithID, With-
outID; Fuzzy Attacks: c7,c5

KCAN-CAV Decisio Tree model
with CFS

DoS Attack: ID,WithID, Time;
Fuzzy Attacks: c1,c6,WithID

CAV-RW Decision Tree with
Info Gain

DoS Attack: Time,c5,WithID;
Fuzzy Attacks:c5,c2,c6,c0

The best models were suggested based on four criteria: high overall accuracy,

high sub-attacks accuracy, low FP rate and fast runtime. Among all the results,

the accuracy needs to be above at least 95% to be regarded as a high accuracy

rate.

After analysing all the results, the performance of Decision Tree is superior

than that of Naive bayes. In all the four data sets, Decision Tree model

achieved better performance than Naive Bayes, especially Decision Tree model

with Info Gain.

It could also be seen from the results that the feature selection methods
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achieved good results on CAV-KDD data set. It is because that CAV-KDD

data set has 39 attributes in total, while other data set only has 10 attributes.

The feature selection method could achieve better results in data set with a

large amount of attributes.

For communication attacks, the important features are related to the con-

nection and login status, and the percentage of same service. It indicates that

in future communication data collection, these attributes need to be consid-

ered at high priority. For DoS attacks, the time critical attributes are crucial,

including Time, WithID and WithoutID. The newly added attributes were

found useful on the detection.

In addition, the detection of Fuzzy attacks depends on the CAN field con-

tents from c0 to c7. When detecting the attacks, it could be found that the

attributes including c0, c2, c5 and c6 are important in CAV-RW. While in

other data sets, different attributes are important. It is because that the sen-

sors used in the data collection is different, and the data contents changed as

well. However, this will also raise another issue, the data bias could affect the

results. For example, if all the data only change one value in the CAN field,

such as c0, the importance of c0 will become extremely high. The content

meaning in CAN needs to be further investigated in future research to resolve

the data bias problem.

6.4 Summary

In this chapter, feature selection methods, including CFS, Info Gain, Gain

Ratio, the Pearson method, and others were adapted to machine learning

models built in Chapter 5. Several findings could be summarised as below.

First, feature selection methods have been identified to be effective in the

improvement of models performance. Especially on the CAV-KDD data set,

the runtime decreased with little impact on accuracy. However, the feature

selection methods do not perform well on the following three data sets: Simu-
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CAN, KCAN-CAV and CAV-RW, due to the limited number of features in

these three data sets. It is found that the feature selection method is more

efficient in data sets with large number of attributes.

Secondly, feature selection methods are more effective when applied to the

Decision Tree models. In the experiments, the accuracy of the Decision Tree

model remained stable while the accuracy of Naive Bayes varies. It is found

that the Decision Tree model with feature selection methods is more appro-

priate for CAVCS attack detection.

In addition, newly added attributes “WithID” and “WithoutID” have been

identified useful for the DoS attacks classifications. The majority of feature

selection methods selected the new attributes.

Meanwhile, the proposed intersection feature selection method can only be

used when there are sufficient number of attributes, such as in the CAV-KDD

data set. Otherwise, the number of selected attributes will be limited, which

will lead to an unsatisfactory model performance.

Besides, experiments of feature selection also provided the understanding of

the most relevant and important features when detecting different attacks in

simulated or real world data. For communication attacks in the CAV-KDD

data set, the attributes flag, logged in, same srv rate and dst host srv serror

rate, covering connection and login status, and same services percentage, are

the key features. Time-related features ‘Timestamp’, ‘WithID’ and ‘With-

outID’ were considered to be the most important features in detection of DoS

attacks. The CAN content attributes c0 to c7 are also vital parts when detect-

ing fuzzy attacks. The mentioned features need to be collected first in case the

computation power and storage for data are limited on CAVs, which will en-

sure that the performance of model are not affected significantly. In addition,

the selected key features will also serve as guidance for future research.

In conclusion, feature selection methods on CAVCS detection should be

further analysed. More feature selection methods need to be considered and

adapted to machine learning models. Each feature in CAN data also needs to
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be further investigated regarding different functions of CAVs. The experiments

in this chapter provide an initial attempt to acquire higher accuracy with a

short runtime. The newly added features could also serve as guidance for

further CAVCS data collection.



Chapter 7

Conclusions

7.1 Main Contributions

CAVs are becoming the most interesting research topic around the world.

However, there still exists a large number of unsolved problems. Being a

prevalent part of CAVs safety, CAVCS needs to be addressed properly. Any

method or solution that helps to enhance the CAVCS could also become a

contribution to the development of CAVs.

In the thesis, a CAVCS framework was built based on existing standards

and principles, including UK CAV cyber security principles. The main aim

and contribution of the thesis is to provide a machine learning-based anomaly

detection cyber security framework for CAVs. Several other contributions have

also been made in the thesis during the building of the framework.

The existing literature, including CAV standards, commercial and technical

reports, relevant journals and conference papers, were reviewed and presented

in Chapter 2. The unique CAVCS characteristics have been discussed and

compared with traditional network and vehicles. Methods of building a cy-

ber security framework, including risk assessment, related data sets, anomaly

detection, and feature selection, were also reviewed.

Based on the literature, the CAV cyber security terminology and definitions

are defined to set the theoretical foundation of the thesis in Chapter 3, followed

155



Chapter 7. Main Contributions 156

by a clearly defined list of vulnerabilities and potential attacks to CAVCS. This

potential attack list could be extended in the future easily as the technologies

of CAVs are still fast evolving. In addition, a new severity assessment method

for CAV attacks was proposed in Chapter 3 as well. The severity assessment

method evaluated different attack severity based on well-defined criteria, in-

cluding risks, assets and consequences. It was found that the DoS attack and

Fuzzy attack are the most dangerous threat to CAVs. The severity assessment

method could also be adapted to new attacks to assess the severity, which

could help to control the attacks better and make appropriate responses.

Four new data sets were introduced in Chapter 4, including CAV communi-

cation data set CAV-KDD data set, in-vehicle simulated communication data

set Simu-CAN data set, real world data set KCAN-CAV and CAV-RW data

sets. The four data sets cover both the in-vehicle and inter-vehicle data to help

build and evaluate machine learning models. The data sets were all retrieved

or collected by myself, also contributing to CAVCS research as currently there

is no open source processed CAVCS data sets.

Among all the mitigation methods suggested in Chapter 3, the detection of

attacks in CAVs is the most important, which is also the aim of the thesis. In

Chapter 5, machine learning-based anomaly detection in CAVs was proposed.

Two machine learning models, namely Decision Tree and Naive Bayes, were

evaluated on the newly-collected data sets.

The performance of two machine learning models was then compared. It

was found that the machine learning models could help to detect the attacks

in CAVs. Besides, the Decision Tree could achieve much better results than

Naive Bayes in all the data sets, especially the in-vehicle data sets. However,

the performance of which could still be improved through feature selection

methods.

In Chapter 6, main stream feature selection methods were used and com-

pared. With little impacts on the accuracy, the runtime of each model de-

creased significantly. The best model and important features were suggested
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in this chapter. However, it was found that the feature selection methods only

had limited effects on improving the performance on data sets with fewer at-

tributes, which indicated that the correlation between attributes and classifica-

tions are tighter as well. At the same time, after applying the feature selection

methods, Decision Tree could achieve quicker testing time, even quicker than

that of Naive Bayes. Thus, Decision Tree model is more appropriate for CAV

cyber security attack detection. The outputs of this research could be listed

as below:

1. The definitions of CAVCS and potential cyber attacks to CAVs. This

definition could be used in future CAVCS research. Meanwhile, the potential

attack list could be adapted to different vehicle models to find their potential

attack points. In addition, the attack list is also extendable to add new types

of attacks.

2. A new severity assessment method for potential cyber attacks. The

severity assessment method used a well-adapted engineering formula to assess

the cyber attack from risk, asset and consequence. The criteria could be used

for newly defined attacks, helping the researchers or engineers to rank the

priorities of different attacks and mitigate them.

3. New CAVCS data sets for CAVCS research. This thesis retrieved CAV

communication data set CAV-KDD from the benchmark KDD99 by delet-

ing irrelevant and redundant data. Meanwhile, the thesis also simulated the

Simu-CAN data set on computers. Real world data set KCAN-CAV was also

retrieved from the OTIDS data set from the Korean University. In addition,

a completely new data set CAV-RW was collected from real world CAVs. All

of these data sets could be reused to conduct other machine learning-based

CAVCS research.

4. The building and comparison between machine learning models, including

Decision Tree and Naive Bayes, provided solutions and suggestions for CAV

attack detection. Machine learning algorithms were used to build models and

the models were then compared based on accuracy, FP rate and runtime. It
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was found that the Decision Tree could achieve better results.

5. The performance improvement of machine learning models by feature se-

lection and newly added features. Several feature selection methods,including

filter, wrapper and embedding, were used to find the relevance of each at-

tribute. The best performance model towards different attacks in the four

data sets were suggested. Moreover, the selected important attributes could

provide guidance for future CAVCS data collection. In addition, the added

attributes WithID and WithoutID have been considered to be effective in

CAVCS anomaly detection, especially on DoS attack.

Based on the outputs above, a machine learning-based anomaly detection

CAV cyber security framework was then established, covering potential at-

tack assessment, CAVCS data sets, attack detection, and model improvement,

which could be used to conduct further CAVCS research.

7.2 Limitations and Suggestions for Further

Improvements

Gathering real world CAV anomalous data used in anomaly detection is one of

the biggest challenges faced during this research. Currently, there are very few

real CAVs that are open to the public, not to mention the CAV cyber attack

data. Although the data sets used in the thesis contained real world data

collected from real CAVs, only normal data could be collected, the attack data

in the data sets were still simulated. It is difficult to obtain real world attack

data due to safety and privacy problems. In order to overcome this limitation,

specific testing equipment and testing fields need to be used to gather real ‘real

world’ data. The different levels of automation and connections, and different

attack scenarios also need to be considered when collecting data in the future.

In addition, data bias still exists in the data sets. For example, in the CAV-

KDD data sets, several types of attacks only have few data while other types
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have thousands. In in-vehicle communication data sets, the CAN fields have

data bias, so that the performance of feature selection methods could not be

guaranteed. For example, in Fuzzy attack data of the KCAN-CAV data set,

the majority data only changed the data value on attribute ‘c6’. Thus, the

importance of c6 became high in the feature selection process. However, the

situation could be different in other real world data collections. The meaning

of data in CAN fields needs to be studied comprehensively to understand the

activities of the vehicles. Moreover, the evaluation methods of attacks need to

be developed. In the thesis, the attacks were leveled into different categories.

However, it is more useful if the risk of attacks could be quantified.

Another limitation is the performance of the computer used in the experi-

ments. All the computers used in this research are still personal computer with

limited computing power, which will have negative impacts on the performance

of the model. If high performance computers are used to process the data, the

results could be improved on runtime. Moreover, currently there is no con-

clusion on which kind of CPU will be installed on CAVs. If the data could

be processed in real CAV CPUs, the results could also be more representative

and reliable.

Besides, the thesis was also affected by the impacts of the COVID-19, which

limits the field tests in more scenarios.

7.3 Future Work

As initial attempts to raise the awareness of CAVCS and also attempts to apply

machine learning models to detect the attacks in CAVs, two peer-reviewed

journal papers and one conference paper have been published. Two more

publications are also prepared to be submitted to journals. In addition, all the

data sets retrieved and collected in the thesis were publicly online so that other

researchers could also use the data sets to conduct other researches related

to CAVCS, which could enhance the impact of this research. The following
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research topics are the potential research areas for future research.

1. Comprehensive Data Sets

Currently, there is no open source CAVCS data set available online. All the

data sets in this research were retrieved and collected independently. Though

the data sets mentioned in the thesis have been published online, it is still not

enough for CAVCS research. First of all, capable organizations or companies

could help to conduct real attacks to driving CAVs (in a controlled testing

field). Moreover, experts on cyber security, CAVs and other relevant fields

could help to define more potential attacks and collect them. Thus, the attack

data sets could be more comprehensive including more types of attacks and

real driving situation attack data rather than simulation data. Besides, data

from different levels of CAVs also needs to be considered to better understand

the CAVs.

2. Model Performance Improvement

In this research, only supervised machine learning algorithms are used to

conduct the detection. However, the supervised machine learning algorithms

showed poor performance on unseen attacks. On the one hand, more machine

learning algorithms could be used. The performance could then be analysed

and discussed, which could help to find the most appropriate model for different

attacks. On the other hand, more types of algorithms, such as unsupervised

machine learning algorithms, could be used to increase the detection rate of

unseen attacks.

3. Real-time Anomaly Detection

In the thesis, all the data sets were collected and pre-processed first, and

then classified. All the data in the data sets are well-formatted and could be

used to conduct the experiments directly. However, in a real driving situa-

tion, the data could be in a mess and cannot be used directly. Appropriate

methods need to be developed to parse the data once received. Based on these

methods, the detection could be conducted immediately on the vehicle, which

will significantly improve the efficiency of anomaly detection and enhance the
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security of the CAVs.

4. Other Mitigation Methods

As mentioned in Chapter 3, several mitigation methods could be used to

enhance the safety and security of CAVs. In this research, only the detection

methods were investigated. Other mitigation methods, such as authentication

and encryption of messages, could also be used to improve the difficulty of

attacking a CAV. Especially for passive attacks, authentication and encryption

are more useful than detection. Though on current CAVs, limitations such as

the consuming capabilities and limited bytes of transferred message might

hinder mitigation research. It still would be a promising research direction to

find universal mitigation methods for a defence-in-depth CAVCS framework.

7.4 Summary

This work provided a holistic framework for Connected and Autonomous Vehi-

cles cyber security research from definition, detection to mitigation. Relevant

terminology was proposed in Chapter 3. The definition of CAVCS was pro-

posed first to build the theoretical foundation of the whole research. Then,

potential attacks were listed and severity assessment criteria were built to rank

the priority of different attacks. The severity assessment criteria were based

on the risk, asset and consequence of different attacks, and each attack has

been marked as low, medium and high as the severity level. It was found that

DoS attacks and Fuzzy attacks are the most dangerous and of the highest vul-

nerabilities in CAVCS. Based on the attacks, several mitigation methods were

also suggested, the most efficient of which is machine learning-based anomaly

detection.

In the existing literature, machine learning algorithms were found powerful

to build models to detect the attacks in CAVs. Decision Tree and Naive Bayes

machine learning algorithms were chosen in this research to build models to

detect the attack. Meanwhile, new data sets, including communication data
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sets CAV-KDD, simulated in-vehicle data set Simu-CAN, real world vehicle

data set KCAN-CAV and self-collected real world CAV data set CAV-RW,

were collected and investigated in this research. All the data sets are now

open online for other researchers to use.

Machine learning models were applied and compared on these CAVCS data

sets. It was found that the Decision Tree model could achieve much better

results than Naive Bayes. In order to improve the performance of models,

feature selection methods including CFS, Gain Ratio, Info Gain and Pearson

method were applied to find the most relevant attribute in the data sets. For

data set with massive attributes, feature selection methods could play an im-

portant role in improving the performance. However, for in-vehicle data sets,

such as Simu-CAN, the effect of the feature selection method was not signif-

icant, which was attributed to the smaller number of attributes. New added

attributes WithID and WithoutID, indicating the time frequencies between

adjacent data with or without the same IDs in in-vehicle data sets, were found

to be useful for improving the accuracy of attack detection, especially on de-

tecting the DoS attack. For the usage of feature selection methods, the best

performance model and important attributes towards different attacks in dif-

ferent data set were suggested, which could be used in future real world CAV

attack detection.

Several limitations were found in this thesis. The first and most important

limitation is the available data sets to cover possible CAV attacks. Because of

the risk to conduct CAV cyber attacks in daily driving activities, all the data

sets were from simulation or CAVs in a controlled environment. Moreover,

the data sets only cover limited types of attacks in CAVs. As the technologies

of CAVs are still evolving, attackers would conduct different types of attacks.

More comprehensive data sets are needed to detect the attacks to CAVs more

efficiently and comprehensively by overcoming these limitations. In addition,

as in the thesis, only supervised machine learning models are used, more types

of machine learning algorithms such as unsupervised algorithms could be used
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on the detection. It could help to improve the detection rate of unseen attacks

and also help to realize real time detection.

In this chapter, several future research directions were proposed and sug-

gested in CAVCS. These research directions include: Collecting more compre-

hensive data sets so that more targeted attacks could be detected, and more

‘real world’ data could be used; Improving the performance of the models

to conduct the detection more efficiently and precisely, which could also help

to improve the detection rate of new attacks; Developing real time detection

methods to help the CAVs detect the attack on time and respond to it appro-

priately; Developing other mitigation methods to enhance the framework of

CAVCS, by which the CAVs could be safer and reliable.



Bibliography

[1] A. Nikitas, K. Michalakopoulou, E. T. Njoya, and D. Karampatzakis,
“Artificial intelligence, transport and the smart city: Definitions and
dimensions of a new mobility era,” Sustainability, vol. 12, no. 7, p. 2789,
2020.

[2] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li, W. Zhu, J. Hu,
H. Li, and Q. Kong, “Baidu apollo em motion planner,” arXiv preprint
arXiv:1807.08048, 2018.

[3] M. Dikmen and C. M. Burns, “Autonomous driving in the real
world: Experiences with tesla autopilot and summon,” in Proceedings
of the 8th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications, ser. Automotive’UI 16. New
York, NY, USA: ACM, 2016, pp. 225–228. [Online]. Available:
http://doi.acm.org/10.1145/3003715.3005465

[4] Tesla, “Future of driving,” Accessed Oct 18, 2018. [Online]. Available:
http://www.tesla.com/model3

[5] L. Jones, “Driverless when and cars: where?[automotive autonomous
vehicles],” Engineering & Technology, vol. 12, no. 2, pp. 36–40, 2017.

[6] B. J. Cottam, “Transportation planning for connected autonomous ve-
hicles: How it all fits together,” Transportation Research Record, p.
0361198118756632, 2018.

[7] B. Schoettle and M. Sivak, “A preliminary analysis of real-world crashes
involving self-driving vehicles,” University of Michigan Transportation
Research Institute, 2015.

[8] K. Bimbraw, “Autonomous cars: Past, present and future a review of the
developments in the last century, the present scenario and the expected
future of autonomous vehicle technology,” in Informatics in Control, Au-
tomation and Robotics (ICINCO), 2015 12th International Conference
on, vol. 1. IEEE, 2015, pp. 191–198.

[9] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations,” Trans-
portation Research Part A: Policy and Practice, vol. 77, pp. 167–181,
2015.

164

http://doi.acm.org/10.1145/3003715.3005465
http://www.tesla.com/model3


BIBLIOGRAPHY 165

[10] X. Xu and C.-K. Fan, “Autonomous vehicles, risk perceptions and insur-
ance demand: An individual survey in china,” Transportation Research
Part A: Policy and Practice, 2018.

[11] X. Kuang, F. Zhao, H. Hao, and Z. Liu, “Intelligent connected vehi-
cles: the industrial practices and impacts on automotive value-chains in
china,” Asia Pacific Business Review, vol. 24, no. 1, pp. 1–21, 2018.

[12] J. Guanetti, Y. Kim, and F. Borrelli, “Control of connected and auto-
mated vehicles: State of the art and future challenges,” Annual Reviews
in Control, 2018.

[13] D. Li and H. Gao, “A hardware platform framework for an intelligent
vehicle based on a driving brain,” Engineering, vol. 4, no. 4, pp. 464–470,
2018.

[14] “Self Driving Vehicles in an Urban Context,” 2015.

[15] GOV.UK. (2017, August) The key principles of vehicle cyber security
for connected and automated vehicles. Accessed Dec 4, 2017. [Online].
Available: https://www.gov.uk/government/publications/principles-of-
cyber-security-for-connected-and-automated-vehicles

[16] S. Levin and J. C. Wong, “Self-driving Uber kills Arizona woman
in first fatal crash involving pedestrian,” The Guardian, Mar. 2018.
[Online]. Available: http://www.theguardian.com/technology/2018/
mar/19/uber-self-driving-car-kills-woman-arizona-tempe

[17] “Tesla was on Autopilot in fatal crash,” Mar. 2018. [Online]. Available:
https://www.bbc.co.uk/news/world-us-canada-43604440

[18] “Autopilot Cited in Death of Chinese Tesla Driver
- The New York Times,” 2016. [Online]. Avail-
able: https://www.nytimes.com/2016/09/15/business/fatal-tesla-
crash-in-china-involved-autopilot-government-tv-says.html

[19] “Hacker remotely crashes Jeep from 10 miles
away - Telegraph,” 2015. [Online]. Avail-
able: https://www.telegraph.co.uk/news/worldnews/northamerica/
usa/11754089/Hacker-remotely-crashes-Jeep-from-10-miles-away.html

[20] T. K. S. Lab, “Tencent keen security lab: Experi-
mental security research of tesla autopilot,” 2019. [Online].
Available: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-
Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/

[21] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety
failures, security attacks, and available countermeasures for autonomous
vehicles,” Ad Hoc Networks, 2018.

[22] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle
network,” in 2016 international conference on information networking
(ICOIN). IEEE, 2016, pp. 63–68.

https://www.gov.uk/government/publications/principles-of-cyber-security-for-connected-and-automated-vehicles
https://www.gov.uk/government/publications/principles-of-cyber-security-for-connected-and-automated-vehicles
http://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
http://www.theguardian.com/technology/2018/mar/19/uber-self-driving-car-kills-woman-arizona-tempe
https://www.bbc.co.uk/news/world-us-canada-43604440
https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-autopilot-government-tv-says.html
https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-autopilot-government-tv-says.html
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/11754089/Hacker-remotely-crashes-Jeep-from-10-miles-away.html
https://www.telegraph.co.uk/news/worldnews/northamerica/usa/11754089/Hacker-remotely-crashes-Jeep-from-10-miles-away.html
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-Experimental-Security-Research-of-Tesla-Autopilot/


BIBLIOGRAPHY 166

[23] H. Zhou, W. Xu, Y. Bi, J. Chen, Q. Yu, and X. S. Shen, “Toward 5g
spectrum sharing for immersive-experience-driven vehicular communica-
tions,” IEEE Wireless Communications, vol. 24, no. 6, pp. 30–37, 2017.

[24] L. Liang, H. Ye, and G. Y. Li, “Toward intelligent vehicular networks: A
machine learning framework,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 124–135, 2019.

[25] M. H. Eiza and Q. Ni, “Driving with sharks: Rethinking connected vehi-
cles with vehicle cybersecurity,” IEEE Vehicular Technology Magazine,
vol. 12, no. 2, pp. 45–51, 2017.

[26] “Connected and autonomous vehicle cyber-security feasibility
studies,” 2019. [Online]. Available: https://apply-for-innovation-
funding.service.gov.uk/competition/430/overview

[27] “Cyber security and space based services - ESA Business Applications,”
2019. [Online]. Available: https://business.esa.int/funding/invitation-
to-tender/cyber-security-and-space-based-services

[28] M. Mylrea, S. N. G. Gourisetti, and A. Nicholls, “An introduction to
buildings cybersecurity framework,” in 2017 IEEE symposium series on
computational intelligence (SSCI). IEEE, 2017, pp. 1–7.

[29] M. Harb, A. Stathopoulos, Y. Shiftan, and J. L. Walker, “What do we
(not) know about our future with automated vehicles?” Transportation
Research Part C: Emerging Technologies, vol. 123, p. 102948, 2021.

[30] S. Chakraborty, M. A. Al Faruque, W. Chang, D. Goswami, M. Wolf, and
Q. Zhu, “Automotive cyber–physical systems: A tutorial introduction,”
IEEE Design & Test, vol. 33, no. 4, pp. 92–108, 2016.

[31] N. Lyu, Z. Duan, L. Xie, and C. Wu, “Driving experience on the effec-
tiveness of advanced driving assistant systems,” in 2017 4th International
Conference on Transportation Information and Safety (ICTIS). IEEE,
2017, pp. 987–992.

[32] M. Khan, “Truck platooning: Future of the freight industry,” in Trans-
portation Association of Canada and ITS Canada 2019 Joint Conference
and Exhibition, 2019.

[33] E. E. Tsiropoulou, J. S. Baras, S. Papavassiliou, and S. Sinha, “Rfid-
based smart parking management system,” Cyber-Physical Systems,
vol. 3, no. 1-4, pp. 22–41, 2017.

[34] L. F. P. de Oliveira, L. T. Manera, and P. D. G. da Luz, “Development
of a smart traffic light control system with real-time monitoring,” IEEE
Internet of Things Journal, 2020.

[35] L. Yao, J. Wang, X. Wang, A. Chen, and Y. Wang, “V2x routing in
a vanet based on the hidden markov model,” IEEE Transactions on
Intelligent Transportation Systems, vol. 19, no. 3, pp. 889–899, 2017.

https://apply-for-innovation-funding.service.gov.uk/competition/430/overview
https://apply-for-innovation-funding.service.gov.uk/competition/430/overview
https://business.esa.int/funding/invitation-to-tender/cyber-security-and-space-based-services
https://business.esa.int/funding/invitation-to-tender/cyber-security-and-space-based-services


BIBLIOGRAPHY 167

[36] SAE, Taxonomy and Definitions for Terms Related to Driving
Automation Systems for On-Road Motor Vehicles, jun 2018. [Online].
Available: https://doi.org/10.4271/J3016 201806

[37] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous
driving: Systems and algorithms,” in 2011 IEEE Intelligent Vehicles
Symposium (IV). IEEE, 2011, pp. 163–168.

[38] Gov.UK, “Center for connected and autonomous vehicles,” 2018.
[Online]. Available: https://www.gov.uk/government/organisations/
centre-for-connected-and-autonomous-vehicles

[39] “Connected and autonomous vehicle research and
development projects,” 2018. [Online]. Avail-
able: https://www.gov.uk/government/publications/connected-and-
autonomous-vehicle-research-and-development-projects

[40] “Connected and autonomous Vehicles:The future ?” 2018. [Online].
Available: https://publications.parliament.uk/pa/ld201617/ldselect/
ldsctech/115/115.pdf

[41] “Connected and autonomous vehicles bsi group,” 2018. [Online].
Available: https://www.bsigroup.com/en-GB/Innovation/cav/

[42] “Connetced and autonomous vehicles catapult,” 2018. [Online].
Available: https://ts.catapult.org.uk/innovation-centre/cav/

[43] The Pathway to Driverless Cars Summary report and action plan, De-
partment for Transport, 2015.

[44] T. Luettel, M. Himmelsbach, and H.-J. Wuensche, “Autonomous ground
vehicles—concepts and a path to the future,” Proceedings of the IEEE,
vol. 100, no. Special Centennial Issue, pp. 1831–1839, 2012.

[45] S. Narayanan, E. Chaniotakis, and C. Antoniou, “Factors affecting traffic
flow efficiency implications of connected and autonomous vehicles: a
review and policy recommendations,” Advances in Transport Policy and
Planning, vol. 5, pp. 1–50, 2020.

[46] D. J. Fagnant and K. M. Kockelman, “The travel and environmental im-
plications of shared autonomous vehicles, using agent-based model sce-
narios,” Transportation Research Part C: Emerging Technologies, vol. 40,
pp. 1–13, 2014.

[47] D. Milakis, B. Van Arem, and B. Van Wee, “Policy and society related
implications of automated driving: A review of literature and direc-
tions for future research,” Journal of Intelligent Transportation Systems,
vol. 21, no. 4, pp. 324–348, 2017.

[48] A. Taeihagh and H. S. M. Lim, “Governing autonomous vehicles: emerg-
ing responses for safety, liability, privacy, cybersecurity, and industry
risks,” Transport reviews, vol. 39, no. 1, pp. 103–128, 2019.

https://doi.org/10.4271/J3016_201806
https://www.gov.uk/government/organisations/centre-for-connected-and-autonomous-vehicles
https://www.gov.uk/government/organisations/centre-for-connected-and-autonomous-vehicles
https://www.gov.uk/government/publications/connected-and-autonomous-vehicle-research-and-development-projects
https://www.gov.uk/government/publications/connected-and-autonomous-vehicle-research-and-development-projects
https://publications.parliament.uk/pa/ld201617/ldselect/ldsctech/115/115.pdf
https://publications.parliament.uk/pa/ld201617/ldselect/ldsctech/115/115.pdf
https://www.bsigroup.com/en-GB/Innovation/cav/
https://ts.catapult.org.uk/innovation-centre/cav/


BIBLIOGRAPHY 168

[49] N. Virdi, H. Grzybowska, S. T. Waller, and V. Dixit, “A safety assess-
ment of mixed fleets with connected and autonomous vehicles using the
surrogate safety assessment module,” Accident Analysis & Prevention,
vol. 131, pp. 95–111, 2019.

[50] R. Mariani, “An overview of autonomous vehicles safety,” in 2018 IEEE
International Reliability Physics Symposium (IRPS). IEEE, 2018, pp.
6A–1.

[51] N. H. T. S. Administration et al., “Cybersecurity best practices for mod-
ern vehicles,” Report No. DOT HS, vol. 812, no. 333, pp. 17–20, 2016.

[52] N. USDOT, “Automated driving systems: A vision for safety, september
2017,” 2017.

[53] B. L. Bollinger, “The security and privacy in your car act: Will it actually
protect you?” North Carolina Journal of Law & Technology, vol. 18,
no. 5, p. 214, 2017.

[54] H. S. M. Lim and A. Taeihagh, “Autonomous vehicles for smart and
sustainable cities: An in-depth exploration of privacy and cybersecurity
implications,” Energies, vol. 11, no. 5, p. 1062, 2018.

[55] ENISA, “Cyber security and resilience of smart cars.” [Online].
Available: http://www.enisa.europa.eu/publications/cyber-security-
and-resilience-of-smart-cars

[56] M. Goddard, “The eu general data protection regulation (gdpr): Eu-
ropean regulation that has a global impact,” International Journal of
Market Research, vol. 59, no. 6, pp. 703–705, 2017.

[57] ENISA, “Good practices for security of smart cars.” [Online]. Available:
https://www.enisa.europa.eu/publications/smart-cars

[58] M. of Industry, I. T. of The People’s Republic of China, and S. A.
of the People’s Republic of China, “Guideline for developing national
internet of vehicles industry standard system.” [Online]. Available:
http://www.catarc.org.cn/upload/201802/13/201802131152200937.pdf

[59] K. Garidis, L. Ulbricht, A. Rossmann, and M. Schmäh, “Toward a user
acceptance model of autonomous driving,” in Proceedings of the 53rd
Hawaii international conference on system sciences, 2020.

[60] J. Petit and S. E. Shladover, “Potential cyberattacks on automated ve-
hicles.” IEEE Trans. Intelligent Transportation Systems, vol. 16, no. 2,
pp. 546–556, 2015.

[61] T. Perry, “Why the next denial-of-service attack could be against your
car,” IEEE Spectrum: Technology, Engineering, and Science News, 2016.

[62] M. Levi, Y. Allouche, and A. Kontorovich, “Advanced analytics for con-
nected car cybersecurity,” in 2018 IEEE 87th Vehicular Technology Con-
ference (VTC Spring). IEEE, 2018, pp. 1–7.

http://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars
http://www.enisa.europa.eu/publications/cyber-security-and-resilience-of-smart-cars
https://www.enisa.europa.eu/publications/smart-cars
http://www.catarc.org.cn/upload/201802/13/201802131152200937.pdf


BIBLIOGRAPHY 169

[63] Q. He, X. Meng, and R. Qu, “Survey on cyber security of cav,” in Coop-
erative Positioning and Service (CPGP), 2017 Forum on. IEEE, 2017,
pp. 351–354.

[64] G. Sabaliauskaite and J. Cui, “Integrating autonomous vehicle safety
and security,” 11 2017.

[65] M. Islam, M. Chowdhury, H. Li, and H. Hu, “Cybersecurity attacks in
vehicle-to-infrastructure (v2i) applications and their prevention,” CoRR,
vol. abs/1711.10651, 2017.

[66] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to can
bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[67] D. Satyajeet, A. Deshmukh, and S. Dorle, “Heterogeneous approaches
for cluster based routing protocol in vehicular ad hoc network (vanet),”
International Journal of Computer Applications, vol. 134, no. 12, pp.
1–8, 2016.

[68] M. N. Mejri, J. Ben-Othman, and M. Hamdi, “Survey on vanet security
challenges and possible cryptographic solutions,” Vehicular Communi-
cations, vol. 1, no. 2, pp. 53–66, 2014.

[69] M. S. Al-Kahtani, “Survey on security attacks in vehicular ad hoc net-
works (vanets),” in Signal Processing and Communication Systems (IC-
SPCS), 2012 6th International Conference on. IEEE, 2012, pp. 1–9.

[70] A. Shameli-Sendi, R. Aghababaei-Barzegar, and M. Cheriet, “Taxonomy
of information security risk assessment (isra),” Computers & security,
vol. 57, pp. 14–30, 2016.

[71] H.-K. Kong, T.-S. Kim, and M.-K. Hong, “A security risk assessment
framework for smart car,” in 2016 10th International Conference on In-
novative Mobile and Internet Services in Ubiquitous Computing (IMIS).
IEEE, 2016, pp. 102–108.

[72] M. Wolf and M. Scheibel, “A systematic approach to a qualified secu-
rity risk analysis for vehicular it systems,” Automotive-Safety & Security
2012, 2012.

[73] D. Ward, I. Ibarra, and A. Ruddle, “Threat analysis and risk assessment
in automotive cyber security,” SAE International Journal of Passenger
Cars-Electronic and Electrical Systems, vol. 6, no. 2013-01-1415, pp. 507–
513, 2013.

[74] T. Stolte, G. Bagschik, A. Reschka, and M. Maurer, “Hazard analysis
and risk assessment for an automated unmanned protective vehicle,”
in 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp.
1848–1855.

[75] T. Binion, J. Harr, B. Fields, S. Cielocha, and S. J. Balbach, “Risk
assessment for an automated vehicle,” Apr. 23 2015, uS Patent App.
14/057,467.



BIBLIOGRAPHY 170

[76] C. L. Bates, S. P. Jones, E. J. Nelson, and J. M. Santosuosso,
“Location-based vehicle risk assessment system,” Mar. 11 2008, uS
Patent 7,343,306.

[77] G. K. Rajbahadur, A. J. Malton, A. Walenstein, and A. E. Hassan,
“A survey of anomaly detection for connected vehicle cybersecurity and
safety,” in 2018 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018,
pp. 421–426.

[78] H. Lee, S. H. Jeong, and H. K. Kim, “Otids: A novel intrusion detection
system for in-vehicle network by using remote frame,” in 2017 15th An-
nual Conference on Privacy, Security and Trust (PST). IEEE, 2017,
pp. 57–5709.

[79] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2012, pp. 3354–3361.

[80] J. Geyer, Y. Kassahun, M. Mahmudi, X. Ricou, R. Durgesh, A. S. Chung,
L. Hauswald, V. H. Pham, M. Mühlegg, S. Dorn et al., “A2d2: Audi
autonomous driving dataset,” arXiv preprint arXiv:2004.06320, 2020.

[81] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine et al., “Scalability in perception
for autonomous driving: Waymo open dataset,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 2446–2454.

[82] X. Huang, X. Cheng, Q. Geng, B. Cao, D. Zhou, P. Wang, Y. Lin,
and R. Yang, “The apolloscape dataset for autonomous driving,” arXiv:
1803.06184, 2018.

[83] Lyft, “Lyft level 5 open data.” [Online]. Available: https://self-
driving.lyft.com/level5/data/

[84] S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous,
and J. McBride, “Ford multi-av seasonal dataset,” arXiv preprint
arXiv:2003.07969, 2020.

[85] F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan,
and T. Darrell, “Bdd100k: A diverse driving dataset for heterogeneous
multitask learning,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 2636–2645.

[86] G. Neuhold, T. Ollmann, S. Rota Bulo, and P. Kontschieder, “The map-
illary vistas dataset for semantic understanding of street scenes,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 4990–4999.

[87] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson,
U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for semantic
urban scene understanding,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 3213–3223.

https://self-driving.lyft.com/level5/data/
https://self-driving.lyft.com/level5/data/


BIBLIOGRAPHY 171

[88] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Kr-
ishnan, Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal
dataset for autonomous driving,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2020, pp. 11 621–
11 631.

[89] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes
in video: A high-definition ground truth database,” Pattern Recognition
Letters, vol. 30, no. 2, pp. 88–97, 2009.

[90] A. Patil, S. Malla, H. Gang, and Y.-T. Chen, “The h3d dataset for
full-surround 3d multi-object detection and tracking in crowded urban
scenes,” in 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019, pp. 9552–9557.

[91] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, “1 year, 1000
km: The oxford robotcar dataset,” The International Journal of Robotics
Research, vol. 36, no. 1, pp. 3–15, 2017.

[92] O. Yavanoglu and M. Aydos, “A review on cyber security datasets for
machine learning algorithms,” in 2017 IEEE International Conference
on Big Data (Big Data). IEEE, 2017, pp. 2186–2193.

[93] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole, “Bench-
marking datasets for anomaly-based network intrusion detection: Kdd
cup 99 alternatives,” in 2018 IEEE 3rd International Conference on
Computing, Communication and Security (ICCCS). IEEE, 2018, pp.
1–8.

[94] T. Janarthanan and S. Zargari, “Feature selection in unsw-nb15 and
kddcup’99 datasets,” in 2017 IEEE 26th international symposium on
industrial electronics (ISIE). IEEE, 2017, pp. 1881–1886.

[95] N. Moustafa and J. Slay, “Unsw-nb15: a comprehensive data set for net-
work intrusion detection systems (unsw-nb15 network data set),” in 2015
military communications and information systems conference (MilCIS).
IEEE, 2015, pp. 1–6.

[96] A. Patel, Q. Qassim, and C. Wills, “A survey of intrusion detection and
prevention systems,” Information Management & Computer Security,
2010.

[97] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection
systems in wireless sensor networks,” IEEE communications surveys &
tutorials, vol. 16, no. 1, pp. 266–282, 2013.

[98] B. B. Zarpelão, R. S. Miani, C. T. Kawakani, and S. C. de Alvarenga, “A
survey of intrusion detection in internet of things,” Journal of Network
and Computer Applications, vol. 84, pp. 25–37, 2017.

[99] A. Ferdowsi and W. Saad, “Generative adversarial networks for dis-
tributed intrusion detection in the internet of things,” in 2019 IEEE



BIBLIOGRAPHY 172

Global Communications Conference (GLOBECOM). IEEE, 2019, pp.
1–6.

[100] J. Jabez and B. Muthukumar, “Intrusion detection system (ids):
anomaly detection using outlier detection approach,” Procedia Computer
Science, vol. 48, pp. 338–346, 2015.

[101] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in 2008
Third International Conference on Systems and Networks Communica-
tions. IEEE, 2008, pp. 23–26.

[102] S. Jose, D. Malathi, B. Reddy, and D. Jayaseeli, “A survey on anomaly
based host intrusion detection system,” in Journal of Physics: Confer-
ence Series, vol. 1000, no. 1. IOP Publishing, 2018, p. 012049.

[103] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16–24, 2013.

[104] H. Zhengbing, L. Zhitang, and W. Junqi, “A novel network intrusion
detection system (nids) based on signatures search of data mining,” in
First International Workshop on Knowledge Discovery and Data Mining
(WKDD 2008). IEEE, 2008, pp. 10–16.

[105] S. Omar, A. Ngadi, and H. H. Jebur, “Machine learning techniques for
anomaly detection: an overview,” International Journal of Computer
Applications, vol. 79, no. 2, 2013.

[106] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou, “Specification-based anomaly detection: a new approach for
detecting network intrusions,” in Proceedings of the 9th ACM conference
on Computer and communications security, 2002, pp. 265–274.

[107] W. Zhang, Q. Yang, and Y. Geng, “A survey of anomaly detection meth-
ods in networks,” in 2009 International Symposium on Computer Net-
work and Multimedia Technology. IEEE, 2009, pp. 1–3.

[108] A. Shenfield, D. Day, and A. Ayesh, “Intelligent intrusion detection sys-
tems using artificial neural networks,” ICT Express, vol. 4, no. 2, pp.
95–99, 2018.

[109] T. Lane and C. E. Brodley, “An application of machine learning to
anomaly detection,” in Proceedings of the 20th National Information Sys-
tems Security Conference, vol. 377. Baltimore, USA, 1997, pp. 366–380.

[110] S. Naseer, Y. Saleem, S. Khalid, M. K. Bashir, J. Han, M. M. Iqbal, and
K. Han, “Enhanced network anomaly detection based on deep neural
networks,” IEEE Access, vol. 6, pp. 48 231–48 246, 2018.

[111] T. Shon and J. Moon, “A hybrid machine learning approach to network
anomaly detection,” Information Sciences, vol. 177, no. 18, pp. 3799–
3821, 2007.



BIBLIOGRAPHY 173

[112] A. Qayyum, M. Usama, J. Qadir, and A. Al-Fuqaha, “Securing con-
nected autonomous vehicles: Challenges posed by adversarial machine
learning and the way forward,” IEEE Communications Surveys Tutori-
als, vol. 22, no. 2, pp. 998–1026, 2020.

[113] S. Kumar, K. Singh, S. Kumar, O. Kaiwartya, Y. Cao, and H. Zhou, “De-
limitated anti jammer scheme for internet of vehicle: Machine learning
based security approach,” IEEE Access, vol. PP, pp. 1–1, 08 2019.

[114] G. Castignani, T. Derrmann, R. Frank, and T. Engel, “Smartphone-
based adaptive driving maneuver detection: A large-scale evalua-
tion study,” IEEE Transactions on Intelligent Transportation Systems,
vol. 18, no. 9, pp. 2330–2339, 2017.

[115] M. Zhang, C. Chen, T. Wo, T. Xie, M. Z. A. Bhuiyan, and X. Lin,
“Safedrive: online driving anomaly detection from large-scale vehicle
data,” IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp.
2087–2096, 2017.

[116] N. T. Pham, E. Foo, S. Suriadi, H. Jeffrey, and H. F. M. Lahza, “Improv-
ing performance of intrusion detection system using ensemble methods
and feature selection,” in Proceedings of the Australasian Computer Sci-
ence Week Multiconference, 2018, pp. 1–6.

[117] T. Bjerkestrand, D. Tsaptsinos, and E. Pfluegel, “An evaluation of fea-
ture selection and reduction algorithms for network ids data,” in 2015
International Conference on Cyber Situational Awareness, Data Analyt-
ics and Assessment (CyberSA), 2015, pp. 1–2.

[118] S. Aljawarneh, M. Aldwairi, and M. B. Yassein, “Anomaly-based in-
trusion detection system through feature selection analysis and building
hybrid efficient model,” Journal of Computational Science, vol. 25, pp.
152–160, 2018.

[119] S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, and H. Karim-
ipour, “Cyber intrusion detection by combined feature selection algo-
rithm,” Journal of information security and applications, vol. 44, pp.
80–88, 2019.

[120] M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an intrusion
detection system using a filter-based feature selection algorithm,” IEEE
Transactions on Computers, vol. 65, no. 10, pp. 2986–2998, 2016.

[121] G. WLG, “Connected and autonomous vehicles: A hacker’s delight?”
p. 20, 2017. [Online]. Available: https://gowlingwlg.com/GowlingWLG/
media/UK/pdf/autodrive/170907-cyber-security-white-paper.pdf

[122] R. Von Solms and J. Van Niekerk, “From information security to cyber
security,” computers & security, vol. 38, pp. 97–102, 2013.

[123] D. Schatz, R. Bashroush, and J. Wall, “Towards a more representative
definition of cyber security,” Journal of Digital Forensics, Security and
Law, vol. 12, no. 2, pp. 53–74, 2017.

https://gowlingwlg.com/GowlingWLG/media/UK/pdf/autodrive/170907-cyber-security-white-paper.pdf
https://gowlingwlg.com/GowlingWLG/media/UK/pdf/autodrive/170907-cyber-security-white-paper.pdf


BIBLIOGRAPHY 174

[124] C. on National Security Systems, “National information assurance
glossary,” 2010. [Online]. Available: https://www.dni.gov/files/NCSC/
documents/nittf/CNSSI-4009 National Information Assurance.pdf

[125] bsi group, “Pas 1885:2018 the fundamental principles of automotive
cyber security. specification,” 2018. [Online]. Available: https:
//shop.bsigroup.com/ProductDetail?pid=000000000030365446

[126] Gagandeep, Aashima, and P. Kumar, “Analysis of different security at-
tacks in manets on protocol stack a-review,” no. 5, pp. 269–275, 2012.

[127] K. Sahadevaiah and P. P. Reddy, “Impact of security attacks on a new
security protocol for mobile ad hoc networks.” Network Protocols & Al-
gorithms, vol. 3, no. 4, pp. 122–140, 2011.

[128] G. Booch, The unified modeling language user guide. Pearson Education
India, 2005.

[129] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller,
T. Dang, U. Franke, N. Appenrodt, C. G. Keller et al., “Making bertha
drive an autonomous journey on a historic route,” IEEE Intelligent
Transportation Systems Magazine, vol. 6, no. 2, pp. 8–20, 2014.

[130] S. Dolev, L. Krzywiecki, N. Panwar, and M. Segal, “Certificating vehicle
public key with vehicle attributes a (periodical) licensing routine, against
man-in-the-middle attacks and beyond,” in SAFECOMP 2013-Workshop
ASCoMS (Architecting Safety in Collaborative Mobile Systems) of the
32nd International Conference on Computer Safety, Reliability and Se-
curity, 2013.

[131] “The Newest Mobile Device: Self-driving Cars,” 2018. [On-
line]. Available: https://www.chinalawinsight.com/2018/01/articles/
corporate/the-newest-mobile-device-self-driving-cars/

[132] “One autonomous car will use 4,000 GB of data per day,” 2018.
[Online]. Available: https://www.networkworld.com/article/3147892/
internet/one-autonomous-car-will-use-4000-gb-of-dataday.html

[133] “Addressing data privacy concerns in nhtsa v2v rules,” 2017. [Online].
Available: https://us.eversheds-sutherland.com/NewsCommentary/
Articles/197567/Addressing-Data-Privacy-Concerns-in-NHTSA-V2V-
Rules

[134] S. Hansman and R. Hunt, “A taxonomy of network and computer at-
tacks,” Computers & Security, vol. 24, no. 1, pp. 31–43, 2005.

[135] M. Khurram, H. Kumar, A. Chandak, V. Sarwade, N. Arora, and
T. Quach, “Enhancing connected car adoption: Security and over the
air update framework,” in Internet of Things (WF-IoT), 2016 IEEE 3rd
World Forum on. IEEE, 2016, pp. 194–198.

[136] T. Ring, “Connected cars–the next targe tfor hackers,” Network Security,
vol. 2015, no. 11, pp. 11–16, 2015.

https://www.dni.gov/files/NCSC/documents/nittf/CNSSI-4009_National_Information_Assurance.pdf
https://www.dni.gov/files/NCSC/documents/nittf/CNSSI-4009_National_Information_Assurance.pdf
https://shop.bsigroup.com/ProductDetail?pid=000000000030365446
https://shop.bsigroup.com/ProductDetail?pid=000000000030365446
https://www.chinalawinsight.com/2018/01/articles/corporate/the-newest-mobile-device-self-driving-cars/
https://www.chinalawinsight.com/2018/01/articles/corporate/the-newest-mobile-device-self-driving-cars/
https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://www.networkworld.com/article/3147892/internet/one-autonomous-car-will-use-4000-gb-of-dataday.html
https://us.eversheds-sutherland.com/NewsCommentary/Articles/197567/Addressing-Data-Privacy-Concerns-in-NHTSA-V2V-Rules
https://us.eversheds-sutherland.com/NewsCommentary/Articles/197567/Addressing-Data-Privacy-Concerns-in-NHTSA-V2V-Rules
https://us.eversheds-sutherland.com/NewsCommentary/Articles/197567/Addressing-Data-Privacy-Concerns-in-NHTSA-V2V-Rules


BIBLIOGRAPHY 175

[137] “Why the Next Denial-of-Service Attack Could
Be Against Your Car,” 2016. [Online]. Avail-
able: https://spectrum.ieee.org/view-from-the-valley/transportation/
safety/why-the-next-denial-of-service-attack-could-be-against-your-car

[138] R. N. Charette, “This car runs on code,” IEEE spectrum, vol. 46, no. 3,
p. 3, 2009.

[139] J. Moteff, “Risk management and critical infrastructure protection: As-
sessing, integrating, and managing threats, vulnerabilities and conse-
quences.” Library of Congress Washington DC Congressional Research
Service, 2005.

[140] G. Stoneburner, A. Y. Goguen, and A. Feringa, “Sp 800-30. risk man-
agement guide for information technology systems,” Gaithersburg, MD,
United States, Tech. Rep., 2002.

[141] G. Tamasi and M. Demichela, “Risk assessment techniques for
civil aviation security,” Reliability Engineering & System Safety,
vol. 96, no. 8, pp. 892 – 899, 2011. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0951832011000378

[142] W. F. Powers and P. R. Nicastri, “Automotive vehicle control challenges
in the 21st century,” Control engineering practice, vol. 8, no. 6, pp. 605–
618, 2000.

[143] W. Stallings, Cryptography and network security : principles and practice
/ Williams Stallings., 6th ed., Boston, Mass. ; London, 2014.

[144] C. Garling. (2017, October) Why cars will become the
ultimate mobile device. Accessed Dec 4, 2018. [Online].
Available: https://builttoadapt.io/why-cars-will-become-the-ultimate-
mobile-device-33dbaad40118

[145] H. C. Barbosa, D. A. Lima, A. M. Neto, G. B. Vitor, A. Martinesco,
G. Rabelo, and V. H. Etgens, “The new generation of standard data
recording device for intelligent vehicles,” in Intelligent Transportation
Systems (ITSC), 2016 IEEE 19th International Conference on. IEEE,
2016, pp. 2669–2674.

[146] P. Kohli and A. Chadha, “Enabling pedestrian safety using computer
vision techniques: A case study of the 2018 uber inc. self-driving car
crash,” arXiv preprint arXiv:1805.11815, 2018.

[147] C. J. Jacobus and D. Haanpaa, “All weather autonomously driven vehi-
cles,” Jun. 5 2018, uS Patent 9,989,967.

[148] M. Konrad and M. Schramm, “Validation of adas by sensor fusion,” ATZ
worldwide, vol. 120, no. 6, pp. 56–59, 2018.

[149] “Waymo safety report: On the road to fully self-driving,” 2017.
[Online]. Available: https://www.auto-mat.ch/wAssets/docs/171019
waymo-safety-report-2017-10.pdf

https://spectrum.ieee.org/view-from-the-valley/transportation/safety/why-the-next-denial-of-service-attack-could-be-against-your-car
https://spectrum.ieee.org/view-from-the-valley/transportation/safety/why-the-next-denial-of-service-attack-could-be-against-your-car
http://www.sciencedirect.com/science/article/pii/S0951832011000378
http://www.sciencedirect.com/science/article/pii/S0951832011000378
https://builttoadapt.io/why-cars-will-become-the-ultimate-mobile-device-33dbaad40118
https://builttoadapt.io/why-cars-will-become-the-ultimate-mobile-device-33dbaad40118
https://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf
https://www.auto-mat.ch/wAssets/docs/171019_waymo-safety-report-2017-10.pdf


BIBLIOGRAPHY 176

[150] C. Wang, L. Yu, Y. Hao, and Wangc, “Automotive usability : Human
computer interaction in the vehicle,” 2012.

[151] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on au-
tomated vehicles sensors: Experiments on camera and lidar,” Black Hat
Europe, vol. 11, p. 2015, 2015.

[152] R. Kummerle, D. Hahnel, D. Dolgov, S. Thrun, and W. Burgard, “Au-
tonomous driving in a multi-level parking structure,” in Robotics and
Automation, 2009. ICRA’09. IEEE International Conference on. IEEE,
2009, pp. 3395–3400.
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