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Abstract

In this thesis, we consider two different aspects in financial option pricing.

In the first part, we consider stochastic differential equations driven by

general Lévy processes (SDEs) with finite and infinite activity and the re-

lated, via the Feynman-Kac formula, Dirichlet problem for integro-partial

differential equation (IPDE). We approximate the solution of IPDE using a

numerical method for the SDEs. The method is based on three ingredients:

(i) we approximate small jumps by a diffusion; (ii) we use restricted jump-

adaptive time-stepping; and (iii) between the jumps we exploit a weak Euler

approximation. We prove weak convergence of the considered algorithm and

present an in-depth analysis of how its error and computational cost depend

on the jump activity level. We present the results of a range of numerical

experiments including application of the suggested numerical scheme in the

context of Foreign Exchange (FX) options, where we present an example on

barrier basket currency option pricing in a multi-dimensional setting.

In the second part of the thesis, we suggest an intermediate currency

approach that allows us to price options on all FX markets simultaneously

under the same risk-neutral measure which ensures consistency of FX option

prices across all markets. In particular, it is sufficient to calibrate a model

to the volatility smile on the domestic market as, due to the consistency

of pricing formulas, the model automatically reproduces the correct smile

for the inverse pair (the foreign market). We first consider the case of two

currencies and then the multi-currency setting. We illustrate the intermediate

currency approach by applying it to the Heston and SABR stochastic volatility

models, to the model in which exchange rates are described by an extended

skewed normal distribution, and also to the model-free approach of option

pricing.
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1
A I M S O F T H I S T H E S I S

One important aim of mathematical research is to find suitable models which

are able to describe and capture observations made in the real world and

try to explain and model this observed behaviour. The financial markets are

a particular large, quickly changing and exciting field of interest for math-

ematical research, and Mathematics and Technology play an increasingly

important role. Especially, in a world where interactions between countries,

economies and currencies become more connected and interdependent, the

interactions can be significant and need to be modelled adequately.

In this thesis we consider two different aspects of financial option pricing.

The first part of this thesis focuses on the computational aspect and it is

dedicated to a new numerical method for SDEs driven by Lévy processes

with finite and infinite activity. The introduced restricted jump-adaptive time-

stepping scheme to solve Dirichlet IPDE problems is analysed in full depth

for different cases of jump activity. In particular, the theoretical convergence

behaviour of the numerical scheme in the case of infinite activity is discussed

in detail and a wide range of numerical examples are presented. We end

this part by demonstrating the use of the introduced numerical scheme and

we apply it to estimate the price of a foreign exchange (FX) barrier basket

option involving five different currencies, where the underlying exchange

rates are modelled by exponential Lévy processes.

In the second part of the thesis, we present a novel framework for pricing

derivatives on the FX market. We explore a very simple but practically
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aims of this thesis 3

valuable approach, where we focus on finding a numeraire with respect

to which we can price all FX derivatives traded on any of the domestic

markets simultaneously under the same measure. Thanks to this approach,

models for different currency pairs can be calibrated to all volatility smiles

in a consistent manner. For example, in the case of two currencies, it is

sufficient to calibrate a model for the GBPEUR exchange rate on e.g. the GBP

domestic market and the smile on the EUR domestic market is automatically

reproduced without any need of additional calibration, whereas following

traditional approaches, this is not always the case. Then, we extend this

methodology to the multi-dimensional setting and explore different pricing

models. We end this part of the thesis with a range of numerical examples,

where we calibrate some of the considered models to real market data in

two and three dimensions.



Part I

N E W N U M E R I C A L M E T H O D S F O R S D E S

D R I V E N B Y L É V Y P R O C E S S E S W I T H I N F I N I T E

A C T I V I T Y



2
O V E RV I E W

In this Part of the thesis, we present a new restricted jump-adaptive time-

stepping scheme to solve Dirichlet IPDE problems with underlying SDEs

driven by finite and infinite Lévy processes. The following chapters are

based on the paper [30].

Stochastic differential equations (SDEs) are used to model various phe-

nomena in different fields such as Biology [2], Physics [9, 23, 28, 95, 111]

and Finance [1, 15, 55, 104, 107]. Typically, SDEs contain some sort of noise,

which is driven by a stochastic process. The most commonly used noise is

Brownian motion, which is one of the best known Lévy processes and hence

widely studied [39, 106].

This research considers SDEs driven by a more general class of Lévy

processes [4, 12, 105] and we are interested in including jump processes as

noise, therefore we make use of another important building block: Poisson

processes. Considering a wider class of Lévy processes also means that

the numerical methods to solve problems involving these type of processes

have to be developed further and other (more complex) techniques have

to be used. We will make use of existing results [9, 23, 4] on existence

and uniqueness of solutions of such SDE systems. As solutions of SDEs

can rarely be found exactly, numerical methods are needed to solve SDEs

driven by Lévy processes. Numerical methods for ordinary differential

equations (ODEs) and results about convergence, consistency and stability

are commonly known (see e.g. [75, 19, 51]). When dealing with stochastic

5
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differential equations (SDEs) instead of ODEs, these methods used in the

same fashion work poorly for SDEs. There is a broad literature on methods

for SDEs [69, 92, 50, 97], which adapt the methods for ODEs to SDEs and

give other methods. When dealing with SDEs, the main difference is, that

there is some source of randomness involved, which makes these methods

more complicated. Due to this randomness, the question arises of how to

measure closeness between the exact solution and an approximation. For

this, we will define mean-square and weak convergence and mention their

use.

This part of the thesis begins with the Preliminaries in Chapter 3, where we

first define characteristic functions and moments. We then give definitions

for stochastic processes in general and specifically for Lévy Processes in

Section 3.2 and further define the concept of infinite divisibility, which is

important for descriptions of distributional properties of Lévy processes.

In Section 3.3, we introduce the Lévy–Khintchine representation, which

gives a formula for the characteristic function of any infinitely distributed

random variable. We mention the Lévy–Ito decomposition, that helps us to

understand the structure of Lévy processes better and give some examples

of commonly known Lévy processes. This is then followed by Section 3.4

about SDEs driven by Lévy processes, a short introduction about existence

and uniqueness of solutions of such SDE systems and a description of how

to measure numerical convergence for SDEs. Moreover, we focus on weak

approximation and introduce a general IPDE problem. In Chapter 4 we

introduce the main topic of this research: a boundary value IPDE problem.

We then discuss possible numerical methods and questions associated with

this problem and review existing literature in Section 4.2. In particular, we

highlight the differences between our research and existing literature with

particular focus on the case of Lévy processes with infinite activity. The

most important chapter of this part is Chapter 5, where we introduce the

suggested restricted time-stepping algorithm and give proofs for numerical

convergence. We want to highlight the extensive discussion with respect to
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infinite activity in Section 5.3.4. In the last chapter of this part, we showcase

the theoretical results in a range of theoretical and practical numerical

examples.



3
P R E L I M I N A R I E S O N L É V Y P R O C E S S E S A N D S D E S

D R I V E N B Y L É V Y P R O C E S S E S

In this chapter we introduce some selected useful tools and characteristics

when working with Lévy processes such as characteristic functions (CFs),

moment generating functions (MGFs) and the characteristic exponent (some-

times also known as cumulant generating function [23] or Lévy exponent [4]).

Furthermore, we explain their useful properties and how they are connected.

We then have a look at the concept of infinite divisibility, the Lévy-Ito de-

composition and introduce the Lévy-Khintchine formula, which shows that

characteristic functions of Lévy processes have a specific form. We end this

chapter by briefly introducing mean–square and weak approximations of

SDEs. This chapter is mainly based on [4, 23].

3.1 characteristic function and moments

We will give some basic definition of σ–algebras and measures followed by

some introduction into characteristic functions.

Definition 3.1.1. Let Ω be a non-empty set and F a collection of subsets of

Ω. We then call F a σ–algebra if the following hold:

1. ∅ ∈ F , where ∅ is the empty set.

2. A ∈ F ⇒ Ac ∈ F , where A ∈ Ω.

8
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3. If (An, n ∈N) is a sequence of subsets in F then
⋃∞

n=1 An ∈ F .

The pair (Ω,F ) is called a measurable space. A measure on (Ω,F ) is a

mapping µ : F → [0, ∞] that satisfies

1. µ(∅) = 0,

2.

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An)

for every sequence (An, n ∈N) of mutually disjoint sets in F .

Then (Ω,F , µ) is called a measure space. One commonly known example

for a measure is the Borel measure. Let B(Rd) be the Borel σ–algebra of Rd,

which is the smallest σ–algebra of subsets of Rd that contain all the open

sets. If S ∈ B(Rd) then its Borel σ–algebra is defined as follows

B(S) = {E ∪ S; E ∈ B(Rd)},

where E is a set in B(Rd). Any measure on (S,B(S)) is then called a Borel

measure. In general, a measure does not need to be finite. A measure µ

defined on (Ω,F ) is finite, if µ(Ω) < ∞. A more flexible measure is the

Radon measure defined as follows:

Definition 3.1.2. Let A ⊂ Rd and (A,A) be a measurable space. A measure

µ is called a Radon measure, if for every compact measurable set B ∈ A,

µ(B) < ∞.

Another measure, which is also useful is a so-called Lebesgue measure,

defined as follows:

Definition 3.1.3. Let B(S) be the Borel-σ algebra, then we can define a

measure λ(ω) called the Lebesgue measure on Rd as such:

λ(A) :=
∫

A
ds.

A point measure, which is also useful, is defined as follows:
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Definition 3.1.4. A measure δx(ω) associated with a point x ∈ E is defined

as follows:

δx(A) :=

1 if x ∈ A

0 otherwise,

for x ∈ Rd. Such a measure is then called Dirac measure.

In the case, where a measure P : F → [0, 1] and P(Ω) = 1, we call this

measure P a probability measure and (Ω,F , P) a probability space.

If (Ω,F , P) is a given probability space, then a function f : Ω→ Rn is called

F -measurable if

f−1(A) := {ω ∈ Ω; f (ω) ∈ A} ∈ F

for all open sets A ∈ Rd.

In the theory of stochastic processes, we are particularly interested in

complete probability spaces.

Definition 3.1.5. A probability space (Ω,F , P) is called complete if for all

events A ⊂ B for B ∈ F with P(B) = 0 implies that A ∈ F .

Remark 3.1.6. Throughout this work, we make the assumption that all

probability spaces (Ω,F , P) are complete (if not otherwise stated). This can

be referred to as the ”standard assumptions“.

Definition 3.1.7. Let X be a Rd-valued random variable defined on (Ω,F , P).

The characteristic function (CF) of X is the function ΦX : Rd → C defined

by

ΦX(t) := E
[
ei〈t,X〉

]
=
∫

Ω
ei〈t,X(ω)〉dP(ω),

where t ∈ Rd and (t, X) are the scalar products of t and X.

Note, that the characteristic function completely determines the distribu-

tion of the random variable X and always exists, as it is the Fourier transform

of the probability measure in respect to X.
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Definition 3.1.8. A measure µ2 is said to be absolutely continuous with

respect to a measure µ1 if for any measurable set A

µ1(A) = 0⇒ µ2(A) = 0.

Further, if X is absolutely continuous, then the probability density function

(PDF) fX exists and
∫

Ω ei〈t,X(ω)〉dP(ω) =
∫

Rd ei〈t,y〉d fX(y). If the moment

generating function (MGF) exists as well then it is defined as follows.

Definition 3.1.9. Let X be a Rd-valued random variable defined on (Ω,F , P).

The moment generating function (MGF) of X is defined (assuming E[e〈t,X〉]

exists) by

MX(t) := Φ(−it) = E[e〈t,X〉],

where t ∈ Rd.

Both the CF and the MGF have useful properties. We will limit our

presentation to the properties of the CF, as in the general case the CF always

exists (while the MGF not necessarily does):

• If E
[
|Xj|n

]
< ∞ for some 1 ≤ j ≤ d and k ∈N and k ≤ n, then the kth

moment E
[

Xk
j

]
can be calculated by differentiating the CF:

E
[

Xk
j

]
= i−k ∂kΦX(t)

∂tk
j

∣∣∣∣∣
t=0

.

• If (Xi, i = 1, . . . , d) are independent random variables, then the CF of

Y = X1 + · · ·+ Xd is given by:

ΦY(t) =
d

∏
i=1

ΦXi(t). (3.1.1)

The definition of moments can be found in the Appendix B.1.3. As the

characteristic function of Lévy processes can be expressed in a specific way,
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we will look at the log-characteristic function. This leads to the definition of

the characteristic exponent.

Definition 3.1.10. Let X be a Rd-valued random variable defined on (Ω,F , P)

with characteristic function ΦX(t), t ∈ Rd. The characteristic exponent of X

is the function ΨX(t) such that

ΦX(t) = eΨX(t),

where t ∈ Rd.

Note that similarly to (3.1.1), the characteristic exponent of Y = X1 + ... +

Xn, with independent random variables (Xi, i = 1, ..., n) can be written as

follows:

ΨY(t) = ΨX1+...+Xn(t) = ∑n
i=1 ΨXi(t).

For a selection of the most known distributions, the characteristic function

and also the characteristic exponent are commonly known and can be found

in Table 3.1.1.

Table 3.1.1: Some probability distributions, their characteristic functions and charac-
teristic exponents

distribution Exponential (λ > 0) Poisson (λ > 0) Normal

fX(x) λe−λx
1x≥0 e−λ λx

x! , x ∈N 1√
2πσ2 e−

(x−µ)2

2σ2

ΦX(t) λ
λ−t eλ(eit−1) eiµt− 1

2 σ2t2

ΨX(t) log
(

λ
λ−t

)
, for t < λ λ(eit − 1) iµt− 1

2 σ2t2

3.2 lévy processes

Stochastic processes describe the random evolution of a dynamical system

over time [64]. Opposed to a deterministic process, the evolution of this pro-

cess has uncertainty in regard to its outcome. Lévy processes are stochastic



3.2 lévy processes 13

processes with specific properties, which we will define in this chapter. We

will introduce the concept of infinite divisibility and how it is connected to

Lévy processes. Further, we explain the notion of random measures and in

particular Poisson random measures.

Definition 3.2.1. Let (Ω,F , P) be a complete probability space and let X =

(X(t), t ≥ 0) = (Xt)t≥0 be a family of random variables defined on that

probability space and t ∈ R is interpreted as time. Then we say that X is a

stochastic process.

Note that one can class stochastic processes in discrete-time (for more

information see e.g. [41]) and continuous-time processes. Stochastic processes

can be used to model various phenomena in Biology [2], Physics (see [111]

or [9]), Social Sciences [43] and Finance (see [107] or [15]).

When looking at stochastic processes over time, we are also interested

in the information flow over time. As time goes on more information is

progressively available. This feature can be added to the structure of the

probability space and is defined as follows.

Definition 3.2.2. Let (Ω,F , P) be a complete probability space. A filtration

on (Ω,F , P) is an increasing family of σ-algebras (Ft), t ∈ [0, T] for which

the following holds:

∀ t ≥ s ≥ 0 Fs ⊆ Ft ⊆ F .

Note that a probability space equipped with a filtration is called a filtered

probability space and denoted by (Ω,F , (Ft)t≥0, P).

We are now prepared to introduce a Lévy process, which is a class of

stochastic processes with certain properties.

Definition 3.2.3. A stochastic process (Xt)t≥0 defined on (Ω,F , P) with

X0 = 0 is said to be a Levy process if it has the following properties:

1. The paths of X are right continuous with left-hand limits (i.e. càdlàg).
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2. Independent increments: For 0 ≤ s ≤ t, Xt − Xs is independent of the

σ-algebra Ft = {Xu : u ≤ t}.

3. Stationary (time-homogeneous) increments: For 0 ≤ s ≤ t, Xt − Xs has

the same distribution as Xt−s.

4. Stochastic continuity: ∀ε > 0, lim
t→s

P(|Xt − Xs| > ε) = 0.

Note that sample paths of Lévy processes do not necessarily have to be

continuous, this is only true for some subclasses such as Wiener processes.

We are interested in distributions of independent increments of Lévy pro-

cesses and therefore, the concept of infinite divisibility is important, as it

will put a constraint on possible choices.

Definition 3.2.4. Let X be a random variable valued in Rd with probability

measure PX. We then say that X is infinitely divisible, if ∀n ∈ N there

exist n i.i.d. random variables Y1, . . . , Yn such that Y1 + · · ·+Yn has the same

distribution as X.

Note that it can be shown that the equality in distribution of Y1 + · · ·+ Yn

and Xt (denoted by Xt
d
= Y1 + · · ·+ Yn) can be expressed in the following

ways:

• In terms of the characteristic function:

ΦX(t) = ΦX1 × · · · ×ΦXn .

• As a convolution of identical measures µi (see [4]):

µX = µ1 ∗ · · · ∗ µn.

Before we look at some examples of infinitely divisible distributions, we

can look at the characteristic function Φ(t) and the characteristic exponent

Ψ(t), which easily allow us to determine, whether a distribution is infinitely



3.2 lévy processes 15

divisible or not. This property is formulated in the following proposition

(for a proof see [4]).

Proposition 3.2.5. Let X be a random variable on (Ω,F , P). Then the following

statements are equivalent:

• X is infinitely divisible.

• The n–th root of the characteristic function ΦX(t) is the characteristic function

of n i.i.d. random variables Xi, i ∈N:

ΦX(t) = ΦX1 × · · · ×ΦXn = [ΦX1 ]
n .

• The characteristic exponent ΨX(t) can be written as a sum of the characteristic

exponents ΨXi(t) of n i.i.d. random variables:

ΨX(t) = ΨX1 + · · ·+ ΨXn = nΨX1 .

Remark 3.2.6. It should be easy to see that the concept of infinite divisibility

gives us an idea of the structure the characteristic function of a Lévy process

should have. The characteristic function of a Levy process (Xt)t≥0 on Rd has

the following form:

ΦXt(z) = etΨ(z), z ∈ Rd,

where Ψ(z) is the characteristic exponent of X1 = X(1) with t = 1. This

shows us that characteristic exponent of a Lévy process varies linearly in

t. Therefore, the knowledge over distribution of X1 will be sufficient to

specify the distribution of Xt. A rough outline of the proof can be found in

Appendix A.1.1. Note that, we use this form for the characteristic exponent,

when talking about Lévy processes rather than the more general form from

Definition 3.1.10
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Example 3.2.1 (Normal distribution). Let us only look at the simple case

where d = 1 and let Y be a random variable which follows the normal

distribution Y ∼ N (µ, σ2), hence it is obvious that Y must be a infinitely

divisible random variable as its CF ΦY(t) (as seen above in Table 3.1.1) can

be written as

ΦY(t) = exp
(

iµt− 1
2

σ2t2
)

=

[
exp

(
i
µ

n
t− 1

2
σ2

n
t2
)]n

= [ΦY1(t)]
n, t ∈ R,

where ΦY1(t) is the CF of a normal distributed random variable Y1 ∼
N
(

µ
n , σ2

n

)
. Similarly, we can deduct the following statement for the charac-

teristic exponent:

ΨY(t) = iµt− 1
2

σ2t2 = n
(

i
µ

n
t− 1

2
σ2

n
t2
)
= nΨY1(t).

Similar statements can be shown for the multivariate case.

Example 3.2.2 (Poisson distribution). In a similar fashion for d = 1, let Z be

a random variable which follows a Poisson distribution: Z ∼ Poi(λ). Then it

is also easy to see that Z is infinitely divisible as

ΦZ(t) = exp
(

λ(eit − 1)
)

=

[
exp

(
λ

n
(eit − 1)

)]n

= [ΦZ1(t)]
n, t ∈ R,

where ΦZ1(t) is the CF of a Poisson distributed random variable Z1 ∼
Poi

(
λ
n

)
.

Lévy processes can be used to describe jumps occurring in different ob-

served phenomena [23, 9]. A convenient tool to analyse these jumps are

random measures and in particular Poisson random measures.
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Definition 3.2.7. Let E ∈ Rd and (E, E) be a measurable space and (Ω,F , P)

a probability space. A measure M on E is called random measure if the

following holds:

M : Ω× E → R+, i.e. (ω, A) 7→ M(ω, A),

such that

1. For (almost all) ω ∈ Ω, M(ω, ·) is measure on E.

2. For each measurable set A ⊂ E, M(·, A) = M(A) is a random variable.

To understand the notion of random measures better we show its connec-

tion to a Poisson process.

Example 3.2.3 (Random jump measure). Let (τi)i≥1 be a sequence of indepen-

dent exponential random variables with parameter λ > 0 and Tn = ∑n
i=1 τi.

The process (Nt)t≥0 defined by

Nt = ∑
n≥1

1t≥Tn = #{n ≥ 1, t ≥ Tn}

is called a Poisson process with intensity λ. It is a counting process of the

number of jumps which occur in the time [0, t].

This counting procedure defines a random measure M on [0, ∞), for any

A ⊂ R+ let

M(ω, A) = #{i ≥ 1, Ti(ω) ∈ A}.

Note that M(ω, A) depends on ω, hence it is a random measure. If we fix

ω, then all Ti(ω) are deterministic, hence if A = ∅, i.e. all Ti(ω) /∈ A, then

M(ω, ∅) = 0. Moreover, let (An, n ∈N) be a sequence of subsets in F , such

that ∪∞
n=1An ∈ F . Then, M(ω,∪∞

n=1An) = #{i ≥ 1, Ti(ω) ∈ ∪∞
n=1An} =

∑∞
n=1 #{i ≥ 1, Ti(ω) ∈ An} = ∑∞

n=1 M(ω, An).

Further, the intensity λ of the Poisson process determines the average

value of this random measure: E[M(A)] = λ|A|, where |A| is the Lebesgue
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measure of A. M can also be called the random jump measure associated to

the Poisson process Nt, which allows us to express Nt in the following way:

Nt(ω) = M(ω, [0, t]) =
∫
[0,t]

M(ω, ds).

Definition 3.2.8. Let E ∈ Rd and µ be a given Radon measure on (E, E) and

(Ω,F , P) a probability space. An integer valued random measure N on E

with intensity measure µ is called Poisson random measure if the following

holds:

N : Ω× E →N, i.e. (ω, A) 7→ N(ω, A),

such that

1. For (almost all) ω ∈ Ω, N(ω, ·) is an integer valued Radon measure on

E: for any bounded measurable A ⊂ E, N(A) < ∞ is an integer valued

random variable.

2. For each measurable set A ⊂ E, N(·, A) = M(A) is a Poisson random

variable with parameter µ(A):

∀k ∈N, P(N(A) = k) = e−µ(A) (µ(A))k

k!
.

3. For disjoint measurable sets A1, . . . , An ∈ E , the random variables

N(A1), . . . , N(An) are independent.

For an easier understanding, we can look at two examples of a Poisson

random measure [21, 23].

Example 3.2.4 (Particles in boxes). Let E be a countable set with n number

of elements (i.e. |E| = n). Let E = P(E) be the power set of E, then |E | = 2n.

Let µ be a measure on it. For each x ∈ E, let Nx be independent Poisson

distributed random variables with mean µ({x}). We may think of E as a
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countable collection of boxes and of Nx as the number of particles in the box

x. Then,

N(ω, A) = ∑
x∈E

Nx(ω)1x(A) ω ∈ Ω, A ∈ E ,

defines a Poisson random measure M on (E, E) with intensity measure µ. It

can be easily seen, that for ω ∈ Ω (meaning for any realisation of random

number of particles in the boxes Nx(ω)), N(ω, ·) is a Radon measure on

E for A ∈ E as N(A) < ∞ (as for any set of boxes, the number of total

particles will be finite). The Poisson random measure can be seen as a total

counter of particles in all boxes for a certain set of boxes. Moreover, let

us fix A ⊂ E, then M(ω, A) is clearly a random variable dependent on

ω. Due to the independence of Nx and Ny, x 6= y and the fact that the

sum of independent Poisson distributed random variables is also Poisson

distributed, N(·, A) = ∑x∈E Nx(ω)1x(A) = N∑x∈A x. Lastly, for disjoint

measurable sets A1, . . . , An ∈ E , the random variables N(A1), . . . , N(An)

are clearly independent as ∀k ∈ N, P(N(Ai) = k) = e−µ(Ai) (µ(Ai))
k

k! are

independent.

Example 3.2.5 (Poisson random measure as jump processes). Let

(Ω,F , (Ft)t≥0, P) be a filtered probability space. We can now consider a Pois-

son random measure N on E = [0, T]×Rd\{0} with parameter µ(A), A ∈ E.

It can be described as the counting measure associated to a random configu-

ration of points (Tn, Yn) ∈ E:

N(ω, A) = ∑
n≥1

δ(Tn(ω),Yn(ω))(A) A ⊂ E,

where δx(A) is the Dirac measure of a point x = (Tn, Yn) ∈ E. Each point

(Tn(ω), Yn(ω)) corresponds to an observation made at time Tn and described

by a random variable Yn(ω) ∈ Rd. We can interpret the first coordinate t as

time and we will say that N is a non–anticipating (or adapted to the filtration

(Ft)t≥0) Poisson random measure, if (Tn)n≥1 are non–anticipating random

times and Yn is known at Tn. The Poisson random measure N(ω, A) can be
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seen as a counting process (in regard to time and space) for all points in a

certain area A.

Introducing a real valued measurable function f : E 7→ R, for which the

following holds:

µ(| f |) =
∫
[0,T]

∫
Rd\{0}

| f (s, y)|µ(ds dy) < ∞,

then we can create a stochastic process which corresponds to the Poisson

random measure N(A) and the function f . The intensity of that process can

be described as the expectation of a random variable N( f ),

E[N( f )] = µ( f ) =
∫
[0,T]

∫
Rd\{0}

f (s, y)µ(ds, dy).

If we now integrate f with respect to M up to time t, this gives a non–

anticipating (or adapted) stochastic process:

Xt = Xt( f ) =
∫ t

0

∫
Rd\{0}

f (s, y)N(ds, dy) = ∑
{n,Tn∈[0,t]}

f (Tn, Yn).

This example shows, that the Poisson random measure contains all informa-

tion about the discontinuities (jumps) of the process Xt, whose jumps occur

at random times Tn and have jump size f (Tn, Yn).

3.3 distribution and structure of lévy processes

In the previous Section 3.2, we have introduced Lévy processes and random

measures (see 3.2.3 and 3.2.7). Now, we will introduce the Lévy-Khintchine

representation [4] which gives a formula for the characteristic function for

infinitely divisible random variables and hence for Lévy processes. Then, we

can state the Lévy-Ito decomposition, that allows us to describe the sample

path structure.
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First, we introduce the Lévy measure which is used in the Lévy–Khintchine

formula. It allows us to deal with finite and infinite activity of Lévy processes.

Definition 3.3.1. Let ν be a Borel measure defined on Rd\{0} for which the

following condition holds

∫
Rd\{0}

(|x2| ∧ 1)ν(dx) < ∞. (3.3.1)

We call ν a Lévy measure.

In the first instance the above condition (3.3.1) does not seem to be obvious.

However, it will ensure that all integrals in the Lévy-Khintchine formula

exist. The Lévy measure is an important part in the definition of a Lévy

process, especially in regard to the finite and infinite activity.

Definition 3.3.2. A Lévy process with Lévy measure ν is said to be of finite

activity if ν(Rd\{0}) < ∞. Otherwise, it is called of infinite activity.

The differentiation between Lévy processes of finite and infinite activity is

important, as dealing with Lévy processes of infinite activity is usually more

complex and also they are more difficult to simulate. Therefore, the two

cases have to be treated separately, particularly with regards to numerical

methods, which we will see in Chapter 5 and Chapter 6.

We can now proceed to the Lévy–Khintchine formula, which provides a

characterization of random variables with infinitely divisible distributions

using their characteristic functions. We will present it here without the proof

which can be found in literature on Lévy processes such as [4], [23] or [12].

Theorem 3.3.3 (Lévy-Khintchine formula). Let X be a random variable valued

on Rd with probability measure µX and CF Φ(z). Then µX is infinitely divisible if

and only if there exists a triplet (b, A, ν), with b ∈ Rd, a positive definite matrix

A ∈ Rd×d and a Lévy measure ν on Rd\{0}, such that for all z ∈ Rd,

Φ(z) = exp
{

i〈b, z〉 − 1
2
〈z, Az〉+

∫
Rd\{0}

[ei〈z,x〉 − 1− i〈z, x〉1|x|<1]ν(dx)
}

.

(3.3.2)
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We can now take this idea further and formalise what we mentioned in

Remark 3.2.6 and use it for Lévy processes which leads to the following

theorem.

Theorem 3.3.4 (Lévy-Khintchine formula for Lévy processes). Let X =

(Xt)t≥0 on Rd be a Lévy process, then the CF has the following form

ΦXt(z) = etΨ(z)

= exp
{

t
(

i〈b, z〉 − 1
2
〈z, Az〉

+
∫

Rd\{0}
[ei〈z,x〉 − 1− i〈z, x〉1|x|<1]ν(dx)

)}
, z ∈ Rd,

where Ψ(z) is the characteristic exponent of X1 = X(1) and (b, A, ν) is a triplet

with b ∈ Rd, a positive definite matrix A ∈ Rd×d and a Lévy measure ν on

Rd\{0}.

A proof can be found in [4].

Remark 3.3.5. Note that such a triplet (b, A, ν) is sometimes called the Lévy-

Khintchine triplet and it can be shown that it is sufficient to characterize any

Lévy process uniquely (see [4, Corollary 2.4.21] or [105, Theorem 8.1]).

To get a better understanding of the Lévy-Khintchine formula, we give

some examples of commonly used finite Lévy processes and their Lévy-

Khintchine triplet (if it exists).

Example 3.3.1 (Brownian Motion with drift). Let (Bt)t≥0 with B0 = 0 be a

Brownian motion in Rm, let b ∈ Rd be a vector, let A ∈ Rd×d be a positive

definite matrix and σ ∈ Rd×m be such that σσT = A. The (Gaussian) process

(Ct)t≥0 in Rd defined by

Ct = bt + σBt (3.3.3)

has then the characteristic exponent of following form:

ΨC(z) = i〈b, z〉 − 1
2
〈z, Az〉, z ∈ Rd.
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The Lévy-Khintchine triplet of Ct can then be written as (b, A, 0). Note that

it can be shown, that a Lévy process is of the form (3.3.3) if and only if it

has continuous sample paths. Note that a stochastic process is said to be

Gaussian, if all its finite-dimensional distributions are Gaussian.

Example 3.3.2 (Poisson process). Let (Nt)t≥0 be a Poisson process of intensity

λ > 0. As we have seen in example 3.2.3, Nt can be expressed in the form of

its associated random jump measure M:

Nt = M([0, t]) =
∫
[0,t]

M(ds).

It is a Lévy process which takes values in N∪ 0 and for any t > 0. Nt follows

a Poisson distribution with parameter λt:

P(N(t) = n) = e−λt (λt)n

n!
,

for each n = 0, 1, 2, . . . . The characteristic exponent of Nt has the following

form:

ΨN(z) = λ(ei〈z,y〉 − 1), z ∈ Rd.

The Lévy-Khintchine triplet of Nt can then be written as (0, 0, λδ1), where δ1

is the Dirac measure on 1. It can be clearly seen that the Poisson process is a

simple jump process.

Example 3.3.3 (Compound Poisson process). Let Yi, i = 1, 2, . . . , be i.i.d.

random variables in Rd with common probability distribution F(y) and let

(Nt) be a Poisson process with intensity λ > 0, that is independent of all Yi.

Then the compound Poisson process Jt with intensity λ is defined as follows:

Jt =
Nt

∑
i=1

Yi,
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for each t > 0. As seen in Example 3.2.5, the compound Poisson process

can also be expressed in the form of its associated Poisson random measure

N(dt, dx) with intensity λ in the following way:

Jt =
∫ t

0

∫
Rd\{0}

xN(ds, dx).

The characteristic exponent of Jt has the following form:

ΨJ(z) = λ
∫

Rd\{0}
(ei〈z,y〉 − 1)F(dy), z ∈ Rd. (3.3.4)

A derivation for the characteristic function and exponent of Jt can be found

in the Appendix A.1.2. We can introduce a measure ν(A) = λF(A) for which

(3.3.4) then takes the following form:

ΨJ(z) =
∫

Rd
(ei〈z,y〉 − 1)ν(dy), z ∈ Rd.

The Lévy-Khintchine triplet of Jt can then be written as (0, 0, λF(·)).

So far we have looked at examples for Lévy processes of finite activity

such as Examples 3.3.1, 3.3.2 and 3.3.3. When we want to look at examples

for Lévy processes of infinite activity, we first have to introduce the idea of a

compensated measure.

Definition 3.3.6. Let N(A) be a Poisson random measure with intensity

measure µ. Then we define a compensated Poisson random measure as

N̂(A) := N(A)− µ(A), (3.3.5)

where A ⊂ E, where E is a set in Rd.

We can now look at an example of a Lévy process of infinite activity.

Example 3.3.4 (Lévy process with infinite activity). Let X = (Xt)t≥0 on Rd

be a Lévy process without Brownian motion and drift with infinite activity.

We can describe Xt using its associated Poisson random measure N(ds, dx)
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and its associated compensated Poisson random measure N̂(ds, dx) in the

following way:

Xt =
∫ t

0

∫
|x|<1

xN̂(ds, dx) +
∫ t

0

∫
|x|>1

xN(ds, dx).

Note that the idea is to split up the jumps of the Lévy process into jumps of

size lower than one and bigger than one (this level is chosen arbitrarily). The

existence of infinite activity implies that there can be an infinite number of

small jumps. Therefore, we need to use the compensated Poisson random

measure for the part of small jumps, which ensures analytical properties

of the integrals. Due to the properties of the Lévy measure, there can only

be a finite number of jumps bigger than one. Hence, it is sufficient to

describe these jumps using the Poisson random measure. A more technical

explanation can be found in Remark 3.3.8.

The characteristic exponent has the form

ΨX(z) =
∫

Rd\{0}
[ei〈z,x〉 − 1− i〈z, x〉1|x|<1]ν(dx), z ∈ Rd,

and the Lévy-Khintchine triplet of Xt is (0, 0, ν).

As we have seen in Theorems 3.3.3 and 3.3.4, the Lévy-Khintchine formula

gives us information about the distribution of infinitely divisible random

variables and Lévy processes. To understand the structure of the paths of

Lévy processes, we will formulate a famous result known as the Lévy–Ito

decomposition.

Theorem 3.3.7 (Lévy–Ito decomposition). If X = (Xt)t≥0 on Rd is a Lévy

process, then there exists b ∈ Rd, a d–dimensional Brownian motion (BA(t))t≥0

with covariance matrix A ∈ Rd×d and an independent Poisson random measure N

on [0, ∞)×Rd, with intensity measure ν(dx)× dt and Lévy measure ν, such that

Xt = bt + BA(t) +
∫ t

0

∫
|x|<1

xN̂(ds, dx) +
∫ t

0

∫
|x|>1

xN(ds, dx). (3.3.6)
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A proof of Theorem 3.3.7 can be found in [4] or [23].

Remark 3.3.8. This theorem allows us to understand the structure of Lévy

processes and it hints at an idea of how to construct general Lévy processes

by independently combining special cases of Lévy processes. When com-

bining different parts of Examples 3.3.1, 3.3.3 and 3.3.4, Xt can be seen as a

combination of a Brownian motion with constant drift, a compound Poisson

process which describes the jumps of size larger than 1 and a compensated

compound Poisson process.

To continue further, one can check, if all Lévy processes can be repre-

sented in a similar way, which is not as intuitively understandable on the

first inspection. To emphasize that, this representation also describes Lévy

processes with infinite activity, i.e. an infinite number of jumps, where

most of the jumps are small. This suggests that the Lévy measure is not

necessarily a finite measure. By the condition (3.3.1) on the Lévy measure,

we ensure that the integral
∫

Rd\{0}[e
i〈z,x〉 − 1− i〈z, x〉1|x|<1]ν(dx) exists for

any |x|, as for small jumps (|x| < 1) |ei〈z,x〉− 1− i〈z, x〉| behaves like |x2| and

the condition (3.3.1) ensures that
∫
|x|<1 |x2|ν(dx) exists. Similarly, the same

condition means that X only has a finite number of jumps, which are larger

then 1 (|x| > 1). This means, that an infinite amount of small jumps can

occur, however the integrals in the Lévy-Khintchine formula still converge

due to the mentioned condition on the Lévy measure.

3.4 sdes driven by lévy processes and existence and unique-

ness of solutions

The existence of (unique) solutions for SDEs driven by Lévy processes

depends on regularity conditions on the parameters used in the SDE. We

first introduce the concepts of Lipschitz continuity and polynomial growth

for general functions. Then we proceed with introducing a suitable SDE
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system and state a Theorem on existence and uniqueness of a solution under

certain regularity conditions.

Definition 3.4.1. A function f : [0, T] ×Rd → Rd is said to be (globally)

Lipschitz (continuous), if there exists a positive constant L ∈ R, such that

‖ f (t, x)− f (t, y)‖ ≤ L‖x− y‖ (3.4.1)

holds for all t ∈ [0, T] and x, y ∈ Rd.

Definition 3.4.2. A function f : [0, T]×Rd → Rd is said to have polynomial

growth, if for some n there exists a positive constant C ∈ R, such that

sup
t∈[0,T]

‖ f (t, x)‖ ≤ C(1 + ‖x‖n) (3.4.2)

holds for all x ∈ Rd. We then say, that the function f belongs to the class

of functions F, written f ∈ F. The function f is said to have linear growth,

if (3.4.2) holds for n = 1.

Let us now introduce a general system of SDEs driven by Lévy processes.

Suppose that we are given a d-dimensional standard Ft-adapted Brownian

motion process w = (w(t), t ≥ 0) with w(t) = (w1(t), . . . , wd(t))T for each

t ≥ 0 and an independent Ft-adapted Poisson random measure N defined

on [0, ∞)×Rm with compensator N̂(dt, dy) = N(dt, dy)− ν(dy)dt where ν

is a Lévy measure. This system of SDEs can be described as follows:

dX = b(t, X(t−))dt + σ(t, X(t−))dw(t) +
∫
|y|<1

F(t, X(t−))yN̂(dt, dy)

(3.4.3)

+
∫
|y|>1

F(t, X(t−))yN(dt, dy),

where X and b are vectors of dimension d and σ is a d× d matrix, X(t−)
denotes X just before a jump time (assuming a jump time is occurring at t).

Further, F(t, x) = (Fij(t, x)) is a d×m-matrix. We can now consider (3.4.3)
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as an initial value problem with a fixed initial condition X(t0) = x, where

x ∈ Rd. Further, we make the following assumptions on the coefficients

of (3.4.3):

(i) Lipschitz condition: There exists a constant L > 0 such that,

‖b(t, x)− b(t, y)‖2 + ‖σ(t, x)− σ(t, y)‖2 (3.4.4)

+
∫

Rd
‖F(t, x)− F(t, y)‖2‖z‖2ν(dz) ≤ L‖x− y‖2

holds for all t ∈ [0, T] and x, y ∈ Rd and ‖ · ‖ is the n−dimensional

Euclidean norm.

(ii) Growth condition: There exists a constant C > 0 such that,

‖b(t, x)‖2 + ‖σ(t, x)‖2 +
∫

Rd
‖F(t, x)‖2‖z‖2ν(dz) ≤ C(1 + ‖x‖2)

(3.4.5)

holds for all x ∈ Rd.

Let Xt0,x be a Lévy procces solving the SDE system (3.4.3) and let us assume

that the conditions (3.4.4) and (3.4.5) hold. Then we can describe X0,X0 as

follows:

Xt0,x(t) = x +
∫ t

t0

b(s, X(s−))ds +
∫ t

t0

σ(s, X(s−))dw(s) (3.4.6)

+
∫ t

t0

∫
|y|<1

F(s, X(t−))yN̂(ds, dy)

+
∫ t

t0

∫
|y|>1

F(s, X(t−))yN(ds, dy).

We can now formulate the following theorem similar to [4, Theorem 6.2.3]

about the existence of a unique strong solution for the problem (3.4.3), which

we state here without proof, which can be found in [4].

Theorem 3.4.3. Assume that the coefficients of the SDE (3.4.3) follow the Lipschitz

and growth conditions (3.4.4) and(3.4.5). Then there exists a unique solution

X = (Xt)0≤t to the SDE (3.4.3) with initial condition X(t0) = x. Further, X is

adapted to the filtration (Ft, t ≥ 0) and càdlàg.
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3.5 mean–square and weak order convergence for numerical

methods

When simulating solutions of a SDE system such as (3.4.3), one is usually

interested in either the path of the trajectory or in the expected value of

some functional of the process. Numerical simulation methods are usually

based on discrete approximations of the continuous solution and, when

speaking about convergence in regard to these numerical methods, there are

commonly two main criteria used: mean–square and weak convergence (see

[92]).

Definition 3.5.1. Let (X(t),Ft), t ∈ [t0, T] be a solution of the SDE system

(3.4.3) and let Xk be its numerical approximation for the (time-)steps tk ∈
[t0, T], k = 0, . . . , N with the fixed step size h = tk+1 − tk. Then we say that

the mean–square order of convergence of this method is equal to p, if

(
E|X(tk)− Xk|2

) 1
2 ≤ Khp, (3.5.1)

where K is a positive constant independent of k and h.

Definition 3.5.2. Let (X(t),Ft), t ∈ [t0, T] be a solution of the SDE system

(3.4.3) and let Xk be its numerical approximation for the (time-)steps tk ∈
[t0, T], k = 0, . . . , N with the fixed step size h = tk+1 − tk. Then we say that

the weak order of convergence of this method is equal to p, if

|E(g(X(T)))−E(g(XN))| ≤ Khp, (3.5.2)

for g from a class of functions F and where K is a positive constant indepen-

dent of h.

We will focus on the weak order of convergence, as the main goal of this

part of the thesis is about solving a Dirichlet IPDE problem (which we

introduce in Chapter 4). Weak methods are sufficient in this case, as we are
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only interested in using numerical methods to find an approximation to the

expectation of a functional of the corresponding system of SDE to solve the

IPDE problem.



4
N U M E R I C A L M E T H O D S F O R I P D E P R O B L E M S A N D

L I T E R AT U R E R E V I E W

In this chapter, we focus on the probabilistic representation of the parabolic

solution of integro-partial differential equation (IPDE) problems. We are

interested in extending existing numerical schemes, in particular research

used for Dirichlet PDE problems [92, Algorithm 2 in Chapter 6.2], to the

Dirichlet IPDE case. For that reason, we explore on how to deal with finite

and infinite activity for Dirichlet (and Cauchy) IPDE problems. Firstly, we

will introduce the relevant problem in Section 4.1 and then review other

existing literature in Section 4.2.

4.1 the ipde problem

The main topic of this research is about solving the following IPDE problem.

Let G be a bounded domain in Rd, Q = [t0, T) × G be a cylinder in

Rd+1, Γ = Q̄ \ Q be the part of the cylinder’s boundary consisting of the

upper base and lateral surface, Gc = Rd \ Q be the complement of G and

Qc := (t0, T]× Gc ∪ {T} × Ḡ. Consider the Dirichlet problem for the integro-

partial differential equation (IPDE):

∂u
∂t

+ Lu + c(t, x)u + g(t, x) = 0, (t, x) ∈ Q,

u(t, x) = ϕ(t, x), (t, x) ∈ Qc,
(4.1.1)

31
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where the integro-differential operator L is of the form

Lu(t, x) : =
1
2

d

∑
i,j=1

aij(t, x)
∂2u

∂xi∂xj (t, x) +
d

∑
i=1

bi(t, x)
∂u
∂xi (t, x) (4.1.2)

+
∫

Rm

{
u
(
t, x + F(t, x)z

)
− u(t, x)

− 〈F(t, x)z,∇u(t, x)〉I(|z| ≤ 1)
}

ν(dz);

a(t, x) =
(
aij(t, x)

)
is a d× d-matrix; b(t, x) = (b1(t, x), . . . , bd(t, x))> is a d-

dimensional vector; c(t, x), g(t, x), and ϕ(t, x) are scalar functions; F(t, x) =(
Fij(t, x)

)
is a d×m-matrix; and ν(z), z ∈ Rm, is a Lévy measure such that∫

Rm(|z|2 ∧ 1)ν(dz) < ∞. We allow ν to be of infinite intensity, i.e. we may

have ν
(

B(0, r)
)
= ∞ for some r > 0, where as usual for x ∈ Rd and s > 0 we

write B(x, s) for the open ball of radius s centred at x.

When the solution u of (4.1.1) is regular enough, for example when

u ∈ C1,2
(
[t0, T]×Rd

)
,

the Feynman-Kac formula (see [23][Proposition 12.6] or references therein)

assures a probabilistic representation of the solution u(t, x) to (4.1.1) in terms

of the following system of Lévy-driven SDEs:

u(t, x) = E [ϕ (τt,x, Xt,x(τt,x))Yt,x,1(τt,x) + Zt,x,1,0(τt,x)] , (t, x) ∈ Q, (4.1.3)

where (Xt,x(s), Yt,x,y(s), Zt,x,y,z(s)) for s ≥ t, solves the system of SDEs con-

sisting of (5.1.1) and

dY = c(s, X(s−))Yds, Yt,x,y(t) = y, (4.1.4)

dZ = g(s, X(s−))Yds, Zt,x,y,z(t) = z, (4.1.5)

and τt,x = inf{s ≥ t : (s, Xt,x(s)) /∈ Q} is the first exit-time of the space-time

Lévy process (s, Xt,x(s)) from the space-time cylinder Q. To see why this
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holds, one may apply Ito’s lemma, see e.g. [4, Theorem 4.4.7], and the fact

that u solves (4.1.1) to prove that the process

u (t ∧ τt,x, Xt,x(t ∧ τt,x))Yt,x,1(t ∧ τt,x) + Zt,x,1,0(t ∧ τt,x),

is a martingale. The claimed formula follows by letting t→ ∞.

A weak-sense approximation (as described in Section 3.5) of the SDEs

together with the Monte Carlo technique gives us a numerical approach to

evaluating u(t, x), which is especially useful for higher-dimensional prob-

lems.

This introduced Dirichlet problem (4.1.1) is particularly interesting in

the context of financial products, when assuming that the underlying asset

follows some sort of jump process and there is various research into the field

of option pricing based on Lévy-type models [87, 23], and we illustrate this

in Section 6.4.

4.2 a literature review on solutions for ipde problems

In this section, we compare existing literature for different numerical meth-

ods to approximate solutions of problems where the underlying SDEs are

driven by Lévy processes with finite and infinite activity. We will first briefly

summarize existing methods for SDEs with noise driven by Wiener pro-

cesses and then give an extensive overview of literature in regard to finding

weak approximations for the solution of Dirichlet IPDE problems and the

corresponding SDEs driven by Lévy processes with finite and infinite activity.

First of all, there is an extensive range of research on numerical schemes for

SDEs [88, 69, 82, 91, 100, 60, 103, 93, 18, 72, 97, 70, 71, 90, 79] and references

therein, and it is necessary to highlight that our research focuses on Dirichlet

IPDE problems, whereas there is also some references made to the Cauchy

problem. The literature we review here covers both.
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There is a wide range of literature addressing numerical methods and

approximations for SDEs, [69] gives numerous schemes (e.g. Euler Scheme,

Order 2.0 Weak Taylor scheme) which deal with the case of SDEs driven

by a wide range of Lévy processes and give a broad overview of strong

and weak approximations. The authors of [92] describe a whole range of

numerical schemes for weak (and strong) approximations for SDEs driven

by Wiener processes. Moreover, they introduce various numerical methods

for SDEs which are suitable to solve Dirichlet problems (boundary value

problems) and also Chauchy problems (initial value problems). In particular,

an algorithm (Algorithm 2.1) for a simple random walk [91], which we will

extend to a general IPDE problem where the underlying noise is modelled

by Lévy processes with finite and infinite activity (see Chapter 5).

There has been a considerable amount of research in weak-sense numerical

methods for Lévy-type SDEs of finite and infinite activity (see [100, 60, 103,

93, 18, 72, 70, 71] and references therein), which follow similar approaches as

our research. A brief summary of literature for numerical methods for IPDE

problems can be found in Table 4.2.1. Protter and Talay [100] and Jacod et al.

[60] follow the traditional approach approximating the Lévy process using

an Euler scheme with a uniform grid. One problem of that approach is that

for general Lévy processes, there are no efficient algorithms to simulate the

increments of the Lévy process and secondly due to the use of a fixed grid,

the discretization error between two points can become large in cases of large

jumps. For Lévy processes of finite activity, Rubenthaler [103], Mordecki

at el [93] and other authors [18] introduce the idea of replacing the jump

part of the Lévy process with a suitable compound Poisson approximation.

In addition, they place the discretization points of the Euler scheme at the

jump times of the compound process to solve this problem. However, for

Lévy processes with large jump intensity this can cause problems due to

the singularity of the Lévy measure at zero. For the case of a Lévy process

with no diffusion part, Kohatsu-Higa and Tankov [72] develop the idea

of Rubenthaler [103] further and make use of the approach of Asmussen
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and Rosinski [5], which approximates small jumps with an appropriate

Brownian motion between the jump times. Additionally, they replace the

approximation of the solution of the continuous SDE between the jump times

with a suitable approximation, which leads to a lower discretization error

compared to [103].

Our approach is most closely related to [71], where Kohatsu-Higa et al.

introduce a more general class of high order approximation schemes for

Lévy processes with infinite activity, with the objective to design optimal

compound Poisson approximations. In contrast to previous work [93, 18, 72],

they introduce a scheme for Lévy process with a non-degenerate Brownian

motion part and combine developments for high order approximations of

the Brownian component of weak approximations for continuous SDEs (such

as [94]) with suitable jump adapted approximation schemes for pure jump

SDEs. Moreover, instead of following the idea of Asmussen and Rosinsiki

[5], they follow a moment-matching approach of [110] which introduces

an additional compound Poisson term to approximate the Lévy process

by a finite intensity Lévy process which incorporates all jumps lower than

a certain threshold. The main error estimate in [71] is dependent on the

intensity of the compound Poisson process λε, which only considers jumps

larger than ε. However, this dependency on epsilon is not explicitly given.

As we will see in Section 5, for certain choices of ε, in particular in the case

for infinite activity, the convergence can be very slow.

In this work, we combine the probabilistic representation approach (Feynman-

Kac formula) for the Dirichlet IPDE problem with the development of a new

numerical scheme (Algorithm 1) for a general class of Lévy-type processes.

We extend the ideas of [92] for Brownian motion to find weak approximation

schemes for the Lévy case. The idea of solving Dirichlet IPDE problems

following the Feynman-Kac approach, means that we need to simulate tra-

jectories for the corresponding SDEs driven by Lévy processes with finite

and infinite activity. As in [5, 72, 71], we replace small jumps (smaller than

ε) with an appropriate Brownian motion, which makes the numerical solu-
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tion of SDEs with infinite activity of the Lévy measure feasible in practice,

this also allows us to overcome the computationally difficulty of simulating

trajectories for these SDEs in the infinite activity case.

There are three main differences between our approach and that of [71].

First, we use restricted jump-adapted time-stepping while in [71] jump-

adapted time-stepping was used. When speaking about jump-adapted

time-stepping, we mean that time discretization points are located at jump

times τk and between the jumps the remaining diffusion process is effectively

approximated [72, 71]. By restricted jump-adapted time-stepping, we under-

stand the following. We fix a time-discretization step h > 0. If the jump time

increment δ for the next time step is less than h, we set the time increment

θ = δ, otherwise θ = h, i.e., our time steps are defined as θ = δ ∧ h. We

highlight that this is a different time-stepping strategy to commonly used

ones in the literature including the finite-activity case (i.e., jump-diffusion).

For example, in the finite activity case it is common [82, 93, 97] to simulate

τk before the start of simulations and then superimpose those random times

on a grid with some constant or variable finite, small time-step h. Our

time-stepping approach is more natural for the problem under consideration

than both commonly used strategies; its benefits are discussed in Section 5.3,

with the infinite activity case considered in more detail in Subsections 5.3.4

and 6.3. It is beneficial for accuracy restricting δ by h, when jumps are rare

(e.g. in the jump-diffusion case) and it is also beneficial for convergence

rates (measured in the average number of steps) in the case of α-stable Lévy

measures with α ∈ (1, 2) (see Sections 5.3 and 6). Additionally, by assuring

that the maximum step-size for one step is limited by h, we can avoid large

discretization errors in the Brownian motion part when jump times are far

apart.

Second, in comparison to [71, 70] we explicitly show (singular) dependence

of the numerical integration error of our algorithm on the parameter ε which

is the cut-off for small jumps replaced by the Brownian motion. While the

dependency of their error estimate mentions that it is dependent on ε, this
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dependency is not specified further. Here, we highlight the dependency

clearly in Section 5.3 and also analyse this singularity in depth numerically

in Chapter 6.

Third, in comparison with the literature we consider the Dirichlet problem

for IPDEs, though we also comment briefly on the Cauchy case on some

occasions. While the majority of the mentioned literature [100, 60, 103, 93] do

not address the connection of IPDE problems via the Feynman-Kac formula,

practically, it is a very useful connection, in particular with regard to related

problems in Finance, which we also discuss in Section 6.4.

Additionally, instead of following the approach using the Feynman-Kac

formula, one could also solve the IPDE problem (4.1.1) following the ap-

proach of finite difference methods [3, 24, 84, 114]. The methods developed

in Andersen and Andreasen [3] introduce extensions to the approach of

Dupire [37] which shows important model improvements, in particular in

regard to the implied volatility surface modelling. However, their approach

is limited to jump-diffusion models with finite activity. Cont and Volchkova

[24] describe a finite difference scheme for an IPDE problem in regard to op-

tion pricing theory. They propose an implicit finite difference scheme, which

in contrast to [3] shows a more rigorous analysis of consistency, stability, and

convergence and further, they also look at Lévy processes involving infinite

activity.

Another numerical method to approximate the solution to the initial

IPDE problem is by applying Fourier transform algorithms [74, 80]. The

authors [74] suggest that their approach using Wiener-Hopf factorization and

Fast Fourier Transform algorithms works well for Lévy processes with finite

and infinite activity. Compared to this, where we focus on a more general

case and handling higher dimensional problems, they focus in particular on

problems without diffusion process and on the case of lower dimension (i.e.

d = 1).

Depending on the underlying Lévy process, the Monte Carlo simulation

can be computationally expensive, one could also explore numerical opti-
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mization approaches [13, 99, 66, 67, 68] which aim to find bounds for the

corresponding expectation introduced through the Feynman-Kac formula.

In [66], the authors propose an optimization approach, where they use a

mathematical programming framework to compute upper and lower bounds

of the target expectation, whereby they first bound the considered expec-

tation at maturation T from one side and then optimise (i.e. minimise or

maximise) the other bound. While the authors need to make some limiting

assumptions on the functional form of the underlying functions and require

the Lévy measure to be in closed form, they do not require to simulate

sample paths of the underlying Lévy process, and hence do not need to

have the exact knowledge of increment distributions. In contrast, our ap-

proach requires knowledge of the underlying distributions to simulate the

sample paths with jumps. Using their approach, it is particularly useful in

settings where it is too expensive computationally or not possible to run MC

simulations. The authors of [67], also extend their general approach [66],

by employing tempering on bounding functions to avoid the polynomial

explosion to overcome a required moment condition, which ruled out SDEs

driven by stable Lévy processes, which can be dealt with in the approach

presented in this thesis.
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5
A S I M P L E S T R A N D O M WA L K F O R S O LV I N G T H E

D I R I C H L E T P R O B L E M F O R I P D E S

In this chapter, we introduce, prove and discuss the main theoretical con-

vergence results of the proposed restricted jump-adaptive time stepping

algorithm for the introduced IPDE problem in Section 4.1.

We first introduce some necessary preliminaries in Section 5.1. This is then

followed by an important ingredient of the method in Section 5.2, where we

approximate small jumps by a diffusion process. In the last Section 5.3 of

this chapter, we present the introduced algorithm, investigate the one-step

error and global error of said algorithm and prove weak convergence with

particular focus on the case of infinite intensity of jumps. The suggested

algorithm and in-depth analysis are published in [30].

5.1 preliminaries to the ipde problem (4 .1 .1)

Let (Ω,F , {Ft}t0≤t≤T , P) be a filtered probability space. The operator L

defined in (4.1.2), on a bounded domain, is the generator of the d-dimensional

process Xt0,x(t) given by

Xt0,x(t) = x +
∫ t

t0

b(s, X(s−))ds +
∫ t

t0

σ(s, X(s−))dw(s) (5.1.1)

+
∫ t

t0

∫
Rd

F(s, X(s−))zN̂(dz, ds),

40
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where the d× d matrix σ(s, x) is defined through σ(s, x)σ>(s, x) = a(s, x);

w(t) = (w1(t), . . . , wd(t))> is a standard d-dimensional Wiener process; and

N̂ is a Poisson random measure on [0, ∞) × Rm with intensity measure

ν(dz)× ds,
∫

Rm(|z|2 ∧ 1)ν(dz) < ∞, and compensated small jumps, i.e.,

N̂ ([0, t]× B) =
∫
[0,t]×B

N(dz, ds)− tν(B ∩ {|z| ≤ 1}),

for all t ≥ 0 and B ∈ B
(
Rm).

Remark 5.1.1. Often [4, 100] a simpler model of the form

X(t) = x +
∫ t

t0

F(s, X(s−))dZ(s), (5.1.2)

where Z(t), t ≥ t0, is an m-dimensional Lévy process with the characteristic

exponent

Ψ(ξ) = i〈µ, ξ〉 − 1
2
〈ξ, σξ〉+

∫
|z|≤1

[
ei〈ξ,z〉 − 1− i〈ξ, z〉

]
ν(dz)

+
∫
|z|>1

[
ei〈ξ,z〉 − 1

]
ν(dz),

is considered instead of the general SDEs (5.1.1). The equation (5.1.2) is

obtained as a special case of (5.1.1) by setting b(t, x) = µF(t, x) and σ(t, x) =

σF(t, x).

Therefore, we can see that if one can simulate trajectories of

{(s, Xt,x(s), Yt,x,1(s), Zt,x,1,0(s)); s ≥ 0}

then the solution of the Dirichlet problem for IPDE (4.1.1) can be estimated

by applying the Monte Carlo technique to (4.1.3). This approach however is

not generally implementable for Lévy measures of infinite intensity, that is

when ν
(

B(0, r)
)
= ∞ for some r > 0. The difficulty arises from the presence

of an infinite number of small jumps in any finite time interval, and can

be overcome by replacing these small jumps by an appropriate diffusion
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exploiting the idea of the method developed in [72, 5], which we apply here.

Alternatively, the issue can be overcome if one can simulate directly from the

increments of Lévy processes. We will not discuss this case in this research

as we only assume that one has access to the Lévy measure.

5.2 approximation of small jumps by diffusion

We will now consider the approximation of (5.1.1) discussed above, where

small jumps are replaced by an appropriate diffusion. In the case of the

whole space (the Cauchy problem for a IPDE) such an approximation was

considered in [72, 5], or see also [30][Sec. 3.4.], but we only consider the

Dirichlet problem here.

Let γε be an m-dimensional vector with the components

γi
ε =

∫
ε≤|z|≤1

ziν(dz); (5.2.1)

and Bε is an m×m matrix with the components

Bij
ε =

∫
|z|<ε

zizjν(dz), (5.2.2)

while βε be obtained from the formula βεβ>ε = Bε. Note that |Bij
ε | (and hence

also the elements of βε) are bounded by a constant independent of ε thanks

to the Lévy measure definition.

Remark 5.2.1. In many practical situations (see e.g. [23]), where the depen-

dence among the components of X(t) introduced through the structure of

the SDEs is enough, we can allow the components of the driving Poisson

measure to be independent. This amounts to saying that ν is concentrated

on the axes, and as a result Bε will be a diagonal matrix.
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We shall consider the modified jump-diffusion X̃t0,x(t) = X̃ε
t0,x(t) defined

as

X̃t0,x(t) = x +
∫ t

t0

[
b(s, X̃(s−))− F(s, X̃(s−))γε

]
ds +

∫ t

t0

σ(s, X̃(s−))dw(s)

(5.2.3)

+
∫ t

t0

F(s, X̃(s−))βεdW(s) +
∫ t

t0

∫
|z|≥ε

F(s, X̃(s−))zN(dz, ds),

where W(t) is a standard m-dimensional Wiener process, independent of N

and w. We observe that, in comparison with (5.1.1), in (5.2.3) jumps less than

ε in magnitude are replaced by the additional diffusion part. In this way,

the new Lévy measure has finite activity allowing us to simulate its events

exactly, i.e. in a practical way.

Therefore, we can approximate the solution of u(t, x) the IPDE (4.1.1) by

u(t, x) ≈ uε(t, x)

:= E
[

ϕ
(

τ̃t,x, X̃t,x(τ̃t,x)
)

Ỹt,x,1(τ̃t,x) + Z̃t,x,1,0(τ̃t,x)
]

, (t, x) ∈ Q,

(5.2.4)

where τ̃t,x = inf{s ≥ t : (s, X̃t,x(s)) /∈ Q} is the first exit time of the

space-time Lévy process (s, X̃t,x(s)) from the space-time cylinder Q and(
X̃t,x(s), Ỹt,x,y(s), Z̃t,x,y,z(s)

)
s≥0

solves the system of SDEs consisting of (5.2.3)

along with

dỸ = c(s, X̃(s−))Ỹds, Ỹt,x,y(t) = y, (5.2.5)

dZ̃ = g(s, X̃(s−))Ỹds, Z̃t,x,y,z(t) = z. (5.2.6)

Since the new Lévy measure has finite activity, we can derive a constructive

weak scheme for (5.2.3), (5.2.5)-(5.2.6) (see Section 5.3). By using this method

together with the Monte Carlo technique, we will arrive at an implementable

approximation of uε(t, x) and hence of u(t, x).
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We will next show that indeed uε defined in (5.2.4) is a good approxi-

mation to the solution of (4.1.1). Before proceeding, we need to formulate

appropriate assumptions.

5.2.1 Assumptions

To begin with, we make the following assumptions on the coefficients of

the problem (4.1.1) which will guarantee, see e.g. [4], that the SDEs (5.1.1),

(4.1.4)-(4.1.5) and (5.2.3), (5.2.5)-(5.2.6) have unique adapted, càdlàg solutions

with finite moments.

Assumption 5.2.1. (Lipschitz condition) There exists a constant K > 0 such that

for all x1, x2 ∈ Rd and all t ∈ [t0, T],

∥∥b(t, x1)− b(t, x2)
∥∥2

+
∥∥σ(t, x1)− σ(t, x2)

∥∥2

+ ‖c(t, x1)− c(t, x2)‖2 + ‖g(t, x1)− g(t, x2)‖2

+
∫

Rd
‖F(t, x1)− F(t, x2)‖2|z|2ν(dz) ≤ K‖x1 − x2‖2. (5.2.7)

Assumption 5.2.2. (Growth condition) There exists a constant K > 0 such that

for all x ∈ Rd and all t ∈ [t0, T],

∥∥b(t, x)
∥∥2

+
∥∥σ(t, x)

∥∥2
+ ‖g(t, x)‖2 +

∫
Rd
‖F(t, x)‖2|z|2ν(dz) ≤ K(1 + ‖x‖)2,

(5.2.8)

‖c(t, x)‖ ≤ K. (5.2.9)

Remark 5.2.2. Since G is bounded, in practice the above assumptions in the

space variable are only required in Ḡ. We chose to impose them in Rd to

simplify the presentation as it allows us to construct a global solution to the

SDEs (5.2.3), rather than having to deal with local solutions built up to the

exit time from the domain. In practice the assumption can be bypassed by
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multiplying the coefficients with a bump function that vanishes outside G,

without affecting the value of (4.1.3).

In order to streamline the presentation and avoid lengthy technical discus-

sions (see Remarks 5.2.3 and 5.2.4), we will make the following assumption

regarding the regularity of solutions to (4.1.1).

Assumption 5.2.3. The Dirichlet problem (4.1.1) admits a classical solution u(·, ·) ∈
Cl,n([t0, T]×Rd) with some l ≥ 1 and n ≥ 2.

In addition to the IPDE problem (4.1.1), we also consider the IPDE problem

for uε from (5.2.4):

∂uε

∂t
+ Lεuε + c(t, x)uε + g(t, x) = 0, (t, x) ∈ Q, (5.2.10)

uε(t, x) = ϕ(t, x), (t, x) ∈ Qc,

where

Lεv(t, x) : =
1
2

d

∑
i,j=1

[
aij(t, x) +

(
F(t, x)Bε(t, x)F>(t, x)

)ij
]

∂2v
∂xi∂xj (t, x)

(5.2.11)

+
d

∑
i=1

(
bi(t, x)−

m

∑
j=1

Fij(t, x)γj
ε

) ∂v
∂xi (t, x)

+
∫
|z|≥ε

{
v
(
t, x + F(t, x)z

)
− v(t, x)

}
ν(dz).

Again, for simplicity (but see Remark 5.2.3), we impose the following

conditions on the solution uε of the above Dirichlet problem.

Assumption 5.2.4. The auxiliary Dirichlet problem (5.2.10) admits a classical

solution uε(·, ·) ∈ Cl,n([t0, T]×Rd) with some l ≥ 1 and n ≥ 2.

Finally, we also require that uε and its derivatives do not grow faster than

a polynomial function at infinity.
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Assumption 5.2.5 (Smoothness and growth). There exist constants K > 0 and

q ≥ 1 such that for all x ∈ Rd, all t ∈ [t0, T] and ε > 0, the solution uε of the

IPDE problem (5.2.10) and its derivatives satisfy

∥∥∥ ∂l+j

∂tl∂xi1 · · · ∂xij
uε(t, x)

∥∥∥ ≤ K(1 + ‖x‖q), (5.2.12)

where 0 ≤ 2l + j ≤ 4, ∑
j
k=1 ik = j, and ik are integers from 0 to j.

Remark 5.2.3. Sufficient conditions guaranteeing Assumptions 5.2.3, 5.2.4

and 5.2.5 consist in sufficient smoothness of the coefficients, the boundary

∂G, and the function ϕ and in appropriate compatibility of ϕ and g and also

of the integral operator (see e.g. [45, 59, 89]).

Remark 5.2.4. The main goal of this research is to present the numeri-

cal method and study its convergence under ‘good’ conditions when its

convergence rates are optimal (i.e., highest possible). As usual, in these

circumstances, the conditions (here Assumptions 5.2.3, 5.2.4, and 5.2.5) are

somewhat restrictive. See Theorem 3.3 in [45, p. 93], which indicates suffi-

cient conditions for Assumption 5.2.3 to hold. If one drops the compatibility

condition (3.11) in Theorem 3.3 of [45, p. 93], then, as in the diffusion case,

the smoothness of the solution will be lost through the boundary of Q at the

terminal time T. This affects only the last step of the method and the proof

can be modified (see such a recipe in the case of the Neumann problem and

diffusion in e.g. [79]), but we do not include such complications here for

transparency of the proofs. Further, in the case of an α-stable Lévy process

with α ∈ (1, 2) spatial derivatives of u(t, x) may blow up near the boundary

∂G, the blow up is polynomial with the power dependent on α if the integral

operator does not satisfy some compatibility conditions (see the discussion in

[45, p. 96]). This situation requires further analysis of the proposed method,

which is beyond the scope of this research.
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5.2.2 Closeness of uε(t, x) and u(t, x)

In this section, we now state and refer to a proof for the theorem on closeness

of uε(t, x) and u(t, x). In what follows we use the same letters K and C for

various positive constants independent of x, t, and ε.

Theorem 5.2.5. Let Assumptions 5.2.1, 5.2.2 and 5.2.3 hold, the latter with l = 1

and m = 3. Then for 0 ≤ ε < 1

|uε(t, x)− u(t, x)| ≤ K
∫
|z|≤ε
|z|3ν(dz), (t, x) ∈ Q, (5.2.13)

where K > 0 does not depend on t, x, ε.

We omit the proof for this theorem here, but refer to it in [30][Thm 2.1].

Example 5.2.1 (Tempered α-stable Process). For α ∈ (0, 2) and m = 1, con-

sider an α-stable process with Lévy measure given by ν(dz) = |z|−1−αdz.

Then ∫
|z|≤ε
|z|3ν(dz) = 2

ε3−α

3− α
.

Similarly, for a tempered stable distribution which has Lévy measure given

by

ν(dz) =
(C+e−λ+z

z1+α
I(z > 0) +

C−e−λ−|z|

|z|1+α
I(z < 0)

)
dz,

for α ∈ (0, 2) and C+, C−, λ+, λ− > 0 we find that the error from approx-

imating the small jumps by diffusion as in Theorem 5.2.5 is of the order

O(ε3−α).

5.3 weak approximation of jump-diffusions in bounded do-

mains

In this section we suggest and investigate a numerical algorithm which

weakly approximates the solutions of the jump-diffusion (5.2.3), (5.2.5)-(5.2.6)

with finite intensity of jumps in a bounded domain, i.e. approximates uε(t, x)
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from (5.2.4). In the first part, in Section 5.3.1 we formulate the algorithm

based on a simplest random walk. Then, we analyse the one-step error of the

algorithm in Section 5.3.2 and the global error in Section 5.3.3. In Section 5.3.4

we combine the convergence result of Section 5.3.3 with Theorem 5.2.5 to get

error estimates in the case of infinite activity of jumps.

5.3.1 Algorithm

In what follows we also require the following to hold.

Assumption 5.3.1 (Lévy measure). There exists a constant K > 0

∫
Rm
|z|pν(dz) ≤ K

for up to a sufficiently large p ≥ 2.

This is a natural assumption since Lévy measures of practical interest

(see e.g. [23] and examples here in Example 5.2.1 and Section 6) have this

property.

Let us describe an algorithm for simulating a Markov chain that approxi-

mates a trajectory of (5.2.3), (5.2.5)-(5.2.6). In what follows we assume that

we can exactly sample the intervals δ between consecutive jump times with

the intensity

λε :=
∫
|z|>ε

ν(dz) (5.3.1)

and jump sizes Jε distributed according to the density

ρε(z) :=
ν(z)I(|z| > ε)

λε
. (5.3.2)

Remark 5.3.1. There are known methods for simulating jump times and

sizes for many standard distributions. In general, if there exists an explicit

expression for the jump size density, one can construct a rejection method to
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sample jump sizes. An overview with regard to simulation of jump times

and sizes can be found in [23, 32].

Thanks to Assumption 5.3.1, we have

E [|Jε|p] ≡
1

λε

∫
|z|>ε
|z|pν(dz) ≤ K

λε
(5.3.3)

with K > 0 being independent of ε and p ≥ 2. We also note that

|γε|2
λε
≤ K, (5.3.4)

where K > 0 is a constant independent of ε, since by the Cauchy-Schwarz

inequality

|γε|2
λε
≤
(∫

ε<|z|<1

|z|√
λε

ν(dz)
)2

≤
∫

ε<|z|<1

|z|2
λε

ν(dz)× λε

≤
∫

0<|z|<1
|z|2ν(dz) < ∞

thanks to the Lévy measure definition.

We can now describe the algorithm. Fix a time-discretization step h > 0

and suppose the current position of the chain is (t, x, y, z). If the jump time

increment δ < h, we set θ = δ, otherwise θ = h, i.e. θ = δ ∧ h.

In the case θ = h, we apply the weak explicit Euler approximation with

the simplest simulation of noise to the system (5.2.3), (5.2.5)-(5.2.6) with no

jumps:

X̃t,x(t + θ) ≈ X = x + θ · (b(t, x)− F(t, x)γε)

+
√

θ · (σ(t, x) ξ + F(t, x)βε η) , (5.3.5)

Ỹt,x,y(t + θ) ≈ Y = y + θ · c(t, x) y , (5.3.6)

Z̃t,x,y,z(t + θ) ≈ Z = z + θ · g(t, x) y , (5.3.7)

where ξ = (ξ1, . . . , ξd)ᵀ, η = (η1, . . . , ηm)ᵀ, with ξ1, . . . , ξd and η1, . . . , ηm

mutually independent random variables, taking the values ±1 with equal
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probability. In the case of θ < h, we replace (5.3.5) by the following explicit

Euler approximation

X̃t,x(t + θ) ≈ X = x + θ · (b(t, x)− F(t, x)γε)

+
√

θ · (σ(t, x) ξ + F(t, x)βε η) + F(t, x)Jε. (5.3.8)

Let (t0, x0) ∈ Q. We aim to find the value uε(t0, x0), where uε(t, x) solves

the problem (5.2.10). Introduce a discretization of the interval [t0, T], for

example the equidistant one:

h := (T − t0)/L.

To approximate the solution of the system (5.2.3), we construct a Markov

chain (ϑk, Xk, Yk, Zk) which stops at a random step κ when (ϑk, Xk) exits the

domain Q. The algorithm is formulated as Algorithm 1 below.

Remark 5.3.2. If λε is large so that 1 − e−λεh is close to 1, then Ik = 1

(i.e., jump happens) is almost on every time step. In this situation it is

computationally beneficial to modify Algorithm 1 in the following way:

instead of sampling both Ik and θk, sample δk according to the exponential

distribution with parameter λε and set θk = δk ∧ h and Ik = 0 if θk < h, else

Ik = 0.

Remark 5.3.3. We note [91, 92] that in the diffusion case (i.e., when there

is no jump component in the noise which drives SDEs) solving Dirichlet

problems for parabolic or elliptic PDEs requires to complement a random

walk inside the domain G with a special approximation near the boundary

∂G. In contrast, in the case of Dirichlet problems for IPDEs we do not

need a special construction near the boundary since the boundary condition

is defined on the whole complement Gc. Here, when the chain Xk exits

G, we know the exact value of the solution uε(ϑ̄κ, Xκ) = ϕ(ϑ̄κ, Xκ) at the

exit point (ϑ̄κ, Xκ), while in the diffusion case when a chain exits G, we

do not know the exact value of the solution at the exit point and need an
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Algorithm 1 Algorithm for (5.2.3), (5.2.5)-(5.2.6).
Output: ϑ̄κ, Xκ, Yκ, Zκ

1: Initialize: ϑ0 = t0, X0 = x0, Y0 = 1, Z0 = 0, k = 0.
2: while ϑk < T or Xk ∈ G do
3: Simulate: ξk and ηk with i.i.d. components taking values ±1 with

probability 1/2 and independently Ik ∼ Bernoulli
(
1− e−λεh).

4: if Ik = 0, then
5: Set: θk = h
6: Evaluate: Xk+1, Yk+1, Zk+1 according to (5.3.5) − (5.3.7) with

t = ϑk, θ = θk, ξ = ξk, η = ηk, x = Xk, y = Yk, z = Zk.
7: else

8: Sample: θk according to the density
λεe−λεx

1− e−λεh with finite support

[0, h].
9: Sample: jump size Jε,k according to the density (5.3.2).

10: Evaluate: Xk+1, Yk+1 and Zk+1 according to (5.3.8), (5.3.6), (5.3.7)
with t = ϑk, θ = θk, ξ = ξk, η = ηk, Jε = Jε,k, x = Xk, y = Yk, z = Zk.

11: end if
12: Set: ϑk+1 = ϑk + θk and k = k + 1.
13: end while
14: Set: Xκ = Xk, Yκ = Yk, Zκ = Zk, κ = k, ϑκ = ϑk.
15: if ϑκ < T then Set: ϑ̄κ = ϑκ
16: else Set: ϑ̄κ = T
17: end if

approximation. Due to this fact, Algorithm 1 is somewhat simpler than

algorithms for Dirichlet problems for parabolic or elliptic PDEs (cf. [91, 92]

and references therein).

5.3.2 One-step error

In this section we consider the one-step error of Algorithm 1. The one step

of this algorithm takes the form for (t, x) ∈ Q :

X = x + θ (b(t, x)− F(t, x)γε) +
√

θ (σ(t, x)ξ + F(t, x)βεη)

+ I(θ < h)F(t, x)Jε, (5.3.9)

Y = y + θc(t, x)y, (5.3.10)

Z = z + θg(t, x)y. (5.3.11)
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Before we state and prove an error estimate for the one-step of Algorithm 1,

we need to introduce some additional notation. For the ease of notation let us

write b = b(t, x), σ = σ(t, x), F = F(t, x), g = g(t, x), c = c(t, x), J = Jε. Let

us define the intermediate points Qi and their differences ∆i, for i = 1, . . . , 4:

∆1 = θ1/2 [σξ + Fβεη] , (5.3.12)

∆2 = θ [b− Fγε] ,

∆3 = I(θ < h)FJ,

Q1 = x + ∆1 + ∆2 + ∆3 = X,

Q2 = x + ∆2 + ∆3,

Q3 = x + ∆3,

Q4 = x,

where x ∈ G. Note that Qi, i = 1, . . . , 3, can be outside G.

Lemma 5.3.4 (Moments of intermediate points Qi). Under Assumptions 5.2.1

and 5.3.1, there is K > 0 independent of ε and h such that for p ≥ 1:

E
[
|Qi|2p∣∣θ, t, x

]
≤ K(1 + θ2p|γε|2p), i = 1, 2, (5.3.13)

E
[
|Qi|2p∣∣θ, t, x

]
≤ K, i = 3, 4, (5.3.14)

where Qi are defined in (5.3.12).

Proof. It is not difficult to see that the points Qi, i = 1, 2, are of the following

form

Qi = x+ c1θ1/2 [σ(t, x)ξ + F(t, x)βεη]+ θ [b(t, x)− F(t, x)γε]+ I(θ < h)F(t, x)Jε,

where c1 is either 0 or 1. It is obvious that ξ and η and their moments are all

bounded. The functions b(t, x), σ(t, x) and F(t, x) are bounded as (t, x) ∈ Q,

and for x ∈ G, |x|2p is also bounded. Recall that sufficiently high moments
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of Jε are bounded as in (5.3.3). Then, using the Cauchy-Schwarz inequality,

we can show that

E
[
|Qi|2p∣∣θ, t, x

]
≤ |x|2p + Kθp + Kθ2p

[
1 + |γε|2p

]
+ KI(θ < h)E

[
|Jε|2p

]
≤ K(1 + θ2p|γε|2p).

Hence, we obtained (5.3.13). The bound (5.3.14) is shown analogously.

We will need the following technical lemma.

Lemma 5.3.5 (Moments of θ). For integer p ≥ 2, we have

E [θp] ≤ K
1− e−λεh(1 + λεh)

λ
p
ε

, (5.3.15)

where K > 0 depends on p but is independent of λε and h.

Proof. The proof is by induction. By straightforward calculations, we get

E
[
θ2
]
= λε

∫ h

0
t2e−λεtdt + λε

∫ ∞

h
h2e−λεtdt

=
[
−h2e−λεt

]t=∞

t=h
+
[
−t2e−λεt

]t=h

t=0
+ 2

∫ h

0
te−λεtdt

= 2

([
− t

λε
e−λεt

]t=h

t=0
+

1
λε

∫ h

0
e−λεtdt

)

= 2
(
− h

λε
e−λεh − 1

(λε)2

[
e−λεt

]t=h

t=0

)
= 2

1− e−λεh(1 + λεh)
λ2

ε
.

Then assuming that (5.3.15) is true for some integer p ≥ 2, we obtain

E
[
θp+1

]
= λε

∫ h

0
tp+1e−λεtdt + hp+1λε

∫ ∞

h
e−λεtdt

= (p + 1)
∫ h

0
tpe−λεtdt ≤ p + 1

λε

[
λε

∫ h

0
tpe−λεtdt + hpλε

∫ ∞

h
e−λεtdt

]
=

p + 1
λε

E [θp] ≤ K (p + 1)
1− e−λεh(1 + λεh)

λ
p+1
ε

.
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Therefore, as (5.3.15) holds for p + 1, hence by induction it holds for all

p ≥ 2.

Now we prove an estimate for the one-step error.

Theorem 5.3.6 (One–step error of Algorithm 1). Under Assumption 5.2.4

with l = 2, m = 4 and Assumptions 5.2.1, 5.2.5 and 5.3.1 the one–step error of

Algorithm 1 given by

R(t, x, y, z) := uε(t + θ, X)Y + Z− uε(t, x)y− z

satisfies the bound

∣∣E[R(t, x, y, z)]
∣∣ ≤ K(1 + |γε|2)

1− e−λεh(1 + λεh)
λ2

ε
y, (5.3.16)

where K > 0 is a constant independent of h and ε.

Proof. For any smooth function v(t, x), we write Dlvn = (Dlv)(t, Qn) for the

l-th time derivative and (Dk
l v)(t, x)[ f1, . . . , fk] for the l-th time derivative of

the k-th spatial derivative evaluated in the directions f j. For example, if k = 2

and l = 1,

D2
1v[ f1, f2] =

d

∑
i=1

d

∑
j=1

f1,i f2,j
∂3v

∂t∂xi∂xj
.

We will also use the following short notation

Dk
l vi[ f1, . . . , fk] := (Dk

l v)(t, Qi)[ f1, . . . , fk].

The aim of this theorem is to achieve an error estimate explicitly capturing

the (singular) dependence of the one-step error on ε. Therefore, we split the

error into several parts according to the intermediate points Qi defined in

(5.3.12).

Using (5.3.9) and (5.3.12), we have

uε(t + θ, X) = uε(t + θ, Q1)
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= uε
(

t + θ, x + I(θ < h)FJ + θ(b− Fγε) + θ1/2(σξ + Fβεη)
)

= uε
(

t + θ, x + ∆1 + ∆2 + ∆3

)
.

To precisely account for the factor γε and powers of θ in the analysis of the

one-step error, we use multiple Taylor expansions of uε(t + θ, X). We obtain

uε(t + θ, X) = uε(t, Q1) + θD1uε
1 + R11 (5.3.17)

= uε(t, Q2) + D1uε
2[∆1] +

1
2

D2uε
2[∆1, ∆1]

+
1
6

D3uε
2[∆1, ∆1, ∆1] + θD1uε

2 + θD1
1uε

2[∆1]

+ R11 + R12 + R13

= uε(t, Q3) + D1uε
3[∆2] + D1uε

2[∆1] +
1
2

D2uε
3[∆1, ∆1]

+
1
6

D3uε
2[∆1, ∆1, ∆1] + θD1uε

3 + θD1
1uε

2[∆1] + R11 + R12

+ R13 + R14 + R15 + R16

= uε(t, Q3) + D1uε
4[∆2] + D1uε

2[∆1] +
1
2

D2uε
4[∆1, ∆1]

+
1
6

D3uε
2[∆1, ∆1, ∆1] + θD1uε

4 + θD1
1uε

2[∆1] + R1,

where the remainders are as follows

R11 =
1
2

θ2
∫ 1

0
sD2uε

(
t + (1− s)θ, Q1

)
ds,

R12 =
1
24

∫ 1

0
s3D4uε(t, sQ2 + (1− s)Q1)[∆1, ∆1, ∆1, ∆1]ds,

R13 =
1
2

θ
∫ 1

0
s2D2

1uε(t, sQ2 + (1− s)Q1)[∆1, ∆1]ds,

R14 =
1
2

∫ 1

0
sD2uε(t, s(Q3 + (1− s)Q2)[∆2, ∆2]ds,

R15 =
1
2

∫ 1

0
s2D3uε(t, s(Q3) + (1− s)Q2)[∆1, ∆1, ∆2]ds,

R16 = θ
∫ 1

0
sD1

1uε(t, s(Q3) + (1− s)Q2)[∆2]ds,

R17 =
∫ 1

0
sD2uε(t, s(Q4) + (1− s)Q3)[∆2, ∆3]ds,

R18 =
1
2

∫ 1

0
sD3uε(t, s(Q4) + (1− s)Q3)[∆1, ∆1, ∆3]ds,
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R19 = θ
∫ 1

0
sD1

1uε(t, s(Q4) + (1− s)Q3)[∆3]ds,

R1 = R11 + R12 + R13 + R14 + R15 + R16 + R17 + R18 + R19.

Using (5.3.17), (5.3.10)-(5.3.11), and the fact that ξ and η have mean zero and

that components of ξ, η, θ, J are mutually independent, we obtain

E[uε(t + θ, X)Y + Z] (5.3.18)

= E
[ (

uε(t, Q3) + D1uε
4[∆2] +

1
2

D2uε
4[∆1, ∆1] + θD1uε

4

)
(y + θcy)

+ z + θgy + y(1 + θc)R1

]
.

The following elementary formulas are needed for future calculations:

E
[

D2uε[∆1, ∆1]|θ
]

(5.3.19)

= θ
d

∑
i,j=1

[
aij(t, x) +

(
F(t, x)Bε(t, x)F>(t, x)

)ij
]

∂2uε

∂xi∂xj

=: θ(a + FBεFT) : ∇∇uε,

uε(t, Q3)− uε(t, x) = uε(t, x + I(θ < h)FJ)− uε(t, x)

= I(θ < h)[uε(t, x + FJ)− uε(t, x)],

E[θ] =
1− e−λεh

λε
,

E[θ2] = 2
1− e−λεh(1 + λεh)

λ2
ε

,

E[I(θ < h)] = 1− e−λεh,

E[I(θ < h)θ] =
1− e−λεh(1 + λεh)

λε
.

Also, E[v(J)] for some v(z) will mean

E[v(J)] = E[v(Jε)] =
1

λε

∫
|s|>ε

v(s)ν(ds).
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Noting that uε
4 = uε(t, x) = uε and using (5.3.18), (5.3.12), (5.3.19) and

(5.2.10), we obtain

E [R] := E
[
uε(t + θ, X)Y + Z− uεy− z

]
= E[θ

(
D1uε + D1uε[b− Fγε] +

1
2
(a + FBεFT) : ∇∇uε

)
(y + θcy) + θgy

+ uε(t, x + I(θ < h)FJ)(y + θcy)− uεy
]
+ yE[(1 + θc)R1]

= E[θ
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε + cuε + g

)
y

+ [uε(t, x + I(θ < h)FJ)− uε)]y

+ θ2
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε

)
cy

+ θ [uε(t, x + I(θ < h)FJ)− uε] cy
]
+ yE[(1 + θc)R1]

= E[θ
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε + cuε + g

)
y

+ I(θ < h)[uε(t, x + FJ)− uε)]y

+ θ2
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε

)
cy

+ θI(θ < h)[uε(t, x + FJ)− uε]cy] + yE[(1 + θc)R1]

= E[θ
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε + cuε + g

)
y]

+ E [I(θ < h)[uε(t, x + FJ)− uε(t, x)]y] + yE[R1(1 + θc) + R2]

=
1− e−λεh

λε

(
D1uε + D1uε[b− Fγε] +

1
2
(a + FBεFT) : ∇∇uε

+ cuε(t, x) + g
)

y

+
(

1− e−λεh
)

E [uε(t, x + FJ)− uε(t, x)] y + yE[R0]

=
1− e−λεh

λε

(
D1uε + D1uε[b− Fγε] +

1
2
(a + FBεFT) : ∇∇uε

+ cuε(t, x) + g
)

y

+
1− e−λεh

λε

∫
|s|≥ε

{uε(t, x + Fs)− uε(t, x)}ν(ds)y + yE[R0]

= yE[R0],
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where

R0 = R1(1 + θc) + R2,

R2 = R21 + R22,

and

R21 = θ2
(

D1uε + D1uε[b− Fγε] +
1
2
(a + FBεFT) : ∇∇uε

)
c,

R22 = θI(θ < h)[uε(t, x + FJ)− uε(t, x)]c.

It is clear that many of the terms in R are only non–zero in the case θ < h,

i.e. when a jump occurs. We rearrange the terms in R0 according to their

degree in θ:

R0 = R17 + R18 + R19 + R22︸ ︷︷ ︸
I(θ < h)θ-terms

+ R11 + R12 + R13 + R14 + R15 + R16 + R21︸ ︷︷ ︸
θ2 - terms

+ θc(R17 + R18 + R19)︸ ︷︷ ︸
(I(θ < h)θ2-terms

+ θc(R11 + R12 + R13 + R14 + R15 + R16)︸ ︷︷ ︸
θ3 - terms

Now to estimate the terms in the error R0, we observe that

(i)
∫
|s|>ε sν(ds) = γε +

∫
|s|>1 sν(ds) with the latter integral bounded and,

in particular, |E[J]| ≤ K(1 + |γε|)/λε;

(ii) E
[
|J|2p], p ≥ 1, are bounded by K/λε (see (5.3.3));

(iii) the terms R17, R18, R19, R21 and R22 contain derivatives of uε evaluated

at or between the points Q3 and Q4 and in their estimation Assump-

tion 5.2.5 and (5.3.14) from Lemma 5.3.4 are used;

(iv) the terms R11, R12, R13, R14, R15 and R16 contain derivatives of uε

evaluated at or between the points Q1 and Q2 and in their estimation

Assumption 5.2.5, (5.3.13) from Lemma 5.3.4, and Lemma 5.3.5 are

used;

(v) γ2
ε/λε is bounded by a constant independent of ε.
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As a result, we obtain

∣∣∣E[R17 + R18 + R19 + R22
]∣∣∣ ≤ K1

(1 + |γε|2)
λε

E [I(θ < h)θ] ,∣∣∣E[θ(R17 + R18 + R19)
]∣∣∣ ≤ K2

(1 + |γε|2)
λε

E
[
I(θ < h)θ2

]
≤ K3

(1 + |γε|2)
λε

E [I(θ < h)θ] ,∣∣∣E[(R11 + R12 + R13 + R14 + R15 + R16 + R21)
]∣∣∣

≤ K4(1 + |γε|2)(E
[
θ2
]
+ |γε|qE

[
θq+2

]
)

≤ K5(1 + |γε|2)
1− e−λεh(1 + λεh)

λ2
ε

,

and

∣∣∣E[θ(R11 + R12 + R13 + R14 + R15 + R16)
]∣∣∣

≤ K6(1 + |γε|2)(E
[
θ3
]
+ |γε|qE

[
θq+3

]
)

≤ K7(1 + |γε|2)
1− e−λεh(1 + λεh)

λ3
ε

≤ K8(1 + |γε|2)
1− e−λεh(1 + λεh)

λ2
ε

,

where all constants Ki > 0 are independent of h and ε and q ≥ 1.

Overall we obtain

∣∣∣E[R]
∣∣∣ ≤ (K1 + K3)

(1 + |γε|2)
λε

yE [I(θ < h)θ]

+ (K5 + K8)(1 + |γε|2)y
1− e−λεh(1 + λεh)

λ2
ε

≤ K

{
1

λε
E [I(θ < h)θ] +

1− e−λεh(1 + λεh)
λ2

ε

}
(1 + |γε|2)y

= 2K(1 + |γε|2)
1− e−λεh(1 + λεh)

λ2
ε

y.

Remark 5.3.7. We note the following two asymptotic regimes for the one-step

error (5.3.16). For λεh < 1 (in practice, this occurs only when λε is small
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or moderate like it is in jump-diffusions), we can expand the exponent in

(5.3.16) and obtain that the one-step error is of order O(h2) :

∣∣E[R(t, x, y, z)]
∣∣ ≤ K(1 + |γε|2)h2y.

In the case, where λε is very large (e.g., for small ε in the infinite activity

case) then the term with e−λεh can be neglected and we get

∣∣E[R(t, x, y, z)]
∣∣ ≤ K

1 + |γε|2
λ2

ε
y.

The usefulness of a more precise estimate (5.3.16) is that it includes situations

in between these two asymptotic regimes and also allows to consider an

interplay between h and ε (see Section 5.3.4).

5.3.3 Global error

In this section we obtain an estimate for the global weak-sense error of

Algorithm 1. We first estimate average number of steps E [κ] of Algorithm 1.

Lemma 5.3.8 (Number of steps). The average number of steps κ for the chain Xk

from Algorithm 1 satisfies the following bound

E [κ] ≤ (T − t0)λε

1− e−λεh + 1.

Proof. It is obvious that if we replace the bounded domain G in Algorithm 1

with the whole space Rd (i.e., replace the Dirichlet problem by the Cauchy

one), then the corresponding number of steps κ′ of Algorithm 1 is not less

than κ. Hence it is sufficient to get an estimate for E [κ′] . Let δ1, δ2, . . . be

the interarrival times of the jumps, θi = δi ∧ h for i ≥ 0, and Sk = ∑k−1
i=0 θi for

k ≥ 0. Then

κ ≤ κ′ := inf{l : Sl ≥ T − t0}.
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Introduce the martingale: S̃0 = 0 and S̃k := Sk − kE [θ] for k ≥ 1. Since

θi ≤ h we have that S̃κ′−1 ≤ Sκ′−1 < T − t0 almost surely and thus by the

optional stopping theorem we obtain

E
[
S̃κ′−1

]
= E

[
S̃0

]
= 0.

Therefore

E [Sκ′−1] = E[κ′ − 1] ·E[θ]

and we conclude

E [κ] ≤ E
[
κ′
]
= E[κ′ − 1] + 1

=
E [Sκ′−1]

E [θ]
+ 1 ≤ (T − t0)λε

1− e−λεh + 1.

We also need the following auxiliary lemma.

Lemma 5.3.9 (Boundedness of Yk in Algorithm 1). The chain Yk defined in

(5.3.6) is uniformly bounded by a deterministic constant:

Yk ≤ ec̄(T−t0+h),

where c̄ = max(t,x)∈Q̄ c(t, x).

Proof. From (5.3.6), we can express Yk via previous Yk−1 and get the required

estimate as follows:

Yk = Yk−1(1 + θkc(tk−1, xk−1) ≤ Yk−1(1 + θk c̄)

≤ Yk−1ec̄θk ≤ Yk−2ec̄(θk+θk−1) ≤ Y0ec̄(ϑk−t0) ≤ ec̄(T−t0+h).

Now we prove the convergence theorem for Algorithm 1.
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Theorem 5.3.10 (Global error of Algorithm 1). Under Assumption 5.2.4 with

l = 2, m = 4 and Assumptions 5.2.1, 5.2.5 and 5.3.1, the global error of Algorithm 1

satisfies the following bound

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ]− uε(t0, x0)
∣∣ ≤ K(1 + |γε|2)

(
1

λε
− h

e−λεh

1− e−λεh

)

+ K
1− e−λεh

λε
, (5.3.20)

where K > 0 is a constant independent of h and ε.

Proof. Recall (see (5.2.4)):

uε(t, x) = E
[

ϕ
(

τ̃t,x, X̃t,x(τ̃t,x)
)

Ỹt,x,1(τ̃t,x) + Z̃t,x,1,0(τ̃t,x)
]

.

The global error

R :=
∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ]− uε(t0, x0)

∣∣
can be written as

R =
∣∣E[I(ϑκ ≥ T)

(
ϕ(ϑ̄κ, Xκ)Yκ − uε(ϑκ, Xκ)Yκ

)
+ uε(ϑκ, Xκ)Yκ

+ Zκ − uε(t0, x0)]
∣∣ (5.3.21)

≤
∣∣E[I(ϑκ ≥ T)

(
ϕ(ϑ̄κ, Xκ)Yκ − uε(ϑκ, Xκ)Yκ

)
]
∣∣

+
∣∣E[uε(ϑκ, Xκ)Yκ + Zκ − uε(t0, x0)]

∣∣.
Using Lemma 5.3.9, Assumption 5.2.5 and Lemmas 5.3.4 and 5.3.5 as well as

that ϑ̄κ − ϑκ ≤ θκ, we have for the first term in (5.3.21):

E[I(ϑκ ≥ T)
(

ϕ(ϑ̄κ, Xκ)Yκ − uε(ϑκ, Xκ)Yκ
)
] ≤ KE

[
θκ(1 + |γε|qθ

q
κ)
]

≤ K
1− e−λεh

λε
, (5.3.22)

where K > 0 does not depend on h or ε.
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For the second term in (5.3.21), we exploit ideas from [92] to re-express

the global error. We use Theorem 5.3.6 and Lemmas 5.3.9 and 5.3.8:

|E[uε(ϑκ, Xκ)Yκ + Zκ − uε(t0, x0)]| (5.3.23)

=

∣∣∣∣∣E
[
κ−1

∑
k=0

E
[
uε(ϑk+1, Xk+1)Yk+1 + Zk+1 − uε(ϑk, Xk)Yk − Zk

∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣
=

∣∣∣∣∣E
[
κ−1

∑
k=0

E
[

R(ϑk, Xk, Yk, Zk)
∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣
≤ E

[
κ−1

∑
k=0

1− e−λεh(1 + λεh)
λ2

ε
K(1 + |γε|2)Yk

]

≤ K
1 + |γε|2

λ2
ε

(
1− e−λεh(1 + λεh)

)
E [κ]

≤ K(1 + |γε|2)
(

1
λε(1− e−λεh)

− h
e−λεh

1− e−λεh

)
(T − t0)

≤ K(1 + |γε|2)
(

1
λε
− h

e−λεh

1− e−λεh

)
,

where, as usual constants K > 0 are changing from line to line. Combining

(5.3.21)-(5.3.23), we arrive at (5.3.20).

Remark 5.3.11 (Error estimate and convergence). Note that the error estimate

in Theorem 5.3.10 gives us the expected results in the limiting cases (see also

Remark 5.3.7). If λεh < 1, we obtain:

R ≤ K(1 + |γε|2)h,

which is expected for weak convergence in the jump-diffusion case.

If λε is large (meaning that almost always θ < h), the error is tending to

R ≤ K(1 + |γε|2)
1

λε
,

as expected (cf. [72]).

We also remark that for any fixed λε, we have first order convergence

when h→ 0.
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Remark 5.3.12. In the case of symmetric measure ν(z) we have γε = 0 and

hence the global error (5.3.20) becomes

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ]− uε(t0, x0)
∣∣ (5.3.24)

≤ K

(
1

λε
− h

e−λεh

1− e−λεh

)
+ K

1− e−λεh

λε
.

Remark 5.3.13 (Cauchy case). In general, it might be possible to show that

the global error estimate (5.3.20) for Algorithm 1 also holds in the Cauchy

problem case. Some suggestions and initial thoughts are given in [30].

5.3.4 The case of infinite intensity of jumps

In this section we combine the previous results, Theorem 5.2.5 and 5.3.10, to

obtain an overall error estimate for solving the problem (4.1.1) in the case of

infinite intensity of jumps by Algorithm 1. We obtain

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ]− u(t0, x0)
∣∣ (5.3.25)

≤ K(1 + |γε|2)
(

1
λε
− h

e−λεh

1− e−λεh

)
+ K

1− e−λεh

λε
+ K

∫
|z|≤ε
|z|3ν(dz),

where K > 0 is independent of h and ε.

Let us consider an α-stable process in which the Lévy measure has the

following singular behaviour near zero

ν(dz) ∼ |z|−m−αdz, α ∈ (0, 2), (5.3.26)

i.e., we are focusing our attention here on the singularity near zero only and

the sign ∼ means that the limit of the ratio of both sides equals to some

positive constant. Consequently, all calculations are done in this section up

to positive constant factors independent of ε and h. The behaviour (5.3.26) is
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typical for m-dimensional Lévy measures near zero (see e.g. [4, p. 37] and

also the one-dimensional Example 5.2.1). Then

λε =
∫
|z|≥ε

ν(dz) ∼ ε−α,

γ2
ε =

m

∑
i=1

[∫
ε≤|z|≤1

ziν(dz)
]2

∼ ε2−2α for α 6= 1

and γ2
ε ∼ |lnε|2 for α = 1,∫

|z|≤ε
|z|3ν(dy) ∼ ε3−α.

Hence

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ]− u(t0, x0)
∣∣ (5.3.27)

≤ K

[
(1 + γ2

ε)

(
εα − h

e−ε−αh

1− e−ε−αh

)
+ εα

(
1− e−ε−αh

)
+ ε3−α

]
.

Let us measure the computational cost of Algorithm 1 in terms of the average

number of steps (see Lemma 5.3.8). Since

E [κ] ≤ (T − t0)λε

1− e−λεh ≤ K
ε−α

1− e−ε−αh ,

we choose to use the cost associated with the average number of steps as

C :=
ε−α

1− e−ε−αh .

We fix a tolerance level ρtol and require ε and h to be so that

ρtol = ρ(ε, h) := (1 + γ2
ε)

(
εα − he−ε−αh

1− e−ε−αh

)
+ εα

(
1− e−ε−αh

)
+ ε3−α.

Note that since we are using the Euler scheme for SDEs’ approximation, the

decrease of ρtol in terms of cost cannot be faster than linear. We now consider

three cases of α.
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The case α ∈ (0, 1). We have

ρ(ε, h) ≤ ε2−α + 2εα + ε3−α = O(εα)

and, by choosing sufficiently small ε, we can reach the required ρtol. It is

optimal to take h = ∞ (in practice, taking h = T − t0) and the cost is then

C = 1/εα. Hence ρtol is inversely proportional to C, and convergence is linear

in cost (to reduce ρtol twice, we need to double C).

The case α = 1. We have

ρ(ε, h) = (1 + |lnε|2)
(

ε− he−ε−1h

1− e−ε−1h

)
+ ε

(
1− e−ε−1h

)
+ ε2 = O(ε|lnε|2),

i.e. convergence is almost linear in cost.

The case α ∈ (1, 2). If we take h = ∞, then ρ(ε, h) = O(ε2−α) and the

convergence order in terms of cost is 2/α− 1, which is very slow (e.g., for

α = 3/2, the order is 1/3 and for α = 1.9, the order is ≈ 0.05). Let us now

take h = ε` with ` ≥ α. Then

ρ(ε, h) = ρ(ε, ε`) = (1 + ε2−2α)

(
εα − ε`e−ε`−α

1− e−ε`−α

)
+ εα

(
1− e−ε`−α

)
+ ε3−α

≤ (1 + ε2−2α)ε` + ε` + ε3−α = ε2−2α+` + 2ε` + ε3−α

and C ≈ 1/h = ε−`. The optimal ` = 1 + α, for which ρ(ε, h) = O(ε3−α) and

the convergence order in terms of cost is (3− α)/(1 + α), which is much

better (e.g., for α = 3/2, the order is 3/5 and it cannot be smaller than 1/3

for any α ∈ (1, 2)). Note that in the case of symmetric measure ν(z) (see

Remark 5.3.12), convergence is linear in cost for α ∈ (1, 2).

To summarise, for α ∈ (0, 1) we have first order convergence and there is

no benefit of restricting jump adapted steps by h . However, in the case of

α ∈ (1, 2), it is beneficial to use restricted jump-adapted steps to get the order

of (3− α)/(1 + α). We also recall that restricted jump-adapted steps should

typically be used for jump-diffusions (the finite activity case when there is
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no singularity of λε and γε) because jump time increments δ typically take

too large values and to control the error at every step we should truncate

those times at a sufficiently small h > 0 for a satisfactory accuracy.



6
N U M E R I C A L E X P E R I M E N T S U S I N G T H E I N T R O D U C E D

A L G O R I T H M

In this chapter we illustrate the theoretical results of Section 5.3. In particular,

we showcase the behaviour in the case of infinite intensity of jumps for

different regimes of α. In Section 6.1 we introduce the common Monte

Carlo technique and its notation used throughout this chapter. We display

numerical tests of Algorithm 1 in four different examples:

(i) a non-singular Lévy measure (Example 6.2.1),

(ii) a singular Lévy measure which is similar to that of Example 5.2.1 (see

Example 6.3.1),

(iii) pricing a foreign-exchange (FX) barrier basket option where the under-

lying model is of exponential Lévy-type (Example 6.4.1),

(iv) pricing a FX barrier option showing that the convergence orders hold

(Example 6.4.2).

68
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6.1 monte carlo technique

As it is common for weak approximation (see e.g. [92]), in simulations

we complement Algorithm 1 by the Monte Carlo techniques and evaluate

u(t0, x) or uε(t0, x) as

ū(t0, x) : = E
[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

]
(6.1.1)

' û =
1
M

M

∑
m=1

[
ϕ(ϑ̄

(m)
κ , X(m)

κ )Y(m)
κ + Z(m)

κ
]

,

where (ϑ̄(m)
κ , X(m)

κ , Y(m)
κ , Z(m)

κ ) are independent realisations of (ϑ̄κ, Xκ, Yκ, Zκ).

The Monte Carlo error of (6.1.1) is

√
DM :=

(Var
[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

]
)1/2

M1/2 '
√

D̄M ,

where

D̄M =
1
M

 1
M

M

∑
m=1

[
Ξ(m)

]2
−
(

1
M

M

∑
m=1

Ξ(m)

)2
 ,

and Ξ(m) = ϕ
(

ϑ̄
(m)
κ , X(m)

κ
)

Y(m)
κ + Z(m)

κ . Then ū(t0, x) falls in the correspond-

ing confidence interval û± 2
√

D̄M with probability 0.95.

6.2 example with a non-singular lévy measure

In this section, we illustrate Algorithm 1 in the case of a simple non-singular

Lévy measure (i.e., the jump-diffusion case), where there is no need to replace

small jumps and hence we directly approximate u(t0, x) rather than uε(t0, x).

Consequently, the numerical integration error does not depend on ε. We

recall (see Theorem 5.3.10) that Algorithm 1 has first order of convergence in

h.

Example 6.2.1 (Non-singular Lévy measure). To construct this and the next

example, we use the same recipe as in [91, 92]: we choose the coefficients of
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the problem (4.1.1) so that we can write down its solution explicitly. Having

the exact solution is very useful for numerical tests.

Consider the problem (4.1.1) with d = 3, G = U1 which is the open unit

ball centred at the origin in R3, and with the coefficients

a11(t, x) = 1.21− x2
2 − x2

3, a22 = 1, a33 = 1, aij = 0, i 6= j, b = 0,

(6.2.1)

F(t, x) = ( f , f , f )T, f ∈ R, (6.2.2)

g(t, x) :=
1
2

et−T(1.21− x4
1 − x4

2) + 6(1− 1
2

et−T)
[

x2
1(1.21− x2

2 − x2
3) + x2

2

]
(6.2.3)

+ (1− 1
2

et−T)
[
(C+ − C−)

4 f
µ2 (x3

1 + x3
2) + (C+ + C−)

12 f 2

µ3 (x2
1 + x2

2)

+ (C+ − C−)
24 f 3

µ4 (x1 + x2) + (C+ + C−)
48 f 4

µ5

]
,

with the boundary condition

ϕ(t, x) = (1− 1
2et−T)(1.21− x4

1 − x4
2) (6.2.4)

and with the Lévy measure density

ν(dz) =

C−e−µ|z|dz, if z < 0,

C+e−µ|z|dz, if z > 0,

where C− and C+ are some positive constants. Note that, keeping in mind

Remark 5.2.2, the coefficients from (6.2.1)-(6.2.3) satisfy Assumptions 5.2.1-

5.2.2.

It is not difficult to verify that this problem has the solution

u(t, x) = (1− 1
2et−T)(1.21− x4

1 − x4
2).
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and we also find

λ =
∫
|z|>0

ν(dz) =
∫

R
ν(dz) =

C+ + C−
µ

,

ρ(z) =
C−e−µ|z|I(z < 0) + C+e−µ|z|I(z > 0)

λ
.

We simulated jump sizes by analytically inverting the cumulative distribution

function corresponding to the density ρ(z) and making use of uniform

random numbers in the standard manner.

Figure 6.2.1: Non-singular Lévy measure example: dependence of the error e on
h, the error bars show the Monte Carlo error. The parameters used
are T = 1, C+ = 30, C− = 1.0, µ = 3.0, f = 0.1, M = 40000000 and û is
evaluated at the point (0, 0).

Here the absolute error e is given by

e = |û− u|, (6.2.5)
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Table 6.2.1: Non-singular Lévy measure example. The parameters are the same as
in Figure 6.2.1. The column κ̂ gives the sample average of the number
of steps together with its Monte Carlo error.

h û 2
√

D̂M e κ̂
0.1 0.9367 0.0004 0.0507 7.72± 0.0037

0.05 0.961244 0.0004 0.0262 11.04± 0.0056
0.025 0.9742 0.0004 0.0133 17.85± 0.0096
0.01 0.9821 0.0003 0.0054 37.85± 0.0217

0.005 0.9850 0.0003 0.0024 70.90± 0.0416

where the true solution for the point (0, 0) is u = u(0, 0) ≈ 0.987433. The

expected convergence order O(h) can be clearly seen in Figure 6.2.1 and

Table 6.2.1.

6.3 example with a singular lévy measure

In this section, we confirm dependence of the error of Algorithm 1 on the

cut-off parameter ε for jump sizes and on the parameter α of the Lévy

measure as well as associated computational costs which were derived in

Section 5.3.4.

Example 6.3.1 (Singular Lévy measure). Consider the problem (4.1.1) with

d = 3, G = U1 which is the open unit ball centred at the origin in R3, and

with the coefficients as in (6.2.1), (6.2.2), and

g(t, x) :=
1
2

et−T(1.21− x4
1 − x4

2) + 6(1− 1
2

et−T)
[

x2
1(1.21− x2

2 − x2
3) + x2

2

]
(6.3.1)

+ (1− 1
2

et−T)
[
(C+ − C−) f

(
4
µ
+

4
µ2

)
(x3

1 + x3
2)

+ (C+ + C−) f 2
(

6
2− α

+
6
µ
+

12
µ2 +

12
µ3

)
(x2

1 + x2
2)

+ (C+ − C−) f 3
(

4
3− α

+
4
µ
+

12
µ2 +

24
µ3 +

24
µ4

)
(x1 + x2)

+ (C+ + C−) f 4
(

2
4− α

+
2
µ
+

8
µ2 +

24
µ3 +

48
µ4 +

48
µ5

) ]
,
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with the boundary condition (6.2.4), and with the Lévy measure density

ν(dz) =



C−e−µ(|z|−1)dz, if z < −1,

C−|z|−(α+1)dz, if −1 ≤ z < 0,

C+|z|−(α+1)dz, if 0 < z ≤ 1,

C+e−µ(|z|−1)dz, if z > 1,

(6.3.2)

where C−, C+, and µ are some positive constants and α ∈ (0, 2).

We observe that C− 6= C+ gives an asymmetric jump measure and the

Lévy process has infinite activity and, if α ∈ [1, 2), infinite variation. Note

that, keeping in mind Remark 5.2.2, the coefficients from (6.2.1), (6.2.2), (6.3.1)

satisfy Assumptions 5.2.1-5.2.2.

It is not difficult to verify that this problem has the following solution

u(t, x) = (1− 1
2et−T)(1.21− x4

1 − x4
2).

Other quantities needed for the algorithm take the form

γε = (C+ − C−)
1− ε1−α

1− α
, α 6= 1,

Bε = (C+ + C−)
ε2−α

2− α
,

βε =
√

Bε =

√
(C+ + C−)

ε2−α

2− α
,

and moreover,

λε =
∫
|z|>ε

ν(dz) = (C+ + C−)
(

1
µ
+

ε−α − 1
α

)
,

ρε(z) =
1

λε
[C−e−µ(|z|−1)I(z < −1) + C−|z|−(α+1)I(−1 ≤ z < −ε)

+ C+|z|−(α+1)I(ε < z ≤ 1) + C+e−µ(|z|−1)I(z > 1)].



6.3 example with a singular lévy measure 74

In this example, the absolute error e is given by

e = |ûε − u|. (6.3.3)

Figure 6.3.1: Singular Lévy measure example, the case α = 0.5: dependence of the
error e on ε, the error bars show the Monte Carlo error. The parameters
used are T = 1, C+ = 0.1, C− = 1.0, µ = 3.0, f = 0.2, M = 40000000
and û is evaluated at the point (0, 0).

For the case of α = 0.5, we can clearly see in Figure 6.3.1 and Table 6.3.1

that the error is of order O(εα) = O(ε0.5) as expected. We also observe linear

convergence as shown in Figure 6.3.2 in computational cost (measured in

average number of steps). Furthermore, we note that choosing a smaller

time step, e.g. h = 0.1, does not change the behaviour in this case which is

in accordance with our prediction of Section 5.3.4

Numerical results for the case α = 1.5 are given in Figures 6.3.3 and 6.3.4

and Tables 6.3.2 and 6.3.3. As is shown in Section 5.3.4, convergence (in terms

of computational costs) can be improved in the case of α ∈ (1, 2) by choosing

h = ε1+α. In Figure 6.3.4, for all ε it can be seen that choosing a smaller (but
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Figure 6.3.2: Singular Lévy measure example, the case α = 0.5: dependence of the
error e on the average number of steps (computational costs). The
parameters are the same as in Figure 6.3.1.

optimally chosen) step parameter h results in quicker convergence (i.e., for

the same cost, we can achieve a better result if h is chosen in an optimal way)

and naturally in a smaller error.

We recall that if the jump measure is symmetric, i.e. C− = C+ in the

considered example, then γε = 0 and the numerical integration error of

Algorithm 1 is no longer singular (see Theorem 5.3.10 and Remark 5.3.12).

Consequently (see Section 5.3.4), in this case the computational cost depends

linearly on ε even for α = 1.5, which is confirmed on Figure 6.3.5.

6.4 fx option pricing under a lévy-type currency exchange

model

In this section, we demonstrate the use of Algorithm 1 for pricing financial

derivatives where the underlying follow a Lévy process. We apply the
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Table 6.3.1: Singular Lévy measure example for α = 0.5 and h = 1. The parameters
are the same as in Figure 6.3.1. The column κ̂ gives the sample average
of the number of steps together with its Monte Carlo error.

ε û 2
√

D̂M e λε γε κ̂
0.0025 0.9610 0.0004 0.0265 42.2 −1.71 17.10± 0.0096
0.001 0.9713 0.0004 0.0162 67.7 −1.74 25.78± 0.0149

0.0005 0.9761 0.0004 0.0113 96.6 −1.76 35.45± 0.0208
0.00025 0.9795 0.0003 0.0080 137.3 −1.77 48.96± 0.0290
0.0001 0.9822 0.0003 0.0052 218.2 −1.78 75.53± 0.0452

0.00005 0.9841 0.0003 0.0033 309.3 −1.79 105.32± 0.0633
0.000025 0.9850 0.0003 0.0024 438.2 −1.79 147.07± 0.0888
0.00001 0.9858 0.0003 0.0016 693.9 −1.79 229.51± 0.1393

Table 6.3.2: Singular Lévy measure example for α = 1.5 and h = 1. The parameters
are the same as in Figure 6.3.3 and Figure 6.3.4. The column κ̂ gives the
sample average of the number of steps together with its Monte Carlo
error.

ε û 2
√

D̂M e λε γε κ̂
0.05 1.0862 0.0011 0.0988 1541.7 −166.7 15.47± 0.002
0.04 1.0814 0.0011 0.0939 2158.0 −192.0 20.38± 0.003
0.03 1.0683 0.0010 0.0809 3327.1 −229.1 29.53± 0.005
0.02 1.0499 0.0010 0.0625 6119.6 −291.4 51.02± 0.008
0.01 1.0216 0.0010 0.0342 17324.7 −432.0 135.63± 0.022

0.009 1.0187 0.0010 0.0313 20292.4 −458.0 157.88± 0.026
0.008 1.0158 0.0010 0.0284 24215.4 −488.7 187.25± 0.030

algorithm to estimate the price of a foreign exchange (FX) barrier basket

option. A barrier basket option gives the holder the right to buy or sell

a certain basket of assets (here foreign currencies) at a specific price K at

maturity T in the case when a certain barrier event has occurred. The most

used barrier-type options are knock-in and knock-out options. This type of

option becomes active (or inactive) in the case of the underlying price S(t)

reaching a certain threshold (the barrier) B before reaching its maturity. In

most cases barrier option prices cannot be given explicitly and therefore have

to be approximated. We illustrate that the algorithm successfully works in the

multidimensional case in Example 6.4.1 and also experimentally demonstrate

the convergence orders in Example 6.4.2, where Assumptions 5.2.3-5.2.5 do

not hold.



6.4 fx option pricing under a lévy-type currency exchange model 77

Figure 6.3.3: Singular Lévy measure example, the case α = 1.5: dependence of the
error e on ε, the error bars show the Monte Carlo error. The parameters
used are T = 1, C+ = 1.0, C− = 25.0, µ = 3.0, f = 1.0, M = 100000000
and û is evaluated at the point (0, 0).

Example 6.4.1 (Barrier basket option pricing). Let us consider the case with

five currencies: GBP, USD, EUR, JPY and CHF, and let us assume that the

domestic currency is GBP. We denote the corresponding spot exchange rates

as

S1(t) = SUSDGBP(t), S2(t) = SEURGBP(t),

S3(t) = SJPYGBP(t), S4(t) = SCHFGBP(t),

where SFORDOM(t) describes the amount of domestic currency DOM one

pays/receives for one unit of foreign currency FOR (for more details see

Section 9 or [113, 20]). We assume that under a risk-neutral measure Q the

dynamics for the spot exchange rates can be written as

Si(t) = Si(t0) exp((rGBP − ri)(t− t0) + Xi(t)), i = 1, 2, 3, 4,
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Figure 6.3.4: Singular Lévy measure example, the case α = 1.5: dependence of the
error e on the average number of steps (computational costs), the error
bars show the Monte Carlo error. The parameters are the same as in
Figure 6.3.3.

where ri are the corresponding short rates of USD, EUR, JPY, CHF and rGBP

is the short rate for GBP, which are for simplicity assumed to be constant;

and X(t) is a 4-dimensional Lévy process similar to (5.1.1) with a single

jump noise:

X(t) =
t∫

t0

b(t, X(s−))ds+
t∫

t0

σ(s, X(s−))dw(s)+
t∫

t0

∫
R

F(s, S(s−))zN̂(dz, ds).

(6.4.1)

Here w(t) = (w1(t), w2(t), w3(t), w4(t))> is a 4-dimensional standard Wiener

process. As ν(z), we choose the Lévy measure with density (6.3.2) as in

Example 6.3.1 and we take F(t, x) = ( f1, f2, f3, f4)
>. We also assume that

σ(s, x) is a constant 4× 4 matrix.

The risky asset for a domestic GBP business are the foreign currencies

Yi(t) = Bi(t) · Si(t), where Bi(t) denotes the foreign currency (account).
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Figure 6.3.5: Dependency of ε on error plot for a simulation example with symmetric
singular Lévy measure for α = 1.5. The parameters used are T =
1, C+ = 0.5, C− = 0.5, µ = 3.0, f = 1.0, M = 100000000 and û is
evaluated at the point (0, 0).

Under the measure Q all the discounted assets Ỹi(t) = e(ri−rGBP)(t−t0)Si(t) =

Si(t0) exp(Xi(t)) have to be martingales on the domestic market (therefore

discounted by the domestic interest rate) to avoid arbitrage. Using the Ito

formula for Lévy processes, we can derive the SDEs for Ỹi (see e.g. [4, p.288]):

dỸi

Ỹi
=

bi(t, X(s−)) + 1
2

4

∑
j=1

σ2
ij +

∫
|z|<1

(
e fiz − 1− fiz

)
ν(dz)

 dt (6.4.2)

+
4

∑
j=1

σijdwj(s) +
∫
R

(
e fiz − 1

)
N̂(dz, ds).

Therefore, for all Ỹi to be martingales, the drift component bi has to be so

that

bi = −
1
2

4

∑
j=1

σ2
ij −

∫
R

(
e fiz − 1− fizI|z|<1

)
ν(dz) (6.4.3)
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Table 6.3.3: Singular Lévy measure example for α = 1.5 and adjusted h = ε1+α. The
parameters are the same as in Figures 6.3.3 and 6.3.4.

ε h û 2
√

D̂M e λε γε κ̂
0.10 3.16× 10−3 1.0872 0.0011 0.0998 540 −104 7.68± 0.001
0.09 2.43× 10−03 1.0829 0.0011 0.0955 633 −112 8.97± 0.001
0.08 1.81× 10−03 1.0769 0.0011 0.0895 757 −122 10.62± 0.002

0.075 1.54× 10−03 1.0739 0.0011 0.0864 835 −127 11.69± 0.002
0.07 1.29× 10−03 1.0680 0.0011 0.0806 927 −133 13.00± 0.002
0.06 8.82× 10−04 1.0530 0.0011 0.0655 1171 −148 16.92± 0.003

0.055 7.09× 10−04 1.0453 0.0011 0.0579 1335 −157 19.70± 0.003
0.05 5.59× 10−04 1.0380 0.0011 0.0506 1542 −167 23.50± 0.004
0.04 3.20× 10−04 1.0236 0.0010 0.0362 2158 −192 36.19± 0.006
0.03 1.56× 10−04 1.0099 0.0010 0.0225 3327 −229 65.66± 0.011
0.02 5.66× 10−05 0.9987 0.0010 0.0112 6120 −291 160.57± 0.026
0.01 1.00× 10−05 0.9906 0.0010 0.0032 17325 −432 812.35± 0.132

= −1
2

4

∑
j=1

σ2
ij −

C−
µ + fi

e− fi − C+

µ− fi
e fi − C+ − C−

µ
− Ii(α, C+, C−),

where

Ii(α, C+, C−) =
∞

∑
n=2

(C+ + C−(−1)n) f n
i

n!(n− α)
.

We also note that ∫
|z|>1

e fizν(dz) < ∞

is satisfied by (6.3.2) if fi < µ.

Let us consider a down-and-out (DAO) put option, which can be written

as

Pt0(T, K) = exp−rGBP(T−t0) (6.4.4)

E

[
I
(

min
t0≤t≤T

S(t) > B
)

max

(
K−

4

∑
i=1

wiSi(T), 0

)]
,

where I
(

min
t0≤t≤T

S(t) > B
)

= 1 if for all of the underlying exchange rates

Si(t) > Bi, t0 ≤ t ≤ T, otherwise it is zero.

We use Algorithm 1 (the algorithm is applied to X from (6.4.1) and then

S is computed as exp(X) to achieve higher accuracy) together with the



6.4 fx option pricing under a lévy-type currency exchange model 81

Monte Carlo technique to evaluate this barrier basket option price (6.4.4). In

Table 6.4.1, market data for the 4 currency pairs are given, and in Table 6.4.2

the option and model parameters are provided, which are used in simulations

here.

Table 6.4.1: Market data for 4 currency pairs. Here σi are volatilities for the corre-
sponding pairs and ρij are the correlation coefficients for the correspond-
ing two pairs.

Market data Correlation data ρij
currency pair i Si(0) ri σi USDGBP EURGBP JPYGBP

USDGBP 0.81 0.02 0.095
EURGBP 0.88 0.00 0.089 0.87
JPYGBP 0.0075 −0.011 0.071 0.94 0.77
CHFGBP 0.90 0.075 0.110 0.86 0.93 0.96

rGBP 0.01

Table 6.4.2: Option and model parameters for Example 6.4.1
Option parameter Model parameter

currency pair Barrier Bi wi jump factor fi α 1.5
USDGBP 0.50 0.20 t0 0.0 0.10 C+ 0.3
EURGBP 0.60 0.25 T 1.0 0.15 C− 1.2
JYNGBP 0.0045 0.45 K 0.5 0.05 µ 3.0
CHFGBP 0.55 0.10 0.12 M 106

To find the matrix σ = {σij} used in the model (6.4.1), we form the matrix

a using the volatility σi and correlation coefficient data from Table 6.4.1 in

the usual way, i.e., aii = σ2
i and aij = σiσjρij for i 6= j. Then the matrix σ is

the solution of σσ> = a obtained by the Cholesky decomposition.

The results of the simulations are presented in Figure 6.4.1 for different

choices of ε and different choices of h. In Figure 6.4.2, it can be seen that

(similar to Example 6.3.1) by choosing the step size h optimally results in a

better approximation for the same cost.

In this example we demonstrated that Algorithm 1 can be successfully

used to price a FX barrier basket option involving 4 currency pairs following

an exponential Lévy model despite the considered problem not satisfying

Assumptions 5.2.3-5.2.5 of Section 5.2.1. In particular, we note that the
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Figure 6.4.1: Dependence of the approximate price of the FX barrier basket option
on ε for different choices of h. The error bars show the Monte Carlo
error.

algorithm is easy to implement and it gives sufficient accuracy with relatively

small computational costs. Moreover, application of Algorithm 1 can be

easily extended to other multi-dimensional barrier option (and other types of

options and not only on FX markets), while other approximation techniques

such as finite difference methods or Fourier transform methods typically

cannot cope with higher dimensions.

Example 6.4.2 (Barrier option pricing: one currency pair). In this example, we

demonstrate that the convergence orders and computational costs discussed

in Section 5.3.4 appear to hold, despite the considered problem not satisfying

Assumptions 5.2.3-5.2.5 of Section 5.2.1.

Let us consider the case with two currencies: GBP and USD. As before, we

assume that the domestic currency is GBP. The corresponding spot exchange

rate is

S(t) = SUSDGBP(t).
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Figure 6.4.2: Dependence of the approximate price of the FX barrier basket option
on average number of steps (computational costs) for different choices
of h. The error bars show the Monte Carlo error.

We assume the same dynamics under a risk-neutral measure Q for the spot

exchange rates as in Example 6.4.1. Moreover, X(t) is a 1-dimensional Lévy

process as defined in (6.4.1) but for one dimension only. Following the same

fashion as in Example 6.4.1, the risky asset for a domestic GBP business is the

foreign currency Y(t) = B(t) · S(t), where B(t) denotes the foreign currency

(account) and under the measure Q the discounted asset Ỹ(t) has to be a

martingale on the domestic market to avoid arbitrage. Using the Ito formula

for Lévy processes, we can derive the SDE for Ỹ as we did in (6.4.2)-(6.4.3).

We compute the value for a DAO put option (cf. (6.4.4)):

Pt0(T, K) = exp−rGBP(T−t0) E

[
I
(

min
t0≤t≤T

S(t) > B
)

max (K− S(T), 0)
]

.

(6.4.5)

The approximate solution P̂ = P̂t0(T, K) is obtained by applying Algo-

rithm 1 directly to the SDE for S(t). To study the dependence of the error of

Algorithm 1 on the cut-off parameter ε for jump sizes and on the parameter



6.4 fx option pricing under a lévy-type currency exchange model 84

α of the Lévy measure as well as associated computational costs, we need to

compare the approximation P̂ with the true price Pt0(T, K). However, in this

example, we do not have the exact price, and therefore need to accurately

simulate a reference solution. To this end, as in Example 6.4.1, we apply

Algorithm 1 to X(t) and use a sufficiently small ε and h and also a large

number of Monte Carlo simulations M (see Tables 6.4.5 and 6.4.9). We denote

this reference solution as P̂re f = P̂re f
t0

(T, K). In this example the absolute

error ere f of Algorithm 1 is evaluated as

ere f = |P̂− P̂re f |.

In Table 6.4.3, market data for the currency pair are given, and in Table 6.4.4

the option and model parameters are provided, which are used in simulations

here.

Table 6.4.3: Market data for the currency pair. Here σ is the volatility.
Market data

currency pair S(0) rUSD σ
USDGBP 0.81 0.02 0.095

rGBP 0.01

Table 6.4.4: Option and model parameters for Example 6.4.2
Option parameter

currency pair Barrier B t0 T K
USDGBP 0.50 0.0 1.0 0.5

Model parameter
jump factor f α C+ C− µ M

0.10 0.5 0.3 1.2 3.0 108

0.10 1.5 0.3 1.2 3.0 108

The results of the simulations for α = 0.5 are presented in Figures 6.4.3 and

6.4.4 and in Tables 6.4.6 and 6.4.7 for different choices of ε and fixed h = 1.0

and h = 0.1. We can clearly see that the error is of order O(εα) = O(ε0.5)
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as expected. We also observe linear convergence in computational cost

(measured in average number of steps).

Table 6.4.5: Reference solution P̂re f for singular Lévy measure example for α = 0.5.
M ε h û

108 5× 10−5 1× 10−5 0.28951

2
√

D̂M λε γε κ̂
8.7× 10−6 421.8 −1.7873 98223.5± 5.7

Table 6.4.6: FX barrier option example for α = 0.5 and h = 1.

ε û 2
√

D̂M ere f λε γε κ̂
0.002 0.29053 2.7× 10−5 0.00102 64.6 −1.72 65.39± 0.002

0.0015 0.29040 2.7× 10−5 0.00089 75.0 −1.73 75.58± 0.002
0.001 0.29027 2.7× 10−5 0.00076 92.4 −1.74 92.67± 0.002

0.0009 0.29024 2.7× 10−5 0.00073 97.5 −1.75 97.71± 0.002
0.0008 0.29021 2.7× 10−5 0.00070 103.6 −1.75 103.67± 0.002
0.0007 0.29015 2.7× 10−5 0.00064 110.9 −1.75 110.86± 0.003
0.0006 0.29012 2.7× 10−5 0.00061 120.0 −1.76 119.78± 0.003
0.0005 0.29006 2.8× 10−5 0.00055 131.7 −1.76 131.25± 0.003

Table 6.4.7: FX barrier option example for α = 0.5 and h = 0.1.

ε û 2
√

D̂M ere f λε γε κ̂
0.002 0.29054 2.7× 10−5 0.00103 64.6 −1.72 65.48± 0.002

0.0015 0.29043 2.7× 10−5 0.00092 75.0 −1.73 75.62± 0.002
0.001 0.29027 2.7× 10−5 0.00076 92.4 −1.74 92.68± 0.002

0.0008 0.29020 2.7× 10−5 0.00069 103.6 −1.75 103.67± 0.002
0.0007 0.29015 2.7× 10−5 0.00064 110.9 −1.75 110.86± 0.003
0.0006 0.29011 2.7× 10−5 0.00060 120.0 −1.76 119.78± 0.003
0.0005 0.29005 2.7× 10−5 0.00054 131.7 −1.76 131.26± 0.003

Numerical results for the case α = 1.5 are given in Figures 6.4.5 and 6.4.6

and in Tables 6.4.9 and 6.4.10. We observe the expected orders of convergence

as given in Section 5.3.4. In this example, we experimentally demonstrated

that convergence orders and computational cost for Algorithm 1 are consis-

tent with predictions of Section 5.3.4 despite the considered problem not

satisfying assumptions of Section 5.2.1.
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Table 6.4.8: Reference solution P̂re f for singular Lévy measure example for α = 1.5.
M ε h û

108 0.001 1× 10−5 0.24301

2
√

D̂M λε γε κ̂
1.0× 10−5 31622.3 −55.1 110969.3± 2.5

Table 6.4.9: FX barrier option example for α = 1.5 and h = 1.

ε û 2
√

D̂M ere f λε γε κ̂
0.1 0.24842 3.2× 10−5 0.00541 31.1 −3.9 31.78± 0.001

0.08 0.24793 3.2× 10−5 0.00492 43.7 −4.6 43.83± 0.001
0.07 0.24758 3.2× 10−5 0.00451 53.5 −5.0 53.23± 0.003
0.06 0.24721 3.2× 10−5 0.00420 67.5 −5.5 66.69± 0.002
0.05 0.24674 3.2× 10−5 0.00372 88.9 −6.2 87.20± 0.003
0.04 0.24621 3.2× 10−5 0.00320 124.5 −7.2 121.26± 0.003

Table 6.4.10: FX barrier option example for α = 1.5 and adapting step size h = ε1+α.

ε h û 2
√

D̂M ere f λε γε κ̂
0.4 1.01× 10−1 0.24634 3.3× 10−5 0.00333 3.5 −1.0 12.69 ±0.0003

0.35 7.25× 10−2 0.24678 3.3× 10−5 0.00377 4.3 −1.2 16.85 ±0.0004
0.3 4.93× 10−2 0.24682 3.3× 10−5 0.00381 5.6 −1.5 23.65 ±0.0006

0.25 3.13× 10−2 0.24636 3.3× 10−5 0.00335 7.5 −1.8 35.72 ±0.0009
0.2 1.79× 10−2 0.24549 3.3× 10−5 0.00248 10.7 −2.2 59.99 ±0.0015

0.15 8.71× 10−3 0.24468 3.3× 10−5 0.00167 16.7 −2.8 118.81 ±0.0031
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Figure 6.4.3: FX barrier option example, the case α = 0.5: dependence of the error
on ε for different choices of h. The error bars show the Monte Carlo
error.

Figure 6.4.4: FX barrier option example, the case α = 0.5: dependence of the error e
on the average number of steps.
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Figure 6.4.5: FX barrier option example, the case α = 1.5: dependence of the error e
on ε, the error bars show the Monte Carlo error.

Figure 6.4.6: FX barrier option example, the case α = 1.5: dependence of the error e
on the average number of steps.
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C O N C L U S I O N S A N D F U T U R E W O R K

In this part of the thesis, we have introduced a new algorithm (Algorithm 1),

a restricted jump-adaptive numerical scheme, for weak-sense approximations

of stochastic differential equations driven by general Lévy processes with

infinite activity. In Chapter 5, we highlight the usefulness of the introduced

scheme by the connection of a probabilistic representation of the solution of a

IPDE problem, as finding the solution comes down to being able to simulate

systems of Lévy-driven SDEs efficiently and accurately. This research covers

two main ingredients needed to discuss the convergence behaviour of weak

approximations of Lévy-driven SDEs with infinite activity. One is that we

replace small jumps with an appropriate Brownian motion, which is pre-

sented in Section 5.2, where we follow the same approach as [5]. This assures

that the numerical approximation to the IPDE problem is computationally

feasible in the infinite activity case. Naturally, replacing the small jumps

introduces a numerical error (see Theorem 5.2.5), which is part of the total

error of the introduced numerical scheme. The second ingredient, and the

main part of this research is the in-depth analysis and discussion of the

weak-sense error estimate for the algorithm in Section 5.3. This includes

the derivation of the error bounds and an analysis of the one-step error

with resulting Theorem 5.3.6, followed by the global error estimate in The-

orem 5.3.10. It is important to note, that the resulting one-step and global

error estimates explicitly show the (singular) dependence of the error on

the parameter ε, which is the cut-off level for small jumps replaced by the
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Brownian motion. We also see, that choice of the Lévy measure is also a key

consideration, in particular, with respect to symmetry.

Furthermore, in Section 5.3.4, we give an overall error estimate for solving

the IPDE problem described in 4.1 and consider an α-stable process, in which

the Lévy measure has a singular behaviour near zero. We also showcase the

different possible worst-case convergence orders of the error estimate and

computational costs for different levels of activity, which can be described

by different regimes of the parameter α.

Finally, we illustrate the theoretical convergence results from Chapter 5 in

a range of different examples in Chapter 6. We complement the suggested

algorithm with the Monte Carlo technique to get approximations of the

corresponding expectations. It is assuring to see, that we are able to produce

the exact convergence orders in two theoretical examples. Moreover, we look

at the performance of our algorithm in a practical example on pricing (mul-

tidimensional) FX barrier options, and its noteworthy, that the introduced

numerical scheme also works when our initial model assumptions are not

satisfied. We note, that our suggested algorithm combined with Monte Carlo

techniques are fairly easy to implement and the extension to problems with

higher dimensions uncomplicated and computationally unproblematic.

Overall, this work is focused on dealing with the Dirichlet problem for

IPDEs, but some considerations and remarks are made on how some results

possibly hold or could be extended to the Cauchy case. Additionally, rather

than using the numerical schemes suggested here, one could also explore

finite difference methods or Fourier transform methods, although, there

might be computational limitations for high-dimensional problems.

Another interesting field to explore, could be the computational aspect of

the resulting numerical schemes. In particular in the case of infinite activity,

we needed a large amount of Monte Carlo simulations to produce the

presented convergence results. Therefore, one might consider programming

frameworks to optimise the computational costs, depending on the needed

accuracy.
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F X L I T E R AT U R E R E V I E W A N D O V E RV I E W

In this Part of the thesis, we present a novel framework for pricing derivatives

on the foreign exchange (FX) market. The following sections are part of the

paper [86].

As it is well known (see e.g. [15, 113] and also Section 9 here), in the case

of a foreign exchange (FX) for two currencies (say, GBP and EUR) no measure

is simultaneously risk-neutral for the market on which GBP is the domestic

currency and for the market on which EUR is the domestic currency. This

can be seen as an asymmetry between the different market views due to

the different choice of numeraires. In practice currency pair conventions

are usually used in order to standardize option price quotations for each

specific currency pair [81, 113]. But this can lead to calibration difficulties.

Each of the domestic markets has its own volatility smile curve for options

on the corresponding foreign currency. Suppose we want to use a stochastic

volatility model given under a risk-neutral measure on the GBP domestic

market which we calibrate to the smile for options on EUR. If we re-write

this model for the inverse pair, i.e., where options on GBP are traded, in a

risk-neutral fashion, we need to calibrate it to the smile on this market as the

previously found parameters of the model typically do not match the smile

for the inverse pair. This is inconvenient. This situation becomes even more

complicated in a multi–currency setting while it is of practical importance

to be able to price options on the global FX market in a consistent fashion.

With a large number N of currencies, the existence of a consistent FX model
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is not trivial as a suitable model must preserve relationships between all N

currencies and consistency of volatility smiles between all N(N − 1)/2 cross

pairs.

To address these problems of consistent FX modelling, in [33] (see also

[35, 34, 26]) the concept of intrinsic currency [33, 34] or artificial currency

[26] was introduced. The approach of [33] is based on the idea that each

currency has an ‘intrinsic value’, which is a description of the value of a

currency in relation to other currencies. In the intrinsic currency-valuation

framework of [33, 34] one models the N intrinsic values of N currencies

rather than modelling the N − 1 exchange rates. In [34] Doust extends

his original idea of the intrinsic currency-valuation framework to a SABR-

type model, captures the observed volatility smile on the FX market in a

multi-currency setting. On a FX market with N currencies, he describes the

market with N intrinsic currency values and chooses one (without loss of

generality) as the valuation currency and its associated risk–neutral measure,

which produces the usual risk–neutral processes for all exchange rates. For

option pricing, this approach results in a closed form solution similar to the

original SABR model by Hagan et al. [54] adapted to the intrinsic currency–

valuation framework, which allows the pricing of FX vanilla options on

one currency pair considering the correlation effects of all N currencies. In

[26] N exchange rates between an artificial currency and N real currencies

are modelled under a risk-neutral measure associated with the artificial

currency so that all relationships (in particular, the inversion property that

the exchange rate for a pair of real currencies and for their inverse satisfy

SDEs of a similar form) between N currencies are satisfied.

Here we explore a very simple but very valuable from the practical angle

idea: find a numeraire with respect to which we can price all FX derivatives

traded on any of the domestic markets simultaneously under the same

measure. This resolves the issue highlighted above: models for different

currency pairs can be calibrated to all smiles in a consistent manner. For

instance, in the case of two currencies, it is sufficient to calibrate a model on
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e.g. the GBP domestic market and the smile on the EUR domestic market is

automatically reproduced without any need of additional calibration.

We show that such a numeraire exists via introducing the concept of an

intermediate pseudo-currency. The main difference with [33, 35, 34, 26] is that

the pseudo-currency is explicitly defined via exchange rates of real currencies,

while in [33, 35, 34, 26] exchange rates of real currencies are described via

an artificial currency. Consequently, we naturally model N − 1 exchange

rates, not N as in [33, 35, 34, 26]. Further, we can use three modelling

approaches. The first one is the traditional modelling way in Financial

Mathematics, where we start from a stochastic model for N − 1 exchange

rates under a ‘market’ measure and then we introduce a pseudo-currency

market which, as we show, has a risk-neutral measure. Under this risk-

neutral measure (the intermediate pseudo-currency is used as the numeraire)

we can price FX products on all currency markets simultaneously which

guarantees consistency of volatility smiles and other natural relationships

between currencies (e.g., the foreign-domestic symmetry). This approach

allows us to start with popular stochastic volatility models (e.g., Heston

or SABR) written under a ‘market’ measure and derive the corresponding

consistent models on the pseudo-currency market. Alternatively, in the

second approach, from the start we model exchange rates under a risk-neutral

measure or under a forward measure associated with the pseudo-currency

market. The third approach is model-free (see [6, 40, 7, 27] and references

therein), where we reconstruct a risk-neutral measure or a forward measure

from volatility smiles. We note that the intermediate pseudo-currency in

comparison with the intrinsic currency of [33] does not have a financial

interpretation, but our focus here is solely on consistent calibration and

modelling of exchange rates.

The rest of this Part is organized as follows. In Chapter 9 we present

some standard FX market conventions, recall that there is no measure which

is simultaneously risk-neutral for both domestic and foreign FX markets

and also recall the foreign-domestic symmetry. A convenient numeraire
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and the associated intermediate pseudo-currency market are introduced in

Section 10, where the corresponding pricing formulas for FX options are

also derived. This is done for clarity of the exposition in the case of a single

currency pair. We extend the intermediate pseudo-currency concept to the

multi–currency setting in Section 10.2. In Section 11 we illustrate the concept

by first applying it to the Heston model [56, 11] and SABR [54]. Then, for

further illustration, we model the spot exchange rate using an extended

skewed normal distribution. This exchange rate model is an illustration of

how one can describe the observed fat-tailed distribution of the log exchange

rate (compared to the assumption of log normal). The considered extended

skewed normal distribution is constructed by combining one normal and

two shifted half-normal distributed random variables and it allows a flexible

control of the tails of the spot exchange rate distribution. We note that the

use of the extended skewed normal distribution in pricing FX options is

somewhat new. Further, we illustrate our FX option pricing mechanism

on the model-free approach. We provide some calibration examples in

Chapter 12.
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P R E L I M I N A R I E S A B O U T O P T I O N P R I C I N G O N T H E F X

M A R K E T

In this chapter we give a short introduction to the Foreign Exchange market,

including currency forwards and options. We will look at the standard

currency option pricing formula based on Garman and Kohlhagen [44] and

its version in terms of the currency forward price similar to [14]. Further,

we describe the occurrence of the volatility smile and its behaviour on the

FX market [112, 20]. Lastly, we recall that there is no measure which is

simultaneously risk-neutral for both the domestic and the foreign market

and also state the foreign-domestic symmetry.

9.1 foreign exchange market and financial derivatives

The foreign exchange market (also known as FX or currency market) is the

largest financial market in the world. The trading volume in the FX market

was an estimated average of $6.6 trillion per day in 2019 (see [8] for more

details). It is a global market where different currencies are traded 24 hours.

Interest rate swaps with a trading volume of $3.2 trillion per day are the most

common transaction worldwide. With a trading volume of $2.0 trillion per

day, the second most common transaction was the spot transaction, which is

defined as follows.
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Definition 9.1.1 (FX spot rate). A spot FX transaction is an agreement be-

tween two parties, where one party agrees to buy one currency while the

other party agrees to sell another currency at an agreed price at the spot

date t. The current spot exchange rate is denoted as Sc1/c2(t), where c1 (c2)

denotes currency 1 (2).

For example, the spot exchange rate to exchange EUR(e) to USD($) at

time t is denoted as

Se/$(t)

and is quoted as
units of USD

one EUR
,

S$/e(t) =
1

Se/$(t)
.

In currency pairs (e.g. EUR-USD), the first mentioned currency is known as

the foreign (or base) currency, while the second is known as the domestic

currency (or numeraire) [20, 113].

Holding on to or trading in a foreign currency over time can bare the risk

of losing money due to different spot rates. For this reason one method to

deal with this foreign exchange risk is a forward contract.

Definition 9.1.2 (FX forward). A forward FX contract (or short forward) is

a contract between two parties agreed at time t. One party agrees to buy one

currency while the other party agrees to sell another currency in the future

at time T at a price agreed beforehand. This price is called the forward

exchange rate and denoted by Fc1/c2(t, T).

To price a forward fairly, we need to look at the interest rates of both

countries which currencies are traded. In this case, we assume that both

interest rates are constant. The connection between the interest rates and the

forward rate is stated in the following theorem (see [14]), which can be seen

as a no-arbitrage condition for exchanges between different currencies.
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Theorem 9.1.3. Let us assume Sc1/c2(t) is the current spot rate and Fc1/c2(t, T)

is the current forward exchange rate between two currencies c1 and c2. Then the

following equation holds:

Fc1/c2(t, T) = Sc1/c2(t)e
(r2−r1)(T−t), (9.1.1)

where r2 and r1 denote the interest short rates for the domestic and foreign markets,

respectively, t denotes the current time and T is the maturity date of the forward.

Proof. Assume an investor can invest money at the foreign interest rate r1

and at the domestic interest rate r2. Investing one unit at the domestic rate r2

at time t will give them er2(T−t) at time T. Exchanging one unit to the foreign

currency and then investing at the foreign rate r1 at time t will give them
er1(T−t)

Sc1/c2
(t) at time T. Currently the investor is dependent on the spot exchange

rate Sc1/c2(T) to exchange his foreign currency back to domestic currency.

However they could hedge that risk by buying a forward. Then Fc1/c2(t, T)

is the fair forward exchange rate, which has to hold so that no arbitrage is

possible.

Fc1/c2(t, T)
Sc1/c2(t)

er1(T−t) = er2(T−t)

⇔ Fc1/c2(t, T) = Sc1/c2(t)
er2(T−t)

er1(T−t)
= Sc1/c2(t)e

(r2−r1)(T−t)

Another financial instrument to hedge risk in regard to exchange rates are

options.

Definition 9.1.4 (European FX option). A (plain vanilla European) FX option

gives the holder the right but not the obligation to buy (call option) or to sell

(put option) an amount of one currency for another currency at an agreed

currency rate, also called option strike K, at a specific time T.

Currency options are often denoted in put/call pairs, e.g. a put option to

sell USD and buy Euro is denoted as USD/EUR.
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9.2 fx option pricing

Before we proceed to find the fair price of a FX option, we will look at the

no-arbitrage condition for put and call prices – the put-call parity for FX

options. For definiteness, in this chapter we use the EUR-USD and USD-EUR

pairs, where we assume that EUR is the foreign currency, while USD is the

domestic currency. Obviously, all statements also hold for the inverse pair or

any other currency pair.

The value of a put, P$(t, T), and a call, C$(t, T), at the maturity time T and

stated in the domestic currency USD can be written as follows:

C$(T, T) = (Se/$(T)− K, 0)+ := max(Se/$(T)− K, 0) (9.2.1)

P$(T, T) = (K− Se/$(T), 0)+ := max(K− Se/$(T), 0)

where Se/$(T) denotes the spot exchange rate at time T. We can now state

the following theorem which links the option price for FX put and calls with

the same strike K, maturity T and time left to maturity T − t.

Theorem 9.2.1. The Put–Call Parity for FX options is

P$(t, T)− C$(t, T) = Ke−r$(T−t) + S−re(T−t)
e/$ .

Proof. The proof is similar to the proof for the put-call parity for stock options

and can be found in [31, 20]. The idea is that payoffs of two portfolios with

the same payoffs at maturity must have the same price. For FX options,

portfolio 1 consists of a long put and a short call, while portfolio 2 consists

of a long zero-coupon bond in domestic currency and a short zero-coupon

bond in foreign currency.

To illustrate the idea of option pricing, we can make the following (classical)

model assumptions:

• no taxes, no transaction costs, no restrictions on long or short positions,
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• the domestic and the foreign interest rate are riskless and constant over

time,

• let (Ω,F , P,Ft) be a filtered probability space,

• the spot exchange rate follows a Geometric Brownian Motion (GBM)

with the SDE1

dS = µSdt + σSdW, (9.2.2)

where µ is the drift, σ the volatility of the spot exchange rate process

S(t) and W(t) a standard Wiener process,

• the solution to (9.2.2) is commonly known (see [57, 65]) and is given as

follows:

S(T) = S(0)e(µ−
σ2
2 )T+σW(t).

Proposition 9.2.2 (Garman and Kohlhagen option price). The arbitrage-free

price for a FX call/put option with the payoff function (9.2.1) can be written as

C$(t, T) = e−re(T−t)St · N
(

log(Se/$(t)
K ) + (r$ − re + σ2

2 )(T − t)
σ
√

T − t

)
(9.2.3)

− e−r$(T−t)K · N
(

log(Se/$(t)
K ) + (r$ − re − σ2

2 )(T − t)
σ
√

T − t

)
,

P$(t, T) = e−r$(T−t)K · N
 log( K

Se/$(t)
)− (r$ − re − σ2

2 )(T − t)

σ
√

T − t

 (9.2.4)

− e−re(T−t)St · N
 log( K

Se/$(t)
)− (r$ − re + σ2

2 )(T − t)

σ
√

T − t

 .

To derive the pricing formula (9.2.3) and (9.2.4) for currency options, one can

follow the SDE approach which can be found in [15] based on the original

paper of Garman and Kohlhagen [44] or see also Appendix B.2.

1 Note that we omit the currency pair notation. We use S(t) here for Se/$(t).
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Further, we can rewrite the call option price in terms of the forward

exchange rate defined in (9.1.1):

C$(t, T) = e−r$(T−t)Fe/$(t, T) · N
(

log( Fe/$(t,T)
K ) + σ2

2 (T − t)
σ
√

T − t

)
(9.2.5)

− e−r$(T−t)K · N
(

log( Fe/$(t,T)
K )− σ2

2 (T − t)
σ
√

T − t

)
,

P$(t, T) = e−r$(T−t)K · N
 log( K

Fe/$(t,T)
) + σ2

2 (T − t)

σ
√

T − t


− e−r$(T−t)Fe/$(t, T) · N

 log( K
Fe/$(t,T)

)− σ2

2 (T − t)

σ
√

T − t

 .

9.3 volatility smile

One of the main assumptions in the Black-Scholes (BS) model is, that the

volatility is constant over time. However, empirical studies [15, 57, 107] show

that this assumption does not hold on financial markets.

The Black-Scholes model [16, 76] and its extension to FX market options

(see Section 9.2) result in a closed-form formula, which describes the call or

put price of an option. As we can see in Proposition 9.2.2, the option price

depends on the spot exchange rate S, interest rates r, strike K, maturity T

and the volatility σ. All of those parameters, except the volatility, can be

observed on the market. A common market practice is to look at implied

(market) volatility, which can be derived using current available market price

data, on the same forward pair Fe/$(0, T) with the same parameters strike

K and maturity T, which we denote as C̄$(0, T). We can now solve the

Black-Scholes pricing formula (9.2.5), such that

C̄$(0, T) = C$(0, T, K, Fe/$(0, T), σimpl) (9.3.1)
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Figure 9.3.1: Typical implied Volatility graph for FX options [57, Chapter 19.2]

holds for the implied volatility σimpl. However, note that the pricing for-

mula (9.3.1) cannot be solved analytically for the implied volatility. It is hence

necessary to find an approximation for σimpl numerically and there exist

various numerical methods, e.g. Bisection, Secant or Newton method [98, 58],

to find an approximation for the solution. Instead of using implied volatil-

ity, one could look at historical volatility, which can be obtained analysing

historical spot exchange rate data over a fixed period of time. Volatility is

non-constant over time, hence it makes sense to use data over the same time

interval as the time to maturity. A known disadvantage of using historical

volatility is that it reflects market expectations in the past. The current

market prices represent the past market information and the current market

expectations, hence the implied volatility is known to be a better estimate

for the future.

As empirical evidence has shown [15, 57, 107], the implied volatility for

options on the FX market varies with strike (and time) and rather looks like a

volatility smile, which can be seen in Figure 9.3.1. Therefore, it is possible to

find the so called volatility surface σimpl(K, T), which reflects the dependency

of the implied volatility over strike K and maturity T. The observed volatility

smile is a characteristic of the FX market [15]. A reason for its appearance

is that the far in-the-money (ITM) and far out-of-the-money (OTM) options

are more expensive than expected under the Black-Scholes model [57]. This

suggests, that the real distribution for the log spot exchange rate deviates
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from the assumed normal distribution. The existence of a smile suggests

fatter tails and higher central peaks compared to the normal distribution,

which indicates that very small and large moves in the spot exchange rate are

more likely to occur. There are many different and well-known approaches

to solve these short-comings:

• Use of stochastic volatility models: e.g. Heston [56, 46, 11], SABR [54].

• Use of local volatility models [37, 76].

• Use of Lévy processes as underlying stochastic process [23].

In Chapter 11, we will illustrate some of the above approaches under the in-

termediate currency pricing idea. Additionally, we will introduce the method

of using a random variable following a extended skew normal distribution

with the possibility to adjust the weights in the resulting distribution tails,

which enables us to capture the volatility smile.

9.4 risk-neutral measures on fx markets and the foreign-

domestic symmetry

We recall (see e.g. [15, 113, 65, 107]) that there is no measure which is

simultaneously risk-neutral for both the domestic and the foreign market.

Let us denote the EUR-USD spot exchange rate at time t as

f (t) := Se/$(t).

The inverse spot exchange rate can then be expressed as

S$/e(t) =
1

Se/$(t)
=

1
f (t)

.
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Within the standard option pricing setting, we assume that the currency

market under a ‘market’ measure is described by the system:

dB$ = r$(t)B$dt, (9.4.1)

dBe = re(t)Bedt,

d f = µ(t) f dt + σ(t) f dW(t),

where B$(t), Be(t) and r$(t), re(t) are USD and EUR bank accounts with

their short interest rates, respectively; σ(t) > 0 is a volatility, µ(t) is a drift;

and W(t) is a standard Wiener process. It is assumed that the coefficients

r$(t), re(t), σ(t), and µ(t) are stochastic processes adapted to a filtration Ft

to which W(t) is also adapted (typically, in stochastic volatility models Ft is

larger than the natural filtration of W(t)), and they have bounded second

moments. We also require that σ(t) satisfies Novikov’s condition.

On the USD market, the foreign currency EUR is paid for by USD (the

domestic currency) and the risky asset is

Ye/$(t) = Se/$(t)Be(t),

while on the EUR market the risky asset is

Y$/e(t) = S$/e(t)B$(t).

Following the classical theory of pricing, we have to find equivalent (local)

martingale measures (EMMs) Q$ and Qe under which the corresponding

discounted risky assets are (local) martingales (see [65]). By standard argu-

ments we arrive at the SDEs for f (t) and g(t) := 1/ f (t) written under the

corresponding EMMs:

d f = (r$(t)− re(t)) f dt + σ(t) f dWQ$
(t), (9.4.2)

dg = (re(t)− r$(t))gdt− σ(t)gdWQe(t), (9.4.3)
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where WQ$
(t) is a standard Wiener process under Q$ and WQe(t) is a

standard Wiener process under Qe. We can see (cf. (9.4.1) and (9.4.2)-(9.4.3))

that the market prices of risk on the two markets differ:

γe(t) =
µ(t) + re(t)− r$(t)

σ(t)
6= σ2(t)− µ(t) + r$(t)− re(t)

−σ(t)
= γ$(t)

(recall that σ(t) > 0). Thus,

Q$ 6= Qe, (9.4.4)

i.e., there is no measure which is simultaneously risk-neutral for the EUR

domestic market and for the USD domestic market in this rather general

setting.

Note that the SDE (9.4.2) for f under the measure Qe takes the form

d f = (r$(t)− re(t) + σ2(t)) f dt + σ(t) f dWQe . (9.4.5)

Intuitively, one could think that the drift for the exchange rate g(t) = 1/ f (t)

in (9.4.3) should be the negative of the drift of f (t) under the same measure,

i.e. −(re(t) − r$(t)) = r$(t) − re(t). However, as we can see in (9.4.5),

this is not the case. This is related to the phenomenon known as Siegel’s

paradox [108], which is due to the convexity of the function 1/ f .

Let us also recall [49, 81, 113, 38] that under the no-arbitrage assumption

(and other standard conditions like no transaction costs, etc.), there is the

so-called foreign-domestic symmetry for FX options which we formulate in

the following theorem. This symmetry is the key requirement for a model to

be consistent for a currency pair and its inverse pair (see e.g. [33, 34, 26, 48]

and references therein and also Appendix B.3).

Theorem 9.4.1. Under the no-arbitrage assumption, there is the following relation-

ship (called Foreign-Domestic Symmetry) for FX options

Ce/$(0, T, K) = Se/$(0)K P$/e

(
0, T,

1
K

)
, (9.4.6)
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where Ce/$(0, T, K) is the call option price (in $) at time 0 to buy one EUR for $K

at time T; P$/e(0, T, 1/K) is the put option price (in e) at time 0 to sell one USD

for e
1
K

at time T.

Let us emphasise that the proof of this theorem is solely based on the

no-arbitrage argument, and hence it states a fundamental property of the

FX market. Suppose we take a stochastic volatility model (e.g., a popular

model such as the Heston and SABR) and calibrate it using option data on

the USD market. If we rewrite this model with the obtained parameters

for the inverse pair e/$, then option prices computed by this model on the

EUR market would not match the data on this market and the property

(9.4.6) would not be satisfied, i.e. we would get an arbitrage. Instead, if we

calibrate the inverse pair model again but using option data on the EUR

market, then the property (9.4.6) is obviously satisfied, but it is inconvenient

that the model needs to be calibrated twice despite the fact that the two

smiles are consistent with each other due to absence of arbitrage and the

symmetry (9.4.6). We note in passing (see e.g. [29, 26]) that for the SABR

and Heston models there are mappings between the parameters obtained

for USD-EUR and the parameters of the inverted world (i.e., EUR-USD), still

the parameters are different for the direct and inverted worlds, which we

illustrate in Example 9.4.1.

Example 9.4.1 (Illustration of standard Heston parameters). In this example,

we illustrate this difference in parameters, when we calibrate a standard

Heston model to option price data for the GBP-EUR and the inverse EUR-

GBP pair. In Figure 9.4.1, we can see the calibrated smiles following the

MATLAB code and approach of [62]. It is important to note, that in the

calibration, the parameters for υ0 and κ are fixed and we only optimise the

parameters (δ, θ, ρ) to match the market data. The difference in the resulting

parameters between the GBP-EUR world and inverted EUR-GBP world can

be clearly seen in Table 9.4.1.
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Table 9.4.1: The results of standard Heston model calibration for GBP-EUR and
EUR-GBP data.

parameter GBP-EUR smile EUR-GBP smile
υ0 0.011979 0.011979
κ 1.500 1.500
δ 0.32792 0.31406
θ 0.018072 0.016805
ρ −0.40828 0.40912

Figure 9.4.1: Illustration of GBP-EUR calibration and EUR-GBP calibration and their
parameters.

In the next chapter we find a numeraire allowing to price options on USD

and EUR markets simultaneously after a single calibration. In particular,

within the proposed approach, calibration of a stochastic volatility model

using FX data from one of the domestic markets guarantees replication of

volatility smiles by the model on both domestic markets.



10
P R I C I N G F X O P T I O N S U N D E R I N T E R M E D I AT E

P S E U D O - C U R R E N C Y

In this chapter we propose a suitable candidate to be used as numeraire for

which options on USD and EUR markets can be priced simultaneously under

the same measure. We will illustrate in Section 10.1, that it is convenient to

introduce such a numeraire using the notion of an artificial currency, which

we call an intermediate pseudo-currency in this Chapter to distinguish it

from the intrinsic currency of [33, 34] and the artificial currency of [26]. In

Section 10.2 we extend this new idea to the case of multi-currency markets.

10.1 fx option pricing via intermediate pseudo-currency

In this section, we start by introducing the intermediate pseudo-currency

market, then (Section 10.1.1) we consider pricing under an EMM QX on

the pseudo-market and (Section 10.1.2) – under the T-forward measure QX
T

equivalent to QX. We note that the intermediate currency market is virtual

and is only used as a proxy to find a suitable numeraire and write down the

corresponding pricing formulas, while calibration is done using the usual

FX data.

Definition 10.1.1. Let Se/$(t) = f (t) be the EUR-USD exchange rate at time

t. An intermediate pseudo-currency X is a currency with exchange rate

EUR-X, Se/X(t) =
√

f (t), and the exchange rate USD-X, S$/X(t) = 1√
f (t)

.

108
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We note the natural relationship for the intermediate currency

Se/X(t) ·
1

S$/X(t)
= f (t). (10.1.1)

We remark the following symmetry:

Se/X(t) =
√

f (t) =
1
1√
f (t)

=
1

S$/X(t)
= SX/$(t)

and

S$/X(t) =
1√
f (t)

=
1

Se/X(t)
= SX/e(t).

We also introduce the money market account BX for the intermediate

currency X with its respective interest rate rX(t):

dBX = rX(t)BXdt. (10.1.2)

In the next section we first establish that for a sufficiently broad class

of models for f (t) there is an EMM QX on the pseudo-market and then,

assuming existence of an EMM QX, we derive a pricing formula.

Remark 10.1.2. We can introduce Se/X(t) = f α(t) with any α ∈ (0, 1), then

SX/$(t) = f α−1(t). Each particular α leads to the corresponding numeraire

suitable for the stated purposes (but note that the numeraires associated

with the original USD and EUR markets are not suitable for the set objective

as discussed in Section 9.4). Arbitrariness of α can potentially be used for

calibration purposes but we do not consider this aspect here. For clarity and

also for the sake of symmetry, we choose to use α = 1/2 in this paper.

Remark 10.1.3. We do not attach any economic interpretation to the inter-

mediate pseudo-currency. Our interest is purely motivated by calibration

aspects. We also note that we model a single exchange rate which is natural,

not 2 rates as in [33, 35, 34, 26].



10.1 fx option pricing via intermediate pseudo-currency 110

10.1.1 An EMM for the intermediate market

Consider the virtual market where the domestic currency is X. On this market

we have two risky assets: USD paid by X and EUR paid by X:

Ye/X(t) = Se/X(t)Be(t), Y$/X(t) = S$/X(t)B$(t). (10.1.3)

Assume that EUR-USD exchange rate f (t) satisfies the model (9.4.1). Based

on (9.4.1), we can write the SDEs under market measure for Ye/X(t) and

Y$/X(t):

dYe/X =
1
2

(
µ(t) + 2re(t)−

σ2(t)
4

)
Ye/Xdt +

σ(t)
2

Ye/XdW(t),

dY$/X =
1
2

(
−µ(t) + 2r$(t) +

3σ2(t)
4

)
Y$/Xdt− σ(t)

2
Y$/XdW(t).

If we choose the intermediate currency interest rate rX equal to

rX(t) =
r$(t) + re(t)

2
+

σ2(t)
8

, (10.1.4)

then there is an EMM QX for the pseudo-currency market with the following

market price of risk γ(t):

γ(t) =
µ(t)− σ2(t)

2 + re(t)− r$(t)
σ(t)

, (10.1.5)

i.e.

dYe/X = rX(t)Ye/Xdt− σ(t)
2

Ye/XdWQX
,

dY$/X = rX(t)Y$/Xdt +
σ(t)

2
Y$/XdWQX

,

where WQX
is the standard Wiener process under QX. So, we have shown

that the intermediate pseudo-currency market can be arbitrage free within

this setting. We summarise this result in the following statement.
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Theorem 10.1.4. Assume that the EUR-USD currency market under a ‘market’

measure is described by the model (9.4.1). Then there is the unique intermediate

currency interest rate rX(t) defined in (10.1.4) and an EMM QX for the intermediate

pseudo-currency market with the market price of risk γ(t) from (10.1.5), i.e., under

(10.1.4) the market is arbitrage-free.

We observe from (10.1.4) that even if the short rates r$(t) and re(t) are

assumed to be constant, the intermediate currency interest rate rX(t) is

non-constant if the volatility σ(t) is time-dependent. Especially, if σ(t) is a

stochastic process, then so is the short rate rX(t).

Example 10.1.1 (An analogue of the Garman-Kohlhagen formula). Assume that

the exchange rate between EUR and USD f (t) = Se/$(t) satisfies the model

(9.4.1) with constant coefficients: σ(t) = σ, re(t) = re and r$(t) = r$.

Note that in this simplified case (the geometric Brownian motion case)

the intermediate currency interest rate rX is constant. Analogously, to the

standard derivation of the Garman-Kohlhagen formula, we can find option

prices for a pseudo-currency market investor. For a European floating-strike

call option (priced in X) to buy 1 EUR for K√
f (T)

X, we have

EC
e/X(0, T, f (0), K, r$, re) = e−rXTEQX

[(√
f (T)− K√

f (T)

)
+

]
(10.1.6)

=
√

f (0)e−reT N

(
log f (0)

K + (r$ − re + σ2

2 )T

σ
√

T

)

− K√
f (0)

e−r$T N

(
log f (0)

K + (r$ − re − σ2

2 )T

σ
√

T

)
.

And, similarly for a European floating strike put option (priced in X) to sell

1 USD for
√

f (T)
K X we have:

EP
$/X(0, T,

1
f (0)

,
1
K

, re, r$) = e−rXTEQX

[(√
f (t)
K
− 1√

f (t)

)
+

]
(10.1.7)

=

√
f (0)
K

e−r$T N

(
log f (0)

K + (r$ − re + σ2

2 )T

σ
√

T

)
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− 1√
f (0)

e−reT N

(
log f (0)

K + (r$ − re − σ2

2 )T

σ
√

T

)
.

From (10.1.6) and (10.1.7), we can deduce prices for the call Ce/$ and put

P$/e. To this end, we first observe that the in-the-money payoff of the call

EC
e/X (priced in X) is equivalent to buying e1 for $K. Indeed, this call’s

payoff is equal to the amount of X

(√
f (T)− K√

f (T)

)
+

which is equivalent to the amount of USD

√
f (T)

(√
f (T)− K√

f (T)

)
+

= ( f (T)− K)+

as we can exchange X for USD at the rate
√

f (T). Analogously, the in-the-

money payoff of EP
$/X is equivalent to selling $1 USD for e1/K.

Further, by multiplying the price of EC
e/X priced in X by

√
f (0), we convert

its option price in X to the price in USD, and by multiplying the price of

EP
$/X priced in X by 1/

√
f (0), we convert its price to EUR. Hence

Ce/$(0, T, f (0), K, r$, re) =
√

f (0)EC
e/X(0, T, f (0), K, r$, re), (10.1.8)

P$/e

(
0, T,

1
f (0)

,
1
K

, re, r$

)
=

1√
f (0)
EP

$/X

(
0, T,

1
f (0)

,
1
K

, re, r$

)
.

Comparing the resulting formulas for Ce/$ and P$/e, it is not difficult to

show that the foreign-domestic symmetry (9.4.6) holds.

Now let us look at a general FX option pricing formula based on the

intermediate currency. Let Se/$(t) = f (t) be the EUR-USD exchange rate at

time t defined on a filtered probability space (Ω,F , {Ft}, QX), where QX is

an EMM corresponding to the virtual market for which the intermediate cur-

rency X is domestic (note that at the start of this subsection we demonstrated

that there is a broad class of models for which QX exists). Assume that the
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distribution of f (t) is such that f (t) and 1/ f (t) have second moments. We

observe that we do not assume a particular model for f (t) in the pricing

part of this section. For simplicity, let the interest rates for the USD and

EUR money markets, r$ and re, be constant. As we noticed earlier, the

intermediate currency interest rate rX(t) is, in general, not constant even

when r$ and re are constant. We assume that rX(t) is adapted to the same

filtration Ft and

BX(t) = exp
(∫ t

0
rX(s)ds

)
. (10.1.9)

Introduce the discounting factor DX(t, T) related to the intermediate currency

interest rate and the intermediate currency non-defaultable zero-coupon

bond price PX(t, T):

DX(t, T) = exp
(
−
∫ T

t
rX(s)ds

)
(10.1.10)

and

PX(t, T) = EQX [DX(t, T)|Ft] , (10.1.11)

where we assumed that DX(t, T) has finite moments. Since QX is an EMM,

the discounted Ye/X(t) and Y$/X(t),

DX(0, t)Ye/X(t) = DX(0, t)Se/X(t)Be(t) = DX(0, t)
√

f (t)Be(t)

and

DX(0, t)Y$/X(t) = DX(0, t)S$/X(t)B$(t) = DX(0, t)
1√
f (t)

B$(t),

are QX-martingales. Hence we obtain for any t ≥ 0

√
f (0) = eretEQX

[
DX(0, t)

√
f (t)

]
,

1√
f (0)

= er$tEQX

[
DX(0, t)√

f (t)

]
.
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Thus, to obey the no-arbitrage condition, the distribution of f (t), t ≥ 0,

under QX should be so that

EQX

[
DX(0, t)

√
f (t)

]
EQX

[
DX(0,t)√

f (t)

] = e(r$−re)t f (0). (10.1.12)

In option pricing we will consider the following natural class of payoff

functions g(x; K), where x > 0 denotes the price of the underlier and K ≥ 0

has the meaning of a strike.

Assumption 10.1.1. Let payoff functions g(x; K) be homogeneous functions

of order 1, i.e. for any a > 0 :

a · g(x; K) = g(ax; aK). (10.1.13)

It is clear that e.g. plain vanilla puts and calls satisfy (10.1.13). For

definiteness, assume that g(x; K) is a payoff of an option written on one

EUR, where x has the meaning of EUR-USD exchange rate, and K and g

are denominated in USD. As in the case of a call (see Example 10.1.1), the

amount of USD g(x; K) is equivalent to the amount G(x; K) in X:

G(x; K) :=
1√
x

g(x; K) = g
(√

x;
K√

x

)
,

where 1/
√

x has the meaning of the exchange rate USD-X (cf. Defini-

tion 10.1.1) and G(x; K) and K/
√

x are denominated in X. According to the

risk-neutral pricing theory, we can write the value of the European option

Ve/X(t) with payoff g(
√

x; K√
x ) and maturity T at time t ≤ T as

Ve/X(t) = EQX

[
DX(t, T)g

(√
f (T);

K√
f (T)

)∣∣∣∣∣Ft

]
.
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Note that this is an option on EUR priced in X. The price in dollars for this

option is

Ve/$(t) =
√

f (t)EQX

[
DX(t, T)g

(√
f (T);

K√
f (T)

)∣∣∣∣∣Ft

]
. (10.1.14)

Analogously, we can derive a formula for an option on USD priced in EUR:

V$/e(t) =
1√
f (t)

EQX

[
DX(t, T)g

(
1√
f (T)

;
√

f (T)K

)∣∣∣∣∣Ft

]
, (10.1.15)

where g(y; K) is a payoff of an option written on one USD, y has the meaning

of USD-EUR exchange rate, and K and g are denominated in EUR. We

summarise this result in the following theorem.

Theorem 10.1.5. Assume that the EUR-USD exchange rate f (t) satisfies a model

for which the no-arbitrage condition (10.1.12) holds. Then the arbitrage price of a

European option on EUR with a payoff g(x; K) and maturity time T is given by

(10.1.14) and the arbitrage price of an option on USD is given by (10.1.15).

It is not difficult to show that the foreign-domestic symmetry (9.4.6) holds

when we use the pricing formulas (10.1.14) and (10.1.15) based on the

intermediate currency.

10.1.2 T-forward measure for the intermediate market

Introduce the T-forward measure QX
T equivalent to QX on FT with the

Radon-Nikodym derivative

QX
T

QX =
1

PX(0, T)BX(T)
(10.1.16)

and for t > 0

EQ

[
QX

T
QX

∣∣∣∣∣Ft

]
=

PX(t, T)
PX(0, T)BX(t)

. (10.1.17)
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Under this forward measure, we get [61, 47] (see also [15]):

√
f (0) = ereTEQX

[
DX(0, T)

√
f (T)

]
(10.1.18)

= ereTPX(0, T)EQX
T

[√
f (T)

]
,

1√
f (0)

= er$TEQX

[
DX(0, T)√

f (T)

]
= er$TPX(0, T)EQX

T

[
1√
f (T)

]
.

Then the no-arbitrage condition (10.1.12) becomes

EQX
T

[√
f (T)

]
EQX

T

[
1√
f (T)

] = e(r$−re)T f (0). (10.1.19)

Further, (10.1.18) implies that the bond price PX(0, T) should satisfy

PX(0, T) = e−reT
√

f (0)
EQX

T

√
f (T)

= e−r$T 1√
f (0)EQX

T

[
1√
f (T)

] . (10.1.20)

Notice that f (0) is the current EUR-USD exchange rate and hence it is

observable as well as r$ and re. The current forward EUR-USD exchange

rate

Fe/$(0, T) = e(r$−re)T f (0) (10.1.21)

is also observable on the USD market.

We note that the forward EUR-X and USD-X exchange rates,

Fe/X(t, T) = e−re(T−t)
√

f (t)
PX(t, T)

and F$/X(t, T) = e−r$(T−t) 1
PX(t, T)

√
f (t)

,

(10.1.22)

are both QX
T -martingales. For convenience, we recall that if rX(t) is deter-

ministic then the two measures QX and QX
T coincide.

It is also not difficult to show that

√
f (t) = ere(T−t)EQX

[
DX(t, T)

√
f (T)

∣∣∣∣Ft

]
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= ere(T−t)PX(t, T)EQX
T

[√
f (T)

∣∣∣∣Ft

]
,

1√
f (t)

= er$(T−t)EQX

[
DX(t, T)√

f (T)

∣∣∣∣∣Ft

]

= er$(T−t)PX(t, T)EQX
T

[
1√
f (T)

∣∣∣∣∣Ft

]
.

Then

PX(t, T) = e−re(T−t)
√

f (t)

EQX
T

[√
f (T)

∣∣∣Ft

] (10.1.23)

= e−r$(T−t) 1√
f (t)EQX

T

[
1√
f (T)

∣∣∣∣Ft

] .

The pricing formula (10.1.14) under the T-forward measure QX
T becomes

Ve/$(t) =
√

f (t)EQX

[
DX(t, T)g

(√
f (T);

K√
f (T)

)∣∣∣∣∣Ft

]
(10.1.24)

=
√

f (t)PX(t, T)EQX
T

[
g

(√
f (T);

K√
f (T)

)∣∣∣∣∣Ft

]

=
e−r$(T−t)

EQX
T

[
1√
f (T)

∣∣∣∣Ft

]EQX
T

[
g

(√
f (T);

K√
f (T)

)∣∣∣∣∣Ft

]
,

where in the last line we used (10.1.23). Analogously, we have (see (10.1.15)):

V$/e(t) =
e−re(T−t)

EQX
T

[√
f (T)

∣∣∣Ft

]EQX
T

[
g

(
1√
f (t)

;
√

f (T)K

)∣∣∣∣∣Ft

]
. (10.1.25)

We summarize this result in the next theorem.

Theorem 10.1.6. Assume that the EUR-USD exchange rate f (t) satisfies a model

for which the no-arbitrage condition (10.1.12) or (10.1.19) holds. Then the arbitrage

price of an option on EUR with a payoff g(x; K) and maturity time T is given by

(10.1.24) and the arbitrage price of an option on USD is given by (10.1.25).
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The advantage of (10.1.24) and (10.1.25) vs (10.1.14) and (10.1.15) is that in

(10.1.24) and (10.1.25) we do not need to compute the intermediate currency

interest rate rX(t).

Example 10.1.2. The prices of the call for buying e1 for $K and of the put

for selling $1 for e1/K are equal to

Ce/$(0, T, K) =
e−r$T

EQX
T

[
1√
f (T)

]EQX
T

[(√
f (T)− K√

f (T)

)
+

]
, (10.1.26)

P$/e

(
0, T,

1
K

)
=

e−reT

EQX
T

√
f (T)

EQX
T

[(√
f (T)
K

− 1√
f (T)

)
+

]
.

We see that these pricing formulas satisfy the foreign-domestic symmetry

(9.4.6):

Ce/$(0, T, K) = f (0) · K · P$/e

(
0, T,

1
K

)
.

To summarise, we derived the consistent pricing formulas for FX options.

Although the new pricing formulas are derived using the virtual X market,

their evaluation depends on parameters of the USD and EUR markets only.

When we are interested in option prices at the current time t = 0, they are

valid for any distribution (i.e., we do not need to explicitly define the process

f (t)) of the exchange rate f (T) which satisfies (10.1.19). We will demonstrate

this observation in illustrations of the new pricing formulas in Section 11.

10.2 extension to the multi–currencies case

Let us assume we have N currencies ci, where i = 1, . . . , N. Fixing one

currency, for definiteness i = N, we can introduce the N − 1 exchange rates

f j = Scj/cN > 0, j = 1, . . . , N − 1, (10.2.1)

which denote the exchange rates between the currency cN to all other cur-

rencies ci, i = 1, . . . , N − 1.
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Now we introduce the intermediate currency X by defining the N exchange

rates Sci/X as follows

Sci/X = f bi1
1 × f bi2

2 × · · · × f biN−1
N−1 , i = 1, . . . , N, (10.2.2)

where bij ∈ R are so that

bjj = 1− αj, j = 1, . . . , N − 1,

bij = −αj, i 6= j, i = 1, . . . , N j = 1, . . . , N − 1.

By symmetry arguments (see also Remark 10.2.2 below), we choose

αi =
1
N

, i = 1, . . . , N − 1. (10.2.3)

Note that Sci/X is the exchange rate between the observable currency ci

and the introduced intermediate currency X and hence it is the worth of

1 unit of currency ci in the intermediate currency X. In the case (10.2.1)-

(10.2.2), (10.2.3), the exchange rate Sci/X can be written in the concise form

via geometric mean GM( f j) of the sequence of f j :

Sci/X = fi

(N−1

∏
j=1

1
f j

)1/(N−1)
(N−1)/N

:= fi
[
GM( f j)

](N−1)/N .

We assume that the currency market under a ‘market’ measure P is de-

scribed by the system:

d f j = µj(t) f jdt + σj(t) f jdW̃j, j = 1, . . . , N − 1,

dW̃ldW̃k = dW̃kdW̃l = ρlk(t)dt, l, k = 1, . . . , N − 1,
(10.2.4)

and

dBi = ri(t)Bidt, i = 1, . . . , N, (10.2.5)
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where Bi(t) describes the bank account of currency ci with its short rate ri(t);

σj(t) > 0 is the volatility of the exchange rate f j(t), µj(t) is its drift; and

W̃(t) = (W̃1(t), . . . , W̃N−1(t))T is an N − 1–dimensional correlated Wiener

process with the correlation matrix R(t) ∈ RN−1×N−1 which components

we denote by ρij(t) (obviously ρii = 1). It is assumed that ri(t), σj(t), µj(t)

are stochastic processes adapted to a filtration Ft to which W̃(t) is also

adapted, and they have bounded second moments and σj(t) satisfy Novikov’s

condition. Furthermore, let us assume that the matrix R is symmetric strictly

positive definite. Then using the Cholesky decomposition, we can represent

R = LLT, where L ∈ RN−1×N−1 is a lower triangular matrix with entries Li,j.

Using this decomposition, we can rewrite the SDEs (10.2.4) as

d f j = µj(t) f jdt + σj(t) f j

j

∑
k=1

Ljk(t)dWk, j = 1, . . . , N − 1, (10.2.6)

where

Lii(t) =

√√√√1−
i−1

∑
k=1

L2
ik(t), Lji(t) =

ρij −
i−1
∑

k=1
Ljk(t)Lik(t)

Lii(t)
, for i < j,

and W(t) = (W1(t), . . . , WN−1(t))T is an N− 1–dimensional standard Wiener

process. We first show that the intermediate currency introduced in (10.2.2)

permits an arbitrage-free market involving all N currencies.

Theorem 10.2.1. Assume that N − 1 exchange rates f j between the currency cN

to all other currencies ci, i = 1, . . . , N − 1, under a ‘market’ measure are described

by the model (10.2.6) together with (10.2.5). Consider the intermediate currency X

introduced in (10.2.2). There is the unique intermediate currency interest rate rX(t)

defined by

rX(t) =
1
N

N

∑
i=1

ri(t) +
1

2N

(
1− 1

N

) N−1

∑
i=1

σ2
i (t)−

1
N2

N−1

∑
j=1

j−1

∑
k=1

σj(t)σk(t)ρjk(t)

(10.2.7)
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and there is an EMM QX for the intermediate pseudo-currency market, i.e., under

(10.2.7) this market is arbitrage-free.

Proof. Applying the Ito formula to (10.2.2), we obtain the SDEs for the

exchange rates Sci/X:

dSci/X

Sci/X
=

[
1
N

N−1

∑
j=1

(
−µj +

1
N + 1

2
σ2

j

)
+ µi1i 6=N

+
1

N2

N−1

∑
j=1

j−1

∑
k=1

σjσkρjk −
1
N

σi

N−1

∑
k=1

1i 6=Nσkρik

]
dt

− 1
N

N−1

∑
j=1

j

∑
k=1

σjLjkdWk + σi

i

∑
k=1

1i 6=N LikdWk

=

[
1
N

N−1

∑
j=1

(
1
2

(
1
N

+ 1
)

σ2
j − σi1i 6=Nσjρij +

1
N

σj

j−1

∑
k=1

σkρkj − µj

)

+ µi1i 6=N

]
dt

− 1
N

N−1

∑
j=1

j

∑
k=1

σjLjkdWk + σi1i 6=N

i

∑
k=1

LijdWk, i = 1, . . . , N.

On the considered market the risky assets have the prices Yci/X = Sci/XBi,

i = 1, . . . , N. Introduce the discounted risky assets’ prices in the usual way:

Ỹci/X(t) =
Sci/X(t)Bi(t)

BX(t)
, i = 1, . . . , N. (10.2.8)

The discounted prices satisfy the SDEs

dỸci/X

Ỹci/X
= [ri − rX] dt

+

[
1
N

N−1

∑
j=1

(
1
2

(
1
N

+ 1
)

σ2
j − σi1i 6=Nσjρij +

1
N

σj

j−1

∑
k=1

σkρkj − µj

)

+ µi1i 6=N

]
dt

− 1
N

N−1

∑
j=1

j

∑
k=1

σjLjkdWk + σi1i 6=N

i

∑
k=1

LikdWk, i = 1, . . . , N.
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The no-arbitrage condition requires existence of an EMM QX under which

all Ỹci/X are martingales. This implies that for QX to exist the following

system of N simultaneous linear algebraic equations in N unknown variables

(which are the market prices of risk γk, k = 1, . . . , N − 1, and rX) should

have a solution:

ri − rX +
1
N

N−1

∑
j=1

(
1
2

(
1
N

+ 1
)

σ2
j − σi1i 6=Nσjρij +

1
N

σj

j−1

∑
k=1

σkρkj − µj

)
(10.2.9)

+ µi1i 6=N

= − 1
N

N−1

∑
j=1

j

∑
k=1

σjLjkγk + σi1i 6=N

i

∑
k=1

Likγk, i = 1, . . . , N.

Subtracting the equation (10.2.9) with i = N from the equations (10.2.9) for

i 6= N, we obtain

ri − rN + µi −
1
N

σi

N−1

∑
k=1

σkρik = σi

i

∑
k=1

Likγk, i = 1, . . . , N − 1. (10.2.10)

Using (10.2.10), we recurrently find the market prices of risk:

γi =

ri − rN + µi − 1
N σi

N−1
∑

k=1
σkρik − σi

i−1
∑

k=1
Li,kγk

σiLi,i
, i = 1, . . . , N − 1,

(10.2.11)

which are well defined due to our assumptions σi > 0 and Li,i > 0. Moreover,

sum up (10.2.10) over i from i = 1 to N − 1 and substitute the result in

(10.2.9) with i = N to confirm (10.2.7):

rN − rX +
1
N

N−1

∑
j=1

(
1
2

(
1
N

+ 1
)

σ2
j +

1
N

σj

j−1

∑
k=1

σkρkj − µj

)

= − 1
N

N−1

∑
j=1

(
rj − rN + µj −

1
N

σj

N−1

∑
k=1

σkρjk

)

⇔ rX =
1
N

N

∑
j=1

rj +
1

2N

(
1− 1

N

) N−1

∑
j=1

σ2
j −

1
N2

N−1

∑
j=1

j−1

∑
k=1

σjσkρjk.
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The found γi, i = 1, . . . , N− 1, from (10.2.11) and rX from (10.2.7) together

with Girsanov’s theorem ensure that there is an EMM QX under which

all Ỹci/X are martingales. Thus, the considered market is arbitrage free.

Theorem 10.2.1 is proved.

Remark 10.2.2. Recall that we chose to use α1 = · · · = αN−1 = 1
N in (10.2.2).

If we repeat the proof of Theorem 10.2.1 for arbitrary 0 < αj < 1 (see

Appendix B.4) then we arrive at the following intermediate currency interest

rate rX :

rX =

(
1−

N−1

∑
j=1

αj

)
rN +

N−1

∑
j=1

αjrj +
N−1

∑
j=1

αj(1− αj)

2
σ2

j −
N−1

∑
j=1

j−1

∑
k=1

αjαkσjσkρjk,

(10.2.12)

ensuring that there is an EMM in this market. We see that the choice αj =
1
N

results in the symmetry so that each rj enters (10.2.12) with the same weight.

Other choices of αj give a ‘preference’ to a particular currency.

Analogously to Assumption 10.1.1, we will consider payoffs as first-order

homogeneous functions in the multi-currencies case.

Assumption 10.2.1. Let payoff functions g(x1, . . . , xN−1; K) be homogeneous

functions of order 1, i.e. for any a > 0

a · g(x1, . . . , xN−1; K) = g(ax1, . . . , axN−1; aK). (10.2.13)

Most multi-currency options (e.g. basket options [22]) have pay-offs be-

longing to this class. Consider a European-type option with maturity time T

and payoff in the currency cN:

g(T) := g( f1(T), . . . , fN−1(T); K).

Its equivalent value in the intermediate currency X is equal to (see (10.2.2)):

G(T) :=ScN/X(T) · g(T)
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=g
(

f1(T)ScN/X(T), . . . , fN−1(T)ScN/X(T); K · ScN/X(T)
)

(10.2.14)

=g
(

Sc1/X(T), . . . , ScN−1/X(T); K · ScN/X(T)
)

=g
(

Sc1/X(T), . . . , ScN/X(T); K′
)

,

where K′ = K · ScN/X(t) is the equivalent strike in X. It is not difficult to see

that at the maturity time T the option holder is indifferent between receiving

g(T) in currency cN or G(T) in currency X as they can obtain the same

amount by exchanging G(T) to cN:

G(T)
ScN/X(T)

=
1

ScN/X(T)
g
(

Sc1/X(T), . . . , ScN−1/X(T); K · ScN/X(T)
)

= g
(

f1(T), . . . , fN−1(T); K
)

.

Example 10.2.1 (Basket option). Consider a basket option on the cN market

written on all N − 1 exchange rates fi(t), i = 1, . . . , N − 1, which has the

pay-off function of the form [22]:

g(x1, . . . , xN−1; K) =

(
N−1

∑
i=1

ωixi − K

)
+

,

where xi, i = 1, . . . , N − 1, and K are denominated in the currency cN and

ωi ≥ 0, i = 1, . . . , N − 1, are some weights. The equivalent pay-off on the X

currency market at the maturity T is equal to

G(T) = ScN/X(T) · g( f1(T), . . . , fN−1(T); K) (10.2.15)

= ScN/X(T)

(
N−1

∑
i=1

ωi fi(T)− K

)
+

=

(
N−1

∑
i=1

ωiSci/X(t)− K · ScN/X(t)

)
+

=

(
N−1

∑
i=1

ωiSci/X(t)− K′
)

+

,

where Sci/X(t) and K′ are denominated in the intermediate currency X.

As in the case of a single FX pair (see Theorem 10.1.4), we have shown

by Theorem 10.2.1 that there is a sufficiently broad class of models for



10.2 extension to the multi–currencies case 125

which there is an EMM QX with an appropriate choice of the intermediate

currency interest rate rX(t). We now generalize the pricing formulas of

Theorems 10.1.5 and 10.1.6 from a single FX pair to the multi-currency case.

Let the exchange rates fi(t) between the currency cN to all other cur-

rencies ci, i = 1, . . . , N − 1, be defined on a filtered probability space

(Ω,F , {Ft}, QX), where QX is an EMM corresponding to the virtual mar-

ket for which the intermediate currency X is domestic. Assume that fi(t),

i = 1, . . . , N − 1, and the exchange rates Sci/X between the pseudo-currency

X to all the currencies ci, i = 1, . . . , N, defined in (10.2.2), (10.2.3) have second

moments. Further, assume that rX(t) is adapted to the same filtration Ft and

recall the expressions and assumptions for the money market account BX(t)

(see (10.1.9)), the discounting factor DX(t, T) related to the intermediate cur-

rency interest rate (see (10.1.10)) and the intermediate currency zero-coupon

bond price PX(t, T) (see (10.1.11)).

As QX is an EMM, the discounted Yci/X(t) for all i = 1, . . . , N,

Ỹci/X = DX(0, t)Yci/X(t) = DX(0, t)Sci/X(t)Bci(t), i = 1, . . . , N,

are QX-martingales. Hence we obtain

Sci/X(0) = eritEQX
[
DX(0, t)Sci/X(t)

]
, i = 1, . . . , N.

Therefore, for all i = 1, . . . , N − 1 and t > 0, we have

EQX
[
DX(0, t)Sci/X(t)

]
EQX

[
DX(0, t)ScN/X(t)

] = e(ri−rN)t Sci/X(0)
ScN/X(0)

= e(rN−ri)t fi(0). (10.2.16)

Hence, to obey the no-arbitrage condition, the distributions of Sci/X(t), t > 0,

under QX should be so that (10.2.16) holds.

Consider a European option with maturity T and pay-off function G(T)

on the intermediate currency market. Its price in X is equal to

VX(t) = EQX [DX(0, T)G(T)|Ft] . (10.2.17)
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Using (10.2.14), we obtain the price for this option in the currency cN:

VcN(t) =
1

ScN/X(t)
EQX

[
DX(0, T) · g(Sc1/X(T), . . . , ScN−1/X(T); KScN/X(T))|Ft

]
.

(10.2.18)

Then the analog of Theorem 10.1.5 is as follows.

Theorem 10.2.3. Assume that the exchange rates fi(t), i = 1, . . . , N − 1, (or

Sci/X(t), i = 1, . . . , N) satisfy a model for which the no-arbitrage condition (10.2.16)

holds. Then on the cN market the arbitrage price VcN(t) of a European option on

c1, . . . , cN−1 currencies with a payoff g(x1, . . . , xN−1; K) and maturity time T is

given by (10.2.18).

We want to change measure again now, so therefore introduce the T-

forward measure QX
T equivalent to QX on FT with the Radon-Nikodym

derivative as in (10.1.16) (see also (10.1.17)). Under this forward measure, we

get for i = 1, . . . , N,

Sci/X(0) = eriTEQX
[
DX(0, T)Sci/X(T)

]
= eriTPX(0, T)EQX

T

[
Sci/X(T)

]
.

(10.2.19)

Then the no-arbitrage conditions (10.2.16) become

EQX
T

[
Sci/X(T)

]
EQX

T

[
ScN/X(T)

] = e(rN−ri)T fi(0), i = 1, . . . , N − 1. (10.2.20)

Here Fci/cN(0) = e(rN−ri)T fi(0) is the current forward ci-cN exchange rate. It

follows from (10.2.20) that for any j = 1, . . . , N :

EQX
T

[
Sci/X(T)

]
EQX

T

[
Scj/X(T)

] = e(rj−ri)T fi(0)
f j(0)

= e(rj−ri)TSci/cj(0), i = 1, . . . , N, i 6= j.

(10.2.21)

We remark that the no-arbitrage condition does not depend on the choice of

cN used in (10.2.1).
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Moreover, (10.2.19) implies that the bond price PX(0, T) should satisfy

PX(0, T) = e−riT
Sci/X(0)

EQX
T

[
Sci/X(T)

] , i = 1, . . . , N. (10.2.22)

We observe that the relationships (10.2.20) ensure that (10.2.22) holds for all

i = 1, . . . , N. Note that fi(0) are the current ci/cN exchange rates and hence

Sci/X(0) (see (10.2.2)) are observable as well as all ri. Similarly to (10.1.23),

we also have

PX(t, T) = e−ri(T−t) Sci/X(t)
EQX

T

[
Sci/X(T)|Ft

] , i = 1, . . . , N.

Analogously to (10.1.25), the pricing formula (10.2.18) under the T-forward

measure QX
T becomes

VcN(t) =
e−rN(T−t)

EQX
T

[
ScN/X(T)|Ft

] (10.2.23)

×EQX
T

[
g(Sc1/X(T), . . . , ScN−1/X(T); KScN/X(T))|Ft

]
.

Then the analog of Theorem 10.1.6 is as follows.

Theorem 10.2.4. Assume that the exchange rates fi(t), i = 1, . . . , N − 1, (or

Sci/X(t), i = 1, . . . , N) satisfy a model for which the no-arbitrage condition (10.2.20)

(or (10.2.16)) holds. Then on the cN market the arbitrage price VcN(t) of a European

option on c1, . . . , cN−1 currencies with a payoff g(x1, . . . , xN−1; K) and maturity

time T is given by (10.2.23).

It is clear that the pricing formula (10.2.23) remains true if we replace the

currency cN with any other cj and the scalable payoff g(x1, . . . , xj−1, xj . . . , xN; K)

is denominated in cj. We now return to Example 10.2.1.
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Example 10.2.2 (Basket option pricing). Let us make the same assumptions

as in Example 10.2.1 and find the arbitrage price of a European option with

pay-off G(T) at maturity T on the X currency market given by

G(t) =

(
N−1

∑
i=1

ωiSci/X(t)− K

)
+

,

where Sci/X(t) and K are denominated in X. Following Theorem 10.2.4, the

price of this basket option at time 0, denominated in currency cN , is equal to

BasketOptioncN(0) =
e−rN T

EQX
T

[
ScN/X(T)

]EQX
T

[(
N−1

∑
i=1

ωiSci/X(T)− K

)
+

]
.

To summarise, we derived consistent pricing formulas (10.2.18) and (10.2.23)

for FX options in the multi-currency case. As it was in Chapter 10.1 for a

single FX pair, here in the multi-currency case, although the pricing for-

mulas (10.2.18) and (10.2.23) are derived using the virtual X market, their

evaluation depends on parameters of the real ci, i = 1, . . . , N, markets only.

The distinguishing feature of our approach in comparison with the others is

that we can price all FX options regardless from their domestic market using

the same measure which in turn guarantees that all natural relationships

between exchange rates and FX options are automatically fulfilled.



11
I L L U S T R AT I O N S

For illustrative purposes, we consider four examples in this chapter. The first

example (Section 11.1) illustrates the use of FX pricing from Chapter 10 in

the case when the EUR-USD exchange rate f (t) is described by the Heston

model [56] whereas the second example (Section 11.2) deals with the SABR

model [54]. In these two examples we follow the traditional route: we start

with models written under a ‘market’ measure, then find an EMM QX on

the intermediate currency market and use Theorem 10.1.5 for pricing FX

options. The third example presented in Section 11.3 follows a different

route: we propose a distribution for an exchange rate at maturity time T, e.g.

for EUR-USD, under a forward measure QX
T on the intermediate currency

market so that the no-arbitrage condition (10.1.19) is satisfied. Then, we use

Theorem 10.1.6 or Theorem 10.2.4 for pricing FX options. To this end, in

Section 11.3 we assume that the EUR-USD exchange rate f (T) has a skew

normal distribution. We remark that the use of the considered extended

skew normal model for FX pricing is novel. In Section 11.4, we illustrate the

results of Sections 10.1 and 10.2 in the case of the model-free approach.

11.1 heston model

For simplicity, let the interest rates for the USD and EUR money markets, r$

and re, be constant. Consider the Heston stochastic volatility model for the

129
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EUR-USD exchange rate Se/$(t) = f (t) written under a ‘market’ measure

[56]:

d f = µ f dt +
√

v f
(√

1− ρ2 dW1(t) + ρdW2(t)
)

, (11.1.1)

dv = κ (θ − v)dt + δ
√

vdW2(t),

f (0) = f0, v(0) = v0, (11.1.2)

where W1(t) and W2(t) are independent standard Wiener processes; σ(t) =√
v(t) is a (stochastic) volatility; θ, κ, δ, f0 and v0 are positive constants,

satisfying

2κθ ≥ δ2; (11.1.3)

and the correlation coefficient ρ ∈ (−1, 1). Recall [63] that the condition

(11.1.3) guarantees that zero is unattainable by v(t) in finite time.

Following Section 10.1.1, to re-write (11.1.1) under QX, we need to find

the market prices of risk, γ1(t) and γ2(t), so that (cf. (10.1.5)):

√
1− ρ2γ1(t) + ργ2(t) =

µ− v(t)/2 + re − r$√
v(t)

. (11.1.4)

As it is standard for the Heston model [56], to deal with incompleteness of

the market, we choose

γ2(t) = λ
√

v(t), (11.1.5)

where λ is a constant. Thus, we have

d
√

f = (rX(t)− re)
√

f dt

+

√
v

2

√
f
(√

1− ρ2 dWQX

1 (t) + ρ dWQX

2 (t)
)

, (11.1.6)

d
1√

f
= (rX(t)− r$)

1√
f

dt−
√

v
2

1√
f

(√
1− ρ2 dWQX

1 (t) + ρ dWQX

2 (t)
)

,

dv = κ (θ − v)dt + δ
√

vdWQX

2 , v(0) = v0,
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where, as before (see (10.1.4)),

rX(t) =
r$ + re

2
+

v(t)
8

(11.1.7)

and, without changing the notation, the new κ and θ in (11.1.6) are equal

to κ + λδ and κθ/(κ + λδ), respectively, in terms of the old κ and θ from

(11.1.1). Then (see Theorem 10.1.5), e.g. the price of the call (in USD) for

buying e1 for $K is equal to

Ce/$(0, T, K) =
√

f (0)EQX

[
DX(0, T)

(√
f (T)− K√

f (T)

)
+

]
, (11.1.8)

where
√

f (T) and 1/
√

f (T) are from (11.1.6).

Now, we can rewrite (11.1.6) under the T-forward measure QX
T using the

results of Section 10.1.2. By (11.1.7), we have

PX(t, T) = EQX [DX(t, T)|Ft]

= EQX

[
exp

(
−
∫ T

t
rX(s)ds

)∣∣∣∣Ft

]
= exp

(
−r$ + re

2
(T − t)

)
EQX

[
exp

(
−
∫ T

t

v(s)
8

ds
)∣∣∣∣ v(t)

]
.

The stochastic X short rate rX(t) defined by (11.1.7) with v(t) from (11.1.6)

possesses an affine term structure (see e.g. [15, 17, 36]):

PX(t, T) = exp
(
−r$ + re

2
(T − t) + A(T − t)− C(T − t)v(t)

)
. (11.1.9)

The PDE problem for PX(t, T) = p(t, v) can be written by applying the

Feymann-Kac formula:

∂

∂t
p(t, v) + κ(θ − v)

∂

∂v
p(t, v) +

δ2v
2

∂2

∂v2 p(t, v)− v
8

p(t, v)

− r$ + re
2

p(t, v) = 0, (11.1.10)
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where p(T, v) = 1. Now let us assume that the solution to 11.1.10 can be

written as given in 11.1.9. We can derive the partial derivatives of p(t, v):

∂

∂t
p(t, v) =

(
r$ + re

2
− ∂

∂t
A(T − t) +

∂

∂t
C(T − t)v(t)

)
p(t, v),

∂

∂v
p(t, v) = −C(T − t)p(t, v),

∂2

∂v2 p(t, v) = [C(T − t)]2 p(t, v).

This leaves us with the following PDE:

(
∂

∂t
A(T − t) +

∂

∂t
C(T − t)v

)
p(t, v) + κ(θ − v) (−C(T − t)) p(t, v)

+
δ2v
2

[C(T − t)]2 p(t, v)− v
8

p(t, v) = 0

⇔ p(t, v)
[
− ∂

∂t
A(T − t)− κθC(T − t)

]
+ p(t, v)v(t)

[
∂

∂t
C(T − t) +

δ2

2
[C(T − t)]2 + κC(T − t)− 1

8

]
= 0,

which should be true for any v(t). Therefore,

∂

∂t
A(T − t) = −κθC(T − t), A(0) = 0,

∂

∂t
C(T − t) = −δ2v

2
[C(T − t)]2 − κC(T − t) +

1
8

, C(0) = 0.

We can rewrite the equation by replacing C(T − t) by C(t). Moreover, this

equation for C(t) is a Riccati equation, therefore let us do the following

substitution:

C(t) =
2 ∂

∂t u(t)
δ2u(t)

,
∂

∂t
C(t) =

2 ∂2

∂t2 u(t)
δ2u(t)

−
2δ2
(

∂
∂t u(t)

)2

[δ2u(t)]2
. (11.1.11)

This will leave us with the following equation:

2 ∂2

∂t2 u(t)
δ2u(t)

−
2δ2
(

∂
∂t u(t)

)2

[δ2u(t)]2
= −δ2

2

[
2 ∂

∂t u(t)
δ2u(t)

]2

− κ

[
2 ∂

∂t u(t)
δ2u(t)

]
+

1
8
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⇔ 16
∂2

∂t2 u(t) + 16κ
∂

∂t
u(t)− δ2u(t) = 0.

This second order ODE has the general solution u(t) and derivative ∂
∂t u(t)

as follows:

u(t) = B1 exp
(−κ + β

2
t
)
+ B2 exp

(−κ − β

2
t
)

,

∂

∂t
u(t) = B1

−κ + β

2
exp

(−κ + β

2
t
)
+ B2

−κ − β

2
exp

(−κ − β

2
t
)

,

where β =
√

κ2 + 1
4 δ2. Resubstituting this back into (11.1.11) gives us the

following solution for C(t):

C(t) =
2
δ2

B1
−κ+β

2 exp
(−κ+β

2 t
)
+ B2

−κ−β
2 exp

(−κ−β
2 t

)
B1 exp

(−κ+β
2 t

)
+ B2 exp

(−κ−β
2 t

) .

As C(0) = 0, we can choose B1 = −κ−β
−κ+β = β+κ

β−κ and B2 = 1. This leaves us

with the following formula for C(t):

C(t) =
1
δ2

(κ + β) exp
(−κ+β

2 t
)
− (κ + β) exp

(−κ−β
2 t

)
β+κ
β−κ exp

(−κ+β
2 t

)
+ exp

(−κ−β
2 t

)
=

(β + κ)(β− κ)

δ2

exp
(−κ+β

2 t
)
− exp

(−κ−β
2 t

)
(β + κ) exp

(−κ+β
2 t

)
+ (β− κ) exp

(−κ−β
2 t

)
=

1
4

(exp (βt)− 1)
(β + κ) exp (βt) + (β− κ)

.

Now, we find the solution for A(t):

∂

∂t
A(t) = −κθC(t), A(0) = 0,

and obtain

A(t) = −
∫ t

0
κθC(t)dt
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= −κθ

4

∫ t

0

(exp (βt)− 1)
(β + κ) exp (βt) + (β− κ)

dt

= −κθ

4

{
1
β

∫ eβt

1

u
(β + κ)u + (β− κ)

1
u

du

+
1
β

∫ e−βt

1

1
(β + κ)/u + (β− κ)

1
u

du

}

= − κθ

4β

{
1

β + κ

[
ln
(
(β + κ)u + (β− κ)

)]eβt

1

+
1

β− κ

[
ln
(
(β− κ)u + (β + κ)

)]e−βt

1

}

= − κθ

4β

{
1

β2 − κ2 [−(β + κ) ln(2β)− (β− κ) ln(2β)]

+
1

β + κ
ln
(
(β + κ)eβt + (β− κ)

)
+

1
β− κ

ln
(
(β + κ)eβt + (β− κ)

)
+

ln(eβt)

β− κ

}

=
κθ

4β

1
β2 − κ2

{
2β ln(2β)− (β− κ) ln

(
(β + κ)eβt + (β− κ)

)
− (β + κ) ln

(
(β + κ)eβt − (β− κ)

)
+ (β + κ) ln(eβt)

}

=
2κθ

δ2

{
ln
(

2β

(β + κ)eβt + (β− κ)
+

β + κ

2β
ln(eβt)

)}

=
2κθ

δ2 ln

(
2βe

β+κ
2 t

(β + κ)eβt + (β− κ)

)
.

Hence, P(t, X) can be written as

PX(t, T) = exp
(
−r$ + re

2
(T − t) + A(T − t)− C(T − t)v(t)

)
,

where

A(t) =
2κθ

δ2 ln

(
2βe(β+κ)t/2

(β + κ)
(
eβt − 1

)
+ 2β

)
,

C(t) =
1
4

eβt − 1
(β + κ)

(
eβt − 1

)
+ 2β

,
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with

β =
√

κ2 + δ2/4.

We note that

dPX = rX(t)PXdt− δC(T − t)
√

vPXdWQX

2 (t).

Next, we obtain

EQX

[
dQX

T
dQX

∣∣∣∣∣Ft

]

=
PX(t, T)

PX(0, T)BX(t)
(11.1.12)

= exp
(
−1

2

∫ t

0
C2(T − s)δ2v(s)ds−

∫ t

0
C(T − s)δ

√
v(s)dWQX

2 (s)
)

.

Hence

dWQX
T

2 = dWQX

2 + C(T − t)δ
√

v(t)dt.

To complete the change of measure, we need to look at WQX
T

1 (t). To this end,

we recall that both forward EUR-X and USD-X exchange rates,

Fe/X(t, T) = e−re(T−t)
√

f (t)
PX(t, T)

and

F$/X(t, T) = e−r$(T−t) 1
PX(t, T)

√
f (t)

,

should be QX
T -martingales. It is not difficult to check that to achieve the

above no-arbitrage requirement, we need

dWQX

1 (t) = dWQX
T

1 (t),

which is natural since the change of measure (11.1.12) does not depend on

WQX

1 (t).
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Hence, applying Theorem 10.1.6 to the Heston model setting, we can price,

e.g. the call option as (see (10.1.26)):

Ce/$(0, T, K) =
e−r$T

EQX
T

[
1√
f (T)

]EQX
T

[(√
f (T)− K√

f (T)

)
+

]
(11.1.13)

=
e−r$T

EQX
T
[F$/X(T, T)]

EQX
T

[
(Fe/X(T, T)− KF$/X(T, T))+

]
,

and

C$/e(0, T, K) =
e−reT

EQX
T
[Fe/X(T, T)]

EQX
T

[
(F$/X(T, T)− KFe/X(T, T))+

]
,

(11.1.14)

where

dFe/X(t, T) =

√
v

2
Fe/X(t, T)

(√
1− ρ2 dWQX

1 (t) + ρ dWQX
T

2

)
(11.1.15)

+δC(T − t)
√

vFe/X(t, T)dWQX
T

2 ,

dF$/X(t, T) = −
√

v
2

F$/X(t, T)
(√

1− ρ2 dWQX

1 (t) + ρ dWQX
T

2

)
+δC(T − t)

√
vF$/X(t, T)dWQX

T
2 ,

dv =
(

κ − C(T − t)δ2
)( κθ

κ − C(T − t)δ2 − v
)

dt + δ
√

vdWQX
T

2 ,

v(0) = v0,

and we require that for 0 ≤ t ≤ T

κ/δ2 > C(t). (11.1.16)

The prices (11.1.13) and (11.1.14) satisfy the foreign-domestic symmetry (see

Theorem 9.4.1).

We note that in comparison with the classical Heston model (11.1.1), the

model (11.1.15) has time dependence in the coefficients. For other time-

dependent Heston models, see e.g. [10, 53] and references therein.
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11.2 sabr model

For simplicity again, let the interest rates for the USD and EUR money

markets, r$ and re, be constant. Following Section 10.1.1, we can re-write

the classical SABR model [54] for EUR-USD exchange rate f (t) under the

measure QX, and the corresponding SDEs for Se/X =
√

f and S$/X = 1/
√

f

take the form

d
√

f = (rX(t)− re)
√

f dt

+
σ(t)

2

√
f
(√

1− ρ2 dWQX

1 (t) + ρ dWQX

2 (t)
)

, (11.2.1)

d
1√

f
= (rX(t)− r$)

1√
f

dt− σ(t)
2

1√
f

(√
1− ρ2 dWQX

1 (t) + ρ dWQX

2 (t)
)

,

dσ = νσdWQX

2 (t), σ(0) = α, (11.2.2)

where WQX

1 (t) and WQX

2 are independent standard Wiener processes under

QX, ρ ∈ (−1, 0] is the correlation coefficient, ν > 0 is the volatility of the

volatility σ(t), α is a positive constant, and (see (10.1.4))

rX(t) =
r$ + re

2
+

σ2(t)
8

.

We note that the parameter known as β in the classical SABR model is taken

to be equal to 1 here, which is the typical requirement for FX modelling as it

ensures that the SDE for the exchange rate for the inverse pair 1/ f has the

same form as for f .

By Theorem 10.1.5, e.g. the price of the call (in USD) for buying e1 for $K

is equal to

Ce/$((0, T, K) =
√

f (0)EQX

[
DX(0, T)

(√
f (T)− K√

f (T)

)
+

]
, (11.2.3)

where
√

f (T) and 1/
√

f (T) satisfy (11.2.1), (11.2.2).
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11.3 extended skew normal model

In this section we look at another illustration of Theorem 10.1.6. We start

not with a model under a ‘market’ measure but with a direct assumption on

the distribution of the exchange rate under a forward measure QX
T on the

intermediate market.

Here, we assume that under a T-forward measure QX
T the EUR-USD

exchange rate f (T) can be written as

f (T) = F̄eZ, (11.3.1)

where F̄ > 0 is a constant and Z is a random variable such that E
[
eZ]

exists and the no-arbitrage condition (10.1.19) is satisfied by f (T). Here the

no-arbitrage condition (10.1.19) implies that

F̄ = F
E
[
e−Z/2]

E
[
eZ/2

] , (11.3.2)

where we neglect the full notation EQX
T
[·] and write E[·] instead as in this

section we work with the measure QX
T only. Additionally, we write here F

instead of Fe/$(0, T) for the current forward EUR-USD exchange rate (see

(10.1.21)). We use this simplified notation throughout this section, which

should not cause any confusion. The interest rates for the USD and EUR

money markets, r$ and re, are assumed to be constant.

Also, (10.1.26) (i.e. Theorem 10.1.6), (11.3.1) and (11.3.2) imply that the

price (in USD) of the European call to buy e1 for $K at the maturity T is

Ce/$(0, T, K) =
e−r$T

E

[
1√
f (T)

]E

[(√
f (T)− K√

f (T)

)
+

]
(11.3.3)

= e−r$T

√
F̄

E
[
e−Z/2

]E

[(√
f (T)− K√

f (T)

)
1F̄eZ>K

]

= e−r$T

√
F̄

E
[
e−Z/2

] (√F̄ E
[
eZ/2

1Z>z0

]
− K√

F̄
E
[
e−Z/2

1Z>z0

])
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= e−r$T

(
F̄

E
[
eZ/2

1Z>z0

]
E
[
e−Z/2

] − K
E
[
e−Z/2

1Z>z0

]
E
[
e−Z/2

] )

= e−r$T

(
F

E
[
eZ/2

1Z>z0

]
E
[
eZ/2

] − K
E
[
e−Z/2

1Z>z0

]
E
[
e−Z/2

] )

= e−r$T
(

F
M(1/2, z0)

M(1/2)
− K

M(−1/2, z0)

M(−1/2)

)
,

where z0 = log (K/F̄) and

M(t) = E[etZ] and M(t, z0) = E
[
etZ

1Z>z0

]
, (11.3.4)

which are the moment generating function (MGF) and the restricted MGF

for Z, respectively.

Analogous to (11.3.3), we can derive the pricing formulas for the put and

also for the call and put for the inverse pair:

Pe/$(0, T, K) =
e−r$T

E

[
1√
f (t)

]E

[(
K√
f (T)

−
√

f (T)

)
+

]

= e−r$T
(

K
M∗(−1/2, z0)

M(−1/2)
− F

M∗(1/2, z0)

M(1/2)

)
,

C$/e

(
0, T,

1
K

)
=

e−reT

E
[√

f (t)
]E

[(
1√
f (T)

−
√

f (T)
K

)
+

]

= e−reT
(

1
F

M∗(−1/2, z0)

M(−1/2)
− 1

K
M∗(1/2, z0)

M(1/2)

)
,

P$/e

(
0, T,

1
K

)
=

e−reT

E
[√

f (t)
]E

[(√
f (T)
K

− 1√
f (T)

)
+

]

= e−reT
(

1
K

M(1/2, z0)

M(1/2)
− 1

F
M(−1/2, z0)

M(−1/2)

)
,

where

M∗(t, z0) = E
[
etZ

1Z<z0

]
.
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It is easy to show that these pricing formulas satisfy the Foreign-Domestic

symmetry (see Theorem 9.4.1):

Ce/$(0, T, K) = e−r$T
(

F
M(1/2, z0)

M(1/2)
− K

M(−1/2, z0)

M(−1/2)

)
= e−r$T · F · K

(
1
K

M(1/2, z0)

M(1/2)
− 1

F
M(−1/2, z0)

M(−1/2)

)
= e−r$T f (0)e(r$−re)TK

(
1
K

M(1/2, z0)

M(1/2)
− 1

F
M(−1/2, z0)

M(−1/2)

)
= e−reT

(
1
K

M(1/2, z0)

M(1/2)
− 1

F
M(−1/2, z0)

M(−1/2)

)
= f (0)Ke−reT

(
1
K

M(1/2, z0)

M(1/2)
− 1

F
M(−1/2, z0)

M(−1/2)

)
= f (0) · K · P$/e

(
0, T,

1
K

)
.

The same clearly also holds for:

Pe/$(0, T, K) = f (0) · K · C$/e

(
0, T,

1
K

)
.

Let us now propose a skew normal model for the random variable Z.

To this end, we start by introducing a new random variable V, which is a

combination of one normal and two shifted half-normal distributed random

variables:

V := X + α1 max(β1 −Y, 0) + α2 max(Y− β2, 0), (11.3.5)

where X and Y are independent random variables with the standard normal

distribution and α1, α2, β1, β2 ∈ R are parameters. The support domains of

the two half-normal distributions which, from the modelling perspective,

should not overlap and can be described by the parameters β1 and β2.

Therefore, we are only interested in the following case:

0 < β1 ≤ β2.
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As we use the random variable Z in (11.3.1) similarly to a Gaussian random

variable is used in the geometric Brownian motion model for f (T), we then

define it as follows

Z = aV, (11.3.6)

where a = σ
√

T with σ having the meaning of volatility and T of the

maturity time. The advantage of using Z instead of a Gaussian random

variable is that Z can have heavier tails and can be successfully used for

describing the volatility smile effect, which we mentioned in Section 9.3.

Meanwhile, Z still has a very simple distribution which makes the model

(11.3.1), (11.3.5), (11.3.6) very practical as it allows fast calibration. Indeed,

the MGFs (11.3.4), which we need for pricing calls and puts (see (11.3.3)), can

be found analytically for this Z. The corresponding expressions are given in

the next proposition.

Proposition 11.3.1. For 0 < β1 ≤ β2, the MGF M(t) and the restricted MGF

M(t, z0) from (11.3.4) are equal to

M(t) = e
(at)2

2 (N(β2)− N(β1)) + e
t
2 (ta

2(1+α2
2)−2aα2β2)N(taα2 − β2)

+ e
t
2 (ta

2(1+α2
1)+2aα1β1)N(taα1 + β1), (11.3.7)

M(t, z0) = e
(at)2

2 N
(

at− z0

a

) (
N(β2)− N(β1)

)
+ e

t
2 (ta

2(1+α2
1)+2aα1β1) (11.3.8)

×

N(taα1 + β1)− N2

taα1 + β1,
z0
a − at− α1(β1 + taα1)√

1 + α2
1

;
−α1√
1 + α2

1


+ e

t
2 (ta

2(1+α2
2)−2aα2β2)

×

N(taα2 − β2)− N2

taα2 − β2,
z0
a − t + α2(β2 − taα2)√

1 + α2
2

;
−α2√
1 + α2

2

 ,

where N(·) is the cdf of the standard normal distribution and N2(·, ·; ρ) is the cdf of

the bivariate normal distribution with zero mean, unit variance, and correlation ρ.

The proof for Proposition 11.3.1 can be found in Apendix B.5 (and also

in [85]).
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The distribution of Z, defined in (11.3.5), (11.3.6), is dependent on the five

parameters a, α1, α2, β1, and β2. All of them can be used to manipulate the

distribution of Z and, in particular, its skew and kurtosis, which are equal to

skewZ = skewV =
M(3)

V (0)− 3M(1)
V (0)M(2)

V (0) + 2
[

M(1)
V (0)

]3

(
M(2)

V (0)−
[

M(1)
V (0)

]2
)3/2 ,

kurtosisZ = kurtosisV

=
M(4)

V (0)− 4M(1)
V (0)M(3)

V (0) + 6
[

M(1)
V (0)

]2
M(2)

V (0)− 3
[

M(1)
V (0)

]4

(
M(2)

V (0)−
[

M(1)
V (0)

]2
)2 ,

where M(i)
V (0) are i-th derivatives of the MGF for the random variable V.

The analytical formulae for these can be found in Appendix B.6.

By putting α1 = α2 = 0 in (11.3.5), the random variable Z becomes normal

with zero mean and variance a2, and the considered model (11.3.1), (11.3.5),

(11.3.6) is reduced to the geometric Brownian motion whose one of the critical

deficiencies is a flat (constant) volatility. In this case, Z has skew = 0 and

kurtosis = 3. In Figure 11.3.1, one can see the difference of distribution of Z

(blue area) compared to a standardized normal distribution (red line). It can

be seen that a parameter set with α1 < 0 and α2 = 0 results in a bigger left

tail in distribution and a skew in the resulting volatility smile (skew ≈ −1.6).

Similarly, in Figure 11.3.2, it can be observed that using α1 < 0 to adjust

the left tail and α2 > 0 to adjust the right tail of the smile, we can get an

asymmetric distribution and an asymmetric smile. A smaller α2 results in a

smaller right tail and therefore in a flatter smile. As seen in these figures,

by adjusting the parameters α1, α2, β1, β2, the shape of the distribution

and of the smile can be changed in various ways and it can be associated

with the resulting skew and kurtosis of the log exchange rate. Therefore,

after calibrating the parameters of Z to FX market data, we can compare

skewZ with zero skew and kurtosisZ with the kurtosis of 3 in the geometric
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Figure 11.3.1: Effect of the parameters on the distribution of Z and the corresponding
smile: the case of α1 < 0 and α2 = 0.

−1.5 −1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Histogram Z & N(0, a2) PDF
a = 0.1, α1 = −4.0, α2 = 2.0, β1 = −0.7, β2 = 0.3

0.9 1.0 1.1 1.2 1.3

Strike
0.185

0.190

0.195

0.200

0.205

0.210

0.215

0.220

0.225

im
pl

ie
d

Vo
l

EURUSD Implied Volatility
S = 1.1151, rEUR = 0.0, rUSD = 0.0025, T = 1.0
a = 0.1, α1 = −4.0, α2 = 2.0, β1 = −0.7, β2 = 0.3

µ = −0.0087995
σ2 = 0.0447797
skew = −0.843144
kurtosis = 5.51613

Figure 11.3.2: Effect of the parameters on the distribution of Z and the corresponding
smile: the case of α1 < 0 and α2 > 0.
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Brownian motion case and make a conclusion about how far volatility is

from a constant.

11.4 model-free approach

The model-free approach to pricing derivatives has become popular in recent

years [6, 40, 7, 27] (see also references therein). The main idea of the approach

is to construct a density or distribution function of risky assets under a risk-

neutral measure using observed prices of plain-vanilla options. For clarity of

the exposition how this approach works within our intermediate currency

framework, we start with the case of two currencies in Subsection 11.4.1.

Then we will extend the consideration to the three-currencies case where we

will exploit ideas from [6] (see also [7]) in Subsection 11.4.2.

11.4.1 Model-free approach in two dimensions

In this subsection we will work under a T–forward measure QX
T . Assume

that we know prices of call options Ce/$(0; K) for all strikes K > 0 and

let ρ(x; T) be the density of the EUR-USD exchange rate f (T) under QX
T .

According to (10.1.24), we have

Ve/$(0) =
e−r$T

EQX
T

[√
f (T)

]EQX
T

[
g

(√
f (T);

K√
f (T)

)]
(11.4.1)

=
e−r$T

EQX
T

[√
f (T)

] ∫ ∞

0

1√
x

g (x; K) ρ(x; T)dx

=
∫ ∞

0
g (x; K)

∂2

∂x2 Ce/$(0; x)dx,
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as simple calculations show that the first and second derivative with respect

to the strike K of a call option price (see (10.1.26)) can be written as follows:

∂Ce/$(0; K)
∂K

= − e−r$T

EQX
T

[
1√
f (T)

] ∫ ∞

K

1√
x
(x− K)ρ(x; T)dx,

∂2Ce/$(0; K)
∂K2 =

e−r$T

EQX
T

[
1√
f (T)

] ∂2

∂K2

∫ K

∞

1√
x
(x− K)ρ(x; T)dx

=
e−r$T

EQX
T

[
1√
f (T)

] 1√
K

ρ(K; T),

hence
e−r$T

√
KEQX

T

[√
f (T)

]ρ(K; T) =
∂2

∂K2 Ce/$(0; K). (11.4.2)

Typically, observed data are expressed via volatility smile data σ(K) and

from (10.1.8) we have

Ce/$(0; K) = Fe/$e−r$T N

(
log Fe/$

K + σ2(K)T/2

σ(K)
√

T

)
(11.4.3)

−Ke−r$T N

(
log Fe/$

K − σ2(K)T/2

σ(K)
√

T

)
.

Combining (11.4.1) with (11.4.3) and given σ(K), we can price any FX deriva-

tive Ve/$(0) and analogously any derivative V$/e(0) based on a smile from

one of the markets. Note that the smile data computed from Ce/$(0; K) coin-

cide with smile data computed from C$/e(0; K) and that the prices Ve/$(0)

and V$/e(0) are consistent with each other thanks to using the intermediate

currency framework, as introduced in Section 10.1.

11.4.2 Model-free approach in three dimensions

We can now progress to the three-currencies case, where we follow the same

idea as in Subsection 11.4.1 to construct a density of distributon function,
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but we will see that the derivations are more complicated due to the third

dimension as expected.

Let us assume that we are interested in the GBP-USD-EUR currency

triangle, where we denote GBP as currency 1, USD as currency 2, and EUR

as currency 3. As before, the interest rates for the GBP, USD and EUR money

markets, r£, r$ and re, are assumed to be constant.

Let us now look at a best-of option on the EUR market which payoff is

equal to

b(T) = max
{
(S£/e(T)− K1)+

K1
,
(S$/e(T)− K2)+

K2

}
. (11.4.4)

As it is known [6], the value of a best-of option is arbitrary close to values of

plain-vanilla calls on S£/e(T) or S$/e(T) or to a vanilla option on the cross

S£/$(T). Hence, a model used for FX pricing should price a best-of option

and plain-vanilla options in a consistent manner.

By (10.2.2) we have

S£/X = S2/3
£/e(T)S

−1/3
$/e (T), (11.4.5)

S$/X = S−1/3
£/e (T)S2/3

$/e(T),

Se/X = S−1/3
£/e (T)S−1/3

$/e (T).

Using the pricing formula (10.2.23), we get

Ve(0) =
e−reT

EQX
T
[Se/X(T)]

EQX
T

G(T) =
e−reT

EQX
T
[Se/X(T)]

EQX
T
[Se/X(T)g(T)] ,

(11.4.6)

where g(T) is an arbitrary payoff on the EUR market. Therefore, for the

best-of option we have

ve(0) =
e−reT

EQX
T
[Se/X(T)]

× EQX
T

[
Se/X(T) max

{
(S£/e(T)− K1)+

K1
,
(S$/e(T)− K2)+

K2

} ]
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=
e−reT

EQX
T
[Se/X(T)]

EQX
T

[
S−1/3

£/e (T)S−1/3
$/e (T)

max
{ (S£/e(T)− K1)+

K1
,
(S$/e(T)− K2)+

K2

}]
=

e−reT

EQX
T
[Se/X(T)]

×
∫ ∞

0

∫ ∞

0
(xy)−1/3 max

{
(x− K1)+

K1
,
(y− K2)+

K2

}
ρ(x, y; T)dxdy,

where ρ(x, y; T) is the joint density of the exchange rates S£/e(T) and S$/e(T)

under QX
T .

Differentiation of b(T) (see (B.7.1) in Appendix B.7.1) gives:

[
1 + K1

∂

∂K1
+ K2

∂

∂K2

]
b(T) = I(S£/e(T) < K1, S£/e(T) < K2)− 1.

Therefore

∂2

∂K1∂K2

[
1 + K1

∂

∂K1
+ K2

∂

∂K2

]
ve(0)

=
e−reT

EQX
T
[Se/X(T)]

K−1/3
1 K2

−1/3 ρ(K1, K2; T). (11.4.7)

Note that we have from (10.2.20)

EQX
T

[
Sci/X(T)

]
EQX

T
[Se/X(T)]

= Fci/e(0), i = 1, 2, (11.4.8)

and from (10.2.23)

VcN(0) =
e−rN T

EQX
T

[
ScN/X(T)

]EQX
T

[
ScN/X(T)g(T)

]
, (11.4.9)

where N can be any of the three currencies with g(T) being in the currency

N. Therefore (taking also into account (11.4.5)), if we can evaluate (11.4.7)

from market data, then we can price any FX derivatives on any of the

three markets using the same ρ(K1, K2; T) and, thus, ensuring consistency of
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FX option pricing across different markets. Note that in comparison with

(10.2.23) we do not assume in (11.4.9) that g(T) is scalable.

Market data in the case of three currencies are typically presented via three

volatility smiles: σ1(K) and σ2(K) from vanilla options on GBP-EUR and

USD-EUR, respectively, and σ3(K) from the cross, GBP-USD. To compute

values on the smile curves from observed option prices in the context of

our intermediate currency approach, the Garman-Kohlhagen formulas given

below for completeness of the exposition should be used.

To complete, the model-free pricing, we need to express the current price

v(0) of the best-of option via the three volatility smiles. To this end, we need

to find v(0) assuming that the exchange rates follow geometrical Brownian

motions under a T–forward measure QX
T , which coincides with the EMM

QX.

We can set the exchange rates S£/e(T) and S$/e(T) as follows:

S£/e(T) = F£/e exp
(
−aT + σ1

√
TX1

)
, (11.4.10)

S$/e(T) = F$/e exp
(
−bT + σ2

√
TX2

)
,

where F£/e = F£/e(0, T) and F$/e = F$/e(0, T) are the current forward

GBR-EUR and USD-EUR exchange rates, respectively, and Xi ∼ N(0, 1) with

correlation coefficient ρ12, and where we need to find a, b ∈ R, so that the

no-arbitrage conditions (11.4.8) hold.

Let us use (11.4.10) to rewrite the equations Sci/X(T) (11.4.5) which lead

to the following:

S£/X(T) = F2/3
£/eF−1/3

$/e exp
(
−2

3
aT +

2
3

σ1
√

TX1 +
1
3

bT − 1
3

σ2
√

TX2

)
,

S$/X(T) = F−1/3
£/e F2/3

$/e exp
(

1
3

aT − 1
3

σ1
√

TX1 −
2
3

bT +
2
3

σ2
√

TX2

)
,

Se/X(T) = F−1/3
£/e F−1/3

$/e exp
(

1
3

aT − 1
3

σ1
√

TX1 +
1
3

bT − 1
3

σ2
√

TX2

)
.
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The no-arbitrage (11.4.8) condition for i = 1 then leads to:

F£/e =
EQX

T
[S£/X(T)]

EQX
T
[Se/X(T)]

.

Hence

F£/e =
EQX

T

[
F2/3

£/eF−1/3
$/e exp

(
−2

3 aT + 2
3 σ1
√

TX1 +
1
3 bT − 1

3 σ2
√

TX2

)]
EQX

T

[
F−1/3

£/e F−1/3
$/e exp

(
1
3 aT − 1

3 σ1
√

TX1 +
1
3 bT − 1

3 σ2
√

TX2

)] ,

which we can rewrite as follows:

exp(aT) =
EQX

T

[
exp

(
2
3 σ1
√

TX1 − 1
3 σ2
√

TX1ρ− 1
3 σ2
√

TX2
√

1− ρ2
)]

EQX
T

[
exp

(
−1

3 σ1
√

TX1 − 1
3 σ2
√

TX1ρ− 1
3 σ2
√

TX2
√

1− ρ2
)]

=

exp
(

T
2

[
2
3 σ1 − 1

3 σ2ρ
]2

+ T
18

[
σ2
√

1− ρ2
]2
)

exp
(

T
2

[
1
3 σ1 +

1
3 σ2ρ

]2
+ T

18

[
σ2
√

1− ρ2
]2
)

=
exp

(
T
2

[
4
9 σ2

1 − 4
9 σ1σ2ρ + 1

9 σ2
2

])
exp

(
T
2

[
1
9 σ2

1 + 2
9 σ1σ2ρ + 1

9 σ2
2

]) = exp
(

T
6

[
σ2

1 − 2σ1σ2ρ
])

.

And we can solve for a to end up with

a =
1
6

[
σ2

1 − 2σ1σ2ρ
]

.

In the same way for i = 2 we can find b:

b =
1
6

[
σ2

2 − 2σ1σ2ρ
]

.

Thus

S£/e(T) = F£/e exp
(
−T

6

[
σ2

1 − 2σ1σ2ρ12

]
+ σ1
√

TX1

)
, (11.4.11)

S$/e(T) = F$/e exp
(
−T

6

[
σ2

2 − 2σ1σ2ρ12

]
+ σ2
√

TX2

)
.
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Then, the GBP-USD exchange rate is equal to

S£/$(T) =
S£/e(T)
S$/e(T)

= F£/$ exp
(
−T

6

[
σ2

3 − 2σ2σ3ρ23

]
+ σ3
√

TX3

)
,

(11.4.12)

where

F£/$ =
F£/e

F$/e
,

σ2
3 = σ2

1 − 2σ1σ2ρ12 + σ2
2 ,

and X3 ∼ N(0, 1) with the correlation coefficients

ρ13 =
σ2

1 + σ2
3 − σ2

2
2σ1σ3

, ρ23 =
σ2

2 + σ2
3 − σ2

1
2σ2σ3

,

with X1 and X2, respectively.

We have

Se/X(T)
EQX

T
[Se/X(T)]

=
exp

(
−1

3 σ1
√

TX1 − 1
3 σ2
√

TX2

)
EQX

T

[
exp

(
−1

3 σ1
√

TX1 − 1
3 σ2
√

TX2

)]
= exp

(
− T

18

[
σ2

1 + 2σ1σ2ρ + σ2
2

]
− 1

3
σ1
√

TX1 −
1
3

σ2
√

TX2

)
,

and it is not difficult to show that the above expression is the Radon-Nikodym

derivative
dQeT
dQX

T
of the T–forward measure QeT on the EUR market with

respect to QX
T . Then

Ve(0) =
e−reT

EQX
T
[Se/X(T)]

EQX
T
[Se/X(T)g(T)] = e−reTEQeT

[g(T)] .
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Therefore, the corresponding Garman-Kohlhagen formulas for calls are given

by (see, e.g. [15]):

C£/e(0; K) = F£/ee−reT N

(
ln(F£/e/K) + σ2

1 T/2

σ1
√

T

)

− Ke−reT N

(
ln(F£/e/K)− σ2

1 T/2

σ1
√

T

)
,

C$/e(0; K) = F$/ee−reT N

(
ln(F$/e/K) + σ2

2 T/2

σ2
√

T

)

− Ke−reT N

(
ln(F$/e/K)− σ2

2 T/2

σ2
√

T

)
.

Similarly

C£/$(0; K) =
e−r£T

EQX
T
[S£/X(T)]

EQX
T
[S£/X(T)(S$/£(T)− K)+]

= e−r£TEQ£
T
[(S$/£(T)− K)+]

= F£/$e−r$T N

(
ln(F£/$/K) + σ2

3 T/2

σ3
√

T

)

−Ke−r$T N

(
ln(F£/$/K)− σ2

3 T/2

σ3
√

T

)
.

To proceed, we want to make use of (11.4.7). We have the price of best–of

option on the EUR market (see [83, 109, 6]):

ve(0) =
e−reT

EQX
T
[Se/X(T)]

(11.4.13)

×EQX
T

[
Se/X(T) max

{
(S£/e(T)− K1)+

K1
,
(S$/e(T)− K2)+

K2

}]
= e−reTEQeT

[
max

{
(S£/e(T)− K1)+

K1
,
(S$/e(T)− K2)+

K2

}]
= e−reT

[
F£/e

K1
N(d+1 , d+3 ; ρ13) +

F$/e

K2
N(d+2 , d−3 ; ρ23)
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+N(−d−1 ,−d−2 ; ρ12)− 1

]
,

where

d±i =
ln(Fi/Ki)± σ2

i T/2

σi
√

T

and F1 = F£/e, F2 = F$/e, and F3 = F£/$.

Now, we put the implied volatility smiles σi(Ki), i = 1, 2, 3, with K3 =

K1/K2, in (11.4.13) and evaluate the left-hand side of (11.4.7). As a re-

sult, we obtain a function of the strikes Ki for i = 1, 2, 3, for ve(0) =

ve(0; K1, K2, σ1(K1), σ2(K2), σ3(K1/K2)) from (11.4.13), and we can find the

appropriate derivative to obtain the following function (see Appendix B.7.2

or [7, Ch. 11]):

U(K1, K2) :=
[

1 + K1
∂

∂K1
+ K2

∂

∂K2

]
ve + e−reT (11.4.14)

= e−reT

(
N(−d−1 ,−d−2 ; ρ12) +

[
K1σ′1(K1)

∂

∂σ1
+ K2σ′2(K2)

∂

∂σ2

]
ve + 1

)

= e−reT

N(−d−1 ,−d−2 ; ρ12) + K1
√

Tσ′1(K1)N′(d−1 )N

d−1 ρ12 − d−2√
1− ρ2

12


+K2
√

Tσ′2(K2)N′(d−2 )N

d−2 ρ12 − d−1√
1− ρ2

12

 .

Note that U(0, K2) = U(K1, 0) = 0 is straight forward to calculate, as

N(−∞, b; ρ) = 0 and also N(−∞) = 0.

Let us summarise how the model-free approach can be used in practice:

(i) for observed plain-vanilla prices, compute values of the implied volatil-

ities σi(Ki) by inverting the Garman-Kohlhagen formulas;

(ii) smoothly interpolate the implied values to obtain three smiles σi(Ki);

(iii) plug-in the smiles in (11.4.14);

(iv) use U(K1, K2) (cf. (11.4.7) and (11.4.14)) together with (11.4.8) to price

options on all the three markets by the pricing formula (11.4.9).
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Note that the final step (iv) can be either realized via integration by parts

(see Example 11.4.1 below) or by further differentiation (see Appendix B.7.3)

to get

e−reT

EQX
T
[Se/X(T)]

K−1/3
1 K2

−1/3 ρ(K1, K2; T) =
∂2

∂K1∂K2
U(K1, K2).

We highlight that thanks to the intermediate currency approach we can

consistently price products for all the six pairs based on a single calibration.

We note that the no arbitrage condition imposes the following asymptotic

requirements on smiles [78, 6, 7] (see also B.7.5)

σ2
i (K) = o(| ln K|) as K → 0, ∞. (11.4.15)

Also, to ensure that −1 < ρij(K1, K1) < 1 the smiles should satisfy [6, 7] (see

also B.7.5):

σ1(K1) + σ2(K2) > σ3(K1/K2),

σ2(K2) + σ3(K1/K2) > σ1(K1), (11.4.16)

σ1(K1) + σ3(K1/K2) > σ2(K2).

Note, that if the requirements (11.4.15) and (11.4.16) are not satisfied by

the volatility smiles, the constructed distribution function U(K1, K2) or the

corresponding pdf ∂2

∂K1∂K2
U(K1, K2) may not be real or positive.

Example 11.4.1. Consider basket pricing as in Example 10.2.2. Doing inte-

gration by parts twice and the fact that U(0, y) = U(y, 0) = 0, we get [7, Ch.

11]:

BasketOptione(0)

=
e−reT

EQX
T

[
S
e/X(T)

] (11.4.17)

×EQX
T

[
S−1/3

£/e (T)S−1/3
$/e (T) (K−ω1S£/e(T)−ω2S$/e(T))+

]
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=
∫ ∞

0

∫ ∞

0
(K−ω1x−ω2y)+

∂2

∂x∂y
U(x, y)dxdy

=
∫ K/ω2

0

∫ K−ω2y
ω1

0
(K−ω1x−ω2y)

∂2

∂x∂y
U(x, y)dxdy

=
∫ K/ω2

0
[(K−ω1x−ω2y)

∂

∂y
U(x, y)]

x= K−ω2y
ω1

x=0 dy

+
∫ K/ω2

0

∫ K−ω2y
ω1

0
ω1

∂

∂y
U(x, y)dxdy

= 0 +
∫ K/ω1

0

∫ K−ω1x
ω2

0
ω1

∂

∂y
U(x, y)dydx

=
∫ K/ω1

0

(
[ω1U(x, y)]

y= K−ω1x
ω2

y=0 − 0

)
dx

=
∫ K/ω1

0

[
ω1U(x,

K−ω1x
ω2

)−ω1U(x, 0)
]

dx

=
∫ K

0
U
(

z
ω1

,
K− z

ω2

)
dz.

We also obtain

BasketOption£(0)

=
e−r£T

EQX
T
[S£/X(T)]

EQX
T

[
S£/X(T) (K−ω1Se/£(T)−ω2S$/£(T))+

]
(11.4.18)

=
Se/£(0)e−reT

EQX
T

[
S
e/X(T)

]×
EQX

T

[
S2/3

£/e(T)S
−1/3
$/e (T)

(
K− ω1

S£/e(T)
−ω2

S$/e(T)
S£/e(T)

)
+

]
= Se/£(0)

∫ ∞

0

∫ ∞

0
x
(

K− ω1

x
−ω2

y
x

)
+

∂2

∂x∂y
U(x, y)dxdy

= Se/£(0)
∫ ∞

0

[
U
(

∞,
z

ω2

)
−U

(
zω2 + ω1

K
,

z
ω2

)]
dz,

in a similar fashion, where

U(∞, K2) = e−reT
[

N(−d−2 ) + K2
√

Tσ′2(K2)N′(d−2 )− 1
]

.
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We note that if we set one of ωi to zero in (11.4.17), then the formula gives

the EUR price of a put on GBP or USD. Substituting U from (11.4.14) in

(11.4.17) with one of ωi being zero, we can recover the Black-Sholes price

of the corresponding put which means that the pricing formula (11.4.17)

(or what is the same, (11.4.9)) exactly reproduces the plain vanilla data to

which the calibration is made. See a calibration illustration in Chapter 12.

The difference with the approach of [6, 7] is that here we obtain the density

which can be used to price on all the three markets.

Remark 11.4.1. We note that given a smile we get the exact pricing density

(11.4.1) for a single pair. This allows us to combine marginals for each pair

together with a copula to get a joint density for the triangle instead of using

the approach based on the best-of option as considered here. In our case, we

do not explore the use of copulas here, but for the corresponding discussion

see [7].
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N U M E R I C A L I L L U S T R AT I O N S A N D C A L I B R AT I O N

In this chapter we present calibration examples for the models from Sec-

tion 11.1 and 11.3 and we illustrate the model-free approach of Section 11.4.

We recall [22, 101] that the FX market is different to other financial markets

in terms of volatility smile construction and quoting mechanisms used. FX

options are quoted in implied volatility σ, delta ∆ instead of strike K, and

maturity T. The market convention is to quote three currency pair-specific

most commonly traded options. Their choice depends on a delta hedging

and ATM convention [101, 25] and typically 25∆ options are among the

considered options. Occasionally, one also uses 10∆ put/call options, as

they are widely available but not as liquid as 25∆ options [22]. The option

prices are inverted to calculate the corresponding volatility values, which are

used for constructing the volatility smile. The data we use in this chapter for

calibration are given in Table 12.0.1.

Table 12.0.1: FX market data for 1 year maturity options, Bloomberg 03/06/2016.
GBP-EUR USD-EUR GBP-USD

σ25Put∆ 12.435% 9.005% 11.000%
σATM 10.945% 9.250% 13.072%

σ25Call∆ 10.345% 10.265% 9.972%

156
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12.1 calibration : extended skew normal model

In this section we calibrate the model (11.3.1), (11.3.5), (11.3.6) from Sec-

tion 11.3 to market data for two currency pairs. The use of just three options

in calibration of volatility smiles leads to another typical (and which is in

contrast to other markets) feature of the FX market that the volatility smile

should interpolate the given three data points. Therefore, FX calibration is

usually done via a root-finding numerical algorithm, while on other markets,

where a large number of option prices are available for constructing volatility

curves, one normally uses least-square type algorithms for this purpose.

Figure 12.1.1: Calibration results for the GBP-EUR currency pair (left) and the in-
verse pair EUR-GBP (right) with T = 1, r£ = 0.0025, re = 0.00,
S£/e(0) = 1.2935.

Table 12.1.1: The results of calibration for GBP-EUR and EUR-GBP.
parameter GBP-EUR/EUR-GBP

a 0.06297173
α1 −3.18990817
α2 1.57557895
β1 −0.5
β2 0.5

GBP-EUR EUR-GBP
skew −0.87012308 0.87012308

kurtosis 4.94244079 4.94244079

The calibration was done in MATLAB R2016a, where we use the MATLAB

function fsolve (which by default uses the built-in trust-region-dogleg algo-

rithm) to match the option price data (three points per currency pair). We
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fixed the (free) parameters β1 = −0.5 and β2 = 0.5. For the calibration of the

GBP-EUR pair, we use a = σATM, α1 = −3.0 and α2 = 1.0 as initial values,

as the negative skew of the volatility smile suggests a larger left tail (of

the the distribution of Z). The calibration on a standard Desktop computer

(Windows 7, 64-bit, Intel(R) Core(TM) i5-6500 CPU@3.20GHz, 16GB RAM)

takes 0.11 seconds.

The calibration results for the GBP-EUR pair are given in Figure 12.1.1

and Table 12.1.1. One can see that the proposed pricing mechanism (see

Theorem 10.1.6 and also (11.3.3)) together with the exchange rate model

(11.3.1), (11.3.5), (11.3.6) preserves the volatility smile symmetry as skew,

kurtosis (neglecting natural sign changes) and the model parameters stay the

same. We also confirm that it is sufficient to calibrate the model using the

GBP-EUR data and that the model reproduces both GBP-EUR and EUR-GBP

smiles with the same parameters a, α1, α2, β1, β2. Moreover, it can been

seen that the resulting skew of 0.870 and kurtosis of 4.942 indicate the

difference of the resulting distribution Z to a normal distribution (skew = 0,

kurtosis = 3.0).

The calibration results for the USD-EUR pair are given in Figure 12.1.2

and Table 12.1.2. The same observations as above for the GBP-EUR pair can

be made here as well.

Figure 12.1.2: Calibration for the USD-EUR currency pair (left) and the inverse pair
EUR-USD (right) with T = 1.0, r$ = 0.0025, re = 0.00, S$/e(0) =
0.8968.
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Table 12.1.2: The results of calibration for USD-EUR and EUR-USD.
parameter USD-EUR/EUR-USD

a 0.05259980
α1 −1.94011846
α2 2.90433341
β1 −0.5
β2 0.5

USD-EUR EUR-USD
skew 0.53740761 −0.53740761

kurtosis 4.52666183 4.52666183

12.2 calibration : heston model

In this section we calibrate (i.e., find a parameter set of υ0, κ, δ, θ, ρ) the

Heston model (11.1.15) from Section 11.1 to market data for the GBP-EUR

currency pairs as shown in Table 12.0.1. Similar to Section 12.1, we used a

root-finding method. We fix the parameters for υ0 and κ at suitable levels.

To compute option prices, we applied the Monte Carlo technique to the

pricing formulas (11.1.13) and (11.1.14). To simulate the Heston model under

QXT (11.1.15), we used an Euler discretisation scheme for the log forward

prices using a fixed time discretisation h > 0 and starting time t = 0, with

the following initial values:

• PX(0, T) = exp(− re+r£
2 T + A(T)− C(T)v(0)) (following (11.1.9)),

• F̃£/X(0) = F£/X(0, T) = e−r£T
√

f (0)
PX(0,T) ,

• F̃e/X(0) = Fe/X(0, T) = e−reT 1
PX(0,T)

√
f (0)

,

• ṽ(0) = v0.

The Euler approximation from a current point (t, F̃£/X(t), F̃e/X(t), ṽ(t)), can

be written as follows:

F̃£/X(t + h) ≈ F̃£/X(t) exp

([
ṽ(t)

8
+ δ2 (C(T − (t + h)))2

2

]
h

+
√

ṽ(t)

[
δC(T − (t + h))η +

√
1− ρ2ξ + ρη

2

]√
h

)
,

F̃e/X(t + h) ≈ F̃e/X(t) exp

([
ṽ(t)

8
+ δ2 (C(T − (t + h)))2

2

]
h
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+
√

ṽ(t)

[
δC(T − (t + h))η −

√
1− ρ2ξ + ρη

2

]√
h

)
,

where ξ and η are mutually independent standard normal random variables.

We also use the moment-matching scheme for the volatility process [102],

which preserves positivity of the volatility process and can be written as

follows:

ṽ(t + h) = (θ̃t+h + (ṽ(t)− θ̃t+h)e−hκ̃t+h) exp
(
−1

2
(Γt+h)

2 + Γt+hη

)
,

where

κ̃t+h = κ − C(T − (t + h))δ2,

θ̃t+h =
θκ

κ − C(T − (t + h))δ2 ,

Γt+h = log

(
1 +

ṽ(t)δ2(1− e−2hκ̃t+h)

2κ̃t+h(θ̃t+h + [ṽ(t)− θ̃t+h]e−hκ̃t+h)2

)
.

Figure 12.2.1: Heston model calibration results for the GBP-EUR currency pair
(left) and the inverse pair EUR-GBP (right) with T = 1, r£ = 0.0025,
re = 0.00, S£/e(0) = 1.2935.

The calibration results for the GBP-EUR pair are given in Figure 12.2.1 and

Table 12.2.1. Again, it can be seen that the proposed pricing mechanism (see

Theorem 10.1.6) together with the Heston model (11.1.13) is flexible enough
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Table 12.2.1: The results of Heston model calibration for GBP-EUR and EUR-GBP.
parameter GBP-EUR/EUR-GBP

NMC 109

h 0.05
υ0 0.0086
κ 1.500
δ 0.71020580946071
θ 0.02949445852250
ρ −0.40966532579627

to match the GBP-EUR smile. Moreover, it is sufficient to calibrate the model

to the GBP-EUR smile, which results in the inverse smile EUR-GBP smile

to be automatically calibrated automatically (using the appropriate pricing

formula (11.1.14)).

12.3 illustration of the model-free approach

In this section, we illustrate how we can approximate the scaled density

function in the model-free approach of Section 11.4 from market data for

three currencies. We recall that thanks to the intermediate currency approach

we can use the same density function to price options on all three markets.

We retrieve the scaled density by differentiating U(K1, K2) twice:

∂2

∂K1∂K2
U(K1, K2) =

e−reT

EQX
T
[Se/X(T)]

K−1/3
1 K2

−1/3 ρ(K1, K2; T).

We use the same market data as before, for the three currency pairs GBP-

EUR, USD-EUR and GBP-USD, which can be found in Table 12.0.1. We

can find the corresponding strikes by inverting the Garman-Kohlhagen

formula for all three pairs. As we need the volatility smiles to satisfy the

growth condition (11.4.15), we fit a 2nd order polynomial with the three
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Figure 12.3.1: Implied volatility interpolation for GBP-EUR, USD-EUR and GBP-
USD pairs with T = 1.0, r$ = 0.0025,r$ = 0.0025, re = 0.00, r£ =
0.0025, r£ = 0.0025, S$/e(0) = 0.8968, S£/e(0) = 1.2935, S£/$ =
1.4423.

parameters p(j)
i ∈ R, j = 1, 2, 3, to the implied volatility data transformed

by exp
[
σ2

i (K)
]
. Then we obtain the interpolated implied volatilities as

σ̃i(K) =
√

log
[

p(1)i K2 + p(2)i K + p(3)i

]
.

The results of the interpolation for the implied volatility smiles can be

seen in Figure 12.3.1. The partial derivative with respect to K1 and K2 of

U(K1, K2) can be found by numerically differentiating (11.4.14) on a fine grid

of K1 and K2. We use the MATLAB function diff to compute the point-wise
∂2

∂K1∂K2
U(K1, K2) surface for a range of strikes K1 and K2. Note that K3 = K1

K2
.

The resulting surface and contour plots are given in Figure 12.3.2. We remark
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that ∂2

∂K1∂K2
U(K1, K2) is positive for the whole range of strikes considered as

required.
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Figure 12.3.2: Implied scaled density surface (top) and contour plot (bottom) for the
three currency pairs for a range of strikes K1 and K2.
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In this part of the thesis, we have presented a novel idea to option pricing on

the FX market. The main result is the introduction of a new framework of

an intermediate currency market presented in Section 10, which can be seen

as a solution to overcome the practical inconvenience of having multiple

sets of parameters when working with foreign exchange rate models, see

Example 9.4.1 as an illustration for that when working with a Heston model.

In particular, in the multi-dimensional setting this is useful. We reviewed

that there is no measure which is simultaneously risk-neutral for both the do-

mestic and the foreign market and also stated the foreign-domestic symmetry

(see Theorem 9.4.1) in our setting. While in existing models, there is a natural

preference to a certain market due to market conventions or geographic loca-

tion, current models implicitly have a bias towards a certain base currency

or numeraire. The idea presented here, overcomes this inconsistency, which

can be observed as the Foreign-Domestic symmetry holds under this new

model idea, as shown in Section 10.1 and also when illustrated in different

examples in Section 11. Moreover, we showed that an equivalent market

measure (EMM) exists on this intermediate currency market (see 10.1.1) and

derived pricing formulas under the EMM QX for a general class of scalable

payoff functions g(x; K) in Theorem 10.1.5 and further, pricing formulas

under the forward measure QX
T in Theorem 10.1.6. These pricing formulas

satisfy the foreign-domestic symmetry and are generally true.

165
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Overall, we highlight the usefulness of this framework in Chapter 11,

where we illustrate the framework applied to a range of different models: In

Chapter 11.1, we apply the intermediate market idea for the case, where the

underlying exchange rate is described by a Heston model and by a SABR

model in Chapter 11.2. In both cases, we follow the classical option pricing

route, where we start under a ’market’ measure and then derive an EMM on

the intermediate currency market. Moreover, we derive the resulting pricing

formulas for European options. We present another illustrative example

in Chapter 11.3, where we propose a distribution for an exchange rate at

maturity time T under a forward measure on the intermediate currency

market. Assuming a skew normal distribution and using the general pricing

formulas derived in Theorem 10.1.6 and Theorem 10.2.4, we can derive closed-

form pricing formulas. In Chapter 11.4, we follow a different approach,

which we denote as ’model-free’, in the sense that no assumptions on the

form of the underlying exchange rate are made. The main idea of this

approach is to construct a density function of risky assets under a risk-

neutral measure using the observed prices of plain-vanilla options. We

illustrate the idea in two and three dimensions and derive the corresponding

useful pricing formulas.

As one of the aims of the suggested framework was to simplify calibration,

i.e. finding the right model parameters to match market data quotes, we

demonstrate the results for different models with numerical examples in

Section 12. As we are trying to find the parameters using a root-finding

method, we do not necessarily have unique solutions, as we have more

parameters than data points. The results of the calibration of the extended

skew normal model shown in Figure 12.1.1 and Figure 12.1.2, show that

the model is flexible enough to model a range of different volatility smiles

and skews. In Chapter 12.2, the same is true for the time-dependent Heston

model approach, however, it is worth noting that as the pricing of each

option is done using a Monte Carlo simulation, the calibration process is

not very time-efficient and for time-sensitive tasks, it might be better to use
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other pricing approaches. It might be interesting in the future to improve

the Monte Carlo technique used by using variance reduction methods such

as antithetic variates or importance sampling, which might help with com-

putational limitations. In the final numerical illustration in Chapter 12.3,

we demonstrate how we can approximate the scaled density function in the

model-free approach using market data for three currencies.

Overall, the numerical examples show that the suggested framework can

be used in different scenarios. In the future, it would be very interesting

to evaluate the performance of these pricing methods compared to other

traditional models, especially in a multi-dimensional setting. In particular, it

would be good to compare our achieved results to traditional Heston and

SABR models and possibly some other machine learning techniques from

more recent research projects. This might give a better understanding of the

introduced framework in terms of model flexibility and also computational

performance.



Part III

C O N C L U S I O N
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In this thesis, we have presented two different aspects in financial option

pricing. In the first part, we have focused on the computational aspect

and analysed a new numerical method for SDEs driven by Lévy processes

with infinite activity. The introduced algorithm, a restricted jump-adaptive

numerical scheme, for weak-sense approximations is a useful method to

solve Dirichlet IPDE problems. It is worth highlighting, that we were able

to replicate the theoretical convergence results in different numerical exam-

ples. In the second part, we have presented a novel framework for pricing

derivatives on the FX market. We show that this framework can be used with

different pricing models and that it can be useful in calibration tasks. In both

instances, we have been able to demonstrate that the suggested approaches

can be used in applications involved in Financial Mathematics.

In general, the presented results, especially from Part I, are not limited to

this interesting research area, but more importantly can be used in a wide

range of fields such as Physics [42] and Biology [77], where one can use the

suggested algorithm to simulate the Lévy process dynamics. As long as it is

possible to make the same underlying assumptions, it is possible to apply

the suggested numerical and theoretical results.

While in Financial Mathematics, with constant development of new models

and the advancement of technology, the importance of being able to describe

real market observations has not changed. The research presented in this

169



conclusion 170

thesis offers practical approaches with a view to modelling and solving

multi-dimensional problems under particular sets of model assumptions.

With a broader view towards the future of Financial Mathematics, it

would be very interesting to compare the presented results with recent

advancements in Machine Learning, where causality and interpretability

are often not as easy compared to more classical modelling approaches as

presented in this thesis.

Another interesting area of research, from a computational aspect, would

be to compare the results achieved in this thesis to models used in financial

institutions, such as investment banks and hedge funds. In particular, it

would be interesting to compare model performance in terms of computa-

tional costs compared to accuracy but also volatility smile behaviour outside

of the market data quotes given.

Additionally, another challenging direction of research, in particular with

respect to Part II, would be to see if the models are in some way better

in terms of option pricing and if such an advantage could be exploited

systematically. The main focus of this research was the introduction of the

intermediate currency market framework in the first place and it’s possible

application to existing pricing models.
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[5] S. Asmussen and J. Rosiński. Approximations of small jumps of Lévy

processes with a view towards simulation. Journal of Applied Probability,

38(02):482–493, 2001.

[6] P. Austing. Repricing the cross smile: an analytic joint density. Risk,

July:72–75, 2011.

[7] P. Austing. Smile Pricing Explained. Palgrave Macmillan, 2014.

[8] Bank of International Settlements. Triennial central bank survey of

foreign exchange and derivatives market activity in 2019. Technical

report, Sep 2019.

[9] O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick. Lévy processes:

theory and applications. Springer Science & Business Media, 2012.

171



bibliography 172

[10] E. Benhamou, E. Gobet, and M. Miri. Time dependent Heston model.

SIAM J. Finan. Math., 1:289–325, 2010.

[11] L. Bergomi. Stochastic volatility modeling. CRC press, 2015.

[12] J. Bertoin. Lévy processes, volume 121. Cambridge university press,

1998.

[13] D. Bertsimas, I. Popescu, and J. Sethuraman. Moment problems and

semidefinite programming. Handbook on semidefinite programming: The-

ory, Algorithms, and Applications, pages 469–509, 2000.

[14] N. Biger and J. Hull. The valuation of currency options. Financial

Management, pages 24–28, 1983.

[15] T. Bjork. Arbitrage Theory in Continuous Time. Oxford University Press,

2009.

[16] F. Black and M. Scholes. The pricing of options and corporate liabilities.

Journal of Political Economy, 81(3):637–54, 1973.

[17] D. Brigo and F. Mercurio. Interest rate models-theory and practice: with

smile, inflation and credit. Springer Science & Business Media, 2007.

[18] N. Bruti-Liberati and E. Platen. Strong approximations of stochastic

differential equations with jumps. Journal of Computational and Applied

Mathematics, 205(2):982–1001, 2007.

[19] J. C. Butcher. Numerical methods for ordinary differential equations. John

Wiley & Sons, 2016.

[20] A. Castagna. FX Options and Smile Risk. Wiley, 2010.

[21] E. Çınlar. Probability and stochastics, volume 261. Springer Science &

Business Media, 2011.

[22] I. Clark. Foreign Exchange Option Pricing: A Practitioners Guide. Wiley,

2011.



bibliography 173

[23] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman

& Hall/CRC, Boca Raton, FL, 2004.

[24] R. Cont and E. Voltchkova. A finite difference scheme for option

pricing in jump diffusion and exponential lévy models. SIAM Journal

on Numerical Analysis, 43(4):1596–1626, 2005.

[25] Z. Dadachanji. FX Barrier Options: A Comprehensive Guide for Industry

Quants. Springer, 2016.

[26] A. De Col, A. Gnoatto, and M. Grasselli. Smiles all around: FX joint

calibration in a multi-Heston model. J. Banking & Fin., 37(10):3799–3818,

2013.

[27] S. De Marco and C. Martini. Moment generating functions and nor-

malized implied volatilities: unification and extension via Fukasawa’s

pricing formula. Quant. Fin., 18:609–622, 2018.

[28] M. Dehghan and F. Shakeri. Solution of parabolic integro-differential

equations arising in heat conduction in materials with memory via

he’s variational iteration technique. International Journal for Numerical

Methods in Biomedical Engineering, 26(6):705–715, 2010.

[29] S. del Baño Rollin. Spot inversion in the Heston model, CRM Prepint

837, 2008.

[30] G. Deligiannidis, S. Maurer, and M. V. Tretyakov. Random walk

algorithm for the Dirichlet problem for parabolic integro-differential

equation. BIT Numerical Mathematics, April 2021. https://doi.org/10.

1007/s10543-021-00863-2.

[31] D.F. DeRosa. Options on Foreign Exchange (Wiley Finance). Wiley, 3

edition, 2011.

[32] L. Devroye. Non-uniform random variate generation. Springer, New York,

1986.

https://doi.org/10.1007/s10543-021-00863-2
https://doi.org/10.1007/s10543-021-00863-2


bibliography 174

[33] P. Doust. The intrinsic currency valuation framework. Risk, pages

89–95, July 2008.

[34] P. Doust. The stochastic intrinsic currency volatility model: a consistent

framework for multiple FX rates and their volatilities. Appl. Math. Fin.,

19(5):381–445, 2012.

[35] P. Doust and J. Chen. Estimating intrinsic currency values. RISK, pages

76–81, 2007.
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A P P E N D I X A

a.1 proofs and other derivations

a.1.1 Proof form of characteristic function of Lévy process

In Remark 3.2.6 we give the form the characteristic function of a Lévy process

(Xt)t≥0 on Rd should have the following form:

ΦXt(z) = etΨ(z), z ∈ Rd,

where Ψ(z) is the characteristic exponent of X1 = X(1).

Proof. Suppose that X is a Lévy process. Due to its independent increments

we get that the characteristic function of a X has to be a multiplicative

function for s ≥ 0:

ΦXt+s(z) = E
(

ei〈z,Xt+s〉
)

= E
(

ei〈z,Xt+s−Xs〉ei〈z,Xs〉
)

= E
(

ei〈z,Xt+s−Xs〉
)

E
(

ei〈z,Xs〉
)

= ΦXt(z)ΦXs(z).

183
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Given this and the fact that ΦX0(z) = 1 and the fact that t → ΦXt(z)

is continuous (see Lemma 1.3.2 in [4]), ΦXt(z) has to be an exponential

function.

a.1.2 Derivation of characteristic function of a compound Poisson process

In Example 3.3.3 we claim hat the characteristic exponent of Jt has the

following form:

ΨJ(z) = λ
∫

Rd
(ei〈z,y〉 − 1)F(dy), z ∈ Rd.

This can be easiest seen by deriving the characteristic function for Jt, where

we denote the common CF for all Yi, i = 1, 2, . . . , by ΦY.

ΦJt(z) = E
[
ei(z,Jt)

]
= E

[
exp i(z,

Nt

∑
i=1

Yi)

]
= E

[
E

[
exp i(z,

Nt

∑
i=1

Yi) | Nt

]]

=
∞

∑
i=0

E

[
exp i(z,

Nt

∑
i=1

Yi) | Nt = n

]
P(Nt = n)

=
∞

∑
i=0

E

[
exp i(z,

n

∑
i=1

Yi)

]
e−λt (λt)n

n!
= e−λt

∞

∑
i=0

Φn
Y
(λt)n

n!
= etλ(ΦY−1)

= exp
(

tλ
∫

Rd
(ei〈z,y〉 − 1)F(dy)

)
.

The stated result for the characteristic exponent then easily follows.
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A P P E N D I X B

b.1 normal and bivariate distributions and related mgfs

We give a short overview over normal and bivariate normal distributions,

followed by a broad review of moment generating functions and some of its

useful properties based on [96].

Definition B.1.1 (Normal distribution). A random variable Y is said to have a

normal distribution with mean µ and standard deviation σ, if its probability

density function (pdf) can be written as

fY(y) =
1√
2πσ

e−
(y−µ)2

2σ2 ,

where µ ∈ R and σ > 0.

In the case that µ = 0 and σ = 1 we can say that distribution of Y is standard

normal and its pdf can be written as

fY(y) =
1√
2π

e−
y2
2 . (B.1.1)

185
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For an integral of a standard normal distributed random variable Y we

will use the following notation for the cumulative density function (CDF)

N(a) :=
∫ a

−∞

1√
2π

e−
y2
2 dy. (B.1.2)

Definition B.1.2 (Bivariate normal distribution). Let us assume that X1 and

X2 are both normally distributed with means µ1 and µ2 and standard de-

viations σ1 and σ2, respectively. Further, X1 and X2 are correlated with a

correlation coefficient ρ. We can then say that the joint distribution of X1 and

X2 is bivariate normal and their pdf can be written as

fX1,X2(x1, x2) =
1

2πσ1σ2
√

1− ρ2
e
− 1

2(1−ρ2)

[(
x1−µ1

σ1

)2
+
(

x2−µ2
σ2

)2
−2ρ

(x1−µ1)(x2−µ2)
σ1σ2

]
,

where µ1, µ2 ∈ R, σ1, σ2 > 0 and ρ ∈ (−1, 1).

In the case that µ1 = µ2 = 0 and σ1 = σ2 = 1 we can say that the joint

distribution of X1 and X2 is standard bivariate normal with correlation

coefficient ρ and the pdf can be written as

fX1,X2(x1, x2) =
1

2π
√

1− ρ2
e
− x2

1+x2
2−2ρx1x2

2(1−ρ2) . (B.1.3)

For an integral of two standard bivariate normal distributed random

variables X1 and X2 with correlation coefficient ρ we will use the following

notation

N2(a, b; ρ) :=
∫ a

−∞

∫ b

−∞

1
2π
√

1− ρ2
e
− x2

1+x2
2−2ρx1x2

2(1−ρ2) dx2dx1.

Definition B.1.3 (Moments). The kth raw moment of a random variable Y

with pdf fY is defined as

E[Yk] =
∫ ∞

−∞
yk fY(y)dy, (B.1.4)
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if E[Yk] < ∞. The kth central moment of random variable Y with pdf fY and

mean µ is defined as

E[(Y− µ)k] =
∫ ∞

−∞
(y− µ)k fY(y)dy, (B.1.5)

if E[(Y − µ)k] < ∞. The kth standardised moment of random variable Y

with pdf fY, mean µ and variance σ2 is defined as

E[(Y− µ)k]

σk =
∫ ∞

−∞

(y− µ)

σk

k

fY(y)dy, (B.1.6)

if E[(Y−µ)k]
σk < ∞.

For k = 1 in (B.1.4), k = 2 in (B.1.5) and k = 3, 4 in (B.1.6) we usually say that

E[Y] = µ = mean of Y,

E[(Y− µ)2)] = E[Y2]−E[Y]2 = σ2 = variance of Y,

E[(Y− µ)3]

σ3 =
E[Y3]− 3µE[Y2] + 2µ2

σ3 = skewness of Y,

(B.1.7)

E[(Y− µ)4]

σ4 =
E[Y4]− 4µE[Y3] + 6µ2E[Y2]− 3µ4

σ4 = curtosis of Y, (B.1.8)

which are useful measures of distributions and can easily be computed via

moments.

Definition B.1.4 (Moment generating function (mgf)). The moment gener-

ating function of a random variable Y is defined (assuming E[etY] exists)

as

MY(t) := E[etY], t ∈ R.

For example, the mgf of a normal distributed random variable X with mean

µ and standard deviation σ is given by

MX(t) = eµt+ 1
2 σ2t2

,
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and hence for a standard normal distributed random variable Y (with µ =

0, σ = 1)

MY(t) = e
1
2 t2

.

Mgfs are in particular useful to calculate moments of random variables:

dk MY(t)
dtk

∣∣∣∣∣
t=0

= E[Yk].

Let us give further properties of mgfs which we will use in this dissertation.

Theorem B.1.5. (Convolution Theorem)

The random variables Y1, Y2, ..., Yn are independent if and only if the moment

generating function of Y1 + Y2 + ... + Yn is given by:

MY1+Y2+...+Yn(t) = MY1(t) ·MY2(t) · · ·MYn(t)

Proof. We state this theorem without proof, which can be found in Chapter

7.4 of [52].

Further we will need the shifting and the scaling property for mgfs, which

can be seen as follows.

Multiplication by a constant factor:

MaY(t) = E[etaY] =
∫ ∞

−∞
etaY 1√

2π
e−

y2
2 dy (B.1.9)

=
∫ ∞

−∞

1√
2π

e−
y2−2atY+(at)2

2 e
(at)2

2 dy

= e
(at)2

2

∫ ∞

−∞

1√
2π

e−
(y−at)2

2 dy

= e
(at)2

2 = MY(at).

Shifting by a constant:

MY+b(t) = E[et(Y+b)] =
∫ ∞

−∞
ety+bt 1√

2π
e−

y2
2 dy (B.1.10)

= ebt
∫ ∞

−∞

1√
2π

e−
y2−2ty+t2

2 e
t2
2 dy
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= ebt
∫ ∞

−∞

1√
2π

e−
(y−t)2

2 e
t2
2 dy

= ebte
t2
2

= ebtMY(t).

b.2 proof of proposition 9 .2 .2

For a domestic investor whose domestic currency is USD, the extended

market can be described as follows:

dB$ = r$B$dt,

dBe = reBedt,

dS = µSdt + σSdW,

where B$, Be and r$, re are a domestic and a foreign currency bank account

with its interest rates respectively. Then the risky asset for this investor is

the foreign currency (EUR) in domestic currency (USD), hence

Y(t) = S(t)Be(t).

For risk-free pricing, we need to find an Equivalent Martingale Measure

(EMM) Q$, under which the discounted Y(t) should be a martingale.

Ỹ(t) =
S(t)Be(t)

B$(t)
,

dỸ = (µ + re − r$)Ỹdt + σỸdW,

γ(t) =
µ + re − r$

σ
and dWQ$

= dW + γ(t)dt,

dỸ = σỸdWQ$
,

dS = (r$ − re)Sdt + σSdWQ$
.
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We can now derive the risk-free option price for a domestic investor.

C$(0, T) = v(S, T) = e−r$TEQ$ [(S(T)− K)+]

= EQ$

[
(e−r$TS(T)− e−r$TK)+

]
.

This expectation is only positive if(·)+ > 0, hence

e−r$TS(T)− e−r$TK > 0

⇔ S(0)e(−re− σ2
2 )T−σ

√
Tξ > e−r$TK

⇔ ξ <
log
(

S(0)
K

)
+ (r$ − re − σ2

2 )T

σ
√

T
:= b, where ξ ∼ N (0, 1).

C$(0, T) = e−reTS(0)
∫ b

∞

1√
2π

e−
z2+2σ

√
Tz+σ2T

2 dz

− e−r$TK
∫ b

∞

1√
2π

e−
z2
2 dz

= e−reTS(0)
∫ b+σ

√
T

∞

1√
2π

e−
z2
2 dz− e−r$TK · N(b)

= e−reTS(0) · N
 log

(
S(0)

K

)
+ (r$ − re + σ2

2 )T

σ
√

T


− e−r$TK · N

 log
(

S(0)
K

)
+ (r$ − re − σ2

2 )T

σ
√

T

 .

We can now extend to a general version for the price at time t instead of 0.

The same approach can be used to derived the put option price.

b.3 proof for theorem 9 .4 .1

On the FX market there exists another important relationship between calls

and puts, known as foreign domestic symmetry. This section is based on

[81]. The idea is that on the FX market a call on one currency pair, e.g.

EURUSD, is the same as a put on the inverse pair, e.g. USDEUR. With

the right scaling, both options should have the same value, otherwise this

would allow arbitrage. Further we make the assumptions, that there are no
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transaction or other costs. Therefore, we show that the following equation

holds as stated in Theorem 9.4.1:

Ce/$(0, T, K) = Se/$(0)K P$/e

(
0, T,

1
K

)
,

where Ce/$(0, T, K) is the call option price (in $) at time 0 to buy one EUR

for $K at time T; P$/e(0, T, 1/K) is the put option price (in e) at time 0 to

sell one USD for e
1
K

at time T.

Let us assume we are looking at a call option on Se/$(T) at time T. The

owner of this option has the right to buy e1 for the exchange rate K USD
EUR .

Let us denote the value of this option

Ce/$(0, T, Se/$(T), K, r$, re).

On the other hand this means, he also has the right to sell $K for the

exchange rate 1
K

EUR
USD . A put option with the right to sell $1, is a put option

on S$/e(T) = 1
Se/$(T)

and has the value

P$/e

(
0, T,

1
Se/$(T)

,
1
K

, re, r$

)
.

Note that we take the view of a foreign investor to denote the price of this

put option, which means that re denotes the domestic interest rate and r$

the foreign interest rate respectively.

We need to scale the put option so that both investment strategies give the

investor the same rights. K put options have the value

K P$/e

(
0, T,

1
Se/$(T)

,
1
K

, re, r$

)
,

expressed in Euro and the owner has the right to sell $K for the exchange

rate 1 EUR
USD .

As mentioned above, since the investor has the same right in both cases, they
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have to have the same value in the same currency to avoid arbitrage, which

leads to the following relationship.

Ce/$(0, T, Se/$(T), K, r$, re) = Se/$(0)K

× P$/e

(
0, T,

1
Se/$(T)

1
K

, re, r$

)
.

Note, that an alternative proof involving change of measure can be found

in [107][Ch 9.3]. It also emphasizes the importance of the relevant measure

when pricing currency options.

b.4 proof of theorem 10 .2 .1 for general α

As mentioned in Remark 10.2.2, it is possible to choose to use a general

α1 = · · · = αN−1 in (10.2.2). We therefore repeat the proof of Theorem 10.2.1

for arbitrary 0 < αj < 1:

Theorem B.4.1. Assume that N − 1 exchange rates f j between the currency cN to

all other currencies ci, i = 1, . . . , N − 1, under a ‘market’ measure are described by

the model (10.2.6) together with (10.2.5). Consider the intermediate currency X

introduced in (10.2.2), with arbitrary αi. There is the unique intermediate currency

interest rate rX(t) defined by

rX =

(
1−

N−1

∑
j=1

αj

)
rN +

N−1

∑
j=1

αjrj +
N−1

∑
j=1

αj(1− αj)

2
σ2

j −
N−1

∑
j=1

j−1

∑
k=1

αjαkσjσkρjk

(B.4.1)

and there is an EMM QX for the intermediate pseudo-currency market.

Proof. Applying the Ito formula to (10.2.2), we obtain the SDEs for the

exchange rates Sci/X:

dSci/X

Sci/X
=

[
N−1

∑
j=1

(
−αjµj +

αj(αj + 1)
2

σ2
j

)
+ (µi − αiσ

2
i )1i 6=N
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+
N−1

∑
j=1

j−1

∑
k=1

αjαkσjσkρjk +

(
αiσ

2
i − σi

N−1

∑
j=1

αjσjρij

)
1i 6=N

]
dt

−
N−1

∑
j=1

αjσj

j

∑
k=1

LjkdWk + 1i 6=Nσi

i

∑
k=1

LikdWk

=

[
N−1

∑
j=1

(
− αjµj +

αj(αj + 1)
2

σ2
j +

j−1

∑
k=1

αjαkσjσkρjk

− σi1i 6=Nαjσjρij

)
+ µi1i 6=N

]
dt

−
N−1

∑
j=1

j

∑
k=1

αjσjLjkdWk + 1i 6=Nσi

i

∑
k=1

LikdWk, i = 1, . . . , N.

On the considered market the risky assets have the prices Yci/X = Sci/XBi,

i = 1, . . . , N. Let us introduce the discounted risky assets’ prices in the usual

way:

Ỹci/X(t) =
Sci/X(t)Bi(t)

BX(t)
, i = 1, . . . , N.

The discounted prices satisfy the SDEs

dỸci/X

Ỹci/X
= [ri − rX]dt

+

[
N−1

∑
j=1

(
− αjµj +

αj(αj + 1)
2

σ2
j +

j−1

∑
k=1

αjαkσjσkρjk

− σi1i 6=Nαjσjρij

)
+ µi1i 6=N

]
dt

−
N−1

∑
j=1

j

∑
k=1

αjσjLjkdWk + 1i 6=Nσi

i

∑
k=1

LikdWk, i = 1, . . . , N.

The no-arbitrage condition requires existence of an EMM QX under which

all Ỹci/X are martingales. This implies that for QX to exist the following

system of N simultaneous linear algebraic equations in N unknown variables
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(which are the market prices of risk γk, k = 1, . . . , N − 1, and rX) should

have a solution:

ri − rX +
N−1

∑
j=1

(
− αjµj +

αj(αj + 1)
2

σ2
j +

j−1

∑
k=1

αjαkσjσkρjk − σi1i 6=Nαjσjρij

)

+ µi1i 6=N (B.4.2)

=−
N−1

∑
j=1

j

∑
k=1

αjσjLjkγk + 1i 6=Nσi

i

∑
k=1

Likγk, i = 1, . . . , N.

Subtracting the equation (B.4.2) with i = N from the equations (B.4.2) for

i 6= N, we obtain

ri − rN + µi − σi

N−1

∑
j=1

αjσjρij = σi

i

∑
k=1

Likγk, i = 1, . . . , N − 1. (B.4.3)

Using (B.4.3), we recurrently find the market prices of risk:

γi =

ri − rN + µi − σi
N−1
∑

j=1
αjσjρij − σi

i−1
∑

k=1
Li,kγk

σiLi,i
, i = 1, . . . , N − 1, (B.4.4)

which are well defined because due to our assumptions σi > 0 and Li,i > 0.

Moreover, sum up (B.4.3) over i from i = 1 to N − 1 and substitute the result

in (B.4.2) with i = N to confirm (B.4.1):

rN − rX +
N−1

∑
j=1

(
− αjµj +

αj(αj + 1)
2

σ2
j +

j−1

∑
k=1

αjαkσjσkρjk

)

= −
N−1

∑
j=1

(
αjrj − αjrN + αjµj − αjσj

N−1

∑
k=1

αkσkρjk

)

⇔ rX =

(
1−

N

∑
j=1

αj

)
rN +

N

∑
j=1

αjrj +
N−1

∑
j=1

αj(αj + 1)
2

σ2
j

+
N−1

∑
j=1

j−1

∑
k=1

αjαkσjσkρjk −
N−1

∑
j=1

αjσj

N−1

∑
k=1

αkσkρjk

=

(
1−

N

∑
j=1

αj

)
rN +

N

∑
j=1

αjrj +
N−1

∑
j=1

αj(αj + 1)
2

σ2
j
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−
N−1

∑
j=1

N−1

∑
k=j

αjαkσjσkρjk

=

(
1−

N

∑
j=1

αj

)
rN +

N

∑
j=1

αjrj +
N−1

∑
j=1

αj(1− αj)

2
σ2

j

−
N−1

∑
j=1

j−1

∑
k=1

αjαkσjσkρjk.

The found γi, i = 1, . . . , N− 1, from (B.4.4) and rX from (B.4.1) together with

Girsanov’s theorem ensure that there is an EMM QX under which all Ỹci/X

are martingales. Thus, the considered market is arbitrage free. Theorem B.4.1

is proved.

b.5 proof of proposition 11 .3 .1

Derivation of the MGF M(t). Consider the MGF

Mα1 max(β1−Y,0)+α2 max(Y−β2,0)(t)

for the random variable α1 max(β1 −Y, 0) + α2 max(Y− β2, 0). We have for

β1 ≤ β2:

Mα1 max(β1−Y,0)+α2 max(Y−β2,0)(t) = e
t
2 (tα

2
1+2α1β1)N(tα1 + β1) + N(β2)− N(β1)

(B.5.1)

+ e
t
2 (tα

2
2−2α2β2)N(tα2 − β2).

Using (B.5.1), the fact that V is a combination of two independent random

variables, X and α1 max(β1 −Y, 0) + α2 max(Y− β2, 0), and the convolution

theorem, we obtain the MGF for V:

MV(t) = MX(t)×Mα1 max(β1−Y,0)+α2 max(Y−β2,0)(t)

= e
t2
2

(
e

t
2 (tα

2
1+2α1β1)N(tα1 + β1) + N(β2)− N(β1) + e

t
2 (tα

2
2−2α2β2)N(tα2 − β2)

)
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= e
t2
2 (N(β2)− N(β1)) + e

t
2 (t(1+α2

2)−2α2β2)N(tα2 − β2)

+ e
t
2 (t(1+α2

1)+2α1β1)N(tα1 + β1).

Making use of basic properties of MGFs leads to the resulting formula

(11.3.7):

M(t) = MZ(t) = MaV(t) = MV(at)

= e
(at)2

2 (N(β2)− N(β1)) + e
t
2 (ta

2(1+α2
2)−2aα2β2)N(taα2 − β2)

+ e
t
2 (ta

2(1+α2
1)+2aα1β1)N(taα1 + β1).

Derivation of the restricted MGF M(t, z0). To obtain the formula (11.3.8) for

M(t, z0), we consider the following restricted MGF for Z:

M∗Z(t, z0) := E[etZ
1Z<z0 ],

which can be viewed as a complement to M(t, z0) as M(t, z0) = M(t) −
M∗Z(t, z0) (note that M∗Z(t, z0) is naturally used for pricing puts). We start

with deriving the restricted MGF for V:

MV(t, v0) := E[etV
1V<v0 ].

By splitting up the integration domain into three regions and calculating

each integral separately, we obtain for β1 ≤ β2:

MV(t, v0)

=E[etV
1{V<v0}]

=E[et(X+α1 max(β1−Y,0)+α2 max(Y−β2,0))
1{X+α1 max(β1−Y,0)+α2 max(Y−β2,0)<v0}]

=
∫ ∞

−∞

∫ ∞

−∞
et(x+α1 max(β1−y,0)+α2 max(y−β2,0)) 1√

2π
e−

y2
2

1√
2π

e−
x2
2

× 1{x+α1 max(β1−y,0)+α2 max(y−β2,0)<v0}dydx
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=
∫ ∞

−∞

∫ β1

−∞
et(x+α1(β1−y)) 1√

2π
e−

y2
2

1√
2π

e−
x2
2 1{x+α1(β1−y)<v0}dydx

+
∫ ∞

−∞

∫ β2

β1

etx 1√
2π

e−
y2
2

1√
2π

e−
x2
2 1{x<v0}dydx

+
∫ ∞

−∞

∫ ∞

β2

et(x+α2(y−β2))
1√
2π

e−
y2
2

1√
2π

e−
x2
2 1{x+α2(y−β2)<v0}dydx

=e
t2
2 N(v0 − t)

(
N(β2)− N(β1)

)
+ e

t
2 (t(1+α2

1)+2α1β1)N2

tα1 + β1,
v0 − t− α1(β1 + α1t)√

1 + α2
1

;
−α1√
1 + α2

1


+ e

t
2 (t(1+α2

2)−2α2β2)N2

tα2 − β2,
v0 − t + α2(β2 − tα2)√

1 + α2
2

;
−α2√
1 + α2

2

 .

Using basic properties of MGFs, we get

M∗(t, z0) = M∗Z(t, z0) = E
[
etZ

1Z<z0

]
= E

[
eatV

1V<
z0
a

]
= MV

(
at,

z0

a

)
= e

(at)2
2 N

(z0

a
− at

) (
N(β2)− N(β1)

)
+ e

t
2 (ta

2(1+α2
1)+2aα1β1)N2

taα1 + β1,
z0
a − at− α1(β1 + taα1)√

1 + α2
1

;
−α1√
1 + α2

1


+ e

t
2 (ta

2(1+α2
2)−2aα2β2)N2

taα2 − β2,
z0
a − t + α2(β2 − taα2)√

1 + α2
2

;
−α2√
1 + α2

2

 .

We can simplify the following expression

M(t, z0) = M(t)−M∗(t, z0)

= e
(at)2

2 N
(

at− z0

a

) (
N(β2)− N(β1)

)
+ e

t
2 (ta

2(1+α2
1)+2aα1β1)

×

N(taα1 + β1)− N2

taα1 + β1,
z0
a − at− α1(β1 + taα1)√

1 + α2
1

;
−α1√
1 + α2

1


+ e

t
2 (ta

2(1+α2
2)−2aα2β2)
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×

N(taα2 − β2)− N2

taα2 − β2,
z0
a − t + α2(β2 − taα2)√

1 + α2
2

;
−α2√
1 + α2

2

 ,

which gives (11.3.8).

b.6 moments of the random variable V

The derivatives of the MGF M(i)
V (0) the random variable V from (11.3.5) (i.e.,

the first four moments of V) are equal to

M(1)
V (0) = α1β1N(β1)− α2β2N(−β2) +

α1√
2π

e−
β2

1
2 +

α2√
2π

e−
β2

2
2 ,

M(2)
V (0) = N(β1)

[
(α1β1)

2 + α2
1

]
+ N(β2) + N(−β2)

[
(α2β2)

2 + 1 + α2
2

]
+ α1β1

α1√
2π

e−
β2

1
2 − α2β2

α2√
2π

e−
β2

2
2 ,

M(3)
V (0) = N(β1)

[
3α1β1(1 + α2

1) + (α1β1)
3
]

+ N(−β2)
[
− 3α2β2(1 + α2

2)− (α2β2)
3
]

+
α1√
2π

e−
β2

1
2

[
(α1β1)

2 + 3 + 2α2
1

]
+

α2√
2π

e−
β2

2
2

[
(α2β2)

2 + 3 + 2α2
2

]
,

M(4)
V (0) = 3N(β2)− 3N(β1)

+ N(−β2)
[
3(1 + α2

2)(2(α2β2)
2 + 1 + α2

2) + (α2β2)
4
]

+ N(β1)
[
3(1 + α2

1)(2(α1β1)
2 + 1 + α2

1) + (α1β1)
4
]

+
α1√
2π

e−
β2

1
2

[
α1β1(6 + 5α2

1 + (α1β1)
2)
]

+
α2√
2π

e−
β2

2
2

[
− α2β2(6 + 5α2

2 + (α2β2)
2)
]
.
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b.7 useful formulas and derivations in regard to best-of

options

b.7.1 Derivation of best-of option pay-off function

Similar to [6], we can rewrite the payoff of a best-off option on two assets S1

and S2 can be written as follows

b(T) =
S1

K1
I
(

S1 > K1,
S1

K1
>

S2

K2

)
+

S2

K2
I
(

S2 > K2,
S1

K1
<

S2

K2

)
+ I (S1 < K1, S2 < K2)− 1

=
S1

K1
I (S1 > K1, S3 > K3) +

S2

K2
I (S2 > K2, S3 < K3)

+ I (S1 < K1, S2 < K2)− 1,

where S3 = S1
S2

and K3 = K1
K2

.

While, we do not try to give a full analytical proof here, the following

holds (see [7]):

[
1 + K1

∂

∂K1
+ K2

∂

∂K2

]
b(T) = b(T)− S1

K1
I (S1 > K1, S3 > K3)

− S2

K2
I (S2 > K2, S3 < K3)

= I (S1 < K1, S2 < K2)− 1,

and rearranging leads to

[
1 + K1

∂

∂K1
+ K2

∂

∂K2

]
b(T) + 1 = I (S1 < K1, S2 < K2) . (B.7.1)
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b.7.2 Derivation of partial derivatives of the cumulative distribution function of

ve

We have the price in a convenient form (see [83, 109, 6]) as follows:

ve(0) = e−reT

[
F£/e

K1
N(d+1 , d+3 ; ρ13) +

F$/e

K2
N(d+2 , d−3 ; ρ23)

+ N(−d−1 ,−d−2 ; ρ12)− 1

]
,

We now assume that the volatilites are a function of the strikes: σi(Ki),

i = 1, 2, 3, with K3 = K1/K2 as in (11.4.13). First, note that the following

derivatives and useful equivalencies hold, which we need later:

d±i =
log Fi

Ki
± σ2

i T/2

σi
√

T
,

d+i = d−i + σi
√

T,

ρ12 =
σ2

1 + σ2
2 − σ2

3
2σ1σ2

,

ρ13 =
σ2

1 + σ2
3 − σ2

2
2σ1σ3

=
ρ12σ1σ2 − σ2

2 + σ2
3

σ1σ3
,

ρ23 =
σ2

2 + σ2
3 − σ2

1
2σ2σ3

=
ρ12σ1σ2 − σ2

1 + σ2
3

σ2σ3
,

N(a, b, ρ) =

a∫
−∞

b∫
−∞

1
2π
√

1− ρ2
e
− x2+y2−2ρxy

2(1−ρ2) dxdy.

And also:

N′(d+1 ) =
K1

F1
N′(d−1 ),

∂

∂d−1
N(−d−1 ,−d−2 ; ρ12)

=
∂

∂d−1

−d−1∫
−∞

−d−2∫
−∞

1

2π
√

1− ρ2
12

exp

(
−x2 + y2 − 2ρ12xy

2(1− ρ2
12)

)
dxdy
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= −
−d−2∫
−∞

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 + y2 + 2ρ12d−1 y
2(1− ρ2

12)

)
dy

= − exp

(
− (d−1 )

2

2

) −d−2 +ρ12d−1∫
−∞

1

2π
√

1− ρ2
12

exp

(
− u2

2(1− ρ2
12)

)
du

= − 1√
2π

exp

(
− (d−1 )

2

2

) −d−2 +ρ12d−1√
1−ρ2

12∫
−∞

1√
2π

exp
(
−v2

2

)
dv

= −N′(d−1 )N

−d−2 + ρ12d−1√
1− ρ2

12

 ,

∂d+1
∂σ1

= −
log F1

K1
− σ2

1 T/2

σ2
1

√
T

= −
log F1

K1

σ2
1

√
T
+
√

T/2,

∂d−1
∂σ1

= −
log F1

K1
+ σ2

1 T/2

σ2
1

√
T

= −
log F1

K1

σ2
1

√
T
−
√

T/2,

√
1− ρ2

13 =

√√√√1−
(

ρ12σ1σ2 − σ2
2 + σ2

3
σ1σ3

)2

=

√
σ2

1 σ2
3 − (ρ12σ1σ2)2 − 2ρ12σ1σ2(σ2

3 − σ2
2 )− (σ2

3 − σ2
2 )

2

σ2
1 σ2

3

=

√
σ2

1 σ2
2 (1− ρ2

12)

σ2
1 σ2

3

=
σ2

σ3

√
1− ρ2

12,

σ2
3

σ2
2

ρ2
13 = −

[
1− ρ2

12 −
σ2

3

σ2
2

]
,√

1− ρ2
23 =

σ1

σ3

√
1− ρ2

12

σ2
3

σ2
1

ρ2
23 = −

[
1− ρ2

12 −
σ2

3

σ2
1

]
,

d+3 − ρ13d+1√
1− ρ2

13
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=
1√

1− ρ2
12

σ3

σ2

×
(

log F1
K1
− log F2

K2
+ σ2

3 T/2

σ3
√

T
−
(

ρ12
σ2

σ3
− σ2

2
σ1σ3

+
σ3

σ1

)
log F1

K1
+ σ2

1 T/2

σ1
√

T

)

=
1√

1− ρ2
12

×
(

log F1
K1
− log F2

K2

σ2
√

T
+

σ2
3

σ2

√
T/2 +

(
−ρ12 +

σ2

σ1
− σ2

3
σ1σ2

)
log F1

K1
+ σ2

1 T/2

σ1
√

T

)

=
1√

1− ρ2
12

×
(
−

log F2
K2

σ2
√

T
+ σ2
√

T/2− ρ12
log F1

K1
+ σ2

1 T/2

σ1
√

T
+

log F1
K1

σ2
√

T
− σ2

3
σ1σ2

log F1
K1√
T

+
σ2

σ2
1

log F1
K1√
T

)
=

1√
1− ρ2

12

(
−d−2 − ρ12d+1 +

log F1
K1√
T

(
− σ2

3

σ2
1 σ2

+
1
σ2

+
σ2

σ2
1

))

=
1√

1− ρ2
12

(
−d−2 − ρ12d−1 − 2ρ12σ1

√
T/2 +

log F1
K1√
T

2ρ12

σ1

)

=
1√

1− ρ2
12

(
−d−2 − ρ12d−1 + 2ρ12d−1

)
=
−d−2 + ρ12d−1√

1− ρ2
12

,

d−3 − ρ23d+2√
1− ρ2

23

=
−d−1 + ρ12d−2√

1− ρ2
12

,

d+3 − ρ13d+1√
1− ρ2

13

2

=
(d+3 )

2 − 2ρ13d+1 d+3 + (ρ13)
2(d+1 )

2

1− ρ2
13

=
(ρ12d−1 − d−2 )

2

1− ρ2
12

,

(d+3 )
2 − 2ρ13d+1 d+3
1− ρ2

13
=

(ρ12d−1 − d−2 )
2 − σ2

3
σ2

2
(ρ13)

2(d+1 )
2

1− ρ2
12

,d−3 − ρ23d+2√
1− ρ2

23

2

=
(d−3 )

2 − 2ρ23d+2 d−3 + (ρ23)
2(d+2 )

2

1− ρ2
23

=
(ρ12d−2 − d−1 )

2

1− ρ2
12

,
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(d−3 )
2 − 2ρ23d+2 d−3
1− ρ2

23
=

(ρ12d−2 − d−1 )
2 − σ2

3
σ2

1
(ρ23)

2(d+2 )
2

1− ρ2
12

,

(d+1 )
2 = (d−1 + σ1

√
T)2

= (d−1 )
2 + 2d−1 σ1

√
T + σ2

1 T) = (d−1 )
2 + 2 log

F1

K1
,

(d+2 )
2 = (d−2 + σ2

√
T)2

= (d−2 )
2 + 2d−2 σ2

√
T + σ2

2 T) = (d−2 )
2 + 2 log

F2

K2
,

(d+1 )
2 − 2ρd+1 d+3 + (d+3 )

2

2(1− ρ2
13)

=

σ2
3

σ2
2
(d+1 )

2 + (ρ12d−1 − d−2 )
2 − σ2

3
σ2

2
(ρ13)

2(d+1 )
2

2(1− ρ2
12)

=

σ2
3

σ2
2
(d+1 )

2 + ρ2
12(d

−
1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2 +

[
1− ρ2

12 −
σ2

3
σ2

2

]
(d+1 )

2

2(1− ρ2
12)

=
ρ2

12(d
−
1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2 +

[
1− ρ2

12
] [

(d−1 )
2 + 2 log F1

K1

]
2(1− ρ2

12)

=
(d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2 + 2(1− ρ2

12) log F1
K1

2(1− ρ2
12)

= log
F1

K1
+

(d−1 )
2 − 2ρ12d−1 d−2 + (d−2 )

2

2(1− ρ2
12)

∂ρ13

∂σ1
=

σ2
1 + σ2

2 − σ2
3

2σ2
1 σ3

,
∂ρ23

∂σ1
= − σ1

σ2σ3
,

∂ρ12

∂σ1
=

σ2
1 − σ2

2 + σ2
3

2σ2
1 σ2

.

Note that the following is true for the partial of the bivariate cumulative

normal distribution with respect to the correlation ρ (see [73][Eq. (46.16)]).

∂N(a, b, ρ)

∂ρ
=

1
2π
√

1− ρ2
exp

(
− a2 − 2ρab + b2

2(1− ρ2)

)
.
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This and use of some of the equivalences leads to the following:

∂N(d+1 , d+3 , ρ13)

∂ρ13
=

1

2π
√

1− ρ2
13

exp

(
− (d+1 )

2 − 2ρ13d+1 d+3 + (d+3 )
2

2(1− ρ2
13)

)

=
K1

F1

σ3

σ2

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)
,

∂N(d+2 , d−3 , ρ23)

∂ρ23
=

1

2π
√

1− ρ2
23

exp

(
− (d+2 )

2 − 2ρ23d+2 d−3 + (d−3 )
2

2(1− ρ2
23)

)

=
K2

F2

σ3

σ1

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)
.

∂

∂σ1
N(d+1 , d3+, ρ13) =

∂ρ13

∂σ1

∂N(d+1 , d3+, ρ13)

∂ρ13

Now the use of the above leads to the following:

K1σ′1
F1

K1

∂

∂σ1
N(d+1 , d+3 , ρ13)

= σ′1F1N′(d+1 )N

d+3 − ρ13d+1√
1− ρ2

13

(− log F1
K1

σ2
1

√
T
+
√

T/2

)

+ F1σ′1
∂ρ13

∂σ1

∂N(d+1 , d+3 , ρ13)

∂ρ13
,

K1σ′1
F2

K2

∂

∂σ1
N(d+2 , d−3 , ρ23)

= K1
F2

K2
σ′1

∂ρ23

∂σ1

∂N(d+2 , d−3 , ρ23)

∂ρ23
,

K1σ′1
∂

∂σ1
N(−d−1 ,−d−2 ; ρ12)

= −K1σ′1N′(d−1 )N

−d−2 + ρ12d−1√
1− ρ2

12

(− log F1
K1

σ2
1

√
T
−
√

T/2

)

+ K1σ′1
∂ρ12

∂σ1

∂N(−d−1 ,−d−2 ; ρ12)

∂ρ12
,
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which we can combine as follows:

F1σ′1N′(d+1 )N

d+3 − ρ13d+1√
1− ρ2

13

(− log F1
K1

σ2
1

√
T
+
√

T/2

)

+ K1σ′1N′(d−1 )N

−d−2 + ρ12d−1√
1− ρ2

12

( log F1
K1

σ2
1

√
T
+
√

T/2

)

= K1σ′1N′(d−1 )N

−d−2 + ρ12d−1√
1− ρ2

12

√T.

And also,

F1σ′1
∂ρ13

∂σ1

∂N(d+1 , d+3 , ρ13)

∂ρ13
+ K1

F2

K2
σ′1

∂ρ23

∂σ1

∂N(d+2 , d−3 , ρ23)

∂ρ23

+ K1σ′1
∂ρ12

∂σ1

∂N(−d−1 ,−d−2 ; ρ12)

∂ρ12

= σ′1F1
σ2

1 + σ2
2 − σ2

3

2σ2
1 σ3

K1

F1

σ3

σ2

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)

− σ′1
F2

K2

σ1

σ2σ3

K2

F2

σ3

σ1

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)

+ σ′1K1
σ2

1 − σ2
2 + σ2

3

2σ2
1 σ2

1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)

= 0.

The same equivalences hold for the partial derivatives with respect to σ2,

hence, all together simplifies to the following:

U(K1, K2) :=
[

1 + K1
∂

∂K1
+ K2

∂

∂K2

]
ve + e−reT

= e−reT

(
N(−d−1 ,−d−2 ; ρ12) +

[
K1σ′1(K1)

∂

∂σ1
+ K2σ′2(K2)

∂

∂σ2

]
ve + 1

)

= e−reT

N(−d−1 ,−d−2 ; ρ12) + K1
√

Tσ′1(K1)N′(d−1 )N

d−1 ρ12 − d−2√
1− ρ2

12
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+K2
√

Tσ′2(K2)N′(d−2 )N

d−2 ρ12 − d−1√
1− ρ2

12

 .

b.7.3 Derivation of second order partial derivatives of the cumulative distribution

function of ve

We have the distribution function U(K1, K2) (see (11.4.14)):

U(K1, K2) = e−reT [N(−d−1 ,−d−2 ; ρ12)

+ K1
√

Tσ′1(K1)N′(d−1 )N

d−1 ρ12 − d−2√
1− ρ2

12


+K2
√

Tσ′2(K2)N′(d−2 )N

d−2 ρ12 − d−1√
1− ρ2

12

 .

To make the following presentation clearer, let us start with the following

partial derivatives:

∂N(−d−1 ,−d−2 ; ρ12)

∂Ki

=
∂N(−d−1 ,−d−2 ; ρ12)

∂d−i

∂d−i
∂σi

∂σi(Ki)

Ki
+

∂N(−d−1 ,−d−2 ; ρ12)

∂ρ12

∂ρ12

∂σi

∂σi(Ki)

∂Ki
,

∂N(−d−1 ,−d−2 ; ρ12)

∂K1

=
∂N(−d−1 ,−d−2 ; ρ12)

∂d−1

∂d−1
∂σ1

∂σ1(K1)

K1
+

∂N(−d−1 ,−d−2 ; ρ12)

∂ρ12

∂ρ12

∂σ1

∂σ1(K1)

∂K1
,

∂2N(−d−1 ,−d−2 ; ρ12)

∂K1∂K2

=
∂2N(−d−1 ,−d−2 ; ρ12)

∂d−1 ∂d−2

∂d−1
∂σ1

∂σ1(K1)

K1

∂d−2
∂σ2

∂σ2(K2)

K2

+
∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂d−2

∂ρ12

∂σ1

∂σ1(K1)

∂K1

∂d−2
∂σ2

∂σ2(K2)

K2

+
∂2N(−d−1 ,−d−2 ; ρ12)

∂d−1 ∂ρ12

∂d−1
∂σ1

∂σ1(K1)

K1

∂ρ12

∂σ2

∂σ2(K2)

∂K2
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+
∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂ρ12

∂ρ12

∂σ1

∂σ1(K1)

∂K1

∂ρ12

∂σ2

∂σ2(K2)

∂K2

= σ′1(K1)σ
′
2(K2)

×
[

∂2N(−d−1 ,−d−2 ; ρ12)

∂d−1 ∂d−2

∂d−1
∂σ1

∂d−2
∂σ2

+
∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂d−2

∂ρ12

∂σ1

∂d−2
∂σ2

+
∂2N(−d−1 ,−d−2 ; ρ12)

∂d−1 ∂ρ12

∂d−1
∂σ1

∂ρ12

∂σ2
+

∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂ρ12

∂ρ12

∂σ1

∂ρ12

∂σ2

]
,

where σ′i (Ki) =
∂σi(Ki)

Ki
and σ′′i (Ki) =

∂σ′i (Ki)
Ki

. Moreover, we have the following:

∂

(
K1
√

Tσ′1(K1)N′(d−1 )N
(

d−1 ρ12−d−2√
1−ρ2

12

))
∂K1

=
√

TN′(d−1 )

(
σ′1(K1) +

∂σ′1(K1)

∂K1
K1 − d−1 σ′1(K1)K1

∂d−1
∂σ1

∂σ1(K1)

∂K1

)

× N

d−1 ρ12 − d−2√
1− ρ2

12



+ K1
√

Tσ′1(K1)N′(d−1 )
∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1

∂d−1
∂σ1

∂σ1(K1)

∂K1

+ K1
√

Tσ′1(K1)N′(d−1 )
∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12

∂ρ12

∂σ1

∂σ1(K1)

∂K1
,

∂2
(

K1
√

Tσ′1(K1)N′(d−1 )N
(

d−1 ρ12−d−2√
1−ρ2

12

))
∂K1∂K2

=
√

TN′(d−1 )

(
σ′1(K1) +

∂σ′1(K1)

∂K1
K1 − d−1 K1σ′1(K1)

∂d−1
∂σ1

∂σ1(K1)

∂K1

)
∂σ2(K2)

∂K2

×

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−2

∂d−2
∂σ2

+

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12

∂ρ12

∂σ2


+ K1

√
Tσ′1(K1)N′(d−1 )

∂σ1(K1)

∂K1

∂σ2(K2)

∂K2

∂d−1
∂σ1



B.7 useful formulas and derivations in regard to best-of options 208

×

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂d−2

∂d−2
∂σ2

+

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂ρ12

∂ρ12

∂σ2


+ K1

√
Tσ′1(K1)N′(d−1 )

∂σ1(K1)

∂K1

∂σ2(K2)

∂K2

∂ρ12

∂σ1

×

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂d−2

∂d−2
∂σ2

+

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂ρ12

∂ρ12

∂σ2


=
√

TN′(d−1 )σ
′
2(K2)

{(
σ′1(K1) + σ′′1 (K1)K1 − d−1 (σ

′
1(K1))

2K1
∂d−1
∂σ1

)

×

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−2

∂d−2
∂σ2

+

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12

∂ρ12

∂σ2



+ K1(σ
′
1(K1))

2 ∂d−1
∂σ1

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂d−2

∂d−2
∂σ2

+

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂ρ12

∂ρ12

∂σ2



+K1(σ
′
1(K1))

2 ∂ρ12

∂σ1

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂d−2

∂d−2
∂σ2

+

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂ρ12

∂ρ12

∂σ2


 ,

∂

(
K2
√

Tσ′2(K2)N′(d−2 )N
(

d−2 ρ12−d−1√
1−ρ2

12

))
∂K1

= K2
√

Tσ′2(K2)N′(d−2 )σ
′
1(K1)

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1

∂d−1
∂σ1

+

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12

∂ρ12

∂σ1

 ,

∂2
(

K2
√

Tσ′2(K2)N′(d−2 )N
(

d−2 ρ12−d−1√
1−ρ2

12

))
∂K1∂K2

=
√

TN′(d−2 )σ
′
1(K1)

(
σ′2(K2) + σ′′2 (K2)K2 − d−2 K2(σ

′
2(K2))

2 ∂d−2
∂σ2

)



B.7 useful formulas and derivations in regard to best-of options 209

×

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1

∂d−1
∂σ1

+

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12

∂ρ12

∂σ1


+ K2

√
Tσ′2(K2)N′(d−2 )σ

′
1(K1)σ

′
2(K2)

∂d−1
∂σ1

×

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1 ∂d−2

∂d−2
∂σ2

+

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1 ∂ρ12

∂ρ12

∂σ2


+ K2

√
Tσ′2(K2)N′(d−2 )σ

′
1(K1)σ

′
2(K2)

∂ρ12

∂σ1

×

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12∂d−2

∂d−2
∂σ2

+

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12∂ρ12

∂ρ12

∂σ2

 .

The following derivatives will also be helpful:

∂d±i
∂σi

= −
log Fi

Ki

σ2
i

√
T
±
√

T/2,

∂N( f (d−i ))
∂d−i

=
∂ f (d−i )

∂d−i
N′( f (d−i )),

∂N′( f (d−i ))
∂d−i

= − f (d−i )
∂ f (d−i )

∂d−i
N′( f (d−i )),

∂ρ12

∂σ1
=

σ2
1 − σ2

2 + σ2
3

2σ2
1 σ2

,
∂ρ12

∂σ2
=

σ2
2 − σ2

1 + σ2
3

2σ1σ2
2

,

N′

d−1 ρ12 − d−2√
1− ρ2

12

 = exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)
N′(d−1 ),

N′

d−1 ρ12 − d−2√
1− ρ2

12

 = N′

d−2 ρ12 − d−1√
1− ρ2

12

 exp

(
(d−1 )

2 + (d−2 )
2

2

)
,

∂

∂ρ12

d−1 − ρ12d−2√
1− ρ2

12

=
d−1 ρ12 − d−2
(1− ρ2

12)
3/2

,

∂

∂ρ12

d−1 ρ12 − d−2√
1− ρ2

12

=
d−1 − d−2 ρ12

(1− ρ2
12)

3/2
,
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∂

∂ρ12

d−2 ρ12 − d−1√
1− ρ2

12

=
d−2 − d−1 ρ12

(1− ρ2
12)

3/2
.

We will also need the partial derivatives of N(−d−1 ,−d−2 ; ρ12):

∂

∂d−1
N(−d−1 ,−d−2 ; ρ12) = −N′(d−1 )N

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2

∂d−1 ∂d−2
N(−d−1 ,−d−2 ; ρ12) = −

N′(d−1 )√
1− ρ2

12

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2

∂d−1 ∂ρ12
N(−d−1 ,−d−2 ; ρ12) = −N′(d−1 )

d−1 − ρ12d−2
(1− ρ2

12)
3/2

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂N(−d−1 ,−d−2 ; ρ12)

∂ρ12

=
1

2π
√

1− ρ2
12

exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)

=
1

2πN′(d−1 )
√

1− ρ2
12

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂d−2

=
d−1 ρ12 − d−2

2π(1− ρ2
12)

3/2
exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)

=
d−1 ρ12 − d−2

2πN′(d−1 )(1− ρ2
12)

3/2
N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2N(−d−1 ,−d−2 ; ρ12)

∂ρ12∂ρ12

=

[
ρ12

2π(1− ρ2
12)

3/2
+

d−1 d−2 (1 + ρ2
12)− (d−1 )

2ρ12 − (d−2 )
2ρ12

2π(1− ρ2
12)

5/2

]

× exp

(
− (d−1 )

2 − 2ρ12d−1 d−2 + (d−2 )
2

2(1− ρ2
12)

)
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=
1

2πN′(d−1 )

[
ρ12

(1− ρ2
12)

3/2
+

d−1 d−2 (1 + ρ2
12)− (d−1 )

2ρ12 − (d−2 )
2ρ12

(1− ρ2
12)

5/2

]

× N′

d−1 ρ12 − d−2√
1− ρ2

12

 .

Then, we also need the following partial derivatives of N
(

d−1 ρ12−d−2√
1−ρ2

12

)
:

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1

=
ρ12√

1− ρ2
12

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−2

=
−1√

1− ρ2
12

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12

=
d−1 − ρ12d−2
(1− ρ2

12)
3/2

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂d−2

=
d−1 ρ2

12 − d−2 ρ12

(1− ρ2
12)

3/2
N′

d−1 ρ12 − d−2√
1− ρ2

12

 ,

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂d−1 ∂ρ12

= N′

d−1 ρ12 − d−2√
1− ρ2

12


×
[

1
(1− ρ2

12)
3/2

+
ρ12
{

d−1 d−2 (1 + ρ2
12)− [(d−1 )

2 + (d−2 )
2]ρ12

}
(1− ρ2

12)
5/2

]
,

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂d−2

= N′

d−1 ρ12 − d−2√
1− ρ2

12


×
[

−ρ12

(1− ρ2
12)

3/2
+

[(d−1 )
2 + (d−2 )

2]ρ12 − d−1 d−2 (1 + ρ2
12)

(1− ρ2
12)

5/2

]
,

∂2N
(

d−1 ρ12−d−2√
1−ρ2

12

)
∂ρ12∂ρ12

= N′

d−1 ρ12 − d−2√
1− ρ2

12

[−4d−2 ρ2
12 + 3d−1 ρ12 + d−2
(1− ρ2

12)
5/2
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+
−(d−1 )3ρ12 + (d−2 )

3ρ2
12 + (d−1 )

2d−2 [2ρ2
12 + 1]− d−1 (d

−
2 )

2[ρ3
12 + 2ρ12]

(1− ρ2
12)

7/2

]
,

and the partial derivatives of N
(

d−2 ρ12−d−1√
1−ρ2

12

)
:

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1

=
−1√

1− ρ2
12

N′

d−2 ρ12 − d−1√
1− ρ2

12

 ,

∂N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12

=
d−2 − ρ12d−1
(1− ρ2

12)
3/2

N′

d−2 ρ12 − d−1√
1− ρ2

12

 ,

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1 ∂d−2

=
d−2 ρ2

12 − d−1 ρ12

(1− ρ2
12)

3/2
N′

d−2 ρ12 − d−1√
1− ρ2

12

 ,

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂d−1 ∂ρ12

= N′

d−2 ρ12 − d−1√
1− ρ2

12


×
[

−ρ12

(1− ρ2
12)

3/2
+

[(d−1 )
2 + (d−2 )

2]ρ12 − d−1 d−2 (1 + ρ2
12)

(1− ρ2
12)

5/2

]
,

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12∂d−2

= N′

d−1 ρ12 − d−2√
1− ρ2

12


×
[

1
(1− ρ2

12)
3/2

+
ρ12
{

d−1 d−2 (1 + ρ2
12)− [(d−1 )

2 − (d−2 )
2]ρ12

}
(1− ρ2

12)
5/2

]
,

∂2N
(

d−2 ρ12−d−1√
1−ρ2

12

)
∂ρ12∂ρ12

= N′

d−1 ρ12 − d−2√
1− ρ2

12

[4d−1 ρ2
12 + 3d−2 ρ12 − d−1
(1− ρ2

12)
5/2

+
(d−1 )

3ρ2
12 − (d−2 )

3ρ12 − (d−1 )
2d−2 [ρ

3
12 + 2ρ12] + d−1 (d

−
2 )

2[2ρ12 + 1]
(1− ρ2

12)
7/2

]
.



B.7 useful formulas and derivations in regard to best-of options 213

Now, we can put all the above together to get the following:

P1 =
∂2N(−d−1 ,−d−2 ; ρ12)

∂K1∂K2

= σ′1(K1)σ
′
2(K2)

− N′(d−1 )√
1− ρ2

12

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ∂d−1
∂σ1

∂d−2
∂σ2

+
d−1 ρ12 − d−2

2πN′(d−1 )(1− ρ2
12)

3/2
N′

d−1 ρ12 − d−2√
1− ρ2

12

 ∂ρ12

∂σ1

∂d−2
∂σ2

− N′(d−1 )
d−1 − ρ12d−2
(1− ρ2

12)
3/2

N′

d−1 ρ12 − d−2√
1− ρ2

12

 ∂d−1
∂σ1

∂ρ12

∂σ2

+
1

2πN′(d−1 )

[
ρ12

(1− ρ2
12)

3/2
+

d−1 d−2 (1 + ρ2
12)− (d−1 )

2ρ12 − (d−2 )
2ρ12

(1− ρ2
12)

5/2

]

× N′

d−1 ρ12 − d−2√
1− ρ2

12

 ∂ρ12

∂σ1

∂ρ12

∂σ2


= σ′1(K1)σ

′
2(K2)N′

d−1 ρ12 − d−2√
1− ρ2

12

− N′(d−1 )√
1− ρ2

12

∂d−1
∂σ1

∂d−2
∂σ2

+
d−1 ρ12 − d−2

2πN′(d−1 )(1− ρ2
12)

3/2
∂ρ12

∂σ1

∂d−2
∂σ2
− N′(d−1 )

d−1 − ρ12d−2
(1− ρ2

12)
3/2

∂d−1
∂σ1

∂ρ12

∂σ2

+
1

2πN′(d−1 )

×
[

ρ12

(1− ρ2
12)

3/2
+

d−1 d−2 (1 + ρ2
12)− (d−1 )

2ρ12 − (d−2 )
2ρ12

(1− ρ2
12)

5/2

]
∂ρ12

∂σ1

∂ρ12

∂σ2

}
,

and also

P2 =

∂2
(

K1
√

Tσ′1(K1)N′(d−1 )N
(

d−1 ρ12−d−2√
1−ρ2

12

))
∂K1∂K2

=
√

TN′(d−1 )σ
′
2(K2)N′

d−1 ρ12 − d−2√
1− ρ2

12


{(

σ′1(K1) + σ′′1 (K1)K1 − d−1 (σ
′
1(K1))

2K1
∂d−1
∂σ1

)
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×
 −1√

1− ρ2
12

∂d−2
∂σ2

+
d−1 − ρ12d−2
(1− ρ2

12)
3/2

∂ρ12

∂σ2


+ K1(σ

′
1(K1))

2

[
d−1 ρ2

12 − d−2 ρ12

(1− ρ2
12)

3/2

∂d−1
∂σ1

∂d−2
∂σ2

+

(
1

(1− ρ2
12)

3/2
+

ρ12
{

d−1 d−2 (1 + ρ2
12)− [(d−1 )

2 + 0(d−2 )
2]ρ12

}
(1− ρ2

12)
5/2

)
∂d−1
∂σ1

∂ρ12

∂σ2

×
(

−ρ12

(1− ρ2
12)

3/2
+

[(d−1 )
2 + (d−2 )

2]ρ12 − d−1 d−2 (1 + ρ2
12)

(1− ρ2
12)

5/2

)
∂ρ12

∂σ1

∂d−2
∂σ2

+

(
−4d−2 ρ2

12 + 3d−1 ρ12 + d−2
(1− ρ2

12)
5/2

+
−(d−1 )3ρ12 + (d−2 )

3ρ2
12 + (d−1 )

2d−2 [2ρ2
12 + 1]− d−1 (d

−
2 )

2[ρ3
12 + 2ρ12]

(1− ρ2
12)

7/2

)

×∂ρ12

∂σ1

∂ρ12

∂σ2

]}
,

and finally

P3 =

∂2
(

K2
√

Tσ′2(K2)N′(d−2 )N
(

d−2 ρ12−d−1√
1−ρ2

12

))
∂K1∂K2

=
√

TN′(d−2 )σ
′
1(K1)N′

d−2 ρ12 − d−1√
1− ρ2

12


{(

σ′2(K2) + σ′′2 (K2)K2 − d−2 K2(σ
′
2(K2))

2 ∂d−2
∂σ2

)

×
 −1√

1− ρ2
12

∂d−1
∂σ1

+
d−2 − ρ12d−1
(1− ρ2

12)
3/2

∂ρ12

∂σ1


+ K2(σ

′
2(K2))

2

×
[

d−2 ρ2
12 − d−1 ρ12

(1− ρ2
12)

3/2

∂d−1
∂σ1

∂d−2
∂σ2

+

(
−ρ12

(1− ρ2
12)

3/2
+

[(d−1 )
2 + (d−2 )

2]ρ12 − d−1 d−2 (1 + ρ2
12)

(1− ρ2
12)

5/2

)
∂d−1
∂σ1

∂ρ12

∂σ2

+

(
1

(1− ρ2
12)

3/2
+

ρ12
{

d−1 d−2 (1 + ρ2
12)− [(d−1 )

2 − (d−2 )
2]ρ12

}
(1− ρ2

12)
5/2

)
∂ρ12

∂σ1

∂d−2
∂σ2
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+

(
4d−1 ρ2

12 + 3d−2 ρ12 − d−1
(1− ρ2

12)
5/2

+
(d−1 )

3ρ2
12 − (d−2 )

3ρ12 − (d−1 )
2d−2 [ρ

3
12 + 2ρ12] + d−1 (d

−
2 )

2[2ρ12 + 1]
(1− ρ2

12)
7/2

)

×∂ρ12

∂σ1

∂ρ12

∂σ2

]}
.

Therefore, we get the following result:

∂2

∂K1∂K2
U(K1, K2) = e−reT [P1 + P2 + P3] .

Note, that a numerical evaluation of the partial derivatives might be easier,

especially if extended to higher dimensions.

b.7.4 Proof that the analytic pricing formula for a best-of option simplifies to a

Vanilla option

In this section, we show that the best-of option pricing formula correctly

reprices all vanilla options. Therefore, we first take K2 → ∞ in the best-of

pricing formula (11.4.13):

ve(0, K1, K2) = e−reT

[
F£/e

K1
N(d+1 , d+3 ; ρ13) +

F$/e

K2
N(d+2 , d−3 ; ρ23)

+N(−d−1 ,−d−2 ; ρ12)− 1

]
.

It can be shown (see [73]) that the standard bivariate normal distribution

N2(a, b; ρ) has the following property:

N2(a, ∞; ρ) = N1(a) and N2(∞, b; ρ) = N1(b),
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where N1(x) denotes the standard normal distribution. We also know the

following for Ki → ∞:

d−i =
log Fi

Ki
− σ2

i T/2

σi
√

T
→ −∞,

−d−i =
log Ki

Fi
+ σ2

i T/2

σi
√

T
→ ∞,

and further for K2 → ∞:

d±3 =
log F1K2

F2K1
± σ2

i T/2

σi
√

T
→ ∞,

if the implied volatilities σi(Ki) do not grow too fast as we require in (11.4.15).

Hence for K2 → ∞:

ve(0, K1, ∞) = e−reT

[
F£/e

K1
N(d+1 ) + N(−d−1 )− 1

]

= e−reT

[
F£/e

K1
N(d+1 )− N(d−1 )

]
,

as it is known that N(a) = 1 − N(−a). This leads us to the Garman-

Kohlhagen call option price for:

C£/$(0; K1) = K1ve(0, K1, ∞)

= F£/ee−reT N(d+1 )− K1e−reT N(d−1 ),

which matches the formulas in Section 11.4.2. The same holds for the other

currency pairs, and we omit the derivations at this point.
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b.7.5 Restrictions on volatility smiles in the model-free framework

To ensure that the distribution function U(K1, K2) is valid, the following

(natural) restrictions on the correlation coefficient

ρ12(K1, K2) =
σ2

1 (K1) + σ2
2 (K2)− σ2

3 (K3)

2σ1(K1)σ2(K2)

are necessary:

−1 < ρij(K1, K2) < 1, ∀K1, K2.

This restriction can be rewritten in terms of the corresponding volatilities

σ1, σ2 and σ3, which are easier to work with, when working with volatility

data:

σ2
1 + σ2

2 − σ2
3

2σ1σ2
< 1

⇔ σ2
1 + σ2

2 − σ2
3 < 2σ1σ2

⇔ σ2
1 + σ2

2 − 2σ1σ2 < σ2
3

⇔ (σ1 − σ2)
2 < σ2

3

⇔ σ1 − σ2 < σ3

⇔ σ1 < σ2 + σ3.

In the same way we get

−1 <
σ2

1 + σ2
2 − σ2

3
2σ1σ2

⇔ −2σ1σ2 < σ2
1 + σ2

2 − σ2
3

⇔ σ2
3 < σ2

1 + σ2
2 + 2σ1σ2

⇔ σ2
3 < (σ1 + σ2)

2

⇔ σ3 < σ1 + σ2,
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and finally

σ2
1 + σ2

2 − σ2
3

2σ1σ2
< 1

⇔ σ2
1 + σ2

2 − σ2
3 < 2σ1σ2

⇔ σ2
1 + σ2

2 − 2σ1σ2 < σ2
3

⇔ (σ2 − σ1)
2 < σ2

3

⇔ σ2 − σ1 < σ3

⇔ σ2 < σ1 + σ3.
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