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Abstract

This thesis explores the development of academic research with geotagged social media

data (geosocial research) - an emerging computational, digital social research field -

using 19 semi-structured interviews with scholars from diverse disciplines, participant

observation at a geosocial research summer school and scientometrics. It asks: ’how

can we study the development of geosocial research approaches through combining STS

and scientometrics?’ for five main reasons: to explore the diversity of computational

social research; reflect on the ESRC’s (2013) call to ’close the gap’ between quantitative

and qualitative human geography; contribute to methodological discussions in academic

literature which call for combining STS and scientometrics; co-compose knowledge

with distinct ways of knowing through mixing methods; and inform research methods

curriculum development in the social sciences.

Using new forms of digital data (like social media posts) is core to contemporary social

science. Scholars from diverse disciplines conduct geosocial research. It thus provides

rich opportunities to study how diverse approaches to computational social research

develop. I combine STS and diverse scientometric methods as part of a single case study

iteratively to explore how they can co-compose knowledge.

The thesis contributes to literature which explores the STS – scientometrics inter-

face. Most existing studies either reflect on diverse mixed methods approaches from

theoretical or methodological perspectives, or provide worked examples using specific

mixed methods designs. Conceptually, this thesis contributes by highlighting the need

to develop and evaluate the affordances of computational methods for STS in light of

the interpretative context - including research questions, characteristics of the studied

research practice, theories and prior findings. I developed computational methods

iteratively, in light of my theoretical and empirical knowledge about geosocial research.

Empirically, the thesis first contributes by showing how diverse combinations of STS and

scientometrics – including statistical and visual network analyses as well as descriptive

statistics – can inform a single case study. Second, it offers three ways STS and

scientometrics can co-compose knowledge by aligning their units of analyses, reflecting

on how calculation acts inform qualitative analysis even when analytical units are not

aligned, and using each method inductively.

I combined STS and scientometrics to study practices through which geosocial research

approaches develop - including collaboration, developing (sub)-disciplinary communities

and methods’ mediation of geosocial research. I also identified geosocial research

approaches and compared them using mixed methods. Finally, I combined insights from

STS and scientometrics to highlight the construction of my own analyses.

Using mixed methods, the thesis argues that geosocial research is a collection of ap-

proaches rather than a coordinated community. I highlight fourteen practices that enable

scholars to develop their approaches, including interdisciplinary collaboration; setting up

distinct geosocial laboratories to experiment with geosocial data; reflecting on the data

analysis process; and using local knowledge about spaces. I differentiate ‘social’, ‘tech-

nical’ and ’geographic’ approaches, which differ in terms of the methods they use and

spatial units they study. Finally, I illustrate approaches’ heterogeneity - including their

diverse computational approaches - and similarities, such as their urban studies focus.
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Chapter 1

Introduction

”The digital does not solve sociology’s problems, it unsettles and ex-

poses the troubles and difficulties of social research, and, we should

strive to [make] these available for public exploration.”

– Noortje Marres, Digital Sociology, p. 21.

“The social sciences found their telescope with the big data”, as one of my interviewees

put it. This quote attests to digital traces’ growing use for social scientific research.

Situated practices with ubiquitous digital technologies create digital traces of these

activities, such as social media posts, online reviews, online purchase records and phone

call logs (cf. Ruppert, Law, and Savage, 2013). As section 1.1 will discuss, recently

established university programs, conferences and recent books that discuss digital or

computational social research illustrate the interest in using such digital traces for

academic research.

To study diverse uses of digital data and computational data analysis methods for social

research, this project employs mixed methods to study the knowledge diversity of a

digital, computational social research field. It combines STS, interviews and scientomet-

rics to explore how academic researchers from diverse disciplines use ’geotagged’ social

media data (geosocial data, for short). My definition of geosocial data include social

media posts with diverse forms of geographic information, such as geo-coordinates,

place tags or location mentions. I interviewed 19 scholars who use geosocial data and

have backgrounds in diverse disciplines including anthropology, sociology, geography,

computer science, physics and mathematics. I also conducted participant observation

at a 10-day long summer school about geosocial data analysis and conducted diverse

scientometric analyses, including visual and statistical network analyses and descriptive

1
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statistics. My methods were informed by concepts from Science and Technology

Studies (STS). As section 1.2 will explain, I study the knowledge diversity of digital or

computational social research inspired by STS scholarship that explores how dialogues

can develop among distinct ways of knowing in the anthropocene, and due to my interest

in social research methods curriculum development.

As section 1.2 will explain in more detail, combining STS, interviews and scientometrics

to study academic geotagged social media data research (geosocial research, for short)

provides a rich opportunity to explore ways computational data analysis and (interpre-

tative) social scientific research can be combined. STS and scientometrics have largely

developed along different trajectories since the 1980s. Recently, there has been renewed

interest in combining them, but no consensus exists on how to do so.

I use geocaching - mentioned in the thesis’ title - as a metaphor to refer to studying

geosocial research using mixed-methods. As part of the geocaching game, players seek

’treasures’ hidden in public areas (e.g. boxes filled with toys or standalone objects

like painted rocks or magnets) based on their GPS coordinates. Once found, players

may modify the treasures, for example, by exchanging the contents of boxes, as well

as painting or attaching letters to objects, but leave them in the same geo-coordinates

for subsequent players. Tracing treasures - often hidden in non-urban nature areas or

urban parks - requires players to precisely locate their GPS coordinates and also think

out of the box by searching for them in unexpected places and unplanned ways, for

example, in bushes, behind landmarks, in underground traps or on top of trees. I use

geocaching as a metaphor to refer to both geosocial research and my study of it. Like

geocaching, geosocial research creates diverse spaces. In geocaching, geo-coordinates

signify treasures’ map-able locations, enabling a collective, communal game. However,

thanks to the diverse forms treasures take and players’ adventures as they trace

them, geocaching enacts technologically mediated, culturally and experientially diverse

spaces. Similarly, geosocial scholarship often combines technologically enabled mapping

capabilities with diverse conceptual approaches, creating various spaces even if they

can be mapped using the same geo-coordinates. My efforts to trace geosocial research

practices and the spaces they create is also similar to geocaching. It is my hope that

through combining scientometric ’maps’, interviews, participant observation and STS

concepts, I can successfully follow the ’treasures’ and ’traces’ geosocial scholars create.

Firstly, I hope to ’locate’ their ’treasures’ (geosocial research findings) and ’traces’
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(geosocial research practice) by describing geosocial research in ways that geosocial

scholars recognise. Secondly, I hope to ’modify’ ’treasures’ - describe geosocial research

findings and geosocial research practice in ways that differ from geosocial scholars’

narratives and yield new insights about contemporary computational social research.

Thirdly, akin to geocaching instructions, I document my own ’treasure hunt’ - my

mixed-methods journey - for subsequent ’players’: the STS research community. I aim

to develop mixed-methods solutions that guide me - benefiting from scientometrics’

and STS’ established methodological norms - and also help me do (re)search (study

and conduct computational social research) in unexpected ways, through combining the

distinct methodological norms of scientometrics and STS in diverse ways.

The thesis’ main contribution is to the literature that explores the STS – scientometrics

interface. Empirically, I contribute by showing how the diverse combinations of STS

concepts, interview analysis and scientometrics can inform a single case study. Many

existing studies that combine STS or sociology of science and scientometrics use

either statistical or visual analyses, but rarely both. In addition, most advocate for

the use of network analysis methods, disregarding the opportunities associated with

descriptive statistics. This project’s focus on science studies methods is in line with

the discipline’s recent self-reflection practices that position ’method’ at the centre of

attention (Smith-Doerr, 2017) and calls for STS to experiment with digital methods

(e.g. Elgaard Jensen, 2013). In particular, scholars have called for STS to explore

digital, computational scholarship, and to combine STS and scientometrics in practice

(e.g. Wyatt, Milojević, et al., 2017; Marres and Gerlitz, 2016; Cambrosio, Bourret,

et al., 2014; cf. Neff et al., 2017). The project’s mixed-methods approach - and its

experimentation with diverse computational methods - also aligns with digital STS’

commitment to build bilateral bridges between STS and disciplines that use and make

digital tools by welcoming concepts and methods ’inward’ (in addition to STS’ tendency

to ’exporting’ them) (Vertesi et al., 2019b).

Conceptually, I contribute to the above literature by highlighting the need to develop

mixed methods approaches and assess the affordances of computational or scientometric

methods ’for STS’ (in single quotes to signal STS’ diversity) in light of the interpretative

context, including the conceptual framework, research questions, characteristics of the

studied research practice and previous findings. Existing literature that reflects on the

affordances of computational methods ’for STS’ or related fields, including literature in
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digital sociology or digital anthropology, mainly evaluates methods in light of epistemo-

logical frameworks such as actor-network theory (e.g. Cambrosio, Bourret, et al., 2014)

or ethnographic field work (theories) (e.g. Munk, 2019). My conceptual framework

and previous interview and scientometric findings informed not only the interpretation

of computational findings, but also the development of each computational method -

and the aggregations or calculations therein. I argue that evaluating the affordances

of computational methods in light of the interpretative context helps develop mixed

methods research without restricting methods development on a type of method -

such as visual or statistical, network analysis or descriptive statistics - a priori. This

flexibility, in turn, helps explore how computational data analysis and STS or other

interpretative social scientific research traditions do or could meet. Finally, given the

importance of the interpretative context, my use of diverse mixed methods analyses in

one case study helps assess their strengths and weaknesses.

Supported by, and combined with the conceptual framework and interviews, I do the fol-

lowing. I use the network modularity metric to show that scholars differentiate geosocial

research approaches thorough collaboration and trace the differentiation of geosocial re-

search approaches over time. I apply descriptive statistics to highlight that interviewees

primarily belong to disciplinary and sub-disciplinary communities and that geosocial

research is a collection of approaches but not a coordinated research community. I use

the term-frequency inverse document frequency metric (TF-IDF) to show that geosocial

research approaches differ in terms of methods they use and spatial units they study.

I utilise visual, heterogeneous network analyses to show that computational methods

mediate knowledge about spaces. Combining methods contributes to interview findings

in two main ways. Firstly, it helps explore practices identified through interviews on

extended spatial and temporal scales - better illustrating the differentiation of geosocial

research approaches. Secondly, it helps me produce findings inductively: I identify

geosocial research approaches, differences among them, and trace how computational

methods mediate knowledge about spaces not hypothesised or studied through interviews.
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1.1 Growing Popularity of Digital, Computational

Social Research

As the examples below illustrate, the growing interest in using digital traces and com-

putational data analysis for academic, social research is found in recently-established

academic institutions, conferences and books that discuss digital and computational

social research. Recent academic institutions dedicated to exploring the uses of digital

traces in social research include undergraduate and postgraduate training programs

as well as research institutes. The University of California, Davis, the University of

Groningen and Maastricht University have recently launched undergraduate (minor)

programmes dedicated to teaching a combination of data analysis techniques and critical

’data studies’ skills to train graduates to work with data in diverse teams and reflect on

the epistemic and political aspects of data analysis (Dumit and Nafus, 2018; University

of Groningen 2019). All three programs - ran by STS scholars - emphasise the need

to reflect on the political implications of data science, and position their programs as

an avenue to impact societal ’big data’ practices (e.g. University of Groningen 2019).

Graduate degree programs organised around the analysis of new types of data for

social scientific inquiry include Europe’s first network science PhD program, which in

September 2018 was expanded to form the Department of Data and Network Science

at Central European University, co-founded by social scientists and physicists (Kertesz

and Vedres, 2018). In addition, the Data Analytics and Society PhD program - an

initiative of the UK’s The Economic and Social Research Council (ESRC) - aims to

foster research at the intersection of data science and social research, is based across 4

British Universities, and welcomed its first cohort of students in October 2017 (Pound,

2018). Finally, the Techno-Anthropology Lab at Aalborg University - which explores

digital methods for STS (e.g. Elgaard Jensen et al., 2019) - provides undergraduate

training and conducts research which combines STS or related fields and hands-on

techno-scientific practice in diverse domains.

Recently-established conferences dedicated to exploring the interface between compu-

tational data analysis and social research include the first Data and Social Research

(DSSR) conference, organised in 2018, and IC2S2, the International Conference on

Computational Social Science, founded in 2015 (IC2S2, 2019). In addition, the ’Big

Data and the Power of Narrative’ workshop (organised at IT University of Copenhagen

in March 2019) attracted an unexpected number of participants and resulted in a
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waiting list with over 100 people (Conference Organisers, personal communication).

These complement conferences with a longer history that discuss computational social

research, such as the Sunbelt Social Networks Conference, the yearly conference of the

International Network for Social Network Analysis (INSNA) founded in 1981.

Recently-published books that discuss the combination of computational methods,

digital data analysis and social scientific research include Knox and Nafus (2018), who

explore the interface between digital knowledge practices and ethnography; Marres

(2017a) and Lupton (2014), who discuss emerging data practices in ’digital sociology’;

Salganik (2017), who discusses methodological and ethical considerations raised by

computational social research methods using worked examples; and Wouters, Beaulieu,

et al. (2012), who explore the theory, practice and infrastructure of digital scholarship

in the humanities and social sciences. In addition, over a third of the scholars who

responded to a recent survey studying the use of “big data” in social science conducted

computational or digital social research, and half of those not engaged in such research

at the time of the study intended to do so in the future (Metzler et al., 2016).

Finally, scholars have suggested diverse terms to refer to computational or digital

social research, such as computational social science (Lazer et al., 2009), critical data

studies (Iliadis and Russo, 2016) and digital sociology (e.g. Marres, 2017b). Each term

is embedded in distinct disciplinary research heritages. As the proliferation of terms

indicate, scholars who work in this area often disagree about how digital traces can or

should be used for research. Some argue that novel digital knowledge practice can foster

diverse ways of knowing (e.g. DeLyser and Sui, 2012) whilst others caution that it does

the exact opposite, that it hinders diverse ways of knowing (e.g. Barnes and Wilson,

2014).

1.2 Societal and Scientific Relevance

This project explores the knowledge diversity of geosocial research using mixed methods

for five main reasons. Firstly, in line with STS’ interest in exploring and fostering

knowledge diversity, it helps explore how diverse forms of knowledge can be created

in computational (social) research, popular in and outside of academia. Academic

digital and computational knowledge practices reflect the popularity of ’big data’



1.2. Societal and Scientific Relevance 7

and computational research across industries. For example, Dumit and Nafus (2018)

partially frame their data studies minor program mentioned in section 1.1 in terms

of the economic relevance of these skills (cf. Elgaard Jensen, 2013). STS highlights

the importance of nurturing diverse types of knowledges and being critical of ways of

knowing that are positioned as ’factual’ and ’correct’. All knowledge is partial - it

favours some perspectives at the expense of others - and is thus inherently political.

Ways of knowing framed as ’undoubtedly true’ and ’objective’ in the sense that they are

’independent of human judgement’ obscure other ways of knowing and other experiences.

Similar to Rieder’s (2017) who argues that detailed studies of computing practices may

help shape them, this project explores data practices to better understand how digital

traces do and could support diverse ways of knowing.

Secondly, in the face of today’s ’grand challenges’ like climate change and the global

rise of extreme political movements - which highlight our interconnectedness amid

the difficulties they bring - STS scholarship emphasizes the importance of co-existing

alongside, in dialogue with (e.g. Latour, 2013) or collaborating with one other across

diverse ways of knowing (e.g. Haraway, 2016). STS scholars argued that social scientists

can help ’co-compose’ knowledge and foster dialogues in such situations where the

terms of engagement and values are collectively negotiated, rather than critiquing

them from distance (e.g. Latour, 2005a; Latour, 2010; Birkbak, Krogh Petersen, and

Elgaard Jensen, 2015; Elgaard Jensen, 2012). As discussed below, the geosocial case

study and my mixed-methods practice help explore dialogue and alliance building among

diverse knowledge traditions, such as computational data analysis and (interpretative)

social science.

Thirdly, as outlined earlier, combining computational data analysis and STS contributes

to methodological discussions in science studies, including to recent literature that calls

to combine STS and scientometrics, and digital STS’ goal to build bilateral bridges

between STS and digital methods practices.

Fourthly, I reflect on Economic and Social Research Council’s (ESRC) (2013) call to close

the gap between quantitative and qualitative human geography by emphasizing their

complementarity in light of my findings about how scholars from diverse disciplines use

computational data analysis for geosocial research. The ESRC (2013) calls to increase

computational training in British geography and argues that education programs should
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emphasize the complementarity of these methodological traditions - for example, their

ability to study phenomena at diverse scales - to change existing, dominant views that

highlight their divisions.

Finally, I present my research in the hopes that it can inform social science research

methods teaching. The recent surge in academic programs that seek to teach compu-

tational, digital social methods discussed above illustrates the goals’ current relevance.

During my PhD studies I taught undergraduate research methods modules to familiarise

myself with existing curricula. I hope that my research will help me contribute to

curriculum development in the future.

Geosocial research provides rich opportunities to explore the diversity of computational

social research because it is practiced by scholars from diverse disciplines and is currently

being formed. The abundance of geosocial data is a relatively recent phenomenon.

Social media platforms that afford them - such as Twitter, Instagram, Panoramio and

Flickr - were launched around and after 2005. Much as my interviewees have diverse

disciplinary backgrounds, the composition of scientometric data about geosocial research

this thesis uses - which comprises papers published in journals associated with the

social sciences, computational sciences, health and environmental research - and the

thesis’ findings show scholars from diverse disciplines developing distinct approaches

to geosocial research. As section 2.2 will illustrate, the use of geosocial data has

spurred lively controversies among scholars. Geosocial research approaches are not (yet)

institutionalised, it is a research field in formation.

The project’s mixed methods approach which combines interviews, participant obser-

vation and the computational analysis of scientometric data provides opportunities

to explore the diversity of computational or digital social research because, as as

outlined above, STS and scientometrics have developed largely independently since

the the 1980s. Combining them in multiple ways as part of one project allows me to

experimentally explore alliances among research techniques associated with distinct

knowledge traditions (cf. Marres and Gerlitz, 2016).

To study how the computational analysis digital traces do and could support diverse ways

of knowing, this project explores the three research questions below. The sub-questions

of the Third Research Question explore how, on the one hand, methods mixing help
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explore geosocial research, and on the other hand, how we can assess the affordances of

computational methods ’for STS’.

1. How do different approaches to geosocial research develop?

2. How do approaches to geosocial research differ?

3. How can we combine scientometrics and STS to study geosocial research?

3.1. How does mixing methods help study the development of and difference among

approaches to geosocial research?

3.2. How can we assess the suitability of computational methods for STS?

1.3 Overview of Chapters

Most chapters combine a discussion of geotagged social media data practices and mixed

methods STS, and thus contribute to all three research questions.

Chapter Two briefly introduces geosocial research - outlining illustrative examples and

controversies - and outlines the project’s conceptual framework. I conceptualise science

as practice and assume that scholars develop diverse approaches to geosocial research

through relational practices, such as collaborating, exploring the affordances of geosocial

data and dialogues with their academic communities. In addition, I interpret and

develop scientometric methods in light of interviews and my conceptual framework.

Chapter Three outlines the project’s methodology. It discusses my mixed methods

case study approach and the data analysis infrastructure (including software I used for

scientometrics and my interview analysis approach). It also outlines each computational

method in detail, alongside my approach to interview analysis as well as ethical

considerations and the limitations of my methodology.

Chapters Four - Eight discuss the project’s empirical findings.

Chapter Four explores the First Research Question by discussing the following three

practices that help interviewees develop their approaches to geosocial research. It

presents a core finding: interviewees’ unequivocally state that developing their approach

to geosocial research requires them to combine computational data analysis and social

scientific research, which they find challenging. In addition, the chapter outlines two
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practices that motivate interviewees to combine these knowledge traditions and thus de-

velop their geosocial research approaches: their concurrent academic and non-academic

employment, and their aesthetic appreciation of both social research and computational

or social media data analysis.

Chapter Five explores how interviewees combine computational data analysis and

social scientific research to develop their approaches to geosocial research. In response

to the First Research Question, it highlights three practices that help interviewees

combine these knowledge traditions: collaborating with scholars with complementary

skills, setting up distinct ’geosocial laboratories’ and experimenting with computational

data analysis methods. In addition, it addresses the Second Research Question by

arguing that interviewees with social scientific and technical backgrounds combine

these knowledge traditions differently when they seek data patterns. While the former

state they combine them iteratively - and identify data patterns through combining

statistical, computational criteria and social theory - the latter claim they combine them

sequentially and identify data patterns primarily based on statistical or computational

criteria. Finally, it contributes to the Third Research Question by studying collaboration

using a combination of interviews and scientometrics.

Chapter Six explores how interviewees make institutional homes for their geosocial

research - which allows them to develop their approaches to it. To address the First

Research Question, it highlights two such practices: imagining geosocial research in light

of their disciplinary heritage; and social scientists’ efforts to differentiate their approach

to geosocial research from computational social science and geographic information

systems science informed approaches. It also uses mixed methods to identify social

and technical approaches by tracing their separation scientometrically. The latter helps

answer the Second and Third Research Questions - studying the differences among

geosocial research approaches using mixed methods.

Chapter Seven primarily explores how geosocial research approaches differ, using mixed

methods. Through interviews - in response to the First Research Question - it argues

that reflecting on how analytical decisions and social media platforms shape geosocial

data and knowledge about spaces is essential for interviewees’ development of their

approach to geosocial research. However, I argue that social and technical geosocial

research approaches entail different reflexivities. While the former highlights experiences
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and historicity, the latter foregrounds computations and assesses knowledge about spaces

in demographic terms. This highlights a difference in their explanations of situated

practices. In addition, using scientometrics - through clustering a citation network of

geosocial papers, and analysing them using descriptive statistics and visual network

analysis - it explores differences in the methods social and technical approaches use and

the way they study spaces. My analyses highlight social geosocial research’s relative

focus studying diverse situated practices at specific locations, compared to technical

geosocial research’ focus on tracing ’senseable’ practices at diverse spatio-temporal

scales. Finally, through combining scientometrics and interviews, it identifies a third

approach: geographic geosocial research. This helps highlight the diversity of geosocial

research and the affordances of scientometrics to help study knowledge diversity

inductively.

Chapter Eight, the last empirical chapter explores how research methods mediate

my findings about the differences among geosocial research approaches, and geosocial

scholars’ findings about spaces. To study how methods mediate my knowledge about

geosocial research approaches - and study the Second and Third Research Questions -

it juxtaposes scientometric findings from Chapter Seven with findings obtained through

clustering a second citation network and the noun phrase co-occurrence network of

geosocial papers. Compared to the scientometric findings of Chapter Seven, the latter

analyses highlight the diverse ways computational data analysis methods are used

in geosocial research and approaches’ joint focus on studying specific locations. To

study how methods mediate geosocial scholars’ findings about spaces, it uses visual,

heterogeneous network analyses to study how two computational data analysis methods

- machine learning and social network analysis - mediate knowledge about spaces. In

addition, based on interviews, it argues that interviewees from diverse disciplines use

local knowledge to study specific locations, such as London or Singapore. These help

explore the First and Third Research Questions.

Chapter Nine concludes the thesis by summarising its main findings with respect to each

research question. Importantly, it discusses the thesis’ contribution to literature that

explores combinations of STS and scientometrics as follows. It discusses the project’s

conceptual contribution - answering Research Question 3.2 - which argues for the

importance of reflecting on how the interpretative context shapes scientometric analyses.

Developing scientometric methods informed by the interpretative context allows me to
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study the differentiation of and differences among geosocial research using structural

network analysis metrics, descriptive statistics and visual network analyses alike. In

addition, it discusses ways scientometrics shaped my interview analyses. While in some

cases I used scientometrics to study relational practices first hypothesised through

interviews, in other cases I used scientometrics inductively and produced findings I did

not hypothesise through interviews.



Chapter 2

Literature Review

This chapter serves two main purposes: it briefly introduces geosocial research and

outlines the project’s conceptual framework. Part I introduces geosocial research by

discussing its links to geography’s ’quantitative’ and ’critical’ research traditions and

providing examples which illustrate its methodological diversity. Parts II and III

discuss the project’s conceptual framework. Part II re-introduces the research questions

and discusses the project’s conceptual approach to three concepts fundamental to the

project: scientific practice, digital data in the context of academic scholarship and

space. It also reviews literature which combines STS and scientometrics - and discusses

the evolving relationship between the two fields - which informed the project’s mixed

methods approach. Part III introduces literature related to the seven main themes

discussed in Chapters Four through Eight: the relationship between social science

and computational data analysis methods; the aesthetics of science and social media

data; links between academic and commercial research; interdisciplinary collaborations;

computational search for data patterns; reflexivity in computational research; and the

role of local knowledge in mapping.

PART I

The first part of this chapter briefly introduces geosocial research. Section 2.1 discusses

geosocial research’s links to qualitative and quantitative geography and discusses

examples which illustrate its methodological diversity. Section 2.2 discusses three sets of

controversies about geosocial data, which show that uses of geosocial data for academic

13
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research are far from agreed.

2.1 Examples of Geosocial Research

This section briefly illustrates the diversity of geosocial research situated in the history

of geography scholarship (although a detailed review of geosocial research is beyond

the scope of this thesis). In the 1950 - 60s, many American geography university

departments shifted their focus to ’quantitative geography’ (e.g. Harvey, 1969). In

contrast to earlier scholarship’s focus on detailed descriptions of spaces and places,

’quantitative geography’ primarily explored spatio-temporal patterns using quantifiable

data with methods developed in physics and mathematics (Barnes and Wilson, 2014).

The quantitative methodological tradition was further institutionalised through the

development and widespread adoption of geographical information system (GIS) in

the 1970s - 80s (Sheppard, 2005). In contrast, ’critical’ human geographers developed

concepts and methods to reflect on the experiential, political, aesthetic, affective and

metaphysical aspects of spaces or places as well as geographic research and cartography.

For example, they explore how lived experience (e.g. Tuan, 2001) and practices of

governmentality create spaces and places (e.g. Crampton, 2011; Massey, 1994). About

two decades ago, based on publication norms, Johnston (2003) argued that British

geography was a collection of separate communities writing scholarship for different

academic audiences, illustrating the co-existence of diverse methodological approaches.

Since the mid-1990s some scholars have actively been working on closing the ’gap’

between the ’quantitative’ ’critical’ human geography (Sheppard, 2005). Recently, the

UK’s Economic and Social Research Council also called for fostering dialogues between

these research traditions, highlighting the need to emphasize their complementarity

and expanding quantitative methods training especially among early career researchers

(ESRC, 2013). Geography scholars have recently argued that analysing new digital

geographic data - such as social media data - and understanding the digitally mediated

situated practices that create them necessitate dialogues between the ’quantitative’ and

’critical’ research traditions (e.g. Sui and DeLyser, 2012; DeLyser and Sui, 2012). As

these examples which aim to close the ’gap’ between quantitative’ and ’critical’ research

show, the institutional divide between these traditions in academic geography still exist.

In contrast, Mayhew (2011) highlights epistemic similarities and genealogical links
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between these traditions. He argues that depending on how one narrates the discipline’s

history, they can be seen either as distinct in origin and opposing, or interrelated and

complementary. As section 2.7 will explain, I empirically explore how my participants

position themselves in this terrain.

Current efforts to combine ’quantitative’ and ’critical’ human geography using so-

cial media data build on a rich geographic research tradition which reflects on the

affordances of computational tools in light of diverse geography theories, sparked by

debates associated with the above ’quantitative turn’. Next, I provide a few illustrative

examples. Reflecting on the types of data gathered with quantitative and qualitative

methods, Madden and Ross (2009) argue that the analysis of remote sensing data

in combination with victims’ narratives help communicate and study the extent and

impact of the atrocities associated with the Conflict in Northern Uganda, and trace

internally displaced persons. Reflecting on the certainty or contingency of knowledge

claims produced with quantitative’ methods and in ’critical’ studies - as well as the types

of relationships studies in these research traditions focus on - Bergmann, Sheppard, and

Plummer (2009) highlight resonances between ’critical geography’ and complex systems

modeling methods. They highlight similarities by illustrating modeling methods’

affordances to depict the flux, emergence and co-production of situated practices, as well

as their inherent incompleteness and non-deterministic results contingent on analytical

assumptions. They advocate for models’ situated use, supported by modelers’ practice

of tracing the impact of analytical assumptions. Reflecting on the importance of

mapping to account for diverse perspectives, Millington and Wainwright (2017) propose

that (participatory) agent based modeling could help bridge research traditions given

its affordance to represent scenarios comprising the interaction among diverse types of

agents - including individuals or collectives. Human geography scholars also explored

the affordances of participatory mapping methods to empower minorities and local

communities (Pain, 2004).

Geosocial scholars use ’geotagged’ social media posts which contain geographic infor-

mation such as geo-coordinates, place tags or location mentions for academic research.

They are relatively new digital information which result from digitally mediated,

situated practices (Sui and Goodchild, 2011). The most popular social media platforms

that afford them were founded since 2005. Examples include Twitter (launched in 2006),

Instagram (launched in 2010) and Panoramio (launched in 2005). As the examples
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below and my interviewees’ work show, scholars from diverse disciplines use ’geotagged’

social media posts for research in part because they are multimodal - they contain traces

of users’ situated interactions depicted through geographic information, text or images.

The heterogeneous modalities of geosocial data coupled with the diverse computational

and digital spatial analysis methods (e.g. GIS software, Python and digital mapping

platforms such as Carto) produce diverse geosocial research agendas. Some researchers

focus on developing computational methods to trace spatiotemporal patterns (e.g.

Nikitopoulos et al., 2016) in relation to diverse topics. For example, they study crime

(Wajid and Samet, 2016); migration (Simini et al., 2012), vernacular geographies

(Brindley, Goulding, and Wilson, 2014); protests (Manovich et al., 2014) or data

visualisation (Jia et al., 2016). Others place more emphasis on the social scientific

concepts that inform their geosocial research. Shelton et al. (2014) draw on the relational

socio-spatial ontology proposed by Jessop, Brenner, and Jones (2008) to analyse diverse

sociospatial patterns of tweets associated with Hurricane Sandy that struck the eastern

coast of the United States in 2012. Graham and Zook (2013) study digital power

inequalities which shape whose voices can be heard through spatial media, through

mapping the geo-linguistic inequality of geotagged GoogleMap content in Tel Aviv and

Canada. Finally, whilst the above papers study places though their computer screens

as ‘observers’, Boy and Uitermark (2017) combine ethnography or interviews with

geosocial data analysis to study digitally mediated everyday practices. They illustrate

how nuanced engagement with geospatial data can be curated through a collaboration

between a researcher and local communities (cf. Currie et al., 2016).

2.2 Controversies about Geosocial Research

This section illustrates the contested nature of geosocial research through introducing

three controversies. Firstly, scholars disagree about the innovative nature of geosocial

research. González-Bailón (2013) argues that new forms of geographic data - such

as geosocial data - can provide an increasingly nuanced and complex picture about

social and geographic processes, not afforded by previous geographic data. In contrast,

others emphasize the historical precedents of geosocial research. Barnes and Wilson

(2014) argue that big data analytics in geography echoes ideologies and epistemologies

associated with the quantitative turn of the 1950s and 1960s. Dalton and Thatcher
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(2015) argue that geosocial data analysis is a result of developments in geodemographic

research that intended to profile customers on an increasingly granular scales.

Secondly, scholars disagree about the epistemological characteristics of geosocial re-

search. Some emphasize the advantages of such tools. González-Bailón (2013) argues

that the spatial and temporal granularity of such data can help advance human geog-

raphy theories, models and maps, and better understand the “multiple, nested layers

of social life” (p. 293), including “individual and collective” (p. 295) social dynamics.

Sui and DeLyser (2012) argue that social media analysis can help cross the divides

between quantitative and critical human geography. Others emphasize the limitations

of geosocial research. For example, digital social data is often non-representative due

to the digital divide in terms of user groups (Haklay, 2012), device ownership (Graham

and Foster, 2016) and differences in other geographic data - such as administrative

information - available about spaces that can help interpret geosocial research findings

(Dalton, Taylor, and Thatcher, 2016). Leszczynski and Crampton (2016) warn that

the ubiquity of mapped or mappeable data can result in over-privileging a definition

of spatiality as the longitude and latitude coordinates, which disregards the relational

aspects of space. Similarly, Shelton (2016) warns that understanding events based on

topics that trend on twitter can “promote an understanding of these events as “novel

and fleeting” rather than as the gradual outcomes of social inequalities and disaffections

rooted in historical geographies. Finally, Graham and Shelton (2013) argue that data

driven research in geography might blur the boundaries between epistemological and

ontological domains (i.e. due to large sample sizes, researchers might mistake the

representation of the studied phenomena for the phenomena themselves).

Thirdly, researchers question the types of agency associated with geosocial data practices

(cf. Kennedy, Poell, and van Dijck, 2015). Kitchin (2013) highlights the role of research

funding as a motivator to engage with data-rich research in geography, and Dalton and

Thatcher (2015) warn that remote geographic studies afforded by geosocial data can

strip analysed groups from their agency. In contrast, others highlight the affordances of

geosocial research to reconfigure the relationship between the mapper and the mapped.

Taylor, Lindley, et al. (2014) and Currie et al. (2016) report their experiences about

creating data analysis together with local communities who live in the studied area, and

argue that geosocial data practices can become sites for the negotiation of values.
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PART II

The second part of this chapter outlines my conceptual framework to studying science

as practice, digital data and space, and reviews literature which inform the thesis’ mixed

methods approach. As section 2.3 explains, I understand science as a set of relational

practices. Section 2.5 explains that I assume that spaces - the object of geosocial research

- are heterogeneous and brought forth through geosocial research, and digital mapping

which has the potential to explore relations on diverse levels of aggregation. Section 2.4

discusses digital data as situated and digital methods’ role in mediating research. Fi-

nally, section 2.6 explains my conceptual approach to combining STS and scientometrics.

2.3 Science as Practice

This section discusses my approach to conceptualising science as practice and discusses

the research questions in light of this conceptual framework. Similar to Hutchins’s (1995)

distributed cognition framework, I assume that science, and thus geosocial research are

achieved through scholars’ intersubjective, embodied practices (e.g. Garnett, 2016),

mediated by tools such as computational infrastructure and and data (cf. Bowker,

2005; Bates, Lin, and Goodale, 2016; Leonelli, 2016). In addition, similar to Latour

(1988) and actor-network-theory (ANT) (Latour, 2005b), I assume that scientific

practice comprises scholars’ relational practices with diverse actors and collectives,

including those that are and are not associated with academic institutions. Finally, I

assume that science creates its objects and knowledge through such semiotic-material

practices, rather than manipulating objects ’out there’. This applies to both to my

understanding of geosocial scholarship and my own research. This framework is

contrast with accounts that assume that science is determined by guidelines, procedures

that directly ’represent reality’. (cf. Latour and Woolgar, 1986) As I discuss below,

this relational framework informed my research questions and the project’s methodology.

The case of geosocial research and my efforts to combine STS and scientometrics can

also inform research about data driven social science and humanities. The latter fields,

and their use of digital tools are largely under explored by STS with a few exceptions

(examples STS studies of social science include Elgaard Jensen, 1999; Elgaard Jensen,



2.3. Science as Practice 19

2019; and examples of studies of digital SSH scholarship include Antonijevic, 2015;

Wouters and Beaulieu, 2006; Elgaard Jensen, 2020), given STS’ predominant focus on

the natural sciences, biomedicine and engineering (Wyatt, Scharnhorst, et al., 2013;

Elgaard Jensen, 2019; cf. Fry, 2006). Characterising data-driven research in the

social sciences can foster disciplinary comparisons, using existing research about digital

infrastructures in biology (e.g. Levin, 2014; Leonelli, 2016; Hine, 2006), climate science

(Edwards, 2010) and physics (Galison, 2011).

Similar to ANT approaches, the First Research Question seeks to study geosocial

research by tracing the associations and relational practices through which it is accom-

plished. To identify units of analyses that help describe my interviewees’ relational

practices - rather than analysing them through predefined analytical units - I iteratively

analysed interviews, conducted scientometrics and reviewed literature. Part II of this

chapter reviews literature which informed the way I combined scientometrics with STS

concepts. Part III introduces the explanatory concepts I identified through the above

iterative process that informed my analyses of interviewees’ practices.

As the Introduction explained, the thesis explores the diversity of geosocial research. I

use the concept ’geosocial research approach’ to refer to different ways geosocial research

is practiced, without pre-defining the types of differences I seek to explore. The flexi-

bility the concept ’approach’ helped me account for differences in light of participants’

narratives and the units identified through mixed methods analysis. For example, my

definition of ’geosocial research approach’ does not pre-define the extent to which the

approaches - the differences in geosocial research I find - are homogeneous or heteroge-

neous; practiced by larger collectives or small groups of geosocial scholars; are formalised

or institutionalised; or relate to methodological, organisational or substantive differences.

Altogether, the First Research Question asks how approaches to geosocial research

develop, aiming to explore relational practices through which they are accomplished. A

sub-research question asks how collaboration helps their development. As section 2.10

will discuss, collaboration is a relational practice I assumed was important for geosocial

research, based on my literature review.

First Research Question

1. How do different geosocial research approaches develop?
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1.1 How do scholars from different disciplines collaborate during geosocial

research?

The Second Research Question explores differences among geosocial research approaches

to study the diversity of contemporary digital or computational social research. I

assume that knowledge about geosocial research approaches is comparative: approaches

can only be identified or characterised with respect to one another because it is their

relative differences which allow me to define them as distinct (cf. Maniglier, 2019

who argues that all critique is comparative). As outlined above, I do not know a

priori where or what approaches are, and I assume that the approaches I find are

contingent on my analytical decisions (cf. Bateson, 1972). Nevertheless, the differences

I find help illustrate the diversity of contemporary digital or computational social

research. (cf. Knorr-Cetina, 1999). As Knorr-Cetina (1999) argues, comparing research

practices across fields can sensitise the analyst to observe and recognise “contradictions,

discrepancies, variations, and differences” (p. 22) between settings, without the need to

‘generalise’.

Second Research Question

2. How do geosocial research approaches differ?

The Third Research Question relates to this project’s mixed methods methodology. As

the Introduction outlined, this project’s main contribution is its approach to combining

STS, interviews, participant observation and scientometrics. The Third Research

Question comprises two sub-research questions. Research Question 3.1 reflects on how

methods mixing helps explore the development of geosocial research approaches (First

Research Question) and their differences (Second Research Question). I summarise

my findings for this research question at the end of each empirical chapter. Research

Question 3.2 asks how we can assess the affordances of computational methods ’for STS’

(in quotation marks because STS is itself diverse), which is the thesis’ main conceptual

contribution.

Third Research Question

3. How can we combine scientometrics and STS to study the development

of and difference among approaches to geosocial research?

3.1. How does mixing methods help study the development of and difference
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among approaches to geosocial research?

3.2. How can we assess the suitability of computational methods ’for STS’?

Table 2.1 summarises how the research questions help explore the thesis’ five goals out-

lined in the Introduction. My units of analyses help attain the goals as follows. Studying

how scholars from diverse disciplinary backgrounds conduct geosocial research without

presupposing types of differences I find helps explore the diversity and diversification of

geosocial research inductively. Combining STS and scientometrics iteratively, without

choosing methodological approaches (e.g. homogeneous or heterogeneous network

analysis; network analysis or descriptive statistics) a priori helps explore diverse ways

STS and scientometics can be combined.

 
Relevance 

Research 
Questions  

1. 
Study the diversity and diversification of computational 
(social) research (geosocial research case study)  

RQ 1 & 2 
 

2. 
ESRC’s (2013) call to close gap between quantitative and 
qualitative human geography 

3. 
evaluate affordances of 
computational methods 
‘for STS’ 

Digital STS – ‘import’ 
methods 

 
RQ 3 
 

STS & scientometrics 
interface 

4. Social sciences’ ‘compositionist’ agenda (cf. Latour 2010) 

5. Social research methods curriculum development All 

 

Table 2.1: Research Questions, Relevance and Units of Analysis
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2.4 Digital Scholarship

This section introduces my assumptions about how digital data - including geosocial and

scientometric data - mediate research. In line with Venturini, Bounegru, et al. (2018) I

consider geotagged social media posts ’digital traces’ to emphasize that they result from

practices - and are created for purposes - other than academic research (cf. Madsen,

2015). I assume that digital traces are value-laden and political - they are shaped by

the material-semiotic practices which produce them (cf. Iliadis and Russo, 2016). For

example, the political economies, use practices and algorithms that constitute social

media platforms shape traces. Social media traces capture the views or experiences of

their users and omit the views of those who do not use them (e.g. Mellon and Prosser,

2017; Malik et al., 2015). Geo-tagged social media traces form a small subset of all

posts (Sloan and Morgan, 2015), and are also subject to characteristics or changes of

the Application Programming Interfaces (APIs) scholars use to access data (Morstatter

et al., 2013) and social media platforms’ policies. For example, in June 2019, Twitter

stopped allowing tweet geolocation in terms of GPS coordinates (Benton, 2019).

Defining geotagged posts as digital traces helps study how scholars ’stage’ them as data

for geosocial research. I assume that digital traces become data as scholars perceive

research opportunities associated with them, and analyse them - for example, they

reformat or query data, and create variables or indicators in light of research questions

and conceptual frameworks. Thus, like digital traces, geosocial data are ’never raw’

(Gitelman and Jackson, 2013), but are ’always-already interpreted’ (cf. Bateson, 1972,

p. 15) and imbued with politics.

STS scholars have argued that data, research methods and infrastructures shape, but

do not determine research (e.g. Rheinberger, 1997; Marres and Gerlitz, 2016). Data

analysis and interpretation are intimately linked: data never speak for themselves, they

need to be narrated (Dourish and Cruz, 2018; Muller et al., 2019). An illustrative

example of methods’ situated use is critical GIS scholarship discussed in section 2.1

which explores GIS methods through the lens of feminist and postcolonialist theories

(Sheppard, 2005). At the same time, data’s structure, and the information they contain

and or omit shape analytical opportunities. For example, hiatuses in police involved

homicide data in the United States - such as omitted atrocities and victims’ personal

information - limit understanding and change efforts (Currie et al., 2016). Marres and

Moats (2015) provide another illustrative example, arguing that social media analysts
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need to reflect on the extent to which their findings illustrate social media platforms’

mediation or the issues users post about.

STS scholars have also demonstrated that the introduction of new technologies is often

associated with the re-negotiation of professional roles, identities and power relations.

For example, Burri (2008) shows that the introduction of new visualisation technologies

in radiology in the 1970s prompted radiologists to re-negotiate their professional

identities and epistemic authority which came through the authority to create and

interpret radiological images.

I assume that scholars perceive the affordances (cf. Gibson, 1979) - opportunities

associated with use - of geosocial data and computational data analysis methods

differently. Thus, geosocial data and computational data analysis methods - enacted

through their use - are multiple (cf. Mol, 2002). These assumptions inform my study of

geosocial research, because I study how participants use, create and modify geosocial

data and computational data analysis methods, without assuming that data have

inherent characteristics (e.g. ’bias’) or that methods can only be performed in one way.

My assumptions about the mediation and multiplicity of data and computational

methods also inform my own research practice. As Chapters Three and Nine will discuss

in more detail, assuming that scientometric data and computational data analysis

methods are contingent on their use helps me reflect on the analytical opportunities

they afford in light of STS concepts and my interview findings as I combine methods

iteratively. In addition, understanding that interpretation, analytical decisions and data

infrastructures co-produce findings sensitises me to the importance of illustrating my

data analysis process (for example, visually, using screenshots of the software user inter-

face in Chapter Seven) and the contingency of my findings on analytical decisions and

the data analysis infrastructure, discussed in section 9.3.2 (cf. D’Ignazio and Klein, 2020).

2.5 Space and Mapping

This section discusses the project’s assumptions about spaces - the object of geosocial

research. Similar to the above definition of scientific practice, I assume that spaces are

multifaceted (embodied, experiential, historic-material) and dynamically come into exis-
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tence on multiple temporal and spatial scales, such as minute-to minute intersubjective

encounters, longer term and larger scale political, economic and institutional practices,

climate trends, as well as changes in ecological landscapes and built environment (cf.

Massey, 1994). I assume that binaries such as ’nature’ versus ’politics’ or ’culture’

cannot capture the heterogeneity spaces and situated practices, which are at once

political, material, cultural and natural. Thus, as section 3.4.3 will explain in more

detail, I use the concept ’form of participation’ (e.g. participation in commercial and

civic practices) to describe differences in how geosocial research approaches study spaces

in Chapters Seven and Eight.

I also assume that geographic research, including mapping makes spaces knowable by

the mapper and brings forth, or create spaces as opposed to ’truthfully representing’

them (Crampton, 2011). All mappings are partial - they highlight some aspects of spaces

and obscure others, and make visible spaces ’actionable’. For example, mapping (and

censuses) are instruments of state-making which help control territories (Crampton,

2010; Law, Ruppert, and Savage, 2011). In contrast, participatory mapping can help

highlight diverse local experiences (Pain, 2004). This project explores how geosocial

research creates spaces.

Digital mapping can help flexibly explore data at different levels of aggregation (e.g.

Loukissas, 2016; cf. Munk and Elgaard Jensen, 2014). For example, Shelton et al. (2014)

explore the tweets associated with Hurricane Sandy which hit the United States in

2012 aggregated at diverse levels and tracing diverse relations. They plot tweets at the

country and region levels, study networked connections between tweets at geospatially

distant locations and study lived experiences at specific locations through qualitative

analysis. Such approaches highlight the practice of mapping and maps’ situatedness and

mutability (cf. Elgaard Jensen, 2011).

Finally, in line with my assumptions about data’s and methods’ mediating role outlined

in section 2.4, I assume that research methods shape how scholars study spaces. For

example, studying academic literature about research on urban ”polycentric spatial

structure[s]” (p. 1279) Meeteren et al. (2016) argue that research methods mediate

knowledge about spaces and differentiate geographic research traditions. In contrast

to dominant discourse which divides polcentricity literature based on the scale of the

spatial units (e.g. inter-urban and intra-urban policentricity), the authors argue that
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policentricity research differs in terms of the methods they use and the ”social context”

of the spatial units they study. They argue that studies explore inter-urban policentricity

through types of ”actually existing urban region[s]” (p. 1292) mainly using conceptual

descriptive analyses and desk research. In contrast, studies of itra-urban policentricity

use spatial and regression models, and characterise existing places in terms of model fit

and explained variance.

2.6 STS and Scientometrics

As the Introduction discussed, this project contributes to literature which explores the

STS - scientometrics interface by evaluating computational methods’ affordances in light

of the interpretative context - including the characteristics of the research practice under

investigation, the research questions, conceptual frameworks and previous findings - and

combining them in diverse ways as part of a single case study. This section discusses the

relationship between these two research traditions and reviews literature that combines

them, which informs this project’s mixed methods approach. As section 2.6.1 explains,

STS and scientometrics have been growing apart in the past decades, but recently there

has been growing interest in combining them. As section 2.6.2 argues, most studies

which reflect on the affordances of scientometric or other computational methods for

STS assess methods in light of theories, such as ANT or ethnographic theory, and study

biomedical research with mixed methods. Finally, section 2.6.3 discusses literature

which combines STS or social research methods (such as interviews) and scientometrics

or network analysis. As the examples will illustrate, studies which combine STS and

scientometrics primarily explored the biomedical sciences.

2.6.1 The Changing Relationship of Scientometrics and STS

This section briefly outlines the origins and historical connections of scientometrics and

STS. Science has been studied through quantitative analysis of scientific literature for

over a century (Hood and Wilson, 2001). For example, a century ago Gross and Gross

(1927) recommended that college libraries should obtain periodicals through analysing

references in a leading chemistry journal. The development of scientometric databases in

the 1960s, such as the Science Citation Index was a turning point in the field. Over time,

multiple concepts have been introduced to refer to quantitative studies of published
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literature, including scientometrics, bibliometrics, informetrics (Hood and Wilson, 2001)

and more recently science of science (Fortunato et al., 2018) and quantitative science

studies (Waltman, Larivière, et al., 2020). This project uses the term ‘scientometrics’ to

situate its analysis of scientific publications in the intellectual tradition of scholarship

discussed below which developed dialogues between STS and scientometrics over the

past decades. However, it is important to note that this project’s scientometric analyses

are informed by STS’ constructivist school of thought (cf. Cambrosio, Bourret, et al.,

2014).

Although the philosophical study of science has a long past, Science and Technology

Studies (STS) has a relatively short history (cf. Farr, 1991). Like bibliometrics, sciento-

metrics and informetrics, the term STS was coined around 1970: in academia it became

the label for studies of the politics of science and technology understood ”as problematic

social institutions” (p. 10) and collective practices (Sismondo, 2010). STS is inextri-

cably linked to anti-nuclear political activism of the 1970s, committed to promoting

responsible science and technology. It also reacted to analytical philosophical studies of

science and the normative perspective of Mertonian sociology of science developed in the

1940s which argued that the norms of Communalism, Universalism, Disinterestedness,

and Organized Skepticism (’CUDOS’) distinguish science from other activities. (Wyatt,

Milojević, et al., 2017) Generally, STS studies take an anti-essentialist position in

relation science and technology. STS rejects understanding science, scientific method

or technology as natural kinds or fixed, unambiguous entities. Rather, it highlights

their situated, discursive, material and intersubjective construction, emphasizing their

inextricable links to culture and politics. It shows that diverse audiences practice and

value science and technology differently (Sismondo, 2010). Diverse disciplines such

as anthropology, sociology, geography, history and philosophy and governance studies

contribute to STS’ diversity.

STS and scientometrics share interests in exploring the social and epistemic aspects of

science, science evaluation and the science-society or science-policy interfaces. They

have cross-fertilised each other since at least the 1970s, and some scholars argue that

they share historical origins. Wyatt, Milojević, et al. (2017) locate the origins of

both qualitative and quantitative science studies in Robert K. Merton’s scholarship in

the 1940s. During the early days of science studies between 1960 and 1980, scholars

combined quantitative and qualitative methods to explore opportunities associated with
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the then-new Science Citation Index (founded in the 1960s) (cf. Glaser and Laudel,

2015). For example, in the late 1970s, scientometric studies of the social and cognitive

structure of science (e.g. Small, 1977; Lenoir, 1979) or the meaning of citation practice

(Small, 1978) were published in Social Studies of Science, a leading STS journal. In

addition, ANT scholars experimented with computational methods since the early

1980s (Munk and Elgaard Jensen, 2014) in part to develop techniques for controversy

mapping (e.g. Latour, Mauguin, and Teil, 1992) and to trace heterogeneous associations

among actors. For example, the founders of ANT were among the pioneers of mapping

approaches using co-word analysis (Cambrosio, Bourret, et al., 2014). Informed by the

sociology of ’translation’, (Callon et al., 1983) developed co-word analysis to study the

development and changes in problems scientists explore by relating them. Teil and

Latour (1995) argue that term co-occurrence analysis is a ”quali-quantitative” method

(p. 18) which can achieve both fine grained analysis and aggregation or synthesis to

explore large datasets, which helps overcome the divide between micro and macro-scale

analyses and qualtiative and quantiative social sciences (cf. Latour, Jensen, et al.,

2012). Dialogues between STS and scientometrics continued during the 1980s. Early

STS fieldwork benefited from scientometrics. For example, in their seminal study of

Roger Guillemin’s laboratory at the Salk Institute, Latour and Woolgar (1986) traced

the acceptance of scientific findings - and their development into scientific ’facts’ - by

showing that over time, as ’facts’ develop, the original papers which publish them receive

less and less citations, but more and more papers mention the ’fact’ in their titles (p.

109). Finally, a special issue of the journal Scientometrics published in 1989 explored

the links between STS theories and scientometrics mainly to explore how scientometric

maps capture scientific practice and the meaning of scientometric indicators used in

policy and science evaluation (Leydesdorff, 1989).

However, since the 1980s, STS and scientometrics have been growing apart, each associ-

ated with their own journals, conferences and professional identities (Rotolo, Hicks, and

Martin, 2015). Scholars name multiple reasons for their separation. Glaser and Laudel

(2015) note the difference in the units of analysis their preferred methods enable. They

argue that science policy and bibliometrics focus on quantitative methods to study

“field-level or system level dynamics” (p. 327), whereas sociology of science “prefers

qualitative methods because” they can “provide in-depth explanations of the mechanisms

that produce changes in knowledge production” (p. 327) and that shape ”field-level

processes” (p. 327). Wyatt, Milojević, et al. (2017) emphasize that qualitative STS and
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scientometrics require different skills and differ in their epistemological assumptions,

“research practices, norms and standards” (p. 87). White (2011) argues that in the

1970s two schools of thought started to compete for the attention space of science studies

scholars: “American sociology of science centred on Merton and constructivist accounts

of science centred on Bruno Latour” (p. 278). According to him, this opposition is

partially maintained by the journals, ‘Scientometrics’ and ‘Social Studies of Science’,

the former more closely associated with the Pricean and Mertonian tradition, while the

latter inspired by the constructivist tradition of thought. As Edge and MacLeod (1986)

note in their Editorial to Social Studies of Science, most submissions that emphasized

quantitative methods got referred to the journal Scientometrics as a result of a “friendly

but informal arrangement” (p. 5) among the editors. Noting the journal’s breadth, they

argue quantitative science studies research is the “only exception” (p. 5) excluded from

Social Studies of Science.

Recently, there is a growing interest in combining STS and scientometrics, exemplified

by growing number of mixed methods publications and a special issue of the new journal

Quantitative Science Studies (QSS) published in August 2020 dedicated to discussing the

interface between quantitative and qualitative science studies (Leydesdorff, Ràfols, and

Milojević, 2020). This trend might follow in the footsteps of mixed method research’s

growing popularity in the social sciences in the past two decades, especially since the

mid 2000s (Timans, Wouters, and Heilbron, 2019). It also develops in parallel (e.g. the

QSS special issue) or dialogue with (e.g. Elgaard Jensen, 2019; Marres and de Rijcke,

2020) the digital STS tradition for example, through scientometrics’ use in controversy

mapping (Munk and Elgaard Jensen, 2014). Digital STS links a community of STS

scholars - and those from related disciplines - interested in studying contemporary uses

of digital tools, exploring their affordances for STS scholarship and participating in their

design informed by STS’ theories. Digital STS has been developing since the late 2000s

- early 2010s. Elgaard Jensen (2020) cites the development of the Issue Crawler web

network mapping software - introduced by Marres & Rogers in 2008 - as the first and by

now classic example of digital STS research and tool development. Vertesi et al. (2019c)

note that the digital STS community building started at the 4S conference in 2011

thorough subsequent workshops, conferences, meetings and (online) peer discussions,

yielding the DigitalSTS handbook published in 2019 (Vertesi et al., 2019a). Digital STS

strives to build bilateral bridges between STS and other ”fields that have embraced

digital studies and making” (p. 3), which the authors contrast with STS’ predominant
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tendency to ’export’ insights to other disciplines, thus building on and extending STS

scholarship. (Vertesi et al., 2019b)

My thesis focuses on the use of computational data analysis methods, such as scien-

tometrics and social network analysis ’for STS’, which I treat as a subset of digital

methods. I differentiate these to highlight my thesis’ focus on computational data

analysis methods, whereas digital methods can encompass a range of digitally mediated

practices. Next, I discuss three main benefits of combining STS and scientometrics.

Firstly, combining methods can help understand large scale, collaborative and digitally

mediated research practices such as contemporary biomedicine. On this account, neither

ethnography nor scientometrics by itself can capture the heterogeneous and distributed

relations that comprise such research practices. (Cambrosio, Bourret, et al., 2014). This

argument is similar to earlier ANT programs’ use of computational methods to trace

the heterogeneity of associations that ’solidify’ or ’stabilise’ facts, technical objects or

cultural features (e.g. Teil and Latour, 1995). Teil and Latour (1995) note that neither

quantitative methods (which obscure the type of associations) nor ethnographic studies

(which obscure links between cases) can account for such heterogeneous associations.

Secondly, given the increase in digital data which capture situated practices, there is

a growing interest in exploring their affordances for the social sciences and humanities

- including STS (Cambrosio, Bourret, et al., 2014; e.g. Ruppert, Law, and Savage,

2013). In science studies, the number of digital bibliometric databases has increased

since the 1960s. Recent examples include Google Scholar and Scopus, both launched

in 2004 (Wikipedia, 2018a; Wikipedia, 2018b) and the free and open access Microsoft

Academic Graphs launched in 2016. In addition, ‘altmetric’ indicators have recently

been introduced that capture mentions of scientific outputs in news media as well as

Web 2.0 platforms, such as social media, blogs or online reference management tools

(Robinson-Garćıa et al., 2014).

Thirdly, investigating the strengths and weaknesses of scientometrics methods can help

assess the limitations of citation based metrics used for research evaluation (cf. Hicks

et al., 2015; Wouters, 2014; De Rijcke, Wouters, et al., 2016) and create alternative

evaluation methods (e.g. De Rijcke, Holtrop, et al., 2019).
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As the Introduction and section 2.3 outlined, this project mainly combines STS and

scientometrics to help explore the diversity of computational or digital social research

and how dialogues could be built among ways of knowing. Next, I discuss how existing

studies evaluate the affordances of scientometrics ’for STS’.

2.6.2 Evaluating the Affordances of Computational Methods ’for

STS’

This section discusses recent literature which conceptually reflects on the strengths

and weaknesses of computational data analysis ’for STS’ or related fields. Most

existing computational STS studies discuss specific methods, and few reflect on the

affordances of different combinations of STS and scientometrics. Notable exceptions are

three papers this section discusses which reflect on the affordances of computational

methods ’for STS’ or digital social research in light of epistemological frameworks,

such as actor-network-theory (Cambrosio, Bourret, et al., 2014; cf. Venturini, Munk,

and Jacomy, 2019) or ethnographic field work (theory) (Munk, 2019). Such reflection

is essential given that digital tools may bring epistemologies which differ from STS

theoretical sensibilities. As section 9.3 will discuss, I contribute to this line of research by

emphasizing the need to develop and evaluate the affordances of computational methods

in light of the broader interpretative context. In a recent study published a few months

ago Elgaard Jensen (2020) reaches a comparable conclusion, reflecting on two collab-

orative digital STS projects. I conclude this section by briefly summarising his argument.

Cambrosio, Bourret, et al. (2014) and Venturini, Munk, and Jacomy (2019) reflect

on the adequacy of network analysis methods that originate in the physical sciences

(e.g. Barabási, 2012) and are used in scientometrics - for ”S&TS research agendas”

(p. 18). Cambrosio, Bourret, et al. (2014) use network analysis to study contemporary

biomedical science, a large-scale collaborative science. Drawing on ANT, they study

the changing heterogeneous relations that constitute biomedical research practices -

among scholars, institutions and biomedical actors (e.g. molecules and diseases). They

seek methods to produce ’surprising’ insights about such collective, heterogeneous

agencies. They highlight four network analysis tips ’for STS’. Firstly, they call for

characterising networks beyond quantitative and structural indicators which, they

argue, cannot capture the unfolding of diverse relations highlighted by ANT and

related approaches. Secondly, they highlight the importance of heterogeneous network
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analysis. In contrast with traditional social network analysis which assumes that

homogeneous actors interact in a unified social space ”within which social ties can be

properly measured and described” (p. 20), they argue that heterogeneous network

methods can highlight heterogeneous relations or forms of engagement. They argue that

clustering (for more details about clustering see section 2.6.3.3) heterogeneous networks

is more likely to create surprising insights where homogeneous network clustering

yields well-known findings. Thirdly, they call for using multiple data visualisations

to ”destabilize conventional readings, generate a feeling of analytical strangeness, and

record unexpected events” (p. 27). Fourthly, they note the danger of obscuring data

infrastructures at play. For example, scientometric networks are primarily derived from

the analysis of texts, which contrasts ANT studies’ reliance on non-textual informa-

tion about scientific practices. As a remedy, they call computational STS studies to

diversify data sources which highlight human and non-human actors’ diverse connections.

Similar to Cambrosio, Bourret, et al. (2014), Venturini, Munk, and Jacomy (2019)

assess the affordances of network analysis ’for STS’ in light of ANT. Highlighting the

importance of not conflating network analyses or visualisations with actor-networks,

they note four main differences between them. Firstly, digital traces analysed with

network methods cannot trace all aspects of a phenomena and are shaped by the

material-semiotic features of the practices that create them. Secondly, they note the

discrepancy between graph theory and associated mathematics which treats all nodes

and edges as homogeneous and ANT’s heterogeneous networks. In graph theory,

even weighted nodes and edges have the same type of agency. In addition, graph

theory has difficulties depicting ’negative relations’, such as oppositional alliances,

also key to ANT. Thirdly, they note network analyses’ theoretical separation of

’individual nodes’ and ’global networks’, contrasting their co-constitutive framing by

ANT. However, the authors note that empirical network analyses often overcome such

binary logic because key properties of nodes depend on overall network topology and

vice versa. Finally, like Cambrosio, Bourret, et al. (2014), they note the challenge of

providing temporal accounts using formal network analysis, and such methods’ focus

on ”movement through networks” - which hinges on a separation between network

structure and content - rather than ANT’s focus on the ”movement of networks” (p. 517).

Munk (2019) proposes four digital sociology methods to address a methodological

question: the ’meaning problem’ in digital sociology. Digital sociology uses digital
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traces to study collective practices: Munk analysed hyperlinked websites to study the

Nordic Food Movement in different Nordic Countries. Munk (2019) asks how to analyse

and interpret digital traces to gain insights about practices that created them. He

compares this to the ’meaning problem’ in early anthropology - as Malinowksi noted,

recording the details of everyday life does not guarantee insights about lived experiences.

Munk argues that the collection of hyperlinks (the ’onlife traces’) provide information

about associations among actors (e.g. relationship among communities who maintain

websites), as well as what and when the communities talk about. However, they do not

reveal the meaning of these actions. Whilst ethnographers’ embodied presence in the

field helps them develop interpretations that reflect participants’ experiences, digital

sociologists - being removed from the field - have to develop alternative methods. He

proposes four such methods.

Firstly, like Cambrosio, Bourret, et al. (2014), he notes the possibility of interpreting

network analysis in light of fieldwork. Secondly, referring to ANT and Latour, Jensen,

et al. (2012), he argues that onlife traces afford thick analysis on a ’single level’, to study

how actors are constituted by their relations - blurring the micro/macro distinction.

For example, he notes he could study how the connections between a set of tightly

linked websites associated with the Nordic Food Movement (which he detected as a

’macro’ data pattern) are enabled by diverse sharing practices on the ’micro’ level,

such as the way users share hyperlinks and write about their products. By showing

a ’macro’ pattern’s contingency on ’micro’ practices, he argues that this analysis

blurs the micro/macro distinction. Through this example, he reminds the reader of

ethnographers’ responsibility to define the field themselves, as proposed by Marcus

(1995). Thirdly, invoking Richard Rogers’ “critical analytics” notion, he advises to

carefully select onlife traces and evaluate their meaning in (temporal) context. For

example, he manually curated the hyperlinks that form part of his network, rather than

collecting links with fully automated web crawlers. Finally, he proposes ’algorithmic

sense making’: using computational pattern recognition, such as community detection

to identify data patterns. He argues that both computational pattern recognition and

ethnography can help trace regularities which might contradict established theories.

For example, informed by theories, he focused on exploring geographical differences in

Nordic Food Movement practices. However, through clustering a network of websites,

he found that in some cases, instead of geography, shared thematic interests accounted

for websites’ connections.
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As section 9.3 will discuss, I contribute to literature which reflects on the affordances

of scientometric (or other computational) methods ’for STS’ by emphasizing the need

to develop and evaluate the affordances of these methods in light of the interpretative

context, including the research questions, characteristics of the research practice, the

conceptual framework and prior empirical findings. In a recent study Elgaard Jensen

(2020) reaches a similar conclusion, reflecting on the practice of combining STS and

computational methods in two collaborative digital STS projects which involved diverse

participants, including computational analysts, STS scholars and issue experts. The

first project explored notions of ’environment’ in obesity research through analysing

and mapping highly cited papers. The second project developed digital methods to

visualise ambiguity - rather than clear cut data patterns - using the dataset from the

first project. Elgaard Jensen (2020) argues that in both cases, introducing project

specific criteria for evaluating methods’ success - and issue experts’ involvement who

could provide immediate feedback - was key to establishing trading zones between

STS and computational methods. As Chapters Three through Nine will describe, I

developed computational methods iteratively, in light of my theoretical and empirical

knowledge about geosocial research. As Chapter Nine will argue, studying geosocial

research with computational methods also highlighted different affordances compared

to computational STS studies of biomedicine. Elgaard Jensen (2020) notes a second

practice to develop the trading zone: STS scholars’ reflection on the digital object (such

as a co-word network map of scientific literature) in ”different terms than those of the

tool maker” (p. 23). For example, reflecting on digital objects through STS theories can

bring attention to practices ’behind’ (e.g. underlying notions of obesogenic environments

that guide obesity researchers and partially manifest in scientometric maps) or ’before’

(e.g. contingency of obesity research approaches on infrastructures and instruments)

digital objects. Next, I discuss examples of computational STS studies that inform this

project’s mixed methods design.

2.6.3 Examples of Computational STS

This section discusses studies which combine STS, other relational social theories or

interviews with computational methods, which inform my mixed methods approach,

including relationalist social network analysis (section 2.6.3.1); STS (inspired) studies

of biomedicine using heterogeneous network analysis (section 2.6.3.2); (STS uses of)
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network clustering (section 2.6.3.3); and approaches to developing mixed methods units

of analyses by aligning them with the aim to ’generate surprises’ (section 2.6.3.4).

2.6.3.1 Tracing Homogeneous Associations

This section briefly introduces ’relationalist social network analysis’ (R-SNA, for

short) and Navon and Shwed’s (2012) temporal homogeneous network analysis which

informed my homogeneous network analyses in Chapters Five and Six. I study geosocial

scholars’ collaboration and the differentiation between geosocial research approaches

with homogeneous network analysis and interpret these in light of the interviews.

Social network analysis has developed diverse approaches to study homogeneous

networks (e.g. people, organisations, countries) since the 1950s (Wasserman and Faust,

1994). Erikson (2013) differentiates between formalist and relationalist social network

analysis (R-SNA). Below, I situate my approach to homogeneous network analysis in

the R-SNA tradition. Firstly, according to Erikson (2013), in R-SNA, the basic units of

analyses are often interactions where the relationship and their meaning are inextricably

linked. Similarly, I study collaborative interactions using mixed methods. Through

interviews, I explore who participants’ (ideal) collaborators are, and why or how they

collaborate. Secondly, R-SNA analyses networks in the context of the practices they

study, aiming to ”interpret one particular setting” (p. 229), in contrast to formalist

network analysis which aim to define universal networked patterns. Similarly, I use

network analyses to study geosocial research practices: I do not aim to make ’universal’

claims about science. Thirdly, while formalist social network analysis assumes the

existence of fixed structures and individuals, R-SNA assumes that individuals and

collectives are ”different manifestations of similar processes”, rather than essential

categories (Erikson, 2013, p. 233; cf. Latour, Jensen, et al., 2012). Similarly, I assume

that collective practices - (approaches to) geosocial research - and geosocial scholars

are co-produced through relational practices, such as collaboration. As section 2.3

explained, I study collective practices - (approaches to) geosocial research - through the

relational acts that comprise them, and do not assume their fixed existence separate

from scholars’ practices. Finally, while formalist social network analysis primarily

defines actors’ agency in terms of their network position, in R-SNA, actors’ experiences

play a key role in providing an account of their agency. Similarly, I study participants’

collaboration experiences through interviews, and do not interpret their agency in terms
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of their network positions. Altogether, my homogeneous network analyses follow the

R-SNA tradition. Next, I discuss Navon and Shwed’s (2012) temporal homogeneous

network analysis which informed by network analysis which traced the differentiation of

geosocial research approaches over time in Chapter Six.

Navon and Shwed (2012) combine structural, statistical citation analysis, document

analysis and ethnographic fieldwork to investigate how a genetic mutation – “the

microdeletion at chromosomal locus 22q11.2” (p. 1633) – transformed understandings

of several rare clinical syndromes, related medical research fields, and gave birth to a

new clinical category. They compare changes in the modularity of two networks over

time - all papers in their sample (N1), and a network generated using a subset of their

data which omits papers which mention the genetic mutation (N2). For statistical

baseline which is required when comparing the modularity of networks, they calculate

the modularity of 100 randomly generated counterfactual networks whose size equals to

(N2) but which omit random papers. Network modularity is a network structure metric

which expresses the extent to which networks are cohesive or to the contrary, divided

or ’modular’. Comparing the modularity of the citation networks which do and do not

contain papers about the genetic mutation allows the authors to determine whether

research about the genetic mutation changes network structure. They argue that an

increase in modularity indicates that divisions between the communities who pertain

to their field have become more salient, whereas a decline in modularity indicates

their convergence. Their results suggest that the genetic mutation ’holds the literature

together’, acting as a boundary object and enabling the emergence of a qualitatively

different research field. This paper informed my homogeneous analysis discussed in

Chapter Six and outlined in section 3.4.4, which traces the differentiation of geosocial

research approaches. Next, I discuss STS uses of heterogeneous network analysis.

2.6.3.2 Tracing Heterogeneous Associations

This section discusses three key studies of (biomedical) science which use statistical or

visual heterogeneous network analysis informed by STS insights about heterogeneous

agencies. These studies inform my heterogeneous network analyses in Chapter Eight

which studies how methods’ mediate geosocial research.

Shi, Foster, and Evans (2015) develop statistical methods to predict the development
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of biomedical research by studying how new associations form among heterogeneous

actors, including scholars, methods and molecules. Using MeSH terms (a standardised

vocabulary to index life science literature available through the MEDLINE database),

they extracted the chemicals or diseases papers study, the methods they use, and

their authors. Their analysis is inspired by ANT’s focus on heterogeneous agencies,

and Herbert and Simon’s “garbage-can model” of decision making which assumes that

solutions that ”“stick to” nearby problems are deemed successful” (Shi, Foster, and

Evans, 2015, p. 74). Using network statistics generalized to hypergraphs (to depict

heterogeneous relations) they argue that the majority of new links form among actors

within close graph distance. Their analysis foregrounds network structure - they study

new associations among nodes based on their network position - and fixes the type

and identity of actors over time: actors’ type (e.g. a chemical, method or author) is

defined by their fixed classification. They conclude that heterogeneous network analysis

increases the prediction of new associations superlinearily (at a rate above linear)

because actors ”connect things through other types of things” (p. 84).

In contrast to Shi, Foster, and Evans (2015) who use statistical, structural network

analysis, Bourret et al. (2006) and Cambrosio, Keating, and Mogoutov (2004) anal-

yse heterogeneous networks of biomedical or health research visually to study how

associations among human and non-human actors ’hold together’ or enable these

collective, collaborative and distributed research practices (cf. Weisz, Cambrosio, and

Cointet, 2017). They study empirically and theoretically demarcated, collaborative

practices. Cambrosio, Keating, and Mogoutov (2004) investigate the role of research

academic and commercial institutions and biomedical substances in the development

of a standardised nomenclature for immune cell-surface markers, through analysing

paper submissions at relevant international workshops. Like Navon and Shwed (2012),

they used heterogeneous maps as part ethnographic research. Cambrosio, Keating, and

Mogoutov (2004) highlight three roles the heterogeneous maps played. Firstly, they

helped structure and visually illustrate their argument. Secondly, they helped elicit

information when used as interview prompts. Thirdly, they helped trace the evolving

relationships among a large set of actors - the research institutes and the biomedical

substances they produce. This, they argue, can help explore the role heterogeneous

actors play in collaborations when ”the structure of” collaboration is less codified than

in their case study (p. 357).
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Bourret et al. (2006) use heterogeneous maps - alongside homogeneous co-authorship

and thematic maps, as part of ethnography and as discussion prompts - to study ”the

founding and development of a French bioclinical collective - the Groupe Génétique et

Cancer (GGC). GGC coordinates most actors in French ”cancer genetics and operates

simultaneously in the clinical, research, and regulatory domains” (p. 432). They use

heterogeneous maps to interrogate how researchers and non-human entities that papers

discuss (e.g. breast cancer, gene mutations) come into relation and coordinate the

development of GGC, using network representations of the collective at different time

points in two ways. Firstly, they ask how one can characterize the agency of actors in

these relational practices by considering the dimension characterized by the following

two extremes: on the one hand, humans being connected to “a multitude of themes”,

or on the other hand, “a single theme link[ing] a number of actors. Real situations

are, of course, located somewhere between these two ideal types” (p. 459). Secondly,

they visually explore the networks’ structure and ask, for example, whether there are

hubs - “obligatory passage points” - in the network, and if the edges are more or less

“homogeneously distributed” (p. 459). They show the changing importance of human

and non-human agencies in the GGC collaboration. The establishment of GGC fosters

collaboration among a set of researchers, and coordinates three research efforts existing

at the time. However, they argue that over time, non-human actors - such as specific

diseases - play an increasingly important role in coordinating the biomedical collective.

The computational STS papers discussed in this section use statistical or visual

heterogeneous network analysis to study how human and non-human actors coordinate

large scale, collaborative, distributed scientific practices such as biomedical research.

These studies inform my heterogeneous network analyses discussed in Chapter Eight.

However, my heterogeneous network analyses differ in two main ways. Firstly, I use

them to study how methods mediate geosocial research (on smaller scales) rather than

how heterogeneous actors coordinate large scale research. Secondly, in contrast to

studies which use heterogeneous network analyses as part of ethnographic field work, I

use them to study aspects of geosocial research that I do not have detailed interview or

observation data about. Next, I introduce network clustering (in the context of STS).
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2.6.3.3 Community Detection - Identifying Geosocial Research Approaches

This section briefly introduces network clustering, also called community detection,

which I use to identify the scientometric footprints of geosocial research approaches in

Chapters Six through Eight and illustrate its use in STS studies. Community detection

is a popular method to identify clusters of nodes (communities, for short) that are

tightly connected to one another and sparsely connected to the rest of the network.

Community detection can be computationally complex, and diverse algorithms identify

communities differently. In addition, many algorithms are non-deterministic: they yield

slightly different results every time they ran, even using the same parameters, and yield

significantly different results as a function of input parameters.

Some methods divide networks into a pre-defined number of clusters. However, it is

uncommon to know the number of relevant clusters a priori. Thus, many methods

split networks into clusters inductively. This thesis uses two popular community

detection methods: the ’fast and greedy’ community detection method proposed by

Clauset, Newman, and Moore (2004) and the Leiden community detection algorithm

(Traag, Waltman, and van Eck, 2019). They both identify community structure which

’optimises’ (computationally optimise the value of a function) the network’s modularity.

Divisions are optimal if ”there are many edges within communities and only a few

between them” (Clauset, Newman, and Moore, 2004, p. 1). I use these community

detection algorithms because they are implemented in Python and R, and can cluster

weighted networks.

The conceptual meaning of network clusters is unclear (cf. Cambrosio, Bourret,

et al., 2014; Held, Laudel, and Glaser, 2020). STS scholars and sociologists of science

use community detection in diverse ways, acknowledging the uncertainty of their

meaning. As section 2.6.2 discussed, Cambrosio, Bourret, et al. (2014) and Munk

(2019) interpret the outcomes of community detection in light of their ethnographic

findings. Glaser and Laudel (2015) discuss the meaning of clusters with interviewees,

using network visualisations as interview prompts. Elgaard Jensen et al. (2019) identify

clusters in a network of influential papers about obesity research to explore types of

obesogenic environments researchers study. They interpret clusters with the help of qual-

itative analysis of the papers they contain, informed by issue expert’s domain knowledge.

As Munk’s (2019) example discussed in section 2.6.2 showed - who identified thematic
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links among websites associated with New Nordic Food, instead of the geographic

links he hypothesised - community detection can help generate ’surprising’ findings.

However, as Elgaard Jensen (2020) notes, it can also create the false impression that

clusters are homogeneous, and over-emphasize their separation. In follow-up study to

Elgaard Jensen et al. (2019), Elgaard Jensen (2020) explored terms that connected

the clusters of a network of terms associated with obesity research to illustrate the

ambiguity of differences highlighted by network clustering. Terms that connected

clusters highlighted diverse types of relations among paper sets, such as reference

to particular policy areas, shared institutional affiliations or shared use of ”research

devices” (p. 21) such as twin studies, census data or diverse obesity indices.

My network clustering in Chapters Seven and Eight is similar to the above studies.

I identify the scientometric footprints of geosocial research approaches by clustering

homogeneous citation network of geosocial paper. I interpret the findings in light

of interview analysis and my participant observation; cluster multiple networks to

highlight my findings’ contingency; and explore similarities among approaches as well as

differences. Network clustering, which identifies relative differences among nodes (e.g.

papers) in a network helps identify geosocial research approaches because as section 2.3

outlined, I seek to identify approaches in terms of their relative differences and I do not

presuppose the number of approaches I identify or their ’scale’.

2.6.3.4 Generating Surprise and Tracing Diverse Meanings with Digital STS

This section briefly situates my mixed methods approach in literature which reflects on

the purposes of mixed methods social science. Theorists of mixed methods social science

identified diverse ways methods can be combined. In their influential study, Greene,

Carcelli, and Graham (1989) differentiate five main purposes of mixed methods studies:

triangulation (corroborate findings), complementarity (elaborate or enhance findings),

development (use results from one method to develop or inform the other), initiation

(discover paradoxes or contradictions, develop new questions) and expansion (extend

the breadth or range of analysis). They characterise the study designs associated with

each purpose in terms of seven design characteristics: the extent to which methods differ

in ”form, assumptions, strengths, and limitations or biases” (p. 262); are intended to

study different phenomena; have equal importance; study one or multiple case studies;

and ”are implemented within the same or different paradigm” (p. 264); independently
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or iteratively; and sequentially or concurrently. Bryman (2006) provides a finer grained

categorisation comprising eighteen purposes, overlapping with but extending Greene,

Carcelli, and Graham’s categorisation.

Both classification schemes differentiate mixed methods study designs based on the

extent to which methods are aligned. For example, Greene, Carcelli, and Graham

(1989) argue that studies which mix methods for triangulation or complementarity use

methods informed by the same paradigm to study the same or overlapping phenomena

and align findings. In contrast, studies which mix methods for initiation or expansion

do not align analytical units and (may) use methods informed by different paradigms.

In some cases, ”[t]o maximize the possibility of unlikely findings, mixing paradigms [...]

is acceptable and even encouraged” (p. 269).

Mixed methods science studies may also serve different purposes. As section 2.6.3.3

discussed, community detection is non-deterministic, and as section 2.4 discussed, the

outcomes of data analysis are situationally contingent. Many scholars who combine

interviews, participant observation or STS and scientometrics acknowledge these.

Some aim to solve such uncertainties by triangulating methods. For example, Glaser

and Laudel (2015) and Held, Laudel, and Glaser (2020) seek ground truth through

interviews, which they use to interpret the meaning of network clusters.

In contrast, many STS scholars and anthropologists embrace the inherent partiality of

these methods and ask how - and if - they can help generate surprises, or insights about

diverse actors’ agencies and experiences. As section 2.6.2 discussed, to help generate

surprising computational insights, Cambrosio, Bourret, et al. (2014) advocate the use of

heterogeneous network analysis. They contrast this to the clustering of homogeneous

networks, which they argue may yield ”redundant illustration of well-known arrange-

ments” (p. 21). In addition, as section 2.6.2 discussed, they stress the importance

of diversifying data sources and creating multiple ’maps’ (data visualisations) which

may ”destabilize conventional readings, generate a feeling of analytical strangeness, and

record unexpected events” (p. 27). In addition, as outlined in section 2.6.2, Munk (2019)

argues that computational pattern recognition methods can help generate surprises.

Other STS scholars use (participatory) methods to generate insights about diverse

actors’ agencies and experiences, assuming that values, experiences and issues are
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co-created by human and non-human actors in situated practices. Using Greene,

Carcelli, and Graham’s (1989) framework, in these cases, computational methods’

use is informed by the ’STS paradigm’. For example, as 2.6.2 discussed, Cambrosio,

Bourret, et al. (2014) and Venturini, Munk, and Jacomy (2019) advocate the use of

heterogeneous network analyses to explore heterogeneous actors’ agencies. Marres

and de Rijcke (2020) discuss data visualisations with participants to study how

diverse actors understand interdisciplinarity in AI ethics. As opposed to creating

baselines or articulating fixed definitions, they seek to identify diverse meanings

to de-essentialise understandings of ’interdisciplinarity’, and engage with the field’s

diversity. Similarly, Anderson et al. (2009) discuss visualisations of participants’

computer use to study their lived experiences and values associated with computer use.

However, in contrast with Marres and de Rijcke (2020), Anderson et al. (2009) use

purposefully ambiguous visualisations, arguing that these afford more opportunities to

elicit participants’ experiences than clearly annotated and self-explanatory visualisations.

As section 9.3.2 will discuss, I aimed to combine scientometrics, interviews and STS

concepts for multiple purposes. Analyses in Chapters Six and Seven align scientometric

and interview analytical units, use methods to complement each other and develop

scientometrics in light of interviews. Other analyses in Chapters Four, Seven and

Eight use interviews and scientometrics inductively, benefiting from methods’ respective

strengths, potentially seeking to produce surprising scientometric insights.

PART III

The third part of this chapter introduces literature related to seven themes I identified

through interview analysis and scientometrics, discussed in Chapters Four through

Eight: the relationship between computational data analysis and social science (section

2.7); the aesthetics of science and social media (section 2.8); the relationship between

academic and non-academic practices (section 2.9); interdisciplinary collaboration

(section 2.10); the role of exploration and experimentation in computational data

analysis (section 2.11); reflexivity about data analysis process (section 2.12); and the

role of local knowledge in mapping (section 2.13). I discuss the themes and associated

literature in the order they appear in the thesis.
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2.7 Relationship between Social Science and Compu-

tational Data Analysis

As section 2.1 argued computational data analysis is core to geosocial research.

However, as section 2.2 argued, scholars disagree about whether geosocial research

has the potential to facilitate exchange between computational disciplines and social

science, and whether ’quantitative’ and ’qualitative’ geographic research traditions are

best understood as distinct, contradictory or complementary. Informed by the STS

literature discussed below which highlights the multifarious origins and situatedness

of research methods, Chapter Four will empirically investigate my interviewees’ views

about the contradictory or complementary epistemologies and histories of computational

data analysis and social scientific tradition of thought in the context of geosocial research.

STS and geography research have illustrated research methods’ diverse origins. For

example, tracing the history of the focus group method, Law, Ruppert, and Savage

(2011) argue that a version of it ”was created in the space between the academy and

the state in US media research early in the Second World War” (p. 6). However, it

soon disappeared from academic research and only re-appeared in the 1980s. Through

these transitions, researchers re-theorised the data focus groups can provide. Earlier

accounts assumed it provides information about attitudes, whereas in the 1980s, in

line with social scientific research agendas, scholars argued they provide information

”about how people negotiate and make positional arguments in contexts saturated by

power relations (p. 6). Similarly, Dalton and Thatcher (2015) highlight the connections

between geodemographics used for consumer research and the computational methods

used for geosocial research.

In the context of social media research, Marres and Gerlitz (2016) call for empirically

exploring the similarities and differences between how ’sociological research’ and social

media platforms - or the practices they mediate - use and enact (computational)

methods in specific situations (cf. Lury and Wakeford, 2012). For example, they note

that social network and co-word analysis methods platforms employ originate in social

scientific inquiry. However, these methods can be performed in diverse ways. Instead

of theoretically arguing that computational and social methods are or are not similar,
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they call for exploring affinities and differences in methodologies in practice.

As section 4.1 will discuss, my interviewees from diverse fields perceive computational

data analysis and social research to be complementary, but sharing different institutional

origins. They stated that a core challenge for geosocial research is combining these

methodological traditions.

2.8 Aesthetics of Science and Social Media

Chapter Four will discuss participants’ narratives about the beauty of geosocial research.

Scholars have highlighted the importance of the aesthetics of scientific research and

social media data. This section introduces literature that helps interpret interviewees

experiences.

Aesthetic norms are inseparable from the epistemic claims scientists make. For example,

Daston and Galison (1992) trace the history of changing epistemic virtues in science

- historically specific ideals of the scientific method and the scientific self, shared by

members of scientific communities that are at once aesthetic and epistemological.

They contrast the ideals of ’objectivity’, ’truth-to-nature’ and ’trained judgment’, and

explore associated ideals of scientific images. Citing works by philosophers of science,

McAllister (2002) notes two contrasting aesthetic ideals associated with science. He

argues that ”classical, formalist aesthetic” that values ”unity, economy, symmetry,

consistency” and order is predominantly associated with the mathematical sciences.

Similarly, Hossenfelder (2018), a physicist reflecting on her experiences notes the central

importance of aesthetic judgement in physics. She argues that Nobel Prize winner Leon

Lederman’s quote - ”We believe that nature is best described in equations that are as

simple, beautiful, compact and universal as possible” (p. 35) - still reflects a popular

position among physicists, who argue for the accuracy of theories based on aesthetic

criteria. McAllister (2002) contrasts this with aesthetics which values complexity,

diversity and differentiation, primarily pursued in branches of biology and historical

research.

Scholars have also noted the aesthetics of social media posts - mostly exploring the

aesthetics of shared images. For example, Miller and Sinanan (2017) highlight the
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importance of images in social media and explore the situationally contingent - and

thus diverse - aesthetics of Facebook posts through ethnographically studying posted

images. Schreiber (2017) compares the aesthetics of images shared on different social

media platforms. Like Miller and Sinanan (2017), she understands aesthetic norms

situationally contingent - specific to the platforms and user (groups). Hochman and

Manovich (2013) also focus on the visual aesthetics of social media: study photos posted

on Instagram. However, in contrast with the previous studies which understand the

aesthetics of social media contingent to their use - primarily through a distant analysis of

images with computational data analysis methods - they argue that Instagram ”enforce

uniform appearances on its photos, thus creating a sense of atemporality and shared

aesthetics” (p. 1).

Next, I discuss literature which highlights inextricable links of academic research with

non-academic practices.

2.9 Academia - Industry

STS scholars have long argued that academic and non-academic practices are continuous

and shape one another (e.g. Schönbauer, 2020; Gingras and Gemme, 2006). For

example, Latour (1988) illustrates that scientific research is constituted by relational

activities of collectives beyond the confines of academic institutions. He traces the

scientific development and ’cultural’ acceptance or uptake of pasteurisation. Latour

(1988) argues that Pasteur’s ideas gained popularity due to the alignment of the

interests of these diverse ’societal’ groups, including non-academic supporters such as

the public hygiene movement and medical professionals, including military physicians

and private practitioners. Like Latour, Galison (1997) highlights the inextricable links

between academic and ’non-academic’ practices. Through studying laboratory practices

over the course of 20th century physics, he shows the way industrial-technological

and scientific practices are co-constructed. Thus, he emphasizes the need to consider

technical-industrial and academic practices on a par and highlight their interconnected-

ness, rather than positioning one as ’subordinate’ to the other, for example, in accounts

that position ’technology’ as the application of research. In addition, as section 2.7

discussed, scholars highlighted the co-shaping of (social) research methods by academic,

governmental and commercial practices. However, in relation to discussing computa-
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tional social research, over a decade ago, Savage and Burrows (2007) argued that there

was a growing gap between academic and non-academic social research. Through the

examples of contemporary (social) network analysis at telecommunication companies

and geodemographic research - which analysed large, privately owned datasets about

situated and interpersonal interactions - they argued that ’commercial’ and academic

sociology were parallel research practices, the former ”largely unknown to academic

sociologists” (p. 887).

Funding arrangements shape the relationship between academic and non-academic

practices. Recently, due to funding norms, many academic institutions have been

actively trying to extend their commercially-relevant research practices (Lam, 2010) (c.f.

Jackson, 2009). Financial pressures and job insecurity have been highlighted as a leading

cause of stress among graduate students (e.g. El-Ghoroury et al., 2012; Teachout,

2004) and faculty alike (e.g. Reevy and Deason, 2014; Tytherleigh et al., 2005).

Chapter Four explores how funding arrangements impact on interviewees’ academic

and non-academic activities, and how these, in turn jointly shape their geosocial research.

2.10 Interdisciplinarity and Scientific Collaboration

This section briefly outlines my working definition of the concepts ’institution’ and

’interdisciplinarity’ and discusses literature about them which informs my interview and

scientometric analyses in Chapters Five and Six.

Chapter Six will discuss how my interviewees develop their geosocial data practices

through dialogue with their institutions, such as research groups or university depart-

ments. Similar to Martin (2004) I define institutions as relatively enduring collective

practices which nevertheless are in constant flux as they constrain and facilitate

members’ activities, rather than predetermining them, such as research groups and

university departments. More specifically, Chapters Five and Six explore interviewees’

experiences of interdisciplinarity and interdisciplinary collaboration at their institutions.

Below I discuss literature about interdisciplinarity that I draw on when interpreting

my interviewees’ narratives about collaborating with scholars with different disciplinary

backgrounds, or using methods pertaining to different disciplinary traditions. The scope

of this literature review is limited: I do not intend to provide an exhaustive review of
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the history or definitions of interdisciplinarity. Rather, I discuss literature which focuses

on interdisciplinary research practice.

Although academic disciplines are themselves heterogeneous (Becher, 1990), collabora-

tive research by scholars from different disciplines has been extensively studied because

specialised knowledge traditions are organising units of contemporary academia. Citing

Peter Galison, Barry and Born (2013) argue that internal differences within disciplines,

as well as differences among them facilitate their continuous enactment. Scholars

of interdisciplinarity emphasize the historical contingency of current understanding

of ’discipline’. Klein (1990) argues that contemporary connotations of disciplinary

knowledge as ’specialised’ result from the institutional changes in knowledge institutions

in the nineteenth century. She notes that calls for integrated knowledge and educa-

tion accompanied scientific development since the early 20th century (Klein, 1990).

Interdisciplinarity, however, does not simply refer to holistic or integrated knowledge.

Rather, it is a situated, normative term. Barry and Born (2013) argue that recently

interdisciplinarity has become at once a ”governmental demand” (p. 4) - aiming to

make science accountable, for it solve ’grand challenges’ and foster innovation in the

knowledge economy - as well as ”reflexive orientation within the academy and an object

of knowledge” (p. 4). In addition, in line with Barry and Born (2013) I understand

interdisciplinarity not as a fixed entity, but as a practice enacted in specific situations.

In my interview analysis, I draw on four main insights from literature which discusses

collaboration among scholars from different disciplines: disciplines’ propensity to relate

to each other; the importance of disciplines for interdisciplinarity; trading zones; and

the construction of scientific problems through encountering difference in how other

disciplines formulate ’similar’ (relatable) problems.

Firstly, Osborne (2013) argues that although disciplines are heterogeneous, their

propensity to interact with other research fields in diverse ways is ”part of the[ir]

very ‘disciplinarity’” (p. 91). He primarily discusses such differences in epistemic

terms. For example, through the ethnographic method, anthropology encounters diverse

practices, including scientific laboratories, businesses or other cultural settings. Osborne

argues that instead of interdisciplinarity, such encounters perform the disciplinarity of

anthropology. Economics, on the other hand, relates to other knowledge practices by

translating issues - such as climate change - into economic terms by calculating economic
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costs.

Secondly, Osborne (2013), Maniglier (2019) and Strathern (2004) stress that interdis-

ciplinarity - collaboration, communication and exchange among disciplines - requires

disciplinarity, rather than the two being opposites. According to Osborne (2013),

disciplines with strong epistemological profiles - ”conceptual norms, research paradigms,

procedures of formalisation” (p. 83) - can partake in interdisciplinary endeavours the

easiest. For example, he argues that ”unlike sociology, anthropology, with its basis

in ethnographic fieldwork, is likely to thrive in an intensified interdisciplinary world.

But that is because anthropology is more not less disciplinary than sociology.” (p.

96). Osborne (2013) and Strathern (2004) argue that scholars who participate in

interdisciplinary research become the proponents of their own disciplines. Collaborators

are sought to contribute ”’traditional’ knowledge”, knowledge which is assumed to be

already in place. Interdisciplinary collaboration often prompts scholars to interrogate

their own disciplinary identity. Maniglier (2019) argues that transdisciplinarity requires

disciplinarity because it entails understanding differences in how other disciplines define

terms, pose questions and create explanations, in contrast with one’s own discipline.

Experiencing, rather than erasing such differences makes possible to understand ”what

is at stake for each” knowledge practice. On this account, practicing inter- or transdis-

ciplinarity ”does not consist in an attempt to take seriously a certain number of real-life

issues, [but] points to the introduction of comparative methods across the disciplines.”

(p. 18) For example, reflecting on a collaboration between computer scientists and

sociologists who tried to trial a new technology ’in the wild’ in a socio-economically

marginalised community, Goulden et al. (2017) warns about the danger of ’going native’:

one discipline adopting the perspective and concerns of the other. They describe a

project where sociologists adopted computer scientists’ framing of the project as a

technology development exercise. This, however, obscured the complexities of doing

fieldwork with marginalised communities and reflecting on their values and concerns.

Thirdly, Galison (2011) argued that shared interest and training in computational data

analysis techniques can result in trading zones - local collaboration and knowledge

exchange - among scholars. He argues in the 1940s, the cluster of computational, statis-

tical skills and complementary epistemological and ontological commitments associated

with computer simulations prompted scholars from diverse disciplines to collaborate

and exchange ideas. Physicists, mathematicians, engineers, chemists, statisticians,
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bomb builders (among others) - each with their own conception about the Monte Carlo

simulation method - developed local coordinations (’trading zones’), which allowed

them to work towards common goals amid epistemological differences. Later, a new

sub-culture emerged around simulation science. Like the above scholars, Galison (2011)

stresses that trading zones do not eliminate disciplinary differences. Rather, trading

zones enable the possibility of collective practice across differences.

Finally, Maniglier (2019) argues that ’problems’ (research questions or topics) are

defined as part of scientific practice, rather than science addressing ‘problems out there’.

For example, “the Newtonian definition of mass as a quotient of force by acceleration

defines it by its relation to the notion of force and speed, and conversely” (p. 10).

He defines this as an ongoing structuration process. He also notes that problems

are formulated through dialogues between ways of knowing, such as disciplines or

research traditions. For example, disciplines define problems in light of how other

disciplines articulate ’relatable’ problems (’similar’ or resonating problems expressed

with the concepts of different knowledge traditions). For example, he argues that when

“mathematicians realize that filmmakers do what they themselves do too, though in

a radically untranslatable way, they experience [...] the very problem that they try to

address” (p. 17). He argues that a problem can be encountered by understanding the

difference between how two disciplines create problems. The problem is created in this

very encounter between the two disciplines, the same way “disciplines can be articulated

with one another in their divergence” (p. 16).

2.11 Computational Search for Data Patterns

As section 5.3 will discuss, many participants stressed that they try diverse data analysis

methods as they search geosocial data patterns. This section introduces literature about

three topics - exploratory data analysis (EDA), digital scholarship and experimental

data practices - which I use to explore interviewees’ practices.

Firstly, my participants’ practice is similar to exploratory data analysis (EDA). Jebb,

Parrigon, and Woo (2017) define EDA as an ”overarching analytical attitude” (p. 267)

which aims to identify patterns in the data or its structure. EDA, they argue is context

specific. Scholars have named several guiding principles for EDA, such as flexibility, the
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willingness to find ”both unexpected and regular phenomena” (p. 266), attentiveness

to ’smaller’ patterns, acceptance of the incompleteness findings. Simple calculations

and data visualisation have been recommended for EDA. The authors argue that EDA

has been conflated with ’data dredging’ and ’p-hacking’. They differentiate the two

depending on how scholars report their data exploration practices. They stress the

importance of EDA for method and theory development, and to ensure that the data

collected for research is analysed as much in detail as possible. They note, however,

that whilst EDA aims to convey information, the findings identified with EDA are

statistically less strong than findings identified using confirmatory data analysis. The

’p-hacking problem’ is ”limited to occasions where findings uncovered through data

exploration are reported as if they had been specified in advance.” (Jebb, Parrigon, and

Woo, 2017, p. 269).

Secondly, my participants’ practices resonate with Mackenzie and McNally (2013) who

argue that digital techniques which travel across disciplines and are used to identify

regularities or patterns multiply methods. They discuss the case of a data visualisation

- a cluster-heatmap about proteomics research - which compares methods used to

find proteins to explore why the number of proteins identified in the human blood

keeps shifting. The heat map depicts the relationship between datasets used to locate

proteins, the ”laboratory techniques and experimental apparatus used, and the software

and databases used to analyse the experimental data” (p. 76). They argue that in the

heat map the diversity of methods overruns knowledge about proteins, and highlights

the way methods travel across disciplines. For example, proteomics uses information

retrieval methods when it seeks proteins as data sequences. By helping to compare the

experiments that yielded the proteins, the heat map illustrates and embodies the way

the digital multiplies methods. This proliferation of methods multiplies reality - in this

case, proteins. In return, when scientists explore the proteins, they have to discuss the

methods that yielded them.

Thirdly, I refer to my participants’ practices as ’experimental’. Scholars have used the

term ’experiment’ in relation to ’big data’ in three main ways: to refer to experimental

study design, experimental method development and experiments in participation.

Experimental study design refers to methods where the effects of an intervention are

studied on a sample (e.g. research participants) to provide inferences about a population

(e.g. a broader group who research participants belong to) (e.g. Kramer, Guillory, and
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Hancock, 2014). Some argue that big data enable more and larger scale social scientific

experiments than ’traditional’ data (e.g. Grimmer, 2015).

Inspired by pragmatist philosophy, Marres and Gerlitz (2016) calls attention to ex-

perimentally developing digital social research methods to explore ”what makes their

deployment productive for social inquiry” (p.23). They develop methods to study

the ebb and flow of climate change discourse on Twitter in a way that considers the

discourses and the Twitter platform’s affordances in tandem, by contrasting hashtag

(co-)occurrence methods associated with diverse disciplinary traditions and the Twitter

platform itself in action.

Finally, Lezaun, Marres, and Tironi (2017) explore how digital methods can help

experiment with new forms of participation, where knowledge is created by diverse

actors in multiple modalities. For example, they argue that STS-inspired efforts that use

private and for-profit digital devices - such as social media analytics - for social research

(thus re-purposing them for ”more public oriented” (p. 209) inquiry), can be understood

as examples of ’experiments in participation’. They use the concept ’experiment’ as a

heuristic to refer to studying and designing new participation and engagement practices.

’Experiments in participation’ refers to experimental practices that open possibilities

for creating diverse knowledge forms, often in a way that unsettles conceived definitions

of ’participation’. For example, experiments in participation can re-define the goal

of participation. For example, instead of devising a solution to a problem they can

focus on co-construing possible futures and formulating new problems. Experiments in

participation can also re-imagine the participants of experiments. To illustrate, some

emphasize the role of everyday objects in mediating participation and everyday practices

as settings for participation. They can also re-invent the way participation happens,

possibly creating trading zones among traditions of ’participatory’ experimentation.

For instance, participation can be happen through artistic engagement or open source

technology development instead of deliberation.
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2.12 Reflexivity in Computational or Digital Re-

search

This section discusses literature which informed my analysis of interviewees’ reflexivity

about how social media platforms and their analytical decisions shape the knowledge

they create about spaces in Chapter Seven. I use the term ’reflexivity’ similar to Lynch’s

(2000) notion of methodological reflexivity. I understand reflexivity broadly as the

practice of reflecting on how knowledge is created as part of the research process.

Strathern (2004) argues that the value of disciplines is their ability to account for -

or in my vocabulary, reflect on - how they create knowledge. Many computational

social research practices use computational data analysis tools to study topics explored

by social scientific disciplines. Scholars have highlighted the need to reflect on how

computational methods and aggregate categories shape the ’social reality’ they create

(e.g. O’Neil, 2016; Hanna et al., 2020). I discuss two recent studies which explored the

reflexivity practices of computational (social) researchers.

Borges Rey (2017) identifies three types of reflexivity associated with data journalists’

knowledge practices: ”traditional journalistic reflexivity” (assessing the structure of a

news story and its relation to the readers), ”computational reflexivity” (appreciating

how computational analyses work and where data and tools can be found) and the

”hybrid journo-coder mindset” (assessing the adequacy of computational tools for

journalistic stories, as well as characteristics of contemporary journalism in light of the

computational infrastructures that constitute it). The majority of Borges Rey’s (2017)

informants emphasize the importance of ”traditional journalistic reflexivity” over that

of ”computational reflexivity”, and only a few express ”hybrid journo-coder mindset”.

In contrast, Neff et al. (2017), who studied data scientists who work on ’data for social

good’ projects - which aim to use data science to tackle ’societal challenges’ - argue

that their participants more reflexive about their practices than critical data studies

literature purports them. They note that data scientists often acknowledge - at least to

some extent - that data are constructed and value laden, especially when data are used

for purposes other than the reason for their collection. For example, their participants

noted the difficulties of using electronic payment data - which excludes cash transitions,

likely used by low-income users - to study access to services. In addition, they note
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that their participants acknowledge the mediated and interpreted nature of data and

models: they actively altered the data models in light of information about the software

platforms which afforded them, as well as the goals, preferences and expertise of the

customer of their data products.

In sum, Borges Rey (2017) highlights the challenges associated with reflecting both

on computational data analysis process and subject area, whereas Neff et al. (2017)

emphasize the reflexive nature of data science. Chapter Seven empirically explores the

reflexivity of my participants.

2.13 Mapping and Local Knowledge

As section 2.5 discussed, spaces are heterogeneous and co-constituted by diverse situated

practices. Using local knowledge during mapping is often seen as a way to diversify the

knowledge created through mapping, to ensure that maps capture local perspectives and

local knowledge rather than those of the mappers (Pain, 2004). For example, Sunderland

et al. (2012) used participatory mapping to study the situated determinants of health, by

eliciting residents’ local, sensory experiences using go-along interviews and community

art projects. Landström et al. (2011) recounts the example of a collaborative flood

modeling project. Scientists and local residents collaboratively developed models which

drew on residents’ experiential knowledge about local environmental problems and their

management. The scientists - who thought popular modeling methods restricted the

kinds of solutions that could be explored - were interested to co-produce flood models

with local residents. Over the course of the collaboration, scientists changed modeling

methods to explore the priorities and solutions proposed by local residents - the use

of multiple upstream dams - for which their original modeling method could not account.

In contrast with the above examples, the urban data analysts Taylor and Richter (2015)

studied work as part of New York City’s data analytics team (MODA) and collaborate

with other city departments less with the aim to diversify knowledge about places, but

rather to validate models and disseminate their findings. For example, the MODA team

worked with the city’s fire inspectors to validate a predictive model about fire risk.

Chapter Eight explores how my participants who study ’specific locations’ - such as

specific cities - use local knowledge as part of their geosocial research.
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Altogether, this chapter reviewed literature that informs my research questions and

mixed-methods study design. I outlined a brief overview of geosocial research in light

of geography’s history, and the divergence between STS and scientometrics that this

project’s mixed-methods approach discussed in the next chapter combines.



Chapter 3

Methodology

This chapter discusses the project’s methodology. I conceptualise geosocial research as

a case study which can help explore how different approaches to computational social

research develop. I study geosocial research using interviews, participant observation and

scientometrics, all informed by STS concepts. I conducted semi-structured interviews

with 19 geosocial researchers, participant observation at a 10-day long geosocial research

summer school, and scientometrics, including statistical and visual computational data

analyses. In addition, I learned computer programming and computational data analysis

as part of this project, which helped me better understand interviewees’ experiences,

and build trust and credibility with them during interviews.

The chapter is structured as follows. Section 3.1 discusses how I developed this

case study about geosocial research, combining interview analysis and scientometrics

informed by STS. It also reflects on my ’positioning’ in relation to the geosocial

research ’field site’. Section 3.2 outlines the data collection process, including the way

I delineated the interview and scientometric fields. Section 3.3 presents my interview

analysis method and scientometric data analysis infrastructure, including the software

I used and the disciplinary classification method I developed that underpins most

scientometric analyses. Section 3.4 discusses the details of all scientometric analyses

used in Chapters 4-7 and the way I combined them with interviews. Section 3.5 outlines

ethical considerations, and finally, section 3.6 reflects on the limitations of the project’s

methodological framework.

54
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3.1 The Mixed Methods Case Study Approach

This section discusses how I created geosocial research as a case study and a ’field

site’ to explore computational social science using interviews, scientometrics as well

as methodological insights from STS and ethnography. As section 3.1.1 explains,

exploring geosocial research requires me to define it as a ’field’ that I can study.

Given the project’s mixed methods approach, I discuss the way I constructed this

’field site’ in light of STS and social network analysis literatures. Then, section 3.1.2

reflects on my accountabilities and positioning as an STS PhD student researching

geosocial scholarship. Finally, section 3.1.3 presents the temporality of combining STS,

interviews, participant observation and scientometrics as part of this project, yielding

the mixed-methods case study.

3.1.1 Constructing the Field

Case studies are popular in STS and can serve various purposes, such as being ends in

and of themselves, or serving as illustrations or “building blocks for theory” (Beaulieu,

Scharnhorst, and Wouters, 2007, p. 2). Although some ‘general’ guidance is available

for constructing social scientific case studies (e.g. Starke, 1978), STS research has

demonstrated that the case study method is, to a large extent, discipline specific.

STS has often used case studies to demonstrate the disunity of science, as well as the

diversity of technology’s origins, uses and users (Beaulieu, Scharnhorst, and Wouters,

2007). In line with this intellectual tradition, I study the case of geosocial research to

contribute to existing efforts which seek to illustrate the diversity of ‘data-intensive’,

computational or digital (social) science (cf. Cambrosio, Keating, and Mogoutov, 2004;

Marres, 2017b; Beaulieu and Simakova, 2006). This line of research aims to counter

efforts that reify definitions of and values associated with computational social research,

such as definitions of ’computational social science’ as a field which focuses on the

statistical analysis and modelling of aggregate data (e.g. Lazer et al., 2009).

In line with ethnographic research, I reflect on my own role in creating geosocial

research as a ’field site’ - thus actively bringing it into existence - (cf. Beaulieu, 2010),

and my ’positioning’ as I write my account of geosocial research (cf. Parker-Jenkins,

2018). The ’field site’ is anthropology’s archetypal research setting, where the researcher

can encounter those researched. I understand field demarcation as an active process:
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through analytical decisions, I bring the field of geosocial research into existence (cf.

Marcus, 1995; Beaulieu, 2010). Geosocial research is digitally mediated and distributed:

scholars across the globe conduct geosocial research through computational data analysis

with their computers. Marcus (1995) notes diverse strategies one can use to construct

multi-sited spaces ”through which the ethnographer traverses” (p. 105) when studying

distributed practices, such as following people, things (such as commodities, gifts or

art work), metaphors, stories, life histories or conflicts. Beaulieu (2010) argues that

to investigate digital practices - and to study scientific practices which cannot be

delineated with STS’ classical ’laboratory’ notion - the defining feature of ethnographic

work becomes co-presence rather than co-location, which can mean digitally mediated

and offline encounters alike. This brings attention to modes of co-presence. In her

work with humanities scholars, Beaulieu (2010) attended lectures and participated in

mailing lists, supported by a unified online presence (blog and personal website) she set

up to communicate her ethnographic persona to achieve co-presence with her research

participants. I could have encountered and delineated the field of geosocial research

in many ways. I could have traced the journeys of geosocial data (cf. Bates, Lin, and

Goodale, 2016), spent longer periods at institutions which conduct geosocial research (cf.

Levin, 2014), traced the history of computational infrastructures (cf. Edwards, 2010;

Bowker, 2005) or computational methods (cf. MacKenzie, 2017) geosocial scholars use.

Each of these modes of encounter highlight diverse aspects of computational research.

Due to my interest in how diverse approaches to geosocial research develop and differ,

and given that geosocial scholars spend a considerable amount of time conducting

data analysis with their computer, I did not seek the ’field of geosocial research’

as a physical space to visit - as the archetypal ’laboratory’ field site in STS or the

traditional anthropological field site. Rather, I conceptualised geosocial research as

a computationally mediated research practice, where computational infrastructure

co-constitute the ’field site’. To encounter this field, and given my interest in combining

STS and scientometrics, I explored computational infrastructures my interviewees use -

mostly Python and R programming, GIS and databases - as well as reading interviewees’

papers and interviewing them. I interviewed scholars based in six countries on three

continents of diverse seniority, ranging from PhD students to full professors. Some

of the PhD students I interviewed worked alone - a requirement of PhD research at

their institutions. Other interviewees conducted geosocial research as part of teams.

Regardless of their affiliation, my interviewees spend considerable amount of time in
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front of their (often multiple) computer screens using a range of software that allow

them to access and analyse geosocial data, highlighting the importance of exploring both

their narratives and the computational infrastructures that constitute geosocial research.

Social network analysts have also reflected on approaches to delineating social networks

- the archetypical units of social network analysis. Laumann, Marsden, and Prensky

(1983) differentiate between ‘realist’ and ‘nominalist’ approaches to defining the

boundaries of networks. In the first instance, the analyst assumes that “a social entity

exists as a collectively shared subjective awareness of all, or at least most, of the actors

who are members” (p. 65). ‘Nominalist’ approaches, on the other hand, pose network

boundaries that are “analytically relative to the purposes of an investigator, and this

network closure has no ontologically independent status.” (p. 66). Even though, as the

authors argue, many studies do not fall neatly into any of these categories, considering

this distinction has methodological significance. Scholars can become part of my

geosocial field if they use geosocial data for academic research. Similar to Cambrosio,

Bourret, et al.’s (2014) suggestion to interrogate the sociological significance of network

clusters, using mixed methods, this project reflects on the extent to which the ‘field’ can

be understood as ’a community’ or set of communities.

3.1.2 Concurrent Accountabilities and Subject Positioning

I developed this thesis, co-sponsored by the Horizon Digital Economy Centre for

Doctoral Training (Horizon CDT) and Ordnance Survey. Next, I discuss how my

professional history and relationship to sponsors shaped my research positionality, and

my concurrent accountabilities to the STS and geography communities.

This project was funded by the Horizon CDT, a doctoral training program that

sought students interested in digital technology from diverse disciplinary backgrounds

- including arts, social sciences, natural sciences, computer science and engineering.

Our program involved a first year of taught modules, with an emphasis on group

work. Students were required to assemble a supervisory team with at least two

scholars from two different departments within the university. After the first year,

students joined the departments of their lead supervisor - in my case, the School of

Sociology and Social Policy - and the Institute for Science and Society. Throughout

my doctoral studies, to my knowledge, I was the only person to conduct computational
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data analysis among sociology and social policy PhD students within my School. At

times fellow PhD students jokingly remarked on the ’weird’ things they saw on my

computer screen when I worked at my office - computer scripts that looked different

from what they were used to seeing - highlighting the strangeness of computer pro-

gramming not only to my research group, but to the student body of the School of

Sociology and Social Policy in general. In the second, third and fourth year of my PhD

studies, I assisted with the seminars of two quantitative research methods modules.

These were the same modules that most of my colleagues who looked for teaching

experience hoped to avoid. Similar to some of Balaban’s (2018) interviewees, and

in line with Osborne (2013), without a strong knowledge of either of the disciplines

I was working with, I often felt homeless and wondered if I would fall between the

cracks of institutions. I lacked opportunities to talk with scholars using similar methods

that I might have had in a department with a more conducive methodological orientation.

In search for a community which shared my computational or scientometric research

interests, in the summer of 2018 I conducted a research visit at the Department for Data

and Network Science (DNDS) at Central European University (CEU). Meeting PhD

students who also conduct computational social research was a formative experience that

helped me feel confident in my interests and validate my journey learning to code. At the

same time, the STS aspect of my work was largely alien to the DNDS community. In late

2018 I also met members of the Science and Evaluation Studies group at the Centre for

Science and Technology Studies (CWTS) at Leiden University who expressed interest in

my research. This gave me confidence in my interest to combine STS and science studies.

My experiences conducting research at the intersection of the interpretivist tradition of

Social Studies of Science and scientometric computational data analysis were also shaped

by my background. Prior to this research, I completed BA and MSc degrees in Psychol-

ogy and conducted research in human factors, theoretical cognitive science and marketing

strategy. I tangentially encountered Bruno Latour’s work through exploring literature

adjacent to my Masters thesis which focused on enactive, embodied, ecological and

embedded ’cognition’ frameworks (informed by my interest in the history of psychology

(e.g. Pléh, 2010) and ’cultural’ or ’contextual’ approaches (e.g. Engeström, Miettinen,

and Punamäki, 1999). Reading Bruno Latour’s work sparked my interest in STS, but

when I started my PhD I was a novice to social science research, STS, computational

data analysis and scientometrics. Thus, I was not aware of the long-standing division
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between STS and scientometrics. However, my experiences reflect their institutional

separation. I found it challenging to develop a skill set which combines computational

data analysis and interpretative STS research. For the former, I used material avail-

able due to computations’ commercial relevance and the open source software movement.

Given that my efforts to learn programming served two purposes - encountering the

geosocial research field site and conducting scientometrics for this project - throughout

the project there was a tension between the amount of time I spent engaging with

geosocial research infrastructures compared to developing the mixed methods aspect

of this thesis. For the former, I explored social media platforms’ APIs, the QGIS

software, independently, as well as by auditing a module about spatial computing at

the University of Nottingham and attending a relevant summer school in the first

year of my PhD studies. As my research progressed, I spent more and more time

working on scientometrics, and less time exploring geosocial data infrastructures. The

scientometric analyses this thesis presents result from iterative work. Mastering both

the technical and conceptual aspects of scientometrics took considerable amount of time,

also due to the relative lack of studies that combine STS and scientometrics which can

provide templates. A significant body of computational STS literature was published

in 2019-2020, towards the end of my research. At the same time, as section 3.3.1 will

discuss, my programming skills and journey learning to code myself helped me establish

trust and credibility with interviewees.

My concurrent accountabilities to the geography and STS communities (cf. Beaulieu,

2010) were a also a core part of my ’positioning’ as a researcher. As an STS scholar,

I concurrently seek to trace and facilitate diverse computational data practices, de-

essentialise singular notions of ’computational knowledge’, as well as empathise with all

my interviewees - some of whom benefit from funding associated with discourse about

the power of ’computational social science’. I am also part of the academic job market,

and at the time of writing my dissertation, I felt that my personal interests in conducting

mixed methods research resonated with funding opportunities. I attempted to balance

these accountabilities towards the STS community and my interviewees by including

findings in my thesis that I feel illustrate the nuances of my interviewees’ perspectives

and practices, showcase the diversity of geosocial research and (unrecognised) similarities

among participants’ work from diverse disciplines, whilst also highlighting interviewees’

work to create differences that matter to them.
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My accountabilities towards the geography community were also brought forth through

my relationship with Ordnance Survey (OS). As a PhD candidate co-sponsored by

the Horizon CDT and OS, I had to develop a project approved by both sponsors.

Throughout my studies, I remained accountable to the geography community through

OS, and negotiated OS’ focus on geographic analyses and my thesis’ STS focus. I

completed a 3-month internship at OS (studying organisational change), attended

events at the OS headquarter where PhD students showcased their work, and kept

in touch with my OS based supervisor. When I presented my work for OS, I mainly

discussed geography-relevant aspects. This provided opportunities to reflect on how my

interviewees’ research highlights aspects of spaces. Next, I discuss the iterative nature

of my mixed-methods approach.

3.1.3 Temporality of Mixed Methods Analysis

To develop this mixed methods case study, I combined conceptual STS work, field

research, interviews and scientometrics iteratively. In the first year of my PhD studies

(2015-2016), in addition to completing the taught element of my PhD program, I started

to review literature about geosocial research and identify the controversies outlined in

section 2.2. I also audited two geography modules at the University of Nottingham - one

about GIScience and one about theoretical human geography - and attended a geosocial

research summer school in the summer 2016 as a participant. These experiences

helped me develop tacit knowledge and familiarise myself with current debates within

geography, and existing approaches to geosocial research.

In the second year of my PhD studies (2016-2017), I focused on reviewing STS literature

and developing the first research proposal. In summer 2017, I conducted participant

observation at a 10 day-long geosocial data analysis summer school.

In the third year of my PhD studies (2017-2018) I started to teach at the University

of Nottingham, learn computer programming and explore scientometric data. I also

conducted the research visit at CEU, and started to interview geosocial scholars. I

completed the interviews in the fourth year of my PhD studies (2018-2019). That

year, in addition to teaching, I also started interview analysis and further developed

the scientometric code infrastructure. Between the autumn of 2017 and spring of 2020
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I also had increasing informal caring responsibilities due to a close family member’s

terminal illness, which required me to conduct interviews and research whilst remaining

internationally mobile.

Over the course of the 2019-2020 academic year I continued to iteratively develop the

conceptual framework of the thesis, interview analysis and scientometrics. Iteration

allowed me to develop the mixed methods approach of this project, such reflecting

on the units of analysis identified via interviews ad scientometrics. STS studies

demonstrated early on that scientific practice cuts across communities associated with

scientific specialities (e.g. Knorr-Cetina, 1982) and reaches beyond the laboratories and

communities (e.g. Latour, 1987). As section 3.6 will discuss, scientometric data affords

a partial perspective on these relational practices and may obscure units which account

for scientists’ practices. Iterative data analysis allowed me to reflect on the relevance of

scientometric units of analyses.

3.2 Data Collection and Field Delineation

This section discusses my data collection and field delineation methods. In the first in-

stance, I delineated the scientometric and interview fields largely independently. I did

not limit my scientometric analyses to the scientific output of my interviewees, their

research groups, or the social media platforms that they collect geosocial data from. I

also did not identify interviewees based on their position in the scientometric field, for

example, by selecting scholars in the centre or periphery of the scientometric geosocial

field, or scholars with more or less publications than average. Although these methods

would ensure a direct link between the two fields, they also would limit my study to a

specific subset of geosocial research. Instead, both scientometrically and with interviews

I sought to capture geosocial research performed by scholars in diverse disciplines, using

diverse social media data, whilst also seeking participants I could interview in person or

with whom I felt there was enough common ground (e.g. shared cultural background,

overlap in research interests) that I assumed I could establish trust and credibility via

phone interviews. The relative ease of identifying social media platforms which afford

geosocial data and the stability of their names (e.g. Twitter, Instagram, Panoramio etc.)

helped ensure the relevance of both the interview and scientometric fields to geosocial

research, without directly aligning them. I analytically account for the partial misalign-
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ment between the two fields in two ways. In some cases, I benefit from the misalignment

by highlighting the partial perspective provided by each method. In other instances, I

conduct scientometric analysis on a subset of the scientometric data, further delineating

units of analysis identified through interviews.

3.2.1 Interviewing and Participant Observation

I identified interviewees or in other words, participants through literature review

and snowball sampling. In the thesis, I use the term ’scholar’ to refer to geosocial

researchers I did not interview. I conducted 18 semi-structured interviews with 19

interviewees (I interviewed two participants, David and Daniel as part of one interview

session). Interviews lasted between 50 min to 2.5 hours. I transcribed interviews in

full, yielding 206520 words. I conducted 11 interviews in person and 7 interviews over

the phone between June 2018 and May 2019. In addition, I conducted participant

observation at a 10 day-long geosocial research summer school in 2017. Summer school

participants included students from diverse disciplines and a few more senior scholars

leading the event, interested in studying cities using social media data. Participants

were divided into groups of 4-6. During the event, I wrote up field notes every evening

(and sometimes during the day). My field notes documented steps of summer school

participants’ knowledge creation process, as well as my reflections.

I identified three main topics through participant observation. Firstly, I noted the

importance of local knowledge for the geosocial research at the summer school. The

summer school explicitly aimed to study a city ’remotely’ using social media posts. An

optional one-day field trip was scheduled in the second half of the 10 day-long event (after

groups have already decided their research questions and methods) as an opportunity

for break and team building. However, all groups had at least one participant who was

familiar with the studied city. Although summer school organisers and participants

often discussed the ’remote mapping’ social media posts allowed, as section 8.3 will

discuss, I observed that locals guided their groups through the development of research

questions and interpretation of findings.

Secondly, I observed the diverse expertise required to facilitate interdisciplinary group

work and potential differences in the rhythm of work. Fluent users of mapping software

(QGIS) or data visualisation tools could build dialogues with participants with less

technical knowledge by quickly producing results. However, tasks that required less
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readily available solutions - or when technical participants’ enacted their interest to

experiment with new methods - could ’slow down’ the research process and leave scholars

with non-technical focus without tasks for periods.

Thirdly, I noted the effort required to develop research questions suitable for geosocial

research and how theory can guide this process. Each group had to present their

project proposal after two days. The summer school organisers gave feedback on the

presentations. Their feedback often focused on aiding groups to formulate new questions

or alter their existing questions with respect to the affordances of social media data.

They also guided participants to focus their attention to relationship between social

media data and the built environment, informed by their theoretical framework.

I used my field notes mostly as background knowledge, rather than explicitly citing it

(except for the insights about local knowledge). Fieldwork also informed my interviews

by sensitising me to the explore the rhythm and role of collaborations, exploring how

interviewees from different disciplines perceive the affordances of geosocial data. Next, I

discuss my interview approach and interviewees.

Table 3.1 lists participants’ pseudonyms, their disciplinary affiliation and academic

seniority, as well as collaboration relationships among them (’Group’). The first

letter of pseudonyms signal Groups: interviewees in a group share the first letter of

their pseudonyms. Participants in Groups A-G have a predominantly social science

background. Henry has extensive training in both social science and computer science,

and interviewees in groups H-M have predominantly technical background. Anne and

Luke work largely alone - required by their PhD programs - whilst others, such as Elias

and Henry work collaboratively but are the only ones I interviewed from their academic

’group’, because of their focus on geosocial data or availability and time constraints.

I conducted interviews informed by my interviewees practices in two ways. Firstly,

similar to Laudel and Gläser’s (2007) suggestion to interview scientists informed by

their work, before interviews, I read interviewees’ papers about geosocial research and

customised the interview questions outlined in Appendix A in light of their research -

especially about methodological choices interviewees made or collaboration arrangements

they were part of. This helped me establish common ground with participants, and

discuss the research process and their values associated with analytical choices and
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collaborations in more detail. Secondly, my computational skills and experience in

geosocial research gained through the summer school shaped the interview process.

The extent to which the sociologist of science should have expertise in the knowledge

practices they investigate has been debated since the inception of social studies of science

(Collins, 2004). An early example of a still-influential ethnographic laboratory study

by Latour and Woolgar ([1979] 1986) depicts the prototypical science ethnographer as

completely alien to the specifics of the research area. However, Latour was employed as

a part-time technician at the lab. Moreover, the authors conducted an extensive analysis

of relevant literature, and conducted fieldwork for almost two years, which allowed them

to acquire a good understanding of the research speciality. Following science studies

ethnographies, such as Lépinay (2011), Levin (2014) and Nelson (2018) were conducted

by analysts with (varying degrees of) training in the research fields they investigate (cf.

Collins, 2004). Similarly, ethnomethodological participant observation posits that the

researcher should have ‘vulgar competency’ in the observed practices (Lynch, 1993).

However, also highlighting the importance of the ‘anthropological strangeness’ (Bowker,

2010), this research tradition stresses the importance of maintaining an open mind about

how research is conducted in practice, being able to question assumptions, practices that

scientists take for granted, and understand motives and affects that constitute scientific

practice beyond scientists’ narratives.

As section 3.1 discussed, I obtained competency in the computational social research

through attending geosocial and GIS data analysis courses and through conducting

scientometric data analysis. My computational expertise and my experiences learning

to code helped me build trust and demonstrate credibility with interviewees, and study

the technical aspects of geotagged social media data analysis. For example, Mike shared

technical details of their work after I mentioned my computational work. Sharing details

about my journey with learning to do programming also allowed me to gain insight into

Chase’s and Colin’s computational work. In addition, I recruited interviewees, including

Chase, Colin, Isaac, Kevin, Jane and Miles through connections I made at CEU DNDS.

At the same time, I can maintain some level of ‘anthropological strangeness’ with

the help of STS readings, because I am a novice computational analyst, and because

scientometric data analysis considerably differs from geosocial research. Scientometric

data providers offer standardised textual and numeric data about scientific practices,

in contrast to geosocial data’s multimodality (e.g. text, geotag, photos, hyperlinks,



3.2. Data Collection and Field Delineation 65

granular time stamp) and links to everyday practices.
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Participant 
Pseudonym 

(Disciplinary) Affiliation Group 

Anne Interdisciplinary  / Anthropology, 
Human Geography PhD Candidate 

A 

Ben Human Geography Professor B 

Brian Human Geography Postdoctoral 
Researcher 

B 

Bruno Human Geography Postdoctoral 
Researcher 

B 

Chase Economic Geography Scholar C 

Colin Sociology Scholar C 

David Sociology Postdoctoral Researcher D 

Daniel Sociology Scholar D 

Elias Cultural Studies Early Career Scholar E 

Frank Urban Studies Early Career Scholar F 

Gary Ecology PhD Candidate G 

Henry Computational Social Science Scholar H 

Isaac Applied Mathematics PhD student I 

Jane Physics PhD Candidate J 

Josh Physics Postdoctoral Researcher J 

Kevin Physics Professor K 

Luke Interdisciplinary / Computational 
Geography PhD Candidate 

L 

Miles Applied Physics PhD Candidate M 

Mike Computer Science Scholar M 

 

Table 3.1: Participants
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3.2.2 Scientometric Field Delineation

This section discusses my scientometric field delineation method. I refer to geosocial

research related publications matched my scientometric field delineation as geosocial

papers or citing papers, and the papers they cite as cited papers. My field delineation

yielded 2762 geosocial papers. I excluded all papers matched by my search published

before 2008, yielding 2749 geosocial papers. I chose 2008 as a cutoff year because most

of the social media platforms I included in my field delineation criteria were launched in

2005-2006. My publication year filter accounts for publication time lag.

Scientometrics have been used to explore diverse units of analyses. Some focus on

modelling ‘universal’ characteristics of scientific work, such as the structure of scientific

collaboration networks (Newman, 2001) and ’scientific impact’ over time (Sinatra

et al., 2016) across diverse disciplines. Other studies focus on specific disciplines (e.g.

‘chemistry’, ‘sociology’), sub-disciplines or research areas, both of which “refer to larger,

bureaucratized units of teaching and academic employment” or “research specialties”

– “knowledge base generated collectively by a self-organizing, loosely coordinated com-

munity of researchers” (Velden and Lagoze, 2013, p. 2426). This project understands

the analysis of geotagged social media data as a research specialty. Identifying the

(scientometric) boundaries of sub-disciplines or research specialities can be challenging.

If a study focuses on the activities of a well-defined group of scholars, literature published

by them can be identified using their names as keywords. Analysis can also focus on

specific journals (e.g. Wylie et al., 2018), or groups identified by publication based

classification (Waltman and van Eck, 2012). However, the constant change in which

journals may define specific fields, journals’ wide scope and the scattered nature of

specialised literature across journals may result in including loosely related articles, and

the excluding relevant material (Aksnes, Olsen, and Seglen, 1999; Huang, Notten, and

Rasters, 2011). Lexical search can help identify papers whose abstracts and titles match

select keywords (e.g. Munoz-Ecija et al., 2013). Approaches can also be combined (Zitt,

2015).

I used a simple lexical search to identify geosocial research related publications by

matching the names of social media platforms and geography related keywords outlined

in table 3.2. Unlike specialist fields such as nanoscience and nanotechnology (Munoz-

Ecija et al., 2013), geosocial research does not have specialist journals associated with

it, and as outlined above, I did not wish to limit my scientometric field to papers of
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my interviewees. I downloaded geosocial research related publications from Clarivate’s

Web of Science (WoS), using the WoS database owned by the Centre for Science and

Technology Studies (CWTS), Leiden University. I chose the WoS database because of

its extensive coverage, although it is important to note that WoS over represents the

the natural sciences and engineering, and under represents the social sciences, arts and

humanities (Mongeon and Paul-Hus, 2016). I collected the data used in this thesis

between the 13th of February 2020 and the 20th of May, 2020. I use data about citing

papers published 2008-2019 inclusive. I downloaded all papers whose title, abstract or

author keywords field matched the Boolean search expressions Table 3.2 schematically

depicts. I selected all citing papers which contained any of the social media related

search terms in the first row AND any of the the geography related keywords in the

third row of Table 3.2. I identified the set of keywords iteratively based on information I

gathered from reviewing literature about geosocial research and interviews. I omitted the

search-terms ‘location’ and ‘space’ because they have general meaning beyond geography.

’”social media”’ ‘twitter’ ‘instagram’ ’flickr’ ’panoramio’ ’foursquare’ ’tripadvisor’ ’yelp’

AND

’city’ ‘geography’ ‘place’ ’geotagged’ ’urban’ ’spatial’ ’GIS’ ’GIScience’ ‘geeoreferenced’

Table 3.2: Field delineation searchterms
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I used the following information about geosocial papers for my analyses:

1. WoS’ unique publication identifier,

2. title,

3. abstract,

4. author keywords,

5. keywords plus keywords,

6. publication year,

7. source title (title of journal which published paper),

8. WoS ’subject category’ name: WoS categorises journals into at least one of 254

Subject Categories Clarivate (2020) based on citation analysis and journals’ titles

(Zitt, 2015). These journal level Subject Categories are assigned to papers,

9. author name identifier,

10. WoS’ unique publication identifier of cited references

I collected the following information about the cited references of the geosocial papers:

1. WoS’ unique publication identifier of cited references,

2. source title identifier,

3. Subject Category name,

4. author name identifier.

3.3 Data Analysis Approach

This section discusses the project’s data analysis approach, including thematic analysis

and the scientometric data analysis infrastructure. Section 3.3.1 discusses my approach

to thematic analysis, which combined inductive and deductive elements. Section 3.3.2

explains the scientometric data analysis infrastructure, including the software I used

and my disciplinary categorisation method that underpins diverse scientometric analyses.
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3.3.1 Thematic Analysis of Interviews

I analysed the interviews using thematic analysis (TA). Braun and Clarke (2012) defines

TA as a method ”for systematically identifying, organizing, and offering insight into

patterns of meaning” or common themes across a data set, which are meaningful in

relation to the research question (p. 57). The authors note that TA is flexible rather

than prescriptive. It requires the researcher to make analytical choices which reflect

their theoretical and epistemological orientation - for example, researchers can perform

TA more inductively or deductively.

Similar to Braun and Clarke (2012) and Balaban (2018), my TA approach is both

inductive and deductive. Both the data collection and data analysis had inductive

aspects. The loose structure of the semi-structured interviews allowed participants to

shape the direction of the interviews, which helped me collect data that reflected their

experiences. I analysed data inductively because as section 2.3 explained, I sought

theoretical concepts that helped identify themes which reflected interviewees’ relational

practices. As section 2.3 explained, I constructed the themes and analytical categories

introduced in Part III of the literature review by iteratively coding interviews and

reading STS literature.

At the same time, my data collection and data analysis were deductive. As Winthereik

(2019) argues, the concepts STS scholars use become part of their ”empirical-material”

world, and they shape how the researcher ”follows” actors of knowledge practices.

The framework and concepts about scientific practice, digital scholarship, spaces and

cartography outlined in sections 2.3 - 2.5 - and broader readings in STS and human ge-

ography sensitised my to potential topics of interest. They informed my data collection,

interview questions and data analysis. Although the relational framework to scientific

practice outlined in section 2.3 is relatively broad, as the Research Questions show, I

focused my analysis on relational practices that I assumed help scholars differentiate

approaches to geosocial research, I sought comparative knowledge about approaches and

I kept reflecting on possibilities to study types of relational practices scientometrically.

As a result, I identified diverse themes (relational practices), rather than exploring fewer

themes or practices in depth. Alternatively, I could have focused my interview analysis

around theories of identity work (focusing on self perceived identity rather than ANT

inspired conceptualisation of ’performed identity’ (Elgaard Jensen, 2017), more similar

to my study’s focus on relational practices) and definitions of interdisciplinary research
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- both prominent topics discussed by my participants.

I analysed interviews iteratively. Firstly, transcribing them helped familiarise myself

with their content. Secondly, I started to code the transcripts in NVivo, identify-

ing themes of potential interest. While NVivo helped me develop initial themes, I

stopped using NVivo after an initial, high level coding of the interviews. Rather, I

developed the finer grained interview analysis and interpretations as I iteratively wrote

and revised the thesis draft, and re-read relevant sections of the interviews in the process.

I identified themes in interviewees’ narratives in four main ways. Firstly, I identified

practices that scholars from the majority of research groups mentioned. For example,

in Chapter Eight I will argue that interviewees from diverse disciplines use local

knowledge when studying specific locations with geosocial data. I aim to describe the

ways interviewees perform these practices in detail. For example, local knowledge helps

interviewees in diverse ways: in some cases, it helps interviewees critically assess data

patterns they find in light of local experiences. In other instances, local knowledge helps

interviewees (quickly) interpret their computational findings.

Secondly, I compared interviewees’ narratives who I assume develop distinct geosocial

research approaches. For example, in Chapter Seven I will argue that technical partici-

pants reflect on their analytical decisions and data quality mainly in computational and

demographic terms, whereas social scientist participants reflect on them in experiential

and historic terms.

Thirdly, I identified themes that interviewees from a subset of the groups mention. For

example, Chapter Six will discuss social scientist interviewees’ efforts to differentiate

their geosocial research from approaches informed by ’computational social science’ and

GIScience. I did not find comparable themes in the narratives of technical interviewees.

Finally, I identified ’outliers’ - opinions that differ from the rest. For example, Josh -

a physicist interviewee - stated that local knowledge about the country their geosocial

research explored was not necessary for the success of their analysis. This contradicts

other interviewees’ narratives discussed in Chapter Eight, who highlight the importance

of local knowledge for geosocial research. This difference in opinion illustrates that the

modularity of computational analysis enables scholars to participate to sub-tasks without
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participating in the entire geosocial research process, highlighting the importance of

interviewing multiple scholars from collaborative projects1.

3.3.2 Scientometric Data Analysis Infrastructure

This project uses a range scientometric and network scientific techniques, such de-

scriptive statistics, co-authorship, bibliographic coupling and co-word network analyses

as well as community detection to explore geosocial research. This section discusses

the software used for scientometric data analyses, and the way I develop disciplinary

categorisation based on scientometrics.

I used a range of software. Although I initially downloaded scientometric data from

Scopus through its Application Programming Interface (API), the data included in the

thesis is based on CWTS’ WoS database which I later received access to and which

required less data cleaning. I accessed this using SQL. For the majority of the data

analysis tasks, I used the Python 3.7.4 programming language – in particular, the

packages pandas, numpy, re, networkx, igraph, seaborn and matplotlib – through the

Anaconda version 3 distribution, using the Spyder version 3 integrated development

environment (IDE). At the time of writing this thesis, Python is one of the most

popular all-purpose programming languages used for scientific research. Packages are

continuously developed and there is a growing user community. For the co-authorship

network analysis section will present, I used the R 3.6.2 implementation of the igraph

package (Csardi and Nepusz, 2006) using the RStudio Version 1.1.463 IDE.

I used the VOSviewer 1.6.15 software (van Eck and Waltman, 2010) for the term

co-occurrence maps presented in Chapters Seven and Eight, and to identify noun

phrases in the abstracts and titles of papers used for the analysis described in section

3.4.6. VOSviewer 1.6.15 affords analysing files obtained from major scientometric sites,

including WoS. Importantly, it allows importing and exporting data formatted as tab

delimited .txt files. I used this functionality to develop iterative workflows. I loaded

scientometric data into VOSviewer to extract noun phrases from the titles and abstracts

of papers, and saved the .txt files VOSviewer created. I further analysed these in Python

- to select subsets of data and calculate metrices - and Excel to aid the thematic analysis

described in section 3.4.6). Finally, I visualised the amended networks with VOSviewer.

1Due to space limitations, the thesis will not discuss this finding in detail.
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Finally, I used Gephi 0.9.2 (Bastian, Heymann, and Jacomy, 2009), VOSviewer 1.6.15

(van Eck and Waltman, 2010) and igraph’s R 3.6.2 implementation (Csardi and Nepusz,

2006) for network visualisation. I visualised the journal author-bibliographic coupling

network discussed in section 6.3 with Gephi. I visualised the term co-occurrence

networks in Chapters Seven and Eight with VOSviewer, and used the interactive,

zoom-able maps the VOSviewer user interface affords for the visual network analyses. I

used igraph to visualise the heterogeneous network constructed from author-keywords

discussed in section 8.2.

3.3.2.1 VOSviewer Noun Phrase Co-occurrence Network Maps

This section discusses how I extracted noun phrases from the abstracts and titles of

papers using VOSviewer 1.6.15 (van Eck and Waltman, 2010) for the analyses described

in sections 3.4.6, 3.4.7, 3.4.8, 3.4.3 and 3.4.9, presented in Chapters Seven and Eight.

VOSviewer can extract noun phrases from the abstracts and titles of papers downloaded

from scientometric databases. I use words ’noun phrase’ and ’term’ interchangeably

to refer to noun phrases VOSviewer identifies. As the VOSviewer manual explains,

”VOSviewer defines a noun phrase as a sequence of one or more consecutive words

within a sentence such that the last word in the sequence is a noun and each of the other

words is either a noun or an adjective. [...] [It] considers only the longest possible noun

phrases that can be found in a sentence” (for more detail, see van Eck and Waltmann,

2020, p. 35 - 36).

VOSviewer also allows the user to filter the noun phrases it identifies based on the

number of times they occur and their ’relevance score’, before term-networks are created.

The latter helps exclude ’generic’ terms which occur in all papers in the dataset, such as

’study’, ’paper’, ’result’ etc. VOSviewer calculates the relevance score by comparing the

distribution of each noun phrase over all noun phrases with the ”overall distribution of

co-occurrences over noun phrases. The method assumes that for ’general’ noun phrases

the two distributions are similar. In contrast, terms with high relevance score co-occur

with a subset of all noun phrases more often, thus, the two distributions differ. (van Eck

and Waltman, n.d.). The VOSviewer clustering algorithm groups noun phrases which

often co-occur together, identifying clusters in term-maps. The colors of nodes signal
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the clusters they belong to. VOSviewer creates weighted term co-occurrence networks:

The weighted edges signal the number of times pairs of noun phrases co-occur. The

VOSviewer user interface allows users to filter edges based on edge weight values.

3.3.2.2 Disciplinary Categorisation

The majority of scientometric analyses presented in Chapters 4-7 categorise geosocial

papers according to disciplines. This section discusses my discipline categorisation

method. I categorised papers into Broad Disciplinary Categories in two steps, based

on the 254 WoS Subject Categories mentioned in section 3.2.2. Geosocial papers were

assigned a total of 193 types of Subject Categories.

Firstly, I re-categorised the WoS Subject Categories into the ’Disciplinary Categories’

depicted in Table 3.3. The column ’Search Terms’ depicts the a search terms I used to

identify Subject Categories relevant to each Disciplinary Category. I categorised geoso-

cial papers into the Disciplinary Categories if their Subject Categories contained any of

the search terms in the ’Search Terms’ column. Using this categorisation scheme, each

citing paper is assigned one or more Disciplinary Categories, depending on the number

of Subject Categories associated with them. For example, a paper can be assigned

both the ’SOCIAL SCIENCE’ and ’COMPUTATIONAL’ Disciplinary Categories if

the journal that published them is assigned more than one Subject Categories, which

contain both the search terms ’computer’ (e.g. computer science) and ’urban’ (e.g.

urban planning). I developed the search terms iteratively, continuing the categorisation

process until all but three citing papers were assigned to at least one Disciplinary

Category. My categorisation excludes three papers which are only associated with

the Subject Category ’art’, because of the nature of my substring query. Using ’art’

as a substring search term - which matches the ’art’ Subject Category - would have

also matched the ’artificial intelligence’ Subject Category. This is a limitation of my

discipline categorisation method. The biases introduced by WoS’ selectivity likely have

a bigger impact on my findings that the omission of these 3 paper which only account

for 0.1% of all geosocial papers.
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Disciplinary Category Search Terms 

COMPUTATIONAL 

mathematics, engineering, computer, 
artificial, telecommunications, wireless, 
cybernetics, remote, statistics, physics, 

information, optics 

SOCIAL SCIENCE 

urban, hospitality, tourism, social, sociology, 
public, politic, area, education, linguistics, 
cultural, anthropology, communication, 

religion, criminology, ethnic, international, 
asian, folklore, archaeology, development 

studies, law 

MULTIDISCIPLINARY,  
INTERDISCIPLINARY 

multidisciplinary, interdisciplinary 

GEOGRAPHY geography 

PHYSICAL GEOGRAPHY “geography, physical” 

HUMAN GEOGRAPHY 

category developed using the 
‘GEOGRAPHY’ and ‘PHYSICAL 

GEOGRAPHY’ categories: all geography 
which is NOT physical geography 

HEALTH 

dietetics, nutrition, gynecology, paediatrics, 
obstetrics, pharmacology, pharmacy, clinical, 
psychiatry, immunology, medicine, urology, 

genetics, infectious, health, oncology, 
nursing, surgery, psychology, anesthesiology, 

substance, gastroenterology, hepatology, 
hematology,  cardiac, otorhinolaryngology, 

dermatology, respiratory,  audiology, 
gerontology, veterinary, sport,  anatomy, 
endocrinology, neurosciences, pathology, 

rehabilitation, medical informatics, 
rheumatology 

BIOLOGY, ENVIRONMENT 

Environmental, zoology, biology, 
biochemical, ecology, meteorolgy, marine, 

geochemistry, water, oceanography, 
biodiversity, forestry, green, food, 

horticulture, entomology 

ARTS, HUMANITIES 
history, literature, medieval, philosophy, 
literary, womens, theatre, music, film, 

television 

ECONOMICS, BUSINESS, 
TRANSPORTATION 

economics, business, management, fuels, 
transportation, ergonomics, architecture 

 
 
 
 
 

Table 3.3: Disciplinary Categories and Search Terms
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Secondly, using the Disciplinary Categories outlined in Table 3.3, I further categorised

citing papers into Broad Disciplinary Categories in four ways - corresponding to Disci-

pline Categorisation Methods 1-4 depicted in Table 3.4. These yield the Broad Disci-

plinary Categories Chapters 4-7 use. As Table 3.4 shows, the only difference between the

four methods is the composition of the ’social’ Broad Disciplinary Category. I created

four alternatives for the ’social’ Broad Disciplinary Category to ensure that my results

hold constant when using different definitions of ’social science’. With Method 1, the

’social’ category includes citing papers published in journals assigned to the ’SOCIAL

SCIENCE’ Disciplinary Category in the first step. With Method 2, the ’social’ category

includes citing papers published in journals assigned to the ’SOCIAL SCIENCE’ and

’ARTS, HUMANITIES’ Disciplinary Categories in the first step. With Method 3, the

’social’ category includes citing papers published in journals assigned to the ’SOCIAL

SCIENCE’ and ’ECONOMICS, BUSINESS, TRANSPORTATION’ Disciplinary Cate-

gories in the first step. Finally, with Method 4, the ’social’ category includes citing pa-

pers published in journals assigned to the ’SOCIAL SCIENCE’, ’ARTS, HUMANITIES’

and ’ECONOMICS, BUSINESS, TRANSPORTATION’ Disciplinary Categories in the

first step. Thus, Method 1 uses the narrowest definition of ’social’ Broad Disciplinary

Category, and Method 4 uses the broadest definition of the ’social’ Broad Disciplinary

Category.
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Discipline 
Categorisa

tion 
Method 

Broad Disciplinary 
Category 

Description of 
Broad 

Disciplinary 
Category 

Composition of disciplinary 
category 

Method 1 ‘social’ Social science ‘SOCIAL SCIENCE’ 

Method 2 ‘social’ Social science 
‘SOCIAL SCIENCE’ + 

‘ARTS AND HUMANITIES’ 

Method 3 ‘social’ Social science 
‘SOCIAL SCIENCE’ + 

‘ECONOMICS, BUSINESS, 
TRANSPORTATION’ 

Method 4 ‘social’ Social science 

‘SOCIAL SCIENCE’ + 
‘ARTS AND HUMANITIES’ 

+ ‘ECONOMICS, 
BUSINESS, 

TRANSPORTATION’ 

All ‘computational’ 
Technical, 

computational 
sciences 

‘COMPUTATIONAL’ 

All ‘multi-inter’ 
Multidisciplinary, 
interdisciplinary 

‘MULTIDISCIPLINARY 
INTERDISCIPLINARY’ 

All ‘all_geo’ All geography ‘GEOGRAPHY’ 

All ‘phys_geo’ 
Physical 

geography 
‘PHYSICAL GEOGRAPHY’ 

All ‘non_phys_geo’ 
Human 

geography 
‘HUMAN GEOGRAPHY’ 

All ‘health’ Health sciences ‘HEALTH’ 

All ‘biol_env’ 
Biology and 

environmental 
sciences 

‘BIOLOGY, 
ENVIRONMENT’ 

All ‘arts_humanities’ 
Arts and 

humanities 
‘ARTS, HUMANITIES’ 

All ‘econ_bus_trans’ 

Economics, 
business and 

transportation 
research 

‘ECONOMICS, BUSINESS, 
TRANSPORTATION’ 

All ‘comp_soc’ 

Technical and 
social sciences 
(intersection 

between the two) 

‘SOCIAL’ + 
‘COMPUTATIONAL’ 

All ‘only_social’ 
Only social 

science 

‘SOCIAL SCIENCE’ + 
‘HUMAN GEOGRAPHY’ – 
all other disciplinary groups 

All ‘only_computational’ 
Only technical or 

computational 
sciences 

‘COMPUTATIONAL’ + 
‘PHYSICAL GEOGRAPHY’ 
– all other disciplinary groups 

 

Table 3.4: Broad Disciplinary Categories and Classification Methods
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Finally, a note on term use: in Chapters Four through Nine, I use the term ’social

science’ to refer to interpretive branches of social science, such as (critical) human

geography, STS, anthropology - cf. my interviewees with social science backgrounds. In

addition, I use the term ’computational social science’ in line with Lazer et al. (2009) to

refer to emerging field comprising the analysis of ’social’ digital traces by scholars with

background in technical and natural scientific disciplines, such as physics, mathematics

and engineering. Thus, my use of this term accounts for its politics (cf. Marres, 2017a).

3.4 Mixed Methods Analyses

This section discusses each scientometric analyses presented in Chapters 5-7 and their

relationship to interview analysis. While Chapter Two discussed the mixed-methods

analyses conceptually, this section discusses their methodological details. I present them

approximately in the order they appear the thesis and as a function of the research

questions they help explore. Figure 3.1 depicts each scientometric method with respect

to the research questions they help study. The colors indicate the type of method,

differentiating between statistical and visual network analyses, descriptive statistics as

well as methods that combine descriptive statistics and thematic analysis.

Firstly, I discuss three methods that help study practices that help differentiate

approaches to geosocial research (the First Research Question) used in Chapters Five,

Six and Eight. Section 3.4.1 presents the co-authorship network analysis I use to study

collaboration among geosocial scholars. Section 3.4.2 discusses the line graphs that

explore the disciplinary composition of geosocial research and, when combined with

interviews, geosocial scholars’ belonging to diverse research communities. Section 3.4.3

explains two heterogeneous network analyses methods that allow me to study how

computational methods mediate knowledge about spaces, a practice that shapes the

development of geosocial research approaches.

Secondly, I discuss two methods - used in Chapters Six, Seven and Eight - to identify

approaches to geosocial research to help explore the Second Research Question. Section

3.4.4 presents a temporal citation network analysis used in Chapter Six that helps me

identify two approaches - social and technical - first hypothesised through interview

analysis. Section 3.4.5 presents a static network clustering method I use to identify
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approaches to geosocial research inductively, using scientometrics, in Chapters Seven

and Eight.

Thirdly, I discuss four methods I use to compare approaches to geosocial research to

help study the Second Research Question. Section 3.4.5 discusses the bar charts I use to

explore the disciplinary composition of network clusters which I hypothesise correspond

to the scientometric footprint of geosocial research approaches. Section 3.4.6 presents

the combination of term-frequency inverse-document frequency analysis and thematic

analysis I use to compare the substantive foci of these two approaches in Chapter Seven.

Section 3.4.7 discusses how I study similarities between the scientometric footprint

of geosocial research approaches using the occurrence of shared terms. Section 3.4.8

presents a term co-occurrence network analysis (the ’modified ego networks’) method

I use to compare the ways social and technical approaches study spaces, and highlight

the construction of my scientometric analyses.

Finally, section 3.4.9 discusses how I explore differences in geosocial research using term

co-occurrence network analysis in Chapter Eight. As illustrated in the bottom right

box of figure 3.1, this helps compare approaches to geosocial research in new ways -

highlighting their diversity - and at the same time, illustrate the contingency of my

scientometric findings on the data analysis infrastructure.
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3.4.1 Co-authorship Network Analysis - Tracing Homogeneous

Associations

I analysed collaboration among geosocial scholars by combining interview analysis and

co-authorship network analysis. Through interview analysis, I studied participants’ mo-

tives for seeking collaborators, how they contribute to collaborations and the skill set of

their ideal collaborators. Scientometrically, I analysed the co-authorship network of all

geosocial papers. I created weighted co-authorship networks for four time periods - t1

= 2008 - 2013, t2 = 2008 - 2015, t3 = 2008 - 2017, t4 = 2008 - 2019 - where nodes are

individual authors, and the edges among them is a function of the number of papers they

co-authored. I first created a n X n matrix M where n = number of authors, and each

value in the matrix depicts the number of papers each pair of authors co-authored. Then,

I calculated the cosine similarity value for pairs of authors as explained in Equation (3.1)

as an indicator of their co-authorship relationship (cf. Glaser and Laudel, 2015; for a

discussion see Leydesdorff, 2008).

cosinesimilarity =
U · V
||U ||||V ||

=

∑n
i=1 UiVi√∑n

i=1 U
2
i

√∑n
i=1 V

2
i

(3.1)

where U and V are column vectors of matrix M - each representing the co-author

relations of an author -, and Ui and Vi are components of vectors U and V respectively.

Cosine similarity values range 0-1 and express the cosine of the angle between column

vectors in matrix M, thus quantifying the extent to which authors co-author papers in a

normalised way. The cosine similarity values provided the weight of the co-authorship

network edges.

I compared the modularity of the co-author network at each time point with the modu-

larity of random Erdős-Rényi graphs with equal number of nodes and edges. Network

modularity is a network structure metric which expresses the extent to which networks

are cohesive or to the contrary, divided or ’modular’. Quantitative network attributes,

such as modularity, transitivity and diameter depend on network size. Thus, unlike

many descriptive statistical indices, such as median or variance, network attributes

cannot be used to compare networks of different size. Thus, in the co-authorship analysis

and the analyses discussed in section 3.4.4, I compared the modularity of scientometric

networks with randomly generated networks with equal number of nodes and edges. The

Erdős-Rényi graph model provides a method to generate random networks. There are

two variants of it. In one version, edges among n nodes form randomly with probability
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p. In the other version, m number of edges form randomly among n nodes. I used the

second variant to generate random graphs whose number of nodes and edges equal to

the number of nodes and edges of the co-author networks for each time frame. I used the

second version of R igraph’s implementation of the Erdős-Rényi random graph model

(Csardi, n.d.[a]). I also controlled for edge weight by assigning the edge weight vec-

tor of the co-authorship networks to the edges of the random Erdős-Rényi random graphs.

In order to calculate the network’s modularity score, I first detected communities -

sets of nodes that are tightly connected with one another, and loosely connected to

nodes in the rest of the network - within the co-authorship network. For this analysis

I used R igraph’s fast and greedy community detection algorithm (Nepusz and Csardi,

n.d.) which implements Clauset, Newman, and Moore’s (2004) community detection

algorithm, suitable to detect communities in large networks. I then calculated the

modularity score using R igraph’s modularity function (Csardi, n.d.[b]) which calculates

how modular a graph is given division of a graph into subgraphs (clusters). Networks

with high modularity have dense connections among nodes within communities but

sparse connections among communities. I then compared to the modularity score of

each co-authorship network to that of 1000 randomly generated Erdős-Rényi graphs

with equal number of nodes and edges, controlled for edge weight.

3.4.2 Disciplinary Timelines of Geosocial Research

I explored disciplinary contributions to geosocial research. Through interviews, I studied

participants’ perception about the popularity of geosocial research in their disciplines.

Scientometrically, I studied the proportion of geosocial papers per Broad Disciplinary

Categories. I created three line graphs (discussed in Chapter Six) which depict the

percentage of geosocial papers associated with Broad Disciplinary Categories over time.

I use the line graphs in two ways. The line graphs presented in figures 6.2 and 6.1

help reflect on interviewees’ experiences about the popularity of geosocial research in

their disciplines. Both interviewees and the line graphs suggest the relative increase in

social scientific approaches to geosocial research. The line graph presented in figure 6.3

helps study similarities and differences between the composition of the ethnographic

and scientometric fields. For example, I find that while the scientometric field includes

health related geosocial research, none of my interviewees focused on health geosocial

research. Below I discuss the line graph method in more detail.
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All three line graphs presented in the thesis use the Discipline Categorisation Method

4 depicted in Table 3.4, - the broadest definition of the ’social’ Broad Disciplinary

Category. However, the observed trends hold using all Discipline Categorisation

Methods. The three line graphs calculate the cumulative percentage of citing papers

differently. I calculated cumulative percentage rather than raw percentage to signal the

composition of the geosocial field at each time point, but the patterns I identified hold

for raw percentages. Figure 6.1 - the first line graph presented in Chapter Six - depicts

the yearly cumulative percentage of geosocial papers with respect to all papers published

in the same journals in the same period, for each Broad Disciplinary Category between

2008 - 2019. In other words, it depicts the extent to which journals in each Broad

Disciplinary Category ’specialise in’ publishing geosocial research. Figure 6.2 - the

second line graph presented in Chapter Six - shows the percentage of geosocial papers

with respect to the sum of papers published in all journals listed in WoS whose Subject

Categories match the string search outlined in Table 3.3 for each Broad Disciplinary

Category between 2008 - 2019, regardless of whether they publish geosocial papers

or not. For each Broad Disciplinary Category identified by Discipline Categorisation

Method 4 depicted in Table 3.4, I searched for all journals in WoS using the search

strings depicted by Table 3.3. I summed the number of papers they published 2008 -

2019, and used these values to normalise the count of geosocial papers for each Broad

Disciplinary Category. In other words, it depicts changes in the popularity of geosocial

research in each Broad Disciplinary Category over time. Finally, figure 6.3 - the third

line graph presented in Chapter Six - depicts the yearly cumulative percentage of

geosocial papers in each Broad Disciplinary Category between 2008 and 2019, with

respect to all geosocial papers in the same period. In other words, it depicts changes in

the proportion of geosocial papers Broad Disciplinary categories contribute over time.

3.4.3 Tracing Heterogeneous Associations

This section discusses two heterogeneous network analyses I used to trace connections

among research methods and spaces, and in one of them, also geosocial scholars. As

Chapter Seven will explain, approaches to geosocial research differ with respect to

the methods they use and types of spaces they study. However, as section 5.1.1 will

argue, interviewees from diverse disciplines are interested in using machine learning for

geosocial research. Thus, in section 8.2 I will visually analyse heterogeneous networks,
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where nodes are methods, spaces and in one version, scholars, to explore how machine

learning (ML) affords perspectives on spaces. To help interpret the network maps,

and provide a comparative basis, I created comparable heterogeneous networks about

a second method: social network analysis (SNA). Next, I discuss how I compare and

create the ’machine learning’ and ’social network analysis’ heterogeneous networks.

To scientometrically explore the relationship between methods and the types of spaces

geosocial researchers study, I compared heterogeneous maps using two sets of geosocial

papers: those whose abstracts, titles or author keywords include the term ’machine

learning’, and those whose abstracts, titles or author keywords include the term ’social

network analysis’. As section 8.2 will discuss in more detail, SNA provides a suitable

comparative case because the two methods appeared in geosocial literature at similar

dates (2014 and 2015) but originate in different scholarly traditions (computer science

and social science), thus illustrating the methodological diversity of geosocial research.

I created two types of heterogeneous networks for both ML and SNA related geosocial

papers. Firstly, I studied how ML and SNA enable new scholars to conduct geosocial

research and how scholars position their research with respect to existing geosocial

research. To this end, I created heterogeneous networks to study the association among

author keywords - some of which refer to methods, spaces - and geosocial scholars

using author keywords and author information. The shape of nodes of figures 8.12 and

8.13 presented in Chapter Eight depict whether they are authors or author keywords.

These networks also depict temporal information: the color of nodes indicate whether

a keyword or author appeared in my geosocial dataset before its association with

’machine learning’ or ’social network analysis’ respectively. I chose author keywords

for this analysis for two main reasons. Authors choose author-keywords to describe

and position their paper (cf. Whittaker, 1989, cited by Wen et al., 2017, p. 725).

In addition, author-keywords allowed me to create networks where the proportion of

authors and terms related to methods and spaces is of similar order of magnitude:

geosocial papers in my sample approximately have 0-5 author keywords and 1-4 authors.

This helps explore the relationship between human and non-human actors in one network.

I created the networks as follows. For both the ML and SNA paper sets, I selected

the papers that have author keywords. I created heterogeneous networks whose nodes

are authors or author keywords, and weighted edges indicate cosine similarity relations
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calculated as specified by Equation 3.1. In addition, I calculated the earliest occurrence

of each author and author keyword. I created a binary attribute for each, which signals

whether they were present in my dataset - the geosocial citing papers - before their

appearance associated with ’machine learning’ or ’social network analysis’, or they first

appeared in the data associated with one of these methods. The color codes on figures

8.12 and 8.13 indicate the value of this binary time variable.

Secondly, I created heterogeneous networks using noun phrases VOSviewer identified

in the abstracts and titles of geosocial papers related to ML and SNA respectively, to

study the association among spaces and methods in more detail. This extends the above

analysis and places more emphasis on the relationship between methods and spaces,

whilst omitting authors. As noted earlier, not all papers have author keywords, but

the majority have titles and abstracts. Thus, this analysis includes all geosocial papers

whose abstracts, titles or author keywords contain the terms ML or SNA. In addition,

whilst author keywords signal how scholars position their research, noun phrases in the

abstracts and titles of geosocial papers contain more information about the methods and

spaces scholars study because abstracts and titles provide more details about papers.

This analysis required me to categorise noun phrases as methods or space relevant. As

section 2.6.3.2 explained, heterogeneous network analysis has, to date, been used to

study biomedical research. Next, I note a few methodological differences between these

uses.

In biomedicine, concepts in published scientific literature, or scientometric data them-

selves include categories which signal non-human actors, such as molecules and methods

(e.g. Shi, Foster, and Evans, 2015). However, there is a less clear mapping between

spaces and methods in geosocial research and noun phrases in published literature.

Although method related terms are easier to identify, as section 3.4.6 will discuss, it

can be difficult to ascertain if certain noun phrases refer to social media platforms as

methods or technology mediated practices. Spaces, on the other hand, are difficult

to map onto single noun phrases. Although some terms clearly relate to spaces, such

as ’China’, ’New York’, ’space’, ’city’, ’neighbourhood’, other concepts are difficult

to categorise as space related or not, such as ’landmark’, ’air pollution’, ’disaster’,

’protest’. As section 3.4.8 will argue, often, it is the collection of noun phrases that

describe situated practices that constitute the spaces geosocial scholars study. To create

heterogeneous networks, I categorised author keywords and noun phrases as methods
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and space related similar to the thematic analysis method section 3.4.6 will discuss. To

identify space related noun phrases, I sought those that refer to ’types of environments’,

’specific locations’ and ’spatial scales’. In addition, I identified noun phrases that refer

to situated events, such as ’disaster’, ’protest’ or ’bombing’. I categorised noun phrases

using the .txt file VOSviewer outputs in Excel. Then, I manually created a variable

called ’Score〈category〉’ that allows controlling the color of nodes using the VOSviewer

user interface. Thus, the colors in figures 8.14 and 8.15 in Chapter Eight depict whether

a noun phrase is categorised as method relevant, space relevant or other.

3.4.4 Identifying ’Social’ and ’Technical’ Approaches to Geoso-

cial Research using Interviews and Temporal Citation Net-

work Analysis

Chapters Six and Seven study the relationship between ’social’ and ’technical’ ap-

proaches to geosocial research with mixed methods. As Chapter Six will explain,

interviewees’ narratives suggest that ’social’ and ’technical’ approaches to geosocial

research increasingly differ. This section discusses a scientometric network analysis that

helped me trace the separation between these approaches, and thus identify them.

I traced changes in the citation relationships among papers associated with the ’only

social’ and ’only computational’ Broad Disciplinary categories. In this analysis I only

used these two Broad Disciplinary Categories to help scientometrically trace approaches

identified via thematic analysis. My interviewees have backgrounds in social sciences,

human geography and computational sciences: the two Broad Disciplinary Categories

include papers from these, and only these disciplines. In addition, as section 3.3.2.2

explained, these Broad Disciplinary Categories are mutually exclusive: a paper can

be either in the ’only social’ or ’only technical’ Broad Disciplinary Category, but not

in both. Thus, using these Broad Disciplinary Categories allowed me to identify two

groups of papers whose connections I could study. As described below I conducted both

static and temporal citation network analyses to study the relationship between ’only

social’ and ’only technical’ papers.

I first created an author-bibliographic coupling network using citing papers in the

’only social’ and ’only computational’ Broad Disciplinary categories. The nodes of the

author-bibliographic coupling network in this analysis are the journals that publish
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citing papers. I chose journals as the nodes of this network because as Wen et al.

(2017) argues, journals are longer lived scholarly media, and studying their relationships

may offer a perspective about how ”disciplines and specializations” relate (p. 726). In

addition, compared to networks whose nodes are papers, using journals as nodes reduced

the network size, which reduced the computational power required for generating 1000

random counterfactual networks (described below).

I calculated weighted edges between pairs of journals as a function of the number of

authors the geosocial papers they publish jointly cite. I calculated author-bibliographic

coupling as opposed to bibliographic coupling - where edge weights would be a func-

tion of the number of jointly cited papers - because author-bibliographic relations

provide a less conservative metric for this analysis. Given the novelty of geoso-

cial research, I assume that two papers citing a paper by the same author can signal

a shared knowledge base between the two papers, even if they do not cite the same paper.

I calculated author-bibliographic coupling in two ways. The two methods differ in how

they normalise the raw author-bibliographic coupling measure (the raw number of jointly

cited authors among pairs of journals). Firstly, I created graph G1 using the cosine

similarity method Equation (3.1) described. Secondly, I created graph G2 using the

normalisation method based on Waltman, Boyack, et al. (2020) (cf. Waltman and van

Eck, 2012). To create a non-directed author bibliographic network, I calculated the

normalised author-bibliographic coupling relationship rij = rji between journals i and

j by calculating the mean of the raw author-bibliographic coupling measure bij = bji

described by Equation 3.2

bij = bji =

N∑
k=1

akiakj(1− δij) (3.2)

where aki is an edge that indicates journal i citing author k ; akj is an edge that indicates

journal j citing author k - the product yielding a value bigger than 0 when journals i

and j both cite the same author, or in other words, are author-bibliographically coupled;

and δij is the Kronecker delta function
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δij =

{
0 if i 6= j (3.3)

1 if i = j (3.4)

The (1-δij) factor in Equation 3.2 ensures the exclusion of edges calculating author-

bibliographic coupling between identical journals. Next, I normalised the raw author-

bibliographic coupling values by dividing them by the sum relatedness of pairs of journals

i and j with all journals, given by Equation (3.5)

rij = rji = (
bij∑
k bik

+
bji∑
k bjk

) ∗ 1

2
(3.5)

where k stands for all journals (all nodes in the network). With this method, the

relatedness of journals is calculated with respect to the sum of their co-citedness. Thus,

tow journals can be strongly connected even if they share relatively little connections

with other journals. Thus, the relatedness values of journals in different disciplines are

normalised compared to their own total relatedness, ensuring that they are ”of the same

order of magnitude.” (Waltman and van Eck, 2012, p. 699)

Inspired by Navon and Shwed (2012), to study whether citing papers published in the

’only social’ and ’only technical’ Broad Disciplinary Categories can be conceptualised

as separate approaches, for both of the author-bibliographic coupling networks G1

(number of edges = m) and G2 (number of edges = m), I studied the modularity

of their sub-graphs - SG1 and SG2 respectively - which omit edges among journals

assigned to the two different Broad Disciplinary Categories (inter-edges for short;

number of inter-edges = k). In other words, I studied the modularity of sub-graphs

SG1 and SG2 with identical nodes to G1 and G2 respectively, omitting all edges

among pairs of journals where one journal is categorised ’only social’ and the other jour-

nal is categorised ’only technical’. The number of edges of SG1 and SG2 equal n = m - k.

As explained in section 3.4.1, modularity scores are contingent on network size. Thus,

I compared the modularity of SG1 and SG2 with the modularities of 1000 randomly

generated sub-graphs of G1 and G2 with edge count = n (equal the edge count of SG1

and SG2 ). In other words, I generated 1000 random sub-graphs for both G1 and G2,

that omit the same number of edges as the number of inter-edges, but instead of omitting

the inter-edges themselves, they omit n random edges. If the modularities of SG1 and

SG2 are similar to the modularities of the 1000 randomly generated sub-graphs, the
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inter-edges do not play a special role in shaping network structure - they do not render

G1 and G2 more or less connected. If the modularities of SG1 and SG2 are smaller

(i.e. the networks without inter-edges are more homogeneously connected) than the

modularities of the 1000 randomly generated sub-graphs, the inter-edges render G1 and

G2 less connected. Finally, if the modularities of SG1 and SG2 are bigger than the

modularities of the 1000 randomly generated sub-graphs, the inter-edges make G1 and

G2 more homogeneously connected. In this analysis I calculated modularity scores using

Python igraph package, using the Leiden algorithm (Traag, Waltman, and van Eck,

2019), suited to calculate modularity for weighted networks.

As table 3.5 depicts, for both G1 and G2 I generated the 1000 random sub-graphs

in two main ways. On the one hand, I created 1000 random networks each of which

omit k number of random edges from G1 and G2. Secondly, I created 1000 random

networks each of which omit k number of random edges from G1 and G2 whose

edge weight distribution is similar to the edge weight distribution of the G1 and G2

respectively - by deleting random edges with weights similar to the inter-edges. I

calculated both of these, for both G1 and G2 using all four Discipline Categorisation

Methods. In addition, I completed the analyses which control for edge weights in two

ways: with edge weights rounded to one decimal, and using edge weights rounded to

two decimals. As the observed patterns similar for the different versions, Chapter Six

presents the results of the versions highlighted in blue and red in Table 3.5: the networks

generated with Discipline Categorisation Method 1, using the narrowest definition of the

’only social’ Broad Disciplinary Category; and edge weights rounded to one decimal point.

Finally, I completed both static and temporal versions of the above analyses. The his-

tograms in section 6.3 depict the outcomes of the static analyses. The line graphs in

section 6.3 depict the the temporal analyses: they depict, for each year between 2010

and 2019, the modularities of SG1 and SG2 and the range of modularities of the ran-

domly simulated subgraphs, using the 2.5th percentile value as lowest bound, and the

97.5th percentile value as the upper bound, yielding a form of 95% ’confidence interval’.
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author-
bibliographic 

coupling 
network 

normalisation 
method 

sub-graph 
without ‘inter-

edges’ 

simulated random sub-
graphs for comparison 

G1 
 

number of 
edges = m 

 
number of 

inter-edges = k 

cosine 
similarity 

SG1 
 

number of edges 
= 

m – k = n 

1000 random sub-graphs 
of G1, number of edges = 
n (version 1: Discipline 

Categorisation Method 1 
& other versions: Discipline 

Categorisation Methods 2 - 
4) 

G1 
 

number of 
edges = m 

 
number of 

inter-edges = k 

cosine 
similarity 

SG1 
 

number of edges 
= 

m – k = n 

1000 random sub-graphs 
of G1, number of edges = 
n; edge weight distribution 
comparable to that of SG1 

(version 1: Discipline 
Categorisation Method 1 
& other versions: Discipline 

Categorisation Methods 2 - 
4) AND edge weights 

controlled for (version A: 
edge weights rounded to 
one decimal point; version 
B: edge weights rounded to 

two decimal points`) 

G2 
 

number of 
edges = m 

 
number of 

inter-edges = k 

based on 
Waltmann et. 

al. (2020) 

SG2 
 

number of edges 
= m – k = n 

1000 random sub-graphs 
of G2, number of edges = 
n (version 1: Discipline 

Categorisation Method 1 
& other versions: Discipline 

Categorisation Methods 2 - 
4) 

G2 
 

number of 
edges = m 

 
number of 

inter-edges = k 

based on 
Waltmann et. 

al. (2020) 

SG2 
 

number of edges 
= m – k = n 

1000 random sub-graphs 
of G2, number of edges = 
n; edge weight distribution 
comparable to that of SG2 

(version 1: Discipline 
Categorisation Method 1 
& other versions: Discipline 

Categorisation Methods 2 - 
4) AND edge weights 

controlled for (version A: 
edge weights rounded to 

one decimal point OR 
version B: edge weights 

rounded to two decimal 
points`) 

 

Table 3.5: Simulation Analysis Method. The thesis includes versions describe in in blue
and red fonts.
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3.4.5 Identifying Approaches to Geosocial Research using Cita-

tion Network Clustering

This section presents the network clustering method I use in Chapters Seven and Eight

to trace approaches to geosocial research. I created weighted author-bibliographic

coupling networks. In contrast to networks G1 and G2 outlined above whose nodes

were journals, the nodes of the networks for this analysis are citing papers. The weights

of edges between citing paper i and citing paper j are calculated using the method

outlined by Equations 3.2 - 3.5. I created two weighted author-bibliographic coupling

networks. Firstly, I used all papers that form part of my scientometric field (network

G3 ). Secondly, I used papers in the Broad Disciplinary Categories ’only social’ and

’only technical’ (network G4 ). I clustered both networks using the Leiden community

detection algorithm. It is important to note that the outcome of community detection

is non-deterministic: each run might yield slightly different results even using the same

parameters. The analyses included in the thesis yielded five clusters with more than

two papers for G3, and three clusters with more than two papers for G4. In addition,

the Leiden algorithm identified two clusters in each network with only two papers that

were not connected to the rest of the papers.

Using papers as the nodes allows me to perform paper-level analysis to study the

clusters of the network. I study clusters’ disciplinary composition (the distribution

of papers pertaining to different Broad Disciplinary Categories). I characterised each

cluster by the distribution of papers across 5 out of 13 Broad Disciplinary Categories:

’only social’ (only social sciences), ’only computational’ (only technical sciences), ’phys

geo’ (physical geography) and ‘non phys geo’ (human geography) and ’multi-inter’

(multidisciplinary, interdisciplinary). For each cluster, I counted the distinct papers

pertaining to each of these five Broad Disciplinary Categories: the analyses include the

raw paper counts. In addition, as section 3.4.6 and 3.4.8 will explain, I explore the

topics papers in each cluster study through comparing terms in their abstracts and titles.

As section 7.2 will explain, I interpret the meaning of network clusters in light of

their disciplinary composition, as well as interview analysis and findings presented in

Chapters Five and Six. Based on these, I will argue that network clusters depict the

scientometric footprint of approaches to geosocial research. In both networks, I interpret

the two largest clusters as the ’social’ and ’technical’ clusters, corresponding to ’social’

and ’technical’ approaches to geosocial research respectively.
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3.4.6 Characterising Approaches to Geosocial Research using

TF-IDF values

I explored differences among clusters of the networks G3 and G4 with more than two

papers - to compare approaches to geosocial research - using the term frequency-inverse

document frequency (TF-IDF) statistic of noun phrases in the abstracts and titles

of papers in these clusters. I chose TF-IDF (Salton and Buckley, 1988) because it

is comparative metric that helps study noun phrases’ relative frequency in clusters.

TF-IDF scores are calculated for each noun phrase within each cluster - the TF-IDF of

the same noun phrase in different clusters can differ due to their different frequency in

each cluster. Noun phrase n’s TF-IDF in cluster c is high if n is frequent in c but not

frequent in the other clusters. In other words, TF-IDF indicates the specificity of noun

phrases with respect to clusters. This method helps me highlight differences among

network clusters, and thus study the difference among approaches to geosocial research.

However, TF-IDF also over-emphasises the difference among clusters: it identifies noun

phrases frequent in each cluster that are infrequent in other clusters. Next, I discuss

how I calculated TF-IDF values.

I extracted noun phrases from sets of papers pertaining to network clusters using

VOSviewer 1.6.15. As section 3.3.2.1 discussed, VOSviewer affords filtering noun phrases

based on their occurrence and relevance. I calculated TF-IDF for each noun phrase in

each cluster which occurred at least 10 times in the abstracts and titles of papers. I

chose noun phrases that occur at least 10 times to ensure that the terms I identify as

characteristic of clusters occur in them with relatively high frequency. I did not filter

the network based on relevance score to ensure that my analysis captures all terms that

differentiates the clusters. Firstly, I calculated the term frequency of each noun phrase

in each cluster as defined by Equation (3.6)

tf(n, c) =
count of n in c

total number of noun phrases in c
(3.6)

where n stands for noun phrase, c stands for cluster, and the count of n equals to the

number of times n occurs in the abstracts and titles of all papers in cluster c. Secondly,

I calculated the document frequency of each noun phrase, on in other words, the number

of times they occur across all clusters, as defined by Equation (3.7)
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df(n) = total occurrence of noun phrase n in all clusters (3.7)

Thirdly, I calculated the inverse-document frequency (IDF) of each noun phrase as defined

by Equation (3.8)

idf(n) = log
N

df(n) + 1
(3.8)

where N is the total number of clusters the noun phrase n occurs in (in my case, this can

be 1, 2 or 3 given that I studied three clusters of G3 ). IDF measures the ’informativeness’

of each noun phrase. The IDF value of noun phrases that frequently occur in all clusters,

such as stop words, is low, because the higher the document frequency of the noun

phrase, the bigger the denominator is, and for frequent noun phrases across clusters,

df(n) increases more steeply than N. The logarithm value is calculated because otherwise

IDF values can be very large. Finally, I calculated the TF-IDF score as specified by

Equation (3.9)

TF − IDF (n, c) = tf(n, c) ∗ idf(n) (3.9)

Next, I ordered noun phrases in each cluster according to their TF-IDF (high to

low) and thematically analysed the top 30% of noun phrases in each cluster, to study

differences in the substantive foci of papers across clusters. Through studying the top

30% based on TF-IDF values, I thematically compare noun phrases which differentiate

clusters, de-emphasising the similarities among them. I categorised noun phrases into

six thematic categories described below - collective practice or topic, method, media,

space, actor and time -, informed by the conceptual framework outlined in Chapter

Two. Next I provide working definitions for each of these categories.

I define collective practice as forms of participation or engagement. I aim to describe

these in a way that avoids false binaries between nature and culture. Geosocial research

explores diverse forms of participation, including commercial practices, collective opinion

formation, change in power relations, leisure, health, emergency responses and ecological

practices.

Under ’method’ I list noun phrases related to research methods and data types. Under

’media’ I list noun phrases related to media technologies. Although there is an overlap

between ’method’ and ’media’ (e.g. ’twitter’ refers to both the social media platform
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and tweet posts that scholars use as data), the ’media’ category aims to capture the

Janus faced nature of social media (cf. Marres and Moats, 2015): they can concurrently

be studied in methodological terms and from the perspective of the collective practices

they enable. I decided to include these as separate categories to explore differences in

how approaches to geosocial research engage with these aspects of media technologies.

Using the category ’space’ I list noun phrases that explicitly refer to types of spaces.

As sections 3.4.7 and 3.4.8 will explain in more detail, this category is not sufficient

to study how geosocial research approaches study spaces. As section 2.5 discussed, I

conceptualise spaces are relational to practices. Noun phrases which express spatial

units are only a fraction on those that describe the types of spaces approaches study.

However, studying ’space’ related noun phrases helps study space related concepts each

approach favours. I differentiate four main types of spaces. ’Specific locations’ refer

to existing, named spaces, such as cities (e.g. London, Amsterdam) or countries (e.g.

USA, China). ’Spatial scales’ refer to terms that express spaces in terms of scales,

such as ’city’, ’country’, ’spatio-temporal pattern’, ’homogeneous area’ etc. ’Types of

environments’ refer to terms that express spaces which do not have immediate scalar

connotation, but capture spaces’ diverse relations, such as ’ecosystem’, ’landscape’,

’environment’ etc. and ’spatial pattern’ refers to terms that express data patterns

expressed in space (e.g. ’spatial distribution’).

Under ’actor’ I list noun phrases which refer to human (e.g. ’adolescent’, ’user’) or

non-human actors (e.g. ’agent’, ’product’). Although from an ANT perspective, actors

and collective practices can be difficult to distinguish - practices create actors - and thus

the ’collective practice’ and ’actor’ categories overlap, I included ’actor’ as a separate

category to illustrate the different subjectivities approaches highlight (e.g. ’race’,

’respondent’ vs. ’human’ and ’social media user’).

Finally, the ’time’ category lists noun phrases which either explicitly mention temporal

units (e.g. ’January’) or highlight the temporality of practices (e.g. ’shift’, ’history’,

’urban dynamic’).



3.4. Mixed Methods Analyses 95

3.4.7 Exploring Similarities Between Social and Technical Ap-

proaches using Term Occurrence

I explored similarities between ’social’ and ’technical’ approaches through thematically

analysing noun phrases which occur in both the social and technical clusters of the

network G4 at least 10 times (for short, intersection noun phrases). I did not filter

the network based on relevance score to ensure that my analysis captures all relatively

frequent terms shared by the two clusters. As mentioned above, TF-IDF highlights

differences among clusters - it characterises each in terms of how they differ from

the other. However, as Chapter Six will explain, ’social’ and ’technical’ approaches

differentiate and concurrently develop thanks to connections and exchange between

them. Thus, I explore similarities between the approaches. As section 7.2 will explain,

I chose the network G4 for this analysis, comprising geosocial papers associated with

the ’only social’ and ’only technical’ Broad Disciplinary Categories to align this analysis

with the interviews. I focused on terms that occur at least 10 times to keep the list of

all noun phrases constant between this analysis and the the TF-IDF analysis outlined

in section 3.4.6. I found 278 intersection noun phrases. I thematically analysed them

using the thematic categories outlined in section 3.4.6. However, I found that many

of the intersection noun phrases were generic words that were difficult to interpret in

themselves, such as ’interest’, ’topics’, ’challenge’, ’content’. I could not categorise these

and thus left them out of further analysis. Figure 7.8 in Chapter Seven depicts the 112

noun phrases (40% of all intersection noun phrases) that I could categorise, which form

part of this analysis.

3.4.8 Modified Ego Networks - Further Comparing Social and

Technical Approaches

I further compared social and technical geosocial research by exploring how they frame

shared concepts, by studying the ’modified ego-networks’ of a few, selected intersection

noun phrases. By ordering noun phrases based on their (relative) frequencies, both

TF-IDF presented in section 3.4.6 and term occurrence analysis presented in section

3.4.7 disregard their relations to one another, and their meanings in the context of social

and technical geosocial research. Comparing how social and technical approaches frame

intersection noun phrases helps compare them without contrasting them, in a way that

accounts for both their similarities and differences.
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I studied the ’modified ego-networks’ of three intersection noun phrases - ’citizen’, ’city’

and ’network’ - in the social and technical clusters of network G4. I refer to these as

ego terms. I chose these three ego terms from the 112 intersection noun phrases that I

could thematically categorise for two main reasons. Firstly, as section 7.2 will explain,

they are relatively frequent in both clusters, and thus, their ego networks are relatively

big (contain a number of nodes) and thus semantically rich. Secondly, each refers to a

different thematic category - ’citizen’ is an actor, ’city’ is a space and ’network’ refers

to a method. I assumed that each of these would provide opportunities to explore how

these approaches study and frame spaces.

I mapped the modified ego-network of the three ego terms using VOSviewer. I firstly

created term co-occurrence networks which depict all noun phrases in the abstracts

and titles of papers in each cluster that occur at least 10 times. I did not filter the

network based on relevance score to ensure that my analysis captures all noun phrases

the ego terms are connected to. The nodes of the term co-occurrence networks are noun

phrases identified by VOSviewer as discussed in section 3.4.6. The weighted edges of the

network indicate the number of times two noun phrases co-occur in abstracts and titles

of papers. Next, I sub-set these term co-occurrence networks to obtain the ’modified

ego-networks’ of the ego terms.

Ego-networks consist of a ’focal node’ - the ego -, all the nodes that the ego is connected

to - the alters - the edges among the ego and the alters, and those among the alters. My

’modified ego networks’ omit edges among alters for readability. However, I depicted

the relationships among alters - without showing their edges - by keeping the x and

y coordinates of each noun phrase fixed, as defined by VOSviewer in the first step of

the analysis, when creating the term co-occurrence maps which depict all noun phrases.

Thus, the position and color of alters indicate their connections. Thus, resulting

’modified ego networks’ depict the ego terms, the alters, links between the ego terms and

the alters, and the color and position of the alters indicating their relationship to each

other. In addition, to further explore how approaches frame the ego terms, as section

7.2 will explain, I interactively explored the ’modified ego networks’ by only visualising

a subset of the ego terms’ edges as a function of their weight, using the edge weight

filter function through VOSviewer’s user interface.
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Finally, as section 7.2 will explain, I include screenshots of the data visualisations in

the context of the VOSviewer user interface to illustrate the constructedness of my own

data analysis. Each software I use - Python, R, VOSviewer and Gephi - afford options

to export data visualisations in various file formats, including .jpeg, .png and .pdf.

Using these methods, the analyst obtains ’visually optimised’ data visualisations which

omit most traces of the infrastructures that helped create them, and the analytical

decisions that they embody. To highlight the constructedness of my data analyses, I

create screenshots that illustrate the data analysis process. It is my hope that these

screenshots visually remind the reader of how my data infrastructure’s key role in

shaping data analyses throughout the thesis.

3.4.9 Exploring Geosocial Research with Noun Phrase Co-

occurrence Network

Finally, Chapter Eight presents the noun phrase co-occurrence map of all geosocial papers

created with VOSviewer. Similar to Callon et al. (1983) I assume that the network of

terms in scientific publications provides information about the way scientists position

and create ’problems’ or research questions. As section 8.1 will explain, this helps me

further explore differences in geosocial research agendas and the diversity of approaches

to geosocial research. I created VOSviewer ’term maps’ similar to the method described

in section 3.4.3. I included noun phrases that occur at least 10 times in the dataset -

VOSviewer’s default setting. I also used VOSviewer’s default setting for relevance scores,

to excludes 40% of the terms based on their relevance score. I chose the default settings

for this analysis because based on my experience with VOSviewer, these provide easily

interpretable maps when used with a few thousand papers. Experimenting with different

settings for this analysis is beyond the scope of this thesis.

3.5 Ethics

This project was approved by the University of Nottingham’s Ethics Committee. This

section reflects on the main ethical considerations the project raises - balancing my

accountabilites towards my interviewees and the STS community and pseudonymisng

interview quotes - as well as the ethics of my data collection and scientometric analyses.

This project raises two main ethical considerations. Firstly, as discussed in section
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3.1.2 negotiated my concurrent accountabilities towards my interviewees and the

STS community by illustrating their research practices in as much detail as possible,

showcasing both similarities among approaches and differences that matter to my

participants. Secondly, I pseudonymised all interview quotes and removed all details

that could signal participants’ identities to ensure that my research participants cannot

be identified. Anonymization is not a ‘monolithic’ concept or straightforward in practice.

With regards to ethnographic studies, there does not seem to be full agreement about

the need to anonymise findings. For example, Levin (2014) discusses the findings of her

ethnography naming the specific field site (the Computational and Systems Medicine

laboratory at Imperial College London) and Madsen (2015) names interviewees who

are PIs and team leads. On the other hand, Nelson (2018) conducts an ethnography

of behavioural genetics researchers’ work who aim to model human behaviour such as

addictions using animal models, and reports her findings “almost entirely anonymously”

(p. 218). She argues that this approach is warranted, due to heightened public

controversy about the research topic, the presence of animal rights activists near the

research labs she visited. Offering anonymity also helped her diffuse researchers’ angst

about her gaining insight into controversial or ‘problematic’ aspects of the labs’ work.

Finally, research participants in her study were used to working with “de-identified” (p.

218) samples. Her offering anonymity made her “research techniques look more familiar

and legitimate” (p. 218) to research participants. I felt it is important to pseudonymise

my interview data and remove details that can help identify participants because the

arguments I created reflect my analytical perspective as well as interviewees’ narratives.

Readers might interpret the quotes differently, and interview quotes can be taken out of

context as the thesis manuscript is circulated.

Power difference between me and my participants and gatekeeping raised no ethical

challenges. I studied the practices of researchers, at similar career stage or more

senior than me. Thus, power differences do not negatively impact them. Participants

volunteered their time and could freely decline participation in the study without formal

or informal negative consequences.

Finally, I reflect on the ethics of the scientometric analyses. Scientometric analyses may

need to be anonymised if they containe detailed author or institute level information (e.g.

Glaser and Laudel, 2015) or could, relatively easily be used for research evaluation (for

a discussion about the role of (sciento)metrics and indicators in research evaluation see
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Wouters, 2014 and De Rijcke, Wouters, et al., 2016). Most of the scientometric analyses

in Chapters 4-8 are aggregated on the level of network clusters or disciplines. They do

not need to be anonymised because they do not contain personal information about

research participants or research institutions. Exception are the heterogeneous networks

described in section 3.4.3 which present author information. I did not anonymyse

these network visualisations because they use public data - author keywords and the

names of authors - and do not contain or use information that can easily be used to

evaluate, assess or rank scholars. The maps enable visual, as opposed to quantitative

or statistical analysis, thus, cannot easily serve as a basis for indicators or metrics

or ranking. In addition, the information the maps contain do not directly relate to

scholars’ performance. They only depict a subset of scholars’ papers and emphasise

their thematic relations, providing no direct information about authors or their overall

research output.

3.6 Limitations

This section concludes the methods chapter by reflecting on the limitations of the

research design. I discuss four main limitations: limitations of the interviews, the field

delineation, using co-authorship analysis to study collaboration and tracing relationship

among approaches to geosocial research using citation analyses.

This project combines interviews, participant observation and scientometrics, in order to

diversify the analytical perspectives on the geosocial research. This mixing of methods

presupposes that neither method provides an accurate, or ‘God’s eye’ view on geotagged

social media data practices. Neither the interview, nor the scientometric fields capture

all of geosocial research. Interviews are limiting because I could interview a small propor-

tion of scientists who use geosocial data for academic research. In addition, interviews

provide limited insight into participants’ practices, which I partially mitigated by con-

ducting informed interviews. Next, I discuss the limitations of my scientometric methods.

Academic publications and by extension, data associated with them can only provide

a limited perspective on academic research. As Latour and Woolgar (1986) argue,

scientific publications are artefacts that form part of research practice, but do not

capture the diverse practices that constitute research, such as relational practices with
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actors outside scientific institutions. Hence, analyses that use bibliometric data can only

take limited aspects of research practice into account.

Secondly, scientometric databases are selective. As section 3.2.2 discussed, WoS over

represents papers from the natural sciences and humanities and under-represents the

social sciences, arts and humanities (Mongeon and Paul-Hus, 2016). Thus, social

scientific geosocial papers might be under represented in my scientometric field. I

noticed that my scientometric field does not contain all of the papers of my interviewees.

In addition, my choice of social media platforms and search terms limited the scope of

the scientometric field. For example, my field delineation excluded research with the

popular Chinese microblogging website Weibo. I conducted interviews with 19 geosocial

scholars. I selected interviewees with diverse seniority and disciplinary background.

However, as section 6.2.3 will explain, there is a main discrepancy between my interview

and scientometric fields: even though my scientometric field contained health and

ecology related geosocial research, none of my interviewees focused on these topics.

As section 3.4.1 explained, I studied collaboration among geosocial scholars with inter-

views and scientometric co-authorship analysis. Although, as I argued, scientometrics

helps me study collaboration among more scholars over longer timeframes, co-authorship

does not equal collaboration. Scholars may collaborate without co-authoring papers.

Finally, as sections 3.4.5 and 3.4.4 outlined, I differentiate between geosocial research

approaches by combining citation network analysis and interviews. Inferring relationship

between research areas using citation-based measures has significant limitations. The

limitations of citation metrics and the ambiguity of citation behaviour have been

discussed since citation analysis became widespread in the 1960s after the development

of the Institute of Scientific Information (ISI, now owned by Clarivate Analytics) (cf.

Bornmann and Hans-Dieter, 2008). Although numerous criticisms have been made

against using citation-based measures to study and evaluate research, the limitations

of citation analysis methods depend on the analytical purpose and the way one

conceptualises citing behaviour (MacRoberts and MacRoberts, 1989). For example, for

those who assume that citations signify informational influence, the variety of motives

scholars have named that can motivate citations - such as citing research to confirms

one’s results; to dispute aspects of cited work; citing persuasive, well known texts;

providing only perfunctory reference to cited work (e.g. Garfield, 1962; Cronin, 1982;
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Bornmann and Hans-Dieter, 2008) - may pose challenges. The diversity of motives

behind citing behaviour does not impact negatively the outcome of this study. Broadly

speaking, this project uses citation analysis to explore thematic relationships between

papers. I only assume that a citation signifies some level of familiarity with or influence

of the cited work. This influence does not need to be ‘informational influence’, strictly

defined. Nevertheless, the limitations of citations discussed below impact my study.

Firstly, the reference list might be incomplete and there might be systematic trends in it.

This means, that the thematic clusters established based on citation-based measures may

be a by-product of the data (citations), instead of reflecting real similarities and differ-

ences between them. According to MacRoberts and MacRoberts (1986) who compared

the list of references with influences identified based on papers’ text, most scholars do not

cite the majority of their influences. In addition, there might be more or less systematic

omissions in references. For example, the origin of earlier results may or may not be

accurately cited. Secondly, references only indicate ‘formal influence’, and leave tacit

skills - developed over time, and in a range of situations, often collaborating with others

- as well as the day to day discussions, negotiations with fellow researchers, laboratory

technicians (‘shop talk’) out of the picture (MacRoberts and MacRoberts, 1989). Science

studies have repeatedly demonstrated that the narratives presented in published litera-

ture bear little resemblance to scientists’ daily practices (e.g. Latour and Woolgar, 1986).

Interpreting scientometric findings in light of the interviews - which help study inter-

viewees’ motives and reflections - and using multiple types of scientometric analyses,

including citation analyses, co-authorship and term co-occurrence maps helps offset

the above limitations. I create the thesis’ arguments in light of diverse data types.

In some cases, I highlight findings which are constant across the methods, whereas in

other cases I contrast findings from diverse methods to provide more nuanced arguments.

Altogether, this chapter outlined the thesis’ methodology. It outlined my mixed-methods

case study approach, scientometric and interview field delineation, approach to thematic

analysis and discussed each computational method in detail. Finally, it discussed ethical

considerations and methodological limitations. Next, Chapters Four Through Eight will

discuss the thesis’ empirical findings.



Chapter 4

Geosocial Research Across

Institutions

This chapter highlights three practices in response to the First Research Question which

explores how approaches to geosocial research develop. Firstly, as section 4.1 discuses,

interviewees from all disciplines stated that geosocial research requires them to mix two

research traditions which are often challenging to combine: computational data analysis

and socio-spatial interpretation. In this sense, they work ’across’ research traditions. I

find that overcoming the challenge of combining computational data analysis and socio-

spatial interpretation is a core aspect of interviewees’ geosocial research, and essential

for them to develop their geosocial research approaches. The rest of the thesis further

explores interviewees’ practices that motivate or help them to combine these knowledge

traditions. This chapter highlights two such practices: participants’ concurrent aesthetic

appreciation of combining computational data analysis and socio-spatial interpretation

(discussed in section 4.2), and the need to conduct non-academic and academic research

in parallel - mainly due to financial pressures - which exposes them to computational

data analysis methods (discussed in section 4.3).

4.1 Computational Analyses and Interpretation Di-

verge

All interviewees stated that a main challenge of geosocial research is combining compu-

tational data analysis and socio-spatial interpretation. The challenge stems from four

102
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main differences between the two: different communities teach them; they comprise

different approaches to validating knowledge claims; scholars need prior experience in

computational research to recognise infrastructure development - which is essential

and time consuming - as a standalone scientific contribution; and time limitations

impede any one person to keep up with developments in both traditions. Participants’

views highlight the effort required to create scholarly narratives with geosocial data by

combining computation and socio-spatial interpretation.

All interviewees - regardless of their disciplinary backgrounds - agreed that distinct insti-

tutions teach computational data analysis and socio-spatial interpretation, as the seven

quotes below illustrate. In line with the divide between critical human geography and

GIScience section 2.1 discussed, colleagues Ben and Bruno, respectively, stated that the

geosocial research their team does is challenging because it requires familiarity with these

two distinct geographic traditions of thought, while most scholars are primarily trained

in one.

”...[this] falls right in between GIScience and human geography. It’s

something in between, something different. And it’s not necessarily

a comfortable space to fill ... because you have to be sort of familiar

with both [...] And that can be hard to do.” – Ben

”[Brian] is a very unique guy because he knows social theory [...] but

he’s also a computer programmer and can access the data and scrape

data and do all that stuff which is obviously important [...] And he

also has statistical and spatial analysis and [...] visualization skills.”

– Bruno

Henry, Colin, Daniel, Jane and Isaac - all quoted below - noted the separation between

computational data analysis and socio-spatial interpretation in disciplinary communi-

ties beyond geography. According to Henry, who supervises graduate students from

diverse social and computational disciplines, learning geosocial research requires knowl-

edge about computational data analysis and socio-spatial interpretation, which bring

complementary challenges depending on students’ disciplinary backgrounds.

”[Students in the program with backgrounds in social science and com-

puter science][...] interact daily [...] [they] help each other [...] these

trends are fairly complementary [...] [and] when you’re supervising

them individually the aspects you have to work on are different.”
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Colin and Daniel highlighted the separation between sociology and computational data

analysis. Colin used online platforms to learn computational skills he did not learn as a

sociologist.

”I have been doing classical sociological research with focus groups

and surveys for 15-20 years, and I started to realise that I won’t be

able to sell this expertise in 20-30 years, with this whole big data

trend... [...] [later] I used [online platforms] to learn data analysis

skills. [...]”

Daniel stated that scholars rarely have trained in both computational data analysis and

social science, even though this combination is essential for geosocial research.

”first when I thought of computational social science, I thought of

[...] somebody who has a mathematics background, who is a computer

scientist, and who then went on to study sociology. [...] then as it

turned out [David] actually could do both programming and sociology

which is a rare combination.”

Jane and Isaac discussed the challenges for computational scholars to learn essential

socio-spatial interpretation skills. Jane explained that reviewers often request her team

to further develop the interpretative aspects of their papers. Her and her colleagues’

backgrounds are in physics. She explained that the interpretative skills required for

geosocial research - for example, discussing findings at greater length - is outside the

training they received.

”Reviewers always ask us to work more on interpretation. [...] In

retrospect, I also think that the discussions of the first few papers I

published were pretty brief. [...] In the social sciences, there is a very

different publication culture, that we don’t know. That’s not what we

learned.”

As part of his PhD studies, Isaac eventually visited an interdisciplinary, social sciences-

oriented institution where he learned about social theories which he uses to frame his

research and interpret his findings. Whilst in his (technical) discipline the relationship

between variables is primarily interpreted in terms of the mechanisms models afford, the

sociologists and geographers he met introduced a novel interpretative approach, studying

the relationship between variables using theories that cannot be reduced to the mecha-

nisms created with data models.
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”...maybe on my side [technical discipline] there is a lot of discussion

about what’s the relationship between variables [...] [we tend to come

up with] models of how [patterns] might emerge [...] [but] it took the

sociologists and geographers saying okay but what’s the theory, [why

does the phenomenon happen]... [is it] an agent to agent interac-

tion [...] or social sanctioning? [...] also this leads naturally to the

conclusions we draw from finding such a relationship.”

Towards the end of his studies at a computer science-focused institution, Isaac gave a talk

discussing his geosocial research which included details about the above theoretical fram-

ing that the audience found novel and unfamiliar. This further illustrates the separation

between socio-spatial interpretation and computational data analysis education.

”I talked about my [paper related to social media network] and I spent

a few slides on theory that I learnt from the [social scientists] [...]

after the talk [...] one guy gave the comment, ’that’s the most theory

I have ever seen!’ ... like it it was really different for them.”

In sum, interviewees with backgrounds in geography, sociology, physics and mathematics

stated that distinct disciplines teach computation and socio-spatial interpretation, which

makes it challenging for one scholar to learn both.

The quotes below by David, Ben, Jane and Colin illustrate the second factor which

maintains the difference between computation and socio-spatial interpretation: prior

computational experience is necessary for recognising essential and time consuming com-

putational tasks a valuable part of geosocial research, such as computational infrastruc-

ture development or querying large datasets. David, Ben and Jane discussed the prior

experience required for valuing infrastructure development. David stated that many of

his sociologist colleagues without experience in computing do not ”value” his work of

maintaining servers and databases.

”...stuff that I’ve been putting a lot of hours into, even just like main-

taining a server, making sure the database runs [...] They cost a lot

of time! But they are really not valued by most sociologists that you

talk to...”

Ben stated that his team’s previous experience with computing sensitised them to some

aspects of data infrastructure development - namely, the importance of storage space -
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whilst they learned about other challenges, such as creating query-able databases on the

job. Brian developed group B’s data infrastructure as part of his PhD research. Ben

claimed that the flexibility of the PhD program allowed Brian and the team to explore

unforeseen challenges associated with data infrastructure development and make it a

valued part of the research. Although Brian’s PhD initially focused on the empirical

analysis of geosocial data, it also grew to encompass infrastructure development.

”...not coming from a computer science but a social science back-

ground [...] we were not prepared for some of the challenges... There’s

the basic one that we knew about [...] storage space. [...] [We also]

had to look into [...] how to make [data] usable [...] to [be able to]

search it in a very timely way [...] that sort of PhD student experi-

ence can be quite liberating [because you can say] ‘ah well, let’s give

it a try’. [...] [creating the data infrastructure] [...] became a big part

of [Brian’s] PhD, but his PhD was actually on sort of questions based

on this data.”

Jane also argued that prior experience is essential for understanding the tasks required

to build and maintain data infrastructure. Her colleagues who developed group J’s data

infrastructure built on their experiences in working with astrophysics databases:

”My colleagues very carefully planned the database structure, the data

collection procedure: which computer they use for it and how they load

the data into the database, how it will be search-able etc. [...] They

used their experience with astrophysics databases.”

Ben’s, Colin’s and Jane’s views below suggest that prior computational experience is

essential to recognise the value of computational skills, for example to analyse large

datasets. Ben stated that prior experience helps appreciate complementary skills: for

social scientists to appreciate computational tasks as valuable contributions and vice

versa.

”...I think it’s important to have sort of an understanding or at least

sort of a working knowledge of one another, or an interest because

otherwise it’s very easy to say, if you’re say a critical human geogra-

pher [that] data is just [...] too reduction[istic], ’I’m not going to pay

attention to it’ [...] And [...] essentially the same on the reverse.”

Colin discussed plans to hire a new team member who has experience in working with

large and remotely stored data. He contrasted his experience working with csv files and
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data hosted locally with analysing big data hosted remotely. His computational knowl-

edge allowed him to recognise the limits of his expertise and the challenges associated

with accessing and manipulating remotely stored large datasets.

”But the [other, larger data], that’s going to be very good, but we

need to have the skill to work with it. That one we won’t have on

our servers... Accessing it will be a lot more strict, both legally and

technically. Then it doesn’t work anymore that the social scientist

manipulates csv files and databases on their computer. We’ll need an

IT person or similar on our team.”

Jane also stated that working with big data efficiently requires prior experience. Accord-

ing to her, querying large data efficiently requires tacit knowledge which is difficult to

learn alone by tutorials. Working with mentors with experience with large datasets was

essential for her to learn big data techniques.

”...with these [large datasets] you have to learn to write very efficient

SQL Query Plans. And I think you can only learn that by doing and

having a more senior mentor. You can’t really learn this from books.”

Altogether, David’s, Ben’s, Colin’s and Jane’s narratives highlight that prior com-

putational experience is necessary for conducting, and recognising essential and time

consuming computational tasks as valuable scientific contributions. Since, as outlined

above, computation and socio-spatial interpretation is taught by different disciplinary

institutions, scholars without computational training may lack the experience required

for recognising essential tasks as valued part of geosocial research.

The quotes below by Jane, Kevin and Daniel explain a third way in which computation

and socio-spatial interpretation differ: they take different approaches to validating knowl-

edge claims, including the way they construct evidence and arguments. Kevin contrasted

the mathematical skills he thinks computational arguments require with knowing previ-

ous literature for constructing social scientific arguments - and stresses the importance

to bridge knowledge gaps for geosocial research.

”Tolerance also plays a big role. [...] natural scientists trained in

mathematics have to accept that not everyone had to learn as much

mathematics as we did [and] social scientists should not get immedi-

ately outraged if it turns out that there are big gaps in our knowledge,
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for example, if we don’t know famous scholars they cite. Somehow

this needs to come together.”

Like Kevin, Daniel stated that ideally, computational social research combines diverging

approaches to establishing knowledge claims: mathematics or computation, and skills

curated by the interpretive social sciences, including theorising and reflecting on how the

researcher’s assumptions shape their work.

”[But] I think that what characterises a lot of computational social

science is a total ignorance of social science, even a disdain for it.

Often it disavows any sort of theory, interpretation, reflexivity, [...]

that sets social science apart from the natural sciences...”

Like Daniel, Jane stated that geosocial research - in contrast to physics - requires inter-

preting findings by discussing them in longer narratives and contextualising them with

theories.

”We find it difficult to write an essay-like discussion, or contextualise

our findings with theories. We usually do the measurement, write up

the results and discuss their contribution in a few sentences. In the

social sciences, there is a very different publication culture that we

don’t know.”

Altogether, the above quoted interviewees contrasted computational reasoning - which

uses mathematics to create evidence and presents findings briefly - with socio-spatial

interpretation, which validates findings by relating them to established theories and

longer narratives reflecting about the researcher’s position.

Finally, David, Anne, Ben and Henry emphasized the challenge of finding time to keep

up to date with advances in both computation and socio-spatial interpretation. David’s

earlier quote emphasized the time required for database maintenance which is not recog-

nised by many of his sociologist colleagues. Anne, Ben and Henry stated that developing

expertise in both computation and socio-spatial interpretation would require more time

than available for any one scholar.

”It’s really hard to stay on top of the software and the data ... if

you’re going to be focusing on data processing, computer languages,

[...] that leaves less time for you to read critical theories [...] it’s not

impossible to have both, but you tend to specialize more in one versus

another.” – Ben
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”...the day has 24 hours so I can’t keep up on all the latest theoretical

developments on cities and all the latest literature debates around you

know where cutting edge social context.” – Henry

”...it was clear to me very early on, that I would never be an expert

coder. While I did write my own code in Python in order to filter

data from the API, I realised that writing my own code in order to

run queries on that data would take me longer than it would be worth

it.” – Anne

In sum, David, Anne, Ben and Henry emphasize the time required to develop and

maintain expertise in either computation or socio-spatial interpretation, which makes it

challenging for scholars to develop learn both.

Altogether, this section illustrated a core challenge interviewees from all disciplines

experience when conducting geosocial research: combining computational data analysis

and socio-spatial interpretation. This chapter further explores practices which help

interviewees succeed in conducting geosocial research at the intersection of these

research traditions. Section 4.2 will argue that interviewees are motivated to combine

them because find their combination aesthetically pleasing. Section 4.3 will argue that

the industry-relevance of computational skills prompt or motivate scholars to conduct

geosocial research.

4.2 The Aesthetics of Geosocial Research Across

Computation and Social Science

Participants from diverse disciplines claimed they find using geosocial data for re-

search, or combining computational data analysis and socio-spatial interpretation for

geosocial research aesthetically pleasing. In particular, many interviewees highlighted

aesthetic values associated with aspects of geosocial research they have less training in.

Interviewees with technical backgrounds emphasized the beauty of conducting social

research and social scientists emphasized the beauty of geosocial data or computational

data analysis methods. I argue that this aesthetic appreciation underpins intervie-

wees’ efforts to combine computational data analysis and socio-spatial interpretation

in the face of the above challenges, and thus develop their approach to geosocial research.



4.2. The Aesthetics of Geosocial Research Across Computation and Social Science 110

Firstly, two physicists, Josh and Jane stressed the beauty of creating scientific expla-

nations using (models with) few assumptions and variables whilst studying ’real life’

practices, such as cities. They noted that this joint interest motivates them to pursue

geosocial research as opposed to other physics research topics.

”I’m really interested in what I can say about human behaviour. [...]

not only on an abstract level. [...] At the same time, I studied physics

because I find its extremely simplified way of seeing the world really

beautiful. [...] [beautiful is, for example,] with a few equations [or]

few variables, creat[ing] a universal model. [...] I want to continue

this research with social media data to stay in between...” – Jane

[one of the most interesting aspects of this research] is that I can study

topics close to reality, or practical applications. [...] Physicists often

do theoretical research [...] [research is mathematically interesting]

when you can show a relationship using minimal amount of starting

assumptions [...] what you can calculate on paper [...] I think lots

of people with background in maths and physics would agree, but we

have to admit that sometimes the most useful models are not the ones

that are mathematically most interesting.” – Josh

Secondly, several social scientist participants noted the aesthetic value of computational

data analysis methods. Like the physicists above, Brian, who has background in human

geography, noted the beauty of the ’elegance’ of simple models. At the same time, he

noted he finds capturing nuances - afforded by ethnography - essential, and argued for

team based geosocial research that combines both.

”...sometimes working with a physicist can be great because they can

come up with a really efficient, elegant way to quantitatively make

sense of a certain dataset but then also by its very nature that is

so abstracting that sometimes we miss out on really important qual-

itative nuances. So that’s where it’s great to work with let’s say an

ethnographer [...] So you can have that kind of tension and contrast

within the same team.”

David’s quote suggests that he appreciates the aesthetics of computational research meth-

ods, even when he is not interested in the research questions these methods are used to
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explore. For example, his interests - shaped by his sociological training - oppose the re-

search questions explored with experimental ’computational social science’ studies, which

he can aesthetically appreciate nevertheless.

”I guess I have a sensibility that’s shaped by kind of classical sociology,

like ‘verstehen’ rather than explanation and, yeah, I don’t have a lot

of patience for these long, rigid, experimental designs [...] They’re

very impressive, I mean I can definitely appreciate the labour [....]

and [...] the whole aesthetic of it, but I don’t get really excited about

those kinds of findings.”

Chase, Colin and Bruno - interviewees with background in human geography and so-

ciology - noted the aesthetic value of computational data visualisations. They find it

attractive when data visualisations communicate complicated arguments. They believe

that data visualisations help capture readers’ attention and communicate findings.

”...being able to do interactive web based visualizations or whatever,

that’s what drives attention and interest in this stuff even when the

questions aren’t actually interesting. [...] Nobody is going to read the

thousand words. They just want to look at the pretty interactive map

or whatever.” – Bruno

”...data visualisation is really important. At the time scientists didn’t

really invest effort into it - I understood its importance through my

market research experiences. Put it simply, making something that

looks good is half way to success.” – Colin

”...it’s better to do research more quickly, for a bigger audience, sexier

things [...] more beautifully... [using] good data visualisations. [...]

when they can communicate these ideas as part of a simpler story with

the visuals, that really sells it. [...] It’s important to have something

visually pleasing when you look at it, and so you can discover what’s

interesting in what you can see.” – Chase

In addition, Brian finds attractive the puzzle posed by the very challenge of combining

social theory with empirical research designs with social media data.

”I think social media data initially grabbed my attention because [...]

connecting theory with an empirical research design with social media
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data that’s an incredible puzzle. [...] [it also] allows us maybe to

create insights into how social processes work that maybe are not as

easy to gain from more conventional data sources.”

Finally, Anne, Ben, David and Frank - interviewees with background in anthropology,

geography, sociology and urban studies respectively - noted the aesthetics of social media

posts themselves. Anne likes that they express brief, everyday passing experiences -

’everyday chatter’.

”...probably you’re not going to learn anything really profound about

the history of a place, but I think the joy is in the un-profound and

like the ridiculousness of what people [post] about, and how they kind

of enact their identity day to day in relation to location. I love... [...]

kind of the chatter element [...] When you know your feed is being

updated second by second there’s a sense that you just say whatever

is on the top of your head...”

Like Anne, Ben noted the conversational nature of geosocial data: he stated that geosocial

research helped them create research which differs from the academic conversations they

are used to - ’fun’, shorter research pieces which engage the public.

”Another motivation was to share this research with non-academic

audiences [...] questions that would be of interest to the general public.

[...] [do research that is] fun and like less serious [...] sort of tongue

in cheek. [...] This was before there was a lot of [...] ’click bait’...”

David and Frank stated that the aesthetics of the pictures associated with the geosocial

data they collect help capture the audience’s attention.

”The pictures with the social media posts help us engage policy mak-

ers. It’s beautiful, they catch people’s eye.” – Frank

”...I think that we had something to show for that was also very im-

portant, even if the results were not conclusive [....] Maybe also the

power of images [...] [it] really helped convince people that there might

be something interesting.” – David

Altogether, interviewees’ quotes suggest that aesthetic appreciation of both social

research and computational data analysis or geosocial data underpins their motivation

to conduct geosocial research across computational data analysis and socio-spatial
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interpretation. Next, I explore how non-academic work prompts or motivates scholars

to conduct geosocial research.

4.3 Geosocial Research Across Academia and Indus-

try

As section 4.1 discussed, interviewees feel that geosocial research requires them to

learn skills distinct from their home disciplines’ intellectual traditions. As the quotes

below show, many of my participants learned computational skills they use for geosocial

research through non-academic activities, which they often sought to cope with financial

pressures or sometimes due to a longstanding interest in computing. Thus, I argue that

interviewees’ concurrent academic and non-academic work results in a more diverse the

pool of geosocial researchers.

Firstly, Jane, Miles and David learned computational data analysis skills as part of their

non-academic employment. Jane explained that she learned technical skills she uses

for geosocial research through non-academic work, which she could not learn during

her academic studies because most colleagues with relevant technical skills had left her

department.

”During my PhD I worked part time at a [company that] [my depart-

ment] has a really good relationship with. [...] [there I learned] to code

better [...] I use a lot of these skills in my academic work. [...] At

the university there weren’t many people who did similar research to

me, because most of the people who worked with this data had already

finished their PhDs and left.”

Miles, who sought non-academic work for financial reasons learned social media data

analysis as part of the commercial research he conducted with geotagged social media

data. After receiving advice from senior researchers at the company, he learned data

scraping and computational map-making largely on his own, using online material and

asking friends for advice.

”I decided to do computational data analysis related research because

that’s where most of the job opportunities are these days. [...] At

the beginning I received some advice from senior researchers at the
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company. [...] But I figured most of the things out on my own.”

David’s geosocial research also benefits from computational skills he learned outside of

academia through his longstanding interest in open source computing. He was interested

in Daniel’s geosocial data project because it allowed him to re-position himself as a

social researcher who uses computational methods. After pursuing social scientific and

computational research interests separately for years, geosocial research enabled him to

combine and apply these interests in academic research.

”I have this relatively long history [...] of working with Python on

and off [due to my interest in UNIX], kind of just building toy things

[...] Part of what really appealed to me about [the geosocial research]

position [with Daniel] was the ability to kind of reinvent myself [... as]

somebody who does the computational stuff kind of as a more serious

part of my research work.”

Secondly, in addition to developing computational skills, non-academic research

prompted the interviewees quoted below to explore geosocial research. For Anne and

Luke, such non-academic research was initiated through their departments’ non-academic

funding: they partnered with a non-academic institutions with an interest in geosocial

research for their PhDs. A collaborative project with his partner organisation - which

mapped geosocial data at the granularity of a publicly accessible building - prompted

Luke to explore the accuracy of geosocial data in his (academic) geosocial research.

”[At that point my industry partner] got more involved as well [...]

Part of that was analysing [a publicly accessible building] [...] so

I dwelled really deeply into the location coordinates [and discovered

that the social media platform] gets the resolution wrong. So a lot of

my [geosocial research] methodology has been trying to fix that.”

Henry, who also works at a department which provides on PhD training in collaboration

with non-academic institutions stated that the industry relevance of computational skills

used for geosocial research are beneficial for knowledge diversity in urban research. He

thinks the commercial relevance prompts scholars with diverse disciplinary backgrounds

to study cities - including those who do not seek academic employment. He believes that

this helps diversify research about cities, even considering research which ’re-invents the

wheel’.
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”I think most of [our PhD students] will [...] go to industry, which

I think in itself is a victory or a success of the program or [...] it

says something about the relevance of these methods [...] 10-20 years

ago, if you wanted to do a PhD in studying cities you probably wanted

to end up as a university professor. [...] [the recent change] I think

that’s a good thing. it’s going to add more variety [...] there’s also a

lot of wheel reinvention and [...] misunderstandings [...] but I think

in the big picture it also adds more perspectives...”

Colin, who has been working in the private sector besides his academic job since finishing

his MA degree, learned computational data analysis and visualisation - that he used for

geosocial research - as part of his commercial work. In addition, him and Chase started

to work with geosocial data in the first instance, because their non-academic professional

network allowed them to gain access to a geosocial dataset.

”Due to financial reasons [...] since I finished my MA I have always

worked in the private sector too. [...] I got most of my practical

skills like data visualisation from market and other social research

projects. [...] [One of the companies] I did market research for is [the

technology company that in part owned the social media platform we

studied]. [...] this is how we started to consider getting access to the

[social media data].”

Like the above interviewees, non-academic research - which he pursued for financial

reasons - prompted Elias to pursue geosocial research in the first place. He also learned

relevant computational skills through this non-academic work. He adapted his academic

research to include his non-academic research: although he first felt that computational

research differed from his academic work and later came to see connections between the

two, altering his academic research focus.

”[For financial reasons] throughout my entire PhD I was working for

different NGOs... [And around that time] a lot of people were doing

these kind of network analysis of big data from [social media]. So I

gave it a shot and started to learn some of the techniques [...] For a

long time [...] I’ve felt like I’ve got these like two sides of my research

and now I’m realising that I’m only really doing one thing [...] I’m

working on ways to try to integrate [them].”
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Henry’s non-academic research also prompted him to pursue geosocial research. He

participated in non-academic discussions about computational data analysis - due to his

interest in open source computing - for several years before he realised the relevance of

computing and new digital data for urban research. As with David, geosocial research

allowed him to combine his interest in computational data analysis with urban research,

his original research focus.

”I’ve been a interested in open source development, software and com-

putational methods [...] somewhere in the early 2010s, the word Big

Data started becoming a thing. Not in academia and definitely not

in urban studies but more in the tech world. [...] And then at some

point I realized that it was going to change how we look at cities.”

Finally, Bruno needed to take a part-time job, unrelated to his PhD research, that left

him with less time for his academic research. Conducting geosocial research for his

PhD enabled him to work on his research flexibly in terms of hours and location. He

completed his doctoral research in collaboration with Ben and his team, who he knew

from a previous project.

”...needing to take on another part time job to be able to pay my bills

and stuff. I knew that I couldn’t go do this in-depth ethnographic

project in a place I didn’t live without having some research funding.

Whereas the social media project I could do from my couch, basically

in my spare time. And that’s how I finished my dissertation.”

Altogether, the interviewees quoted in this section use computational data analysis skills

they learned through non-academic research - or due to their departments’ non-academic

funding - for geosocial research. I argue that conducting non-academic and academic

research concurrently diversifies the pool of computational analysts because it prompts

researchers with diverse backgrounds to learn computational data analysis skills - or

may even expose them to research with geotagged social media.

4.4 Conclusion

This chapter discussed three practices through which interviewees develop their ap-

proaches to geosocial research, answering the First Research Question. Firstly, I argued

that for my interviewees, combining computational data analysis and socio-spatial
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interpretation is a core aspect, and challenge associated with geosocial research. In

contrast to Marres and Gerlitz (2016) who highlight the historical links between

social and computational research methods that comprise social media platforms and

Mayhew (2011) who highlights epistemic similarities and genealogical links between

the ’quantitative’ and ’qualitative’ geographic research traditions, I found that my

interviewees perceive computational data analysis and socio-spatial interpretation as

complementary but distinct. In line with Dumit and Nafus (2018), they stated that

distinct disciplinary institutions teach computation or socio-spatial interpretation, which

makes it challenging for one scholar to learn both. My participants also stated that

recognising computational tasks as a valued part of research requires prior experience,

and that computational data analysis and socio-spatial interpretation comprise different

approaches to validating knowledge claims, which can be difficult to master and com-

bine. Computational data analysis favours mathematical reasoning, while socio-spatial

interpretation requires longer narratives and familiarity with social theorists. Finally,

they emphasized that both computational data analysis and socio-spatial interpretation

take time to master. Given the growing rate of scientific publications that (geosocial)

scholars need to keep up to date with (e.g. Bornmann and Mutz, 2015), such time

constraints will likely keep affecting their work. Next, the chapter highlighted two

practices that motivate or enable interviewees to combine these research practices: their

aesthetic interests and concurrent academic and non-academic research.

I argued that interviewees’ aesthetic appreciation of methods required for geosocial

research which are complementary to their background motivate them to combine

computational data analysis and socio-spatial interpretation. Physicists emphasized

that they find both the simplicity of modeling and applying such models to studying

societal phenomena beautiful. Social scientists noted their aesthetic appreciation

of either computational data analysis methods - such as data modeling and data

visualisation - or the aesthetic appeal of social media posts themselves.

Several interviewees’ aesthetic interests combine elements of both ”classical, formalist

aesthetic” that values ”unity, economy, symmetry, consistency” and order, and a valuing

of ”diversity, differentiation, complexity”, contrasted by (McAllister, 2002, p. 9). Three

interviewees - two physicists (cf. Hossenfelder, 2018) and a social scientist - noted

the beauty of values similar to classical aesthetics. However, for the physicists Josh

and Jane, this aesthetic appreciation is linked to their interest in empirically studying
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situated practices and human behaviour - such as cities. For Brian, a human geographer,

it is linked to his aesthetic appreciation of detailed explanations and human geography

theories which highlight historicity and situatedness. The latter are more similar to the

second type of aesthetic noted by McAllister (2002) that values ”diversity, differentiation,

complexity”, (p. 9), which he contrasts with the above classical, formalist aesthetic.

This suggests that geosocial research helps interviewees enact diverse aesthetics as part

of one research project, and that these sensibilities motivate them to overcome the

challenge of combining computational data analysis and socio-spatial interpretation. In

addition, several social scientist interviewees noted the beauty of data visualisations.

They claimed that data visualisations are relatively rare in their home disciplines, and

their interest in exploring data visualisation methods. Finally, several social scientist

interviewees claimed they aesthetically appreciate social media posts (cf. Schreiber,

2017) - including the beauty of photos and pictures posted on social media (cf. Miller

and Sinanan, 2017) which, they state, can also help engage fellow scholars or the general

public. I argue that this aesthetic appreciation motivates social scientist participants to

explore computational methods that allows them to analyse social media posts.

Finally, I argued that the non-academic research interviewees pursue parallel to their

academic careers results in a more diverse set of geosocial scholars in terms of their

disciplinary background. Many sought non-academic research to cope with financial

pressures and job insecurity. As argued in section 2.9, the latter have been highlighted

as an important cause for stress among graduate students and faculty alike. In addition,

a number of interviewees work at academic institutions that depend on funding received

from (or in partnership with) non-academic institutions. The commercial relevance

of geosocial data research may fit well with institutional arrangements fostered by

universities’ attempts to develop graduates with industry-relevant competencies and

research practices (c.f. Jackson, 2009) as discussed in section 2.9. Some participants

pursue non-academic research parallel to their academic careers due to longstanding

interests in computing - such as the open source software movement (cf. Kelty (2008)).

Non-academic research prompted all interviewees quoted in section 4.3 to learn com-

putational data analysis skills, and some first worked with geosocial data through

their non-academic work. Such, non-academic research altered their academic research

focus. For example, non-academic research or collaboration prompted Luke, Anne,

Colin, Henry and Elias to explore the affordances of computational data analysis and
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geosocial data for academic research. Thus, in contrast to the state of the field Savage

and Burrows (2007) described over a decade ago - when academic and non-academic

social research developed largely independently from one another - my interviewees’

narratives suggest that academic and non-academic social research shape one another.

Participants’ use of computational methods they learned outside of academia for

geosocial research also illustrates the ’thick provenance’ of social research methods -

their origins within and outside of academic research (cf. Law, Ruppert, and Savage,

2011). Altogether, my interviewees’ experiences suggest that rising financial insecurity

and job precarity in academia discussed in section 2.9 foster a mingling of academic and

non-academic social research.

Chapters Five and Six will further discuss how interviewees overcome the challenge of

combining computational data analysis and socio-spatial interpretation. Chapter Five

will argue that collaborating with scholars with complementary skills and experimenting

with computational data analysis methods help interviewees combine these and develop

diverse geosocial research approaches. Chapter Six will discuss interviewees’ efforts to

create academic homes for their geosocial research which allows them to develop their

own approaches to geosocial research.



Chapter 5

Collaboration Among

Geosocial Researchers

Through exploring how interviewees combine computational data analysis and social

scientific research as they develop their approaches to geosocial research, this chapter

addresses all three research questions.

In response to the First Research Question - which explores how scholars develop geoso-

cial research approaches - it discusses three practices: collaboration with scholars with

complementary skills, setting up their own ’geosocial laboratories’ and experimenting

with computational data analysis methods as they search for geosocial data patterns.

These help interviewees overcome the challenge of combining computational data

analysis and socio-spatial interpretation discussed in Chapter Four, and are respectively

discussed in sections.

I discuss collaboration practices in two phases. Section 5.1 argues that interviewees

seek collaborations with scholars with complementary skills pairing social science and

computational analysis. Then, section 5.2 draws on interviews and scientometrics to

argue that such collaboration enables the development of diverse geosocial research

approaches. I argue that participants seek collaborators with complementary skills with

whom they share theoretical or methodological common ground. Through such collab-

orations, interviewees set up diverse geosocial laboratories - infrastructures to access

and analyse geosocial data - on their own terms, and develop distinct approaches to

geosocial research. The modularity of the co-authorship network reflects the importance

of multiple small scale collaborations. Section 5.3 argues that experimenting with data

120
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analysis methods in search of patterns also helps interviewees combine computational

data analysis and socio-spatial interpretation and thus develop their own approaches to

geosocial research.

Regarding the Second Research Question - which explores differences among ap-

proaches to geosocial research - section 5.3 argues that the temporality or rhythm of

combining computational data analysis and socio-spatial interpretation differentiates

geosocial research approaches. While several scholars with technical backgrounds

narrate the combination of these research traditions modularly or sequentially, the

majority of social scientists state they perform them iteratively. This signals a dif-

ference in how interviewees create valid knowledge claims. In the former case, valid

data patterns are identified mainly based on computational criteria. In the latter case

patterns are identified using a combination of computational and social scientific criteria.

Finally, addressing the Third Research Question - which explores the project’s mixed

methods strategy - this chapter combines interview analysis and scientometrics to trace

the intensity and meaning of relations among homogeneous actors: collaboration among

geosocial scholars. Using interview analysis, it discusses why and how my participants

collaborate with fellow scholars. Co-authorship network analysis helps evidence the

extent to which geosocial scholars collaborate.

5.1 Importance of Collaboration

This section argues that the majority of my interviewees seek collaborators with

complementary skills. Some consider collaboration desirable for geosocial research, and

many find it essential. As section 4.1 argued, my participants stated that geosocial

research requires them to combine socio-spatial interpretation and computational

data analysis. However, they emphasize the challenge of mastering both method-

ological traditions. As this section argues, they seek collaboration with colleagues

with complementary skills to help combine these research traditions. As section 5.1.1

discusses, social scientist interviewees seek technical collaborators in order to help

conduct or optimise computational data analyses. As section 5.1.2 argues, partici-

pants who perform computational data analysis seek social science collaborators to help

identify ’relevant’ or ’novel’ research questions and help interpret computational findings.
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5.1.1 Seeking Computational Collaborators

Many participants with social science training emphasized the importance of collaborat-

ing with scholars with computational expertise - a view held both by both interviewees

with little computational training and those who actively conduct computational

research. In the quotes below, they stated that technical scholars help perform diverse

computational tasks, including helping with specific methods and optimising computa-

tional analyses.

Firstly, Bruno and Daniel, who do not perform computational data analysis, seek collab-

orators to help them with diverse computational data analysis tasks. Bruno, as section

5.3 will discuss, contributes social theory and performs exploratory GIS analysis. He

seeks computational collaborators to help conduct computational, statistical analyses

and (interactive) data visualisations.

”[my collaborator] can access, scrape data and do all that stuff

which is obviously important whether you’re dealing with social me-

dia data. [He can also perform] statistical and spatial analysis, and

[...] [he also] has [...] visualization skills that increasingly people care

about...”

Likewise, Daniel seeks computational collaborators to help him analyse social media data.

He noted that he was interested in using social media data to study urban practices, but

was not sure how. He thus sought a collaborator with programming skills.

”I developed a strong interest in [big data, complexity methods] [...]

I also became interested in social media [and its constitutive role in

urban practices]. [...] [such research with social media data is] some-

thing that I would like to do, but I don’t really know how. [...] I was

very happy to see that [David] applied [to the job], partly because he

had the programming skills...”

Secondly, Elias, Gary, Brian, Luke have backgrounds in social science and act as compu-

tational collaborators with social scientists colleagues, as well as Ben who has computa-

tional skills, are interested in collaborating with computational analysts who specialise

in machine learning.
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”If it’s about [a specific line of research], I need support with doing

the machine learning I’d have to do.” – Elias

”[For one of the projects], machine learning would be a cool method.

And this would be someone who is better, has a better background in

the methodological questions.” – Gary

”Secondary interest would be computer scientists because they would

be able to help me refine my machine learning approach.” – Luke

”...some sort of machine learning, deep neural networks, artificial in-

telligence kind of thing. But I will say I don’t feel qualified to sort of

say which one would be [...] I have sort of feelers out with various

people who are coming from a computer science or statistics back-

ground...” – Ben

Thirdly, Henry and Brian - who, as Chapter Four discussed, both have computational ex-

pertise - seek computational collaborators to help optimise computational speed. Henry

stated that specialists in specific computational techniques have detailed, relevant knowl-

edge about hardware for this:

”I look for very very domain specific people who know a lot about

very technical aspects, so things like computer vision or hardware,

and people who can solve the problem I have from a CPU so it can

actually finish computing before I die.”

Brian noted that computational collaborators are essential because social media research

challenges are difficult to resolve through singular disciplinary approaches. For example,

he said that experts in computational data analysis can help with data management and

to improve computational data analysis by providing ”elegant” and ”efficient” analyses.

”...there are all kinds of technical challenges to even [...] accessing

the data and storing it and making it kind of searchable and accessi-

ble. And to do that all from one kind of disciplinary home – that’s

quite difficult... sometimes working with a physicist can be great be-

cause they can come up with a really like efficient, elegant way to

quantitatively make sense of a certain dataset...”

Altogether, many interviewees with social science backgrounds seek computational

collaborators to help perform computational data analysis, assist with specific computa-

tional methods, or optimise computational speed. Next, I discuss why participants with
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computational background seek social scientist collaborators.

5.1.2 Seeking Social Collaborators

My interviewees who conduct computational data analysis agreed that collaborating

with social scientists is beneficial to geosocial research for two main reasons: to help

develop research questions and interpret geosocial data analysis.

As illustrated below, interviewees’ noted three ways social scientists inform research

question development. Firstly, Kevin stated that they help develop research questions

which address gaps in the social science literature. He contrasted this with physicists’

research without social science collaborators, which he states often re-invent existing

knowledge in ways that discourage social scientists from future collaborations.

”Collaboration [with social scientists] is essential, because several

times, physicists who arrogantly think they are smarter than everyone

re-invent things that are well-known in social science or economics

[...] This doesn’t help collaboration and makes the community look

bad...”

Secondly, Josh and Jane believe that collaborating with social scientists helps formulate

research questions ’relevant’ for urban research. Josh noted that whilst he values models

based on mathematical ideas, he observes that relevant questions for urban science do not

necessarily coincide with models which he finds mathematically interesting. He stated

his collaborators help choose relevant variables:

[Social science collaborators] mostly help identify relevant questions.

[...] it might not be clear to me what’s worth modeling, which question

is truly important [and] relevant for the future of cities. [...] what

should we optimise [models] for, and which contextual factors should

we consider the effect of in an urban scenario [...] I like models

which use interesting mathematical ideas. [...] But sometimes the

most useful models are not the ones I find most interesting.”

Like Josh, Jane believes that social science scholars can ask questions which better reflect

the empirical phenomena (urban processes):

”I’m very interested in collaborating with [social scientists] at my next

research group, because [...] I think they will ask different questions
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from the data, because they know a lot more about the context of the

phenomena I study.”

Thirdly, Mike and Henry stated that social scientists help apply computational methods

to new research topics. Mike stated that having social science collaborators can bring

invigorating new ideas:

”...for example, the summer before we collaborated with [a] very bril-

liant [social science] student [...] and, you know, the type of breadth of

thinking, and [...] freshness of ideas was amazing [...] it’s really com-

plementary to what we do, and you know, enriches the understanding

of what we do as well.”

Henry claimed that social scientist collaborators help apply computational methods to

new research areas which could benefit from computational exploration.

”[I] also [look for] people who are really interested in substantive ques-

tions [...] that can benefit from the analysis I do, but are not necessar-

ily fields where you would expect people to have a big computational

background.”

So far the section showed interviewees’ preference for collaborating with social scientists

to co-develop research questions. In addition, Isaac and Jane stated that social scientists

help interpret the results of data analysis. Jane noted that social scientists’ knowledge

about spaces they study help them interpret the computational findings.

”I’m very interested in collaborating with people [social scientists] at

my next research group, because [...] they see completely different

context, they interpret the data differently than me. That will be very

interesting, and I think that’s been missing all along.”

Isaac emphasized social scientists’ theoretical knowledge helps re-frame data analysis

results. His quote discussed in section 4.1 contrasts computational data analysis’ focus

on ’computable’ mechanisms with social scientists’ questions about the nature of social

practices. To explore the latter, social scientists invoked theoretical knowledge that did

not form part of the model to re-interpret the results of his data analysis.

Altogether, this section showed that the majority of interviewees seek collaborators

with complementary expertise. Next, section 5.2 will argue that interviewees seek



5.2. Collaborative Problematisation 126

collaborators with complementary skills with whom they also share methodological

or theoretical common ground. These collaborations develop diverse approaches to

geosocial research.

5.2 Collaborative Problematisation

This section argues that interviewees seek collaborators with complementary skills

with whom they share methodological or theoretical common ground. As section

5.2.1 argues, many participants who seek social scientific collaborators state the

importance of methodological common ground. Section 5.2.2 discusses social scientists’

preferences to work with computational analysts with whom they share theoretical

common ground. In addition, the ’strength’ of the common ground interviewees seek

differs in both cases. At one end, interviewees seek collaborators with expertise in the

theories or methods they also use. At the other extreme, interviewees seek collaborators

interested in the theories or methods they use without detailed knowledge about

them, or collaborators who perform computational methods differently. I argue that

through seeking stronger and looser common ground with collaborators, interviewees

develop distinct approaches to geosocial research. Section 5.2.3 juxtaposes interview

analysis with co-authorship network analysis. I argue that the collaboration landscape

of geosocial research remains ’modular’ because through collaboration, scholars de-

velop diverse approaches to geosocial research and set up distinct ’geosocial laboratories’.

5.2.1 Common Ground with Social Scientists: Methodological

Principles

This section argues that participants with computational background seek social scientist

collaborators with knowledge about computational data analysis methods. However, as

illustrated below with quotes, I argue that the ’strength’ of the methodological common

ground participants seek differs in two ways: depending on their ideal collaborators’ skill

level, and computational interviewees’ interest in collaborating given different approaches

to specific methods. I argue that through seeking ’stronger’ and ’looser’ common ground

with collaborators, computational interviewees develop diverse approaches to geosocial

research.
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Kevin and Josh seek social scientist collaborators trained in the computational methods

they use and who perform these methods similarly to them. I refer to this as ’strong

methodological common ground.’ Through such collaboration, they advance geosocial

research in line with existing research traditions. Kevin seeks social scientist collaborators

trained in mathematics which is the foundation of the methods he uses, hoping that they

share assumptions about data analysis. He stated that shared mathematical knowledge

helps communication because it facilitates consensus:

”I look for open minded people with whom we are on the same wave

length. [...] And it’s also very helpful if the collaborator has [...] a

strong background in mathematics, because then it’s easier for us to

communicate with them, because they will think similarly to us about

a lot of things by default.”

In line with Kevin’s quote above, Chase - who collaborates with Kevin - suggests that

Kevin prefers collaborators who perform computational methods similar to his. During

their joint research, Chase performed a computational analysis method popular both in

physics and geography. As part of the collaboration, Chase understood that scholars in

these disciplines perform the analysis differently. Kevin deemed Chase’s approach incor-

rect based on mathematical principles and advised Chase to alter his method. However,

as Chase explained, the physics approach could not capture the empirical phenomena he

wished study. To better suit the empirical question, he altered the modeling approach,

but found that the physics research community - including Kevin - was not interested:

”[the modeling method] is part of the standard repertoire in both dis-

ciplines [physics and geography]. But they do it differently. I realised

this when [Kevin] told me that I did the modeling wrong. He explained

the correct way to do it and its mathematical assumptions. I read up

about it and I did it his way. But there are things the physics model

can’t do. [...] We later modified the model so we could put in extra

variables, [...] but so far it looks like the physicists [and Kevin] are

not too interested.”

Confirming Chase’s account, Kevin narrated his contribution to interdisciplinary team

work in terms of correcting technical details based on his mathematical, methodological

expertise:

”For example, on one occasion my collaborators used the wrong for-

mulae for community detection and I corrected it. This is how these
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interdisciplinary collaborations work, we add our knowledge based on

our expertise.”

Josh stated he collaborates with urban studies scholars who conduct modeling similar to

him, and that his expertise in modeling serves as common ground with collaborators. As

his quote in section 5.2.1 showed, he noted a difference between his and his collaborators’

understanding of the context and applicability of the models, rather than differences in

modeling approaches.

”I get the impression that a significant body of sociological research

area aims to model phenomena [...] I became part of an interdisci-

plinary research group, where I continue to focus on data analysis,

and I try to build connections with others using my background in

modeling with urban planners who also do modeling.”

Altogether, Josh and Kevin seek social scientist collaborators trained in the compu-

tational methods they use - which I referred to as strong methodological common

ground. In contrast, as evidenced below, Mike, Jane and Isaac are open to collaborate

with scholars with whom they share looser methodological common ground: either

collaborators less-skilled in computational data analysis, or who perform computational

analyses differently.

Mike seeks social scientist collaborators who understand the affordances of algorithmic

data analysis ’at scale’, but are not necessarily skilled data analysts. I describe this a form

of ’loose methodological common ground.’ He stated that such expertise is essential and

sufficient to help apply computational methods to new topics. Through such common

ground, his ideal collaborators can help create computationally adequate hypotheses in

dialogue with theories from the social and behavioural sciences.

”it would be perfect if this person [the collaborator] had a sort of

computational understanding [...] [otherwise] it’s a bit of a struggle

[... for example, if they understood] the things you can do with the

data, the process of hypothesis building [...] [if they had] the ability to

think about the data a bit at scale, not just because OK the guy can

directly do the stuff, but also because it impacts the way of thinking

about hypotheses around the problems that you have. [...] even just

trivial things like understanding the data format of things, or have a

rough algorithmic understanding of how you would parse some data
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[...] or even the things you could measure [with] algorithms. [...]

People who never had this type of experience [...] the difference is

striking!”

Like Mike, Jane and Isaac are open to collaborating with social scientists less skilled in

computational methods. They are interested in exploring different ways specific data

analysis methods can be conducted. Thus, I understand the methodological common

ground they seek loose. Through these collaborations, they apply computational data

analysis methods to new topics. Jane noted that her new social scientist collaborators

hired her because of her expertise in parallel computing. Her skills enable social scientist

collaborators’ geosocial research. Jane stresses that her collaborators’ (less advanced)

computational knowledge allows her to discuss technical details of her work.

”My future employer [Chase] [...] probably want[s] to hire me so I can

establish parallel computing and data analysis processes quickly. [...]

I’m very interested in collaborating with people at my next research

group because they are social scientists who have a lot of technical

knowledge too, so I can discuss the technical details with them as

well...”

In addition, as the next two quotes suggest, Jane is interested in reflecting on method-

ological differences. She noted her interest in understanding differences between her

and her collaborators’ approaches to regression analysis. She contrasted social scientific

regression models, which include multiple variables, with her physics approach, which in-

volves linear equations. She hopes her next collaboration can help her better understand

the social science approach.

”I would like to get more experience in traditional social scientific

modeling, for example, those big regression models. In a lot of situa-

tions when we [physicists] create a system of linear equations, social

scientists run a regression model. I have never worked with those,

and I find it very difficult to interpret them.”

When discussing what she considers good science, Jane noted her disciplinary training

in physics influences her preferences:

”I think model building differentiates between simple data science and

’real’ scientific research. Or it might be the case that I think this

because this is what physicists learn...”
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Isaac also actively explores disciplinary methodological differences and seeks collaborators

who are interested in his methods but conduct or interpret them differently. As his quote

presented in section 4.1 showed, he noted that whilst his discipline focuses on variables’

relationships, the social scientists he exchanged ideas with as part of a research visit

approached the phenomena - and his results - in light of theories about social mechanisms,

which in turn shaped his interpretations. However, loose common ground collaborations

can be challenging, for example, because of uncertainty about the work’s reception:

”I anticipated that they [collaborators during a research visit] would

reject a lot the representativity of the data, they didn’t do that so

much, they just said be aware, I said of course... maybe they are used

to seeing these things now so and they know they know it’s hard to

fight it...”

Isaac claimed that his loose methodological collaborations with social scientists helps

apply computational methods to study topics previously under-explored with computa-

tional methods. He visited a social science oriented interdisciplinary institution and later

got hired by a computer science department. He credited his employment in computer

science to the theoretical knowledge he obtained collaborating with social scientists, and

stated that he has the most theoretical knowledge in his new group:

”During the job interview I spent a few slides on theory that I learnt

from [social science collaborators] and after the talk one person gave

the comment, ’that’s the most theory I have ever seen’. Like it it

was really different for them. [...] I think that they think that I can

contribute to their group a lot because I have experience in turning

circumstantial things, relating these kind of abstract concepts that are

poorly quantifiable in a still relatively convincing way.”

Finally, both Jane and Isaac stated they seek collaboration with technical scholars and

social scientists, each of whom offer unique contributions:

”when I [did my research visit], I really enjoyed engaging with [so-

ciologists] and that part of academia, and probably [in my next job

at a] Computer Science Department, I’ll continue to miss that. But

had I taken a job ... with the sociologists, perhaps I would miss the

physicists. So I think if you are in an interdisciplinary thing, what-

ever is missing at the moment or on the project is what you miss in

general.” – Isaac
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”I really look forward to collaborating with the social scientists in my

next job [...] I have missed that all along [my PhD]. At the same

time I can imagine collaborating with a traditional physicist who does

modeling and equations, they could complement my work from the

other direction.” – Jane

Altogether, by alternating collaborations with technical scholars and social scientists

with whom they share loose common ground, Jane and Isaac develop geosocial research

in diverse directions. This section argued that through seeking social collaborators

with whom they share stronger and looser methodological common ground, com-

putational analysts develop diverse approaches to geosocial research. Next, I discuss

how social scientists’ ideal computational collaborators share theoretical common ground.

5.2.2 Common Ground with Computational Analysts: Social

Theory or Computational Methods

This section argues that social scientist participants seek computational collaborators

with whom they share theoretical common ground. As with computational analysts,

the strength of common ground they seek differs. Firstly, I discuss interviewees’

experiences seeking computational collaborators with strong theoretical common ground

for projects to counter ’computational social science’ or GIScience. Secondly, I discuss

interviewees’ narratives of the importance of looser theoretical common ground for

methodologically-focused collaborations. Thirdly, with Brian’s and Chase’s narratives,

I argue that alternating between collaborations using stronger and looser theoretical

common ground helps advance geosocial research in diverse directions.

David and Bruno seek computational analyst collaborators with strong theoretical com-

mon ground for projects that explore ’good’ uses of geosocial data. Bruno, whose geoso-

cial research aims to counter GIScience-inspired approaches to geosocial research, states

that his ideal computational collaborator is trained in social theories he uses. In his team,

he specialises in social theory, and his ideal collaborator shares some of his knowledge.

”...our research largely tried to talk back to the more technical, com-

puter science-dominated versions or even just GIScience dominated

versions of this research [...] if I could clone [Brian] so there is lots

of him, so that he has more time, it would be [the ideal collabora-
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tor]. [Brian] is a very unique guy because he has social theory, he has

substantive knowledge about the field [...] but he’s also a computer

programmer and can [do data analysis]”

Bruno’s computational collaborator is Brian. Like Bruno, Brian has had a long-standing

interest in social theory and countering GIScience-inspired geosocial research:

”...in a sense we’re trying to push back against is this kind of adoption

by let’s say folks who come from engineering or computer sciences [...]

now studying cities and makes very kind of grand claims [without]

having read [...] any previous work that has been done in the last

century.”

Like Bruno, Daniel’s ideal collaborator is a computational analyst trained in the social

theories he uses. As his quote in section 4.1 showed, he claimed that his shared theoretical

interests with David is core to their collaboration. Like Bruno and Brian, Daniel and

David share an interest in critiquing ’computational social science’ through their geosocial

research:

”then I realised, most of these people [computational social scientists],

actually, couldn’t care less about the social science part. [...] [but]

we do need to do verstehen, we do need to situate, we do need to

contextualise, and actually these new data help us do it” – Daniel

”...everybody was so excited by this research [at a computational so-

cial science conference], and I couldn’t help feeling like ‘so what’?

[laughing] this doesn’t answer any of my questions around, like, what

the digital means, or [...] what this does to our interactions with one

another. I guess I have a sensibility that’s shaped by kind of classical

sociology, like ‘verstehen’...” – David

They contrasted their approach with other computational social research informed by

’methodological individualism’. Daniel stated that he once decided against hiring a

scholar - a strong candidate with computational and sociological training - who thought

of geosocial data in terms of individual users. He noted that using geosocial data to study

relationships and their change over time is also a new challenge for him. Thus, he seeks

collaborators like David to co-design methods in line with his theoretical commitments.

“we had a great candidate [who] said ‘I would get all the information

about the individual [social media] users’ [... then] we asked ‘what
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if we can’t get all the information about the individual [social media]

users? what if you only have the patterns? [...] then she was like

‘well, you’re asking me to step outside my own paradigm’... and

yeah, I mean it’s something that I want to do, but I don’t really know

how. [... I realised] whooa! Actually people are really trained to think

about their data in terms of a matrix... [and...] individual attributes

[...] [In contrast, looking at relationships] is a hugely important point

of our work...”

Altogether, Bruno and Daniel seek computational collaborators with whom they share

strong theoretical common ground for projects that wish to counter ’computational

social science’. Next, I discuss social scientists’ experiences who seek loose theoretical

common ground with computational collaborators.

As section 5.1.1 argued, several social scientists seek computational collaborators with

shared interest in specific computational data analysis methods. Elias’, Ben’s, Brian’s

and Chase’s narratives demonstrate the importance of looser theoretical common ground

in collaborations with computational scholars rooted in shared methodological interests.

Elias and Ben seek computational collaborators skilled in machine learning. Although

their ideal collaborators are not necessarily trained in social science, they emphasized the

importance of interest in social scientific questions and frameworks. Elias, who wishes

to apply machine learning to a research topic in his discipline, seeks collaborators with

computational expertise and theoretical open-mindedness sensitive to (but not necessarily

trained in) social science:

”[for this project I seek] an expert in computer vision who can do a

lot of things that I can’t. [...] But [...] that kind of ideal colleague

would have to be someone who is [...] not necessarily a sociologist but

someone who can appreciate and understand the sort of complexities

of that discipline and also build some connections [...] someone who’s

a bit ecumenical in their in their outlook. I think it’s something we

all have to be ready to do.”

Ben also emphasized the importance of shared interest in research questions when dis-

cussing his interest in collaborating with machine learning experts (see also section 5.1.1).

He stressed that computational collaborators should share an interest in social scientific

topics and the lack of such common interest hinders collaboration.
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“the trick with that is always how to make it interesting for the collab-

orator [...] the kinds of questions I’m interested in are not necessarily

interesting to a statistician who is more interested in what method can

you use. [... they may not be interested in the questions I ask] because

they’re social science questions.”

Brian and Chase reflected on collaborating with computational scholars with whom they

share methodological interests but whose theoretical interests differ. Their experiences

show that such collaboration, if successful, can help knowledge exchange among scholars

from different backgrounds. However, ethical and epistemological differences can pose

challenges, highlighting the importance of loose theoretical common ground. Brian col-

laborated with computational scholars on a predictive algorithm to study urban change.

The algorithm had commercial applications, which his collaborators saw as a benefit

and opportunity to monetise. In contrast, Brian hoped to apply the algorithm to in-

fluence urban processes contrary to such ’market logic’. He stated he may encounter

such potentially-hindering differences when attempting collaboration with computational

scholars.

”[collaboration with technical scholars] is a big hit or miss [...] some-

times we just speak such a different language and maybe our goals are

so far apart that it’s difficult to come together [...] [In one project]

I’m very much interested in neighborhood change, issues like gentri-

fication, but [my collaborators] always went back to real estate price

increases and that was [...] awkward [... because] they saw as a really

useful application [...] if you could give this to a real estate developer

or a property speculator [...] I’m more interested in maybe the same

algorithm or the same method, but actually to make sure that we put

limitations on them. [...] So there’s a bit of a tension there”

Like Brian, Chase collaborates with computational scholars with whom he shares method-

ological interests, but lacks theoretical common ground. He seeks to expand his com-

putational data analysis skills. As section 5.2.1 discussed, he trained himself and his

team in computational data analysis methods to facilitate successful collaboration with

physicists. In contrast to Brian who agreed with computational collaborators about

the modeling approach but disagreed about their method’s applications, as section 5.2.1

discussed, Chase found that the modeling approach advocated by his computational

collaborator - which he was interested to learn - could not account for the empirical
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phenomenon he studied. In particular, as the quote below shows, he claimed the physics

modeling method was not suitable to investigate the relationship among multiple vari-

ables. Thus, he altered the model, but as discussed in section 5.2.1, he then found that

physics scholars were not interested in it.

“But there are things the physics model can’t do... [...] Those types

of models only work in one dimension, for example, distance. If you

have other variables, like similarity or a network proximity measure,

you can’t use them to model the relationship between these. [...] In

this case we modified the model so we could put in extra variables...”

Altogether, Brian and Chase collaborate with technical scholars with whom they share

interest in data analysis methods amid theoretical differences. Their experiences show

that such collaboration can help knowledge exchange, but the lack of theoretical common

ground can pose challenges.

Finally, Chase’s, Brian’s and Elias’ journeys show that alternating between collab-

orations with looser and stronger theoretical common ground also helps diversify

approaches to geosocial research. As discussed above, Brian seeks collaborators with

diverse disciplinary backgrounds, including Bruno, with whom he shares theoretical

common ground, and physicists and engineers with whom he shares methodological

common ground. Like Brian, Chase collaborates with scholars from his disciplinary

background, as well as with physicists with whom he shares methodological common

ground. Alternating between such collaborations allow Chase and Brian to advance

geosocial research in line with their disciplinary background as well as the research

agenda of technical scholars.

Like Chase and Brian, Elias seeks both computational and social scientist collaborators.

His quote above discussed his search for machine learning experts. As the quote below

shows, he also acts as a computational collaborator with social scientists with whom he

shares theoretical and disciplinary common ground, in a research field he is familiar with

but is not an expert:

”I don’t really care if they [my collaborator] are an expert in cultural

studies or data science because I can do a bit of both. [... my ideal

collaborator is always] driven by a particular kind of research agenda.

[For example, on another project] I work with a [social scientist] and
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I can support [them] with data science methods. That’s a great way

of doing collaboration for me as well. But we both know the field.

[They are] just much better trained at writing in a way.”

Altogether, I argued that social scientist interviewees develop diverse approaches to

geosocial research by seeking technical collaborators who share stronger or looser

common ground with them. Next, I conclude the section by juxtaposing the above

findings with co-authorship network analysis.

5.2.3 Co-authorship Patterns and Geosocial Laboratories

Based on interviewees’ quotes, this section argued that the stronger and looser common

ground participants seek with collaborators with complementary skill sets results in the

development of diverse approaches to geosocial research. The co-authorship analysis

depicted by figure 5.1 - which shows that the collaboration landscape of geosocial

research remains modular - supports this argument. As section 3.4.1 explained, figure

5.1 compares the modularity of the co-authorship network (red line) with statistically

comparable networks (1000 random graphs with equal number of nodes and edges) at

four time points. The blue lines show the minimum and maximum of the modularity

distribution of the 1000 simulated random graphs. The figure shows that the modularity

of the co-authorship network remains considerably higher than the modularity of the

random graphs. Over time, the difference between the modularity of the empirical

and randomly generated networks slightly increases. This suggests that over time, the

modularity of the co-authorship increases, even as its absolute value remains the stable.

Interviewees’ narratives and the co-authorship network analysis show that scholars’

collaborations remains modular - geosocial research does not become an integrated,

coordinated research field. Through collaboration, interviewees advance geosocial

research in line with diverse disciplinary research traditions. Next, I show the modular

nature of collaboration from a second perspective - participants’ narratives about setting

up their geosocial laboratories.
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Figure 5.1: Modularity of the co-author network compared to the modularity of 1000
simulated random graphs with equal number of nodes, edges and edge weight distribution
over time

Interviewees with varying levels of knowledge about computational infrastructures set up

their own ’geosocial laboratories’. Most of them, including participants with relatively

little computational training, succeed in accessing and analysing geosocial data on their

own or in collaboration with colleagues with whom they share epistemological and

methodological common ground. This helps them develop their approach to geosocial

research, without having to negotiate methodological or theoretical differences. As the

quotes below illustrate, participants use diverse methodologies to access and analyse

geosocial data. Some, such as Anne and Elias, access data as .txt or .csv files. Others,

- including groups B, D and J - build databases, and groups C and K purchase a

proprietary database of social media posts.

Anne and Elias accessed geosocial traces in standalone files. Anne downloaded them

as .txt files through the social media platform’s API, and uses proprietary software for

data analysis. The software allows her to analyse the data she obtained through the

API without further data processing (for example, it does not require changing the file

format).
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”There was definitely a time where I [thought] I need to get somebody

who can write me code so that I can analyse all this data really quickly.

But I’m glad I didn’t commit to it in the end, because that’s precisely

the opposite of why I started the project in the first place. [...] I chose

to use [this data analysis software], because it allowed me to upload

the data in its entirety, without [having] to do like any cleaning of the

data, I didn’t have to do any parsing, or any processing of any kind.

I could upload the raw text files obtained through the API straight to

[the data analysis software].

Like Anne, Elias explained that he downloaded geosocial data from the social media

platform’s API, which he analyses with a combination of programming and custom-made

software:

”I basically grabbed all of the [social media posts] that I could, and

then I put it all into a network graph. And basically, then I used a

layout algorithm [...] in [network analysis software]”

Whilst Anne and Elias worked with data files they downloaded through APIs, other

groups built or bought databases which facilitate data sharing and collaborative research.

For example, interviewees from three groups - B, D and J - discussed building their own

databases. Participants affiliated with group J (who were not interviewed for this project)

used their experience with astronomical databases to build a social media database. They

optimised the database for ad hoc queries and statistical analyses they were familiar with

from previous research. Jane stated that her colleagues who collected the database prior

to her involvement in the project had extensive related experience.

“...a data collection like this needs to be carefully planned in advance.

You have to think through how to structure the database, how you’ll

collect the data: which computers you’ll use, how you load the data

into the database and how you make it searchable. My colleagues who

collected the data had a lot of experience with databases from prior

work with astronomical databases.”

Like group J, interviewees in groups D and B store geosocial data using databases. Their

experiences highlight the effort required to build databases. As section 4.1 discussed,

David collected data for group D, but he feels that the time he invests in creating and

maintaining the database is not valued by his disciplinary peers. Similar to David in
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group D, as section 4.1 discussed, Brian had computational expertise to collect the

geosocial data which group B used. Ben states that Brian’s PhD’s flexibility allowed

them to build the database even though they had relatively little experience.

Altogether, interviewees with varying computational skills successfully obtain and

analyse geosocial data on their own or in collaboration with scholars with similar

research interests. As section 5.3 discusses, setting up their own laboratories allows

interviewees to develop geosocial research in line with their own methodological and

epistemological interests through experimenting with data analysis methods. Next,

I discuss how experimentally exploring data patterns helps interviewees successfully

combine computational data analysis and socio-spatial interpretation.

5.3 Variable Experimentation

This section argues that the ’experimental’ use of diverse data analysis methods to

identify patterns helps interviewees develop their approaches to geosocial research, and

that the rhythm of such experimentation differentiates approaches. I use the term

’variable experimentation’ to refer to two aspects of participants’ geosocial research.

Firstly, interviewees from research groups A, B, C, D, J, K, L and M emphasized

their ’experimental’ use of diverse data analysis methods to explore possible research

questions and ’variables’ of interest, and thus identify patterns. Secondly, I argue that

interviewees’ experimentation is ’variable’: their narratives differ about the temporality

of combining computational data analysis and socio-spatial interpretation (sequentially

versus iteratively) as they experimentally search for patterns. I argue that these also

signal different approaches to validating data claims. Below I illustrate participants’

variable experimentation by first discussing the narratives of those who understand

the combination sequentially, followed by narratives about iterative computational and

interpretative experimental data analysis.

Firstly, as the quotes below show, Miles, Luke, Josh and Jane experiment with various

computational data analysis methods in search of patterns. Then, I illustrate their

preference to combine computational data analysis and socio-spatial interpretation

sequentially - using social scientific knowledge either to inform research questions and

variables of interest or interpret results. I argue that they validate data patterns based
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on computational and statistical criteria, excluding social scientific considerations from

that aspect of the process.

Experimental data exploration is central to Miles’, Jane’s, Luke’s and Josh’s geosocial

research: they recount experimenting with various data analysis methods to identify valid

patterns with geosocial data.

”The biggest challenge was the workload: in 3 months we had to

develop a publishable project - we had to find the right direction - so

it was pretty intense. We tried a lot of methods...” – Miles

”[my supervisor] said we should look for a topic that will yield pub-

lishable results. Already when we started this project he knew that we

would get results because they had already done previous calculations

with [Josh].” – Jane

”My [geosocial research] originally had a stronger focus on event de-

tection [...] [but] [I changed methods] [...] [Later,] I realized that

cleaning the data was actually a lot more complex [...] So a lot of my

work has been [about] advanced or more complex cleaning methods”

– Luke

”We didn’t have a very precisely stated goal when we started, rather,

we explored in general what [types of] analyses we can do, how can

our data yield interesting results.” – Josh

On one occasion, Miles’ group considered a more complex calculation, for which they con-

tacted another scholar who published about the topic but didn’t reply, and the idea was

discarded. This shows that experimental exploration of variables and research methods

can benefit from input from collaborators.

”Another feature, which would have been pretty complicated to calcu-

late, would also have used network relations. I found a relevant paper

and e-mailed the author. I wanted to ask them if it would even be

worth to try this calculation with our data. But they did not reply,

and we just discarded the idea.”

Altogether, Miles, Luke, Josh and Jane recounted experimenting with diverse compu-

tational data analysis methods in search for patterns. As the quotes below show, they
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stated that they use social science knowledge either as an input to inform the research

question, or after having completed computational data analysis, to help interpret the

results. As section 5.1.2 discussed, Josh and Jane seek social scientist collaborators to

help identify research questions and variables to include in models. Like them, Miles

stated that social scientific theories can inform variables models include:

”Usually when we do predictive modeling, we look for variables which

can explain our predictions. We can choose variables based on intu-

ition, theories or previous research.”

Like Josh, Jane and Miles, Luke’s narrative suggests that he uses socio-spatial interpre-

tation to identify research questions. He stated that he seeks collaborators who can help

apply his method to new topics.

”I would really like to work with a [social scientist] [...] to apply my

methodology to a field that I’m unfamiliar with.”

In addition, Miles claimed that social scientific knowledge can help interpret data analysis

results.

”...we develop our interpretation when we write up the paper. I mean,

the trends in the data are clear. But then we look for good examples,

or maybe link them to findings in previous papers or even news sto-

ries...”

As discussed so far, Miles, Josh, Jane and Luke experiment with diverse methods

to identify data patterns, and use social scientific knowledge either to help identify

variables and research questions, or to interpret data analysis results. Using the quotes

below, I argue that once they identified variables and research questions, they identify

patterns with geosocial data based on statistical, computational criteria alone: they

validate patterns without explicitly considering social scientific knowledge.

Josh stated he finds social media research more complicated than physics projects in the

sense that social media phenomena can be studied from multiple valid perspectives. It

is challenging to control or repeat measurements, and account for all possible causes for

variation. Given these constraints, he stressed that searching for statistically significant

patterns is a good approach to analysing social media data.

”Compared to physics, where you can do the same experiment a hun-

dred times, and you can decide which model is good [with geosocial]
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research there are a lot more ways to approach topics... Often times it

seems very complicated. For example, we can’t claim to explain why

people post certain things, because it depends a lot on individuals.

But it’s a good question to ask what statistically significant patterns

we can find in the data [...] [but] it’s a lot more difficult [than physics]

because we can’t do controlled experiments...”

Jane explained that in one project, her team identified valid patterns based on the

outcomes of quantitative data analyses, whilst being initially agnostic about what they

would find. They included the outcomes of all the statistical analyses in their resulting

paper. Once the analyses were complete, Jane gathered knowledge about the country by

reading and talking to colleagues to write up the results.

”...for that project [...] we correlated social media data with any data

we could access for the same spatial units and time window. [...] we

included all [statistical patterns we identified] in our paper. [... then]

I had to read a lot and talk to people who lived in the country to write

up the results.”

Miles stated that his team also validates patterns using statistical and computational

criteria. He recounted two reasons for the failure of data analysis methods they experi-

ment with, both invoking statistical criteria. Firstly, he claimed that sometimes results

were ’too noisy’ - meaning his team could not discern statistically clear patterns. Once

they identified patterns, they sought recurrent patterns which they could identify com-

putationally.

”We tried to analyse the data on several temporal scales, and decided

to use [the one] which yielded the best results [...] meaning that this

yielded the clearest statistical trends. [...] And then we were interested

if there were patterns in the trends. [...] In the end we identified [x]

clusters.”

Secondly, confounding processes obscured some results they obtained, which prompted

the team to use different variables. Several statistical methods assume the ’independence’

of variables. When independence is not guaranteed, attempting to disentangle the effect

of specific variables from that of confounding variables is a core challenge in statistical

research.

”We realised that even though our methods counted for likes, we still

found that [entities] that got more likes were more similar [based on
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the feature]. So the number of likes confounded our feature, so we

abandoned it.”

Finally, Luke hopes to apply his data analysis method to diverse research topics. He

claimed that the algorithms he created can be used to study diverse topics, without

changing them. Like Josh’s, Jane’s and Miles’, his method identifies patterns based

purely on computational and statistical criteria.

”...my [research] is a methodological contribution. So if you have a

topic of interest you can apply my method to it, and it’ll spit out

relevant [social media] data and maps. So it’s very versatile and

very dedicated to the cleaning method [...] [it yields] more reliable

[results]...”

Altogether, Jane, Josh, Miles and Luke stated they combine computational data analysis

and socio-spatial interpretation sequentially, and they validate patterns based purely

on statistical and computational criteria. In this sense, their practice is similar to

Kevin’s advice to Chase to conduct computational analysis in line with mathematical

validation criteria independent of the characteristics of the socio-spatial phenomenon

(discussed in section 5.2.1). Next, I discuss interviewees’ quotes who narrate combining

computational data analysis and socio-spatial interpretation iteratively.

Interviewees from groups A - D narrated the relationship between computational

data analysis and socio-spatial interpretation iteratively. In contrast to the in-

terviewees quoted above who seek patterns based on statistical and computational

criteria, many participants quoted below state that they experimentally identify patterns

using a combination of computational, statistical and socio-spatial interpretative criteria.

Anne explained that she experimentally explored geosocial data using various methods

afforded by the data analysis software, and informed by her social scientific frameworks.

She iteratively used statistical data analysis and fine-grained analysis of social media

posts’ content.

”the [software] allowed me to kind of zoom in and out of the data,

so I could run like quick frequency queries, or make some statistical

analyses [...] but at the same time I could drill down and like zoom

in....”
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Like Anne, interviewees from groups B, C and D state that they experimentally explored

geosocial data and sought patterns by iterating computational data analysis and socio-

spatial interpretation. In addition, they claim that they modified computational data

analysis in light of socio-spatial interpretative knowledge. Bruno explained that initially,

he explored data with GIS to look for ’stories’ and later Brian, his colleague with com-

putational expertise, performed statistical analyses. They claimed that they repeat such

exploratory and statistical analyses iteratively to identify valid patterns.

”...we work in an iterative way, usually bouncing back and forth [be-

tween] statistical, kind of big picture view [...] I use GIS for a lot my

research. I do a lot of the exploratory stuff, dig into the nitty-gritty

to try to find the interesting stories. And then usually the way we do

things, I do that and [Brian] will dig in, create a new, kind of more

robust analysis, I’ll go back and I’ll dig in more to the [GIS stories]

type thing.”

In addition, Bruno stated that they modified computational data analysis methods using

their local knowledge of the places they study. He claimed that their local knowledge

shapes not only their research questions and interpretation - as with Jane - but also their

methods. Thus, their criteria for identifying valid data patterns combined computational

and social scientific criteria.

”we like to [study] places where we live, places that we’re familiar

with... [We look for projects] where we can not just run the numbers

on [social media] data [... but] connect what we see in the data to

stuff that we know that has nothing to do with what’s in the [social

media] data, and allowing that [...] local, experiential knowledge [...]

to shape our questions, our methods, and the ways we interpret...”

Like the interviewees above, Chase explained that they experimented with various data

analysis methods in search for patterns with the data.

”...we kept working for months, trying various approaches... That

was pretty tough. When we finally had something, I contacted [Kevin,

the natural scientist] and asked if he was interested in having a chat.”

As section 5.2.2 explained, like Bruno, Chase states that they modified a computational

data analysis technique in light of social theory. They modified a method borrowed

from physics, developed to study the relationship between two variables, to include
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more variables to better reflect the empirical phenomenon. Like group B, they used

a combination of computational and social scientific criteria to devise their method to

identify valid data patterns.

Like Bruno and Chase, David and Daniel claimed that they experimentally identify

patterns by combining computational and social scientific criteria. They state that they

articulated, and evaluated their assumptions and expectations - informed by social theory

- in light of the outcomes of exploratory data analysis. In addition, as section 5.2.2

explained, they claimed they developed computational data analysis methods informed

by social theories which focus on relationships and their temporality.

”...[we were] really just exploring it [geosocial data] with anything we

could think of. [...] Sometimes we would search for specific keywords

[...] we [also] try to be quite upfront that we had certain ideas about

this data and then allowed ourselves to also be surprised...”

In sum, interviewees from groups A - D state that they experimentally explored geosocial

data by iterating computational data analysis methods and socio-spatial interpretation.

Moreover, participants from groups B - D state that they modified or created computa-

tional data analysis methods informed by social scientific theories. Thus, they claimed

that they identify data patterns using a combination of computational, statistical and

social scientific criteria.

Altogether, this section argued that experimentally using data analysis methods to

identify patterns with geosocial data is central to interviewees’ developoment of their

geosocial research approaches. I also argued that approaches to geosocial research differ

in terms of whether interviewees combine computational data analysis and socio-spatial

interpretation sequentially or iteratively, and whether they validate claims based on

purely statistical criteria or also considering social scientific knowledge.

5.4 Conclusion

Through exploring how interviewees combine computational data analysis and social

scientific research as they develop their approaches to geosocial research, this chapter

addressed all three research questions.
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In response to the First Research question - which explores how geosocial research

approaches develop - I highlighted three practices: collaboration with scholars with

complementary skills, setting up ’geosocial laboratories’ and experimenting with

computational data analysis methods in search of geosocial data patterns. Through

combining co-authorship network and interview analyses, I argued that collaborations

between scholars with complementary skills helps them develop diverse approaches

to geosocial research. Interviewees seek collaborators with complementary skills with

whom they also share common ground. Computational analysts seek social scientist

collaborators who share methodological common ground with them, and social scientists

seek computational collaborators with whom they share theoretical common ground.

Social scientist interviewees who collaborate with computational scholars who do not

share their theoretical commitments recount challenges, such as the need to negotiate

ethical differences and the inadequacy of computational methods recommended by

collaborators to study research questions.

Maniglier (2019) proposed that scientific research creates ’problems’ (research questions)

through relating diverse concepts pertaining to specific research traditions (cf. Callon

et al., 1983), also in dialogue with other research traditions’ approaches to raising

questions. Drawing on this framework, I argue that through seeking common ground,

my participants seek collaborators with complementary skills with whom they can

co-create research questions.

As section 5.1.2 argued, computational scientist participants seek social scientist collabo-

rators to help identify ’relevant’ research questions. As section 5.3 argued, computational

research methods guide the way interviewees with computational backgrounds create

knowledge (cf. Bateson, 1972). Thus, I argue that collectively identifying research

questions with social scientists necessitates a shared understanding of the affordances of

computational methods with computational scholars. In Maniglier’s (2019) terminology,

shared methodological common ground helps to link concepts during the problem

creation process.

As section 5.1.1 argued, social scientist interviewees seek computational collaborators

to help perform computational data analysis. Section 5.3 argued that during geosocial

research, both computational methods and social theory inform the way social scientist

participants validate geosocial research findings. I assume that social theory also shapes
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the questions social scientists ask. The example of actor-network theory, which Latour

(2005b) differentiates from Durkheim-ian sociology based on its explanatory concepts

and units of analysis, supports the assumption that social theory guides the types of

explanations and questions social scientists can pose. Thus, drawing on Maniglier’s

(2019) framework, collaboratively identifying research questions with computational

scholars necessitates shared understanding of theoretical concepts that they link to

create research questions.

However, the strength of common ground interviewees seek differs. Seeking collaborators

with strong common ground enables interviewees to develop geosocial research in

line with existing research traditions. Collaborating with social scientists who share

strong methodological common ground with them helps physicists Kevin and Josh

develop existing approaches to geosocial research, such as urban modeling. Social

scientists Bruno and Daniel seek computational collaborators with strong theoretical

common ground - trained in the same social science theories they use. Their geosocial

research critiques computational social science and GIScience informed by social

science frameworks. In addition, Brian’s and Chase’s narratives highlighted ethical

and epistemological challenges scholars who collaborate without shared theoretical

interests can face further highlighting the importance of theoretical common ground

with computational collaborators.

At the same time, participants who collaborate through looser common ground exchange

knowledge with scholars from complementary disciplines and use this knowledge to

apply computational methods in new ways. Based on Elias’, Brian’s and Chase’s

examples, I argued that collaborating with computational scholars with whom they

share loose theoretical common ground, and acting as computational collaborators to

social scientists who share strong theoretical common ground with them helps them

develop diverse approaches to geosocial research. Similarly, Jane’s and Isaac’s movement

across research groups is enabled by loose methodological ground with social scien-

tists collaborators, and stronger methodological common ground with computational

collaborators. The skills they bring to their respective teams are core to the these

teams’ success in geosocial research. Isaac contributes social scientific theories he

learned through collaborating with social scientists to geosocial research at a computer

science department. Jane contributes computational knowledge she learned through her

collaboration with experienced physicists to group C’s work, where most of the others
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have background in social science.

Using the notion ’experiments in participation’ Lezaun, Marres, and Tironi (2017)

introduced in section 2.11 as a lens through which to interpret collaboration practices,

collaborating amid loose common ground can be seen as an experiment to include

scholars in one’s geosocial research who might alter its direction in unexpected ways.

The loose common ground facilitates these experiments in participation by providing

opportunities for local coordination. However, as Brian’s and Ben’s narratives suggest,

the success of these experiments to yield geosocial research is uncertain.

I also interpret the varying types of common ground interviewees seek drawing on

Maniglier’s (2019) argument that transdisciplinarity requires introducing comparative

methods among disciplines, and that scientific questions are raised as scholars experience

how different knowledge traditions ask questions (discussed in section 2.10). Using

these insights, my interviewees’ aim to collaborate with scholars with complementary

expertise can be understood as efforts to introduce comparative moments between

disciplinary research practices, which allow them to (better) define their geosocial

research questions. However, participants who seek stronger and looser common

ground experience differences between ways of knowing in settings with different stakes.

Participants who collaborate with loose common ground experience such differences

whilst they also have to interpersonally negotiate analytical decisions with those who

practice different ways of knowing. Collaborators who seek stronger common ground

either experience such differences to a lesser extent or without the need to negotiate

such differences interpersonally.

Interviewees’ narratives can also be interpreted through Osborne’s (2013) insight that

disciplines have distinct propensities to relate to one another. I find distinct ways

computational and social scientific disciplines relate to one another during geosocial

research. On the one hand, computational interviewees’ search for methodological

common ground with social scientific collaborators - and the capacity of computational

methods to provide common ground between computational and social scientist intervie-

wees even amid theoretical differences - illustrate that computational disciplines relate

to other fields through the capacity of mathematical, statistical and computational

data analysis methods to travel across disciplines (cf. Mackenzie and McNally, 2013;

Knuuttila and Loettgers, 2014; Osborne, 2013). On the other hand, social scientist
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interviewees’ search for strong theoretical common ground with their collaborators when

attempting to differentiate their geosocial research from computational social science

or GIScience signals the fundamental role of theoretical assumptions - which inform

scholars’ decisions about explanatory units in the interpretative sciences - for social

sciences to interface with other research areas.

However, while Osborne (2013) primarily notes epistemological reasons for such differ-

ences, my analysis highlights the role of researchers’ personal interests. Physicists Kevin

and Josh seek social scientist collaborators who conduct computational data analysis

similar to theirs. In contrast, Jane, who is also a physicist, seeks to explore disciplinary

differences in approaches to computational data analysis. Similarly, there are differences

between Brian and Bruno, both of whom have backgrounds in human geography. Even

though both are interested in developing approaches that counter GIScience inspired

geosocial research, Brian is more interested in understanding disciplinary differences in

methods.

Finally, as their narratives about collaboration show, many interviewees develop

exchange with scholars with complementary skills akin to ’trading zones’ (cf. Galison,

2011). However, unlike ’simulation science’ after World War II discussed by Galison

(2011), geosocial research does not develop into a separate research field. Rather, the

collaboration and epistemic landscape of geosocial research remain dispersed. I observe

differences among the practices of the scholars Galison (2011) studied and those of my

interviewees. The scholars Galison (2011) studied came together in a series of meetings

to discuss the potentials of a new computational method - Monte Carlo simulations.

In contrast, my interviewees share interests in the skill to conduct computational data

analysis with geosocial data, rather than a specific computational data analysis method.

In addition, my interviewees do not meet through meetings or shared research agen-

das. Rather, a shared set of computational skills allows interviewees to ’set up distinct

laboratories’, which further aid the development of diverse geosocial research approaches.

Secondly, in response to the First Research Question, I argued that experimentally

searching for patterns helps interviewees develop their approach to geosocial research.

Many interviewees emphasized their ’experimental’ use of diverse data analysis methods

to explore possible research questions and variables of interest, and thus identify

patterns. This practice is similar to the exploratory data analysis Jebb, Parrigon, and
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Woo (2017) discuss and supports Mackenzie and McNally’s (2013) argument that the

quest for patterns with digital data multiplies methods.

In response to the Second Research Question, which asks how geosocial approaches

differ, this chapter argued that interviewees’ preference for combining computational

data analysis and socio-spatial interpretation in either sequential-modular or iterative

fashion - which also signals difference about the way they create ’valid’ findings - differ-

entiates geosocial research approaches. I argued that several participants with technical

background combined the two research traditions in a sequential fashion. Social science

informed their research questions and their interpretations of data patterns. However,

they identified and validated data patterns based on computational and statistical

criteria alone. As section 2.4 discussed, I consider data analysis and interpretation

inextricably linked. Thus, even when interviewees use statistical or computational

criteria to establish valid findings, I do not argue that data analysis speaks for itself

and does not require interpretation. Rather, I argue that they identify data patterns

in terms of computational and statistical criteria, without actively considering social

scientific knowledge at that stage of the research process.

In contrast, several participants with social science backgrounds stated that they iterate

computational data analysis and socio-spatial interpretation, and participants from

groups B, C and D claim they create and modify data analysis methods in light of social

scientific theories. Their narratives suggest the criteria they use to validate patterns

result from combining computational data analysis and social science. Similar to Marres

and Gerlitz (2016), they perform or modify computational data analysis methods if their

research questions and theoretical framework require it. While this section illustrated

these differences in how interviewees conduct geosocial research, Chapter Six will

provide further evidence that social and technical geosocial research can be understood

as separate approaches.

In response to Research Question 3.1 - which asks how methods mixing help study

the differentiation of and differences among geosocial research approaches - I argued

that combining interviews and network analysis helped study collaboration (a relational

practice among homogeneous actors (geosocial scholars) through which they develop

geosocial research approaches) from complementary perspectives. Similar to relationalist

social network analysis, through interviews, I studied why and how participants collab-
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orate and co-authorship network analysis helped me study the extent to which geosocial

scholars collaborate. Network analysis also helped study collaboration over time among

many geosocial researchers. Combining methods shaped my argument. Both interviews

and the co-authorship network’s high modularity over time suggested that through small

scale collaborations among scholars with complementary skills, scholars set up their own

geosocial laboratories and develop diverse approaches to geosocial research in parallel.

While network analysis did not alter my interview analysis, it shifted the narrative in

subtle ways. The high modularity of the co-author network over time prompted me

to reflect on the importance of the concurrent development of small collaborations or

geosocial laboratories, and the lack of ’coherence’ of the geosocial research ’field’ further

illustrated in subsequent chapters.

Finally, in response to Research Question 3.2 - which explores how to evaluate the

affordances of computational methods ’for STS’ - I argue that methods need to be

evaluated in their interpretative context. Thus, I discuss how my use of a structural,

homogeneous network analysis method (the modularity of the co-authorship network)

- often critiqued by STS scholars for obscuring the dynamism of research practices

and heterogeneous agencies which enable it - hinged on the interpretative context.

Interviewees’ narratives suggested that geosocial research mainly develops through

numerous small scale collaborations. I also found that these are enabled by fewer

collaborative acts among these cohesive groups by interviewees who collaborate with

researchers with complementary skills who share loose theoretical or methodological

common ground with them. Collaboration amid looser common ground helps scholars

learn skills they later contribute to the collaborations with scholars with whom they

share stronger common ground or vice versa. In other words, the interviews suggested

that collaboration arrangements - and in particular, the relative size of collaborations

with respect to all geosocial research and the number of collaboration relations among

groups, captured by network modularity - provide information about the differentiation

of geosocial research approaches. In this context, I could interpret changes in the

modularity of the co-authorship network with respect to the development of geosocial

research approaches. Changes in network modularity helped me study the extent

to which geosocial scholars develop multiple small scale collaborations in parallel,

or whether, to the contrary, geosocial research becomes an integrated, larger scale

collaborative research practice.
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I compared changes in the modularity of the co-author network at four time periods.

STS highlights that the identity of actors and collectives that comprise research practices

change over time. Cambrosio, Bourret, et al. (2014) note the danger of structural,

temporal network analyses which assume that networks and nodes capture identical

entities over time. I argue that the temporal analysis of the co-authorship network did

not require me to assume the identity of the network or nodes over time. Comparing the

modularity of the network to statistically comparable graphs at four time points helped

study the extent to which large scale collaborations emerge in geosocial research, without

assuming that scholars (the nodes of the network), the nature of collaboration among

them (network edges), or geosocial research (whose scientometric traces the collection of

nodes capture) remain identical over time. I assume that the co-authorship networks at

each time point capture the scientometric traces of collections of geosocial research and

researcher subjectivities that are different, but are shaped by earlier geosocial research.

Chapter Six will further explore how interviewees develop their distinct approaches

to geosocial research by exploring how they find institutional homes in university

departments or disciplinary communities.



Chapter 6

Making Academic Homes for

Geosocial Research

Through exploring how interviewees make institutional homes for their geosocial

research, this chapter explores all three research questions.

Addressing the First Research Question, it discusses three practices that help my

interviewees develop approaches to geosocial research by creating institutional homes

for themselves and their geosocial research. Sections 6.1 argues that interviewees

imagine geosocial research in light of their institutions’ research foci - mainly in

disciplinary terms. In addition, section 6.2 argues that social scientists create homes by

changing affiliations in light of a ’mis-fit’ they experience with their (preferred) depart-

ments, and are actively differentiating their research from technical geosocial scholarship.

In response to the Second Research Question, through combining interview analysis and

scientometrics, section 6.3 argues that social and technical geosocial research increasingly

differ. Interviews and line graphs show the increase of social geosocial research, and

citation network analysis shows a decrease of citation links among geosocial papers

published in social scientific and computational journals over time.

The chapter’s mixed methods approach helps address the Third Research Question. I

combine two types of scientometric methods - structural network analysis and descriptive

statistics - with interviews, to explore the differentiation of social and technical research

approaches.

153
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Supported by Chapter Five’s findings, I argue that geosocial research cannot be under-

stood as a coordinated research community that interviewees identify with. Rather, it

is a collection of research approaches.

6.1 Imagining Geosocial Research along Disciplinary

Lines

In order to make homes for their geosocial research, interviewees situate their geosocial

research with respect to their institutions’ perceived research agendas. I argue that this

highlights how interviewees primarily relate their geosocial research to their respective

(sub-)disciplinary communities rather than to other geosocial scholars, suggesting that

geosocial research is not a coordinated research community. I identified narratives

about two kinds of institutions that interviewees state welcome their geosocial research.

Some participants claim their institutions seek to foster collaboration among scholars

from different disciplinary backgrounds, and consider their geosocial research to result

from the merging of diverse disciplinary knowledges. Others perceive their institutions

to have strong disciplinary identities, claiming their geosocial research helps these

institutions extend their computational research capabilities. However, in both cases,

geosocial research is to a large extent advanced by relating and re-imagining the use of

computational methods in light of interviewees’ disciplinary heritage, thus developing

geosocial research in diverse directions.

Brian, Chase, Colin, Jane and Anne state that they find homes for their geosocial

research because their institutions are interdisciplinary: they foster collaboration among

scholars from diverse disciplines. I argue that two factors - publication requirements and

anchoring their contribution in light of their existing knowledge - facilitate developing

their geosocial research along disciplinary lines in their institutions that they perceive

as interdisciplinary.

Brian and Chase state that publishing in journals associated with their home discipline

is key to their research at interdisciplinary institutions. Brian explained that as he

collaborates with scholars from diverse disciplines, each of them lead publications in

journals associated with their own disciplines due to research evaluation requirements.

Thus, collaborating with his colleagues helps Brian further develop computational tools
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for his own discipline.

”Right now I’m the only geographer in my [...] unit which has hu-

manities, arts, and social sciences. [...] but on a daily basis I work

with people from architecture engineering, computer science, physics.

[...] generally we still publish in our home kind of discipline because

that’s ultimately, you know, where your community is and also in

terms of like career progression, how you will be judged [...] [usually]

each person kind of takes the lead and pitching on in their kind of

home discipline...”

Like Brian, Chase publishes in disciplinary journals associated with his home discipline,

which he stated is interested in his group’s research. In addition, he attempts to publish

in a journal associated with another, more computationally-oriented discipline which he

seeks to align himself with through geosocial research.

”It looks like people from [my original] discipline really like [our geoso-

cial research] [...] [But] I really would like to belong to [a more com-

putationally oriented disciplinary] community, at least get into the

periphery [...] But [scholars from the more computational discipline]

have not reacted yet. We uploaded the paper to [a preprint portal],

but it hasn’t been tweet-ed yet, whereas they have tweeted previous

papers.”

In sum, Brian and Chase stated that publishing in journals associated with their home

discipline is key to their research at interdisciplinary institutions.

Next, I show that Colin, Chase, Jane and Anne frame their contributions along disci-

plinary lines. Colin discussed his role in interdisciplinary collaborations through ’an-

choring’ his approach in his disciplinary heritage of sociology. He believes this helps

him to better interpret the results of data models than computational scholars. He also

expects that in collaborations with computational scientists, he will have to adapt to

computational scholars rather than the other way around.

”and probably [our relationships with IT people or computer scien-

tists] will be an asymmetric relationship and I’ll have to adapt to

them. [...] I think our [sociologists’] role can be asking smart ques-

tions, and perhaps we interpret the results better as well...”
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Jane also stated she contributes to interdisciplinary collaborations based on her

disciplinary heritage in physics and computational social science. As section 5.2.1

described, she believes that Chase’s team hires her because of her ability to contribute

computational data analysis skills.

Finally, Anne explained the difficulties she encountered when her disciplinary identity

was questioned as she entered into an interdisciplinary PhD program. Many of her

colleagues at her multidisciplinary department worked with approaches more aligned with

computational social science. She became uncertain about her work when her disciplinary

identity was questioned, and tried to imagine her contribution along disciplinary lines:

”I came in [to the PhD program] with a clear idea, you know, that we

need to push against [computational social science], but, you know, as

[...] more and more people are going ‘well I’m using code and JSON

files and Python and algorithms’, you start to feel a bit kind of in

the shade of all this big, spiffy technology. Yeah, I did lose my way a

bit...”

In sum, the above interviewees who consider their institutions interdisciplinary they

anchor their research in their disciplinary heritage.

In contrast to the above interviewees, David, Elias, Gary and Isaac stated that they

are making their homes in ’disciplinary’ departments that seek to expand their com-

putational research capabilities. Like the interviewees quoted above, they frame their

geosocial research in disciplinary terms.

Gary credited his employment to his department’s wish to extend their computational

data analysis capabilities.

”It’s a geography department, and they hired me partly because they

know that I can work with social media data. My research focus will

be broader than that though...”

As sections 4.3 and 4.1 discussed, David stated that his research with geosocial data

allowed him to re-negotiate his professional identity and change institutional affiliation.

Like Gary, he credited his employment to his department seeking faculty members with

combined knowledge of interpretive social sciences and computational data analysis, who

could expand the department’s computational data analysis capabilities.
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”My new position, that [social science] department hired me because

they want to expand their capacity to work with digital data and bring

in computational approaches.”

Elias also credited his job to his disciplinary department’s desire to expand its computa-

tional research. He believes that his combined expertise in computational data analysis

and the department’s disciplinary focus helps him obtain the job.

”these skills [computational analysis] are quite hot and universities

are looking for people who can teach it. So now I’ve got a new faculty

position in the [names country] because I do this kind of stuff.”

As section 5.2.1 discussed, Isaac likewise credited his employment to his computational

skills and his disciplinary department’s desired methodological expansion to study social

phenomena that are challenging to quantify.

In sum, this section argued that interviewees develop their geosocial research in light of

their disciplinary research heritages. Next, I discuss social scientist interviewees’ efforts

to create academic homes for their geosocial research.

6.2 Making Homes for Social Scientific Geosocial Re-

search

This section discusses two additional practices interviewees with social science back-

ground conduct to make home for their geosocial research: as section 6.2.1 discusses,

they change their affiliations because of a mis-fit between their geosocial research and

home institutions. As section 6.2.2 discusses, they actively differentiate their research

from technical geosocial scholarship. Finally, section 6.2.3 reflects on social scientists’

experiences about these moments of transition in light of scientometric analyses which

show that the proportion of geosocial research with respect to social science grows at

a quicker rate than the proportion of geosocial research with respect to computational

sciences. Altogether, my interviewees’ quotes and the scientometric analyses suggest

that social scientists are currently, actively developing geosocial research approaches in

dialogue with their sub-disciplinary communities and through coping with institutional

constraints.
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6.2.1 Changing Affiliations

This section discusses how most interviewees with social science background felt a

mismatch between their geosocial research and departments, and made academic homes

for themselves by changing their affiliation. Seven interviewees with social science

background from seven research groups (A - E, G, H) felt a discrepancy between their

geosocial research and the epistemological or methodological norms of their ’home

institutions’ - university departments or disciplinary research communities. In contrast,

most interviewees with backgrounds in the computational sciences felt their geosocial

research fit well with their home institutions, and successfully completed and published

their geosocial research with institutional support. Reflecting on epistemological and

methodological differences in light of institutional constraints is itself a social scientific

research topic. I thus cannot make the claim that this practice is unique to social

scientists who may just be more articulate about these factors. However, articulating

these aspects of the work means enacting this reality, and my interviewees’ narratives

highlight struggles to find home for their geosocial research, and fit computational data

analysis with their institutions’ norms. The need for social scientists to change their

affiliation to find home for their geosocial research suggests that they are renegotiating

computational methods associated with geosocial research with respect to existing

norms in their disciplines.

As the quotes below show, social scientist participants re-negotiated their professional

identities by changing their affiliations with varying levels of willingness and agency

for three main reasons: the misfit between institutions’ disciplinary boundaries and

geosocial research, the will to re-position themselves or their institutions’ willful rejection

of geosocial research.

Firstly, three interviewees - Henry, Brian and David - stated that they changed their

affiliation because they felt that the disciplinary norms of their prior institutions could

not accommodate their geosocial research. Henry chose an interdisciplinary institution

where he can supervise students with both social scientific and technical backgrounds.

This suits his interest and expertise in combining computational and urban research.

However, he stated that colleagues’ expectations are often based on disciplinary research

lines, which is at odds with his mixed background, which he finds challenging.

”I don’t see myself as a pure social scientist anymore and I don’t mean

it [...] in a good and a bad way. [...] I know more technical stuff [...]
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But [...] I can’t keep up on all the latest theoretical developments [...]

And that’s [...] hard... [... because] you’re sort of expected to know

that just because your PhD says [a social scientific discipline] even

though it was 10 years ago and you spent those 10 years writing code

and talking to computer scientists...”

Like Henry, Brian feels that disciplinary divisions cannot accommodate his geosocial

research. Thus, he sought employment at an institution where - in contrast with his

previous home institution - disciplinary divisions do not map onto departmental units.

”I sought employment at [names institution] specifically to join a uni-

versity that was new and didn’t have traditional departments. [...This

is] important especially in this subfield [where] we have to come to-

gether around some of these data sets. [...] But it’s not an easy

process....”

Finally, David also feels that existing disciplinary boundaries do not readily accommodate

his geosocial research. As his quote in section 4.1 illustrated, he feels that ’technical’ tasks

associated with data management and data analysis that are essential for his research

are not valued by his social scientific peers. Identifying with digital sociology, a new

research area, helps him create an academic home for himself in a community he feels

values both computational work and social research.

”I had a lot of misgivings [...] for a long time [...] about the term

digital sociology, because I felt like ‘do we really need yet another

specialisation?’ [...] but more recently I started using that label also

to refer to what I’m doing, just because I feel like there does need to

be a space [where] experimentation and playfulness even [laughing] is

valorised and rewarded [...] It would be nice to have a little bit of

community that values [technical tasks].”

In sum, Henry, Brian and David re-negotiate their institutional affiliation because they

feel that institutional divisions based on existing disciplines cannot accommodate their

geosocial research.

Secondly, as section 4.3 discussed, David and Colin used geosocial research to willfully

change their disciplinary affiliation - either to integrate their academic and non-academic

research, or out of the belief that geosocial research can help them obtain jobs. Like them,



6.2. Making Homes for Social Scientific Geosocial Research 160

Chase uses geosocial research to alter his institutional affiliation. Like David, he explains

that he tries to affiliate himself with disciplines with a stronger focus on computational

methods.

”I really would like to belong to the [computational discipline] com-

munity, at least get into the periphery, and link it to [my original

discipline]. [...] [For now] I’m much more embedded in [the commu-

nity of my original discipline]...”

I sum, David, Chase and Colin wilfully change their affiliation and seek departments

that help them pursue their computational research interests.

Thirdly, three interviewees - Anne, Bruno and Brian - stated they were prompted to

change institutional affiliations because colleagues in their original home institutions

reacted negatively to their geosocial research. All three felt their research was alien to

the geography departments with which they were originally affiliated. Anne, who already

had dual institutional affiliations, stopped attending geography meetings and physically

moved office to another supervisor’s department.

”In the end [the conflict] affected me so much that I stopped going

to geography departmental meetings. A lot of the questions I would

get were things like ‘what does this have to do with geography?’ and

‘Why are you based in this department?’ [...] [Eventually] I changed

department.”

Similarly, Bruno explained that his ’home’ geography department was particularly hostile

toward his geosocial data research. He believes the department allowed him to defend his

PhD thesis primarily because of the credibility granted by his extant publications that

used geosocial data.

”[my committee] told me to my face that this was not real geography

[...] I think had I not been so far ahead [with publications], and

had a job lined up already, they would have been happy to make me

completely rewrite my dissertation or to have failed me or whatever

else.”

Brian travelled internationally to another university to pursue his research interests with

geosocial data. He explained that the geography department with which he was affiliated

when he started his PhD studies was not interested in geosocial research.
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”At the time [when I started my PhD] in [my previous university] [...]

I don’t think people really saw the value of this type of data. There

was a lot of kind of thinking that the digital or virtual and ’real’ world

were two separate things.”

In sum, Anne, Bruno and Brian felt the geography departments with which they were

affiliated excluded their geosocial research, prompting them to change affiliations.

Altogether, this section showed that the majority of interviewees with social science

backgrounds experienced an uneasy fit between their affiliations and geosocial research,

and proactively sought new academic homes for their geosocial data research by

changing their affiliation. Unlike the social scientists quoted above, most computational

researchers did not express a mismatch between geosocial research and their home

institutions. Instead, as section 5.2.1 argued, those who changed their affiliations - like

Jane and Isaac - did so as a result of the collaborations they developed with social

researchers as part of their geosocial research. This suggests that social scientists are

currently, actively re-configure the relationship between their disciplinary heritage and

geosocial research, and thus develop geosocial research in new directions.

6.2.2 Differentiating Social Geosocial Research

Social scientists from five groups (A - E) narrated their geosocial research in terms of

its differences from technical geosocial research, such as ’computational social science’

and ’GIScience’. As this section discusses, four interviewees - Bruno, Brian, David

and Colin - demarcated their geosocial research from computational social science or

GIScience in terms of the richer interpretive capability afforded by their knowledge

beyond computational modelling, such as local knowledge and conceptual frameworks in

interpretive social science. As section 7.1 will discuss, six interviewees with social science

background demarcated their work in terms of their reflexivity. Chapter Seven will

discuss interviewees’ demarcation in terms of reflexivity because it will argue that a key

difference between approaches to geosocial research is the type of reflexivity associated

with them. In contrast, narratives about differentiating geosocial research were not

prominent in my discussions with interviewees with technical background. This suggests

that some social scientists are actively developing geosocial research agendas that they

consider different from technical approaches. Next, I illustrate how Bruno, Brian, David

and Colin differentiate their social geosocial research from technical approaches.
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As section 5.2.2 discussed, Brian and Bruno stated that their geosocial research seeks

to challenge technical geosocial research mainly informed by computer science and GI-

Science. Bruno claimed that their work differs from technical approaches because in

contrast with the the latter, their research is informed by social scientific literature and

local knowledge.

”I think that one of the things that we’ve always felt made our work

different [from GIScience] is that we were much more embedded in the

places we research and that there was a lot more like the non-[social

media] data stuff that went into the projects. [...] We we’ve shied

away from doing a project about some random city.”

Similarly, David demarcated his and Daniel’s research from computational social science

in terms of their familiarity with the place they study, as well as research frameworks they

draw on beyond computational analysis. He argued that computational social scientists

would have had difficulties analysing a subset of data pertaining to a neighbourhood that

did not yield evident (statistical) patterns, which they were able to analyse due to their

disciplinary background and familiarity with the neighbourhood.

”I think it’s illustrative of the differences between [our] approach [and

computational social science], because I think many people who have

a different background would have great difficulties making sense of

something like the [data pertaining to a specific place that does not af-

ford an apparent pattern], and we’re completely comfortable analysing

it because of our [background in a specific sociological tradition of

thought] and our familiarity with the neighbourhood.”

Finally, Colin claimed that social scientists can provide more detailed interpretation than

scholars with computational training and help formulate research questions, drawing on

social scientific theories.

”I think the role of the sociologist could be introducing these worries

into the research process, and come up with ideas and hypotheses that

a data-driven engineer or data scientists cannot come up with. And

[...] do more in depth interpretations. Because for these you need

these doubting, bit ideologically inspired social science mindset.”

In sum, interviewees with social scientific backgrounds from groups A-E delineated

their work from computational social science through emphasizing their reliance on
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knowledge beyond computational data analysis, such as local knowledge and social

science knowledge, and as section 7.1 will show, in terms of their reflexivity. Next, I

reflect on participants’ efforts to differentiate their research from technical approaches

in light of scientometrics.

6.2.3 Rise of Social Geosocial Research

Through combining scientometrics with the interviewee analysis discussed in sections

6.2.1 - 6.2.2 and below, I argue that through social scientists’ efforts to differentiate their

approaches, social geosocial research is currently on the rise. Firstly, I discuss interview

quotes which suggest that although social scientific geosocial research is growing, it

is not widely recognised yet. Secondly, I discuss line graphs which suggest that the

proportion of social geosocial research published by sub-set of social scientific journals

increases at a faster rate than technical geosocial research. Finally, I discuss interviews

which further illustrate the divides within social science between journals which do and

do not publish geosocial research.

As shown below, Anne and Ben feel that although social scientific geosocial research

is gaining momentum, it is still not widely recognised by colleagues in their broader

disciplinary communities. Their experiences suggest that change is currently happening:

disciplinary sub-communities publish more and more social geosocial research but it is

not (yet) widely known. Ben claimed that based on the feedback he gets from scholars

at events, geosocial research still feels like a niche even as he hopes it should be more

widely accepted and feels that it is growing.

”I guess it’s starting to feel like it’s not sort of as fringe as it once

was. [...] but I’m sort of surprised that there aren’t more people

within geography or the social sciences more broadly [who do this

type of research] [...] sometimes I feel like I’ve known a secret for a

while that shouldn’t be a secret. I’ll give a talk and things I assume

have been sort of settled ground for like five years, people come up

afterwards say ‘oh well that was really interesting’, like ‘oh, I had no

idea that it was possible to do something like this with social media’.

I’m like ‘Really? We’ve been talking about this forever...”

Like Ben, Anne believes that there is a relative paucity of research that uses digital
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data similar to her research, which is informed by social scientific theories and methods,

in contrast to technical scholarship which aims to uncover statistical patterns in large

datasets. Colleagues she met at conferences and at her home department associated

her geosocial research with computer science, far afield from her social scientific home

disciplines.

”There is a cohort of other people doing similar kinds of stuff [to me].

But my perception [...] is that the mentality of Big Data with capital

B and D is still very pervasive. One of the main questions I would get

if I briefly explained my research would be ‘oh, are you a computer

scientist?’ The association was, if you’re working with big data, you

must come from a computer science or a mathematics background.

And when I say like ‘oh no, I’m an anthropologist’, it just kind of

goes blank.”

The scientometric analyses presented in figures 6.1 - 6.3 depict the proportion of geosocial

papers with respect to three paper sets. As I discuss below, they suggest that social

geosocial research is gaining popularity in certain social scientific circles at a faster rate

than technical geosocial research in technical (sub)-disciplines. This provides further

evidence that social scientists are actively developing their approach to geosocial research.
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Figure 6.1: Cumulative yearly percentage of geosocial papers per disciplinary categories
compared to the total number of published in the same journals between 2008 - 2019

Figure 6.2: Cumulative yearly percentage of geosocial publications per disciplinary cat-
egories compared to the total number of published in all journals associated with the
same Web of Science Subject Categories between 2008-2019
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Figure 6.1, shows the cumulative percentage of geosocial papers with respect to the

total number of papers published in the journals which publish geosocial papers over

time, by Broad Disciplinary Categories. It shows that the proportion of geosocial

papers is the highest in the subset of human geography (’non phys geo’) journals which

publish geosocial research, surpassing the percentage of geosocial papers in the subset

of physical geography (’phys geo’) journals which publish geosocial research. The

cumulative percentage of geosocial papers is the fourth largest for the subset of ’only

social’ journals which publish geosocial research, and the increase of this percentage is

considerably steeper than for the subset of ’only computational’ journals.

Figure 6.2 shows the percentage of geosocial papers with respect to the sum of papers

published in all journals listed in Web of Science whose Subject Categories match the

string search outlined in Table 3.3 for each Broad Disciplinary Category, regardless of

whether they publish geosocial papers or not (for more detail, see section 3.4.2). Like

figure 6.1, it shows that the proportion of geosocial papers is highest, and grows fastest

in human geography (’non phys geo’), followed by all geography (’all geo’), physical

geography (’phys geo’) and ’only social’ journals.

The difference between the proportion of geosocial papers in human geography and

physical geography journals is more pronounced than in figure 6.1. This suggests that

while certain physical geography journals increasingly specialise in publishing geosocial

research, geosocial research becomes most popular across human geography journals. In

other words, my scientometric analyses suggest that human geographers are increasingly

interested in geosocial research.

At the same time, the difference between the proportion of geosocial papers in ’only

social’ and ’only computational’ journals in figure 6.2 is smaller than in figure 6.1. This

suggests, that although ’only social’ geosocial research does grow faster than ’only com-

putational’ geosocial research, the trend for certain ’only social’ journals to specialise in

publishing geosocial research is more pronounced. Elias’, David’s and Daniel’s experi-

ences support this, who highlight the difference between social science journals’ likelihood

for accepting their geosocial papers. Elias stated that the methods associated with his

geosocial research are less accepted by social science journals associated with the social

scientific area of his PhD research compared to other social science journals.

”The hardest thing for me these days is kind of figuring out what do
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I put in, what is just background analysis, and what is stuff I’ve just

got to save for another paper [... and] where do I go with with a

particular paper for which audience. [...] because it’s a new method,

every time I would like to write a paper for a [discipline A] journal, I

find myself wasting a thousand of my eight thousand words just trying

to explain what I actually did methodologically. [...] It becomes a bit

of a problem in terms of making the argument [...] Maybe I shouldn’t

send things to [discipline A], but that’s what I did my PhD in. [...]

in [discipline B] it’s a more accepted research method.”

Like Elias, David and Daniel noted a difference in their methods’ fit with different social

science journals’ norms. They stated that they changed their choice of publication venues

to find social science journals whose methodological norms their geosocial research aligned

with.

”David: what is now in the geography journal, we initially wanted to

go to a general sociology journal, but, uhhmm [...] I think we had the

realisation that the kind of urban studies angle of it was getting quite

strong [...]

Daniel: yeah, I think maybe even more generally the type of social sci-

ence that we do, I don’t think finds its way easily into sociology jour-

nals because they tend to be somewhat more conservative, they expect

you to have sort of research questions, hypotheses, operationalisation

and so on.

David: and we would kind of have to invent those after the fact,

because we do have this iterative process...”

In sum, the scientometric and interview analyses presented above suggest that social

scientific geosocial research is currently growing, but is not yet widely known.

Finally, figure 6.3 depicts the yearly cumulative percentage of geosocial papers in each

Broad Disciplinary Category between 2008 and 2019, with respect to all geosocial

papers in the same period. When compared to the analyses presented above, this figure

highlights two aspects of geosocial research. Firstly, it suggests a discrepancy between

my interview and scientometric fields. Even though my scientometric field contains a

relatively high proportion of health, biology and ecology related geosocial research -
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depicted by the lines corresponding to the Broad Disciplinary Categories ’health’ and

’biol env’ - none of my interviewees focused on these topics.

Secondly, the interview analyses and line graphs suggest that belonging to (sub)-

disciplinary communities which welcome their (computational) geosocial research is key

for social scientists to develop their distinct geosocial research approaches. Figures 6.2

and 6.1 - which show the pronounced increase in social geosocial research since about

2012 within the social sciences - resonated with my interviewees’ narratives about the

current growth, but lack of widespread recognition of social scientific geosocial research.

In contrast, figure 6.3 - which suggests that the proportion of social geosocial research

has been constant since 2010 and comparable to the proportion of computational

geosocial research - does not resonate with interviewees quotes. I argue that my

interviewees experience the recent growth but lack of widespread recognition of social

geosocial research with respect to their experience of the social scientific field, not with

respect to the geosocial field. This suggests that the latter is not a coordinated research

community that interviewees belong to.

Figure 6.3: Cumulative yearly percentage of geosocial publications per subject categories
with respect to the total number of geosocial papers
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Altogether, through combining interviews and scientometrics, this section argued that

social scientists are in the process of developing approaches to geosocial research which

differ from technical geosocial research. The next section will trace the relationship

between social and technical geosocial research over time and present scientometric

evidence which shows that they increasingly differ.

6.3 Changing Relations between Social and Compu-

tational Geosocial Research

This section presents scientometric analyses which support the above finding that social

scientists are in the process of differentiating their geosocial research approaches, and

show that social and technical geosocial research increasingly diverge over time. Informed

by findings in Chapters Four through Six, the analyses explore whether the (changing)

connections between ’only social’ and ’only computational’ geosocial scholarship help the

development of distinct geosocial research approaches. Chapters Four and Five argued

that relations between interviewees with social and technical backgrounds are essential

for the development of distinct geosocial research approaches. Chapter Four illustrated

the role of interviewees’ shared interest in combining computational data analysis and

social research, supported by overlapping aesthetic sensibilities. Chapter Five illustrated

the importance of collaboration (especially based on loose common ground) between

interviewees with social and technical disciplinary backgrounds. In addition, Chapter

Five and section 6.2.2 argued that social scientists are currently, actively differentiating

their geosocial research from technical approaches.

Based on the above findings, I hypothesise that the links between social and technical

geosocial research help differentiate them. As section 3.4.4 explained, I scientometrically

study this by exploring whether edges between geosocial papers published in ’only social’

and ’only technical’ journals impact the structure of author-bibliographic network of

these papers (over time). I study the author-bibliographic coupling network of papers

published in journals in the ’only social’ and ’only computational’ Broad Disciplinary

Categories because as section 6.2.3 argued, this subset of my scientometric field better

aligns with my interview field. The scientometric analyses help study the relationship

between social and technical geosocial research on larger scale than interviews and

participant observation: including the research of a broader set of scholars over a longer
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time period.

I argue that the author-bibliographic coupling network analysis can help explore

how the connections between social and technical geosocial research help differentiate

approaches - first hypothesised through interview analysis - by making the following

three assumptions. Firstly, I assume that author-bibliographic coupling - where papers

are linked to the extent that they cite literature authored by the same scholars -

provides a (partial) view on the above diverse forms of associations among scholars

who conduct social and technical geosocial research. In other words, I assume that

shared methodological and aesthetic interests, as well as knowledge exchanged through

collaboration partially manifest in author-bibliographic coupling.

Secondly, I assume that geosocial papers published in the non-overlapping ’only social’

and ’only technical’ journals partially capture the scientometric footprints of the social

and technical geosocial scholarship (that I argued interviewees actively differentiate)

’well enough’ for analytical purposes. As sections 6.1 and 6.2 argued, interviewees

(whose approaches to geosocial research differs) tend to publish in journals associated

with their disciplines for research evaluation purposes and to express their belonging to

associated research communities. In addition, as Chapter Five and section 6.2 argued,

social scientists from diverse disciplines attempt to differentiate their geosocial research

from technical approaches. Thus, I assume that the collection of geosocial papers

published in ’only social’ journals capture the research output of these social scientific

scholars, and that geosocial papers ’only technical’ journals capture the research output

of technical geosocial researchers ’well enough’.

Finally, I assume that the modularity of the author-bibliographic coupling network

helps study differences in geosocial research (approaches). This assumes that author-

bibliographic coupling relations among papers - citing the same author - indicate

similarity of their geosocial research approaches. Network clustering in Chapter Seven

will illustrate the validity of this assumption. It will show that interview findings about

differences in social, technical and geographic geosocial research approaches are mirrored

in citation network clusters.

Figure 6.4 depicts the author-bibliographic coupling network G1 discussed in section

3.4.4 which calculates author-bibliographic relations using cosine-similarity. The nodes of
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the network are geosocial papers aggregated on the journal level. The network’s weighted

edges correspond to the cosine similarity values which depict author-bibliographic cou-

pling between the geosocial papers published in the journals which correspond to the

nodes. As section 3.4.4 discussed, the journals were categorised into three Broad

Disciplinary Categories: figure 6.4 depicts ’only computational’ journals in green, ’only

social’ journals in orange and journals which do not fall into these categories in purple.

The figure illustrates the relative separation between the ’only computational’ and ’only

social’ journals, meaning that the geosocial papers they publish rarely cite the same

authors.

Figure 6.4: Journals author-coupling categorised by disciplines. Green: ’technical’, or-
ange: ’social science’, purple: other



6.3. Changing Relations between Social and Computational Geosocial Research 172

To explore whether edges (jointly cited authors) between geosocial papers published

in ’only social’ and ’only computational’ journals (inter-edges, for short) shape the

network’s structure, figures 6.5 and 6.6 depict the modularity of the network SG1 - a

sub-graph of G1 that omits the inter-edges - compared to the modularity of 1000 simu-

lated random sub-graphs with equal number of randomly deleted edges (for details, see

section 3.4.4). The red line indicates the modularity of SG1, and the histograms (green

and blue, respectively) depict the distribution of the simulated graphs’ modularities. As

section 3.4.4 discussed, in addition to the number of edges, figure 6.5 also controls for

the distribution of edge weights of the 1000 simulated random sub-graphs, so that the

distribution of the edge weight of the randomly omitted edges follows the distribution

of the edge weights of the inter-edges.

As figure 6.5 shows, it is highly unlikely for a sub-graph of G1 with number of

edges and edge weight distribution equal to that of SG1 to have the modularity of

SG1. The modularity of SG1 is larger than those of the simulated graphs. The

analysis shows that deleting the edges between geosocial papers published in ’only

social’ and ’only computational’ journals - the authors that papers published in

’only social’ and ’only computational’ journals jointly cite - render the graph more

modular, or in other words, less ’cohesive’. This suggests that the inter-edges have a

central importance. Without them, the network of journals which publish geosocial

papers would be significantly less connected to each other. As figure 6.6 shows, this

result holds when the simulation does not control for the edge weight distribution of SG1.
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Figure 6.5: Modularity of the sub-graph SG1 (red line) compared to the modularity of
1000 randomly simulated sub-graphs with equal number of edges and equal distribution
of edge weight, 95% of the data falling between the vertical green lines

Figure 6.6: Modularity of the sub-graph SG1 (red line) compared to the modularity of
1000 randomly simulated sub-graphs with equal number of edges, 95% of data falling
between the vertical blue lines
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To study the changing relationship between geosocial papers published in ’only social’

and ’only computational’ journals, figures 6.7 and 6.8 depict the modularity of the

graph SG1 in red compared to the 95% upper and lower bounds of the modularity

of 1000 simulated random sub-graphs with equal number of randomly deleted edges

(depicted by the blue and green regions respectively) over time. Like above, figure 6.7

depicts network analysis which controls for edge weight, while figure 6.8 depicts analysis

which does not control for edge weight. As the black dash line shows, the proportion of

inter-edges (the number of authors cited both by papers published in ’only social’ and

’only computational’ journals) decreases over time. As the figures show, the modularity

of the simulated graphs significantly differ from the modularity of SG1 from 2016

onward. This shows that from 2016 onward, the author bibliographic coupling links

between geosocial papers published in ’only social’ and ’only computational’ journals

render the network less modular, or in other words, more connected. As figures 6.9 and

6.10 show, these patterns hold for the network G2 and its sub-graph SG2, which, as

section 3.4.4 explained, calculates author-bibliographic coupling using the normalisation

method outlined by Waltman, Boyack, et al. (2020). However, in this analysis, the

two approaches differentiate at a later time point, in 2018. I found that the finding

also holds four Discipline Categorisation Methods, two normalisation methods and two

edge weight decimal rounding methods discussed in section 3.4.4, omitted due to space

limitations.

In line with the analysis presented in section 6.2, the above analyses suggests that schol-

ars who publish in ’only social’ and ’only computational’ journals increasingly develop

geosocial research in distinct directions. In line with Chapters Four and Five, they show

that a diminishing shared literature base (jointly cited authors) between ’only social’ and

’only computational’ geosocial papers plays an increasingly important role in connecting

disparate geosocial research approaches. This increasing separation could result from

scientists’ efforts to demarcate social geosocial research from technical approaches, and

the rapid growth of social scientific approaches discussed in section 6.2. Thus, I argue

that social and technical geosocial research are distinct approaches to geosocial research.

Future work could ’qualitatively’ explore which authors social and technical geosocial

research jointly cite and changes over time, in addition to counting changes in the shared

author citations over time. Studying the scholarship of jointly cited authors could pro-

vide hints about (changes in) the nature of common ground between social and technical

geosocial research.
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Figure 6.7: Yearly changes in the modularity of network SG1 (normalised with cosine
similarity) with respect to the 95% ’confidence interval’ of the modularities of random
networks with equal number of edges and comparable edge weight distribution

Figure 6.8: Yearly changes in the modularity of network SG1 (normalised with cosine
similarity) with respect to the 95% ’confidence interval’ of the modularities of random
networks with equal number of edges, not controlled for edge weight distribution
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Figure 6.9: Yearly changes in the modularity of network SG2 (normalised with the
method outlined by Waltman, Boyack, et al. (2020)) with respect to the 95% ’confi-
dence interval’ of the modularities of random networks with equal number of edges and
comparable edge weight distribution
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Figure 6.10: Yearly changes in the modularity of network SG2 (normalised with the
method outlined by Waltman, Boyack, et al. (2020)) with respect to the 95% ’confi-
dence interval’ of the modularities of random networks with equal number of edges, not
controlled for edge weight distribution
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6.4 Conclusion: Home-Making for Geosocial Re-

search

Using mixed methods, this chapter explored interviewees’ practices which help them

find institutional homes and thus develop their geosocial research approaches, and

argued that social and technical geosocial research increasingly differ. Similar to

Johnston’s (2003) findings about British geography almost two decades ago, I argued

that geosocial research is a collection of research developed by scholars who belong to

disciplinary or sub-disciplinary research communities, rather than a coordinated research

community. Next, I discuss this chapter’s findings with respect to each research question.

In response to the First Research Question, this chapter explored how interviewees

find institutional homes for their geosocial research which, in return, shapes the way

they develop their geosocial research approaches. It highlighted three such practices:

reflecting on geosocial research in light of their institutions’ perceived research foci -

mainly in disciplinary terms - as well as social scientists changing affiliations and actively

differentiating their research from technical geosocial scholarship. Next I discuss each of

these practices in detail.

Osborne (2013) argues that research traditions meet and mingle predominantly as each

advances on their own terms. For example, they often meet as scholars develop methods

along the lines of existing research traditions. In line with him, section 6.1 argued that

participants ground and develop their geosocial research in line with their respective

disciplinary traditions both in institutions they perceive disciplinary and in those

they perceive interdisciplinary. They actively re-imagine what computational methods

could look like in light of their disciplinary backgrounds, thus developing geosocial

research in diverse directions. I identified two main factors that facilitate participants’

development of geosocial research along disciplinary lines in institutions they perceive

as interdisciplinary. On the one hand, they seek to publish in journals associated with

their disciplines to meet research evaluation requirements and to become members of

disciplinary communities. Thus, whilst Osborne (2013) emphasizes epistemic causes for

research to proceed along disciplinary lines, in line with Weszkalnys and Barry (2013),

my participants’ experiences also highlight the role of constraints imposed by research

evaluation. In addition, they anchor their contribution to interdisciplinary teamwork in

light of their existing, disciplinary knowledge. For example, similar to the interviewees
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of Balaban (2018) Anne became uncertain about her work when her disciplinary identity

was questioned, and tried to imagine her contribution along disciplinary lines.

Whilst my analysis supports Osborne’s 2013 observations that the mingling of research

traditions comprise the development of research along disciplinary lines, my analysis

highlights the labour required to make this possible for an emerging or new research

field. As Chapter Four argued, many interviewees with social science background learn

computational data analysis skills as they need to balance academic and non-academic

jobs, due to financial pressures. As Chapter Five argued, several interviewees collaborate

with scholars with complementary skills amid epistemological and ethical differences

that they need to negotiate, to learn the skills required for geosocial research. In

addition, social scientists may seek to alter computational data analysis methods to

help capture units of analyses of interest to them. Finally, as section 6.2 of this chapter

argued, scholars may need to change departmental affiliations or cope with experiences

of forming part of a minority within their disciplinary research communities.

Section 6.2 argued that most interviewees with social science background expressed a

misfit between their institutions’ research focus and their geosocial research and changed

their affiliations for three main reasons. Firstly, some felt that their geosocial research

and associated skill set did not fit well with disciplinary divisions dominant in their home

institutions. Secondly, others willfully used geosocial research as a means to change

their research profiles and affiliations in the hope for better funding opportunities or

to better align their research portfolio with their interests. Thirdly, three participants

were prompted to change their affiliations because their home institutions did not wish

to accommodate their geosocial research.

In addition, many of them actively differentiate their scholarship from technical geosocial

research. For example, they highlight epistemic virtues associated with their geosocial

research, such as their reflexivity and use of knowledge beyond computational data

analysis, including local knowledge about the spaces they study and social theory.

As section 2.4 discussed, STS scholars have demonstrated that the introduction of

new technologies often brings about the re-negotiation of professional identities and

epistemic authority. Similar to the radiologists in Burri’s (2008) study, my interviewees

re-negotiate their professional identities by changing their affiliations, and their epistemic

authority, that is, their authority to make scholarly claims using geotagged social media
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data.

Social scientists might feel the need to differentiate their research from technical geosocial

scholarship because ’technical’ scholarship with ’big data’ is often positioned as a new

and more reliable form of social science (cf. Bartlett et al., 2018). For example, Sloan

and Morgan (2015), Lazer et al. (2009), Pentland (2015) and Galam (2012) argue that

the availability of digital traces opens opportunities for a new science, which they call

computational social science, social physics and sociophysics, respectively. A number of

social scientists highlight the relevance of their approach and push back against the claim

that computational social science enables more robust or better social science. For exam-

ple, Marres (2017, p. 21-22) argues that scholars who stake a claim for ’computational

social science’ such as Lazer et al. (2009) appropriate the label ’sociology’ to describe

data science projects and in doing so falsely claim that the latter can ”solve the problems

of social research”. Marres and several interviewees with a social science background

quoted in this section argue that mainstream computational social science provides a

narrow perspective on how to study societies that use digital technologies. My par-

ticipants seek to develop data analysis approaches which differ from technical scholarship.

In response to the First and Second Research Questions - which explore how geosocial

research approaches differentiate and differ - in line with Chapters Four and Five, section

6.3 argued that a diminishing shared literature base (jointly cited authors) between

’only social’ and ’only computational’ geosocial papers plays an increasingly important

role in connecting disparate geosocial research approaches. Thus, in response to the

Second Research Question, I argued that social and technical geosocial research can be

understood as distinct approaches. I analysed the strength of the author-bibliographic

coupling relations between two sets of geosocial papers: those published in journals

associated with the ’only social’ or ’only technical’ Broad Disciplinary Categories

between 2010 and 2019. My analyses showed that the proportion of authors cited by

both sets of papers decreases over time. In addition, it showed that since 2016 or 2018

(depending on the normalisation method used to calculate the values of the weighted

author-bibliographic coupling edges) this decreasing proportion of shared citations

among geosocial papers published in ’only social’ and ’only technical’ journals render the

network less modular, or in other words, more cohesive. These shared author-citations

increasingly link diverging paper sets.
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As the Chapter Nine will discuss in more detail, combining the line graphs and

interviews in section 6.2 helps answer Research Question 3.1 - which asks how methods

mixing can help study the differentiation of and differences among geosocial research

approaches. Firstly, combining line graphs and interviews enriched my argument that

geosocial research is a collection of research but not a coordinated community, that

finding disciplinary and sub-disciplinary research communities they belong to is essential

for social scientists to differentiate their geosocial research, and that social geosocial

research is currently on the rise. Secondly, plotting the disciplinary distribution of

geosocial papers with respect to all geosocial papers helped explore differences in the

composition of the interview and scientometric fields.

In response to Research Question 3.1, I also combined interviews and structural scien-

tometric analysis to trace the differentiation among the social and technical geosocial

research approaches. This helped me explore the differentiation of these approaches

over a longer time period and accounting for a larger set of geosocial scholarship. It

enriched my argument that the two can be understood as separate approaches, and their

differentiation happens gradually, over time.

Finally, in response to Research Question 3.2 - which explores how to evaluate the

affordances of computational methods ’for STS’ - I discuss the affordances of structural,

homogeneous network analysis in the interpretative context, comprising findings in

Chapters Four through Six. In this chapter I calculated the network modularity of coun-

terfactual networks to trace social scientists’ efforts to differentiate their approach from

technical geosocial approaches. Three main prior findings informed this method. Firstly,

using mixed methods in Chapters Four and Five I argued that connections between

social and technical approaches - such as social scientists’ critical reading of technical

scholarship, using or modifying computational methods, collaboration through loose

common ground and shared aesthetics - were essential for geosocial research approaches

to differentiate, and specifically, for social scientists to differentiate their approaches

from technical ones. I assumed that author-citation links between geosocial research

published in ’only social’ and ’only technical’ journals capture some of these links. Sec-

ondly, through combining interviews and descriptive statistics, in this chapter I argued

that increasing belonging to social scientific communities who value geosocial research

help social scientists develop their geosocial research approaches. Thus, I assumed that

social and technical geosocial research increasingly differ. Thirdly, based on interview
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quotes presented in this chapter I argued that journals’ disciplinary categorisation

signify differences in the geosocial research they publish. Interviewees with different

approaches tend to publish in journals associated with their disciplines for research

evaluation reasons and to find venues which welcome their research. Based on these, I

hypothesised that a decreasing proportion of links between geosocial papers published

in ’only social’ and ’only technical’ journals (implicitly signaling a growing proportion

of links among papers published within ’only social’ or ’only technical’ journals) play

an important role in connecting geosocial research approaches which increasingly differ

over time. In addition, I found that social scientist and geography interviewees choose

publication venues associated with their disciplines whose methodological norms fit their

computational research approach for research evaluation purposes. Thus, I assumed

that geosocial papers aggregated on the level of Broad Disciplinary Categories ’only

social’ and ’human geography’ - which use journal level classification - roughly captured

social geosocial research output.

Importantly, this analysis does not make a strong assumption about the coherence of

social and technical approaches, or about how the number of clusters map onto the

social and technical approaches I hypothesise through interviews. Rather, it traces how

relational practices among social scientists and between social and technical scholars -

operationalised as network relations through their assumed scientometric traces - render

geosocial research more or less coherent, cohesive or diverse over time.

Chapter Seven will further explore differences between approaches to geosocial research

using mixed methods. It will compare the social and technical approaches this chap-

ter differentiated. In addition, it will use scientometrics inductively to identify the

scientometric traces of geosocial research approaches, and identify a third approach -

geographic geosocial research.



Chapter 7

Exploring the Difference

Between Social and

Computational Geosocial

Research Approaches

This chapter uses mixed methods to explore differences between social and computa-

tional approaches to geosocial research identified in Chapters Five and Six, contributing

to all three research questions.

In response to the First Research Question - which asks how geosocial research ap-

proaches develop - section 7.1 argues that reflecting on how social media platforms and

analytical decisions shape the characteristics of geosocial data, and that the knowledge

interviewees create with them about spaces is central to the development of geosocial

research approaches.

In response to the Second Research Question, which asks how approaches to geosocial

research differ, I use mixed methods to explore differences between social and technical

geosocial research approaches. Using participants’ quotes, section 7.1 argues that

technical and social geosocial researchers’ reflexivity differs. Whilst social geosocial

interviewees’ reflexivity foregrounds experiential and historic perspectives, technical

geosocial interviewees focus on the impact of computational calculation methods in

relation to demographic categories. Using computational STS methods, section 7.2

182
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compares the topics and spaces computational and social geosocial approaches study,

and the methods they use. Contrasting the two approaches highlights the diversity of

collective practices and forms of participation (e.g. in civic, intercultural, commercial,

health and disaster-related practices) social geosocial research studies at specific

locations (e.g. at specific cities). Comparatively, its focus on studying these situated

practices and events, on diverse spatio-temporal scales and on computational methods

development differentiates technical geosocial research from social approaches. Secondly,

through combining scientometrics and interviews, I identify a third approach to geosocial

research - geographic geosocial research - differentiated by its use of geographic methods

and study of diverse types of spaces.

Finally, this chapter’s mixed methods approach contributes to the Third Research

Question - which explores combinations of scientometrics and STS as part of one

case study - in three main ways. Firstly, it uses scientometrics inductively, and

thus illustrates the potential of computational methods to identify qualitatively

meaningful patterns. Secondly, it uses scientometrics to compare geosocial research

approaches, rather than tracing relational practices that help scholars differentiate

them as Chapters Five and Six did. I find that combining methods foregrounds the

way my choice of comparative units shapes the knowledge I create. Thirdly, it visu-

ally highlights my scientometric findings’ contingency on the data analysis infrastructure.

7.1 Reflexivity

This section argues that reflecting on how characteristics of geosocial data and analytical

decisions shape knowledge production about spaces is core to interviewees’ geosocial

research. I refer to this practice as ’reflexivity’. Several social scientist interviewees

differentiate their geosocial research from technical geosocial research in terms of their

own reflexivity. I argue that although reflexivity is central to both social and technical

geosocial research, the reflexivities these approaches entail differ. Through interviewees’

narratives, I differentiate between hermeneutic and algorithmic reflexivity - discussed

in sections 7.1.1 and 7.1.2 - which I associate with social and technical geosocial

research respectively. I consider my descriptions to be conceptual models which sim-

plify social and technical geosocial research practices to capture differences between them.
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7.1.1 Hermeneutic Reflexivity

Six interviewees with social science background from groups A-E differentiated their

approach from technical geosocial research in terms of two reflexive acts: their reflexivity

about how their lived experience shapes their research, and how their geosocial research

accounts for the practices or perspectives of diverse groups. These reflexive acts are

considered central epistemic virtues in their home disciplines, including anthropology,

’interpretive’ sociology and human geography. I refer to social scientist participants’

reflexivity as ’hermeneutic reflexivity’, drawing on Fortun et al.’s (2016) notion of

hermeneutic expertise, which amounts to ”taking into account what things mean,

to whom, why, and to what end” (p. 3). Figure 7.1 depicts three key features of

hermeneutic reflexivity discussed below: reflecting on how analytical decisions and

social media platforms mediate (geosocial) knowledge about spaces, predominantly in

experiential and historic terms.

Social 
media 

platforms
Spaces

Analytical 
decisions

Geosocial 
data & 

knowledge

Experiential, historical situated practices

Figure 7.1: Hermeneutic reflexivity
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Firstly, interviewees from groups A, B and D discussed reflecting on their analytical

decisions in experiential and historic terms. Bruno, Anne and David distinguished their

approach to geosocial research from technical approaches in terms of such reflection,

and Brian noted the importance of reflecting on the history of algorithms.

As section 5.3 discussed, Bruno stated that his team’s local and experiential knowledge

about the spaces they study shape their research questions and methods. Thus, it is

constitutive of their findings. Being part of a multidisciplinary PhD program, Anne was

faced with a dilemma of how to use computer programming for her geosocial research.

After experimenting with coding and considering outsourcing computational analysis to

others, she decided to use a method - thematic analysis - with which she was more

familiar. She noted her satisfaction with this choice because she thinks thematic analysis

affords more opportunities to reflect on how her experiences impact the knowledge she

produced.

”I came in [to the PhD program] with a clear idea, you know, that

we need to push against [computational social science] [...] I’m glad

I stuck with this kind of manual method, because I think it allows

greater space for reflexivity as well. To say, ‘what are the things that

I find difficult or boring, or exciting about this research?’ and ‘How

am I framing my own work?’”

Like Anne, David stressed the importance of reflecting on how his and Daniel’s lived

experiences shape their results. He stressed that it is dangerous to produce knowledge

about a community encountered solely through online traces, given the discrepancy be-

tween their own and their subjects’ lived experiences of the neighbourhood they study.

”Here we are in [this city] as two white guys, and we kind of know a

lot about the lives of this scene in [another city], and we personally

never met [...] I think we’re very acutely aware of the danger of, yeah,

doing some kind of violent abstraction, and just kind of having these

figures stand in for, you know, as they often are, in public discourse,

some [grand claims about society]...”

Finally, Brian reflected on the knowledge he creates in terms of the history of the algo-

rithms he uses:

I use algorithms all the time [and they] often date back many decades.

Sometimes to truly understand, we need to excavate, and I think these
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histories give you a better understanding of how an algorithm works

but also why it works in that particular way. [...] They often have

a set of parameters. [...] maybe somebody decides to hard code a

particular value [... and] if you don’t excavate that you might actually

never find out even though [it] can be very important to [...] change.”

Altogether, Anne, Bruno, Brian and David stressed the importance of reflecting on

how their lived experience or historical processes shape their analytical decisions and

findings. Next, I discuss a second aspect of hermeneutic reflexivity: reflecting on how

social media platforms mediate geosocial data and knowledge in experiential terms.

Reflecting on how social media platforms mediate users’ experience and thus impact

geosocial data and knowledge is central to Anne’s, David’s and Daniel’s geosocial re-

search. Anne stated that her method treats social media data in a way that accounts

for, or mirrors, everyday social media users’ experience, and thus helps her study social

media platforms’ impact on (users’) narratives of space.

”I was kind of trying to integrate the kind of everyday experience of

[the social media platform] into my analyses. [...For instance,] you

know, what Joe gets from understanding [a city], if you do a quick

search on [the social media platform]. [I used analytical solutions] to

mirror the way that people see tweets in their feed.”

Like Anne, David and Daniel reflected on differences in the social media platforms’

mediation of user groups’ practices. Their dataset changed after the social media platform

altered its geotagging policy. They discussed the effect of changes in terms of users’

cultural and experiential practices: their members, spatial footprint, and the types of

spaces they tagged. They stated that platform changes affected user groups differently.

For example, a user group with a substantial proportion of non-white users who were

tagging locations outside of gentrifying areas disappeared from their dataset after the

policy change.

Daniel: ”it was the only cluster that [...] had a substantial proportion

of non-white people, and also their spatial footprint was very, very

different. [...] but they just disappeared.”

David: [...] generally we retained a fair proportion of users [after the

policy change], but in that case, like 4 out of 5 users were no longer
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in the data. I mean it’s really dramatic, like they literally fell off the

map. [...]”

They ironically invoked the notion ’natural experiment’, a method popular in some

branches of social science where participants are assigned to treatment and control groups

by processes outside of the researchers’ control. A seminal example is David Snow’s study

on the 1854 cholera outbreak in London, where participants were divided into control

group (healthy) and treatment group (infected with cholera) by the epidemic process

itself, rather than by the researchers (Freedman, 2009). David and Daniel refrained from

using the terms ’natural experiment’ and ’system drift’ - the latter used by Salganik

(2017) - to refer to changes in their data. They felt these concepts falsely suggest that

changes in the data are independent of the situated practices that create them and their

own methods. Thus, they seek alternative concepts to express the combination of human

and non-human agencies that shape data.

”We have played a little bit with regarding this [changes in the data

before and after an API change] as a natural experiment [laughing]

... we’re completely comfortable analysing [this data] because of our

background in [an interpretivist sociological tradition] and our famil-

iarity with the neighbourhood. And then to write about a natural

experiment doesn’t really fit too well... We still have to think of the

good way to write this up [...]. Data disappeared from the map - but

only from our map! ... Matt Salganik calls this ’system drift’ [...] I

don’t know what the right metaphor is, cause even drift sounds like

‘oh it’s just a naturally occurring process’...”

Altogether, Anne, David and Daniel reflected on how their research (methods) ac-

count(s) for how social media platforms mediate users’ experiences and practices. Next,

I discuss the third aspect of my participants’ hermeneutic reflexivity: their reflection on

the extent to which their research can take diverse groups’ situated practices into account.

Anne, Brian, Colin, David, Daniel and Elias assume the spaces they study are co-

constituted by diverse actors’ practices, and reflected on whether their research can

account for these. Anne considers spaces inherently diverse, and assumes that social

media data shapes users’ experiences of them. Her research explored how filtering based

on geolocation - a feature of the social media platform from which she collected data -

shapes the diversity of narratives users - and herself - have about spaces.
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”when you’re engaging with these subjectivities about spaces, then the

idea of something being valid becomes very difficult [...] [my research

was in part methodological,] exploring the subjective narratives about

space and the potential of social media data to assist in those under-

standings. And realising that geotagged filtering is a huge, commonly

used method, [...] I was keen to [...] see how it is affecting our un-

derstanding of spaces...”

Brian differentiated his research from computational social science by contrasting the

latter’s quest for optimisation with interpretive social sciences’ reflexive tradition that

seeks to study diversity, where optimized solutions often do not exist.

”the word optimization is used a lot in engineering and computer

science, [...where scholars are] interested in developing new algo-

rithms because they’re more computationally efficient... but [in] social

scien[ce] [...] many questions [...] cannot be optimized. There is no

optimal solution. And that is partly what makes social science so

interesting. So yeah, there are these foundational differences...”

Colin claimed that the main difference between physicists’ and his methods is his field’s

predisposition to question findings, and in particular, the way the analyst’s decisions fore-

ground or obscure diversity. For example, he worries about whether his team’s analyses

accounts for the perspectives of a minority group living at the space they study.

”...What is the value of [...] being always in doubt and not truly be-

lieving the results of any data analysis? [...] We had a joint workshop

with physicists, and they said that physicists don’t clean data. In con-

trast, worrying about who we should leave out, who our analyses are

leaving out, and what the sample consists of kept me up all night...

[...] For example, what should we do about [a minority group]? Are

they under or over represented in this data?”

Daniel and David stated they chose to study a cluster of social media users because their

social media footprint differed from the rest of the users. Thus, their research specifically

aims to account for diverse situated practices. Users in the chosen cluster posted from

different areas in the city, and (as outlined above) were ethnically more diverse.

”So all the clusters are like very heavily concentrated in the city cen-

tre, especially sort of gentrifying areas, but they, they didn’t really
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have a centre, they were scattered all over [the city]... we wanted

to look at that because they were interesting in that they were excep-

tional...”

Finally, Elias claimed that his approach differs from research that privileges technically

complex methods and uses quantitative criteria to assess the accuracy or validity of

results. According to him, such criteria fail to account for society’s diverse practices and

perspectives. He also critiqued framing data quality in demographic terms, which he

believes does not capture diversity.

”political science has really tended towards this sort of veneer of

scientific-ness based on its use of complicated methods. [... For exam-

ple, it has a] strong focus [...] on like – is your data representative?

Is it kind of descriptive or is it rigorous and analytic? [... But] these

are kind of binaries that don’t really account for the messiness of

society.”

In sum, Anne, Brian, Colin, David, Daniel and Elias’s quotes highlight the third

aspect of hermeneutic reflexivity: they conceptualise spaces and situated practices as di-

verse, and reflect on how their geosocial research can capture, or account for this diversity.

Altogether, this section illustrated hermeneutic reflexvity’s focus on assessing how

analytical decisions and social media platforms shape geosocial data and knowledge

about spaces in experiential and historic terms. Next, I present algorithmic reflexivity’s

focus on assessing the impact of analytical decisions and social media platforms’

affordances on geosocial data and knowledge about spaces in terms of calculations and

demographic categories.

7.1.2 Algorithmic Reflexivity

Like social scientists, technical interviewees reflect on how analytical decisions and so-

cial media platforms shape geosocial data as well as the knowledge they enable about

spaces. However, as figure 7.2 depicts, in contrast to hermeneutic reflexivity, algorithmic

reflexivity focuses on the impact of calculations on knowledge about spaces assessed in

demographic terms. In addition, instead of conceptualising it as a unique contribution,

technical interviewees narrate their reflexivity as a necessary aspect of their research.

Only Luke differentiates his geosocial research in terms of his reflexivity. This section il-
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lustrates the above three aspects of ’algorithmic reflexivity’ depicted by figure 7.2 through

interviewees’ quotes.
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Demographics

Figure 7.2: Algorithmic reflexivity
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Firstly, Jane’s, Kevin’s, Miles’, Mike’s, and Isaac’s quotes illustrate that reflecting on

analytical choices in terms of calculations is central to technical scholars’ geosocial re-

search. As section 5.2.1 discussed, Jane is interested in reflecting on how the modeling

approach popular in her discipline shapes the knowledge she creates, and Kevin reflected

on the suitability of specific community detection methods in mathematical terms. Sec-

tion 5.3 showed Miles’ reflection on the calculations they perform when optimising a data

model. Mike, quoted below, acknowledged that there are several valid ways to normalise

data which yield different and equally valid findings. He believes that this heterogeneity

hinders the development of standard methods accepted by the research community. In-

stead, he claimed that scholars must argue for the adequacy of their chosen normalisation

method:

”There are several ways of normalising [...] In several papers, we had

this exchange with reviewers [...] There are different techniques, all

of them are, you know, valid, but of course, they map different things.

So getting a standardised methodology which can be, you know, ac-

cepted, by everybody, I think it’s a challenge.”

Isaac explained that even though his team members reflect on both the way their decisions

and computational infrastructures impact the knowledge they create, they tend to omit

such reflections from publications in part to avoid possible questions during peer review.

This suggests that published literature may not reflect the scope of the reflexivity which

forms part of technical geosocial scholars’ research practice.

”To be honest, there’s also kind of this game that you have to play,

that if you write too much about your data collection and [analytical

decisions], people will start asking questions. If you don’t go into

detail, they won’t think about it as much. It might be a little bit ugly,

but that’s the truth.”

In sum, technical interviewees predominantly reflect on their analytical decisions in

terms of the impact of their calculations, acknowledging that often, multiple acceptable

calculations exist. Next, I discuss algorithmic reflexivity about how the calculations

performed by social media platforms shape geosocial data and knowledge.

Jane and Luke reflected on how calculations performed by social media platforms’ algo-

rithms shape geosocial data and the knowledge scholars create with them. Jane noted

that the sampling method used by the free API of the social media platform her team
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uses to access geosocial data can shape the data (for example, by omitting data points

at regular time intervals). She explained that her team modifies data sets - for example,

by removing automated posts - based on their understanding of these algorithms.

”Since we use the [free API], the sampling method could introduce

further biases. [...] We remove bots based on the time stamp of posts

because bots post at regular time intervals. [...] the [API] algorithm

samples data based on the time stamp of posts. As a result, your sam-

ple can either completely over represent, or under represent specific

bots, depending on [...] the sampling time frame.”

Luke demarcated his geosocial research in terms of how it accounts for the ways

social media platforms’ algorithms shape geosocial data. His method filters geosocial

data based on patterns identifiable in diverse modalities, including posts’ text and geotag.

”A lot was needed to clean the data spatially. A lot of the existing

literature [...] identifies bots by the number of following and time of

[posting] [...] and that’s very limited [...] my approach took it from a

more of a location perspective.”

In sum, Jane and Luke’s narratives highlight algorithmic reflexivity’s tendency to assess

how calculations performed by social media platforms’ algorithms shape geosocial data

and knowledge. Finally, I discuss quotes which illustrate that algorithmic reflexivity

assesses geosocial data and the knowledge they enable about spaces in demographic

terms.

Isaac, Jane, Josh and Mike stated that geosocial data are limited because they do not

’represent the population’ of the spaces they study. Isaac explained that geosocial data

are not representative of age groups:

”It’s certainly biased, so it’s not representative of the society as a

whole [...] if I only look at [social media], perhaps I have most of the

people under 30, significant number of people under 50 and then rel-

atively few older people. And perhaps for under 30 people segregation

is no longer an actual thing. I don’t believe that, but you know it’s...

I can never really test that validity...”

Like Isaac, Jane stated that geosocial data are not representative of age, socio-economic

status or ethnicity:



7.2. Computational STS Comparison: Social & Technical Geosocial Research 193

”It’s not representative of age, socio-economic groups. In certain ar-

eas, people from lower socio-economic status are over-represented.

In the [country we studied] it’s also not representative for ethic

groups...”

Josh also stressed the non-representativity of geosocial data, and stated that their ana-

lytical methods account for this:

”Obviously, we have to admit that [the social media data] has its

limits, for example, it’s not representative. We always accounted for

this in our work.”

Finally, Mike highlighted the non-representativeness of social media data by noting that

highly active users in certain areas can yield biases:

”...you also find out the problems, like you know, of course biased

representations, you can have entire areas in city that contains [posts]

by the same user. You have to figure out all these biases and problems

with online data.”

In sum, interviewees from groups I, J and M reflected on geosocial data and the knowl-

edge they afford about spaces in demographic terms: they stress that geosocial data

are not representative of age, socio-economic status and ethnicity of the spaces they study.

This section argued that reflexivity is a core aspect of geosocial research, and that

social and technical geosocial research differ according to the type of reflexivity they

foreground. While the former foregrounds experiential and historic reflection, the latter

assesses the impact of calculations in demographic terms. The next section further

explores differences among geosocial research approaches using scientometrics.

7.2 Computational STS Comparison: Social & Tech-

nical Geosocial Research

This section provides further scientometric evidence that support the distinctions

between social and technical geosocial approaches (discussed in Chapter Six), and com-

pares them using computational STS methods. As section 3.4.5 discussed, I clustered the

author-bibliographic coupling network of geosocial papers using the Leiden algorithm.
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Figure 7.3 depicts the network of the clusters of the author-bibliographic coupling

network G3, which includes all papers in my scientometric field. Clusters 0 - 3 contain

several papers, but clusters 4 and 5 each only have 2 papers that share no cited authors

with the papers in the other clusters. The length of the edges indicates the proportion

of shared author-citations between clusters. The closer clusters are, the higher the

proportion of jointly cited authors. Figure 7.4 depicts the distribution of papers across

five Broad Disciplinary Categories in each cluster using the method discussed in section

3.4.5: ’multi- or interdisciplinary’, ’physical geography’, ’human geography’, ’only social’

and ’only computational’. While figure 7.3 illustrated clusters’ connections, figure 7.4

highlights their differences. ’Only social’ papers dominate Cluster 0, and there is a

relatively high number of geography papers in Cluster 1 compared to the other clusters.

Comparatively, the proportion of ’multi-interdisciplinary’ papers is the highest in

Cluster 2, alongside a relatively high proportion of computational and human geography

papers. Finally, ’only computational’ papers dominate Cluster 3. Thus, although

technical papers are distributed across clusters, I argue that this analysis differentiates

the scientometric footprints of the ’social geosocial research’ (Cluster 0) and ’technical

geosocial research’ (Cluster 3) approaches. This suggests that the distinction between

social and technical approaches identified in Chapter Six through interviews and by

analysing a network which comprised ’only social’ and ’only computational’ papers holds

in the context of all geosocial papers. In addition, Cluster 1 suggests that geographic

geosocial research is a distinct approach. Figure 7.3 highlights the relatively high

proportion of jointly cited authors between the ’social’ (cluster 0) and ’technical’ (cluster

3) clusters, illustrating their connectedness. The technical cluster shares relatively more

author citations with cluster 2 compared to geography dominated cluster 1, while the

social cluster cluster shares more author citations with the geography cluster (cluster 1)

compared to cluster 2. Exploring these edges qualitatively in detail is beyond the scope

of this project, but Chapter Eight will compare the clusters of this network in more detail.
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Figure 7.3: Network of the clusters of G3
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Figure 7.4: Distribution of subject categories across the clusters
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To scientometrically compare social and technical approaches to geosocial research,

below I cluster the author-bibliographic coupling network comprising ’only social’ and

’only computational’ geosocial papers (G4). As section 6.3 argued, the set of ’only

social’ and ’only computational’ geosocial papers better aligns with the disciplinary

background of my interviewees than my entire scientometric field (depicted by G3 ).

Thus, I assume that the comparative findings about social and technical geosocial

research approaches using their scientometric footprints through clustering (G4) better

resonate with my interview findings than comparing the above social and technical

clusters in the network G3. As figure 7.5 shows, the community detection on network

G4 identified five clusters (Clusters 0 - 4). Figure 7.5 depicts the number of papers in

clusters across the five Broad Disciplinary Categories.

As figure 7.5 shows, Cluster 0 contains the majority of ’only social’ papers along with

smaller number of ’only computational’ papers. Cluster 1 contains the majority of

’only computational’ papers along with smaller number of ’only social’ and ’physical

geography’ papers, and an even smaller number of ’human geography’ papers. The

partial separation of ’only social’ and ’only computational’ papers in Clusters 0 and 1

support Chapter Six’s findings about the growing separation between these approaches

enabled by information exchange among scholars who practice them through collab-

oration, as well as shared methodological and aesthetic interests. Thus, I argue that

Cluster 0 predominantly comprises papers associated with social geosocial research,

and Cluster 1 predominantly comprises papers associated with technical geosocial

research - capturing these approaches’ scientometric footprints. Cluster 2 contains

mostly ’only social’ and ’human geography’ papers, along with smaller number of

’only computational’ and ’physical geography’ papers. Given the relative dominance of

geography papers in Cluster 2 compared to Clusters 0 and 1, I interpret this cluster as

a geography oriented cluster. This suggests that the geographic approach to geosocial

research can be seen distinct from social and technical approaches identified in Chapters

Five and Six. Clusters 3 and 4 contain 2-2 social scientific papers that shared no cited

author with other papers in the dataset. Thus, I excluded these papers from my analyses.
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Figure 7.5: Technical and Social Geosocial Research Author Bibliographic coupling net-
work clusters’ disciplinary categories
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A few interviewees’ comments support the scientometric separation of geographic

geosocial research. Isaac, David, Daniel and Mike noted that initially they did not

consider their research explicitly geographical, and did not engage with the geographic

relevance of their research in depth.

David and Daniel, who have backgrounds in sociology, noted that the interview with me

made them reflect on the geographic aspect of their research. They noted that they did

not relate their research to geography scholarship as much as they could:

“After this interview, I’m also thinking that maybe we should position

ourselves to other [scientific] groups as well.[...] We also make a point

out of this long term perspective. The geography, I’m not sure if we

make as strong a case as we could.”

Isaac, an applied mathematician noted that he does not consider his geosocial research

geographic:

“So, geography is not usually on my mind when I think of a problem

or a [research] question...”

Finally, Mike noted that his computer scientist team is learning about geographic quan-

titative methods as they develop their geosocial research. He would welcome a collabora-

tor with background in geography, but also noted that his team could learn the relevant

methods by themselves.

“...it’d be super great to have people from geography [on our team],

because we are slowly learning about tools that geographers use [...]

and they are super interesting to make the analysis much better [...]

even just very simple spatial models [...] and spatial correlations [...]

But [...] we could also learn these ourselves...”

In sum, the above interviewees’ narratives support my scientometric finding about

the separation between geographic, and social or technical geosocial research. Next, I

compare these three geosocial research approaches.

To explore differences between social and technical geosocial research approaches, also

in relation to the geographic approach depicted by Cluster 2 (the Geography Cluster),

figures 7.6 and 7.7 depict the top 30% noun phrases based on their TF-IDF values,

extracted from the abstracts and titles of papers in Clusters 0, 1 and 2 of network
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G4, categorised into themes as outlined in section 3.4.6. I further divided the top

30% into three ranges depicted by the font color. Grey terms correspond to the top

third, blue noun phrases are in the second third, and yellow terms are in the bottom

third within the top 30% of noun phrases ordered by their TF-IDF scores within each

cluster. As section 3.4.6 discussed, due to the nature of TF-IDF scores, these figures

emphasize relative, comparative differences among these clusters, rather than absolute

differences or characterising clusters in detail. I highlight five main differences between

the scientometric footprints of the social and technical approaches geosocial research

when contrasted with one another and the Geography Cluster (Cluster 2).

Firstly, terms’ categories that differentiate clusters differ. A large proportion of the noun

phrases that differentiate Cluster 0 (the Social Cluster) from the other two clusters are

related to collective practices and actors. In contrast, a large proportion of noun phrases

that differentiate Cluster 1 (the Technical Cluster) relate to methods. In addition,

compared to the Social Cluster, a large proportion of noun phrases that differentiates

the Technical Cluster (Cluster 1) express spatial units. Finally, the relatively large

proportion of noun phrases that express spaces differentiates Cluster 2 (the Geography

Cluster), which further illustrates its distinctly geographic focus. Next, I compare the

meaning of terms within each category across clusters.

Secondly, whereas frequently mentioning actors with diverse roles and subjectivities,

such as ’reporter’, ’respondent’, ’institution’, ’adolescent’, ’patient’ sets the Social

Cluster apart; noun phrases related to technology users who create geosocial data (e.g.

’similar user’, ’human’) and the ’police’ set apart the Technical Cluster’s actors. Similar

to the Social Cluster, the three actors that are relatively more frequent in the Geography

Cluster compared to the other two clusters - ’activist’, business’ and ’resident’ - relate

to diverse roles and subjectivities.

Thirdly, the relatively frequent mention of specific locations, such as ’Seoul’, ’New

Zealand’ and ’Hong Kong’ differentiates the Social Cluster. In return, the Technical

Cluster’s relatively frequent use of noun phrases which express diverse spatial scales,

such as ’district’, ’city level’, ’spatial scale’, and spatial processes that can be expressed

in spatio-temporal terms, such as ’urban vibrancy’ and ’urban dynamics’ sets it apart

from the other two clusters. This suggests that comparatively, the Social Cluster focuses

more on studying specific locations, whereas technical geosocial research places more
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emphasis on studying diverse spatial scales. Space related terms that differentiate

the Geography Cluster include terms that refer to specific locations (e.g. ’London’ or

’Australia’), types of spaces (e.g. ’public space’) and spatial patterns, (e.g. ’spatial

distribution’, ’spatial pattern’), illustrating its rich spatial vocabulary.

Fourthly, while terms associated with media which express their use differentiate the

Social Cluster (e.g. ’Facebook page’, ’online activity’, ’social media use’), my analysis

highlights the Technical Cluster’s relative focus on media in relation to methods (e.g.

’user generated content’, ’social sensor’) and technology development (e.g. ’prototype’,

’software’). The Geography Cluster’s media related concepts also illustrate its relative

focus on geography, for example, through the noun phrases ’geoweb’, ’geographic

information system’.

Finally, intervention and power-related temporal concepts such as ’intervention’, ’mo-

bilisation’, ’shift’, ’resistance’ set the Social Cluster apart, compared to the Technical

Cluster’s methods-related temporal concepts that express methodological innovation

and spatio-temporal units (e.g. ’new method’, ’spatiotemporal pattern’), and Cluster

2’s distinct temporal terms, which include both time related to collective practices (e.g.

’activist’, ’migration’) and methodological time (e.g. ’trend’, ’flow’.)

Altogether, I argue that a relative focus on diverse actors’ situated practices, forms

of participation in civic or commercial practices, and changes in power relations

differentiate social scientific geosocial research from technical geosocial research. On

the other hand, its relative focus on using computational data analysis methods to

explore spaces at diverse spatial and temporal scales differentiates technical geosocial

research from social approaches. Finally, the use of geographic methods to explore

diverse types of spaces differentiates geographic geosocial research from the social and

technical approaches.
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CLUSTER 0 – ‘SOCIAL CLUSTER’ 

Collective 
practice 

public discourse, feeling, 
harassment, sociality, 
intervention, reflection, 
collaboration, publishing, public 
opinion, framing, professional, 
promotion, struggle, interact, 
apology, training, race, 
advertising, demand, trust, 
mobilization, reaction, 
assessment, political 
communication, public 
engagement, reason, 
commitment, matter, making, 
collective action, play, course, 
writing, credibility, exposure, 
inequality, shift, brand post, 
suggestion, creation, reputation, 
incident, competition, sharing, 
examination, exchange, 
resistance, racism, street art, 
encounter, health, distinction, 
intention, public relation, social 
capital, sentiment, awareness, 
history, solidarity, governance, 
status, norm, gender, style, civic 
engagement, class 

media Facebook page, new medium, 
online medium, affordance, app, 
online activity, media, television, 
social media use, journal, hashtag 

space Seoul, New Zeland, Hong Kong, 
United Kingdom, Europe, Canada, 
physical space, Singapore, smart 
city 

actor race, reporter, subject, 
respondent, institution, 
organisation, patient, adolescent, 
family, product, migrant, firm, 
employee, local government, 
scholar, manager, public library 

method questionnaire 

time intervention, mobilization, 
reaction, new medium, shift, 
resistance, history, class 

 
 
 
 
 
 
 
 
 
 

CLUSTER 1 – ‘TECHNICAL CLUSTER’ 

Collective 
practice 

public health, emergency 
response, crowdsourcing, travel, 
natural disaster, human mobility 
pattern, air pollution, disaster 
management, health, human 
dynamic, human activity pattern, 
information diffusion, behaviour, 
privacy, rumor, law, social 
interaction 

media ugc (user generated content), 
social sensor, prototype, software, 
bottari, yelp, weibo, geotagged 
tweet, recommendation system, 
smartphone, communication 
technology, lbsn 

space district, city level, urban dynamic, 
urban boundary, urban 
environment, urban vibrancy, 
physical location, human 
settlement, spatial scale, 
urbanisation, hotspot, study area, 
earthquake, air quality, home 
location, spatial interaction, 
spatiotemporal pattern, road 
segment, street, land use, 
footprint 

actor similar user, human, agent, police, 
social media user 

method error, new method, new 
perspective, better understanding, 
baseline, layer, magnitude, spatial 
information, test, satellite, 
probability, resolution 
proposed method, real world 
dataset, deep learning, retrieval, 
estimation, contextual 
information, usefulness, 
improvement, noise, large 
amount, temporal information, 
large number, topic model, 
dbscan, aerial image, location 
data, feasibility, metric, 
complexity, emergence, event 
detection, million, modeling, 
location information, social 
sensing, identification, 
implementation, matrix, signal 

time new method, new perspective, 
emergency response, urban 
dynamic, human activity pattern, 
spatiotemporal pattern, event 
detection 

 

 

Figure 7.6: TF - IDF clusters 0 and 1
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CLUSTER 2 – ‘GEOGRAPHY CLUSTER’ 

Collective 
practice 

policy, crowd, migration, crime, 
crisis, trend, action, violence, 
participation, surveillance 

media geoweb, geographic information 
system, instagram, tag, lbsns, 
device, social media platform 

space cyberspace, proximity, London, 
Australia, station, public space, 
landscape, neighbourhood, flow, 
boundary, spatial distribution, 
spatial pattern 

actor activist, business, resident 

method spatial analysis, discipline, 
mapping, trend, giscience, 
database, interview, visualization, 
detection, limitation, effect 

time moment, trend, flow, year 

 
 
 
 
 
 
 
 
 
 
 

Figure 7.7: TF - IDF cluster 2
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As section 3.4.6 discussed, TF-IDF scores emphasize the comparative difference among

groups. However, as Chapters Four through Six argued, social and technical geosocial

research can differentiate from one another thanks to exchange between them, such as

through scholars’ shared aesthetics sensibilities, collaboration and efforts to link compu-

tational and social scientific disciplines. To better explore similarities between social and

technical geosocial research, I will next explore noun phrases present in both the Social

and Technical Clusters using the method section 3.4.7 discussed. Figure 7.8 depicts 112

noun phrases categorised using the above scheme, which occur both in the Social and

Technical Clusters at least 10 times (intersection noun phrases), ranked according to their

frequency. These 112 terms comprise 40% of all noun phrases that occur in both clusters

10 times or more. I found a total 278 noun phrases mentioned in both clusters at least

10 times. However, many of these noun phrases were generic words that were difficult

to interpret in themselves, such as ’interest’, ’topics’, ’challenge’, ’content’. As section

3.4.7 discussed, I could not categorise these and thus omitted them from further analysis.

The colors in figure 7.8 indicate the number of times noun phrases are mentioned.

Yellow noun phrases are among the top 50% most frequent intersection noun phrases in

both the Social and Technical Clusters. Green noun phrases are in the top 50% most

frequent intersection noun phrases only in the Social Cluster. Pink noun phrases are in

the top 50% frequent intersection noun phrases only in the Technical Cluster. Black

noun phrases are present in both the Technical and Social Clusters, but are not in the

top 50% most frequent intersection noun phrases in either cluster. Terms in all capitals

will be further analysed. Due to the data loss during the analysis discussed above, I

do not interpret the number of intersection noun phrases per topic category. Thus,

figure 7.8 keeps the height of each row, regardless of the number of noun phrases they list.

This analysis highlights several points of connections between the social and technical

geosocial approaches, including their shared interest in urbanism (e.g. ’city’, ’New York

city’, ’smart city’, ’urban space’), disasters, tourism and public governance and discourse

(’citizen’, ’news’). In addition, network analysis is relatively popular in both approaches.

In light of earlier findings obtained through the TF-IDF analysis, I hypothesise that

while social geosocial research studies these spatial events and practices in relation to

diverse actors, subjectivities and forms of participation at specific locations, technical

geosocial research studies them in light of the affordances of computational methods to

study diverse spatio-temporal scales. Next, I use noun phrase co-occurrence maps of the
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Social and Technical Clusters to explore this hypothesis.

INTERSECTION AMONG CLUSTERS 
 
 
 

INTERSECTION: CLUSTERS 0 AND 1 

 
collective 
practice 

event, activity, use, behavior, movement, life, news, disaster, 
popularity, mobility, behaviour 
 
 

 
 
media 

social medium, tweet, twitter, social network, platform, 
technology, post, web, video, internet, facebook, site, social 
media, online, photograph, mobile device, medium, profile, 
website, communication technology, smartphone 
 

 
 
space 

location, CITY, place, pattern, area, china, space, context, 
environment, world, country, structure, region, scale, map, 
geography, new york city, situation, smart city, building, 
landscape, boundary, urban space, street 
 

 
 
actor 

user, person,  group, CITIZEN, society, tourist, population, friend, 
resident, business 
 
 
 

 
 
method 

data, approach, model, analysis, framework, pattern, technique, 
case study, NETWORK, survey, factor, sample, evidence, set, 
experiment, dataset, social media data, distribution, 
methodology, valuation, prediction, comparison, limitation, 
mechanism, observation, uncertainty, increase, hypothesis 

 
time, 
process 

time, process, year, dynamic, period, real time, today, recent 
year, month, phase 
 
 

 
 
 
Because of the number of uncategorised, can’t interpret number and proportion of 
categories, but can interpret their nature 
 
CLUSTER 0 AND CLUSTER 1 – occ. 10, in colors: top 50% for each cluster 
 

Figure 7.8: Intersection between clusters 0 and 1
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I explored the above hypothesis using the modified ego term co-occurrence networks of

the three noun phrases in all capitals in figure 7.8 using the method outlined in section

3.4.8. As section 3.4.8 discussed, whilst TF-IDF and the term occurrence analysis

rank noun phrases, the modified ego network maps allow me to explore noun phrases’

connections within each cluster. This helps explore the meanings of the selected noun

phrases in the context of social and technical geosocial research. To study the above

hypothesis, I chose three noun phrases, each associated with a different topic category:

’citizen’ is an actor, ’city’ refers to a space, and ’network’ relates to methods. I chose

noun phrases that are relatively popular in both clusters to ensure that the modified

ego-networks - which, as section 3.4.8 explained, only contain noun phrases mentioned

at least 10 times in the data - include a large number of the chosen interface noun

phrases’ connections, to help compare their meanings in the two clusters.

As section 3.4.8 discussed, I created modified ego-networks by subsetting the noun-

phrase co-occurrence networks of each cluster. Figures 7.9 and 7.10 depict the noun

phrase co-occurrence networks for each cluster. As outlined in section 3.3.2, these are

screenshots of the interactive data visualisations available through the VOSviewer user

interface. The screenshots do not show all of the nodes and edges of the network, and

I analysed the maps using VOSviewer’s interactive, zoom-able data visualisations. The

colors of the nodes depict the association of each noun phrase with clusters within each

network, identified by VOSviewer’s clustering algorithm. These clusters - and the colors

- indicate the extent to which noun phrases co-occur in the abstracts and titles of papers

used for the analysis. As section 3.4.8 explained, I created modified ego networks by

subsetting these noun phrase co-occurrence networks and keeping only the ego nodes

(’citizen’, ’city’ and ’network’) and their alters.
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I first discuss the modified ego network of the term ’citizen’ in Clusters 0 (top figure,

the Social Cluster) and 1 (bottom figure, the Technical Cluster) depicted by figure 7.11.

As section 3.4.8 discussed, these screenshots of modified ego networks only include the

edges that originate from the ego-node (in this case, ’citizen’), but the position and

color of each noun phrase is the same as in the term co-occurrence maps presented in

figures 7.9 and 7.10. Thus, terms’ position and color contain information about their

relationship within the term maps of Clusters 0 and 1, without visually depicting their

edges. In addition, the VOSviewer interface provides some descriptive information

about the networks, visible at the bottom panel of each image, including the number of

edges in the network (’Links’), the ’Total link strength’ (calculated by adding up the

edge weight value for each edge or link in the network), and the number of times the

selected node (in this case, ’citizen’) occurs in the data (in this case, the abstracts and

titles of papers in the cluster, depicted by the ’Occurrences’ variable).

The ego network of ’citizen’ in the Social Cluster (303 links, total link strength 3081, top

image) is denser than the ego network of ’citizen’ in the Technical Cluster (172 links,

total link strength 822, bottom image). The ’citizen’ of the Social Cluster highlights

diverse forms of participation in cultural practices. The red and purple noun phrase

clusters on the top imagine in figure 7.11 highlight citizen’s connection to diverse forms

of participation in civil society as well as power relations, such as ’activism’, ’protest’,

’civic participation’, ’social movement’, ’culture’, ’government’, ’journalist’, ’race’ (red

cluster) and ’campaign’, ’audience’, ’election’, and the method ’content analysis’ (purple

cluster). The blue cluster depicts the consumer citizen though noun phrases such as

’consumer’, ’customer’, ’identity’. The green cluster on the top figure highlights the

technology user and learner citizen, with noun phrases like ’learning’, ’education’,

’student’, ’technology’, ’YouTube’, ’Facebook’. The yellow cluster combines terms

related to research methods (’paper’, ’study’, ’data’, ’approach’, ’model’, ’technique’)

and two main topic areas: the ’geography’ of ’disaster’ and ’ideology’.

In contrast, the Technical Cluster - the bottom image in figure 7.11 - mostly depicts

the ’citizen’ embedded in senseable environment - in other words, traceable with

computational data and methods - studied with a wide array of computational methods

and data. The red cluster on the bottom image highlights the ’data’ available about

citizens’ ’activity’ in the ’city’, their senseable environment through ’air pollution’

and the ’visitor’ citizen’s experience of ’landscape[s]’. The blue cluster depicts the
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’remote sensing’ ’social sensing’ of ’event[s]’, threats to citizens’ senseable environment

such as ’natural disaster[s]’ for ’disaster management’. The green cluster depicts the

’classification’ of citizen’s senseable visual perspective using ’flickr’, ’panoramio’, ’photo’,

in addition to ’twitter’. The yellow cluster in the bottom figure combines noun phrases

about citizens studied with diverse methods in and the citizen of the ’smart city’. The

purple, light blue and orange clusters highlight more methods to study technology

’use[r]’ citizens and their situated practices, using ’prediction[s]’ and ’algorithm[s]’.

In sum, the modified ego networks of ’citizen’ support my hypothesis, that whilst so-

cial geosocial research explores actors’ participation in diverse cultural practices, techni-

cal geosocial research treats ’citizen’ as a social sensor and studies spaces by exploring

’sensed’ practices on diverse spatio-temporal scales afforded by computational methods.

Whilst these modified ego networks help study differences in the meaning of noun phrases

in the two clusters, they do not allow to study the nuances of meanings associated with

the ego-nodes: they depict all alters (the noun phrases connected to the ego-node), re-

gardless of the strength of these relations. To study the strength of relations between

the ego nodes and their alters - which can help study the emphases in meanings they

carry in social and geosocial research - I next discuss a version of modified ego networks

where edges are filtered based on their weight. I use the VOSviewer user interface to

filter edges based on their weight.
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Figure 7.11: ’citizen’ ego networks in the Social Cluster (top figure) and Technical Cluster
(bottom figure)
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Figure 7.12 depicts the modified ego network of ’citizen’ showing edges only above

a certain edge weight values. The top image in figure 7.12 depicts the modified ego

network of ’citizen’ in the Social Cluster, highlighting noun phrases which are connected

to ’citizen’ with edge weight 20 or above. I highlighted the edge weight filter function

with a blue oval on the right side of the image. The bottom image in figure 7.12 depicts

the modified ego network of ’citizen’ in the Technical Cluster, highlighting noun phrases

which are connected to ’citizen’ with edge weight 12 or above. Filtering edges based on

weight helps highlight the noun phrases most strongly connected to ’citizen’, and study

meaning of citizen in the two clusters in more detail.

Filtering the Social Cluster based on edge weight depicts a citizen similar to the earlier

analysis. However, the filtering shifts the emphasis to the citizen who participates in

civic life and in changing power relations, depicted by the red and purple clusters.

The terms ’activist’, ’voice’, ’local government’ and ’politician’ remain connected to

’citizen’ in the filtered map. Filtering the Technical Cluster based on edge weight further

emphasizes the observed, sensed ’citizen’ and their data provider role to understand

them and their ’city’. Noun phrases most strongly connected to ’citizen’ include ’sensor’,

’vgi’ which stands for volunteered geographic information, ’event’, ’data’, ’analysis’,

’time’, ’event’, ’service’, ’message’ and ’content’.



7.2. Computational STS Comparison: Social & Technical Geosocial Research 213

Figure 7.12: ’Citizen’ ego networks in the Social Cluster (top figure) edge weight equal
to or over 20, and the Technical Cluster (bottom figure), edge weight equal to or over 12
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Next, I discuss the modified ego networks of the term ’city’. As the figure 7.13 shows,

the weighted ego network of ’city’ is denser in the Technical Cluster (the bottom

image) than the Social Cluster (top image). The themes highlighted by the ’city’

modified ego networks are similar to the themes highlighted by the ’citizen’ modified

ego networks. The Social Cluster depicts the ’city’ as a space constituted diverse forms

of participation, including civic and commercial practices. In contrast, the Technical

Cluster emphasizes the sensed city. In addition, the Technical Cluster emphasizes the

city in relation to practices conceptualised as spatio-temporal patterns, through notions

like ’human activity’, ’human dynamic’, ’land use’ as well as digitally mediated activities

such as ’recommendation’. Both the Social and Technical Clusters of ’city’ discuss the

built environment, though differently. The Social Cluster mentions ’urban space’ and

’physical space’ in the red cluster which focuses on civic participation. The Technical

Cluster mentions the notions ’urban form’, ’human settlement’ and ’urban planning’ in

the red cluster which focuses on ”senseable” natural and built cityscape. I observed a

similar difference observed for the terms ’space’ and ’space’ whose visualisations I omit

due to space limitations.

Using the filtered ego-network method, figure 7.14 depicts the modified ego networks of

’network’. ’Network’ is more strongly connected to noun phrases in the Technical Cluster

(bottom image, total link strength 3712) than in the Social Cluster (top image, total

link strength 2722), but it is connected to more terms in the Social Cluster (top image,

315 links) than in the Technical Cluster (bottom image, 293 links). Thus, the filtered

modified ego network of ’network’ is denser for the Technical Cluster compared to the

Social Cluster. While the Social Cluster highlights networks of civic and intercultural

participation as its connections to the terms ’migrant’, ’debate’, ’protest’, ’movement’

show, the Technical ’network’ emphasises the ’activity’ of ’human[s]’ and user[s]’ studied

though diverse data (’foursquare’, ’aerial image’) and ’algorithm[s]’.

Altogether, the modified ego networks of ’citizen’, ’city’ and ’network’ show that

research in the Social Cluster predominantly frames them in relation to diverse forms of

civic, commercial, intercultural participation, whereas research in the Technical Cluster

frames them in relation to computational methods that allow sensing the natural and

built environments socio-temporal events.
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Figure 7.13: ’City’ ego networks in the Social Cluster (top figure) edge weight equal to
or over 25, and the Technical Cluster (bottom figure), edge weight equal to or over 25
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Figure 7.14: ’Network’ ego networks in the Social Cluster (top figure) edge weight equal
to or over 15, and the Technical Cluster (bottom figure), edge weight equal to or over 15
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This section identified geographic geosocial research and compared social and technical

geosocial research using computational STS methods. I argued that these approaches

differ in terms of the method they use and types of spaces or situated practices they study.

7.3 Conclusion

This chapter focused on exploring differences between the social and technical approaches

to geosocial research using mixed methods (explored by the Second Research Question),

but addressed all three research questions. Below I discuss my findings with respect to

each research question.

In response to the First Research Question, based on interviews, I argued that reflecting

on how analytical choices and social media platforms shape geosocial data and the

knowledge interviewees create about spaces with them is essential for participants to

develop their geosocial research approaches. I argued that reflecting on geosocial data’s

characteristics is essential because geosocial traces were not created for scientific research

and scholars cannot shape their characteristics (cf. Sloan and Morgan, 2015). Reflecting

on how methods shape findings may also form part of disciplinary norms to account for

how knowledge creation (cf. Strathern, 2004) and necessitated by the multiple analytical

options computational data analysis affords (cf. Mackenzie and McNally, 2013).

This chapter addressed the Second Research Question, which explores how approaches

to geosocial research differ, by identifying and comparing approaches using mixed

methods. Firstly, in addition to the social and computational geosocial research

approaches Chapter Six discussed, this chapter identified a third approach: geographic

geosocial research. I identified this approach inductively using scientometrics, and

reflected on interviews in light of the scientometric finding. Interviewees’ quotes support

the scientometric separation between geographic, social and computational geosocial

research approaches. Several participants noted that the geographic aspect of their

research is under-developed, and that they do not use geography methods. I compared

the scientometric traces of the geographic approach to those of the social and technical

approaches through combining TF-IDF and thematic analyses. Terms associated with

geographic methods and its focus on diverse types of spaces including specific locations,

types of environments and spatial patterns differentiated geographic geosocial research.
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Secondly, this chapter explored differences between social and technical geosocial

research approaches using interviews and three computational methods: TF-IDF

and term frequency analyses (categorised thematically) and analysing the modified

ego-networks of three terms used both by social and technical approaches: ’city’, ’citizen’

and ’network’. Altogether, I argued that a relative focus on diverse actors’ situated

practices, experiences and their changes over time - such as changing power relations -

differentiates social geosocial research from technical geosocial research. On the other

hand, its relative focus on using computational data analysis methods to explore spaces

at diverse spatial and temporal scales and in terms of calculable units differentiates

technical geosocial research from social approaches. Next, I discuss interview and

computational STS findings in more detail.

Through interviews, I differentiated between hermeneutic and algorithmic reflexivity

associated with social and technical geosocial research respectively. I argued that

hermeneutic reflexivity - associated with social geosocial research - mainly assesses the

impact of social media platforms and analytical decisions on geosocial data and the

knowledge they afford about spaces in experiential and historic terms. Social scientist

participants reflect on how social media users’ experiences shape geosocial data, and

how their own experiences and the history of data infrastructures shape their methods

and findings. They treat these experiential and historic practices constitutive part of

their findings. I refer to this as hermeneutic reflexivity, drawing on Fortun et al.’s

(2016) notion of hermeneutic expertise. Finally, many social scientist interviewees

stated that their geosocial research differs from technical geosocial research in terms

of their reflexivity. As Chapter Six also argued, STS scholars have demonstrated

that the introduction of new technologies is often associated with the re-negotiation

of professional identities and epistemic authority. Similar to the radiologists Burri

(2008) studied, my interviewees re-negotiate their authority to make scholarly claims

using geotagged social media data in relation to research produced by other scientific

disciplines, by claiming the epistemic values associated with hermeneutic reflexivity.

In contrast, through interviews I found that participants with technical backgrounds

tend to reflect on their data, analytical decisions and findings about spaces in terms

of the calculations that enable them, and in demographic terms. Furthermore, in

contrast to interviewees from groups A-D, technical scholars quoted in this section do
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not frame reflexivity as a distinct feature of their research. Similar to Neff et al. (2017),

I found that for technical geosocial scholars, reflecting about the origins, attributes

and potential uses of data and their own analytical choices are necessary and often

unacknowledged aspects of their research. As Isaac’s quote illustrates, technical scholars

can even feel incentivised to omit such reflexivity from their published work to reduce

the opportunities for reviewers to question their decisions. Algorithmic reflexivity also

contrasts with hermeneutic reflexivity in that scholars whose reflexivity I labeled ’algo-

rithmic’ often aim to ’control for’ demographic or the impact of their analytical choices.

They often argue they produce valid findings because they ’account for’ potential ’biases’.

Thus, in line with Strathern (2004), I found that disciplines differ in how they account

for - or reflect on - how they create knowledge. Reflexive acts that comprise hermeneutic

reflexivity, such as reflecting on situated practices and knowledge creation in terms of

lived experience and history, are considered central epistemic virtues in the disciplines

my interviewees who practice such reflexivity are trained in, including anthropology,

’interpretive’ sociology and human geography. Discussing assumptions of quantitative

calculations and reflecting on the benefits and weaknesses of specific calculations - as

with algorithmic reflexivity - are key to computational and mathematical disciplines

(e.g. Fortunato, 2010; Freedman, 2010). Unlike Borges Rey (2017) who found that

few of the digital journalists he interviewed reflected concurrently on the affordances of

computational data analysis tools and their subject matter - news stories - the majority

of my interviewees reflect on how both computational data analysis infrastructures and

their analytical decisions shape the subject matter - the knowledge they create about

spaces.

Using computational STS methods, I compared social, technical and geographic geosocial

research. The computational findings resonate with the above interview findings. Similar

to the interview narratives about reflexivity, computational STS analyses highlight social

geosocial research’s relative emphasis on studying spaces in relation to actors’ practices

and forms of participation. In contrast - similar to algorithmic reflexivity which fore-

grounds calculations methods and units - I find that the frequent use of concepts related

to computational data analysis methods, technology users (e.g. ’similar user’, ’human’)

and ’senseable’ and calculable spatial scales differentiate technical from social geosocial

research. The scientometric differences I found also resonate with Meeteren et al. (2016)

who argue that approaches to policentricity research differ in terms of the methods they



7.3. Conclusion 220

use and spatial units they study. Firstly, while its focus on specific locations differenti-

ates social geosocial research, its focus on spatial units which can be expressed in terms

of spatio-temporal scales differentiate technical geosocial research. Secondly, technical

approaches’ comparative focus on computational methods and the geographic methods’

comparative focus on geographic data analysis methods signal methodological differences.

To explore Research Question 3.1, this chapter combined methods to identify and com-

pare geosocial research approaches in three main ways. As outlined above, I identified

approaches to geosocial research with scientometrics inductively, highlighting a third

approach - geographic geosocial research - and reflected on interview quotes in light of

this scientometric finding. I also compared approaches by thematically analysing noun

phrases ordered according to TF-IDF and word frequency values. TF-IDF helped me

emphasize the difference between social, technical and geographic geosocial research, and

the word frequency analysis helped me identify terms both approaches use. However,

these methods take noun-phrases out of context. Thus, finally, I visually analysed the

modified ego networks of three noun phrases relatively frequently mentioned by both

social and technical geosocial papers - ’city’, ’citizen’ and ’network’. This allowed me to

explore the different ways social and technical approaches frame spaces and actors and

use methods.

In addition, to visually illustrate the construction of my scientometric analyses and my

findings’ reliance on (digital) infrastructure (cf. D’Ignazio and Klein, 2020; Cambrosio,

Bourret, et al., 2014), I used screenshots of the interactive user interface. When used ’as

intended’ (such as exporting visualisations), data analysis software remove the traces of

most analytical decisions.

In response to Research Question 3.2 - which explores how we can assess the affordances

of computational methods ’for STS’ - next, I discuss how the interpretative context

informed each computational method used in this Chapter.

The interpretative context suggested that I can identify the scientometric traces of

geosocial research approaches through clustering author-bibliographic coupling networks

for four main reasons. Firstly, in Chapters Four through Six, using mixed methods

I argued that different approaches to geosocial research exist, and can be traced

through author-bibliographic citation relations. The latter was suggested by Chapter
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Six’s citation network analysis which showed the separation between the ’only social’

and ’only computational’ geosocial papers. Secondly, I conceptually argued that

approaches can only be differentiated with respect or in comparison to each other.

Network clustering suits this purpose because it identifies sets of nodes that are relatively

strongly connected to each other in comparison to their connections to rest of the network.

Thirdly, network clustering allowed me to identify sets of papers that correspond to

approaches bottom up, rather than pre-defining them based on disciplinary categories

as in Chapter Six. This is important for two reasons. On the one hand, ’only social’

and ’only computational’ journals do not perfectly correspond to ’social’ and ’technical’

approaches. Although interviewees noted they mainly published their geosocial research

in journals associated with their disciplines, they also published in journals that I

categorised as ’interdisciplinary or multidisciplinary’ left out from the above analysis. In

addition, as noted earlier, ’social’ and ’technical’ geosocial research differentiate through

relations between the two. Thus, I assume that the boundaries of the scientometric

of footprint of these approaches do not fully correspond to ’only social’ and ’only

computational’ paper sets. In addition, network clustering determines the number of

geosocial approaches bottom up, which is beneficial because I do not know a priori how

many approaches to geosocial research I can differentiate. As section 9.3.2 will discuss,

this bottom up approach opens opportunities for surprises.

Fourthly, the interpretative context helped interpret the results of the network clustering.

The clustering of both networks yielded clusters that I could assume captured the social

and technical approaches identified earlier. In addition, I found interview evidence that

the geosocial cluster identified scientometrically can be considered a separate approach.

The interpretative context also informed my use of the disciplinary distribution of

papers in the clusters of G3 and G4 to identify geosocial research approached in two

ways. Firstly, similar to the network clustering, it assumed that approaches can be

identified and characterised in comparison, with respect to one another. This analysis

compared the distribution of papers between clusters across the same Broad Disciplinary

Categories. Secondly, as outlined above, previous results discussed in Chapter Six

suggested that the disciplinary categorisation of geosocial papers signals epistemic

differences among them because scholars tend to publish in disciplinary journals for

research evaluation purposes and to belong to research communities.
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The interpretative context informed my use of TF-IDF in three main ways. Firstly, it

required understanding these sets of papers as footprints of geosocial research approaches

as outlined above. Secondly, as section 3.4.6 explained, ranking terms in the abstract

and title of geosocial papers using TF-IDF - which, for each cluster, highlights terms

that are relatively frequent within them and relatively infrequent in other clusters -

helped explore comparative differences among approaches. Finally, I interpreted the

collection of terms highlighted by the TF-IDF analysis using thematic analysis informed

by my conceptual framework.

Finally, the modified ego-network analyses hinged on the interpretative context in

three main ways. As above, I assumed that the set of papers in the ’social’ and

’technical’ clusters of the author bibliographic coupling network G4 - which formed a

basis for this analysis - correspond to the scientometric footprints of geosocial research

approaches. In addition, interviews and previous scientometrics suggested similarities

among geosocial research approaches. I assumed that shared concepts partially re-

flected these similarities. Finally, the modified ego-networks allowed me to understand

differences in the meaning of these terms through depicting their co-occurrence with

other terms. The networks helped explore how the terms are used and framed in context.

Chapter Eight will further compare approaches to geosocial research by altering the

units identified and compared by scientometric methods. I will illustrate the diverse uses

of computational methods in more detail, approaches’ shared interest in studying specific

locations and interviewees’ use of local knowledge when studying specific locations. In

addition, it will explore how research methods mediate knowledge about spaces using

heterogeneous network analyses. I will argue that the spatial units brought forth using

machine learning and social network analyses differ.



Chapter 8

Exploring Methods’ Mediation

This chapter explores how research methods mediate knowledge about spaces and

my findings about geosocial research approaches, contributing to all three research

questions. Firstly, section 8.1 explores the Second and Third Research Questions by

diversifying the scientometric analyses of geosocial research approaches. It compares

findings about geosocial research approaches by clustering the author-bibliographic

coupling network G3 (comprising all geosocial papers) and a term map of geosocial

papers with findings discussed in Chapter Seven through clustering G4 (comprising

’only social’ and ’only computational’ geosocial papers). These analyses help illustrate

the heterogeneity of geosocial research approaches and similarities among them.

Secondly, in relation to the First and Third Research Questions, section 8.2 explores how

two methods - machine learning (ML) mostly affiliated with technical geosocial research,

and social network analysis (SNA), primarily associated with social geosocial research -

mediate geosocial research. I argue that both ML and SNA enable a new set of scholars

to conduct geosocial research, but scholars who use ML position their geosocial research

emphasizing its affordances to study diverse types of spaces. In addition, heterogeneous

network analysis shifts my analytical perspective from methods’ mediation and instead

highlights spatial units’ mediation.

Thirdly, to address the First Research Question, section 8.3 explores how interviewees

who study specific locations - of interest to geosocial scholars from diverse disciplines

- use local knowledge. It highlights four main roles local knowledge plays: interpret

computational findings (more quickly); validate analytical decisions and assess data

quality; motivate scholars or slow down the data analysis process.

223
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8.1 Geosocial Research Approaches Further Com-

pared

This section uses two scientometric analyses to diversify the way I differentiate among

approaches to geosocial research, allowing me to explore similarities and differences

among them in more detail: a citation network analysis and a term co-occurrence

network analysis. As section 2.3 argued, the comparative differences I identify among

geosocial research approaches depend on the analytical units. The two analyses

presented below help diversify the analytical units I use to compare approaches.

Firstly, I compare the cluster analysis of the author-bibliographic coupling network of all

geosocial papers (G3) - depicted by figure 7.3, reproduced in figure 8.1 below - with the

analysis of network G4 discussed in section 7.2. Like my analysis of G4, I analyse the

clusters of G3 based on the disciplinary distribution of papers therein and the TF-IDF

method outlined in section 3.4.6. Figures 8.2 - 8.5 depict the TF-IDF analysis of the

clusters of G3. As section 2.6.3.3 discussed, community detection is non-deterministic

and is contingent on the network used for the analysis. Thus, analysing the clusters of

G3 allows me to alter the analytical units used for comparison. A detailed analysis of

the clusters of G3 is beyond the scope of this thesis. Instead, I highlight one similar-

ity and four main differences compared to the analysis of G4 discussed in Chapter Seven.

Like the clusters of G4, the clusters of G3 include a Social (Cluster 0), Technical

(Cluster 3) and Geography (Cluster 1) Cluster. The existence of these three clusters in

both networks G3 and G4 supports my argument to treat them as distinct approaches.

In addition, there is a fourth cluster containing more than two papers - Cluster 2 -

which comprises a relatively high percentage of papers published in journals with Broad

Disciplinary Categories ’interdisciplinary or multidisciplinary’ and ’only computational’.

I refer to this as the Mixed Cluster hereafter, to stress the preponderance of ’interdisci-

plinary’ papers, but avoid to use the word ’interdisciplinary’ which would suggest a that

this cluster, unlike others, is interdisciplinary.

Comparing the clusters of G3 highlighted three further differences with respect to the

analysis of G4 discussed in section 7.2. Firstly, the clusters of G3 better highlight the
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diversity in the use of computational data analysis for geosocial research. The Technical

Cluster of G3 - containing less than 400 papers - is smaller than that of G4, containing

around 600 papers. At the same time, The Geography Cluster of G3 contains less ’only

social’ and more ’only computational’ papers than that of G4, and ’only computational’

papers are also present in the Mixed Cluster. The distribution of ’only computational’

papers across the clusters, as well as the increase in computational methods-related

terms that differentiate the Geography and Mixed Clusters suggest shared focus on

computational method use or development among the Technical, Geography and Mixed

Clusters. Secondly, the presence of ’urban research’ related noun phrases in those with

high TF-IDF values in all three clusters highlight their shared urban research focus.

Thirdly, noun phrases which refer to specific locations appeared among the terms that

differentiate all approaches identified using G4. This highlights the approaches’ shared

interest in studying these types of spaces. Altogether, comparing the clusters of G3

illustrated how knowledge about approaches to geosocial research is contingent on the

units of comparison. Next, I discuss difference among approaches to geosocial research

through the lens of noun-phrase co-occurrence network analysis.
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Figure 8.1: Distribution of subject categories across the clusters
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‘SOCIAL CLUSTER’ - CLUSTER 0 
 
 
 
 
 
 
topic / 
practice 

urology, spanish, arab spring, reproductive health, money, waterpipe, 
information sharing, psychological distance, public attention, plastic 
surgeon, blood, social norm, fidelity, leisure, brand post, condom, 
entertainment, religion, sexual health, coordination, sale, social distance, 
daily life, brand equity, cyberbullying, public engagement, social media 
usage, emotional support, alcohol post, ebola, sustainable development, 
adolescence, political participation, health behaviour, hiv risk, edible oil, 
hypertension, business model, disadvantage, diet, crime, anxiety, racism, 
hurricane sandy, self presentation, employment, proliferation, 
recognition, civic engagement, teaching, health condition, sleep, ethics, 
operation, uptake, wildfire, residence, stigma, street art, diabetes, 
solidarity, hiv testing, encounter, freedom, public relation, inclusion, 
reputation, birth, mental health, authenticity, sexual behaviour, 
empowerment, alcohol use 

 
 
 
media 

youtube video, online social medium, osns, social media tool, snapchat, 
facebook advertising, grindr, social media content, mainstream medium, 
sms, snss, digital platform, pinterest, online medium, radio, social media 
usage, Airbnb, cyberspace, google, social media technology, tumblr, 
texting, mobile medium, twitter account, new technology, mobile 
technology, online platform, tripadvisor,, traditional medium, whatsapp, 
online review, text messaging, digital age, chat, web site, social network 
site, media use, email, text message, mass medium, internet use 

 
 
space 

netherlands, real world, new york, seoul, rural area, digital space, brazil, 
European capital, Egypt, cyberspace, south korea, online space, hong 
kong, Singapore, Malaysia, high school, nation, south Africa, library, 
Chicago, Germany, Texas, usa, united kingdom, spain, tourist destination, 
new Zealand, physical space, neighbourhood, England, classroom 

 
 
actor 

intervention group, coyote, homeless youth, guest, boy, local health 
department, municipality, celebrity, healthcare professional, pregnant 
woman, public library, virtual community, infant, young woman, high 
school, service provider, nation, small business, age group, library, latino, 
doctor, Germany, general public, clinician, employer, learner, applicant, 
midwife, african American, health professional, human, college, nurse 

 
 
method 

informed consent, focus group discussion, digital data, altmetric, mean 
age, random sample, social media content, empirical study, validation, 
descriptive statistic, control group, social science, theoretical framework, 
likelihood,  reliability, assumption, api, ethics, interpretation, depth 
interview, baseline, essay, discourse analysis, literature review, cross 
sectional study, data collection, research question, argument, qualitative 
analysis 

 
time 

month period, timing, June, new opportunity, august, minute, progress, 
February, digital age, September, transition, December, new form, 
origin, hour, tendency, april 

 

Figure 8.2: G3 network - Cluster 0 TF-IDF
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‘GEOGRAPHY CLUSTER’ - CLUSTER 1 
 
topic / 
practice 

wildlife, situational awareness, public participation, hurricane sandy, 
disaster management, natural disaster, politics, resilience, conservation, 
climate change, crisis, business, aesthetic value, sustainability, public, 
forest 

 
media 

social media photograph, geoweb, social media activity, geotagged 
photo, smartphone, geotagged photograph, geotagged tweet, lbsns, 
weibo,, social media 

 
space 

geoweb, Madagascar, urban form, urban park, study area, Singapore, 
spatial clustering, hot spot, urban environment, London, urban space, 
new york city, Australia, proximity, Beijing, united states, smart city, 
ecosystem, forest 

actor citizen scientist, institution, general public, local government, human, 
lemur, author, stakeholder 

 
 
method 

geotagged social media data, social sensing, citizen scientist, temporal 
resolution, new data source, geographic information system, spatial 
information, volunteered geographic information, spatial clustering, 
remote sensing, feasibility, citizen science, utility, occurrence, lbsns, 
usefulness, giscience, discipline, temporal pattern, proxy, spatial analysis, 
crowdsourcing, identification, efficiency, content analysis, keyword 

time temporal resolution, season, April, today, shift, recent year, temporal 
pattern 

 

Figure 8.3: G3 network - Cluster 1 TF-IDF
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‘INTERDISCIPLINARY CLUSTER’ - CLUSTER 2 
 
topic / 
practice 

influenza, urban dynamic, human behaviour, social activity, friendship, 
rumor, natural disaster, segregation, information diffusion, human 
movement, human activity pattern, travel, population density, gender, 
earthquake, tourism, human mobility pattern, trip, spatial distribution 

 
media 

geolocated tweet, recommender system, geotagged tweet, 
communication technology, mobile device, weibo 

 
space 

locality, Shenzhen, shanghai, city level, home location, spain, urban 
dynamic, cyberspace, spatial scale, natural city, urban environment, 
united states, spatial interaction, population density , landmark, London, 
situation, district, street, spatial distribution 

actor traveller, social media user 

 
method 

bottari, community detection, foursquare data, edge, magnitude, new 
approach, reliability, gravity model, assumption, large number, lbsns, 
experimental result, gender, gis, spatial analysis, keyword, lbsn, poi, 
hypothesis, inference, estimate, spatial distribution, node, proxy 

time date, hour, real time, recent year, week 

 

Figure 8.4: G3 network - Cluster 2 TF-IDF



8.1. Geosocial Research Approaches Further Compared 230

 

‘TECHNICAL CLUSTER’ - CLUSTER 3 
 
topic / 
practice 

crisis management, emergency event, food safety, police, location 
recommendation, art, public opinion, spatial pattern, urban emergency 
event, human mobility, urban planning, trip purpose, recommender 
system, emotion 

 
media 

panoramio, sina weibo, social media site, spatial clustering, camera, 
online social network, gps, lbsn, weibo, microblog, yelp, geotagged 
photo, mobile device 

 
space 

important location, large scale, road segment, spatial pattern, urban 
emergency event, urban planning, new york city, spatial distribution, 
Beijing, landmark 

actor human, consumer, respondent, visitor, twitter user 

 
 
method 

deep learning, real world dataset, aerial image, dynamic feature, ugc, 
recall, latent dirichlet allocation, temporal information, crowdsourcing 
crowdsourcing, spatial clustering, spatial analysis, pois, spatial 
information, probability, precision, remote sensing, sentiment analysis, 
spatial distribution, extensive experiment, location information, 
confidence, node, complexity, cloud 

time today, recent year, month 

 
 

Figure 8.5: G3 network - Cluster 3 TF-IDF
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Secondly, I explore differences among approaches by altering the type of scientometric

network. Figure 8.6 depicts the co-occurrence network of noun phrases from the

abstracts and titles of all geosocial papers using the method discussed in section 3.4.9.

VOSviewer’s clustering algorithm identified 9 clusters. I do not treat all nine as separate

approaches to geosocial research. Rather, I argue that this analysis helps explore

similarities and differences among geosocial research endeavours in a more continuous

space through depicting their distance in two-dimensional space. In this analysis, noun

phrases can only be part of one cluster, but their position contains information about

their specificity to geosocial research endeavours, or to the contrary, their popularity

across approaches. For example, the green term ’hashtag’ - being centrally located -

is likely to be rather popular across geosocial papers. In contrast, the terms in red

’poi’ (point of interest) and ’dbscan’ (a data clustering algorithm), the light blue term

’yoga’ and the yellow term ’lemur’ are more specific to papers whose abstracts and titles

contribute to their respective clusters. I conducted data analysis discussed below using

VOSviewer’s interactive user interface.
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Figure 8.7 presents a second visualisation of the noun phrase co-occurrence network:

it depicts the density of nodes (noun phrases) across the network. It shows a dense

cluster on the right side of the map, depicted in more detail by figure 8.8 where the

term ’location’ and computational methods related terms - such as ’distribution’,

’algorithm’, ’prediction’, ’spatial analysis’, ’geographic information’, ’data mining’, ’new

method’ and ’machine learning’ - are prominent. This corresponds to the red cluster

on figure 8.6. This dense area is separated by smaller, denser clusters above and to

the left of it. Closest is a dense cluster above it, which corresponds to the yellow

cluster on map 8.6, focusing on ecosystems and landscape (aesthetics) research, as

figure 8.9 depicts. Given the terms focused on computational methods and ecosystems

- in addition to those related to ’crisis management’ and urban research (e.g. ’San

Francisco’ and ’segregation’, ’city scale’) depicted by figures 8.8 and 8.9, I assume that

the red and yellow clusters on figure 8.6 - the dense areas on the right side of figure

8.7 - mainly correspond to the Technical, Geography and Mixed Clusters discussed above.
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In addition, the dense area on the right of figure 8.7 is separated by four denser areas

on the left. Figures 8.10 and 8.11 depict the latter in more detail. As these figures and

figure 8.6 show, the left side (or ’top’) of the map depicted by figure 8.6 is dominated by

terms which refer to situated practices, related to public opinion formation, commercial

activities, education and health. These resonate with the Social Clusters of G3. I argue

that the gap between the left and right side of the map depicted by figure 8.7 highlights

a methodological difference among approaches to geosocial research. I argue that the

further clusters of terms are from the dense cluster on the right, the less connected

research is to computational data analysis methods therein. Thus, I argue that the left

side of the map in figures 8.6 and 8.7 depict social geosocial research project’s varied

distance from computational data analysis methods.
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Altogether, like the TF-IDF analysis of G3, the noun phrase co-occurrence network

analysis - in particular, the map’s right side - illustrates the shared use of computational

data analysis methods to conduct urban research - including the study of specific cities,

to study crisis management, and geographic geosocial research’s focus on ecosystems

and landscape preference. However, in contrast to the TF-IDF analysis of G3 - which

also comprised all geosocial papers - the noun phrase co-occurrence network visually

obscures differences in how computational data analysis methods are used. Figure 8.6

differentiates a number of clusters on the left side of the map (among approaches further

away from computational methods depicted on the right side), and fewer clusters on the

map’s right side. Figure 8.7 highlights the gap between geosocial research which uses

computational methods and that which do not by emphasising the gap between the left

and right side of the map.

The discrepancies between the author-bibliographic coupling and noun phrase co-

occurrence network analyses highlight the importance of diversifying scientometric

network analyses when exploring patterns scientometrically. I interpret the sciento-

metric findings in light of interview analysis. The TF-IDF analysis which highlighted

the diversity of computational geosocial research is more in line with my interviewees’

research and narratives, which show the diverse ways they use computational data

analysis methods. The rest of this chapter further explores two findings highlighted

by the scientometric analyses in this section. Section 8.2 will explore differences in

how computational data analysis methods are used for geosocial research. Section 8.3

explores how interviewees from diverse backgrounds study specific locations.

8.2 Spaces and Methods

This section uses heterogeneous network analyses to explore how two computational

methods - machine learning (ML) and social network analysis (SNA) - mediate knowl-

edge about spaces. As section 3.4.3 discussed, I perform two heterogeneous network

analysis for each method. Firstly, to study how scholars position their geosocial research

using these methods with respect to existing geosocial scholarship, and to explore

the extent to which the methods enable a new set of scholars to conduct geosocial

research, I study heterogeneous networks whose nodes are authors and author keywords.

Secondly, to explore how methods mediate knowledge about spaces in more detail, I
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explore networks whose nodes are noun phrases from the abstracts and titles of papers

categorised as relating to ’spaces’, ’methods’ or ’other’.

Chapters Five and Seven argued that geosocial research approaches differ with respect

to the methods they use and the types of spaces they study. Section 7.2 provided

scientometric evidence, and sections 5.2.2 and 5.3 provided insights based on interviews.

For example, social scientist quoted in section 5.3 state that they modify computa-

tional data analysis techniques. My conceptual framework outlined in section 2.4 and

interviewees’ quotes also suggested that methods mediate knowledge about spaces. For

example, Chase’s attempt to modify a computational method to increase the number

of variables it can model discussed in section 5.2.1 provides an example. This section

explores in more detail how methods mediate knowledge about spaces. I find differences

in the types of spatial units explored with ML and SNA.

As section 2.6.3.2 discussed, visual heterogeneous network analysis in STS has mainly

been used to study how human and non-human actors coordinate collaborative, dis-

tributed scientific practices, such biomedical research. These projects often mapped the

heterogeneous actors pertaining to a coordinated community - for example an institution

- to trace the role of human and non-human agencies. In contrast, findings in Chapters

Five and Six suggest that geosocial research is not a coordinated community in the above

sense. I argued that my participants are primarily embedded in the epistemological

traditions of their disciplines or research areas, and develop diverse approaches to

geosocial research in line with these. I differentiate approaches to geosocial research

- which differ with respect to methods and substantive foci - but I do not argue that

they are coordinated communities. Thus, instead of studying heterogeneous networks

of geosocial research or of different approaches, I study heterogeneous networks of sets

of geosocial papers which use specific methods - machine learning (ML) and social

network analysis (SNA). This shifts the analytical focus from tracing diverse actors’ -

such as scholars’ and methods’ - role in coordinating geosocial research, to exploring

how methods bring forth or afford specific spatialities. Studying all geosocial papers

which use a certain method also helps me capture some of the variation in how it is used

and performed (cf. Marres and Gerlitz, 2016). Next, I discuss my choice of ML and SNA.

I explore how ML mediates knowledge about spaces because as section 5.1.1 argued,

several interviewees with diverse disciplinary backgrounds are interested in exploring its
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affordances for geosocial research. At the same time, ML is a method that originates

in computer science and statistics, and as figure 8.8 shows, used for computational

geosocial research. Thus, interviewees’ interest in it points to computational methods’

capacity to travel across research areas. Interpreting the heterogeneous network maps

of geosocial research which uses ML necessitates a comparative heterogeneous network,

because I do not have detailed interview information about how participants use ML for

geosocial research. I chose SNA as a comparative case because ML and SNA illustrate

the diversity of computational methods used for geosocial research and their scientific

footprints allow comparison. Both methods are popular among geosocial scholars, and

allow quantitative, computational data analysis. In addition, the geosocial papers that

mention them in their abstracts or titles appear in my scientometric dataset in similar

years: ML in 2015 and SNA in 2014. Thus, the term maps which depict these papers

are semantically rich. However, they originate in different research traditions and thus

can help explore differences among approaches to geosocial research. SNA - as opposed

to ’network science’ - has, since its birth developed in relation to social scientific theories

(cf. Erikson, 2013; Wasserman and Faust, 1994). In this sense, it stands in contrast

with ML, which originates in computer science and statistics.

Firstly, as discussed in section 3.4.3, through comparing the author - author keyword

networks of geosocial papers which use ML and SNA (ML and SNA papers, for short), I

explore how scholars position geosocial research mediated by these methods with respect

to previously published geosocial research, and the extent to which these methods

enable new set of scholars to conduct geosocial research. Figure 8.12 depicts the network

of authors and author keywords associated with papers which mention ML in their

abstract, title or among the author keywords. The colors indicate the novelty of authors

and keywords in the dataset. Authors in orange (orange dots) have published research

which is part of my scientometric field prior to their paper using ML, whereas for authors

in red (red dots), the first time their paper appears in my scientometric field is the one

which uses ML. Orange author keywords (orange squares) were used by geosocial papers

in my scientometric before they appear in papers associated with machine learning,

whereas the first time red keywords (red squares) appear in my scientometric data set is

in association with ML papers. To help interpret this network, I compare it with figure

8.13, which depicts the network of authors and author keywords associated with papers

which mention SNA in their abstract or among the author keywords. Like for the ML

network, the color of nodes indicate whether the author has published research in the
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dataset or not, and if the keyword was used before by geosocial scholars or not. The red

colour indicates authors and keywords present in the dataset before their association

with SNA papers.

Both ML and SNA papers are dominated by scholars and author keywords that were

not present in my scientometric field before they appear in association with the two

methods. Thus, both methods seem to enable a new set of scholars to conduct geosocial

research. The position of existing and new authors and author keywords seem to be

similarly distributed in the two networks. This suggests that in both cases, papers

may use a few keywords previously mentioned by geosocial papers, but the majority

of author keywords are novel. I note two further similarities. Both ML and SNA

papers share methods related keywords with previously published geosocial papers. For

SNA papers, these include ’event detection’, ’mixed methods’, ’social media’, ’social

networks’ and ’networks’. For ML papers they include ’spatiotemporal data’, ’gis’, ’text

mining’, ’classification’, ’social media analysis’, ’data mining’, ’volunteered geographic

information’, ’topic modelling’, ’big data’, ’crowdsourcing’, and ’social network analysis’.

In addition, ML and SNA papers share technology related keywords with existing

geosocial research, which may refer to methods or users’ technology mediated situated

practices. For SNA, these include ’media’, ’internet’ and ’social networking sites’. For

ML, these include ’yelp’, ’digital technology’, ’flickr’ and ’twitter’.

However, the number of space-related keywords differentiate the two networks. Several

of the ML papers’ author keywords previously present in my scientometric dataset

express spatial units or situated events or practices, such as ’temporal-spatial patterns’,

’urban space’, ’natural disasters’, ’human mobility’, ’Singapore’, ’public space’ and

’protest’. For SNA-related papers, the two keywords related to situated practices are

’transportation’ and ’information diffusion’, but none of the keywords already present in

my geosocial dataset express spatial units. In line with diverse interviewees’ interest in

ML, the heterogeneous network analysis suggests that scholars position their geosocial re-

search which uses ML by mentioning diverse spatial units of interest to geosocial scholars.

However, it is important to note two limitations when interpreting these maps. Firstly,

absent data can impact my findings, which poses pronounced challenges because of the

relatively small size of this dataset. Excluding even a few papers - either due to my field

delineation method or WoS’ selectivity - can impact the relative number of new authors
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or author keywords in the networks. Secondly, I interpret the novelty of author-keywords

tentatively, because this categorisation is impacted by uncertainties around the meaning

of publication dates. My analysis creates a binary variable based on publication year: it

signals whether author keywords were present in the dataset before papers which use

ML or SNA appeared. However publication time lag renders the meaning of publication

year uncertain. My next analysis further explores how methods mediate knowledge

about spaces, and offsets some of these limitations by using noun phrases in the abstract

and titles of geosocial papers, omitting the temporal perspective.
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Figure 8.12: Ego network of ’machine learning’ - authors and author keywords
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Figure 8.13: Ego network of ’social network analysis’ - authors and author keywords
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To explore in more detail the types of spaces ML and SNA afford, I study heterogeneous

networks whose nodes are noun phrases identified in the abstracts and titles of papers

categorised as related to ’methods’, ’spaces’ or other. As section 3.4.3 discussed, this

helps explore how methods mediate the types of spaces scholars study in more detail

because noun phrases in the abstracts and titles of geosocial papers - more numerous

than author keywords - contain more information about the methods and spaces scholars

study.

Figure 8.14 depicts the heterogeneous network of ML papers, and figure 8.15 depicts the

heterogeneous network of SNA papers. I used VOSviewer’s user interface to zoom in and

out of maps for the visual analyses discussed below. Methods-related noun phrases are

relatively evenly distributed in both networks. However, the position of space-related

noun phrases differ in the two networks. In the SNA network they tend to be in the

periphery of the network - with the exception of the noun phrase ’location’ in the middle

of the map (hidden in the static screenshot depicted by figure 8.15, but shown by figure

8.16). In addition, it is likely that ’united states’ would also be more centrally located,

if the noun phrases ’usa’ and ’united states’ were merged into one noun phrase. In

contrast, in the ML map, space related noun phrases are present both in the network’s

centre and periphery. Relatively centrally located space related noun phrases include

’location’, ’city’, ’homogeneous region’, ’area’, ’spatial scale’, ’spatial pattern’, ’disaster’

and ’place’. This suggests that these space related noun phrases, many expressing

spaces in terms of spatio-temporal units, help coordinate geosocial research which uses

machine learning, and ’hold this network together’. Thus, this heterogeneous network

analysis shifts my focus from methods’ mediation to asking how spatial units coordinate

geosocial research.

Finally, the meaning of space-related noun phrases also differs in the two networks.

The pattern I find resonates with my findings discussed in section 7.2 about social

geosocial research’s comparative focus on situated practices at specific locations and

technical geosocial research’s comparative focus on spatial scales. In the SNA network

map they mostly refer to types of environments, such as ’smart city’, ’border wall’,

’real world’, ’virtual world’, ’geographic space’, ’important place’ (6 out of 19, 31%) or

specific locations such as ’china’, ’USA’, ’Baltimore’, ’Lousiana’, ’Boston’ (5 out of 19,

26%). Space-related noun phrases that refer to spatial scale units are ’city’, ’world’,

’country’ and ’location’ (4 out of 19, 21%). In contrast, in the ML network map, a
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large proportion of space-related noun phrases refer to units measurable on spatial

scale, such as ’area’, ’city’, ’country’, ’homogeneous region’, ’location’, ’neighbourhood’,

’place’, ’region’, ’space’, ’spatial pattern’, ’spatial scale’, ’urban area’ (12 out of 29,

40%), and relatively small proportion of noun phrases refer to types of environments

(’landmark’, ’environment’ and ’south’, ’store building’ and ’geographic location’ (5

out of 29, 17%)). The proportion of noun phrases that refer to specific locations -

including ’Amsterdam’, ’Beijing’, ’China’, ’London’, ’Shenzen’, ’United States’ (6 out of

29, 21%) - is also smaller than in the SNA map. Finally, the proportion of noun phrases

which refer to situated events is similar in the two networks. In the SNA network

they include ’disaster’, ’protest’, ’bombing’ and ’environmental regulation’ (4 out of 19,

21%), and in the ML network they include ’disaster’, ’air quality’, ’ecosystem ecologist’,

’sustainability’, ’urban leisure’, ’urban planning’ (6 out of 29, 21%). While there are

semantic overlaps among them - several of them relate to disasters and sustainability -

research which uses SNA studies more cultural conflicts, and ML papers study urban

planning and leisure activities in cities.

This section and section 8.1 showed that diverse approaches to geosocial research, and

both papers that use ML and SNA study specific locations. The next section explores

the role of local knowledge when studying specific locations.
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Figure 8.16: The position of the noun phrase ’location’ in the heterogeneous map asso-
ciated with social network analysis
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8.3 Using Local Knowledge to Study Specific Spaces

This section argues that interviewees with diverse disciplinary backgrounds use local

knowledge to study specific locations. Sections 7.2 and 8.2 differentiated between three

types of spaces geosocial scholars study using scientometrics - spatio-temporal units

(e.g. ’spatial scale’, ’area’, homogeneous region’, ’city’, ’country’), spatial patterns (e.g.

’spatial distribution’), types of environments without immediate scalar connotation

(e.g. ’environment’, ’landscape’) and specific locations (e.g. London, Singapore). As

sections 8.1 and 8.2 argued - and the quotes below will show - diverse geosocial research

approaches study specific locations. This section explores how local knowledge helps

interviewees study these spaces.

The majority of my interviewees with diverse disciplinary backgrounds - those in groups

A, B, C, D, F, G, I, J, K, L and M - study specific locations, or the way social media

platforms mediate situated practices at specific locations. A minority - Henry and

Elias - state that geosocial data is best suited to study ’online’ spaces - the social

media platforms themselves. This section focuses on the geosocial research practices

of the former group - participants who study ’offline’ specific locations. As the quotes

below illustrate, interviewees agree that local knowledge is important for such geosocial

research, and some even find it essential. I highlight four main ways local knowledge

helps interviewees study specific locations. Firstly, a number of interviewees use it to

interpret computational findings, or develop them more quickly. Secondly, it can help

validate analytical decisions and assess data quality. Thirdly, researching locations one

knows can help motivate scholars. Finally, it can help participants to engage with the

local practices they study and slow down the data analysis.

Firstly, David’s, Anne’s and Gary’s, Jane’s narratives and the practices of researchers

at the summer school where I conducted participant observation show that having local

knowledge about locations helps researchers interpret the findings of geosocial research

(more quickly). As section 5.3 outlined, Jane stated local knowledge helps her team

interpret their findings. Below I quote interviewees who emphasize that local knowledge

’speed up’ the data analysis process because it helps them interpret findings more quickly.

David created a data visualisation for a collaborator based at another research group,

about a city David didn’t know. He noted that his collaborator could immediately make

sense of his data analysis:
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”I would send [my collaborator] a map, or visualization, or table [...]

there was a definite division of labour, in the sense that I could process

the data [...] which he immediately was able to make sense of. It was

really interesting.”

Anne studied two cities - City A with which she was familiar, and City B she had

not visited. She chose City A due to her familiarity with it, and City B because she

thought the similarities between two cities made them comparable. She claimed that her

familiarity with City A helped her interpret the data about it faster.

”[City A], I chose because [...] I know it well enough to be able to

kind of understand at a relatively quick glance what people are talking

about. [City B] I picked because [...] I felt that the [...] urban flow of

the cities vaguely mirrored each other [...] [My familiarity with city

A] probably did make a difference in the sense that it was easier to

categorise the data faster because I didn’t have to Google as much.”

Finally, Gary stated that when he encountered an area with high data density, thanks

to his local knowledge, he immediately knew the reason for the higher number of social

media posts there. He believes that without local knowledge, one can see the change in

density, but cannot immediately interpret it.

”Like I know exactly where there’s high density there, because there’s

this kind of [a landscape element] there. [Someone with no knowledge

about the place] also would have seen the density [of data points],

of course. And would have asked the question, ‘so what’s going on

there?’”

In sum, local knowledge about specific locations can help interpret findings, or interpret

them more quickly.

Secondly, Isaac, Miles, Gary and Luke stated that local knowledge helps them validate

analytical decisions, findings, and assess data quality. Isaac’s local knowledge informed

his analytical decisions: his geosocial research required his team to categorise social media

posts. He noted that local knowledge was essential for this task. Although he is familiar

with the country they studied, he is not a native speaker of the local language. He chose

a collaborator skilled in relevant computational data analysis methods and who was a

native speaker. He noted that using their local knowledge, they categorised the social

media data together, with little disagreement.
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”I think I could never have written this paper about another coun-

try that I don’t know or where I don’t speak the language. Plus we

sought a co-author who is a native speaker in addition to having strong

methods skills... [...] we coded [categorised] the [social media posts]

together [...] we didn’t disagree very much, it was very obvious in

almost all cases. [...] So the local expertise is very good.”

Mike claimed that local knowledge helped them assess and validate their analytical de-

cisions and findings on an ongoing basis by providing a baseline. This helped them

ascertain that their research was proceeding in the right direction and produced valid

findings.

”The reason why most of our work prioritises studies [city A] and

[city B], is because in the team people know them. And it’s much eas-

ier, because most of this stuff, needs some qualitative assessment...

[...] you need to assess validity. [...] one way [you can do that]

is quantitatively by looking at [other data], but another way qualita-

tively, so people who have a bit of knowledge about the city, check if

these things make more or less sense. [...] knowing the landscape of

the cities helped a lot to understand that we are going in the right

direction.”

Gary’s and Luke’s narratives show that local knowledge can help assess data quality

and platform effects. Luke stated that local knowledge helped him identify an incorrect

geospatial coordinate (a geotag), frequent in the data, resulting from platform effects.

”I think [knowing the city] made it significantly easier to interpret

the data. [...] I needed that extra spatial knowledge to realise that

something had gone wrong [in the spatial accuracy of geotags] [...]

[I found a cluster of posts in the city] centrum. At first I actually

thought [...] ‘this must just be a popular spot’. But then I realized,

when I zoomed in really really closely that it was actually in a middle

of a cross road [...] I think if I’d studied [other cities], I wouldn’t have

been able to tell the difference.”

Finally, Gary stated that thanks to his local knowledge, he added data which improved

his analysis. As outlined above, he encountered an area with high data density where,

thanks to his local knowledge, he knows that there is a specific landscape element. Given
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his knowledge, he sought alternative data which included this landscape feature, knowing

that including it would improve the fit of his model.

”I know exactly why there’s high density there, because there’s [a land-

scape element] there. [...] That was a little tricky, I didn’t have data

on it, [...] so I had to like look for data source that had this, or just

add this point myself, because I knew that if I included it, it would

increase my model fit.”

In sum, these interviewees state that local knowledge helps them validate the results of

their data analysis or assess and correct their data.

Thirdly, Chase and Kevin noted that researching locations one knows well can help mo-

tivate scholars by creating locally-relevant knowledge. Chase stated that it is interesting

and enjoyable to study a country he knows well, because it helps create findings to which

he and others who read his research can relate. In addition, his local colleagues propose

new locally-relevant topics to study with geosocial data.

”It’s great that we can link our research to other data and concrete

events [...] and say [statements with societal and policy relevance.]

That’s a really good feeling. [...] And it’s great to understand things

that happened here. [...] And that people are actually interested in

it, because it’s about us. [...] When we present our work [in this

country], colleagues keep proposing new topics we could explore with

the data...”

Kevin noted that local knowledge helped his geosocial research, and he appreciated the

opportunity the project gave him to extend his knowledge about the country where he

lives, even though he does not consider local knowledge essential for geosocial research.

”I know [this country] the best, and this project allowed me to get to

know it even better. You never know it as much as you think you

do... Naturally it helps a lot to study a country that you know more

or less. But in the end we want data. If I get data about [a country

I have never been to], I will study that country.”

The summer school Frank organised, which aimed to explore a city ’remotely’, through

geosocial data without ’offline’ research further illustrates the above three roles of local

knowledge. Participants of the workshop were divided into groups of five. All groups had
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at least one participant local to the studied city. Throughout the workshop, the locals

helped their groups interpret geosocial data maps using their experiential knowledge

about the city. In addition, they researched news stories and other information about

the city, using their knowledge about relevant news sites and data sources. Locals

helped their groups use geosocial data in three main ways. Firstly, as above, they

helped interpret the data and data analysis results by telling stories about locations

with particularly high or low density of geosocial data, interpreting the meaning of

social media data density. Secondly, they provided confidence and facilitated cohesion

and motivation in their groups by answering non locals’ questions and ensuring fellow

group members that their research was ’locally relevant’. Finally, they proposed research

questions relevant to both the city and urban research. Some suggested focusing analyses

on the city’s waterfronts, some of which have been undergoing redevelopment, gaining

new attention or were in decay. Others suggested to study local societal challenges such

as gentrification, or local practices, such as local holidays.

Finally, Bruno, Colin, Daniel and David stated that local knowledge made them

question the results of the data analysis and slow down the data analysis process. As

section 5.3 explained, Bruno stated that group B seek to study spaces they know, and

modified computational data analysis methods using their local knowledge. As section

7.1.1 argued, Colin claimed that he worries about whether his team’s analyses accounts

for the perspectives of a minority group living at the space they study in an ongoing

manner. Finally, as section 7.1.1 outlined, David and Daniel highlighted the importance

of reflecting on how their lived experience and local knowledge shape their results. They

stressed the danger of interpreting situated practices without visiting the locations they

study in person. In sum, Bruno, Colin, Daniel and David claimed that local knowledge

can help slow down data analysis.

Altogether, this section highlighted the importance of local knowledge for studying

specific locations.

8.4 Conclusion

This chapter contributed to all three Research Questions by diversifying the sciento-

metric units of analyses used to compare geosocial research approaches and studying
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how research methods mediate knowledge about spaces using mixed methods. Below I

discuss my findings with respect to each research question.

The chapter contributed to answering the First Research Question - which asks how

geosocial research approaches develop and differentiate - in two ways. Firstly, it explored

how computational research methods mediate knowledge about spaces. Given the

diverse ways geosocial scholars use computational methods - illustrated in Chapters

Five and section 8.1 - I used heterogeneous network analysis to compare how two

computational methods - machine learning (ML) and social network analysis (SNA) -

mediate knowledge about spaces. This also helped answer Research Question 3.1 (which

asks how methods mixing can help study the differentiation of and differences among

geosocial research).

I performed two types of heterogeneous network analyses. Firstly, author-keyword and

author networks suggested that both SNA and ML enable a new set of scholars to

conduct geosocial research, but ML-related geosocial research shares more keywords

related to spatial practices with prior research than SNA-related geosocial research.

However, missing data and data’s small size caused interpretative challenges.

Secondly, heterogeneous noun phrase co-occurrence network analysis (where I classified

terms as related to ’methods’, ’spaces’ or ’other’) helped explore how ML and SNA

mediate knowledge about spaces in more detail. I found a difference in the types of

spaces the two methods help study. Comparatively, noun phrases which refer to ’types

of environments’ were more frequent among SNA-related geosocial research, while

terms which express ’spatial scales’ were more frequent ML-related geosocial research.

The heterogeneous network analysis also highlighted the position of these terms in the

network. I found that ’spatial scale’ terms occupy relatively central position in the

term map of geosocial scholarship which uses ML, in contrast with concepts which

refer to ’specific locations’. The latter are more peripheral in both heterogeneous

networks. This raised the question of whether, and how ’spatial scale’ units help coor-

dinate geosocial research which uses diverse methods, which further research can explore.

Secondly, with respect to the First Research Question, section 8.3 argued that inter-

viewees with diverse disciplinary backgrounds use local knowledge to study specific

locations. As section 2.13 discussed, using local knowledge during mapping is often seen
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as a way to diversify the cartographic knowledge - to ensure that maps capture diverse

local perspectives and local knowledge rather than those of the mappers (Pain, 2004).

However, my interviewees’ practices suggest that including local knowledge in mapping

does not always result in more heterogeneous maps. While in some cases local knowledge

motivated interviewees to question the data patterns they found and prompted them

to think about their research in light of diverse local experiences, in other cases local

knowledge helped speed up participants’ geosocial research - to interpret computational

findings more quickly. In addition, similar to the New York based urban data analysts

Taylor and Richter (2015) studied who validated a fire risk model using the local

knowledge of the city’s fire inspectors, my interviewees used their local knowledge to

validate analytical decisions and to assess data quality. However, my interviewees work

in academic institutions and mostly draw on their own experiential knowledge rather

than that of other people or expert groups.

I explored the Second Research Question (which explores how geosocial research

approaches differ) and Research Question 3.1 (which asks how methods mixing can help

study differences among geosocial research approaches) by comparing the scientometric

footprints of geosocial research approaches through a series of inductive network analy-

ses. I compared the analysis of the term co-occurrence network of geosocial papers and

the analysis of the clusters of the author-bibliographic coupling networks G3 (comprising

all geosocial papers) and G4 (comprising ’only social’ and ’only computational’ geosocial

papers, outlined in Chapter Seven). This helped illustrate geosocial research approaches’

diversity, similarities among them, as well as my findings’ contingency on data analysis

infrastructure.

Analysing the clusters of G3 yielded two main insights. Compared to G4, it better

highlighted the diverse uses of computational data analysis methods for geosocial

research. Noun phrases which refer to diverse computational methods differentiated

three out of the four clusters I analysed. For example, my analysis highlighted the

Geography Cluster’s comparative focus on citizen science, volunteered geographic

information, geographic data analysis methods and ecological focus. In addition, my

analysis highlighted that the Mixed Cluster places more emphasis on (urban) and

spatial practices and events which can be modeled as spatio-temporal diffusion and

mobility patterns, and the Technical Cluster is differentiated in terms of its study of

large spatial scales and use of deep learning. In addition, the analysis of G3 highlighted
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diverse geosocial research approaches’ focus on studying specific locations. Secondly,

I analysed the noun phrase co-occurrence network of terms from abstracts and titles

of geosocial papers. This obscured the diverse uses of computational methods and

instead highlighted the difference between geosocial research which uses computational

methods and that which does not. It helped illustrate the diversity of social geosocial

research by depicting the distance of social geosocial research projects from geosocial

research which use computational data analysis methods. The contrast between the

author-bibliographic coupling and noun phrase co-occurrence analyses based on the

same set of papers (all geosocial papers) highlights the importance of diversifying

scientometric network analyses when exploring patterns.

Finally, this chapter’s mixed methods approach helps answer Research Question 3.2,

which asks how we can evaluate the affordances of computational methods ’for STS’.

Below I discuss how the interpretative context informed my use of each computational

method in this chapter.

The interpretative context informed the cluster analysis of the author-bibliographic

coupling network G3 similar to the clustering of G4 in Chapter Seven. In addition, the

sociological relevance of the clusters of G4 found in Chapter Seven - overlapping with

clusters of G3 - gave me confidence that the additional cluster (the Mixed Cluster) I

identified also was relevant to geosocial research practice. In addition, I compared these

findings with the analysis of G4 and the term-map, and interpreted them in light of

interview findings about the diversity of computational data anlaysis and approaches’

shared interest in studying specific locations.

I visually analysed the clusters of the noun phrase co-occurrence network. This analysis

hinged on interviews, the conceptual framework and prior scientometrics, because I

compared the differences it highlighted about how scholars use geosocial data with

respect to earlier findings about approaches to geosocial research.

Interviews, prior scientometrics and my conceptual framework informed the heteroge-

neous network analysis in three main ways. Firstly, both interviews and scientometrics

highlighted the diversity of computational methods used for geosocial research, and my

conceptual framework suggested that these methods shape knowledge about spaces.

Thus, I assumed that comparing geosocial research which uses specific computational
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methods is a relevant unit of analysis. Secondly, interviews suggested that participants

from diverse disciplines were interested in exploring the affordances of ML for geosocial

research, highlighting it as a method to further explore. Thirdly, based on my conceptual

framework and literature review, I assumed that ML and SNA can help illustrate the

diversity of computational methods used for geosocial research. I assumed that SNA

had closer links to the social science research tradition (cf. section 2.6.3.1), whilst ML

had originated in computational disciplines.

As section 9.3.1.3 will discuss in more detail, compared to previous STS studies which

used heterogeneous network analysis to study how large scale biomedical research

collectives are ’held together’ by diverse human and non-human agencies, my use of

heterogeneous network analysis highlighted their affordances to study the mediated

nature of knowledge.

Finally, as section 9.3.2 will discuss in more detail, comparative scientometric analyses

and visual, heterogeneous network analysis of ML and SNA-related geosocial research

illustrated the possibility to create ’surprising’ findings - not hypothesised based on

interviews - with scientometric network analyses.



Chapter 9

Conclusion

This chapter concludes the thesis by summarising its main findings and discussing how

future work may build on it. The thesis explored three main research questions:

1. How do different approaches to geosocial research develop?

2. How do approaches to geosocial research differ?

3. How can we combine scientometrics and STS to study geosocial research?

3.1. How does mixing methods help study the development of and difference among

approaches to geosocial research?

3.2. How can we assess the suitability of computational methods for STS?

I explored these questions for five main reasons listed in table 9.1: to explore the

diversity and diversification of computational social research; to reflect on the ESRC’s

(2013) call to ’close the gap’ between quantitative and qualitative human geography by

emphasizing methods’ complementarity; to contribute to methodological discussions in

academic literature which call for combining STS and scientometrics; to create dialogues

between distinct ways of knowing; and finally in the hope that this project’s findings

can inform research methods curriculum development in the social sciences.

Table 9.1 summarises the thesis’ key findings in terms of the three research questions

and the thesis’ five goals. Section 9.1 briefly summarises the thesis’ findings about

geosocial research (discussed in Chapters Four through Eight in detail), which inform

my reflection about the ESRC’s call outlined in section 9.2 and recommendations for

curriculum development are discussed in section 9.4. Finally, section 9.5 outlines future

research avenues.

261
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The thesis’ main contribution to academic literature, discussed in section 9.3 is the

methodological development and application of its mixed methods approach. It

contributes to literature which explores connections between STS and scientometrics

conceptually by highlighting the need to develop mixed methods designs and evalu-

ate the affordances of scientometric or computational methods ’for STS’ in light of

the interpretative context, including the research questions, conceptual framework,

characteristics of the studied research practice and previous findings. Empirically it

contributes by combining methods in diverse ways as part of a single case study, and

illustrating the affordances of homogeneous statistical network analysis and descriptive

statistics ’for STS’ often critiqued by STS scholars. Given the importance of the

interpretative context, using diverse methods as part of a single case study helps assess

their affordances to study diverse relational practices which comprise scientific practice.

Reflecting on how STS and scientometrics can ’co-compose’ knowledge, I argue that

aligning units of analyses can help study research practices in depth and on larger scales;

using them inductively helps highlight partial perspectives and generate ’surprising’

findings. In addition, I argue that calculation practices can inform qualitative analysis

even if the scientometric analytical units do not capture research practice, but this may

require the analyst(s) to actively remember the discrepancy between units of analyses

and relations.
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Section RQ Relevance Main findings 

9.1 
 
Chapters 4-8 
in more 
detail 

RQ 
1 & 
RQ 
2 

Study the diversity and 
diversification of 
computational (social) 
research, a dominant 
way of knowing. 

Practices that help geosocial scholars develop 
diverse approaches; differences among 
approaches. 

9.2 

RQ 
1 
 
& 
 
RQ 
2 

Reflect on ESCR’s 
(2013) call for ‘closing 
the gap’ between 
quantitative and 
qualitative human 
geography. 

• Report focuses on ‘complementary’. 
However, I argue that maintaining the 
diversity of (digital) geographic 
scholarship also requires highlighting 
differences, 

• Support the development of sub-
disciplinary communities for scholars 
with broadly shared epistemic 
commitments interested in digital / 
computational research, 

• Curate opportunities for scholars to 
capture reflexivity about data and 
analytical decisions. 

9.3 
 
Summary of 
and 
reflection on 
findings 
discussed in 
Chapters 4-8 

RQ 
3 

Evaluate 
affordanc
es of 
digital 
methods 
‘for STS’. 

Digital 
STS: 
‘import’ 
methods. 

• Conceptual contribution: evaluate 
affordances computational methods ‘for 
STS’ in light of interpretative context 
(RQs, conceptual framework, 
specificities of research practice, 
previous findings), 

• Empirical contribution: compare diverse 
mixed methods solutions as part of 1 
case study. 

STS & 
scientometr
ics 
interface 

 

• Convergence and divergence of methods 
(section 9.3.2): 

o Align units of analyses: study 
depth and scale, 

o Use methods inductively: 
highlight partial perspective & 
'surprising' findings  

o Reflect on mixed methods 
findings and practice 
separately. Calculation acts can 
inform qualitative analysis even 
if the scientometric analytical 
units do not capture research 
practice; may require the 
analyst(s) to actively remember 
the discrepancy between units 
of analyses and relations, 

• Skill development (see also below). 

9.4 
All 
RQs 

Research methods 
curriculum development 
in social sciences: 

• personal 
interest, 

• ESRC’s (2013) 
call to increase 
mixed 
methods 
training in 
human 
geography 
(and across the 
social 
sciences). 

• Skills: familiarity with the basics of 
diverse computational methods, 

• Use aesthetically pleasing data & 
methods, 

• Foster reflexivity about how distinct 
computational methods enable diverse 
types of spatial units, 

• Importance of exploratory data analysis 
(EDA), 

• When students with diverse 
backgrounds work together: 

o EDA, 
o Reflexivity, 
o Local knowledge (for 

geography). 

9.5 
All 
RQs 

Future research. See section 9.5 

Social sciences’  
‘compositionist’  

agenda (cf. Latour, 
2010): mixing 

methods. 

Table 9.1: Chapter Structure, Research Questions, Relevance and Main Findings
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9.1 Diversity and Diversification of Geosocial Re-

search

This thesis examined the development and differences of geosocial research approaches

to explore the diversity and diversification of computational (social) research, an

increasingly popular way of knowing. I argued that geosocial research is a collection

of approaches rather than a cohesive research community. I identified fourteen main

practices through which geosocial scholars develop their own geosocial research ap-

proaches. A core challenge for interviewees was combining two research traditions which

they perceived distinct: computational data analysis and socio-spatial interpretation.

Participants were motivated to combine these due to their concurrent aesthetic appreci-

ation of social research and geosocial data (analysis) and the need to balance academic

and non-academic jobs. Thus, developing distinct geosocial research approaches

required interviewees to actively align academic research traditions with each other

and non-academic research they felt were diverging, all amid financial uncertainties.

At the same time, developing their own geosocial research approaches as these grew

in popularity across social and computational sciences provided interviewees with

opportunities to craft coherent narratives about their research foci across their diverse

research engagements. With the rise of undergraduate social science training programs

which include computational training elements, scholars’ non-academic work may play

a less important role in fostering their engagement with geosocial or computational

research.

Collaboration with scholars with complementary skills with whom they share method-

ological or theoretical common ground, and setting up their own geosocial laboratories

where they could experimentally search for data patterns, helped interviewees combine

computational data analysis and socio-spatial interpretation. Interviewees succeeded in

using geosocial data for academic research by using local knowledge to assess findings

and by reflecting on how social media platforms and analytical decisions shaped their

data and the knowledge they created about spaces. Such reflexivity is an important

aspect of developing geosocial research in line with disciplinary traditions, given disci-

plines’ distinct capacity to account for their knowledge creation. In addition, reflexivity

helps interviewees conduct scientific research with social media data which were not

designed for scientific use and whose characteristics they cannot control. I also argued

that methods mediate scholars’ geosocial research and afford different spatial units.
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In addition, scholars imagined their geosocial research in line with their institutions’

perceived research foci in search for institutional homes.

Finally, social scientists actively differentiate their approaches from technical approaches

through several practices. They highlight distinct epistemic virtues associated with their

research. If necessary, they change departments and modify computational methods in

light of the social scientific frameworks they work with. They also critically reflect on

technical scholarship and seek (sub)-disciplinary communities and publication venues

who value their geosocial research.

I identified five main differences among geosocial research approaches and illustrated

that these findings are contingent on the comparison units. Through interviews I

identified three main differences between social and technical geosocial research. I

argued that their rhythm and knowledge validation methods differ. Social geosocial

research combines computational data analysis and socio-spatial interpretation itera-

tively and seeks to identify data patterns using both computational and social scientific

criteria. In contrast, technical geosocial research combines the above research traditions

sequentially and identifies data patters based on statistical criteria. I also argued

that social and technical geosocial research differ with respect to scholars’ reflexivity.

’Hermeneutic reflexivity’ associated with social geosocial research comprises reflection

on how social media platforms and analytical decisions shape knowledge about spaces

in historical and experiential terms - treating these a constitutive part of findings. In

contrast, ’algorithmic reflexivity’ associated with technical geosocial research comprises

reflection on how social media platforms and analytical decisions shape knowledge about

spaces in terms of calculations and demographics. In addition, using scientometrics, I

highlighted differences among geosocial research approaches - including social, technical

and geographic approaches - with respect to the methods they use and their spatial

units of analysis.

In addition, through comparing citation and term co-occurrence network analyses (also

with interviews), I illustrated the diversity of approaches and similarities among them.

For example, I showed that social geosocial studies differ to the extent that they use

computational data analysis methods, and technical geosocial studies use diverse types

of computational methods, ranging from geographic methods, approaches to study

mobilities or flows, to the development of advanced image recognition (remote sensing)
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and deep learning methods. Similarities among approaches include their interest in

urban studies.

Altogether, my project highlights differences in the rhythm, methodological practice and

(spatial) units of analyses associated with geosocial research approaches. This suggests

that geosocial research can account for situated practices from diverse, complementary

perspectives. Next, I discuss how these findings inform my reflection on the ESRC’s

(2013) call to close the gap between qualitative and quantitative methodological

traditions in human geography and the social sciences more broadly, and section 9.4 will

reflect on these findings with respect to curriculum development.

9.2 How to close the gap between geography’s meth-

ods traditions?

Exploring the diversity and diversification of geosocial research helped me reflect on the

ESRC’s (2013) call to close the gap between quantitative and qualitative methodological

traditions in human geography (and more broadly the social sciences) by emphasizing

their complementarity. As the Introduction explained, the ESRC (2013) called to

increase computational research in British geography in part through undergraduate and

postgradute training programs that emphasize the complementarity of the quantitative

and qualitative methodological traditions - for example, their ability to study phenomena

at diverse scales. They call for changing dominant views that highlight their divisions

and differences.

In contrast to the report’s emphasis on highlighting the complementarity of quan-

titative and qualitative geography methodological traditions, my findings show the

importance of developing diverse combinations between them, beyond emphasizing

their complementarity. Social scientist interviewees develop their geosocial research

approaches by critiquing and if necessary modifying computational methods. In order to

maintain the diversity of digital and computational geography scholarship, I argue that

institutional structures should facilitate small scale collaborations - including scholars

with computational skills - that help researchers develop computational methods in line

with distinct geographic research heritages, akin to the collaborations and geosocial

laboratories established by my interviewees.
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My interviewees’ experiences discussed in Chapters Five through Seven show that quan-

titative and qualitative methods are often associated with contradictory epistemologies

and ethical considerations, as well as the effort required to develop computational

methods in light of (interpretative) social science theories. For example, sociologists

David and Daniel developed computational methods aligned with social theories by

combining computational and ethnographic work, and carefully examining whether

terms proposed by computational social scientists describe their research practice.

Chase (an economic geographer) altered a modeling method proposed by computational

collaborators which cannot account for variables key to his study, but struggled to

make this innovation recognised by computational collaborators. Human geographer

interviewees in group B developed computational methods in light of local knowledge.

Brian also noted the challenge of working with computational collaborators amid ethical

differences. Altogether, highlighting the differences between existing computational

methods or research traditions and social scientist interviewees’ research goals was key

to their success in developing computational research approaches.

Thus, in contrast to the ESRC’s recommendation to emphasize methods’ complemen-

tarity, I argue that curating diverse computational research in geography (or the social

sciences more broadly) requires exploring differences, frictions as well as complementari-

ties among methodological traditions, and collaborations among computationally skilled

scholars and experts in distinct geographic research traditions. Overly focusing on

methodological complementarities may hinder the development and use of computational

and digital methods in line with distinct geographic research traditions, and demotivate

scholars who feel that existing computational methods, or their current uses oppose

their theoretical sensibilities.

In addition, based on Chapter Six’s findings about the importance of belonging to

(sub)-disciplinary communities for the differentiation of social geosocial research, I argue

that the development of such communities for scholars interested in digital research with

shared epistemic commitments in the social sciences is essential. This highlights the

importance of fostering community building efforts, for example by funding workshops

or conferences, publication venues or online discussion forums that help develop research

communities within geography or related social sciences for scholars with broadly shared

epistemic commitments who wish to pursue computational research (similar to the
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community building efforts of the digital STS community outlined by Vertesi et al.,

2019b).

Finally, computational methods training could help scholars articulate their reflections

about the way data and analytical decisions shape their findings. Such reflexivity can

help foster the long-term development (cf. Strathern, 2004) of diverse computational

approaches in geography (or across the social sciences). In addition, it can help explore

complementarities, similarities and differences among computational or digital research

approaches, further aiding their development and differentiation.

Such practices can build on geography’s rich reflexive tradition outlined in Chapter

Two. In addition, my project illustrates the centrality of such methodological reflexivity

of successful geosocial research for scholars from diverse disciplines, but that it is

potentially under-acknowledged and under-articulated. As Chapter Seven argued,

reflexivity about how analytical decisions and social media platforms shape geosocial

data and knowledge about spaces is core to geosocial research. However, my technical

interviewees did not consider such reflexivity a standalone practice. Isaac, an interviewee

with technical background also noted that such reflexivity may be discouraged because

of the questions it can provoke during the peer review process.

9.3 Main Contribution: Combining STS and Sciento-

metrics

This section discusses my findings related to the Third Research Question, which reflects

on the project’s mixed methods approach the thesis’ main contribution. I asked how

combining STS and scientometrics can help explore the development of and differences

among approaches to geosocial research (Research Question 3.1) and how we can

evaluate the affordances of computational or scientometric methods ’for STS’ (Research

Question 3.2). As Table 9.1 depicts, I combined STS and scientometrics for three main

reasons. I aimed to contribute to literatures which have recently called to combine STS

and computational analysis or scientometrics in practice (e.g. Wyatt, Milojević, et al.,

2017; Marres and Gerlitz, 2016; Cambrosio, Bourret, et al., 2014; cf. Neff et al., 2017; cf.

Vertesi et al., 2019b) and digital STS’ call to ’import’ digital methods to STS (Vertesi

et al., 2019b). Section 9.3.1 summarises my conceptual contribution to the above
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literatures by highlighting the need to assess the affordances of digital or computational

methods ’for STS’ in light of the interpretative context, and empirical contribution

showing how diverse combinations can help study diverse aspects of knowledge practices,

also contrasting my project with prior computational STS studies of biomedicine.

I also explore how STS and scientometrics - two traditions of thought that have devel-

oped in increasingly different directions since the 1980s - can help compose a common

world, in line with STS’ ’compositionist’ agendas (e.g. Latour, 2010; Haraway, 2016)

- in section 9.3.2, which reflects on how methods mixing can help compose knowledge

which benefits from the partial perspectives methods afford and also acknowledges the

uncertainty of knowledge.

9.3.1 Mixed Methods Study of Geosocial Research

As section 2.6.2 argued, most existing studies which reflect on the affordances of

computational methods ’for STS’ or related fields, such as digital sociology or digital

anthropology evaluate methods in light of epistemological frameworks, such as actor-

network theory (e.g. Cambrosio, Bourret, et al., 2014; Venturini, Munk, and Jacomy,

2019) or ethnographic field work (theories) (e.g. Munk, 2019). For example, they reflect

on the types of nodes, edges and temporalities diverse network analysis methods afford

(e.g. Cambrosio, Bourret, et al., 2014; Bourret et al., 2006); and the way analyses may

benefit from the multimodality of digital data, such as the relational information online

digital traces contain (e.g. hyperlinks, reactions, mentions) (Munk, 2019) in light of

ANT’s insights about heterogeneous agencies and the dynamic unfolding of knowledge

practices. They also emphasize the need to carefully choose data which forms part of

computational analyses either by manual curation (Munk, 2019) or the diversification of

data sources (Cambrosio, Bourret, et al., 2014).

I developed my methodological approach in light of the above insights. However,

answering Research Question 3.2 - which asks how we can evaluate the affordances

of computational methods ’for STS’ - I argue for better emphasizing computational

methods’ contingency on the interpretative context when assessing their strengths and

weaknesses ’for STS’: including the conceptual framework, the characteristics of the

research practice under investigation, the research questions and prior findings (cf.

Lury and Wakeford, 2012). Shaped by publication norms, papers often discuss how
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methods help study research questions (similar to this thesis’ Research Question 3.1).

However, the way research questions - and the broader interpretative context - enable

the development and use of certain methods has been discussed less extensively.

I argue that such a contextual development and evaluation of methods helps develop

mixed methods research without restricting methods development to a type of method

- such as visual or statistical, network analysis or descriptive statistics - a priori. This

flexibility, in turn, helps explore how computational data analysis and STS or other

interpretative social scientific research traditions do or could meet. As section 2.6.2

discussed, in a recent study Elgaard Jensen (2020) reached a similar conclusion by

arguing that collaborative digital STS projects can succeed by introducing project

specific criteria for evaluating combinations of computational or digital methods and

STS. In my project, the interpretative context - including characteristics of the scientific

practice under investigation, similar to Elgaard Jensen’s (2020) project specific criteria,

as well as previous findings and the conceptual framework - informed both my evaluation

and development of computational methods.

As I will discuss below in more detail, supported by the interpretative context, I

benefited from the affordances of structural, statistical heterogeneous network analyses

- often critiqued by STS scholars for obscuring the dynamism of research practices

and heterogeneous agencies therein highlighted by ANT; descriptive statistics, often

disregarded by STS scholars who prefer network analysis methods; and illustrated that

affordances of heterogeneous network analyses - popular in computational STS for its

resonances with ANT - also depend on the interpretative context.

As section 2.6 discussed, relatively few STS studies focus on the social sciences and

humanities, and even less combine scientometrics and STS. Most studies which combined

STS and scientometrics to date studied biomedical research and primarily used computa-

tional methods to explore how heterogeneous actors coordinate such large scale research

collaborations. These studies primarily explored the affordances of visual (e.g. Bourret

et al., 2006; Cambrosio, Bourret, et al., 2014) and statistical (e.g. Shi, Foster, and

Evans, 2015) heterogeneous, temporal network analyses to help combine insights from

STS with scientometrics. Studying heterogeneous actors’ roles in achieving collective,

coordinated research over time with these methods can help study epistemic shifts - such

as changes in specialisations (e.g. Bourret et al., 2006; Navon and Shwed, 2012) and
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the impact of computational methods on research practice (e.g. Cambrosio, Bourret, et

al., 2014), or even predict the development of biomedicine (Shi, Foster, and Evans, 2015).

Like these authors, I combined methods to study relational practices - such as collabo-

ration - which help ’hold together’ approaches to geosocial research. However, as figure

9.1 (answering Research Question 3.1 which asked how mixed method can help study

the difference and differentiation of geosocial research approaches) depicts, to study

the diversification and diversity of geosocial research, I also sought methods to study

approaches’ differentiation and to identify comparative differences among them. The

same practices that ’hold together’ geosocial research approaches - such as collaboration,

reflexivity or experimental data analysis - also help differentiate approaches from one

another. Figure summarises 9.2 how the interpretative context informed my use of each

computational method.

Next, I summarise how assessing the affordances of computational methods in light of

the interpretative context helped me develop diverse mixed methods approaches, and

how each method helped study the development and differentiation of geosocial research.

My discussion will follow the categorisation outlined by the font color in figures 9.1

and 9.2: I will discuss my use of structural, statistical network analyses; descriptive

statistics (including the combination of TF-IDF and thematic analysis); and visual

(heterogeneous) network analyses.
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9.3.1.1 Structural, Homogeneous Network Analyses

STS scholars have critiqued structural, homogeneous network analysis theories such

as ANT for obscuring heterogeneous agencies and the dynamism of scientific research

(e.g. Cambrosio, Bourret, et al., 2014). I argued that their affordances ’for STS’ are

contingent on the interpretative context. Used with interviews, they helped me explore

the differentiation of and differences among geosocial research approaches.

I conducted two types of structural, homogeneous network analyses. In Chapters

Five and Six, I used network modularity to trace scholars’ efforts to differentiate their

geosocial research approaches through relational practices, suggested by interviews

and by my conceptual framework. Chapter Five’s co-authorship analysis used network

modularity to trace the development of small scale collaborations - enabled by fewer

relations among these tight-knit groups through collaboration using loose theoretical

or methodological common ground - theorised through interviews. Network modularity

could capture a relational ’configuration’ (multiple tight-knit clusters loosely connected

to each other) suggested by interviews. Both interviews and the network analysis

suggested that geosocial research comprises a collection of small-scale collaborations,

and interviews suggested that through setting up their own geosocial laboratories,

scholars develop distinct geosocial research approaches.

In Chapter Six, I compared the network modularity of counterfactual author-

bibliographic coupling networks which omitted edges among geosocial papers published

in ’only social’ and ’only computational’ journals to the modularity of networks which

omitted equal numbers of random edges (and thus were statistically comparable), to

trace social scientists’ efforts to differentiate their approach from technical geosocial

approaches. I studied how scientometric traces of relational practices, which previous

findings suggested render geosocial research more diverse, render the bibliographic

coupling network of geosocial research more or less cohesive over time. These included

two sets of relational practices. Firstly, social scientists’ search for and belonging to

sub-disciplinary communities who welcome their geosocial research, operationalised as

the (decreasing) proportion of edges between ’only social’ and ’only computational’

journals over time. Secondly, relational practices between social and technical geosocial

scholars identified through interviews, such as collaboration amid loose common ground,

shared interest in computational methods, social scientists’ efforts to modify these

methods and critical reading of technical scholarship. I operationalised these through
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studying how edges between ’only social’ and ’only computational’ journals impact the

network’s cohesion or modularity over time.

Similar to studying collaboration through co-authorship network analysis, I opera-

tionalised these relational practices as network relations through the practices’ assumed

scientometric traces. However, in contrast to the co-author network analysis which did

not analytically differentiate network edges, the structural network analyses in Chapter

Six studied relations I assumed render the author bibliographic coupling network more

cohesive - and geosocial research more diverse - over time. Furthermore, in contrast

to the co-authorship network analysis which did not make any assumptions about the

number or type of geosocial approaches, based on previous findings, Chapter Six’s

analysis assumed that social and technical geosocial research differentiate over time.

However, it did not make a strong assumption about the internal coherence of social

and technical approaches or about how the number of geosocial research approaches one

could scientometrically identify.

The second type of structural network analyses I performed were static network

clustering in Chapters Seven and Eight. I clustered the author-bibliographic coupling

networks G3 (comprising all geosocial papers) and G4 (comprising ’only social’ and ’only

computational’ geosocial papers) and the term co-occurrence network of all geosocial

papers to identify and compare the scientometric traces of geosocial research approaches.

Resonating with my conceptual framework which assumed that geosocial research ap-

proaches can only be identified in comparison to each other, network clustering helped

identify densely connected sets of nodes that are less strongly connected to the rest of

the network. Interpreting network clusters’ scientometric analyses in light of interviews

helped explore their ’sociological relevance’ (cf. Cambrosio, Bourret, et al., 2014; Held,

Laudel, and Glaser, 2020). I identified social, technical, geographic approaches (also

captured through interviews), as well as a fourth approach which comparatively focused

studying urbanism and spatial diffusion using computational methods. Comparing the

diverse network clusterings helped diversify my narrative about geosocial approaches,

illustrate their diversity and my findings’ contingency on units of analyses. While the

term map highlighted the difference between geosocial research that does and does not

use computational methods, clustering G3 helped illustrate the diverse ways compu-

tational methods are used and the joint interest in urban research across approaches,

while clustering G4 helped highlight social approaches’ focus on diverse collective
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practices and societal actors and technical scholarship’s relative focus on methods de-

velopment and the study of spatial scales. Next, I discuss my use of descriptive statistics.

9.3.1.2 Descriptive Statistics

Mixed methods STS literature primarily focuses on network analyses and disregards

the potential of descriptive statistics (cf. Moats and Borra, 2018). Used in conjunction

with interviews, descriptive statistics helped me identify and compare geosocial research

approaches, as well as trace their development through scholars’ search for disciplinary

and sub-disciplinary communities they could belong to, which valued their geosocial

research. Identifying geosocial approaches through studying the disciplinary distribution

of papers in clusters of G3 and G4 hinged on interpreting disciplinary classification of

papers with respect to geosocial research approaches, based on the interview finding

that scholars publish in journals associated with their disciplines for research evaluation

purposes, belonging and as they seek publication venues which welcome their research.

In addition, the TF-IDF analysis of terms in the abstracts and titles of papers in the

clusters of G3 and G4 - used in conjunction with thematic analysis informed by my

conceptual framework - helped explore differences among geosocial research approaches

because it captured comparative differences between a relatively large number of papers

pertaining to each approach. Finally, using different descriptive statistical normalisation

methods helped me plot the proportion of geosocial papers per Broad Disciplinary

Categories with respect to three paper sets - all geosocial research, disciplinary journals

which publish geosocial research and all disciplinary journals. Combined with inter-

views, this helped study the rise of social geosocial research and interviewees search for

belonging to social scientific (sub)-disciplinary communities who value thier geosocial

research. Next, I discuss the visual network analyses’ contingency on the interpretative

context.

9.3.1.3 Visual (Heterogeneous) Network Analyses

Informed by interviews, I used visual, homogeneous network analysis to compare how

social and technical geosocial research study cities, citizens and use network methods

(highlighting the former’s focus on forms of participation and the latter’s focus on com-

putable patterns), as well as to illustrate my methods’ contingency on the data analysis

infrastructure. I also used visual, heterogeneous network analysis, popular among mixed
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methods studies of biomedicine. Contrasting my use of visual heterogeneous network

analyses with heterogeneous network analyses used to study biomedicine helps illus-

trate the contingency of the method’s affordances ’for STS’ on the interpretative context.

Analysts of biomedicine mapped heterogeneous actors pertaining to large scale col-

laborative practices whose boundaries they could conceptually and computationally

delineate. Bourret et al. (2006) and Cambrosio, Bourret, et al. (2014) studied large

scale, collaborative biomedical research practices: the becoming of a large institute

which conducts biomedical research, clinical work and policy making; and submitting

molecules to an international conference which sought to develop a novel nomen-

clature for them. Knowing the boundaries of the institution and the conference at

specific times allowed them to select sets of relevant actors. Based on fieldwork,

the authors also empirically understood the relevance of these analytical units for

studying shifts in the collective coordination of biomedical research. Shi, Foster,

and Evans (2015) studied all papers listed in PUBMED - suited to their exploratory

research which aimed to predict the development of biomedical research at large. These

studies highlighted the affordances of heterogeneous network analysis to study how

diverse actors help coordinate the analytically delineated collaborative research practices.

In contrast, as Chapters Five and Six argued, neither geosocial research nor approaches

to it are coordinated or collaborative practices. Defining the boundaries and reflecting

on the nature and role of collectives in geosocial research - such as geosocial research

approaches or disciplinary communities - was a goal, not a starting point for my project.

In addition, PUBMED - a scientometric database which explores biomedical research

- tags papers with keywords that define diverse non-human entities, such as molecules

and research methods. In contrast, to study geosocial research I could only draw on

’basic scientometric’ information, such as the abstract and titles of papers, disciplinary

classification, authors and institutions - available through most scientometric databases

such as Scopus, Web of Science, Dimensions and Microsoft Academic. Thus, tracing

heterogeneous relations requires the time-intensive task of manually categorising terms.

In part due to the differences in analytical unit and data availability, in contrast to the

above previous mixed methods STS studies which used heterogeneous network analysis

to explore heterogeneous coordination processes, my research highlighted the potential

of heterogeneous network analysis to study the mediated nature of knowledge. Chapter
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Eight used visual, heterogeneous network analyses to explore how methods mediate

knowledge about spaces - core to the development of geosocial research approaches.

Informed by prior findings and my conceptual framework which suggested that compar-

ing geosocial research which uses specific computational methods is a relevant unit of

analysis and the popularity of machine learning (ML), I studied heterogeneous networks

of geosocial papers which use social network analysis (SNA) or ML. I conducted two

types of heterogeneous network analyses. Using author-keyword heterogeneous networks,

I compared how scholars position the topics ML and SNA-related geosocial research

explore with respect to previous research, and whether they enable a new set of scholars

to conduct geosocial research. In addition, studying the noun phrase co-occurrence

networks of ML and SNA-related geosocial papers (where I classified terms as related

to ’methods’, ’spaces’ or ’other’) helped explore how methods mediate knowledge about

spaces in more detail. I found that ML-related geosocial papers refer to scale related

spatial categories - also shared across papers, and thus potentially coordinating such

research - more often than SNA-related geosocial papers. The latter, in turn tend to

study specific and different locations.

Altogether, answering Research Question 3.2, I conceptually contribute to literature

which aims to link STS and scientometrics by highlighting the importance of assessing

methods’ affordances ’for STS’ in light of the interpretative context. Empirically, I

contribute by showing how the diverse combinations of STS concepts, interview analysis

and scientometric data analysis can inform a single case study. Many existing studies

that combine STS or sociology of science and scientometrics use either statistical or

visual analyses, but rarely a combination of both. In addition, most advocate for the

use of (heterogeneous) network analysis and disregard the opportunities associated with

descriptive statistics. Given the importance of evaluating methods in the interpretative

context, using diverse mixed methods solutions as part of a single case study helps

reflect on the strengths and weaknesses of diverse computational methods ’for STS’.

Combined with interviews, structural, homogeneous network analysis and descriptive

statistics helped me study the development of geosocial research approaches; TF-IDF

helped me compare approaches; and visual network analyses helped study both.
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9.3.2 Composing Mixed Methods Knowledge: Surprise and Cer-

tainty

This section discusses how I explored diverse combinations of STS, interviews and

scientometrics to ensure that findings obtained with the diverse methods related but

did not fully converge. This was important for two main reasons. Firstly, each method

affords a partial perspective on scientific practice. Mixed methods projects can aim to

align the analytical units methods capture or let each method enact the research object

in unique ways. I found it important to experiment with both of these approaches to

explore how STS and scientometrics could ’co-compose’ knowledge. Secondly, many

contemporary challenges, such as the climate crisis require knowledge that incorporates

diverse ways of knowing. As outlined below, during the writing process my interview

and scientometric analyses increasingly converged, which I felt posed risks to creating

knowledge and writing narratives that acknowledge uncertainty and are open to new

perspectives on the research object(s) (in this case, geosocial research or methods mixing).

On some occasions I attempted to align interview and scientometric units of analyses.

In these instances, methods mixing helped study scientific practice in depth and on

larger scales. In other instances I used the methods inductively. The outcomes of these

findings helped highlight the partial perspective methods offer and generate ’surprising’

findings scientometrically. However, I argue that mixed-methods research practice has

benefits that differ from mixed-methods findings. Mixed methods research practice itself

can help create methodological dialogues. For example, as I discuss below, calculation

acts themselves can inform qualitative analysis even if the scientometric analytical units

do not capture research practice. These instances may require the analyst(s) to ac-

tively remember the discrepancy between scientometric and practiced units and relations.

Throughout the project, I developed the argument thorough iterating scientometric and

interview analyses. Over the course of my research and the thesis writing, in many

instances, scientometric and interview findings converged into coherent narratives. For

example, I found it surprising that using the Leiden community detection algorithm

- in Chapter Six’s scientometric analysis which traced the differentiation of ’only

social’ and ’only computational’ geosocial papers, as well as the clustering of the

author-bibliographic coupling network G4 in Chapter Seven - immediately resonated

with interview findings. This resonance evoked mixed feelings in me. I was content

about the development of a coherent narrative, given the University of Nottingham’s
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requirement to create a monograph. At the same time, I worried that my use of

scientometrics could lead to confirmation bias, and obscure other, relevant knowledge

about geosocial research. Although my scientometric analyses allowed me to differentiate

among approaches to geosocial research, I increasingly felt the need to highlight the

diversity of these approaches (akin to critiques of regional thinking in the social sciences

(cf. Elgaard Jensen, 2020) and show that the differences I found among them are not

absolute, but rather are contingent on my data analysis infrastructure and analytical

choices. To this end, for example, I explored how two methods - machine learning

and social network analyses - mediate knowledge about spaces, and complemented the

author-bibliographic coupling network analysis with noun phrase co-occurrence network

analysis in Chapter Eight. Next, I discuss the eight ways I aligned scientometric and

interview analytical units, depicted by figure 9.3.
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Point 1 depicts examples where I used interviews largely independent of scientometrics.

These include my analysis of interviewees’ narratives about the need to combine

computational data analysis and socio-spatial interpretation, as well as their aesthetic

interests, concurrent academic and non-academic activities, reflexivity, and use of local

knowledge to study specific locations.

Points 2-3 illustrate two main ways I aimed to align the analytical units and relations

captured with scientometrics and interviews. As the second point depicts and section

9.3.1.1 explained, the co-authorship network analysis in Chapter Five and the analysis

of the changing relationship between ’only social’ and ’only computational’ geosocial

papers in Chapter Six explored relational practices first hypothesised through interviews.

In addition, in both cases, scientometrics also affected my interpretation of the interview

findings in subtle ways. Scientometrics did not change my interview analysis, but

shaped the narrative’s focus by prompting me to think about interviewees’ narratives

more in terms of the units and relations highlighted through network analyses. The

co-authorship network analysis highlighted the importance of the concurrent develop-

ment of small collaborations or geosocial laboratories. The citation network analysis

prompted me to reflect on social scientists’ efforts to differentiate their geosocial research

from computational approaches in depth.

As the third point depicts and section 9.3.1.2 discussed, I plotted the proportion

(fraction) of geosocial papers per Broad Disciplinary Categories over time with respect

to three paper sets: all geosocial papers, all papers published in disciplinary journals,

and all papers in journals which publish geosocial research. To calculate the proportions,

I normalised geosocial paper count in each Broad Disciplinary Category: I divided it by

the count of papers in the three sets. This calculation prompted me to reflect on what

the count of paper sets in the fraction’s denominator captured. More specifically, the

practice of normalising data (dividing with respect to diverse counts) prompted me to

better reflect on interviewees’ relations to diverse research collectives and communities.

Through iterating their analyses with interviews, I developed the argument that

social geosocial research is on the rise and that social geosocial scholars are seeking

(sub)-disciplinary communities who value their geosocial research and do not belong

to the geosocial research collective. It helped me argue that latter is a collection of

approaches, rather than a coordinated community. However, whilst iterating interview

analysis and the line graphs, I had to remind myself not to equate the count of the paper
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sets in the denominator with ’sociologically’ meaningful collectives - that sets of papers

published in specific journals do not (necessarily) correspond to research communities.

This shows that (digital) counting practices which can quickly highlight diverse types

of relations - such as through diverse normalisation methods - can prompt qualitative

reflection about the nature of research practice even if computational units of analyses

do not correspond to units that capture scientific practice.

Highlighting the importance of sub-disciplinary communities interviewees belong to

through combining the line graphs and interviews helped illustrate the diversity of

disciplines and de-essentialise the disciplinary categorisation - the Broad Disciplinary

Categories - which underpins several scientometric analyses in this thesis. Although,

as discussed earlier, the relevance of Broad Disciplinary Categories was supported by

interviews and they proved analytically useful, I worried that using them as aggregate

units across several scientometric analyses depict disciplines as homogeneous and fixed.

Although this tension is present in my scientometric analyses, depicting the proportion

of geosocial papers with respect to paper sets that capture disciplinary, sub-disciplinary

and ’non-disciplinary’ (geosocial research) collectives helped illustrate the heterogeneity

of disciplines and the importance of sub-disciplinary communities to which interviewees

belong.

Points 4-7 illustrate ways I used scientometrics in a more inductive fashion, to diversify

my study of geosocial research approaches by studying analytical units scientometrically

that I had not hypothesised through interviews. As section 2.6.3.4 discussed, STS and

anthropology scholars have proposed ways to use computational methods to produce

’surprising’ insights not obtained through interviews or fieldwork. Cambrosio, Bourret,

et al. (2014) and Munk (2019) note that the social scientific relevance of patterns

identified with computational data analysis is uncertain but note that computational

data analysis has the potential to produce surprising findings. As points 4-7 illustrate, I

used scientometrics inductively to produce surprises in various ways.

Point 4 explains two inductive scientometric analyses whose interpretation hinged on

interviews and conceptual framework. Firstly, I interpreted the findings of the TF-IDF

based comparison of citation network clusters in light of the thematic analysis informed

by the conceptual framework and interview findings about participants’ reflexivity.

The TF-IDF analysis, in turn - which, as section 3.4.6 explained, highlights relative
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differences among units compared - highlighted differences in the spatial units geosocial

research approaches study and the methods they use, which enriched my interview

analysis about the difference among approaches. In addition, the TF-IDF analysis

prompted me to reflect on the contingency of my findings on the comparison units.

This then prompted me to compare my analysis of geosocial research approaches using

the two citation networks G3 and G4 depicted by point 7, which better highlighted

the diversity of geosocial research approaches. Secondly, I interpreted the modified

ego-network analyses of the terms of ’city’, ’citizen’ and ’network’ in light of interview

findings about participants’ reflexivity. The findings of the modified ego-network

analyses mainly aligned with my interview findings.

In contrast to interpreting scientometrics in light of interviews, as point 5 depicts,

I identified a third approach to geosocial research - geographic geosocial research

- by inductively using scientometrics, and reflected on interview quotes in light of

this scientometric finding. Some interviewees’ experiences supported the finding

that geographic geosocial research is a distinct approach, but the interview data

was not extensive enough to hypothesise that geographic geosocial research was a dis-

tinct approach. Thus, scientometrics helped produce an insight interviews did not afford.

Point 6 explains a third way I interpreted inductive scientometric findings: I interpreted

the heterogeneous network analyses, which explored how methods mediate knowledge

about spaces, largely independent of interviews. I compared the heterogeneous networks

of SNA and ML-related geosocial research without exploring geosocial research using

ML and SNA through interviews. As Chapter Seven explained, this analysis produced

a surprising result because it shifted my attention from my original question about how

methods mediate knowledge about spaces to asking how spatial units might coordinate

geosocial research.

As discussed above, point 7 depicts my efforts to produce comparative, inductive

scientometrics analyses. I complemented the analysis of the clusters of the author-

bibliographic coupling network G3 with that of the analysis of network G4 as well as the

noun-phrase co-occurrence network of geosocial papers. As Chapter Eight explained,

diversifying scientometric units helped diversify knowledge about geosocial research and

helped highlight my findings’ contingency on my analytical decisions and data analysis

infrastructure. These analyses helped highlight the diversity of geosocial research
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approaches and de-essentialise them.

Finally, point 8 illustrates my efforts to highlight the contingency of my scientometric

findings on the data infrastructure by visually highlighting the modified ego-network

analysis’ contingency on analytical choices using screenshots of the software user

interface.

In sum, to benefit from the partial and complementary perspectives interviews, partici-

pant observation and scientometrics afford on geosocial research, I combined them both

by aligning the analytical units I studied with them, as well as by using them separately,

inductively to varying extents. I illustrated that while in some instances, scientometric

and interview findings converged, I also produced findings with both methods that I

could not have learned without the mixed methods approach.

Altogether, this section outlined the thesis’ conceptual and empirical contribution to

literature which explores the affordances of scientometric or computational methods

’for STS’. Empirically, I argued that diverse combinations of STS and scientometrics as

part of a case study help study diverse relations that comprise knowledge practices and

reflect on the strengths and weaknesses of diverse computational methods. Conceptually,

I highlighted the importance of assessing the affordances of computational methods

’for STS’ in light of the interpretative context. Next, I summarise findings relevant to

research methods curriculum development in geography and more broadly in the social

sciences.

9.4 Considerations for Curriculum Development

This section summarises six insights related to digital or computational research

methods teaching in human geography or the social sciences more broadly based on the

thesis’ findings. Firstly, my project highlights the importance of providing introductory

training for social science students in diverse computational methods - for example,

exploratory data analysis, data visualisation, frequentist statistical inference, (agent

based) modelling and network analyses. My efforts to combine STS and scientometrics

without deciding about ’valid’ approaches a priori and my interviewees’ narratives

about the importance of combining computational data analysis and socio-spatial
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interpretation for geosocial research as well as the importance of loose common

ground when collaborating with researchers with complementary backgrounds highlight

the value of basic knowledge (akin to interactional expertise Collins, 2004) about

diverse computational data analysis methods. Thus, research methods modules could

focus on the introduction and limited hands on experience with diverse types of methods.

Secondly, interviewees’ aesthetic motivations (discussed in Chapter Four) to conduct

geosocial research which combines computational data analysis and socio-spatial inter-

pretation highlights the importance of using data and teaching data analysis methods

(e.g. data visualisation methods) that students find aesthetically pleasing. Several

interviewees stated that they find geotagged social media data aesthetically pleasing.

For example, Anne noted the beauty of the ’chatter’ element of social media posts

which capture fleeting, everyday experiences. Several interviewees noted the beauty of

pictures posted on social media. Thus, in research methods training, ’traditional’ data

sources like surveys and census can be complemented with web-based data that students

encounter in their everyday lives, such as websites (as in controversy mapping) or social

media posts. In addition, several interviewees noted the beauty of data visualisations.

Thus, research methods training could have a data visualisation element.

Thirdly, informed by my finding about methods’ mediation of spatial units, mixed-

methods human geography education could place an emphasis on fostering reflexivity

about the spatial units computational methods enable, juxtaposing computational data

analysis with theories about space (e.g. Shelton et al., 2014). This can build on existing

geographic scholarship which reflects on the spatial methods brought forth through

diverse mapping techniques including GIS (e.g. Kwan, 2012) and participatory mapping

(e.g. Pain, 2004).

Fourthly, similar to Dumit and Nafus (2018) my findings highlight the importance

of exploratory data analysis (EDA) for scholars from diverse disciplines and across

geosocial research approaches. As Chapter Five argued, interviewees across research

groups experimented with data analysis methods in search for data patterns. Thus,

EDA should be a core focus of mixed-methods training programs.

Fifthly, I present three recommendations for educational settings which attempt to

foster collaboration and dialogues among students from diverse disciplines. Given the
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relevance of EDA across disciplinary research traditions, students can collaboratively

conduct EDA, thus learning about different exploratory questions one can ask. Given the

centrality of reflexivity for computational research across research traditions, teaching

can also focus on fostering students’ reflexivities about how data and analytical decisions

shape knowledge (about spaces). Finally, given the benefits of local knowledge across

geosocial research approaches, teaching can facilitate articulating the diverse roles local

knowledge can play in geographic research, thus fostering discussions about why scholars

from diverse backgrounds find it valuable.

Finally, I envision a hackathon-style method that can be organised as a short educational

intervention for scholars with computational expertise from diverse disciplinary back-

grounds, that puts the process of data analysis, rather than its outcomes at the centre.

Oftentimes, hackathons focus on ’problem solving’ or the production of outcomes.

Focusing on the analysis process could allow participants to articulate their assumptions

and analytical decisions and learn about those of scholars with complementary skills.

I envision a short, fast paced event informed by four findings of the thesis: diverse

interviewees’ interest in experimentally searching for data patterns; the fast paced

nature of computational work and the time shortage associated with academic research;

my finding that reflecting on how analytical decisions and social media platforms shape

data and knowledge about spaces is a core part of participants’ geosocial research;

and the finding that common ground - even in its loose form - is essential for the

development of diverse approaches to geosocial research. A short, quick paced data

analysis event which focuses on data analysis process rather than outcomes could fit

with interviewees’ interest to experiment with computational data analysis methods

and reflect on the data analysis process. This, in turn can help identify shared values

or points of interest as well as differences in approaches, whilst allowing participants to

familiarise themselves with complementary approaches, enabling the formation of loose

common ground which can foster and enrich the future development of diverse com-

putational research. Next, I discuss how future work can complement this thesis’ findings.

9.5 Future Research

This section concludes the thesis by discussing nine main avenues of future research.

Firstly, future research could explore the diversity of geosocial research approaches this
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thesis identified in more detail. The heterogeneous network analyses which explored how

computational methods mediate knowledge about spaces started this line of research

and illustrated the potential to use scientometrics to identify finer grained differences,

rather than broader patterns. For example, future research could cluster the ’technical’,

’mixed’ and ’geography’ clusters of the author-bibliographic coupling network G3, and

explore the noun phrase co-occurrence network of the same paper set to study the

variety of computational data analysis.

Secondly, future research could explore how computational methods travel across

disciplinary cultures and communities in more detail. Previous literature highlighted

computational methods’ ability to travel across disciplines and domains (e.g. Mackenzie

and McNally, 2013; Knuuttila and Loettgers, 2014; Marres and Gerlitz, 2016). Simi-

larly, my participants from diverse disciplinary backgrounds were interested in using

computational data analysis methods. However, social scientist interviewees’ narratives

presented in section 5.3 suggest that using computational methods across disciplines

requires active work. Several participants claim they altered computational methods to

suit their analytical purposes, like Chase, who altered a computational data analysis

method suggested by Kevin to fit his research purposes. Future research could explore

how, in practice, scholars from diverse disciplines succeed to use computational methods

and the challenges such work raises.

Thirdly, future research could follow up the heterogeneous network analysis presented

in Chapter Eight by exploring how diverse spacial units coordinate or geosocial research

project and geosocial research approaches. As I argued, the heterogeneous network

analysis prompted a question about spaces’ mediating role, in addition to how compu-

tational methods’ mediate knowledge about spaces.

Fourthly, future research could explore how scholars who conduct geosocial research

use their combined computational and social scientific skills in future projects. Given

changes in social media platforms’ geotagging policies discussed in section 2.4, geotagged

social media research may lose popularity. However, my participants discussed their

(aesthetic) interest in combining computational data analysis and social scientific

research. Thus, future research could explore how scholars use the skills they developed

for geosocial research for other research projects.
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Fifthly, future research could explore if and how geosocial research changes the re-

lationship among disciplinary or sub-disciplinary communities. As the Introduction

outlined, in recent years university programs which specialise in exploring the interface

between computational data analysis and social science became more popular. I argued

that interviewees primarily associate themselves with disciplinary or sub-disciplinary

communities, and develop geosocial research through dialogues with these commu-

nities. Chapter Six argued that social scientists are actively developing ways to use

computational methods in line with their disciplinary heritage, and technical scholars’

narratives discussed in Chapter Five suggested that computational scholars also seek to

apply computational methods to new topics. These suggest that the shared interest in

computational methods may shape the boundaries among disciplines in the long term.

Sixthly, future research could ’qualitatively’ explore the shared author citations between

the paper sets associated with ’social’ and ’technical’ geosocial research in Chapter Six,

and the clusters of the author-bibliographic coupling networks G3 and G4 analysed

in Chapters Seven and Eight. Studying the scholarship of jointly-cited authors could

provide hints about (changes in) the nature of common ground between diverse

approaches to geosocial research and benefit from computational methods’ affordances

to flexibly explore data at different levels of aggregation (cf. Munk and Elgaard Jensen,

2014; cf. Elgaard Jensen, 2020; cf. Shelton et al., 2014).

Seventhly, follow-up studies could explore the variability of the scientometric findings

and the scientometric field as a function of scientometric data providers. As section

3.2.2 discussed, the Web of Science database this thesis used over represents papers from

the natural sciences and engineering, and under represents arts, humanities and social

sciences. Given that geosocial research sits at the intersection of computational and

social scientific disciplines, future research could reproduce the scientometric analyses

in this thesis using the Scopus database - or where necessary, equivalent analyses

using on Scopus’ disciplinary classification system - given Scopus’ enhanced coverage

of social sciences and humanities, or Microsoft Academic to benefit from open access

scientometric data.

Eightly, future research could focus on exploring how diverse communities’ situated

knowledge can be brought into and negotiated through computational methods in geoso-

cial research and projects which combine STS and scientometrics (e.g. the participatory
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scientometrics by Marres and de Rijcke, 2020). Such work would have a more normative

starting point than this project. Computational research is trusted by many - ‘big data’

analyses are seen as solutions in business and across scientific disciplines. Such methods

are often used to identify statistical regularities and numerically optimised outcomes.

However, many contemporary societal challenges - such as the climate crisis and social

sustainability - require knowledge that accounts for diverse groups’ perspectives and

the specificities of local communities and ecologies (e.g. Latour, 2013; Haraway, 2016).

The interpretative social sciences, such as human geography and STS developed many

methods to produce such knowledge. Thus, combining computational and interpretative

scientific schools of thought - an including local knowledge into computational analyses

- may become a core part of future politics.

Finally, future research could use scientometric data analyses and visualisations as

discussion prompts with geosocial scholars. It could develop more and less ambiguous

data visualisations to explore how these elicit participants’ experiences. Anderson et al.

(2009) use ambiguous data visualisations to elicit the everyday experiences of technology

users. Like the interviewees of Cambrosio, Bourret, et al. (2014), my participants have

experience with computational data analysis methods similar to the ones I used. Future

research could explore how scholars from diverse disciplines engage with data visualisa-

tions, and how they help elicit participants’ reflections about their data practices. In

addition, future research could explore the use of ambiguous visualisations as discussion

prompts to contradict scholars’ expectations about the nature of data visualisations,

shaped by their computational research.
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Robinson-Garćıa, Nicolás et al. (2014). “New data, new possibilities: Exploring the insides

of Altmetric.com”. In: El profesional de la información 23.4, pp. 359–366.

Rotolo, Daniele, Diana Hicks, and Ben Martin (2015). “What Is an Emerging Technol-

ogy?”



BIBLIOGRAPHY 306

Ruppert, E., J. Law, and M. Savage (2013). “Reassembling social science methods:The

challenge of digital devices.” In: Theory Culture and Society 30.4, pp. 22–46.

Salganik, Matthew J. (2017). Bit by bit: Social Research in the Digital Age. Princeton

University Press.

Salton, G and C. Buckley (1988). “Term-weighting approaches in automatic text re-

trieval”. In: Information Processing & Management 24, pp. 513–523.

Savage, Mike and Roger Burrows (2007). “The Coming Crisis of Empirical Sociology”.

In: Sociology 41.5, pp. 885–899.
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Appendix A

Interview Questions

I used the prompts below for the semi structured interviews I conducted.

1. Motivations, Introduction

(a) Why did you start to use geotagged social media data for your research? How

did you come to this field?

(b) What does geotagged social media research allow you to do that you could

not do otherwise?

2. Interests and Challenges

(a) What is the most exciting and interesting aspect of geotagged social media

research?

(b) What is the most surprising aspect of geotagged social media research?

(c) Why do you work with the specific type of social media data?

(d) What is the biggest challenge of social media research for you? Can you

recount specific challenges? Were these resolvable and if so how did you resolve

them?

(e) What would you regard as the most ‘successful’ aspect of your geotagged social

media research and why do you consider it successful?

3. Epistemic / Uncertainty

(a) Why did you choose the methods and theoretical constructs you chose and the-

oretical constructs? How useful have they been? Can you recall alternatives

you considered? Is there anything that you would do differently?
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(b) How did your interaction with or opinion of geotagged social media data re-

search change over time?

(c) Data cleaning: Did you omit any data from the analyses? How do you think

it affects your analysis?

4. Data Access and Sharing

(a) How (and with whom) did you access the geotagged social media data?

(b) Are you sharing your data, or data analysis tools with anyone else, and is

anyone sharing data with you? If so, why? Are you planning to work with

people you share data with?

5. Collaboration

(a) Have you started to collaborate with someone as part of doing geotagged social

media data analysis?

(b) How do you collaborate as part of geotagged social media data analysis? What

skills do you and co-authors contribute?

(c) Were there any disagreements between the authors that you can remember?

What were these about? How did you resolve them?

(d) Collaborators outside of academia: Do you, or do you wish to work with policy

makers, or other actors outside of academia as part of geotagged social media

analysis? Do you perceive or anticipate any challenges or tensions?

(e) Which other research groups’ work do you like?

6. Knowledge of Spaces

(a) Do you know the places you study using geotagged social media data? Have

you visited them?

(b) How does familiarity with places (or lack of thereof) affect geotagged social

media data practices in your opinion?

(c) If relevant based on paper: How did you collaborate with local actors or

stakeholders? Could or did the use of geotagged social media data help you

to collaborate with local stakeholders?

(d) How did social media research shape your engagement with the spaces you

studied?

7. ’Imaginaries’: If you could...
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(a) have a new collaborator, a person with what skills would you like to work

with?

(b) what new or additional data would like to use?

(c) what new data analysis tool would you like to try?

(d) get funding to do anything, what aspect of cities / landscapes / places would

you study

8. Funding

(a) How does your use of geotagged social media data relate to funding arrange-

ments? Who funds your work? What does the funding body have a preference

for?

9. Ethics and RRI

(a) Have you considered the different ways in which your use of geotagged social

media data might raise ethical or moral issues?

10. Future of geotagged social media research

(a) What do you think is the future of geotagged social media data analysis?



Appendix B

Python and R code

The Python and R scripts used in this thesis are available at the following Zenodo

Repository:

http://doi.org/10.5281/zenodo.5138104

and the following Github repository:

Description

https://github.com/juditvarga/juditvarga-PhD_scripts/tree/main

Scripts

https://github.com/juditvarga/juditvarga-PhD_scripts/tree/master
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