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Abstract

Machine learning is an ever-expanding field of research, and recently

deep learning has been the architecture of choice. However, traditional

deep learning methodologies require substantial amounts of data to

train their networks. This requirement for large data means that there

are large numbers of real-world problems that cannot utilise the power

of these deep learning networks due to a lack of data. Being able to use

deep learning architectures with tiny domain-specific datasets would

allow sectors such as healthcare to use deep learning as an aid in training

and potentially in real time procedures.

In this thesis, deep learning using tiny domain-specific datasets with

sparse labels is achieved on two machine learning problems: semantic

segmentation and action recognition. This is accomplished by utilising

semi-unsupervised learning to train a convolutional neural network

(CNN) to predict superpixels for an image, using a novel structural

representation named Multi-channel Connected Graphs (MCGs). These

deep-learned superpixels are then used in an end-to-end network consist-

ing of two hourglass modules, with each specialising in a separate task;

1) deep learned superpixels, 2) semantic segmentation. For multi-class

semantic segmentation, a variation on transfer learning is used. Action

recognition with tiny amounts of training data is obtained by drastically

reducing the input feature from full HD resolution down to 32× 32× 2,

with each cell consisting of the majority class in the first channel, and

the secondary class in the second channel. This input is then used in a

recurrent neural network consisting of multiple CNNs and bidirectional

long short-term memory layers.
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Chapter 1

Introduction

1.1 Motivation

Artificial Intelligence (AI) has been used for a long time to help humans solve complex

problems with the aid of computer systems. Machine learning is one key field of AI

that uses observations of the world around us to teach a computer to perform specific,

well-defined tasks. With vast amounts of data being generated daily across the world,

researchers have an abundance of observations to solve increasingly complex tasks such as

object detection. Deep learning is a particularly successful machine learning technique

that takes these observations and passes them though multiple layers of artificial neural

networks. Complex architectures are regularly proposed, and research into ever-better

ways to optimise the vast number of weights in such architectures generates models that

have much higher accuracy than other machine learning techniques, including shallow

neural networks (artificial neural networks with a single hidden layer). However, to train

these deep neural networks, a large number of observations (i.e. data points, or instances)

are needed to train a model that can generalise well to new and unseen data. A good

question is exactly how much data would be required to reach a sufficiently high accuracy

for a particular task in a particular domain? It is generally considered that the number of

observations should be a minimum value of in the thousands for a good representation of

the problem.

There are many real world problems that could fall into the supervised learning

category, in the sense that a well-defined task can be described, but not all problems are

suitable for generating sufficient numbers of ground truth annotations. One example of

this is the class of clinical image analysis problems. Collecting large sets of annotated data

in a clinical imaging domain is generally not practical, as it would require considerable

time, money, skill, and effort. To begin with, patient data is difficult to gather because

in our(western) society patients have to opt into the data collection procedure and not

everyone is willing to share sensitive data. The clinical data collected then needs to be
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INTRODUCTION 1.1 Motivation

annotated by someone who understands the problem, which is often a highly trained

healthcare professional who would rarely have the spare time and motivation to annotate

substantial amounts of data. When they are motivated, their capacity for annotation is

generally low, and their time expensive.

Another example of a dataset that would benefit from being able to train with small

amounts of data is rapid prototyping of novel atomic systems that use computer vision.

An atomic system is a process that is able to be fully automated by a machine. The time

and monetary value for these annotations could potentially outweigh the value of the

rapid prototyping. For example, collecting real world data with the prototype system is

not achievable due to regulations. Thus the only way to collect the data is manually by

person, and for a small team it would take a infeasible amount of time to collect a large

dataset.

Therefore, if deep neural networks could be trained with much less data, this could

mean that professionals would be able to invest a reasonable amount of time to annotate

these datasets. This ability to use tiny, domain-specific datasets would open up an

extensive number of real world problems that could be solved or made easier by using

deep learning for assistance.

There are three main categories that the problem of learning with tiny datasets can

be broken down into. Each of the categories requires different learning techniques to deal

with them. Firstly, supervised learning is used for problems where the predictions can

be compared against known labels. Examples of supervised learning are classification or

regression. Supervised learning requires each observation to have a label belonging to it;

these are known as ground truth labels. These labels are used to train the architecture’s

parameters to correctly predict the ground truths. Secondly, unsupervised learning is

used for problems where ground truth labels are not provided and thus it is necessary to

find out relationships between the observations within the dataset. This uses methods

such as clustering. The third category is reinforcement learning, this is used when there

is an agent operating in an environment, such as a robot vacuum cleaner in an office.

Reinforcement learning uses a reward-based system to teach the agent what to do by

analysing its actions in the environment in real time.

In this work I wanted to find out: to what degree is it possible to train deep learning

architectures on tiny domain-specific image datasets whilst achieving useful predictions,

and what are the key factors that determine success?

As there are many fields of research in which deep learning architectures can be

applied, and it would be impossible to test all scenarios, this thesis will focus on two

computer vision problems: semantic segmentation and action recognition. These two

problems occur in many different sectors in the real world, from industry applications

to clinical procedures. To answer the two questions, two different datasets will be used:

2



INTRODUCTION 1.1 Motivation

gLitter and Newborn Resus. gLitter is a segmentation dataset consisting of various types

of litter found in the city parks scattered on different floor types. This dataset poses

the challenge of being able to detect complex object boundaries with tiny amounts of

data. The Newborn Resus dataset consists of paediatric staff performing resuscitation

on newborn babies. The resuscitation procedure is comprised of multiple actions that

must be followed. This dataset poses the challenge of having a tiny number of occurrences

per action due to the duration required for collecting and annotating the data. This is

because the dataset consists of sensitive imagery, and a clinical professional is required to

annotate the data.

Traditionally, semantic segmentation datasets with large amounts of data are labelled

with sub-optimal annotations, where a loss of annotation quality is accepted as a trade-off

for speeding up the process of annotation. These generally consist of rough polygon

outlines of an object. Amazingly, when using vast amounts of data with a large number

of occurrences for each class in the dataset, the networks trained on these systems can

generalise away from the sub-optimal segmentation masks, closer to the true pixel-level

segmentation. However, for a network that is trained on a small amount of data, this

generalisation is unachievable because the network massively over-fits to the training

data. This means that the incorrect segmentation masks are learnt and thus the network

performs poorly on unseen test data. To reduce confusion during training, the use of a close

to pixel-perfect mask is preferred. In this thesis I explore the effect of annotation accuracy

in relation to the size of the dataset. From the study shown in chapter 6.3, it can be

concluded that for small domain-specific datasets, the effect of lower accuracy annotations

is more pronounced than the effect of the amount of training data on the performance of

a model’s accuracy. The greater the degradation of the near pixel-perfect annotations, the

lower the overall accuracy is, regardless of the amount of training data. Additionally, it

was also concluded that increasing the amount of training data does improve the accuracy

of the model, but for high levels of degradation much greater numbers of training data

would be required to achieved similar results to the better quality annotations. This is an

outcome of practical importance to those creating small datasets - it means that for small

datasets the annotations should be of the highest possible quality.

To achieve pixel-perfect annotation, the annotations must be done at the pixel level

using a polygon tool. A good tool for this is Photoshop, because its built-in tools have

been heavily refined. However, the annotation time is proportional to the number of

pixels in an image, therefore an image of resolution 1080p would take many times longer

to annotate than a 480p image. Annotation times for complex objects/scenes can take

multiple hours to fully annotate, per image.

Near-pixel-perfect annotations can be achieved much faster than pixel-perfect annota-

tions because they can make use of over-clustering algorithms. With manually-tuned

parameters for the clustering technique, the annotations can be performed at a similar

3
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speed on a wide variety of resolutions. These near pixel-perfect annotations tend to

follow clusters of pixels, meaning that objects with similar colours and textures next

to each other can be clustered together and need to be manually corrected via another

annotation tool, such as a polygon drawing tool. Near-pixel-perfect annotations only take

a fraction of the time that pixel-perfect annotations take, with complex objects/scenes

taking several minutes rather than hours. These annotations are closer to pixel-perfect

than the rough polygons are, meaning there is less confusion in the labels for the machine

learning networks to overcome.

In this thesis, near pixel-perfect annotations are used for both the gLitter and Newborn

Resus datasets. To create annotations, a novel image annotation tool is created. This

image annotation tool leverages the inherent property of superpixel, to not cross object

boundaries, to speed up human annotation whilst following the boundaries of objects.

The use of a brush tool that fills the selected superpixel with the current class colour, and

the fill tool allow for fast annotations. For large objects the user can quickly select the

boundary superpixels using the brush, then fill the centre using the fill tool. For objects

that are smaller that the current superpixel size, the superpixel algorithm can be re-run

at a higher target number to allow for smaller superpixels to be created, or the use of a

polygon tool can be used in conjunction with the super-pixel tool.

Another potential solution to creating deep-learned machine vision algorithms that

generalise well after training on tiny datasets is the creation of a common backbone or

low-level image encoder suitable for domain-agnostic semantic segmentation.

Having a small dataset means that there is the probability of having insufficient data to

train a network, resulting in a network that is unable to learn the features/patterns of the

data that would allow it to generalise well for use with unseen data. A method to combat

this is to specify extra input features that would help the network to find these patterns

in the data. In this thesis, I explore the novel idea of using learned superpixels to add the

extra input feature of structural relationships between clusters. Each cluster informs the

network which pixels have similar properties: shape, colour, and texture. However, during

initial experiments it was found that to include superpixels as a feature for a convolutional

neural network (CNN), a new representation of superpixels was required.

To represent the relationship in regards to superpixels, for each pixel to its neighbours,

a novel representation was developed - Multi-channel Connected Graphs (MCGs). This

representation allows for handcrafted superpixels to be represented in a form which a

CNN can interpret. Additionally, this leads to the ability to truly deep learn superpixels

for the first time. A deep-learned superpixel has the advantage of being able to be

trained in an unsupervised manner on an extensive and varied dataset, meaning that the

network is able to create a generalised superpixel representation that can also be used

in an end-to-end network for the specific tiny dataset domain. On the other hand, a

handcrafted superpixel algorithm would require manual tuning of its parameters (number

4
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of superpixels, compactness, and sigma) for each instance in the dataset.

Artificially creating training samples is another possibility for increasing the number

of samples in a domain-specific dataset so that it could be used to train deep-learned

superpixels. There are several techniques to do this; the use of 3D rendered scenes, staged

videos, or the newly popular generative adversarial network (GAN) could be used. Each

of these methodologies have their flaws for this thesis. Firstly, 3D rendering is not suitable

as this would require expertise that cannot be considered to be readily available. Staging

is a process to create additional training data using artificial scenarios, such as using a

training doll to perform resuscitation upon instead of a human. An inherent disadvantage

of using large volumes of staged data is that a model trained on staged videos may not

be able to generalise to real scenarios. In addition, staging videos is a time consuming

process, thus with regards to the Newborn Resus dataset this would take valuable time

away from the paediatric staff.

GANs generate novel images based on those included in a given dataset, however

the quality of these images at this point in the thesis were not of high enough quality,

and even modern GANs would need considerable amounts of data themselves to train

their models, more than what constitutes a tiny dataset, thus making them unsuitable in

this instance. Additionally, with the low quality of images produced, artefacts would be

introduced into the deep-learned superpixels.

Therefore, using a different dataset with broad variation in what is shown in each

video was the chosen course of action for this thesis. This enables a large CNN network

to use an unsupervised approach to training.

The popular stacked hourglass network was used as a base network architecture for

semantic segmentation. The network architecture used in this thesis consisted of two

hourglass modules, feeding from the first to the second in a end-to-end manner, with

each being pre-trained for specific tasks. Both hourglass modules use a single residual

module at each step in the hourglass. The first of the two hourglass modules was pre-

trained to predict the deep-learned superpixel, the second module was trained for semantic

segmentation.

A common problem with deep learning using small datasets is having a poor rep-

resentation of the data one would like the machine to learn. Too many features in the

representation would result in the network overfitting due to the curse of dimensionality.

The curse of dimensionality describes the problem that arises when there is a much greater

volume of space, caused by the high dimensional representation of the data, compared

to the available data being represented. Too few features mean that there would not be

enough information for the network to learn all of the outcomes. This can be because

there is not enough variation in the given features to distinguish between examples.

For the action recognition problem with tiny domain-specific datasets, the clinical

dataset Newborn Resus is used. The Newborn Resus dataset consists of 22 videos, 19

5
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actions and 23 semantic object classes. With such small amounts of data, the representation

of the videos was first reduced to its semantic segments, then scaled down to (32× 32× 2)

from 1080p. Using a small network consisting of two convolutional layers and three

bi-directional LSTM layers resulted in a micro (weighted) average F1 score of 0.5013 on 7

classes. The ‘Airway manoeuvre’ (I) action has the best detection with an F1 score of

0.6277, recall score of 0.8284, and precision score of 0.5053. There are four classes1 which

fail to learn due to lack of instances in the dataset, with a resulting F1 score of zero.

Based on the findings from this thesis, when training a small semantic segmentation

network with a tiny domain specific dataset, I would recommend using a transfer learning

technique to train a single class at a time with an adaptive unknown class, starting with the

largest most frequent classes first. In regards to action detection I would highly recommend

having a balanced dataset with at least 30 instances per action, but preferably a minimum

of 50 instances. Additionally, for action detection when using a small dataset, using a

sparse representation of the input works effectively. For instance, a sparse representation

of an frame could be using the most prominent semantic segmentation class when down-

sampling. If more data is required than a single class, the number of channels can be

increased by adding the next most prominent semantic segmentation class per area. This

is preferred to doubling the resolution which results in quadruple the number of input

features.

For both action recognition and semantic segmentation, the balance of classes is a huge

factor in regards to performance (as demonstrated in Chapters 7 and 6). Less frequent

classes are often ignored by the network during training as they add little weight to the

calculation of the loss functions. To improve results I would recommend either removing

these classes from the list of classes to detect, or increasing the number of occurrences in

the dataset to equalise the distribution.

If inference speed is a priority, I would highly recommend reducing the resolution of

the end-to-end network, or using newer techniques of aggressive down-sampling to reduce

the amount of parameters in the network.

1Dried with a towel (A), Attachment of pulse oximeter plus Pulse oximeter adjusted (E+F), Inflation
breaths given incorrect ratio plus Provide five inflation breaths lasting three seconds plus Ventilation
breaths given incorrect ratio plus Ventilation breaths given for 30s and 1s each (J+K+L+M), Incubation
attempt(P)
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1.2 Thesis Contributions

This thesis has produced the following contributions:

1. Novel graph-based representation for relationships between pixels called Multi-

channel Connected Graphs (MCG)

2. End-to-end semantic segmentation with deep-learned superpixels for tiny domain-

specific datasets

3. Action recognition predictions using low dimensional representation of the input

video for tiny clinical datasets

4. Novel technique for full scene semantic segmentation annotation that incorporates

the use of deep-learned cooperative learning for tiny clinical specific datasets

5. Image Annotation Tool V.2 (IAT) is an open source software used for annotating

images and videos for full scene semantic segmentation by making use of superpixels

to aid annotation.

Below is a list of outputs:

1. Paper 1: Clinical Scene Segmentation with Tiny Datasets - ICCV 2019 - The

2nd International Workshop on Computer Vision for Physiological Measurement

(CVPM)

2. Open source software: Image Annotation Tool V.2

3. Paper 2: In preparation - Journal paper - Clinical Action Recognition with Tiny

Datasets

4. Paper 3: In preparation - Paper - Effects of Ground Truth Annotation Quality on

Training Deep Learning Models with Tiny Dataset.
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Chapter 2

Background Theory

2.1 Computer Vision

In this section I will provide formal definitions of computer vision theory terms that are

used frequently throughout this thesis. Notation introduced here will be used throughout.

2.1.1 Segmentation

It is commonly accepted that humans have five basic senses: sight, hearing, taste, smell,

and touch. In computer vision the main goal is to replicate our understanding of the

seen world. To do this the computer needs a visual representation of the world. The

most common representation used comes in the form of digital imagery, referred to as

rasterized images. Raster images are made up of a grid of pixels, where a pixel represents

both colour and intensity of light at a particular location on the image. An image is said

to have a higher resolution the more pixels it has. This means that more information can

be stored in it.

However, individual pixels hold very little information about the real world other

than the colour and intensity at a specific point. Therefore, several techniques have been

developed to look at multiple pixels at once to see if there is any additional information

that can be found.

An example of this is local binary patterns (LBP)[44, 103]. LBPs use a (3× 3) grid

around a central pixel and the central pixel value is used as a threshold. This threshold is

then used to see which of the eight neighbouring pixels are greater than or less than the

central pixel. If a pixel has a greater value than the threshold, it is labelled ‘1’, otherwise

it is labelled ‘0’. Then, reading in a clockwise motion starting in the upper left position,

the ones and zeros are read to create a binary number. This binary number is converted

into a decimal number and assigned in the output image at the coordinates of the current

pixel, Figure 2.1. This is repeated for every pixel in the image. An eight-bit binary

number can have a value of zero to 255, 256 different values. However, using uniform
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patterns and removing binary numbers which switch between one and zero multiple times,

the number of values is reduced to 59. The purpose of LBPs is to identify texture and

edges in an image.

Figure 2.1: This figure shows an example calculation for LBPs using random numbers
between zero and nine in a grid of (7× 7). The central pixel is used as an example and
the corresponding LBP value is 67.

Being able to extract texture from an image is very useful, but on its own does not offer

much more information about what is happening in an image. Being able to segment an

image into multiple regions can give more information about what the image represents.

Forsyth and Ponce [34] describe segmentation as an image representation problem

where the outcome must be both simultaneously compact and expressive whilst being

able to provide a summary of an image. These summaries could either be from single

pixels or groups of pixels by their colour or texture. Segmentation has also been referred

to as grouping, perceptual organisation and fitting.

When a human performs segmentation they often follow these nine rules according to

the Gestalt school of psychologists[34]. Tokens in psychology refer to objects in a scene,

however in computer vision, tokens would represent pixels or clusters of pixels.

1. Proximity: Tokens that are nearby tend to be grouped.

2. Similarity: Similar tokens tend to be grouped together.

3. Common fate: Tokens that have coherent motion tend to be grouped together.

4. Common region: Tokens that lie inside the same closed region tend to be grouped

together.

9



BACKGROUND THEORY 2.1 Computer Vision

5. Parallelism: Parallel curves or tokens tend to be grouped together.

6. Closure: Tokens or curves that tend to lead to closed curves tend to be grouped

together.

7. Symmetry: Curves that lead to symmetric groups are grouped together.

8. Continuity: Tokens that lead to continuous (as in joining up nicely, rather than in

the formal mathematical sense) curves tend to be grouped.

9. Familiar configuration: Tokens that, when grouped, lead to a familiar object tend

to be grouped together.

The Gestalt rules are said to be key to how the human vision system works, thus many

algorithms developed for image segmentation have taken these rules as a starting point to

build upon.

Common examples of segmentation uses are background subtraction, shot boundary

detection, and interactive segmentation. Background subtraction is a common pre-

processing step for some algorithms, and consists of keeping only the objects of interest

and removing any distracting backgrounds. The more stable the background is, the easier

it is to remove the background from an image. A use of this could be to track objects

through a video. With a stable background this would be trivial, but if it is not stable then

the use of Gestalt rule ’common fate’ can be used to check the motion of pixels. These

pixels can then be grouped together for both the object and again for the background.

Then the background segment can be subtracted from the image.

Figure 2.2: This figure shows an example of segmentation of a bear from its surroundings.
This image has been adapted from the DAVIS dataset [83].

Shot boundary detection is used when analysing video to determine when there is a

substantial change between frames, such as a switch in camera view or a transition to a

new scene altogether. This allows for long sequences of videos to be broken up into shorter

videos that can be expected to consist of similar objects. This is a relatively simple task

of finding the difference between two adjacent frames, and if the difference is above a
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given threshold, then a cut in the video is made. When comparing the frames there are

several methodologies that can be used. These include: calculating the difference between

all pixels in the frame, however this is slow; comparing histograms of each frame; block

comparison, where the frames are split into grids and histograms are calculated for each

cell of the grid, then compared; or calculating edge maps of the two frames and computing

the difference between the two masks created.

Interactive segmentation is a form of segmentation where a user gives the algorithm

some input such as a bounding box to help the algorithm focus on a specific area of

interest. This reduces the computation needed as the algorithms are generally working

with much smaller input resolutions.

2.1.2 Superpixels and Over-Segmentation

One method of creating segmentation is to over-segment the image into smaller segments

of similar pixels. These over-segmentation methods of combining multiple pixels to create

regions of similarities combine colour, location and texture into a single cluster of pixels

dubbed ‘superpixels’. Clustering of pixels like this dates back to the late 1980’s, where

Mester and Franke [73] produced similar outcomes to the morphology of superpixels. In

1997 an adaptation of the watershed algorithm was used to create improved clustering of

pixels [71].

The watershed algorithm [87] is based on the geological meaning of watershed, which

describes how water will run off certain parts of the land, and pool in others, depending on

the lay of the terrain. This represents a theory in which something starts at a high point,

and follows slopes down to the lowest achievable point. Regarding watershed superpixels,

this is done pragmatically by computing the gradients of the image to be segmented to

produce a gradient map. Zeros in this map are considered to be extreme values, and are

given unique IDs. Each pixel in the image follows the path with the steepest downwards

gradient on the gradient map until it terminates at a zero point. The starting pixel is

then assigned to the ID of the pixel it ends at. This process is repeated for all pixels in

the image. Visualising this process, especially simultaneously for all pixels, resembles the

water flooding the image and pooling in local minimums, hence the name ‘watershed’.

Whilst following the gradients, if a pixel could go via multiple paths, then the shortest

path is used to calculate the ID.

In 2010, Achanta et al. [1] created the SLIC (Simple Linear Iterative Clustering)

algorithm which is still a very popular superpixel algorithm today [2] as it provides good

over-segmentation of images. SLIC works by clustering pixels in relation to their colour

and spatial properties to create almost uniform superpixels that try to closely follow

boundaries of objects. An example of this can be seen in Figure 2.3.

When representing an image in a computer, there are different colour spaces that can be
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used. A colour space is a way to represent physical light as digital information. The most

common colour space is RGB (red, green, blue) colour space. The most simple colour space

is grey-scale, which only stores the intensity of light at a particular pixel. For example,

an image taken on a one megapixel camera would have dimensions of (1280× 720× 1)

for a grey-scale image. Whereas for an RGB image, the representation would use three

channels, one for each colour, and would have the dimensions of (1280× 720× 3).

SLIC uses another colour space called CIELAB, which was designed by the International

Commission on Illumination in 1976. CIELAB is sometimes abbreviated to LAB. In the

LAB colour space, l represents the lightness of the colour with zero being black, and one

being white. Different implementations of CIELAB use different ranges for a and b, but

all versions use this format for the range −x to +x. a represents the green and red colours,

where −a represents the green intensity, and +a represents the red intensity. b represents

the yellow and blue colours, where −b represents the blue intensity, and +b represents the

yellow intensity.

SLIC uses the three channels from the LAB colour space and the x y coordinates of

pixels to create a five-dimensional space in which to cluster pixels. The distance measure

used in the algorithm enforces the structure of the superpixels. Achanta, Shaji, Smith,

Lucchi, Fua, and Süsstrunk [1] introduced a novel distance measure to create superpixels,

in which a target number of superpixels (K) are taken as an input for an image. Whilst

creating the superpixels, the algorithm tries to enforce the area (S) of the superpixels to

be N/K pixels, where N is the total number of pixels in the image. If the superpixels were

even in size, the superpixels would form a grid with the centres being at grid intervals:

S =

√
N

K
(2.1)

The superpixel centres are represented by:

Ck = [lk, ak, bk, xk, yk] k = 1 : K (2.2)

As the spatial distance of each cluster is 2S, it is assumed that all pixels belonging

to the cluster should lie in a (2S × 2)S area in the x y dimensions around the central

pixels in the grid. When using Euclidean distances, the straight line distance between

two points, in the five dimensions [l, a, b, x, y] the x y, the proportion of the distance

calculation greatly outweighs the colour distance when the pixels in the image are further

than the maximum colour distance.

To combat this, the distance measure Ds was designed:

dlab =
√

2(lk − li) + 2(ak − ai) + 2(bk − bi) (2.3)
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dxy =
√

2(xk − xi) + 2(yk − yi) (2.4)

Ds = dlab +
m

S
× dxy (2.5)

In equation (2.5) the term m is used to control the compactness of the superpixels.

The larger m is, the more spatial proximity of pixels is prioritised, causing the clusters to

be more compact. m can be set between 1 and 20, with the default setting being 10. m
S

term multiplied by the dxy normalises the x y dimensions by the grid intervals.

The algorithm is initialised with the cluster centres described above, then these starting

points are moved to the seed location. To calculate the seed location, a (3× 3) grid is

taken around the starting point and the lowest gradient position is chosen. This reduces

the probability of the starting point starting on an edge. To calculate the gradients the

following equation is used:

G(x, y) = ||I(x+ 1, y)I(x1, y)||2 + ||I(x, y + 1)I(x, y1)||2 (2.6)

|| ||2 is the L2 norm. L2 norm is the euclidean distance from the origin. I(x, y)

returns the LAB vector at the pixel location (x, y).

From the new seed location, pixels are assigned to the closest cluster using the Ds

equation. Then the new centre point is computed by finding the average LABXY vector

of the superpixel. These steps are repeated until there are no updates, or until a set

number of iterations has passed. At the end of this process any adjacent small clusters

with identical labels to larger neighbours are added into these neighbouring larger clusters.

Equations 2.1-2.5 are taken from Achanta et al. [1] paper, SLIC Superpixels.

A variant of superpixels was the Superpixels Extracted via Energy-Driven Sampling

(SEEDS [100]) method reported in 2012. In this method, the problem was defined as a

boundary-optimisation algorithm. Here, the first iteration of superpixels is created by

spacing them out uniformly over the image like a chequerboard. Then the pixels at the

edges of the superpixels can switched to a neighbouring superpixel where they are more

similar, and this is repeated until the boundaries stabilise. To account for longer distance

movements, SEEDS creates a hierarchy of blocks of blocks. These blocks are groups of

pixels of either (2× 2) pixels or (3× 3) pixels. Iteratively the blocks are grouped together

until the size of the block is approximately the number of superpixels. In their work to

produce superpixels they proposed an iterative block and pixel update using hill-climbing

optimisation.

The creation of super-regions is becoming more popular, with methods arising such

as Superpixels from MUlti-scale ReFinement of Super-regions (SMURFS) by Luengo

et al. [70]. A super-region is a large collection of pixels and generally not a full object

therefore super-regions are also classed as an over-segmenting method. They achieve

this by iteratively using their graph-based split and merge scheme to yield superpixels.
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Figure 2.3: This figure shows an example of the SLIC algorithm performed on a sample
from the DAVIS dataset [83]. This implementation is in Python using the scikit-image
package with a target number of superpixels equal to 1500, a sigma value of 2 and a
compactness value of 10. These parameters allow the algorithm to follow the structure of
large objects such as the elephant and the rocks, but are less precise with smaller objects
such as the foliage.

Then, the split scheme is applied over the pixel grid to separate large super-regions into

superpixels. Next, the merge step is applied where superpixels are grouped together into

more accurate super-regions.

Semantic segmentation

Semantic Segmentation is the process of segmenting a scene into meaningful segments.

Each segment must belong to a single class that exists in a dictionary of possible objects.

Multiple smaller segments may be needed to be joined together to form a single meaningful

segment. An example of this is a car, as a car is made up of several parts such as its body,

windows and wheels.

This thesis will use a neonatal dataset named Newborn Resus as a use-case for semantic

segmentation. An example of semantic segmentation on this real world dataset can be

seen in Figure 2.4, where each class in the dataset consists of smaller objects encapsulated

together as a single class. Semantic segmentation of images and videos is continually

growing in popularity as it has many uses from foreground/background detection [24] to

brain tumour detection [50].

One of the most popular learned segmentation methods is the Fully Convolutional

Network (FCN) developed by Long et al. [67] in 2015. In their work, an end-to-end

14



BACKGROUND THEORY 2.2 Machine Learning

network is used to produce pixel-by-pixel predictions. This produces both segmentations

and classification. This is achieved by their skip architecture which makes use of both the

deep coarse semantic information and the shallower appearance information.

Another variation on the learned segmentation is the Learned Watershed (LW) method

by Wolf et al. [104]. This method expands on work such as that by Bai and Urtasun [4]

by going a step further and building an end-to-end CNN that produces segmentations

instead of the original energy maps used. LW keeps the original watershed algorithm

unchanged by starting with seeds and iteratively adding the best pixels for each seed from

their queues, whilst prioritising closer pixels.

Semantic segmentation has been approached by using handcrafted superpixel methods

and combining superpixels to form super-regions/segments, and deep learning approaches

such as going from RGB to semantic segmentation. However, deep-learned superpixels have

not been used for semantic segmentation before. Making use of deep-learned superpixels

would allow end-to-end learning. In Chapters 6 & 7 it is shown to be effective.

Figure 2.4: This figure shows an example of semantic segmentation on a sample from
the Newborn Resus dataset. Unlike segmentation, each separate segment has a semantic
meaning, it belongs to a particular class. For example the pink represents the baby, while
blue represents the gloves.

2.2 Machine Learning

In this section I will provide formal definitions of machine learning theory terms that are

used frequently throughout this thesis. Notation introduced here will be used throughout.
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2.2.1 Overview

Machine learning is a subtopic of artificial intelligence, in which the machine learns from

experiences, which we call observations, akin to a human, rather than being explicitly

programmed on how to deal with a certain situation. Instead of having specific conditions

to deal with the input information, a model is used. A model has a structure, and a list

of parameters that can be changed. The machine changes the values of these parameters

to reduce the error of predicting the labels, ideally on unseen data. The parameters in

many machine learning models are called weights.

Machine learning can be used to solve multiple types of problems, but each type of

problem requires a different approach to be used. Firstly, the problem must be formulated

into one of the four following methods: supervised learning, unsupervised learning, semi-

supervised learning, or reinforcement learning. Each method requires different data

representations.

A collection of data is referred to as a dataset, and consists of features to describe each

data point (instance). By examining these features, the machine is able to find patterns

in the data. Some machine learning methods require the data to be labelled with either

discrete or continuous labels. When labelling the dataset, it is recommended to label the

data with the most accurate method possible, as, at least in first principle, the machine

can only be as accurate as the data it was trained on1. If there is a large amount of

uncertainty in the labelled data, the machine will not be able to find the relationships

between features and their labels.

Once a machine learning method is chosen, the output of the method must be

determined as either discrete or continuous, because each type of data requires different

learning techniques. For discrete data, classification methods are used, whereas continuous

data requires regression. Classification works by finding a separating hyperplane that

separates the data points belonging to different classes by their features. Regression works

by finding a hyperplane that best fits the training data, and that in effect represents the

unknown function that relates the features to the continuously valued labels.

Supervised learning requires each data instance in the dataset to have at least one

label, so that the machine knows to learn the relationship between these labels and the

features of the dataset. Unsupervised learning is the opposite to supervised learning,

where no ground truth data is given to the machine. Unsupervised methods can be used

for data mining purposes. Instead of predicting labels, the machine is to find hidden

structures and trends in the data and report these back. These trends could then be

used as features to train a supervised method. Semi-supervised learning is somewhere

in-between supervised and unsupervised learning. A small amount of labelled data is

given to the machine, along with a much larger amount of unlabelled data, and the goal is

1It has been observed that Deep Learning Methods can make predictions with lower error than the
label noise. However, the full reasons behind this are not fully understood yet.

16



BACKGROUND THEORY 2.2 Machine Learning

to make use of the unlabelled in such a way that the classification accuracy is better than

when only the labelled data is used. This method is used when it is costly to label data.

Having access to a small amount of labelled data allows these methods to vastly improve

the training accuracy of the model. Reinforcement learning is a methodology in which the

machine is allowed to interact with an environment through given actions. These actions

will have different consequences depending on the situation that the machine is currently

in. The aim of reinforcement learning is to maximise the rewards from the actions taken,

and minimise any penalties. Often a trial and error approach is used here to find out the

best possible weight for the machine’s model.

An example of classification is to imagine a dataset that consists of images of cats and

dogs, and the desired outcome is for the machine to be able to automatically predict if a

cat or dog is present in the image. Using a supervised method, the dataset must first be

labelled by a human, with either ‘cat’ or ‘dog’ for each image in the dataset. The classifier

would then cluster the images by their features, for example the pixel values of the image,

and predict the classes. Whereas for an unsupervised method, the dataset would not be

labelled, and the machine would have to determine itself how many classes there are, and

which images fall into these classes.

An example of supervised regression is to imagine a dataset that consists of properties,

with the desired outcome to be for the machine to be able to predict the price of the house

pictured when valuing it. The dataset would consist of instances with features describing

the house, such as: number of bedrooms, number of reception rooms, the garden size, and

location, and labelled with the price the house was sold for. The machine finds the best

hyper-plane to fit to the data. For any new instances given to the model, it looks where

the instance would fall on this plane and thus predicts the house price.

Training a model requires the machine to either minimise an error (loss/cost) function

or maximise a fitness (reward/profit) function. The most common error function is the

mean squared error (MSE) function, equation 2.7. MSE is used for regression problems as

it forces predictions that have a greater difference to the ground truth to have a greater

error than predictions that are close to the ground truth. The most common classification

loss function is the hinge loss, equation 2.8. The hinge loss is a maximum margin loss

function, this means that the line that divides the data into classes is as far away from

the data points as possible whilst keeping the data as separable as possible. The margin

comes from (1− z)× T , where z is the distance from the line, and T is the true label. A

standard misclassification loss function, where each misclassification is worth one, does not

take into consideration how wrong a result is, whereas the hinge loss takes the distance

from the line as the error. Also the margin is used to give instances that are close to the

line an error.
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MSE =
1

n

n∑
i−1

(Yi − Ŷi)2 (2.7)

HingeLoss = max{0, 1− Y − ẑ} (2.8)

When training a model, the machine is fed the entire dataset and for each data instance,

the error is calculated. The model’s parameters can then be updated by a function of

the error value and some bias. Updating the weight should improve the model for future

predictions. The machine is fed the dataset multiple times until the error no longer

changes, this is when it is said to have converged. Each time the machine is shown the

entirety of a dataset,this is referred to as completing an epoch. When it has converged, we

can then say how many epochs it took to converge. Whilst predicting, other performance

metrics can be calculated, such as accuracy. Accuracy can be compared against other

methods to see which method performs best.

However, when evaluating a model, it is bad practice to evaluate the model on the same

data it has been trained on as it may have learnt the features of the training data very

well, and therefore will have an almost perfect accuracy. This is referred to as over-fitting

to the data. If the same model is then tested on unseen data and performs poorly, it is

said to have poor generalisation. Generalisation is the main goal of a model so it can

be used on unseen data with good reliability. To combat problems with this, there are

several techniques available. The most fundamental of these techniques is to split the

dataset into three partitions: training, validation, and testing.

These three splits of data allow the algorithm to update the weight to prevent over-

fitting to training data. When splitting the data like this, an epoch now refers to the

machine sampling all of the training and validation data. Each epoch is now split into

two phases, training and validation. During the training phase, the machine makes

predictions on the training sample and calculates its error, then updates its weights in

the model. Once the model has seen all of the training data for a given epoch, it is then

shown the validation data. Whilst predicting on the validation data, the model is not

allowed to update its weights. A common strategy is to tune the hyper-parameters of the

model during the validation phase for the next epoch, such as the structure of the model.

Additionally, the error is calculated for the validation phase, and this error is used to

determine when the model has converged. After the model has converged, the test data is

fed through the model. The test data is used to simulate future unseen data, and is used

only on the final model, thus no alteration to the model weights are made during this

phase. The performance metrics, such as accuracy, of the model on the test data are used

to compare different models and evaluated to see how generalisable the model is.
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2.2.2 Linear Regression

One of the most simple machine learning techniques is linear regression. Linear regression

is the process of finding the linear relationship that most closely represents the training

data, or finding the relationship between the dependant variable (measured output) and

the independent variable (controlled input). When only one independent variable is used,

this is referred to as simple linear regression. An example of this is measuring the value of

a house (dependant variable) in relation to the number of bedrooms and reception rooms

(independent variable), Figure 2.5. Using the hypothesis hw(x) = w1x + w0, where wi

are the intrinsic parameters to model the training data, t, the parameters are found by

minimising an error function for all data points i in t. Most commonly the least squares

approach (L2 norm), equation 2.10, is used over the absolute error (L1 norm), equation

2.9, because the absolute error is not differential. A differential function is a parabolic

which means that it converges faster, because the error is larger between steps.

J(w0, w1) = min
w0w1

1

n

∑
i

|hw(xi)− ti| (2.9)

J(w0, w1) = min
w0w1

1

2n

n∑
i=i

(hw(xi)− ti)2 (2.10)

Figure 2.5: This figure shows a toy dataset of house price compared against the number
of bedrooms plus reception rooms for a given area.
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When there is more than one independent variable, this is referred to as multiple

linear regression. However, when the desired outcome is to predict multiple dependent

variables, generally using multiple independent variables, this is referred to as multivariate

linear regression. The simplest form of this is to take the summation of features and their

weight terms, equation 2.11. If a more complex model is needed to represent the data, a

polynomial function can be used, 2.12.

h(x,w) = w0 + w1x1 + ...+ wjxj + ...+ wnxn (2.11)

h(x,w) = w0 + w1x1 + w2x
2
1 + ...+ wkx

k
1 + ...+ wk∗dx

k
d (2.12)

Each type of linear regression uses a cost function to evaluate how well the current

parameters fit the data, but it is also necessary to know how to change these parameters

and know when to stop. Here, the gradient descent algorithm is used. The gradient

descent algorithm works by starting with some initial values for wi, then changing these

values and calculating the gradient between the two errors that are given from J(wi).

Each wi is updated simultaneously by updating each by the same error. To calculate the

amount to change the weights by, the value of the gradient is multiplied by a predefined

learning rate. The learning rate decides how big of a step to take when change the weights.

If the learning rate is too high, then the loss can bounce around the minimum or possibly

diverge. If the learning rate is too low, then the update may take a long time to converge

(gradient is equal to zero).

There are two key problems that gradient descent faces. These are called local

minimums and plateaus. Local minimums are where the gradient descent converges

with all directions from the converged point having worse errors, but it is not the global

minimum for the data. Plateaus are when the gradient descent converges and is either

faced with all directions either being worse or the same as the current position, but again,

not the global minimum. To combat both of these, multiple runs of the algorithm are

carried out, but with differing random initial values for the weights. This means during

training the model will have different parameter values, therefore gradient descent will

converge in different locations. The best performing run is taken as the final model.

2.2.3 Linear Classification

Linear classifiers generally work by classifying an input vector x into one of K discrete,

disjointed classes. Therefore the input space can be divided into decision regions where the

lines that separate these regions are called decision boundaries. These decision boundaries

are defined as a linear function of x. Datasets whose classes can be separated by a linear

decision boundaries are said to be linearly separable. If a dataset is separable but not by
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a linear decision boundary then it is said to be non-linear. If a dataset is unable to be

separated then it is said to be inseparable. The data does not just have to be separable

by a line in a 2D space, it can be separable by a plane in 3D or a hyper-plane in more

than the three dimensions.

The most simple case of classification is binary classification. This is where the data

can be said to belong to one of two sets, either the positive or negative set. This binary

classification is represented by t ∈ 0, 1, where zero equals the negative class, and one

equals the positive class. For a discrete multi-class representation, t ∈ 0, 1, ..., N where N

is the number of classes. When training these are represented as vectors containing zeros

and ones. An example with 10 classes where the data is labelled as class 6, the vector

would be t = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0].

The hypothesis used for linear regression can be converted for classification by applying

a non-linear activation function, f , to obtain linear decision boundaries, hw(x) = f(w1x+

w0). Discriminate functions are functions that take a linear function and produce a

decision boundary. For example, given the function y(x), if y(x) > 0 equal the positive

class, and y(x) ≤ 0 equal the negative class, the decision boundary would be h(x) = 0.

For multi-class linear classification we simply combine multiple binary linear classifiers.

However, there is a problem when doing this, and that is how to combine the classifiers.

Firstly there is the one-vs-all method, where each classifier predicts either Ck or notCk.

This leads to N − 1 classifiers, and some areas of the decision space are left ambiguous,

Figure 2.6. The other method is to perform one-vs-one classification between classes,

this produces N(N−1)
2

classifiers. A majority vote is then used to classify the input. The

one-vs-one method again leaves some areas of ambiguity, Figure 2.6.

(A) (B)

Figure 2.6: This figure shows linear ambiguity for multi-class classification using binary
linear classifiers. Figure (A) shows the region in feature space where the one-vs-all, and
figure (B) shows the ambiguous region for one-vs-one.
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This ambiguity can be avoided by forming a single k-class classifier that consists of N

linear functions, yk(x) = wk1x+ wk0, then assigning the input point x to Ck if yk > yj(x)

for all j 6= k. The decision boundaries are then where yk(x) = yj(x).

2.2.4 Support Vector Machines

Support vector machines (SVMs) are a type of kernel method. A kernel method tries to

map a non-linearly separable input to a higher dimensionality, with the hope to find a

space where the data is now linearly separable, Figure 2.7, and can be back-projected

to the original dimensionality. However, these kernel methods do not actually map to

the input data to this higher dimensionality, but instead return the distance between all

elements in this new space. This is referred to as the kernel trick.

SVMs are max-margin classifiers that use a kernel to determine the decision boundaries.

When data is linearly separable there are often multiple solutions that separate the data,

but not all solutions are optimal. A max-margin classifier tries to find the decision

boundary that is as far away from data points as possible whist still correctly classifying,

allowing for the greatest generalisation. For a two class problem, equation 2.13 defines

the classification, where θ(x) is the feature space, and the labels are t ∈ {−1, 1}. Where

y(x) ≥ 0 then t = 1 else t = −1.

To find the maximum margin, the distance of each point to a decision boundary must

be calculated. The output of the classification function can be used to calculate the points.

For a decision boundary, the equation 2.13 is used, and for a hyperplane, the equation

is 2.14. Assuming all points are correctly classified, the distance becomes 2.15. This

translates to finding the values for b and w which maximise this distance, 2.16.

y(x) = wT θ(x) + b (2.13)

|y(x)

||w||
(2.14)

tny(x)

||w||
=
tn(wT θ(xn) + b)

||w||
(2.15)

arg max
w,b

{
1

||w||
min
n

[tn(wT θ(xn) + b)]

}
(2.16)

It is possible to hand-craft kernels for each specific problem, however this is a very hard

task. Instead one of the standard kernels are used: the linear kernel (equation 2.17), the

polynomial kernel (equation 2.18) or the gaussian radial basis function kernel (equation

2.19).
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k(x, x′) = xTx′ (2.17)

k(x, x′) = (xTx′ + c)M (2.18)

k(x, x′) = exp

(
−||x− x′||2

2σ2

)
(2.19)

SVMs are sparse methods, meaning that they only take on as little of the training points as

is needed to form a good representation of the structure of the data. These are referred to

as the support vectors. Each support vector is used to define where the decision boundary

lies, the fewer the better, and can be seen in Figure 2.7.

(A) (B)

(C)

Figure 2.7: (A) shows an example of toy data where the two classes are not linearly
separable. (B) shows the data from (A) projected into a higher dimensionality via a kernel.
(C) shows the max margin for this data and its support vectors. The solid line represents
the decision boundary, the dotted lines represent the margins, and the highlighted points
represent the support vectors.

Not all data is linearly separable, so SVMs introduce a slack variable called c which

allows some data points to be misclassified or lie inside of the margins. Any point that

lies within the margins gets added to the support vectors. The slack variable can range

between zero and infinity. If the slack is set to infinity, this enforces a hard margin.

A hard margin is where no points can be misclassified or lie inside the margins. This
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produces a model that will over-fit to the data. The decision boundary for a hard margin

would snake between data points to try and separate them into the different classes, or

create small islands around each point, making the model not generalisable. At the other

extreme setting, the slack variable close to, or even, zero creates a soft margin. A soft

margin does not penalise misclassification, meaning that effectively all data points can be

included as support vectors and misclassification is not accounted for.

SVMs are inherently binary classifiers, and suffer from the same issue of ambiguity that

linear classifiers have when performing multi-class classification by combining multiple

classifiers in either a one-vs-all methodology or one-vs-one methodology. There is the

additional problem that multiple binary classifiers have when using the one-vs-all meth-

odology, which is that there is a class imbalance, because the positive class is generally

much smaller than the combined negative class. Having unbalanced data for training any

machine learning model means that the model may become biased to predicting one class

over another as this will produce the lowest error. For example if there is a dataset of 100

images, in which 95 of them are of dogs and the other five contain cats, the model might

learn to predict only dogs as this results in a 95% accuracy and low error rate, rather

than trying to correctly classify the cats, which may lead to some dogs being misclassified

too, increasing the error.

2.2.5 Artificial Neural Networks

Artificial neural networks (ANNs), unlike other methods such as SVMs, have a fixed

number of basis functions. ANNs use parametric versions of the basis function that allow

these parameter values to be updated during training. For many applications, an ANN

model is more compact than an equivalent SVM model which has the same generalisation

performance. This means that the ANN model will be faster to evaluate, however this

comes at a price. The price is that the model is no longer convex (multiple minimums).

Due to the evaluation speed being much greater, it is often advantageous in real world

scenarios to spend more computing power on training the model, than when the model is

being used on new data. The most successful ANN is the feed-forward neural network

(multilayer perceptron), which consists of multiple layers of logistic regression models,

rather than multiple perceptrons.

ANNs take inspiration from the biological neural networks inside brains. A neural

network is made up of many neurons that are connected together, and, if activated by

their input, send an output. This is modelled by having layers of neurons called nodes

and each node in a layer is connected to all nodes in the following layers by synapses.

The most simple ANN has three layers: an input layer, a hidden layer, and an output

layer. The input layer has as many nodes as input features. The hidden layer’s number

of nodes is a hyper-parameter that can be optimised during training. Hidden nodes are
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referred to as this because the parameters to the functions in these node are unknown

and trained. Finally, the output layer consists of the same number of nodes as classes

to predict. Each node from each layer is connected to every node in the next layer. The

output of the node is assigned a weight per synapse and these weights are also updated

during training. Each node in the hidden layer consists of a summed input of all of the

inputs to the node, an activation function, and an output, Figure 2.8.

Figure 2.8: On the left a neural network with three layers is depicted. It has an input
layer, a hidden layer, and an output layer. The input layer has three nodes for inputting
data into the network. There is a single hidden layer consisting of five nodes, and the
output layer has two nodes. On the right is the representation of a node. Each node takes
in all inputs from the previous layer, applies a weighted sum, then applies an activation
function to create the input for the next layers.
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a(1) = σ(Wa(0) + b) (2.21)

There are several activation functions that can be used for σ, such as stepped sigmoid,

or tanh, but the most common activation function is the rectified linear unit (ReLU).

ReLU works by clamping values between zero and positive infinity, thus anything less

than zero returns zeros. For regression and binary classification there is only one output

node, whereas multi-class classification has a node per class. For each of the three cases,

a different output activation function is used. Regression uses the identity activation

function, where the output is equal to the weighted input of this final node. Binary

classification generally uses the stepped sigmoid function, which activates when over a

given threshold. Soft-max function is used for multi-class classification, and works by

normalising the output vector into a probability distribution. This is calculated with the

equation 2.22, where the output is now between zero and one, and all these values add up
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to one, meaning the class prediction with the highest value is the overall prediction.

y(k) =
exp(ak)∑
j exp(aj)

(2.22)

A common dataset used for training a primary classification neural network is the

modified National Institute of Standards and Technology (MNIST) [21], which consists of

grey-scale images of hand written digits at a resolution of (28× 28) pixels. This dataset

has 10 classes, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. Consider a multilayer perceptron with an input of

784, two hidden layers with 5 nodes each, and 10 nodes for the output layer, Figure 2.9.

To train this network, each data point in the dataset is fed forward through the network,

and each will get a prediction vector, eg [0.1, 0.6, 0.2, 0.3, 0.4, 0.3, 0.3, 0.6, 0.2, 0.5]. The

error of each prediction is then calculated and summed together. For example the MSE

could be used to calculate the error. The equation for this is 2.7. For a network to train,

it must minimise the selected cost function, MSE in this case, by updating the parameters

of the network’s model. During training, only the intrinsic parameters; weights and biases,

are updated. To update these parameters we minimise the gradient of the error function,

and then backpropagate the error through the network. Backpropagation is the technique

Figure 2.9: This figure shows an example ANN structure for tackling the MNIST dataset.
It consists of an input of 784 nodes, two hidden layers with five nodes each, and an output
of 10 nodes. There are a total of 3995 weights (784× 5 + 5× 5 + 5× 10), and 20 biases
(5 + 5 + 10), giving a total of 4015 trainable parameters.

of cascading the error from the output layer back through each layer of the network

to update the intrinsic parameters. To calculate the amount each parameter must be
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updated, a gradient descent algorithm is used. The gradient descent algorithm calculates

the derivatives of the cost function with respect to the intrinsic parameters. Then, small

steps are repeatedly taken towards the steepest descent until the error function converges.

The values returned by the gradient descent function inform the network of which direction

to optimise their weights towards, and how much to change the values by. The steeper

the slope of the gradient, the greater the change to the weights is.

The gradient descent returns a vector of gradients, where each value corresponds to

each output node. This vector is applied to each weight and bias connected to the output

layer to minimise the error. Rather than updating the network with each input and its

error, all of the data is fed through the network and an average error, and thus average

gradient, is calculated. The average gradient informs the previous weights and biases of

how far away it is from being on average correct. Therefore nodes which correspond to a

certain class will be updated more aggressively when far away from the correct answer

than nodes that are not helpful to the class. This is then repeated for the previous layers

to update the weights and biases and enforce which nodes in that layer are most important

per class.

For this to work well, large amounts of training data are needed, but unfortunately

doing true gradient descent with large amounts of data is very costly. This is because it

takes a long time to compute all of the gradients and then to update all of the weights and

biases. Often stochastic gradient descent is used instead. This stochastic gradient descent

differs to gradient descent by working in mini batches. The training data is shuffled each

epoch and split into small batches, where the number of instances in a batch is predefined.

Once the network has gone through a mini batch, it performs backpropagation. This

method does not give the most optimal step down the gradient of the cost function, but

it does give a close approximation at a considerable speed boost.

A key problem that gradient base learning suffers from is called the vanishing gradient.

This occurs when the gradient that is being backpropagated becomes minuscule in earlier

layers, meaning that small changes are made to the parameters in these layers. This

equates to large changes in the early layers having little to no influence upon the output.

The vanishing gradient commonly occurs when using activation functions to convert the

input into a non-linear, smaller output space. If the activation function converts the input

into a range between zero and one, such as the sigmoid function, then larger inputs are

mapped to a region where the distance between them is very small. Thus when calculating

the gradients between them, they also become very small. The ReLU activation function

solves this issue by not squashing the input into a small region, but it does discard any

negative numbers, thus allowing for a more sensible gradient to be computed.
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2.2.6 Probabilistic Graphical Models

Probabilistic graphical models are graph structures for representing the probability of data

occurrence. The edges of the graphs represent the probabilistic relationships between two

nodes, and the nodes represent random variables or groups of variables. Nodes can be either

a single variable, or a group of variables. In the book Pattern Recognition and Machine

Learning by Bishop [9], in Chapter 8 he states that there are three useful properties of

probabilistic graphical models, with the primary factor being that probabilistic graphical

models are an easy way to visualise probabilistic models.

There are two types of probabilistic graphical models: a directed graph, and an un-

directed graph. A directed graph is also known as a Bayesian network. Bayesian networks

have directions to the links in the graphs illustrated by arrows. The links show the

relationship between the random variables. Additionally, Bayesian networks are acyclic,

meaning that there are no routes that loop back to a previous node. Un-directed graphs

are known as Markov Random Fields (MRFs). These graphs have no direction to their

edges and represent the soft connections between variables. MRFs can be cyclic.

A simple example of a Bayesian network is to take the joint probability of p(a, b, c)

and to apply the product rule to get p(a, b, c) = p(c|a, b)p(b|a)p(a). This can be rep-

resented in a probabilistic graphical model, as seen in Figure 2.10.A. A more complex

network of p(x1)p(x2)p(x3)p(x4)p(x5|x1)p(x6|x1, x2, x3)p(x7|x4)p(p8|x6, x7) can be seen in

Figure 2.10.B, which illustrates the point made by Bishop [9] about these graphs making

visualisation of the model easier. These models can be used in inference in two ways:

firstly, calculating the joint probability of nodes given an assignment to the variables, and

secondly, they can be used to infer a task’s probability, given a subset of the variables.

Figure 2.10.B depicts a Markov blanket for X6 which is in the yellow region. It

consists of the parents of the node, the children of a node, all co-parents of the children.

The Markov blanket represents the set of nodes that isolate a node from the rest of the

graph, and describes the relationship of the node to the rest of the network. Therefore

the Markov blanket illustrates which nodes either depend on a given node, or the nodes

that directly contribute to the state of a given node.

MRFs must satisfy the Markov property: that the process is a memory-less, stochastic

(random) process. This means that the future states of the system must not rely on past

states, only the present state. A key property of MRFs is that if there exists a set of nodes

that can separate a given node from another node, then these two nodes are conditionally

independent. Consider three sets: A,B, and C. A is said to be conditionally independent

of B if there are no edges connecting A and B, and all routes joining A to B go through

C. Therefore if C was removed from the network, there would be no connections from A

to B. This can be written A ⊥⊥ B|C. For a MRF, the Markov blanket is the smallest

set of nodes that separate the given node from all other nodes in a graph. For example,
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(A) (B)

Figure 2.10: Figure (A) shows a simple probabilistic graphical model for
the join probability of p(a, b, c), and Figure (B) shows a more complex
p(x1)p(x2)p(x3)p(x4)p(x5|x1)p(x6|x1, x2, x3)p(x7|x4)p(p8|x6, x7) with a Markov blanket in
yellow.

for a single pixel in an image, the Markov blanket for a MRF representation of this image

would be the pixel’s four neighbours. A common use for MRFs is de-noising of images as

prior knowledge of the strength of noise can be captured by the MRF. Take two arrays,

one y for the noisy image, and another x for an unknown, noise-free image. We know that

xi, where i in the index in the arrays, and yi have the same intensity that the probability

should be high. Similarly for xi and xj, where xj is a neighbour of xi, the probability

of these pixels being the same intensity should be high. Solving for these constraints

generates an image where noisy pixels are removed if they do not match their neighbouring

pixels.

Markov chains are similar to Bayesian networks, however Markov chains allow for

cyclic networks. A Markov chain describes the probability of moving from one state to

another. For example, if there are two states A and B, it is possible to move between

these two states, and you are currently in state A. There are two possible transitions,

moving from A to B with probability p(AB), and staying in state A with probability

p(AA). If you move to state B there are two more possibilities, p(BB) and p(BA). This

allows the calculation of the possibility of moving between these states over time.

Hidden Markov models (HMMs) are used to represent a process that uses Markov

chains with unobservable states. These hidden states assume there is another process that

is dependent on the output current model. The goal of a HMM is to learn the current

model by observing the other process. HMMs also assume that the other process does not

rely on the current process. Hidden Markov random field is a variation on HMM where

instead of using Markov chains, MRFs are used. Conditional random fields (CRFs) are a
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special case of MRF where the previous (posterior) information for each variable in the

MRF are given by a dataset and the probabilities are computed including the posterior.

Alternatively, HMM are unlike MRFs because the prior information is explicit for these

types of models [10].

2.3 Deep Learning

2.3.1 Overview

Deep learning is defined as an ANN with greater than one hidden layer between the

input and output layers. Deep networks allow more abstract features to be learnt in the

deeper layers than a single hidden layer ANN, which effectively maps feature to output.

A major problem that deep learning faces is a lack of data. Since the models have more

layers, this means they also have more intrinsic parameters. When there are more intrinsic

parameters than training samples, the model has the potential to over-fit to the training

data. Zhang et al. [107] describe a theorem in which an ANN with two layers with ReLU

activation function and 2n+ d weights is capable of representing any function for a given

dataset of size n with dimensionality d. However, having more layers and thus more

parameters allows for more complex functions to be represented with fewer parameters

than are needed for the function. A common method to deal with this overfitting is to

add regularisation to the network.

There are many forms of regulations to reduce overfitting. The most common variants

are: L2 norm, early stopping, data augmentation, and dropout. L2 norm is a regulation

term that is added to the error function of the network. This is shown in equation 2.23.

L2 norm is sometimes referred to as weighted decay, as it forces the weights in the network

to tend towards zero if λ is larger.

j(w0, w1) = h(w0, w1) +
λ

2m
||w||22 (2.23)

||w||22 =
nx∑
j=1

w2
j (2.24)

Early stopping is a technique where the error is plotted per epoch for the validation

set whilst training the network. When the gradient of the cost functions for the validation

set starts to increase, generally after it has reached its optimal step, the network is then

forced to stop learning and the parameters at the best epoch are used for the final model.

This is then tested on the test set. This prevents the network from continuing to get

better results on the training set, whilst not improving the generalisation of the network

on the validation set.
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Another way to combat this is to gather more training data. However in practice this

is not always feasible, both in regards to time and cost. Thus data augmentation can be

used. This allows more data to be created from the existing training set by performing

trivial transformations. The most common transformation used for image based problems

are: flipping across the vertical axis, cropping round the subject, zooming the image, and

rotations of the image. Each of these transformations are only done by small percentages

so as to not lose important information from the input. Data augmentation does result in

more training examples, but it does not solve the issue of variety in the dataset which can

only truly be solved by using new data.

Dropout is a technique applied to individual layers of the network. It allows some of

the nodes in the network to be randomly deactivated for a given epoch. The randomness

is defined by the threshold which is set per layer. Generally, a higher rate of dropout is

used for layers with more connections, and lower or no dropout is used for layers with

fewer connections. The input layer very rarely has dropout applied to it because it is

best to provide as much information as possible to the network. This deactivation of the

nodes forces the network to learn how to deal with missing information, by not relying on

specific activations of features in the previous layer, but instead relying more heavily on a

wider range of node activations.

So far each node in a layer of the network has been fully connected to every node in

the following layer. These are called fully connected layers. However, these are not the

only types of layers that can be used in a deep neural network. In the MNIST example,

the image was flattened into a vector of 784 input features, and fed through two fully

connected layers. A network does not have to only take vectors as inputs; it can also take

a matrices, but a new type of layer must be used.

2.3.2 Convolutional Neural Networks

There are many types of layers that can be used in a deep network, with each layer being

used to learn different types of features from the training data. When working with

images, the most common layer is the convolutional layer, because it can process inputs

with a grid-like topology. Convolutional neural networks (CNNs) date back to the late

1980’s when LeCun et al. [60] created the CNN to identify handwritten postcodes.

Convolutional layers apply the K filter to an image using the sliding window technique,

Figure 2.11. Each filter is like a tiny neural network that is applied to the whole image

without updating the weights. All of the filters in the same convolutional layer have the

same size and stride. The stride is how many pixels the sliding windows move by each

step. If the stride is equal to one, the filter output will have roughly the same height and

width as the input but with K dimensions / feature maps, whereas if the stride is two,

the output is roughly half.
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These are only rough estimates due to the initialisation of the filters. The filter starts

so its edges meet the input edges in the upper left corner. The filter does not go outside

of the input image. The filter then slides across the image to the opposite side. If, when

moving across, the filter goes outside the image, it skips these pixels and moves onto the

next row. This type of convolution is called a valid convolutional layer. If it is necessary

to include the edge pixels, a technique called padding can be used. Padding is where the

image is expanded by adding zeros around the edges of the image so the kernel can visit

every pixel. Adding zeros means that the kernels are not activated for these pixels.

Each filter is referred to as a kernel. The weight values in the kernel are multiplied by

the input values. The summed output is then passed to an activation function, and this

output is stored in the corresponding location in the output feature maps. The weights in

the kernel are what are updated during the backpropagation. In turn, this changes the

output feature maps to something more meaningful to the network.

Figure 2.11: In this figure the blue box represents the sliding window of the CNN. Each
pixel in the sliding window from the data source has the learnt kernel applied to the
window of data, and the output of the kernel is then stored in the response map for the
central pixel of the window. If there are multiple kernels, multiple response maps are
created. If there are multiple channels for in-source data, the kernels are applied to all
channels simultaneously.

When working with CNNs, the number of weights quickly increases with the addition

of more convolutional layers. To reduce the number of feature activation, pooling layers

are used. Pooling layers work by applying a single filter with a stride greater than one

to each feature map. The most common type of pooling is the max pooling layer, which

usually has a stride of two and a filter size of (2× 2). Max pooling takes the largest value

in the filter and this becomes the output for the current feature map at that location. Max

pooling with this size and stride reduces the input height and width by half, Figure 2.12.
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Other examples of pooling layers are average pooling, which is taking the average of the

values the filter region, and L2 pooling, which is finding the square root of the sum of the

squares in the filter region.

Figure 2.12: This figure shows a small example of max pooling with a (2× 2) filter and
stride of 2. For each window in the max pooling, the data has been colour coded. The
max number in each window is then stored in a response which is half the size of the
input source.

2.3.3 Recurrent Neural Networks

Thus far the methodologies discussed have been focused on non-sequential data, or in other

words independent and identically distributed (i.i.d) data. This assumption means that

there is no correlation between two points, only that they belong to the same distribution.

Sequential datasets generally consist of time-dependent data, where the following sample

is partially or fully dependent on the sample(s) before it. Non-temporal sequence data

are in the form of series of data, such as sentences written in English, the base pairs in

DNA, or sequences of actions in a planning problem.

With regards to deep learning, recurrent neural networks (RNN) are the most common

method of dealing with sequence data. These types of networks use layers which allow

for memory to be added into the network, therefore allowing sequences in the data to be

learnt. RNNs use a directed graph approach, similar to that described in the Bayesian

networks Chapter 2.2.6. The edges of the network represent the sequence order. RNNs

contain a cyclic property called the hidden state, in which the previous data is passed

back to the node, Figure 2.13. The hidden state allows the RNN to remember sequence

data of varying lengths, in turn allowing for previous data to affect the next prediction.

The cyclic hidden state can be unfolded such that each part in the sequence can be given

its own layer. The input to an RNN is combined with the hidden state from the previous

layer and fed through a tanh function to force the output to be between negative one

and one. RNNs struggle with the vanishing gradient problem because the longer the

input is, the less influence the earlier time steps have on the final prediction. In turn,

during backpropagation the gradient becomes too small to make meaningful updates to

the earlier layers. Imagine each next time step the new input gets is weighted 50 percent,
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Figure 2.13: A representation of a RNN node is depicted on the left. This takes an input
and has a looping hidden state which it uses to remember past inputs. On the right is an
unfolded version of the RNN, where each recursive state is given its own layer.

and the combined previous layers is weighted 50 percent. After a long enough period the

initial layers become so small that they no longer have an effect on the final prediction.

Similarly, when the gradient is back-propagated, the proportion that effects the previous

layer decreases until it vanishes. This is a huge problem for RNNs because if there is

vital information in the initial part of the sequence it could be ignored and therefore give

incorrect predictions.

To combat the vanishing gradient problem, the Long Short-Term Memory (LSTM)

network [48] was derived. LSTMs use a gated system in which they can decide which

information is important to the prediction and what can be forgotten. In addition to

the hidden state, LSTMs also have a cell state which is passed forward to the next node.

There are three gates in an LSTM: an input gate, a forget gate, and an output gate.

Firstly the input and hidden state are combined together (h+ x). This combined state

is fed through the forget gate, which consists of a sigmoid function multiplied by the

previous cell state. A copy of (h + x) is fed into the input gate, which consists of two

paths. The first path contains a sigmoid function, and the second, a tanh function. The

tanh function is used to regularise the input, and the sigmoid decides what to forget from

the tanh output by multiplying them together. This is then added to the current cell

state. A copy of the input and hidden state (h+ x) are fed into the output gate, where a

sigmoid function is used to decided what to pass on to the next node. The cell state is

given two paths. The first goes to the next node, and the second goes through a tanh

function which is multiplied by the output of the output gate. This becomes the hidden
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Figure 2.14: This figure illustrates the inner workings of an LSTM node. The node has
three inputs: a cell state, a hidden state, and an input of data. These are fed through
various gates containing sigmoid and tanh functions. The sigmoid functions control which
data is to be remembered and the tanh functions regularise the information stored.

state for the next node, and is illustrated in Figure 2.14.

The output from either an LSTM or an RNN must go through a feed forward layer to

make the final prediction. The error from this can then be back-propagated through the

recurrent networks to update the weights and biases for each of the functions.

A variant of the RNN is the bidirectional RNN (BRNN), which was invented by

Schuster and Paliwal [88] in 1997. The BRNN allows the data to not only flow forwards

but also backwards. Figure 2.15 shows a mock example of the BRNN structure. This new

flow of data allows the network to have a greater amount of data available to it, meaning

both past and present data can be used to train the network. Therefore networks that use

this type of data flow will generally have a better understanding of context. The forward

and backwards flows are not connected to each other’s inputs. This type of data flow

through an RNN was then adopted to create a bidirectional LSTM (BLSTM) by Graves

and Schmidhuber [39]. Here, they used two LSTM architectures, one for the forward data

flow and the other for the backwards data flow. BLSTMs have proven to be very capable

of learning context in a variety of different scenarios, including: speech recognition [40],

text recognition [84], and brain-controlled robotic arms [53].

2.3.4 Loss/Cost Functions

Throughout this chapter loss functions, sometimes referred to as cost functions or error

functions, have been mentioned, without going into much detail of what they exactly are.

Loss functions are used to compute how correct a prediction is compared to its ground
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Figure 2.15: This figure shows the data flow through a BRNN.

truth. This error value is then used in backpropagation to update the weights of the

networks. There is no master loss function that works best for all situations, in concordance

with the ‘no free lunch’ theorem. In particular, loss functions are task-dependent. At the

very least, regression and classification use their own types of loss functions.

The most common loss function that is used for regression problems is mean squared

error (MSE). MSE is calculated by taking the sum of the prediction (x) value minus the

ground truth (y) value, squared, then divided by the number of samples, equation 2.25.

Other common regression loss functions are: mean absolute percentage error (MAPE),

mean squared logarithmic error (MSLE), and Huber loss. MAPE computes the error

as a percentage by minusing the ground truth from the prediction, and dividing by the

ground truth value. This make MAPE robust against outliers. MSLE uses a logarithmic

scale, meaning that it will penalise underestimating more than overestimating, thus again

making it robust to outliers. Huber loss is used when the solution being less sensitive to

outliers is needed. The Huber function is quadratic with small values, but linear with

large values. This allows for this function to be less sensitive to outliers.

MSE =
1

n

n∑
i=1

(x− y)2 (2.25)
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For classification, the most basic loss function is binary cross-entropy (BCE). BCE is

used for single class predictions, also known as binary classification. BCE, equation 2.26,

measures the probability prediction between zero and one, and gives a higher loss the

further away from the ground truth the prediction is. If the prediction is 100% correct

then this loss would be zero. For multi-class problems, categorical cross-entropy can be

used. This calculates the separate loss between class predictions and their ground truths,

then sums these results, equation 2.27.

BCE = −(ylog(x) + (1− y)log(1− x)) (2.26)

categoricalcross− entropy = −
M∑
c=1

yo,clog(xo,c) (2.27)

Jaccard loss [6] is a loss function specifically designed to work with segmentation

problems. In machine learning, it is often the case that the loss function is not the same

metric as the metric used to measure the performance of the network. For segmentation,

the intersection over union of the ground truth and prediction is often used. These metrics

often differ because the performance metrics are generally not differentiable. If a function

is not differentiable, then it cannot be used with gradient descent algorithms. Thus

Berman and Blaschko [6] proposed an estimation of the Jaccard index as a loss function,

such that the same metric used to evaluate can be used to train the network.

For unbalanced multi-class datasets, where the number of instances per class are

not equal, it has become common practice to use weighted loss functions. Weighted

loss functions introduce a new parameter per class to existing loss functions, which the

calculated loss per class is multiplied by. This weighted loss is calculated using the

distribution of instances in the dataset, or can be tuned as a hyper-parameter.

2.3.5 Optimiser Functions

Optimiser functions are variations of gradient descent which minimise the objective

function of the parameterised network model by updating the parameters in the model

in a direction opposite to that of the calculated gradient. Optimiser functions use the

learning rate to determine how large of a step to take. Too large of a learning rate would

result in the update overshooting, whereas too little of a learning rate would result in

the network taking forever to converge. Learning rate is a hyper-parameter that can be

adjusted for each network. An increasingly popular method is to use a learning rate decay,

where the learning rate decreases the more epochs the network completes, getting closer to

convergence. This decreases the likelihood of overshooting a lower local minimum, whilst

being able to pass earlier higher local minima.

Batch gradient descent is the simplest version of gradient descent. The gradient descent
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algorithm is performed on the whole dataset to compute a single update to the network.

This is very slow and memory expensive, thus it is not generally used. Batch gradient

descent does guarantee to find the local minimum for a convex function and a local

minimum for non-convex functions. The opposite to batch gradient descent is stochastic

gradient descent (SGD). SGD performs an update to the network’s parameters for every

instance in the dataset. This means it is much more memory-efficient and generally faster

to compute, however SGD generates more fluctuations, causing overshooting. This can be

a useful side effect as it allows the network to jump out of the local minima, but this can

cause it to jump around the global minimum multiple times before converging. Mini-batch

gradient descent combines the best of batch gradient descent and SGD by computing the

update over several instances, generally between 50 to 256 instances, depending on size of

network. This mini-batch methodology reduces the instability of SGD by averaging out

the errors and increases the speed at which the batching process can take place, since less

data is needed to be stored and computed at once.

To improve the gradient descent methods further by speeding up convergence, optimiser

functions are used such as: Adagrad [27], RMSProp[94], and Adam[55]. Adagrad optimises

the gradient descent algorithm by adapting the learning rate to the parameter. Parameters

that are frequently occurring have smaller updates, whereas less frequent parameters have

larger updates. This adaptive gradient descent allows large sparse datasets to be used,

where the number of instance per class is small. RMSProp is an unpublished work by

Tieleman and Hinton [94], which was described during one of their lectures in a Coursera

class. RMSprop stands for root mean-squared propagation, and is used to adapt the

learning rate for each parameter. This is achieved by taking the average magnitude of the

current and several previous gradients for each parameter, then updating according to

the calculated average gradient. Adam uses an adaptive moment estimation which works

similarly to RMSprop, but instead when the current gradient levels tends toward zero, it

gains more weight, causing the updates to decrease faster.

2.3.6 Residual Neural Networks

Residual neural networks (ResNet)[46] use skip connections to allow data to bypass specific

layers. This allows data to skip, in general, one to three layers in the network. The main

motivation for using ResNets in a network is to reduce the vanishing gradient problem.

The layers skipped are assigned the function F (x), where x is the input into the first

layer in f . The skip layer allows x to be passed into f and bypassed at the same time.

The result of f(x) is then summed with x, and this result is passed into the following

layers. To address the vanishing gradient, the network can learn which skipped layers are

useful to the network and which are not. If the optimal solution is to use just x rather

than f(x) + x, then the network can set the weights of the layers in f(x) to zero which

38



BACKGROUND THEORY 2.3 Deep Learning

Figure 2.16: This figure shows the structure of a ResNet. The layers that are skipped are
represented by f(x) and the input to the ResNet layer is represented by x. The output of
f(x) is summed with a copy of x before being passed to the next layer.

means that f(x) + x becomes an identity map. This technique is easier for the network to

compute rather than computing f(x) to be an identity map. This is especially true with

multiple skipped layers. With the weights set to zero, the gradient will not be adjusted

when passing through f(x), meaning earlier layers receiver a larger update. Figure 2.16

shows the structure of a ResNet skip layer.

Autoencoders and Hourglass network

Autoencoders [56] are comprised of two blocks of layers. The first block is the encoder

block, followed by the decoder block. The encoder block reduces the input dimensionality

down to a smaller, encoded version of the input. This is referred to as bottle-necking.

The decoder block takes the encoded input and tries to recreate the original input from

the reduced information. The decoder loss is measured in regards to how closely matched

the reconstruction is to the input. Autoencoders work very well for de-noising data. This

is the case because when the input is compressed down into its encoded version, there is

information loss, and this is generally the noise in the data. When decoding, the decoder

has no knowledge of the noise, so it is not included. A side effect of using an autoencoder

is that it has built-in anomaly detection. When the trained model is used on new data

and the new data does not fit the trend of the training data, the decoder will generate an

output dissimilar to the input. Therefore the loss for the decoder will be high, and can be

used to spot anomalies.

Hourglass networks [77] are a special case of autoencoders that add skip layers from

ResNets into the network. Using skip layers allows for deeper autoencoders, reducing the

representation of the input down to an absolute minimum. Then the data is scaled back
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up in the decoder. At each reduction in dimensionality, a skip layer is added from the

encoder block to the decoder block at the same resolution. Stacked hourglass networks,

multiple adapted autoencoders piped one after the other, allow the network to capture

data at different scales across the entire input. The name hourglass comes from the shape

the autoencoders represent when drawing their network structure.

2.4 Resuscitation

In this section the processes of Cardiopulmonary resuscitation (CPR), with an emphasis

on CPR for newborn babies are discussed. The process described here will be reintroduced

in Chapter 8 as the use-case for the action recognition with tiny domain-specific datasets.

CPR is the procedure used to revive someone from unconsciousness or apparent death

caused by a physiological disorder, e.g. the patient has stopped breathing, or their heart

has stopped beating. The currently recommended CPR procedure by the National Health

Service [76] for adults is:

1. Place the heel of your hand on the centre of the person’s chest, then place the other

hand on top and press down by 5 to 6cm (2 to 2.5 inches) at a steady rate of 100 to

120 compressions a minute.

2. After every 30 chest compressions, give 2 rescue breaths.

3. Tilt the casualty’s head gently and lift the chin up with 2 fingers. Pinch the person’s

nose. Seal your mouth over their mouth, and blow steadily and firmly into their

mouth for about 1 second. Check that their chest rises. Give 2 rescue breaths.

4. Continue with cycles of 30 chest compressions and 2 rescue breaths until they begin

to recover or emergency help arrives.

Postnatal Resuscitation is a specific subtype of resuscitation for newborn babies. This

procedure differs greatly to the adult as a newborn baby’s body is too weak to sustain chest

compressions. Additionally their respiratory and cardiovascular systems are too fragile

for the pressure from another human blowing into them. Thus an alternate procedure is

needed [82]. Unlike the adult procedure, this requires additional equipment for different

scenarios.

When the infant arrives, they are transferred to the bed where they are wiped down

with a towel, and simultaneously their heart rate is checked via a stethoscope. If the

infant is either not breathing or crying, a good colour tone, or born before term, then

the procedure must begin. If the infant is not warm, then they must be wrapped in

a polythene bag to help warm them up to prevent hypothermia. If the infant is not

breathing or crying, then they must be stimulated via rubbing and firm squeezing of the
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limbs. Meanwhile, the head is tilted back and away from their body, to stretch the neck

and open the airways. The head is then supported in this position. If the airways are

blocked, then they must be cleared using a suction tube and a laryngoscope.

If the heart rate is below 100 beats per minute, they are gasping for air, or are

experiencing apnea (no longer breathing), then an electrocardiogram (ECG) and SpO2

monitor (pulse oximeter) can be attached along with the use of a positive pressure

ventilation (PPV) to give assisted breathing. If they are not breathing, then five inflation

breaths lasting exactly three seconds should be given. After that, ventilation breaths can

be given for 30 seconds at one second intervals.

If the infant does not meet these requirements, but has laboured breathing or has

persistent cyanosis (blueish tint to skin), then a continuous positive airway pressure can

be used and then the infant can go to post-resuscitation care.

If after 60 seconds of the procedure beginning and receiving assisted breathing, the

infant’s heart rate is above 100 beats per minute, then they can be sent to post-resuscitation

care. However, if this is not the case then adequate ventilation should be used, and

endotracheal tube insertion (intubation) can be considered. If intubation is attempted,

a surfactant can be used to allow the alveoli to remain open. This makes gas exchange

easier. Once intubation is complete, the PPV can be attached to the endotracheal tube.

If the infant’s heart rate drops below 60 beats per minute, then chest compressions

coordinated with the PPV can start. The ratio of compressions to breaths is 3:1 and

the superimposed thumb position (thumbs overlapping each other) is used to administer

compressions to the lower one third of the sternum. If the heart rate does not increase, then

an IV containing epinephrine can be administered, and chest compressions are continued.

Once the infant’s heart rate is back above 60 beats per minute, assisted breathing can be

resumed. Finally, once the infant’s heart rate is above 100 beats per minute, they can be

taken to post-resuscitation care.

If the procedure is not followed correctly, severe damage can be caused to the newborn,

such as burst blood vessels or blood clots, which can lead to brain damage, or worse death,

of the infant.

According to Perlman et al. [82], approximately 85% of infants born at term will not

need any assistance with breathing within 10 to 30 seconds of being alive, and an additional

10% will respond during the drying process. This leaves about 5% of term babies that

require assisted breathing via PPV (3%), incubation (0.1%) or chest compressions. Even

though the percentage of babies needing CPR is small, the large number of births each

year means this is still a significant number. Having staff trained to highest possible

standards would decrease the number of complications or deaths arising from incorrect

procedural issues.
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Chapter 3

Related Work

In this chapter, work related to this thesis will be discussed. The following topics will be

covered: superpixels in deep learning, deep-learned semantic segmentation, deep learning

with small domain-specific datasets, and annotation software.

3.1 Superpixels in Deep Learning

In this section the use of superpixels in deep learning networks is discussed. Superpixels

have become a staple in semantic segmentation as their inherent edge detection is useful

for defining object boundaries.

In 2018, Zhao et al. [109] proved that using SLIC superpixels [1] with CRF upon the

predictions from a fully convolutional networks (FCN) [89] can clean up the boundary of

the predictions. Figure 3.1 illustrates the pipeline used in Zhao et al. [109] architecture.

To verify their results they used the following two datasets: PASCAL VOC 2012 Dataset

[30], and Cityscapes [20][19]. For both datasets, they beat the state-of-the-art networks at

the time with a mean Jaccard index over all classes in the datasets of 74.5% for PASCAL,

and 65.4% for Cityscapes. Comparing the mean Jaccard indices to a baseline network

using a plain FCN with eight pixel strides resulted in an increase from 62.7% for PASCAL,

which is an 11.8% absolute increase, and for the Cityscapes dataset an increase of 9.3%,

from 56.1%. The closest competitors at the time were DeepLab V2 [17] for Cityscapes,

and Deep Parsing Network (DPN) [66] for PASCAL.

Kwak et al. [58] in 2017 used superpixels in their network by creating a new pooling

layer, which they dubbed Superpixel-Pooling (SP) layer. Like a traditional pooling layer,

they aggregate features together, but unlike traditional pooling that uses a rectangular

windows to aggregate the feature in, they use the shape of a superpixel. The output of

the SP layer is a (N ×K) matrix, where N is the number of superpixels and K is the

number of channels in the feature map. The SP layer was developed to solve the issue of

segmentation classification where the output of the network generated a low resolution
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Figure 3.1: This figure shows the data flow chart proposed by Zhao et al. [109] . Image
taken from [109].

prediction with poor shape encapsulation. The effects of the Superpixel-Pooling can be

seen in Figure 3.2. Their results showed mean accuracies of 50.2% and 46.9% on the

validation and test set of the PASCAL 2012 dataset, respectively.

Superpixels are often used for feature selection for training a network. Xiong et al.

[105] used SLIC superpixels in their work with plant segmentation to generate candidate

examples to train their network. These candidates are automatically labelled to either

be from the confirmed background or a plant candidate, using an offline CNN. They

also use another type of superpixels in their work, Entropy rate superpixels (ERS)[65].

ERS are generated using a random walk though graph representation of the input image,

where each node represents a pixel and the edges between adjacent nodes specify the

similarity between the two nodes. The entropy rate of the random walk is used to create

compact homogeneous superpixels. In Xiong et al. [105]’s work, the authors used ERS

to optimise their segmentation results. They claimed to have attained better results

than other segmentation algorithms used in their field of research, such as HSeg[93], i2

hysteresis thresholding [26] and jointSeg [68], with an F1 score of 0.7673.

More recent work in 2019 by Verelst et al. [101] reported on the creation of a new

superpixel method that combines the handcrafted algorithm of SLIC with deep-learned

features of an image to compute superpixels. The authors did this by extending the

space in which the SLIC algorithm clusters on from just the LAB colour space plus x

and y coordinates, to 81 features including the original five. The new features came

from intermediate layer outputs (layers half-way down the feed-forward artificial neural

network), which capture a deep representation of texture, gradients and edges. Using these

deep representations allows the algorithm to better fit object boundaries compared to

SLIC. Without these extra features, SLIC sometimes expands the segmentation boundary

beyond the actual object boundaries if the object and background have similar texture
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Figure 3.2: This figure shows how superpixels improve the segmentation of the target
object in the work by Kwak et al. [58]. Image taken from [58].

and colour. The extra deep features allow the algorithm to distinguish between the two

areas. This is achieved by using semantic segmentation ground truth masks as a means

to correct the boundaries during training. Verelst et al. [101] claimed that with their

three-layered regression network, their new superpixels were of higher quality and could

be fine-tuned for specific domains.

These discussed works use superpixels with deep learning, however none of these works

learn the structural representation of superpixels. This is the novel idea proposed in this

thesis, that superpixels could be learned by a CNN. Having superpixels that are created

using a deep network rather than a handcrafted algorithm allows these deep-learned

superpixels to be truly fine-tuned during backpropagation. In turn this means that the

superpixels would be able to be fine-tuned for a specific domain, and as shown in this

thesis, that is beneficial to be used with tiny domain-specific datasets. The adapted

SLIC superpixels which make use of deep-learned features, by Verelst et al. [101], have

the possibility to work well for tiny domain-specific dataset because the deep-learned

image features could potentially encapsulate vital information from the dataset to better

segment the objects. However, when being used with tiny amounts of data, the major

problem that this methodology may face could be that features learnt by the network

may not be generalisable, meaning these superpixels do not better represent the data. In

a worst-case scenario the non-generalised features could be detrimental to the creation of

the superpixels.
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Figure 3.3: This figure shows the FCN architecture proposed by Long et al. [67]. Image
taken from [67].

3.2 Deep-Learned Semantic Segmentation

In this section the use of deep-learned semantic segmentation networks are discussed.

Semantic segmentation is a useful tool for many different applications, ranging from

identifying brain tumours in MRI scans [75], to aiding self driving cars [99].

One of the most popular learnt segmentation methods is the Fully Convolutional

Networks (FCN) developed by Long et al. [67][89] in 2015. In their work they use an

end-to-end network to produce pixel-by-pixel predictions. FCN are networks that consists

of solely convolutional layers, pooling layers and up-sampling layers. They do not make use

of dense (fully connected) layers. To achieve pixel-wise predictions a (1× 1) convolutional

kernel can be used instead of a dense layer.

This produces both segmentations and classification. This is achieved by their skip

architecture, which makes use of both the deep coarse semantic information and the

shallower appearance information. The residual data is added to the later layers by

element-wise additions. At the time of publishing they were achieving state-of-the-

art results on VOC2011 and VOC2012 [30]. The FCN architecture can be seen in

Figure 3.3. They use multiple convolutional layers followed by some pooling to reduce

the dimensionality down to (10× 10× 21). This is then up-scaled using strides of first 32,

then 16, then 8, using an additional convolutional layer between each up-scaling. At each

scale the predictions become more precise, at the increased cost of computing time due to

the larger network, however despite being more complex the FCN-8 network is said to

run at approximately 175ms at inference time.

There are a group of residual networks referred to as encoder-decoder networks. These

form an hourglass shape by using convolutional layers followed by pooling layers in the
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encoder, which shrinks the resolution. Then the decoder uses a technique to increase

the resolution back close to the input size of the hourglass. There are several different

techniques that can be used to increase the resolution in the decoder network, such as

up-pooling, up-sampling, and deconvolutions.

U-net [85] is an hourglass network that was originally designed for segmentation on

biomedical images. The Ronneberger et al. [85] network uses a repeated pattern of two

convolutional layers with rectified linear unit activation function, followed by (2 × 2)

max pooling with stride 2 for down-sampling in the encoder. In their decoder, they

use an up-convolution (up-sampling), which first halves the number of feature channels

and then adds the residual feature map as new layers. This is then followed by two

convolutional layers. To achieved full image segmentation they use a sliding window with

even dimensions. In their work they achieve high intersection over unions results (Jaccard

index) on the ISBI cell tracking challenge 2015, with an average increase of 9.03% on the

dataset and 31.49% on another in the challenge.

SegNet [3] is an hourglass network that uses up-pooling as its means of increasing

the resolution of the data in the decoder part of the network. The up-pooling differs

to the previously discussed up-sampling in that instead of using residual feature maps,

SegNet uses stored pooling indices. During max-pooling, traditionally the location of the

max value is lost, but by creating a mask of the locations of the max values per pooling

operation, the up-pooling layer is able to correctly infer the locations of the maximum

values. This produces a sparse feature map. To create dense feature maps from these

sparse feature maps, they use two to three convolutional layers. Use of a indices mask

compared to the full feature map in U-net reduces the amount of memory needed for the

network, as less is data is required. At the time of publishing, their network out-performed

the current state-of-the-art on the CamVid dataset[13] when training with over 80K

iterations, whilst reducing the average computation time and memory.

Deconvolutional layers are like an inverse convolutional layer and are also known as

transpose convolutional layers. The kernels for deconvolutional layers can be thought of as

a drawing stencil that increases the magnification of the input. Unlike interpolations, the

kernels are learnt to produce outputs that are as close to the original input from the deep

representation of the input. Deconvolutional layers can not only be trained to predict the

input image, but also a segmentation mask [78]. Noh et al. [78] outperformed FCN-8s on

VOC2012 [30] with a mean increase of 10.3% for several classes.

The hourglass network structure in the stacked hourglass paper by Newell et al. [77]

uses residual modules rather than the traditional convolution-only layers. This network

was designed to predict heat maps for human pose estimation. Each residual module is

comprised of multiple convolutional layers with a skip layer that spans three convolutions.

For the up-sampling they use nearest neighbour up-sampling [96]. Their hourglass network

is symmetrical, meaning the encoder and decoder have the same number of steps up or
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down, therefore giving a pixel-to-pixel prediction of the input to the hourglass.

In 2019, Fu et al. [35] proposed a stacked deconvolutional network (SDN), which is a

hybrid of the stacked hourglass network and the deconvolutional network. Their network

uses dense blocks from DenseNet [49] as the front-end. Dense blocks consist of multiple

convolutional layers back-to-back, with the input of the following convolution being the

concatenation of the previous output plus the input. At the end of a dense block a (1× 1)

kernel is used in the convolutional layer to reduce the feature maps and preserve the

spatial resolution. Like the RNN component of stacked hourglasses, they pass information

from earlier layers via skip layers. Where their network differs to a stacked hourglass,

is that the skip layers start in the DenseNet and are passed into the deconvolutional

layers. At the time of publishing, their work out-performed the state-of-the-art methods

on: VOC2012 [30], VOC2012+COCO [64], CamVid [13], and GATECH [51]. Respectively,

SDN performed 0.9%, 0.9%, 2.2%, and 2.4% better than the state-of-the-art for these

datasets.

In this thesis, the work of Newell et al. [77] is extended from human pose estimation

to semantic segmentation by pixel-to-pixel predictions. In its current state, their network

generates heat maps at a lower resolution than the original input to the network. Thus for

pixel-to-pixel segmentation, an additional up-scaling layer would be needed. As well as

this, it would be necessary to change the target of the network from Gaussian maps of key

landmarks to N binary masks, one for each class. FCNs produce boundary predictions

that are not crisp, but in this thesis the inclusion of superpixels will be used to combat this

by making use of their inherently superior boundary detection. Having poor separation

between objects becomes detrimental when there are small objects amongst large objects

because these smaller objects can easily be misclassified. In medical datasets there are

often small objects, such as a syringe, next to large objects, such as hands. If is the

boundary is poor then the syringe could be undetected, which for certain applications

would be a negative outcome, like when using a syringe is a critical step in a procedure.

The following two modern architectures could be used instead of the hourglass network:

PSPNet [108], and DeepLabV3 [18]. The exact backbone architecture is not the focus

of research in this thesis. Instead, the techniques to aid learning with small datasets

which can be used with any deep CNN, are the focus. Both PSPNet and DeepLabV3

perform semantic segmentation. PSPNet uses a pyramid style architecture where the

feature maps are pooled into multiple resolution then combined back together using

up-sampling and concatenation. DeepLabV3 improves upon their earlier work [16],[17]

by removing the post-processing dense conditional random fields, and adding atrous

convolution. Atrous convolution applies the kernel with a differing number of pixels

between the used pixels, dubbed “rate”. When the rate is one, the kernel is applied to

neighbouring pixel. Increasing the rate affects the network by giving it a wider field of

vision, which allows object encoding at multiple scales.
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3.3 Deep Learning with Small Domain-Specific Data-

sets

Traditionally, deep learning requires large amounts of data to train a network with

adequate generalisation performance. However, there are many real world applications for

which acquiring what is normally considered to be sufficient data to train a network is

not feasible, either in terms of the number of examples that can reasonably be collected

in the first place, or the extent to which it is feasible to generate large amounts of ground

truth data.

The problems caused by having less data to train a network on can be broken down

into three categories: poor generalisation, class imbalance, and poor optimisation.

Common practice to reduce poor generalisation is to use data augmentation. Data

augmentation applies predefined transformations to the input data with random values,

between set ranges for each transformation. Data augmentation is not applied to the test

set as this would give different results for comparison. The more epochs that are run

effectively increases the number training samples the network has seen. Another option is

to increase the number of samples per epoch by having multiple instances of the same

input but with different augmentations applied. There are four types of transformations

that can be applied to image inputs: flipping the image either horizontally or vertically,

cropping and/or zooming the image, increasing or decreasing the brightness, sharpness

and contrast of the image, or rotating the image. All transformations must also be applied

to the ground truth data to keep them correct.

Another method to increase the number of training samples is to use artificially

generated data. Original methods for artificial data generation in regards to computer

vision would use computer-rendered images. More recently, generative adversarial networks

(GANs) [37] have become popular for generating new data. GANs use a two component

architecture called the generator and the discriminator. The two components compete

against each other during training, with the generator creating fake images and the

discriminator determining which are real and which are fake. Both networks try to

minimise their loss functions throughout training until the losses plateau and the generator

is no longer improving.

A third method for dealing with poor generalisation is to use semi-supervised learning

methods such as active learning, or cooperative learning. Active learning is a concept

where the algorithm asks the user to label specific data points in a similar way to how

a child asks what new things are called. As only the requested data points are labelled,

there are fewer labels in the dictionary for the learner to learn than classic labelling, thus

speeding up the process of learning. Additionally, the learner only asks for the next most

informative data points, therefore there is less redundancy [111]. Cooperative learning is

where both the computer and user annotate unlabelled data [22]. Initially the user would

48



RELATED WORK 3.3 Deep Learning with Small Domain-Specific Datasets

label the first few frames in a dataset, then the computer would annotate the rest of the

dataset. As the computer will not always get it right, each label is given a confidence

value which is calculated using a pre-existing classifier. If the confidence is lower than

a given threshold, the user is prompted to correct it. Any corrections made are then

propagated through the network to improve the labels to improve labelling speed further.

Class imbalance refers to the number of samples in each class in the dataset. Data

balancing is done because unbalanced datasets cause an unbalanced penalisation during

propagation. This is due to the inherent weighting of the larger classes over the smaller

classes, meaning that small classes do not get learnt as they contribute to the loss function

less and optimising the larger classes generates a greater gain. There are two main

strategies to compensate class imbalance. Strategy one consists of either up-sampling

the classes with fewer instances than the more populated classes, or down-sampling the

more populated classes so that they have the same number of samples as the smaller

classes. Up-sampling, sometimes referred to as over-sampling, re-samples the same data

point more than once during each epoch to increase the number of samples for specific

classes, and is often used when there is a small total number of instances in a dataset.

Down-sampling, sometimes referred to as under-sampling, takes a subset of the larger

classes to decrease the number of instances, and is used when there is a large dataset with

many thousands of samples. The second strategy for combatting data imbalance is to

adopt the loss function for weighted classes, where the inverse weighting of the class ratio

is used to weight the classes during the loss calculations.

Poor optimisation of a network is caused when a network is trained on a small dataset

and the network does not find an optimum solution. This can be seen by the loss failing

to decrease over time, or by the presence of very sporadic spikes in the loss values. There

are several methods of tackling this such as: problem reductions, transfer learning, and

using methodologies that learn with less data.

Problem reduction is the process of converting a problem from a high number of

features to a lower, more manageable number of features. The more features a problem

has, the more data is needed to train a network, and a larger network is generally needed

to be able to represent and encapsulate all of the features. A traditional machine learning

method is principal component analysis (PCA) [81], which maps high dimensional features

to a lower dimensionality, therefore reducing the number of input features and increasing

the variance between the remaining features. The co-variance matrix (correlation) between

features and eigenvectors are calculated. The eigenvectors with the largest eigenvalues

can be used to represent the data, because they encapsulate enough of the information to

reconstruct the majority of the variance of the data. Other methods for image data such

as scaling down the resolution of the input is a good method of reducing the number of

features for CNN networks.

Transfer learning is the act of using the weights from a network trained on another

49



RELATED WORK 3.3 Deep Learning with Small Domain-Specific Datasets

dataset as the initial weights for the network. Using a pre-trained network from an online

resource in turn limits the user to keeping the same network structure. Layers can be

removed and added to customise to the problem, but the main architecture remains the

same. Another option is to design an network architecture and pre-train this network

on a larger, more varied dataset. This has the drawback of having to train the network

multiple times with different data which can be time-consuming. Transfer learning is

a technique that can be used with all varieties of deep learning, from large datasets to

small domain-specific datasets. Transfer learning works best when used with datasets

which have similar classes, or similar object structures. To use transfer learning with

a new dataset that uses a different sized input dimensionality, the head of the network

must be removed and updated to fit the new input, whilst keeping the trained weights.

Similarly the output layer can be replaced to fit the new output dimensionality. Another

method that can be used with transfer learning is to train iteratively, starting with a

single class and adding another class with each iteration, until all classes are learnt by the

network. This is a good strategy for small datasets, as it allows the network to focus on

an individual class at a time. This can improve performance on less frequent classes.

Two examples methodologies for learning with less data are one-shot learning, and

zero-shot learning. One-shot learning [31] tries to mimic how humans can see a single

instance of an occurrence and then recall it at a later date to classify something as the same

as this single example again. This is a hard task for the previously described networks

and their loss functions. To combat this, either the loss function needs to be changed,

or the representation of the problem needs to change. Siamese neural networks (SNN)

[12] are a type of one-shot learning where the network consists of two identical network

structures and the resultant feature maps can be compared to determine if two inputs

are of the same type. The loss function for SNNs is used to optimise the radius of the

classification area of the clusters. During evaluation of the model, the input data is passed

to one path of the network, and repeatedly for each class in the dataset, a sample is given

to be passed to the other path of the network. The SNN calculates the distance between

the two output feature maps, and if they are close in hyperspace then they are classified

as the same class.

Zero-shot learning [59][80] uses large datasets in which the classes are similar to the

problem classes, such as ImageNet [86], to pre-train a network but without including the

target classes in the training. The pre-trained network’s final classification layers are

removed to expose the feature maps, then the network is ran over the dataset to create

a mapping to feature space. The unseen classes are also passed through the network,

and the feature space is then clustered using a clustering algorithm, such as K-nearest

neighbours (KNN). The resultant KNN clusters can be used for classifying new data.

Recent work by Mercedes Torres Torres et al. [97][98] used a small domain-specific

dataset to perform gestational age estimation using deep learning. They made use of
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Figure 3.4: This figure shows the pipeline proposed by Torres et al. [97] for gestational
age estimation from three different images. This figure was taken from [97].

several FCN networks to predict probability vectors for different parts of the newborn’s

body, face, foot, and ear. The vectors were then combined, plus the baby’s weight, to

feed through a regression network in order to predict the infant’s gestational age. This

pipeline can be seen in Figure 3.4. This was done using only 130 babies with between two

and ten photos per body part taken. The results were calculated both upon the Jaccard

index of segmentation for each of the classes, and the regression predictions for the baby’s

age. In their work they achieved better segmentations than the ground truth data, with

smoother and closer matches to the actual object than the human annotations. Moreover

they achieved an RMSE of 1.14 with a standard error of 0.88 (6.16 days), which at the

time were state-of-the-art results.

In 2020, a paper was published by Meinich-Bache et al. [72], Activity Recognition from

Newborn Resuscitation Videos, tackling a similar problem to the Newborn Resus dataset

that is used in this thesis, demonstrating that this is still an active field of research. In

their work, they used a 2D CNN to perform object detection via bounding boxes and

object tracking to follow the objects over time. Due to low frame rates, they used frame

interpolation, then calculated the optical flow between frames. The RGB image and

optical flow images were collected over several time intervals and fed into separate 3D

CNNs, where the output feature maps were combined together before making predictions

on whether an action is active or not. The two systems were separate networks and the

information was piped from one to another. The dataset used in this works was the
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Laerdal Newborn Resuscitation Monitor(LNRM) dataset[102]. In Meinich-Bache et al.

[72]’s work, only 96 of the 481 videos were randomly chosen, with six actions. These were:

uncovering the baby, stimulation, ventilation, suctions, attaching the ECG, and removing

the ECG. This was done to reduce the number of videos to annotate. In their results they

claimed that the system performed well for ventilation, with a recall value of almost 90%,

and suction with a recall value of about 60%. On the other hand, the system did not

detect uncovering or stimulation of the baby.

Meinich-Bache et al. [72] system relies on bounding box detection to find the objects in

the scene, and with such a small dataset this could lead to the problems such as confusion

of what the object actually is. This can be seen with how the blanket is not detected

when the infant is covered and uncovered. Using semantic segmentation would allow for a

better understanding of what is happening in the scene. Additionally, this would reduce

the dimensionality of the data. Unlike Meinich-Bache et al. [72], a 3D CNN was not used

in this thesis, instead LSTMs were used because these have proven a superior approach to

learning time-dependant information. The major advantage of LSTMs over 3D CNNs

is their ability to process longer temporal sequences. With longer sequences 3D CNNs

require significantly more memory to be able to process the sequence.

Additionally this thesis utilises multiple methodologies presented in this section to

combat the use of small datasets. Semi-supervised learning was employed to help annotate

the Newborn Resus dataset. Transfer learning was used during training of the semantic

segmentation with deep-learned superpixels. To learn action recognition, dimensionality

reduction was applied to convert from RGB images at 1080p resolution down to (32×32×2)

input to the action recognition network. LSTM layers work best when there are fewer

features for them to find patterns in. When using larger inputs to an LSTM, the training

time become very long and in some cases unusable. Additionally, having a complex input,

such as raw RGB values, increases training time. This is because the LSTM has to

effectively decipher the raw image as well as learn the temporal sequence. Reducing the

dimensionality of the input frame by first taking a semantic segmentation representation

of the frame simplifies the problem. Then, reducing the size of the input by taking the N

most frequent classes per region, in this case N = 2, can drastically reduce the complexity

and training time.

3.4 Deep Learned Action Recognition

In this section the use of different temporal architecture for deep learning action recognition

are discussed. Action recognition can be used for a variety of applications including body

motion recognition, sports activity classification, and human-object interaction. There

are many large datasets available for training non domain-specific action recognition such

as: HMDB-51 [57], UCF-101 [91], ActivityNet-200 [14] and Kinetics [54].
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Inception 3D (I3D) was developed by Carreira and Zisserman [15] in 2017 and achieved

state-of-the-art performance on UCF-101, 98.0% accuracy. I3D uses a two-stream in-

flated 3D convolutional network version of the popular image classification network

Inceptionv1[52]. The term “inflated” means that the 2D convolutional layers of Incep-

tionv1 are altered to 3D convolutional layers, meaning the network becomes a very deep

neural network. This inflation to 3D convolutions is attained by converting the squared

filters to cubed filters, and duplicating their weight over the third axis (time). “Two-

stream” networks consist of two temporal input streams of data. For I3D, the two streams

are optical flow and RGB.

The residual neural network ResNet [45], and inflated versions of ResNet [33], are

common backbone architectures used for training deep recurrent neural networks such as

Temporal Pyramid Networks (TPNs) [106] and SMART [38].

TPNs for Action Recognition [106] use a structure similar to PSPNet [108], where the

temporal input is pooled into multiple resolutions. The different pools are then fed through

five modules: backbone, spatial modulation, temporal modulation, information flow, and

final prediction. This pipeline can be seen in Figure 3.5. The backbone module uses

inflated ResNet as the backbone network. The predicted features are then passed into the

spacial modulation, where the features are down-sampled and aligned to semantics. The

output of the spacial modulation is passed to the temporal modulation, where the features

are down-sampled to adjust the tempo, with differing tempos per level. Information flow

takes the output of the temporal modulation and enriches the level-wise representation by

aggregating the features. Finally the predication module concatenates the output of the

information flow module along the channel dimension and then predictions are made using

a fully connected layer. TPN achieves a top-1 accuracy of 78.9% and a top-5 accuracy of

93.9% on the Kinetics-400 [54] dataset. Top-1 accuracy is when the first prediction is the

correct prediction, whereas top-5 accuracy is when the correct prediction is within the

five most confident predictions.

SMART Frame Selection for Action Recognition was developed by Gowda et al. [38] in

2020 and aims to reduce the computation cost of action recognition by selecting only “good”

frames. By reducing the number of frames, not only do they claim that the computational

time will decrease due to less data, but also that the harder-to-classify frames can be

discarded, thus improving the final accuracy of the predictions. SMART is designed

to be used with existing network architectures as the backbone for action recognition.

SMART uses a two stream method where the first stream uses a multi-layer perceptron

that evaluates each frame individually and computes a score δi. The second stream makes

use of LSTM layers with pairs of frames as input, then uses an attention relational network

to obtain a score, γi, for the pair of frames. The two scores are combined together, and

the frames are ranked. A budget is set which dictates the number of frames, n, required.

Then the best n frames are then used in the backbone action recognition network. In
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Figure 3.5: This figure shows the TPN pipeline proposed by Yang et al. [106] for action
recognition. This figure was taken from [106].

Gowda et al. [38] paper they show that for all backbone networks tested, the addition of

SMART improved the accuracy. Three notable architectures they tested SMART with

were: I3D [15] , STM-ResNet [32] and ISTPAN [25]. They were tested on the HMDB-51

[57] and UCF-101 [91] datasets with up to a relative increase of 1.4% in accuracy.

The papers in this section all follow the trend of being trained on very large dataset,

and commonly taking multiple weeks to converge. To reduce complexity of the network and

therefore reduce overfitting on the tiny sparse dataset used in this thesis, Newborn Resus,

a small network consisting of a small number of convolutional layers and bidirectional

LSTM layers will be used. Using a smaller network also allows for architecture searching

to be performed, where the number of convolutional and LSTM layers can be altered, and

the input to the network can be varied to find the best performing architecture.

3.5 Annotation Software

In this section I will describe the most relevant software for annotation of semantic

segments in images and videos, as well as annotation of actions occurring in videos.

3.5.1 Semantic Segmentation Annotation

Pixel Annotation Tool by Bréhéret [11] makes use of the watershed algorithm to segment

the image into different regions defined via brush strokes by the user. Watershed is

the algorithmic equivalent of the geographical watershed where water pools in different

locations depending on the topology of the terrain. Bréhéret [11] use the OpenCV

implementation of the marked watershed algorithm, which was invented by Meyer [74].

The pixel annotation tool is a good tool for annotating images with large objects because

the user can do quick strokes to get the base segmentation, and then fine-tune the
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Figure 3.6: This figure shows an example of the PixelAnnotationTool on sample frame
from the DAVIS dataset.

boundaries with additional strokes. However, the tool is not well optimised for annotating

small items in a scene, because the brushes can be too large, and small details can be lost.

Lu et al. [69] proposed a new method called Coherent Parametric Contours (CPC).

This method works by explicitly modelling bézier curves for the boundaries between

segments. These curves are initialised by the user’s annotation. Again, the user has

sparsely annotated the first frame with strokes on the foreground and background. The

initial curves are then propagated through the video by a spatio-temporal optimisation

algorithm. As the bézier curves are parametrised, this gives the users full control over the

shape of the curves, allowing for fine tuning. The user can manually edit the curve in later

frames, allowing areas that are very similar in terms of colour and motion to be correctly

added to the foreground. Contrastingly, other stroke-based methods may still not be able

to identify the difference between the foreground and background segments. To try to

reduce tracking loss, a rigidity function is applied to all terminal control points. Terminal

points are snapped to strong edges in an image, whereas control points are surmised to be
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Figure 3.7: This figure shows an example of the VIA video annotation tool Dutta and
Zisserman [28][29].

in the correct position. Additional intermediate points are needed between control points

to force the curve to fit to a boundary in the image.

3.5.2 Action Recognition Annotation

VGG Image Annotator (VIA) was developed in 2019 by Dutta and Zisserman [28][29], and

is an image, video and audio annotation tool. This tool is unlike the other tools as it is a

web application that runs in a web browser, and is less than 1.5Mb in size, making it easy

to distribute. The video annotations consist of tiers of activities, and for each activity

segments can be created to block out temporal regions where the activity is occurring.

An example of this can be seen in Figure 3.7. VIA exports the data in the common CSV

(comma separated value) format, meaning it is easy to process the data.

For this thesis, the annotation tools mentioned in this section do not meet the

requirements for the datasets needing to be annotated. Firstly the Pixel Annotation Tool

was not available at the time of annotation, and additionally the difficulty to annotate

small objects in a scene meant that it would not be applicable for the Newborn Resus

dataset. VGG’s VIA tool would have been a good contender for annotation of the temporal

data in the Newborn Resus dataset if it was available at the time of annotating. The

tools used to label the ground truth data in this thesis were an in-house image annotation

tool for semantic segmentation annotation, and the non verbal annotation tool (NoVA)

for temporal action labels for the Newborn Resus dataset. These two tools are described

in detail in Chapter 5, as well as my improvements to these pieces of software.
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Datasets

In this chapter, the three major datasets used throughout this research will be discussed.

These are: gLitter, Densely Annotated Video Segmentation (DAVIS), and Newborn Resus.

Newborn Resus and gLitter are two privately collected domain datasets. Newborn Resus

is an action recognition dataset, whereas gLitter is a object detection and segmentation

dataset. These are two domains that were explored with the use of deep learning and small

domain-specific datasets. DAVIS is a publicly available challenge dataset for foreground

segmentation. Both the gLitter and Newborn Resus datasets were used in a supervised

manner, whereas the DAVIS dataset was used to pre-train the deep-learned superpixel

subnetwork in an unsupervised manner.

In this thesis there are several terms used to describe different types of annotation for

segmentations. Polygon annotations are created by connecting points together to form

a polygon. A polygon can be saved as either a list of coordinates of the points that it

consists of, or converted to a mask by rasterization. If there are multiple segments these

can be identified by using unique IDs or unique colours. When using unique IDs, an ID

map is created where each pixel is assigned to a specific class. Pixel-perfect annotations

are annotations where the segmentations are accurate down to the pixel level. Pixel-

perfect annotation comes in both ID maps and colour segmentation images. Pixel-perfect

annotations are the gold standard as they are 100% correct, but the major disadvantage

to pixel-perfect annotations is the time taken to annotate the data. Near pixel-perfect

annotations is a term coined in this thesis to mean annotations that are not pixel-perfect

but are much closer than rough outlines of objects. Near pixel-perfect annotations have

less false positives than polygons being used for rough outlines. The imperfect boundaries

between segments is where the majority of the annotation time is saved. These near

pixel-perfect annotations are stored in either IDs maps or colour images.
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4.1 gLitter

In May of 2017 Prof Michel Valstar and colleagues proposed a Kickstarter project named

gLitter. The aim of this project was to produce a fleet of litter-picking robots. The fleet

would be used in areas such as parks and estates to combat the increasing levels of litter

being dropped there. The fleet would be comprised of two main types of bots: drones, for

finding and identifying litter around the designated areas, and rovers, for collecting and

disposing of the litter, Figure 4.1.

The drones would be given a working area in which they would be allowed to operate.

This area would be defined using GPS coordinates and the drones would periodically

patrol the area looking for litter that had been dropped on the floor. To identify the litter

on the floor, the drones would be equipped with RGB cameras. The video feeds from the

camera would be fed through a litter detection network to classify if an item is litter or

not. Once a piece of litter had been identified, the approximate coordinates and reference

image would be sent to a central control unit (CCU) to be added to a list of known litter

pieces that needed to be collected.

Figure 4.1: This figure show mock sketches of the drone and rover for the gLitter project.

After the drones had finished their patrols, the CCU would calculate optimum routes

for the rovers to go collect the litter. Like the drones, the rovers would also be equipped

with an RGB camera for detecting litter. The rover would make its way to the approximate

GPS coordinates, then begin a scavenging routine, where the rover moves around the

target location looking for the litter. Once found, the litter would be collected and an

update sent to the CCU. When either the rover had completed its route, or the rover’s

personal bin had filled, it would return to its station to either charge or to empty its bin,

before continuing with its tasks.
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To test the feasibility of the project, the first problem that was addressed was the

detection of litter in a frame. This required a custom dataset to be collected. This dataset

would be collected by the backers of the Kickstarter project using their mobile phones.

The backer would use a custom app to record short videos of litter. The videos would

start with the litter out of frame, and the user a few meters away. The user would then

walk towards the litter with their phone at arms length, recording the ground until the

litter comes into frame. Once in frame they would centre the litter on the screen and after

a few seconds, stop the recording. This video would then be uploaded to a sever hosting

the collected dataset.

Prof Valstar and the other founders invited me to join the project as it would have fit

nicely into my work, as the litter detection system would require a custom built object

detection system that needed to be initially trained on a small domain-specific dataset.

Additionally, this would have been a good stand-in for the Newborn Resus dataset that

had been delayed and was going to take many months to become available. I accepted

the invitation to participate in the Kickstater project.

Before the backers signed up to the project, Prof Valstar and I gathered approximately

300 videos of varying types of litter in a local park over several visits. These videos

consisted of differing light conditions, varying backgrounds, and objects of litter with a

wide variety of shapes, sizes and colours. To annotate the dataset, the Image Annotation

Tool described in Chapter 5 was used to achieve near pixel-perfect object segmentation.

In this dataset, a single master class was created named litter, which encapsulated all

types of litter. In Figure 4.2 12 samples can be seen from the labelled dataset.

Figure 4.2: This figure shows 12 example frames from the gLitter dataset and their
corresponding ground truth segmentation masks.

The dataset was then further expanded to 550 videos, including a small sample of

negative videos. The negative videos consisted of no litter in the full video, whereas the

positive videos had to contain at least one sample of litter, and the video had to end with

the main piece of litter being in the centre of the frame.
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In this thesis, the gLitter dataset is used as an example use case for training a

segmentation network with small amounts of data and complex object boundaries.

4.2 Newborn Resus

The second domain this thesis focuses on is action recognition, and for this a clinical dataset

was used. This dataset was collected by Dr Don Sharkey at the Queens Medical Center

(QMC) in Nottingham, United Kingdom, and consists of video of neonatal resuscitation.

The data was collected along side a study being performed by Henry et al. [47]. The data

collection process started in 2016 and took two years to complete. The data collection

overran by a few months due to limited numbers of parents signing up to volunteer their

videos. In the data collection programme there are two routes a baby can be delivered by

either; at term via a caesarean section after a normal pregnancy, or the babies are born

by any route, such as natural pregnancy. When the second route is taken, babies are at a

higher likelihood of needing either stabilisation or resuscitation.

In total, 70 videos of newborn babies were collected, and all babies in this dataset were

in good health after the videos. Not all of the babies in the dataset required stabilisation

or resuscitation. Once the dataset had been collected, Dr Don Sharkey had an honours

year medical student label the dataset as part of their thesis from September 2018 to

December 2018. The full dataset was then given to me at the end of February 2019.

Figure 4.3 shows an example Resuscitaire machine used for the collection of the

Newborn Resus dataset. The camera was connected to the light arm above the cradle,

allowing for a top down view of the cradle. The camera used for the collection of data was

the Logitech C615, with the resolution set to 720p. The following additional devices were

used to record the heart rate of the infants: electrocardiogram (ECG), pulse oximeter

(PO) and fhPPG device.

The cameras used to collect these videos did not have real-time automatic exposure

correction, thus some videos were deemed unusable for deep learning with tiny datasets.

This was because there was either too much variability, or too much information loss

due to severe under- or over-exposure. In regards to exposure, the exposure change is

generally due to a lighting change in the room. This could be due to the recording being

started with something obstructing the camera lens so no light can get in, this leads

to an over-exposed video. In contrast, when a light is turned off to allow the baby to

rest without glaring lights, this has the opposite effect and causes the videos to become

under-exposed. As the exposures have gone to the extremes, this can not be corrected for

and the lost information is not recoverable.

The Newborn Resus dataset was collected to both help review the performance of

paediatric staff after the procedure, and to be used as a training aid for future members

of staff. Currently, the paediatric staff rely on memory alone to evaluate the performance
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Figure 4.3: This figure shows an example Resuscitaire machine [23] used during the study
by Henry et al. [47].

of the resuscitation after the procedure. This method can be unreliable because the staff

are likely to have been in a high-pressure situation and may not be able to perfectly recall

what happened and when. During their training, the staff are taught to follow a very

strict procedure but due to the pressure of the situation they may not always follow every

step in the procedure. Having a system that could help hone their skills faster would be

very valuable to the field as it would mean staff would be trained faster and to a higher

level.

Recording the procedure would be a big step forward for the reviewing process, as

there would be video evidence to show exactly what happened at what time. However,

these videos can be quite long as they are started when the mother goes into the second

stage of labour, where the baby’s head has moved out of the uterus and into the vagina.

From this point to the baby being born can take anywhere from thirty minutes to an hour

or longer. Next the baby is taken to the resuscitation bed, this is where the reviewing

process begins. The paediatricians first have to find the correct time in the video that the

baby arrives at the bed. Then they must find at which time points the various steps of

the procedure occur. Finding all of these steps in the videos takes up valuable time from

trained paediatricians. Thus an automated system would save them many hours in which

they could be caring for other patients.

This dataset was labelled with 19 actions, Table 4.1, by the medical student at five
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Figure 4.4: This figure shows an example frame and its semantic segmentation label for
the Newborn Resus dataset.

second intervals, meaning that it would need to be relabelled with real-time labels if it were

to be used in an action recognition network. Due to the video being split into five second

windows, the start and stop points of the actions are not precise enough for a network to

learn the intricacies of the actions with such small amounts of data. In regards to this

thesis, the Newborn Resus dataset was labelled with 23 semantic segmentation classes

including an unknown class (shown in Table 4.2), and 19 actions (shown in Table 4.1).

The unknown class represents all parts of the frame that do not belong to one of the other

22 classes. The software used to annotate these labels was the Image Annotation Tool

(IAT) for semantic segmentation and NoVA for the actions. These two pieces of software

are described in Chapter 5. Examples of the annotations for each labels can be seen in

Figures 4.4 and 4.5, respectively.
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Semantic Segmentation Classes

Unknown Gloves Bed
Baby Pipes Stethoscope
Arms Hat Machines

Syringe Blue Towel Scissors
Electric Patches Mobile Plastic Bag

Packaging Umbilical Cord Clamp Pink Jacket
Wires Name tag Umbilical Cord

Clothing Airway Opener

Table 4.2: The 23 semantic segmentation classes for the Newborn Resus dataset and the
colour used to identify them.

Class ID Description

A Dried with towel

B Wrapped in polythene bag

C Cap placed on head

D Heart rate assessed stethoscope

E Attachment of pulse oximeter

F Pule oximeter adjusted

G Place ECG on chest

H ECG adjusted

I Airway manoeuvre

J Inflation breaths given incorrect ratio

K Provide five inflation breaths lasting three seconds

L Ventilation breaths given incorrect ratio

M Ventilation breaths given for 30s and 1s each

N Stimulation the infant

O Cleared away suctioning

P Incubation attempt

Q Attach mask on after incubation

R Administer suffoctant

S Insert NGT (feeding tube)

Table 4.1: List of all actions provided in the Newborn Resus dataset.
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Figure 4.5: This figure shows an example video and its actions labelled for the Newborn
Resus dataset.

4.3 Densely Annotated Video Segmentation (DAVIS)

As part of the object detection network, the novel technique of incorporating deep-learned

superpixels was used, as described in Chapter 6. To train the deep-learned superpixel

network in an unsupervised manner, a sufficiently large dataset was needed. This dataset

did not need to be semantically similar to the target domain, in this case they were

litter detection and resuscitation image analysis. The network needed to have sufficient

variability in the samples that a wide variety of superpixel shapes and sizes could be

captured.

Additionally, a dataset with good quality videos and annotation would be preferable as

this removes the introduction any superpixel ambiguity being trained ‘into’ the superpixel

model by poor quality images. Because the two domains that this work uses consist

of video data, the selected dataset for training the learned superpixel model can be

reasonably expected to result in the best possible model if it was also comprised of video

data. Otherwise any temporal artefacts that are inherent in videos, such as motion blur,

could be missing.

Several datasets were considered for use in the semantic segmentation research:

Video Segmentation Benchmark 100 (VSB100) [36, 92], Discontinuity-Aware Video Ob-

ject Cutout[110], SegTrackv2 Dataset[62], Efficient Hierarchical Graph-Based Video

Segmentation[41], and DAVIS [63, 78, 83].

When training a deep network with small datasets, the quality of the target annotations

is important, as shown in Chapter 6.3. However, with sufficiently large datasets the
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networks are able to generalise and learn closer to true segmentation of objects.

The VSB100 dataset consists of 100 pixel-perfect video segmentations, however on

average, each video is only about five frames long. Therefore it was considered to be too

small a dataset for the purpose it would have been used for. Discontinuity-Aware Video

Object Cutout consists of only 21 videos, each lasting a few seconds with pixel-perfect

annotation, however consists of only 10 classes. The SegTrackv2 dataset consists of 14

videos and 24 classes. Some classes are multiples of the same object in a scene, an example

of this is the penguins video where the front six penguins are annotated but the ones in

the background are not. Each frame has a pixel-perfect annotation. Finally, the Efficient

Hierarchical Graph-Based Video Segmentation dataset consists of 15 videos that are

pixel-level annotated.

The DAVIS dataset is a dataset used to create challenges where video segmentation

techniques are tested. DAVIS’ focus is foreground segmentation, but contains multiple

different classes. DAVIS started in 2016 with 50 high definition videos (1080p), with

each video containing a different class. The following year it was increased to 120 classes,

with 90 classes used for training and 30 for validation. The ground truth segmentations

consist of pixel-perfect segmentation of the foreground object or objects. Samples from

the DAVIS dataset can be seen in Figure 4.6.

Figure 4.6: This figure shows 12 example frames from the DAVIS dataset and their
corresponding pixel-perfect ground truth segmentation masks.

The DAVIS dataset was chosen over other similar datasets for two main reasons.

Firstly, it has superior segmentation annotation. Most commonly available datasets do

not use pixel-perfect segmentation, and often lean towards rough outlines or bounding box

segmentation (object detection) for annotation. However, if a vague ground truth is used,

this means that the network can only ever be as accurate as these poor ground truths that

are passed to it. Secondly, DAVIS includes several common challenges of segmentation:

appearance change, occlusion and motion blur.
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Chapter 5

Annotation Tools

This chapter discusses the creation and evolution of the annotation tool, Image Annotation

Tool (IAT), that was developed to label the ground truth data for semantic segmentation

of the Newborn Resus and gLitter datasets. Additionally discussed is the adaptation

of the NOn Verbal Annotation (NoVA) tool which was originally going to be used for

labelling the datasets.

5.1 NOn Verbal Annotation (NoVA) Tool

NoVA is an annotation tool developed by Baur et al. [5] in 2015 to perform 1D temporal

annotations on temporal data, which are most commonly used for video or audio data.

These annotations can be separated into three sub classes: continuous, discrete, and free.

Continuous annotations are used to plot a variable over time that exists between an upper

and lower limit. Examples of this are the heartbeat of a person, which is recorded at every

time frame, or valence and arousal measures for emotions, where both valence and arousal

can be split into 1D continuous data rather than combined as 2D information. Discrete

annotations are used to label information that occurs over a time, with a set start and

finish time. These annotations are made up of a predefined dictionary of annotations.

An example of this is facial expression. It is widely accepted that there are six basic

emotions, one of which is happiness, often detected with the smile action. This action

has a start time, when the person begins the smile, and an end time, when the smile

has finished. Another example is labelling actions taking place in a scene from when

the action starts to when the action is complete. Finally, free annotations are similar

to discrete annotations, however they do not have a predefined dictionary. The main

use for this is speech transcription, where each spoken word can be labelled from the

moment the word is started to when the word is finished. NoVA uses a tier system for its

annotations. Each tier consists of a single annotation type and its parameters are defined

when creating a tier, e.g. the created dictionary of classes for discrete annotations. This
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allows both multiple and different annotations to be created for the same input data in a

single project. For example, both speech and emotions can be recorded at once.

One of the main problems with labelling data is the man-hours it takes to label a full

dataset, as these datasets often consist of hundreds of thousands of data samples, either

in terms of individual images or frames in a video. NoVA makes use of several techniques

to reduce the time spent labelling the dataset. The three main techniques used by NoVA

are: active learning, cooperative learning and collaborative annotations. Active learning

is a concept where the algorithm asks the user to label specific data points in a similar

way to how a child asks what new things are called. As only the requested data points

are labelled, there are fewer labels in the dictionary for the learner to learn than classic

labelling, thus speeding up learning. Additionally, the learner only asks for the next most

informative data points, therefore there is less redundancy [111]. Cooperative learning is

where both the system and user annotate unlabelled data [22]. Initially the user would

label the first few frames in a dataset, then the system would annotate the rest of the

dataset. As the computer will not always get it right, each label is given a confidence

value which is calculated using a pre-existing classifier. If the confidence is lower than

a given threshold then the user is prompted to correct it. Any corrections made are

then propagated through the network to improve the labels. Collaborative annotation

is a distributive technique which means that several users on different machines, even

in different geological locations, can annotate the same dataset simultaneously. This

allows the dataset to be partitioned between users to increase the speed of labelling the

full dataset. Using collaborative annotations along with active and cooperative learning

techniques, allows the request from the system to be addressed by any one of users and

thus reduces the time the system has to wait for human intervention.

NoVA works well with 1D data but has no way of representing 2D annotations that

would exist directly on a video. Therefore, I will be adding this functionality to NoVA.

These 2D annotations can be represented as geometric annotations which are drawn on

an overlay of the input video. Geometric annotations can be split into three categories:

points, polygons, and acyclic graphs. Being able to represent these three categories greatly

widens the use cases for this tool.

Firstly, point annotations can be used for data such as facial landmarks. Facial

landmarks are identifying points on a persons face which are consistent across all faces,

such as the corners of the eyes, the tip of the nose, and the corners of the lips. This can

be seen in Figure 5.1. Each point consists of an x & y coordinate on the image, and

generally will be part of a larger set of points. Thus the point annotations allow the user to

pre-define the number of points per tier. Polygons can be used to represent segmentation

problems, from object detection and localisation, to full-scene semantic segmentation.

Polygons are a form of cyclic-directed graphs, with only the first and last nodes connecting

to create the cycle. All other nodes in the graphs have only two connections, input and
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output. To represent a polygon, a tuple list of points(p) and lines(l) is used. Each ln

is connected from its paired pn to pn+1
, and for the final ln is connected from pn to p1.

The area encompassed by the polygon is then assigned to a label. Acyclic graphs are

a subset of graphs where there are no cycles. They are bi-directional and each node

can have multiple connections. The shape of acyclic graphs is defined when the tier is

created. Common uses for this are the full skeletal annotations for pose estimation, or

skeletal annotations of the hand for hand gesture recognition. Each joint in the skeletal

representation is used as a node in the acyclic graph.

Figure 5.1: Here, predictions of a facial landmark detector displayed in NoVA are shown.
The points are drawn directly on the video frame. These are drawn in real-time so they
can be altered manually if it is necessary to do so. To do this, firstly the frame is selected,
along with the point/s to be moved. Then to move the point/s, the user right clicks and
drags.

The previously mentioned tier system is advantageous for all three geometric annota-

tions as it allows for multiple objects to be traced at once. For example, when performing

facial landmark detection, there may be multiple subjects in the frame and a separate tier

for each specific subject could be used, or when using polygons for semantic segmentation,

each object would be allocated to its own tier.

Being able to create the ground truth data for training a network is a good use of the

tool, but it can also be used to display the predictions over the input data. Because the

multiple tier system can load both the predictions and ground truths simultaneously, it is

possible to visually inspect the performance of the predictions.

Geometric annotations are used to annotate temporal data from a video sequence. As

there are only small changes between frames of a video, especially with high frame rates,
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the annotation can be copied from frame to frame, then altered to fit the new frame.

This greatly speeds up the annotations process because the copied annotations should be

relatively close to the where they need to be for the next frame.

5.2 Image Annotation Tool

Pixel-perfect semantic segmentation annotation is a difficult and time-consuming task.

There have been several methods implemented to decrease the time it takes to complete

these annotations. A common method is to use a pre-trained network to perform pre-

dictions on the unlabelled data and then to make manual adjustments to this. This is a

good method for data that exists in the training set of the software, but when faced with

domain-specific datasets that are completely unrelated to the training set, the tool does

not work. Another common method is to use polygons to label the data, which can be

very fast when the ground truth data does not need to be pixel-perfect, as the polygons

can be rough outlines of the object. However, when working with small datasets, the more

precise the ground truth annotations, the better the predictions will be, since there may

not be sufficient data for the model to learn past the imperfections in the annotations. In

Chapter 6 this has been proven for small domain-specific datasets.

Semantic segmentation is classic segmentation with the addition of giving each segment

a meaningful label. The use of an over-segmenting method could be used to decrease

the speed of labelling. By using an over-segmenter such as superpixels to first segment

an image into small semantically-meaningless clusters, and at the same time fine-tuning

the size and shape of the superpixels so they do not cross object boundaries, means that

the dimensionality of the image is drastically reduced from pixel level to superpixel level.

These superpixels can then be combined together to create the full segments for each

object in the frame.

NoVA underwent a complete refactor and the geometric annotation functionality

was no longer supported, therefore extending NoVA’s functionality to include superpixel

annotation was no longer feasible.

I was made aware of an in-house piece of software that an undergraduate student had

started as a summer internship in the Computer Vision Lab, which could be extended.

Image Annotation Tool (IAT) [90] was first created by Jingxiao Ma under the supervision

of Dr Michael Pound and Dr Tony Pridmore. In its initial state, the IAT had very limited

functionality as it was designed for rough labelling plant datasets. The original user

interface can be seen in Figure 5.2.

IAT’s initial functionality consists of opening a single image or directory of images,

and labelling individual images using basic geometric shapes. The three shapes that IAT

uses are the rectangle (Figure 5.3), ellipse (Figure 5.4), and polygon (Figure 5.5). The

masks are then saved into a new directory that is created in the same location as the file,
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Figure 5.2: IAT original user interface using a sample from the gLitter dataset.

using the file format portable network graphics (.png).

Figure 5.3: Using a sample from the gLitter dataset, the rectangle annotation tool is
shown in its three stages of use. First is highlighting the object. Next is confirming the
selections, and finally is the mask that is produced.

The rectangle tool works by the user clicking and dragging to select a rectangular area

for the label. The initial click is where the primary corner of the rectangle is placed, the
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secondary corner is the diagonally opposite corner, and is placed when the user releases

the mouse click. When the mouse button is released, a temporary outline is created for the

label. The user then has to manually confirm the selection and label colour. This tool is

useful for giving annotating an approximate area that an object exists in. A functionality

that could be added to this in the future, would be to create a list of top left coordinates

and bottom right coordinates. This would allow for bounding box annotations to be easily

be created with the addition of the masks.

Figure 5.4: Using a sample from the gLitter dataset, the ellipse annotation tool is shown in
its three stages of use. Firstly is highlighting the object. Next is confirming the selections,
and finally is the mask that is produced.

The ellipse tool works similarly to the rectangle tool. To start the annotation, the

user first clicks and drags from the top left corner of the object that they want to label.

However, instead of the first click being connected to the label, it creates a rectangle,

and the mid points between each of the four corners are four points on the ellipse. These

points are then connected together to form the ellipse label. The user must confirm the

selection and colour to complete the annotation. This tool works best for annotating

circular or elliptical objects. In Figure 5.4, the ellipsis tool has been used to annotate

the bottle lid. This tool is much easier and faster for round objects. A user experience

improvement that would be beneficial for both the rectangle and ellipse tools would be

the ability to move and resize the selection after the user has released the left mouse

button. This would allow greater fine-tuning of these annotations.

The polygon tool works by left clicking to place points around the object. There is a

red dashed line drawn between the points to show where the boundary of the annotation
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Figure 5.5: Using a sample from the gLitter dataset, the polygon annotation tool is
shown in its three stages of use. Firstly is highlighting the object. Next is confirming the
selections, and finally is the mask that is produced.

will lie. Once the object has been fully outlined, to place the final point and enclose the

loop, the user double clicks. If the user is happy with the colour and selection they can

confirm the annotation. This tool works well for coarse annotations, where the precision of

the annotation is not as important, such as labelling large datasets with semantic classes.

A consistent usability flaw is the dashed red outline used. This is particularly a problem

for colour blind users when being used with certain data such as the gLitter dataset. The

current industry standard for this is to use a marching ants approach where the dashes

alternate between black and white. This has been added to the future improvements for

the program.

To create the labels that appear in the left panel, a “label.txt” file has to be manually

created in the file directory of the images to be labelled. This can be seen in Figure 5.2.

The format of this file is “red value, green value, blue value, name”. In the example in

Figure 5.2 the label file content consists of two classes: unknown (0, 0, 0), and litter (0,

0, 255).

Although the IAT program did function, there were some flaws present which distracted

from a good user experience. The worst of these flaws was the program hanging when

loading files. This was due to the program running in a single thread, so when a file was

loading, the user interface (UI) completely froze. This was easily fixed by separating the

UI into its own thread and having other tasks in their own threads. Another issue was the

reliability of the double click with the polygon tool. When double clicking, the tool did
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not always select the correct position. To mitigate any movement due to double clicking,

the finishing step of the polygon tool was altered to be a right click instead. A key feature

that was missing from the program was the ability to undo and redo previous actions.

This meant that to undo something, the user would have to manually fill in the label they

had just created, and if it overlapped another annotation this would have to be manually

redone. This could take several minutes depending on how complicated the annotations

were, and a simple one click solution would be more efficient.

5.2.1 Superpixels

When annotating objects with complicated boundaries, it was very slow to achieve good

segmentations with the polygon tool. Additionally there was no relationship between the

current finished annotations and the next annotations the user was creating, thus it was

easy to go over another annotation in error whilst creating a new annotation.

Phase one of the adaptation of the IAT was to implement a superpixel algorithm to

first segment the image, then select these superpixels to create super-regions. Superpixels

with the inherent object boundary detection allow near perfect segmentation without

having to manually select around each pixel. Additionally, because the location of each

superpixel is known, there is no possibility of overwriting another superpixel when adding

a superpixel. The superpixel algorithm of choice was the simple linear iterative clustering

(SLIC) [1].

The SLIC algorithm was chosen for its fast performance whilst still having good

superpixel creation. Additionally, SLIC was to be used for the deep learning superpixel

work, thus it was decided to keep this variable consistent throughout.

For the first implementation of superpixels into IAT, a fixed value for sigma and

compactness for SLIC was used. The user was able to choose the target number of

superpixels before running the algorithm. Once the algorithm was run, the ID map

was saved into a csv (comma-separated values) file, and at the same time an overlay of

boundaries between superpixels appeared over the image. ID maps are a matrix of the

same width and height as the input image, with each cell representing which superpixel

the corresponding pixel is assigned to. These ID maps generally use numeric IDs, starting

at zero. The user could then select the Add/Remove superpixel tool to start to select the

relevant superpixels for the object that they were labelling.

In the current version of the program any annotations made with the superpixel

selection overwrite any manual annotation already made. A future feature that may be

useful is the ability to add a superpixel but only to the section that exists in the unknown

class. The current workflow is to use the superpixel annotation method first before using

any of the more basic annotation methods.

When only labelling a few objects in the frame, the technique of manually selecting
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every superpixel was sufficient, but it did not provide a good user experience when

transferring to larger objects or full scene labelling. The first improvement to this was the

click and drag functionality. This works like a paint brush in that whichever superpixel

the cursor passes over whilst the mouse button is held down, is added to the selection.

Again this works well for medium objects but is very time consuming for large objects or

scene labelling because the user has to manually fill in the interior of an object.

The solution was to create a custom fill function that worked with the superpixels.

This allowed users to select the outline of an object then fill in the central superpixel with

a single click whilst holding the correct hotkey, ’Ctrl’. This can be seen in Figure 5.6.

Figure 5.6: The left image in the first row shows the IAT before superpixels have been
created. The right image on the first row shows the superpixel outline in an overlay over
the input image with a target of 2000 superpixels. The central row shows the litter being
outlined by selecting the superpixels on the perimeter of the object. The right image on
this row shows the filled region. The final row shows the label mask as an overlay on the
left, with superpixel overlay turned off, and the label mask alone on the right.

The ability to create a label file and add labels from the program was missing. A
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feature was added whereby the user could choose the colour they would like the label

to be, and then save it to the file. With this method of adding labels, there was no

quick way to select an already used label to label another object of the same class after

changing labels. This would be tricky when there are many labels being used, such as

when performing full scene segmentation. It was possible to use the left hand window

with all of the labels, but to speed up annotations, a second single click with hotkey, ’Alt’,

was added. This allowed the user to select a label that was already in the output image.

The two domains used within the thesis both use videos/temporal image sequences,

thus the functionality to convert a video into an image sequence was added. In addition

to this, the functionality to perform the superpixel algorithm on each frame of the video

whilst unpacking it from a video was introduced. The video and superpixel functionality

were separated into their own separate threads to decrease the time taken to process a

video. However, as the superpixel algorithm runs slower than the unpacking of the video,

a queue system was implemented to allow all of the frames to be processed without having

to wait for other parts of the program.

To give the user more freedom with the SLIC algorithm, two additional text boxes

were added for the user to specify the exact parameters they want to use on a particular

frame or image sequence. The most practical way to use the superpixel system is to find

the best superpixel parameters for an image or small collection of images, before applying

the algorithm to the entire dataset and beginning annotations.

5.2.2 Superpixel Clustering

To further decrease annotation times, a novel approach to labelling the data was derived

which consisted of clustering the superpixels using low level machine learning such as

K-means. Initially a handcrafted superpixel algorithm was used to over segment each

frame in the Newborn Resus dataset. The averaged colour superpixel images were used

to train a clustering algorithm. Next, the clustering algorithm model was applied to

a random sample of 50 images from the Newborn Resus dataset, and the cluster that

occurred most frequently was given a semantic class. The 50 images each then had a

prediction mask which could be used as training data for an hourglass network. The

trained hourglass model was used to predict on the 50 more random images from the

dataset. The already labelled parts of the image were blanked out and the superpixel

algorithm was applied again. The new, most frequent cluster was classified and the masks

were added to the training of the hourglass model. This was repeated until the entire

dataset had full scene labels. Finally, the users had to validate the segmentation masks to

ensure that all classes were detected, and if not, they had to manually add them in.

This novel labelling approach would hypothetically speed up annotating full scene

semantic segmentation markedly. The first task would be to find a suitable clustering
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algorithm. Four low-level clustering algorithms were tested, but none of the algorithms

performed well enough to make this worthy of the time invested to create the system.

Thus it was decided to postpone this feature for future work. The four algorithms tested

were: K-means, hierarchical clustering, region adjacency graphs, and mean shift.

The dataset used to test the clustering techniques was the Newborn Resus dataset.

The SLIC algorithm was used to create the superpixels for the clustering and the average

colour was assigned to each superpixel, Figure 5.7.a,b. Firstly, the K-means algorithm

was tried with a target of 5, 10, 25, and 75 clusters. The K-means algorithm was trained

with 500 images rather than the full dataset to test that the theory worked. K-means

works by clustering data points by their spatiality in a feature space. Close-together

features are assigned to the same cluster. The target number of clusters enforces how

large each cluster must be in the feature space. The performance for all K-means variants

was poor in that the clusters created were not useful, due to either not being large enough,

or jumping object boundaries.

(a) Input image (b) Average colour superpixels

(c) K-means (d) K-mean regions
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(e) Hierarchical clustering (f) Hierarchical clustering regions

(g) RAG (h) RAG regions

(i) Mean shift (j) Mean shift regions

Figure 5.7: This figure shows the different clustering algorithms tested on the input
image (a). The colours in the region images are to distinguish between regions and do
not represent classes. To determine the performance of each algorithm, 50 sample images
were inspected manually to determine how well the new clusters followed the objects in
the scene. Hierarchical clustering (e) demonstrates the best clustering around the infant
by encapsulating in the least segments and with little clustering of unrelated object with
regards to the infant. This is closely followed by mean shift (i). K-means clustering (c) is
unusable due to the the regions crossing major object boundaries, for example how the
infant is included in the same cluster as the bed. The RAG algorithm (g) merges too
many superpixels into ambiguous regions.
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The next algorithm tried was hierarchical clustering, Figure 5.7.c. Hierarchical

clustering is a clustering algorithm which starts from the bottom up and works in levels.

Each level clusters similar features together. In the initial level there are as many clusters

as data points. With each increasing level the number of clusters decreases and similar

features are grouped together. The algorithm stops when the target number of clusters is

reached. Again this method performed poorly when using a target of five clusters, but

well at 25 clusters. The main drawback to this method was the speed of execution, as it

would take too long to train and deploy a usable model for a dataset, especially as this

was only trained on the subset of 500 images.

Region adjacency graphs (RAGs), Figure 5.7.g, unlike the previous two methods,

work on one frame at a time. RAGs are graphs where the connections between regions

are given a weight for how similar the two connecting regions are. Then the RAGs can be

evaluated to combine regions together that are below the given threshold limit. When

applied to the superpixels, these regions are the individual superpixels, and the combined

regions become the clusters. This method did not work well as finding a suitable threshold

for the combining of regions differed greatly depending on the frame that was fed into the

program. It was difficult to find the threshold for the Newborn Resus dataset, with most

thresholds leading to poor clustering.

The final clustering algorithm tested was the mean shift algorithm, Figure 5.7.i. Unlike

K-means, mean shift is not provided with a target number of clusters, instead random

initialisation points in the feature space are used as starting points for the centroids. The

more starting centroids, the better the end clustering will be. A common technique is to

take random samples from the dataset as the starting centroids. At each step the centroids

use a bandwidth, a radius around the centroid, and calculate the mean position of all

data points that are in the bandwidth. The centroid’s positions are then updated until

they converge. If there are any overlapping centroids, the duplicates are removed. The

bandwidth plays a key role in the final centroid locations. With a too-large bandwidth,

fewer clusters are found. In an extreme case this could be a single cluster. On the other

hand, a too-small bandwidth can lead to each data point having its own cluster. Initially

the automatic features were used for the mean shift algorithm, however this produced only

two clusters which were unusable, thus the bandwidth was set to 25 and this generated

much better clusters. However this method, like previous methods, proved to be too

time-consuming for real-time annotations.

To reduce the input feature space of the clustering algorithms, only unique RGB

colour values were used. This did increase the speed of training the clustering algorithms,

but not enough for training on more than 500 images. Thus other techniques would be

needed to be explored to make this method feasible. A possible improvement would be to

experiment clustering of different colour spaces such as HSV or LAB. Another experiment

that could be tested would be resizing the inputs to a smaller dimension, resulting in
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different superpixels. A combination of both these improvements may make this feasible,

otherwise other clustering techniques would need to be tested.

To conclude, the superpixel clustering algorithm was not used to annotate the Newborn

Resus dataset. This was because the performance, with regards to inference speed and

clusters produced by the algorithms and techniques tested, did not increase the annotation

speed any more than using the superpixels alone. Having a system that further reduces

the annotation time for full scene segmentations would be especially valuable for domain

specific datasets that do not have much success with pre-trained semantic segmentation

networks because their classes have never been seen by their networks before.

Using the superpixel annotation method without clustering drastically improves the

annotation speed whilst achieving near pixel-perfect annotations. When the best paramet-

ers for the superpixel algorithm are found for a given frame/video, the superpixels closely

match the boundaries of the objects in the scene. This allows for the near pixel-perfect

annotations to be produced. Achieving similar results by manual annotation with a

polygon tool would take several times longer, as this requires manually finding the bound-

aries between objects by zooming in until individual pixels can be seen. Having these

superpixels clustered together would, in theory, further reduce the time during annotations.

Figure 5.8 illustrates the updated UI for IAT and shows an example using K-means

trained on 500 images. The suggested cluster in this example is completely unusable as

several classes have been grouped together, including the infant. Other clusters may be

used alongside the superpixel annotations to speed up annotations, however this would

be infeasible for the entire dataset, since training the model on the entire dataset would

either take large amounts of time or be impractical due to memory limitations.

5.2.3 Usage and Performance

The IAT has been used for both the gLitter and the Newborn Resus datasets. The gLitter

dataset consists of 550 videos, and the last frame from each video is taken to create an

image dataset of equivalent size. The last frame in each video contains the litter in the

centre of the image. The pieces of litter can greatly differ in regards to size, shape, and

texture, making it hard to find the best set of parameters for the SLIC algorithm for each

instance in the dataset.

Using the updated version of the IAT with the superpixels drastically improved the

annotation speed. When using the polygon tool to annotate a complex object it can take

over 15 minutes per image to achieve near pixel-perfect annotation. Whereas because

the SLIC algorithm closely follow objects boundaries, when there is good contrast the

annotation time can be reduced down to two minutes - a speed-up of approximately 7×.

Tuning the SLIC parameters took about five to ten minutes for the first image, then for

consecutive images that are similar, it could either make use of the previous parameters
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Figure 5.8: From left to right, top to bottom, the first image shows the updated user
interface with the addition of new buttons and features. The second image shows the
superpixel algorithm applied on a sample frame from the Newborn Resus dataset. The
third and fourth images show an example of the clustered superpixels using the K-means
algorithm. Image five shows the suggested largest cluster of superpixels. Image six shows
the cluster outlines on a mask over the frame and annotation mask. The last row shows
the final annotation mask both as an overlay and separately.

which takes only 15 seconds to run the algorithm, or a slight fine-tuning may be needed,

which approximately takes one to two minutes. For simple objects such as regular shapes
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which can be easily followed with the polygon tool, these took approximately three minutes

to annotate. Using the superpixel method of annotation took about 35 seconds, including

the time to run the superpixel algorithm.

When comparing these annotation times, the superpixel method was much faster than

the polygon tool. In these cases, superpixel annotations were created using the superpixel

tool described in Chapter 5.2.1, and polygon annotations were created using the tool

described in Chapter 5.2. Both of these tools produced colour segmentation maps. To

calculate the time saved using the superpixel assisted annotations, the following four

assumptions were compared:

1. All objects are complicated shapes and have similar scenes.

2. All objects are simple shapes and have similar scenes.

3. All objects are complicated shapes and have large variety of scenes.

4. All objects are simple shapes and have large variety of scenes.

The assumptions were applied to the gLitter dataset with 550 instances and the

results can be seen in Table 5.1. In the comparison, the upper bounds are taken as an

approximation. This illustrates how the two annotation methods differ at the extremes.

For single, one-off annotations where assumption 2 or 4 was used, the polygon tool was

much faster, saving a time of 7 minutes and 35 seconds. However, if the object was complex,

the superpixel-assisted annotations were approximately 3 minutes faster. Furthermore,

when the superpixel-assisted annotation was used on a dataset of 550 instances, such as

the gLitter dataset, it was possible to save up to 119 hours, from 137.5 hours using the

polygon tool, to 18.5 hours with the superpixel assistance. The only case where it may not

be beneficial to use the superpixel tool is when there are a large variety of scenes, because

this causes the tuning time to increase, when the objects to be labelled are simple.

In a real-world scenario, a standard size dataset would consists of a variety of all of

these assumptions, as there would be a mix of similar and dissimilar scenes, with varying

styles of objects. A combination of the polygon and superpixel assistance would be the

recommended method for the IAT. This becomes more obvious when annotating full

scene segmentation because there is no single superpixel parameter set that will correctly

segment every object in the scene. Thus using them in conjunction would result in the

best annotations. Small domain-specific datasets such as the Newborn Resus dataset use

fixed views of a scene, so each instance in the dataset can use very similar parameters

for the SLIC algorithm. The time-consuming part of annotating a database such as the

Newborn Resus, is the number of classes in the scene and their interactions with each

other. For example, the pipe from the ventilation machine is a similar colour to some of

the gloves that are worn by the paediatric staff.
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Annotation Approximate Duration for Assumption
Type 1 2 3 4

Polygon
15m 3m 15m 3mSingle frame

Superpixel Assisted 12m 10m35s 12m 10m35s

Single frame (10m + 2m) (10m + 35s) (10m + 2m) (10m + 35s)
Polygon

137.5h 27.5h 137.5h 27.5hgLitter Dataset
Superpixel Assisted

18.5h 5.5h 110h 88.2hgLitter Dataset

Improvement −3m +7m35s −3m +7m35s
Single frame
Improvement −119h −22h −27.5h +60.7hgLitter Dataset

Table 5.1: The upper bounds of each annotation have been taken to illustrate the
improvements on a worst-case scenario. A standard dataset is generally a mix of these
assumptions; large and small objects with some variations in scenes.



Chapter 6

Deep-Learned Superpixels

6.1 Deep Learning with Superpixels

This chapter presents a novel method of detecting superpixels by using deep learning to

recognise them. From the review of the semantic segmentation literature in Chapter 3, it

emerged that regardless of the domain, the current state-of-the-art method was still not

pixel-perfect when it comes to the location of the boundaries between objects in a scene.

This can be seen in Figure 6.1, where the street signs, the leg of the rider and the bottom

part of the sheep are not correctly segmented by automatic segmentation methods. This

type of error in detecting segmentation boundaries with deep learning image analysis has

been addressed with some degree of success by including superpixels as a feature to the

network (e.g. [8] and [42]).

Bhatti et al. [8] used superpixels in conjunction with optical flow and saliency maps to

achieve an F1 score of 0.568 on the SegTrack v2 dataset [62], and Gu et al. [42] made use of

superpixels in their foreground extraction pipeline, beating the state-of-the-art techniques

at the time on four out of six videos for the SegTrack v2 dataset. It is becoming more

common to use superpixels in conjunction with deep learning techniques for image analysis.

However, these techniques use handcrafted algorithms to create the superpixels, which

cannot be optimised in an end-to-end system. I hypothesise that it would be desirable

for a superpixel technique to be deep-learned itself, thereby creating the opportunity

to end-to-end learn segmentation with superpixels. Such a network could benefit from

pre-training of the superpixel part on large, unsupervised datasets, and then fine-tuning

on a domain-specific supervised dataset. The solution presented in this chapter makes it

possible for the first time to learn the superpixels, which overcomes these shortcomings.

During a preliminary review of the literature discussing the use of superpixels to aid

semantic segmentation, it was revealed that superpixels had never been directly learned
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Segnet FCN SDS

Original

GT

Result

Figure 6.1: Three examples from three different networks, illustrating how the boundaries
between objects are not yet perfect. From left to right, Segnet [3], FCN (8s) [89],
Simultaneous detection and segmentation (SDS)[43]. From top to bottom are the input
images, ground truths, and predictions. All three examples show poor boundary detection;
firstly, the road sign in the Segnet clearly illustrates this problem; next, the riders leg is
completely missed by the FCN; and finally SDS is missing large chunks of information in
the lower sections between the fencing.
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using a neural network and used as an over-segmentation method. With this novel idea,

a system would be needed that allows the creation of superpixels to be incorporated

into an end-to-end network. To develop this system, a new representation is needed so

that a CNN architecture could understand the information created by the handcrafted

superpixel algorithms. Having the ability to learn the superpixels allows the superpixel

characteristics to be more than just defined by a handcrafted algorithm and instead

morph to the dataset that it is being used on during end-to-end learning. But before one

can fine-tune on a small domain-specific dataset, first a pre-trained superpixel network

needs to be created on a large dataset, ideally without requiring manual supervision (i.e.

manual annotation). In this thesis this was achieved by using a combination of settings

for handcrafted algorithm techniques as the ground truths to train the CNN on.

To create a deep-learned superpixel predictor that could be used in a wide range of

applications, the neural network structure used to encapsulate this needed to be complex

enough to embed the features of the superpixels. Complex network architectures generally

consist of large amounts of parameters. This in turn required a sufficiently large dataset

to train the network. However, for many domain-specific segmentation tasks, such large

datasets are often not available. A solution to this was to use unsupervised learning on a

dataset with a lot of variation. This variation in the content of the dataset would improve

the generalisation of a model.

The dataset chosen for training the networks was the DAVIS [83] dataset. This dataset

was chosen because it has a large variation of scenes, ranging from sheep in a field to cars

driving around a race track. This wide variety should have allowed the network to create

a more generalised superpixel detection model.

Superpixel algorithms produce identity maps where each superpixel is given a unique

ID and every pixel in an image is assigned to one and only one superpixel ID. Turning these

identity maps into a pixel-to-pixel CNN target representation means that the superpixels

must be transformed into a set of labels that can be learned with a CNN architecture.

However, it was discovered that using this representation to solve deep learning superpixels

was not as straightforward as first assumed.

The first methodology experimented with to learn the superpixels was use of the

identity maps created by the handcrafted algorithm as the ground truths for the network.

An example of this can be seen in Figure 6.2, where the SLIC algorithm was applied to a

frame from the DAVIS dataset. When training a network to learn these identity maps

using the MSE loss function, the loss values were in the ranges of 105, whilst seeming to

converge extremely quickly, at less than five epochs. The results were completely unusable,

as shown in Figure 6.3. This was because the position of each superpixel could differ

greatly between images, as the identity maps were effectively stating where a particular

superpixel class is located, ‘class 93’. Each image would have a different representation of

the ‘class 93’ superpixel, with different colour, texture, shape and location, which would
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Figure 6.2: This figure shows the original image and the corresponding identity map,
using the SLIC algorithm to create the identity map. The IDs have been normalised
between 0 and 255 for visualisation.

confuse a network. Thus making and learning to predict identity maps was an ill-posed

solution for this problem.

The chosen network was the highly successful hourglass network architecture introduced

by Newell et al. [77], Figure 6.4. This network was chosen as it produced good results for

human pose estimation using heat maps, and thus it was hypothesised that the network

could be adapted for learning superpixels. The input to the network was an RGB image

with dimensionality (64× 64× 3) and a ground truth target of (64× 64).

The next methodology tested was the one-vs-all methodology where a sliding window

was used, and for each window the pixels in the superpixel were labelled as the positive

class and all other pixels were labelled as the negative class, Figure 6.5. A window size of

(64× 64) was used and varying step sizes were experimented with. A major constraint to

this method was the number of times this would need to be run over an image; to get

full coverage, all pixels must be used as the target pixel. This scales linearly with the

number of pixels and each operation uses an (n×n) mask, thus producing an n−1×n−1

oversampling rate (each pixel is used many times as input, rather than just once). If

a small network was used, it would be much harder for a network to encapsulate the

superpixel behaviour as there would be too much variation. Thus larger step sizes (strides)

for the sliding window were experimented with to reduce the number of pixels visited.

This proved to be an ill-posed solution as there was too much information lost when

combining the negative classes together. This led to the network being unable to identify

any superpixels.

The third methodology to learn the superpixels was to define the task where each
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Figure 6.3: This figure shows the network’s prediction of the images in Figure 6.2. It
shows that the output had three distinct bands of predicted labels. This pattern was
present in all predictions. Additionally, the central band did not resemble the input image.

superpixel is a unique class. This is effectively assigning each superpixel to its own output

channel in a network. The CNN would be performing multi-class classification on the

input image, rather than trying to recreate the identity map. This methodology followed

the same ill-posed solution as the first methodology, but instead with multiple masks

to predict rather than a single identity map. Additionally, this would require an output

resolution of the same height and width of the input, with x number of channels where

x is the number of superpixels. This methodology would need a lot of GPU memory to

run due to the number of intermediate maps needed to be trained in the network. This

in turn limits the number of superpixels allowed to be found in an image, which would

lead to poor fitting of the superpixels. Finally, this would also mean that a model would

need to be trained for each number of target superpixels and thus any software using

this would also need to package all of the models. This methodology was not feasible or

desirable with today’s technology.

6.2 Multi-Channel Connected Graphs

To resolve the ambiguity of the superpixel unique identities, a new representation was

required. The new representation had to be able to encapsulate the same information

identity maps, and be easily transferable between the two representations. To this end,

this thesis presents Multi-channel Connected Graphs (MCGs), a novel representation that

allows the efficient and accurate training of deep-learned superpixel networks.

Inspired by Markov blankets, MCGs represent the relationship between neighbouring
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Figure 6.4: Illustration of the hourglass shape from Newell et al. [77] network. At each layer,
there was a convolution applied, followed by max pooling to reduce the dimensionality.
However, before the pooling layers were applied, a copy of the layer was kept for use in the
up-sampling method. Once it reached the minimum dimensionality, the network started
to grow again by use of up-sampling until the input dimensionality was achieved.

pixels. MCGs take the form of a two dimensional image with multiple channels. There are

b channels, one for each direction in which the pixels’ relationships are described. These

descriptions state whether a pixel is in the same superpixel as its neighbour. The natural

number for b would be four, but eight neighbours or more esoteric relations like triangular

directions are also possible.

Using superpixels as an example use case, each pixel in the algorithm’s output mask

carries the information of whether it belongs to the same superpixels as any of its b

neighbours. This means that every pixel in the two-dimensional data space carries

connectivity information for the b relative directions. This representation allows the CNN

to apply kernels to this and get meaningful results. Thus the problem has been converted

to multi-channel connectivity maps, one indicating connectivity in each direction (up,

right, down, left).

The transformation from a superpixel mask to a MCG representation is simple. First,

there must be b channels of the same width and height as the superpixel mask. These

channels must be initialised to zero. Next, the superpixel mask must be iterated over pixel

by pixel, whilst checking if the current pixel is in the same superpixel as its neighbours.

For each of the pixel’s b neighbours, the respective masks are updated by setting the cell

at the current pixel’s coordinates. This will be set to a one if the two neighbours are in

the same superpixel, otherwise this is left at zero. For the edge cases where it would be

indexing out of the superpixel mask, there are two options. Edge cells would be set to

zero if there is no evidence that they are connected to the same theoretical superpixel.

They would be set to one if it is assumed that the superpixels expand past the frame.
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Figure 6.5: This figure shows the original image patch from a sample frame from the
DAVIS dataset, the central corresponding positive superpixel, and the superpixel overlaid.
The superpixel in this image is the shadow on the rock.

In this thesis, the first assumption was used. However, if working with video data, the

second assumption may be more fitting.

In Figure 6.6 a small example is shown of how to represent a superpixel mask in the

MCG format, but instead of using numbers as the unique identifiers for each superpixel,

different colours and connecting lines are used.

The MCG methodology could easily be expanded with a larger neighbourhood, such

as one containing eight neighbours, to include the diagonal neighbours, or even 24 to cover

neighbours of neighbours. However, expanding the number of channels could cause issues

with GPU memory space depending on the resolution of the network.

Using the MCG methodology to represent the superpixels in conjunction with the

sliding window was no longer an ill-posed task because each pixel was now represented by

the connectivity it had with its neighbours, rather than pixels being assigned to a specific

superpixel ‘class’. Therefore a network should have been able to learn this representation

of superpixels. Firstly, the hourglass network needed to be adjusted to give four output

channels, one for each MCG. Next, the SLIC algorithm was pre-applied to each image

in the dataset and a sliding window of (64× 64) was used on both the MCGs and the

RGB images, Figure 6.7. The RGB patches were then fed into the network with the

corresponding MCGs as ground truths. Initially a step size of 64 was used to move the

sliding windows. When applying the model to a test image, firstly the full resolution MCGs

were stitched together from the output of the model. Then the reverse-creation process

could be performed to make a superpixel identity map. The identity maps produced were

unusable as there were holes between the superpixels, meaning during the reconstruction

process, individual superpixels bled into other superpixels and had unusable maps. This

can be seen in Figure 6.8.

To convert MCGs back to superpixel ID maps, the output must first be initialised to

an array of the dimensions of the input MCGs, with the array’s values set to -1. Then

first cell is then set to the 0 ID. The output is iterated over, and for every cell in the
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(A) (B)

(C) (D)

Figure 6.6: The MCG representation. Left shows an example of a handcrafted superpixel
mask, showing the connections for each of the pixels and their four immediate neighbours.
Next to this are the four MCGs (A:up, B:right, C:down, D:left) for this example. Each
individual graph is made up of zeros and ones. Each pixel in the same superpixel as its
neighbour, in regards to the respective direction, is set to one or zero.

output, the corresponding MCG map’s cells are checked in the order: right, down, up,

left. The neighbouring cells are then updated with the same ID as the current output cell

or the next free ID. If a cell has already been updated but there is a conflict, that is, the

IDs should match but do not, then the cell with the most confidence from its priors is

taken. Python code for this can be found in Appendix A.

One possibility for the bleeding problem was that the gaps in superpixel boundaries

were caused by low probabilities for a boundary pixel. To test this hypothesis, the values

for the threshold that control the binarization of the MCGs were experimented with. The

MCG masks returned real numbers (R), between 0.0 and 1.0. To binarize the MGCs,

a threshold was needed for rounding the pixels to the nearest whole number. Several

thresholds were automatically tested between 0.0 and 1.0, along with the Otsu method

[79]. The Otsu method works by minimising intra-class intensity variance, or equivalently,

by maximising inter-class variance. Results showed that no value for the threshold would

create binary MCGs that could be reformed into superpixels. Upon manual inspection of

the MCGs it could be clearly seen that the network had abstracted away from superpixel,

to what looked like super-regions, Figure 6.9. This abstraction to super-regions is likely
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Figure 6.7: This figure is an example of the MCG representation of the SLIC superpixels
for a sliding window. The frame used is from the DAVIS dataset.

Figure 6.8: This figure shows the reconstruction of the deep-learned superpixels using the
sliding window technique.

because the network has learnt to remove the boundaries between similar superpixels with

regards to colour and texture. A faint bounding box where each of the sliding windows

were was also noted. This was caused by the network not being able to see what is outside

of a window, so it assumes that it is the edge of the image. This can be negated by

overlapping the sliding windows slightly and averaging the results. Several strides were

experimented with, but all stride lengths tested did not eliminate the boxes. The stride

sizes tested were 0.25× box width, 0.5× box width, and 10 pixels less than box width.

To completely remove the need for sliding windows and to solve the stitching issue,

the resolution of the input to the network was increased to (1024 × 1024 × 3). This

allowed the input of an RGB image at a higher resolution to reduce information loss when

down-scaling the images and superpixel masks. An up-scaling layer before the output of

the network was added to bring the resolution back to (1024× 1024× x), where x = 4 for

the superpixel MCG.

The adapted hourglass network consists of three blocks. First is the pre-processing

block, which feeds into the hourglass block, which finally feeds into the post-processing

block. The adapted hourglass network uses the same residual module in the original

architecture by Newell et al. [77]. This residual module consists of three convolutional
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(A) (B)

(C) (D)

Figure 6.9: The stitched-together MCG applied to a frame from the DAVIS dataset for
each direction: up, right, down, and left, represented by A, B, C, and D, respectively.
In these images, white represents one in the MCG, where the pixels are in the same
superpixels. Black represents zero, where there is a boundary between superpixels.

layers, with all three layers using the RelU activation function. The first convolutional

layer uses a (1× 1) kernel and 128 features. The second convolutional layer uses a (3× 3)

kernel and 128 features. The final convolution uses a (1 × 1) kernel with 256 features.

The output of the third convolutional layer is fed into a max pool layer with stride two.

The pre-processing block takes in an RGB image of (1024× 1024× 3) and first feeds it

through a convolutional layer with a (7× 7) kernel, stride step size of two, and 64 features,

resulting in an output tensor size of (512× 512× 64). This output is then fed through a

residual module followed by a max pool layer with stride two. It is finally fed through

a further two residual modules. The output of the pre-processing block is then fed into

the hourglass module with an input resolution of (256× 256× 256). The hourglass has a

depth of four, meaning that there are four residual modules in the decoder and encoder

parts of the hourglass module. The lowest resolution that the hourglass reduces down

to is (16× 16× 256). The encoder side of the hourglass uses max pooling to reduce the

resolution, and the decoder uses nearest neighbour up-sampling. The post-processing

block consists of two more up-sampling layers and a fully connected dense layer to predict

the superpixels. The loss function used to train this model is the mean squared error loss

function in conjunction with RMSprop optimiser. The learning rate used to train the
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model is 2.5e−4 and is reduced every 30 epochs by a factor of 10, that is, the learning rate

is multiplied by 0.1.

To deal with the ambiguity of exact superpixel placement and size, the target number

of superpixels was varied. The network was trained with multiple superpixel ground truth

masks per input image. In principle, this could also be done using a combination of

superpixel techniques, but in this work a single handcrafted algorithm was used, SLIC.

For each of the frames that are used from the DAVIS dataset, the SLIC algorithm

ran multiple times with varying numbers of target superpixels, ranging from 500 to 5000

superpixels in steps of 500. The other SLIC parameters were set to σ = 1, compactness =

30. In total, the new dataset consisted of 4000 instances with a three to one ratio for

training and validation.

This created an unsupervised pre-trained network that could be used to predict

superpixels in the MCG format. When inspecting the output from this network, these

too had abstracted away from superpixels to super-regions. However, like the previous

method, the outputs when binarized did not reform to make superpixels/super-regions

when using the inverse method that creates MCGs. When the results from this network

were manually inspected, the holes in the boundaries of regions were too ambiguous in

regards to both the size of the holes and also where they appeared. The predictions no

longer followed the ground truth data. Therefore it was decided to keep the predictions as

the deep-learned superpixel MCGs. This was because the deep-learned superpixels were

always intended to be part of a larger end-to-end network structure in predicting semantic

segmentation. The predicted boundaries in the MCGs follow the structures in the images.

This was a promising sign that they would be useful in aiding the boundary detection

in semantic segmentation. This is shown in Chapter 6.4.2, where these deep-learned

superpixels aided in supervised semantic segmentation, and examples can be seen in

Tables 6.2.

6.3 Ground Truth Degradation

In this section, the effects that the quality and quantity of ground truth data has on the

accuracy of a network when using a small domain-specific dataset are discussed.

6.3.1 Methodology

With large datasets it is very common to use non-perfect segmentation masks, because

these types of masks do not take as much time to hand-annotate than pixel-perfect, or

near pixel-perfect, annotations. Due to the large number of these sub-optimal annotations,

deep neural networks are able to generalise and learn the correct segmentations for the

objects or classes. When using a small or tiny dataset, there are not enough instances for
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the network to generalise and not overfit to the training data.

In this section, the near pixel-perfect hand annotations of the gLitter dataset were

used to train a baseline model. To create the less accurate masks, the original hand

annotations were first converted to polygons. The polygons consisted of a list of points

that defined the perimeter of the mask. To reduce the accuracy of the mask, a subset

of points was created by stepping through the list of points. The greater the step size,

the smaller the number of points in the new polygon mask were, and thus a less accurate

mask was created. Figure 6.10 shows example ground truth segmentation masks for the

four datasets, including the baseline. The four datasets are dubbed ‘0’, ‘2’, ‘4’, and ‘6’,

where the number represents the scale of degradation applied. For instance, ‘0’ had no

degradation applied, ‘2’ uses 2n step size for the degradation algorithm, and so on. n is a

tunable parameter which is optimised for a given dataset; the larger n is, the more points

are skipped per step. A large n value is used when the boundaries of the perimeter are

noisy.

In addition to degradation of the masks, the number of instances used to train the

network were varied. The full training set for the gLitter dataset consisted of 423 instances.

To determine the effect of the number of instances on the training of the network, five

different percentages of training data were used: 100%, 50%, 35%, 25%, and 10%, (423,

212, 106, 74, 43 instances respectively).

6.3.2 Experimental Results

Figure 6.11.A reflects the general consensus that the more training data that can be

provided to a network, the better it performs for all scales of ground truth annotation

degradation. Additionally in Figure 6.11.A it can be seen that the larger the scale of

degradation, the lower the average accuracy is. For a small dataset, less than 500 training

instances, it can be concluded that there is a trend in which more data would result in

better performance of a network, even with high levels of degradation. However, it can

be seen that to achieve good performance with high levels of degradation, much larger

amounts of data would be required. Figure 6.11.B shows simultaneously the effects

that the level of degradation and the number of training instances have upon average

accuracy. The upper left of the surface in Figure 6.11.B had the highest accuracy with

good annotations and the most amount of data. Then at the other extreme is the surface

showing poor accuracy for smaller amounts of training data and poor annotations.
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Figure 6.10: From left to right, this figure shows: the RGB images, hand-annotated
ground truths, two-step degradation, four-step degradation, and six-step degradation.
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A B

Figure 6.11: Effect of number of training samples and the accuracy of ground truth
annotations have on the average accuracy of a network. Figure B illustrates Figure A as a
surface, where it can be easily seen that there is an almost linear trend between training
data, lower quality annotations, and the average accuracy.

6.4 Semantic Segmentation with

Deep Superpixels

6.4.1 Methodology

Semantic segmentation is a well-researched field but often uses, and indeed requires,

large datasets for training. When using a small domain-specific dataset, the performance

decreases drastically, as shown in Chapter 7. In this section the gLitter dataset is used,

achieving an accuracy of 81.6% using an hourglass network with RGB plus deep-learned

superpixels represented by a MCG as input to the network. The gLitter dataset is

relatively simple, consisting of 300 image samples of litter of various types taken on

multiple different backgrounds. This variation means that there are large variations in

colour, size and shape between instances. For this dataset, a combined class dubbed

“super-class” was used to identification all litter types.

When using a small dataset with a super-class that contains large variations between

sub-classes, the identification of the boundaries for an object would often be fuzzy and

incorrect. The addition of superpixels partially solved this issue because the inherent

properties of superpixels enforce the superpixel structure to follow colour and texture

boundaries. In Table 6.2 a reduction in fuzzy boundaries between predictions in column A

(RGB pipeline) and column E (RGB plus deep-learned superpixels pipeline) can be seen.

However, when comparing column A to column C (RGB plus SLIC superpixels pipeline)

the improvement is less noticeable than that of column E.

To first test that deep-learned superpixels using the MCG representation can work

for semantic segmentation, the gLitter dataset was used. This dataset had been fully

annotated using the Image Annotation Tool (IAT) with the superpixel method. This
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dataset is more simplistic than the Newborn Resus dataset in regards to classes and

annotation time because it only consists of a single super-class, which is litter. This dataset

took approximately two to three minutes per frame to annotate, giving a maximum total

annotation time of 27.5 hours for a full manual annotation.

Figure 6.12: This figure shows the network structure for the fifth pipeline. It takes in an
RGB image and first passes it through the superpixel generator network and predicts the
four channel MCG representation of the superpixels. Then the original RGB image plus
the deep-learned superpixels represented via MCG are passed through the second network
to predict the super-class, litter.

To test the hypothesis that the addition of deep-learned superpixels would be beneficial

to semantic segmentation, an experiment comprising of four pipelines plus a baseline was

performed. Each pipeline uses the adapted hourglass network to learn the litter super-class.

The network structure now consisted of two separate hourglass networks, with the first

being pre-trained on the DAVIS dataset for deep-learned superpixels, and the second

network being trained from scratch for semantic segmentation. This structure can be seen

in Figure 6.12. The second network used the inputs described by a pipeline and predicted

the ground truth semantic segmentation masks. To compare the pipelines, the accuracy of

the network was used. The accuracy is calculated by taking the intersection over union of

the prediction and ground truth masks. In addition to accuracy, entropy of the prediction

was also used. Entropy describes the coherence of the results. In this scenario, entropy

can be used to explain how noisy a network’s predictions are. The more noisy a prediction

is, the higher the entropy score becomes, thus a lower entropy score is desired. In addition

to a low entropy score, a prediction value closer to one demonstrates a more confident

prediction for that class. Entropy is calculated by first finding the normalised histograms
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of the image, p, then summing the product of the p and the log base two of p, as seen in

Equation 6.1.

entropy = −sum(p. ∗ log2(p)) (6.1)

The five segmentation pipelines were:

(A) RGB - Going directly from an input of RGB to perform semantic segmentation

(Baseline).

(B) MCG(SLIC) - Handcrafted superpixel pipeline represented by MCGs to perform

semantic segmentation.

(C) MCG(SLIC)+RGB - Combining the RGB and MCG handcrafted superpixels to-

gether to perform semantic segmentation.

(D) MCG(DL) - Deep-learned superpixels represented by MCGs to perform semantic

segmentation.

(E) MCG(DL)+RGB - Combining the RGB and MCG deep-learned superpixels together

to perform semantic segmentation.

In the following chapter (Chapter 7), the pipelines are re-evaluated on both the gLitter

and Newborn Resus datasets for use in an end-to-end pipeline with a reduced input size of

(512× 512) to reduce the amount of video memory needed for training the network. The

Newborn Resus dataset has been used as a multi-class dataset for semantic segmentation.

This dataset consists of 23 classes including an unknown class, and has manually annotated

ground truth semantic segmentation masks for the 23 classes using the IAT. There were a

total of 50 instances of hand annotation, with these instances split into three sets: training

(20 instances), validation (10 instances), testing (20 instances).

6.4.2 Experimental Results

The input frames from the gLitter dataset were taken with mobile phones that have 1080p

cameras. This was too large a size to be used with a deep learning network, as it would

require down-sampling to a reasonable size before learning could begin. To reduce the

number of layers in the network and speed up processing time, the frames were reshaped

prior to training from 1080p to (1024 × 1024 × 3) RGB image. The images were first

cropped from 1080p to a square image of (1080 × 1080 × 3), this could be safely done

because the object was guaranteed to always be centred in the frame due to how the

dataset was created. Next the images were resized down to the smaller 1024 square, this

allowed as much information as possible to be kept for the network to learn from.
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ID
Pipeline Superpixel Average

(1024× 1024) Type ∩/∪ Entropy

A RGB N/A 79.4% 3.0478
B MCG SLIC 60.2% 1.8837
C MCG+RGB SLIC 81.1% 3.6020
D MCG DL 75.0% 1.3783
E MCG+RGB DL 81.6% 1.2052

Table 6.1: This table shows the average performance of the five pipelines. Here it can be
seen that MCG alone performed the worst out of all the pipelines. MCG plus RGB for
both methods performed better than RGB alone. Additionally, it can be seen that the
deep-learned MCG versus the handcrafted method performed on average 15% better. In
addition, using deep-learned superpixels results in an entropy 3-times lower than using
hand-crafted superpixels, which is the second-most accurate system.

Baseline (RGB): For the baseline, the RGB representation alone was used. This

proved to be very unstable before the input size was increased for both the input and

output from 256 to 1024. As previously mentioned, RGB alone produces a lot of extra

noise. In some cases RGB alone can perform admirably, however it often produces fuzzy

object boundaries and extra misclassification due to relying on colour alone.

Handcrafted Superpixels (MGC[SLIC]): The second pipeline compared the performance

against using only an MCG representation of a handcrafted superpixels algorithm. On

its own, this method did not generally yield good results, and performed on average

19.2% worse than the baseline. This drop in performance was most likely because there

was a reduced amount of information available to the network. There was only shape

information available, all textural and colour information were not present in the input.

Additionally, litter has a large variation in shape and number of superpixels per object.

However, it did learn that usually the litter would be in the centre of the frame and would

have an irregular shape compared to the rest of the image.

Handcrafted Superpixels plus colour (RBG+MCG[SLIC]): The third pipeline combined

the use of the MCG obtained from a handcrafted superpixel algorithm together with RGB

data. As can be seem in Table 6.1, on average this performed better than RGB alone

with an improvement of 1.7%, bringing the average accuracy to 81.1%. However, like the

RGB method there still remained a lot of noise in the image, but it did clean up the edge

between the object and the background.

Deep-learned Superpixels (MCGDL): The fourth pipeline was designed to test how

well the deep-learned superpixels represented via MCG would fare on its own. The mean

intersection over union (mIoU) performance for this method was 14.8% better (in absolute

terms) than the handcrafted method (pipeline B), even obtaining the highest score for six

of the validation images. This showed that the deep-learned superpixels must represent the

target image better than the handcrafted superpixel algorithm, with the same limitation

99



DEEP-LEARNED SUPERPIXELS 6.5 Conclusion

of loss of information. In terms of accuracy, this method was only slightly worse than

RGB alone, with a drop of 4.4% with regards to mIoU.

Deep-learned Superpixels plus colour (RGB+MCG[DL]): The fifth and final pipeline

was the combination of the deep-learned superpixels and RGB. In terms of accuracy, it had

the highest performance of all of the pipelines with a 2.2% increase over the baseline, and

generally had much cleaner boundaries with minimal noise. Additionally, when examining

the performance of the pipelines, the scores on the tests sets per sample were compared

and both pipelines using RBG + MCG superpixel had the most images with the highest

accuracies.

Tables 6.2, 6.3, and 6.4 show the difference between pipeline E (RGB + Deep-Learned

Superpixels) and the baseline. Table 6.2 shows the five instances from the validation set

where pipeline E has the greatest improvement over the baseline. In these images, it can

be seen that there was much less noise, and generally there was good improvement over

the baseline. Additionally, pipeline D (Deep-Learned Superpixels) performed admirably

compared to the other pipelines. Take for instance, number 31; this pipeline does not get

confused with the lighter patch of flooring like other pipelines using RGB.

Table 6.3 shows the five highest accuracies for pipeline E. These instances were gener-

ally white pieces of litter on a grassy background. This makes them easily distinguishable.

Even the pipelines that do not use RGB had good performance on these instances. The

final table, Table 6.4, shows the five lowest accuracies for pipeline E. These instances

were very challenging to segment, as they contained a lot of obstruction, contained noisy

backgrounds, or were very small.

6.5 Conclusion

To conclude, the pipelines using superpixel represented by MCGs plus RGB, pipelines C

and E, as their input had a higher Jaccard index. However, performing a Student’s t-test

on the results of pipelines C and E reveals that they were not significantly different. The

student’s t-test is a statistical test to test a hypothesis under a null hypothesis. A null

hypothesis is the opposite of the working hypothesis. The students t-test is calculated

using Equation 6.2 and describes if two data collections, i.e. two sets of results from

different methods, are significantly different. X̄ is the sample mean of the data collection.

n is the number of data points in the collection. s is the data collections standard

deviation.

When the results of the two pipelines are inspected, it can be seen that pipeline E,

which uses deep-learned superpixels, has much crisper predictions. Comparing the average

entropy values for both of these pipelines shows that pipeline E’s entropy is much lower,

meaning that the predictions were more confident. Therefore, the use of deep-learned

superpixels is preferred over handcrafted superpixels.
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ttest =
X̄1 − X̄2

sp

√
2
n

(6.2)

sp =

√
s2X1

+ s2X2

2
(6.3)

One problem with how the deep-learned superpixels were used in this chapter was that

they were not learned end-to-end, meaning that the loss from the semantic segmentation

and the domain-specific intricacies were not passed through backpropagation. This in

turn meant that the deep-learned superpixels could not be automatically fine-tuned to

the domain-specific data.

Therefore, the next chapter will focus on the creation of an end-to-end network

that goes from RGB to semantic segmentation, and extends to multi-class semantic

segmentation.
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ID A B C D E GT Input

33

∩/∪ 59.9% 61.2% 85.0% 35.0% 95.2%

31

∩/∪ 6.2% 1.6% 5.8% 73.6% 23.7%

3

∩/∪ 57.1% 0.1% 51.8% 0% 66.5%

18

∩/∪ 14.9% 9.4% 10.4% 51.4% 24.1%

32

∩/∪ 81.8% 48% 78.3% 78.6% 90.1%

Table 6.2: This table shows the examples for which pipeline E displayed the largest
improvements compared to the baseline. Pipelines using MCGs (all but pipeline E)
exhibit much less noise and uncertainty (as measured by Entropy).

102



DEEP-LEARNED SUPERPIXELS 6.5 Conclusion

ID A B C D E GT Input

20

∩/∪ 98.55% 88.62% 98.62% 96.4% 98.9%

29

∩/∪ 98.6% 88.6% 98.6% 96.4% 98.9%

13

∩/∪ 96.9% 91.4% 97.7% 97.751% 97.753%

23

∩/∪ 95.0% 89.3% 97.4% 95.4% 97.2%

30

∩/∪ 96.1% 93.5% 97.0% 96.1% 96.9%

Table 6.3: This table shows the highest performing instances from pipeline E. All pipelines
performed well on these instances because there was a clear distinction between background
(green grass), and the object (white litter). Still, pipeline E could be seen to make crisper
predictions than pipeline C.
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ID A B C D E GT Input

15

∩/∪ 45.7% 1.2% 46.7% 5% 14.4%

7

∩/∪ 75% 29.6% 73.6% 62.6% 20.6%

31

∩/∪ 6.2% 1.6% 5.8% 73.6% 23.7%

18

∩/∪ 14.9% 9.4% 10.4% 51.4% 24.1%

34

∩/∪ 49.3% 2.4% 47.8% 39.4% 55.4%

Table 6.4: This table shows the lowest performing instances from pipeline E. These
instances consist of a lot of background noise, obstructions, poor lighting, and smaller
objects.
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End-to-End Semantic Segmentation

In Chapter 6, an approach was presented for superpixels to be predicted by a trained

deep artificial neural network. These superpixels were used as a feature to improve

semantic segmentation, but without changing the weights of the network that predicts the

superpixels. This chapter presents the approach for end-to-end semantic segmentation

using deep-learned superpixels on a tiny domain-specific datasets, which does allow the

superpixel prediction network to be fine-tuned for the domain. The gLitter and the

Newborn Resus datasets were used for example use cases for this technique.

7.1 End-to-End Architecture Adaption

This next section goes into detail about how the network structure was adapted for

end-to-end learning, and covers the resulting performance of the network upon the gLitter

and Newborn Resus datasets.

7.1.1 Methodology

With the available GPUs it was not possible to perform end-to-end deep neural networks

that consist of multiple hourglass networks with an input dimension of (1024 × 1024).

Therefore, the dimensionality was reduced from (1024× 1024) to (512× 512), this allowed

the running of multiple hourglass networks one after another. Changing the input

resolution allows the hourglass network to compress the representation down further to

(8× 8× 256) with the same number of steps in the hourglass module. However, due to

changing the dimensionality of the network’s outputs, this meant that the performance

metrics could no longer be directly compared to the previous pipelines evaluated in

Chapter 6. Additionally, two more changes were made to the gLitter dataset; the addition

of negative images that did not contain any litter, and the increase of the size of the

dataset to 550 instances. These instances were split into three sets: training, testing, and

validation. Each of these sets respectively had 400, 100, and 50 images within them. The
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ID
Pipeline End-to-End Superpixel Average ∩/∪

(512× 512) Conditions Type gLitter Newborn

A RGB N/A N/A 88.8% 12.3%
B MCG N/A SLIC 61.0% 23.4%
C MCG+RGB N/A SLIC 89.0% 45.9%
D MCG N/A DL 79.7% 11.6%
E MCG+RGB N/A DL 88.7% 12.3%
F End-to-End Standard DL 83.2% 43.8%
G End-to-End No HG pre-training SLIC 77.3% 44.2%
H End-to-End No Front HG pre-training SLIC 83.2% 43.0%
I End-to-End No Back HG pre-training DL 78.0% 44.7%
J End-to-End Standard + Dual Loss DL 85.0% 43.0%

Table 7.1: This table shows the average performance of the five pipelines. MCG alone
performed the least accurately out of all the pipelines. MCG plus RGB for both methods
performed better than RGB alone. Additionally, it can be seen that the deep-learned
MCG versus the handcrafted method performed on average 15% more accurately.

addition of the test set allowed comparison between pipelines using genuinely unseen data.

These above-mentioned changes meant that each of the previous pipelines in Chapter 6

had to be rerun so that comparisons could be made between all of the pipelines. The

results of the pipelines can be seen in Table 7.1. When comparing the results between the

new 512 pipelines (Table 7.1) and the original 1024 pipelines (Table 6.1) for the gLitter

dataset, initially it can be seen that for all pipelines the performance increased, with a

maximum increase of 9.4%. This increase in general performance could be due to multiple

factors such as an increase in dataset size, or the boundary cases around the objects

being averaged out into few pixels in the smaller dimensions. Additionally in Table 7.1,

it can be seen that the addition of superpixels had a smaller effect on the performance

of the pipeline. Moreover, deep-learned superpixels were on par with the baseline, and

handcrafted superpixels only performed 0.2% better than the RGB alone baseline.

In addition to the gLitter dataset, the new 512 pipelines were run on the Newborn

Resus dataset. In this experiment, all 23 classes from the Newborn Resus dataset were

used. Table 7.1 displays that pipeline C performed the most accurately, with a mean

Jaccard index of 45.9% over all classes in the dataset and it’s predictions on the test set

of the can be seen in Figure 7.1.

End-to-End (F): The end-to-end baseline pipeline To attempt to improve the perform-

ance of the 512 pipeline E, a new pipeline was created using the end-to-end methodology

of having two hourglass networks, with the first feeding directly into the second during

training. Each of the hourglass networks have their own role to play. The first hourglass is

used to predict the deep-learned superpixels in MCG format, then these, plus the original

RGB image, are fed into the second hourglass. The purpose of this second hourglass is to

predict the semantic segmentations.
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A B C D E GT Input

A B C D E GT Input

Figure 7.1: Full test set predictions for pipelines A to E and the Newborn Resus dataset.
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Three more pipelines were designed to test the effectiveness of pre-training the hourglass

networks.

End-to-End No Pre-Training (G): This pipeline removes all pre-training from the two

hourglass networks and starts with randomised weights, thus the learning starts from

scratch, and allows determination of whether a two-stacked hourglass could learn to solve

the semantic segmentation problem.

End-to-End No Front Hourglass Pre-Training (H): This pipeline is similar to the

previous pipeline, but keeps the pre-training of the second network. In theory, this

pipeline may not work as interned and take a longer time to converge than other pre-

trained pipelines. This is because the second network relies on the input of the first, and

with random initialisation of the weight for the first hourglass, the loss could be great

enough for the second hourglass to unlearn the weights due to the high losses incurred.

End-to-End No Back Hourglasss Pre-Training (I): This pipeline is a reverse of the

previous pipeline, with the pre-training being kept for the first hourglass (deep-learned

superpixels), and not for the second (semantic segmentation).

End-to-End Dual Loss (J): In the pipelines discussed so far, the loss has only been

calculated on the output layer of the end-to-end network, therefore the backpropagation

step does not account for the incorrect superpixel predictions at the end of the first

sub-network. Both losses use the MSE loss function and are combined by summation

of the two losses and back-propagated from the end of the second network. The first

loss is calculated from the superpixel predictions and the SLIC superpixel targets. The

second loss is calculated from the predicted semantic segmentation and the ground truth

segmentation masks.

7.1.2 Experimental Results

The following results are being compared with regards to their performance on the gLitter

dataset.

End-to-End (F): The end-to-end pipeline performed about 5% less accurately than the

baseline, which was surprising because the weights from both separate hourglass networks

were used as the starting point for this network. A possible explanation for this result is

that the first hourglass was not fixed and may have unlearnt the deep learned superpixels.

End-to-End No Pre-Training (G): This network performed less accurately, as hypo-

thesised. This was expected because the first hourglass network was no longer specialised

in predicting superpixels, meaning that the network would have to train the two stacked

hourglasses to predict semantic segmentation.

End-to-End No Front Hourglass Pre-Training (H): This pipeline performed better

than the no pre-training (G), but unexpectedly had the same performance as the original

end-to-end pipeline (F). A possibility is that the second hourglass’ predictions relied less
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on the deep-learned superpixels for its predictions at the start of training, and slowly

trained the first hourglass to help with predictions.

End-to-End No Back Hourglasss Pre-Training (I): This pipeline’s performance was

much less accurate than the individual pipeline (C,E) and the original end-to-end pipeline

(F). This was very unexpected as the hypothesis of using an end-to-end network should

in theory improve the predictions, as all parts of the network can be affected by the

backpropagation step.

End-to-End Dual Loss (J): This final pipeline had an improvement of 1.8% compared

to the first end-to-end pipeline (F). However, this increase was not enough to make it

on par with RGB alone (A), or to beat the third pipeline (C), RGB plus handcrafted

superpixels. A comparison of the output for all of these pipelines can be found in Appendix

9.4.

Again these pipelines were trained with all 23 classes from the Newborn Resus dataset.

Table 7.1 shows that pipeline C still has the highest mean Jaccard index of 45.9%, however

the mean Jaccard index values for all of the end-to-end pipelines for the Newborn Resus

dataset are much higher than pipelines A, B, D, and E. The predictions for the best

pipeline’s network can be see in Figure 7.2.

When looking at the accuracies between the 1024 and 512 variations, it can be seen

that the 512 version pipeline accuracies are higher and, in general, closer together. An

assumption that could cause this is that there was additional data added to the 512

dataset, meaning that the network being used becomes saturated at 89% with the amount

of data given to it. Additionally, as there was only one class, increasing the number of

classes may improve the quality of the predictions because there would be less variation

in a class, leading to better performance.

A final experiment was performed on this setup that compared the performance of

models trained on varying numbers of training samples, but validated on the same test set

of 100 samples. This started with five samples, then the number of training samples was

steadily increased up to 225. The order in which the samples were added to the training

set was randomised, this in addition to the original randomisation of splitting the data

into train, validation, and test sets ensured that there were no patterns in the training set.

The structure used was pipeline E, RGB plus deep-learned superpixels, using the MCG

format. The accuracy for each of the training samples sizes can be seen in Figure 7.3,

and shows that with such a small dataset the performance increased with the number of

training samples used. This meant it could be hypothesised that with a larger dataset, the

accuracy would increase, but it cannot be said when the network would become saturated,

and thus improvements to accuracy would minimise. The hypothesis was that doubling

the number of training samples to 500 would give over 90% accuracy on this dataset.
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F G H I J GT Input

F G H I J GT Input

Figure 7.2: Full test set predictions for pipelines F to J and the Newborn Resus dataset.
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Figure 7.3: This figure shows a graph that represents how the number of training samples
effects the accuracy of a network using the gLitter dataset. This network uses the structure
from pipeline E. There is a steady increase in performance of the network with each
iteration of more training data. The results are calculated on a static test set of 100
samples.
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7.2 Multi-Class Refinement

This section explores refining multi-class semantic segmentation with the tiny domain-

specific dataset, Newborn Resus, through six experiments. These are: 1) Testing the

effectiveness of a predefined unknown class for transfer learning compared to an adaptive

unknown class. 2) Checking if learning the least frequent class first improves accuracy for

this class. 3) Evaluating if using the same metric for the loss function as calculating the

performance metric increases accuracy. 4) Testing if the order of the classes for transfer

learning, either ascending or descending with regards to class frequency, matters. 5)

Refining the dataset to remove outlier data points to improve accuracy. 6) Increasing the

number of semantic segmentation classes from 6 to 32 to see if reducing the complexity of

the unknown classes helps with reducing misclassification.

7.2.1 Methodology

To be able to label the Newborn Resus dataset at a later date, both manual and machine

annotations were desired in order to achieve a fully labelled dataset in a reasonable time

frame for this thesis. Thus when evaluating the performance of the networks in this

section, the use of percentage of pixels needed to be updated as an additional metric to F1

score. Percentage of pixels needed to be updated is calculated by 1.0− accuracy, where

accuracy is the percentage of correct pixel predictions normalised between zero and one.

The accuracy for the semantic segmentation is calculated by taking the mean of the union

of the predicted and ground truth masks, minus the intersection of these masks.

Despite cooperative learning to fully label datasets becoming common practice, avail-

able tools often use pre-trained models to predict on common objects. However, this is

not very useful for domain-specific datasets.

Initially, to prove that the concept of semantic segmentation for the Newborn Resus

dataset using only 50 frames would work, a subset of five classes (plus the unknown class)

from the 23 total classes were used. The five classes selected are seen in Table 7.2. As a

baseline, the mean squared error loss function was used for the semantic segmentation

sub-network, and the network was trained in a traditional multi-class classification (all

classes at once). From the Newborn Resus dataset, 50 random frames were taken to create

a sub-dataset that was labelled with the five classes. The labels were created using the

Image Annotation Tool (IAT).

To determine the best format for training with such a small dataset, several variables

were changed: loss function, transfer learning vs. all at once, and adaptive vs. static

unknown class for transfer learning.

The loss functions that were compared were MSE and Lovász-Softmax loss [7]. Lovász-

Softmax loss, also known as the Jaccard loss, is an approximation of the intersection over

union metric used to determine the accuracy of the network. Berman et al. showed that
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their loss function was able to improve detection of small objects and this property of

Jaccard loss function is applicable to the clinical dataset. The dataset they used was the

ISBR dataset, consisting of brain scans, to show that very small classes are better learned

using the Lovász-Softmax loss compared to cross-entropy loss, see Figure 7.4.

Figure 7.4: Image taken from supplementary material from [7]. Top: original figure from
paper, Bottom: masks extracted from figure to increase visibility of segmentations. As
can be seen in the bottom segmentation masks, the light blue segmentation is completely
missed in the first example when using cross-entropy but is detected when using Lovász-
Softmax loss. Additionally, in the second example the network has predicted more of the
light blue class compared to the cross-entropy loss.

Transfer learning by using a pre-trained model is common practice in deep learning.

However, a pre-trained model (network architecture) was not used in this thesis, instead

bootstrapping of a custom architecture network was used. Pre-training the custom

architecture was opted against, as it could have taken a long time to train on a large

dataset such as MS Coco [64]. Due to the specialised classes in the domain-specific

datasets being vastly different to the classes in the public dataset, it may not have been

beneficial to use transfer learning in this way. Instead in this work transfer learning was

used to train the network one class at a time, and iteratively append new classes to the

previously trained models until all classes were learned.

As part of the transfer learning, the use of adaptive unknown class was tested against

a static unknown class. The static unknown class is predefined before the start of transfer

learning training and does not change between transfer learning runs. Contrastingly, the
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Figure 7.5: This figure shows the network structure that each of the pipelines in this
Chapter use. It takes an RGB image as input and first passes through the superpixel
generator hourglass sub-network. The first sub-network predicts the four MCGs that
represent the deep learned superpixel, one for each direction. Then the deep-learned
superpixels output plus the original RGB image are piped directly into the input of the
second hourglass sub-network to predict the semantic segmentation. For illustration
purposes the output masks have been combined into a single RGB colour image with each
class having its own colour.

adaptive unknown is first initialised to everything but the first class, then with each

transfer learning run, the unknown class is updated to remove any sections that are now

in the next class to learn as part of the transfer learning. Thus on the next iteration of

the network, the weights of the new output layer were initialised to be the same as the

unknown class, because the new class existed in the previous unknown class. This meant

that the network only had to learn to distinguish what was no longer in the unknown

class.

To train the network, the 50 frames were partitioned into three sets, with 20 as training,

20 as test, and 10 as validation instances. There were no frames from the same video

spanning multiple sets. 14 pipelines were then trained, outlined in Table 7.9, to compare

the previously mentioned network parameters. The network structure was similar to

the structure in Chapter 6, with the first network being trained on the DAVIS dataset

to predict deep-learned superpixels represented using the MCG format, and the second

network being trained to predict the semantic segmentation masks, with one channel of

the output for a single class. The difference between the two network structures is that

instead of the data being manually fed into the second network, it was fed automatically

as part of an end-to-end network, allowing for backpropagation to feed all the way from

the semantic segmentation predication to the creation of the deep-learned superpixels.

This end-to-end structure is illustrated in Figure 7.5

In this section the following six experiments are discussed:

1. The use of predefined unknown class Vs the adaptive unknown class for transfer

learning against traditional multi-class learning.

2. Comparing the random order for transfer learning performance for small less frequent

classes to learning the smallest class first.

3. The use of the Jaccard index as a loss Vs MSE.
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4. The order of classes for transfer learning: ascending, descending, and random.

5. Refined dataset, to remove inconsistencies in the dataset.

6. Increasing the number of classes to be learned.

Abbreviation Class

C1 Unknown
C2 Bed
C3 Gloves
C4 Baby
C5 Pipes
C6 Stethoscope

Table 7.2: This table shows a list of the abbreviations used throughout this section.

7.2.2 Experimental Results

Experiment 1: Predefined Vs Adaptive Unknown Class

In this experiment the use of predefined unknown class vs the adaptive unknown class for

transfer learning vs traditional multi-class learning was compared.

In Table 7.3, traditional multi-class deep learning is compared to transfer learning

using a predefined unknown class and an adaptive unknown class on the Newborn Resus

dataset. In the table it can be seen that the adaptive unknown class improved performance

for transfer learning methodology in regards to the F1 scores. There was little difference

in performance in regards to the percentage of pixel to update for the unknown class type.

The mean intersection over union shows transfer learning to perform 11% better than

traditional multi-class learning, for both predefined and adaptive unknown classes.

The F1 scores between multi-class and transfer learning using the adaptive unknown

were marginal, but there was a much greater decrease in percentage of pixels to update

for both transfer learning pipelines. From the F1 scores and percentage of pixels to

be updated, the best pipeline was transfer learning with the adaptive unknown class.

This was because transfer learning greatly reduced the number of pixels to be updated.

Additionally, the adaptive class performed better than using the predefined unknown

for the transfer learning, because the network is being informed each pixel’s class at all

stages of transfer learning, rather than some pixels being in a secondary unknown class.

The adaptive unknown class with transfer learning achieved an improvement of 0.091 in

regards to the average F1 score.
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ID Network type Unknown Class type F1 Score Pixels Update Average ∩/∪
A1 Multi-Class Predefined 0.556 28.80% 71.2%
C1 Transfer Learning Predefined 0.460 17.68% 82.32%
E1 Transfer Learning Adaptive 0.551 17.97% 82.03%

Table 7.3: This table shows the performance of the three pipelines for experiment one.
Transfer learning performs much better for both pipelines regarding percentage of pixel to
be updated.

Experiment 2: Position of Smallest Least Frequent Class.

In this experiment the position of the smallest least frequent class was changed. Firstly,

all of the classes were in a random order, secondly, the smallest class is learned first, and

finally, the smallest class is learned last. The smallest class is defined as the class that

appears with the smallest number of total pixels in the labelled dataset.

Table 7.4 shows the confusion matrices for the transfer learning using an adaptive

unknown class. It can be seen that for class C6, stethoscope, the network was struggling

to learn this class and commonly misclassifying it as the unknown class. The stethoscope

occurred least frequently and was the smallest class in regards to number of pixels per

class.

Prediction
C1 C2 C3 C4 C5 C6

A
ct
u
a
l

C1 2,147,823 249,309 56,760 125,228 5,351 848
C2 283,922 1,742,168 20,338 18,381 7,132 0
C3 57,089 69,759 163,274 1,346 872 0
C4 31,773 12,962 860 61,169 1,670 0
C5 41,259 41,285 2,829 2,163 58,196 0
C6 16,566 18,741 403 2,129 1,243 32

Table 7.4: This table shows the confusion matrices for the transfer learning methodology
using the adaptive unknown class.

Prediction
C1 C6 C3 C4 C5 C2

A
ct
u
a
l

C1 2,224,150 2,790 215,750 51,297 74,288 17,044
C6 17,601 2,416 15,161 748 2,352 836
C3 353,288 1,070 167,5013 18,297 19,024 5,249
C4 61,856 0 61,051 165,949 1,759 1,725
C5 38,397 0 16,568 1,230 51,143 1,096
C2 42,772 12 35,625 1,807 1,802 63,714

Table 7.5: Confusion matrix for the pipeline where the stethoscope class (C6) is learned
in the first network.

When manually analysing the subdataset that had been created, it was noted that the
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stethoscope class only occurred 14 times in the training set, and six times in the validation

set. A hypothesis was formed that the order of the classes may affect the performance of

the network on smaller classes, thus classes C2 and C6 were switched.

When comparing the data Table 7.4 and Table 7.5, in particular the results of C6,

stethoscope, it can be seen that if the sparse stethoscope object is learned earlier in the

transfer learning, it can be learned even with small amounts of training samples to learn

from. The confusion matrices also show that the network was still having trouble with

misclassification. This was suspected to be caused by the lack of data and vast differences

in appearance of the object (going from black ear inserts to silver hardware and tube).

When comparing the average performance of the pipelines in Table 7.6, it can be seen

that the average performance for pipelines where C6 was learned first perform the best

in regards to average F1 scores, but the pipelines where C6 was last have lower average

percentage of pixels to update.

ID Stethoscope Position F1 Score Pixels Update Average ∩/∪
E1 Last 0.551 17.97% 82.03%
I1 First 0.578 19.67% 80.33%

Table 7.6: This table shows the performance of the two pipelines for experiment two. Both
pipelines use transfer learning methodology, whilst varying the position of the stethoscope
position from being the first class to be learned, to being the final class to be learned.
This table also shows the performances of the adaptive and predefined pipelines. When
the stethoscope was learned last, the pipeline performs best, in regards to the average F1
score.

Experiment 3: MSE Vs Jaccard Loss

In this experiment the use of the Jaccard index as a loss function was compared against

the MSE loss function.

As previously mentioned, the stethoscope had been a tricky class to predict thus far.

A second possible cause of this problem was the size of the object in the scene and its

effect on the MSE loss function. A smaller object in a scene will have less influence upon

MSE loss function. This is because if the majority of pixels are correct in the prediction

and there is more to gain from optimising for larger classes, more pixels will be updated,

and thus the function will favour the larger classes.

To combat the problem of small objects having less importance, a better loss function

was needed. The Jaccard index was already being used to calculate the accuracy of the

network, so could it be used to train the network? The Jaccard index is an accuracy

measure which is used in segmentation and works by calculating the union and intersection

of a prediction with the ground truth, then dividing the intersection by the union,

JaccardIndex = |A∩B|
|A∪B| . However as the Jaccard index is not differentiable, it cannot be
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used in backpropagation, and therefore cannot be used as a loss function. Berman et al.

[7] solved the issue of the Jaccard index not being differentiable by approximating it as a

sub-modular set function.

Table 7.7 shows the confusion matrix from the pipeline using the Jaccard index loss

functions. Class C6 predictions had less confusion when using the Jaccard loss function

than when using MSE loss function. However, when comparing the average F1 scores and

the percentage of pixels to update for both MSE and Jaccard loss pipelines, the MSE

pipeline performed marginally better, as seen in Table 7.8. In regards to F1 score with a

small improvement of 0.09, and 1.67% better.

Prediction
C1 C6 C3 C4 C5 C2

A
ct
u
a
l

C1 2,264,529 152 142,794 34,634 122,683 20,527
C2 26,243 1,118 8,871 427 922 1,533
C3 535,559 90 1,476,906 21,104 17,023 21,259
C4 81,080 0 53,629 152,476 1354 3,801
C5 36,281 0 13,535 709 54,144 3,765
C6 46,452 0 36,409 3,082 5,362 54,427

Table 7.7: Confusion matrix for the pipeline using Lovász-Softmax loss where the stetho-
scope class (C6) is learnt in the first network.

ID Loss Function F1 Score Pixels Update Average ∩/∪
I1 MSE 0.578 19.67% 80.33%
J1 Jaccard 0.569 21.34% 78.66%

Table 7.8: This table shows the average performance of the MSE loss function and Jaccard
Loss function, in regards to F1 score and percentage of pixels to update.

Experiment 4: Order of All Classes

Does the order of classes for transfer learning matter? In this experiment this refers to

the order of the classes, from random to ascending and descending.

To further expand upon experiment two, the ordering of the classes was changed to

test if the order of classes, in regards to number of occurrences, impacted performance on

the less frequent classes. The results of this experiment can be seen in Table 7.9, with

IDs E1,F1,K1,L1,M1, and N1. As can be seen in this table, pipeline M1 performed the best

in regards to F1 score, which was 0.622, much higher than previous pipelines. However,

the number of pixels to be updated was much higher at 28.20%.

Pipelines F1, 1L and N1, all use the Jaccard loss and have lower percentages of pixels

to be updated than pipeline M1. Thus, it was decided to expand the number of pipelines

to further investigate the performance benefit of the Jaccard index. The full results of
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this are shown in Table 7.9. Pipeline M still remained the highest performing network

with regards to F1 score, and pipeline C1 had the lowest percentage of pixels to update at

17.68%.

ID
Network

Order
Unknown Loss F1 Pixels Average

Type Class Type Function Score Update ∩/∪
A1 Multi-Class Random Predefined MSE 0.556 28.80% 71.2%
B1 Multi-Class Random Predefined Jaccard 0.578 24.86% 75.14%

C1 Transfer Random Predefined MSE 0.460 17.68% 82.32%
D1 Transfer Random Predefined Jaccard 0.537 18.86% 81.14%
E1 Transfer Random Adaptive MSE 0.551 17.97% 82.03%
F1 Transfer Random Adaptive Jaccard 0.556 19.65% 80.35%
G1 Transfer Stethoscope First Predefined MSE 0.558 18.11% 81.89%
H1 Transfer Stethoscope First Predefined Jaccard 0.581 21.34% 78.66%
I1 Transfer Stethoscope First Adaptive MSE 0.578 19.67% 80.33%
J1 Transfer Stethoscope First Adaptive Jaccard 0.569 21.34% 78.66%
K1 Transfer Ascending Adaptive MSE 0.587 27.61% 72.39%
L1 Transfer Ascending Adaptive Jaccard 0.565 23.27% 76.73%
M1 Transfer Descending Adaptive MSE 0.622 28.20% 71.8%
N1 Transfer Descending Adaptive Jaccard 0.571 22.69% 77.31%

Table 7.9: This table shows the results for the pipelines used in the four experiments, plus
additional variations on the existing pipelines to give a wider view on the effects of each
parameter. For example, pipeline B1 uses the Jaccard loss with the predefined unknown
for traditional multi-class predictions. From this table it can be inferred that pipeline M1

is the best performing pipeline with an F1 score of 0.622.

Experiment 5: Refined Dataset

For this experiment, the previous pipelines were run again to compare how much of an

influence a refined dataset had on such a small dataset. The dataset was refined after

manually inspecting each specific instance of the test set, because it was noted that some

of the instances in the dataset had large enough variation to the rest of the dataset to

be seen as completely different classes. This meant that the networks were unable to

generalise to this wider class of objects. These instances were of frames that came from

the babies born by ‘any route’, as these videos consisted of completely different lighting

situations and work space setups. To replace these images, additional frames from the

‘good’ videos were added to create a more consistent dataset.

Table 7.10 shows the performance of the same pipelines but on the new refined dataset.

When comparing the performance of the two datasets, it can be clearly seen that the

second refined dataset had a higher average performance across all pipelines. However,

the difference between the best and worst performing pipelines had decreased. Using two

metrics made it difficult to determine the order of performance of the pipelines. To help

evaluate this, the F1 score and percentage of incorrect pixels were combined with equal
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weighting, one-to-one. When looking at the top four performing pipelines, M2, K2, F2,

and N2, it was clear that the ordering of the classes did not have a large impact on the

performance of the network.

Pipeline M2 upon the refined dataset had the highest combined score of 0.779, closely

followed by pipelines K2, F2, and N2, with respective scores of 0.776, 0.771, and 0.771.

This is within the a margin of error of less than 0.008%, thus showing there is no benefit

for changing the order of the inputs to the network. However, in regards to the type of

unknown class, this showed that the adaptive class is superior, with all four pipelines using

it. The Jaccard loss was not consistently better than MSE, and often the performance

between the two loss functions was similar. In the ordering pipelines the Jaccard loss

actually performed worse than MSE in both F1 and percentage of incorrect pixels.

ID
Network

Order
Unknown Loss F1 Pixels

Score
Type Class Type Function Score Update

A2 Multi-Class Random Predefined MSE 0.591 17.602% 0.707 (14)
B2 Multi-Class Random Predefined Jaccard 0.633 15.136% 0.741 (12)
C2 Transfer Random Predefined MSE 0.695 17.811% 0.759 (7)
D2 Transfer Random Predefined Jaccard 0.701 18.662% 0.757 (9)
E2 Transfer Random Adaptive MSE 0.625 17.834% 0.723 (13)
F2 Transfer Random Adaptive Jaccard 0.727 18.493% 0.771 (3)
G2 Transfer Stethoscope First Predefined MSE 0.706 17.466% 0.766 (5)
H2 Transfer Stethoscope First Predefined Jaccard 0.699 18.237% 0.759 (8)
I2 Transfer Stethoscope First Adaptive MSE 0.710 17.878% 0.766 (6)
J2 Transfer Stethoscope First Adaptive Jaccard 0.694 18.049% 0.757 (10)
K2 Transfer Ascending Adaptive MSE 0.726 17.378% 0.776 (2)
L2 Transfer Ascending Adaptive Jaccard 0.701 18.796% 0.757 (11)
M2 Transfer Descending Adaptive MSE 0.727 17.031% 0.779 (1)
N2 Transfer Descending Adaptive Jaccard 0.716 17.484% 0.771 (4)

Table 7.10: This table shows the results for the pipelines used in the rerun for all 14
pipelines on the refined dataset. The results clearly illustrate that the order of classes for
transfer learning does not matter for a dataset of this size.

Macro- vs Micro-Averages

The training results on the Newborn Resus dataset, although positive for such small

amounts of data, struggled to improve the performance above an F1 score of 0.727. Thus

the distribution of the classes being learnt was investigated to see if there was a reason for

this. The distribution for both the classes per set (training, validation, test) and number

of pixels per class can be seen in the graphs in Figure 7.6.

Both graphs show there is a large class imbalance, in regards to both number of

occurrences and number of pixels for each class. The class imbalance is emphasised in the

graph which shows the number of pixels. For standard machine learning it is common

to use the traditional averaging, however this method does not take into account this
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Figure 7.6: This figure shows the distribution of the semantic classes in the Newborn
Resus dataset for the subset used in experiments one to five. The left graph shows the
number of frames in which the classes occur for each set in the dataset. The right graph
shows the number of pixels per class per set in the dataset.

imbalance. This type of averaging is referred to as macro-averaging. Another type of

averaging is micro-averaging, this method does take into account the weighting of the

classes.

Micro-averaging is a method in which the individual true positives, false positives, and

false negatives for each class are summed together. These combined values are then used

to calculate the statistics for the network. Micro-averaging is used when the classes in

the dataset are unbalanced, because it gives a higher weighting to the classes with more

examples. Conversely, macro-averaging is taking the statics of each class, adding them

together and dividing by the number of classes.

The following equation shows how the micro- and macro-averages differ for the example

data in Table 7.11.

Class x
Actual

1 0

P
re

d 1 TPx FPx

0 FNx TNx

Class 1
Actual

1 0

P
re

d 1 15 10

0 5 5

Class 2
Actual

1 0

P
re

d 1 50 20

0 10 30

Table 7.11: Toy data for explaining micro- and macro-averaging.

Recall

R1 = 15/(15 + 5) = 0.75 (7.1)

R2 = 50/(50 + 10) = 0.83 (7.2)

Precision

P1 = 15/(15 + 10) = 0.60 (7.3)
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P2 = 50/(50 + 20) = 0.71 (7.4)

F1

F11 = 2
R1 × P1

R1 + P1

= 2
0.75× 0.60

0.75 + 0.60
= 0.67 (7.5)

F12 = 2
R2 × P2

R2 + P2

= 2
0.83× 0.63

0.83 + 0.63
= 0.77 (7.6)

Micro-average of recall

MiR =
TP1 + TP2

TP1 + TP2 + FN1 + FN2
⇒ 15 + 50

15 + 50 + 5 + 10
= 0.81 (7.7)

Macro-average recall

MaR =
R1 +R2

2
⇒ 0.75 + 0.83

2
= 0.79 (7.8)

Micro-average of precision

MiP =
TP1 + TP2

TP1 + TP2 + FP1 + FP2
⇒ 15 + 50

15 + 50 + 10 + 20
= 0.68 (7.9)

Macro-average precision

MaP =
P1 + P2

2
⇒ 0.60 + 0.71

2
= 0.66 (7.10)

Micro F1

MiF1 = 2
MiR ∗MiP

MiR +MiP
⇒ 2

0.81× 0.68

0.81 + 0.68
= 0.74 (7.11)

Macro F1

MaF1 = 2
MaR ∗MaP

MaR +MaP
⇒ 2

0.79× 0.66

0.79 + 0.66
= 0.72 (7.12)

Average F1

F1avg =
F11 + F12

2
=

0.67 + 0.77

2
= 0.72 (7.13)

The micro- and macro-averages were calculated and the results can be seen in

Table 7.12. Using the micro-averaging, the weighted average for the F1 score was

as high as 0.805. However, the networks still followed the same trend in regards to

performance, but this representation gives a better understanding of how the network

would perform on a hypothetical dataset with an even distribution of classes.

Experiment 6: Adding More Classes

In this experiment, the addition of the rest of the semantic classes in the Newborn Resus

dataset were added to test the effect upon the performance of the best performing previous

pipeline. It was only performed on the best performing pipeline, because the transfer
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ID
Network

Order
Unknown Loss Macro Micro

Type Class Type Function F1 Score F1 Score

A2 Multi-Class Random Predefined MSE 0.591 0.761
B2 Multi-Class Random Predefined Jaccard 0.633 0.790
C2 Transfer Random Predefined MSE 0.695 0.785
D2 Transfer Random Predefined Jaccard 0.701 0.791
E2 Transfer Random Adaptive MSE 0.625 0.796
F2 Transfer Random Adaptive Jaccard 0.727 0.801
G2 Transfer Stethoscope First Predefined MSE 0.706 0.790
H2 Transfer Stethoscope First Predefined Jaccard 0.699 0.787
I2 Transfer Stethoscope First Adaptive MSE 0.710 0.798
J2 Transfer Stethoscope First Adaptive Jaccard 0.694 0.764
K2 Transfer Ascending Adaptive MSE 0.726 0.765
L2 Transfer Ascending Adaptive Jaccard 0.701 0.759
M2 Transfer Descending Adaptive MSE 0.727 0.805
N2 Transfer Descending Adaptive Jaccard 0.716 0.804

Table 7.12: This table shows the results for the pipelines used in the rerun for all 14
pipelines on the refined dataset in regards to their F1 score using both macro- and
micro-averaging.

learning technique would take too long to process all pipelines. The additional 18 classes

for 12 pipelines would not have been feasible in regards to time spent training the networks

with the setup at the university. Hypothetically, if each stage in transfer learning takes a

minimum of 3 hours, the total training time would be at least 800 hours. The full list of

annotated classes can be found in Table 7.13, the micro average F1 score for all of classes

was 0.752 and the average micro intersection over union was 76.54%.

Using the network predictions trained on the refined dataset, the full dataset was

labelled with almost full scene segmentation using the model created. Only small sections

of the frames were left as unknown. This was where there was not enough information

in the parts of the images to label them, and they were not related to any part of the

equipment used during the resuscitation procedures. With each frame taking between 30

and 60 minutes to fully annotate, depending on the complexity of the scene, this gave

a worst-case estimate for annotation time of 50 hours. The use of the IAT did make

certain classes in the dataset much faster, but some of the more complex smaller objects,

or object with hard-to-distinguish boundaries, had to be manually annotated with the

slower polygon tool.

Using pipeline M2, the transfer learning was ran for all 23 classes. The average

performance decreased compared to the smaller set of classes, but still performed admirably

for such a small dataset, Table 7.13. When inspecting the distribution of classes,

Figure 7.7, and the confusion matrix, Figure 7.8, it can be seen that not all classes exist

in the training set. This means that the network would never be able to predict these
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Class F1 Precision Recall
Pixels Average

Update ∩/∪
Unknown 0.672 0.564 0.833 14.03% 85.97%
Gloves 0.795 0.812 0.780 15.62% 84.38%
Bed 0.857 0.831 0.884 22.19% 77.81%
Baby 0.762 0.779 0.745 22.97% 77.03%
Pipes 0.676 0.791 0.590 23.36% 76.64%
Stethoscope 0.504 0.580 0.445 23.45% 76.55%
Arms 0.739 0.623 0.909 23.97% 76.03%
Hat 0.320 0.515 0.232 23.98% 76.02%
Machines 0.865 0.987 0.770 24.21% 75.79%
Syringe 1.000 1.000 1.000 24.21% 75.79%
Blue Towel 0.000 0.000 1.000 24.70% 75.3%
Scissors 0.000 1.000 0.000 24.71% 75.29%
Electric Patches 0.000 1.000 0.000 24.71% 75.29%
Mobile 0.000 1.000 0.000 24.72% 75.28%
Plastic Bag 0.000 1.000 0.000 24.72% 75.28%
Packaging 0.134 0.747 0.074 24.75% 75.25%
Umbilical Cord Clamp 0.000 1.000 0.000 24.75% 75.25%
Pink Jacket 1.000 1.000 1.000 24.75% 75.25%
Wires 0.163 0.363 0.105 24.75% 75.25%
Name tag 0.000 1.000 0.000 24.75% 75.25%
Umbilical Cord 1.000 1.000 1.000 24.75% 75.25%
Clothing 0.570 0.508 0.648 24.75% 75.25%
Airway Opener 0.000 1.000 0.000 24.75% 75.25%

Macro Average 0.437 0.787 0.479 23.46% 76.54%
Micro Average 0.752 0.752 0.752 23.46% 76.54%

Table 7.13: The 23 classes shown with their respective F1, precision, recall and incorrect
pixel percentages.

124



END-TO-END SEMANTIC SEGMENTATION 7.3 Conclusion

Figure 7.7: Class occurrences for the refined dataset between training, test, and validation
sets.

unseen classes. This issue arose due to the nature of the dataset, since each video does

not follow an exact procedure so some of the objects do not appear in some videos.

Additionally, taking only a few frames for each video drastically reduces the probability

of the majority of classes being present in every frame. The performance of the classes

that existed in the training sets are a great deal better than the average. The network

misclassified classes that are very similar to the ‘unknown’ or ‘bed’ classes. It was

hypothesised that this was due to the difficulties that arose by over-exposure of the

dataset. Over-exposure resulted in most of the classes being white-washed. Despite this,

the network still managed to detect almost all classes in the training set.

The prediction of the network on the test set can be seen in Figure 7.9. When taking

into consideration that this network had only been trained on 20 training examples, the

predictions are very close to the ground truth segmentation masks. If a given dataset is

well-created with good ground truth data, inputs that are very consistent, with no harsh

variability such as exposure, and the classes are well-balanced, then semantic segmentation

using tiny domain-specific clinical datasets is possible. This is especially true when using

methods such as transfer learning and deep-learned superpixels.

7.3 Conclusion

To conclude, the best network structure for using deep-learned superpixels for semantic

segmentation is an end-to-end methodology with two hourglass networks joined together.

The first of the two sub-networks pre-trained to predict SLIC superpixels represented

by a MCG, with it being trained on a large varied dataset and targeting multiple sized

superpixels. For input to this network, an RGB image of (512× 512× 3) was used. The

125



END-TO-END SEMANTIC SEGMENTATION 7.3 Conclusion

Figure 7.8: Confusion matrix for the refined dataset. The horizontal axis represents the
prediction, and the vertical axis represents the ground truths. The darker the colour, the
higher the count of predictions in that cell. True positive predictions are in the diagonal
cells from the upper left to lower right.

second hourglass sub-network takes in as input the predicted deep-learned superpixels

plus a copy of the RGB image. This sub-network can be pre-trained on the given dataset

to improve performance, but it is also able to train from scratch. For the loss functions,

MSE was used for both sub-networks, and their losses are added together in a dual loss

configuration. When training the network, a transfer learning approach is recommended,

by training the network multiple times and increasing the number of classes each time.

The ordering of classes did not result in a statistical benefit for such a small dataset. It

is highly recommended that if the dataset consists of a large variety of classes, then the

number of instances per class are balanced, because less frequent classes did not learn well.

Additionally, refining the dataset to remove any large inconsistency between instances is

recommended, because there was a 0.105 increase in F1 score when doing this.

In the next chapter, the best achieving semantic segmentation network from this

chapter is used to label all of the frames in the Newborn Resus dataset, and these

predictions are used as the input to an RNN network using LSTM to perform action

detection.
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Input Target Prediction Input Target Prediction

Input Target Prediction Input Target Prediction

Figure 7.9: Full test set of images, from left to right: input image, ground truth and
prediction. Performance for images with similar exposure performs well, however the
underexposed image on row nine performs poorly.
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Chapter 8

Action Detection

The one of the goals of this thesis was to find techniques to allow small domain-specific

medical datasets to be used in deep learning, and what are the key factors in achieving

useful predictions. The dataset that best fits this description was the Newborn Resus

dataset. The aim for this dataset was to perform action detection on videos of postnatal

resuscitation to aid in evaluation of how well the correct procedure has been followed,

and possibly help in training of new paediatric staff by detecting when certain actions are

performed.

In this chapter, the exploration of deep learning action recognition using the Newborn

Resus dataset is discussed. When using temporal data in deep learning, recurrent neural

networks (RNN) are often used. For the dataset, LSTMs and Bi-directional LSTM nodes

are used in the architecture of the network. The best performance achieved for action

recognition with the Newborn Resus dataset was an F1 score of 0.5181, averaged over seven

actions, and an average accuracy of 90.72%. This network used an input dimensionality

of (32× 32× 2).

The input for the action recognition network is the output of the end-to-end semantic

segmentation network. As the output of the semantic segmentation network is of resolution

(512 × 512 × N), where N is the number of semantic classes, this gives a large feature

space for the RNN to learn from. Having a smaller feature space reduces the amount of

information the network has to find patterns in. Additionally, using small dataset with

few examples of each action should help focus the network.

To reduce the feature space, the output is first converted from multiple output masks,

(512× 512× 23), to a single output mask, (512× 512), via argmax, which takes the class

with the highest prediction confidence to be the predicted class. Next a custom pooling

process is used to iteratively down-sample the output from (512× 512) to (N ×N × C),

where N is the new output dimension and C is the number of frequency layers. Each

frequency layer consists of the Cth most frequent class for each cell. The custom pooling

orders the unique predicted classes per pooling area by the total number of predicted

cells. In Section 8.2 the input dimensionality, (N ×N × C), is experimented with to find
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a good solution, first starting with N = 16 and C = 1.

Therefore using this reduction technique the input matrix was converted into a (16×16)

matrix. This matrix represents the most common semantic class for the area is stored,

Figure 8.1. The input resolution went from 5,767,168 features, (512× 512× 22), to 256

features.

Figure 8.1: This figure shows the down-scaling from (512× 512) to (16× 16) using a single
colour image to represent all classes. This reduces the dimensionality by a factor of 22528.
If using N channels to represent masks per class, the input image would have a depth of
22 and the output depth would be one as each class is represented by a single number.

Additionally, the dataset was streamlined by removing as much invariance from the

videos in the dataset as possible. This is done by excluding any videos that are different

to the majority of the videos. Half of the dataset was already excluded as there was

too much variation in lighting, position and objects, resulting in the total used videos

to 35 out of 70. The videos were then streamlined further to 22 videos to reduce the

variation in the inputs to the networks, thus improving the predictive capability of the

action recognition network.

The Newborn Resus dataset consists of 19 possible actions that can be seen in Table 8.1.

From the provided labels for the dataset, action D occurred most frequently. Action

D is where the paediatric staff use a stethoscope to assess the baby’s heart rate. The

stethoscopes in the dataset are mostly black with silver hardware, however there are a

few cases where a different coloured stethoscope is used. This may have affected the

stethoscope prediction in the semantic segmentation network, therefore impacting the

prediction in the action detection network.

The provided labels for the Newborn Resus dataset were not in a compatible format

for creating a script to create labels for a network to train from. This was because
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ACTION DETECTION 8.1 Labelling Dataset

Class
Description Example

Class
Description Example

ID ID

A Dried with towel K Provide five inflation breaths lasting three seconds

B Wrapped in polythene bag L Ventilation breaths given incorrect ratio

C Cap placed on head M Ventilation breaths given for 30s and 1s each

D Heart rate assessed stethoscope N Stimulation the infant

E Attachment of pulse oximeter O Cleared away suctioning

G Place ECG on chest P Incubation attempt

F Pule oximeter adjusted Q Attach mask on after incubation

H ECG adjusted R Administer suffoctant

I Airway manoeuvre S Insert NGT (feeding tube)

J Inflation breaths given incorrect ratio

Table 8.1: List of all actions provided in the Newborn Resus dataset assigned to an ID for
use in later tables.In Appendix A.2 larger version of the example images can be found in
Figures B.1-B.19.

the provided labels were in Excel files with varying structure. These Excel files were

interpretable by a human, and the most efficient way to relabel the dataset was to use

NoVA. Initially, only action D was labelled with NoVA because the concept of using the

reduced size of input had not yet been proven to work, and additionally the relabelling of

the dataset was time consuming.

8.1 Labelling Dataset

To fully label the Newborn Resus dataset, the model from the end-to-end semantic

segmentation using the deep-learned superpixel network was used to predict each of the 23

semantic classes for every frame in the dataset. However, as this network was only trained

on 20 samples this was not enough to encapsulate the full dataset variations as shown in

the previous chapter, where a differently exposed sample image performed much worse.

To combat this, more data was needed to fine-tune the model. This was accomplished

by testing two pipelines after running the full dataset though the model. Pipeline one

was to choose N worst performing frames, pipeline two was to choose N random frames.
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ACTION DETECTION 8.1 Labelling Dataset

To choose the worst frames for pipeline one, the prediction confidence from the model

output over the full dataset was used to determine which images the network performed

worst on. The lowest N frames were then used.

To determine N , the number of frames to add to the dataset, the time it would take

to annotate different number of frames was calculated. It was decided that the number

of frames to be added would always be a percentage of the training set. The original

training set h0 consisted of 20 instances. The percentage of numbers was varied between

10% and 50% in steps of 5%, and shown for five iterations. The results of this can be

seen in Table 8.2. 25% and three iterations were the parameters that were decided upon.
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10% 22 30m 24 30m 26 30m 29 45m 32 45m 35 45m 15 225m

15% 23 45m 26 45m 30 60m 35 75m 40 75m 46 90m 26 390m

20% 24 60m 29 75m 35 90m 42 105m 50 120m 60 150m 40 600m

25% 25 75m 31 90m 39 120m 49 150m 61 180m 76 225m 56 840m

30% 26 90m 34 120m 44 150m 57 195m 74 255m 96 330m 76 1140m

35% 27 105m 36 135m 49 195m 66 255m 89 354m 120 465m 100 1500m

40% 28 120m 39 165m 55 240m 77 330m 108 465m 151 645m 131 1965m

45% 29 135m 42 195m 61 285m 88 405m 128 600m 186 870m 166 2490m

50% 30 150m 45 225m 68 345m 102 510m 153 765m 230 1155m 210 3150m

Table 8.2: This table shows the total number of frames and the time it would take to
annotate each, using 15 minutes as a minimum time for annotation, for each iteration of
the training set increase. This tables shows up to five iterations for percentages 10% to
50% in steps of 5%.

Using the two pipelines, 30 more instances were added to each of the training sets.

To evaluate which of the two pipelines performed best, the accuracies were compared.

Additionally, the model training times, and inference times were recorded, this can be seen

in Table 8.3. When comparing the inference times there was not much difference between

the two pipelines, and the time taken for the pipelines to converge did not correlate to

either better scores or better methods. Pipeline one, worst predictions, was decided to be

the better pipeline due to the higher accuracy values. Each pipeline took approximately

80-plus hours to complete, with each step of the process waiting on the previous step.

Moreover, with this setup, each step had to be manually activated. This was also factored

into why only three iterations were used for increasing the dataset.

Pipeline one was run over the full dataset of frames one last time to create a fully

semantically segmented version of the Newborn Resus dataset.
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Iteration
Accuracy Training Time Inference Time

Random Worst Random Worst Random Worst

h0 0.655 49H 44M 26S 4H 47M 4 S

h1 0.653 0.663 3H 41M 8S 4H 27M 50S 4H 11M 26S 3H 45M 17S

h2 0.648 0.667 5H 4M 51S 3H 19M 23S 5H 15M 47S 5H 19M 53S

h3 0.657 0.658 5H 13M 3S 9H 4M 15S - -

Table 8.3: Average accuracy of iteration and the time taken for training the model.

8.2 Single Class

The section discusses the proof of concept that action recognition can be achieved with

tiny datasets by first learning to predict a single action from the Newborn Resus dataset.

The input to proof of concept RNN pipeline makes use of the down-sampled semantic

segmentation predictions. The single class chosen for this experiment was class D due to it

being the most frequent class in the dataset. Using only class D from the Newborn Resus

dataset meant that there would be a huge class imbalance between positive and negative

labels. To solve the imbalance problem, each occurrence of action D in the dataset was

iterated over, and the frames were marked to be included in the new sub-dataset. The

length of the occurrence (Dduration) of the current action D was calculated, and padding

of Dduration/2 was added to either side of the action. In the current state, the new dataset

would only work on data similar to it in regards to the pattern of negative-positive-negative,

but in a real situation, the there would be more cases of negative-negative-negative. To

include this into the dataset, random samples of the original dataset were added that

were not already included in the new dataset, that had roughly the average length of the

occurrence of action D.

The network structures used for this dataset followed the pattern of having at least

one convolution, followed by at least one LSTM. For both the convolutional layers and the

LSTM layers, the numbers ranged between one and three, giving nine possible networks.

To reduce overfitting to such a small dataset, dropout layers were added after the LSTM

layers and after the first dense layer, with the dropout value set to 0.2. The final layer

in the network was another dense layer with soft-max activation. These networks were

then compared against each other to find which performed the best. Detail on all of the

networks’ performances can be found in Appendix B.

To compare performance between networks, the F1 score was used. Because a confusion

matrix is needed to calculate F1, this also allowed for comparisons of recall and precision of

the network. Table 8.4 shows the layout of a confusion matrix. For the input of (16× 16),

the best network structure found was two convolutional layers followed by a single LSTM

layer, and can be seen in Figure 8.2. This network architecture achieved an F1 score of

0.2717, and an accuracy of 65.56%. Since the F1 score was so low, a bidirectional LSTM

was tried to find out if having more temporal data would help the network. This increased
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the F1 score to 0.3435, however this was still on the low side. This led to the assumption

that some information in the feature reduction step had been lost and this was preventing

the network from learning.

Figure 8.2: This figure shows the network structure for the best performing network and
consists of 10 layers (L). From left to right the layers in the network are: (L1) Input of
(16× 16× 1), (L2) 2D Convolution with filter (3× 3), (L3) Max pool (2× 2), (L4) 2D
Convolution with filter (3× 3), (L5) Max pool (2× 2), (L6) Flatten, (L7) Bi-directional
LSTM + Dropout 0.2 + Batch Normalization, (L8) Flatten, (L9) Dense layer of size 32
with ReLU activation + Dropout 0.2, (L10) Dense layer of size 2 with sigmoid activation.
This figure was created using the NN-SVG: Publication-Ready Neural Network Architec-
ture Schematics by LeNail [61].

Actual
1 0

P
re

d 1 TP FP
0 FN TN

Table 8.4: This confusion matrix layout is used in each of the tables in this chapter which
have the column heading Confusion Matrix.

Another metric that can be used is the average accuracy of the network. This is

calculated by computing the sum of the true positives and true negatives, divided by

the total number of predictions. Average accuracy shows how frequently the network’s

predictions are correct. However, average accuracy does not account for false positive and

false negatives predictions.

The first way to increase the amount of information passed to the network was to add

a second channel to the input data, thus going from an input of (16× 16) to (16× 16× 2).

The first channel was used for the class with the highest prediction value, and the second

channel for the second highest prediction. This was done because if there are two objects

in an area such as a hand and a stethoscope, the hand would take up much more of

the area and the stethoscope would be lost. Adding an extra channel to the input only

doubles the input features to the network, compared to doubling the size of the input
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which results in a quadrupling of the input feature size. This allows the input features to

be kept as small as possible, whilst increasing the information given to the network.

Contradictory to the hypothesis, the addition of this extra channel had the opposite

effect and reduced the F1 score. Next, the input size was doubled from (16 × 16) to

(32× 32) check if this would improve the prediction. However, this again resulted in a

worse performance than the second network structure. The results for the best performing

structure given a particular input can be seen in Table 8.5.

Input LSTM Best Best Best Best Best Confusion
Dimensions Type Structure Accuracy F1 Recall Precision Matrix

(16× 16× 1) LSTM
2 Conv

0.7819 0.2717 0.2528 0.2937
158 380

1 LSTM 467 1766

(16× 16× 1) BLSTM
2 Conv

0.6556 0.3435 0.5872 0.2427
367 1145

1 LSTM 285 1001

(16× 16× 2) BLSTM
3 Conv

0.7856 0.1832 0.1600 0.2141
100 367

1 LSTM 588 2059

(32× 32× 2) BLSTM
2 Conv

0.7362 0.2539 0.2986 0.2208
189 667

1 LSTM 444 2138

Table 8.5: These tables show the results for prediction class D for the best performing
network structures for each input and LSTM type. The network with input (16× 16× 1)
with two convolutions and one bidirectional LSTM performs the best with an F1 score of
0.3435.

An extensive search was performed to find the best architecture parameters. This

included varying the input dimensionality, the number of channels for class frequency,

the number of convolutions, the number of LSTMS, and the types of LSTM (standard or

bidirectional). The best accuracy and F1 scores for single action detection were 85.56%

and 0.2469 respectively. These results used the configuration of (32×32×2) input to three

convolutional layers and one bidirectional LSTM layer. Other network configurations and

their performance for detection of a single action can be found in Appendix B, Tables B.1,

B.2, B.3, B.4.

8.3 Multi-Class

In an attempt to further increase the performance of the action recognition network, the

hypothesis of additional classes was formed. This hypothesis came from the assumption

that the network would be able to classify some of the negative examples into their correct

classes and thus reduce the misclassification of the original action D.

The final dense layer in the network had to be changed from soft-max to sigmoid

activation, because this allows multiple actions to be activated at the same time. Soft-max

only allows for a single action to be active at one time.
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Figure 8.3: This figure shows a video from the Newborn Resus dataset that has been fully
labelled with action annotations using the NoVA tool.

To start the multi-class action recognition, the Newborn Resus dataset needed to be

fully re-annotated in NoVA with all action classes labelled. The relabelling process took

anywhere from 30 minutes to two hours to annotate each video fully. An example of a

video that has been fully annotated using the NoVA tool can be seen in Figure 8.3. This

varied drastically depending on the length of the video, the number of actions present, and

the quality of the original dataset labels. Whilst relabelling the dataset, it was found that

there had been several action labels that were missed by the original annotator, and the

original annotations only specified when an action was to start in a five second window.

Whilst re-annotating the dataset it was noted that there seemed to be a class imbalance

of the actions. This can be seen in Table 8.6. Instead of trying to learn actions with

very few occurrences or not at all, these actions were either ignored or combined into

similar actions, as can be seen in Table 8.7. For example, any assisted breathing had

been combined together into a single class because the input frames are indistinguishable

between them, and thus in theory the machine should have learnt them better as single

class.

The full re-annotation of the Newborn Resus dataset took approximately 27 hours

using NoVA. Because this was such a slow process, it was decided to train the network on

half of the fully annotated data to see if adding the extra classes would align with the

hypothesis.
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Action

22 Videos 11 Videos

Occurrences
Total Average

Occurrences
Total Average

Duration Duration Duration Duration
(seconds) (seconds) (seconds) (seconds)

A 30 4913.56 163.79 11 478.52 43.50
B 7 216.84 30.98 2 30.08 15.04
C 40 5629.04 140.71 20 3007.32 150.38
D 104 31572.76 303.58 62 19807.28 319.47
E 22 1806.16 82.10 10 948.6 94.86
F 13 3103.84 238.76 6 1278 213
G 19 887.12 46.69 9 541.76 60.20
H 2 196.56 98.28 0 0 0
I 67 24889.2 371.48 35 12571.96 359.20
J 3 435.4 145.13 2 207.64 103.82
K 6 727.24 121.21 5 650.68 130.14
L 20 8307.64 415.38 12 3009.04 250.75
M 5 1114.08 222.82 2 434.2 217.10
N 28 9297.92 332.07 11 3412.68 310.24
O 9 5911.88 656.88 1 224.44 224.44
P 7 2773.76 396.25 3 778.12 259.37
Q 4 1731.84 432.96 1 350.52 350.52
R 2 1250.72 625.36 1 421.52 421.52
S 0 0 0 0 0 0

Table 8.6: This table shows the total occurrences of each action in the Newborn Resus
dataset once fully completed, and at the halfway point. Additionally it shows the total
and average duration of each action. It can be seen that for some actions there are no or
very few occurrences.

8.3.1 Half Dataset

To find the best network architecture, the same methodology was used as with the single

class, with nine networks for each input configuration being tested. The results were

much better than for the full dataset, with the best F1 score being 0.5013. The network

had an input of (32× 32× 2) and its structure was two convolutions followed by three

bidirectional LSTMs. This network structure can be seen in Figure 8.4. This network

also had an average accuracy of 89.51%. Furthermore, the confusion matrix, recall, and

precision for this network can be found in Table 8.8. This best network supports both

of the earlier hypotheses, that the addition of an extra dimension containing the second

most frequent objects, and the increasing of the horizontal and vertical dimensionality of

the input to the network, both improve the performance of the network.
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Action

22 Videos 11 Videos

Occurrences
Total Average

Occurrences
Total Average

Duration Duration Duration Duration
(seconds) (seconds) (seconds) (seconds)

A 30 4913.56 163.79 11 478.52 43.50
C 40 5629.04 140.73 20 3007.32 150.37
D 104 31572.76 303.58 62 19807.28 319.47

E+F 35 4910.00 140.29 16 2226.60 139.16
I 67 24889.20 371.48 35 12571.96 359.20

J+K+L+M 34 10584.36 311.30 21 4301.56 204.84
P 7 2773.76 396.25 3 778.12 259.37

Table 8.7: This table shows the number of occurrences, total and average durations for
the selected actions/action combinations for both the full dataset and half dataset.

Best Best Best Best Best
Input LSTM Combined Combined Combined Combined Combined Confusion

Dimensions Type Structure Accuracy F1 Recall Precision Matrix

(16× 16× 1) LSTM
1 Conv

0.8914 0.4213 0.3627 0.5024
1661 1645

1 LSTM 2919 35782

(16× 16× 1) BLSTM
1 Conv

0.8778 0.4159 0.3991 0.4342
1828 2382

2 LSTM 2752 35045

(16× 16× 2) BLSTM
1 Conv

0.8912 0.4695 0.4417 0.5011
2023 2014

1 LSTM 2557 35413

(32× 32× 2) BLSTM
2 Conv

0.8951 0.5013 0.4836 0.5203
2215 2042

3 LSTM 2365 35385

Table 8.8: This table shows the results of the best performing network structures for each
input and LSTM type for the multi-class action recognition, using only half of the dataset.
The network with input (32×32×2) with two convolutions and three bidirectional LSTMs
performed the best, with a 0.5013 F1 score.

8.3.2 Full Data

Again the same methodology was used to find the best network for the full dataset

as was used for half dataset and the single class. Contradictory to predictions, the F1

scores dropped for all networks when using the full dataset, with the best network only

getting an F1 score of 0.2960. The network that achieved this F1 score also did not use a

bidirectional LSTM but a standard LSTM. The best network in this case had an input

of (16× 16× 1) and used a single convolutional layer and two LSTM layers. The other

network performances can be seen in Table 8.9.

8.4 Discussion

The best-performing networks for the three experiments (single class, multi-class half

dataset, and multi-class full dataset) are discussed. The best two networks both make use

of the bidirectional LSTMs and have two convolutional layers. However, the best network
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Figure 8.4: This figure shows the network structure for the best performing network and
consists of 12 layers (L). From left to right the layers in the network are: (L1) Input of
(32× 32× 2), (L2) 2D Convolution with filter (3× 3), (L3) Max pool (2× 2), (L4) 2D
Convolution with filter (3× 3), (L5) Max pool (2× 2), (L6) Flatten, (L7) Bi-directional
LSTM + Dropout 0.2 + Batch Normalization, (L8) Bi-directional LSTM + Dropout 0.2
+ Batch Normalization, (L9) Bi-directional LSTM + Dropout 0.2 + Batch Normalization,
(L10) Flatten, (L11) Dense layer of size 32 with ReLU activation + Dropout 0.2, (L12)
Dense layer of size 7 with sigmoid activation.
This figure was created using the NN-SVG: Publication-Ready Neural Network Architec-
ture Schematics by LeNail [61].

uses eight times more input features than the other networks, with 2048 input features.

Contradictory to expectations, adding the other half of the data to the dataset used to

train and evaluate the networks, reduced the performance of the network. A possible cause

of this could be due to artefacts from the semantic segmentation end-to-end networks,

since this network is used to predict on all frames of the dataset. If the predictions within

it are incorrect, this would mean the input to the action recognition network does not

correlate to the ground truth actions. For example, if items such as the pulse oximeter

or ECG are not detected and labelled with the segmentation network, then the action

recognition inputs would never see these objects being placed and would have to try to

learn the location of the hands in regards to which action is being performed.

An evaluation of whether the addition of extra classes improved the predictions, the

breakdown of each of the confusion matrices for the best performing network can be found

in Table 8.10. It can be seen that the F1 score for action D slightly decreased compared to

learning the action on its own. Additionally, there are several actions in the test set that

failed to be learnt at all, these were actions A,E+F , J+K+L+M , and P . Only actions

C,D, and I had any true positive predictions. Figure 8.5 displays the relationships

between the average and the normalised F1 scores, the number of occurrences, the total

duration, and the average duration. This graph shows that F1 score follows the same

trend as each of the metrics, except for action P in regards to average duration. This

exception is likely due to the low number of occurrences and the low total duration of
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Best Best Best Best Best
Input LSTM Combined Combined Combined Combined Combined Confusion

Dimensions Type Structure Accuracy F1 Recall Precision Matrix

(16× 16× 1) LSTM
1 Conv

0.8559 0.2960 0.2388 0.3892
2554 4008

2 LSTM 8142 69639

(16× 16× 1) BLSTM
1 Conv

0.8643 0.2773 0.2052 0.4272
2195 2943

3 LSTM 8501 70704

(16× 16× 2) BLSTM
2 Conv

0.8587 0.0812 0.0493 0.2314
527 1750

2 LSTM 10169 71879

(32× 32× 2) BLSTM
1 Conv

0.8424 0.0526 0.0345 0.1105
369 2969

1 LSTM 10327 70678

Table 8.9: This table shows the results of the best performing network structures for each
input and LSTM type for the multi-class action recognition, using the full dataset. The
network with an input of (16× 16× 1) with one convolution and two LSTM performs the
best with an F1 score of 0.2960.

the action, thus resulting in the machine not having enough examples to learn the trend.

Moreover, the average length of the action is longer than other actions. When a Pearson

correlation was performed on the F1 scores, each of the individual metrics were calculated

and a high correlation between total duration and average duration was shown. This

had a confidence value of 95%, and a number of occurrences fell just shy of the 0.10

significance value (0.669). The values for each result can be seen in Table 8.11.

It can be seen that there was a high correlation between having a high number of

occurrences and a large total duration, because as the number of occurrences increases,

the total duration will increase. The F1 score is highly correlated to the total duration

and number of occurrences, as when there is more training data, the actions will have a

higher F1 score. However, the F1 score is not highly correlated to the average duration,

because actions J + K + L + M and P have high average durations, but the F1 score

remains zero. This is due to the low number of occurrences and low total duration. For a

larger dataset, it could be hypothesised that the average duration would play more of a

role upon the performance of the action detection. If an action is too short, the network

may not be able to encapsulate enough data to recognise it as an activation. At the other

extreme, if the action is too long, the network may need to be adjusted to cope with very

long term memory necessary to detect the activation.

Due to the predicted ground truths being generated using the previous end-to-end

semantic segmentation network, the dataset only consisted of very few occurrences.

Because of this, and that the inputs to this action recognition network had a relatively low

dimensionality, the network was unable to find any correlations between the inputs and all

the actions. There are a few key factors which may have contributed to the uncertainty

in the inputs. For instance, the position of the paediatrician’s hand is often around the

baby’s face, which could obscure any equipment they might be holding. Additionally, the

baby is not always visible due to being wrapped in blankets. In this case, the input to the
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Figure 8.5: This figure shows the relationship between the average F1 score for each
action and; the percentage of the maximum action occurrence, the percentage of total
duration for the longest action, and the percentage of the maximum average duration
of the actions. Firstly, it can be seen that the three metrics follow the same trend per
action, except for in the case of action P for average duration. From visual inspection of
this graph, the F1 score for each is highly correlated to the metrics, except in regards to
action P and the average duration.
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Actions F1 Recall Precision
Confusion

Matrix

A 0.0000 0.0000 0.0000
0 0

165 5836

C 0.0123 0.0062 0.5000
1 1

160 5839

D 0.3180 0.2124 0.6329
350 203
1298 4150

E+F 0.0000 0.0000 0.0000
0 0

284 5717

I 0.6277 0.8284 0.5053
1864 1825
386 1926

J+K+L+M 0.0000 0.0000 0.0000
0 8
72 5921

P 0.0000 0.0000 0.0000
0 5
0 5996

Macro
0.1369 0.1496 0.2340

N/A
Average N/A
Micro

0.5440 0.5680 0.5219
N/A

Average D + I N/A
Micro

0.5335 0.5457 0.5219
N/A

Average C + D + I N/A
Micro

0.5013 0.4836 0.5203
2215 2042

Average 2365 35385

Table 8.10: This table shows the breakdown of the performance for the network that
was trained on half of the dataset, with the network structure: (32× 32× 2), followed 2
convolutions and 3 bidirectional LSTMs. Only actions D and I have been learnt well by
the network.

network would mainly consist of hands/gloves and bedding/towels/blankets. A technique

that may improve the results is to increase the input resolution, allowing less information

to be lost in the compression.

8.4.1 Comparison of Amount of Training Data

Taking the best performing network from the experiments conducted, the amount of

training data was varied to test the effect on the performance of the network. The

previously defined process of performing end-to-end semantic segmentation using deep-

learned superpixels, followed by feeding the output into a simple RNN network (consisting

of a small number of convolutional layers and bidirectional LSTM layers) was used to

detect actions. The three best networks from this, in their respective configurations, are

shown in Table 8.12. The network that was chosen was the network with (32× 32× 2)

input, two convolutional layers, and three bidirectional LSTMs layers, because of its much

higher F1 score of 0.5013. Figure 8.6 shows an example of the network’s trained model
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Number of Total Average Duration Significance
Occurrences Duration Duration Value (0.05)

Pearson Correlation
0.660 0.774 0.778 0.754

to F1 score

Table 8.11: This table shows the Pearson correlation between the average F1 scores for
the actions and the number of occurrences, total duration, and average duration. Total
duration and average duration showed a high correlation with 95% confidence. Number
of occurrences showed no correlations, with its Pearson score of just less than the 0.10
significance (0.669) by 0.09.

being used to perform inference on a whole video from the Newborn Resus dataset.

Dataset
Network F1
Structure Score

(16× 16× 1)
0.3435Full Dataset 2 Conv

Single Action 1 BLSTM
(16× 16× 1)

0.2960Full Dataset 1 Conv
Multiple Actions 1 LSTM

(32× 32× 2)
0.5013Half Dataset 2 Conv

Multiple Actions 3 BLSTM

Table 8.12: Comparison of the best performing networks for each dataset and action
combination.

The test set for this experiment was kept the same to allow for a fair comparison

between networks. The only data changed in this experiment was the percentage of

training data used. However, if a straight percentage of the data was taken, this would

split some videos across multiple training sets. To combat this, the percentages of the

total videos were taken, and the training sets were split according to this. To further

validate the experiment, the networks were trained three separate times per training set

percentage, and an average was taken. This reduced any poor performances due to the

random initialisation of the networks.

When the training set consisted of 20% of the total number of instances, the network

performed best with an F1 score of 0.5181, and an accuracy of 90.72%. This was very

close to the turning point of the training sets at 60% training data. At 70% training data,

the performance started to decrease. This is shown in Figure 8.7 and the performance

for the other percentages of training data can be found in Table 8.13.

There are several hypotheses for why this may have happened. Firstly, there is an

inherent class unbalance due to certain videos consisting of different procedures. Not all

videos consist of the baby receiving the full resuscitation procedure, as some babies are
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Figure 8.6: This figure shows the multi-class action predictions by the best performing
network in Table 8.12 on a example video from the Newborn Resus dataset.

only checked over and wrapped up to keep warm. With such a small amount of data, this

would not give enough examples for a network to be able to generalise for each action.

Another hypothesis is that the data in the final 40% of the training data may not be

reliable, because the predictions from the semantic segmentation may not have picked

up all of the objects in the videos. If any important objects, such as the hands, are not

detected, then the action recognition system would be missing vital information to be able

to learn from. This could be the case if the gloves which the paediatric staff are wearing

are a different colour than the ones in the training set for the semantic segmentation

network.

When looking at the individual action breakdown predictions, Table 8.14, the per-

formance slightly increased from the previous best network, Table 8.10. The F1 score of

action I, airway manoeuvre, increased from 0.6277 to 0.6849.

8.5 Conclusion

In conclusion, the methodology of using a (32× 32× 2) input with multiple convolutions

layers followed by bi-directional LSTMS, Figure 8.4, works adequately for a small number

of actions trained on a very small amount of data. This achieved an accuracy of 90.72%

and a F1 score of 0.5181. This high accuracy and lowers F1 score shows that the network

is overfitting to some classes. This overfitting has likely occurred because of the lower

occurrences for classes A and P, and low total duration of C, E+F, and J+K+L+M. Both

the total duration and number of occurrences are low compared to classes D and I.
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Percentage Micro Micro Micro Micro
Training Data Accuracy F1 Recall Precision

10% 0.9048 0.5122 0.4583 0.5806
20% 0.9072 0.5181 0.4574 0.5974
30% 0.8988 0.4965 0.4574 0.5429
40% 0.8950 0.4679 0.4234 0.5228
50% 0.8955 0.4808 0.4435 0.5266
60% 0.9072 0.5137 0.4496 0.5992
70% 0.9016 0.4592 0.3831 0.5731
80% 0.8954 0.3667 0.2777 0.5397
90% 0.8889 0.3090 0.2282 0.4792
100% 0.8822 0.2361 0.1670 0.4026

Table 8.13: This table shows the performance of the network trained on varying amounts
of training data against a fixed test set. The best performing network used only 20% of
the training data, but was very closely followed by the network which used 60%. After
60%, the performance started to decrease.

Actions F1 Recall Precision

A 0.0000 0.0000 0.0000
C 0.0158 0.0104 0.0342
D 0.3197 0.2186 0.5951

E+F 0.0046 0.0023 0.1032
I 0.6849 0.7699 0.6169

J+K+L+M 0.0000 0.0000 0.0000
P 0.0000 0.0000 0.0000

Table 8.14: This table shows the breakdown performance for the individual actions for
the best performance network when trained on 20% of the training data.

To improve the performance upon the actions that the network failed to learn would

require addressing the issues mentioned throughout this chapter. Firstly, the data fed to

the network must be of high precision. This would require re-annotating the 22 videos,

achieved by manually finding the worst predictions for all of the videos, then re-annotating

them and including them in the training set for the end-to-end semantic segmentation

network. This would need to be repeated until the entire dataset was labelled without any

objects being missed. It could take many weeks for this to be done to a high standard.

With this higher quality dataset, the action recognition network could be retrained to see

if the addition of more data improves the network further.

To combat the issue of lost information during compression of the input to the network,

several experiments must be performed. This would include increasing the resolution of

the input until all of the most important semantic classes were visible. This would require

varying the width and height of the input as well as the number of channels, where each

additional channel represents the next most frequent class for an area. For this to be
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Figure 8.7: Graph comparing the average F1, accuracy, recall, and precision values when
varying the percentage of training data given to the network.

feasible it would need to be automated and at each step the action recognition network

would be retrained until the most optimal network input was found. A too-large input

could drastically increase both training and prediction times, as each instance that the

input increases, the number of parameters in the network proportionally increase. If the

input dimensionality required was too large for enough information to be present during

training, then the training times could be reduced by altering the network structure

to accommodate for this. This would be a lengthy process, which was not possible to

complete within this thesis due to time constraints.

Given that such small amounts of data have been used to train these networks, it

can be confidently assumed that given a well-labelled dataset following strict constrains,

such as maintaining the same view and a small number of object in the dataset, that it is

indeed possible to get adequate action recognition results on very small domain-specific

datasets. The main take away from this is that the quality of the inputs to the network

have a larger impact on performance than when using a traditional sized dataset with

many more variations. Thus meaning that the input semantic segmentations for the

frames of the videos should be of good quality.
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Chapter 9

Conclusion

9.1 Research question

This thesis set out to discover if useful results for the task of semantic segmentation and

action recognition using deep learning architectures with tiny domain specific dataset is

possible. From the evidence given throughout the chapters in this thesis I have concluded

that, given a modest amount of instances, it is indeed possible to use complex deep

learning architectures with tiny datasets.

Semantic segmentation with tiny domain-specific datasets has been accomplished by

making use of an end-to-end network consisting of two hourglass structures, with the first

hourglass being pre-trained to predict deep-learned superpixels, by being trained on a

large varied dataset. The second hourglass takes the RGB image, and the deep-learned

superpixel represented in the novel MCG representation as input. This second hourglass

is trained to perform semantic segmentation. Good semantic segmentation results have

been achieved with as little as 20 training instances on the Newborn Resus dataset.

A key part of training a dataset is first labelling the dataset. In this thesis, the Image

Annotation Tool has been updated to make use of superpixels to aid in annotating images

to near pixel-perfect with large improvements to the duration it take to annotate such

images.

Action recognition with tiny datasets was achieved by making use of semantic segment-

ation as a pre-processing set to reduce the number of features fed to the RNN network.

In addition to semantic segmentation, a custom pooling was applied to the input to

reduce the dimensionality from (512× 512× 23) for the Newborn Resus dataset, down to

(32 × 32 × 2), where each channel in the new output represents the N th most frequent

class for a section. Using multiple convolutional layers followed by bi-directional LSTM

layers the architecture was able to detect two of the seven classes from the Newborn Resus

dataset. The main contributing factor for struggling to learn the other five classes was

the lack of training data for complex tasks.
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Being able to perform train deep learning architectures with a tiny domain-specific

dataset and achieve usable predictions is an important step in allowing deep learning to

be able to be used by a wider community without the need for such large datasets. The

generation of such large datasets for some communities is not feasible due to the expertise

and time required to annotate those datasets.

9.2 Recommendations

For semantic segmentation, I would highly recommend a well-balanced dataset with an

absolute minimum of 30 instances of each class for both action recognition and semantic

segmentation. Ideally, the dataset would contain 50+ instances. Using 50 instances

allows for the dataset to be split into 20:10:20 sets for training, validation and testing,

respectively. With regard to semantic segmentation and the Newborn Resus dataset,

classes with less than 30 total instances failed to learn. There was a similar story told

in regards to action recognition, where a large number of classes that had fewer than 30

instances failed to learn.

Including superpixels as an input feature to a network, represented via Multi-channel

Connected Graphs (MCGs), has proven useful for small amounts of data, but when

increasing the number of samples there is less of an improvement. Using deep-learned

superpixels over handcrafted superpixels again showed larger improvements when using

small amounts of data, but when larger amounts of data were used, handcrafted superpixels

had a minor improvement over deep-learned superpixels.

9.3 Un-answered questions

An unanswered question regarding MCGs is their ability to be represent other pixel

relationships for use as input features for CNN architectures, as well as the MCG’s ability

to be used with different pixel layouts, such as a triangular layout.

9.4 Future Work

In regards to Newborn Resus dataset and its use in development of a system to aid in

training of paediatric staff, more data would be required to perform adequate action

recognition for medical training. A larger amount of training data that is also well-labelled

could be used to train a modern fast architecture, such as the adapted U-nets [95]. These

adapted U-nets could replace the stacked hourglass modules in Chapters 2.4 for a faster

inference time. Then, in an end-to-end manner, multiple RNN layers could be added to

the end of the adapted stacked U-nets for a single model. The use of the down-sampling
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technique discussed in Chapter 8 would also be included in the network to reduce the

amount of variables for the RNN layers.

The gLitter project was put on hold due to financial and logistical reasons. To enable

this project to become active again, much more data collection would be required. With

larger amounts of data, the super litter class could be split into subclasses which would

allow for better sorting of the litter during collection with the rover. The video footage

gathered by humans is a good place to start, but if the detection system is needed to be

embedded into the drone and rover, additional data from these sources would be needed

to fine-tune the final models to ensure that the network can handle the variations in

distance from the subject, and motion caused by the autonomous vehicles. The major

thing currently missing from the gLitter project is what would be classed as ‘not litter’,

and different terrains that the vehicles would encounter, such as treetops for the drone.

Not being able to identify the difference between a bottle that belongs to someone and is

not litter, and a bottle that has been left on the ground as litter, is one of the challenges

that will need to be solved during prototyping.

Taking deep-learned superpixels to the next level by training a network with many

different handcrafted superpixel algorithms, whilst also varying the superpixel algorithm’s

parameters to create differently shaped and sized superpixels, and making use of a very

large image dataset such as ImageNet, could possibly result in a better over-segmenting

method. Due to the large number of superpixels that would be created by the varying

algorithms, a new problem would arise on how to represent all of the resulting superpixel

masks. A possibility that may work well, would be to use the MCG representations,

and instead of having multiple graphs (one per superpixel algorithm creation), a single

combined MCG could be created by summing all individual masks together, and then

normalising between zero and one. This new MCG mask would, in turn, highlight where

multiple different algorithms create boundaries between their respective superpixels.

Being able to reconstruct superpixels from the predicted MCG masks would be

both beneficial to the above-stated improvement to deep-learned superpixels, and to the

superpixels created in this thesis. By being able to reconstruct the individual superpixels

from predicted MCGs would allow for them to be used outside of the proposed end-to-

end network. However, this remains an unsolved problem; how to enforce the ability

to reconstruct the superpixels during training. I believe this would require a new loss

function that could determine how many nodes in the MCGs need to be updated to be

able to reconstruct to whole superpixels or super-regions. This new loss function could

have a parameter to enforce the size of the predicted superpixels, which would make them

tunable per domain.
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Appendix A

Deep Learned Superpixels

A.1 Multi-Channel Connected Graphs

A.2 End-to-End Litter

The following figures: A.1, A.2, and A.3 display the outputs of the best epochs for each

of the pipelines tested.
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DEEP LEARNED SUPERPIXELS

import numpy

de f combineMCG(up , down , l e f t , r i g h t ) :
# MCG inputs o f ( image height , image width ) conta in ing 1 s & 0 s
n rows , n c o l s = up . shape ( )
output = numpy . z e r o s ( ( n rows , n c o l s ))−1
output = output . astype ( i n t )
output [ 0 ] [ 0 ] = 0
nex t id = 1

f o r row i in range ( n rows ) :
f o r c o l i in range ( n c o l s ) :

# (MCG d i r e c t i o n map, row index , c o l index ,
# with in output array , name)
f o r d i r e c t i o n in [ ( r i ght , 0 , 1 , c o l i <n co l s −2, ’ r i ght ’ ) ,

(down , 1 , 0 , row i<n rows−2, ’down ’ ) ,
(up , −1, 0 , row i >0 , ’up ’ ) ,
( l e f t , 0 ,−1 , c o l i >0 , ’ l e f t ’ ) ] :

# Check i f MCG d i r e c t i o n map i s 1
i f d i r e c t i o n [ 0 ] [ row i ] [ c o l i ] == 1 :

# Check i f not a l r eady as s i gned
o r = row i+d i r e c t i o n [ 1 ]
o c = c o l i+d i r e c t i o n [ 2 ]
i f output [ o r ] [ o c ] ] == −1:

output [ o r ] [ o c ] = output [ row i ] [ c o l i ]
# Check that prev ious ID ’ s are c o r r e c t
e l i f not output [ o r ] [ o c ] == output [ row i ] [ c o l i ] :

output [ row i ] [ c o l i ] = output [ o r ] [ o c ]
# Check i f i n d i c e s with in output dimensions
e l i f d i r e c t i o n [ 3 ] :

# Check i f not a l r eady as s i gned
i f output [ o r ] [ o c ] == −1:

output [ o r ] [ o c ] = nex t id
nex t id += 1

# Ensure that IDs are indexed once a f t e r another
uniques = l i s t (numpy . unique ( output ) )
uniques . s o r t ( )
min num = 0
f o r u in uniques :

i f not min num == u :
output [ output==u]=min num

min num += 1

return output
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DEEP LEARNED SUPERPIXELS

Figure A.1: 512 test data predictions, images 1-31. From left to right: RGB, MCG(SLIC),
MCG(SLIC)+RGB, MCG(DLSP), MCG(DLSP)+RGB, End-to-end, No Pre-train, No
Front, No Back, Dual Losses, ground truth, and RGB input.

161



DEEP LEARNED SUPERPIXELS

Figure A.2: 512 test data predictions, images 32-62. From left to right: RGB, MCG(SLIC),
MCG(SLIC)+RGB, MCG(DLSP), MCG(DLSP)+RGB, End-to-end, No Pre-train, No
Front, No Back, Dual Losses, ground truth, and RGB input.

162



DEEP LEARNED SUPERPIXELS

Figure A.3: 512 test data predictions, images 63-93. From left to right: RGB, MCG(SLIC),
MCG(SLIC)+RGB, MCG(DLSP), MCG(DLSP)+RGB, End-to-end, No Pre-train, No
Front, No Back, Dual Losses, ground truth, and RGB input.
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Appendix B

Action Detection

B.1 Actions Examples

The following 19 figures: B.1 - B.19 display example images of the corresponding actions

in 8.

Figure B.1: Example image for Action: A) Dried with towel.
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ACTION DETECTION

Figure B.2: Example image for Action: B) Dried with towel.

Figure B.3: Example image for Action: C) Cap placed on head.

Figure B.4: Example image for Action: D) Heart rate assessed stethoscope.

Figure B.5: Example image for Action: E) Attachment of pulse oximeter.
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ACTION DETECTION

Figure B.6: Example image for Action: F) Pule oximeter adjusted.

Figure B.7: Example image for Action: G) Place ECG on chest.

Figure B.8: Example image for Action: H) ECG adjusted.
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ACTION DETECTION

Figure B.9: Example image for Action: I) Airway manoeuvre.

Figure B.10: Example image for Action: J) Inflation breaths given incorrect ratio.

Figure B.11: Example image for Action: K) Provide five inflation breaths lasting three
seconds.
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ACTION DETECTION

Figure B.12: Example image for Action: L) Ventilation breaths given incorrect ratio.

Figure B.13: Example image for Action: M) Ventilation breaths given for 30s and 1s each.

Figure B.14: Example image for Action: N) Stimulation the infant
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ACTION DETECTION

Figure B.15: Example image for Action: O) Cleared away suctioning.

Figure B.16: Example image for Action: P) Incubation attempt.

Figure B.17: Example image for Action: Q) Attach mask on after incubation.

Figure B.18: Example image for Action: R) Administer suffoctant.
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ACTION DETECTION

Figure B.19: Example image for Action: S) Insert NGT (feeding tube).

B.2 Single Action

Configuration
# Epochs

Loss Accuracy F1 Recall Precision
Confusion

to Converge Matrix

1×Conv
17 0.5717 0.7853 0.2118 0.1808 0.2557

113 329

1×LSTM 512 1817

1×Conv
20 0.6957 0.8073 0.2170 0.1776 0.2789

111 287

2×LSTM 514 1859

1×Conv
20 0.5045 0.8032 0.0791 0.0560 0.1346

35 225

3×LSTM 590 1921

2×Conv
20 0.4546 0.7819 0.2717 0.2528 0.2937

158 380

1×LSTM 467 1766

2×Conv
22 0.5364 0.8257 0.1161 0.0768 0.2376

48 154

2×LSTM 577 1992

2×Conv
23 0.4988 0.8445 0.0062 0.0032 0.0833

2 22

3×LSTM 623 2124

3×Conv
22 0.4541 0.7823 0.1342 0.1120 0.1675

70 348

1×LSTM 555 1798

3×Conv
27 0.4748 0.7864 0.1440 0.1200 0.1799

75 342

2×LSTM 550 1804

3×Conv
17 0.4515 0.8494 0.0000 0.0000 0.0000

0 1

3×LSTM 625 2145

Table B.1: Single action detection with an input 16x16x1 with a patience of 15 epoch for
validation. Using a range of convolutions and LSTMs.
training - 1=41% 0=59% 1=4592 0=6493 total=11085
testing - 1=%23 0=77% 1=625 0=2146 total=2771
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Configuration
# Epochs

Loss Accuracy F1 Recall Precision
Confusion

to Converge Matrix

1×Conv
20 0.7315 0.8068 0.2063 0.1664 0.2715

104 279

1×BLSTM 521 1867

1×Conv
19 0.5080 0.8380 0.0506 0.0288 0.2093

18 68

2×BLSTM 607 2078

1×Conv
17 0.4150 0.8507 0.0251 0.0128 0.6667

8 4

3×BLSTM 617 2142

2×Conv
19 0.5930 0.6556 0.3435 0.5872 0.2427

367 1145

1×BLSTM 285 1001

2×Conv
21 0.5178 0.8243 0.2004 0.1440 0.3297

90 183

2×BLSTM 535 1963

2×Conv
21 0.4625 0.8477 0.0335 0.0176 0.3548

11 20

3×BLSTM 614 2126

3×Conv
23 0.4173 0.4173 0.0536 0.0368 0.0987

23 210

1×BLSTM 602 1936

3×Conv
21 0.4509 0.8181 0.0237 0.0144 0.0677

9 124

2×BLSTM 616 2022

3×Conv
17 0.4651 0.8481 0.0000 0.0000 0.0000

0 6

3×BLSTM 625 2140

Table B.2: Single action detection with an input 16x16x1 with a patience of 15 epoch for
validation. Using a range of convolutions and bidirectional LSTMs.
training - 1=41% 0=59% 1=4592 0=6493 total=11085
testing - 1=%23 0=77% 1=625 0=2146 total=2771
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Configuration
# Epochs

Loss Accuracy F1 Recall Precision
Confusion

to Converge Matrix

1×Conv
26 0.6537 0.8389 0.0000 0.0000 0.0000

0 5

1×BLSTM 625 2141

1×Conv
26 0.4945 0.8453 0.0123 0.0064 0.1538

4 22

2×BLSTM 621 2124

1×Conv
19 0.4720 0.8458 0.0000 0.0000 0.0000

0 15

3×BLSTM 625 2131

2×Conv
19 0.5383 0.8099 0.0643 0.0432 0.1256

27 188

1×BLSTM 598 1958

2×Conv
20 0.5697 0.8315 0.0641 0.0384 0.1935

24 100

2×BLSTM 601 2046

2×Conv
19 0.5639 0.8457 0.0031 0.0016 0.0556

1 17

3×BLSTM 624 2129

3×Conv
24 0.4793 0.7856 0.1832 0.1600 0.2141

100 367

1×BLSTM 525 1779

3×Conv
24 0.4844 0.8422 0.0787 0.0448 0.3218

28 59

2×BLSTM 597 2087

3×Conv
22 0.5371 0.8376 0.0988 0.0592 0.2988

37 87

3×BLSTM 588 2059

Table B.3: Single action detection with an input 16x16x2 with a patience of 15 epoch for
validation. Using a range of convolutions and bidirectional LSTMs.
training - 1=41% 0=59% 1=4592 0=6493 total=11085
testing - 1=%23 0=77% 1=625 0=2146 total=2771

172



ACTION DETECTION

Configuration
# Epochs

Loss Accuracy F1 Recall Precision
Confusion

to Converge Matrix

1×Conv
19 0.7111 0.8264 0.0237 0.0126 0.1905

8 34

1×BLSTM 625 2104

1×Conv
25 0.6081 0.8482 0.0156 0.0079 0.6250

5 3

2×BLSTM 628 2135

1×Conv
17 0.5162 0.8477 0.000 0.000 0.000

0 0

3×BLSTM 633 2138

2×Conv
24 0.5346 0.7362 0.2539 0.2986 0.2208

189 667

1×BLSTM 444 1471

2×Conv
18 0.4956 0.8221 0.1443 0.0995 0.2625

63 177

2×BLSTM 570 1961

2×Conv
23 0.6755 0.8433 0.0686 0.0379 0.3582

24 43

3×BLSTM 609 2095

3×Conv
20 0.4081 0.8556 0.2469 0.1564 0.5858

99 70

1×BLSTM 534 2068

3×Conv
19 0.4361 0.8512 0.1144 0.0632 0.6061

40 26

2×BLSTM 593 2112

3×Conv
22 0.4476 0.8486 0.0538 0.0284 0.5000

18 18

3×BLSTM 615 2120

Table B.4: Single action detection with an input 32x32x2 with a patience of 15 epoch for
validation. Using a range of convolutions and bidirectional LSTMs.
training - 1=41% 0=59% 1=4584 0=6501
testing - 1=%23 0=77% 1=633 0=2138
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B.3 Multiple Actions

B.3.1 Full Data

Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
14 0.4060 0.8278 0.2878 0.2308 0.3823

2469 3990

1×LSTM 8227 69657

1×Conv
39 0.3685 0.8559 0.2960 0.2388 0.3892

2554 4008

2×LSTM 8142 69639

1×Conv
31 0.3438 0.8643 0.2772 0.2052 0.4269

2195 2947

3×LSTM 8501 70700

2×Conv
33 0.3739 0.8446 0.1482 0.1066 0.2432

1140 3547

1×LSTM 3547 70100

2×Conv
28 0.3711 0.8600 0.1023 0.0629 0.2737

673 1786

2×LSTM 10023 71861

2×Conv
28 0.3526 0.8713 0.2385 0.1588 0.4782

1699 1854

3×LSTM 8997 71793

3×Conv
41 0.3128 0.8660 0.2212 0.1501 0.4204

1605 2213

1×LSTM 9091 71434

3×Conv
28 0.3606 0.8645 0.1533 0.0968 0.3691

1035 1769

2×LSTM 9661 71878

3×Conv
22 0.3528 0.8713 0.2666 0.1845 0.4807

1973 2130

3×LSTM 8723 71517

Table B.5: Multiple action detection with an input 16x16x1 with a patience of 15 epoch
for validation. Using a range of convolutions and LSTMs. Using the full dataset.
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Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
26 0.3664 0.8358 0.1553 0.1190 0.2235

1273 4422

1×BLSTM 9423 69225

1×Conv
25 0.3756 0.8370 0.2002 0.1609 0.2650

1721 4774

2×BLSTM 8975 68873

1×Conv
31 0.3437 0.8643 0.2773 0.2052 0.4272

2195 2943

3×BLSTM 8501 70704

2×Conv
33 0.3736 0.8451 0.1509 0.1085 0.2475

1161 3529

1×BLSTM 9535 70118

2×Conv
28 0.3792 0.8580 0.0916 0.0565 0.2428

604 1884

2×BLSTM 10092 71763

2×Conv
28 0.3547 0.8709 0.2247 0.1475 0.4708

1578 1774

3×BLSTM 9118 71873

3×Conv
41 0.3094 0.8668 0.2273 0.1545 0.4303

1652 2187

1×BLSTM 9044 71460

3×Conv
21 0.4253 0.8712 0.0022 0.0011 0.0615

12 183

2×BLSTM 10684 73464

3×Conv
19 0.4169 0.8461 0.0455 0.0289 0.1066

309 2591

3×BLSTM 10387 71056

Table B.6: Multiple action detection with an input 16x16x1 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs. Using the full
dataset.
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ACTION DETECTION

Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
31 0.4448 0.8524 0.0540 0.0332 0.1443

355 2105

1×BLSTM 10341 71542

1×Conv
38 0.4350 0.8573 0.0414 0.0243 0.1400

260 1597

2×BLSTM 10436 72050

1×Conv
23 0.4273 0.8566 0.0360 0.0211 0.1222

226 1623

3×BLSTM 10470 72024

2×Conv
33 0.4221 0.8639 0.0317 0.0176 0.1622

188 971

1×BLSTM 10508 72676

2×Conv
31 0.3930 0.8587 0.0812 0.0493 0.2314

527 1750

2×BLSTM 10169 71897

2×Conv
21 0.4299 0.8645 0.0232 0.0127 0.1351

136 871

3×BLSTM 10560 72776

3×Conv
22 0.3847 0.8721 0.0271 0.0140 0.3846

150 240

1×BLSTM 10546 73407

3×Conv
21 0.4253 0.8712 0.0022 0.0011 0.0615

12 183

2×BLSTM 10684 73464

3×Conv
19 0.4169 0.8461 0.0455 0.0289 0.1066

309 2591

3×BLSTM 10387 71056

Table B.7: Multiple action detection with an input 16x16x2 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs.Using the full
dataset.
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Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
35 0.5533 0.8424 0.0526 0.0345 0.1105

369 2969

1×BLSTM 10327 70678

1×Conv
19 0.4597 0.8625 0.0366 0.0206 0.1639

220 1122

2×BLSTM 10476 72525

1×Conv
18 0.5280 0.8618 0.0212 0.0118 0.1036

126 1090

3×BLSTM 10570 72557

2×Conv
19 0.5027 0.8660 0.0152 0.0081 0.1113

87 695

1×BLSTM 10609 72952

2×Conv
26 0.4844 0.8689 0.0097 0.0050 0.1146

54 417

2×BLSTM 10642 73230

2×Conv
24 0.4817 0.8678 0.0180 0.0095 0.1555

102 554

3×BLSTM 10594 73093

3×Conv
19 0.5226 0.8674 0.0075 0.0039 0.0736

42 529

1×BLSTM 10654 73118

3×Conv
21 0.4249 0.8724 0.0009 0.0005 0.0685

5 68

2×BLSTM 10691 73579

3×Conv
22 0.4698 0.8729 0.0017 0.0008 0.2045

9 35

3×BLSTM 10687 73612

Table B.8: Multiple action detection with an input 32x32x2 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs. Using the full
dataset.
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B.3.2 Half Data

Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
41 0.4059 0.8914 0.4213 0.3627 0.5024

1661 1645

1×LSTM 2919 35782

1×Conv
35 0.3519 0.8703 0.2877 0.2402 0.3585

1100 1968

2×LSTM 3480 35459

1×Conv
34 0.4185 0.8659 0.3441 0.3227 0.3686

1478 2532

3×LSTM 3102 34895

2×Conv
41 0.3433 0.8875 0.3647 0.2961 0.4748

1356 1500

1×LSTM 3224 35927

2×Conv
34 0.3229 0.8865 0.3872 0.3288 0.4709

1506 1692

2×LSTM 3074 35735

2×Conv
40 0.3470 0.8916 0.3834 0.3092 0.5046

1416 1390

3×LSTM 3164 36037

3×Conv
49 0.4079 0.8836 0.3938 0.3467 0.4557

1588 1897

1×LSTM 2992 35530

3×Conv
33 0.3304 0.8780 0.2713 0.2083 0.3891

954 1498

2×LSTM 3626 35929

3×Conv
43 0.3251 0.8790 0.2915 0.2282 0.4033

1045 1546

3×LSTM 3535 35881

Table B.9: Multiple action detection with an input 16x16x1 with a patience of 15 epoch
for validation. Using a range of convolutions and LSTMs. Using the half dataset.
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Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
23 0.4437 0.8546 0.3688 0.3897 0.3501

1785 3314

1×BLSTM 2795 34113

1×Conv
26 0.3812 0.8778 0.4159 0.3991 0.4342

1828 2382

2×BLSTM 2752 35045

1×Conv
23 0.3836 0.8671 0.3270 0.2961 0.3651

1356 2358

3×BLSTM 3224 35069

2×Conv
22 0.3560 0.8773 0.3904 0.3605 0.4258

1651 2226

1×BLSTM 2929 35201

2×Conv
47 0.3823 0.8827 0.3873 0.3400 0.45

1557 1903

2×BLSTM 3023 35524

2×Conv
30 0.4425 0.8760 0.3736 0.3391 0.4159

1553 2181

3×BLSTM 3027 35246

3×Conv
46 0.3880 0.8822 0.3315 0.2679 0.4348

1227 1595

1×BLSTM 3353 35832

3×Conv
35 0.3206 0.8706 0.3544 0.3258 0.3886

1492 2347

2×BLSTM 3088 35080

3×Conv
31 0.3654 0.8770 0.2208 0.1598 0.3571

732 1318

3×BLSTM 3848 36109

Table B.10: Multiple action detection with an input 16x16x1 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs. Using the half
dataset.
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Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
23 0.3388 0.8912 0.4695 0.4417 0.5011

2023 2014

1×BLSTM 2557 35413

1×Conv
34 0.3749 0.8750 0.3442 0.3009 0.4020

1378 2050

2×BLSTM 3202 35377

1×Conv
29 0.3909 0.8825 0.4219 0.3932 0.4550

1801 2157

3×BLSTM 2779 35270

2×Conv
25 0.3594 0.8826 0.3513 0.2917 0.4417

1336 1689

1×BLSTM 3244 35738

2×Conv
45 0.3987 0.8702 0.2882 0.2410 0.3582

1104 1978

2×BLSTM 3476 35449

2×Conv
27 0.4452 0.8615 0.3362 0.3216 0.3522

1473 2709

3×BLSTM 3107 34718

3×Conv
31 0.4481 0.8840 0.3583 0.2969 0.4517

1360 1651

1×BLSTM 3220 35776

3×Conv
28 0.4338 0.8390 0.2552 0.2531 0.2574

1159 3343

2×BLSTM 3421 34084

3×Conv
33 0.3638 0.8756 0.2009 0.1434 0.3352

657 1303

3×BLSTM 3923 36124

Table B.11: Multiple action detection with an input 16x16x2 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs. Using the half
dataset.
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Configuration
# Epochs Combined Combined Combined Combined Combined Confusion

to Converge Loss Accuracy F1 Recall Precision Matrix

1×Conv
34 0.3322 0.9092 0.4725 0.3731 0.6439

1709 945

1×BLSTM 2871 36482

1×Conv
32 0.2844 0.9021 0.3632 0.2561 0.6243

1173 706

2×BLSTM 3407 36721

1×Conv
32 0.3750 0.9119 0.4978 0.4002 0.6582

1833 952

3×BLSTM 2747 36475

2×Conv
44 0.4335 0.8782 0.3873 0.3531 0.4289

1617 2153

1×BLSTM 2963 35274

2×Conv
56 0.4121 0.8891 0.4223 0.3718 0.4887

1703 1782

2×BLSTM 2877 35645

2×Conv
27 0.3762 0.8951 0.5013 0.4836 0.5203

2215 2042

3×BLSTM 2365 35385

3×Conv
31 0.4115 0.8641 0.2379 0.1945 0.3061

891 2020

1×BLSTM 3689 35407

3×Conv
38 0.3847 0.8768 0.3878 0.3579 0.4233

1639 2233

2×BLSTM 2941 35194

3×Conv
32 0.3645 0.8775 0.2474 0.1847 0.3747

846 1412

3×BLSTM 3734 36015

Table B.12: Multiple action detection with an input 32x32x2 with a patience of 15 epoch
for validation. Using a range of convolutions and bidirectional LSTMs. Using the half
dataset.
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