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ABSTRACT  

Daylighting features prominently in sustainable building design. It has been proven that 

daylighting not only saves the electric lighting energy consumption, but also improves the 

visual comfort and occupants’ health. A number of daylighting designs and control strategies 

have been presented and practised. Performance prediction of these designs is essential in 

daylighting research. The innovation of natural daylighting light pipe took place more than 

thirty years ago. However, no efficient and accurate prediction method, which includes the 

efficiency of straight light pipe, especially the bended light pipe has been made available. 

Therefore, a prediction model for light pipes is desirable to assess and predict its efficiency and 

potential in energy saving. This thesis attempts to develop an Artificial Neural Networks 

(ANNs) based prediction model for the performance of lightpipes and implement it in the 

Building Information Modelling (BIM) platform to help the designers, engineers and asset 

managers make informed decisions in daylighting lightpipes design. A comprehensive and 

critical literature review is first introduced covering the advanced artificial neural network 

intelligent technique in the application of the luminance and illuminance prediction, energy 

saving, daylighting controls and the optical property of lightpipes. An optical analysis software 

Photopia is employed to simulate the daylighting performance of light pipes to generate the 

real database and calculate the efficiency of the light pipes. It is then followed by ANNs 

simulations in Matlab for forming a forecasting model for light pipe performance. To empower 

the prediction model and make it easy and friendly to be used, the developed ANNs model for 

lightpipe performance is innovatively implemented in BIM software Revit, as a plug-in 

application tool. This tool in Revit enables the prediction of the transmittance of lightpipes 

directly without running the programme in Matlab. It can help the designers or users choose 

the lighpipe parameters easily and accurately and therefore add value to the industry and the 

research community.  
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1.1 Background 

Carbon dioxide (CO2) emission is one of the greatest global challenges that human beings have 

to overcome in the 21st century. Although the energy consumption in the World still increases, 

however, due to implementation of various energy saving techniques, the increase rate of 

energy consumption has slowed down in the last decade. The UK government has set target to 

reduce 80% of net carbon account by the year 2050 compared with 1990 baseline [1]. 

Inspiringly, UK net CO2 emissions were estimated to be 351.5 million tonnes (Mt) in 2019, 

which was 3.6% less than 2018 of 365.7 Mt [2]. Among these, buildings are responsible for 

approximately 38% of the CO2 emissions in UK (Figure 1.1) [3]. Therefore, buildings are the 

sector with the greatest potential for carbon reduction. 

 

Figure 1.1 Buildings share of UK carbon dioxide emissions [3]. 

It is found that electric lighting, one of the dominant energy demands, accounts for 17% of 

total electricity consumption in commercial buildings [4] and 20% in residential properties [5]. 

Historically, daylight was used as the primary source of luminance during the day. However, 

as modern cities have been built, artificial lighting has been substantially used in buildings in 
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the daytime. As a result, massive consumption of artificial lighting and hence energy has 

brought into attention to numerous scientists and engineers as if it could be reduced or replaced 

by the natural daylighting. For example, Li and Tsang [6] carried out a survey on some open 

layout office buildings in Hong Kong and found that 20-25% of electric lighting energy can be 

saved if half of the occupancy time was served by daylighting with proper artificial lighting 

control. 

 

Compared with artificial lighting, daylighting does not only save the energy consumption, but 

also improve the visual comfort and occupants’ health, which applies “light vitamin” to people 

living in the buildings. Begemann et al. [7] have conducted a long-term study and found that 

the occupants in buildings prefer varying levels of natural lighting cycle to the constant 

artificial lighting. In addition to the directly save on the energy consumption and personal 

preference, daylighting can save the cooling cost in air-conditioned buildings. This is due to 

that the Luminous Efficacy (number of lumens per watt) of daylighting is normally higher than 

artificial lighting. As such, given the same level of illuminance, less radiant power is required. 

In other words, natural illumination normally dissipates less heat than artificial illumination 

and therefore it is considered as an efficient illumination. In an office building with normally 

extensive use of artificial lighting, significant amount of heat dissipation could be saved by 

utilizing daylighting instead, which reduce the cooling energy consumption [8]. 

 

Light pipe is an innovative design to deliver daylight into deep space where otherwise daylight 

cannot reach. A schematic of light pipe system is shown in Figure 1.2. An acrylic dome usually 

is installed at roof level and then transmitted downwards to interior spaces within buildings. 

The internal surface of the pipe is coated with mirror-finished aluminum with a high reflection 
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of 98%. This pipe system helps introducing daylight via a light diffuser. The reflecting pipe is 

adaptable to incorporate any bends around building structural components. 

 

Figure 1.2 An illustration of innovative daylighting devices lightpipes 

 

Because of its main structure as a well-sealed tube, light pipe has added potential advantage in 

reducing excessive solar gain. In addition, the daylight only emits off from diffuser and as such 

the output daylight is easier to control. Moreover, the light pipe is flexible in its structure, 

allowing to put diffusers directly where needed, so as to achieve a good internal daylight 

distribution. The combined use of windows and light pipes can reduce glare and further 

improve the balance of daylighting in a room. Exploiting daylighting sometimes is objected 

due to the excessive glare and shadow it may cause. However, light pipe could solve these 

issues. By redirecting and diffusing daylighting into deep space, glare from windows is reduced 

and daylighting is of a better uniformity. Another advantage is light pipe could be applied in 
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multi-story buildings, while the use of daylight is usually limited to the perimeter zone of a 

building. 

 

Due to various potential advantages as mentioned, light pipes have been widely used in the 

USA and Australia and developed in the UK and Europe. Researches evaluating the 

performance of light pipe is thus justified to reveal its full potentials and to push forward its 

development.  

 

1.2 Motivation and Objectives 

The prediction of daylighting in building design is a key part of the whole design process. As 

is widely accepted, daylight condition is highly dynamic throughout a day and a year, which 

brings difficulty to the prediction of daylight. Early work about daylighting prediction always 

employed sensitivity and regression analysis to deal with annual energy using situation. 

However, such analysis methods considerably relied on well-understood energy consumption 

data. Due to the non-linear nature of daylight, artificial neural networks (ANNs) had been 

introduced to daylighting prediction, which has advantages in solving nonlinear problems [9].  

 

In the last twenty years, ANNs has been applied in various fields of research, including 

refrigeration, air conditioning and heat pump system [10], heat transfer problem in nuclear 

engineering [11], sizing of solar photovoltaic systems [12], modelling and control of 

combustion processes [13], modelling of renewable energy system [14], chemical process 

control [15], thermal analysis of heat exchangers [16], forecasting [17], and application in the 

atmospheric sciences [18]. In light of architecture, ANNs has been used to analysing cooling 

and heating in buildings, electricity usage, sub-level components operation and optimization, 

and parameters estimation. ANNs can model multi-variable problem. As a computational 
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learning paradigm, ANNs can extract the non-linear complex relationships between the 

variables by means of training data. In the meantime, compared to other systems, ANNs is 

speedier and simple in terms of calculation efficiency and processing algorithm.  

 

Regarding the light pipe, the difficulties in identifying all decisive factors that affect the 

performance and in quantitatively weighing the contributions of these decisive factors are the 

main barriers to appraising the efficiency of light pipe. The complexity in the mechanism of 

light pipe transmitting light makes it difficult to appraise the performance by means of physical 

modelling. Besides, prior to this research, the lack of light pipe performance data, which 

include both environmental, and geometrical data make it impossible to predict the 

performance by using mathematical methods as well. 

 

The overall aim of this work is to develop an artificial neural network model for the prediction 

and optimization of the daylighting performance of light pipe and implemented into BIM 

platform to enhance the light pipe design capacity. Although the performance of light pipe has 

been investigated in a number of studies, no methods could predict the bended light pipe 

because the non-linear relationship between the system parameters and the daylighting 

performance of light pipe. The final goals are to be achieved following a logical process from 

raw data simulated by an optical software Photopia collection to evaluate of ANN models. 

Moreover, developing the ANN as plug-in in fashionable software BIM, which is also filling 

the gap in forecasting lightpipes’ performance in BIM project. The specific objectives of this 

research are presented as follows. 

 

 To conduct a comprehensive literature review of studies in the relevant field in order to 

gain sensible understanding of the knowledge and justify the research. It is intended to 
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summarise the to-date development in light pipes daylighting performance measurement 

and simulation. The literature search focuses particularly on the prediction of performance 

of light pipe systems of various designs and under different weather conditions. 

 

 To develop an artificial neural networks model for predicting the daylighting performance 

of light pipes. Although the complexity in the working mechanism of light pipe makes it 

difficult to appraise its performance, to the aid of software Photopia, Matlab and high 

performance computing facility, it is possible to develop a computational model to predict 

the performance of light pipe especially the bended light pipe due to the non-linear 

relationship between transmission characteristics and performance. Importantly, the study 

aims to produce a valid research method, and a framework under which further 

development in daylighting performance modelling can be conducted in a consistent 

direction leading to the final solution. 

 

 To derive the mathematical expression for the daylighting performance of lightpipes with 

various configurations and sky conditions. By analysing the simulated results, this research 

will build the analytical model relating the input and output parameters and establish the 

direct/explicit relationship amongst these parameters for light pipe daylighting 

performance. The analytical expression will be evaluated and compared against the ANN 

prediction model in terms of prediction accuracy.    

 

 To implement the validated ANN prediction model in the BIM platform as a plug-in for 

practical applications. Designers and/or practising engineers usually have very limited 

knowledge in advanced modelling techniques; hence, a handy and reliable tool embedded 
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in an essential BIM design software such as Revit would significantly help them in their 

design process of utilizing light pipes.  

1.3 Thesis structure  

This thesis is organised in six chapters. Figure 1.3 shows the workflow of this research. 

 

Chapter 1 outlines the research in overall. Introduction of research background and research 

objective are proposed in this chapter. Novel methodology to solve the problem is also 

introduced. Moreover, the thesis structure is listed at the end of Chapter 1. 

 

Chapter 2 presents the state-of-the-art of the application of ANNs in predicting daylighting 

performance, which covers solar luminance and illuminance, daylighting control scheme and 

energy saving strategies. Strengths by using ANNs are highlighted and evaluated. Moreover, 

the research gaps have been identified and discussed. Further improvement for accuracy of 

ANNs and its application in daylighting study are suggested.  

 

In Chapter 3, an optical analysis software Photopia has been employed in simulating the 

daylighting performance of light pipes and the efficiency of each light pipe is calculated by 

Microsoft Excel. It is followed by using Matlab Artificial Neural Networks (ANNs) simulation 

for forming a forecasting model for light pipe efficiency. Additionally, data requirement and 

future improvements of ANNs for more accurate daylighting prediction are discussed. 

 

Chapter 4 presents the mathematic form of prediction model for daylight performance of 

lightpipes. Theses formulas are derived by various nonlinear multiline regression by a large 

amount of data from Photopia simulations. The formulae can be used to determine the 

transmittance of lightpipes straightway by knowing the local sun position, parameters of 
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lightpipies and clearness factor of the sky. Meanwhile, the ANN models, which has been 

established in Chapter 3, is compared to the mathematic model in this chapter. The strengths 

and weaknesses of two type of models are compared in terms of the prediction accuracy. 

 

Chapter 5 is to link the ANN model with BIM platform Revit by translating the results from 

ANN into Revit input files and automatically performing the simulation. A plug-in is 

developed to accurately translate the results that were predicted by ANN for lightpipe 

transmittance into Revit models. The subsequent simulation in Revit is automatic without any 

manual intervention. One main driver of this research project is to make the prediction process 

fast, accurate and friendly to architects and practising engineers. 

 

Chapter 6 is the conclusions and future work. The main contributions of this research are 

summarized first. It is then followed by the recommended further work which includes some 

ideas to improve the ANN model configuration in the future and the API development in BIM 

system. 
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Figure 1.3 The workflow of the Thesis 
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2.1  Introduction 

Artificial lighting consumes around 20% of global generated electricity[19]. Therefore, 

exploring novel techniques that could replace artificial lighting has been attracting massive 

interest in sustainable building designs. Daylighting has been considered as an effective 

sustainable technique, which has significant potentials to replace artificial lighting, leading to 

vast benefits to view comfort and health of occupants and hence benefits to economy and 

society as well. Compared to artificial lighting, daylighting can reduce the consumption of 

electrical energy and hence the greenhouse gas emission produced by the conventional 

electricity generation. Moreover, according to psychology, occupants prefer daylighting more 

than artificial lighting due to its vivid colour rendering to offer visual comfort and delightful 

environment, which promote the productivity and health of occupants [13].  

 

The conspicuous contribution of daylighting has been confirmed in a number of literatures [6], 

[7], [8], [20], [21], [22], [23], [24], [25]. In terms of energy saving, Li and Tsang [6] surveyed 

35 open layout office buildings in Hong Kong and found that 20-25% of electric lighting 

energy can be saved with appropriate fenestration and daylighting control. Moreover, McHugh 

et al. [26] estimated that around annual 24,000 GWh electric power could be reduced by 

appropriate photo controls under skylights for 5.388 billion m2 of commercial floor area in the 

US. Other researchers revealed that the European Community annual CO2 emission could be 

reduced by 223 million tonnes using passive solar design [20, 21]. In a cooling-dominant 

building, using natural lighting could significantly reduce heat dissipation caused by artificial 

lighting hence reduce the cooling demand [8]. Furthermore, it has been identified that 

occupants normally prefer varying levels of natural lighting cycle rather than constant artificial 
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light [7]. The benefits of psychological aspect of natural light have also been demonstrated 

[22], [23], [24], [25]. 

 

Sufficient and comfortable interior illuminance is the basic criteria in daylighting assessment. 

Successful daylighting design based on the availability of natural light and the distribution of 

daylight levels at work plane. Therefore, it is clear that prediction is a key stage of daylighting 

strategy for buildings. It is necessary to predict the amount of daylight and its distribution in 

the buildings in order to evaluate visual comfort without glare and energy saving. It would be 

ideal to forecast the daylighting performance accurately before a real daylighting design is 

adopted. Successful prediction could bring sufficient daylight into the interior space without 

any undesirable effects. In light of cost effectiveness, accurate prediction of daylighting 

performance can bring dramatic benefits in the cases where expensive and/or innovative 

technologies or systems are employed [27]. However, accurate daylighting prediction is not 

an easy task because there are usually a large number of underlying parameters affecting the 

performance of daylighting. The variables can vary from geographical location, time in a day 

or a year, local sky conditions and architecture geometries and features. Early work about 

daylighting prediction employ scale model and mathematic formulae to evaluate the daylight 

level. In the past decades, computer software has been widely used to simulate the daylighting 

performance as well. However, due to the varying and non-linear nature of daylighting 

parameters, the above-mentioned analysis methods considerably rely on long-time 

measurement or exhaustive data to evaluate the daylighting performance, which are time and 

labour consuming. Recently, a new and attractive method based on ANNs in predicting 

daylighting performance has been introduced, which has convincing advantages in solving 

multi-variables problems [9]. 
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In the last two decades, ANNs have been applied in various fields of research, for example, 

heat transfer in nuclear engineering [11], sizing of solar photovoltaic systems [12], 

refrigeration, air conditioning and heat pump systems [10], modelling and control of 

combustion processes [13], modelling of renewable energy systems [14], chemical process 

control [15], thermal analysis of heat exchangers [16], forecasting [17], and application in the 

atmospheric sciences [18]. In the field of architecture and built environment, ANNs have been 

used to analysing cooling and heating in buildings, electricity usage, sub-level components 

operation and optimization, and parameters estimation. Compared to other methods, ANNs 

can provide speedy, simply and more accurate prediction. Therefore, it would be very useful 

to present a state-of-the-art of ANNs application in daylighting prediction. It is in this regard 

this paper is presented. 

 

This paper attempts to review all the possible methods available for daylighting prediction 

with a special focus on the potential application of ANNs, as shown in Figure 2.1 (the dashed 

area is the methods presented in this article). In particular, a discussion will be made to identify 

potential research gaps. This paper is structurally arranged as follows: firstly, various available 

daylighting prediction methods are summarised and their strengths and weaknesses are 

discussed; secondly, ANNs predication models in luminance and illuminance, control systems 

and energy savings are evaluated; thirdly, research gaps are discussed; finally, the conclusions 

are presented. 
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2.2  Daylighting prediction methods 

 

 

Figure 2.1 Typical methods for daylighting predictions 

 

This section presents an overview of existing daylighting prediction methods including 

physical model, analytical formulae, computer simulation and ANNs, followed by discussions 

on the strength and weakness of each method. 

 

2.2.1 Physical model 

Physical model has been implemented for centuries to evaluate the illuminance quality in the 

interior of buildings [28]. The models are usually made of card, wood or plastics. The accuracy 

of evaluation highly depends on measurement position, model geometry and manufacturing 

details, especially the surfaces reflectance, fenestration and glazing transmittance. The 
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experiment is usually undertaken under the real sky conditions or Commission Internationale 

de L'Eclairage (CIE) artificial sky. 

 

Littlefair [29] proposed a scale model to predict daylight level within an atrium building. It 

evaluated the performance of an atrium and the illuminance level of neighbouring space. Kim 

et al. [30] built a 1:20 scale model for measuring indoor illuminance of Seoul Art Museum 

installed with toplights. With the scale model, the building details, including façade, textures, 

furniture and inner layout or figures, can be considered. A case study has been done by 

Aghemo et al [31] to simulate daylight environment of a high school classroom with various 

shading system in Italy. By simulating different sky conditions and sun paths, the best shading 

scheme can be determined. Some rules should be followed in order to get accurate results [28, 

29]. General regulations include using original building structure and geometry, preventing 

light leaking, and choosing the same material property. Further, specialized rules include using 

appropriate model size and scale varying from 1:500 to 1:1 based on different modelling 

purpose, the test sensor size and position in the model, etc. The advantage of this method is 

able to analyse the daylighting performance quantitatively and qualitatively at the same time. 

Normally, the daylight factor can be measured by photocells and visual impact could be 

directly presented. However, several studies have revealed that it is difficult to completely 

match the results from the physical models to those from the actual buildings. Further, it has 

been found that the daylighting performance in physical models tends to be overvalued. 

Therefore, using the scaled physical model alone would not be a reliable option. 
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2.2.2 Analytical formulae 

The use of mathematical formulae is another useful method in predicting daylighting 

performance. This approach may be applied at three different levels, basic metrics, empirical 

formulae, date regression model. 

Daylight factor (DF) is one of the most accepted and basic daylighting performance indicator, 

as defines below, 

 

𝐷𝐹 =  (
Ein

Eext
) × 100%                                                                                              (2.1) 

 

where E𝑖𝑛 is the daylight illuminance at a fixed point on the work plane inside the room, Eext 

is the outside illuminance on the horizontal plane under a CIE overcast sky or uniform sky 

[32]. DF is the most widely used metrics of daylighting and adopted as a design criteria in 

relevant industry standards and guides [33]. As the DF is defined for the overcast sky condition, 

it does not need to consider the building orientation and location, so it is easy to be determined 

analytically. However, the solar angles and redirection of sunlight are not considered in the 

formulation of the DF. This often causes problems if the DF metrics is used for prediction 

under other sky conditions rather than the overcast sky. 

 

The DF value is generally for certain point, to estimate the average illuminance on a working 

plane. Littlefair [29] introduced the concept of average daylight factor (DFₐᵥ) and gave an 

empirical formula,  

 

DFₐᵥ =
𝑊𝑇θ

𝐴(1−𝑅2)
                                                                                                         (2.2)  
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where W is the glazing area (m²), T is the transmittance of the glazing and θ is the angle of 

visible sky at the centre of the window. A is the total area of room surfaces, including roof, 

floor, walls and windows (m²). R is the average reflectance of these surfaces. Similar to Eq. 

(1), this formula for daylight is easy to use but it summarises the overall daylighting 

performance. Love and Navvab [34] proposed a new metrics as an indicator of daylighting 

performance, which is the vertical-to-horizontal illuminance ratio (VH ratio), that is, the ratio 

between the illuminance value on a vertical window and outdoors horizontal illuminance value 

as given by Equation 3. They found that the VH ratio is more stable than the DF under real 

sky conditions, so more suitable to be used to estimate the illuminance and determine the glare. 

 

𝑉𝐻 =  
𝐸𝑉

𝐸𝐻
                                                                                                                 (2.3) 

 

Besides these basic formulae, advanced mathematical equations can also be extrapolated based 

on measurement or theoretical derivation. Kim et al. [35] used multiple linear regression 

method to build a mathematical model to forecast the fluctuation of external daylight 

illuminance. Kazanasmaz [36] used the fuzzy logic model to examine the uniformity of 

daylight illuminance in an office. In recent years, for advanced daylight guide and 

transmission systems, some mathematical models were put forward to predict the daylighting 

performance of a system. Su et al. [37] proposed a regression model to forecast the output 

lumen value of a light pipe. Moreover, both [38] and [39] explore the mathematical model to 

predict the transmission of light pipes. 

 

2.2.3 Daylighting calculation software 

Compared to physical model and mathematical formulae, computer optical simulation 

combines the benefits of both illuminance calculation and interior visualization [29]. 
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Moreover, it does not require any physical materials, which is economic, and environment 

friendly while significantly saves time. Computer simulation can also be much more accurate 

in certain cases. Radiosity and raytracing are the fundamental methods to calculate 

illuminance in computer simulation. Radiosity analyses simple surfaces with diffuse element 

method while raytracing technique deals with complex surfaces with specular reflection [40].  

The common computer modelling tools could be classified into built exclusively for 

daylighting calculation, such as RADIANCE, LightTools, Photopia, others for lighting such 

as TracePro, EnergyPlus, IES, DATSIM, Ecotect, Relux and for the other purposes and 

daylighting is a “feature” such as Dialux, Lightsolve, ADELINE, CODYRUN, SkyCalc, 

Autodesk, SPOT Pro, Lightscape, RadioRay, Microstation, etc.   

 

Those computer software packages have been used extensively in the recent years to predict 

daylighting performance and evaluate daylighting designs. For instance, Jovanović et al. used 

DAYSIM to calculate DF, daylight autonomy (DA) and useful daylight illuminance (UDI) 

[41]. Li et al. used RADIANCE to simulate the illuminance value in different categories of 

buildings [6]. Similar studies could be found in literatures [30], [42-44]. Meanwhile, numerical 

software is also used to guide daylighting design. Andersen et al. employed Lightsolve to 

simulate the annual daylighting performance, which provided an ideal and reliable design 

guide for daylighting design in buildings [45]. Similarly, Gagne et al. used Lightsolve Viewer 

(LSV) for daylighting design and set up an interactive expert system to explore geometries of 

daylighting and performance goal in initial design stage [46]. Kota et al. [47] integrated BIM 

tool in Revit with Radiance and DAYSIM to simulate the daylighting situation. Randance was 

used to quantify the daylight effect throughout the various simulation stages. When the 

anidolic system and EC glazing configurations was confirmed, the Randiance was used to 
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assess the daylight factor at the workplane and room surfaces around the test room. At the 

same time, visual comfort especial the glare risks were evaluated. 

 

In addition, some studies integrated two or more different types of numerical tools to simulate 

the daylighting level and predict energy saving. It has been reported in [8], which coupled 

ADELINE to simulate daylighting and TRNSYS to simulate thermal condition and found that 

50% to 80% artificial lighting could be reduced by daylighting which can save 40% energy 

cost. Chen et al. used Ecotect and RADIANCE to simulate the daylighting value and 

distribution [48]. Meanwhile, EnergyPlus was used to determine the potential energy saving 

and some studies can be found in [26], [49-53].  

 

Moreover, simulation techniques have been intensively used in recent years in evaluation of 

new daylighting systems and technologies. Acosta et al. [54] employed Lightscape to simulate 

three different shapes of lightscoop skylights in order to choose a proper shape. Dutton et al. 

[39] used Photopia raytracing to predict the lightpipe transmittance. Ullah et al. [55] used 

LightTools and Dialux to simulate inner illuminance quality in multi-floor office buildings 

with installation of an innovative daylighting system which combines LED light with a highly 

concentrated optical fibre-based daylighting guide system. Page et al. [56] used the raytracing 

method in RANDIANCE to simulate the visual comfort and daylight performance of an office 

building installed with electrochromic glazing coupled with an anidolic daylighting system. 

Randance was used to quantify the daylight effect throughout the various simulation stages. 

When the anidolic system and EC glazing configurations was confirmed, the Randiance was 

used to assess the daylight factor at the workplane and room surfaces around the test room. At 

the same time, visual comfort especial the glare risks were evaluated. 
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2.2.4 Artificial Neural Network 

Different from conventional computational methods, ANNs simulation does not require 

building up any physical model. During the past three decades, ANNs has been used as an 

alternative approach to conventional prediction methods in many research areas. ANNs is a 

powerful tool in solving complex and non-linear problems in a number of fields by the means 

of simulation, identification, prediction, optimization, classification and control. 

 

The ANNs simulation is a self-learning and self-training platform or programme. According 

to different network structures, ANNs models can be classified into 4 categories: Feedforward 

Neural Network, Feedback Neural Network, Self-organizing Map and Random Neural 

Network (as shown in Figure 2.2). Most of categories are straightforward applications of 

optimization theory and statistical estimation [57]. ANNs can model multi-variable problems 

while extracting the non-linear complex relationships between the variables by means of 

training data. In the meantime, the performance of ANNs could be evaluated by some routine 

statistics indexes as shown in Table 2.1, which represent the accuracy of forecasting. These 

indexes would be used in section 3 to evaluate the ANN prediction ability. 

 

Feedforward Neural Network 

 

Feedback Neural Network 
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Self-organizing Map 

 

Random neural network 

Figure 2.2 Four categories of ANNs models [58]. 

 

 

Table 2.1 Statistics indexes to evaluate ANNs’ prediction accuracy [59]. 

Criteria Abbreviation Accuracy preference 

Mean Absolute Error  MAE value ≤10%, High  

10%≤value≤20%, Good  

20%≤value≤50%, Reasonable  

value ≥50%, Inaccurate 

Mean Absolute Percentage Error MAPE 

Mean Squared Error MSE 

Root Mean Square Error  RMSE 

Mean Bias Difference MBD 

Normalised Mean Bias Error NMBE 

Coefficient of Variation of the RMSE  CVRMSE 

Correlation Coefficient R The closer to 1, the more accurate 

Squared Correlation Coefficient R2 

Nash-Sutcliffe Efficiency Coefficient  NSEC 
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Due to different strengths and requirements, different networks could be used in various fields. 

Almost all relevant researches in literature used the backpropagation (BP) neural network and 

its variants, which belongs to feedforward neural network category. BP neural network model 

is illustrated in Figure 2.3. It is one of the widest applications of ANNs and it is quite 

convenient and accurate. In fact, it is hard to determine the fastest training algorithm for a 

given problem. Instead, the most suitable one is always determined by the method of trials and 

errors. The BP neural network is normally composed of three components [60]. These parts 

usually consist of one input layer, some hidden layers and one output layer, as shown in Figure 

3. Within each layer, there are a certain number of neurons. The procedure for developing an 

ANNs model includes 3 phases including modelling, training and validating. First, modelling 

involves analysing data, identifying input parameters and selecting network architecture and 

internal rules. The prepared data can then be trained, for example, by using BP learning 

algorithm to establish a model. After the training of data and the establishment of the model, 

it should be validated before application. 

 

Figure 2.3 The typical sample of multilayer feedforward neural networks [61] 
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BP algorithm is a gradient descent method. The principle is that they are processing elements 

(PEs) and each connection of them has an associate weight. Each time it reduces the total error 

by changing the weights along its gradient to improve the performance of the network [61]. 

The process of an ANNs simulation starts with weighted summation activation of the neuron 

through its incoming connections; it is then followed by passing through an activation function 

and this activated value is the output of the neuron [14]. Specifically, training BP model should 

assign random values to the weight terms (wij) in all nodes initially. For the output layer for 

the case of the logistic-sigmoid activation (as shown in Figure 2.4), the error can be computed 

as follows: 

 

δpi = (tpi −  αpi)αpi (1 −  αpi)                                                                                   (2.4) 

 

For a node in a hidden layer: 

 

δpi = αpi (1 −  αpi) ∑ k δpkwkj                                                                                    (2.5) 

 

where the subscript k is a summation over all nodes in the direction of the output layer. The 

subscript j is the weight position in each node. Moreover, δ and α for each node are used to 

calculate an incremental change to each weight via: 

 

△ wij =  ε(δpiαpj) + mwij(old)                                                                                    (2.6) 

 

where ε is the learning rate which determines the size of the weight adjustments during each 

training iteration and m is the momentum factor which is applied to the weight change used in 

the previous training iteration. The values of ε and m are determined prior to the training cycle 

and controls the speed and stability of the simulation [13]. 
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In light of non-linear problems, the sigmoid function is the most common logical transfer 

function in BP algorithm. It includes tansig and logsig algorithms (sometimes purelin 

algorithm is also used as the transfer function, but it is linear function which is less commonly 

used) [62]. They are both an “S” shaped transfer function, logsig ranging from 0 to 1 and 

tansig ranging from -1 to 1, which can be expressed in Figure 2.4. 

 

 

Figure 2.4 Transfer function used in the neural network [62] 

 

Normally, 70% to 90% of dataset is used in training the model and the remaining dataset is 

used to test and validate the model. Relevant application of ANNs predictions in daylighting 

would be elaborated in the following section. The summary of daylighting prediction methods 

is presented in Table 2.2.  
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Table 2.2 Summary of typical methods for daylighting prediction  

Methods Tools Strengths Shortcomings 

Physical model [28-31, 

63-66] 

Card, wood, plastic etc.  - The daylighting performance is physically visible; 

- Building geometrical and façade details could easily 

be formed; 

- Cheaper and easier for many people to use; 

- Easier to make and handle. 

- Too many rules needed; 

- Overestimate daylighting 

performance; 

- Material and labour cost; 

-Time consuming 

Analytical formula 

[29, 32, 34-39, 67, 68]   

E. g. 𝐷𝐹 =  (
Ein

Eext
) × 100%; 

DFₐᵥ =
𝑊𝑇θ

𝐴(1−𝑅2)
;    𝑉𝐻 =  

𝐸𝑉

𝐸𝐻
 

- Quickly estimate the daylighting performance; 

- No cost in materials; 

- Easier and quick to operate for designers. 

The accuracy is low, so the results 

always need to be corrected. 

 

Computer simulation 

[6, 8, 26, 29, 30, 36, 

39-56, 69]  

RADIANCE, LightTools, Photopia, TracePro, 

EnergyPlus, IES, DAYSIM, Ecotect, Relux, 

Dialux, Lightsolve, ADELINE, CODYRUN, 

SkyCalc, Autodesk, SPOT Pro, Lightscape, 

RadioRay, Microstation, etc. 

- Cost effective; 

- Complex analysis; 

- Deal with a huge number of variables 

- Designers need to have strong 

background; 

- Time consuming to build models 

and simulations with variable 

parameters; 

- Computationally expensive 

ANNs Refer to following Section 3 
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2.3  Application of Artificial Neural Networks Techniques in Daylighting 

Prediction 

In this section, the techniques and applications of ANNs as a predication tool in daylighting 

are critically discussed. It mainly covers luminance and illuminance forecasting, daylighting 

performance combined with energy saving scheme and control system.  

 

2.3.1 Luminance and Illuminance Prediction 

2.3.1.1. External luminance prediction 

Before designing a daylight dominating building, surveying the daylighting environment to 

estimate whether enough daylight could be utilized is prime. Janjai et al. have demonstrated 

that ANNs presented outstanding prediction performance compared with CIE models; 

meanwhile this study filled the gap with no research employing ANN to predict sky luminance 

in tropics [70]. They chose two cities Nakhon Pathom and Songkhla in Thailand as the 

measurement locations to obtain the 3-year period (2007-2009) of sky luminance data by 

utilising EKO sky scanners in monitoring stations. These data according to CIE classification 

was intentionally selected and grouped into clear, partly cloudy and overcast skies weathers. 

The study was divided into three stages: first stage, 2007-2008 data from Nakhon Pathom was 

used to train a new ANN model; second stage, 2009 data of Nakhon Pathom was used to test 

ANN model and CIE model; finally, data from Songkhla was used to validate the performance 

of ANN and CIE model. 

 

In their ANN modelling, the input parameters include the zenith angle of the sun (Zs), the 

zenith angle of the sky element (Z) and the angular distance between sun and sky element (χ), 

as shown in Figure 2.5, and the sky luminance (L) is the only output. A multi-layer with BP 
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algorithm was used to train the model. RMSE and MBD were chosen to evaluate the deviation 

between ANNs model and CIE model. The performance values of the ANNs and CIE model 

are listed in Table 2.3. It has been proved that the ANNs model performed more accurate 

analysis than conventional CIE model. In Songkhla, for the case of overcast (CIE 4), the ANN 

model presented stronger prediction power with RMSE 17.4% and MBD 1.7% compared with 

CIE 31.8% and -7.3% respectively. Moreover, for clear sky (CIE 13), the RMSE and MBD of 

ANN model were 31.0% and 3.3% respectively while these for CIE were 37.9% and 3.3%. In 

terms of partly cloudy (CIE 7, 8, 10) sky, ANN model presented slightly better than CIE model 

in forecasting sky luminance.  

 

Figure 2.5 Diagram to explain various zenith angles and the angular distance 

 

The prediction model of sky luminance, which only considers the solar position but neglects 

other effects, could cause the deviation of results. Hence, it would be important and versatile 

to measure the global radiation and develop a “non-local” model to survey the external 

illuminance. However, because of atmospheric variables, especially turbidity and water 

vapour, it is difficult to derive a common model, which could possibly consider all affecting 

components by conventional methods to determine the solar luminous efficacy. López and 

Gueymard developed a creative ANNs model to predict solar luminous efficacy components 
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under clear sky conditions [71]. In order to determinate the simplest input variables and 

optimized network architecture, but still keep high prediction accuracy of the model, they tried 

different combinations of 4 parameters, i.e., solar zenith angle (𝝷z), perceptible water (wp), 

diffuse fraction (κ) and direct transmittance (κb) to obtain direct (Kb), diffuse (Kd) and global 

(Kg) component of luminous efficacy as the output objectives at the same time. They also tried 

different network architecture by means of changing the number of neurons in hidden layers 

(Figure 2.6). 

 

Table 2.3 The performance of ANN and CIE model for predicting the sky luminance between 

predicted and measured data in Nakhon Pathom and Songkhla [70]. 

CIE  Nakhon Pathom Songkhla 

 RMSE (%) MBD (%) RMSE (%) MBD (%) 

 ANN CIE ANN CIE ANN CIE ANN CIE 

Overcast         

CIE 4 17.4 31.8 1.7 -7.3 17.1 39.6 6.7 0.7 

Partly cloudy 

CIE 7 41.9 39.7 -4.3 -5.2 36.3 29.5 4.2 1.7 

CIE 8 46.3 49.8 -12.4 -12.3 42.2 40.2 -7.1 -6.8 

CIE 10 41.2 47.9 2.5 -0.3 35.9 46.7 6.6 2.6 

Clear sky 

CIE 13 31.0 37.9 3.3 -7.2 47.7 56.4 -1.3 -9.2 
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Figure 2.6 ANN model architecture[71] 

 

As shown in Table 2.4, RMSE was used to evaluate the accuracy of the developed ANNs 

model. All the results showed that RMSE were around 9%, which demonstrated high 

prediction power. The research found that ANN models could also be used to test the 

sensibility of each input variable and perceptible water was the important influencing variable. 

Another interesting finding was whatever the removal of the solar zenith angle did not change 

the accuracy of prediction. However, removing this parameter means more account number 

hidden neurons are needed, which can make the model more complex. The study also 

investigated the impacts of different hidden neurons on the accuracy of the ANNs model. 

Although 13 hidden neurons slightly improved the prediction power of the ANNs model, it 

was far too complex and time consuming. Ten neurons were recommended as the proper 

model architecture for that problem, which has made the error lower than the experimental 

errors. 
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Table 2.4 The RMSE (%) of each ANN configurations [71]  

Nh Inputs 

{𝝷z, wp, κb, κ} {𝝷z, κb, κ} {wp, κb, κ} 

Outputs 

Kb Kd Kg Kb Kd Kg Kb Kd Kg 

22 1.4 1.8 1.6 6.4 3.9 4.8 2.0 2.9 2.9 

17 1.7 1.9 1.7 6.8 4.0 4.9 2.1 3.0 2.9 

13 2.0 2.1 1.8 6.9 4.4 5.2 2.4 3.1 3.0 

10 2.1 2.5 2.4 7.4 5.0 6.0 2.7 3.4 3.4 

7 3.4 3.1 2.6 7.8 5.0 5.9 3.7 3.7 3.5 

5 4.6 4.5 4.1 7.9 5.9 6.3 4.7 4.5 4.1 

3 7.4 5.0 5.3 9.2 6.5 6.8 7.6 5.0 5.3 

* Nh is the number of hidden neurons in hidden layer. 

 

Similarly, in order to determine natural illumination, Tíba et al. [72] tried to calculate the 

hourly external luminous efficiency through the solar irradiation available. Illuminance 

measurement is not included in routine meteorological test in Brazil. Because of the lack of 

these information, an empirical formula was derived by Perez et al. [73] to determine the 

luminous efficiency. This formula created a relationship between illumination and solar 

irradiation combined with some other meteorological data. Subsequently, in order to develop 

a model, which could use the global irradiation and routine measured data from meteorological 

station as input variables, ANN was chosen as the tool to predict the solar luminous efficiency. 

They chose dew point temperature, rain precipitation, darkness of sky, clearness index of Perez 
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and index of transmittance as the input parameters and only export the hourly luminous 

efficiency as the output result. A multilayer perceptron (MLP) ANN was chosen to run the 

simulation (Figure 2.7). The results were used to compare with Perez model and Robledo 

model (Perez local calibrated model). Two cities of Recife and Pesqueira were chosen to test 

the accuracy of ANNs model and the Perez and Robledo model. The compared results were 

evaluated by the MBD and RMSE which were both lower than 5% as shown in Table 2.5. 

  

 

Figure 2.7 A diagram of MLP ANN model, which has been trained by supervised 

apprenticeship [72]. 

 

Table 2.5 Performance of Perez, ANN, Robledo model [72] 

Location RMSE (%) MBD (%) 

Perez ANN Robledo Perez ANN Robledo 

Pesqueira 3.7 3.6 7.2 -0.2 4.1 0.7 

Recife 8.5 5.8 5.3 1.3 5.7 0.2 

 

Pattanasethanon et al. [74] compared the performance of an empirical sine model, a novel sine 

model and an ANN model to forecast the horizontal plane solar illuminance of all sky types 

at Mahasarakham in Thailand. Frequently used BP algorithm was used to training the ANN 
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model. One-year data of solar altitude angle and the clearness index (ε)/sky ratio (SR) were 

chosen as the input data while global illuminance, global irradiance and diffuse irradiance on 

horizontal plane are the output targets. The RMSE, MBD and R2 were used to evaluate the 

forecast ability simultaneously. Subsequently, the next half year data was used to test the ANN 

model. The prediction power was summarised in Table 2.6. 

 

Table 2.6 Summary of prediction power of Sine, Novel sine and ANN model to illuminance[74] 

Sky 

condition 

Model Global illuminance Global irradiance Diffuse irradiance 

(%) Sine Nove

l sine 

ANN Sine Nov

el 

sine 

ANN Sine Nov

el 

sine 

ANN 

SR MBD 11.6 10.8 0.08 12.8 12.5 3.00 12.2 12.7 7.64 

RMSE 12.5 14.8 10.8 19.3 23.3 15.93 15.5 19.9

2 

8.78 

R2 0.96 0.95 0.98 0.91 0.89 0.92 0.96 0.95 0.98 

ε MBD 3.8 4.5 3.7 3.93 4.50 3.79 4.46 5.50 4.33 

RMSE 4.5 11.8 3.8 15.7 19.5

0 

14.52 16 20.4

5 

9.08 

R2 0.96 0.95 0.98 0.92 0.91 0.93 0.96 0.95 0.98 

 

2.3.1.2. Internal illuminance prediction 

The ultimate goal of predicting external solar illuminance availability is to evaluate if there is 

enough daylight in interior space and the appropriate daylighting scheme to be used. Navada 

et al. [75] developed 2 ANN models to predict the external and internal illuminance 

respectively. There were two different approaches demonstrated in this study. One is 
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developing the ANN prediction model by using measured interior illuminance data which is 

similar to most other researches; and the other is utilizing Perez model [73] to convert obtained 

meteorological data to interior illuminance and then establishing the ANNs model. In 

Navada’s model, a top floor room with dimension of 3.75 m × 3.75 m × 2.35 m and two 

blinded windows was built (Figure 2.8). The internal illuminance was measured at different 

blind positions at 0.8 m above the floor. The time series was from 9 am to 5 pm and the blind 

position changed from 0⁰ to 90⁰ (blind closed) with the increment of 15⁰. BP algorithm was 

employed as the learning algorithm. Two input variables were P (blind position) and T (times), 

while illuminance was the only output. The error of ANN prediction was always below 5%, 

which means ANN is a strong prediction tool. In the other meteorological method, 2009-2011 

hourly solar irradiance from National Renewable Energy Laboratory (NREL) was converted 

to the outside illuminance by Perez model. Subsequently, according to the known luminance 

distribution and DF definition (i.e., Equation 1), the interior illuminance was calculated. The 

next will be the same to the first method, which used 2009-2010 data for training and 2011 

data for validation of the ANNs model. The correlation coefficient R was around 0.97 for the 

ANNs prediction, which is generally good. Moreover, this study compared the performance 

of various prediction models, which is in order to obtain the most accurate results. The 

compared results are shown in Table 2.7. 
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Figure 2.8 The sketch model of simulation room[75] 

 

Table 2.7 Compared results of various prediction methods [75] 

Time % Error 

Forecast 

method 

Time series 

prediction 

Nero excel 

predictor 

Matlab 

code 

Nntool 

09:00 24.81 -0.70 0.43 2.15 2.54 

09:30 34.86 -0.98 2.68 20.42 2.05 

10:00 36.14 -4.03 -0.15 -1.05 -0.93 

10:30 -28.43 -1.68 3.31 2.80 -4.98 

11:00 -50.32 -6.34 5.91 3.77 1.89 

11:30 -69.24 -6.28 3.58 3.68 5.24 

12:00 -82.10 -7.46 -0.11 1.83 1.97 
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12:30 -90.28 -9.02 -2.73 1.06 -0.94 

13:00 -86.47 0.07 1.98 3.53 4.23 

13:30 -84.71 -3.70 0.26 0.29 1.89 

14:00 -75.87 -2.07 2.94 2.18 3.71 

14:30 -58.32 -2.05 5.20 2.99 1.13 

15:00 -44.41 -1.93 5.47 3.57 -2.21 

15:30 42.21 -4.57 -0.67 1.81 -0.19 

16:00 42.20 -4.48 -0.28 0.15 -0.01 

16:30 50.43 -0.14 4.84 4.45 7.37 

17:00 -9.18 -4.04 -2.26 0.56 -1.04 

 

Kazanasmaz et al. [40] developed a more detailed model. This model considered 

comprehensive parameters, which may affect the illuminance level inside office buildings. 

The building was located in the Faculty of Architecture of the Izmir Institute of Technology 

in Izmir, Turkey. It is a 2-story building and both the ground floor and first floor were surveyed 

in this research. PeakTech lightmeter was used to measure the illuminance value of every point, 

which 0.5 m away from the boundary and 0.7 m high from the floor. The ANNs model 

consisted of three layers with 13 input and 1 output variables. Three categories data were 

chosen as input variables: 6 building parameters (orientation, geometry, windows amount, 

distance to windows, floor character, sensors’ position), 2 time variables (date, hour) and 5 

weather variables (solar radiation, UV index, UV dose, temperature, humidity) (Figure 2.9). 

The only one output was again the illuminance. In the simulation, 80% of the input data was 

used to train the model and 20% was used to validate. BP was still utilised as the learning 

algorithm. The innovation of this model was the use of the Excel spreadsheet. defined by 
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Hegazy and Ayed [76] to optimize the weights in the ANNs structure. It presented the template 

of the hidden layer in the ANNs model. The model first set 5 or 6 neurons in hidden layers, 

which resulted in errors of 35.87% and 20.62% respectively. The number of neurons was then 

increased to 7, 8, 9 and 11 whilst it was found all had 2.20% error. Hence, 7 neurons were the 

chosen as the best number for the network construction. The forecasting precision is around 

98%, which is quite satisfactory. For the sake of simplifying the model, sensitivity analysis 

was then carried out to identify the most sensible input parameters. It was found that hour, 

windows’ number, orientation and measurement point were the most sensible parameters 

whilst room geometry, temperature and UV were not. However, neglecting the less sensible 

parameters would not be a wise decision since it could reduce the accuracy of the ANNs model.  

 

Figure 2.9 A graphic of the best performance ANN architecture [40] 
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2.3.2 Prediction of energy saving due to daylighting 

One of the criteria to assess the daylighting design is based on how much energy could be 

saved. Fonseca et al. [77] compared ANNs modelling and multivariate linear regression (MLR) 

in predicting energy saving by employing daylighting. The office simulated was located in 

Florianopolis climate in Brazil. The data was from 216 parameter groups in 3 types with 

different room depth (Figure 2.10). Cross-validation (Figure 2.11) was used to train and 

validate the ANN model due to limited data. The data was simulated by EnergyPlus (energy) 

and Daysim/RADIANCE (lighting). The ANN network architecture here adopted 6 input 

variables, 1 hidden layer with 10 nodes and 1 output variable structure. The 6 input parameters 

include quantitative variables (room depth, room orientation, solar heat gain coefficient, and 

window-to-wall ratio) and qualitative variables (vertical and horizontal shading coefficient). 

90% of parameter groups to train the ANNs model while the rest 10% were for validation. 

Multifold cross-validation presents an excellent performance to solve the issue of limited data 

sets. From the comparison of their coefficients of determination, that is, R2 = 0.9867 for ANN 

and 0.8028 for MLR, it is clear that ANN can provide much more accurate prediction of 

daylighting energy saving. 
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Figure 2.10 Scheme of geometries of test room [77] 

 

 

Figure 2.11 A sample diagram of cross-validation method [77] 

 

Electric lighting consumes about 20%~30% of office building electricity [78]. Proper lighting 

design with utilization of daylighting can directly reduce the lighting energy consumption and 

also indirectly reduce air conditioning energy consumption which would be used to neutralize 

the heat released by artificial lighting. Wong et al. [79] used ANNs modelling to develop the 

daylighting design for an office building in subtropical zone. The daily electricity consumption 

for cooling, heating, artificial lighting, etc. was the output of the ANNs model (Figure 2.12). 

In this study, EnergyPlus simulations were first run followed by ANNs modelling – 70% and 

30% of the data obtained from EnergyPlus was used to train and validate the ANNs model, 

respectively. Different from other researches, a commercial software named NeuroShell 2 was 
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chosen as the prediction tool. A new coefficient Nash-Sutcliffe efficiency coefficient (NSEC) 

which can be expressed as in Equation 2.7, which is similar to the R2 and was adopted to 

access the accuracy of the model.  

 

NSEC = 1 −  
∑ (𝑥𝑖−𝑦𝑖)2𝑛

𝑖=1

∑ (𝑥𝑖−𝑦𝑖̅)2𝑛
𝑖=1

                                                                                                            (2.7)                                                                                                       

 

where 𝑥𝑖  is the daily electricity consumption obtained in ANNs, 𝑦𝑖  and 𝑦𝑖̅   are the daily 

electricity consumption and the mean electricity consumption respectively simulated in 

EnergyPlus, n is the total number of data used in ANNs training and testing. NSEC was 

introduced to evaluate the model performance, which were 0.994, 0.940, 0.993 and 0.996 

respectively. Logistic sigmoid was chosen as the active function. 3 groups of random input 

data generated by using Monte Carlo methods were employed to assess the accuracy of ANNs 

model. Statistical analysis involved MBD, RMSE, NMBE and CVRMSE. It was concluded 

that ANNs could well describe the non-linear relationship between input and output variables; 

it is especially useful at mass end use situations (e.g., cooling in summer and heating in winter). 

Moreover, ANNs model can optimize design parameters without carrying out experiments and 

avoid considerable time consuming. In order to get the relative minimum consumption of the 

total electricity, different combinations of input parameters were put into the ANNs model to 

predict the total electricity consumption value. The minimum energy consumption value can 

be obtained from the ANNs model in a mesh graphic (Figure 2.13) and the corresponding best 

input parameters for best design can also be determined. 
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Figure 2.12 The multi-layer perceptron (MLP) ANN structure [79] 

 

 

Figure 2.13 A demonstration of optimization using ANN model to determine proper design 

parameters in application [79] 

 

According to [80], if daylighting and HVAC (heating, ventilating and air conditioning) system 

are separately considered, it often causes conflicts between energy efficiency and 
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environmental comfort. Hence, to set up an integrated control process, which could 

simultaneously satisfy all requirements as mentioned above, is essential. Due to the complex 

geometrical conditions and complex operations, ANNs would be an ideal option. Daylighting 

integrated with HVAC system is a nonlinear problem. The integrated daylighting and HVAC 

(IDHAVC) model (as shown in Figure 2.14) was set by Kim et al. [81] to predict the building 

energy performance. It was an integrated meta-model (Figure 2.15), which included regression 

models (indoor artificial illuminance model, lighting energy consumption model) and ANN 

models (temperature, indoor daylighting illuminance, total energy consumption). The building 

was located in Seoul, Korea and ANN were trained with data generated from EnergyPlus for 

three months. The ANNs model consisted of 4 variables for indoor daylighting illuminance 

and 11 variables for temperature and total energy consumption respectively. Levenberg-

Marquardt (LM) algorithm was adopted to train the ANNs model. The number of hidden layers 

were fixed at three and the neurons in each hidden layers were optimized by Genetic Algorithm 

(GA). 70% of the data generated by EnergyPlus were used to train the model, 15% were used 

to test and the rest 15% for validation to avoid overfitting. The prediction accuracy is measured 

through R² which is bigger than 0.98. This optimization model was achieved via minimizing 

energy consumption but still keeping the same thermal and visual comforts of occupants. It 

was shown that 13.7% energy could be saved compared with original model. 
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Figure 2.14 The schematic of the IDHVAC system [81] 

  

Figure 2.15 Flow chart of the IDHVAC system optimization [81] 

 

2.3.3 Daylighting Controls 

Excessive daylighting could cause overheating problem in buildings, which increases the 

consumption of cooling energy. It is essential, in daylighting design, to estimate the 

daylighting control system to avoid unwanted sun light and thermal discomfort. According to 
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different strategies for the control of lighting systems, daylight-linked lighting controls can be 

divided into daylight-linked switching and daylight-linked dimming [82]. Daylight-linked 

switching can control the light by switching between ‘On’ and ‘Off’ states based on available 

daylight. There may also be multi-level switching. For instance, based on the level of available 

daylight in a particular control zone, 33%, 50%, and 66% of light in the zone may be switched 

off. Dimming system controls the lamp outputs continuously using dimmable electronic 

ballasts. Dimming requires dimmable ballasts to maintain the illuminance level of the lamps, 

so it is more expensive than switching system. However, integrating energy efficient lamps 

with lighting control can significantly reduce electrical energy consumption[83] and also 

improve vision efficiency [84]. Adding lighting control system is widely common strategies 

in retrofitting project of lighting. Based on simulation studies, which predict the effect of 

retrofitting investment save the unexpected money and time. However, traditional simulations 

need a large number of data and a lot of time. ANN as a surrogate model was developed by 

Hu et al. to simulate lighting retrofitting in a building located in Chicago [85]. It successfully 

solves the issue of time wasting and uncertainty retrofitting parameters. This model could 

predict the lighting and HVAC energy consumption under different combinations of lamp 

types, control strategies, weather conditions and occupants’ pattern. This created model could 

save a large number of repeating modelling runs. Surrogate modelling (SUMO) toolbox was 

firstly introduced into ANNs modelling. Weather condition, LED wattage and occupancy level 

and control strategies were all considered as input parameters in the modelling. The results of 

the ANNs modelling showed a reliable relationship between the input building parameters and 

the output lighting energy consumption. Meanwhile, it has shown that the minimum lighting 

electricity energy consumption could be achieved by using occupancy plus daylighting control 

replacing exciting manual control and change the T12 lamp to LED lamp. Another advantage 
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of this model is the HVAC energy consumption could be obtained at the same time, which has 

98% precision and considerably saves time. 

 

Venetian blinds is another form of daylighting control, which can significantly control direct 

solar radiation and glare as well as overheating. Based on ANNs modelling, an illuminance-

based slat angle selection (ISAS) model was developed to predict the optimum slat angles of 

split blinds to achieve the required illuminance [86]. The input variables were the horizontal 

illuminance and the sun angle while the output was the illuminance level at a sensor point. 

The automated split-controlled blinds divided the whole blinds into three equal parts from the 

top to the bottom (Figure 2.16). EnergyPlus was employed to simulate the working plane 

illuminance at the sensors’ positions in an office located in Gainesville, Florida, USA. The 

illuminance data obtained from the EnergyPlus simulation, combined with weather parameters, 

were used to train the ANNs model which was subsequently validated. Once the ANNs model 

was established, the illuminance predicted by the ANNs model was employed to optimise the 

slats angle and to find the optimum value. Similar to most other researches, a multi-layer 

feedforward ANNs model with BP learning algorithm was derived. Illuminance at sensor 

points located at 3 positions of the blind, i.e., top, middle and bottom, were predicted. It was 

shown that the model prediction performance in terms of comparison between the prediction 

illuminance and measured value could reach 94.7%, this demonstrated high accuracy in 

forecasting illuminance level in sensor point. Then the illuminance forecasted by ANNs were 

input to a mathematical model to optimize the slat angles of blind to achieve the aim of 

daylighting control (the process is shown in Figure 2.17). Another advantage of ANNs model 

is that it could solve the real-time blind control problems. Since the external illuminance data 

could directly feed in the ANN model and determine the optimum slat angle of blinds, this 
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really solves the difficulties in controlling the daylight in real conditions as a result of the 

dynamical change nature of solar irradiation. 

 

 

Figure 2.16 The diagram of  automated split-controlled blinds [86] 

 

Almost all articles in daylighting prediction by ANNs modeling are searched and reviewed. 

A summary of ANNs application in predicting daylighting with detailed input and output 

parameters is presented in Table 2.8. Back Propagation (BP) is the most common training 

method for an ANN model. It could be applied in almost multilayer non-lines problems and 

perform consider satisfactory results. 
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Figure 2.17 The flow chart of ANNs application in daylighting control of blind [86] 

* The UDI is the abbreviation of useful daylight illuminance and its unit is lux. 
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Table 2.8 Summary of ANN applied to predict daylighting in literatures 

Literatures ANNs 

models 

Input variables Output variables Accuracy 

External luminance prediction 

Janjai et al. [70]  BP - Solar zenith angle; 

- Zenith angle of the sky element; 

- Angular distance between the sky 

element and the sun 

Sky luminance  Table 3 ANN models better 

than CIE models 

López et al. [71] BP - Solar zenith angle; 

- Perceptible water; 

- Diffuse fraction; 

- Direct transmittance  

- Direct component of luminous efficacy; 

- Diffuse component of luminous efficacy; 

- Global component of luminous efficacy 

Table 4 RMSE < 9% 

Tíba et al. [72]   BP - Dew point temperature; 

- Rain precipitation; 

- Darkness of sky; 

- Clearness index of Perez; 

- Index of transmittance 

Hourly luminous efficiency MBD < 6% and RMSE < 6% 

Pattanasethanon 

et al. [74] 

BP - Solar altitude angle; 

- Clearness index/sky ratio 

- Global illuminance; 

- Global irradiance; 

- Diffuse irradiance 

More accurate than the 

empirical models and the 

novel sinusoidal models 
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Internal illuminance prediction 

Navada et al. [75] BP - Blind position; 

- Times 

Illuminance  %Error <5% The correlation 

coefficient ≈ 0.97 

Kazanasmaz et 

al. [40]  

BP - Orientation; 

- Geometry; 

- Windows amount; 

- Distance to windows; 

- Floor character,  

- Sensors’ position; 

- Date; 

- Hour; 

- Solar radiation;  

- UV index and UV dose; 

- Temperature; 

- Humidity 

Illuminance Precision = 98% 

Prediction of energy saving due to daylighting 

Fonseca et al. 

[77] 

MLP 

Feedforward 

- Room depth; 

- Room orientation; 

- Solar heat gain coefficient; 

- Window to wall ratio; 

Final electric energy consumption R2=0.9867 
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- Vertical shading coefficient;  

- Horizontal shading coefficient 

Wong et al. [79] BP - Dry-bulb temperature (Daily average); 

- Wet-bulb temperature (Daily average); 

- Global solar radiation (Daily total); 

- Daily average clearness index; 

- Solar aperture; 

- Daylight aperture; 

- Overhang projection; 

- Side fins projection; 

- Day type 

- Daily electricity use for cooling; 

- Daily electricity use for heating; 

- Daily electricity use for lighting; 

- Daily total electricity use 

- NSEC = 0.994 

 

- NSEC = 0.940 

 

- NSEC = 0.993 

 

- NSEC = 0.996 

Kim et al. [81] LM BP - Slat angle; 

- Outdoor air ratio; 

- Lighting energy consumption; 

- Setpoint temperature; 

- Air handling unit schedule (on/off); 

- Flow rate; 

- Outdoor air temperature; 

- Previous time step room temperature; 

- Outdoor illuminance; 

- Room temperature  

- Total energy consumption  

- Indoor daylight illuminance 

R² > 0.98 
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- Azimuth angle 

Daylighting controls 

Hu et al. [85] BP - Weather condition (overcast, medium, 

clear); 

- LED input wattage; 

- Occupancy level (low, medium, high) 

Energy consumption Precision = 98% 

Hu et al. [86]   BP - Solar altitude angle; 

- Solar azimuth angle;  

- Global horizontal illuminance; 

- Diffuse horizontal illuminance; 

- Slat angle;  

- Global horizontal radiation; 

- Dry blub temperature; 

- Zenith luminance; 

- Relative humidity; 

- Horizontal infrared radiation intensity 

from sky 

Illuminance at 3 sensor points of the blind 

(top, middle, bottom) 

Precision = 94.7% 
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2.4  Discussion on research gaps  

ANNs has been proved a useful and powerful numerical tool for predicting daylighting 

performance and optimizing daylighting design. However, according to the comprehensive 

review, there are still research gaps, which hinder the widespread application of ANNs in 

daylighting prediction and optimization. In this section, these gaps and problems are 

summarized and analysed.  

 

(1). Almost all ANNs models in literature used BP algorithm as the training method. However, 

some improvements have recently been made for the BP algorithm. For instance, advanced 

techniques such as adding momentum and adaptive learning rate, as well as using more 

effective optimization algorithm, e.g., conjugate gradient method, LM method etc., should be 

explored.  

 

(2). Most literature in this topic chose three years data for the input parameters; however, no 

evidence has been available as why three years is better. Some justification should be provided 

or some other time scales may be adopted.  

 

(3). In ANNs training procedure, if too large capacity or too many iterations were selected, 

over training would happen. Prior to running ANNs simulation, considerable high precision 

or large number of training cycles should always set as priority to define when to stop the 

training process. However, due to unavoidable uncertainty, some training data obtained from 

experiments or elsewhere could sometimes be erroneous. Hence, over high precision can also 

cause over fitting and reduce the prediction accuracy. In order to overcome this problem, the 

number of training cycles and input data need to be optimized. 
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(4). Since the data used to train ANNs model sometimes cannot cover the entire range of the 

data, the extrapolation can become ineffective. When preparing the input data for training 

ANNs model, the maximum and minimum values should be selected from all the proposed 

data. Empirical correlations can be applied to some training samples and the selected training 

data shall be able to represent the entire operating range of the system in order to reduce the 

extrapolation errors. 

 

(5). Decision on the number of the hidden layers is dependent on empirical trials. Effective 

methods need to be developed to find out the appropriate number. So far, the number of 

neurons in hidden layers can be calculated as follows [87], 

 

𝐿 = √𝑚 + 𝑛 + 𝑎,    𝑎 ∈ [1, 10]                                                                                           (2.8)        

                                                                                        

where L is the number of neurons in hidden layers, m is the number of neurons in input layer, 

n is the number of neurons in output layer, and a is an adapting variable, which range from 1 

to 10.  

 

(6). Most of the hidden layers tend to be one hidden layer. In fact, two or more hidden layers 

help return more accuracy. However, more hidden layers cost more time and make the system 

complex. Therefore, the balance of accuracy and time cost is a key problem. The Bayesian 

approach can offer selection of optimum number of hidden layers. In addition, under what 

circumstances a second hidden layer should be chosen needs to be discussed in future research.  

 

(7). Not many researchers in this field have considered the input parameters with respect to 

the output parameters. In fact, sensibility test should be undertaken to determine the input 
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parameters in order to remove the irrelative parameters and keep the model as accurate as 

possible. 

 

(8). For luminance and illuminance, one of the most important factors is local climate. For 

indoor daylighting level, the sun position is a crucial parameter. These parameters should be 

considered into the ANNs modelling.  

 

(9). The initial dataset should remove noise before being used. For instance, GA could be used 

to optimize the input dataset such as variable extraction and selection on measured data. 

 

(10). The outputs of neural networks may not be exactly what expected. The outputs could be 

corrected by post-processing results, such as fuzzy logic. 

 

(11). ANNs model is a strong simulation tool to solve the problems with large number of input 

variables data. The input data can be split into training data, testing data and validation data. 

Improper data splitting can lead to a poor prediction. More quantitative guidance on the data 

selection is one of the keys to successful ANNs simulation in daylighting performance and 

optimization.  

 

2.5  Summary 

This Chapter has presented a literature review on the research work in daylighting prediction 

and optimization by using ANNs approach. In the review, the luminance and illuminance 

prediction, daylighting control and energy saving with daylighting have been extensively 

discussed. The existing work can be useful for building professionals and researchers to 

estimate the availability and suitability of ANNs in predicting daylighting performance. 



55 

 

Moreover, the research gaps currently hindering the widespread and effective application of 

ANNs in daylighting prediction and optimization have been explored and presented. The 

findings could help architects and practising engineers adopt proper daylighting design 

schemes and evaluation methods, and therefore promote sustainable developments in 

architectural buildings. 
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3.1 Introduction  

3.1.1 Background  

It was found that electric lighting, one of the major energy demands, accounts for 20~30% of 

total electricity consumption in commercial buildings [19] and 10% in residential properties 

[88]. Historically, daylight was used as the primary source of luminance during the day. 

However, during the development of modern cities, artificial lighting has been substantially 

used in buildings in the daytime. Such a massive consumption of artificial lighting and hence 

energy has brought into attention to numerous scientists and engineers as if it could be reduced 

or replaced by the natural daylighting. For example, Li and Tsang [6] carried out a survey on 

some open layout office buildings in Hong Kong and found that 20-25% of electric lighting 

energy could be saved if half of the occupancy time was served by daylighting with proper 

artificial lighting control. 

 

Compared with artificial lighting, daylighting does not only save the energy consumption, but 

also improve the visual comfortable and the health of occupancies, which applies “light 

vitamin” to people living in the buildings. Begemann et al. [7] have conducted a long-term 

study and found that the occupants in buildings prefer varying levels of natural lighting cycle 

to the constant artificial lighting. In addition to the direct save on the energy consumption and 

personal preference, daylighting can save the cooling cost in air-conditioned buildings. This 

is due to that the Luminous Efficacy (number of lumens per watt) of daylighting is normally 

higher than artificial lighting. As such, given the same level of illuminance, less radiant power 

is required. In other words, natural illumination normally dissipates less heat than artificial 

illumination and therefore it is considered as an efficient illumination. In an office building 
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with normally extensive use of artificial lighting, significant amount of heat dissipation could 

be saved by utilizing daylighting instead, which reduce the cooling energy consumption [8]. 

 

Most research to date only addressed limited configurations while the design criteria for 

prediction of daylighting performance is scarce. This chapter attempts to employ the Artificial 

Neural Network method in the performance prediction of lightpipes.      

 

3.1.2 Outline of the principles of Artificial Neural Network 

Since the last three decades, Artificial Neural Networks (ANNs) have been used as an 

alternative approach to these pre-mentioned prediction methods for daylighting. As a 

numerical method, ANNs can solve complex problems in a number of fields by the means of 

simulation, identification, prediction, optimization, classification and control.  

 

ANNs was initialled developed in the research of human brain around 50 years ago. There are 

10 billion inter-connected neurons in a human brain. As shown in Figure 3.1, each neuron is 

a cell which can perform biochemical reactions to receive, process and transmit information 

[88]. The application of ANNs has been extended to other disciplines since two decades ago. 

 

Figure 3.1 Mammalian neuron [89] 
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ANNs is a self-learning and self-training platform or programme. A typical multilayer neural 

network is illustrated in Figure 3.2. A neural network is normally composed of three layers. 

These layers are usually one input layer, some hidden layers and one output layer. Within each 

layer, there are a certain number of neurons. They are processing elements (PEs) and each 

connection of them has an associate weight [90]. The process of an ANNs simulation starts 

with weighted summation activation of the neuron through its incoming connections; it is then 

followed by passing through an activation function and this activated value is the output of the 

neuron[14]. 

 

 

Figure 3.2 The typical sample of a multilayer feed-forward neural networks [61] 

 

The sigmoid function, which is the most common logical transfer function, is an “S” shaped 

transfer function ranging from 0 to 1, which can be expressed as follows: 

 

sigmoid(x) =
1

1+e−x                                                                                      (3.1)      

                                                                                                             

where x is the weighted sum of the inputs. The procedure for developing an ANN model 

includes 3 phases including modelling, training and validating. First, modelling involves 
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analysing data, identifying input parameters and selecting network architecture and internal 

rules. The prepared data can then be trained, for example, by using the back-propagation 

learning algorithm to establish a model. After the training of data and the establishment of the 

model, it should be validated before application.   

 

3.1.3 Research significance 

The prediction of daylighting in building design is a key part of the whole design process. As 

is widely accepted, daylight condition is highly dynamic throughout a day and a year, which 

brings difficulty to the prediction of daylight. Early work about daylighting prediction always 

employed sensitivity and regression analysis to deal with annual energy using situation. 

However, such analysis methods considerably relied on well-understood energy consumption 

data. Due to the non-linear nature of daylight, artificial neural networks (ANNs) had been 

introduced to daylighting prediction, which has advantages in solving nonlinear problems [9].  

 

The main difficulties in evaluating all underlying factors for the performance of lightpipes 

poses barriers to assess the efficiency of lightpipes. The complexity in the mechanism of 

lightpipes transmitting light makes it difficult to appraise the performance by means of 

physical modelling. Besides, prior to this research, the lack of lightpipes performance data, 

which include both environmental, and geometrical data make it impossible to predict the 

performance by using mathematical methods as well. 

 

This Chapter is to develop an artificial neural network model for the prediction of lightpipes 

daylighting performance. Although the performance of lightpipes has been investigated in a 

number of studies, no methods could predict the bended lightpipes because the non-linear 
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relationship between the system parameters and the daylighting performance of lightpipes. 

Following a logical process from raw data simulated by an optical software photopia collection 

to evaluation of ANNs models, an artificial neural networks model for predicting the 

daylighting performance of lightpipess is developed. Although the complexity in the working 

mechanism of lightpipes makes it difficult to evaluate its performance, with the aid of Photopia, 

Matlab and high performance computing facility, it is possible to develop a numerical model 

to predict the performance of lightpipes, especially bended lightpipes, which have non-linear 

relationship between transmission characters and performance. Moreover, this study aims to 

produce a realiable research method, and a framework under which further development in 

daylighting performance modelling can be conducted in a consistent direction leading to the 

final solution. 

 

3.2  Methodology 

In overall, this Chapter consists of two parts. The first part is to study the lightpipe performance 

by using computer software Photopia. Models have been built in the AutoCAD for the 

calculation of performance of lightpipes. Data such as lumen output, illuminance flux are then 

put forward from the simulation of Photopia. Parametric studies are conducted to investigate 

the influence on the performance by changing length of tube, diameter of dome and tube, 

reflectivity of mirrored material, and bended angle of the lightpipes. Moreover, solar altitude 

and solar azimuth are important factors as well. Further, data like transmission of light will be 

collected to check the efficiency of lightpipes. However, the decision on the lightpipe 

parameter range is not random which should follow the normal standards of lightpipes. Thus, 

the size guide given by the manufactory of lightpipes will be referred to in the simulated 

examples (Monodraught LTD, 2016).  
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The other part is using the data simulated from Photopia in ANNs modelling. A variety of 

lightpipe parameters were chosen as input values and efficiency was chosen as output value. 

In this research, two computer software, i.e., Photopia and Matlab, are used. The following 

(Figure 3.3) is the brief introduction to the function and operation of the software related to 

lightpipes. 

 

Figure 3.3 Illustration of the process of ANN 

 

3.2.1 Simulation data acquisition in Photopia 

Photopia contains sun and sky dome models as the lamps for the simulation of daylight 

collecting and transporting devices. By combining the sun along with the sky dome models, 

the entire illuminance through the daylighting device area matching the real outdoor 
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conditions can be produced. The lightpipe model imported from AutoCAD program has layers 

such as dome, light tube and diffuser lens. They are defined for the layer type as transmitted 

and reflective. The running process allows for the setting of design properties, photometric 

output specification and ray-trace settings. The output will cover candela distribution polar 

plot, illuminance shaded plot, photometric report, etc. 

 

Various models of different lightpipes are built for study initially. The length, diameter, 

bended angles, solar altitude and solar azimuth are the main parameters to study the lightpipe 

performance. Table 3.1 lists the brief description of the base lightpipes parameters for 

simulation. Figure 3.4 is one type of the lightpipess with three components simply, the dome, 

the reflective tube, and the diffuser lens, in addition, the reference surface.  

 

Figure 3.4 A single group of a single type of lightpipes 

 

dome 

complete lightpipes  

reference surface 

pipe 
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Table 3.1 Brief description of the basic lightpipe parameters for simulation 

 Material  Property 

Dome (TRAN - Dome) Clear acrylic Transmittance = 92% 

Light pipe (REFL – Light 

Pipe) 

Alanod Miro 4 Silver Reflectivity = 98% 

Reference layers (two) Black layer Reflectivity = 0 

Bended angles of lightpipes  0°, 30°, 45°,60° 

Solar altitude  10°, 20°, 30°, 40°, 50°, 60°, 70°, 

80°, 90° 

Solar azimuth  0°, 10°, 20°, 30°, 40°, 50°, 60°, 

70°, 80°, 90° 

Diameter of lightpipes  230mm, 300mm, 450mm, 

530mm 

Lengths of lightpipes  1000mm,1500mm, 2000mm 

Lengths of tilted upper part  610mm 

Sky condition   Clear, intermediate,  

  

In order to define the changeable elements, those three parameters are shown in Figure 3.5. 

The whole tube consists of a bended part and a joining vertical part to the ground. However, 

the changing parameter is the length of the vertical part only. An assumption could be made 

that the bended part is vertical to the pitched roof and the distance between the ceiling and the 

roof is fixed. Consequently, it makes sense to change the lower straight part of the tube as a 

design parameter. As such, this scheme of lightpipe design can be seen as deeper transportation 

of light in the vertical space of the room. The bended angle is defined as the angle between 
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the bended pipe and the vertical perpendicular line. For example, the 30 degrees’ elbow means 

rotating 30 degrees from the vertical line anticlockwise. 

 

 

Figure 3.5 Parameter demonstration of single lightpipes 

 

Solar altitude angle and solar azimuth angle need to be determined. Usually solar altitude is 

defined by Hartmann as the angle between horizon and the central disc of the sun. The larger 

is number is, the higher the sun will be vertically. Solar azimuth is defined as the angular 

displacement from south of the projection of beam radiation on the horizontal plane. 
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In terms of straight lightpipes, the only effect of solar light is solar altitude. So solar altitude 

from 10 degree to 90 degree were used to do simulation. However, in terms of bended 

lightpipes, both solar altitude and solar azimuth effect the efficiency of lightpipes. As a result, 

solar altitude 10 degree to 90 degree and solar azimuth 0 degree to 90 degree were combined 

to simulate the efficiency of bended lightpipes. Figure 3.6 gives a demonstration of solar 

altitude and solar azimuth. 10 degrees’ gap for each altitude was chosen. 

 

 

Figure 3.6 Solar altitude and solar azimuth. 

Figure 3.7 and Figure 3.8 show lengths range from 1000, 1500, 2000 mm and diameters of 

230, 300, 450 and 530mm respectively. The lengths of tilted upper part are all 610 mm. The 

definition of the length is the distance between the centres of the circles. When doing the 

parameter study by different diameters, other parameter including length and bended angles 

will not be changed.  
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Figure 3.7 Lengths of 1000mm, 1500mm and 2000mm of lightpipes. 

 

 

 

Figure 3.8 Diameters of 230mm, 300mm, 450mm and 530mm of lightpipes 
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Three types of lightpipes with bended angles of 30, 45, 60 degrees are selected together with 

the straight one which can be seen as 0-degree elbow. These four lightpipes are arranged below 

(Figure 3.9). Also, the only variable among them is the elbowed angle, the length and the 

diameter will be fixed.  

 

Figure 3.9 Bended angle of 0, 30, 45 and 60 degree of lightpipes 

 

After building various types of lightpipes system models, the settings in the photopia should 

be adjusted for the further calculation. As stated before, the lightpipes models are imported as 

DXF file from AutoCAD to Photopia. Then, the lamp models of sky and sun are also imported. 

The location of each component is modified in order to reach the simulation condition. 

Additionally, the project setting of units are appointed as millimeters initially. Then some 

surfaces need to be oriented towards the incident light, meaning that their respective layer 

colours should face the incident light. For instance, for light entering through the top of the 

dome, the real colour should face outside. For the reflective surface for light to be transported 
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through the pipe, the real colour should face inside. The two reference surfaces should also 

have the real colour facing the incident light.  

 

To fulfil the goal of simulating lightpipes system under the condition of only sunlight and 

sunlight with daylight. The original lamp of sun and sky model should have all the sky layers 

to be closed if they are supposed to simulate sunlight incident only. In addition, the layer 

properties of lightpipes model are set as reflective and transmissive. The two reference layers 

are set as black surface with zero reflectivity because they ought to absorb all the incident light 

on the surface to represent the inlet and outlet of the lightpipes. Likewise, the coverage layer 

should block all the incident light so it is also appointed as no reflectivity. The light tube for 

light transportation system (REFL-Light Tube) is set as 98% reflectivity for the material of 

Alanod Miro 4 Silver. The material of dome layer (TRAN-Dome) is appointed as clear acrylic 

with 92% transmittance. 

 

3.2.2 Configuration of Artificial Neural Network 

The nature of lightpipe daylighting prediction is non-linear multivariate regression. According 

to the literature review in Chapter 2, ANN is a useful technique in solving non-linear issues. 

Thus, ANN was employed here to forecast the performance of lightpipes. “NN Toolbox” in 

the software MATLAN R2017a was used to train and test the data acquired from Photopia. 

To create an ANN model should follow 5 steps: definition of training parameters, configuring 

network architecture, training network, testing network and using the successful network to 

conduct prediction. Figure 3.10 demonstrates the basic work mechanism and process of neural 

network. 
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Figure 3.10 The typical network architecture and work mechanism of neural network 
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In the first step, formatting the integrated simulation data so that the input parameters and 

output parameters can be read by the ANN model. In this study, the initial direct viewing input 

variables are ① the elbowed angle of lightpipes (°); ② the lengths of lower part of lightpipe 

(straight part) (mm); ③ the diameter of lightpipes (mm); ④ the solar altitude (°); ⑤ the solar 

azimuth (°). Only one output variable is the luminous flux exported from the lightpipe in 

Photopia (lumen). It could be found that the original parameters have different physical 

meaning and physical units. It would reduce the readability of the input data of ANN and as 

well as the accuracy of ANN prediction ability. In this step, normalization the disunion data is 

essential. Take ① the elbowed angle of lightpipes (°) for example, the Degree Measure (the 

unit is °) should be transfer to Radian Measure (without unit) as follows.  

 

𝛼 = α ∗ (
𝜋

180°
) rad                                                                                                (3.2) 

 

where Α is the angle with unit as degree (°). All the parameters with degree (°) can be 

transferred to radians. 

Table 3.2 The parameters with Degree Measure and corresponding Radian Measure 

Bended angles of lightpipes (𝑥1) Solar altitude (𝑥2) Solar azimuth (𝑥3) 

0° 0 10° 0.1745329 0° 0 

30° 0.5235988 20° 0.3490659 10° 0.1745329 

45° 0.7853982 30° 0.5235988 20° 0.3490659 

60° 1.0471976 40° 0.6981317 30° 0.5235988 

  50 0.8726646 40° 0.6981317 

  60° 1.0471976 50 0.8726646 

  70° 1.2217305 60° 1.0471976 

  80° 1.3962634 70° 1.2217305 
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  90° 1.5707963 80° 1.3962634 

    90° 1.5707963 

Regarding ② the length of lightpipe (straight part) (mm) and ③ the diameter of lightpipe 

(mm), the ratio of length to diameter is used in ANN simulation.  

 

𝐴𝑝= 𝐿 𝐷⁄                                                                                                                                (3.3) 

 

where 𝐴𝑝 is the aspect ratio, 𝐿 is the lengths of lightpipe, and 𝐷 is the diameter of lightpipes. 

All the aspect ratios are listed in Table 3.3. 

 

Table 3.3 The parameters with Degree Measure and corresponding Radian Measure 

Diameter Lengths Aspect ratio (𝐴𝑝) (𝑥4) 

230mm 1000mm + 610mm = 1610mm 7 

300mm 1500mm+ 610mm = 2110mm 9.173913 

450mm 2000mm+ 610mm = 2610mm 11.347826 

530mm  5.3666667 

  7.0333333 

  8.7 

  3.5777778 

  4.6888889 

  5.8 

  3.0377358 

  3.9811321 

  4.9245283 
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In Su’s model [36], the ratio of the actual horizontal global illuminance 𝐸𝑒𝑥𝑡 to the theoretical 

value under the CIE clear sky was introduced to instead of using the sky clearness index 

(defined as the ration of global to the extra-terrestrial irradiance). This variable was adopted 

in this study as well. It is expressed as λ. The theoretical horizontal global illuminance could 

be calculated from the given solar altitude. The correlation is given in Figure 3.11. 

 

Figure 3.11 Horizontal global illuminance under the CIE clear sky versus solar altitude [37]. 

Although the “only sun”, “clear” and “intermediate” situations were simulated in Photopia, 

the “only sun” situation never exits in real sky condition, which do not have practical meaning. 

Thus “clear” and “intermediate” situations are considered in ANN prediction. The λ is constant 

1 under clear sky and variables under intermediate sky. The value of λ is listed in Table 3.4.  

 

In summary, the input parameters in this study are bended angle of lightpipes (𝑥1), solar 

altitude (𝑥2), solar azimuth (𝑥3), aspect ratio (𝑥4) and sky clearness index (𝑥5). The output 

parameter of ANN model is the transmittance of lightpipes which is expressed as y. In total, 

6696 values of transmittance (y) are obtained from Photopia. All these values are to be used 

in training and testing the ANN models, as shown in Table 3.5.  
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Table 3.4 The parameters for the sky clear index 

Sky clear index λ (𝒙𝟓) 

Clear sky index Intermediate sky index 

1 0.5879972 

 0.5895754 

 0.6438484 

 0.6882964 

 0.6902739 

 0.6263268 

 0.5507468 

 0.4248583 

 0.3156408 

 

Table 3.5 The input parameters and output parameters in ANN models 

𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒚 

 

 

 

 

Total 6696 

values 

0 0.1745329 0 7 1 

0.5235988 0.3490659 0.1745329 9.173913 0.5879972 

0.7853982 0.5235988 0.3490659 11.347826 0.5895754 

1.0471976 0.6981317 0.5235988 5.3666667 0.6438484 

 0.8726646 0.6981317 7.0333333 0.6882964 

 1.0471976 0.8726646 8.7 0.6902739 

 1.2217305 1.0471976 3.5777778 0.6263268 

 1.3962634 1.2217305 4.6888889 0.5507468 

 1.5707963 1.3962634 5.8 0.4248583 

  1.5707963 3.0377358 0.3156408 

   3.9811321  

   4.9245283  
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In the second step, the neural networks architecture is configured. In ANN modeling, the 

network parameters including the number of neurons in input, hidden and output layers, 

network architecture, transfer function, learning algorithm, momentum factor, learning rate 

are the basic but significant ones. The input layer delivers the values to each neuron in hidden 

layer. The number of hidden layers and optimum number of hidden neurons significantly 

affect the system accuracy. The number of neurons in the hidden layer, momentum factor and 

learning rate values are optimized by trial and error method to get accuracy simulation results. 

 

According to the literature review in Chapter 2, decision on the number of the hidden layers 

is dependent on empirical trials. Effective methods need to be developed to find out the 

appropriate number. So far, the number of neurons in hidden layers can be calculated as 

follows [87]. 

 

𝐿 = √𝑚 + 𝑛 + 𝑎,    𝑎 ∈ [1, 10]                                                                                      (3.5)          

                                                                                      

where L is the number of neurons in hidden layers, m is the number of neurons in input layer, 

n is the number of neurons in output layer, and a is an adapting variable, which range from 1 

to 10. In this research, the 𝐿 = √5 + 1 + 𝑎,    𝑎 ∈ [1, 10],   𝐿 could take the value from [3, 4, 

5, 6, 7, 8, 9, 10, 11, 12, 13]. 

 

In the third step, ANNs are trained with a set of known input-output data and suitable learning 

method to perform a function by adjusting the values of weight coefficient between processing 

neurons. The Levenberg-Marquardt function is chosen as training function in this study. In 

terms of medium size of dataset, Levenberg-Marquardt is the fast training method. The 

weakness is that it occupies lots of memory of the computer. It would be improved by 
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customizing the parameter as 1, 2, 3, ···, separating the Jacobian Matrix into several submatrix. 

However, this method is also highly demanding for memory storage of computer. Thus, how 

to balance them during the network training is essential in the process.  

 

After having successfully trained the neural networks, the rest remaining 30% data are used to 

test the accuracy of network. The selected data of testing programme is similar to the training 

programme. Both of them are random. In addition, the feature of tested data should be the 

same as trained data. The criteria used for measuring the performance of the network are 

correlation coefficient (R) and absolute fraction of variation (R2). These two parameters will be 

checked in the testing of network to ensure the accuracy. 

 

3.2.3 Evaluation metrics  

The results from ANN prediction can be evaluated by various evaluation metrics. 12 

evaluation metrics are identified in the previously reviewed studies [89], which will not be 

repeated herein again. Some of the common metrics can be performed from equations shown 

as follows:  

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)²

𝑁

𝑖=1
 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)²

𝑁

𝑖=1
 

𝑅2 = 1 −
∑ (𝑦𝑖̂ − 𝑦𝑖)²𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)²𝑁
𝑖=1

 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖̂ − 𝑦𝑖|

𝑁

𝑖=1
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𝑀𝐵𝐸 =
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)

𝑁

𝑖=1
 

𝑃𝐸 =
(𝑦𝑖̂ − 𝑦𝑖)

𝑦𝑖
100% 

𝐶𝑉 =
√1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)²𝑁

𝑖=1

𝑦𝑖̂
100% 

where 𝑦𝑖̂ is the predicted illuminance value for times 𝑖; 𝑦𝑖 is the simulated illuminacne value 

for times 𝑖, 𝑦𝑖̅ is the average illuminace value; and 𝑁 I ws the number of data points used for 

evaluation. In this study, R, R² and MSE were chosen to estimate the prediciton perforamnce 

of ANN models. 

 

3.3  Efficiency of various lightpipes under clear sky 

3.3.1 Efficiency of various aspect ratio of lightpipes under clear sky  

Different aspect ratio (the length to diameter ratio for lightpipes) of straight lightpipes and 

bended lightpipes were chosen to compare the influence of various aspect ratio. Efficiencies 

for each group lightpipes are calculated. Figure 3.12 shows the efficiency viable for each group 

of lightpipes with same length at solar altitude 50 degrees and solar azimuth 30 degrees. It is 

straightforward to see that the overall trends for all four groups of lightpipes reducing. In 

addition, the uptrend improves that the more aspect ratio the lightpipes has, the less efficiency 

of transporting light will be achieved. For the lightpipes with 30° bended angle, the efficiency 

reduces from about 90% to nearly 77% when the aspect ratio expands from 0.35 to 11.5. For 

the lightpipes with 60° bended angle, the efficiency reduces from about 55% to about 15%. 

However, because the effect of solar azimuth, the transmittance has wave motion. But the total 

trend is reducing along with the aspect ratio increase. On the other hand, to compare the line 
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in the chart vertically, if the lightpipes with same aspect ratio, the angles mire close to solar 

azimuth 30degree, the more efficiency will have. All these findings fulfil the trends within 

these data used as aspect ratio from 3.05 to 11.5. 

 

Figure 3.12 Efficiency of various aspect ratio of lightpipes under clear sky 

 

These findings are discussed as follows. The expansion of the width of certain lightpipes may 

result in more incident light from the dome. The pipe becomes wider, the light transmitted 

through the dome is multiplied. The larger area of dome will collect more light, though the 

possibility for having more rays lost may be higher because of wider tube. Thus, the bigger 

diameter pipe causes more light collected than the loss of reflectivity, and the efficiency can 

be improved if enlarging the diameter from 230mm to 530mm. For the lightpipes with same 

diameter, the scene of the ray tracing in the bended part will be the same since lightpipes are 

same during this part of transportation. When the light become reflected to the vertical straight 

part, the reflected light angle will also be same because of the same bended angle of those 

lightpipess. However, the longer the vertical part of pipe is, the more the light will be reflected 

in the pipe otherwise light will be transmitted through the diffuser lens. Therefore, it is 
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undoubted that making the same type of lightpipes longer will lead to the declined efficiency. 

Having said that, the same trend could not be observed clearly in bended lightpipes. It will be 

research in more details in Section 3.5 by using ANNs to deal with the non-linear problems.  

 

3.3.2 Efficiency of various bended angle of lightpipes under clear sky 

This stage of simulation is to change the bended angle for each group of lightpipes. The 

calculated efficiency results are shown in Figure 3.13. The curved lines have similar tendency, 

as they all increase for bended angle from 0 o to 30 o and decrease for bended angle from 30 o 

to 60 o. However, the larger aspect ratio, the more decrease of efficiency will be caused by 

bending from 30 o to 60 o. Furthermore, for the pipe with aspect ratio 3.58, the efficiency drops 

from 85% to about 55%. The decreased efficiency is about 30%. For the lightpipes with aspect 

ratio 11.35, the falling efficiency ranges from 75% to about 35%, which is about 40% drop. 

As such, the larger aspect ratio of lightpipes will have more apparent dropping trend of 

efficiency. Similar to the aspect ratio influence studied before, the larger aspect ratio pipe will 

have less efficiency on the whole system. In addition, this finding in trend of efficiency is 

under the situation of having solar altitude of 50 o and solar azimuth 30 o. However, when the 

aspect ratio is very small, meaning the lengths are very short and the diameters are very large, 

the transmittance is very small. The possible reason may be associated with the fact that the 

larger area of dome will collect more light, though the possibility for having more rays lost 

may be higher because of wider tube.     
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Figure 3.13 Efficiency of various bended angle of lightpipes under clear sky 

 

In order to explain the underlying reasons, the bended angle seems to play a vital role in 

affecting reflectivity in the pipe. In this part of simulation, the solar position is fixed, so the 

light orientation is constant. If making upper part of pipe bended from straight to 30 degrees, 

the incident light of 45 degrees will have the light reflected more. For the straight lightpipes, 

the reflectivity curve of light in the tube will keep the overall curvature. If the upper part of 

pipe becomes rotated from the vertical direction, the curvature of reflectivity will be replaced 

with different reflectivity angle when light entering the lower part of the pipe. From elbow of 

30 o to 60 o, the orientation of light in the pipe from the bended part will be more distinct from 

the one in the straight part. As a result, the larger elbowed angle will re-orientate light from a 

more varied angle to vertical angle, and there may be more chance for light to be lost. It is 

easy to see that the peak point of highest efficiency happens when the pipe is bended at 30 o 

but not 45o though the solar altitude angle is 45 o. It may be more appropriate to see 45o bended 

lightpipes with higher efficiency because more light seems to be incident in the bended part 

since two angles match. However, the lower straight part of the pipe will also play a role in 
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redirecting the light; it may be hard for light to be transported from 45 o elbow to the vertical 

part. The reason for larger aspect ratio causing less efficiency is explained hereinbefore.   

 

3.3.3 Efficiency of lightpipes with various solar altitude under clear sky 

The diagram below shows influence of various solar altitude angles on the efficiency (Figure 

3.14). It is straightforward to find that the lightpipes with larger aspect ratio will have weaker 

efficiency when other parameters remain the same. There are also some regulations that can 

be found from the chart. In terms of straight lightpipes, the efficiency is increasing from solar 

altitude 0 to 90 degrees. 

 

 

Figure 3.14 Efficiency of straight lightpipes with various solar altitude under clear sky 
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Figure 3.15 Efficiency of 30° bended lightpipes at various solar altitude and solar azimuth 

50° 

 

When keeping the lightpipes bending angle fixed at 45 o, the increasing angle of solar altitude 

will have the efficiency to be fluctuated but the curvatures of three types of the lightpipes with 

different lengths are similar. When having sun raising from 0 altitude to 45 altitude, the 

efficiency increase fast. When the solar altitude angle becomes larger 45o, there is a slight 

increase with less than 1% growth.  

 

The influence on the straight lightpipes is clearer than others because the incident sunlight will 

have uniform reflected pattern in the pipe. When the solar altitude angle becomes larger, the 

angle of sunlight entering the pipe will be closer to the pipe direction. Therefore, there is less 

possibility that light will be reflected since the light may go to the end of the pipe 

straightforward. For other lightpipes with different bended angles, it is hard to foresee the 

reflectivity trend in the pipe for the different light direction and pipe direction. The 30 o bended 
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lightpipes seems to have better efficiency than the straight ones. The reason may be that the 

smaller elbow of the pipe and the incident sunlight will not be reflected too much when 

comparing with other elbowed lightpipes.  

 

The reasons for this fluctuation may be the distinction between solar incident angle and the 

pipe bending angle in the section plane. When the sun raising from 0 o altitude to 45o altitude, 

the sunlight direction changes from horizontally parallel to tilted direction. The incident angle 

become closer to the pipe elbow angle, so less light will be reflected in the upper bended part 

of lightpipes. From 45 o to 90 o solar altitude angle, though there should be less loss from light 

reflectivity since the incident angle of sunlight the upper bended pipe match similarly, the light 

will have to be redirected to from the bended part to the straight part.  

 

3.3.4 Efficiency of lightpipes with various solar azimuth under clear sky 

If changing the solar azimuth angles, the viable tendencies exist for each lightpipes with 

different elbows as shown in Figure 3.16. When it comes to the explanation, the straight 

lightpipes will not be affected when sun moves from south to west. Nevertheless, the bended 

lightpipes will be affected by the horizontal movement of sun. The difference between 

lightpipes elbowed part and the incident sunlight direction may result in the increasing 

frequency of reflection. As a result, it is difficult to predict the efficiency since the solar 

azimuth angle and bending angle differ. The severe fluctuation might be brought about by the 

great distinction of incident light and pipe direction. There will be reflection in the upper 

bended part of lightpipes and also a lot of reflection in the lower vertical part of the pipe. The 

high frequency of reflection will cause more light loss. When exploring the influence of 

various solar azimuth angles on the efficiency in terms of sun altitude, it is also hard to regulate 
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the findings. Although there might be some fluctuation, the whole trend is from decreasing to 

increasing.  
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Figure 3.16 Efficiency of 30° elbowed lightpipes at solar altitude 50° and at various solar 

azimuth under clear sky 

 

3.4. Efficiency of various lightpipes under intermediate sky 

There are three sky models in Photopia, they are clear sky model, intermediate sky model and 

overcast sky model. Overcast sky model is not considered in this research due to all the 

overcast sky models have the same solar altitude. In this study, there is one overcast sky model 

and the other sky condition is intermediate sky. In this section, the modelling results are not 

only discussed about the trend under intermediate sky, but also compared with conditions 

under clear sky model. Some typical angle degree of solar altitude, solar azimuth and 

measurements of lightpipes are chosen in the discussion.  
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Elbowed angle of 30° lightpipes with various aspect ratio are chosen to search the change 

trend. Figure 3.17 and Figure 3.18 shows the efficiency of different aspect ratio and elbowed 

angle of lightpipes under intermediate sky. Compared with the transmittance under clear sky, 

it can be see the trend mostly like the condition under clear sky. However, due to the lower 

solar lighting under immediate sky than under clear sky, the transmittance is a little lower than 

clear sky.  

Figure 3.17 Efficiency of various aspect ratio of lightpipes under intermediate sky 

 

Moreover, it can be seen that different aspect ratios lightpipes yield comparable transmittance 

for straight configuration under various sky conditions but can cause significant difference for 

different bended angles. Under the same intermediate sky condition, the lightpipe with aspect 

ratio 8.7 (about 0.75 transmittance) is more than the triple of the lightpipe with 3.98 asepct 

ratio (about 0.2 transmittance) for the bended angle of 30 degree.  
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Figure 3.18 Efficiency of various bended angle of lightpipes under intermediate sky 

 

Figure 3.19 and 3.20 illustrate the transmittance performance of lightpipes under various solar 

altitude and solar azimuth in an intermediate sky condition. It can be seen that transmittance 

is more sensitive to solar altitude for high aspect ratios while the effect for low aspect ratio is 

limited. Similar trend has been observed for the solar azimuth. Under various solar altitudes, 

the highest transmittance occurs around 20 solar altitude while the highest transmittance under 

various solar azimuth is shifted and not consistent. However, the highest transmittance is 

concentrated around the low range of solar azimuth and smaller than 30.  
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Figure 3.19 Efficiency of lightpipes with various solar altitude under intermediate sky 

 

 

 

Figure 3.20 Efficiency of lightpipes with various solar azimuth under intermediate sky 
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3.5 Artificial neural network prediction 

In this section, ANN network for predicting the performance of lightpipes is configured.  

 

3.5.1 Straight lightpipe prediction by Artificial Neural Network 

The ANNs model consisted of one input layer with four input parameters, two hidden layers, 

one output layer and one output parameter. Four categories of data were chosen as input 

variables: solar altitude (10°-90°) (α), sky clearness index (λ), tube reflectivity of lightpipes 

(ρ) and aspect ratio (𝐴𝑝).  In the simulation, 70% of the input data was used to train the model 

and 15% was used to validate and testing respectively. Back Propagation (BP) algorithm was 

employed as the learning algorithm. Nntool was tested in the ANNs modelling. The regression 

value of them are both close to 0.99 comparing with actual data. A typical configuration is 

illustrated in Figure 3.21. 

 

Figure 3.21 ANNs prediction for the efficiency of straight lightpipes 
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Table 3.6 The correlation coefficients of trained ANN models of straight lightpipes 

Lightpipes 

type 

Independe

nt 

parameters  

Depende

nt 

paramete

rs 

R R² MSE 

Trainin

g 

(70%) 

Validatio

n (15%) 

Test 

(15%

) 

All 

(100

%) 

Straight 

lightpip

es 

α, λ, ρ, 𝐴𝑝  τ 0.9977 0.9887 0.998

7 

0.996

5 

0.993

0 

0.000

5 

 

 

3.5.2 Straight and bended lightpipe prediction by Artificial Neural Network 

Training and test sets were prepared for the network initialization. The network was tested 

with the transfer functions (activation function) logsig and tansig and the results were very 

similar. The test was carried out completely, with a cross-validation comprising 10 rounds 

Table 3.7 compares the results obtained using transfer functions logsig and tansig. It shows 

the results for the determination and correlation coefficients, MSE and R² for the sets using 

both functions. It can be noted that the correlation and determination coefficients obtained 

from the two functions are very close, and if rounded to two decimal places they would be 

equal. Having said that, the MSE and R² values of the function logsig group have yielded 

lower results and as such, the function logsig was selected for the network. 

 

Table 3.7 Comparison between results obtained using transfer functions logsig and tansig. 

𝑁ℎ Tansig function group Logsig function group 

 R R² R R² 
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10 0.8399 0.7054 0.8380 0.7022 

20 0.8388 0.7036 0.8496 0.7218 

30 0.9190 0.8446 0.9733 0.9473 

40 0.8557 0.7322 0.8534 0.7283 

50 0.9825 0.9653 0.8495 0.7217 

60 0.8519 0.7257 0.8542 0.7297 

 

The configuration parameters of the best prediction capability ANN model architecture is 

listed in Table 3.8 and also illustrated in Figure 3.24. 

 

Table 3.8 Parameters for the best configuration of ANN model for total lightpipe prediction 

Name TANSIGPURLIN50 

Network type Feed-forward backprop 

Input data α, β, λ, ρ, 𝐴𝑝 

Target data τ 

Training function TRAINLM 

Adoption learning function  LEARNGDM 

Performance function MSE 

Number of layers 2 

Properties for layer 1 Number of neurons: 50 

Properties for layer 2 Transfer function: PURELIN 

Minimum gradient  1e-07 

Epochs 10000 

Expected final error  6 

Learning rate 0.001 
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Figure 3.22 shows the MSE results of training, validation, testing and the best modelling. The 

best MSE performance is 0.0043 when the epoch is 276. The error quickly decreases to smaller 

than 0.01 with epochs increasing and the errors of testing and validation sets have similar 

characteristics. Moreover, overfitting does not occur because neither testing nor validation 

error increased before epoch 276. Figure 23 shows the linear regression of network outputs 

with respect to targets for training, validation, testing and all sets. The R values of training, 

validation, test and all are 0.9826, 0.9828, 0.9823 and 0.9825, respectively. So the fit is very 

good and the output tracks the targets very well for all datasets. Therefore, the established 

ANN can well predict the target variables.  

 

Figure 3.22 The prediction MSE value of ANN model 
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Figure 3.23 The illustration of regression relationship between prediction values and target 

values in the ANN Training, Validation and Test procedure 
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Figure 3.24 A graphic of the best performance ANN architecture (including the input 

parameters, the output parameters and the neurons number of hidden layer) 

 

In the case of the training function (or learning algorithm), the traingda function was adopted 

and the results obtained were satisfactory. The network architecture was structured with five 

input parameters, fifty hidden nodes and one output parameter. The numbers of input and 

output parameters do not vary since they correspond to the model variables and to the 

consumption of each one, respectively. However, the number of neurons in the hidden layer 

may vary through the tests carried out, and fifty neurons was found to be an adequate number. 

 

The following training parameters were defined: minimum gradient 0.0001, maximum number 

of epochs required for the network to be trained 1000; expected final error 0.000001 and 

learning rate 0.001. 
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To determine the number of epochs applied in the training phases, the starting number of 

epochs was 1000, increasing to 2000, and finally adopting 2000. Despite being slightly more 

demanding in terms of time, this was considered to be a suitable number of training epochs 

for this problem. In most cases the best performance reached an average of 276 epochs. 

 

Figure 3.25 Predicted transmittance in ANN versus simulated transmittance of lightpipes in 

Photopia 

 

It was observed that the network provided a clear representation of the actual results. To verify 

this, the R² and r values from each set trained, together with the Mean Squared Error (MSE) 

for the sets, are displayed in Table 3.9. It can be seen that in all cases the training R² value was 

greater than 0.96, which indicates good data prediction. The R for training, validation, test and 

all is 0.9826, 0.9828, 0.9823 and 0.9825 respectively. In addition, the average MSE values for 

the test sets was 0.0043, less than 0.05 as recommended in the literature.  
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Table 3.9 The correlation coefficients of trained ANN model models of 0°, 30°, 45° and 60° 

elbowed angle of lightpipes 

Lightpipe 

types 

Index De R R² MSE 

Training 

70% 

Validation 

15% 

Test 

15% 

All 

100% 

0°, 30°, 45° 

and 60° 

elbowed 

angle of 

lightpipes 

α, β, 

λ, ρ, 

𝐴𝑝  

τ 0.9826 0.9828 0.9823 0.9825 0.9654 0.0043 

 

* Index represents the independent parameters; De represents the dependent parameter.  

 

3.5.3 Artificial Neural Network limitations and improvements 

The major limitations of ANNs in daylighting prediction include over training, extrapolation 

errors and network architecture optimization. 

Over Training: In ANN training procedure, if too large capacity or too many iterations are 

allowed, over training will occur [91]. Before running ANN simulation, considerable high 

precision or large number of training cycles are always pre-set to define when to stop training. 

However, due to the experimental uncertainty, some training data from actual engineering 

experiment are erroneous. Hence, over high precision will cause over fitting and reduce the 

prediction accuracy. In order to overcome this problem, the number of training cycles and 

input data need to be optimized. Wijayasekara et al. elaborated EBaLM-OTR method to 

reduce the over training error [92]. 
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Extrapolation ineffective: Because the data used to train ANN model sometime cannot cover 

the entire range of the data, the extrapolation is sometimes ineffective. When preparing the 

input data for training ANN model, the maximum and minimum values should be selected 

from all the proposed data. Some training samples can be drawn using empirical correlations, 

which cover the entire range as much as possible. The range of the training data must be 

representative of entire operating range of the system in order to reduce the extrapolation 

errors [91].  

Network optimization: The key point of the ANN accuracy is to choose the best network 

parameters, such as the number of hidden layers, the number of neurons in hidden layer, 

momentum factor, learning rate, number of training data and variables. However, the ANN 

network initialization and architecture are dependent on the experience of the users. In order 

to get relatively the “best” ANN architecture, repeating trials are needed to optimize the ANN 

model, which can waste a lot time and the model received may not be the best eventually. 

Some methods are used to overcome these drawbacks. The number of neurons in hidden layers 

always use the following equation [6] for optimization  [87]. 

 

L = √m + n + a,    a ∈ [1, 10]                                                                         (3.7) 

 

where L is the number of neurons in hidden layers, m is the number of neurons in input layer, 

n is the number of neurons in output layer, and a is an adapting variable, which range from 1 

to 10. Liu et al. [93] introduced a Genetic Algorithm (GA) and particle swarm optimization 

(PSO) based ANN approach to optimize the network parameters. The optimum network 

parameters have been determined using GA/PSO to minimize the time and effort. The 

GA/PSO component is found to be a good alternative to the conventional trial and error 

approach to optimize the network configuration quickly and efficiently. 
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Training data requirement 

ANNs model is very strong tool to solve the problems with large number of input variables 

data. The input data can be split into training data, testing data and validation data.  Improper 

data splitting can lead to a poor prediction ability [94]. Hence, proper selection and splitting 

of input data is very important in order to attain high accuracy. Experimental uncertainty and 

theoretical assumptions may influence the reliability of input training data. Hence, the training 

data would require novel optimization techniques before being used.  

Improvement in ANNs 

Due to few studies focusing on using ANN models to predict the daylighting, the research in 

overcoming the limitation of ANNs in daylighting in particular has been scarce. However, 

other successful examples are worth to be adopted to overcome the limitation in ANN 

prediction in daylighting. The flow of the ANNs structure, optimizing the input variables data, 

the number of neurons in hidden layers, the number of hidden layers and the output data could 

be considered to improve the accuracy of ANN prediction models. 

(1) Input variables improvement 

Kubota et al. [95] used GA for the variable extraction and selection on measured data, and 

then fuzzy neural networks were developed for the building energy load prediction. In this 

method, the variable extraction means translating original variables into meaningful 

information that is used as input in the fuzzy inference system. Hou et al. [96] integrated rough 

sets theory and a neural network to predict an air-conditioning load. Rough sets theory was 

applied to find relevant factors influencing the load, which were used as inputs in a neural 

network to predict the cooling load. Karatasou et al. [97] studied how statistical procedures 

can improve neural network models in the prediction of hourly energy loads. The statistical 

methods, such as hypothesis testing, information criteria and cross validation, were applied in 
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both inputs pre-processing and model selection. Experimental results demonstrated that the 

accuracy of the prediction is comparable to the best results reported in the literature. 

(2) Optimization of the neurons number of hidden layer 

Hegazy and Ayed [76] defined Excel spreadsheet method to simplify the optimization of the 

neurons number of hidden layers. The method was then applied in [40] which used 5 or 6 

neurons in hidden layers and resulted in 35.87% and 20.62% errors respectively. The number 

of neurons were then increased to 7, 8, 9 and 11 andthey found all had 2.20% error. They 

finally concluded that 7 neurons was the best number for the network construction.  

(3) Output variables improvement 

The outputs of neural networks may not be exactly what we expected. Saxena et al. [98] 

proposed a fuzzy logic to correct the outputs by post-processing the results of neural networks. 

The fuzzy assistant allows the user to determine the impact of several building parameters on 

the annual and monthly energy consumption. Some comparisons between neural network and 

other prediction models were performed in the research in Chapter 4. 

 

 3.6 Summary  

This Chapter has simulated a number of commercial lightpipes examples in Photopia. The 

solar altitude was ranged from 10° to 90°, and solar azimuth was ranged from 0° to 90°. The 

sky condition was clear and intermediate respectively. Different elbow angles were 

considered, i.e., 0°, 30°, 45° and 60°. In addition, the length of lightpipes were 1000mm, 

1500mm and 2000mm. It can be concluded that lightpipes is an efficient device which 

functions well in introducing daylight into buildings. Compared with elbowed lightpipes, the 

straight lightpipes work more efficient than elbowed lightpipes. However, in real practical 

application, elbowed lightpipes has been more widely used than straight lighpipes. In terms 
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of bended lightpipes, the small respect ratio (i.e., short tube length and large diameters) 

would be most effective. In overall, the contributions of lightpipes include energy savings, 

visual satisfaction and healthy and improved indoor environment. 

 

A three layers Artificial Neural Network was developed to predict the optical performance 

of lightpipes. The input parameters included six factors, namely, solar altitude, solar azimuth, 

sky clearness index, elbow angle of lightpipes, aspect ratio and reflectivity of tube. The 

output parameter was the transmittance of lightpipes. The R² could achieve 0.9653 and MSE 

reached 0.0043. Almost all the prediction values reached ± 20% deviation compared with 

target values, which proved the ANN prediction model had strong forecast ability.  
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Chapter 4 Predicting the transmittance of 

lightpipes by multiple nonlinear 

regression model and comparing with 

Artificial Neural Network (ANN) model  
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4.1 Introduction 

Lightpipe is conventionally used as an alternative source of luminous energy that can 

bring natural light to the inside of buildings. The lighting energy transported through 

the lightpipe is a renewable energy. A literature review on daylight transport systems 

(DTS) revealed that lightpipes can reduce the total building energy used for electrical 

lighting in buildings up to 20-30% [99]. The preceding chapters have discussed the 

prediction methods relative to lightpipes. Physical model, computer simulations or the 

novel ANN have their own advantages and disadvantages. ANN is  outstanding in 

predicting lightpipes performance. However, it requires numerous simulations and 

scientific knowledge, which hinders the widespread application to the non-professional 

users. It is therefore desirable to propose a formula for the performance of lightpipe. 

Given the location of building and geometric of lightpipe, the establish formula can be 

used to choose suitable lightpipe orientation and configuration.   

To date, several researches have proposed available empirical formula to predict optical 

performance of lightpipes. However, the prediction results often yield errors due to a variety 

of reasons, such as lack of adequate data, formulation limitations, etc. Alternatively, some 

formula are too complicated to be applicable in real projects. In this chapter, based on 

numerous simulations data from Photopia, several potential mathematical models are 

proposed by multiple nonlinear regression. It is possible to predict the transmittance of various 

lightpipes by given solar altitude, solar azimuth, elbowed angle of lightpipes, aspect ratio, sky 

clear index, reflectivity of the lightpipes’ tube. The validation and limitations of the models 

are proposed to discuss the feasibility and reliability of the models as well. On the basis of the 

regression models, the transmittance of lightpipes can be calculated in a fast and accurate 

manner rather than the time-consuming raytracing simulations. As such, the performance of 
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lightpipes and the choice of suitable lightpipes elbow angle and install position could be 

determined in a convenient way.   

 

4.2 Summary of previous work on mathematical models   

4.2.1 Straight lightpipe  

The first formula of lightpipes was contributed by Zastrow and Wittwer  [100] in 

1980’s. the transmission 𝑇 was expressed as follows: 

 

 𝑇 = 𝑅𝑙 tan 𝜃 𝐷𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒⁄                                                                                                  (4.1) 

 

where R is the reflectivity of the lightpipe, l is the length of lightpipe and θ is the angle 

of incidence of the illuminating radiation with respect to the lightpipe axis. This 

formula is validation only in the condition of low ratio of pipe diameter to length, low 

incident angles and high reflectance. 

 

Swift and Smith [38] proposed an integral equation to calculate the transmission of 

cylindrical mirror lightpipes. They found relationship between the transmission and 

lightpipes parameters, reflectivity and aspect ratio, the angle of incidence of the 

incident radiation by using a HeNe laser light source to ray track through the pipe. The 

equation can be written as follows:  

 

𝑇 =
4

𝜋
∫

𝑠2

√1−𝑠2

1

𝑠 = 0
𝑅𝑖𝑛𝑡[𝑝tan 𝜃 𝑠⁄ ](1 − (1 − 𝑅)(𝑝 tan 𝜃 𝑠⁄ ) − 𝑖𝑛𝑡[𝑝 tan 𝜃 𝑠⁄ ])) ds,          (4.2) 

where  𝑝 =  𝑙 𝑑⁄  is the aspect ratio of the lightpipes. This expression shows good agreement 

with the experimental results and much more straight-forward than Zastrow and Wittwer 
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[100]. The drawback of Equation (4.2) is it suits for relative parallel light. However, 

apart from the direct light, the real daylight is mixed of diffuse skylight and sunlight.  

4.2.2 Elbow lightpipe  

The prediction of elbow lightpipe is much more complex than straight lightpipe. However, it is 

also necessary to guide because it is widely used on a sloped roof down vertically through the 

ceiling construction. And in the real condition of sun positions and sky patterns, the efficiency 

of bended lightpipe is larger than straight lightpipe. Normally it is much more difficult to 

determine the light flow transport in bended tubes when lightpipe placed on slope roofs as a 

bend is necessary to adjust the vertical pass through the ceilings.  

 

The predictive technique of Zhang and Muneer [101] is designed for lightpipes with an “opal” 

or cloudy diffuser. The predictions are largely based on illuminance or daylight factor 

measurements (taken over four months) of light pipes of diameter 0.21m, 0.33m, 0.45m and 

0.53 m, varying between 0.6m and 1.2m in length. Extrapolation is then used for light pipes of 

other dimensions, although the most reliable predictions will be within the dimensions of the 

pipes used in the study. By measuring the effects of adding 30° elbow sections, pipe bends 

were also considered so as to produce two separate models (i.e., for straight and elbowed light-

pipes).  

 

The simplified DPF model of Zhang-Muneer is, for straight pipes,  

 

DPF = (192.5 − 108.8𝑘𝑡 − 0.3α)𝜌(132.4+4.4𝐴𝑝𝑒+8.6 cot 𝛼−2.6𝐴𝑝𝑒 cot 𝛼) R²
(𝑉 𝐷⁄ )1.3

𝐷²
          (4.3) 

  

for elbowed pipes, 
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DPF= (192.5 − 108.8𝑘𝑡 − 0.3α)𝜌(132.4+4.4𝐴𝑝𝑒+8.6 cot 𝛼−2.6𝐴𝑝𝑒 cot 𝛼) R²(1 −

 𝑓𝑙𝑜𝑠𝑠)𝑁 (𝑉 𝐷⁄ )1.3

𝐷²
                                                                                                             (4.4) 

 

where 𝑘𝑡 is the sky clearness parameter, α is the solar altituse, ρ is the pipe reflectance, 𝐴𝑝 

is the aspect ratio of the straight pipe, 𝐴𝑝𝑒 is the ratio of the elbowed pipe, R is the diameter 

of the pipe, 𝑓𝑙𝑜𝑠𝑠 is the “energy-loss factor”, N is the number of 30° bends, V is the vertical 

distance from the diffuser to the point of interest and D is the direct distance from the 

lightpipe diffuser to the point of interest. 

 

Jenkins and Muneer [102] proposed a series of simplied semi-empirical equations to predict 

the performance of lightpipes. There is no restriction on the number of bends and the bend 

angle in the prediction. The essential input parameters needed in this equation are external 

illuminace, pipe dimensions, elbow configuration and pipe positions and floor area. The 

luminous flux leaving the pipe, ∅ is presented as follows,  

 

∅ = 𝐸𝑒𝑥𝜏𝜋𝑟2,                                                                                                                                (4.5) 

 

where  𝐸𝑒𝑥 is the external illuminance, τ is the total pipe transmission including diffuser and 

collector and r is the cross sectional radius of the pipe. Rather than input the transmission 

explicitly, an expression was found from measurements as a function of aspect ratio to give, 

 

∅ = 0.82𝐸𝑒𝑥𝑒−0.11𝐴𝜋𝑟2,                                                                                                              (4.6)                                                                                                                                                         

 

where A is the aspect ratio of the lightpipe length over the lightpipe diameter.  
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The internal illuminance  𝐸𝑖𝑛 is then given by: 

 

𝐸𝑖𝑛 = 0.494∅
cos4 𝜃

𝑉2
,                                                                                                                      (4.7)  

                                                                                                       

where V is the  vertical distance from the diffuser to the point of interest and  θ is the angle 

between the vertical line joining the centre of the diffuser with the point of interest. For each 

elbow, the elbow factor χ is introduced into the straight pipe Eq. (4.7), where  

 

𝜒 = 𝑒−0.0052𝛽,                                                                                                                  (4.8) 

 

and β is the angle of the pipe elbow.  

 

The shortback of this equation is the solar altitude and sky clearness parameters are not 

considered in it. So the illuminance prediction results of these equations could only be a design 

guide, not yielding accurate values.   

 

Kocifaj and Kundracik et al. exploited a semi-analytical model with basic formulae for the 

purposes to solve the complexity of bended lightpipe [103]. They used theoretical solution to 

forecast the light transmission of a bended lightpipe. However, due to this complexity and the 

lengthy derivation and explanations, it is difficult to be applied in practice. 

 

4.2.3 Su et al. regression formula 

Su et al. exploited an empirical formula by monitoring of various sized lightpipes at a 

purposely built test shed with a pitched roof [37]. By monitoring the lightpipes, numerous of 

data have been recorded to establish a formula to predict the performance. The relative input 
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parameters are horizontal global illuminance, the lightpipes’ diameter and length, the specular 

reflectance, solar altitude, solar azimuth. The orientation of elbow lightpipes (for straight 

lightpipes the degree is 0°). 

 

Figure 4.1 The demonstration of the purposely built shed for testing lightpipes [37] 

 

The basic formula from Zastrow and Wittwer, who conducted the earliest theoretical work on 

light transmission through a mirror-finished pipe of arbitrary cross section. They established 

an approximate equation correlating the transmittance of a lightpipe with its geometrical and 

optical parameters that is:  

𝑇 = 𝜌𝐴𝑝 tan 𝜃                                                                                                                                    (4.9) 

where ρ is the specular reflectance. 𝐴𝑝= 𝐿 𝐷⁄  is the aspect ratio, i.e., the ratio of length to 

diameter or equivalent diameter. L is the length of lightpipes (m). D is the diameter of 

lightpipes (m).  tan 𝜃 is the tangent of the incidence angle (between the incident light and the 

axis of lightpipes). 
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𝜏 =
lumen

Eext𝐴
 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼𝛽 +  𝑎5𝛼𝜆 +  𝑎6𝛽𝜆 +  𝑎7𝛼²𝛽𝜆 + 𝑎8𝛼𝛽²𝜆 +

𝑎9𝛼𝛽𝜆² + 𝑎10𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2(1 tan 𝛼⁄ )+𝑏3(𝐴𝑝 tan 𝛼⁄ ))                                                  (4.10) 

 

where 𝜏 is the lumen ratio of output to the external horizontal. α is the solar altitude, 0-90°. β 

= |solar azimuth − 180° − the orientation of elbow| (where the solar azimuth: 0° (north), 

90° (east), 180° (south), 270° (west), the orientation of elbow: 0° (south), -90° (east), 90° 

(west)). λ is the ratio of the actual horizontal global illuminance 𝐸𝑒𝑥𝑡 to the theoretical value 

under the CIE clear sky. The theoretical horizontal global illuminance could be calculated 

from the given solar altitude. The correlation is given in Figure 4.2. ρ is reflectance of 

lightpipe, it was assumed to be 0.95 according to the manufacturer. L is length of lightpipes 

(m). D is the diameter of lightpipes (m). 𝑎0 - 𝑎10, 𝑏1 - 𝑏3 are the coefficients.  

 

Figure 4.2 Horizontal global illuminance under the CIE clear sky versus solar altitude [37] 

 

The advantage of Su’s model is the solar azimuth and the orientation of the elbow are included 

in the formulation. This is particularly necessary for the bended lightpipes. Moreover, instead 
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of using the sky clearness index (defined as the ratio of global to the extra-terrestrial 

irradiance), the ratio of the actual horizontal global illuminance  𝐸𝑒𝑥𝑡 to the theoretical value 

under the CIE clear sky was used. Such ratio is more suitable to indicate the level of sky 

clearness. It was found that a better regression result could be achieved. The regression 

constants for the elbowed and straight lightpipes are listed in Table 4.1 and 4.2 respectively.  

 

Table 4.1 Regression constants for elbowed lightpipes 

𝒂𝟎 0.816107343 

𝒂𝟏 0.565594828 

𝒂𝟐 -0.001386091 

𝒂𝟑 0.002749844 

𝒂𝟒 0.005284653 

𝒂𝟓 -0.002801175 

𝒂𝟔 1.39112E-05 

𝒂𝟕 -0.000162761 

𝒂𝟖 5.13272E-07 

𝒂𝟗 -3.19153E-06 

𝒂𝟏𝟎 5.53944E-08 

𝒃𝟏 2.094452 

𝒃𝟐 -3.5E-05 

𝒃𝟑 0.083696 

 

Table 4.2 Regression constants for straight lightpipes 

𝒂𝟎 1.146112964 

𝒂𝟏 -0.770250745 
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𝒂𝟐 -0.002965636 

𝒂𝟑 0.00053072 

𝒂𝟒 0.016810832 

𝒂𝟓 0.00637853 

𝒂𝟔 2.99647E-05 

𝒂𝟕 -0.0001535 

𝒂𝟖 -1.18966E-06 

𝒂𝟗 -2.78047E-06 

𝒂𝟏𝟎 6.19193E-08 

 

The results have shown that the majority of the predicted values fall within ±20% of the 

measured data.  

 

4.3 Methodology  

4.3.1 Models of lightpipes   

The transmittance is defined as index to evaluate the optical performance of lightpipes. Su’s 

[37] mathematical model has relatively accurately found the relationship between 

transmittance and given solar altitude, solar azimuth, elbowed angle of lightpipes, aspect ratio, 

sky clear index, reflectivity of the lightpipes’ tube. In this Section, various lightpipes were 

chosen to demonstrate the correlations between the transmittance and impact factors. As 

mentioned in Chapter 3, the typical lightpipes configuration includes dome, light tube and 

diffuser. In this study, the bended angles of lightpipes are from 0° (straight lighpipes) to 60°, 

the length of lightpipes are from 1000mm to 2000mm, the diameters are from 230mm to 

530mm. For the purpose of applying lightpipes to the roof of buildings, different solar altitude 
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and solar azimuth are chosen in this research as research object. Mass simulation data has been 

acquired in Chapter 3 by using Photopia simulation. Figure 4.3 is one type of the light pipes 

with three components, i.e., the dome, the reflective tube, and the diffuser lens; in addition, 

the reference surface is illustrated.  

 

However, as discussed in Chapter 3, ANNs have advantage in predictions based on limited 

data. Moreover, Su’s regression equation presents strong ability of practical application and 

relatively good prediction capability. Thus, on the basis of Su’s model, this chapter developed 

a predication formula. Because of the application of Photopia, a large number of dataset could 

be obtained from simulation. A comprehensive dataset including the three sky conditions (i.e., 

only sun, overcast and clear sky) were determined via Photopia. 

 

Figure 4.3 A single group of a single type of lightpipes 

 

pipe 
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Figure 4.4 Various geometries of lightpipes 
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4.3.2 Multiple nonlinear regression 

Multiple nonlinear regression is a kind of regression analysis by which the relationship 

between observation data can be described using a function. The dependent variable is 

determined by several independent variables through nonlinear combinations in a multiple 

nonlinear regression model. Matlab as a strong mathematical tool was used to search the 

relationship between the independent variables and dependent variables. The function “Fit 

nonlinear regression model” (fitnlm) in Matlab was used in this study. It can be expressed as 

follows: 

 

Mdl = fitnlm (x, y, modelfun, beta0)                                                                                     (4.11) 

 

where the x is a matrix of predictor variables and the y is a response variable. 

 

The goodness of fit always utilizes the coefficient of determination (R²), the Mean Square 

Error (MSE), the Sum of Square Errors (SSE), and the Root Mean Squared Error (RMSE) to 

evaluate. In terms of mathematic principle, MSE, RMSE and SSE are related very closely. 

They all compare the prediction values and target values. However, the R-square compares 

the prediction value and average of target value. Hence, in this study, the MSE and R-square 

are chosen to define the goodness of regression. If MSE is closer to 0, it means the model is 

more accurate. To the opposite, if R² is closer to 1, it means the prediction data is closer to the 

target data and thus the model simulated is more representative and realistic. As shown in 

Table 4.3, there are four levels for evaluation of accuracy of forecasting.  
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Table 4.3 Four levels for evaluation of ANNs [61]. 

MSE≤10% 10%≤MSE≤20% 20%≤MSE≤50% MSE≥50% 

High prediction 

accuracy 

Good prediction 

accuracy 

Reasonable 

prediction accuracy 

Inaccurate 

prediction  

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖̂ − 𝑦𝑖)²𝑁

𝑖=1                                                                                                   (4.12) 

𝑅2 = 1 −
∑ (𝑦𝑖̂−𝑦𝑖)²𝑁

𝑖=1

∑ (𝑦𝑖−𝑦𝑖̅)²𝑁
𝑖=1

                                                                                                         (4.13) 

where 𝑦𝑖̂ is the predicted illuminance value for times 𝑖; 𝑦𝑖 is the simulated illuminacne value 

for times 𝑖, 𝑦𝑖̅ is the average illuminace value; and 𝑁 is the number of data points used for 

evaluation. In this study, R² and MSE were chosen to estimate the prediction performance of 

mathematic models. 

 

4.3.3 Variables settings 

Su’s mathematical model has been proposed to assess the parametric effects of the 

transmittance of lightpipes. In terms of independent variables, the angular relationship 

between the sun and the lightpipes is the most important impact factors to influence the transfer 

performance of the lightpipes. Hence, as independent variables, the solar altitude, solar 

azimuth and the elbow angle of lightpipes are the most important impact factors in terms of 

transmit performance of lightpipes. In order to find the accurate and complete relationship 

between the sun position and the transmittance performance of lightpipes, in the simulation 

procedure, various sky models with different sun positions were chosen to include as many 

incident angles as possible. Figure 4.7 illustrates the schematic of sun positions and lightpipes 

in this study.  
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Figure 4.5 Illustration of the schematic of sun positions and lightpipes. 

 

The performance of lightpipes is largely dependent on the sky clear condition. The skylight 

and sunlight illuminance are also impacted by the sky clear condition. Thus, sky clearness 

index as an important variable was introduced to the prediction model.   

 

According to the early basic formula of Zastrow and Wittwer [100], the specular reflectance 

of the light transfer tube and the aspect ratio were applied as another independent variables.  

 

𝑇 = 𝜌𝐴𝑝 tan 𝜃                                                                                                                                    (4.14) 

where ρ is the specular reflectance. 𝐴𝑝= 𝐿 𝐷⁄  is the aspect ratio, i.e., the ratio of length to 

diameter or equivalent diameter. L is the length of lightpipes (m). D is the diameter of 

lightpipes (m). 
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In this mathematical model, the transmittance is the only dependent variable to evaluate the 

performance of lightpipes. Transmittance indicates the amount of incident light passed through 

lightpipes. Optical efficiency reveals how much irradiance is received by the base of lightpipes.  

 

4.4 Results of regression 

As shown as Equation (4.15), the formula has been emphasised on the solar altitude (α) impact, 

the included angle of solar azimuth, the elbowed angle of lightpipes (β) and sky clearness 

index (λ) to the transmittance. Compared with the previous mathematical model, the 

significant contribution of this formula is considered the solar azimuth and the orientation of 

the elbow of lightpipes. It can achieve a better regression in large degree. In addition, the sky 

clearness index was replaced by the ratio of the actual horizontal global illuminance to the 

theoretical value under the CIE clear sky, which is more suitable to express the level of sky 

clearness.  

 

𝜏 =
lumen

Eext𝐴
 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼𝛽 +  𝑎5𝛼𝜆 +  𝑎6𝛽𝜆 +  𝑎7𝛼²𝛽𝜆 + 𝑎8𝛼𝛽²𝜆 +

𝑎9𝛼𝛽𝜆² + 𝑎10𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2(1 tan 𝛼⁄ )+𝑏3(𝐴𝑝 tan 𝛼⁄ ))                                                       (4.15) 

 

The data simulated in Photopia was substituted into Equation 4.15, together with the constant 

value shown in Table 4.4. 𝜌 is the reflectivity of the light tube, according to the data from 

Monodrught company, it is a constant here and value is 0.98. The total is 6696 sets of data. 
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Table 4.4 values of the constants  

𝒂𝟎 0.816107343 

𝒂𝟏 0.565594828 

𝒂𝟐 -0.001386091 

𝒂𝟑 0.002749844 

𝒂𝟒 0.005284653 

𝒂𝟓 -0.002801175 

𝒂𝟔 1.39112E-05 

𝒂𝟕 -0.000162761 

𝒂𝟖 5.13272E-07 

𝒂𝟗 -3.19153E-06 

𝒂𝟏𝟎 5.53944E-08 

𝒃𝟏 2.094452 

𝒃𝟐 -3.5E-05 

𝒃𝟑 0.083696 

 

Equation 4.15 can then become:  

𝜏 = [ 0.816107343 + 0.565594828𝛼 + (−0.001386091)𝛽 +  0.002749844𝜆 +

 0.005284653𝛼𝛽 + (−0.002801175)𝛼𝜆 + 0.0000139112𝛽𝜆 +

(−0.000162761)𝛼²𝛽𝜆 + (0.000000513272)𝛼𝛽²𝜆 + (−0.00000319153)𝛼𝛽𝜆² +

0.0000000553944𝛼²𝛽²𝜆²]𝜌[2.094452𝐴𝑝+(−0.000035)(1 tan 𝛼⁄ )+0.083696(𝐴𝑝 tan 𝛼⁄ )]                 
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Figure 4.6 Comparison between simulated transmittance and predicted transmittance of 

lightpipes based on Su’s regression mathematical model. 

 

It can be found that, based on Su’s prediction model, the ability of prediction is quite low. The 

R² is only 0.2164 by regression formula. When mass and various elbowed lighpipes are needed 

to predict, the format of model needed to be changed and the constants needed to be redefined. 

 

Table 4.5 Options for regression for lightpipes 

Fit-1 𝜏 =  ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼𝛽 +  𝑎5𝛼𝜆 +  𝑎6𝛽𝜆 +

 𝑎7𝛼²𝛽𝜆 +  𝑎8𝛼𝛽²𝜆 + 𝑎9𝛼𝛽𝜆² + 𝑎10𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝)   

Fit-2 𝜏 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼𝛽 +  𝑎5𝛼𝜆 +  𝑎6𝛽𝜆 +

 𝑎7𝛼2𝛽𝜆 +  𝑎8𝛼𝛽2𝜆 + 𝑎9𝛼𝛽𝜆2 + 𝑎10𝛼2𝛽2𝜆2 +

𝑎11 sin 𝛼)𝜌(𝑏1𝐴𝑝+𝑏2(1 tan 𝛼⁄ )+𝑏3(𝐴𝑝 tan 𝛼⁄ ))   
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Fit-3 (best) 𝜏 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼² +  𝑎5𝛽² +  𝑎6𝜆² +

𝑎7𝛼𝛽 +  𝑎8𝛼𝜆 +  𝑎9𝛽𝜆 +  𝑎10𝛼²𝛽𝜆 +  𝑎11𝛼𝛽²𝜆 + 𝑎12𝛼𝛽𝜆² +

𝑎13𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2(1 tan 𝛼⁄ )+𝑏3(𝐴𝑝 tan 𝛼⁄ ))                                                        

Fit-4 𝜏 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼³ +  𝑎5𝛽³ + 𝑎6𝜆³ +

𝑎7𝛼𝛽 +  𝑎8𝛼𝜆 +  𝑎9𝛽𝜆 +  𝑎10𝛼²𝛽𝜆 +  𝑎11𝛼𝛽²𝜆 + 𝑎12𝛼𝛽𝜆² +

𝑎13𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2(1 tan 𝛼⁄ )+𝑏3(𝐴𝑝 tan 𝛼⁄ ))                                                        

Fit-5 𝜏 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼² +  𝑎5𝛽² +  𝑎6𝜆² +

𝑎7𝛼𝛽 +  𝑎8𝛼𝜆 +  𝑎9𝛽𝜆 +  𝑎10𝛼²𝛽𝜆 +  𝑎11𝛼𝛽²𝜆 + 𝑎12𝛼𝛽𝜆² +

𝑎13𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2 tan 𝛼+𝑏3(𝐴𝑝 tan 𝛼))                      

Fit-6 𝜏 = ( 𝑎0 + 𝑎1𝛼 + 𝑎2𝛽 +  𝑎3𝜆 + 𝑎4𝛼² +  𝑎5𝛽² +  𝑎6𝜆² +

𝑎7𝛼𝛽 +  𝑎8𝛼𝜆 +  𝑎9𝛽𝜆 +  𝑎10𝛼²𝛽𝜆 +  𝑎11𝛼𝛽²𝜆 + 𝑎12𝛼𝛽𝜆² +

𝑎13𝛼²𝛽²𝜆²)𝜌(𝑏1𝐴𝑝+𝑏2(1 sin 𝛼⁄ )+𝑏3(𝐴𝑝 sin 𝛼⁄ ))                                                        

 

where 𝜏  is the transmittance of the lightpipes; α is the solar altitude, 0-90°. β = 

|solar azimuth − 180° − the orientation of elbow| (where the solar azimuth is: 0°-90°, the 

orientation of elbow: 0°, 30°, 45°, 60°. λ is the ratio of the actual horizontal global illuminance 

𝐸𝑒𝑥𝑡  to the theoretical value under the CIE clear sky. ρ is reflectance of lightpipe, it was 

assumed to be 0.98 according to the manufacturer. 𝐴𝑝 is the ratio of length of lightpipes to the 

diameter of lightpipes. a and b are the coefficients.  
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Figure 4.7 Predicted transmittance versus simulated transmittance for total elbowed lightpipes 

RMSE = 0.04 

R-Squared: 0.77 

 

According to the analysis of data, some invalid values were removed. The condition at solar 

altitude 10°, 20°, 80°, 90° and solar azimuth 10°, 20°, 80° and 90° are rare in real practical 

situation and these unexpected simulation value impact the accuracy of performance of 

prediction model in large degree. 

 

Six mathematic models are developed in Matlab by utilising “fitnlm” function, as shown in 

Table 4.5. This function tried to find the significance linear relationship between the variables 

and their respective variables. It can include the cross terms, quadratic terms in the settings. 

This function is suit for the model installed in this study. Every equation includes the 

independent variables, solar altitude (α), the included angle of solar azimuth and the elbowed 

angle of lightpipes (β), sky clearness index (λ), aspect ratio (Ap) and reflectivity of tube (ρ) 

and the dependent variable is transmittance (τ). Regression started from Su-model because it 
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has acquired reasonable accuracy in field experiment. Considered the Su-model may be 

limited due to the lack of enough large amount of original data because of the limited of field 

test. However, in this study massive data has been obtained from Photopia simulation; hence 

more accuracy model can be derived from regression.  

 

The fitting results in terms of coefficient of determination R² and the mean squared error MSE 

for the 6 regression fits presented in Table 4.5 is shown in Table 4.6. For Fit-1, R² is as low as 

0.381 and hence, there is no need to discuss this form forward. It is found that the exponential 

of ρ affects the prediction capability dramatically. Moreover, Fit-2 is not any better with low 

R² value as well. The trigonometric is only affecting the exponential but not the polynomial 

function ahead of ρ. Fit-3 keeps the original form of exponential of ρ, the polynomial function 

ahead of ρ was add in with the sum of α, β and λ squares. The accuracy is improved 

significantly and R² can achieve nearly 0.8 and MSE reach 0.04. The prediction is considered 

as a good prediction. It is then continued to find more fits but R² is not increasing; instead, R² 

is as low as 0.699 and the cubic form is not valid in the polynomial function ahead of ρ. Then 

Fit-4 and Fit-5 are changed in the exponential term of ρ. The Su-model used the tangent of α 

denominator form. Fit-5 tries the numerator form and found R² is 0.543069. Fit-6 keeps the 

denominator form but changes the tangent to sine form. The result is still not satisfied. In 

overall, Fit-3 is chosen as the best form to define the prediction model. Accordingly, R² is 0.77 

and MSE is 0.04 which can be considered as a reasonably good prediction model.  
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Table 4.6 Regressing equations attempted for the correlations of altitude, azimuth and sky 

clearness factor to the transmittance of lightpipes 

Equation number R² MSE 

Fit-1 0.381 0.064 

Fit-2 0.599 0.053 

Fit-3 (best) 0.77 0.04 

Fit-4 0.699 0.049 

Fit-5 0.543069 0.0448 

Fit-6 0.506 0.051 

R²: coefficient of determination 

MSE: mean squared error                

 

 

In fact, in the commercial market, the elbowed lightpipes usually only have some common 

angles, i.e., 30°, 45° and 60°. By separating the unnecessary data, we can re-evaluate the 

prediction ability of mathematical model proposed. With the same equation form, the 

constants have been redefined accordingly as shown in Table 4.7. 

 

Table 4.7 The regression constant of 30°, 45° and 60° elbowed lightpipes respectively and 

assessment of each model 

Constants  30° lightpipes 

 

45° lightpipes 

 

60° lightpipes 

 

𝒂𝟎 -1.619 -1.9698 -0.70013 

𝒂𝟏 0.005124 0.005115 0.003646 

𝒂𝟐 0.01651 0.017294 0.008946 
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𝒂𝟑 6.3634 6.5208 2.3474 

𝒂𝟒 0.000118 0.000122 3.1E-05 

𝒂𝟓 -7.7E-05 -8.5E-05 -5E-05 

𝒂𝟔 -2.6419 -2.701 -0.77861 

𝒂𝟕 -4.7E-05 -5.2E-05 -6.9E-05 

𝒂𝟖 -0.03151 -0.03235 -0.01517 

𝒂𝟗 -0.02624 -0.02519 -0.01187 

𝒂𝟏𝟎 -8.5E-07 -7.3E-07 7.83E-07 

𝒂𝟏𝟏 1.25E-06 1.2E-06 1.33E-06 

𝒂𝟏𝟐 0.000241 0.000204 2.65E-05 

𝒂𝟏𝟑 -5.6E-09 -2.4E-09 -7.3E-09 

𝒃𝟏 1.2844 -0.25412 -3.0312 

𝒃𝟐 -0.72828 -0.3324 7.2734 

𝒃𝟑 0.056565 -0.0408 -0.86234 

Prediction accuracy  

R² 0.953 0.849 0.773 

RMSE 0.0446 0.108 0.137 

 

After redefining the constants in the mathematic formula proposed, it can be seen that the 

prediction accuracy is considerably improved. Different from the total prediction accuracy, 

the accuracy value, e.g., R², are 0.953, 0.849 and 0.733 respectively for the elbowed angle 30°, 

45° and 60° lightpipes. Compared with the total prediction accuracy value is 0.77, the elbowed 

30° lightpipes is improved by nearly 20%. The elbowed 45° can increase 10% and the worst 

case, elbowed 60° lightpipe, is also slightly better than the total prediction accuracy. The MSE 

value of total prediction formula is 0.04, which equals to RMSE 0.2. For the redefined 

mathematical formula, the RMSE values are 0.0446, 0.108 and 0.137 corresponding to 30°, 
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45° and 60° elbowed lightpipes respectively. These values for RMSE are significantly smaller. 

This proves the strong potential of the refined mathematical formula in practical applications. 

Especially, the elbowed 30° lightpipe is the most widely used lightpipe.  

 

Figures 4.8 – 4.10 describe the deviation of predicted transmittance versus simulated 

transmittance of elbowed 30°, 45° and 60° lightpipes. In Figure 4.8, nearly all the predicted 

transmittance for 30° lightpipes fall within the ±20% deviation. As discussed, 30° lightpipes 

are the most commonly used in the commercial market. However, elbowed 45° and 60° deviate 

a bit more from the ±20% ranges. More errors appear at both the very low transmittance and 

very high transmittance which are the extreme conditions. It has been explained before, these 

conditions are associated with very small/large solar altitude and solar azimuth. In real 

situation, it is common and has less implication on the performance and design. 

 

 

Figure 4.8 Predicted transmittance versus simulated transmittance of elbowed 30 degree 

lightpipes. 
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Figure 4.9 Predicted transmittance versus simulated transmittance of elbowed 45 degree 

lightpipes. 

 

Figure 4.10 Predicted transmittance versus simulated transmittance of elbowed 60 degree 

lightpipes. 
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4.5 Comparison between multiple nonlinear regression and ANN model for predicting 

the transmittance of lightpipes 

The ANN model proposed can be compared with mathematical model. As discussed earlier, 

the ANN model and MNLR can both be used to predict the transmittance of lightpipes and 

both of them have good prediction capability. However, ANN is considered better than MNLR. 

The two models have the same independent parameters solar altitude (α), the include angle of 

solar azimuth and elbowed angle (β), sky clearness index (λ), tube reflectivity (ρ), aspect ratio 

(𝐴𝑝) and the dependent parameters transmittance (τ). Although the prediction ability of ANN 

is much higher than MNLR, interesting finding is that the large error exists in very low 

transmittance and very high transmittance. The reason for that is because it is in extreme 

conditions, i.e., the very low solar position (at solar altitude 10°, 20° and/or solar azimuth 0°, 

10°, 20°) or very high solar position (at solar altitude 80°, 90° and/or solar azimuth 80°, 90°). 

On the other hand, the result is also affected by the parameters of lightpipes; when the diameter 

is very large such as 530mm, or the length is very long, or the elbowed angle is very large, 

such as 60°, the prediction error is dramatically affected. Table 4.6 lists the comparison 

between the prediction accuracy of the multiple nonlinear regression prediction and ANN 

model. The R² is 0.965 for the ANN model and 0.77 for the MNLR model, respectively. The 

accuracy can raise 20% compared with the MNLR model by using the ANN model. About 

MSE evaluation, it is 0.0043 for the ANN model and 0.04 for the MNLR model. This means, 

by comparing with the target simulation values in Photopia, the ANN model yields smaller 

variation and stronger prediction capability.  
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Table 4.8 Comparison between the MNLR model and the ANN model  

Model type Independent 

parameters 

Dependent 

parameters 

R² MSE 

ANN α, β, λ, ρ, 𝐴𝑝 τ 0.965 0.0043094 

MNLR α, β, λ, ρ, 𝐴𝑝 τ 0.77 0.04 

 

Figure 4.11 shows the comparison of the results from the multiple nonlinear regression 

prediction model and the ANN model, in predicting the transmittance of lightpipes, versus 

simulation values in Photopia, respectively. The top figure in Figure 4.11 compares the 

predicted transmittance from MNLR with the simulated transmittance and the bottom figure 

compares the predicted transmittance from ANN with the simulated transmittance. It clearly 

demonstrates the correlation accuracy of the different prediction methods; ANN model 

predicts better than MNLR as almost all data were covered within the ±20% ranges for the 

ANN model.  

 

Having said that, ANN and regression can both be considered as effective tools to predict the 

performance of lightpipes. However, due to different working principles, they have different 

strengths and weaknesses. The main contribution of regression is to propose a visualized 

mathematical equation. Given values for the parameters, the results can be calculated directly 

from the analytical equation. It can obviously save the computational time and cost. Moreover, 

the mathematical relationship between independent parameters and dependent parameters can 

be directly found by the equation established. Besides, the advanced technique allows various 

energy simulation software combined equipment to model the energy consumption together. 

The equation could be a customized option to be added into the simulation procedure without 
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setting the physical models of lightpipe or virtual models in software with vast number of 

parameters.  

 

 

 

Figure 4.11 The comparison between the multiple nonlinear regression model and the 

ANN model for predicting the transmittance of lightpipes (top is MNLR model and 

bottom is ANN model) 
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Though ANN performs more accurately than MNLR, as a kind of black box embedded in 

Matlab, it is not straightforward or direct as MNLR in terms of understanding and especially 

not easy to use for non-professional personnel. Moreover, to combine ANN with other energy 

simulation software is very difficult. It needs to write massive coding scripts in programming 

software to set the plug-in with the energy software. In overall, both ANN and MNLR are the 

available tools to forecast the performance of lightpipes. They should be selected depending 

on the specific conditions according to their characteristics. 

 

4.6 Summary  

Based on numerous simulation results in Photopia, some different forms of mathematical 

models have been proposed to predict the transmittance of lightpipes with various elbowed 

angles. The multiple nonlinear regression method is used in this study. In the model, the 

independent parameters are solar altitude (α), the included angle of solar azimuth and the 

elbowed angle of lightpipes (β), sky clearness index (λ), aspect ratio (Ap) and reflectivity of 

tube (ρ) and dependent parameter is only the transmittance of lightpipes. A goodness of fit 

regression has been obtained with R² 0.77 and MSE 0.04, which proves the reasonable 

accuracy of the prediction model. Due to the practical application, most commercial 

lightpipes are straight, 30°, 45° and 60° elbowed lightpipes. The prediction model was then 

used to evaluate each elbowed angle and the regression constants were updated respectively. 

These specific angles yield greater accuracy with R² reaching 0.953, 0.849 and 0.773 for 30°, 

45° and 60° elbowed lightpipes, respectively. Almost all predicted data fall within the ±20% 

deviation from the simulated data, which demonstrates the practical application capability 

of the proposed model. However, because Photopia only includes three standard sky model, 

which are clear, intermediate and overcast sky models. As such, the amount is much less 

than CIE standard 14 sky models. Hence, this mathematical model is not suitable for 
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application in some sky conditions. In the future work, more sky conditions should be 

considered in the predication model.   

 

Moreover, the ANN model proposed in Chapter 3 has been compared with multiple nonlinear 

regression (MNLR) in this chapter. The prediction accuracy of ANN is obvious higher than 

MNLR model, where R² can reach 0.9653. However, the mathematical model has significant 

application potential in practical projects. The mathematical equation can express the 

relationship between the performance of lightpipes and their parameters directly in an 

analytical form. The mathematical equations can also be easily combined and implemented 

in other BIM simulation software for wider application scenarios.  
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Chapter 5 Integrating Artificial Neural 

Network (ANN) and BIM Revit via 

Application Programming Interface (API) 

to predict the daylighting performance 

of lightpipes 
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5.1 Introduction 

In preceding chapters, it has addressed the significance of using daylighting in buildings and 

its impact on the global energy sustainability development [104]. However, the daylighting 

performance in buildings is difficult to forecast which poses significant challenge in the wide-

spread application of the daylight system or lightpipes [105], [106]. Recent development of 

new analysing platform or tools, such as BIM (Building Information Modelling) and Artificial 

Neural Network (ANN), are fashionable applications in their individual scope. However, rare 

research considers to combine these two systems and develop their strength to solve complex 

engineering issues, in particular, in daylighting performance in buildings. Integrating ANN 

and API (Application Programming Interface) in BIM as a hybrid system could be an inspiring 

attempt with considerable impact. The novel system not only promotes the prediction of the 

performance of lightpipe in BIM, but also exploit the potential of BIM in daylighting 

simulation combined with building design. 

 

5.1.1 BIM  

Building Information Modelling (BIM) can simply be defined as a process, which include 

creating an intelligent 3D model and enable document management, coordination and 

simulation during the whole lifecycle of a project (plan, design, build, operation and 

maintenance). BIM rapidly promotes the development of design and construction management 

integrating and collaboration. Last generation 2D drawing systems is based on quickly 

finishing “drawing” than traditional manual processes. In terms of interoperability, there are 

no real strength. In order to save building cost and time, the technology of accessing and 

controlling information needs to be developed. Accordingly, it requires to access and edit the 

project information in various platforms and devices. Integrating essential information, 
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including specification, models, point clouds, drawings, reports, etc., can lead to easy access 

at any stage and any time. Different design teams can be involved in accessing and revising 

whenever necessary. Novel BIM technology is a revolution in Architecture, Engineering and 

Construction (AEC) industry. Different form the conventional design process, change for one 

point will make the whole project updated automatically, including full 3D model, drawing, 

construction etc [107].  

 

In the AEC industry, BIM has completely upended the traditional drawing-intensive Computer 

Aided Design (CAD) method. In a typical BIM project, massive information can be 

implemented to a building. This information is called n-Dimensional (nD). Typical 

dimensions involve time, cost, accessibility, sustainability, maintainability, acoustic,  

 

 

thermal requirements, health and safety [108]. Figure 5.1 shows the analysis indexes of the 3D 

to nD modelling project.  However, incorporating these various lifecycle information relies on 

the external application in creating additional functionality through BIM-enable tools such as 

Application Programming Interface (API) [109]. Thus, this Chapter will investigate the 

implementation of API in BIM-enabled environments. 
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Figure 5.1 Analysis indexes of the 3D to nD modelling project [108] 

 

5.1.2 Autodesk Revit API overview 

Autodesk Revit is a typical and perhaps the most widely accepted BIM platform in the AEC 

industry. API is a software development kit, which can provide the operational possibilities to 

explore the BIM in accounting for different needs [110]. API, as an intermediary platform, is 

used to exchange information between software and application [111]. API is developed based 

on programming source codes and a high level interface between computer programmes and 

operating system. The Revit API platform can be accessed by computer language compatible 

with the Microsoft .NET Framework, such as Visual C#, Visual Basic .NET.  

 

The Revit API system is implemented in the daylighting domain of the open Revit Platform 

API. Two class libraries are utilised, i.e., RevitAPI.dll and RevitAPIUI.dll. The RevitAPI.dll 

is responsible for accessing Revit’s application, documents, elements and parameters at the 
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database level while RevitAPIUI.dll controls all API interfaces related manipulation and 

customization of the Revit user interface [112] . As shown in Figure 5.2, Revit elements 

include three categories and they are Model elements, Datum elements and View-specific 

elements. The windows elements considered in this study belong to the Model elements. It 

can be mapped into the Revit Interface as RevitElement belonging to RevitAPIObject. The 

associated BIM API mapping is shown in Fig. 5.3.  

 

 

Figure 5.2 The summary of Revit elements 
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5.2 Fundamentals of hybrid ANN and C#.NET 

ANN as a parallel computer model, which normally does not need the input parameters 

structures or dynamic characteristics, but only needs the input data and target data. Moreover, 

because the property of non-linear mapping, through the neural network self-study ability can 

achieve reasonable accuracy in predicting the target. The .NET is an internet facing and 

supports various terminals of development platform with friendly interface, high operating 

speed and easy maintenance features etc. Especially, the .NET system can leave the 

programming platform and form plug-in files. However, comparing with Matlab, the 

engineering mathematics performance is inferior. Thus, hybrid Matlab and .NET system can 

have strong performance with wider application. Recently, deep learning neural network is of 

the trend in AEC industry. However, ANN is chosen in this research rather than deep leaning 

neural network to save computational cost because the data in daylighting sector usually owns 

Figure 5.3 Possible mappings linking extension to BIM project (Revit Daylighting)  
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relative regulation. Accordingly, ANN is sufficient to perform the training of data and generate 

the prediction model. On the other hand, comparing with the deep learning multi-layers, ANN 

can significantly save time. Autodesk Revit is developed by .NET C# language; choosing the 

C# language keeps the system largely stable and compatible. 

 

Matlab, as an advanced programming language and platform, is strong and stable in 

performance, efficacy and interacting numerical computing and visualization. It integrates 

numerical calculation, signal processing and image analysis. However, Matlab is not good in 

the interface development. The program is limited running in Matlab environment and cannot 

be used in other software developers. However, C#. NET owns the significant excellent 

features, such as friendly user interface, fewer running time, easy to maintain and update. The 

file produce from C#. NET could protect the algorithm and data efficiency. Moreover, the file 

can run without the programing environment. However, the engineering mathematics is 

difficult and complex. Thus, hybrid the Matlab and C#. NET can largely improve the 

performance of either of them [113].  

 

5.2.1 Artificial Neural Network in the simple retrospect  

ANN achieves the accurate forecasting by iterative method. Sigmoid function is chosen as the 

transfer function because of the reliable biology basic. The forward neural network with one 

hidden layer can largely approach any form function. In fact, in order to reduce the number of 

the nodes in the hidden layer, the account of hidden layers can be raised. However, up to the 

present, there have been no method or theory to determine the nodes of network and the 

number of hidden layers. The experimental method of the error of learning sample and test 
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sample cross trying to define the hidden layer and the nodes number in the hidden layer. The 

functions used are presented as follows. 

 

Stage 1: The transfer function tansig () is S (Sigmoid) transfer function. It is used to mapping 

the node value (-M, +M) to (-1, +1), which is always used in training the ANN hidden layer.  

Stage 2: Establish the forward neural network by using the function newff (). 

Stage 3: Train () function is used to train the ANN. 

Stage 4: Sim () function is used to simulate the already used ANN. 

 

5.2.2 An overview of integrating ANN and C#.NET methods 

There are four methods to hybrid ANN in Matlab and .NET. 

(1). Use the Compiler of Matlab to connect the ANN in Matlab and .NET. 

The Complier in Matlab could transfer the .m file of Matlab as C or C++ source code to 

configure individual application program without running in Matlab environment. When 

adding parameters –e (mcc e *.* ) or –p (mcc p *.*) in Matlab compiler mcc it could transfer 

the .m file to specify C or C++ source code. This function can be implemented by using the 

code “deploytool”.  

 

(2). Use the COM component technology 

COM (Component Object Model) is a type of software architecture, which let different 

software combined to configure new software. From Matlab R2006a edition, Matlab Builder 

for .NET is introduced. It is the expansion of Matlab Compiler. It allows the Matlab function 

code automatically produce individual .NET assembly Class library or COM Object. The 

produced Class library .NET assembly can be compatible with C#, VB. NET or any CLS 
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(Common Language Specification). The COM Object can be run in any COM compatible 

environment. The Matlab Builder for .NET application could hybrid the Matlab function with 

desktop and Web application programme. By the standard call for interface, the function could 

be shared in users group.  

 

(3). Mideva platform 

Mideva is a compile development platform by Mathtool Company, which is a strong 

development environment for .m file. This platform has various editions for Borland C++, 

Visual Basic and Delphi etc. programme language. Mideva support thousands of basic 

functions, including basic operations, orders etc. Mideva has the compile and transfer function, 

which could transfer Matlab function or code to Dynamic Link Library (DLL) file in the form 

of C++, then call for the DLL file in the .NET, which could call for the Matlab toolbox. 

 

(4). Using Matlab engine technology 

Matlab engine allows the user to call for the Matlab function in separate application program. 

Matlab as a compute engine runs in the background. When the users work on this engine, 

Matlab is progressed in background. Matlab engine works as a bridge between the user 

interface and the Matlab processing, exchanging the data and transfering the order. In 

Windows operational environment, Matlab engine is implemented by Active X. Active X is 

an agreement independent of program language and also not limited to developing 

environment. Active X could be used in Visual C, Delphi, C++ builder etc. Matlab support the 

technology of Active X component group and Active X automatic service. When using 

the .NET program to run the Matlab Active X engine, the engine works just like a server. First, 

the program transfers the data and command to the Matlab engine. Then the engine exchanges 
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data and command to Matlab server. Finally, the results feedback to the application program 

by computer engine.  

 

5.2.3 The process of calling for Artificial Neural Network (ANN) in C#.NET 

(1). Write .m file. 

The ANN function in BpNeuraNet. M process use the function as below. Function 

BpNeuraNet is used.  

Function [Result] = BpNeuralNet (TrainIn, TrainOut, Test In, Test Out, Par) 

The data in the brackets are the input parameters. TrainIn is the input matrix for training and 

TrainOut is the target matrix for training. TestIn the input matrix for testing and the TestOut 

is the target matrix for testing. Par is the parameters matrix for network architecture. The 

[result] means the prediction target matrix.  

 

Pre-process the simulation data from Photopia. 75% of the data is used to train and 25% is 

used to test the network. The training data is used to upgrade the net weight and bias. The 

testing data is used to test and evaluated the accuracy of the network. The data could be a 

4800*6 matrix. Generally, the initial data should be use mapstd to transfer between (-1, 1). 

The main code is: 

[TrainIn 1, ps 1] = mapstd (TrainIn 2); % pre-processing the data 

 

(2). Establish the neural network architecture and adjust the parameters. 

Establish the BP neural network and the transfer function in hidden layer and output layer are 

tansig() and purelin() respectively. The count of hidden layers and output nodes and learning 

rate could be written in interface.   
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The main code is: 

net = newff (minmax (TrainIn 1), [Par (2), Par (3)], {‘tansig’, ‘purelin’}, ‘traingd’); % set up 

network architecture 

net. TrainParam. mu = Par (1); % learning rate 

The number of nodes in hidden layer and learning rate is the most impress of the forecast 

results. The iteration method is used to adjust the node number and learning rate. It keeps one 

variable, then change the other variable from large to small. Every time after training, testing 

and modelling, find the best architecture.  

 

(3). Training and modelling 

Use the prepared data to train and simulate. Then the forecast results also need to anti-

normalization (mapminmax). The main code is as following: 

[net, tr] = train (net, TrainIn 1, TrainOut 1); % training the network 

Result 1 = sim (net, TestIn 1); % simulation 

Result = mapstd (‘reverse’, Result 1, ps 4); % anti normalization  

 

5.3.4 Embedding Matlab engine in .NET 

 When Matlab is installed in computer, the Active X engine would be automatically register 

in computer system. Before using the Active X engine of Matlab in Visual Studio .NET 

develop environment, need add COM reference “Matlab Application (Version 7.0 Type 

Library)”. Then the object could be instantiated in the program. The program could start in the 

interface. The interface Active X engine offer are Execute, PutFullMatrix and GetFullMatrix. 

They could run the script, add matrix in the Matlab Server and read matrix from the Matlab 

Server. Some of the ANN parameters could be set up in .NET interface layer. The main code 

in C# is: 
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MLAppClass matlab = new MLAppClass(); 

Matlab. PutFullMatrix (“TrainIn”, “base”, TrainInput, TrainInput Im); % add matrix to the 

Matlab Server 

matlab. Execute (@ “[Result] = BpNeuralNet (TrainIn, TrainOut, TestIn, TestOut, Par)”); 

matlab. GetFullMatrix (“Result”, “base”, refReArr, refReArrIm); % read the matrix from the 

Matlab Server. The ReArr and ReArrIm is the pre define System. Array object 

ReArr. CopyTo (yc, 0); % record the prediction results in the double yc 

Matlab. MinimizeCommandWindow (); % minimize the Matlab command window 

matlab. Quit(); % close Matlab Sever 

 

5.3 Methodology 

In this study, a research methodology called prototype is introduced into this research. This 

prototype is validated in a building model. In order to achieve the information interaction 

between ANN and Revit. A prototype named ANNREVIT is developed through API. The 

prototype ANNREVIT packages the ANN model which has been successfully trained in 

Chapter 3 and can be further transferred as the input file to be used directly in Revit. This 

prototype is developed in the Application Programming Interface (API) by using C# 

programme language in .NET platform. This prototype can utilize the ANN prediction strength 

and generate the transmittance values which can involve the daylighting simulation process in 

Revit. This generated transmittance value can directly involve daylighting simulation. The 

objective to exploit such a prototype to seek for an application which transfer the ANN 

prediction model to Revit add-in file, set the ANN model as a plug-in function and run the 

prediction model in background without training the ANN model in Matlab manually. It aims 

to avoid the multi-entering input parameters caused errors. Moreover, in case that users are 
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lack of professional Matlab knowledge, such a plug-in is more efficient and convenient. 

Therefore, this design is very friendly to users who require optical simulation software or 

programme development. Moreover, due to the large quantity of data to input, this plug-in can 

potentially reduce the errors induced by repeated manual operation. In this ANN-Revit model, 

the prototype can transfer the add-in which includes all the trained ANN prediction model 

information. When the add-in is implemented in Revit, the prediction results will be run in the 

back platform. Thus, the resulting values can involve in the simulation process directly in 

Revit. Figure 5.4 shows the complete work flow of combining ANN within Revit. 

 

 

 

The hybrid system can be divided into three blocks: integrating ANN and C#; embedding as 

plug-in; inserting into Revit by API. 

 

5.3.1 Define valid parameter file 

All building construction such as wall, roof, windows etc. have existing database in Revit 

called “family”.  However, there is no lightpipe family in the database. Therefore, it is needed 

to custom define the lightpipe model. This research chooses a round window model instead of 

Figure 5.4 Combining ANN with Revit workflow 
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new build lightpipe. The aim is to acquire the transmittance of lightpipes, which is used to 

involve the illuminance simulation of daylighting. However, the transmittance is independent 

of the form or parameters of windows. Hence, only revising the transmittance instead of 

changing any other parameters extremely saves time and reduces the compilation of work. In 

order to change the transmittance of chosen window glass, it is found that the transmittance of 

glass is calculated by two parameters “color” and “tint” in the rendering. The change of the 

tint value does not affect the transmittance. Therefore, it needs to change the custom color 

parameter, which can be achieved by setting the RGB value. In the simulation procedure, the 

value of RGB is fixed as “EQUAL”. It means that the R, G and B parameters have the same 

value. It has advantage in simplifying the simulation, because the RGB value only affects the 

quality and colour of the light instead of the quantity of the light. It will not affect the 

illuminance while rending the model hence not affecting the analytical results.  

 

In the optical mathematical equation, the transmittance can be calculated by the equation as 

follows,   

 

τ = 0.9216 × 10 ^ (thickness_in × log_10((RGB / 255) ^ 2))                                       (5.1) 

 

Hence, RGB = 255 × sqrt (10 ^ ((log(τ/0.9216 ^ p))/(p × d/100))) 

 

where, τ is the transmittance, d is the thickness of glazing (mm). In this study, the thickness is 

defined as 3mm, p is the number of glazing pane, it is defined as 1.  

Moreover, the transmittance equal to relative weight of R, G, B: 

 

RGB (R, G, B) = 0.2126 R + 0.7152 G + 0.0722 B                                                      (5.2) 
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The thickness of single glazing round window is default defined as 3mm, the transmittance is 

assumed 70%, and RGB will specify R50, G50, B50.  

 

In order to achieve the aim to revise the transmittance of lightpipes, only the RGB value in 

glass material parameters is required to be changed. In order to iterate the RGB values and 

add into glass material property automatically, Eqs. 5.1 and 5.2 will be exploited and edited 

in the API programme – utilizing the API programme to achieve this function. Hence, the add-

in shall create a shared parameter file through API and add this add-in into Revit modelling 

platform. 

 

5.3.2 Hybrid programme with ANN and C#.NET 

The ANN prediction model has been trained and validated in Chapter 3. It can be used directly 

is this study. Revit API is an interface which can allow the external programme procedure to 

visit and operate the Revit modelling process. The type of interface applied in the API is of 

the type of .NET. Any language that can be edited in .NET framework can be used in the API, 

such as C, C++, C#, VB etc. However, partically because Revit itself is developed by C# 

language, C# language is chosen by the author in this study to develop the API. In fact, the 

interfaces packaged in the Revit API are encapsulated by AutoDesk technicians, not the 

application of the lowest level functions. Packaged functions and classes need to be called in 

order to develop a secondary development tool for Revit that meets the design requirements. 

Revit API has a total of 23 namespaces, and each namespace packs the corresponding tool 

category. When calling the classes in it, it needs reference and to declare the namespace in the 

program. The classes in Revit API cover many types and complete majors which can meet 

almost all requirements in Revit API secondary development process.  
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As the programme platform, .NET supports a visualization environment. C# is designed for 

the .NET platform and it is widely suitable for development software. It would be ideal to 

integrate Matlab and C# language to create a mathematical calculation, powerful function and 

friendly interactive interface. There are three main methods to achieve this purpose. First, 

using Matlab engine; second, calling Matlab workplace and sending command directly and; 

last, using Matlab builder to build the .m file and then pack it into COM component. The 

computer environment in this research is Micronsoft Visual Studio 2018 (project style: 

Windows Forms Application) and Matlab R2017b.  

 

Amongst the methods introduced, Matlab engine is used in this study to call for the Matlab 

ANN toolbox in .NET. The diagram below, i.e., Figure 5.5, shows the process of calling for 

the Matlab ANN toolbox by using C#. NET with Matlab engine. Moreover, Figure 5.6 

demonstrates the programme environment and the C# language code selection in writing 

ANNREVIT prototype. 

 

 

Figure 5.5 The demonstration of C# .NET call for the Matlab ANN toolbox 

 

C# .NET
Matlab ANN 

toolbox

Put full matrix (Add sample 

and net initialize parameters) 

Execute (Call for .m file) 

Get full matrix (Read 

simulation results of net) 



146 

 

 

Figure 5.6 The demonstration of C# code in .NET interface when writing ANNREVIT 

prototype 

 

5.3.3 Edit the model translator  

There are mainly six parameters affecting the performance of lightpipes, namely, the elbowed 

angle of lightpies, solar altitude, solar azimuth, the sky clearness index, the reflactive value of 

tube and the respect ratio of lightpipes. All information should be add into the prototype by 

the model translator programme with initial values for these parameters. It translates all the 

information of lightpipes into Revit input file. However, there is no existing lightpipe 

equipment model in Revit. Hence, the double-layer round window in the windows library has 

been chosen to represent lightpipes. The glass layers of window are defined as the diffuser of 

lightpipes. An existing window model was chosen from Revit Window Families. The window 

has the name of NBS_GlazingVisionLtd_FrmdRflghts_FlushglazeC. Double glazed 1200mm 
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diameter 6-16-6mm was chosen because it is of round shape; it is closer to the cross section 

of lightpipes (shown in Figure 5.7).  

 

Figure 5.7 Demonstration of window model choice in Revit 

 

The transmittance of lightpipe is controlled by the glass properties of the window. In Revit, 

there is no ready secularity and roughness values which are used to define the specified 

material in Revit material library. These values must be custom stored in the material database. 

In the Revit system, the transmittance of window glazing is controlled by the RGB of glazing. 

The specific procedure is as follows. First, find the “Properties editor” of glass pane to change 

the material properties, as shown in Figure 5.8. 
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Figure 5.8 The location of “Glass” material in “Type Properties” 
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Figure 5.9 The location of  RGB values edited panel in Revit 

 

When the valid parameter is found, i.e., the RGB of glass color of in window (Figure 5.9), the 

relative code can be edited in the .NET environment by using C# language. A series of files 

should be added in the lightpipes folder structure created by Model Translator. These files 

include: 

 

• The ANN prediction model file, which has been created and validated in Chpater 3. The 

completed ANN network configuration and structure should all be included in this file, 

including the six input parameters and the output parameter.  

 

• Transmittance calculation formula Eq. 5.1 and standard Radiance RGB formula Eq. 5.2 

should be included in the file. The transmittance value predicted by ANN model should be 

reflected into the property of material of glass of window which has been chosen. 



150 

 

 

• Two batch files, which have ANN model and Revit commands to sequentially execute the 

ANN model and Revit routines to produce the results.  

 

When the programme coding is finished in .NET, all the code can be packed as .addin file 

which can be debug in Revit software. It is named as ANNREVIT file. After entering these 

files into the model translator, the model translator will run the batch files automatically and 

launch them into Revit programs.  

 

5.3.4. Running the prototype programs in Revit 

In order to simulate the daylighting performance of lightpipes in Revit, the ANNREVIT add-

in program must be loaded under the “External Tools” menu. Figure 5.10 shows the loading 

procedure of all the add-in program into the add-in manager. It also illustrates the execution 

order of loading steps and perform steps in the add-in manager. Once clicking the main 

program, the ANN training will run in the background and the transmittance of lightpipes will 

automatically appear in the blank of dialogue box.  
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Figure 5.10 Loading the ANNREVIT prototype in Revit 

 

5.4 Case study and validation 

Once Revit is opened, the Add-ins can be found in the toolbar and the ANNREVIT add-in can 

be accessed in the drop-down menu of “External Tools”. By evaluating the six input 

parameters, the transmittance of lightpies can be returned. The interface is demonstrated in 

Figue 5.11. After inputing all the values, clicking “train” in the interface as shown in the figure. 

ANN toolbox will aotumatically run in the background. Different from the typical ANN 

interface in Matlab, only result will show in the interface.  

 

A typical house with slope roof was chosen as a case study to validate the prototype. At the 

beginning the house model should be built in Revit and was named as TEST. Figure 5.12 

shows the 3D view of the TEST model and illustrates the lightpipes position in the slope roof 

(it is presented as round window as justified earlier). Table 5.1 decribes the values for material 

parameters and Table 5.2 lists the values for the ANN parameters, both used in TEST example 

of the prototype.  
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Figure 5.11 Input and output interface in Revit by adding in ANNREVIT prototype 

 

 

Figure 5.12 Revit information for “lightpipe” in “Type Properties” 
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Table 5.1 Values for material parameters used in TEST example of the prototype  

Building paramaters types Values 

Length of the room                                       5000mm 

Width of the room         3500mm 

Number of the lightpipes       1 

 Wall reflectance  0.5 

Floor reflectance  0.2 

Ceiling reflectance 0.8 

 

Table 5.2 Values for ANN parameters used in TEST example of the prototype 

ANN model parameters Values 

Solar altitude 40° 

Solar azimuth 30° 

Sky clearness index  0.587997 

Bend angle of lightpipes 30° 

Aspect ration of lightpipes  7 

Reflectivity of tube 0.98 

Predicted transmittance 0.8216 

 

In this validation part, the method is using the mathematical equations to manually calculate 

the results and then comparing with the result calculated from the ANNREVIT prototype. The 
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transmittance displays from the add-in tool ANNREVIT is 0.8216, while in the Photopia 

simulation, the transmittance is 0.8210 which are almost the same to the result from 

ANNREVIT prototype plug-in. It can be postulated that the ANN model has been successfully 

transferred to the Revit model/platform.  

  

Other than the direct comparison between the plug-in yielded result and the real analytical 

value, the data flow from the Photopia, to the ANN prediction and to the Revit plug-in 

calculation is also verified. Figure 5.13 shows the material properties for “lightpipe” in Revit 

and the transmittance is reflected by R, G and B value. It can be seen that this ANNREVIT 

plug-in automatically custom-defines the glass value by using Revit RGB with values of 210 

for R, G and B respectively, in the lightpipe glazing setting. The average reflectance value is 

then calculated using Eqs. 5.1 and 5.2, which is 0.8234. The calculation results are shown in 

Table 5.3. In Figure 5.11 the transmittance is 0.8216, which is nearly same with the prediction 

value. This is a sample comparison that validates the accuracy of the material translation. 

 

 

Figure 5.13 Revit material information for “lightpipe” with custom parameters “Custom Color” 
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Table 5.3 Mathematics calculated the average reflectance of the material “lightpipe” (set as the 

transmittance of lightpipes in this modelling)  

Color channels  Red Green Blue Average 

reflectance 

Value 210 210 210  

Normalized value (value/255) 0.8235 0.8235 0.8235  

Color coefficients (from Eq. 2) 0.265 0.670 0.065  

Normalized value × coefficients 0.2182 0.5517 0.0535 0.8234 

 

5.5 Summary  

The contribution of this study is extending the scope of Revit application in the area of 

daylighting modelling. As discussed, ANN presents outstanding prediction ability in the 

performance of lightpipes. However, there is no available lightpipe model library in the Revit 

system. Hence, utilising API technique to develop a prototype for predicting the optical 

performance of lightpipes in Revit is attempted in this Chapter. Moreover, the prototype has 

been implemented in Revit system as a plug-in. Without running Matlab ANN toolbox, this 

prototype can predict the transmittance value of lightpipes directly. It helps the users choose 

the optimized lightpipe system and achieve the best illuminance effect. Further, the approach 

presented in this Chapter can be extended to other sustainable equipment development in Revit. 

Other useful applications can be achieved by using API technique to develop add-in extensions. 

A key contribution of this study is that the designers and/or practising engineers will not need 
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to do the complicated modelling from scratch. Meanwhile, it encourages the development of 

programme and eventually promotes the widespread application of BIM. 
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Chapter 6 Conclusions and Future Work 
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6.1 Conclusions 

This thesis has presented a study by using artificial neural network intelligence in simulating 

and optimizing the transmittance of lightpipes and implemented the developed model in BIM 

platform. Comprehensive and critical literature review is first provided on the research work 

in daylighting prediction and optimization by using ANNs approaches. The luminance and 

illuminance prediction, daylighting control and energy saving with daylighting have been 

extensively discussed. The research gaps currently hindering the widespread and effective 

application of ANNs in daylighting prediction and optimization have been explored and 

discussed. The findings could help architects and practising engineers adopt proper 

daylighting design schemes and evaluation methods, and therefore promote sustainable 

developments in architectural buildings. 

 

Numerous simulations in Photopia are conducted to form the data sets for the performance 

of various lightpipe configurations and structures. Different and independent parameters are 

considered in the simulation including solar altitude, angle of solar azimuth, elbowed angle 

of lightpipes, sky clearness index, aspect ratio and reflectivity of tube. Based on the 

simulated results, some different forms of mathematical models have been proposed to 

predict the transmittance of lightpipes with various elbowed angles. Based on data obtained 

from Photopia simulations, ANN model was trained and validated with satisfactory accuracy.  

 

Moreover, the ANN model proposed has been compared with multiple nonlinear regression 

(MNLR). The prediction accuracy of ANN is obvious higher than MNLR model, where R² 

can reach 0.9653. However, the mathematical model has significant application potential in 

practical project. Different form widely used raytracing simulation in computer, 

mathematical model can be used directly by acquiring the given solar position, sky clear 
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condition and parameters of lightpipes. The analytical equations for the illuminance 

performance of lightpipes have been established based on a number of underlying parameters.  

 

This study has further extended the scope of Revit application in the area of daylighting 

modelling. API is utilised to develop a prototype to predict the optical performance of 

lightpipes in Revit. First of all, it well fills the gap that there is no lightpipe library in Revit 

platform, and also the prototype is implemented in the Revit system as a plug-in. A detailed 

procedure is presented for the implementation process of ANN model into Revit platform. It 

helps the designers and practising engineers choose the optimized lightpipe systems for the 

best illuminance effect. The prototype proposed can be an advanced inspiration to other 

sustainable design performance evaluated in BIM environment. The significant strength is it 

can apply an approach to interact information between model prediction and parametric 

assessment.  

 

6.2 Limitations and future work  

Matlab is an outstanding computing platform which has a strong toolbox of ANN implemented. 

To combine ANN in Matlab with BIM modelling software Revit could significantly increase 

the working efficiency and add tremendous benefits. However, a limitation of this hybrid 

system is the requirement of installing Matlab software which is expensive and occupies large 

amount of memory in the computing system. Next development of this research is to use the 

deep learning system directly from the computer. C#. NET could train the deep learning neural 

network as well. On the other hand, directly editing the code in C#. NET is considerably 

complex and a large amount of coding work is needed.  
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In addition, an extension of the present work could be to further develop the mathematical 

model proposed in Chapter 4 and embed it in the custom define solar simulation procedure. It 

would simplify the simulation programme and bring more choices to community and industry. 

 

The next stage could be integrating the daylighting performance and thermal analysis together 

into Revit platform, to achieve the multi-objective simulation. So far, only single lightpipe 

system can be handled in the proposed prototype. The further work can attempt more complex 

lightpipes types, such as lightpipes combined with ventilation system, lightpipes with DCPC 

system etc. Moreover, based on API technique, combining ANN with Revit and building 

energy simulation software such as EnergyPlus all together in order to get a comprehensive 

and streamlined simulation flow for illuminance and energy consumption model of lightpipes 

would bring tremendous advantages and convenience. 
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