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Abstract 

Renewable energy sources are promising long-term solution to solve the 

energy supply crisis due to the excessive use of non-renewable fossil fuels. One 

of the options is solar energy, which can be harvested directly from sunlight 

using photovoltaic (PV) technology. In recent years, organic solar cells (OSCs) 

as the building blocks of organic PV technology have emerged in the PV field, 

enabling the realization of environmental-friendly and low-cost PV technology. 

However, issues related to efficiency performance still posed a major setback to 

commercialization of OSCs. In view of this, this study is conducted to present 

comprehensive understandings on how OSCs’ performance in terms of optical, 

electrical, morphological and mechanical properties can be improved through 

device engineering strategy (interface and electrode engineering strategy). In 

addition, the potential applications of OSCs achieved via device engineering 

strategy are also being explored. In summary, the studies conducted can be 

divided into three main parts. 

The first part focuses on improving OSCs’ performance through 

interface engineering strategy for the realization of high-performing OSCs. 

Interface engineering on sol-gel zinc oxide (ZnO) electron-transporting layer 

(ETL) was conducted by introducing additional oxadiazole-based electron-

transporting material called 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-

oxadiazole (PBD) between ZnO ETL and photoactive layer. The significance of 

incorporating PBD on ZnO was demonstrated by investigating the change in 

optical, electrical and morphological properties of pristine ZnO ETL. The 

findings shown that additional PBD layer could improve pristine ZnO film’s 
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conductivity, create better energy level alignment with the photoactive layer, 

smoothen ZnO film’s morphology and improve ZnO film’s hydrophobicity. All 

those factors crucially influenced the charge extraction, transport and 

recombination processes in OSCs, which were conducive for the enhancement 

in photovoltaic performance of ZnO/PBD-based device.  In fact, through 

interface engineering strategy, inverted OSCs based on poly[(2,6-(4,8-bis(5-(2-

ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1’,3’-di-

2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-c’]dithiophene-4,8-dione)] 

(PBDB-T donor) and 3,9-bis(2-methylene-((3-(1,1-dicyanomethylene)-6/7-

methyl)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2’,3’-d’]-

s-indaceno[1,2-b:5,6-b’]dithiophene (IT-M acceptor) could demonstrate ~7% 

increment in the photovoltaic performance from 10.8% (ZnO-based device) to 

11.6% (ZnO/PBD-based device). 

The second part focuses on improving OSCs’ performance through 

electrode engineering strategy for the realization of high-performing flexible 

OSCs. Electrode engineering on poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate) (PEDOT:PSS) electrode was conducted by utilizing 

polyhydroxy compound dopant and gentle acid post-treatment method, 

specifically xylitol dopant and methanesulfonic acid (MSA) treatment. The 

significance of xylitol dopant and MSA treatment on PEDOT:PSS electrode was 

demonstrated by investigating the change in optical, electrical, morphological 

and mechanical properties of pristine PEDOT:PSS electrode. The findings 

shown that both doping and acid treatment on PEDOT:PSS electrode could 

improve the optical transparency of electrode, enhance electrode’s conductivity 

and modify electrode’s morphology. In addition, such treatment could also 
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provide electrode a stronger adhesion ability with the substrate, which were 

effective for improving the mechanical stability of electrode against extreme 

mechanical deformation. All those factors promoted the realization of high-

performing flexible OSCs based on PEDOT:PSS electrode. In fact, through 

electrode engineering strategy, conventional OSCs based on poly[(2,6-(4,8-

bis(5-(2-ethylhexyl-3-fluoro)thiophen-2-yl)-benzo[1,2-b:4,5-b’]dithiophene))-

alt-(5,5-(1’,3’-di-2-thienyl-5’,7’-bis(2-ethylhexyl)benzo[1’,2’-c:4’,5’-

c’]dithiophene-4,8-dione)] (PBDB-T-2F/PM6 donor) and 2,2'-((2Z,2'Z)-

((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-

e]thieno[2",3’':4’,5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-

b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-

1H-indene-2,1-diylidene))dimalononitrile (BTP-4F/Y6 acceptor) could 

demonstrate an excellent photovoltaic performance of 14.2% with remarkable 

mechanical robustness against bending and folding. 

The last part focuses on the application of device engineering, 

specifically electrode engineering as a continuation of study from the previous 

part. The desirable mechanical and optical properties of the engineered 

PEDOT:PSS could make PEDOT:PSS a great candidate for usage in foldable-

flexible semi-transparent OSCs (FST-OSCs). FST-OSCs were fabricated 

similarly using engineered PEDOT:PSS electrode and PBDB-T-2F:Y6 

photoactive layer system. As a result, high-performing FST-OSCs with over 10% 

efficiency and 21% average visible light transmittance, as well as excellent 

mechanical stability were obtained. The potential of such FST-OSCs for 

greenhouse application was investigated by incorporating them as part of roofs 

in the simulated greenhouse. Comparisons between plants grown under direct 
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sunlight with FST-OSCs roof and those under direct sunlight yielded remarkably 

similar results in terms of branch sturdiness and hypertrophic leaves, proving the 

significance of electrode engineering strategy in realizing high-performing FST-

OSCs for practical greenhouse applications. 
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Chapter 1. Introduction 

 

1.1 Background 

In the 21st century, the ever-increasing energy demand becomes a major 

worldwide concern due to the quick growth in global population by more than 

5.5 billion people over a century (Roser et al., 2020). With the continuous rise 

in global energy demand and consumption, massive energy supply is needed 

more than ever. Over the past few decades, traditional sources of energy such as 

fossil fuels (coal, oil and natural gas) had dominated the market, covering more 

than 75% of world’s energy supply as shown in Figure 1.1 (British Petroleum, 

2019). However, the combustion of fossil fuels is causing substantial greenhouse 

gases emissions (particularly carbon dioxide/CO2 emissions) into the 

atmosphere. Based on studies reported by Intergovernmental Panel on Climate 

Change (IPCC), the global CO2 concentration in the atmosphere had increased 

significantly over the past century and was highly associated with the 

combustion of fossil fuels (IPCC, 2015). Therefore, continuous dependency on 

fossil fuels as the primary energy sources will result in adverse environmental 

impacts (e.g., ozone depletion, global warming, etc). Not to mention, fossil fuels 

are facing resources depletion crisis due to their non-renewable nature. In view 

of these issues, alternatives to fossil fuels are needed with utmost urgency to 

mitigate greenhouse gases emissions and resolve the imminent depletion crisis 

of fossil fuel. 
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Figure 1.1 Global consumption of energy (measured in billion tons of oil equivalent) categorized 

based on fuel sources from 1970 to 2019 and further prediction to 2040 (British Petroleum, 2019). 

Renewable energy sources, as replacement for non-renewable fossil fuels 

are ‘green’, clean and abundant in nature, providing a promising long-term 

solution to solve the energy supply crisis. Among them, solar energy appears to 

be one of the most ideal and encouraging renewable energy sources for 

sustainable development, as it can be harvested directly from sunlight using 

photovoltaic (PV) technology. Theoretically, sunlight is made up of photons, 

which contain a specific amount of energy. When the solar cell (building block 

of PV technology) is stroked by sunlight, it absorbs the extra energy to knock 

the electron loose, thereby allowing the electron to move freely. An additional 

electric field induced by the electrodes forces the free-moving electrons to move 

in the same direction for current generation. This process is often known as PV 

effect (Bagher, 2014), which is the key governing concept in all PV technologies 

to convert sunlight into electricity effectively. By using this technology, 
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electrical energy can be produced profusely from the inexhaustible and clean 

solar energy to meet the increasing demand for sustainable energy. 

 

1.2 Overview of Solar Cells 

Solar cells, as the building blocks of PV technology are mainly 

categorized into two classes, namely organic and inorganic solar cells (Huang 

and Deng, 2014). Since its discovery, inorganic solar cells have been dominating 

the PV market, particularly for silicon-based inorganic solar cells as it accounted 

for 95% of the total global PV production in 2019 (Philipps and Warmuth, 2020). 

However, due to complexity and cost issues in the manufacturing of silicon-

based inorganic solar cells, several alternatives such as organic solar cells are 

being developed to replace them. 

1.2.1 Development history of solar cells 

Dating back to 1839, a French physicist named A. E. Becquerel, 

discovered the first PV effect from his experiment with platinum electrode in an 

electrolyte solution (U.S. Department of Energy, 2002, Four Peaks Technologies, 

2011). Becquerel realized that voltage was developed when the electrode was 

exposed to light. In the 1870s, British electrical engineer and researchers 

discovered about the photoconductivity of selenium and its ability to produce 

electrical current when exposed to sunlight without any mechanical or thermal 

sources (U.S. Department of Energy, 2002, Four Peaks Technologies, 2011). 

Soon after in 1883, American inventor C. Fritts successfully made use of 
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selenium to construct the first working solar cells (U.S. Department of Energy, 

2002, Four Peaks Technologies, 2011). The resulting cells had an electrical 

conversion efficiency of only 1% attributed to the properties of selenium. 

The first photoelectric effect was discovered in 1887 by German 

physicist named H. R. Hertz (U.S. Department of Energy, 2002, Four Peaks 

Technologies, 2011). Hertz implied that matter could emit electrons when light 

was shined on it and ultraviolet (UV) light could provide better stimulus for this 

than visible light. The theories on photoelectric effect were later clarified by A. 

Einstein in 1905 (U.S. Department of Energy, 2002, Four Peaks Technologies, 

2011). In his theory, Einstein postulated that light was composed of photons and 

photons carried varying amount of energy depending on the wavelength of light 

– greater energy corresponds to short wavelength. The experimental proof to 

support those theories was later conducted by R. Millikan in 1916 (U.S. 

Department of Energy, 2002, Four Peaks Technologies, 2011). 

After almost a century, the development of solar cells continued in 1954, 

where D. M. Chapin, C. S. Fuller and G. L. Pearson developed the first practical 

solar cells made from silicon materials (Chapin et al., 1954). Efficiency of 6% 

was achieved for silicon solar cells, which was a milestone for a practical solar 

cell at that time. This efficiency was further enhanced to 14% in 1960s due to 

the intense researches in this field (U.S. Department of Energy, 2002, Four Peaks 

Technologies, 2011). In the early 1970s, cheaper silicon solar cells were 

designed using lower silicon purity grade materials (U.S. Department of Energy, 

2002, Four Peaks Technologies, 2011). Since then, silicon solar cells started to 

gain popularity and dominance in various applications such as powering outer 
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space satellites, navigation warning lights, utilities, vehicles and many more. The 

pace of solar cells development never slowed down since 1970s as depicted in 

Figure 1.2 (National Renewable Energy Laboratory, 2020). It was progressing 

much faster over the years leading to the emergence of three generation of solar 

cells, which were distinguished based on the key materials used for the light-

absorbing layer or photoactive layer. 

Silicon-based solar cells are the 1st generation solar cells, which are made 

from either monocrystalline or polycrystalline silicon (Battaglia et al., 2016, 

Raut et al., 2018, Liu et al., 2018). These solar cells are the most mature PV 

technologies on the market due to their remarkable efficiency of over 22% 

(Philipps and Warmuth, 2020) and excellent lifetime of 25 years (Jorgensen et 

al., 2008). Nonetheless, the production of these solar cells requires a thorough 

purification procedure and thicker silicon absorbing layer to obtain such high 

efficiency, which contributes to the high energy consumption and production 

cost (Hoppe and Sariciftci, 2004, Li et al., 2012b, Bagher, 2014). Thus, several 

alternatives to 1st generation solar cells are being studied and developed. 
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Figure 1.2 Development of solar cells over the years for different PV technologies (National Renewable Energy Laboratory, 2020). 
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The 2nd generation solar cells are thin-film solar cells classified into three 

different types: amorphous silicon, cadmium telluride (CdTe) and copper indium 

gallium selenide (CIGS) (Lee and Ebong, 2017, Raut et al., 2018). As compared 

to its predecessor, these solar cells are much more economical and have better 

absorption capability even with a thin photoactive layer. Each thin-film solar cell 

possesses its own unique characteristics. For instance, amorphous silicon solar 

cells may feature lower efficiency but are the most environmentally friendly 

when compared to CdTe and CIGS solar cells. CdTe solar cells can be 

considered as the lead candidate for 2nd generation PV technology as they have 

higher efficiency, yet various environmental hazards stemmed from the use of 

heavy metal cadmium. CIGS solar cells can absorb sunlight effectively in a much 

thinner photoactive layer, but the scarcity and toxicity of indium and gallium 

need to be taken into consideration. In view of those shortcomings, 3rd generation 

PV technologies are being introduced. 

The newest technology in PV market is the 3rd generation solar cells, 

represented by nanocrystal or quantum dots (QDs) solar cells, organic solar cells 

(OSCs), perovskite solar cells, dye-sensitized solar cells and concentrated solar 

cells (Raut et al., 2018). These solar cells have the potential to be 

commercialized to replace the 1st generation silicon-based solar cells. As of now, 

most of the 3rd generation solar cells are still in the midst of developing, seeking 

for the right balance between efficiency, lifetime and cost to improve upon the 

first two generations. 
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1.2.2 Organic solar cells (OSCs) 

OSCs or organic solar cells are thin-film solar cells, where the 

photoactive layers are made from organic semiconducting materials or carbon-

based materials with backbones comprising of mainly C-C and C=C bond (Li et 

al., 2012a). In the last decade, OSCs have been gaining notable attentions over 

the other 3rd generation solar cells due to their promising potentials as substitutes 

for conventional silicon solar cells. Nonetheless, concerns regarding OSCs were 

raised in the past because of their low efficiency performances when compared 

to other inorganic PV technologies. It was the concerted efforts between 

chemists, physicists and engineers that managed to push the development 

progress of OSCs to reach a new milestone (Brabec, 2004, Jorgensen et al., 2008, 

Sista et al., 2011, Zhang and Wang, 2012, Zhou et al., 2012, Ameri et al., 2013, 

Heeger, 2014, McAfee et al., 2015, Yin et al., 2016, Carle et al., 2017, Cheng et 

al., 2018, Li et al., 2018, Yan et al., 2018, Upama et al., 2020). Resultantly, the 

performance of OSCs had increased rapidly from 2.9% in 1995 (Yu et al., 1995) 

to over 18% in 2020 (Liu et al., 2020). 

The potential of OSCs arises from the fact that organic semiconductors 

are versatile in nature, which allow OSCs to have countless possible material 

combinations during fabrication process, providing great range of options for 

improvements. Also, OSCs have the following characteristics that made them 

far more superior than their inorganic counterparts (e.g., silicon) (Yin et al., 2016, 

Carle et al., 2017, Brebels et al., 2017, Li et al., 2018, Upama et al., 2020). 
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i) Low carbon footprint with minimal use of non-abundant elements, 

making OSCs to be environmental-friendly and low-cost PV technology. 

ii) Lightweight and mechanically flexible, giving OSCs the possibility to be 

fabricated on a flexible substrate. 

iii) Ease of solution-processability at low temperature, allowing OSCs to be 

compatible for large-area manufacturing for commercialization purposes. 

iv) Flexibility for chemical tailoring where precise optimization of the 

desired properties (e.g., energy level and absorption spectra) of the 

materials are achievable. 

v) Semi-transparent to transparent nature of organic semiconductors results 

in stronger absorption coefficient in OSCs, which means that a high 

absorption can be obtained even in thin-film device with thickness less 

than 100 nm. 

1.2.3 Key challenges in OSCs 

Efficiency, lifetime and production cost are the three major obstacles that 

restrict the commercialization of OSCs (Jorgensen et al., 2008). Though OSCs 

may have lower cost of processing than their inorganic counterparts, efficiency 

and lifetime issues still need to be overcome to achieve comparable performance 

against mature silicon-based solar cells. These issues indeed remained as great 

challenges, causing the studies about organic photovoltaics to focus on the 

development of efficient and stable OSCs. 
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One of the key factors that have restricted the realization of efficient and 

stable OSCs is the limited absorption capability of OSCs, which affects the 

generation of charge carriers (Carle et al., 2017). For example, despite OSCs 

having high absorption coefficient, silicon solar cells still absorb light more 

effectively as the absorption spectrum extends up to 1100 nm – absorption from 

UV to infrared region (see Figure 1.3) (Hoppe and Sariciftci, 2004). Meanwhile, 

OSCs can only absorb light effectively up to the visible light region, limiting the 

possibility of harvesting solar photons in the higher wavelength region (see 

Figure 1.3) (Hoppe and Sariciftci, 2004). Theoretically, this is caused by the 

relatively high bandgap (Eg) of organic semiconductors (~2 eV), which is much 

higher than the value for silicon semiconductors (Coakley and McGehee, 2004, 

Gunes et al., 2007, Huang and Deng, 2014). This subsequently restricts the 

amount of incident solar light to be absorbed by OSCs. Hence, it is crucial to 

reduce the bandgap of organic semiconductors so that OSCs will have broader 

coverage of solar spectrum (UV to infrared region) to increase both their light 

absorption and charge generation capability. 

 

Figure 1.3 Solar spectrum under air mass 1.5 global (AM1.5G) irradiance (Chang et al., 2018). 
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Another factor that restricted the realization of efficient and stable OSCs 

is the low charge carrier mobility of OSCs, which affects the extraction of charge 

carriers (Carle et al., 2017). OSCs have lower charge carrier mobility, as the 

main transport mechanism in organic semiconductors is through hopping 

transport and not bandlike transport, which is the case for inorganic 

semiconductors (Hoppe and Sariciftci, 2004, Coakley and McGehee, 2004). Due 

to this reason, utilizing suitable materials that have good charge transporting 

properties are essential to promote better charge extraction and charge collection 

processes in OSCs. 

Over the years, efforts to overcome the absorption and charge mobility 

issues in OSCs have been made to develop efficient and stable OSCs. One 

effective strategy is the copolymerization of donor and acceptor units into the 

same backbone (D-A copolymerization) (Zhang et al., 2015, Bang et al., 2017, 

Sun et al., 2020). Via this technique, organic semiconductors can have smaller 

bandgap due to the redistribution of frontier molecular orbitals, as well as higher 

charge carrier mobility caused by the change in aggregation behaviour. Other 

strategies such as by tuning the effective conjugation length and opting for 

quinoidal structure instead of aromatic were also proven to be useful (Cheng et 

al., 2009, Zhang and Wang, 2012, Chang et al., 2018). Due to those efforts, the 

performance of OSCs had risen to over 18% in 2020 (Liu et al., 2020). However, 

this efficiency performance was still lower than that of the other inorganic PV 

technologies (Philipps and Warmuth, 2020, National Renewable Energy 

Laboratory, 2020). Therefore, further enhancement in OSCs’ performance is 

continuously required in the next couple of years for practical applications. 
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1.3 Aim and Objectives 

Throughout the development of OSCs, three general approaches have 

been employed to boost OSCs’ performance, namely material design (e.g., 

design and synthesis of novel organic material for photoactive layer), 

morphology control (e.g., morphology control of photoactive layer through post-

production treatment) and device engineering (e.g., modification of electrode 

layer, interfacial layer or photoactive layer). Thus far, material design and 

morphology control of the photoactive layer have been the main focuses to 

improve OSCs’ performance up to 15-18% range (Xu et al., 2019, Yuan et al., 

2019, Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 2020). 

Meanwhile, device engineering gains less attention even though it plays an 

equally pivotal role to enhance OSCs’ performance. In view of this, this study 

was conducted with the main aim of improving OSCs’ performance using device 

engineering strategy, particularly via modification of interfacial layer and 

electrode layer (or interface and electrode engineering). Herein, different 

materials were chosen accordingly to modify the properties of pristine interfacial 

layer and electrode layer for better performing OSCs. 

The objectives of this research are: 

i) To explore prospective of OSCs in supplying energy to meet global 

demand. 

ii) To provide an in-depth understanding of fundamental concepts of OSCs. 
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iii) To study and demonstrate the potentials of device engineering, 

particularly interface and electrode engineering in enhancing OSCs’ 

performance. 

iv) To present comprehensive ideas on how device engineering can improve 

device performance. 

v) To analyse the potential applications of high-performing OSCs achieved 

via device engineering. 

 

1.4 Outline of Thesis 

The outline of this research will be discussed in brief as follow. Chapter 

1 introduces background information and problem statement of this study. It 

basically conveys the research gap and motivation to the readers. Ranges of solar 

cells are being introduced with the main focus on OSCs. The main aim and 

objectives of this study are presented as well. 

Chapter 2 provides important and relevant technical information about 

OSCs that the readers need to understand before continuing further. This 

includes the development of OSCs over the years, operating principles of OSCs, 

photoactive layer configurations in OSCs, structures of OSCs and etc. 

Comprehensive insights on the key performance parameters of OSCs and 

relationships between them are also included here. This chapter discusses the 

previous work that have been studied or done to improve OSCs performance, 

which set clear opportunities for future research. A short summary regarding 

those research opportunities is presented at the end of this chapter. 
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Chapter 3 elaborates detailed information regarding the experimental 

work conducted for this study. This chapter aims to demonstrate a clear 

fabrication and performance measurement method for OSCs. 

Chapter 4 discusses the interface engineering strategy to enhance OSCs’ 

performance. This chapter is written based on published literature entitled 

“Efficiency enhancement of organic solar cells enabled by interface engineering 

of sol-gel zinc oxide with an oxadiazole-based material” (journal article: 

10.1016/j.orgel.2019.105483). In here, interfacial layer engineering or interface 

engineering on zinc oxide (ZnO) electron-transporting layer (ETL) was 

performed via the incorporation of 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-

1,3,4-oxadiazole (PBD) to form a hybrid electron-transporting bilayer. 

Chapter 5 illustrates the electrode engineering strategy to improve OSCs’ 

performance, which is based on the version of “Foldable semi-transparent 

organic solar cells for photovoltaic and photosynthesis” (journal article: 

10.1002/aenm.202000136). Herein, electrode engineering was implemented on 

poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) 

electrode as indium tin oxide (ITO) alternatives, by adding xylitol dopant and 

utilizing methanesulfonic acid (MSA) post-processing treatment. 

The study on device engineering continues in Chapter 6, where practical 

applications of device engineering strategy are being illustrated. This chapter 

covers the potential applications of high-performing OSCs achieved through 

electrode engineering strategy for greenhouse windows and/or roofs. A summary 

of the current study and discussion of future work are included in Chapter 7.  
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Chapter 2. Literature Review 

 

2.1 Overview of OSCs 

Though silicon-based inorganic solar cells had been dominating the 

global PV market, their complexity and cost issues had led to the emergence of 

several PV alternatives. OSCs being one of them, were gaining remarkable 

attentions in the last decades due to their promising potentials as future PV 

technology. Generally, OSCs are based on organic semiconducting materials, 

that can be further categorized into two major areas of polymeric and small-

molecular (SM) materials (Brabec et al., 2010). Both materials have different 

characteristics and properties that will be discussed in the later parts. 

Throughout the development of OSCs, it has been widely accepted that 

a combination of polymeric donor and SM acceptor as the photoactive layer is 

the most successful and prominent strategy for OSCs (Li et al., 2016, Zhao et al., 

2017b, He et al., 2018, Zhang et al., 2018b, Xu et al., 2019, Yuan et al., 2019, 

Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 2020). Such 

combinations have propelled the efficiency performance of OSCs to over 15-18% 

range (Xu et al., 2019, Yuan et al., 2019, Cui et al., 2020, Luo et al., 2020, Liu 

et al., 2020, Sun et al., 2020). For instance, in one of the studies, a combination 

of D18 polymeric donor and Y6 SM acceptor could lead to an excellent OSC’s 

performance with 18.22% efficiency, which was the highest-performing single-

junction OSCs reported to date based on binary photoactive layer (Liu et al., 

2020). Despite of the lower efficiency performance, other material combinations 
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for photoactive layer have also been studied and started to gain popularity in 

OSCs’ field. For example, all-small-molecule OSCs utilizing SM donor and 

acceptor had recently achieved an efficiency of over 14-15% as reported by Zhou 

et al., Hu et al. and Qin et al. (Zhou et al., 2019, Hu et al., 2020, Qin et al., 

2020a). On the contrary, much lower performance was obtained in all-polymer 

OSCs with efficiency around 9-10% as reported by Liu et al. and Wu et al. (Liu 

et al., 2019b, Wu et al., 2019). 

It was obvious that the use of polymeric donor and SM acceptor benefited 

device performance the most, particularly when molecular structure of donor and 

acceptor materials were designed meticulously. Yet, their efficiency 

performances were still lower than other inorganic PV technologies. For 

example, the highest efficiency recorded for monocrystalline silicon, 

polycrystalline silicon, CIGS and CdTe solar cells were 27.6%, 23.3%, 23.4% 

and 22.1%, respectively (Philipps and Warmuth, 2020, National Renewable 

Energy Laboratory, 2020). This implies the need to explore strategies for further 

improvement in OSCs’ efficiency to achieve comparable performance with other 

inorganic-based solar cells. To date, three main strategies have been applied to 

enhance OSCs’ performance, including material design, morphology control and 

device engineering. Nonetheless, before going into each strategy in depth, it is 

crucial to first understand the basic concepts of OSCs (e.g., development 

progress, operating principles, device structures, etc). 
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2.2 Development of OSCs 

The earliest OSCs were discovered in 1958 where D. Kearns and M. 

Calvin fabricated the first Schottky-junction OSCs using magnesium 

phthalocyanine as the photoactive layer (Kearns and Calvin, 1958). Even though 

PV effect was detected, the energy conversion efficiency was still extremely low 

because of the limitation of single-layered photoactive layer configuration. For 

almost 30 years, the development of OSCs remained relatively stagnant and the 

conversion efficiency was relatively low with the highest to be 0.7% in 1978 

(Morel et al., 1978). In 1986, C. W. Tang introduced the concept of p-n junction 

in OSCs, where two organic layers consisting of a p-type hole-transporting layer 

(phthalocyanine derivative) and a n-type electron-transporting layer (perylene 

derivative) were used (Tang, 1986). Tang succeeded in achieving 1% efficiency, 

which was a milestone in the field of OSCs. This eventually led to the birth of 

bilayer heterojunction or biplanar photoactive layer configuration in OSCs. 

In 1992, Sariciftci et al. discovered the evidence of photoinduced 

ultrafast charge transfer in a time regime of picoseconds between 

poly(phenylenevinylene) derivative (MEH-PPV) and fullerene (C60) (Sariciftci 

et al., 1992). On that account, few deductions were made stating that since the 

charge transfer process was on the order of magnitude several times faster than 

any other competing process, then a highly efficient charge generation process 

(nearly 100%) in OSCs could be achieved. Based on those observations, Yu et 

al. fabricated the first ever bulk heterojunction (BHJ) OSCs in 1995 (Yu et al., 

1995). Yu et al. managed to boost the efficiency to 2.9% by blending MEH-PPV 

donor and fullerene acceptor as the photoactive layer. Since then, several novel 
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photoactive materials had been designed, introduced and investigated, which 

resulted in the rapid development progress of BHJ OSCs throughout the years. 

To date, the most eminent donor materials are derived from PBDB-T polymer 

donors (Qian et al., 2012), such as PBDB-T-2F or PM6 (Zhang et al., 2015) and 

PBDB-T-2Cl or PM7 (Zhang et al., 2018b). Meanwhile, the most used acceptor 

materials are derived from ITIC SM acceptors (Lin et al., 2015), such as IT-M 

(Li et al., 2016) and IT-4F (Zhao et al., 2017b). SM acceptors derived from BTP-

4F or Y6 (Yuan et al., 2019), namely BTP-4Cl-BO or BTP-eC11 (Cui et al., 

2020), BTP-eC9 (Cui et al., 2020) and BTP-2F-ThCl (Luo et al., 2020) are 

currently dominating the OSCs’ field due to their high efficiency performances 

beyond 15%. Consequently, the current efficiency performance of BHJ OSCs 

has surpassed 15-18% boundary (Xu et al., 2019, Yuan et al., 2019, Cui et al., 

2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 2020). If any, the complete 

chemical names for the aforementioned organic materials are being listed in 

“List of Chemical Names”. 

 

2.3 Operating Principles of OSCs 

The main operating principles of OSCs can be divided into several key 

processes as shown in Figure 2.1: i) exciton generation, ii) exciton diffusion, iii) 

exciton dissociation, iv) generation of charge transfer exciton (CTE), v) free 

charge carrier generation and vi) transport of free charge carrier to electrodes for 

collection (Gunes et al., 2007, Cheng et al., 2009, Schlenker and Thompson, 

2011, Facchetti, 2013, Huang and Deng, 2014, Kang et al., 2016). 
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Figure 2.1 Key processes in OSCs (Kang et al., 2016). The blue area in the figure represents 

acceptor (A) and the red area represents donor (D). Both D and A are the constituents of the 

photoactive layer in OSCs and blended to form BHJ photoactive layer configuration. 

2.3.1 Exciton generation 

Absorption of light by photoactive organic materials (mostly donor 

materials of the photoactive layer) generates extra energy for the excitation of 

electron from highest occupied molecular orbital (HOMO) to lowest unoccupied 

molecular orbital (LUMO) energy level. However, only light with photon 

energies equal to or greater than the bandgap of the photoactive organic materials 

can be absorbed to knock the electron loose. This process is analogous to the 

excitation of electron from valence to conduction band in a typical inorganic 

semiconductor. 

Following the excitation of electron to LUMO energy level, electron 

vacancy or hole is formed in the HOMO energy level and will always co-exist 

with the excited photogenerated electron. Due to this phenomenon, electron-hole 

pair is formed during absorption of light. The electron-hole pair is often termed 

as Frenkel exciton in organic semiconductors and Wannier-Mott exciton in 
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inorganic semiconductors (Brebels et al., 2017). The main distinguishing feature 

between them lies in their binding energies. While Wannier-Mott exciton in 

inorganic semiconductors is weakly bounded by Coulombic forces, Frenkel 

exciton is the complete opposite as it is tightly bounded by strong Coulombic 

forces, resulting in a high binding energy (Eb) in the range of 0.3-1.0 eV (Brebels 

et al., 2017). 

2.3.2 Exciton diffusion 

Frenkel exciton then diffuses into the D/A interface via random hopping. 

During this process, exciton often decays or recombines due to the short exciton 

diffusion length of ~10-20 nm in addition to the short exciton lifetime of ~1 ns 

in organic materials (Hoppe and Sariciftci, 2004, Brabec et al., 2010). Since its 

discovery in 1995 (Yu et al., 1995), BHJ photoactive layer configuration (as 

shown in Figure 2.1) has been utilized to overcome those issues by ensuring that 

exciton can be generated within its diffusion length from the D/A interface, so 

that the recombination of exciton via radiative or non-radiative pathway can be 

minimized. 

2.3.3 Exciton dissociation 

Exciton dissociation process takes place after Frenkel exciton has made 

it to the D/A interface. As Frenkel exciton is strongly bounded by Coulombic 

forces with Eb of ~0.3-1.0 eV (Brebels et al., 2017), efficient exciton dissociation 

entirely depends on the D/A interface. D/A interface presents a way to overcome 

the high Eb because of the strong internal electric field created by the gap in 

energy levels between donor and acceptor materials at the interface. This strong 
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electric field is sufficient to be the driving force to dissociate exciton into free 

charge carriers of electron and hole. 

2.3.4 Generation of CTE and free charge carrier 

Separated charges of electron and hole are formed upon the dissociation 

of Frenkel exciton. Electron is now found in the LUMO energy level of acceptor 

materials, while hole is in the HOMO energy level of donor materials. Although 

separated, charges are still found near the D/A interface, which indicate that both 

electron and hole are still in a close distance with one another. Therefore, there 

are strong Coulombic interaction existing between electron and hole near the 

D/A interface. The electron-hole pair found near the D/A interface after 

dissociation is referred as CTE. In this process, CTE will eventually decay, either 

through the recombination of separated charges or the reactions with 

surrounding neutral ground-state molecules. The former pathway is a major loss 

mechanism that hinders OSCs from having high efficiency, while the latter 

pathway leads to the generation of free charge carrier. 

2.3.5 Charge transport to electrodes 

Separated free charge carriers are then transported to electrodes for 

collection before they decay or recombine. Thus, it is important to ensure that 

photoactive materials have high charge carrier mobility to transport electron and 

hole effectively. Furthermore, it is crucial to ensure that electrodes can collect 

electron and hole effectively through the formation of Ohmic contact. With the 

presence of driving force, both hole and electron are transported via random 

hopping between molecules, where hole is transported effectively in the donor 



22 

materials to reach a higher work function (WF) electrode (or anode) and electron 

in acceptor materials to a lower WF electrode (or cathode). The driving forces 

include: i) internal electric field formed from the difference in energy levels 

between donor and acceptor materials at the D/A interface and ii) external 

electric field created via the use of electrodes with different WF. When the 

electrodes are connected to an external circuit, electrical current will be 

generated. 

 

2.4 Photoactive Layer Configurations in OSCs 

Photoactive layer as the main constituent of OSCs plays a critical role in 

OSCs as it directly affects the generation, diffusion and dissociation of exciton, 

plus the generation and transport of free charge carrier. Hence, any modifications 

made on the photoactive layer configuration will impact OSCs’ performance 

greatly. Over the past few decades, photoactive layer configuration in OSCs had 

evolved from single-layered Schottky-junction and bilayer heterojunction to 

BHJ. To date, BHJ configuration has dominated OSCs’ market and has been 

widely preferred over its predecessors (Schottky-junction and bilayer 

heterojunction) due to the remarkable performance it can offer (Xu et al., 2019, 

Yuan et al., 2019, Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 

2020). Both advantages and limitations of the different configurations are being 

discussed below. 
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2.4.1 Single-layered Schottky-junction configuration 

In the earliest form, OSCs consist of only a thermally evaporated p-type 

donor as the photoactive layer. This photoactive layer is placed between two 

metal electrodes with varying WF as illustrated in Figure 2.2a. Based on 

characteristics, Schottky-junction OSCs tend to produce sensible voltage but 

with very low photocurrent (Coakley and McGehee, 2004). The main reason 

behind this is due to the characteristic nature of short exciton diffusion length 

(~10-20 nm), where only those excitons generated within 20 nm from the 

depletion region can be dissociated (Hoppe and Sariciftci, 2004, Brabec et al., 

2010). In Schottky-junction OSCs, the depletion region with thickness W 

provides a driving force for exciton dissociation process and is typically formed 

due to the Schottky contact existing between metal and semiconductor (as shown 

in Figure 2.2b) (Hoppe and Sariciftci, 2004). In other words, the depletion 

region is basically the only region where exciton will dissociate, thereby, making 

Schottky-junction OSCs to be exciton diffusion limited as most excitons will 

decay or recombine before even reaching this region. Consequently, a low 

charge carrier generation or photocurrent is often achieved in this configuration 

even though a substantial amount of sunlight can be potentially absorbed, 

leading to poor device performance. Studies shown that the performance of 

Schottky-junction OSCs remained relatively low for more than 20 years, with 

the highest to be 0.7% in 1978 as reported by Morel et al. (Morel et al., 1978). 

Such limitations have pushed the development of bilayer heterojunction 

configuration utilizing n-type acceptor and p-type donor as the photoactive layer. 
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Figure 2.2 (a) Thermally evaporated photoactive layer (p-type donor) being sandwiched 

between two metal electrodes, one with higher WF (gold, Au) and another with lower WF 

(aluminium, Al). (b) Schematic of energy level diagram in Schottky-junction OSCs, where 

Schottky contact was formed with length W near the Al contact (Hoppe and Sariciftci, 2004). 

The negative sign represents electron’s movement towards cathode (Al), whereas the positive 

sign represents hole’s movement towards anode (Au). 

2.4.2 Bilayer heterojunction configuration 

Bilayer heterojunction photoactive layer configuration was first 

developed in 1986 by Tang to overcome the limitations of Schottky-junction 

configuration (Tang, 1986). In bilayer heterojunction OSCs, photoactive layer 

consisting of a p-type hole-transporting layer and a n-type electron-transporting 

layer, is placed between two metal electrodes with varying WF as illustrated in 

Figure 2.3a. At that time, Tang used phthalocyanine derivative for hole transport 

and perylene derivative for electron transport to fabricate OSCs with 1% 

efficiency and stated that the performance improvement was attributed to the 

enhanced exciton dissociation at the interface (Tang, 1986). 

 

(b) (a) 
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In bilayer heterojunction OSCs, exciton dissociation and charge carrier 

generation happen at the D/A interface, which is the planar interface formed 

when donor and acceptor materials are stacked together (Hoppe and Sariciftci, 

2004). At the D/A interface, the gap in HOMO and LUMO energy level between 

donor and acceptor materials creates an electric field that prompts the effective 

exciton dissociation process (Huang and Deng, 2014). Moreover, bilayer 

heterojunction OSCs have monomolecular charge transport as depicted in 

Figure 2.3b, which promotes an effective charge separation at the interface with 

lower chance of recombination (Coakley and McGehee, 2004, Hoppe and 

Sariciftci, 2004). All these characteristics are the main contributors for better 

overall device performances of bilayer heterojunction OSCs over Schottky-

junction OSCs. 

Nevertheless, due to its short diffusion length and lifetime (Hoppe and 

Sariciftci, 2004, Brabec et al., 2010), exciton will still decay before reaching the 

D/A interface, rendering this device to be exciton diffusion limited. Small 

interfacial area of the D/A interface for exciton dissociation is also one of the 

limitations that restricts the performance of bilayer heterojunction OSCs (Cheng 

et al., 2009, McDowell et al., 2018, Zhang et al., 2018a). Device stability is 

lacking as well, mainly due to the interfacial erosion issues during fabrication of 

bilayer devices (Cheng et al., 2009). These conditions are the main culprits that 

limit the performance of bilayer heterojunction OSCs and consequently, lead to 

the development of BHJ OSCs. 
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Figure 2.3 (a) Photoactive layer consisting of n-type acceptor and p-type donor, placed between 

two metal electrodes, one with higher WF (gold, Au) and another with lower WF (aluminium, 

Al). (b) Schematic of energy level diagram in bilayer heterojunction OSCs, where donor (D) 

contacts Au electrode and acceptor (A) contacts Al electrode (Hoppe and Sariciftci, 2004). The 

negative sign represents electron’s movement towards cathode (Al), whereas the positive sign 

represents hole’s movement towards anode (Au). 

2.4.3 BHJ configuration 

BHJ photoactive layer configuration was first invented in 1995 by Yu et 

al. to overcome the limitation of its predecessors (Schottky-junction and bilayer 

heterojunction configurations) (Yu et al., 1995). In BHJ OSCs, the photoactive 

layer is made by blending p-type donor and n-type acceptor for hole and electron 

transport, respectively, and is usually placed between two metal electrodes with 

varying WF as illustrated in Figure 2.4a. Figure 2.4b shows the schematic 

diagram of energy level in BHJ OSCs. 

(a) (b) 
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Figure 2.4 (a) Photoactive blend layer consisting of n-type acceptor and p-type donor, positioned 

between two metal electrodes, one with higher WF (gold, Au) and another with lower WF 

(aluminium, Al). (b) Schematic of energy level diagram in BHJ OSCs, where donor (D) contacts 

Au electrode and acceptor (A) contacts Al electrode (Hoppe and Sariciftci, 2004). The negative 

sign represents electron’s movement towards cathode (Al), whereas the positive sign represents 

hole’s movement towards anode (Au). 

In BHJ OSCs, nanoscale interpenetrating networks of donor and acceptor 

domains are created via the blending of n-type acceptor and p-type donor (Hoppe 

and Sariciftci, 2004, Yang et al., 2005). Such morphology reduces the distance 

that exciton needs to travel, thus ensuring that majority of excitons can diffuse 

to the D/A interface for further dissociation before they decay or recombine. 

Large interfacial area of the D/A interface which is of greater magnitude than 

their predecessors is formed as well (Hoppe and Sariciftci, 2004, Yang et al., 

2005). The large D/A interfacial area provides enough D/A interfaces across the 

photoactive layer, allowing exciton dissociation to happen anywhere across the 

film. Due to these characteristics, BHJ OSCs can promote not only a more 

effective and efficient exciton diffusion and dissociation, but also better charge 

generation and transport when compared with their predecessors. With such 

desirable features, BHJ configuration has dominated the OSCs’ field as the go-

(a) (b) 
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to photoactive layer configuration. In fact, most high-performing OSCs known 

to date are developed based on this photoactive layer configuration (Xu et al., 

2019, Yuan et al., 2019, Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun 

et al., 2020). For instance, ground-breaking studies based on PBDB-T-2F:Y6 as 

reported by Yuan et al. utilized a BHJ photoactive layer configuration to obtain 

15.7% efficiency performance (Yuan et al., 2019). It is important to note that 

those works were the first single-junction binary OSCs to reach 15% 

performance. 

 

2.5 Structures of OSCs 

Although BHJ photoactive layer can create effective exciton dissociation 

and charge carrier generation, it can still result in low performance when the 

interface between electrode and photoactive layer is being neglected. Due to this 

constrain, interfacial layer material is normally introduced in BHJ OSCs to act 

as an interface between the electrode and the photoactive layer. Interfacial layer 

is, therefore, another important constituent of OSCs apart from electrode and 

photoactive layer. This means that OSCs are generally comprised of three 

distinct layers (photoactive layer, interfacial layer and electrode). Those three 

components (photoactive layer, interfacial layer and electrode) can be arranged 

differently to form two different device structures, termed as conventional and 

inverted structures. 
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In conventional OSCs (as depicted in Figure 2.5a), the glass substrate 

(for rigid OSCs) or flexible substrate (for flexible OSCs) is typically coated with 

a thin layer of high WF ITO that functions as transparent bottom anode. The 

hole-transporting layer (HTL) or anode interfacial layer is deposited onto the 

ITO substrate. HTL is a selective layer with suitable energy level to block 

electron and promote hole extraction towards the anode and a classic HTL choice 

for conventional OSCs is PEDOT:PSS (Yin et al., 2016). PEDOT:PSS is usually 

employed to reduce the surface roughness of the underlying ITO layer so that a 

smoother and evenly distributed photoactive layer can be produced (Brebels et 

al., 2017). Though superior as HTL, PEDOT:PSS is highly hydrophilic and 

acidic in nature, which may cause harm to the underlying layer (Huang and Deng, 

2014, Zeng et al., 2015, Yin et al., 2016), thus rendering it to be highly unsuitable 

for inverted OSCs. The photoactive layer is subsequently deposited on top of the 

HTL. In most cases, a blend between donor and acceptor materials (BHJ 

photoactive layer) made up the photoactive layer. Following the successful 

deposition, ETL or cathode interfacial layer will be deposited on top of the 

photoactive layer. ETL is a selective layer with suitable energy level to block 

hole and promote electron extraction towards the cathode (Yin et al., 2016). 

There is a wide-ranging of material options for ETL but recently, 2,9-bis[3-

(dimethyloxidoamino)propyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-

1,3,8,10(2H,9H)-tetrone (PDINO) and poly(9,9-bis(3’-(N,N-dimethyl)-N-

ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene))dibromide 

(PFN-Br) are utilized mostly for conventional OSCs. Both PDINO and PFN-Br 

are alcohol-/water- soluble materials that give not only high electron mobility, 

excellent conductivity and good solubility but also good photochemical stability 
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(Nielsen et al., 2015). At last, low WF metal, functioning as cathode is deposited 

on top of the ETL. With this conventional structure, free-moving electrons are 

forced to move towards the top electrode (cathode or lower WF electrode), 

whereas free-moving holes moved towards the bottom electrode (anode or 

higher WF electrode) (as illustrated in Figure 2.5c). 

Inverted OSCs (as shown in Figure 2.5b) can also make use of ITO-

coated glass substrate as the transparent bottom electrode. Yet, the top electrode 

must be substituted with materials having higher WF than ITO. As a result, ITO 

electrode in inverted OSCs functions as cathode for collecting electron, while 

the top electrode serves as the anode for collecting hole. This implies that the 

movements of free-moving electron and hole are reversed in inverted OSCs (as 

illustrated in Figure 2.5d). Based on the same concept, ETL and HTL are still 

utilized as the interfacial layer between electrode and photoactive layer to 

improve OSCs’ performance by providing a suitable charge transport direction 

for the free charge carriers. On the whole, molybdenum oxide (MoO3) as HTL 

and ZnO as ETL are the popular choice for inverted OSCs. MoO3 is often used 

in inverted OSCs due to its good ambient stability and non-acidic nature, while 

solution-processed ZnO is used due to its high transparency in the visible light 

region and good electron affinity (Yin et al., 2014). 
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Figure 2.5 General structures of (a) conventional and (b) inverted OSCs (McAfee et al., 2015). 

Schematic of energy level diagram for (c) conventional OSCs and (d) inverted OSCs, where it 

shows electron’s and hole’s movements upon illumination (McAfee et al., 2015). The negative 

sign represents electron’s movement, whereas the positive sign represents hole’s movement. 

 

2.6 Fabrication of OSCs 

In order to fabricate OSCs, the three main components (photoactive layer, 

interfacial layer and electrode) are normally prepared and deposited through 

layer-by-layer approach. To date, there are several preparation and deposition 

techniques for the fabrication of OSCs, yet the choice of techniques highly 

depends on material characteristics. Both preparation and deposition techniques 

(a) (b) 

(c) (d) 
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for the fabrication of OSCs, along with their compatibilities with different 

materials (polymeric, SM, metal and inorganic materials) are discussed below. 

2.6.1 Preparation techniques 

In general, two commonly used preparation techniques for the fabrication 

of OSCs are vacuum evaporation and solution-processing techniques (Gunes et 

al., 2007). In vacuum evaporation technique, materials in solid or powder form 

can be utilized directly without processing. Those materials are normally coated 

onto the substrate in a high-vacuum chamber with pressure less than 10-5 mbar 

(Gunes et al., 2007). On the contrary, solution-processing technique usually 

involves the dissolution of materials in an appropriate processing solvent (e.g., 

non-polar or polar organic solvent). Those solutions are then deposited onto the 

substrate via printing or coating technologies (Hoppe and Sariciftci, 2004, 

Brabec, 2004). 

Typically, polymeric materials are more suitable to be prepared through 

solution-processing technique rather than vacuum evaporation technique. This 

is because vacuum evaporation requires high-temperature processing while 

polymers easily decompose under high temperature and have extremely large 

molar mass for evaporation (Gunes et al., 2007). Thus, vacuum evaporation 

technique is highly preferable for SM, metal or inorganic materials as they are 

thermally more stable (Gunes et al., 2007). Nevertheless, some SM or inorganic 

materials can also be prepared via solution-processing technique as their 

solubilities in the processing solvent do not raise any concern (Zhang et al., 

2017). Both preparation techniques have been utilized for the fabrication of 
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OSCs, but whenever possible, solution-processing technique is preferred as it 

has greater opportunity for large-scale manufacturing due to the ease of 

fabrication that saves energy, cost and time. Typically, state-of-the-art OSCs 

incorporate BHJ photoactive layer that is processed via solution-processing 

technique, interfacial layers that are fabricated using either solution-processing 

technique (e.g., PEDOT:PSS, PDINO, ZnO) or vacuum evaporation technique 

(e.g., MoO3) and metal electrodes that are processed via vacuum evaporation 

technique (e.g., Al) (Xu et al., 2019, Yuan et al., 2019, Cui et al., 2020, Luo et 

al., 2020, Liu et al., 2020, Sun et al., 2020). 

2.6.2 Deposition techniques 

After the preparation of materials using vacuum evaporation or solution-

processing techniques, they are deposited layer-by-layer onto the substrate to 

form conventional or inverted OSCs. Materials that are prepared through 

vacuum evaporation technique can be directly deposited onto the substrate. 

Meanwhile, materials prepared using solution-processing technique are typically 

deposited onto the substrate using printing or coating technologies. 

Printing and coating techniques are both methods employed to deposit 

solution-processed materials to form a thin-film. By definition, printing is an 

approach in which the ink layer is transplanted from a stamp to a substrate by a 

reversing action, while coating is a process in which ink is transferred to the 

substrate by either pouring, painting, spraying or casting (Krebs, 2009). Thus, 

printing technique is a necessary tool for ensuring a high-volume productivity 

and significant cost reduction of PV technology, while coating technique is 
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mostly utilized for small-scale study such as laboratory study (Brabec, 2004). In 

current state, OSCs are still in the development stage requiring small-scale 

laboratory studies. Hence, coating technology remains as the more popular 

technique to date for the deposition of solution-processed materials in OSCs. 

An example of coating technology is spin coating, which is a zero-

dimensional coating technique that allows the formation of uniform films 

throughout the surface (coating without a pattern) (Krebs, 2009, Ge et al., 2014, 

Carle et al., 2017). Spin coating is an easy and simple lab-scale deposition 

method, where film properties (e.g., thickness and morphology) can be 

controlled effectively by manipulating the operating conditions (e.g., rotational 

speed, diffusivity and volatility) (Krebs, 2009). Generally, spin coating can be 

operated via these simple mechanisms: i) application of solution on top of the 

flat substrate, ii) variation in rotational speed of the disc causing the disc to spin, 

iii) spinning of the disc induces acceleration of the substrate, iv) liquid on top of 

the substrate spreads out evenly due to the centrifugal force resulted from the 

accelerating substrate and v) evaporation and drying of liquid throughout its 

uniform spreading, resulting in the formation of homogeneous film with minimal 

defect concentration (Krebs, 2009). Figure 2.6 illustrates the spin coating 

process. 
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Figure 2.6 Illustration of spin coating process (Krebs, 2009). 

As of now, spin coating is considered as the more superior technique for 

the deposition of solution-processed materials due to the minimal development 

of other printing and coating technologies. High-performing OSCs as reported 

by Cui et al., Luo et al. and Liu et al. for example, still made use of spin coating 

method to deposit solution-processable materials (Cui et al., 2020, Luo et al., 

2020, Liu et al., 2020). However, spin coating is unfavourable for large-scale 

operation as it has larger solution volume loss (most of the solution applied on 

the substrate is ejected away during spinning) (Krebs, 2009). Therefore, the 

development of other printing and coating technologies that are compatible for 

roll-to-roll productions (e.g., inkjet printing, screen printing, knife-over-edge 

coating, slot-die coating, etc), will be crucial in the near future to support large-

area and large-scale manufacturing of OSCs. In the past few years, some studies 

had adopted such printing and coating technologies, compatible for large-area 

OSCs fabrication. For instance, Corzo et al. adopted inkjet printing to deposit 

photoactive layer, where a device performance of ~6% was obtained in 2 cm2 
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device (Corzo et al., 2019). Though the resulting device performance was still 

considerably low as compared with those processed with spin coating method, it 

still had potentials to initiate future studies on large-area OSCs fabricated using 

printing technologies. 

 

2.7 Key Performance Parameters in OSCs 

The performance of OSCs is analysed based on several key parameters 

that are inter-correlated to one another. These parameters are open circuit voltage 

(Voc), short circuit current (Jsc), fill factor (FF), series and shunt resistances, 

external quantum efficiency (EQE) and most importantly, power conversion 

efficiency (PCE). OSCs’ performance can be evaluated based on their PCEs to 

determine the effectiveness in converting solar irradiation to electrical energy. 

Nonetheless, it is also important to understand other key performance parameters 

of OSCs as they affect the PCE of OSCs significantly. The key performance 

parameters of OSCs are discussed below. 

2.7.1 Open circuit voltage (Voc) 

Open circuit voltage or abbreviated as Voc, is expressed as the maximum 

cell voltage provided by a solar cell under no current condition (J = 0) (Heeger, 

2014). Voc is typically measured in volt (V) and mainly affected by the cell’s 

electric field. Earlier studies shown that Voc had a strong linear correlation with 

the difference in LUMO and HOMO energy level of acceptor and donor 
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materials when blended together (Brabec et al., 2001, Scharber et al., 2006, 

McDowell et al., 2018). It is represented with the empirical equation as follow: 

𝑒𝑒 ∙ 𝑉𝑉oc = ��𝐸𝐸HOMO (D)� − �𝐸𝐸LUMO (A)�� − 0.3     (1) 

where Voc [V] is the open circuit voltage, E [eV] is the energy level (HOMO or 

LUMO), e is the elementary charge and 0.3 is an empirical number denoting the 

LUMO-LUMO offset between donor and acceptor materials. The relationship 

between Voc and the energy level of donor and acceptor materials is also depicted 

in Figure 2.7. 

 

Figure 2.7 Schematic of energy level diagram of BHJ OSCs (omitting interfacial layer, such as 

HTL and ETL) (Brebels et al., 2017). Optical bandgap, Eg is the difference between HOMO and 

LUMO energy level of donor material as it is mostly responsible for light absorption. ΔELL is 

the LUMO-LUMO offset between donor and acceptor materials. ΔEHL is the difference between 

HOMO and LUMO energy level of donor and acceptor materials, respectively. 
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Theoretically, it is desirable to have high Voc performances in OSCs. 

High Voc values can be obtained by maximizing the energy level difference 

between donor and acceptor materials, such as by using a donor material with 

low-lying HOMO and/or acceptor material with high-lying LUMO. For instance, 

Zhang et al. designed a polymer donor called PBDB-T-2F with low-lying 

HOMO of 5.45 eV, which was beneficial for high Voc performance in OSCs 

(Zhang et al., 2015). However, increasing HOMO(D)-LUMO(A) offset will cause 

a smaller LUMO-LUMO offset between donor and acceptor materials, which is 

responsible for exciton dissociation process. Hence, in return to lower energy 

loss and higher Voc, having large HOMO(D)-LUMO(A) offset can result in a lower 

Jsc value due to the less efficient exciton dissociation process. Based on the rule 

of thumb, LUMO-LUMO offset should not be less than 0.3 eV to guarantee 

sufficient driving force for electron transfer so that efficient exciton dissociation 

process can occur at the interface (Scharber et al., 2006, Facchetti, 2013, Menke 

et al., 2018). 

Aside from energy level, Voc were also reported to be affected by the WF 

of electrodes to a certain extent because the difference in WF provided external 

electric field to the cell (Brabec, 2004). Moreover, it was reported by Perez et al. 

that Voc could also be influenced by the morphology and molecular structure of 

photoactive layer (Perez et al., 2009). 

2.7.2 Short circuit current (Jsc) 

Short circuit current or abbreviated as Jsc, is typically measured in 

milliampere per square centimetre (mA cm-2) and defined as the current that 
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flows in the cell when there is no external resistance present (V = 0) (Heeger, 

2014). The electron movement throughout the cell upon illumination induces 

this current flow, which correlates to the amount of free charge carrier generated. 

Thus, the theoretical upper limit of Jsc can be attained by increasing the number 

of free charge carrier generated, such as by improving the light absorption 

performance of the photoactive layer and/or optimizing the photoactive layer’s 

morphology (Huang and Deng, 2014). 

A widely accepted method to improve photoactive layer’s morphology 

is through the utilization of BHJ configuration, where it creates a percolative 

donor and acceptor domains to promote efficient generation, diffusion and 

dissociation of exciton, as well as generation and transport of free charge carrier. 

Further improvements in BHJ morphology can also be conducted to maximize 

the Jsc values for better OSCs’ performance. For instance, by varying processing 

conditions of the BHJ photoactive layer, such as by adjusting the D:A ratio and 

the concentration of solid in solvent, choosing suitable processing solvent, 

adding chemical additives or utilizing post-production treatment (thermal 

annealing and solvent treatment). Through the optimization of these parameters, 

excessive or large-scale phase segregations of donor and acceptor domains that 

are detrimental to device performance can be prevented, which helps to boost 

the Jsc performance. For example, Yuan et al. utilized a high-performing PBDB-

T-2F:Y6 photoactive blend layer and investigated the effect of D:A ratio, 

additives ratio and annealing treatment to device performance (Yuan et al., 2019). 

As reported, a slight change of D:A ratio from 1:1 to 1:1.2 could increase the Jsc 

values from 25.25 to 25.32 mA cm-2. Varying additives ratio could slightly tune 

the Jsc values as well. Varying annealing treatment seemed to be the most 
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effective approach to improve Jsc values as non-annealed device only exhibited 

Jsc of 24.31 mA cm-2 while those annealed at 110°C exhibited Jsc of 25.32 mA 

cm-2. Those findings explained the role of processing condition in tuning 

photoactive layer’s morphology for better Jsc performances. 

Another efficient way to improve Jsc is by narrowing the Eg of donor 

materials in the photoactive layer to allow more sunlight to be absorbed 

(improved light absorption performance). Eg of donor materials can be reduced 

by raising HOMO energy level and/or lowering LUMO energy level of donor 

materials. However, raising HOMO energy level of donor materials will 

consequently lead to a smaller HOMO(D)-LUMO(A) offset, which in turn lowers 

the Voc performance to a certain extent (see Figure 2.7 for clearer illustrations). 

Lowering LUMO energy level of donor materials will also result in a smaller 

LUMO-LUMO offset between donor and acceptor materials, which limits 

exciton dissociation process at the D/A interface (see Figure 2.7 for clearer 

illustrations). In this case, there is a certain extent where the donor material’s 

LUMO energy level can be reduced. Based on the rule of thumb, the LUMO of 

donor must be higher than that of the acceptor and the difference between those 

LUMOs should not be less than 0.3 eV for energetically favourable electron 

transfer (Scharber et al., 2006, Facchetti, 2013, Menke et al., 2018). 

As discussed, a trade-off between favourable electron transfer (via tuning 

LUMO-LUMO offset of donor and acceptor materials), high Jsc (via narrowing 

or reducing Eg of donor materials) and high Voc (via tuning HOMO(D)-LUMO(A) 

offset) needs to be determined. Finding this trade-off, however, has remained a 

great challenge as simultaneous enhancement in all these parameters is nearly 
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impossible, thus limiting the PCE of OSCs. The relationships between PCE and 

those parameters are summarized in Figure 2.8. 

 

Figure 2.8 The relationship of electron transfer, Voc and Jsc to PCE (Schlenker and Thompson, 

2011). Two hypothetical donors (D1 and D2) are introduced with the same LUMO energy level 

but different HOMO energy level. D2 has a smaller Eg compared to D1 due to its high-lying 

HOMO. Other parameters are kept constant, including HOMO and LUMO energy level of 

acceptor. With this, LUMO-LUMO offset responsible for electron transfer is kept constant. D1 

has a low energy loss (high Voc) but its large Eg results to a poor absorption of light (low Jsc), 

while D2 has a broad spectral coverage for absorption due to its narrow Eg (high Jsc) but with a 

higher energy loss (low Voc). 

2.7.3 Fill factor (FF) 

Fill factor or abbreviated as FF, measures the quality of a solar cell by 

comparing the actual maximum power output (Vmax × Jmax) to theoretical 

maximum power output (Voc × Jsc) (Facchetti, 2013, Ge et al., 2014, Heeger, 

2014), which is represented by the equation below: 
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𝐹𝐹𝐹𝐹 = (𝑉𝑉max  ∙  𝐽𝐽max) (𝑉𝑉oc  ∙  𝐽𝐽sc)⁄       (2) 

where FF is the fill factor, Vmax [V] is the maximum voltage generated, Voc [V] 

is the open circuit voltage, Jmax [mA cm-2] is the maximum current generated and 

Jsc [mA cm-2] is the short circuit current. The ratio of these parameters can be 

illustrated in a typical current density vs voltage (J-V) characteristic curve as 

displayed in Figure 2.9. 

 

Figure 2.9 Typical current density vs voltage (J-V) curve in OSCs under illumination. The area 

of curve enclosed by Vmax and Jmax represents the actual maximum power output, while that 

enclosed by Voc and Jsc represents the theoretical maximum power output. The ratio of actual 

power output to theoretical power output gives FF. 

FF is a ratio from 0 to 1 as the actual maximum power output (Vmax × 

Jmax) is always smaller than the theoretical maximum power output (Voc × Jsc). 

But in most cases, FF is often expressed in percentage form (%) from 0-100% 

range. Theoretically, it is desirable to have high FF performances in OSCs. High 

FF values are achieved in OSCs when free charge carriers are successfully 
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swept-out to their respective electrodes before recombination takes place (Gunes 

et al., 2007, Huang and Deng, 2014, Heeger, 2014). Hence, it is important for 

OSCs to have good charge carrier mobility and low charge recombination to 

ensure the charge carriers are successfully transported and extracted to the 

electrodes for higher FF performances. An approach to accomplish this is by 

having a slow photoactive layer growth rate, which can be achieved through 

longer solidification time of the photoactive layer. Li et al. proved this, where a 

slower growth rate was found to promote desirable photoactive layer 

morphology for improving hole mobility to acquire higher FF (Li et al., 2005). 

2.7.4 Series and shunt resistances 

Series and shunt resistances measured in ohm (Ω), strongly influence the 

FF performances in OSCs (Yip and Jen, 2012). Hence, it is vital to understand 

the concept behind series and shunt resistances in OSCs to improve performance. 

Series resistance (Rs) is normally governed by the conductivity of electrodes and 

organic materials and the contact resistance between them, whereas shunt 

resistance (Rsh) is determined by the quality of the photoactive layer (Yip and 

Jen, 2012). Thus, Rs is related to materials and contact engineering, while Rsh 

depends on the current leakage in the photoactive layer through pinholes, traps 

or recombination (Liao et al., 2010). 

In normal circumstances, it is highly desirable to have OSCs with small 

Rs to escalate the forward current and large Rsh to prevent loss of charge carriers 

in the photoactive layer. One strategy to increase Rsh was conducted by Li et al., 

where a suitably thick photoactive layer was used to minimize pinholes and 
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microcracks (Li et al., 2005). Furthermore, Li et al. also studied the degree of 

polymer self-organization in the photoactive layer by controlling the drying rate 

of the photoactive layer film. In the study, photoactive layer growth rate was 

controlled by varying the time taken for the wet film to solidify – longer 

solidification time gave slower growth rate. In this case, Li et al. found that 

slower growth rate was more desirable to reduce Rs as compared to fast growth 

rate (Li et al., 2005). Thus, simple strategies such as opting for thicker 

photoactive layer or controlling photoactive layer growth rate can be taken into 

consideration to reduce Rs and increase Rsh values. 

2.7.5 External quantum efficiency (EQE) 

EQE quantifies the number of electrons accumulated at the cathode given 

a specific number of incident photons at a specific wavelength during light 

irradiation (Huang and Deng, 2014, Ge et al., 2014). EQE is defined in the 

equation below: 

EQE = [(1240 ∙ 𝐽𝐽)/(λ ∙ Pin)]       (3) 

where EQE [%] is the external quantum efficiency, J [mA cm-2] is the current 

density, Pin [mW cm-2] is the incident photon’s power and λ [nm] is the 

wavelength of the incident photons. Take note that 1240 is a constant with a unit 

of mW nm mA-1, simplified from Planck constant, speed of light in a vacuum 

and elementary charge. 
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A high EQE characterizes the ability of OSCs to generate and collect 

electrons effectively after being irradiated with light. Therefore, high EQE 

values are preferable in OSCs for achieving high energy conversion efficiencies. 

Referring to the equation, EQE and Jsc performances are related, which means 

that higher EQE in OSCs can be achieved by improving the Jsc performance. As 

mentioned previously, optimization of photoactive layer’s morphology is one of 

the strategies that can boost Jsc and EQE performances simultaneously. 

2.7.6 Power conversion efficiency (PCE) 

Power conversion efficiency or abbreviated as PCE, measures how 

efficient an OSC can convert sunlight into electricity. It is a measure of the ratio 

between power output and power input, which can be represented by the 

following equation: 

PCE = (𝑉𝑉oc ∙ 𝐽𝐽sc ∙ 𝐹𝐹𝐹𝐹) Pin⁄        (4) 

where PCE [%] is the power conversion efficiency, Voc [V] is the open circuit 

voltage, Jsc [mA cm-2] is the short circuit current, FF [%] is the fill factor and Pin 

[mW cm-2] is the incident photon’s power. The three important constituent 

parameters of PCE (Voc, Jsc and FF) can be extracted from a standard J-V curve 

as shown in Figure 2.9. 

Conventionally, high PCE is desirable as an indication for high-

performing OSCs. It is particularly important for OSCs to have high PCE if 

commercialization is to be realized. Higher PCE in OSCs can be attained by 

simultaneously improving the Voc, Jsc and FF values, for example, by opting for 
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narrow Eg donor materials to absorb light effectively for higher Jsc, proper tuning 

of the energy level of donor and acceptor materials for higher Voc, selecting 

materials with high charge carrier mobility to enhance Jsc and FF, and/or 

optimizing photoactive layer’s morphology with desirable phase separation to 

simultaneously improve Voc, Jsc and FF values. On a side note, morphology 

optimization may enhance Voc by reducing recombination losses, but only to the 

extent pinned by the HOMO(D)-LUMO(A) offset. 

 

2.8 Performance Enhancement Strategies in OSCs 

Three main approaches have been used to enhance OSCs’ performance, 

particularly in terms of their PCE values. This includes material design, 

morphology control and device engineering. Material design as the name 

suggests, is a strategy to develop novel organic material via judicial design of 

molecular structure, such as the addition of specific atom into the molecular 

structure, the rearrangement of molecular structure, etc. This strategy is normally 

employed to synthesize novel high-performing photoactive layer (Cui et al., 

2020, Liu et al., 2020, Luo et al., 2020, Qin et al., 2020a, Sun et al., 2020) and/or 

interfacial layer materials (Zhang et al., 2014, Peng et al., 2018, Li et al., 2020). 

However, studies about material design on the photoactive layer are more 

commonly found due to their role in boosting OSCs performance. Detailed 

discussion about material design strategy used on the photoactive layer can be 

found in the next sub-section. 
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Morphology control, on the other hand is a strategy that alters the 

morphological properties of a surface. This is conducted via modification of 

processing conditions that include D:A blend ratio, concentration of solid in 

solvent, choice of processing solvent, additives addition and/or post-production 

treatment (annealing and solvent treatment). In OSCs, morphology control via 

modification of those processing conditions can be used on solution-processed 

layers such as photoactive and interfacial layers to optimize device performance 

(Zhang et al., 2014, Peng et al., 2018, Cui et al., 2020, Liu et al., 2020, Luo et 

al., 2020, Qin et al., 2020a, Sun et al., 2020). Detailed discussion on morphology 

control strategy can be found in the next sub-section. 

Lastly, device engineering is a strategy that mainly alters the pristine 

properties of interfacial layer, photoactive layer and/or electrode to improve the 

overall device performance. Here, the pristine properties include optical, 

electrical, mechanical and morphological properties. Several methods can be 

opted to achieve such desirable effect. For instance, doping of photoactive layer 

could induce significant change in morphological, optical and/or electrical 

properties (Chen et al., 2016). Similarly, doping of solution-processed electrode 

(e.g., PH1000) could alter the mechanical properties of pristine electrode for 

flexible device application (Peng et al., 2019). Other method such as the 

deposition of an additional layer on top of the interfacial layer could also be 

conducted to modify the electrical and morphological properties of pristine 

interfacial layer (Borse et al., 2018). Detailed discussion on device engineering 

strategy can be found in the next sub-section. 
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All three strategies are strongly related to one another. In fact, it is 

impossible to obtain an optimum device performance with only material design, 

morphology control or device engineering strategy. For example, novel material 

synthesized for photoactive layer may need further tuning in terms of processing 

condition to optimize its surface morphology, thus, incorporating morphology 

control strategy as well. Incorporating ternary photoactive layer as device 

engineering strategy may drastically enhance device performance, provided that 

there is a proper tuning of processing condition (e.g., D:A blend ratio, 

concentration of solid in processing solvent, etc), combining the use of device 

engineering and morphology control strategies. Some researchers even manage 

to incorporate the three performance enhancement strategies into their work to 

obtain the optimum device performance. A literature published by Chen et al. is 

a good example of it (Chen et al., 2020). In his work, Chen et al. managed to 

design and synthesize a novel donor material named ECTBD using material 

design strategy. It was then added into the PBDB-T-2F:Y6 photoactive layer 

system to form a ternary photoactive layer. The film’s morphology was tuned 

via optimizing the processing condition to control the final film’s morphology. 

As a result, an optimum device performance of 16.51% with improved Jsc and 

FF was achieved in devices based on PM6:ECTBD:Y6 photoactive layer. Those 

studies incorporated all material design, morphology control and device 

engineering strategies on the photoactive layer, explaining the role of each 

strategy and how it could support the other strategies to obtain the optimum 

device performance. 
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Just like Chen’s work, other studies that incorporated more than one 

performance enhancement strategy can be found frequently. In this case, the 

main research highlight should be the key determining factor to distinguish 

which performance enhancement strategy is used. For instance, even though 

Chen’s work includes all three performance enhancement strategies, its research 

highlight still lies clearly on the synthesis of novel ECTBD donor via material 

design strategy. 

2.8.1 Material design 

Studies about material design on the photoactive layer are more 

commonly found as compared to interfacial layer. In fact, most efforts in OSCs 

have been made towards synthesizing novel donor and acceptor materials for the 

photoactive layer to obtain high-performing OSCs (Xu et al., 2019, Wang et al., 

2019b, Yuan et al., 2019, Luo et al., 2020, Cui et al., 2020, Sun et al., 2020). 

This strategy is proven to be successful as by 2020, the PCE of single-junction 

BHJ OSCs had reached the 15-18% range (Xu et al., 2019, Yuan et al., 2019, 

Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 2020). The most 

revolutionary work was conducted by Yuan et al. in 2019, where Yuan et al. 

developed a novel BTP-based acceptor called Y6 to boost the performance of 

OSCs beyond 15% (Yuan et al., 2019). Yuan et al. shifted the research direction 

from ITIC-based SM acceptors to BTP-based SM acceptors and the catalyst to 

further studies of BTP-based SM acceptors. For instance, BTP-eC9 and BTP-

eC11 developed by Cui et al. in 2020 (Cui et al., 2020), or BTP-2F-ThCl 

developed by Luo et al. in 2020 (Luo et al., 2020) were both derived from Y6 

SM acceptors. 
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The design of novel donor and acceptor materials is focused primarily on 

their molecular structures. They can be designed via main-chain engineering 

(engineering on the backbone of organic materials as displayed in Figure 2.10) 

and/or side-chain engineering (engineering on the side chain and substituent 

components attached to the backbone of organic materials as shown in Figure 

2.10) (Zhang and Li, 2015, Xiao et al., 2017). 

 

Figure 2.10 Typical molecular structure of organic materials, composed of backbone, side chain 

and substituent components (Zhou et al., 2012). 

An example of main-chain engineering is the copolymerization of donor 

and acceptor moieties into one system (D-A copolymerization) to allow fine 

tuning of energy level, such that desirable HOMO and LUMO energy level can 

be achieved (Li, 2012, Zhang and Li, 2015, Xiao et al., 2017). For instance, Bang 

et al. conducted the copolymerization of D-A alternating unit from three 

monomers of benzodithiophene and terthiophene as donor unit and N-

alkylthieno[3,4-c]pyrrole-4,6-dione as acceptor unit (Bang et al., 2017). The 

resulting polymer showed a low-lying HOMO of 5.56 eV and a narrow Eg of 

1.84 eV. Recent study conducted by Sun et al. also demonstrated similar findings, 
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where the copolymerization of bithienyl benzodithiophene donor unit and 

monoalkoxy-substituted bifluoroquinoxaline acceptor unit resulted in low-lying 

HOMO of 5.47 eV and Eg of 1.92 eV in PBQ10 polymeric donor (Sun et al., 

2020). Both studies explained the effectiveness of material design via D-A 

copolymerization to tune the energy level of the materials (e.g., HOMO, LUMO 

and Eg) through redistribution of frontier molecular orbitals. 

On the other hand, there are two approaches to tune the molecular 

structure via side-chain engineering, which is through the utilization of flexible 

side chains and/or substituents (Li, 2012, Zhang and Li, 2015, Xiao et al., 2017). 

Wang et al. studied the effect of various side chain in their novel polymeric 

donor (Wang et al., 2013). It was found that polymer donor with alkylfuranyl 

side chain group gave the best performance, providing a low bandgap of 1.77 

eV, improved solubility in common processing solvent, low-lying HOMO of 

5.40 eV and higher hole mobility. As reported by Liu et al., the incorporation of 

side chain group could also effectively tune the energy level of organic materials 

(Liu et al., 2019d). In another research, the incorporation of methyl side chain in 

ITIC could tune the LUMO of the acceptor without causing too much steric 

hindrance for intermolecular packing (Li et al., 2016). Thus, efficient charge 

separation could still be achieved even when donor and acceptor had a lower 

LUMO-LUMO offset. 

The utilization of substituent attached to the main backbone of organic 

materials could also be considered. For instance, Xiao et al. recently explained 

the role of electron-withdrawing substituent and electron-donating substituent in 

tuning the energy level of polymeric donor (Xiao et al., 2017). Based on the 
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study, incorporation of electron-withdrawing substituent could lower the HOMO 

energy level, while electron-donating substituent could increase the LUMO 

energy level. Zhao et al. also studied the influence of substituent in organic 

materials, in which fluorine was introduced as electron-withdrawing substituent 

in the polymer donor (Zhao et al., 2017b). Zhao et al. found that the 

incorporation of fluorine could result in down-shifting of both HOMO and 

LUMO energy level with a relatively lower-lying HOMO (5.40 eV) compared 

to the non-fluorinated counterparts. All those studies suggested that an ideal 

choice of side chain and/or substituent could have a profound effect in tuning 

material’s energy level, improving solubility properties and influencing 

aggregation properties, which were all crucial for better photovoltaic 

performance. 

Overall, with proper design consideration of the main chain and side 

chain, organic materials can be engineered in terms of their molecular structures 

to function favourably as donor and acceptor in the photoactive layer for high-

performing BHJ OSCs. 

2.8.2 Morphology control 

Even though excellent photoactive layer and/or interfacial layer can be 

synthesized through careful material design, it will still be impossible for BHJ 

OSCs to obtain an optimum PCE without the optimization of surface  

morphology. In OSCs, morphology control of the photoactive layer is 

particularly crucial and important to raise device performance by promoting a 

desirable phase separation between donor and acceptor materials. Therefore, 
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high-performing BHJ OSCs are typically achieved through combined strategies 

of material design and morphology control of the photoactive layer. In fact, both 

strategies are always utilized together to realize high-performing BHJ OSCs 

beyond 15% efficiency (Xu et al., 2019, Yuan et al., 2019, Cui et al., 2020, Luo 

et al., 2020, Liu et al., 2020, Sun et al., 2020). 

The morphology of photoactive layer can be controlled and optimized by 

varying its processing conditions from preparation up to deposition conditions. 

These include D:A blend ratio, concentration of solid in solvent, choice of 

processing solvent, additives addition and post-production treatment. Optimal 

D:A blend ratio and concentration of solid in solvent are crucial requirements to 

achieve favourable nanoscale phase-separated morphology of donor and 

acceptor domains in BHJ OSCs. This is usually determined using trial-and-error 

method during experiments, where the effects of different D:A ratio and 

concentrations on OSCs’ performance are being investigated. For example, Liu 

et al. showed the significant effect of varying D:A ratio on photovoltaic 

performance, where an optimum device performance could be obtained when 

judicial D:A ratio was made (Liu et al., 2019d). In this case, D:A ratio of 1:1 was 

the most suitable to promote favourable phase-separated morphology, thereby 

optimum device performance of 13.28% was obtained in PBDB-T:IDTCN-O -

based device. 

Good choice of processing solvent to dissolve donor and acceptor 

materials is also essential to control the final photoactive layer’s morphology. 

Previous literatures had indeed shown that a sound choice of processing solvent 

could promote a desirable phase separation in the photoactive layer (Yang et al., 
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2004). The choice of solvent is normally made based on these criteria: i) solvent 

should be able to dissolve donor and acceptor materials, ii) solvent should not 

form complex with donor and acceptor materials, iii) solvent should have a low 

boiling point and iv) solvent should promote phase separation in the photoactive 

layer (Zhang et al., 2017, McDowell and Bazan, 2017, McDowell et al., 2018). 

Fulfilling the aforementioned criteria are chloroform (CF) and chlorobenzene 

(CB), which are the two most widely used solvents to process photoactive layer. 

Addition of solvent additive to the photoactive layer solution is also 

crucial to optimize the final photoactive layer’s morphology. Studies had shown 

that additives could induce a desirable photoactive layer’s morphology by 

affecting the degree of phase separation and the molecular orientation of donor 

and acceptor domains (He et al., 2018). The type of additive is normally chosen 

based on the fact that additive should be partly miscible in the processing solvent 

but is free to solvate donor, acceptor, neither or both (McDowell et al., 2018). 

Among the available choices, 1,8-diiodooctane (DIO) and 1-chloronaphthalene 

(CN) are two commonly used additives for photoactive blend layer. Zhou et al. 

studied the effects of adding a series of brominated compounds into DIO to 

function as binary additives (Zhou et al., 2017). Those binary additives displayed 

positive effects on the absorption performance, charge transport and film 

morphology, which brought about enhancement in photovoltaic performance. 

Post-production treatment is another technique used to engineer the final 

photoactive layer’s morphology, so that insufficient or excessive phase 

separation can be prevented. Post-production treatment can be conducted either 

through solvent treatment (Li et al., 2011, Nam et al., 2012, Liu et al., 2012, Sun 
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et al., 2015) or thermal annealing (Li et al., 2005, Zhang et al., 2012, Jagadamma 

et al., 2017). In solvent treatment, photoactive blend films are exposed to a 

certain solvent, either in vapour or liquid form to tailor the films’ morphology 

(Li et al., 2011). Meanwhile, photoactive blend films are subjected to heat for a 

short duration in thermal annealing treatment to tailor the films’ morphology 

through further migration and crystallization of molecules (Jorgensen et al., 

2008). Previous literatures had shown that both post-treatment techniques could 

alter the phase separation and crystallization degree in the photoactive layer 

(Nam et al., 2012, Zhang et al., 2012). As a result, a desirable phase-separated 

photoactive layer’s morphology could be achieved through employing post-

production treatment. Yuan et al. also utilized annealing treatment to optimize 

PBDB-T-2F:Y6 blend morphology (Yuan et al., 2019). In fact, annealing 

treatment seemed to be the most effective strategy in this work to improve device 

performance in terms of Jsc. A boost in Jsc value was observed from 24.31 to 

25.32 mA cm-2 when non-annealed device was compared to that annealed at 

110°C. One of the reasons contributing to the increment was the smoother 

photoactive layer’s morphology with evenly distributed and uniform nanoscale 

phase separation between donor and acceptor domains. 

In short, optimizing all the aforementioned processing conditions can 

result in the optimization of photoactive layer’s morphology with desirable 

nanoscale phase separation between donor and acceptor domains. This 

consequently promotes better photovoltaic performances in BHJ OSCs. The 

control of morphology via optimization of processing conditions (e.g., 

concentration of solid in solvent, choice of processing solvent and post-

production treatment) not only applies to photoactive layer, but also to solution-
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processed interfacial layers like PEDOT:PSS, PDINO and ZnO to control their 

final film morphologies. 

2.8.3 Device engineering 

Device engineering gains lesser attention as compared to other 

performance enhancement strategies, even when it plays an equally pivotal role 

in enhancing OSCs’ performance. In general, device engineering can be 

conducted via modification of interfacial layer (Zheng et al., 2018, Xiong et al., 

2019), photoactive layer (Zhou et al., 2018, Liu et al., 2019a) or electrode layer 

(Fan et al., 2016, Shin et al., 2018, Song et al., 2020b) to alter their pristine 

properties and consequently, improve the overall device performances. 

In OSCs, interfacial layers are utilized to improve photovoltaic 

performance by solving the charge extraction and mobility issues (Yip and Jen, 

2012, Zeng et al., 2015, Yin et al., 2016). The use of interfacial layer is 

exceptionally crucial for non-fullerene -based OSCs as non-fullerene acceptor is 

often associated with an up-shifted LUMO (~3.7-4.0 eV) that leads to poor 

electron extraction (Zhao et al., 2017a, Zhu et al., 2018). In this case, interfacial 

layer such as ETL is employed to tune the WF of cathode to better match the 

LUMO energy level of such non-fullerene acceptor, so that issues regarding poor 

electron extraction in non-fullerene -based OSCs can be solved. Apart from its 

WF tuning ability, interfacial layer can also improve OSCs’ performance 

through several other mechanisms and functions (Yip and Jen, 2012, Zeng et al., 

2015, Yin et al., 2016). It can be used to promote Ohmic contact at the 

electrode/photoactive layer interface to enhance charge extraction, transport and 
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collection. It can be utilized to alter charge selectivity by providing energy 

barrier that blocks electron and hole from moving towards the wrong electrode. 

It can also be employed to alter the morphology of the photoactive layer to 

promote efficient generation, diffusion and dissociation of exciton, as well as 

generation and transport of free charge carrier. And lastly, it can also be applied 

to modulate optical field in the photoactive layer to improve light absorption. 

Overall, this suggests the importance of interfacial layer in OSCs to improve 

device performance, particularly when a judicial choice of interfacial layers 

(including ETL and HTL) is made. The choice is typically made based on 

material’s properties (e.g., conductivity, solubility, wettability, etc) and 

suitability with different OSCs’ structures (conventional or inverted). 

Improvement in device performance can be further made by employing 

interfacial layer modification or interface engineering strategy. This strategy 

focuses on improving the pristine properties of interfacial layer to function more 

effectively as interface between electrode and photoactive layer. This can be 

done either via doping of materials into the interfacial layer solution (Liao et al., 

2013, Li et al., 2017a, Borse et al., 2018) or additional deposition of materials 

on top of the previously deposited interfacial film to form second interfacial 

layer (Lee et al., 2014, Borse et al., 2018). The main difference is that the former 

is conducted in solution preparation stage, whereas the latter in solution 

deposition stage. An example of the former strategy was conducted by Zheng et 

al., where Zheng et al. applied interface engineering strategy on PEDOT:PSS 

HTL by introducing WOx nanoparticles in the HTL to boost the efficiency 

performance of PBDB-T-2F:IT-4F -based device from 13.29% to 14.57% 

(Zheng et al., 2018). An example of the latter strategy was conducted by Borse 
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et al., where Borse et al. opted for interface engineering strategy by depositing 

barium hydroxide (Ba(OH)2) layer on top of the ZnO film to smoothen ZnO 

morphology and to promote better interfacial contact between ETL and the 

photoactive layer (Borse et al., 2018). Consequently, photovoltaic performance 

of such inverted device was increased from 7.12% to 8.54%. Despite which 

strategy was implemented, those results shown the simplicity and viability of 

interface engineering strategy to improve device performance for the realization 

of high-performing OSCs. 

Among different classes of interfacial layer, sol-gel ZnO is one of the 

most widely used interfacial layer in inverted OSCs due to its low cost, high 

stability, excellent optical transparency and non-toxic nature (Sun et al., 2011, 

Ma et al., 2012, Lee et al., 2014, Nian et al., 2015, Liu et al., 2016, Jung et al., 

2018). In spite of its advantages, sol-gel ZnO often suffers from high surface 

roughness and poor hydrophobicity, which subsequently impedes charge 

extraction processes and device performances (Liao et al., 2013, Borse et al., 

2018). Due to this, interface engineering on sol-gel ZnO is essential to be 

conducted to subdue the limitations of ZnO film functionally, so that high-

performing inverted OSCs can be obtained. This opens up opportunities to 

conduct interface engineering study on sol-gel ZnO. 

Apart from interfacial layer, OSCs also contain photoactive layer which 

acts as the primary layer in OSCs. Conceptually, photoactive layer plays a 

crucial role in determining OSCs’ performance because a slight change in terms 

of material’s choice or even configuration for the photoactive layer can result in 

a significant difference in device performance. This is expected as photoactive 
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layer is highly affecting the generation, diffusion and dissociation processes of 

exciton, as well as generation and transport processes of free charge carrier. Over 

the years, intense works on photoactive layer have been done from modification 

of photoactive layer configuration to material design for the synthesis of novel 

organic donor and/or acceptor materials. By 2020, the performance of single-

junction BHJ OSCs had reached the 15-18% range (Xu et al., 2019, Yuan et al., 

2019, Cui et al., 2020, Luo et al., 2020, Liu et al., 2020, Sun et al., 2020). 

Further work on photoactive layer can be made by employing 

photoactive layer modification or active layer engineering strategy. This strategy 

involves the creation of ternary blend system to improve photon harvesting 

capability and/or regulate surface morphology of the photoactive layer, while at 

the same time, maintain the simplicity of single-junction device architecture. In 

ternary photoactive layer system, additional material is being introduced into the 

host binary blend that consist of one donor and one acceptor materials, paired 

based on their energy level offset to create driving force for efficient exciton 

dissociation. Typically, the additional material is chosen with consideration of 

absorption performance, energy level and morphological compatibility with the 

host binary blend. The material added may act as a dopant (addition < 10%) or 

even additional donor or acceptor material (addition ≥ 10%). For instance, Chen 

et al. doped graphitic carbon nitride into PTB7-Th:PC71BM photoactive blend 

layer to improve the conductivity and charge transport properties of photoactive 

layer (Chen et al., 2016). As a result, performance increment from 8.39% to 9.20% 

was observed, which was mainly attributed to the improved Jsc and FF. 
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Another study reported by Chang et al. added ITCT as 2nd acceptor into 

PBDB-T-SF:Y6 host binary blend to realize the simultaneous enhancement in 

Jsc, Voc and FF performances, thus boosting the PCE from 15.18% to 16.14% 

(Chang et al., 2019). Similarly, Gao et al. employed 2nd acceptor called IT-4F 

into J71:T6Me host binary blend to enhance photon harvesting range of the 

photoactive layer for higher Jsc performances in ternary device (Gao et al., 2019). 

Liu et al. also introduced IXIC-4Cl acceptor into the host PBDB-T-2Cl:ITC-2Cl 

binary blend to realize the improvement in Jsc and FF values due to improved 

optical and morphological properties of the pristine binary layer (Liu et al., 

2019a). Another experiment reported by An et al. added J71 as 2nd donor 

material in PBDB-T-2F:Br-ITIC host binary blend to improve photon harvesting 

range and regulate phase separation in the photoactive layer (An et al., 2019). 

As a result, performance enhancement from 12.63% to 14.13% was obtained. 

Conclusively, this explains the potential of active layer engineering 

strategy to improve device performance for the realization of high-performing 

OSCs. Nonetheless, it is important to note that this strategy is sometimes 

challenging due to the complex morphological blend of the photoactive layer 

upon addition (e.g., incorporation of additional material may lead to 

unfavourable charge transport due to large-scale phase separation). Deep charge 

traps are also high likely to occur, making it even more challenging to adopt 

ternary photoactive layer system. Therefore, the compatibility of materials used 

(in terms of absorption profile, morphological feature and energy level) for 

active layer engineering strategy are extremely vital to be considered in order to 

enhance absorption capability, promote desirable phase separation degree and 

avoid charge traps in the photoactive layer. Over the past years, studies and 
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experimental trials employing active layer engineering strategy had been 

conducted with the main aim of enhancing device performance via altering the 

pristine properties of photoactive layer. However, as of now, no desirable 

performance improvements were observed on those experimental studies. The 

detailed performance parameters regarding those experiments are presented in 

“Appendix B: Other Experimental Work”. 

Apart from interfacial layer and photoactive layer, OSCs also contain 

electrode layer, which is the last constituent layer of OSCs responsible for charge 

collection. In OSCs, electrodes play equally crucial roles with the other 

constituent layers in determining device performance, not only in terms of 

photovoltaic performance but also in terms of mechanical stability 

(Ramachandran et al., 2015, Cheng and Zhan, 2016, Li et al., 2018). However, 

despite their roles, studies on electrode are still lacking as compared to those 

about photoactive layer or interfacial layer. Thus, it is particularly essential to 

pay close attention towards the development of electrodes, specifically for the 

development of flexible transparent electrodes (FTEs) to realize the future 

applications of OSCs in next-generation flexible and wearable electronics (Li et 

al., 2018, Qin et al., 2020b). Ideally, excellent FTEs should possess high optical 

transparency, excellent conductivity, low sheet resistance and superior 

mechanical flexibility and stability (Li et al., 2018). An example of electrode 

possessing most of those desirable traits is conventional ITO electrode, causing 

it to be widely used in rigid OSCs as transparent bottom electrode. However, 

brittle properties of ITO often limit its mechanical flexibility (Li et al., 2018, Qin 

et al., 2020b). In other words, upon mechanical deformation, ITO tends to crack 

and subsequently leads to decrease in conductivity and increase in sheet 



62 

resistance. This factor has impeded the utilization of ITO electrode in flexible 

OSCs. 

Over the years, several ITO alternatives have been developed for flexible 

OSCs, and one of them is PEDOT:PSS (PH1000) electrode (Ouyang, 2013, 

Thomas et al., 2014, Kim et al., 2015, Song et al., 2018). PEDOT:PSS electrode 

is considered as a promising ITO alternative as it can be used not only for rigid 

device applications but also for flexible device applications. It possesses 

exceptional intrinsic flexibility, high optical transparency, low surface roughness, 

excellent solution-processability and superior thermal stability (Li et al., 2018, 

Qin et al., 2020b). Despite all that, pristine PEDOT:PSS electrode still suffers 

from poor photovoltaic performance due to its inherent weaknesses. To 

overcome those weaknesses, electrode layer modification or electrode 

engineering strategy on pristine PEDOT:PSS electrode is needed. This strategy 

focuses on improving the pristine properties of PEDOT:PSS electrode (e.g., 

optical, electrical, morphological and mechanical properties) to function more 

effectively as efficient FTEs in flexible OSCs. This can be done either via doping 

treatment using organic compounds (Vosgueritchian et al., 2012, Ouyang, 2013, 

Thomas et al., 2014, Peng et al., 2019) or surface post-treatment using acid 

(Yeon et al., 2015, Kim et al., 2015, Song et al., 2018, Song et al., 2020b). The 

main difference is that the former is conducted in solution preparation stage, 

whereas the latter in solution deposition stage. An example of doping treatment 

was conducted by Vosgueritchian et al., where Vosgueritchian et al. applied 

electrode engineering strategy on PEDOT:PSS FTEs by introducing Zonyl as a 

fluorosurfactant to improve the conductivity, morphology and optical 

transparency of pristine PEDOT:PSS electrode (Vosgueritchian et al., 2012). An 
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example of surface post-treatment was conducted by Song et al., where Song et 

al. developed a gentle acid post-treatment method at room temperature to 

improve the optical, electrical and morphological properties of PEDOT:PSS 

electrode (Song et al., 2018). Through this approach, the conductivity of 

PEDOT:PSS could be significantly improved to 2860 S cm-1 and the 

morphology in terms of surface roughness and phase separation could be 

optimized. As a result, the first high-performing flexible OSCs with efficiency 

beyond 10% was obtained at that time. 

Recently, Peng et al. also reported that a combination of doping and acid 

treatment could simultaneously enhance PEDOT:PSS properties such as 

transparency, conductivity and mechanical flexibility, resulting in the realization 

of high-performing flexible OSCs with over 12% efficiency (Peng et al., 2019). 

Even so, not many electrode engineering studies on PEDOT:PSS are directed 

towards these aspects. This presented a research opportunity to engineer high-

performing PEDOT:PSS electrodes with improved conductivity as well as 

enhanced adhesion ability via doping and acid treatment, so that the performance 

and mechanical stability of flexible OSCs could be enhanced. 

 

2.9 Summary 

Organic solar cells or OSCs have been developed over the years due to 

their promising potentials as substitutes for conventional silicon solar cells. Yet, 

issues regarding efficiency and stability of OSCs still need to be overcome to 

obtain comparable device performance against mature silicon-based solar cells. 
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These issues remain as great challenges, which consequently shifting the 

research focus of OSCs towards the development of efficient and stable OSCs. 

Throughout the development of OSCs, three main strategies have been 

utilized to improve OSCs’ performance, namely material design (e.g., design and 

synthesis of novel organic material for photoactive layer), morphology control 

(e.g., morphology control of photoactive layer through post-production 

treatment) and device engineering (e.g., interface, active layer or electrode 

engineering). Thus far, material design and morphology control of the 

photoactive layer have been the dominating approaches to improve OSCs’ 

performance. Yet, device engineering gains lesser attention even though it plays 

an equally pivotal role to enhance OSCs’ performance. In fact, as mentioned 

earlier, previous studies shown that simple device engineering strategy, such as 

by doping or addition of additional material, is an effective approach to improve 

the overall device performance. This presents an opportunity to delve into the 

areas of device engineering, specifically on novel interface and electrode 

engineering strategies that have not been done to boost the overall device 

performance. 
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Chapter 3. Methodology 

 

3.1 Introduction 

The experimental work conducted for Chapter 4 (interface engineering), 

Chapter 5 (electrode engineering) and Chapter 6 (application of electrode 

engineering) are being elaborated comprehensively in this chapter. This 

methodology chapter includes details regarding the materials and 

instrumentations used, device fabrication procedures and device characterization 

methods. 

 

3.2 Materials 

All materials used in this study were acquired from the manufacturers 

listed in Table 1.1 to 1.6 below. If any, specifications of the materials are also 

included for reference. Unless otherwise specified, all the materials listed below 

were used directly without any further purifications. 

Table 1.1 List of substrates and their corresponding information. 

Material Name Specification Manufacturer 
   

Glass Thickness: 1.1 mm 
Sheet resistance: n/a 

Wuhu Token Sciences Co., Ltd. 

Polyethylene terephthalate 
(PET) 

Thickness: < 0.2 mm 
Sheet resistance: n/a 

South China Xiangcheng Technology Co., Ltd. 

ITO-coated glass Thickness: 1.1 mm 
Sheet resistance: ≤ 15 Ω sq-1 

Wuhu Token Sciences Co., Ltd. 

ITO-coated PET Thickness: < 0.2 mm 
Sheet resistance: ≤ 15 Ω sq-1 

South China Xiangcheng Technology Co., Ltd. 
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Table 1.2 List of photoactive materials and their corresponding information. 

Material Name Specification Manufacturer 

PBDB-T n/a Solarmer Materials, Inc. 

PBDB-T-2F n/a Solarmer Materials, Inc. 

IT-M n/a Solarmer Materials, Inc. 

BTP-4F or Y6 n/a Solarmer Materials, Inc. 

* Complete chemical names for organic materials are listed in “List of Chemical Names” 

Table 1.3 List of ETL and HTL materials and their corresponding information. 

Material Name Specification Manufacturer 
   

Zinc acetate Purity: 97.5% J&K Scientific, Ltd. 

PBD Purity: > 99.0% Xi’an Polymer Light Technology Corp. 

PDINO n/a Solarmer Materials, Inc. 

MoO3 powder Purity: 99.999% Alfa Aesar 

PEDOT:PSS Clevios P VP AI 4083 
1.3-1.7% solid content 

Heraeus 

 

Table 1.4 List of solvents and their corresponding information. 

Material Name Specification Manufacturer 

Ethanolamine Purity: 99.5% J&K Scientific, Ltd. 

2-Methoxyethanol Purity: 99.0% J&K Scientific, Ltd. 

CB Purity: 99.8% Sigma-Aldrich, Inc. 

Methanol Purity: 99.8% Sigma-Aldrich, Inc. 

CF Purity: 99.9% Sinopharm Chemical Reagent Co., Ltd. 

MSA Purity: 99.0% J&K Scientific, Ltd. 

Ethanol Purity: 99.9% Sinopharm Chemical Reagent Co., Ltd. 

Acetone Purity: 99.9% Sinopharm Chemical Reagent Co., Ltd. 

Isopropanol Purity: 99.9% Sinopharm Chemical Reagent Co., Ltd. 

 

Table 1.5 List of additives/dopants and their corresponding information. 

Material Name Specification Manufacturer 

DIO additives Purity: 98.0% Sigma-Aldrich, Inc. 

CN additives Purity: > 97.0% Tokyo Chemical Industry Co., Ltd. 

Ethylene glycol Purity: > 99.0% Aladdin Biochemical Technology Co., Ltd. 

Xylitol Purity: 98.0% Aladdin Biochemical Technology Co., Ltd. 

Dulcitol Purity: 98.0% Aladdin Biochemical Technology Co., Ltd. 
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Table 1.6 List of electrode materials and their corresponding information. 

Material Name Specification Manufacturer 
   

Calcium (Ca metal) Purity: 99.5% Alfa Aesar 

Aluminium (Al metal) Purity: 99.999% Alfa Aesar 

Silver (Ag metal) Purity: 99.999% Zhongjin Research New Material Technology Co., Ltd. 

PEDOT:PSS Clevios PH1000 
1.0-1.3% solid content 

Heraeus 

 

3.3 Instruments 

All instrumentations or experimental equipment used in this study were 

acquired from the manufacturers listed in Table 1.7. In addition, the purpose of 

each instrument used is discussed in Table 1.8. 

Table 1.7 List of instrumentations and their corresponding information. 

Instrument Name Model Manufacturer 

X-ray photoelectron spectrometer AXIS Ultra DLD Kratos Analytical, Ltd. 

Ultraviolet photoelectron spectrometer AXIS Ultra DLD Kratos Analytical, Ltd. 

UV-vis spectrophotometer LAMBDA 950 PerkinElmer, Inc. 

Energy dispersive X-ray spectrometer Verios G4 UC Thermo Fisher Scientific, Inc. 

Transmission electron microscopy Talos™ F200X Thermo Fisher Scientific, Inc. 

Atomic force microscopy Dimension 3100 Veeco Instruments, Inc. 

Contact angle measurement system OCA 25 DataPhysics Instruments GmbH 

Surface profiler Dektak 150 Veeco Instruments, Inc. 

Adhesion force measurement system DCAT21 Ningbo Jinmao Import and Export Co., Ltd. 

4-Point probes measurement system CRESBOX Napson Corp. 

J-V measurement (solar simulator) Oriel Sol3A Newport Corporation 

J-V measurement (digital source) Keithley 2440 Tektronix, Inc. 

Quantum efficiency measurement system QE-R Enli Technology Co., Ltd. 

Ultrasonic cleanser SK8200H Kudos Ultrasonic Instrument Co., Ltd. 

UV-ozone box BZS250GF-TC Huiwo Technology Co., Ltd. 

Spin coater SPIN-1200D Midas System Co., Ltd. 

Heating plate (with magnetic stirrer) C-MAG HS 7 IKA® Works 

Vacuum deposition and glove box n/a M. Braun Inertgas-Systeme GmbH 
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Table 1.8 Function of instrumentations used. 

Instrument Name Function 
  

X-ray photoelectron spectrometer Analyse compositions and elemental states of films 

Ultraviolet photoelectron spectrometer Measure energy level and work function of materials 

UV-vis spectrophotometer Characterize transmittance, absorption and reflectance performances 

Energy dispersive X-ray spectrometer Analyse elemental distribution in film 

Transmission electron microscopy Characterize surface morphological features of film 

Atomic force microscopy Characterize surface morphological features of film 

Contact angle measurement system Characterize surface wettability of film 

Surface profiler Measure film’s thickness 

Adhesion force measurement system Measure adhesion force between two materials 

4-Point probes measurement system Measure square resistance of materials 

J-V measurement (solar simulator) Characterize photovoltaic performances 

J-V measurement (digital source) Characterize photovoltaic performances 

Quantum efficiency measurement system Measure quantum efficiencies 

Ultrasonic cleanser Clean the surface of substrates 

UV-ozone box Enhance surface properties to ensure uniform deposition on substrates 

Spin coater Deposit solution to form thin-film 

Heating plate (with magnetic stirrer) Thermal annealing of film 

Vacuum deposition and glove box Provide inert environment for device fabrication and electrode 
deposition 

 

3.4 Device Fabrications 

Generally, devices are fabricated through layer-by-layer preparation and 

deposition techniques (Wang et al., 2013, Ouyang et al., 2015, Ai et al., 2016, 

Lei et al., 2018, Peng et al., 2018, Song et al., 2018, Fan et al., 2019, Peng et al., 

2019, Fanady et al., 2020, Song et al., 2020a, Song et al., 2020b). The general 

device arrangement is as follow: electrode, interfacial layer, photoactive layer, 

interfacial layer and electrode. Prior to deposition, materials are being prepared 

either in solid or solution form. In our lab, solution-processable materials are 

deposited using spin coating method, while solid materials are deposited via 

vacuum evaporation method (Wang et al., 2013, Ouyang et al., 2015, Ai et al., 
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2016, Lei et al., 2018, Peng et al., 2018, Song et al., 2018, Fan et al., 2019, Peng 

et al., 2019, Fanady et al., 2020, Song et al., 2020a, Song et al., 2020b). Several 

examples of solution-processable materials are PDINO (Zhang et al., 2014) and 

sol-gel ZnO (Sun et al., 2011), which are used as interfacial layer. Examples of 

solid materials are Ag and Al metal (Chen et al., 2019), which act as electrode. 

A more detailed fabrication procedure will be discussed in the following sub-

section. 

In this study, all organic PV devices were fabricated in batches, where a 

maximum of 16 independent devices could be fabricated at once. Several 

experimental trials were conducted as well to confirm data reproducibility and 

reliability. 

3.4.1 Fabrication procedures for interface engineering study 

In interface engineering study, inverted OSCs with configuration of 

glass/ITO/ZnO/with or without PBD/PBDB-T:IT-M/MoO3/Ag were fabricated 

to study the effect of PBD addition as interfacial modifier to device performance. 

ITO-coated glass substrates (1.5×1.5 cm), received from the aforementioned 

manufacturer, were directly cleaned under sequential sonification for 20 minutes 

each in detergent, deionized water, acetone and isopropanol (Wang et al., 2013). 

Prior to fabrication, the pre-cleaned substrates were dried with nitrogen (N2) 

stream and further treated with UV-ozone for about 25 minutes, similar to the 

previous literatures (Wang et al., 2013). 
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Sol-gel ZnO was utilized in this study as the solution-processed ETL, 

where it was prepared similar to the previously published literatures (Sun et al., 

2011). The 0.5 M ZnO precursor solution was made by dissolving 100.9 mg zinc 

acetate in 33.5 μL ethanolamine and 1 mL 2-methoxyethanol. The corresponding 

precursor solution was stirred without heat for a minimum of 2 hours before 

depositing onto the substrates. The ZnO precursor solution was deposited onto 

the ITO substrates using spin coating technique at 4000 rpm for 60 seconds (film 

thickness: ~30 nm), followed by subsequent thermal annealing at 150°C for 30 

minutes. The substrates were then transferred into a N2-filled glove box for 

further deposition of other layers (e.g., PBD, photoactive layer, etc). This meant 

that up until this point, all experiments were conducted in an ambient 

environment. 

PBD was incorporated in this study as the 2nd solution-processed ETL to 

modify and improve the properties of sol-gel ZnO ETL. This technique formed 

the hybrid electron-transporting bilayer consisting of PBD and ZnO layer. PBD 

solution was prepared by mixing PBD in methanol solvent with varying 

concentration from 0.5-5.0 mg mL-1. This solution was stirred overnight without 

heat before its application onto ZnO film. PBD solution was deposited on top of 

the ZnO film with different spin coating speed and annealing condition. Under 

optimal conditions, PBD was spin-coated at 1000 rpm for 60 seconds (film 

thickness: ~10 nm) and annealed under vacuum for 15 minutes. 

Photoactive blend layer, consisting of PBDB-T polymeric donor and IT-

M SM acceptor was prepared similarly to the published literatures (Li et al., 2016, 

Peng et al., 2018). In this case, PBDB-T and IT-M (D:A = 1:1 by weight) was 
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dissolved in 20 mg mL-1 CB (total solid concentration). The corresponding 

solution was stirred overnight at 45°C before usage. About 1 hour before 

deposition, 0.7 vol% of DIO as additive was added into the solution. The 

photoactive layer (PBDB-T:IT-M) was deposited on top of the ZnO or ZnO/PBD 

film at 1900 rpm for 60 seconds to obtain film thickness of ~100 nm. It was then 

annealed at 120°C for 10 minutes. At last, 8 nm MoO3 as HTL and 100 nm Ag 

as electrode were thermally evaporated onto the photoactive layer in a vacuum 

chamber with base pressure of ~5×10-6 mbar or ~5×10-4 Pa (Peng et al., 2018, 

Song et al., 2018). MoO3 and Ag were deposited through a shadow mask with 

an effective area of 3.8 mm2, as illustrated in Figure 3.1. 

The deposition of material in vacuum chamber was conducted in two-

step processes of pre-deposition and deposition stage (Wang et al., 2013, Ouyang 

et al., 2015, Ai et al., 2016, Lei et al., 2018, Peng et al., 2018, Song et al., 2018, 

Fan et al., 2019, Peng et al., 2019, Fanady et al., 2020, Song et al., 2020a, Song 

et al., 2020b). In the pre-deposition stage, large baffle under the shadow mask 

was closed for pre-steaming process. This process was conducted to account for 

the unstable evaporation rate and presence of trace impurities. The baffle could 

be opened for deposition stage when the evaporation rate was stable. The typical 

deposition rate should be in the range of 0.2-1.5 Å s-1. The thickness of material 

deposited could be observed and controlled in the deposition controller. It was 

important to note that within the first 10 nm of deposition, the deposition rate 

should be well-controlled and slow to prevent adverse effect of high temperature 

metal vapour on the photoactive layer. After exceeding 10 nm, the deposition 

rate could be increased by adjusting the power. 
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Figure 3.1 Shadow mask used for the deposition of MoO3 and Ag. The shadow mask has 8 

square holes with precise active area of 3.8 mm2 each. The red region represents ITO electrode 

and the grey region represents MoO3 and Ag electrode. 

3.4.2 Fabrication procedures for electrode engineering study 

In electrode engineering study, conventional OSCs with configuration of 

PEDOT:PSS (PH1000)/PEDOT:PSS (hereinafter termed as 4083)/PBDB-T-

2F:Y6/PDINO/Al were fabricated on PET plastic substrates for flexible OSCs 

application. Electrode engineering was conducted on PEDOT:PSS (PH1000) as 

ITO alternatives to modify its properties for future high-performing flexible 

OSCs. In this study, OSCs based on PET/ITO, PET/PEDOT:PSS, PET/modified 

PEDOT:PSS (hereinafter referred as D-PEDOT:PSS) and glass/ITO substrates 

were all fabricated for comparison purposes. All substrates (1.5×1.5 cm), 

obtained from the aforementioned manufacturers, were cleansed with the same 

procedures as the previous section 3.4.1. 

PEDOT:PSS (PH1000) functioned as electrode in this study, where it 

was fabricated using spin coating technique, similar to earlier literatures (Song 

et al., 2018, Peng et al., 2019). Prior to its deposition, 5.0 wt% of polyhydroxy 

compound was added as a dopant into the PEDOT:PSS aqueous solution. 
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Different polyhydroxy compounds (ethylene glycol, xylitol and dulcitol) were 

investigated to obtain the best dopant choice for PEDOT:PSS FTEs. The 

subsequent mixture was then deposited onto the PET plastic substrates at 1800 

rpm for 60 seconds, followed by thermal annealing at 90°C for 20 minutes. MSA 

was utilized afterwards for the post-treatment of doped PEDOT:PSS films. In 

this case, MSA treatment procedures were similar to the previous reported 

literatures (Fan et al., 2016, Song et al., 2018), in which films were dipped into 

the MSA solution for about 10 minutes before being rinsed in deionized water 

and ethanol. The MSA-treated films were then annealed at 90°C for 20 minutes 

to form a dry D-PEDOT:PSS electrode (film thickness: ~60 nm). 

PEDOT:PSS (4083), or in short abbreviated as 4083 was utilized in this 

study as HTL, where it was deposited on top of the ITO, pristine PEDOT:PSS 

or D-PEDOT:PSS FTEs. A method similar to other published literatures was 

employed for the preparation and deposition of 4083 solution (Song et al., 2018, 

Peng et al., 2019). In this case, prior to its deposition, 4083 solution was first 

filtered through a 0.45 µm syringe filter. It was followed by spin coating at 2600 

rpm for 60 seconds (film thickness: ~30 nm) and annealing at 90°C for 20 

minutes. The resulting substrates were transferred into a N2-filled glove box for 

further deposition of other layers (e.g., photoactive layer, PDINO, etc). This 

meant that up until this step, all experiments were conducted in an ambient 

environment. 

Photoactive blend layer, consisting of PBDB-T-2F polymeric donor and 

Y6 SM acceptor was prepared similarly to the published literatures (Yuan et al., 

2019). In this case, PBDB-T-2F and Y6 (D:A = 1:1.2 by weight) was dissolved 
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in 16 mg mL-1 CF (total solid concentration). The corresponding solution was 

stirred for about 5-6 hours at a temperature below 40°C before usage. About 1 

hour before deposition, 0.5 vol% of CN as additive was added into the solution. 

The photoactive layer (PBDB-T-2F:Y6) was then spin-coated on top of the HTL 

at 2700 rpm for 60 seconds (film thickness: ~110 nm), followed by thermal 

annealing at 110°C for 10 minutes. 

PDINO was incorporated in this study as ETL, where it was prepared by 

dissolving PDINO in methanol solvent with concentration of 1.5 mg mL-1 (Peng 

et al., 2019). It was deposited on top of the photoactive layer at 3000 rpm for 60 

seconds (film thickness: ~8 nm) without annealing treatment. At last, 100 nm Al 

as electrode was thermally evaporated onto the ETL in a vacuum chamber with 

base pressure of ~5×10-6 mbar or ~5×10-4 Pa (Peng et al., 2018, Song et al., 2018). 

The deposition technique is similar to the previous section 3.4.1. Al was 

deposited through a shadow mask with an effective area of 4.0 mm2, as 

illustrated in Figure 3.2. 

 

Figure 3.2 Shadow mask used for the deposition of Al. The shadow mask has 8 square holes 

with precise active area of 4.0 mm2 each. The red region represents ITO electrode and the grey 

region represents Al electrode. 
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3.4.3 Fabrication procedures for application of electrode engineering study 

In this study, foldable-flexible semi-transparent OSCs (FST-OSCs) with 

conventional configuration of PET/D-PEDOT:PSS/4083/PBDB-T-

2F:Y6/PDINO/Ag were fabricated. All layers were fabricated similarly to the 

previous section 3.4.2, but the main difference arose from the choice of metal 

electrodes where Ag was employed as the electrode instead of Al. Different 

thicknesses of Ag electrode were investigated to optimize the performance of 

FST-OSCs for greenhouse applications. 

 

3.5 Device Characterizations 

3.5.1 J-V measurement 

Upon completion of device fabrication, organic photovoltaic devices 

were directly tested for their photovoltaic performances. The test is conducted 

under the same international standard to allow a valid comparison between OSCs 

fabricated by different research groups around the world (Rostalski and Meissner, 

2000). Normally, a standard light source with light intensity of 100 mW cm-2 is 

used with light filter to simulate AM1.5G spectrum (Rostalski and Meissner, 

2000). 

In this study, the test was performed in N2-filled glove box without 

device encapsulation using J-V measurement system, consisting of digital 

source-measure meter (Keithley 2440, Tektronix) and AM1.5G solar simulator 
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(Oriel Sol3A, Newport). Light intensity was calibrated at 100 mW cm-2 using a 

certified reference silicon standard cell (SRC-2020 with KG5 filter) obtained 

from Enli Technology Co., Ltd and the calibration report was traceable to NREL. 

Photovoltaic performances of devices (e.g., current density, voltage, fill factor 

and efficiency) were measured by connecting the two electrodes (bottom and top 

electrodes) through an outer loop. Data were collected and automatically 

recorded every time measurement was made. Those data could be plotted into 

current density vs voltage curve to obtain the typical J-V characteristic curve. 

All measurements performed were similar to the earlier literatures published by 

Prof. Ziyi Ge’s group (Ouyang et al., 2015, Ai et al., 2016, Lei et al., 2018, Song 

et al., 2018, Fan et al., 2019, Peng et al., 2019). 

 

Figure 3.3 AM1.5G solar simulator (left) and digital source-measure meter (right). 

3.5.2 EQE measurement 

Upon completion of device fabrication, organic photovoltaic devices 

were directly tested for their quantum efficiency performances. The 

measurement performed was similar to the earlier literatures published by Prof. 

Ziyi Ge’s group (Fanady et al., 2020, Song et al., 2020a, Song et al., 2020b). The 

test was performed in N2-filled glove box without device encapsulation using 
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quantum efficiency measurement system (QE-R, Enli Technology) with 75 W 

xenon lamp source, of which light intensity was calibrated using a reference 

silicon probe (RC-S103011-G) obtained from Enli Technology Co., Ltd. Upon 

measurement, EQE performances of devices were generated and plotted into 

EQE and/or integrated Jsc vs wavelength curves. 

 

Figure 3.4 Quantum efficiency measurement system. 

3.5.3 X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron 

spectroscopy (UPS) measurement 

Glass or PET substrates (1.5×1.5 cm) were cleansed similarly in 

ultrasonic cleanser using detergent, deionized water, acetone and isopropanol. 

Substrates were then dried with N2 stream and further treated with UV-ozone 

before usage. Solution to be tested was deposited afterwards using the same 

fabrication procedures and conditions. For instance, if XPS and UPS studies 

were to be conducted on ZnO ETL, deposition of ZnO solution should be done 

at 4000 rpm for 60 seconds and annealed at 150°C for 30 minutes. After 

deposition and drying of film, substrates were carefully cut into a 0.5×0.5 cm 

testing sample for measurement in AXIS Ultra DLD XPS/UPS spectrometer 

(Kratos Analytical). Data were collected and plotted to form the typical XPS and 
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UPS spectra. All measurements performed were similar to the previous 

literatures published by Prof. Ziyi Ge’s group (Song et al., 2018, Fan et al., 2019, 

Peng et al., 2019). 

 

Figure 3.5 XPS/UPS spectrometer. 

3.5.4 UV-visible (UV-vis) measurement 

Glass or PET substrates (1.5×1.5 cm) were cleansed similarly in 

ultrasonic cleanser using detergent, deionized water, acetone and isopropanol. 

Substrates were then dried with N2 stream and further treated with UV-ozone 

before usage. Solution to be tested was deposited afterwards using the same 

fabrication procedures and conditions. For instance, to evaluate the 

transmissivity of ZnO ETL, ZnO solution should be deposited on the substrates 

at 4000 rpm for 60 seconds and annealed at 150°C for 30 minutes. After 

deposition and drying of film, samples were transferred for measurement in 

LAMBDA 950 spectrometer (PerkinElmer). Data were collected and plotted to 

form transmittance spectra. Aside from transmittance, LAMBDA 950 

spectrometer can also measure reflectance and absorption performances. All 

measurements performed were similar to the previous literatures published by 
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Prof. Ziyi Ge’s group (Lei et al., 2018, Song et al., 2018, Fan et al., 2019, Peng 

et al., 2019). 

 

Figure 3.6 UV-vis spectrophotometer. 

3.5.5 Energy dispersive x-ray spectroscopy (EDS) measurement 

Quartz glass substrates (1.5×1.5 cm) were utilized for EDS measurement. 

The substrates were cleansed similarly in ultrasonic cleanser using detergent, 

deionized water, acetone and isopropanol. Substrates were then dried with N2 

stream and further treated with UV-ozone before usage. Solution to be tested 

was deposited afterwards using the same fabrication procedures and conditions. 

In this case, as-cast PEDOT:PSS and D-PEDOT:PSS solutions were deposited 

onto the quartz substrates to form thin-film. After deposition and drying of film, 

samples were then transferred for measurement in Verios G4 UC spectrometer 

(Thermo Fisher). Upon measuring, EDS images of tested films were generated. 

All measurements performed were similar to the previous literatures published 

by Prof. Ziyi Ge’s group (Song et al., 2020b). 
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Figure 3.7 EDS spectrometer. 

3.5.6 Transmission electron microscopy (TEM) measurement 

Glass substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 

were then dried with N2 stream and further treated with UV-ozone before usage. 

For as-cast PEDOT:PSS, solution was directly dropped onto the copper mesh 

and then dried through annealing process. For D-PEDOT:PSS, solution was 

deposited onto the glass substrates using the same fabrication procedures and 

conditions. After deposition and drying of film, the substrate was soaked in 

deionized water. Acid treatment destroys hydrogen bond between substrate and 

D-PEDOT:PSS which result to the separation of film. Those separated films are 

then attached to the copper mesh. Copper mesh samples were then transferred 

for measurement in Talos F200X (Thermo Fisher). Upon measuring, TEM 

images of tested films were generated. All measurements performed were 

similar to the previous literatures published by Prof. Ziyi Ge’s group (Lei et al., 

2018, Song et al., 2018). 



81 

 

Figure 3.8 TEM microscopy. 

3.5.7 Atomic force microscopy (AFM) measurement 

Glass substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 

were then dried with N2 stream and further treated with UV-ozone before usage. 

Solution to be tested was deposited afterwards using the same fabrication 

procedures and conditions. After deposition and drying of film, samples were 

then transferred for measurement in Dimension 3100 (Veeco Instruments). Upon 

measuring, AFM images of tested films were generated. All measurements 

performed were similar to the previous literatures published by Prof. Ziyi Ge’s 

group (Ai et al., 2016, Lei et al., 2018, Song et al., 2018, Fan et al., 2019). 

 

Figure 3.9 AFM microscopy. 
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3.5.8 Contact angle measurement 

Glass substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 

were then dried with N2 stream and further treated with UV-ozone before usage. 

ZnO and ZnO/PBD were prepared and deposited onto the substrates using the 

same fabrication procedures and conditions. After deposition and drying of film, 

samples were then transferred for contact angle measurement in OCA 25 

(DataPhysics Instruments). In contact angle measurement system, droplet of 

deionized water was being dropped onto the substrates containing ZnO and 

ZnO/PBD films. Images of the droplet wetting the film’s surface were captured 

by the equipment and the contact angle could be measured from it. All 

measurements performed were similar to the previous literatures published by 

Prof. Ziyi Ge’s group (Ai et al., 2016, Song et al., 2018). 

 

Figure 3.10 Contact angle measurement system. 

3.5.9 Surface thickness measurement 

Glass substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 
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were then dried with N2 stream and further treated with UV-ozone before usage. 

Solution to be tested was deposited afterwards using the same fabrication 

procedures and conditions. After deposition and drying of film, the thickness of 

film (e.g., electrode, photoactive layer and interfacial layer) could be measured 

individually using Dektak 150 surface profiler (Veeco Instruments). All 

measurements performed were similar to the previous literatures published by 

Prof. Ziyi Ge’s group (Ouyang et al., 2015, Peng et al., 2019). 

 

Figure 3.11 Surface profiler. 

3.5.10 Adhesion force measurement 

PET substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 

were then dried with N2 stream and further treated with UV-ozone before usage. 

As-cast PEDOT:PSS and D-PEDOT:PSS solutions were prepared using the 

same fabrication procedures and conditions. Both solutions and substrates were 

transferred for adhesion force measurement in DCAT21, where the adhesiveness 

of as-cast PEDOT:PSS and D-PEDOT:PSS to PET plastic substrates could be 

determined. All measurements performed were similar to the previous literatures 

published by Prof. Ziyi Ge’s group (Fan et al., 2019, Peng et al., 2019). 
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Figure 3.12 Adhesion force measurement system. 

3.5.11 Square resistance (Rsq) measurement 

Glass substrates (1.5×1.5 cm) were cleansed similarly in ultrasonic 

cleanser using detergent, deionized water, acetone and isopropanol. Substrates 

were then dried with N2 stream and further treated with UV-ozone before usage. 

Solution to be tested was deposited afterwards using the same fabrication 

procedures and conditions. In this case, as-cast PEDOT:PSS and D-PEDOT:PSS 

solutions were deposited onto the glass substrates. After deposition and drying 

of film, samples were transferred for 4-point probes measurement in CRESBOX 

(Napson). Rsq values were recorded. All measurements performed were similar 

to the previous literatures published by Prof. Ziyi Ge’s group (Fan et al., 2019). 

 

Figure 3.13 4-Point probes measurement system. 
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3.5.12 Colour coordinates 

Colour coordinates could be determined using “CIE1931 Chromaticity 

Coordinate Calculation” program, similar to other studies (Xie et al., 2018). The 

program automatically calculates the colour coordinates based on photovoltaic 

performance data. 

 

Figure 3.14 CIE1931 chromaticity coordinate program. 

3.5.13 Flexibility and mechanical stability measurement 

The flexibility and mechanical stability of devices were evaluated 

through simple bending and folding test. The test was performed in N2-filled 

glove box without device encapsulation. For bending test, devices were placed 

on a cylindrical surface with a radius of about 3.0 mm. Meanwhile, devices were 

folded in folding test. Devices then underwent a specific number of repeated 

bending/folding before re-measurement of the device performance. This was 

conducted to observe the change in device performance upon extreme 

mechanical deformation. All measurements were conducted similarly as the 
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previous literatures published by Prof. Ziyi Ge’s group (Song et al., 2018, Fan 

et al., 2019, Peng et al., 2019). 

3.5.14 Plants growth 

Glass beakers were utilized as containers to grow mung beans. Cottons 

were soaked in water before being placed inside a glass beaker. Three mung 

beans were prepared for the study of plants under dark, direct sunlight and direct 

sunlight with FST-OSCs. Hence, each beaker with soaked cotton housed one 

mung bean for growth observation. For dark environment, plant was placed 

inside a cardboard, where no light could pass through. For sunlight environment, 

plant was placed directly under sun. Meanwhile, for sunlight environment with 

FST-OSCs, plant was placed under the sun, but the lid of beaker was partially 

covered with FST-OSCs. Observations were made over a period of 9 days with 

regular watering of plants every day. The changes in plants growth in terms of 

length, branch sturdiness and hypertrophic leaves were being recorded and 

analysed. Note that the tests were performed to qualitatively observe the changes 

in plants growth, which were conducted similarly as previous studies (Liu et al., 

2019c). 

3.5.15 WF calculation 

WF, φ [eV] can be calculated from UPS curve, which is represented in 

the following equation (Borse et al., 2018): 

φ = ℎ𝑣𝑣 − �𝐸𝐸cutoff (BE) − 𝐸𝐸onset�      (5) 
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where hv [eV] is the incident photon energy of He I (21.22 eV), Ecutoff (BE) [eV] 

is the high binding energy determined by linear extrapolation to zero at the yield 

of secondary electrons and Eonset [eV] is the onset relative to the Fermi level 

(EFermi) of Au (0 eV). WF can also be represented in terms of kinetic energy, 

resulting in the simplification of equation to φ = Ecutoff (KE) - Eonset. In this study, 

Fermi level of Au had been set to 0 eV prior to measurement, thus, the Ecutoff 

values obtained from UPS curve (based on kinetic energy) corresponded directly 

to the WF of electrode. 

3.5.16 Conductivity calculation (interfacial layer) 

The electrical conductivity of interfacial layer, δ [S m-1] is quantified 

based on the following equation (Nian et al., 2015): 

δ = Go ∙ (𝑑𝑑o S⁄ )        (6) 

where Go [A V-1] is the conductance obtained from the slope in J-V curve, do [m] 

is the thickness of interfacial layer film (in this study, ZnO with ~30 nm and 

ZnO/PBD with ~40 nm) and S [m2] is the device active area (in this study, 0.038 

cm2). 

3.5.17 Conductivity calculation (electrode) 

The electrical conductivity of electrode, σ [S cm-1] is normally quantified 

based on the following relationship (Meng et al., 2015): 

σ = 1 �𝑅𝑅sq ∙ 𝑑𝑑o�⁄         (7) 
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where Rsq [Ω sq-1] is the square resistance of electrode film and do [cm] is the 

thickness of electrode film (in this study, D-PEDOT:PSS with ~60 nm). 

3.5.18 Exciton dissociation efficiency calculation 

Exciton dissociation efficiency or probability, P(E,T) [%] can be 

estimated using the following equation (Peng et al., 2018): 

P(E, T) = 𝐽𝐽ph 𝐽𝐽sat⁄         (8) 

where Jph [mA cm-2] is the photocurrent density equal to Jsc at short circuit 

condition and Jsat [mA cm-2] is the saturated photocurrent density or the values 

of Jph when Veff  ≥ 2 V. Jph is obtained from JL – JD, where JL is the current 

density under light irradiation and JD is the current density under dark condition. 

Meanwhile, Veff is defined by Vo – V, where Vo is the value of voltage when Jph 

= 0 and V is the applied voltage. 

3.5.19 Charge mobility calculation 

Charge mobility, μ [m2 V-1 s-1] is estimated using space-charge limited 

current (SCLC) technique by fitting dark current density (JD) and voltage (V) 

into the following equation (Peng et al., 2018): 

𝐽𝐽D = (9 8⁄ ) ∙ εo ∙ εr ∙ 𝜇𝜇 ∙ (𝑉𝑉2 L3⁄ )      (9) 

where εo is the permittivity of free space constant, εr is the relative dielectric 

constant of the photoactive layer (typically 3), L is the thickness of the 
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photoactive layer and V is the difference between applied and built-in voltage. 

All parameters are in standard unit. 

3.5.20 Figure of merit (FoM) calculation 

FoM is a dimensionless number, defined as the ratio of direct current 

conductivity (σdc) to optical conductivity (σop), which can also be presented as 

(Vosgueritchian et al., 2012): 

FoM = 188.5 �𝑅𝑅sq�𝑇𝑇(λ)
−0.5 − 1��⁄        (10) 

where Rsq [Ω sq-1] is the square resistance of electrode and T(λ) [%] is the 

transmittance of electrode measured at λ = 550 nm. 

3.5.21 Average visible transmittance (AVT) calculation 

AVT [%] is calculated by incorporating both human luminosity and 

transmittance performance. It is calculated using the following equation 

(Traverse et al., 2017): 

AVT = �∫ 𝑇𝑇(λ) ∙ 𝑃𝑃(λ) ∙ 𝑆𝑆(λ) dλ� �∫𝑃𝑃(λ) ∙ 𝑆𝑆(λ) dλ��     (11) 

where T(λ) is the transmittance curve in the visible light region (370-740 nm), 

P(λ) is the photopic response curve of human eyes and S(λ) is the solar spectrum 

(AM1.5G). It is important to note that AVT is calculated without taking into 

consideration the transmissivity of PET substrates.  
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Chapter 4. Performance Enhancement via Interface Engineering 

Strategy 

 

4.1 Summary 

In this chapter, enhancement of OSCs’ performance was achieved 

through interface modification or interface engineering strategy. Interface 

engineering on sol-gel ZnO ETL was conducted by introducing additional 

oxadiazole-based electron-transporting materials, PBD between ZnO ETL and 

photoactive layer. The significance of incorporating PBD on ZnO was 

demonstrated by investigating the change in optical, electrical and 

morphological properties of pristine ZnO ETL. Herein, the utilization of PBD 

could improve ZnO film’s conductivity, which was favourable for better charge 

transport ability. As compared to ZnO ETL, ZnO/PBD ETL had lower work 

function to facilitate more efficient electron extraction from the photoactive 

layer. Moreover, PBD could smoothen the ZnO film’s morphology and improve 

hydrophobicity of the surface to provide uniform and intimate interfacial contact 

between ETL and the photoactive layer. As a result, through this interface 

engineering strategy, inverted OSCs based on PBDB-T:IT-M photoactive layer 

exhibited ~7% enhancement in PCE from 10.8% (ZnO-based device) to 11.6% 

(optimized ZnO/PBD-based device). Overall, this chapter highlights interface 

engineering strategy as an approach to improve photovoltaic performance for the 

realization of high-performing OSCs. 
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4.2 Introduction 

A judicial choice of interfacial layers, including ETL and HTL is 

essential in OSCs to optimize device performance. The choice is typically made 

based on material’s properties (e.g., conductivity, solubility, wettability, etc) and 

suitability with different OSCs’ structures (conventional or inverted). For the 

case of inverted OSCs, MoO3 is mostly utilized as the HTL due to its excellent 

transparency, robusticity and stability to promote abundant and efficient hole 

extraction. On the contrary, the role of ETL in inverted OSCs is more prominent 

to minimize the large contact barrier existing between WF of ITO bottom 

electrode and LUMO energy level of acceptor material, so that efficient electron 

extraction can be achieved. Hence, studies of interfacial layer in inverted OSCs 

are generally centred on the development of ETL. Till date, several classes of 

ETL including n-type metal oxides (Sun et al., 2011), conjugated 

polyelectrolytes (CPEs) (Seo et al., 2011), alcohol-/water- soluble materials (He 

et al., 2012, Zhang et al., 2014, Fan and Zhu, 2016, Sun et al., 2017) and self-

assembled dipole monolayers (SADMs) (Ma et al., 2010) have been explored; 

each with varying mechanisms and functions such as by tuning WF of the 

electrode, altering charge selectivity and etc. Among them, sol-gel ZnO first 

pioneered in 2004, is one of the best choices for solution-processed n-type metal 

oxides due to low cost, high stability, excellent optical transparency and non-

toxic nature (Shirakawa et al., 2004). Furthermore, sol-gel ZnO demonstrates a 

promising capability to extract and transport electron while effectively block 

hole, making it a great candidate to be used as ETL in inverted OSCs. Once 

deposited as thin-film, conventional sol-gel ZnO is often post-treated with high-

temperature annealing (~150-200°C) to promote the formation of crystalline 
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ZnO and reduce high density defect that may deteriorate OSCs’ performance 

(Sun et al., 2011). Despite this effort, sol-gel ZnO still suffers from high surface 

roughness and its hydrophilic nature limits its interfacial contact with the organic 

photoactive layer (Liao et al., 2013, Borse et al., 2018). These conditions 

subsequently lead to poor electron extraction and device performance in inverted 

OSCs. On that account, interface modification or interface engineering on sol-

gel ZnO is conducted to subdue the limitations of ZnO film functionally, so that 

high-performing inverted OSCs can be acquired. 

To date, interface engineering on sol-gel ZnO has been studied through 

the doping of organic materials into ZnO (Liao et al., 2013, Li et al., 2017a, 

Borse et al., 2018) or the deposition of organic or inorganic materials as second 

interfacial layer on top of ZnO film (Lee et al., 2014, Borse et al., 2018). Both 

methods can impede surface trap and defect in sol-gel ZnO, provide better 

interfacial contact with the photoactive layer, alter the WF of the electrode, 

improve the conductivity of sol-gel ZnO and suppress recombination loss which 

are all beneficial for the improvement of photovoltaic performance. For example, 

Li et al. used sol-gel ZnO doped with ethylenediaminetetraacetic acid (EDTA) 

organic chelating agent to improve the PCE of inverted OSCs from 11.1% to 

12.1% (Li et al., 2017a). On the other hand, Borse et al. introduced barium 

hydroxide (Ba(OH)2) layer deposited on top of the ZnO film to smoothen its 

morphology and promote better interfacial contact with the photoactive layer, 

resulting in PCE increment from 7.12% to 8.54% (Borse et al., 2018). 
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Herein, PBD was introduced on top of the previously deposited ZnO film 

to modify its properties. This oxadiazole-based SM material was first used by 

Adachi in 1989 as ETL in bilayer organic light emitting diodes (OLEDs) (Adachi 

et al., 1989). And even up to now, it is still considered as one of the most used 

ETLs in OLEDs mainly due to its good electron affinity and mobility as well as 

outstanding charge injection ability (Kulkarni et al., 2004). Even though PBD is 

frequently used in OLEDs as electron-transporting materials, its applications in 

other areas of optoelectronic devices are still limited (Li et al., 2004, Sommer et 

al., 2009, Lee et al., 2011). Recently, PBD was discovered to function effectively 

as a buffer layer in thin-film transistors (TFTs) as it could tune the energy level 

alignment for improving charge extraction in TFTs (Shan and Kim, 2018). Yet, 

no studies were reported regarding the use of PBD in OSCs. In light of its 

advantages, PBD was incorporated for the first time in OSCs as second 

interfacial layer on top of ZnO to modify ZnO film’s properties. The introduction 

of PBD on ZnO film was a promising strategy as it could improve the electrical 

and morphological properties of sol-gel ZnO film. Furthermore, PBD layer could 

further tune the WF of the electrode to better match the LUMO energy level of 

acceptor material. All those features allowed ZnO/PBD interlayer to function 

effectively as ETL in inverted OSCs. 
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4.3 Results and Discussions 

4.3.1 Elemental states 

The change in elemental states of sol-gel ZnO film upon deposition of 

PBD layer was studied by comparing the XPS spectra of modified ZnO/PBD 

film (chemical structures of PBD depicted in Figure 4.1a) and pristine ZnO film. 

The overall XPS survey spectra of those two films are presented in Figure 4.1b. 

Based on Figure 4.1b, both films showed similar XPS survey spectra with 

notable peaks of Zn 2p, O 1s, N 1s and C 1s. Among those peaks, the most 

distinct change could be seen from the enhancement and broadening of N peak 

due to the introduction of PBD layer as depicted in Figure 4.1b, inset. To 

support this statement, high-resolution N 1s peak of ZnO/PBD film was 

deconvoluted into its constituents shown in Figure 4.1c. In Figure 4.1c, a slight 

increment of N peak at 400.0 eV was observed, which was attributed to the 

presence of N-C double bond found in PBD molecules (Lee et al., 2014). The 

broadening of N peak was also noticed, which was caused by the occurrence of 

additional peak at 398.5 eV. In this case, the peak at lower Eb (398.5 eV) was 

ascribed to the interaction between N atoms of PBD and Zn atoms of ZnO found 

on the ZnO/PBD interfaces (Lee et al., 2014). 

Figure 4.1d illustrates the C 1s survey spectra of ZnO/PBD film to 

further testify the presence of PBD on top of ZnO film. In this case, three 

constituent peaks were found at 284.8, 285.8 and 288.7 eV. Those peaks were 

ascribed to the presence of C-C, C=C, C-H, C-O and C=N bond (Wang et al., 

2017b, Wang et al., 2019a), which were all present in PBD molecules. In short, 
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all of the results confirmed that PBD was successfully deposited on top of the 

ZnO film to function as a hybrid electron-transporting bilayer. 

 

Figure 4.1 (a) Chemical structures of PBD electron-transporting materials. (b) XPS survey 

spectra of ZnO and ZnO/PBD on glass/ITO substrates; inset shows the enlarged N 1s spectra. 

The deconvoluted high-resolution (c) N 1s and (d) C 1s peaks of ZnO/PBD deposited on 

glass/ITO substrates. 

The change in elemental states upon PBD deposition was further 

investigated by comparing the positions and shapes of Zn 2p and O 1s peaks of 

ZnO and ZnO/PBD films. The high-resolution Zn 2p and O 1s XPS spectra are 

shown in Figure 4.2a and 4.2b, respectively. Two major peaks of 2p3/2 at lower 

Eb and 2p1/2 at higher Eb were obtained in Figure 4.2a, confirming the presence 

of ZnO phase formation in ZnO and ZnO/PBD films (Borse et al., 2018). Both 

2p1/2 and 2p3/2 peaks looked identical with a slight shift in 2p3/2 peak from 1021.6 

to 1021.5 eV upon deposition of PBD on ZnO film. This indicated that the 

incorporation of PBD had minimal influence on the Zn-O bond formation in ZnO 

(a) (b) 

(c) (d) 
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film. This was further supported from O 1s XPS survey of Figure 4.2b, where 

it shown similar peaks’ position before and after the deposition of PBD. In here, 

the constant peak’s position at higher Eb was attributed to O atoms in ZnO matrix, 

which was in agreement to the previous findings (Sun et al., 2011, Liao et al., 

2013). Meanwhile, the peak at lower Eb corresponding to oxygen-deficient 

components was slightly shifted (Sun et al., 2011, Liao et al., 2013). The relative 

magnitude for this oxygen-deficient peak was calculated to be 51.28% for 

pristine ZnO film and 51.22% for ZnO/PBD film, implying that the number of 

oxygen-deficient components remained relatively constant even after PBD 

deposition. This meant that the incorporation of PBD could not induce 

significant reduction in surface traps and defects in ZnO film. Thus, the potential 

enhancement in device performance using ZnO/PBD ETL should not be related 

to the impediment of surface traps and defects. All in all, it was clear that through 

XPS studies, the introduction of PBD did not cause any notable effect on the 

elemental states of ZnO film. 

 

Figure 4.2 High-resolution (a) Zn 2p and (b) O 1s peaks of ZnO and ZnO/PBD deposited on 

glass/ITO substrates. 

(a) (b) 
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4.3.2 Work function 

The role of PBD in tuning the WF of ITO cathode in inverted OSCs was 

studied using UPS measurements on ZnO- and ZnO/PBD- modified ITO 

surfaces. The UPS spectra of ZnO- and ZnO/PBD- modified ITO cathodes are 

portrayed in Figure 4.3. The detailed calculation method regarding how WF can 

be determined is being discussed in Chapter 3 (Methodology). 

 

Figure 4.3 UPS spectra of ZnO- and ZnO/PBD- modified ITO cathodes as compared to bare 

ITO cathode. 

Based on Figure 4.3, the WF of ZnO- and ZnO/PBD- modified ITO 

cathodes were determined to be 4.12 and 4.03 eV, while the WF of bare ITO 

cathode was 4.90 eV. It was obvious that the use of interfacial layers (ZnO and 

ZnO/PBD) could effectively modify the WF of bare ITO cathode. In comparison 

to ZnO-modified ITO cathode (4.12 eV), ZnO/PBD-modified ITO cathode 

showed a lower WF of 4.03 eV, which was relatively closer to LUMO energy 

level of IT-M acceptor (3.98 eV) (Li et al., 2016). This highly suggested that 
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additional PBD layer in ZnO/PBD interlayer could further tune the WF of ITO 

cathode by creating a better energy level alignment with the LUMO energy level 

of IT-M acceptor. On the one hand, this could promote Ohmic contact for 

efficient electron extraction and on the other hand, such WF modification might 

strengthen cell’s built-in field beneficial for boosting photovoltaic performance. 

4.3.3 Optical properties 

Considering that both ZnO and ZnO/PBD films functioned as ETL in 

inverted OSCs, the transmittance performance of these films will be a crucial 

factor when evaluating optical properties. On this account, UV-vis transmittance 

of ZnO/PBD film was examined and compared to the pristine ZnO film. 

 

Figure 4.4 Transmittance spectra of ZnO and ZnO/PBD deposited on glass/ITO substrates as 

compared to bare glass/ITO. 
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As depicted in Figure 4.4, the transmittance spectra for both films 

showed comparable performance with a slight red-shifting in peak from ~382 

nm (ZnO) to ~394 nm (ZnO/PBD), which could be due to the optical effect 

induced by additional PBD layer. It was observed that the ZnO/PBD film had 

lower transmissivity in the higher wavelength region (λ > 440 nm), most likely 

due to the absorption originated from PBD layer. Regardless of this, both films 

still displayed comparable and excellent transmissivity above 80% on a broad 

wavelength range from 360-850 nm and even higher than that of ITO. This 

implied that both films could function effectively as ETL in inverted OSCs due 

to their good transparency properties. In addition, it was also evident that the 

slight change in optical properties was not the main reason for performance 

improvement in devices based on ZnO/PBD ETL. 

4.3.4 Electrical properties 

The change in electrical properties of ZnO film upon PBD deposition 

was studied by analysing the electrical conductivity of the film. Devices with 

configuration of ITO/ZnO/Al and ITO/ZnO/PBD/Al were fabricated to compare 

the conductivity of the two films and the results were plotted into the J-V curve 

shown in Figure 4.5. The electrical conductivity of a film is calculated using 

Equation 6, as discussed in Chapter 3 (Methodology). 
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Figure 4.5 Electrical conductivity of ZnO and ZnO/PBD interlayer. 

As portrayed in Figure 4.5, the trend on the J-V curve for both films 

revealed a linear fitted relationship between current and voltage, indicating that 

both interfacial layers were able to form Ohmic contact with the electrodes. 

Meanwhile, slopes in the J-V curve were correlated with the electrical 

conductivity. Based on the relationship portrayed in Equation 6, the 

conductivity of ZnO film was determined to be 2.45×10-4 S m-1 and raised by 

~76% to 4.32×10-4 S m-1 through the utilization of PBD on ZnO. The higher 

conductivity of ZnO/PBD film suggested that ZnO/PBD had a lower contact 

resistance favourable for promoting better charge transport processes in OSCs. 

4.3.5 Morphological properties 

The morphological features of ZnO and ZnO/PBD films were studied by 

analysing the AFM height and phase images shown in Figure 4.6 below. 
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Figure 4.6 AFM (5×5 μm) height and phase images of (a, d) ZnO, (b, e) ZnO/PBD and (c, f) 

ZnO/PBD/CB deposited on glass/ITO substrates. 

It was observed from the height (Figure 4.6a) and phase images (Figure 

4.6d) that the pristine ZnO film exhibited a rough surface morphology with root-

mean-square (RMS) roughness of 5.57 nm. The RMS roughness of ZnO film 

was toned down significantly to 2.78 nm when PBD was deposited on top of the 

ZnO film (Figure 4.6b and 4.6e), proving the ability of PBD to smoothen the 

ZnO film’s morphology significantly. 

CB as the processing solvent of photoactive layer was deposited on top 

of the ZnO/PBD film to simulate the actual inverted OSCs when photoactive 

blend layer of PBDB-T:IT-M in CB was deposited on top of the ETL. As shown 

in Figure 4.6c and 4.6f, CB deposition could alter the surface morphology of 

ZnO/PBD film by partially removing PBD molecules from ZnO/PBD film. 

Partial removal of PBD was first speculated as the CB deposition on ZnO/PBD 

film did not raise the surface roughness back to 5.57 nm, which was the RMS 
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value for pristine ZnO film. This was later confirmed by the overall XPS survey 

spectra presented in Figure 4.7a, which compared ZnO/PBD/CB film to 

ZnO/PBD film. It was observed from Figure 4.7a that both films depicted 

similar peaks’ position in the N 1s region, but with slightly lower spectral 

intensities for ZnO/PBD/CB film. Therefore, confirming the presence of PBD 

molecules upon CB deposition. In addition, high-resolution N 1s peak of 

ZnO/PBD/CB film as displayed in Figure 4.7b, also testified the presence of 

PBD even after CB deposition. 

 

Figure 4.7 (a) XPS survey spectra of ZnO/PBD and ZnO/PBD/CB on glass/ITO substrates; inset 

shows the enlarged N 1s spectra. (b) High-resolution N 1s peak of ZnO/PBD/CB deposited on 

glass/ITO substrates. 

Due to this unique characteristic, the surface roughness of ZnO/PBD film 

upon CB deposition was increased to 4.52 nm. This explained that CB solvent 

of the photoactive layer could become the key factor in optimizing the 

morphology of ZnO/PBD film by regulating its surface roughness via partial 

removal of PBD molecules. Such optimized morphology of ZnO/PBD film 

could provide uniform contact with the PBDB-T:IT-M photoactive layer, which 

was beneficial for better charge extraction and transport in OSCs. 

(b) (a) 
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The change in hydrophobicity of ZnO film upon PBD deposition was 

also investigated through contact angle measurement with deionized water 

shown in Figure 4.8. Similar to previous studies (Liao et al., 2013, Borse et al., 

2018), the pristine ZnO film showed a small contact angle of 27°, indicating its 

hydrophilic nature. Interestingly, the contact angle was improved to 47° when 

PBD was deposited on top of the ZnO film, suggesting a better hydrophobicity 

of ZnO/PBD ETL as compared to the pristine ZnO ETL. In here, a more 

hydrophobic surface is desirable for ETL in inverted OSCs as it can promote a 

more intimate contact with the organic photoactive layer for better charge 

extraction and transport in OSCs. 

 

Figure 4.8 Contact angle images when deionized water was dripped onto the (a) ITO/ZnO and 

(b) ITO/ZnO/PBD substrates. The inset number is the contact angle. 

4.3.6 Photovoltaic performances 

To evaluate the usage of ZnO/PBD hybrid electron-transporting bilayer 

in organic photovoltaics, inverted devices with configuration of 

ITO/ZnO/PBD/PBDB-T:IT-M/MoO3/Ag were fabricated as illustrated in 

Figure 4.9a. Comparative studies between pristine ZnO and ZnO/PBD 

interlayers are also needed, thereby, inverted devices with configuration of 

(b) (a) 
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ITO/ZnO/PBDB-T:IT-M/MoO3/Ag were also fabricated. The corresponding 

energy level of these materials are all shown in Figure 4.9b, and the detailed 

procedures to fabricate such inverted OSCs can be found in Chapter 3 

(Methodology). 

 

Figure 4.9 (a) Device structure of inverted OSCs with ZnO/PBD ETL; inset shows the chemical 

structures of PBDB-T donor and IT-M acceptor. (b) Energy levels of materials used in the OSCs. 

(c) J-V characteristics under standard AM1.5G illumination with 100 mW cm-2 light intensity, 

(d) EQE spectra, (e) Jph versus Veff curve and (f) Jsc and Voc light intensity dependence curve of 

devices with or without optimized PBD interlayer. 

(e) 

(d) (c) 

(b) (a) 

(f) 
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The J-V characteristics of inverted OSCs incorporating ZnO and 

optimized ZnO/PBD interlayers are depicted in Figure 4.9c. Meanwhile, the 

detailed photovoltaic parameters of OSCs with ZnO and optimized ZnO/PBD 

interlayers are listed in Table 2.1. The optimization of PBD layer in terms of its 

processing condition was also conducted to achieve the optimal OSCs’ 

performance. The optimization of PBD layer on ZnO film is summarized in 

Table 2.2 to 2.4, where the effects of concentration, thickness and post-

processing treatment on photovoltaic performance are being explored. It is 

important to note that all photovoltaic performances were measured under 

standard AM1.5G illumination with 100 mW cm-2 light intensity in N2-filled 

glovebox without encapsulation. 

Table 2.1 Detailed photovoltaic parameters of inverted OSCs with ZnO and optimized 

ZnO/PBD interlayer. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

ZnO 0.935 15.9 72.8 10.8 (10.7) 

ZnO/PBD 0.937 16.7 74.1 11.6 (11.3) 

a Average PCE was obtained from 8 independent devices

Table 2.2 Optimization of PBD interlayer on ZnO film in terms of PBD concentration. 

Concentration 
[mg mL-1] 

Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0.5 0.929 16.5 71.8 11.0 (10.7) 

1.0 0.937 16.7 74.1 11.6 (11.3) 

2.0 0.930 16.1 72.7 10.9 (10.6) 

5.0 0.924 16.0 72.4 10.7 (10.4) 

a Average PCE was obtained from 8 independent devices
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Thicknessb 
[nm] 

Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

~10 0.937 16.7 74.1 11.6 (11.3) 

~7 0.939 16.1 75.2 11.4 (11.0) 

~5 0.940 15.7 74.3 11.0 (10.8) 

a Average PCE was obtained from 8 independent devices 

b PBD thicknesses were modified by varying the spin coating speed for PBD deposition and were measured by averaging 

5 different data points chosen at random 

Table 2.4 Optimization of PBD interlayer on ZnO film in terms of post-processing annealing 

treatment. 

Annealing T. 
[°C] 

Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

non-annealed 0.937 16.7 74.1 11.6 (11.3) 

50 0.910 16.4 72.3 10.8 (10.7) 

75 0.914 16.1 72.7 10.7 (10.5) 

a Average PCE was obtained from 8 independent devices

As compared to pristine ZnO interlayer, the devices based on ZnO/PBD 

interlayer exhibited slightly higher PCE of 11.6% with Jsc of 16.7 mA cm-2, Voc 

of 0.937 V and FF of 74.1%. In contrast, reference devices based on ZnO 

interlayer only displayed a PCE of 10.8% with Jsc of 15.9 mA cm-2, Voc of 0.935 

V and FF of 72.8%. The results indicated that the interfacial modification of 

ZnO film using PBD could improve the device performance through the 

simultaneous enhancement in Jsc and FF. Such enhancement of device 

performance was mostly attributed to the desirable features of bilayer ZnO/PBD 

ETL. As discussed previously, the better WF tuning ability, desirable film 

morphology and higher film conductivity of ZnO/PBD were the key factors to 

promote better charge extraction and transport processes in OSCs, which 

consequently improve Jsc and FF values. 

Table 2.3 Optimization of PBD interlayer on ZnO film in terms of PBD film thickness. 
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EQE spectra of devices based on ZnO and ZnO/PBD interlayers were 

analysed to confirm the increment in Jsc. The EQE spectra shown in Figure 4.9d 

displayed a wide photo-response range from 300 to 800 nm. The photo-response 

peak found in 550-650 nm was ascribed to the absorption of PBDB-T donor, 

while the peak found in 650-750 nm was contributed by the absorption of IT-M 

acceptor. The absorption profiles of PBDB-T donor, IT-M acceptor and PBDB-

T:IT-M blend film are shown in Figure 4.10. Devices based on ZnO/PBD 

interlayer had higher EQE performance in the wavelength region above 480 nm 

as compared to those based on ZnO interlayer, supporting the fact that 

ZnO/PBD-based device had a higher Jsc than ZnO-based device. Moreover, the 

integrated Jsc values measured from EQE curves were calculated to be 15.5 and 

15.9 mA cm-2 for devices based on ZnO and ZnO/PBD interlayers, agreeing well 

with the Jsc values measured from J-V curves (within 5% deviation range). The 

difference in Jsc values was normally attributed to the small spectral mismatch 

of the solar simulator’s spectrum with the AM1.5G spectrum (Schilinsky et al., 

2002). 
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Figure 4.10 Absorption profiles of PBDB-T, IT-M and PBDB-T:IT-M blend film. 

A plot of Jph versus Veff is shown in Figure 4.9e to compare the exciton 

dissociation efficiency of fabricated devices. The method used to quantify 

exciton dissociation efficiency is being discussed in Chapter 3 (Methodology). 

Based on Jph versus Veff curve, the Jsat values were determined to be 16.3 mA 

cm-2 for ZnO-based device and 17.1 mA cm-2 for ZnO/PBD-based device. Under 

short circuit conditions, the Jph/Jsat ratio of devices based on ZnO and ZnO/PBD 

interlayers were calculated to be 97.5% and 97.7%, indicating that both devices 

had comparable exciton dissociation efficiency and that the performance 

improvement in ZnO/PBD-based device was not governed by exciton 

dissociation processes in the photoactive layer. 
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Non-geminate recombination mechanisms of devices based on ZnO and 

ZnO/PBD interlayers were investigated to understand the reasons behind 

improved photovoltaic performance. Bimolecular recombination was first 

analysed by investigating the dependence of Jsc on light intensity (P). 

Theoretically, the relationship between Jsc and P can be expressed as Jsc ∝ Pα, 

where α is the exponential factor denoting the degree of bimolecular 

recombination (Luo et al., 2018). When α is close to 1, there is a negligible 

bimolecular recombination (Luo et al., 2018). As shown in the Jsc versus P plot 

in Figure 4.9f, the slopes of 1.09 and 0.97 were obtained for devices based on 

ZnO and ZnO/PBD interlayers, respectively. The slope closer to 1 indicated that 

ZnO/PBD-based device had a relatively negligible bimolecular recombination. 

Non-geminate recombination mechanisms were further studied in terms 

of trap-assisted recombination by analysing the dependence of Voc on P. 

Theoretically, the slope of Voc versus P curve in Figure 4.9f is equal to nkT/q, 

where n is the ideality factor, k is the Boltzmann’s constant, T is the temperature 

and q is the elementary charge (Ie et al., 2018). In normal circumstances, the 

slope is found between 1 kT/q and 2 kT/q for trap-assisted recombination to occur. 

Slope closer to 1 kT/q indicates pure domination of bimolecular recombination, 

whereas slope closer to 2 kT/q stipulates domination of trap-assisted 

recombination (Ie et al., 2018). Devices based on ZnO interlayer showed a slope 

of 1.40 kT/q, indicating the occurrence of trap-assisted recombination. In 

contrast, devices based on ZnO/PBD interlayer showed a smaller slope of 1.32 

kT/q, implying the suppression of trap-assisted recombination via the use of 

ZnO/PBD interlayer. Overall, studies on charge recombination proved that 

ZnO/PBD-based device had negligible bimolecular recombination and 
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suppressed trap-assisted recombination, implying that charges could be 

efficiently extracted and transported to the electrodes when ZnO/PBD hybrid 

interlayer was utilized. Hence, it was evident that in this study, charge 

recombination processes were one of the key principles governing the increase 

in photovoltaic performance (Jsc and FF) of ZnO/PBD-based device. 

Charge transport properties of devices based on ZnO and ZnO/PBD 

interlayers were investigated using SCLC technique as discussed in Chapter 3 

(Methodology). Electron-only devices with structure of ITO/ZnO/with or 

without PBD/PBDB-T:IT-M/Ca/Al were fabricated to compare the charge 

transport in ZnO and ZnO/PBD interlayers in terms of electron mobilities. From 

the typical J1/2-V curves shown in Figure 4.11, the electron mobility was 

calculated to be 1.67×10-4 cm2 V-1 s-1 for ZnO-based device and 2.14×10-4 cm2 

V-1 s-1 for ZnO/PBD-based device. The improvement in electron mobility 

depicted a better charge transport ability in ZnO/PBD interlayer, mainly caused 

by the higher conductivity of the hybrid interlayer. Along with suppressed 

recombination, the good charge transport ability in ZnO/PBD interlayer 

governed the enhancement in photovoltaic performance (Jsc and FF) of 

ZnO/PBD-based device. 
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Figure 4.11 Electron mobility of devices with or without optimized PBD interlayer, measured 

using SCLC method. 

All in all, the use of ZnO/PBD hybrid interlayer was proven to be 

effective in improving OSCs’ performance by subduing the limitations of 

pristine ZnO. For instance, the creation of better energy level alignment to 

improve electron extraction to the cathode, the improvement in conductivity to 

improve charge mobility and the optimization of morphology to allow uniform 

and intimate contact with the photoactive layer. All these features were the key 

factors that significantly affect charge extraction and transport processes in 

OSCs. Due to these, charge recombination could be reduced effectively, while 

charge transport could be increased effectively. As discussed in Chapter 2 

(Literature Review), reduced charge recombination and enhanced charge 

transport could result in higher Jsc and FF performances, which was in 

accordance with the current findings. Herein, interface engineering strategy 

could increase the Jsc and FF values from 15.9 mA cm-2 and 72.8% to 16.7 mA 

cm-2 and 74.1%, yielding to ~7% performance increment to 11.6%. 
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4.4 Conclusion 

In conclusion, interfacial modification of ZnO film was conducted 

successfully by introducing additional oxadiazole-based electron-transporting 

materials known as PBD on top of the ZnO film to function as a hybrid electron-

transporting bilayer. Through this bilayer strategy, inverted devices based on 

PBDB-T:IT-M photoactive layer demonstrated ~7% increment in the 

photovoltaic performance from 10.8% (ZnO-based device) to 11.6% (ZnO/PBD-

based device). The enhancement in efficiency of ZnO/PBD-based device was 

due to the simultaneous increase in Jsc and FF values, mainly governed by the 

improvement in charge transport ability and suppression of charge 

recombination processes. Herein, the engineered ZnO/PBD interlayer could 

provide more efficient electron extraction as evidenced from its better WF 

reduction to match LUMO of IT-M acceptor and at the same time, able to 

facilitate uniform and intimate contact with the photoactive layer. Moreover, 

ZnO/PBD interlayer had better interlayer conductivity compared to pristine ZnO 

interlayer. All those superior features of ZnO/PBD hybrid interlayer had crucial 

influences on the charge extraction, transport and recombination processes in 

OSCs, which were conducive for the enhancement in photovoltaic performance 

of ZnO/PBD-based device. Overall, this study demonstrated that PBD could be 

used effectively for interfacial modification of ZnO to boost OSCs’ performance 

by forming hybrid interlayer that could circumvent the inherent weaknesses of 

sol-gel ZnO (e.g., poor interfacial contact). Thus, interface engineering is proven 

to be a powerful strategy to enhance OSCs’ performance in addition to material 

design and morphology control.  
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Chapter 5. Performance Enhancement via Electrode 

Engineering Strategy 

 

5.1 Summary 

In this chapter, enhancement of OSCs’ performance was achieved via 

electrode engineering strategy. Electrode engineering on PEDOT:PSS FTEs was 

conducted by utilizing polyhydroxy compound dopant and gentle acid post-

treatment method, specifically xylitol dopant and MSA treatment. The 

significance of those strategies on PEDOT:PSS FTEs was demonstrated by 

investigating the changes in optical, electrical, morphological and mechanical 

properties of pristine PEDOT:PSS FTEs. Herein, the utilization of xylitol doping 

and MSA treatment could induce better interconnected PEDOT:PSS 

morphology with favourable phase separation, which was conducive for 

enhancing electrode’s conductivity to 2032 S cm-1. In addition, such strategy 

could also provide electrode a stronger adhesion ability with the PET substrate, 

which was known to be effective for improving the mechanical stability of 

electrodes. With electrode engineering strategy, conventional flexible OSCs 

based on MSA-treated xylitol-doped PEDOT:PSS FTEs and PBDB-T-2F:Y6 

photoactive layer demonstrated an excellent PCE of 14.2% with remarkable 

mechanical robustness against bending and folding, maintaining over 89% and 

76% of the original PCE even after 1000 bending and folding cycles. In short, 

this chapter highlights electrode engineering strategy as an approach to improve 

both photovoltaic performance and mechanical stability for the realization of 

high-performing flexible OSCs based on PEDOT:PSS FTEs. 
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5.2 Introduction 

Several factors have impeded the utilization of ITO electrode in flexible 

OSCs (Li et al., 2018, Qin et al., 2020b). As a result, several ITO alternatives 

have been explored for their potential as FTEs in flexible OSCs, which include 

silver nanowires (Ag NWs) (Song et al., 2013, Guo et al., 2013, Seo et al., 2017, 

Dong et al., 2019), conducting polymers (Kim et al., 2014, Fan et al., 2016, Song 

et al., 2018, Fan et al., 2019), carbon-based materials (graphene and carbon 

nanotubes) (Salvatierra et al., 2013, Park et al., 2014a, Konios et al., 2015, Shin 

et al., 2018) and many more (Park et al., 2014b, Ou et al., 2016). Among them, 

PEDOT:PSS as transparent conducting polymer shows the most promising 

potential for cost-effective flexible devices owing to its exceptional intrinsic 

flexibility, high optical transparency, low surface roughness, excellent solution-

processability and superior thermal stability (Li et al., 2018, Qin et al., 2020b). 

Despite that, PEDOT:PSS suffers from low conductivity which may 

substantially restrain its application as electrode in flexible OSCs (Zhang et al., 

2013, Meng et al., 2015). 

Typically, the conductivity of PEDOT:PSS can be tuned by modifying 

the PEDOT to PSS ratio (Qin et al., 2020b). For instance, PEDOT:PSS that is 

normally used for HTL applications has a ratio of 1:6 (PEDOT to PSS ratio in 

Clevios P VP 4083), while for electrode applications, a ratio as low as 1:2.5 

(PEDOT to PSS ratio in Clevios PH1000) is widely preferred. Though by 

comparison, PEDOT:PSS (PH1000) is more conductive than PEDOT:PSS 

(4083), but its pristine conductivity (~0.3 S cm-1) is still significantly low for 

practical application as FTEs in flexible OSCs (Mengistie et al., 2014). On that 
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account, electrode modification or electrode engineering on PEDOT:PSS 

(PH1000) is conducted to subdue the limitations of pristine PEDOT:PSS 

functionally, so that high-performing FTEs for flexible OSCs can be obtained. 

To date, electrode engineering on PEDOT:PSS FTEs can be conducted 

through doping treatment using organic compounds (Vosgueritchian et al., 2012, 

Ouyang, 2013, Thomas et al., 2014, Peng et al., 2019) and/or surface post-

treatment using acid (Yeon et al., 2015, Kim et al., 2015, Song et al., 2018, Song 

et al., 2020b). Both methods can improve the optical, electrical and 

morphological properties of pristine PEDOT:PSS films, which contribute to 

improved FTEs’ conductivity. Some recent studies also mentioned that the 

combination of doping and surface treatment could simultaneously increase the 

mechanical flexibility and conductivity of PEDOT:PSS FTEs. For instance, 

Song et al. proved that D-sorbitol doping and eco-friendly citric acid treatment 

could enhance PEDOT:PSS properties as FTEs such as transparency, 

conductivity and mechanical flexibility, which subsequently resulted in the 

realization of high-performing flexible OSCs with PCE of over 14% (Song et al., 

2020b). However, not many studies on PEDOT:PSS are directed towards this 

aspect. This has therefore, driven the current work to engineer a high-performing 

PEDOT:PSS electrode with improved conductivity as well as enhanced adhesion 

ability to improve performance and mechanical stability. 

Herein, two constructive approaches were utilized to enhance 

PEDOT:PSS performance as FTEs. A range of polyhydroxy compounds that 

differed based on their alkyl chain length were initially investigated as dopant 

and xylitol compound appeared to show the best effect in terms of square 
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resistance, Rsq and conductivity, σ. In addition to doping treatment, MSA was 

also used as surface post-treatment method at room temperature. Through these 

approaches, the optical, electrical and morphological properties of pristine 

PEDOT:PSS FTEs could be engineered and improved. Most importantly, such 

doping and acid treatment could provide electrode a stronger adhesion ability 

with the PET substrate, which were conducive for boosting mechanical stability 

of FTEs against extreme mechanical deformation (bending and folding). All 

those features allowed MSA-treated xylitol-doped PEDOT:PSS or D-

PEDOT:PSS to function effectively as FTEs in high-performing flexible OSCs. 

 

5.3 Results and Discussions 

5.3.1 Preliminary doping selection 

A range of polyhydroxy compounds was preliminarily studied as dopant 

for modifying the pristine properties of PEDOT:PSS FTEs. Three polyhydroxy 

compounds as depicted in Figure 5.1, namely ethylene glycol, xylitol and 

dulcitol were doped into PEDOT:PSS aqueous solution and the corresponding 

solutions were subsequently deposited as thin-films. 

 



117 

 

Figure 5.1 Chemical structures of polyhydroxy compounds – ethylene glycol, xylitol dan 

dulcitol. 

The variation of Rsq and σ of those doped films were investigated as 

summarized in Figure 5.2. Generally, it is highly desirable for FTEs to have 

high conductivity and low square resistance to promote efficient electrodes’ 

performance. From Figure 5.2, it was obvious that PEDOT:PSS films doped 

with xylitol yielded the highest conductivity of 1350 S cm-1 and lowest square 

resistance of 78 Ω sq-1, making xylitol to be the best dopant candidates for 

PEDOT:PSS FTEs among the three available polyhydroxy compounds. 

 

Figure 5.2 Comparison of Rsq and σ of PEDOT:PSS films (thickness: ~90 nm) doped with 

various polyhydroxy compounds. 
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5.3.2 Bonding properties 

The role of xylitol doping in enhancing PEDOT:PSS FTEs performance 

was first studied by evaluating the potential chemical interaction and bonding 

between electrodes and substrates. The xylitol-doped PEDOT:PSS films could 

induce strong intermolecular forces with the substrates, particularly when 

flexible PET plastic substrates were used. The intermolecular forces present 

were hydrogen bond and van der Waals bond, formed primarily from the 

interactions between hydroxylated surface of xylitol components in PEDOT:PSS 

and carbonyl group of PET substrates. The schematic illustrations of hydrogen 

bond and van der Waals bond effects on the substrate/electrode interfaces are 

displayed in Figure 5.3. 

 

Figure 5.3 The schematic diagram of hydrogen bond and van der Waals bond effects on the 

substrate/electrode interfaces. 
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The chemical interaction and bonding occurring at the 

substrate/electrode interfaces were then quantified by measuring the adhesive 

force of pristine and xylitol-doped PEDOT:PSS solutions using high sensitivity 

micro electro-mechanical balance, as shown in Figure 5.4. The as-cast or 

pristine PEDOT:PSS solution had a relatively low adhesion force of 0.217 mN. 

Interestingly, the adhesion force was improved by almost 48% to 0.321 mN upon 

the addition of 5.0 wt% xylitol dopant. The improved adhesion force in xylitol-

doped PEDOT:PSS FTEs was indicative of the presence of strong bonding 

interaction (hydrogen bond and van der Waals bond) at the substrate/electrode 

interfaces, which was in accordance with the previous hypothesis. Such strong 

bonding interaction at the interface could provide FTEs a stronger adhesion 

ability with the substrates, which was highly beneficial for bending and folding 

applications of flexible OSCs. Furthermore, intramolecular and/or 

intermolecular hydrogen bonds between xylitol molecules in PEDOT:PSS FTEs 

might further enhance electrodes’ mechanical stability against bending and 

folding deformation. Thus, simple strategies such as xylitol doping on 

PEDOT:PSS could present a new opportunity for the realization of high-

performing FTEs with good mechanical properties. 
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Figure 5.4 Adhesive force of as-cast PEDOT:PSS solution and PEDOT:PSS solution doped with 

xylitol; inset shows the process schematic for adhesion force measurement. 

5.3.3 Optical properties 

In conjunction with xylitol doping, MSA treatment was also used as the 

post-processing treatment for PEDOT:PSS film. Combination of xylitol doping 

and MSA treatment could further improve the overall FTEs’ performance, not 

only in terms of mechanical stability but in terms of optical, electrical and 

morphological properties as well. 

The optical properties of D-PEDOT:PSS were analysed using UV-vis 

spectroscopy. Figure 5.5a compares the transmittance and reflectance spectra of 

PET/D-PEDOT:PSS with PET/ITO and glass/ITO. Meanwhile, the 

transmittance spectra of PET/as-cast PEDOT:PSS as compared to PET/D-

PEDOT:PSS is presented in Figure 5.5b. Among the fabricated FTEs, PET/ITO 

film displayed the lowest transparency below 80% across the entire 300-850 nm 

region. Even without considering its inherent physical properties of being rigid, 
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bulky and fragile, such low transmittance in the major absorbing region makes 

it unsuitable to use ITO for preparing highly efficient flexible OSCs. 

 

Figure 5.5 (a) Transmittance and reflectance spectra of glass/ITO, PET/ITO and PET/D-

PEDOT:PSS. (b) Comparison of transmittance spectra of as-cast PEDOT:PSS and D-

PEDOT:PSS films deposited on PET plastic substrates as compared to bare PET. 

As-cast PEDOT:PSS as ITO alternatives could improve the 

transmittance performance across the 300-850 nm region as depicted in Figure 

5.5b. Further improvement in transmissivity could be achieved when 

PEDOT:PSS was subjected to xylitol micro-doping and MSA treatment, where 

PET/D-PEDOT:PSS film could exhibit a more stable transmittance performance 

with an overall transmittance of ~80% across 350-850 nm region. This caused 

PET/D-PEDOT:PSS to have a comparable optical transparency to glass/ITO as 

displayed in Figure 5.5a. Notably, PET/D-PEDOT:PSS even showed superior 

transparency over glass/ITO in the wavelength region of 360-500 nm where its 

transmissivity almost reached 90%. Furthermore, as depicted in Figure 5.5a, 

PET/D-PEDOT:PSS had a low reflectance below 15% across the entire 

wavelength region (300-850 nm). This was considerably lower than the 

reflectance of glass/ITO that could reach up to 25%.  Both high transmissivity 

and low reflectivity of D-PEDOT:PSS on PET plastic substrate enabled most of 

(b) (a) 
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the incident lights to pass through for photoactive layer absorption, proving its 

exceptional potential as alternative ITO electrodes. Its superb transparency in the 

visible light region (370-740 nm) also created a greater opportunity for usage in 

semi-transparent devices in the near future. 

5.3.4 Electrical properties 

The electrical properties of D-PEDOT:PSS FTEs were investigated by 

studying their Rsq, σ and FoM values. The relationships between each parameter 

and the methods used to quantify each parameter are being discussed in Chapter 

3 (Methodology). The results are summarized in Table 3.1. Other data for 

conventional acid-treated PEDOT:PSS FTEs are also listed for comparison. 

Table 3.1 Rsq, σ and FoM values of D-PEDOT:PSS films when compared with different acid-

treated PEDOT:PSS films. 

Treatment Rsq 
[Ω sq-1] 

σ 

[S cm-1] 
do 

[nm] FoM 

Sulphuric acid (98 wt%) 67 2714 55 72 

Nitric acid (68 wt%) 88 1748 65 64 

Xylitol + MSA (99 wt%) 82 2032 60 78 

 

It can be deduced from Table 3.1 and Equation 7 that Rsq and σ values 

are inversely correlated, where small Rsq values correspond to high σ values. 

Based on previous literatures, pristine PEDOT:PSS FTEs shown an extremely 

low σ of approximately 0.3 S cm-1, rendering their usage as FTEs unpractical in 

flexible OSCs (Mengistie et al., 2014). 
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Combined xylitol and MSA treatment can solve those issues, by 

improving both the Rsq and σ values. The Rsq and σ values of D-PEDOT:PSS 

FTEs were measured to be 82 Ω sq-1 and 2032 S cm-1 respectively, as illustrated 

in Table 3.1. Those values were even comparable to other acid-treated 

PEDOT:PSS FTEs. Besides that, FoM is an important performance metric for 

estimating the performance of FTEs. It is particularly desirable to have an FoM 

value of over 35, as it is the minimum benchmark for commercial viability of 

FTEs (Vosgueritchian et al., 2012). Using Equation 10, the FoM value of D-

PEDOT:PSS FTEs was calculated to be 78, which was the highest when 

compared to other acid treatment methods (sulphuric acid with 72 and nitric acid 

with 64). The FoM results strongly proved the functionality of D-PEDOT:PSS 

FTEs in flexible OSCs. 

5.3.5 Morphological properties 

The morphological features of D-PEDOT:PSS were compared to the as-

cast and xylitol-doped PEDOT:PSS through TEM analysis shown in Figure 5.6. 

Figure 5.6a depicts the TEM results for films based on as-cast, xylitol-doped 

and xylitol-doped MSA-treated PEDOT:PSS. While Figure 5.6b presents the 

morphology illustrations for films based on as-cast, xylitol-doped and xylitol-

doped MSA-treated PEDOT:PSS. The possible ionic and hydrogen bonding 

interactions in as-cast, xylitol-doped and xylitol-doped MSA-treated 

PEDOT:PSS films are illustrated in Figure 5.6c to explain the reason of 

morphological change upon doping and acid treatment. 
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As depicted in Figure 5.6a and 5.6b, the as-cast PEDOT:PSS films 

exhibited coiled structures and poor phase separations between PEDOT and PSS 

with no obvious aggregations. On the other hand, good phase separations were 

observed in the xylitol-doped films with more fibre-like interconnected PEDOT 

chains. The phase separations were further enhanced through incorporation of 

xylitol doping and MSA treatment in D-PEDOT:PSS films, where continuous 

and well-distributed PEDOT domains were observed. The enhanced phase 

separation was caused by the disappearance of Coulombic interactions or ionic 

bonding between PEDOT and PSS chains through two main mechanisms as 

illustrated in Figure 5.6c. First was through the hydrogen bond interactions 

between xylitol components and PSS components. Second was through the 

interactions between H+ of MSA solution with PSS- to form neutral PSSH chains. 

The disappearance of Coulombic interactions also caused the conformational 

change of PEDOT chains from coil to extended-coil or linear nanofibrils 

structure, which reduced the energy barrier width for inter-chain and inter-

domain charge hopping along PEDOT chains. The structural rearrangement of 

PEDOT increased the crystallinity order in D-PEDOT:PSS films to facilitate 

efficient intra- and inter-chain charge transport. 

Moreover, the morphological features of D-PEDOT:PSS were probed 

using AFM. EDS and XPS analyses were also performed on D-PEDOT:PSS 

FTEs to provide more insights on the changes in surface components, 

particularly S compositions. The results were then compared to those of as-cast 

or pristine PEDOT:PSS as shown in Figure 5.7. 
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Figure 5.6 (a) TEM images of the as-cast, xylitol-doped and xylitol-doped MSA-treated 

PEDOT:PSS films fabricated on PET plastic substrates. (b) The schematic diagram of 

morphology of the as-cast, xylitol-doped and xylitol-doped MSA-treated PEDOT:PSS films. (c) 

The schematic diagram of ionic and hydrogen bonding in as-cast, xylitol-doped and xylitol-

doped MSA-treated PEDOT:PSS films. 

(a) 

(b) 

(c) 
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Figure 5.7 AFM (2×2 μm) height images of (a) as-cast PEDOT:PSS and (b) D-PEDOT:PSS 

films. EDS elemental mapping showing the distribution of S element in (c) as-cast PEDOT:PSS 

and (d) D-PEDOT:PSS films. Fitted S 2p XPS spectra of (e) as-cast PEDOT:PSS and (f) D-

PEDOT:PSS films. 

Figure 5.7a and 5.7b compare the AFM images of the as-cast 

PEDOT:PSS and D-PEDOT:PSS, respectively. The as-cast film displayed a 

relatively smooth surface with RMS roughness of 1.81 nm. However, the as-cast 

film suffered from poor phase separation, where disconnected PEDOT-rich 

grains (corresponded to the bright positive region of AFM images) were 

observed. After combined treatment, D-PEDOT:PSS film exhibited a slightly 

rougher surface with RMS of 2.25 nm. It also displayed continuous and well-

(a) (b) 

(c) (d) 

(e) (f) 
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distributed PEDOT-rich grains with more uniform phase separation than the as-

cast film. The enhanced phase separation in D-PEDOT:PSS was essentially 

caused by xylitol doping and MSA treatment, where both promoted the 

disappearance of Coulombic interactions between PEDOT and PSS chains 

through hydrogen bond interactions and interactions between H+ and PSS-, 

respectively. These findings were in fact, in accordance with the previous TEM 

analysis. Thus, it could be concluded that D-PEDOT:PSS films had better 

interconnected morphology with favourable phase separation and structural 

rearrangement when compared to the pristine PEDOT:PSS films. The 

morphological features of D-PEDOT:PSS FTEs were favourable for improving 

electrodes’ conductivity. 

EDS elemental analysis of S elements in as-cast PEDOT:PSS and D-

PEDOT:PSS FTEs were conducted, as shown in Figure 5.7c and 5.7d 

respectively. The bright positive region corresponded to the S elemental 

distribution on the film. The as-cast film displayed a higher density of S atoms 

as compared to the modified film (Figure 5.7c, inset and 5.7d, inset). In other 

words, a more concentrated S component was found in the pristine PEDOT:PSS 

film, whereas a significant drop in S components was observed in the D-

PEDOT:PSS film. 
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To further evaluate this finding, XPS analysis was conducted on the 

pristine film and the film with xylitol doping and MSA treatment. As shown in 

Figure 5.7e, there were two major XPS peaks observed in the low Eb region 

(163-166 eV) and in the high Eb region (167-171 eV). The peaks between 163-

166 eV were attributed to the S 2p band of thiophene ring in PEDOT, while those 

found at higher Eb were originated from the S 2p band of the sulfonate moieties 

in PSS. Similar peaks’ location after xylitol doping and MSA treatment were 

observed as shown in Figure 5.7f. However, there was a substantial drop in the 

S 2p XPS intensity ratio of PEDOT to PSS, demonstrating the removal of some 

PSS chains from PEDOT:PSS matrix. Those removals were caused by the 

disappearance of Coulombic interactions between PEDOT and PSS chains, 

induced by xylitol doping and MSA treatment. Such removal would eventually 

lower down the S elemental concentration in D-PEDOT:PSS films, which was 

in accordance with the aforementioned EDS findings. This indicated that xylitol 

doping and MSA treatment could significantly modify the surface components 

of pristine PEDOT:PSS film to yield a more desirable FTEs’ morphology. 

5.3.6 Mechanical stability 

Mechanical stability of D-PEDOT:PSS FTEs against extreme 

mechanical deformation was analysed by studying the variation of Rsq during 

bending and folding test. Additionally, it was also compared to the as-cast 

PEDOT:PSS FTEs. The results are summarized in Figure 5.8. 
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Figure 5.8 Rsq/Rsq(o) of PET/D-PEDOT:PSS and PET/PEDOT:PSS (control samples) as a 

function of bending cycles; insets show the images of bending and folding test conducted using 

cylinder and ruler, respectively. 

Rsq/Rsq(o) value estimates the extent of the change in square resistance of 

electrodes upon bending/folding test. Samples were subjected to a cylinder for 

bending test (Figure 5.8, inset), where it underwent 1000 bending cycles. The 

folding test was conducted similarly (Figure 5.8, inset). It was noticed that both 

FTEs exhibited low Rsq change (Rsq/Rsq(o) < 1.15) even after 1000 bending cycles, 

indicating their robustness against bending. Yet, strong adhesion induced by 

xylitol in PET/D-PEDOT:PSS resulted in a rather excellent bending 

performance where its Rsq was increased by only less than 5% after 1000 bending 

cycles. On the contrary, as-cast PET/PEDOT:PSS demonstrated larger deviation 

of more than 10% after 1000 bending cycles. The deviation became even greater 

when as-cast PET/PEDOT:PSS was subjected to small-radius folding test, in 

which the Rsq value was raised considerably by over 40% after 1000 folding 

cycles. Xylitol doping on D-PEDOT:PSS FTEs could reduce this effect greatly 
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by enhancing the adhesiveness of electrodes to the substrates. Thus, after 1000 

folding cycles, the deviation in Rsq of PET/D-PEDOT:PSS still remained in the 

20% range. This suggested that interface interactions between electrodes and 

substrates could be an efficient way to boost the mechanical stability of FTEs 

against bending and folding. 

Based on the aforementioned findings, incorporation of both xylitol 

doping and MSA treatment could improve the performance of as-cast 

PEDOT:PSS FTEs in terms of better optical properties (transmittance and 

reflectance), excellent electrical properties (conductivity, square resistance and 

FoM), more favourable morphological features with uniform phase separation 

and stronger adhesion ability (better mechanical robustness against bending and 

folding). All these characteristics allowed D-PEDOT:PSS to be used as 

alternative ITO electrodes for flexible device applications, such as flexible OSCs. 

5.3.7 Photovoltaic performances 

D-PEDOT:PSS FTEs were used in flexible organic photovoltaic devices 

to evaluate their photovoltaic performances. Photoactive layer based on PBDB-

T-2F donor and Y6 acceptor (chemical structures depicted in Figure 5.9a) was 

selected due to its high efficiency performance. Flexible OSCs based on D-

PEDOT:PSS FTEs were then fabricated with configuration of PET/D-

PEDOT:PSS FTE/4083/PBDB-T-2F:Y6/PDINO/Al as displayed in Figure 5.9b. 

Flexible OSCs based on glass/ITO and PET/ITO electrodes were also fabricated 

for comparison with those based on PET/D-PEDOT:PSS electrodes. The 

detailed procedures to fabricate such OSCs is included in Chapter 3 
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(Methodology). The J-V characteristics of rigid (glass/ITO) and flexible 

(PET/D-PEDOT:PSS) devices are depicted in Figure 5.9c. Meanwhile, the 

detailed photovoltaic parameters of OSCs based on glass/ITO, PET/ITO and 

PET/D-PEDOT:PSS electrodes are listed in Table 3.2. All photovoltaic 

performances were measured under standard AM1.5G illumination with 100 

mW cm-2 light intensity in N2-filled glovebox without encapsulation. 

 

Figure 5.9 (a) Chemical structures of PBDB-T-2F donor and Y6 acceptor. (b) Device structure 

of flexible OSCs incorporating D-PEDOT:PSS FTEs. (c) J-V characteristics and (d) EQE spectra 

of devices based on PET/D-PEDOT:PSS and glass/ITO. (e) Normalized PCE of flexible OSCs 

based on D-PEDOT:PSS FTEs after subjected to bending (black), mid-device folding or folding 

between Al electrodes (red) and folding on top of the Al electrodes (blue). (f) Recent scatter plot 

report for PCE values of flexible OSCs with different FTEs; all data are listed in “Appendix A”. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 3.2 Detailed photovoltaic parameters of rigid and flexible OSCs based on D-PEDOT:PSS 

and ITO electrodes. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

Glass/ITO 0.846 25.8 72.6 15.8  (14.6) 

PET/D-PEDOT:PSS 0.840 23.6 71.7 14.2 (13.7) 

PET/ITO 0.829 18.9 68.3 10.7 (10.5) 

a Average PCE was obtained from over 20 independent devices 

Rigid OSCs based on glass/ITO exhibited a high efficiency of 15.8% 

with Jsc of 25.8 mA cm-2, Voc of 0.846 V and FF of 72.6%, which were 

comparable to previous studies (Yuan et al., 2019). When those ITOs were 

utilized on flexible PET substrates, a notably low PCE of 10.7% was achieved 

mainly ascribed to the significantly low FF (68.3%) and Jsc (18.9 mA cm-2). This 

discrepancy normally was caused by the low-quality sputtering of ITO on PET 

plastic substrates, limiting the optical transparency and conductivity of PET/ITO 

electrodes (Song et al., 2018). Hence, significantly lower Jsc and FF were 

observed when comparing glass/ITO to PET/ITO. By using D-PEDOT:PSS as 

an ITO alternative, the flexible device yielded an excellent PCE of 14.2% with 

Jsc of 23.6 mA cm-2, Voc of 0.840 V and FF of 71.7%, which was one of the 

highest-performing flexible OSCs reported to date. For reference purposes, the 

PCE values of all fabricated flexible OSCs in the recent years are summarized 

in Figure 5.9f and Table A.1 to A.3 of “Appendix A: Supporting Information”. 

As compared to rigid ITO-based OSCs, flexible OSCs based on D-

PEDOT:PSS FTEs showed a slightly lower PCE, mainly attributed to the drop 

in Jsc value from 25.8 to 23.6 mA cm-2 due to better optical transparency of ITO 

in the longer wavelength region. To support this, EQE of the two devices were 
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measured as displayed in Figure 5.9d. The integrated Jsc values measured from 

EQE curves matched well with the Jsc values measured from J-V curves (within 

5% deviation range). The difference in Jsc values was mainly caused by the small 

spectral mismatch of the solar simulator’s spectrum with the AM1.5G spectrum 

(Schilinsky et al., 2002). It could be observed clearly that when λ > 450 nm, rigid 

ITO-based device dominated over the flexible D-PEDOT:PSS device, resulting 

in higher Jsc. Nonetheless, flexible D-PEDOT:PSS device showed superiority in 

the wavelength region between 350-450 nm, which was due to the higher 

transparency characteristics of D-PEDOT:PSS FTEs. Although there was a 

slight decrease in PCE of flexible devices, the 14.2% performance of flexible 

OSCs based on D-PEDOT:PSS unfolded an encouraging opportunity to produce 

high-efficiency flexible OSCs. 

The mechanical stability of flexible devices based on D-PEDOT:PSS 

FTEs were investigated by studying the change in PCE during bending and 

folding test. Figure 5.9e displays the results when the device was subjected to 

bending (black), mid-device folding or folding between Al electrodes (red) and 

folding on top of the Al electrodes (blue). Flexible OSCs based on D-

PEDOT:PSS FTEs showed good performance stability against bending where it 

retained ~89% of the original PCE value after 1000 bending cycles. However, 

when Al top electrodes folding were performed, the device showed a significant 

drop in PCE in the first 100 cycles, maintaining only ~73% of the original PCE 

value. This PCE further dropped by ~61% after 1000 folding cycles, suggesting 

poor stability against Al top electrodes folding. Interestingly, the deterioration 

of PCE upon folding was minimized when folding was not performed on top of 

the Al electrodes (mid-device folding). In fact, for the same 100 cycles, the PCE 
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still remained relatively close to ~83% and after 1000 folding cycles, the device 

even maintained a remarkable ~76% of the original PCE value. This superior 

characteristic was primarily due to the enhanced adhesion ability of D-

PEDOT:PSS electrodes with the PET plastic substrates, which prevented the 

rapid increase in square resistance (Figure 5.8) and consequently the significant 

drop in PCE upon mid-device folding (Figure 5.9e). This was not the case with 

Al top electrodes folding as the presence of Al electrodes might influence device 

stability. 

All in all, the use of xylitol doping and MSA treatment on PEDOT:PSS 

FTEs was proven to be an effective approach for obtaining high-performing 

flexible OSCs. Using those strategies, flexible OSCs based on D-PEDOT:PSS 

could exhibit an excellent PCE of 14.2% with Jsc of 23.6 mA cm-2, Voc of 0.840 

V and FF of 71.7%, which were one of the highest-performing flexible OSCs 

reported to date. There were several factors that contributed to such high 

photovoltaic performances, ranging from optical, electrical, morphological to 

mechanical aspects. For instance, electrode engineering on PEDOT:PSS FTEs 

via xylitol doping and MSA treatment could improve the transmissivity of 

pristine PEDOT:PSS film on PET plastic substrate to function effectively as 

transparent electrodes with comparable optical transparency to glass/ITO. It 

could significantly raise the conductivity of pristine PEDOT:PSS film, which 

was the key feature of high-performing FTEs. It could promote a more 

favourable morphological feature with uniform phase separation which helped 

to improve conductivity performance. Most importantly, electrode engineering 

on PEDOT:PSS FTEs could modify the mechanical properties of pristine 

PEDOT:PSS FTEs by providing stronger adhesion ability to the PET substrate 
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to yield better mechanical robustness against deformation. As a result, flexible 

OSCs based on D-PEDOT:PSS FTEs could undergo significant bending and 

folding test, where it retained ~89% and ~76% of the original PCE values after 

1000 bending and folding cycles, respectively. All those findings proved the 

importance of electrode engineering strategy to realize high-performing flexible 

OSCs based on PEDOT:PSS FTEs. 

 

5.4 Conclusion 

In conclusion, electrode modification of PEDOT:PSS film was 

conducted successfully in this study by introducing polyhydroxy compound 

doping and MSA treatment. The range of polyhydroxy compounds were initially 

investigated and among them, xylitol appeared to be the most feasible, in terms 

of both conductivity and square resistance. For that reason, MSA-treated xylitol-

doped PEDOT:PSS (or D-PEDOT:PSS) FTEs with excellent transparency, low 

reflectivity and high conductivity were obtained. Xylitol doping and MSA 

treatment could also induce better interconnected morphology with favourable 

phase separation and structural rearrangement as compared to the pristine 

PEDOT:PSS FTEs, which were conducive for improved electrodes’ 

conductivity. Most importantly, such doping and acid treatment could provide 

D-PEDOT:PSS a stronger adhesion ability with the PET substrate, due to the 

presence of strong bonding interactions at PET/D-PEDOT:PSS interface. This 

interface interactions were proven to be effective in boosting the mechanical 

stability of FTEs against bending and folding, where the change in Rsq was still 
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below 5% and 20% after 1000 bending and folding cycles. Through this 

electrode engineering strategy, conventional flexible devices based on PBDB-T-

2F:Y6 photoactive layer and D-PEDOT:PSS FTEs demonstrated an excellent 

PCE of 14.2% with Jsc of 23.6 mA cm-2, Voc of 0.840 V and FF of 71.7%. It was 

worth noting that due to the excellent mechanical stability of D-PEDOT:PSS 

FTEs, those flexible OSCs could display remarkable mechanical robustness 

against bending and folding, maintaining over 89% and 76% of the original PCE 

even after 1000 bending and folding cycles. Overall, this chapter demonstrated 

that xylitol doping and MSA treatment could be used effectively for electrode 

modification of PEDOT:PSS to improve OSCs’ performance in terms of 

photovoltaic performance and mechanical stability. Hence, electrode 

engineering is proven to be a convincing strategy to obtain high-performing 

flexible OSCs in addition to material design and morphology control. 
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Chapter 6. Application of Flexible Semi-Transparent OSCs 

Achieved Through Electrode Engineering Strategy 

 

6.1 Summary 

In this chapter, the potential application of device engineering, 

specifically electrode engineering strategy was studied and demonstrated as a 

continuation of work from Chapter 5. The desirable mechanical and optical 

properties of D-PEDOT:PSS as induced by xylitol doping and MSA treatment 

created opportunities for its usage in flexible semi-transparent devices. In here, 

FST-OSCs were fabricated using D-PEDOT:PSS FTEs and PBDB-T-2F:Y6 

photoactive layer. The desirable optical properties of D-PEDOT:PSS FTEs in 

the visible light region and PBDB-T-2F:Y6 photoactive layer in the near-

infrared region facilitated the fabrication of FST-OSCs with over 10% efficiency 

and 21% AVT. Those FST-OSCs also displayed excellent mechanical stability 

against bending and folding, where over 80% of the initial efficiency could be 

maintained even after 1000 folding cycles. The potential of such FST-OSCs was 

demonstrated by incorporating them as part of the roof in the simulated 

greenhouse. Parallel comparisons between plants grown under direct sunlight 

with FST-OSCs roof and those under direct sunlight yielded remarkably similar 

results in terms of branch sturdiness and hypertrophic leaves. Overall, this 

chapter proves the significance of electrode engineering strategy in realizing 

high-performing FST-OSCs based on PEDOT:PSS FTEs for practical 

greenhouse applications, where visible light can be utilized for plants growth 

and infrared light for power generation. 
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6.2 Introduction 

Previous chapters have shown the importance of both interface and 

electrode engineering strategy in enhancing OSCs’ performance. Electrode 

engineering strategy is particularly effective as it can improve OSCs’ 

performance, in terms of both photovoltaic performance and mechanical stability 

(Ramachandran et al., 2015, Cheng and Zhan, 2016, Li et al., 2018). On that 

account, high-performing flexible OSCs with good mechanical stability (high 

bending resistance) can be fabricated for future applications in next-generation 

flexible and wearable electronics. 

The extent of their applications continues when OSCs have additional 

desirable optical properties, which enable the realization of high-performing 

flexible semi-transparent OSCs (Chang et al., 2018, Li et al., 2018, Dai and Zhan, 

2018). For instance, D-PEDOT:PSS FTEs as studied in the previous chapter, 

possess remarkable mechanical (high bending resistance) and optical (high 

transmissivity and low reflectivity in the visible light region) properties as 

induced by xylitol doping and MSA treatment, which provide great opportunity 

for usage in foldable-flexible semi-transparent OSCs or abbreviated as FST-

OSCs. In addition, photoactive layer based on PBDB-T-2F:Y6 exhibits optical 

properties that are advantageous for FST-OSCs applications, as it can readily 

absorb solar irradiation in the near-infrared to infrared region while being 

partially transparent in the visible light region. These two features are 

particularly favourable for agricultural applications (e.g., common greenhouse) 

as sunlight in the visible light region can be predominantly transmitted for plants 

growth. In fact, solar irradiation located in the visible light region (370-740 nm) 
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is mostly responsible for photosynthesis process in plant growth (Singhal et al., 

1999). Thus, FST-OSCs for photovoltaic and photosynthesis applications can be 

realized (Chang et al., 2018). 

Displaying such potentials, the development of FST-OSCs based on 

binary photoactive layer still lagged behind (Li et al., 2015, Liu et al., 2015, 

Jinno et al., 2017, Park et al., 2018). To date, the highest reported PCE for FST-

OSCs with AVT of over 20% was just over 10% (Liu et al., 2019c). Therefore, 

further attentions should be focused on the development of FST-OSCs due to 

their promising capabilities as power-generating windows/roofs in building-

integrated photovoltaics and photovoltaic vehicles (e.g., future foldable roofs in 

multi-functioned self-powered greenhouse). This driven the current work on 

high-performing FST-OSCs based on D-PEDOT:PSS FTEs and PBDB-T-2F:Y6 

photoactive layer. 

Herein, PEDOT:PSS FTEs that were previously engineered through 

xylitol doping and MSA treatment were used for the fabrication of FST-OSCs. 

The future practical application of high-performing FST-OSCs achieved through 

electrode engineering strategy, was being demonstrated by incorporating them 

as part of the roof in simulated greenhouse. Due to the preferable optical 

properties of the photoactive layer and D-PEDOT:PSS FTEs, FST-OSCs with 

10.5% PCE and 21.0% AVT were obtained, which represented one of the 

highest-performing semi-transparent OSCs based on flexible substrates reported 

to date. Furthermore, FST-OSCs also displayed remarkable mechanical stability 

and robustness against folding, maintaining over 80% of the original PCE even 

after 1000 folding cycles. This was due to the enhanced FTEs’ adhesion ability 
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with the substrates as induced by xylitol doping in D-PEDOT:PSS. Hence, FST-

OSCs based on D-PEDOT:PSS created opportunities to be utilized as foldable 

roofs for greenhouse. In fact, plants grown under direct sunlight and FST-OSCs 

shown comparable growth rate, which unveiled the use of FST-OSCs beyond 

photovoltaic as solar irradiation could be selectively absorbed and transmitted 

by FST-OSCs for power generation and plant growth, respectively. 

 

6.3 Results and Discussions 

6.3.1 FST-OSCs 

Foldable-flexible semi-transparent devices based on D-PEDOT:PSS 

FTEs and PBDB-T-2F:Y6 photoactive layer were studied as both (electrode and 

photoactive layer) had optical transparency that allowed visible light to pass 

through. Figure 6.1 summarizes the findings regarding optical properties of D-

PEDOT:PSS FTEs and PBDB-T-2F:Y6 photoactive layer. D-PEDOT:PSS FTEs, 

as shown in Figure 6.1a, displayed high optical transparency and minimal 

reflectivity, particularly in the visible light region. On the other hand, PBDB-T-

2F:Y6 photoactive layer, as shown in Figure 6.1b, exhibited partial transparency 

in the visible light region while being responsive in the near-infrared region. The 

high optical transparency in the 400-550 nm region (as highlighted in both 

figures) was particularly beneficial as this was the most concentrated region for 

two key pigments of plants (chlorophylls and carotenoids) to absorb light for 

photosynthesis process (Singhal et al., 1999). Such features encouraged the 

utilization of D-PEDOT:PSS FTEs and PBDB-T-2F:Y6 photoactive layer in 
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realizing high-performing FST-OSCs for both photovoltaic and photosynthesis 

applications. 

 

Figure 6.1 (a) Optical properties of D-PEDOT:PSS fabricated on PET substrates. (b) Optical 

properties of PBDB-T-2F:Y6 photoactive layer film. The blue highlighted region (400-550 nm) 

denotes the most concentrated region for two key pigments of plants to absorb light for 

photosynthesis. 

6.3.2 Photovoltaic performances 

FST-OSCs based on D-PEDOT:PSS FTEs were fabricated with the 

configuration of PET/D-PEDOT:PSS FTE/4083/PBDB-T-2F:Y6/PDINO/Ag. 

The device architecture was similar to the flexible OSCs fabricated and studied 

in Chapter 5. The main difference between them was the replacement of Al top 

electrode with ultrathin semi-transparent Ag electrode with thickness between 

10-20 nm. The photoactive layer based on PBDB-T-2F donor and Y6 acceptor 

was selected as well due to its high efficiency performance and remarkable 

transparency in the visible light region. Detailed procedures for the fabrication 

of such FST-OSCs can be found in Chapter 3 (Methodology). 

 

(a) (b) 
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The schematic of FST-OSCs installed as part of the roof on the multi-

functioned self-powered greenhouse is shown in Figure 6.2a. The improved 

mechanical stability induced by interface bonding interaction between electrodes 

and substrates also allowed FST-OSCs installed on roof to be folded. The 

schematic illustration of FST-OSCs when folded is depicted in Figure 6.2b. 

 

Figure 6.2 (a) An installation of FST-OSCs as roofs in greenhouse. (b) Folding schematic 

diagram of FST-OSCs (folding between top Ag electrodes). (c) Typical J-V characteristics and 

(d) transmittance spectra of foldable-flexible semi-transparent devices. (e) Normalized PCE of 

FST-OSCs based on D-PEDOT:PSS FTEs after subjected to bending (orange), mid-device 

folding or folding between Ag electrodes (green) and folding on top of the Ag electrodes (red). 

(f) Recent scatter plot report for PCE and AVT values of semi-transparent OSCs; all data are 

listed in “Appendix A”. 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 6.2c shows the J-V characteristics of FST-OSCs with different 

Ag thicknesses as the cathode. For comparison, flexible semi-transparent device 

based on Al (2 nm) and Ag (20 nm) electrodes was also fabricated. The detailed 

photovoltaic parameters of all devices fabricated are listed in Table 4.1. It is 

important to note that all photovoltaic performances were measured under 

standard AM1.5G illumination with 100 mW cm-2 light intensity in N2-filled 

glovebox without encapsulation. 

Table 4.1 Detailed photovoltaic parameters of FST-OSCs based on D-PEDOT:PSS with 

different cathode thicknesses. 

Cathode Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

AVT 
[%] 

Colour Coordinates 
[x, y] 

Ag (10 nm) 0.798 17.3 66.6 9.22 (9.01) 24.0 (0.243, 0.246) 

Ag (15 nm) 0.800 19.3 68.4 10.5 (10.3) 21.0 (0.237, 0.235) 

Ag (20 nm) 0.812 20.7 69.3 11.7 (11.4) 18.0 (0.231, 0.223) 

Al (2 nm) + Ag (20 nm) 0.810 21.2 73.0 12.6 (12.4) 17.0 (0.229, 0.221) 

a Average PCE was obtained from over 20 independent devices 

Generally, all fabricated FST-OSCs could demonstrate excellent 

photovoltaic properties as shown in Figure 6.2c and Table 4.1. All FST-OSCs 

showed excellent transmittance performance across the visible light region (370-

740 nm), as depicted in Figure 6.2d. At 400 nm region in particular, the 

transmissivity of FST-OSCs could reach up to over 45%, which was crucial for 

greenhouse applications. In addition, all FST-OSCs exhibited low reflectivity in 

the 400-550 nm region as depicted in Figure 6.3. This 400-550 nm region is the 

key region responsible for plant photosynthesis process (Singhal et al., 1999), 

proving the potential of electrode engineering in obtaining high-performing 

FST-OSCs for roof and window applications in greenhouse. 
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Figure 6.3 Reflectance spectra of semi-transparent devices based on PET/D-PEDOT:PSS. 

Among the fabricated devices, FST-OSCs based on Al and Ag electrodes 

exhibited the highest photovoltaic performance with PCE of 12.6%, Jsc of 21.2 

mA cm-2, Voc of 0.810 V and FF of 73.0%. When those Al electrodes were 

removed, the performance of FST-OSCs was slightly reduced to 11.7% mainly 

due to the drop in Jsc and FF values. The tapering of Ag electrodes from 20 to 

10 nm affected the device performance to a certain extent as well. For instance, 

reducing Ag thicknesses from 20 to 10 nm could lower the device performance 

from 11.7% to 9.22%, primarily due to the significant drop in Jsc and FF values 

from 20.7 mA cm-2 and 69.3% to 17.3 mA cm-2 and 66.6%, respectively. Apart 

from photovoltaic performance, AVT is another key performance criterion to be 

considered in FST-OSCs. The relationship between AVT and photovoltaic 

performance was investigated by varying the thickness of Ag electrodes linearly 

from 10 to 20 nm. As depicted in Table 4.1, the thickness of Ag electrodes 

played a significant role in photovoltaic and AVT performances. When the 

thickness of Ag tapered, both Jsc and PCE would decrease while AVT would 
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increase. This was expected as the thinner Ag film could reflect less light back 

to the photoactive layer for re-absorption, thereby reducing the Jsc and PCE 

values. While thinner Ag film also meant that more light could be transmitted 

through the device, allowing FST-OSCs to have higher AVT and better visible 

light transparency for greenhouse applications. Therefore, a trade-off between 

photovoltaic and AVT performances in FST-OSCs needs to be considered. 

Herein, the best device was obtained by considering both photovoltaic 

and AVT performances. FST-OSCs based on 15 nm Ag electrode showed high 

AVT of over 20%, which was the commercial minimum light transmission 

requirement for semi-transparent devices. Furthermore, it exhibited good 

photovoltaic performances with PCE of 10.5%, Jsc of 19.3 mA cm-2, Voc of 0.800 

V and FF of 68.4%. To the best of our knowledge, the current 10.5% device 

performance represented one of the highest-performing semi-transparent OSCs 

based on flexible substrates with AVT higher than 20%. For reference purposes, 

the PCE and AVT values of all fabricated semi-transparent OSCs based on rigid 

and flexible substrates in the recent years are summarized in Figure 6.2f and 

Table A.4 to A.6 of “Appendix A: Supporting Information”. It can be observed 

that the efficiency of semi-transparent OSCs exceeding 10% and AVT greater 

than 20% are rarely reported. 

The mechanical stability of FST-OSCs for bending and folding purposes 

is another crucial performance criterion to be considered along with photovoltaic 

and AVT performances. The mechanical stability of the best device (FST-OSC 

based on 15 nm Ag electrode) against repetitive harsh deformation was 

investigated by analysing the change in PCE during bending and folding test. 
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Figure 6.2e illustrates the results when the device was subjected to bending 

(orange), mid-device folding or folding between Ag electrodes (green) and 

folding on top of the Ag electrodes (red). FST-OSCs based on D-PEDOT:PSS 

FTEs showed good performance stability against bending where it retained ~93% 

of the original PCE value after 1000 bending cycles. However, when Ag top 

electrodes folding were performed, the device showed a significant drop in PCE 

in the first 100 cycles, maintaining only ~80% of the original PCE value. This 

PCE further dropped by ~68% after 1000 folding cycles, suggesting poor 

stability against Ag top electrodes folding. Interestingly, the deterioration of 

PCE upon folding was minimized when folding was not performed on top of the 

Ag electrodes (mid-device folding). In fact, for the same 100 cycles, the PCE 

still remained relatively close to the original PCE value (~93%) and after 1000 

folding cycles, the device even maintained a remarkable ~84% of the original 

PCE value. This superior characteristic was primarily due to the enhanced 

adhesion ability of D-PEDOT:PSS FTEs with the PET plastic substrates, which 

prevented the significant drop in PCE upon mid-device folding (Figure 6.2e). 

That was not the case with Ag top electrodes folding as the presence of Ag 

electrodes might influence device stability. 

The last performance criterion for FST-OSCs is colour properties or 

colour characteristics. Colour characteristics of FST-OSCs were studied as the 

consideration of human perception of colour is critical for practical applications. 

Table 4.1 and Figure 6.4a show the colour coordinates (x, y) of FST-OSCs with 

different cathode thicknesses in the CIE 1931xyY chromaticity diagram, in 

which the colour coordinates (x, y) are calculated from the transmission spectra 

of FST-OSCs shown in Figure 6.2d. The corresponding coordinates for devices 
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based on 10 nm Ag, 15 nm Ag, 20 nm Ag and 2 nm Al with 20 nm Ag cathodes 

were (0.243, 0.246), (0.237, 0.235), (0.231, 0.223) and (0.229, 0.221), 

respectively. Moreover, digital photographs as shown in Figure 6.4b  were taken 

with green leaves covered by the FST-OSCs based on 15 nm Ag as the best 

device. The FST-OSCs displayed good transparency colour perception, 

appearing bluish in colour. The photos demonstrated that FST-OSCs had 

appealing colour appearances and excellent visible light transparency, which 

were important for windows/roofs application in greenhouse. 

 

Figure 6.4 (a) Representation of the colour coordinates of fabricated FST-OSCs on a CIE 

1931xyY chromaticity diagram. (b) Digital photographs taken with green leaves covered with 

FST-OSCs. 

6.3.3 Application of FST-OSCs 

The potential of FST-OSCs for practical application was evaluated by 

simulating the greenhouse environment using FST-OSCs as part of the roof. 

Plant growth was monitored for 9 days under three different environments of 

(a) (b) 
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dark, sunlight without FST-OSCs and sunlight with FST-OSCs as part of the 

roof. The changes in plant growth are summarized in Figure 6.5. 

 

Figure 6.5 (a) Optical photograph of mung bean leaves changing in 9 days under direct sunlight 

(L), direct sunlight with FST-OSCs roof (S) and dark (D). (b) Optical photograph of mung beans, 

showing the stems length changing in 9 days under direct sunlight (L), direct sunlight with FST-

OSCs roof (S) and dark (D). 

Distinct differences were observed in terms of colour, height and branch 

sturdiness as shown in Figure 6.5. Plants grown under dark had chlorophyll 

deficiency in their leaves due to their inability to photosynthesize, hence, had 

lighter green colour as compared to others (Figure 6.5a). Furthermore, since 

photosynthesis supplied plants with nutrients for growth, the inability to 

photosynthesize caused plants grown under dark to have slender stems and 

(a) 

(b) 
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smaller leaves (Figure 6.5b). On the contrary, plants grown under FST-OSCs 

were comparable to those grown under sunlight, as visible light could be 

transmitted through FST-OSCs to promote photosynthesis in plants for growth. 

As a result, plants grown under FST-OSCs had comparable branch sturdiness 

and hypertrophic leaves. The changes in plant growth demonstrated that FST-

OSCs in the simulated greenhouse environment could achieve commercial 

minimum PCE (over 10%) while ensuring sufficient sunlight transmitted for 

plants growth. 

All in all, the utilization of xylitol doping and MSA treatment on 

PEDOT:PSS FTEs was proven not only effective for obtaining high-performing 

flexible OSCs, but also for high-performing FST-OSCs. This was due to the 

remarkable visible light transparency D-PEDOT:PSS could offer as FTEs. Using 

that strategy, best FST-OSCs (15 nm Ag electrode) based on D-PEDOT:PSS 

could exhibit PCE of 10.5% and AVT of 21.0% with Jsc of 19.3 mA cm-2, Voc of 

0.800 V and FF of 68.4%. It is worth noting that this performance is one of the 

highest-performing semi-transparent OSCs based on flexible substrates with 

AVT higher than 20% reported to date. Moreover, electrode engineering strategy 

on PEDOT:PSS FTEs could promote better mechanical stability in FST-OSCs. 

As a result, FST-OSCs based on D-PEDOT:PSS FTEs could undergo significant 

bending and folding test, where they retained ~93% and ~84% of the original 

PCE values after 1000 bending and folding cycles, respectively. All those 

features contributed to the implementation of FST-OSCs based on D-

PEDOT:PSS FTEs as windows/roofs for greenhouse applications. Studies on 

plant growth were conducted to prove the potential of such FST-OSCs in 

greenhouse application. Plants grown under FST-OSCs in the simulated 
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greenhouse environment showed comparable growth tendencies in terms of 

branch sturdiness and hypertrophic leaves to those grown under direct sunlight, 

as visible light could be transmitted through FST-OSCs to promote 

photosynthesis in plants for growth. This strongly proved that electrode 

engineering strategy could produce high-performing FST-OSCs for both 

photovoltaic and photosynthesis applications (e.g., simultaneously generate 

power and promote growth of crops in greenhouse). 

 

6.4 Conclusion 

Electrode modification on PEDOT:PSS film via xylitol doping and MSA 

treatment could promote desirable visible light transparency and mechanical 

stability in OSCs, which were highly favourable for the fabrication of high-

performing FST-OSCs. Due to those strategies, best device performance with 

PCE of 10.5% (Jsc of 19.3 mA cm-2, Voc of 0.800 V, FF of 68.4% and AVT of 

21.0%) was attained for FST-OSCs based on D-PEDOT:PSS FTEs and PBDB-

T-2F:Y6 photoactive layer. The PCE of 10.5% with AVT of 21.0% in this work 

represented one of the best-performing semi-transparent OSCs based on flexible 

substrates. Apart from that, electrode engineering strategy on PEDOT:PSS FTEs 

could display remarkable mechanical stability and robustness against bending 

and folding (particularly mid-device folding), where over 80% of the initial 

efficiency could still be maintained even after 1000 folding cycles. Both 

transparency and mechanical stability features created opportunities for the 

utilization of FST-OSCs as windows/roofs in greenhouse. Studies on plant 
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growth were conducted to prove the potential of such FST-OSCs for greenhouse 

application. The plants showed comparable growth rate under FST-OSCs to 

those grown under sunlight, proving the usage of FST-OSCs beyond 

photovoltaic as solar irradiation could be selectively absorbed (infrared light) 

and transmitted (visible light) by FST-OSCs for power generation and plant 

growth, respectively. This highlighted the propitious potential of FST-OSCs 

based on PEDOT:PSS electrodes in generating power and promoting plant 

growth for future multi-functional self-powered greenhouse.  
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Chapter 7. Conclusion and Future Work 

 

7.1 Conclusion 

In conclusion, this study explores the prospects of OSCs as renewable 

source of energy to replace non-renewable fossil fuels to meet the ever-

increasing global energy demand. Two device engineering strategies, namely 

interface and electrode engineering were utilized and proven to be effective 

methods for obtaining high-performing OSCs in addition to material design and 

morphology control strategies. Both device engineering strategies could enhance 

device performance by improving the optical, electrical, morphological and/or 

mechanical properties of pristine interfacial layer and electrode layer. Moreover, 

potential applications of high-performing OSCs achieved via electrode 

engineering strategy were demonstrated. 

7.1.1 Interface engineering strategy 

Interface engineering on sol-gel ZnO ETL was performed via additional 

deposition of PBD layer. This technique enabled the formation of hybrid 

electron-transporting bilayer consisting of PBD and ZnO layer. The significance 

of that strategy was investigated on inverted OSCs based on PBDB-T:IT-M 

photoactive layer, where ~7% increment in photovoltaic performance from 10.8% 

(ZnO-based device) to 11.6% (ZnO/PBD-based device) was observed. The 

performance enhancement in ZnO/PBD-based device was largely attributed to 

the simultaneous increase in Jsc and FF values, mainly governed by the 

improvement in charge transport ability and suppression of charge 
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recombination processes. In terms of optical properties, the utilization of PBD 

did not significantly affect ETL’s transparency. In fact, both ZnO and ZnO/PBD 

interlayer showed comparable optical performances. In terms of electrical 

properties, the utilization of PBD could improve pristine ZnO film’s 

conductivity by ~76%, which were conducive for improved charge transport 

ability. In terms of morphological properties, the utilization of PBD could 

smoothen the ZnO film’s morphology and improve hydrophobicity of the 

surface to facilitate uniform and intimate contact with the photoactive layer. 

Furthermore, PBD could tune the WF of the ITO electrode to better match the 

LUMO energy level of IT-M acceptor for more efficient electron extraction from 

the photoactive layer. 

7.1.2 Electrode engineering strategy 

Electrode engineering on PEDOT:PSS FTEs was performed via xylitol 

doping and MSA treatment. As a result, high-performing D-PEDOT:PSS FTEs 

with remarkable mechanical robustness against bending and folding were 

obtained. The effectiveness of xylitol doping and MSA treatment was 

investigated on conventional flexible OSCs based on PBDB-T-2F:Y6 

photoactive layer, where an excellent photovoltaic performance of 14.2% with 

remarkable mechanical robustness against bending and folding was observed. In 

terms of optical properties, xylitol doping and MSA treatment on PEDOT:PSS 

FTEs could slightly improve FTEs’ transparency. In terms of electrical 

properties, xylitol doping and MSA treatment could significantly boost FTEs’ 

conductivity from non-conductive film to film with 2032 S cm-1 conductivity. In 

terms of morphological properties, xylitol doping and MSA treatment could 
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induce better interconnected PEDOT:PSS morphology with favourable phase 

separation and structural rearrangement as compared to the pristine PEDOT:PSS 

FTEs, which was beneficial for improving electrodes’ conductivity. In terms of 

mechanical properties, the utilization of xylitol doping and MSA treatment could 

provide electrode a stronger adhesion ability with the PET substrate, due to the 

presence of strong bonding interactions at PET/D-PEDOT:PSS interface. Those 

interface interactions were proven to be effective in boosting the mechanical 

stability of FTEs against bending and folding, where the change in Rsq was still 

below 5% and 20% after 1000 bending and folding cycles. 

7.1.3 Application of electrode engineering strategy 

Electrode modification of PEDOT:PSS film via xylitol doping and MSA 

treatment could promote desirable visible light transparency and mechanical 

stability in OSCs, which were highly favourable for the fabrication of high-

performing FST-OSCs. Subsequently, best device performance with PCE of 

10.5% and AVT of 21.0% was attained for FST-OSCs based on D-PEDOT:PSS 

FTEs and PBDB-T-2F:Y6 photoactive layer. Such FST-OSCs could display 

remarkable mechanical stability and robustness against bending and folding, 

where over 80% of the initial efficiency could still be maintained even after 1000 

folding cycles. The desirable mechanical and optical properties of D-

PEDOT:PSS as induced by xylitol doping and MSA treatment created 

opportunities for usage as foldable windows/roofs in greenhouse. Thus, studies 

on plant growth in simulated greenhouse environment were conducted to 

validate the potential of such FST-OSCs. In a simulated greenhouse environment, 

plants grown under direct sunlight with FST-OSCs roof and those under direct 
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sunlight yielded remarkably similar results in terms of branch sturdiness and 

hypertrophic leaves. This implied the significance of electrode engineering 

strategy in realizing high-performing FST-OSCs based on PEDOT:PSS FTEs 

for practical greenhouse applications, where visible light could be utilized for 

plants growth and infrared light for power generation. 

 

7.2 Future Work 

In recent years, the performance of OSCs has increased from time to time. 

Not only rigid OSCs, both flexible and semi-transparent OSCs have also 

undergone significant development. It is believed that with the efforts of 

researchers in various field, novel and better-performing photoactive layer 

materials will soon arise. By then, it is the role of device engineering to further 

maximize the efficiency of OSCs to reach a performance comparable to silicon-

based solar cells. Future work on device engineering can be carried out based on 

two aspects, future improvement of the current study and potential opportunities 

in the current OSCs market: 

i) The current work shown the potentials of PBD as OLED-based 

interfacial modifier in OSCs. Further studies about PBD in OSCs are 

worth investigating for other ETL systems in conventional or inverted 

OSCs. It would be best to conduct those studies on devices based on 

high-performing photoactive layer to further contribute towards the 

development of PCE, reaching 20% boundary. 
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ii) Though PBD could raise ZnO conductivity by ~76%, it still could not 

induce significant reduction in surface traps and defects in ZnO film. 

Hence, more attentions should be focused on the study of other potential 

materials for interfacial modification of ZnO ETL in inverted OSCs to 

maximize and optimize the effectiveness of interface engineering 

strategy. 

iii) Application of interface engineering strategy is worth discussing for 

future work. This can be done by applying interface engineering strategy 

to fabricate high-performing semi-transparent OSCs and/or flexible 

OSCs. For example, in the case of semi-transparent OSCs, the current 

PBDB-T:IT-M photoactive layer needs to be substituted with another 

photoactive layer that is responsive in the near-infrared region and 

transparent in the visible light region. Combining such photoactive layer 

with highly transparent ZnO/PBD interlayer, can result in the fabrication 

of high-performing inverted semi-transparent OSCs. The potential of 

such device can then be studied for window, roof, vehicle and/or 

greenhouse applications. However, it is worth noting that not all 

photoactive layer system is compatible with ZnO/PBD interlayer, in a 

way that interface engineering can bring about desirable performance 

enhancement effect. 

iv) Xylitol doping and MSA treatment were proven to be effective methods 

in obtaining high-performing PEDOT:PSS FTEs for flexible OSCs and 

foldable-flexible semi-transparent OSCs. Extensive studies 

incorporating D-PEDOT:PSS FTEs on flexible tandem OSCs or even 
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flexible semi-transparent tandem OSCs are worth the efforts to drive the 

development of OSCs towards commercialization. 

v) Future studies can be made by combining interface and electrode 

engineering strategies into one OSCs system. Though possible, it will 

still be extremely challenging due to material compatibility issues in 

OSCs. In fact, studies combining several device engineering strategies 

were never found till date. Take the current work as an example, ZnO 

ETL as mentioned previously, requires high-temperature annealing to 

minimize defect sites, while PET substrate is highly sensitive to high-

temperature processing. This means that PET/D-PEDOT:PSS/ZnO/PBD 

configuration, which combines interface engineering strategy on ZnO 

and electrode engineering strategy on PEDOT:PSS may not be the most 

feasible and desirable combination. Solution to incorporate D-

PEDOT:PSS FTEs on glass substrates may be presented, and still, 

compatibility issues may arise when ZnO ETL (normally used in inverted 

device architecture) is deposited on top of the D-PEDOT:PSS FTEs 

(normally used in conventional device architecture). Overall, this 

explains the challenges of combining more than one device engineering 

strategies into one OSCs system. 

vi) Under normal circumstances, single-junction OSCs most likely to suffer 

from low Jsc (due to narrow absorption spectra) and low Voc (due to large 

photovoltaic loss) (Ameri et al., 2013, Lian et al., 2014).  Due to this 

issue, tandem devices have been developed to improve the photovoltaic 

performance by simultaneously tackling absorption and loss (e.g., 

thermalization loss of high energy photon or transmission loss of low 
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energy photon) issues found in single-junction devices (Che et al., 2018, 

Meng et al., 2018). In tandem OSCs, two sub-cells with complementing 

absorption performances, are stacked together and connected by a highly 

transparent and conductive interconnecting layer (Ameri et al., 2013). 

The interconnecting layer typically consists of ETL and HTL pair that 

provide Ohmic contact with the sub-cells to act as charge extraction and 

recombination zones (Ameri et al., 2013). For instance, interconnecting 

layer combining n-type metal oxide like ZnO and p-type polymer like 

PEDOT:PSS may become a good choice in tandem OSCs to result in 

efficiency performance beyond 17% as reported by Meng et al. (Meng et 

al., 2018). There is also a case where conductive layer is utilized between 

ETL and HTL pair, which brings about the potential of introduction of 

conductive PBD layer in tandem devices. Thus, the incorporation of PBD 

into tandem OSCs to modify ZnO-based interconnecting layer is worth 

researching in the future as it will be a crucial layer to connect two sub-

cells in tandem devices. 

vii) Another device engineering approach, namely active layer engineering 

is a promising alternative due to its attractiveness in boosting device 

performance by improving the photon harvesting capability and/or 

regulating the morphology of photoactive layer, while at the same time 

maintaining the simplicity of single-junction device architecture. In 

active layer engineering, additional material is added into the host donor 

and acceptor to form ternary photoactive layer system. The material can 

be dopant or even additional donor or acceptor material. This strategy 

has been proven to be very effective as several literatures shown rapid 
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increment in efficiency performance upon addition of third material. For 

instance, Chang et al. reported performance improvement from 15.18% 

to 16.14% (Chang et al., 2019), An et al. reported performance 

improvement from 12.63% to 14.13% (An et al., 2019) and many more 

(Chen et al., 2016, Gao et al., 2019). Therefore, this strategy can be an 

attractive option that is worth studying for the realization of high-

performing OSCs. 
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Appendix A: Supporting Information 

Table A.1 Comparison of PCE values of flexible OSCs with different PEDOT:PSS-based FTEs. 

FTEs Photoactive Layer 
PCE 
[%] Reference 

PEDOT:PSS PTB7-Th:PC71BM 7.70 (Kim et al., 2015) 

PEDOT:PSS PBDTT-S-TT:PC71BM 6.42 (Fan et al., 2016) 

PEDOT:PSS P3HT:PCBM 2.87 (Worfolk et al., 2015) 

PEDOT:PSS P3HT:ICBA 3.33 (Meng et al., 2015) 

PEDOT:PSS P3HT:PCBM 4.20 (Kaltenbrunner et al., 2012) 

PEDOT:PSS PffBT4T-2OD:PC61BM:PC71BM 6.60 (Czolk et al., 2016) 

PEDOT:PSS PBDB-T-2F:Y6:PC71BM 14.1 (Yan et al., 2019) 

PEDOT:PSS/Ag island PTB7-Th:PC71BM 9.90 (Kang et al., 2015) 

PEDOT:PSS/Ag grid PTB7-Th:PC71BM 6.58 (Wang et al., 2017a) 

PEDOT:PSS/Ag mesh PTB7:PC71BM 6.73 (Kim et al., 2016) 

Ag-mesh/PEDOT:PSS PBDB-T:PTB7-Th:IHIC 8.76 (Zhang et al., 2019) 

Graphene/PEDOT:PSS PTB7:PC71BM 7.10 (Park et al., 2014a) 

PEDOT:PSS PBDB-T-2Cl:IT-4F 12.4 (Peng et al., 2019) 

D-PEDOT:PSS PBDB-T-2F:Y6 14.2 This Work 
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Table A.2 Comparison of PCE values of flexible OSCs with different metal-based FTEs. 

FTEs Photoactive Layer PCE 
[%] Reference 

ZnO/Cu(N1) 8.0 nm/ZnO PTB7:PC71BM 6.70 (Zhao et al., 2016) 

ZnO/Cu 9.5 nm on Cu(O)/ZnO PTB7:PC71BM 7.29 (Zhao et al., 2017c) 

TiO2/ZnO/Ag/ZnO PBDB-T:ITIC:PC71BM 10.5 (Liu et al., 2017a) 

ZnO/Cu (O=5%) 7 nm/ZnO PTB7-Th:PC71BM 7.65 (Zhao et al., 2015) 

ZnO/Cu(N1) 6.5 nm/ZnO PTB7:PC71BM 7.10 (Zhao et al., 2016) 

Ag grid PTB7-Th:PC71BM 6.43 (Lu et al., 2017) 

Ag NW PTB7-Th:PC71BM 8.75 (Seo et al., 2017) 

Cu NW PTB7-Th:PC71BM 4.60 (Yang et al., 2017) 

Ag NWs PBnDT-DTffBT:PC71BM 2.80 (Yang et al., 2011) 

Ag NWs P3HT:PC71BM 3.28 (Yu et al., 2011) 

Ag NWs PTB7-F20:PC71BM 5.02 (Song et al., 2013) 

Ag Mesh PTzNTz:PC71BM 8.30 (Jiang et al., 2018) 

Ag Mesh PTB7:PC71BM 6.73 (Kim et al., 2016) 

Ag NWs PTB7:PC71BM 6.17 (Seo et al., 2015) 

Ultrathin Ag PBDTT-F-TT:PC71BM 10.4 (Huang et al., 2015) 

ITO PNTz4T: PC71BM 7.90 (Jinno et al., 2017) 

ITO PTB7-Th:IEICO-4F 12.5 (Xiong et al., 2019) 

ITO PTB7:PC71BM 8.12 (You et al., 2017) 

ITO PSBTBT:PC71BM/P3HT:ICBA 8.70 (Chang et al., 2015) 

ITO PBDB-T-2F:Y6 13.5 (Lei et al., 2019) 

 

Table A.3 Comparison of PCE values of flexible OSCs with different carbon-based FTEs. 

FTEs Photoactive Layer 
PCE 
[%] Reference 

Graphene PTB7:PC71BM 7.10 (Park et al., 2014a) 

Carbon nanotube PTB7:PC71BM 3.91 (Jeon et al., 2015) 
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Table A.4 Summaries of PCE and AVT values of recently reported rigid ST-OSCs – Part 1. 

Classifications Photoactive Layer PCE 
[%] 

AVT 
[%] 

Reference 

Binary PTB7:PC71BM 6.40 16.9 (Xu et al., 2017) 

Binary PTB7-Th:PC71BM 7.00 12.2 (Xu et al., 2017) 

Binary PTB7-Th:IEICO-4Cl 6.97 33.5 (Cui et al., 2017) 

Binary PTB7-Th:IEICO-4Cl 7.47 31.8 (Cui et al., 2017) 

Binary PTB7-Th:IEICO-4Cl 7.91 28.2 (Cui et al., 2017) 

Binary PTB7-Th:IEICO-4Cl 8.38 25.6 (Cui et al., 2017) 

Binary PTB7-Th:BT-CIC 7.10 43.0 (Li et al., 2017b) 

Binary PTB7-Th:BT-CIC 7.70 33.0 (Li et al., 2017b) 

Binary PTB7-Th:BT-CIC 8.20 26.0 (Li et al., 2017b) 

Binary PTB7-Th:ATT-2 6.30 45.0 (Liu et al., 2017b) 

Binary PTB7-Th:ATT-2 7.74 37.0 (Liu et al., 2017b) 

Binary PBDTTT-C-T:PC71BM 6.22 21.3 (Chen et al., 2012) 

Binary PTB7-Th:PC71BM 6.78 20.7 (Shi et al., 2017) 

Binary PTB7-Th:PC71BM 6.05 30.4 (Shi et al., 2017) 

Binary PBDB-T:ITIC 7.40 25.2 (Upama et al., 2017) 

Binary PTB7-Th:IHIC 9.77 36.0 (Wang et al., 2017c) 

Binary PTB7-Th:IUIC 10.2 31.0 (Jia et al., 2018) 

Binary PFBDB-T:C8-ITIC 10.4 19.1 (Sun et al., 2019) 

Binary PFBDB-T:C8-ITIC 9.80 22.0 (Sun et al., 2019) 

Binary PBFTT:IT-4Cl 7.90 37.3 (Su et al., 2019) 

Binary PBFTT:IT-4Cl 8.60 33.2 (Su et al., 2019) 

Binary PBFTT:IT-4Cl 9.10 27.6 (Su et al., 2019) 

Binary J71:IHIC 8.26 28.1 (Zhang et al., 2019) 

Binary J71:IHIC 8.48 21.5 (Zhang et al., 2019) 

Binary PTB7-Th:IHIC 8.38 27.9 (Zhang et al., 2019) 

Binary PTB7-Th:IHIC 8.48 20.5 (Zhang et al., 2019) 

Binary PTB7-Th:IEICO-4F 10.7 29.4 (Xia et al., 2019) 

Binary PTB7-Th:IEICO-4F 11.0 20.6 (Xia et al., 2019) 

Binary PTB7-Th:IEICO-4F 10.8 29.5 (Xia et al., 2019) 

Binary PTB7-Th:IEICO-4F 11.3 21.5 (Xia et al., 2019) 

Binary PTB7-Th:PC71BM 8.45 29.2 (Xia et al., 2019) 
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Table A.5 Summaries of PCE and AVT values of recently reported rigid ST-OSCs – Part 2. 

Classifications Photoactive Layer PCE 
[%] 

AVT 
[%] 

Reference 

Binary PTB7-Th:PC71BM 8.81 21.8 (Xia et al., 2019) 

Binary PTB7-Th:PC71BM 8.32 31.4 (Xia et al., 2019) 

Binary PTB7-Th:PC71BM 8.65 25.0 (Xia et al., 2019) 

Binary PTB7-Th:PC71BM 8.41 30.8 (Du et al., 2019) 

Binary PTB7-Th:PC71BM 9.71 15.9 (Du et al., 2019) 

Binary PBDB-T-2F:Y14 12.7 23.7 (Luo et al., 2019) 

Binary PBDB-T-2F:ITIC-4F 11.2 26.2 (Bai et al., 2019) 

Binary PBDB-T-2F:Y6 12.9 25.6 (Bai et al., 2019) 

Binary J101:ZITI 11.0 21.7 (Wang et al., 2019b) 

Binary PTB7-Th:ACS8 11.1 28.6 (Chen et al., 2019) 

Binary PTB7-Th:FOIC 10.2 25.4 (Yao et al., 2020) 

Binary PBDB-T-2F:ID-4Cl 6.99 43.7 (Li et al., 2019) 

Ternary PBT1-S:PTB7-Th:PC71BM 9.20 20.0 (Xie et al., 2018) 

Ternary PBT1-S:PTB7-Th:PC71BM 8.10 33.8 (Xie et al., 2018) 

Ternary PBT1-S:PTB7-Th:PC71BM 5.00 44.8 (Xie et al., 2018) 

Ternary PTB7-Th:COi8DFIC:IEICO-4F 6.78 24.2 (Ma et al., 2018) 

Ternary PTB7-Th:COi8DFIC:IEICO-4F 8.23 20.8 (Ma et al., 2018) 

Ternary PTB7-Th:COi8DFIC:IEICO-4F 9.37 17.2 (Ma et al., 2018) 

Ternary J71:PTB7-Th:IHIC 8.93 25.8 (Zhang et al., 2019) 

Ternary J71:PTB7-Th:IHIC 9.37 21.4 (Zhang et al., 2019) 

Ternary PCDTBT:PC71BM:ITIC 4.02 39.2 (Sano et al., 2019) 

Tandem PIDT-phanQ:PC71BM 
PIDT-phanQ:PC61BM 

7.40 40.0 (Chang et al., 2014) 

Tandem PBDTT-FDPP-C12:PC61BM 
PBDTT-SeDPP:PCBM 6.40 43.0 (Chen et al., 2013) 

Tandem PBDTT-FDPP-C12:PC61BM 
PBDTT-SeDPP:PCBM 

7.30 30.0 (Chen et al., 2013) 

Tandem PSEHTT:ICBA 
PBDTT-DPP: PC71BM 8.02 44.9 (Yusoff et al., 2014) 

Tandem P3TEA:FTTB-PDI4 
PTB7-Th:IEICS-4F 

10.5 20.0 (Chen et al., 2018) 
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Table A.6 Summaries of PCE and AVT values of recently reported flexible ST-OSCs. 

Classifications Photoactive Layer PCE 
[%] 

AVT 
[%] 

Reference 

Binary PTB7-Th:PC71BM 6.40 11.5 (Xu et al., 2017) 

Binary PSEHTT:ICBA 6.87 36.0 (Silva et al., 2013) 

Binary PTB7-Th:IEICO-4F 10.0 34.2 (Liu et al., 2019c) 

Binary PTB7-Th:FOIC 9.26 31.0 (Liu et al., 2019c) 

Binary PTB7-Th:F8IC 8.92 34.3 (Liu et al., 2019c) 

Binary PBDB-T-2F:Y6 9.22 24.0 This Work 

Binary PBDB-T-2F:Y6 10.5 21.0 This Work 

Binary PBDB-T-2F:Y6 11.7 18.0 This Work 

Binary PBDB-T-2F:Y6 12.6 17.0 This Work 

Ternary PBDB-T:PTB7-Th:IHIC 8.33 27.5 (Zhang et al., 2019) 

Ternary PBDB-T:PTB7-Th:IHIC 8.76 20.6 (Zhang et al., 2019) 
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Appendix B: Other Experimental Work 

Table B.1 Raw data of conventional PBDB-T:IT-M -based OSCs. 

Configuration  :  ITO | PEDOT:PSS | PBDB-T : IT-M | PDINO | Al 
Addition           :  none 

Devices No. 
Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.928 16.1 71.7 10.7 

2 0.931 16.4 71.8 10.9 

3 0.930 16.4 70.9 10.8 

4 0.929 16.3 71.0 10.7 

5 0.930 16.4 70.8 10.8 

6 0.926 16.3 71.1 10.7 

7 0.928 16.6 71.2 11.0 

8 0.932 16.3 72.0 11.0 

9 0.931 16.3 71.9 10.9 

Avg. 0.930 16.3 71.4 10.8 

* Photoactive layer parameters: 
- PBDB-T : IT-M ratio (1:1) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 2150 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.2 Raw data of conventional PBDB-T:IT-M:PBI-Por -based OSCs (1% addition). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T : IT-M : PBI-Por | PDINO | Al 
Addition           :  1% PBI-Por 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.916 14.7 66.6 8.94 

2 0.918 15.8 68.7 9.95 

3 0.915 14.8 65.1 8.84 

4 0.913 15.0 65.0 8.92 

5 0.913 15.0 65.7 8.98 

6 0.915 15.0 64.2 8.80 

7 0.912 15.1 65.2 8.99 

8 0.913 15.0 64.3 8.83 

9 0.913 15.3 63.5 8.88 

Avg. 0.914 15.1 65.4 9.02 

* Photoactive layer parameters: 
- PBDB-T : IT-M : PBI-Por ratio (1:0.99:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 2150 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.3 Raw data of conventional PBDB-T:IT-M:PBI-Por -based OSCs (5% addition). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T : IT-M : PBI-Por | PDINO | Al 
Addition           :  5% PBI-Por 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.895 15.5 67.1 9.30 

2 0.892 15.4 66.9 9.19 

3 0.889 15.6 66.4 9.22 

4 0.890 15.4 66.8 9.16 

5 0.895 15.3 67.8 9.26 

6 0.894 15.3 67.8 9.30 

7 0.869 14.7 62.5 7.99 

8 0.868 15.0 62.9 8.18 

9 0.864 14.8 63.0 8.05 

Avg. 0.884 15.2 65.7 8.85 

* Photoactive layer parameters: 
- PBDB-T : IT-M : PBI-Por ratio (1:0.95:0.05) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 2150 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.4 Summary of conventional PBDB-T:IT-M:PBI-Por -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.932 16.3 72.0 11.0 (10.8) 

1% 0.918 15.8 68.7 9.95 (9.02) 

5% 0.895 15.5 67.1 9.30 (8.85) 

a Average PCE was obtained from 9 independent devices 
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Table B.5 Raw data of conventional PBDB-T:IT-M:PBD -based OSCs (1% dopant). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T : IT-M : PBD | PDINO | Al 
Addition           :  1% PBD as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.945 15.9 71.1 10.7 

2 0.942 16.2 70.2 10.7 

3 0.938 16.0 70.3 10.6 

4 0.941 16.2 70.4 10.8 

5 0.937 16.1 70.6 10.6 

6 0.938 16.3 69.9 10.7 

7 0.939 16.0 68.9 10.4 

8 0.934 16.4 69.1 10.6 

9 0.933 16.2 69.6 10.6 

Avg. 0.939 16.1 70.0 10.6 

* Photoactive layer parameters: 
- PBDB-T : IT-M : PBD ratio (1:1:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 2150 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.6 Summary of conventional PBDB-T:IT-M:PBD -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.932 16.3 72.0 11.0 (10.8) 

1% dopant 0.945 15.9 71.1 10.7 (10.6) 

a Average PCE was obtained from 9 independent devices 
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Table B.7 Raw data of inverted PBDB-T:IT-M -based OSCs. 

Configuration  :  ITO | ZnO | PBDB-T : IT-M | MoO3 | Ag 
Addition           :  none 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.933 15.6 74.4 10.8 

2 0.933 15.4 73.2 10.5 

3 0.932 15.5 73.7 10.7 

4 0.929 15.7 73.1 10.7 

5 0.936 15.8 71.8 10.6 

6 0.933 15.9 71.3 10.6 

7 0.931 15.9 71.6 10.6 

8 0.936 15.8 72.3 10.7 

9 0.933 15.7 71.9 10.5 

Avg. 0.933 15.7 72.6 10.6 

* Photoactive layer parameters: 
- PBDB-T : IT-M ratio (1:1) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1900 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Thickness of 10 nm 
 
* ETL parameters: 

- 0.5 M ZnO precursor solution 

- Spin-coated at 4000 rpm and annealed at 150°C for 30 minutes 
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Table B.8 Raw data of inverted PBDB-T:IT-M:TFT-CN -based OSCs (1% addition). 

Configuration  :  ITO | ZnO | PBDB-T : IT-M : TFT-CN | MoO3 | Ag 
Addition           :  1% TFT-CN 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.851 6.76 48.3 2.78 

2 0.847 6.95 47.3 2.79 

3 0.848 5.52 48.5 2.27 

4 0.853 6.04 49.1 2.53 

5 0.851 5.86 48.9 2.44 

6 0.855 5.85 47.5 2.38 

7 0.856 6.28 48.3 2.60 

8 0.848 5.92 48.8 2.45 

9 0.849 5.72 48.7 2.36 

Avg. 0.851 6.10 48.4 2.51 

* Photoactive layer parameters: 
- PBDB-T : IT-M : TFT-CN ratio (1:0.99:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1900 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Thickness of 10 nm 
 
* ETL parameters: 

- 0.5 M ZnO precursor solution 

- Spin-coated at 4000 rpm and annealed at 150°C for 30 minutes 
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Table B.9 Raw data of inverted PBDB-T:IT-M:TFT-CN -based OSCs (6% addition). 

Configuration  :  ITO | ZnO | PBDB-T : IT-M : TFT-CN | MoO3 | Ag 
Addition           :  6% TFT-CN 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.616 1.65 42.0 0.426 

2 0.610 1.72 41.8 0.438 

3 0.611 1.58 41.5 0.401 

4 0.613 1.65 41.5 0.420 

5 0.609 1.58 41.2 0.396 

6 0.616 1.56 42.1 0.406 

7 0.613 1.60 41.7 0.408 

8 0.620 1.67 42.1 0.436 

9 0.626 1.74 42.4 0.462 

Avg. 0.615 1.64 41.8 0.422 

* Photoactive layer parameters: 
- PBDB-T : IT-M : TFT-CN ratio (1:0.94:0.06) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1900 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Thickness of 10 nm 
 
* ETL parameters: 

- 0.5 M ZnO precursor solution 

- Spin-coated at 4000 rpm and annealed at 150°C for 30 minutes 
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Table B.10 Raw data of inverted PBDB-T:IT-M:TFT-CN -based OSCs (1% dopant). 

Configuration  :  ITO | ZnO | PBDB-T : IT-M : TFT-CN | MoO3 | Ag 
Addition           :  1% TFT-CN as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.830 4.39 46.3 1.69 

2 0.833 4.42 46.3 1.70 

3 0.835 4.61 47.4 1.82 

4 0.822 4.32 48.3 1.72 

5 0.828 4.58 46.0 1.75 

6 0.837 4.52 48.1 1.82 

7 0.859 4.51 49.0 1.90 

8 0.850 4.49 49.6 1.89 

9 0.853 4.70 49.1 1.97 

Avg. 0.839 4.50 47.8 1.81 

* Photoactive layer parameters: 
- PBDB-T : IT-M : TFT-CN ratio (1:1:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1900 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Thickness of 10 nm 
 
* ETL parameters: 

- 0.5 M ZnO precursor solution 

- Spin-coated at 4000 rpm and annealed at 150°C for 30 minutes 

  



202 

Table B.11 Raw data of inverted PBDB-T:IT-M:TFT-CN -based OSCs (6% dopant). 

Configuration  :  ITO | ZnO | PBDB-T : IT-M : TFT-CN | MoO3 | Ag 
Addition           :  6% TFT-CN as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.625 2.01 43.8 0.551 

2 0.626 2.12 44.1 0.587 

3 0.636 2.13 43.5 0.591 

4 0.644 2.15 44.0 0.611 

5 0.624 2.07 43.7 0.563 

6 0.627 1.99 43.2 0.539 

7 0.640 2.02 44.4 0.574 

8 0.633 1.97 44.0 0.549 

9 0.645 2.10 44.2 0.596 

Avg. 0.633 2.06 43.9 0.573 

* Photoactive layer parameters: 
- PBDB-T : IT-M : TFT-CN ratio (1:1:0.06) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1900 rpm and annealed at 120°C for 10 minutes 

 
* HTL parameters: 

- Thickness of 10 nm 
 
* ETL parameters: 

- 0.5 M ZnO precursor solution 

- Spin-coated at 4000 rpm and annealed at 150°C for 30 minutes 

 

Table B.12 Summary of inverted PBDB-T:IT-M:TFT-CN -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.933 15.6 74.4 10.8 (10.6) 

1% 0.847 6.95 47.3 2.79 (2.51) 

6% 0.626 1.74 42.4 0.462 (0.422) 

1% dopant 0.853 4.70 49.1 1.97 (1.81) 

6% dopant 0.644 2.15 44.0 0.611 (0.573) 
a Average PCE was obtained from 9 independent devices 
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Table B.13 Raw data of conventional PBDB-T-2F:IT-4F -based OSCs. 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : IT-4F | PDINO | Al 
Addition           :  none 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.866 20.8 75.2 13.5 

2 0.865 20.0 74.9 12.9 

3 0.868 19.7 75.4 12.9 

4 0.863 20.2 75.1 13.1 

5 0.871 19.8 74.5 12.9 

6 0.860 19.8 75.4 12.8 

7 0.864 20.9 74.9 13.5 

8 0.866 19.7 75.2 12.9 

9 0.855 21.2 73.9 13.4 

Avg. 0.864 20.3 74.8 13.1 

* Photoactive layer parameters: 
- PBDB-T-2F : IT-4F ratio (1:1) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1800 rpm and annealed at 100°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.14 Raw data of conventional PBDB-T-2F:IT-4F:PBD -based OSCs (1% dopant). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : IT-4F : PBD | PDINO | Al 
Addition           :  1% PBD as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.855 18.5 72.7 11.5 

2 0.846 18.8 72.5 11.6 

3 0.848 18.9 71.2 11.4 

4 0.851 18.1 73.4 11.3 

5 0.845 18.3 73.5 11.4 

6 0.849 18.3 73.4 11.4 

7 0.844 18.6 73.5 11.5 

8 0.848 18.1 72.7 11.1 

9 0.846 18.1 73.7 11.3 

Avg. 0.848 18.4 73.0 11.4 

* Photoactive layer parameters: 
- PBDB-T-2F : IT-4F : PBD ratio (1:1:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1800 rpm and annealed at 100°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.15 Summary of conventional PBDB-T-2F:IT-4F:PBD -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.866 20.8 75.2 13.5 (13.1) 

1% dopant 0.846 18.8 72.5 11.6 (11.4) 

a Average PCE was obtained from 9 independent devices 
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Table B.16 Raw data of conventional PBDB-T-2F:IT-4F:g-C3N4 -based OSCs (1% dopant). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : IT-4F : g-C3N4 | PDINO | Al 
Addition           :  1% g-C3N4 as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.853 19.6 73.5 12.3 

2 0.854 19.9 72.0 12.3 

3 0.857 19.8 72.6 12.3 

4 0.853 19.8 73.6 12.5 

5 0.858 19.6 73.0 12.3 

6 0.852 19.5 73.5 12.2 

7 0.858 19.6 73.0 12.3 

8 0.857 19.4 73.0 12.1 

9 0.844 20.2 73.5 12.5 

Avg. 0.854 19.7 73.1 12.3 

* Photoactive layer parameters: 
- PBDB-T-2F : IT-4F : g-C3N4 ratio (1:1:0.01) 
- Total 20 mg mL-1 in CB 
- 0.7% DIO 
- Spin-coated at 1800 rpm and annealed at 100°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.17 Summary of conventional PBDB-T-2F:IT-4F:g-C3N4 -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.866 20.8 75.2 13.5 (13.1) 

1% dopant 0.853 19.8 73.6 12.5 (12.3) 

a Average PCE was obtained from 9 independent devices 
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Table B.18 Raw data of conventional PBDB-T-2F:Y6 -based OSCs. 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 | PDINO | Al 
Addition           :  none 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.837 25.7 73.9 15.9 

2 0.835 25.6 73.7 15.8 

3 0.834 25.6 73.8 15.8 

4 0.838 25.9 75.0 16.3 

5 0.837 25.8 74.9 16.2 

6 0.835 25.8 74.9 16.2 

7 0.839 25.6 73.9 15.9 

8 0.837 25.6 73.5 15.7 

9 0.835 24.7 76.1 15.7 

Avg. 0.836 25.6 74.4 15.9 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 ratio (1:1.2) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.19 Raw data of conventional PBDB-T-2F:Y6:DRCN-5T -based OSCs (5% addition). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 : DRCN-5T | PDINO | Al 
Addition           :  5% DRCN-5T 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.855 24.7 73.8 15.6 

2 0.841 24.4 76.0 15.6 

3 0.840 24.4 75.9 15.6 

4 0.843 25.0 74.8 15.8 

5 0.841 25.0 74.8 15.7 

6 0.840 25.0 74.8 15.7 

7 0.842 25.2 74.5 15.8 

8 0.841 25.2 74.9 15.9 

9 0.840 25.2 74.8 15.8 

Avg. 0.843 24.9 74.9 15.7 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 : DRCN-5T ratio (1:1.15:0.05) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.20 Raw data of conventional PBDB-T-2F:Y6:DRCN-5T -based OSCs (10% addition). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 : DRCN-5T | PDINO | Al 
Addition           :  10% DRCN-5T 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.834 25.8 72.9 15.7 

2 0.846 24.8 73.6 15.5 

3 0.844 24.8 73.6 15.4 

4 0.855 25.0 73.5 15.7 

5 0.853 25.0 73.6 15.7 

6 0.851 25.0 73.7 15.7 

7 0.848 24.5 74.1 15.4 

8 0.846 24.5 73.8 15.3 

9 0.853 25.2 73.1 15.7 

Avg. 0.848 25.0 73.5 15.6 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 : DRCN-5T ratio (1:1.1:0.1) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.21 Raw data of conventional PBDB-T-2F:Y6:DRCN-5T -based OSCs (20% addition). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 : DRCN-5T | PDINO | Al 
Addition           :  20% DRCN-5T 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.845 24.5 72.1 14.9 

2 0.842 24.5 72.1 14.9 

3 0.841 24.6 72.1 14.9 

4 0.843 24.8 73.6 15.4 

5 0.842 24.8 73.5 15.3 

6 0.841 24.8 73.3 15.3 

7 0.844 24.4 72.9 15.0 

8 0.842 24.4 72.9 15.0 

9 0.842 24.4 72.7 14.9 

Avg. 0.842 24.6 72.8 15.1 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 : DRCN-5T ratio (1:1:0.2) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.22 Summary of conventional PBDB-T-2F:Y6:DRCN-5T -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.838 25.9 75.0 16.3 (15.9) 

5% 0.841 25.2 74.9 15.9 (15.7) 

10% 0.855 25.0 73.5 15.7 (15.6) 

20% 0.843 24.8 73.6 15.4 (15.1) 

a Average PCE was obtained from 9 independent devices 
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Table B.23 Raw data of conventional PBDB-T-2F:Y6:M2 -based OSCs (1% dopant). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 : M2 | PDINO | Al 
Addition           :  1% M2 as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.837 24.3 72.8 14.8 

2 0.842 23.7 72.6 14.5 

3 0.840 24.6 70.8 14.7 

4 0.842 24.7 70.5 14.6 

5 0.842 24.2 71.3 14.6 

6 0.842 24.6 71.4 14.8 

7 0.839 24.7 71.4 14.8 

8 0.835 24.6 71.8 14.8 

9 0.836 24.6 70.6 14.5 

Avg. 0.840 24.5 71.5 14.7 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 : M2 ratio (1:1.2:0.01) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 
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Table B.24 Raw data of conventional PBDB-T-2F:Y6:M2 -based OSCs (5% dopant). 

Configuration  :  ITO | PEDOT:PSS | PBDB-T-2F : Y6 : M2 | PDINO | Al 
Addition           :  5% M2 as dopant 

Devices No. Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCE 
[%] 

1 0.838 24.4 70.9 14.5 

2 0.835 24.7 70.3 14.5 

3 0.834 24.9 70.3 14.6 

4 0.836 24.7 70.1 14.5 

5 0.835 24.1 71.9 14.5 

6 0.842 24.6 70.1 14.5 

7 0.840 24.8 69.8 14.5 

8 0.841 24.8 70.3 14.7 

9 0.840 24.7 70.5 14.6 

Avg. 0.838 24.6 70.5 14.6 

* Photoactive layer parameters: 
- PBDB-T-2F : Y6 : M2 ratio (1:1.2:0.05) 
- Total 16 mg mL-1 in CF 
- 0.5% CN 
- Spin-coated at 2700 rpm and annealed at 110°C for 10 minutes 

 
* HTL parameters: 

- Spin-coated at 3000 rpm and annealed at 150°C for 15 minutes 
 
* ETL parameters: 

- Spin-coated at 3000 rpm without annealing 

 

Table B.25 Summary of conventional PBDB-T-2F:Y6:M2 -based OSCs. 

Devices Voc 
[V] 

Jsc 

[mA cm-2] 
FF 
[%] 

PCEmax (avg.)a 
[%] 

0% 0.838 25.9 75.0 16.3 (15.9) 

1% dopant 0.835 24.6 71.8 14.8 (14.7) 

5% dopant 0.841 24.8 70.3 14.7 (14.6) 

a Average PCE was obtained from 9 independent devices 
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