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Abstract 

Fish play an important role in food and nutritional security around the world. Their 

consumption offers unique nutritional and health benefits and is considered a key 

element in a healthy diet. Increased attention is given to fish as a crucial source 

of protein and other essential nutrients. With a growing global population, the 

demand for fish is increasing with this increased demand mainly being met from 

the increased output of aquaculture products, and not from wild sources. 

Approximately 200 million people in Africa derive high-quality and low-cost 

proteins from fish. The fisheries and aquaculture sectors in Africa are increasingly 

contributing to food and nutrition security, foreign exchange and employment. 

The aquaculture industry on the continent is growing faster than any other part of 

the world, with countries such as Kenya realising the potential of this industry to 

provide a sustainable source of affordable protein. The fishery industry faces many 

challenges, including climate change, and the pollution of aquatic ecosystems. 

One pollutant of key concern are microplastics, which are causing an 

environmental crisis by polluting our aquatic environments and threatening the 

health of fish and humans. The aims of this study were to assess microplastic 

prevalence in tilapia fish, both wild and farmed, sourced from Lake Victoria, 

Kenya. The study investigated the prevalence of the five main microplastic types, 

fragment, foam, film, fibre and bead, by fluorescent light microscopy in both fish 

muscle and gastrointestinal tract (GIT). In addition, we investigated the presence 

of a plastisphere and conducted preliminary analyses into the composition of this 

community, by scanning electron microscopy and polymerase chain reaction.  

This study found 48% of the tilapia muscle samples and 100% of the GIT samples 

analysed to be contaminated with microplastics. The study found variability in 

microplastic prevalence between the farmed and wild fish. The muscle of wild fish 
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had a greater prevalence than farmed fish, while the GIT of farmed fish had a 

greater prevalence than wild fish. Bacterial DNA was isolated from these 

microplastics and diatoms were also identified, potentially forming part of the 

plastisphere. Key elements were also identified often associated with the plastics. 

This study highlights the potential increased risk from ingestion of microplastics 

through the consumption of farmed (and wild) tilapia sourced from parts of Lake 

Victoria close to urbanisations and the mouths of key rivers draining into the lake. 

Further work is needed to identify the specific bacterial species present on the 

plastisphere and compare these between wild and farmed fish and between 

locations. This collective knowledge will inform the industry on the importance of 

monitoring microplastics in the lake and the life it supports as well as highlighting 

the importance of location for the siting of cages for fish farming. Further research 

into the potential effects these bacteria and chemicals adsorbed to the plastics 

may be having on fish and human health is essential.  
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1.0 Introduction  

1.1 Is there a need for sustainable food production? 

The Food and Agriculture Organization (FAO) defines a sustainable food system 

as ‘a food system that delivers food security and nutrition for all in such a way 

that the economic, social and environmental bases to generate food security and 

nutrition for future generations are not compromised’ (FAO, 2018a). This means 

that it is must be profitable throughout, and have many broad-based benefits for 

society, as well as having a positive or neutral impact on the environment (Figure 

1.1) (FAO, 2018a). 

Food systems are critically considered in the context of rapid population growth, 

in addition to changing consumption patterns, climate change and the decline in 

natural resources. Globally, many of these pressures are increasingly impacting 

societies, with greater demand for all livestock products in order to meet demands 

from ever growing populations. This is especially apparent in the fishing industry 

sector. The FAO estimates that 85% of fish stocks are either fully exploited or over 

fished (WWF, 2020). With over 3 billion people relying on wild-caught and farmed 

fish as their primary source of protein (WWF, 2020), adaption to this food system 

is necessary, otherwise we could see a meagre outlook for the availability of 

nutritional fish to future generations. 
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Figure 1.1 Sustainability in food systems.  This Venn diagram demonstrates the 
importance of how the social, economic and environmental impacts must all be 
appreciated in order to maintain a sustainable food system (SFS). A food system cannot 
be considered sustainable if any of these components are lacking. 
 

 

1.2 Fish are a valuable food source 

Consumption of fish and their products has high nutritional and health benefits. 

Fish are rich in essential fatty acids and proteins, vitamins and minerals such as 

taurine (Lusher, Hollman, et al., 2017). They are particularly important in many 

low-income populations, or rural areas, as an ideal supplement to nutritionally 

deficient cereal-based diets. Fish provides more than 1.5 million people, mostly in 

low and middle income countries (LMICs) with almost 20% of their average intake 

of animal protein per capita (FAO, 2020a). Today fish remains one of the most 

traded food commodities worldwide, worth $167 billion (Shahbandeh, 2020).  
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1.3 Fisheries industry 

In 2016, global fish production peaked at around 171 million tonnes (FAO, 2018b). 

Capture fishing of wild fish stock accounted for 91 million tonnes of this, with 

aquaculture or fish farming provided 80 million tonnes (Figure 1.2). 151 million 

tonnes (88%) of the fish produced in both sectors was for direct human 

consumption (Fisherproject, 2020). Fish consumption has continually increased 

from the 1960s, and between 1961 and 2016 the annual average of fish 

consumption (3.2%) globally outpaced population growth (1.6%) and exceeded 

that of meat (2.8%) (FAO, 2018b). In Africa, the increase has been two-fold, from 

4.8kg/capita in 1961 to 9.9kg/capita in 2016 (FAO, 2021). Moreover, there are 

contrasting amounts consumed within geographical areas. This is significant in the 

most populated countries of Africa, where per capita fish consumption reached 

22.1kg in Egypt, 13.3kg in Nigeria and 0.25kg in Ethiopia in 2013 (Lusher, 

Hollman, et al., 2017). 

Capture fisheries clearly provide a major role in the supply of fish for human 

consumption. However, their current production is so close to the maximum 

ecosystem productivity, that they cannot be further increased substantially in the 

future and could decline if mismanaged (Garcia and Rosenberg, 2010), leaving 

the world to solve a significant food deficit.  
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Figure 1.2 Capture fisheries vs aquaculture. Aquaculture has continued to grow since 
the 1980s, while capture production has increased steadily, but has levelled off in the last 
20 years. These trends are set to continue over the next decade (FAO, 2020b). 
 

 

1.4 Capture fisheries  

Wild or capture fisheries refer to harvesting of naturally occurring resources from 

both marine and freshwater environments. They can be classified as industrial, 

small-scale and recreational (Garcia and Rosenberg, 2010), with lakes, reservoirs 

and wetlands providing an ideal rich environment for inland capture fisheries 

(Welcomme and Lymer, 2012).  

World production from inland capture fisheries has grown steadily, in 2016 global 

capture fisheries production reached 91 million tonnes, with marine capture 

providing 87.2% of this and aquatic inland waters providing 12.8% of the global 

total (FAO, 2018b). There has been an 10.5% increase in global catch from inland 

freshwater since 2005, but this information can be misleading as increases can be 

from improved data collection at each country level, rather than increased catch 

volume (FAO, 2018b). Generally, capture fisheries are not increasing at the same 
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vast rate as aquaculture. Aquaculture production is set for long-term growth, while 

capture fisheries can expect a moderate recovery at best. This decrease in wild 

caught fish is the consequence of declining fish stocks from over fishing, along 

with the introduction of more restrictive fishing policies, which are aiming to 

ensure sustainable exploitation of fisheries in the future (OECD, 2017). Despite 

this, 40.3 million farmers were involved in capture fishing in 2016, compared to 

19.3 million farmers in aquaculture (FAO, 2018b), with capture fisheries providing 

millions globally with a source of livelihood and income.   

Sixteen countries, mostly in Asia, are accountable for the production of almost 

80% of the global inland fishery catch, where they provide an essential food source 

for many local communities. Additionally, inland catches are an important food 

source for many African countries, with their inland catches accounting for 25% 

of global inland catches. (FAO, 2018b).   

 

1.4.1 Capture fisheries in Africa 

In 2015, almost 95% of the global catch from inland fisheries was from developing 

countries (Bartley et al., 2015). A developing country or LMICs is one with less 

developed industries and a low Human Development Index (HDI) relative to other 

countries (O’Sullivan and Sheffrin, 2003). Their capture fishery sector is composed 

of mainly small-scale fishers that depend on the industry for their livelihoods. 

In Africa, fish consumption levels remain predominantly low, with a mean of 9.9kg 

per capita in 2016, and can be as low as 5kg in eastern Africa (FAO, 2018b). This 

low level of fish consumption is the consequence of the population increasing 

faster than fish as a food supply. There have been limitations in the expansion of 

fish production, mainly from the pressure put on capture fisheries resources. 

Nevertheless, low income levels in these African countries, as well as inadequate 
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processing infrastructure and storage for the fish and a lack of marketing and 

distribution channels, have provoked Africa’s inability to commercialise these fish 

products to the wider world, rather than just the local communities where they 

are caught.  

While the rest of the world is seeing a steady level off in capture production, 

African inland capture fisheries are rising at about 3.7% per year (Welcomme and 

Lymer, 2012). A variety of fishing gear is used in both small-scale and industrial 

fisheries. Capture fishery gear usually includes trawl nets (Figure 1.3), 

surrounding nets, seine nets, lift nets, dredges and hook and lines (GESAMP, 

2016), with nets made from plastics, including polypropylene (PP), polyethylene 

(PE), polyamide (PA), polystyrene (PS), polyvinyl chloride (PVC) and nylon.   

 

 
Figure 1.3 Capture fishing in Lake Victoria. Fishermen capture fishing near the 
Ugandan side of Lake Victoria. They have used a plastic trawl net pulled by a boat across 
the Lake to catch these fish (Michael, 2015). 
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1.4.1.1 Future of capture fisheries in Africa  

The highest growth rates and largest increase in volume produced in capture 

fisheries are expected in Africa, with Asia being the only continent expecting a 

decline (OECD, 2020). 

Capture fisheries are predicted to see a moderate increase over the next decade, 

markedly from expectations that improved managements in some regions will 

continue to pay off, allowing a sustainable increased production of fish stocks. By 

2029, it is estimated that 90% of the fish produced will be used for human 

consumption. Per capita fish consumption is expected to rise in all continents 

except Africa. (OECD, 2020). This decline is resulting from their population 

increasing more than their current supply can provide, raising probable nutritional 

concerns in this area. 

 

1.4.2 Capture fisheries in Kenya  

Inland capture fisheries play a significant role in Kenya’s economy. The sector has 

grown rapidly, with fish exports supplying ample income from foreign exchange 

(Ardjosoediro and Neven, 2008). Today Kenya is responsible for 5.05% of the 

total capture fishery exports from Africa, catching 124,317 tonnes yearly from 

their inland waters (Welcomme and Lymer, 2012). There is however widespread 

opinion that much of the catch from inland fisheries is unrecorded, this is due to 

the small scale of some individual fisheries, where most of the catch will go directly 

into domestic local consumption.   

Kenya has a total inland water area of 18,029 km2 (FAO, 2015), with the main 

water bodies situated in the Rift Valley and Lake Victoria. Freshwater fish landings 

have always been higher than marine in Kenya, with Lake Victoria mainly 

accountable for this, supplying around 90% of the fish in the country (FAO, 2015). 
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Typically, fishermen will use drift nets left overnight, and some will catch fish with 

baited long lines. 

Capture fish levels rose from 1950 until 2001, from the introduction of the Nile 

perch (Lates niloticus), which was introduced to feed on smaller fish in the lake, 

thus converting them into a larger fish, reaching higher commercial value (Ogutu-

Ohwayo, 1990). However, with the generation of more efficient nets and 

expansion on processing technologies, the demand pressures on fisheries 

increased. Since 2001, inland capture fisheries levels have declined (Welcomme 

and Lymer, 2012), despite the introduction of the Nile tilapia (Oreochromis 

niloticus). The main issues Kenyan capture fisheries have faced are the 

overexploitation that occurred in Lake Victoria from overfishing (FAO, 2015), 

environmental degradation and the increased fishing pressures resulting in the 

introduction of exotic species, which have changed the lake’s biodiversity and 

threatened the sustenance of the lake, on which millions depend on for their 

livelihoods (Njiru et al., 2008). This has been especially prominent in countries 

such as Kenya, where a lack of resources and knowledge have led to a failure in 

adequately incorporating inland fisheries interests into administrative structures 

(Welcomme and Lymer, 2012). 

The numerous threats posed to aquatic ecosystems from human activities has left 

capture fisheries with a sense of hopelessness for the future. This has led to their 

neglect as a sector, and priorities have been switched to other sectors. As a result 

aquaculture has been promoted as the solution to sustain and save catches, 

against an inevitable continued decline in freshwater fish stocks (FAO, 2018b). 
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1.5 Aquaculture 

Aquaculture is the controlled process of breeding, raising and harvesting fish, 

shellfish and aquatic plants both marine and freshwater (US Department of 

Commerce, 2020). As the world’s fastest growing food production sector (FAO, 

2020), it now produces 82.1 million tonnes globally every year. An increase of 

153.4% since 2000 to 2018 (McCarthy, 2020). It also provides huge human 

benefits, as it employs 26 million workers (FAO, 2020), and provides those in the 

poorest of countries with access to essential nutrients from fish.  

A recent report from the FAO states that a sustainable aquaculture strategy 

requires ‘farmers to earn a fair reward from farming, ensure benefits and costs 

are shared equitably, promote wealth and job creation, make sure enough food is 

accessible to all, manage the environment for the benefit of future generations 

and ensure aquaculture development is orderly, with both authorities and industry 

well organised’ (FAO, 2015). 

However, aquaculture is becoming a serious contributor to pollution including of 

aquatic plastic debris. Unlike ocean plastics, which can get caught up in currents 

and circulate around the world, plastic accumulating in lakes has nowhere to go 

(Cosier, 2018). Aquaculture extensively uses plastic for both equipment and 

packaging, everything from polystyrene foam-filled fish cage collars, to plastic 

feed sacks and harvest bins (Holmyard, 2019). This in combination with ghost 

gear (lost or discarded fishing gear) (ASC, 2018), and the likely further 

advancement of aquaculture production, will only continue to drive the increasing 

abundance of aquatic plastic debris.  

Given that aquaculture already supplies nearly half of the world’s fish for human 

consumption, the industry will inevitably continue to increase over forthcoming 

decades to meet demand from the rise in the global population (Calich, 2014). 
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Together with diminishing levels of wild marine and aquatic fish (Holmyard, 2019), 

there is an increasing need for considerations of the environmental impact of this 

growing industry. This is essential in order to ensure practices are sustainable for 

the future of aquaculture. 

The ideal warm climate in many LMICs gives them the potential to further increase 

their aquaculture production, both to support local economy and the food chain 

but also as a potential export product (Konikoff, 2017). As a result, many LMICs 

are now global leaders in the exportation of these products, with 76% of the top 

10 global exporters being from developing countries (FAO, 2020). African 

countries, such as Kenya, are examples of LMICs. In Africa the population has 

increased from 1,182 million people in 2015 to 1,341 million in 2020 and is set to 

increase exponentially over the forthcoming decades. With increasing populations 

comes dietary changes, and from 1999 to 2013 the share of animal protein in total 

protein increased from 21.1% to 23.2%, with fish share of this total protein 

increasing from 3.8% to 4.5% (FAO, 2020c). Africa has a strong desire to continue 

to be fish exporters, while providing a cheap and sustainable source of animal 

protein to a growing population. 

 

1.5.1 Aquaculture in Africa 

Aquaculture was first introduced five decades ago to the African continent as an 

innovation to improve nutritional and economic benefit of its producers, with 5% 

of its population fully dependent on the sector for their livelihoods (FAO, 2021). 

Fish in Africa is extremely important, providing the population with 17.4% of their 

total animal protein intake. It is one of the cheapest and most direct sources of 

protein for millions of people in Africa (Bene and Heck, 2004). Fish is one of the 

most traded commodities, with exports of fish increasing by 5.30% since 1981 
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(Nations, 2017). The major markets for export are Europe (70%), Asia (15%), 

other African countries (11%) and North America (2%) (FAO, 2020a). However to 

meet demand, Africa still has to import 4.2 million tonnes of fish products 

(Brummett et al., 2008), resulting in a continental net loss. With the future of 

global population set for a further expansion to over 9 billion by 2050, Africa is 

predicted to have to increase its food production by 300% (Gabriel and Akinrotimi, 

2007). It is therefore critical that aquaculture grows in a sustainable way, to 

enable future populations the access to vital food sources. 

One of the major hindrances of aquaculture development is the lack of locally 

produced high quality fish feed (Gabriel and Akinrotimi, 2007). Fish require high 

quality nutrition in order to attain market size within the shortest time period. 

Locally produced feed will reduce production costs and enable the gap to be 

bridged to commercial investors, showing them that a growing population’s 

demands can be met economically through fish farming with high quality fish feed. 

The top ten African exporters, include Egypt, Nigeria, Uganda, United Republic of 

Tanzania, Ghana, Zambia, Madagascar, Tunisia, Kenya and Malawi (FAO, 2020c), 

and account for 89.5% of the total value of exportation from the continent of fish 

and their products (Tall, 2015).  

 

1.5.2 Aquaculture in Kenya 

Kenya has become one of the fastest growing fish producers in Sub-Saharan Africa 

(FAO, 2015). In the last six years, their aquaculture production has doubled and 

is set to grow by 1000% in the next three years (FAO, 2020a). It provides 

employment for over 500,000 people directly and 2 million indirectly. There is also 

potential for huge future growth in Kenya, with 1,400,000 hectares of land 

potentially being available for aquaculture development in the future.  
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Kenya’s aquaculture sector is divided into freshwater aquaculture and mariculture 

(Munguti et al., 2014), and can take many different forms, ranging from small 

hand-dug ‘kitchen ponds’ to dams, all being stocked with fish and harvested 

periodically (FAO, 2015).  

Nile tilapia are the primary focus of Kenyan aquaculture, with an average 

production of 3 tonnes per hector (FAO, 2015), accounting for ~75% of total 

production (Munguti et al., 2014). Semi-intensive systems are responsible for 

their production, with fish held in earthen ponds and cages, utilising pond 

fertilisation from both chemical and organic fertilizers to enhance natural 

productivity. To supplement pond productivity, exogenous feeding using cereal 

bran and other locally available feeds is carried out (FAO, 2015).  

The economic benefits of aquaculture development in Kenya are widespread. In 

towns where aquaculture is practiced, markets have been built to sell the local 

fish and their products. These markets can now be found in all major towns in 

Kenya, including most towns in Central, Eastern, Western, Coast, Rift Valley, 

Nairobi and Nyanza provinces (FAO, 2015), which is providing great economic 

benefit to these areas. Aquaculture has also allowed many fish farmers who 

previously farmed at subsistence levels, to transform into commercial smaller-

scale fish farmers, earning nearly Kshs 450,000 (£3000) per acre of water surface 

(FAO, 2015).  

The Kenyan government have developed research facilitates across the country to 

help with aquaculture advancement. Sagana is home to the National Aquaculture 

Research Development and Training Centre (NARDTC), initiating research aimed 

at increasing fish growth, greater productivity, higher yield and lower feed 

conversion ratios (KMFRI, 2018). The Lake’s Basin Development Authority (LBDA) 

is based in Kisumu, and was established to provide a faster more meaningful 
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development in the Kenyan section of the Lake Victoria basin (LBDA, 2019), as 

well as the Kenyan Marine Fisheries Research Institute (KMFRI), who are 

collaborators in this project (KMFRI, 2020).  

 

1.5.2.1 Future of Kenyan aquaculture  

The ultimate aspiration of the FAO is for aquaculture to develop to allow more 

communities to prosper and help people to be healthier. They also hope it will 

offer more opportunities for improved livelihoods, with increased income and 

better nutrition, as well as ensuring farmers and women are empowered (FAO, 

2020).  

In Kenya, the focus is now on encouraging the development of private, 

commercial, large-scale aquaculture, to increase production (FAO, 2020), making 

a significant contribution in Kenya in terms of both food security and foreign 

exchange earnings through export markets. 

 

1.6 Lake Victoria  

Bordered by three countries, Kenya, Uganda and Tanzania (Figure 1.4), Lake 

Victoria is the second largest freshwater lake in the world by surface area. It 

covers 68,000km2 in East Arica, with a mean depth of 35m, with 6% of the lake’s 

surface area in Kenya, 43% in Uganda and 51% in Tanzania (Njiru et al., 2018). 

The Nile, one of the world’s most important and longest rivers, eventually feeds 

into the Lake (Haines, 2019), and flows through Cairo, home to a population of 

over 20 million (Khan et al., 2018).  

Some important rivers feed into the lake, including the rivers Bukora, Mara, 

Kagera, Katonga, Nyandon and Yale (Figure 1.4). These can carry pollution from 



14 
 

a length of cities, towns and villages that occupy the river’s banks, to eventually 

emptying into the lake’s basin. In addition, they and the many other rivers that 

feed into the lake flow through regions of high agricultural, industrial and mining 

activity.  

 

Figure 1.4 Map of Lake Victoria and its major rivers. The 3 countries surrounding 
Lake Victoria’s basin are shown here: Uganda, Tanzania and Kenya. The bathymetry 
(water depth) is indicated on the sides and major rivers feeding into and out of the lake 
are labelled (Nyamweya et al., 2016a). 
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Lake Victoria is one of Africa’s most densely populated areas, but its future is 

being threatened by over fishing and environmental damage from pollution 

(Britannica, 2019b). Population and economic development are key drivers in the 

pollution of this water resource and the rivers associated with it (Juma et al., 

2014). As they continue to grow, more resources are being used up that the 

ecosystem cannot sustain. This has led to land development around the basin, 

where agricultural, urbanization and industrial activities have all expanded, which 

has driven the degradation of the lake’s water quality (Scheren et al., 2000). 

To ensure a sufficient nutritional food source is available for future generations, 

changes to the recycling practices and waste management in the region is critically 

needed, otherwise the aquatic environment of Lake Victoria will continue to 

decline. 

 

1.6.1 Environmental issues facing Lake Victoria  

An increasing human population with high exploitation rates has imperilled the 

health of Lake Victoria and its resources. From 1960, the population within 100km 

from the lake shoreline has increased drastically from 10 to 40 million (Njiru et 

al., 2018), with their activities causing a detrimental effect on the lake. Towns 

bordering the lake, such as Kampala in Uganda, Mwanza in Tanzania and Kisumu 

in Kenya have dumped untreated waste into the lake’s waters (Scheren et al., 

2000), and while practices are improving there is still an urgent need for further 

changes. Domestic, industrial and agricultural activities in and around these 

towns, such as chemical and fertiliser leakage from farms (Facts, 2019) and 

effluents from mine wastes and tailings (Ngure et al., 2014), all contribute to the 

pollution. Lack of awareness of good hygiene practices and the consequent 
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discharge of untreated sewage, storm-water, runoff, animal waste and maritime 

transport of waste into rivers, directly contributes to the degradation of river and 

ultimately lake water quality (David et al., 2009).  

This has led to a serious decrease in oxygen available for aquatic life and the 

consequent decrease in fish populations available for human consumption 

(Scheren et al., 2000). This has increased the demand for the limited oxygen 

available and caused a significant rise in water-borne pathogens, which has been 

further exacerbated by run-off and storm water collecting animal and human 

waste and channelling these into rivers and the lake, creating an ideal 

environment to support the survival of these pathogens (Schneeberger et al., 

2019). These microbes will potentially infect fish, with previous studies of fish 

harvested from Lake Victoria found to be infected with Shigella, Salmonella and 

Escherichia coli (E.coli) (Sifuna and Onyango, 2018). They often latch onto 

vegetation in the lake, such as the highly abundant water hyacinth, or lodge 

themselves onto the gills and skin surface of the fish (David et al., 2009).  

The Winam Gulf (formally the Nyanza gulf, see Figure 1.4), lies wholly within 

Kenya, and is relatively shallow compared to the main lake basin. It is composed 

of many bays that receive inflowing water from several key rivers. The vegetated 

bays and river-mouth areas are an ideal habitat for many fish species (Mwamburi, 

2019). However the water hyacinth, an invasive weed, has taken over the whole 

lakeshores and bays. The plant began to spread in the early 1990s after above 

normal rainfall during the El Niño washed it into the lake. It infested nearly 200km2 

by 1998 and has continued to persist today (Williams et al., 2007). For fisherman, 

the water hyacinths have diminished their catch by covering fishing grounds and 

delaying their access to markets, along with increasing costs from the effort spent 

in cleaning waterways and the loss of broken or tangled nets (Kateregga and 
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Sterner, 2009). The weed mats have sealed off nursing, breeding and feeding 

grounds for inshore fish, and caused further detrimental effects by blocking 

sunlight, reducing oxygen levels, and allowing hydrogen sulphide and ammonia, 

both poisonous gases, to accumulate (Kateregga and Sterner, 2009). 

 

1.6.2 Fish species of Lake Victoria 

Lake Victoria provides the main income source for populations living around the 

basin, especially those involved in fishing (CORDIS, 2019), however 

environmental pressures have put their livelihoods at risk.  

Over 14,000 years ago Lake Victoria was home to over 400 species of cichlids 

(Leah, 2005). However human intervention within the lake and its catchment has 

resulted in several ecological changes, with dramatic effects on its fish resources. 

One of the most notable changes is the dramatic reduction and risk of extinction 

of some fish species (Outa, Yongo, et al., 2020). This led to the introduction of 

non-native fish species, such as the Nile perch and Nile tilapia (Ogutu-Ohwayo, 

1990). As a result of overfishing and competition between species, the lake is now 

dominated by three fish species. These are commercially fished in the lake and 

include the Nile perch, the small sardine-like Omena or silver cyprinid 

(Rastrineobola argntea) and the Nile tilapia (Ardjosoediro and Neven, 2008). 

 

1.7 Tilapia in aquaculture 

Tilapia fish (Figure 1.5) are not native to Lake Victoria, having been introduced to 

repopulate after overfishing (Khan et al., 2018). They are now hugely popular in 

aquaculture, being the third most produced aquatic species globally (Elizabeth 

Cruz-Suarez et al., 2006). Their tolerance to a high range of salinities and 
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temperatures, as well as to high ammonia and low dissolved oxygen 

concentrations in the water (Popma and Masser, 1999), is why they are such a 

favoured species in aquaculture, with tilapia farming taking place in at least 85 

different countries (AGMRC, 2018).  

Tilapia are more resistant to bacterial, viral and parasitic diseases than commonly 

cultured fish (Popma and Masser, 1999). They have a very simple and inexpensive 

diet, predominantly filter feeding suspended particles in the lake (FAO, 2010) or 

natural organisms, such as plankton, algae, benthic aquatic invertebrates and 

decomposing organic matter (Njiru et al., 2004a). This makes them enticing to 

farmers as they are able to convert low quality feed into higher quality protein. 

Supplementary feed is determined by the style of farming, which for small-scale 

tilapia farming is a mix of rice and wheat bran and mustard oil cake (Ahmed, 

2009), readily available in local markets. In intensive tilapia farming, they are 

dependent on industrially manufactured pelleted feed. Feed is given twice a day 

in both farming systems, with fertilisers also given to maintain tilapia growth, 

usually consisting of urea, cow dung and triple super phosphate (Ahmed, 2009).  

The culture period for tilapia is around 9 months, with the peak season for farming 

being from April to December. Farmers may harvest tilapia after 4 months, 

granting them the ability to harvest two crop yields per year (Ahmed, 2009). 

These attributes, together with the low input costs, have made tilapia such a 

widely cultured freshwater fish.     

Worldwide tilapia demand continues to increase. In the first 6 months of 2017, 

~150,000 tonnes of tilapia entered the global market (FAO, 2021). Internationally 

consumers like the mild flavour and firm flesh of tilapia. In sub-Saharan Africa, 

where few protein sources are available for communities, tilapia is a favoured dish, 
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offering high quantities of protein alongside high nutritional benefits. These 

tropical and subtropical countries also possess favourable temperatures for 

growth, with their production costs as low as USD 0.55-0.65/kg, which facilitates 

trade with the USA, the leading importer (FAO, 2010). However, constraints have 

been reported for tilapia farming, including limited availability and poor quality of 

feed, lack of technical support and low price in markets (Hussain et al., 2013). 

Overall, there is a limit in the success of tilapia culture due to poorer farmers with 

inadequate knowledge and access to high quality of feed. It is imperative that this 

gap be bridged to provide a sustainable food source of protein to a continually 

growing population.  

 

Figure 1.5 Tilapia fish. Two tilapia fish are shown here (Jennies Foods, 2021). 

 

1.7.1 Impact of plastics on tilapia 

In many African countries plastic recycling procedures are often not established, 

and even when reuse practices are present, they often lack legal foundation and 

are only conducted when necessary (Khan et al., 2018). This can lead to illegal 
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dumping in rivers and lakes, threatening the health of aquatic life. Plastic is 

physically broken up by weathering in aquatic systems into smaller microplastics 

and nanoplastics. These pose a huge risk to fish and consumers of fish, as fish can 

mistake these plastic pieces for food, causing plastic to infiltrate into food chains. 

A study collecting Nile tilapia from the Nile River found over 75% of the fish 

contaminated with microplastics in their digestive tracts (Khan et al., 2018). 

 
 
1.8 Plastic as a material 

Our planet has reached an environment crisis, as it is overrun and unable to handle 

an ever-growing population generating endless amounts of rubbish. One of the 

most concerning is the ever-increasing amount of plastic, its impact on 

biodiversity and contribution to climate change. From its first invention in the 

1950s (Jambeck et al., 2015), plastic has become a hugely favoured material, 

replacing conventional materials, such as glass, paper and metal. Its low cost and 

ability to be versatile, strong but lightweight and the potential to be a transparent 

material have made it ideal for a range of applications (Andrady, 2011). It can 

also provide some environmental benefit, by playing a role in maintaining food 

quality, thus reducing food waste (Eriksen et al., 2014). There are therefore huge 

complex trade-offs between plastic and its substitutes. 

Globally plastic demand is dominated by polypropylene (21%), low-density 

polyethylene (LDPE) (18%), polyvinyl chloride (17%) and high-density 

polyethylene (HDPE) (15%) (Hahladakis et al., 2018), which are all used in 

producing the vast array of plastic packaging products available, from food and 

drinks containers to car dashboards and bumpers (PlasticEurope, 2008). PP and 

PE together are collectively known as polyolefins and are primarily used in 

manufacturing fishing gear (Andrady, 2011). Other common plastic polymers 
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include polystyrene (8%), polyethylene terephthalate (PET) (7%) and 

thermosetting plastic polyurethane (PUR) (PlasticEurope, 2008). Plastic polymers 

are used for common consumer products, but also in the making of synthetic 

fibres, foams adhesives and sealants, making them applicable in a variety of 

applications (Hahladakis et al., 2018). However in many plastic products, the 

polymers are not the only constituent. To meet appropriate properties for the 

product, the polymer is combined with other ingredients or additives (Britannica, 

2019a) 

 

1.8.1 Plastic additives 

Plastic additives are chemical compounds that are added to improve the 

functionality, performance and ageing of the polymer (Hahladakis et al., 2018). 

They are classed as either plasticisers, reinforces, fillers, stabilizers or colourants, 

and in almost all cases are not chemically bounded to the polymer (Campanale et 

al., 2020). Therefore, despite them improving the overall properties of the 

polymer, many are toxic and have the potential to leach into air, water and food, 

and potentially human tissue during their use or disposal and consequently expose 

humans to multiple toxic chemicals. 

 

1.8.1.1 Plasticisers  

Plasticisers are added to materials to decrease plasticity and viscosity, and 

increase workability and performance (Designing Building Wiki, 2020). PVC is a 

common polymer that plasticisers are used on, converting PVC from a rigid plastic 

into a flexible and elastic material to use in more applications (Godwin, 2000). 

Plasticisers can also change the biodegradability, odour, flammability and cost of 

the final product (Britannica, 2019a). There are five plasticisers of health concern, 
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di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP), diisobutyl phthalate 

(DIBP) and n-butyl benzyl phthalate (BBP), that have been found to cause adverse 

endocrine disruption (Koester, 2015), which have the ability to leach into the 

environment from discarded plastics. 

 

1.8.1.2 Reinforcements  

Reinforcements are used to enhance the mechanical properties of plastic 

(Campanale et al., 2020). Incorporating reinforces such as glass, wood or carbon 

fibres during the manufacturing of PP and PE can increase their stiffness 

(Britannica, 2019a). Active magnesium oxide is a reinforcer added to rubber 

compounds, and its main function is the neutralisation of hydrogen chloride (HCl) 

that can be released during processing and degrade the plastic material (NikoMag, 

2021). Reinforced plastics are becoming the most selected material for building 

interior and exterior body parts of vehicles and aircrafts, due to their low cost, 

lightweight and easy parts replacement (Rosato and Rosato, 2004).   

 

1.8.1.3 Fillers 

Some plastic resins are blended with fillers to reduce costs, this can also improve 

the plastic’s moldability and stability (Mraz, 2015). They also allow plastic to gain 

properties not usually associated with it, such as high electrical and thermal 

conductivity. Carbon black, calcium carbonate and silica are examples of 

chemicals that can be incorporated as particulate fillers (Britannica, 2019a). 

 

1.8.1.4 Stabilizers 

The properties of plastic should change as little as possible over time, in order for 

it to have a long and useful life in any application. Stabilizers are added to avert 
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the effects of ageing (Britannica, 2019a), and are also designed to reduce 

degradation of the plastic by ultra violet (UV) radiation, the ozone and biological 

agents. Stabilisers of high thermal stability include barium/zinc and 

potassium/zinc (McKeen, 2019), however these are produced from highly toxic 

metals. Barium compounds are among the densest used in PVC plastics, despite 

this their presence has not yet been subject to constraints based on environmental 

or health grounds (Turner and Filella, 2020a). Metabolic, neurological and kidney 

diseases, and even breast cancer, are all reported effects of exposure to barium 

on human health (Campanale et al., 2020). 

Additionally to avoid the loss of HCl in PVC during processing temperatures, heat 

stabilisers are added, such as zinc or calcium, to prevent potential corrosion of 

equipment (Sastri, 2014). Iron oxides, carbon blacks and barium zirconate are 

also widely used heat stabilisers in adhesives and sealants (Sastri, 2014). 

Nickel plating on plastic is widely implemented in metal finishing industries, its 

bright metallic appearance is ideal in plating plastic automotive parts and protects 

against corrosion and wear (SPC, 2020).  

 

1.8.1.5 Colourants    

Most consumer plastic products are coloured, turning inexpensive material plastics 

into more aesthetically pleasing materials to use and are therefore easier to sell 

(Tolinski, 2015). Compounds to add colour can be added as pigments (insoluble) 

or dyes (soluble). Popular colour pigments for plastic include carbon (black), 

titanium oxide and zinc oxide (white) and sometimes inorganic oxides like, 

chromium and iron (Britannica, 2019a). Iron oxide pigments are used for metallic 

finishes, where their high transparency gives an attractive finish (SpecialChem, 
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2018), and leads to a plastic colour change that goes from yellow to red 

(Campanale et al., 2020). 

Titanium oxide is also widely used as it can absorb UV light and therefore increases 

the weatherability and durability of the plastic product (SpecialChem, 2018), 

however it has been shown to generate cytotoxicity on human epithelial lung and 

colon cells (Campanale et al., 2020). Similarly titanium dioxide (TiO2) is now 

appearing in PET waste, from the introduction of opaque PET bottles 

(Matxinandiarena et al., 2019). Studies have shown TiO2 causes phototoxicity 

under UV irradiation, and this has induced oxidative DNA damage and lipid 

peroxidation, eventually causing neuroinflammation in humans (Shah et al., 

2017).  

 

1.8.2 Plastic as a pollutant  

With limited reuse and recycling options, especially in LMICs, plastics have become 

the fastest growing component of waste (Figure 1.6). In 2015, 381 million tonnes 

of plastic was produced globally (Eriksen et al., 2014) and, despite nationwide 

recycling schemes, the UK only recycles less than a third of its plastic waste 

(Sewage, 2019). Plastic contributes 10% to all the domestic waste produced 

worldwide and forms up to 95% of the litter found on beaches, sea floors and the 

sea surface typically in the form of macroplastics (Galgani et al., 2015).  

Each year, 32% of the 78 million tonnes of plastic packaging produced is left to 

flow into our waters (Pennington, 2016), which is the same as dumping a truck 

full of plastic litter every minute (Geographic, 2019). In 2025, the predicted ratio 

of plastic mass to fish in our oceans is estimated to reach 1:3. If this continues, 

by 2050 plastic weight will be equal to or larger than fish stocks (Güven et al., 

2017). Fish are at high risk of plastic pollution exposure as large macroplastic 
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products are readily broken down into smaller microplastic pieces in the aquatic 

environment by physical or chemical degradation.   

 

 

Figure 1.6 Share of plastic waste that is inadequately managed (2010). 
Inadequately disposed waste includes waste that is not formally managed, and waste 
disposed in dumps or open uncontrolled landfills, which are not fully contained. This has a 
high risk of polluting rivers and oceans. Dark blue countries have the most inadequately 
managed plastic waste, these include many low and middle income countries (Jambeck et 
al., 2015). 

 

 

1.8.2.1 Plastic pollution in Africa 

Plastic waste poses great environmental and human issues especially in LMICs 

where they lack nationwide recycling facilities and have a high volume of 

mismanaged waste (Babayemi et al., 2019). Littering is sadly a part of African 

culture, often irrespective of socio-economic status. In 2015, the per capita plastic 

consumption in Africa was 16kg for a population of 1.22 billion (Africa Population, 

2021). It was also estimated that each of Africa’s countries, including Kenya, used 

approximately 13.71 mega tonnes (Mt) of plastic in 2015 (Babayemi et al., 2019).  
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1.8.2.1.1 Plastic pollution in Kenya 

Currently, plastic produced in Kenya stands at 400,000 tonnes (Mogoathle, 2019), 

with 260,000 tonnes of plastic packaging imported annually, and an estimated 

174,000 tonnes illegally dumped or left in the environment (Roberts, 2018). In 

Kenya, rapid urbanisation has exasperated the problem. Most plastic in Africa ends 

up in dump sites, with frequent open incineration. Littering, lack of segregation at 

source programmes and indiscriminate dumping along riverbanks are all adding 

to the crisis.  

In 2017, Kenya introduced new laws to address these concerns, and banned the 

manufacturing, sale and distribution of plastic carrier bags (Waiganjo, 2020). In 

2020, they went one step further and banned all single-use plastics, such as water 

bottles and straws, from its national parks, beaches, forests and other protected 

areas (AFP, 2020). 

 

1.8.2.2 Impact of COVID-19 on plastic pollution 

The COVID-19 pandemic has exacerbated the world’s plastic pollution problem. 

The pandemic has underlined to society that plastic is this irreplaceable material, 

which provides an inexpensive and widely accessible feedstock in producing 

medical equipment. Monthly an estimated 129 billion face masks and 65 billion 

gloves are used globally (Prata et al., 2020) as personal protective equipment 

(PPE). Masks typically consist of many layers of PP microfibres, PUR and 

polyacrylonitrile (PAN) (Czigany and Ronkay, 2020). With plastic acting as a vector 

for the SARS-CoV-2 virus (Prata et al., 2020), and allowing survival on its surface 

for up to 72 hrs, the recycling and reuse of any of this plastic has been restricted. 

This coupled with incorrect disposal by the public, has resulted in used masks and 
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gloves being found littering public spaces and waterways across the globe (Figure 

1.7) (Mosely and McMahon, 2020).   

 

Figure 1.7 COVID-19 aquatic plastic pollution. Researchers found surgical gloves, 
disposable masks and hand sanitiser bottles used for personal protection equipment in the 
COVID-19 pandemic throughout rivers and seas across Europe (Phys.org, 2020) 
 

 

1.8.3 Macroplastics 

Macroplastics are the largest plastics, typically seen floating in surface waters and 

littering shorelines (Bråte et al., 2017). Sources include household goods, food 

and drinks packaging, as well as tourism and construction (Bråte et al., 2017), 

and many of these are a risk for aquatic life (Figure 1.8). Plastic has a wide range 

of applications but photodegradation, from prolonged exposure to UV radiation, 

hydrolysis or physical breakdown (Planet Experts, 2015), breaks them into pieces 

ranging from micrometres to nanometres (Andrady, 2011). 
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Figure 1.8 Turtle trapped in plastic ring. Plastic beer holder ring is trapped round the 
turtle’s shell. Debris entanglement can prevent air-breathing aquatic organisms from 
swimming to surface for air, causing them to drown (Ruiz-Grossman and Dahlen, 2017). 
 

 

1.8.4 Microplastics 

Microplastics are forms of plastic that are <5mm in size (Thompson et al., 2004), 

and can be split into two main groups, primary and secondary microplastics. 

Primary microplastics are manufactured at micro size (Picó and Barceló, 2019), 

and include microbeads from cosmetics and personal care products, and 

microfibres by abrasion from synthetic textiles in the environment (Hantoro et al., 

2019), such as polyester or acrylic fibres (Williams, 2019). A single shower was 

thought to have sent 100,000 microbeads down the drain and into the ocean. The 

UK therefore placed a ban on their production and use in products in 2018 (Gove, 
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2018), however it will be a few decades before we see their presence in the 

environment fully diminish.  

Secondary microplastics are the degradation products of larger macroplastics 

(Picó and Barceló, 2019), primarily produced for sole domestic functions (plastic 

bags, fishing nets, plastic bottles and styrofoam products). Degradation can occur 

by physical or chemical ageing in aquatic systems. Weathering from waves, 

prolonged exposure to UV radiation and water salinities and temperatures, break 

macroplastics into smaller micro-sized pieces (Roman Lehner, 2015). There are 

estimated to be ~5.25 trillion macro- and microplastic pieces floating in our 

oceans, weighing up to 269,000 tonnes (Eriksen et al., 2014). 

Microplastics have been documented in all habitats of open-water (Bråte et al., 

2017) and have even been found in locations as isolated as the Arctic (Jambeck 

et al., 2015). Their small size is similar to food organisms, such as zooplankton 

(Iwasaki et al., 2017), and are often consumed as a result and therefore 

transferred through food webs, from environment to organism or prey to predator 

(Foekema et al., 2013). Fish and bivalves intended for human consumption have 

been found to contain microplastics (Thiele et al., 2019), with an estimated 11,000 

microplastic pieces being ingested by regular seafood consumers (Marine 

Conservation Society, 2019). This has triggered concerns about the risks of dietary 

exposure on human health, as well as the implications for aquatic ecosystems and 

potential economic impacts, especially in coastal towns (Hantoro et al., 2019). 

Microplastics demonstrate a huge variation in their physical and chemical 

properties, such as size, weight, shape, composition and colour (Hidalgo-Ruz et 

al., 2012). Size is typically based on the longest length of a particle. There are 

five main categories for shape: fragment, foam, film, fibre and bead (Bråte et al., 

2017). These influence the behaviour of the particles within aquatic environments, 
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affecting their dispersion, adsorption and absorption of contaminants and 

microbiota (Alexandre et al., 2016).  

 

1.8.4.1 Fragment  

Fragments are irregular shaped particles, which can also be termed crystals, fluffs, 

powder, granules, shavings and flakes (Lusher, Hollman, et al., 2017). They 

originate from macroplastic breakdown of food and drinks packaging in aquatic 

environments. Studies have found that fragments tend to absorb less chemicals 

from their surrounding environment than other microplastic shapes due to their 

disrupted active sites from their irregular shape (Naqash et al., 2020). They do 

however have longer gut residence times, meaning they can be persist in fish 

organs for longer (Hantoro et al., 2019). 

 

1.8.4.2 Foam 

Foams originate from the well-known plastic polymer PS. Direct contact with PS 

has the potential to damage skin, despite this its properties of being lightweight 

and providing great thermal insulation means it is found in many food packaging 

and laboratory ware including coffee cup lids, disposable plates and large foam 

packaging, which by degradation all form foam spheres (Hwang et al., 2020).  

 

1.8.4.3 Film  

Films are commonly found on food packaging, but also in agriculture as mulch 

films that modify soil temperature and moisture. Mulch films are heavily used in 

agriculture to promote food security, however they are the main source of macro- 

and microplastics entering agricultural soils (Qi et al., 2020). Soil-contaminated 

plastics are not recyclable, and the films are often so thin, making their extraction 
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from the soil at the end of the growing season difficult, this is resulting in a surge 

in plastic film pollution (Qi et al., 2020).  

 

1.8.4.4 Fibre  

Microfibres, also known as filaments, strands or threads, typically come from 

degradation, including in the washing machine, of clothes and synthetic textiles. 

Studies have suggested that they are widespread in aquatic ecosystems and can 

have a negative impact on animal health, having been shown to be linked to 

respiratory and reproductive changes in fish (Henry et al., 2019), potentially 

acting as endocrine disruptors (Hu et al., 2020). 

 

1.8.4.5 Bead  

Beads are also called grains, spherical microbeads and microspheres. They are 

used in personal care and cosmetic products and are commonly made of PE, nylon, 

PP and PET. They are commonly discarded down the drain, allowing them to easily 

enter waterways (Tanaka and Takada, 2016). Beads have a sphere shape, which 

makes them more likely to be absorbed by organisms like fish, as their structure 

mimics their feed (Hantoro et al., 2019). 

 

 
1.8.5 Economic impacts of plastic waste 

Land-origin plastic waste costs the global economy up to $19 billion each year 

(Consultancy.uk, 2019). Asia currently leaks more waste pollution into waterways 

and oceans than any other continent, accounting for 82% of global land based 

plastic pollution and contributing 86% to global plastic costs (Deloitte, 2019). 

Africa follows as the 3rd highest plastic pollution producing continent. Their clean-



32 
 

up costs have reached a huge $47.4 billion, leaving them with an average 

economic loss of $49.8 billion yearly from plastic waste (Deloitte, 2019). 

Plastic pollution has been found to result in a $0.3 to $4.3 billion loss of revenue 

to the fishing and aquaculture sector and a reduction in $0.2 to $2.4 billion to 

tourist trade (Deloitte, 2019). Grounded plastic along shorelines results in loss of 

aesthetic value of the environment, an economic cost which takes its form in a 

decreased value of waterfront real estate. It has negative impacts on tourism,  

with economic losses coming from decreased tourist revenue, negative impacts 

on recreational activities and invasive species transport which damage public 

health (Hardesty et al., 2015). Stranded shoreline plastic also negatively impacts 

fishing and aquaculture resources, shipping and energy production. The overall 

estimate of economic impact of plastics on aquatic ecosystems is approximately 

$13 billion US/year (Sireyjol Trucost et al., 2014). One of the biggest direct cost 

factors is the clean-up cost required to remove plastic pollution from coastlines 

and waterways. 

Microplastic presence in water bodies has an adverse effect on aquatic 

biodiversity. It not only impacts local ecosystems and food chains, but also harms 

fishery reserves, which are the main source of livelihood for the fisheries sector 

(Gallo et al., 2018). Furthermore, fish larvae are very sensitive to water quality, 

and therefore have high mortality rates. Microplastic presence can degrade the 

water quality, creating unfavourable conditions for aquaculture. This can cause 

huge significant losses to fish farmers, as a single loss of a harvest can bring them 

to bankruptcy, from the large investment requirements (Deloitte, 2019).  
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1.8.6 Environmental impacts of plastic pollution 

Plastic is one of the most concerning environmental issues, with significant 

environmental concerns for governments, scientists and members of the public 

worldwide (Xanthos and Walker, 2017).  Globally it has taken over every part of 

our oceans, rivers and lakes, impairing human health, food safety and tourism 

(IUCN, 2018). Furthermore, the incineration of plastic waste needed to destroy it 

is contributing to climate change, from the release of the greenhouse gas carbon 

dioxide (IUCN, 2018). The production of one tonnes of plastic generates up to 2.5 

tonnes of carbon dioxide (Sewage, 2019). Equally as it degrades in aquatic 

environments, it uses oxygen from the surrounding waters, leaving less available 

for aquatic life, thereby affecting their survival (Shamseer Mambra, 2019). Plastic 

pollution in the environment can cause entanglement, ingestion, habitat damage 

and loss and transport vectors of non-native species through adherence to the 

plastic’s surface (Bråte et al., 2017).  

Ingestion of microplastics by aquatic organisms is one of the most deleterious 

environmental impacts, posing more of a threat than macroplastics. Their small 

size gives them the potential to travel vast distances, allowing them to be available 

to many organisms at different trophic levels of the aquatic system. Furthermore, 

microbeads are often mistaken by surface feeding fish as zooplankton, as they are 

often similarly opaque in colour (Xanthos and Walker, 2017). Persistent organic 

pollutants (POPs) can sorb to the microplastics and accumulate at concentrations 

higher than in ambient water. There is a growing concern that these pollutants 

are entering the human food chain through ingestion of shellfish, fish and their 

products (Gallo et al., 2018).  

Microplastic contamination in soil has recently become a concern. Many 

organisms, including humans rely on soil for their survival. Plentiful sources of this 
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pollution problem have been reported from domestic sewage, fertilisers, biosolids, 

fibres from clothing and microplastic beads from personal care products, irrigation 

and wastewater, flooding and illegal dumping (Chae and An, 2018). These 

particles settle on the soil’s surface and then penetrate into subsoils. A study 

examined whether ingested plastic in the soil transferred pollutants and additives 

to organisms. They exposed lugworms, a type of sandworm to varying levels of 

microplastics and demonstrated that microplastics’ pollutants and additives were 

transferred into their gut tissues, causing some harmful biological effects (Browne 

et al., 2013). This was an important finding, as it showed that microplastics can 

be transferred in both terrestrial and aquatic systems. These microplastics have 

the potential to be transferred between organisms and food chains, as well as be 

retained by the worms and be transported to deeper soil layers and potentially 

leach to groundwater (Chae and An, 2018).  

Unfortunately microplastics are used in many anthropogenic activities, including 

mining, abrasive air-blasting and antifouling coatings for boats (Botterell et al., 

2019). As a result of climate change, the melting of sea ice has been accelerated, 

releasing high levels of ice bound microplastics back into the marine environment 

(Obbard et al., 2014), that originated from such anthropogenetic sources. Climate 

change could also potentially change oceanic currents, which could alter the 

abundance, distribution and impact of microplastics across aquatic environments 

(Lusher, Welden, et al., 2017). 

 

1.8.7 Impact of plastic pollution on aquatic life  

The most visible and disturbing impacts of plastic pollution are the entanglement 

(Figure 1.9), ingestion and suffocation of aquatic organisms, causing severe injury 

and often death (IUCN, 2018). 1 million seabirds are killed yearly by plastic 
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pollution (Sewage, 2019). University of Plymouth researchers found that over 

44,000 animals have become entangled in or swallowed plastic debris across the 

globe (Merrington, 2015). Marine species such as seabirds, turtles, whales and 

fish often mistake plastic for their prey, with plastic debris found in 36% of seals, 

59% whales and 100% of marine turtles (Sewage, 2019). Most die of starvation 

as their stomachs are filled with plastic. Additionally, they can suffer from 

lacerations and internal injuries, leaving them with a reduced ability to swim. 

Damage to essential internal systems has also been reported, such as the liver 

and reproductive systems of oysters, which has caused them to produce less eggs 

(Geographic, 2019).  

Microplastics are transferred from environment to organisms and thereby enter 

the food chains. Zooplankton are the main food source of many marine organisms, 

such as commercially important fish. Studies have shown microplastics are readily 

ingested by many zooplankton taxa, with associated negative impacts on their 

life-span, reproduction and feeding behaviours (Botterell et al., 2019). 

Zooplankton feed on surface waters, where the abundance of microplastics is 

highest, and are found in aquatic environments at such a high abundance, that 

their risk of microplastic ingestion is accelerated. 

Additionally, microplastics have a large surface area-to-volume ratio and 

hydrophobic properties, leading to an accumulation of contaminants on their 

surface, including heavy metals and chemical pollutants from the aquatic 

environment (Koelmans et al., 2014). These contaminants, as well as chemical 

additives that are incorporated during plastic manufacturing, can leach into the 

biological tissues of aquatic life and potentially cause lethal effects. They also have 

the ability to accumulate at higher trophic levels of the food web and eventually 

find their way into human food webs (Koelmans et al., 2016a).  
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Figure 1.9 Lemon shark with plastic bag trapped round its gills. Taken in the 
Bahamas, the plastic bag is blocking the shark’s gills affecting its ability to breath (Ruiz-
Grossman and Dahlen, 2017). 
 

 

1.8.8 Human health 

Consumers of fish and their products are at risk from polluted waters, with 

ingestion of fish potentially contaminated with plastics (Shamseer Mambra, 2019). 

Invisible microplastic pieces have even been found in bottled water and beer 

(IUCN, 2018). A study carried about by the World Health Organisation (WHO) 

analysed 259 bottles, from 9 different counties and across 11 different brands, 

and found an average of 325 microplastic particles for every litre of water (WHO, 

2019). In a bottle of Nestle Pure Life, concentrations were as high as 10,000 

microplastic pieces per litre (Graham Readfearn, 2018).  

Despite tourism playing a firm role in economic development in many places, the 

United Nations Environment Programme estimates that tourists produce 4.8 
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million tonnes of solid waste each year (Martin, 2018). Furthermore, the aesthetic 

value of the environment is compromised by mismanaged waste. Plastic debris 

could cause injuries or harm to human health. This coupled with the unpleasant 

experience waste brings, results in reduced tourist activity and consequent loss of 

livelihoods from businesses associated with tourism (Deloitte, 2019). Currently 

there is insufficient research into the direct and long-term effects of microplastic 

levels on human health (Williams, 2019). Subsequently, at present more studies 

around exposure levels to microplastics and their contaminants in humans are 

being explored.    

Potential hazards to humans associated with microplastics include the physical 

impacts of the particles on the body and chemical and microbial pathogens from 

the biofilm on the microplastic’s surface (EFSA, 2016). The properties of the 

particle determine the impacts in the body. Size, surface area and shape of the 

plastic all determine the fate and health impacts following ingestion (WHO, 2019). 

Despite the plastic polymers being of low toxicity, it is these additives and 

hydrophobic chemicals sorbed from the environment that are the biggest concern 

to human health (WHO, 2019), and many health organisations such as WHO are 

appreciating that this is a huge emerging area of concern (Williams, 2019). 

 

1.9 Persistent organic pollutants  

POPs present in aquatic waters are readily picked up by microplastics even at very 

low concentrations (Andrady, 2011). The hydrophobicity of POPs facilitates their 

concentration to adhere to microplastics. The contaminated plastics, when 

ingested by aquatic species, creates a plausible route whereby POPs are able to 

enter food webs.  
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With plastics manufactured with POPs as additives (Hahladakis et al., 2018), the 

leaching of these additives is of greater concern in species with a longer gut 

retention time, such as fish (Koelmans et al., 2014).  

Marine PP pieces were found to have 100,000 to 1 million times higher 

concentrations of banned POPs than in the surrounding water (Mato et al., 2001). 

These included DDE (dichloro-diphenyl-dichloroethylene), a POP formed by the 

loss of HCl and classed as a Group B2, a probable human carcinogen (Bidleman, 

1984). In addition, PCBs (polychlorinated biphenyls), which were developed as 

coolant fluids in electrical apparatus (EPA, 2020), are known to have significant 

toxic effects in animals, including impacts on reproductive function (Steinberg et 

al., 2008).  

The exposure to living organisms from these pollutants is continually increasing if 

we consider microplastics interactions as a vector of metals and biota (Campanale 

et al., 2020). Several variables can influence the interaction of microplastics with 

compounds, such as increased roughness and alteration of the plastic’s surface 

(Campanale et al., 2020). These accelerate the degradation process, creating 

more active sites on the plastic’s surface for interactions. Other significant 

variables include pH, salinity, temperature, polymer polarity, photo-oxidative 

erosion, and the formation of the biofilm. 

 

1.10 The ‘plastisphere’  

The term ‘plastisphere’ was first used in 2013 to describe the biofilm or specific 

microbial community associated with the surface of plastics (Zettler et al., 2013). 

The impact of plastic debris on aquatic life has been extensively documented, 

however the interactions between plastics and the plastisphere remains unclear 

(Schlundt et al., 2019). Layers of inorganic and organic substances rapidly coat 
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the plastic surface upon entering the aquatic environment. This is followed by swift 

colonisation from functionally diverse communities of bacteria, protozoa, diatoms 

(algae) and fungi (Rummel et al., 2017), and collectively forms a thin layer of 

microbial assemblage on the plastic’s surface forming the ‘plastisphere’ (Figure 

1.10).  

This development is of particular importance as it determines the fate of plastic in 

our aquatic systems (Pinto et al., 2019). Colonisation and biofouling are of high 

concern as they allow the plastic to be changed, thereby altering its buoyancy, 

allowing it to settle into deeper water, where it can be exposed to even more 

aquatic species (Andrady, 2011). Plastic litter is functioning as an ‘artificial reef’ 

(Zettler et al., 2013), and may cause pathogenic species to be transported over 

huge distances (Pinto et al., 2019). Furthermore birds and fish heavily rely on 

chemoreception for food selection, and these biofilms can make plastic smell and 

taste like their food resulting in greater ingestion (Savoca et al., 2017). The 

presence of the plastisphere also shields the plastic’s surface from abiotic aging 

by UV radiation, thereby preventing plastic breakdown in the environment.  

The physio-chemical properties of the surface of plastic, including roughness, 

electrostatic interactions, hydrophobicity and charge, have been shown to 

influence the initial colonisation of the biofilm (Rummel et al., 2017). Weathering 

from UV radiation and physical breakdown from waves has an influence on this, 

by determining the condition of the material and its hydrodynamic interactions.  

Advanced tools are needed to visualise the distribution of these intact microbial 

biofilm communities (Schlundt et al., 2019) to determine the subsequent effects 

on aquatic life and also human health.   

 



40 
 

  

Figure 1.10 The plastisphere community. Conceptual model of the diverse 
plastisphere that can exist on the surface of plastics, hosting a microbial ecosystem in 
which members include cyanobacteria and diatoms (Amaral-Zettler et al., 2020). 
 

 

1.10.1 Bacteria as a pollutant  

Recently, microplastics have been recognised as a substrate that can be readily 

colonised by biofilm-forming microorganisms (Ogonowski et al., 2018). These can 

propagate on the surface of plastics and contribute to their degradation or 

distribution amongst aquatic ecosystems. Bacteria are a threat not only by causing 

disease, but also from the potential increases in levels of antibiotic resistance they 

may have and be able to pass on (De Tender et al., 2017). Studies have found 

rich eukaryotic and bacterial communities on PE and PP collected from the North 

Atlantic ocean (Zettler et al., 2013) and in aquatic environments on PS, of 5 

bacterial pathogens including Flavobacterium columnare, Aeromonas hydrophila, 
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Edwardsiella ictaluri, E. tarda, and E. piscicida (Cai and Arias, 2017). Potential 

pathogenic bacteria might be distributed into previously unaffected ecosystems, 

by hitchhiking on microplastics that could have originated from sewage treatment 

plants or untreated human and animal waste (Oberbeckmann et al., 2016), 

threatening aquatic life.  

Scanning electron microscopy has been used to explore the microbial diversity on 

PE, PS and PP particles collected from the North Pacific Gyre, and showed Bacillus 

bacteria and pennate diatoms were abundant on the plastic, with highest 

abundances on foamed PS (Carson et al., 2013).  

The role of microbial plastic colonisation is not fully understood, but potential 

factors have been found to make biofilm formation on plastic appear appealing for 

microorganisms (Oberbeckmann et al., 2016). Plastic’s surface offers great 

protection and stability for prokaryotes, creating a favourable environment for 

microbial biofilm colonisation in various environments. If colonised microplastics 

are ingested by fish in aquatic environments, and eventually humans, this could 

result in huge health risks and potential disease infection.  

 

1.11 Aims and objectives of this study 

The overall aim of this study was to investigate microplastic prevalence in tilapia 

fish from Lake Victoria in Kenya, to determine the need for microplastic pollution 

monitoring in both the aquatic environment and in fish to ensure the sustainability 

and safety of this important protein source. This was achieved through the 

following objectives: 

1- Compare microplastic prevalence in tilapia muscle versus GIT. 

2- Compare microplastic prevalence in wild versus farmed tilapia from key 

fishing locations in and near the Winam Gulf, Lake Victoria. 
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3- Detect and visualise the plastisphere present on the identified microplastics, 

to highlight any bacteria or pollutants that may be present. 

4- Investigate some of the bacterial components of this plastisphere. 
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2.0 Methods and materials 

The collection of samples from Lake Victoria was part of a larger study in 

collaboration with colleagues from the British Geological Society, the KMFRI and 

the University of Eldoret. 

 

2.1 Tilapia sampling from Lake Victoria 

Tilapia samples, both farmed/caged (CT) and wild (WT), were collected from Lake 

Victoria, Kenya during January 2019 (n=19) and May 2019 (n=63) at different 

sites (Tables 2.1 and 2.2). The fish were purchased from farmers at point of 

harvest. For the fish from January, a muscle sample and intact GIT were used as 

part of this study. For the remaining fish (from May), muscle samples and the 

contents of the GIT were analysed. 

Tilapia were sampled from 18 different sites across the Lake (Figure 2.3). Sites 1 

(Dunga), 2 (Maboko Island) and 3 (Asat cages) are situated on the northern shore 

of the shallow Winam gulf, formerly known as the Nyanza gulf, located only 4.7 

miles from Kisumu, the third largest city in Kenya. Site 4 (Uyoma Point) is in the 

deeper Rusinga channel, between the Gulf and the main body of the lake. Sites 6 

(Ngodhe), 7 (Mbeo cages) and 9 (Bridge Island) are near Rusinga Islands where 

the water is deeper. Site 10 (Kadimo Bay – Anyanga) is where the Nzoia river 

flows into Winam Gulf, it is Kenya’s second biggest river by discharge. Site 11 

(Madiany water) is situated in a bay, in the northern shore of the main lake. Site 

13 (University of Eldoret pond) is in the narrow channel entrance to the Winam 

Gulf. Sites 15 (Port Bunyala) and 16 (Mageta Islands) are both located further 

north in the main body of Lake Victoria. Sites 18 (Sori Bay) is near the mouth of 
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the River Migori, located in the main body of the lake out of the Winam Gulf, it is 

also the site closest to the Kenya/Tanzania border. 

 

Site Location Fish muscle 
sample ID  

Fish intact GIT ID  

1A Dunga Ta61, Ta62, Ta63, 
Ta64 

GIT15 

1B Dunga Ta65, Ta66, Ta67, 
Ta68 

GIT19, GIT20 

4 Uyoma Point Ta69, Ta70, Ta71, 
Ta72, Ta73, Ta74, 
Ta75 

GIT6, GIT7 

7B Mbeo cages Ta76, Ta77, Ta78 GIT10 
18A Sori Bay Ta79, Ta80 GIT13 

 

Table 2.1 Tilapia sampling sites January 2019. This table shows the sites, 1A, 1B, 7B 
and 18A, where farmed and wild tilapia (Ta) were caught. NFS – no fish sampled. GIT – 
intact gastrointestinal tract. Ta – muscle.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 
 

Site Location Fish muscle sample 
ID  

Fish GI content 
sample ID  

1A Dunga Ta28, Ta55, Ta56, 
Ta57 

NFS 

1B Dunga Ta12, Ta13, Ta17, 
Ta58, Ta59, Ta60 

NFS 

1C Dunga Ta32, Ta34, Ta37 NFS 
2 Maboko Islands NFS NFS 
3 Asat cages NFS NFS 
3C Asat cages Ta54 NFS 
4 Uyoma Point NFS NFS 
4D Uyoma Point Ta29, Ta30, Ta31, 

Ta33, Ta53 
NFS 

5A Naya Bay NFS NFS 
5B Naya cages NFS NFS 
6 Off Ngodhe NFS NFS 
6B Off Ngodhe Ta2, Ta41, Ta45, 

Ta46 
NFS 

7A Mbeo cages Ta50 NFS 
7B Mbeo cages Ta1, Ta7, Ta8, Ta47 NFS 
7C Mbeo cages NFS NFS 
7D Mbeo cages Ta42, Ta43, Ta44 NFS 
8 Mbita West NFS NFS 
9 Bridge Island NFS NFS 
9B Bridge Island Ta14, Ta15, Ta18, 

Ta22, Ta52 
GI1, GI2, GI3, GI4  

9E Bridge Island Ta19, Ta23, Ta26 GI5 
10 Kadimo Bay (Anyanga) Ta49, Ta51 NFS 
11 Madiany Water Intake NFS NFS 
11E Madiany Water Intake Ta3, Ta4, Ta11 NFS 
11F Madiany Water Intake Ta5, Ta9, Ta10 NFS 
12 Achieng’ Oneku 

(Kunya) 
NFS NFS 

13 University of Eldoret 
pond 

NFS NFS 

13B University of Eldoret 
pond 

Ta6, Ta20, Ta24 NFS 

13D University of Eldoret 
pond 

Ta16, Ta21, Ta25, 
Ta27 

NFS 

15 Port Bunyala NFS NFS 
15B Port Bunyala Ta39, Ta40, Ta48 NFS 
16B Mageta Island Ta35, Ta36, Ta38 NFS 

 

Table 2.2 Tilapia sampling sites May 2019. This table shows the sites, 1C-C, 3C, 4D, 
6B, 7A-B, 7D, 9B, 9E, 10, 11E-F, 13B, 13D, 15B and 16B, where farmed and wild tilapia 
(Ta) were caught from. NFS – no fish sampled. GI – gastrointestinal tract contents. Ta – 
muscle.  
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Figure 2.3 Map of sample sites across Lake Victoria. Wild tilapia sample sites are 
indicated with a red circle. Farmed/caged tilapia sites are indicated with a red triangle. 
Some sample sites had both wild and farmed tilapia sourced from them. The bathymetry 
data highlights the shallow nature of the Winam Gulf in comparison to the main body of 
the Lake. Rivers flowing into the lake, as well as cities around the lake’s basin are labelled. 
Image kindly provided by Dr Andrew Marriott at the BGS. 
 

 

 

 

Winam gulf 
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2.1.1 Tilapia sample preparation  

Tilapia tissue muscle samples were prepared by filleting the fish into two, with one 

fillet cut into smaller pieces prior to being placed into individually labelled bags 

before freezing.  For some fish, the entire GIT (intestines, pyloric ceca, stomach 

and oesophagus) was located and removed, and the entire contents squeezed into 

individually labelled bags and subsequently frozen. Some fish samples had the 

entire GIT removed, with contents intact and frozen straight after to preserve the 

whole GIT plus contents. 

Cut tilapia muscle samples were labelled (Ta), tilapia GIT contents were labelled 

(GI) and tilapia intact gastrointestinal tracts were labelled (GIT). The site location 

they were caught from and the date of isolation was recorded, as well as whether 

they were a farmed/caged (CT) or a wild tilapia (WT) (Tables 2.4 and 2.5). 
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ID SITE LOCATION CAGED (CT) OR WILD (WT) DATE OF ISOLATION 
Ta1 SITE 7B CT3  May 2019 
Ta2 SITE 6B CT4  May 2019 
Ta3 SITE 11E CT3  May 2019 
Ta4 SITE 11E CT1  May 2019 

Ta5 SITE 11F WT3  May 2019 
Ta6 SITE 13B CT2  May 2019 
Ta7 SITE 7B CT2  May 2019 
Ta8 SITE 7B CT4  May 2019 
Ta9 SITE 11F WT1  May 2019 
Ta10 SITE 11F WT2  May 2019 
Ta11 SITE 11E CT2  May 2019 
Ta12 SITE 1B CT2  May 2019 
Ta13 SITE 1B CT3  May 2019 
GI1 SITE 9B CT1 May 2019 
GI2 SITE 9B CT2 May 2019 
GI3 SITE 9B CT3 May 2019 
GI4 SITE 9B CT4 May 2019 
GI5 SITE 9E WT1 May 2019 
Ta14 SITE 9B CT1  May 2019 
Ta15 SITE 9B CT3  May 2019 
Ta16 SITE 13D WT3  May 2019 
Ta17 SITE 1B CT1  May 2019 
Ta18 SITE 9B CT4  May 2019 
Ta19 SITE 9E WT3  May 2019 
Ta20 SITE 13B CT3  May 2019 
Ta21 SITE 13D WT4  May 2019 
Ta22 SITE 9B CT2  May 2019 
Ta23 SITE 9E WT1  May 2019 
Ta24 SITE 13B CT1  May 2019 
Ta25 SITE 13D WT2  May 2019 
Ta26 SITE 9E WT2  May 2019 
Ta27 SITE 13D WT1  May 2019 
Ta28 SITE 1A WT1 May 2018 

 
 
Table 2.4 Fish samples analysed (May 2019 and 2018). This table shows the 
different tilapia samples used in this study. The date, site number and location they were 
caught from was recorded and whether they were a caged (CT) or a wild tilapia (WT). 
Tilapia muscle samples used were labelled (Ta) and tilapia gastrointestinal tract contents 
were labelled (GI). Most samples were collected in May 2019, but some samples from May 
2018 were also analysed. 
 



49 
 

 
 

Ta29 SITE 4D WT1  May 2019 
Ta30 SITE 4D CT1  May 2019 
Ta31 SITE 4D CT2  May 2019 
Ta32 SITE 1C WT2  May 2019 
Ta33 SITE 4D WT3  May 2019 
Ta34 SITE 1C WT3  May 2019 
Ta35 SITE 16B CT2  May 2019 
Ta36 SITE 16B CT3  May 2019 
Ta37 SITE 1C WT1  May 2019 
Ta38 SITE 16B CT1  May 2019 
Ta39 SITE 15B WT3  May 2019 
Ta40 SITE 15B WT1  May 2019 
Ta41 SITE 6B CT2  May 2019 
Ta42 SITE 7D WT1  May 2019 
Ta43 SITE 7D WT2 May 2019 
Ta44 SITE 7D WT3  May 2019 
Ta45 SITE 6B CT1  May 2019 
Ta46 SITE 6B CT3  May 2019 
Ta47 SITE 7B CT1  May 2019 
Ta48 SITE 15B WT2  May 2019 
Ta49 SITE 10  CT3  May 2018 
Ta50 SITE 7 CT2  May 2018 
Ta51  SITE 10  WT1  May 2018 
Ta52 SITE 9B CT3  May 2019 
Ta53 SITE 4D WT2  May 2019 
Ta54 SITE 3C WT2  May 2018 
Ta55 SITE 1A WT1  May 2018 
Ta56 SITE 1A WT2  May 2018 
Ta57 SITE 1A WT3  May 2018 
Ta58 SITE 1B CT2  May 2018 

Ta59 SITE 1B CT3  May 2018 
Ta60 SITE 1B CT1 May 2018 

 

Table 2.4 (continued) Fish samples analysed (May 2019 and 2018). This table 
shows the different tilapia samples used in this study. The date, site number and location 
they were caught from was recorded and whether they were a caged (CT) or a wild tilapia 
(WT). Tilapia muscle samples used were labelled (Ta) and tilapia gastrointestinal tract 
contents were labelled (GI). Most samples were collected in May 2019, but some samples 
from May 2018 were also analysed. 
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ID SITE LOCATION CAGED (CT) OR WILD (WT) DATE OF ISOLATION 
GIT6 SITE 4 CT2  Jan 2019 
GIT7 SITE 4 WT2  Jan 2019 
GIT10 SITE 7B CT1  Jan 2019 
GIT13 SITE 18A WT1  Jan 2019 
GIT15 SITE 1A WT1  Jan 2019 
GIT19 SITE 1B CT1  Jan 2019 
GIT20 SITE 1B CT2 Jan 2019 
Ta61 SITE 1A WT1  Jan 2019 
Ta62 SITE 1A WT2  Jan 2019 
Ta63 SITE 1A WT3  Jan 2019 
Ta64 SITE 1A WT4 Jan 2019 
Ta65 SITE 1B  CT1  Jan 2019 
Ta66 SITE 1B  CT2  Jan 2019 
Ta67 SITE 1B  CT3  Jan 2019 
Ta68 SITE 1B  CT4  Jan 2019 
Ta69 SITE 4  CT1  Jan 2019 
Ta70 SITE 4  CT2   Jan 2019 
Ta71 SITE 4  CT3   Jan 2019 
Ta72 SITE 4 WT1  Jan 2019 
Ta73 SITE 4 WT2  Jan 2019 
Ta74 SITE 4 WT3  Jan 2019 
Ta75 SITE 4 WT4  Jan 2019 
Ta76 SITE 7B CT1  Jan 2019 

Ta77 SITE 7B CT2  Jan 2019 
Ta78 SITE 7B CT3  Jan 2019 
Ta79 SITE 18A WT1  Jan 2019 
Ta80 SITE 18A WT2  Jan 2019 

 

Table 2.5 Fish samples analysed (January 2019). This table shows the different 
tilapia samples used in this study. The date, site number and location were caught from 
is given and whether they were a caged (CT) or a wild tilapia (WT). Tilapia muscle samples 
used were labelled (Ta) and tilapia intact gastrointestinal tracts were labelled (GIT). These 
samples were all collected in January 2019. 
 

 

2.2 Alkaline digestion of fish samples  

Potassium hydroxide (KOH) was chosen as a suitable digestion reagent, at a 10% 

solution concentration (Thiele et al., 2019). KOH has been shown to be the most 

viable extraction media, allowing the digestates to be filterable, without polymer 
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modification. 10g of KOH flakes (Thermo Fisher Scientific) was weighed out and 

added to 100ml of reverse osmosis (RO) water, this solution was then poured onto 

either the GIT contents, the whole intact GITs or muscle/tissue samples from each 

fish sample. These samples were then gently mixed, sealed with parafilm (Bemis) 

before incubation at 60°C for 19-21 hours (hr) (Alexandre et al., 2016). 

 

2.2.1 GIT content samples digestion with KOH 

Each tilapia GIT contents sample was weighed in their individual bags (see Table 

2 in appendix), 100ml of RO water was poured into the bag to wash the contents 

into a labelled conical flask. 10g of KOH flakes (to make a 10% solution) were 

added to the flask and the empty bag was re-weighed, to determine the original 

weight of the GIT contents. 

 

2.2.2 Whole GIT samples digestion with KOH 

Intact GIT samples were weighed in their individual bags (see Table 2 in 

appendix), 100ml of RO water was poured into the bag to wash the GIT into a 

labelled conical flask. A 10% solution of KOH solution was added to the flask. 

These samples contained more organic content, and digestion at 60°C for 24hr 

was not sufficient to digest this material. KOH digestion at a lower temperature, 

40°C for 12 days (d) and 16d was also tested as an alternative for these samples.  

 

2.2.3 Tissue samples digestion with KOH 

Whole tissue/muscle samples were weighed, and their weight recorded. Small 

10mm3 pieces of the tissues were cut, weighed and recorded again (see Table 1 

in appendix), before being placed into individually labelled conical flasks, when a 
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10% solution of KOH solution was added. The remaining tissue sample placed 

back into the freezer.  

 

2.3 Filtration of digested fish samples  

Following 60°C incubation for 19-21hr, conical flasks were removed and left on 

the bench. Due to their micro size, contamination from atmospheric microplastics 

poses a risk in producing inaccurate results. To prevent contamination all samples 

were filtered over Whatman glass microfibre filters, Grade GF/A, 1.6 µm pore size 

(Sigma-Aldrich), which were folded to sit inside a glass funnel (Pyrex). All glass 

filter funnels, scalpels, forceps, scissors and weighing scales used were washed 

with 70% ethanol. Each digested sample was poured onto the filter, with unwanted 

liquid passing through the filter and collecting in a large media bottle, leaving any 

non-digested content to collect on the filter paper. Post-filtration, petri dishes 

(Sigma-Aldrich) were labelled with the samples details and the filter paper was 

unfolded and placed flat in the petri dish to air dry for 24hr.  

 

2.4 Source of positive controls for plastics  

2.4.1 Microbeads 

‘Clean & Clear’ face wash (Johnson & Johnson Limited) (Figure 2.6) used to contain 

PE blue and white microbeads. Their use was discontinued in 2017 with the 

microbeads replaced with biodegradable cellulose and jojoba beads, derived from 

plants (Clean & Clear, 2017). A microbead-containing version of the face wash 

was used for a source of primary microplastics for a control. Beads were extracted 

by adding 400ml of RO water to the face wash, followed by centrifugation at 3000g 

for 15 minutes (min). The resulting solution was filtered using sterile muslin 
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cloths; this was repeated 4 times. Whatman glass microfiber filters were used to 

filter the solution, and the filter was left to air dry prior to recovery from the filter.  

 

 

Figure 2.6 Clean & Clear face wash. This product (from 2017) contained both white 
and blue microbeads, these were extracted in the initial part of the project. The product 
composition has now changed and microbeads have been replaced with biodegradable 
jojoba and cellulose beads, derived from plants (Clean&Clear, 2017). 

 

2.4.2 Fishing Nets 

Fishing nets caught from Lake Victoria, abandoned as ghost gear from fishing 

boats, were split according to colour (Figure 2.7). Blue, yellow, white and green 

netting were split into singular strands, weighed and length measured (see Table 

3 in appendix). These were then individually digested with KOH (10% solution) 

for 24hr at 60°C. These were then filtered and stained using Nile red (Sigma-

Aldrich) and DAPI (Thermo Fisher Scientific). These net pieces were also used in 

method optimisation, by allowing dye efficacy of both stains to be tested, as well 
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as investigating if any plastic polymers are degraded at varying temperatures and 

time lengths of KOH digestion. 

 

Figure 2.7 Fishing net caught from Lake Victoria. The collection of fishing nets was 
split according to colour – blue, yellow, white and green. These net pieces were classed 
as plastic microfibres and so were used as positive controls for testing dye efficacy. 
 

 

2.5 Fluorescent staining  

2.5.1 Nile red 

Nile red (Sigma-Aldrich) is a lipid soluble fluorescent dye which allows the in-situ 

staining of lipids, and subsequent visualisation under a microscope. Nile red was 

diluted with acetone (Thermo Fisher Scientific) to give an optimum concentration 

of 10µg/ml (Maes et al., 2017). An incubation time of 30min (Joon Shim et al., 

2016) was adopted for staining, as incubation times longer than 30 to 60min led 

to gradual aggregation of unabsorbed dye and stronger background staining of 

the filters. 
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An 1/8th of each filter paper was cut (Figure 2.8), placed on a glass side inside a 

staining box and 200µl of diluted Nile red was covered over the filter paper slice. 

During the incubation period, the staining box was covered in foil, as the dye is 

photosensitive.  

 

 
 
Figure 2.8 Petri dish containing filer paper. This was taken after the digestion and 
filtration processes were completed (prior to drying) and shows a typical 1/8th cut of filter 
paper (demonstrated by blue dashed line) used for staining and microscopic analysis. 
 

 

2.5.2 DAPI 

DAPI (4’,6-diamidino-2-phenylindole) (Thermo Fisher Scientific) staining solution 

is a fluorescent stain for labelling DNA and therefore biological material in 

fluorescent microscopy. DAPI was dissolved in water to give a final concentration 
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of 0.5µg/ml (Stanton et al., 2019). DAPI staining was performed after all other 

staining and acts as a counterstain.  

Following staining and incubation with Nile red, the same 1/8th of filter paper was 

covered with 200µl of diluted DAPI solution and placed in the foiled staining box 

to incubate for 5min (Figure 2.9). The sample was then ready for fluorescent 

microscopy analysis. 

 

 

Figure 2.9 Example of staining with Nile red or DAPI stain. This image shows an 
example of how microplastics fluoresce green when stained with Nile Red (A) and organic 
material fluoresces blue after using the counterstain DAPI (B). A fibre is identified here 
from a wild tilapia muscle sample after 30 minutes incubation with Nile Red (A). Image B 
is after 5 minutes incubation with DAPI, highlighting that this fibre is not an organic 
material. Image taken from area 14 on the 1/8th of filter paper on the Lecia DFC420 
microscope at x40 magnification. 
 

 

2.6 Fluorescent microscopic detection 

Stained samples were viewed under the Lecia DFC420 microscope. For initial 

fluorescent analysis for the Nile Red stain, a high powered L5 blue light (excitation 

wavelength, 430−490 nm; emission wavelength, 510−560 nm) was used. This 

was combined with an orange filter to remove any unwanted background 

interference. The exposure values used were dependent on the final thickness of 
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debris on the filter paper, post-digestion. A gamma value of 0.65 and a gain of 

2.1 were applied to all samples. A magnification of x40 was used to view all 

samples and take images. Some images of the smaller micro fragments and beads 

were taken at a x100 magnification (Figure 2.10). The images taken were labelled 

to show their sample ID and the presence or lack of microplastics, as well as their 

location on the filter paper.  

Secondary DAPI stain analysis used the same microscope but was observed in 

blue fluorescence with an A4 FLUO light (excitation wavelength, 355−405 nm; 

emission wavelength, 420−480 nm). A gamma value of 0.60 and a gain of 1.0 

was applied to all samples.  

 

 

Figure 2.10 Example of X40 magnification or X100 magnification. The image shown 
is an example of a fluorescent image taken on the Leica DFC420 microscope at X40 
magnification (A) and an image taken at a X100 magnification (B). A bead is identified 
here from a wild tilapia muscle sample after 30 minutes incubation with Nile Red. Images 
taken from area 30 on the 1/8th of filter paper.  
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2.6.1 Numbered filter paper areas 

Whatman glass microfiber filters were divided into 1/8th pieces for staining and 

subsequent microscope analysis. This 1/8th was further divided into 5mm2 boxes, 

each box was numbered, with numbers ranging from 1 to 38 (Figure 2.11). During 

microscopic analysis when a microplastic piece was identified, the numbered area 

where it was identified was recorded. 

 

Figure 2.11 Filter paper areas. This shows the 5mm2 boxes the 1/8th of stained filter 
paper was divided into. Box numbers ranged from 1 to 38 and this number was recorded 
when a microplastic was identified.  
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2.7 Extraction of genomic DNA  

The 1/8th of filter paper used for fluorescent microscopy was washed and used to 

extract genomic DNA from plastispheres present on the microplastics. 440µl of 

PBS (Thermo Fisher Scientific) was washed over the filter paper and collected in 

a microcentrifuge tube (Thermo Fisher Scientific). 200µl of buffer AL (Qiagen) and 

20µl proteinase K (Qiagen) was added, this was incubated for 3hr at 56°C. 

Extraction of genomic DNA from this was carried out using the DNeasy Blood and 

Tissue kit (Qiagen) following the manufacturer’s protocol. Genomic DNA was 

eluted from the spin column with 200µl of buffer AE (Qiagen), incubated (room 

temperature, 1min) prior to centrifugation (1min, 6000g). Eluted DNA was stored 

at -20°C. 

 

2.7.1 Assessment of the quality and quantity of DNA 

The nanodrop 8000 (Thermo Fisher Scientific) was used to assess the quantity 

and quality of the extracted genomic DNA. 

 

2.8 Polymerase Chain Reactions 

Polymerase chain reaction (PCR) was used to screen for the presence of bacterial 

DNA and bacterial species-specific DNA using a Genetouch (Bioer) PCR machine. 

 

2.8.1 Primers for PCR  

Primer pairs that targeted a range of different bacterial specific genes were used 

in this study (Table 2.12). The V3V6 primer pair (Chakravorty et al., 2007) targets 

the 16s Ribosomal rRNA and was used to detect the presence of bacterial DNA, 

potentially from the plastisphere on the microplastic’s surface. The remaining 

primer pairs (Table 2.12) were used to screen for the specific bacterial 
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genus/species; carA (Pseudomonas fragi, Pseudomonas putida and Pseudomonas 

lundensis) (Ercolini et al., 2007), sub0888 (Streptococcus uberis) (Leigh et al., 

2010), tyrB (Klebsiella pneumoniae) (Heilbronn et al., 1999), uspA (Escherichia 

coli) (Chen and Griffiths, 1998), uidA (Escherichia coli) (Heijnen and Medema, 

2006), porA (Campylobacter coli and Campylobacter jejuni) (Fontanot et al., 

2014), jej (Campylobacter coli and Campylobacter jejuni) (Linton et al., 1997) 

and lact (Lactobacillus) (Dubernet et al., 2002). These bacteria reflect a small 

proportion of the bacteria which can be associated with an aquatic environment 

and/or fish. 

 

 
Table 2.12 Table of primers used in this study. This table shows the primer name, 
sequence, their amplicon size in base pairs (bp) and their annealing temperatures (°C). 
The V3V6 primer pair (Chakravorty et al., 2007) targets the 16s Ribosomal rRNA and was 
used to detect the presence of bacterial DNA on the microplastic’s surface. The remaining 
primer pairs were used to screen for the presence of specific bacterial genus/species 
present; carA (Pseudomonas fragi, Pseudomonas putida, Pseudomonas lundensis) 
(Ercolini et al., 2007), sub0888 (Streptococcus uberis) (Leigh et al., 2010). 

Gene 
Name 

Forward 
primer 

Reverse 
primer 

Amplicon 
size (bp) 

Annealing 
temperature 

Reference 

V3V6 5’ACTYCTA

CGGRAGGC

WGC’3 

5’CRRCACCA

GCTGACGAC’

3 

739 58°C (Chakravorty 
et al., 2007) 

carA  5’CGTCAGC

ACCGAAAA

AGCC’3 

5'TGATGRCC

SAGGCAGAT

RCC’3 

370 56.6°C (Ercolini et 
al., 2007) 

carA  
 

5'ATGCTGG

TTGCYCGT

GGC’3 

5'TGATGRCC

SAGGCAGAT

RCC’3 

230 56.6°C (Ercolini et 
al., 2007) 

carA  
 

5'TGTGGCG

ATTGCAGG

CATT’3 

5'TGATGRCC

SAGGCAGAT

RCC'3 

530 56.6°C (Ercolini et 
al., 2007) 

sub0888  5’CTTTATG

AAAATAGC

CAAGCTGA

AA’3 

5'TGTGAGCC

AGTTGGAGG

AAG'3  

974 56.1°C (Leigh et al., 
2010) 
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Table 2.12 (continued) Table of primers used in this study. This table shows the 
primer name, sequence, their amplicon size in base pairs (bp) and their annealing 
temperatures (°C). The remaining primer pairs were used to screen for the presence of 
specific bacterial genus/species present; tyrB (Klebsiella pneumoniae) (Heilbronn et al., 
1999), uspA (Escherichia coli) (Chen and Griffiths, 1998), uidA (Escherichia coli) (Heijnen 
and Medema, 2006), porA (Campylobacter coli and Campylobacter jejuni) (Fontanot et 
al., 2014), jej (Campylobacter coli and Campylobacter jejuni) (Linton et al., 1997) and 
lact (Lactobacillus) (Dubernet et al., 2002). The M13/T7 primer pair (Tabor and 
Richardson, 1987) are used for PCR amplification, to sequence inserts that have been 
cloned.  
 

 

Gene 
Name 

Forward 

primer 

Reverse 

primer 

Amplicon 
size (bp) 

Annealing 
temperature 

Reference 

tyrB  5'GGCTGTA

CTACAACG

ATGAC’3 

5'TTGAGCAG

GTAATCCAC

TTTG’3 

931 54.7°C (Heilbronn et 
al., 1999) 

uspA 5’CCGATAC

GCTGCCAA

TCAGT’3 

5’ACGCAGAC

CGTAGGCCA

GAT’3 

884 
 

58.9°C (Chen and 
Griffiths, 
1998) 

uida 5’TATGGAA

TTTCGCCG

ATTTT’3   

 5’TGTTTGCC

TCCCTGCTG

CGG’3  

166 52.5°C (Heijnen and 
Medema, 
2006) 

porA 5’TGGTTGG

GATGCAAC

TCTT’3 

5’GCCTACAC

GAACTGTTT

CG’3 

211 56.1°C (Fontanot et 
al., 2014) 

jej 5’AATCTAA

TGGCTTAA

CCATTA’3  

5’GTAACTAG

TTTAGTATTC

CGG’3 

854 50.8°C (Linton et al., 
1997) 

lact 5’CTTGTAC

ACACCGCC

CGTCA’3 

5’CTGAAAAC

TAAACAAAG

TTTC’3 

250 51.1°C (Dubernet et 
al., 2002) 

M13 
reverse 
/T7 

5’GTAAAAC

GACGGCCA

G’3 

 

5’CAGGAAAC

AGCTATGAC’

3 

 

178 
(without 
insert) 

54.8°C (Tabor and 
Richardson, 
1987) 
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2.8.2 PCR with GoTaq master mix 

PCRs were run according to the manufacturer’s protocol using GoTaq green master 

mix (Promega). The conditions were an initial incubation for 3min at 95°C. 

Followed by 30 cycles of denature for 30sec at 98°C, annealing for 30sec at 58°C 

and extension for 20sec at 72°C. Followed by a final extension for 7min at 72°C. 

 

2.8.3 Agarose gel electrophoresis 

PCR products were run on a 1% agarose gel (Invitrogen) using Tris-acetate 

Ethylenediaminetetraacetic acid (TAE, Thermo Fisher Scientific), containing 2 µl 

of Gel Red (Invitrogen). Loading dye was already present in the PCR product, so 

20µl of PCR product was loaded onto the gel, along with 5µl of 1kb ladder 

(Promega), prior to electrophoresis (Biorad, 70V, 45min). 5µl of remaining PCR 

product was frozen at –20°C. 

 

2.9 Cloning 

Cloning was carried out using the TOPO TA Cloning Kit (Invitrogen) following the 

manufacturer’s protocol. Nutrient agar plates (Oxoid) containing ampicillin 

(50µg/ml), were spread with 40µl of 40mg/ml of X-gal. The cloning mix was 

spread on two plates, 50µl on one and 150µl on the other and both incubated 

overnight (37°C). White colonies formed were picked and suspended in both 3ml 

of nutrient broth containing ampicillin (50µg/ml) and 3ml of nutrient both 

containing kanamycin (50µg/ml) and incubated overnight in the thermo shaker 

(37°C, 200rpm).  
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2.9.1 Plasmid purification 

The QIAprep spin miniprep kit (Qiagen) was used to extract plasmid DNA, 

following the manufacturer’s protocol. Plasmid DNA was eluted in buffer EB 

(Qiagen) and stored at -20°C. 

 

2.9.2 Screening of positive clones using PCR 

PCR on the purified plasmid DNA from the positive clones was carried out using 

GoTaq (Promega), with M13 reverse and T7 primers (Table 2.12). The conditions 

were an initial incubation for 3min at 95°C. Followed by 30 cycles of denature for 

30sec at 98°C, annealing for 30sec at 58°C and extension for 20sec at 72°C. 

Followed by a final extension for 7min at 72°C. The PCR products were run as 

previously described (see section 2.8.3). 

 

2.10 Scanning electron microscopy 

2.10.1 Analysis of the SEM 

The Nanoscale and Microscale Research Centre (nmRC) at the University of 

Nottingham used their Scanning Electron Microscope (SEM) to analyse the 

samples, and further investigate the potential microplastics observed for the 

presence of a biofilm. COVID-19 prevented us from analysing the samples 

ourselves alongside the technical support staff of the nmRC. 

A finely focused electron beam was scanned across the samples, generating 

electron signals, these were amplified and detected to produce an image of the 

microplastic’s surface in the samples. An energy dispersive X-ray microanalysis 

(X-Max -150 EDX) system was used for high sensitivity chemical analysis to 

determine the elemental composition of areas in the sample.   
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2.10.2 Samples analysed by SEM 

A section of Whatman microfibre filter paper with no reagents on and a filter paper 

section with KOH (10% solution), Nile Red and DAPI stains on it, were sent as 

controls for SEM analysis. Their structure and elemental composition were 

recorded, as this highlighted any interference that came from the reagents or 

equipment used and therefore would be considered when screening for 

microplastics in the tilapia samples.  

Macroplastic litter and nets collected from Lake Victoria, as well as extracted 

microbeads from the 2017 Clean & Clear facewash, were sent as controls of 

plastics for SEM analysis (Figure 2.13). Their structure and elemental composition 

were recorded, as this gave microplastic indicators that could be screened for in 

the tilapia samples.   

The same filter paper samples used for fluorescent microscopy were sent for SEM 

analysis. These samples included four tilapia muscle samples (Ta18, Ta33, Ta44 

and Ta48) and one tilapia GIT contents sample (GI5). This filter paper also 

contained KOH (10% solution) used to digest the organic material, as well as Nile 

Red and DAPI stains.   

Untreated samples were also sent for SEM analysis, consisting of 1cm cubes of 

tilapia muscle (Figure 2.14), and 1cm sections of intestines from intact tilapia GIT 

(Figure 2.15). As samples were examined hydrated, there was no preparation 

required prior to scanning. These samples included four muscle samples (Ta20, 

Ta66, Ta69, Ta72) and one intact GIT (GIT20). 
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Figure 2.13 Analysis of macroplastic litter collected from Lake Victoria with 
environmental scanning electron microscope. This image shows a 1cm section of 
macroplastic litter found in Lake Victoria being analysed by the environmental scanning 
electron microscope (ESEM) at the Nanoscale and Microscale Research Centre (nmRC) 
(University of Nottingham). The macroplastic litter here is an item of food packaging and 
was used as a control for microplastic indicators. Image kindly provided by Nicola Weston 
at the nmRC.  
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Figure 2.14 Analysis of tilapia muscle sample with environmental scanning 
electron microscope. This image shows a 1cm cube of tilapia muscle sample (Ta20; 
caged tilapia, site 13B), being analysed by the environmental scanning electron 
microscope (ESEM) at the Nanoscale and Microscale Research Centre (nmRC) (University 
of Nottingham). This muscle sample was untreated and examined hydrated. Image kindly 
provided by Nicola Weston at the nmRC. 
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Figure 2.15 Analysis of tilapia intact gastrointestinal tract section sample with 
environmental scanning electron microscope. This image shows a 1cm section of 
intestines taken from intact gastrointestinal tract sample GIT20 (caged tilapia, site 1B), 
being analysed by the environmental scanning electron microscope (ESEM) at the 
Nanoscale and Microscale Research Centre (nmRC) (University of Nottingham). This GIT 
sample was untreated and examined hydrated. Image kindly provided by Nicola Weston 
at the nmRC. 
  

 

2.10.3 Analysis using the environmental SEM  

Environmental SEM (FEI Quanta 650 ESEM) allows for the imaging of samples with 

minimal preparation and adds variables such as hydration, thermal cycling, and 

the introduction of gas to characterize in situ dynamic changes. Images were 

taken in Low Vac mode with water vapour as the imaging gas, and using the Large 

Field Gaseous Detector (LFD) to obtain topographical images and the Back 

Scattered Detector (BSE) to obtain compositional images (a higher atomic number 
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appears brighter). Chamber pressure was in the range of 60 to 70 Pa in most 

cases (this is displayed in the individual image databar).  In this study they were 

used to examine the fully hydrated samples. 

Filter papers were mounted onto subs using carbon adhesive tape, and for the 

unfiltered frozen samples, a section was cut, thawed and placed on a stub, with 

any excess water wiped off. All samples were imaged using the same parameters. 

EDX spectra and maps were obtained using the Oxford Instruments Aztec system. 

The EDX system determined the elemental composition of areas in the sample. A 

scale was developed to group detected elements by their concentrations, 

measured in cps/eV (Table 2.16). A value >100 cps/eV was grouped very high, 

60-99 cps/eV was grouped high, 20-59 cps/eV was medium, 10-19 cps/eV was 

low and <10 was grouped as trace.  

 

Groups  Amount detected (cps/eV) 

Very high >100 

High 60-99 

Medium 20-59 

Low 10-19 

Trace <10 

 

Table 2.16 Groups for cps/eV amounts detected using EDX. This table shows the 
scale developed to group detected elements by their concentrations, after EDX analysis. 
Concentrations were measured in cps/eV, a value >100 cps/eV was grouped very high, 1-
60-99 cps/eV was grouped high, 20-59 cps/eV was grouped medium, 10-19 cps/eV was 
grouped low and <10 was grouped as trace. 
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3.0 Results  

3.1 Analysis of positive controls for plastic  

To test the reliability of the Nile Red and DAPI stains, a mixture of microbeads 

from the face wash and different coloured net strands from macroplastic litter 

from Lake Victoria were digested, filtered and analysed by fluorescent microscopy, 

following staining with Nile Red and DAPI. The net strands fluoresced highly with 

Nile Red, and did not fluoresce with the counterstain DAPI. Figure 3.1 shows a 

yellow net stand fluorescing with Nile Red and not fluorescing with DAPI stain. As 

these net strands were taken from macroplastic litter, the samples appeared 

larger than microfibres would appear under the same microscope magnification 

view.  

 

 

Figure 3.1 Positive control for plastic net. This image shows a yellow macroplastic net 
strand from Lake Victoria, used as a positive control in this study. Image A is after 30 
minutes incubation with Nile Red. Image B is after 5 minutes incubation with DAPI. Image 
taken on Lecia DFC420 microscope at X40 magnification.  
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The facewash product used contained two different types of microbeads: smaller 

white beads and larger blue beads. Upon fluorescent analysis the white beads 

fluoresced highly and appeared non-uniform in their shapes. Figure 3.2 shows a 

blue net strand fluorescing highly, surrounded by the smaller fluorescing white 

microbeads from the facewash.  

 

 

Figure 3.2 Positive control for white microbeads. This image shows a blue 
macroplastic net strand from Lake Victoria, surrounded by white microbeads from a 
facewash product, which were both used as positive controls in this study. Image A is after 
30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with DAPI. 
Image taken on Lecia DFC420 microscope at X40 magnification.  
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Interestingly fluorescent analysis of the larger blue microbeads found them to 

appear as dark spheres with Nile Red that glowed with DAPI stain. Figure 3.3 

shows a larger blue bead appearing as a dark sphere with Nile Red (shown by the 

blue arrow) and fluorescing with DAPI stain. The smaller white beads can be seen 

fluorescing around the outside structure of the blue bead. 

 

Figure 3.3 Positive control for blue microbeads. This image shows a larger blue 
microbead (shown by blue arrow), surrounded by smaller white microbeads, both from a 
facewash product and used as positive controls in this study. Image A is after 30 minutes 
incubation with Nile Red. Image B is after 5 minutes incubation with DAPI. Image taken 
on Lecia DFC420 microscope at X40 magnification.  
 

 

3.2 Detection of microplastics in fish muscle  

Eighty digested and filtered tilapia muscle samples (Ta) were analysed by 

fluorescent microscopy, following staining with Nile Red and DAPI. In total, 81 

microplastic pieces were identified from the muscle samples. At least 1 

microplastic piece was detected in 38 out of the 80 (48%) Ta, with 25% of samples 

having more than 1 microplastic piece. The prevalence of microplastics within each 

sample (see section 2.6.1 for division of filter paper area used) was grouped by 
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their structural appearance into either fragment, foam, film, fibre or bead (Table 

3.4). Forty muscle samples had no identifiable microplastics, and 2 of the samples 

(Ta8 and Ta49) could not be analysed due to insufficient digestion of organic 

material in the sample. 

 

ID MP confirmed filter 
paper areas MP type MP amount 

Ta1 - - 0 
Ta2 - - 0 
Ta3 3 Fragment 1 
Ta4 - - 0 
Ta5 - - 0 
Ta6 - - 0 
Ta7 22 + 14 Film + Fragment 1 + 1 = 2 
Ta8 VOID VOID VOID 
Ta9 9 + 20 Fibre + Bead 1 + 3 = 4 
Ta10 10 Bead + Film 3 + 1 = 4 
Ta11 - - 0 
Ta12 13 Bead 2 
Ta13 - - 0 
Ta14 - - 0 
Ta15 14 Film 2 
Ta16 1 Fragment 4 
Ta17 - - 0 
Ta18 7 Fibre 1 
Ta19 - - 0 
Ta20 15 Fragment 1 
Ta21 - - 0 
Ta22 - - 0 
Ta23 - - 0 
Ta24 - - 0 
Ta25 - - 0 

 
 
Table 3.4 Microplastic presence in tilapia muscle samples. This table shows the 
microplastic (MP) type (fragment, foam, film, fibre and bead), amount present and the 
numbered filter paper area where it was identified in each tilapia muscle sample, after 
staining with Nile Red and DAPI and subsequent visualisation under the fluorescent 
microscope. Some sample’s results were ‘VOID’ due to too much undigested debris 
present, making the sample unreadable under the microscope.    
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ID MP confirmed filter 
paper areas MP type MP amount 

Ta26 26 Fragment 1 
Ta27 14 + 18 Foam + Fibre 1 + 2 = 3 
Ta28 - - 0 
Ta29 10 Film 1 
Ta30 - - 0 
Ta31 - - 0 
Ta32 - - 0 
Ta33 12 + 13 Fibre 2 
Ta34 - - 0 
Ta35 10 Fragment 1 
Ta36 9 + 17 Fibre 2 
Ta37 - - 0 
Ta38 8 Fibre /11 
Ta39 13 Fragment 1 
Ta40 14 + 60 Fragment 2 
Ta41 - - 0 
Ta42 26 Fibre 2 
Ta43 - - 0 
Ta44 7 + 8 + 20 Film + Fibre + Fragment 1 + 1 + 1 = 3 
Ta45 9 Fibre 1 
Ta46 7 Film 1 
Ta47 12 Fragment 1 
Ta48 18 + 24 Fragment 4 + 2 = 6 
Ta49 VOID VOID VOID 
Ta50 15 Fibre 1 
Ta51 10 + 13 Fibre + Fragment 2 + 1 = 3 
Ta52 - - 0 
Ta53 16 + 18 + 20 Fibre + Film 1 + 2 = 3 
Ta54 - - 0 
Ta55 2 Fragment 1 
Ta56 - - 0 
Ta57 - - 0 
Ta58 - - 0 
Ta59 - - 0 
Ta60 - - 0 

 
Table 3.4 (continued) Microplastic presence in tilapia muscle samples. This table 
shows the microplastic (MP) type (fragment, foam, film, fibre and bead), amount present 
and the numbered filter paper area where it was identified in each tilapia muscle sample, 
after staining with Nile Red and DAPI and subsequent visualisation under the fluorescent 
microscope. Some sample’s results were ‘VOID’ due to too much undigested debris 
present, making the sample unreadable under the microscope.    
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ID MP confirmed filter 

paper areas MP type MP amount 

Ta61 30 Fragment 2 
Ta62 3 Fibre 1 
Ta63 24 Film 1 
Ta64 - - 0 
Ta65 12 Fragment 2 
Ta66 3 Fibre 1 
Ta67 9 Fibre 1 
Ta68 22 Fragment 1 
Ta69 - - 0 
Ta70 - - 0 
Ta71 17 Fibre 1 
Ta72 - - 0 
Ta73 - - 0 
Ta74 8 + 25 Fibre 2 
Ta75 - - 0 
Ta76 - - 0 
Ta77 - - 0 
Ta78 9 + 19 Fibre 2 
Ta79 - - 0 
Ta80 - - 0 

 

Table 3.4 (continued) Microplastic presence in tilapia muscle samples. This table 
shows the microplastic (MP) type (fragment, foam, film, fibre and bead), amount present 
and the numbered filter paper area where it was identified in each tilapia muscle sample, 
after staining with Nile Red and DAPI and subsequent visualisation under the fluorescent 
microscope.  
 

 

 

 

 

 

 

 

 



75 
 

Microplastics were found in 48% of the muscle samples. The most common 

microplastic type was a fibre, found in 21% of the muscle samples, representing 

17 fish (Table 3.5). Fragments were observed in 20% of the fish muscle, from 

16 fish. Beads were observed in 6% of the fish muscle, from 5 fish. The least 

common type was foam which was only seen in one fish.  

 

 

Table 3.5 Quantitative microplastic analysis. This table shows the total amount of 
microplastics (MP) identified in digested tilapia muscle samples (Ta) samples after 
microscopic fluorescent analysis. Microplastics were grouped by the five types: fragment, 
foam, film, fibre and bead. The sample identity for each MP type present was recorded 
and the total amount of MPs present in all samples was determined. The percentage (%) 
of each type compared to the total microplastics content was calculated and the 
percentage (%) of total fish containing each microplastic type was calculated. The most 
common microplastic types were fibres and fragments (21% and 20%) respectively, with 
foam being the least common.  
 

 

 

 

MP Type Fragment Foam Film Fibre Bead 
Amount in 
fish muscle 27 1 10 35 8 
% of total MP 
identified 34% 1% 12% 43% 10% 
% of fish 
identified  20% 1% 10% 21% 6% 
Samples 
present 

Ta3, Ta7, 
Ta16, Ta20, 
Ta26, Ta35,  
Ta39, Ta40, 
Ta44, Ta47, 
Ta48, Ta51, 
Ta55, Ta61, 
Ta65, Ta68 

Ta27 Ta7, Ta15, 
Ta27, Ta29, 
Ta44, Ta46,  
Ta53, Ta63  

Ta9, Ta10, 
Ta18,Ta33, 
Ta36, Ta38,  
Ta42, Ta44, 
Ta45, Ta50, 
Ta51, Ta53, 
Ta66, Ta67, 
Ta71, Ta74, 
Ta78  

Ta9, 
Ta10, 
Ta12, 
Ta27,  
Ta62    
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3.2.1 Fibre in tilapia muscle  

Fibres were the most commonly identified microplastic with 35 pieces (43%) found 

in tilapia muscle samples. Fibres were identified in 17 of the fish analysed within 

the study; Ta9, Ta10, Ta18, Ta33, Ta36, Ta38, Ta42, Ta44, Ta45, Ta50, Ta51, 

Ta53, Ta66, Ta67, Ta71, Ta74 and Ta78. Sample Ta38 had the most fibres 

identified in all analysed muscle samples, with 11 fibres identified. Figure 3.6 

shows a representative example of microplastic fibre found in the fish muscle 

following staining with Nile Red.  

 

 

Figure 3.6 Example of microplastic fibre in tilapia muscle. This image shows an 
example of a fibre in caged tilapia muscle sample Ta36 (Site 16B). Image A is after 30 
minutes incubation with Nile Red. Image B is after 5 minutes incubation with DAPI. Image 
taken from area 17 on the 1/8th of filter paper on Lecia DFC420 microscope at X40 
magnification.  
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Muscle sample Ta38 had the highest volume of microplastics detected out of all 

muscle samples with 11 potential fibres detected (Figure 3.7). 

 

 
Figure 3.7 Example of multiple fibres in tilapia muscle. This image shows a clump 
of multiple fibres (n=11) identified in a caged tilapia muscle sample Ta38 (Site 16B). 
Image A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation 
with DAPI. Image taken from area 8 on the 1/8th of filter paper on Lecia DFC420 
microscope at X40 magnification. 
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3.2.2 Fragment in tilapia muscle  

Twenty-seven fragments (34%) were detected in the muscle samples, observed 

in 16 fish (Ta3, Ta7, Ta16, Ta20, Ta26, Ta35, Ta39, Ta40, Ta44, Ta47, Ta48, 

Ta51, Ta55, Ta61, Ta65 and Ta68). Ta16 and Ta48 had the most fragment, with 

4 and 6 identified in each respectively (Figure 3.8). 

 

 
 
Figure 3.8 Example of microplastic fragments in tilapia muscle. This image shows 
an example of 4 fragments identified in wild tilapia muscle sample Ta48 (Site 15B). Image 
A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with 
DAPI. Image taken from area 18 on the 1/8th of filter paper on Lecia DFC420 microscope 
at X40 magnification.  
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3.2.3 Film in tilapia muscle  

Ten films (12%) were identified in the muscle samples, observed in 8 fish (Ta7, 

Ta15, Ta27, Ta29, Ta44, Ta46, Ta53 and Ta63). Ta15 and Ta53 both had the most 

films identified in all the muscle samples that were analysed, with 2 films identified 

in each sample. Figure 3.9 shows a representative example of microplastic film 

found in the fish muscle following staining with Nile Red.  

 

 

Figure 3.9 Example of microplastic film in tilapia muscle. This image shows an 
example of a film in wild tilapia muscle sample Ta63 (Site 1A). Image A is after 30 minutes 
incubation with Nile Red. Image B is after 5 minutes incubation with DAPI. Image taken 
from area 24 on the 1/8th of filter paper on Lecia DFC420 microscope at X40 magnification.    
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3.2.4 Bead in tilapia muscle  

Eight beads (10%) were detected in 5 tilapia muscle samples from Ta9, Ta10, 

Ta12, Ta27 and Ta62. Samples Ta9 and Ta10 had the most beads identified in all 

analysed muscle samples, with 3 beads identified in each. Figure 3.10 shows a 

representative example of microplastic bead found in the fish muscle following 

staining with Nile Red. 

 

 

Figure 3.10 Example of microplastic bead in tilapia muscle. This image shows an 
example of a bead identified in caged tilapia muscle sample Ta62 (Site 1A). Image A was 
taken at X100 magnification and is after 30 minutes incubation with Nile Red. Image B 
was taken at X40 magnification and is after 5 minutes incubation with DAPI. Image taken 
from area 23 on the 1/8th of filter paper on Lecia DFC420 microscope.  
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3.2.5 Foam in tilapia muscle  

Foam was the least prevalent microplastic identified in the muscle samples, with 

only 1 foam detected (sample Ta27) (Figure 3.11).  

 

 
Figure 3.11 Example of microplastic foam in tilapia muscle. This image shows an 
example of a foam identified in wild tilapia muscle sample Ta27 (Site 13D). Image A is 
after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with 
DAPI. Image taken from area 14 on the 1/8th of filter paper on Lecia DFC420 microscope 
at X40 magnification.     
 
 

 
3.3 Comparison of microplastic presence in caged versus wild tilapia muscle  

Eighty-one microplastic pieces were identified in 31 of the 80 tilapia muscle 

samples used in this study. Microplastics were more abundant in the wild tilapia 

muscle samples (WTM) than the farmed/caged tilapia muscle samples (CTM), with 

35 microplastic pieces (43%) in the CTM, (n=42) and 46 microplastic pieces 

(57%) in the WTM, (n=38) (Table 3.12). 

More fragments were identified in WTM (19 fragments) than CTM (8 fragments), 

found in 19 and 8 fish respectively. One foam was identified in WTM (Ta27), while 

none were identified in CTM. More films were identified in WTM (6 films) compared 
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to 4 films in CTM, found in 6 and 4 fish respectively. However, CTM had a greater 

number of fibres (21 fibres) than the WTM (14 fibres), which were found in 21 and 

14 fish respectively. There were more beads identified in WTM (6 beads) than CTM 

(2 beads), and these were seen in 6 and 2 fish respectively.  

Fibres were the most prevalent microplastic type identified in CTM (21 fibres), 

whereas fragments were the most prevalent microplastic type identified in WTM 

(19 fragments). Foam was the least prevalent microplastic type in both CTM and 

WTM, with none found in CTM and 1 in the WTM.  

 

 
 
Table 3.12 Comparison of microplastic presence in caged vs wild tilapia muscle 
samples. This table shows a comparison of the microplastic (MP) type and the amount 
identified in caged tilapia muscle samples (CTM) (n=42) vs wild tilapia muscle samples 
(WTM) (n=38), after staining with Nile Red and DAPI and subsequent visualisation under 
the fluorescent microscope. The muscle ID (Ta) is shown here and a sum of the total 
amount of microplastics identified in CTM vs WTM.   
 

 

 
Total 
MPs Fragment Foam Film Fibre Bead 

CTM 35 8 0 4 21 2 

WTM 46 19 1 6 14 6 
CTM 
ID 

  

Ta3, Ta7, 
Ta20, Ta35, 
Ta47, Ta65, 
Ta65, Ta68 

 
Ta7, Ta15,  
Ta15, Ta46 

Ta18, Ta36, Ta36, 
Ta38, Ta38, Ta38,  
Ta38, Ta38, Ta38, 
Ta38, Ta38, Ta38,  
Ta38, Ta38, Ta45, 
Ta50, Ta66, Ta67,  
Ta71, Ta78, Ta78 

Ta12, Ta12 

WTM 
ID 

  

Ta16, Ta16, 
Ta16, Ta16, 
Ta26, Ta39, 
Ta40, Ta40, 
Ta44, Ta48, 
Ta48, Ta48, 
Ta48, Ta48, 
Ta48, 
Ta51, Ta55, 
Ta61, Ta61 

Ta27 Ta10, Ta29,  
Ta44, Ta53,  
Ta63, Ta63 

Ta9, Ta27, Ta27,  
Ta33, Ta33, Ta42, 
Ta42, Ta44, Ta51,  
Ta51, Ta53, Ta62,  
Ta74, Ta74 

Ta9, Ta9,  
Ta9, Ta10, 
Ta10, Ta10 
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3.4 Detection of microplastics in fish gastrointestinal tract contents  

Five digested and filtered tilapia GIT contents were analysed by fluorescent 

microscopy, following staining with Nile Red and DAPI. Five microplastic pieces 

were identified during microscopy of the GIT contents, present in all four fish 

samples that could be visualised under the microscope (Table 3.13). No results 

were obtained from GI1 as there was too much undigested debris, making it 

unreadable under the microscope. 

 

ID 
MP confirmed filter 
paper areas MP type MP amount 

GI1 VOID VOID VOID 
GI2 25 Bead 1 
GI3 1 Fibre 1 
GI4 2 Fragment 1 
GI5 4 + 34 Fibre + Bead 1 + 1 = 2 

 

Table 3.13 Microplastic presence in tilapia gastrointestinal tract contents. This 
table shows the microplastic (MP) type, amount present and the numbered filter paper 
area where it was identified in each tilapia gastrointestinal tract contents sample (GI), 
after staining with Nile Red and DAPI and subsequent visualisation under the fluorescent 
microscope. GI1 results were ‘VOID’ due to too much undigested debris present, making 
the sample unreadable under the microscope.    
 

 

3.4.1 Types of microplastic identified  

A single bead was identified in both samples GI2 and GI5 (Figure 3.14). 

Interestingly, beads identified in the GIT contents fluoresced at a greater intensity 

than other microplastics. A single bead was found in GI2 and GI5, with a fibre 

found in GI3 (Figure 3.15) and GI5, and a fragment in GI4 (Figure 3.16). No films 

or foams were identified in any of the GIT contents samples.  
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Figure 3.14 Example of bead in tilapia gastrointestinal tract contents. This image 
shows an example of a bead in gastrointestinal tract contents sample GI5 (Site 9E). Image 
A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with 
DAPI. Image taken from area 34 on the 1/8th of filter paper on Lecia DFC420 microscope 
at X40 magnification. 
 

 

 
Figure 3.15 Example of fibre in tilapia gastrointestinal tract contents. This image 
shows an example of a fibre in gastrointestinal tract contents sample GI3 (Site 9B). Image 
A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with 
DAPI. Image taken from area 1 on the 1/8th of filter paper on Lecia DFC420 microscope at 
X40 magnification. 
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Figure 3.16 Example of fragment in tilapia gastrointestinal tract contents. This 
image shows an example of a fragment in gastrointestinal tract contents sample GI4 (Site 
9B). Image A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes 
incubation with DAPI. Image taken from area 2 on the 1/8th of filter paper on Lecia DFC420 
microscope at X40 magnification. 
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3.5 Comparison of microplastic presence in caged versus wild tilapia 
gastrointestinal tract contents 
 
Five microplastics were identified in all 4 of the 5 GIT contents samples that could 

be analysed under the microscope. Three microplastic pieces were identified in 

farmed/caged tilapia GIT contents samples (CTGI) (n=4). Two microplastic pieces 

were identified in the wild tilapia GIT contents sample (WTGI) (n=1), however the 

CTGI had marginally more microplastics identified than the WTGI (Table 3.17).  

Equal amounts of fibres and beads were identified in both CTGI and WTGI, but 

CTGI sample GI4 also contained a fragment. No foams or films were detected in 

either CTGI or WTGI samples. 

 

  Total MPs Fragment Foam Film Fibre Bead 

CTGI 3 1 0 0 1 1 

WTGI 2 0 0 0 1 1 
CTGI ID 

  
GI4 - - GI3 GI2 

WTGI ID 
  

- - - GI5 GI5 

 
 
Table 3.17 Comparison of microplastic presence in caged vs wild tilapia 
gastrointestinal tract contents. This table shows a comparison of the microplastic (MP) 
type and the amount identified in caged tilapia gastrointestinal tract contents (CTGI) (n=4) 
vs wild tilapia gastrointestinal tract contents (WTGI) (n=1), after staining with Nile Red 
and DAPI and subsequent visualisation under the fluorescent microscope. The 
gastrointestinal tract contents ID (GI) is shown here and a sum of the total amount of 
microplastics identified in CTGI vs WTGI.   
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3.6 Detection of microplastics in intact gastrointestinal tracts in fish 

Six digested and filtered tilapia intact GITs were analysed by fluorescent 

microscopy, following staining with Nile Red and DAPI. Twenty-eight microplastic 

pieces were identified during microscopy (Table 3.18), with the most common 

microplastic type being a bead which was found in five of the six samples analysed. 

A film and a fragment were observed in one of the six samples, GIT13 and GIT15 

respectively, with no foams or fibres identified in any of the GIT samples.  

 

ID 
MP confirmed filter 
paper areas MP type MP amount 

GIT6 26 + 32 Bead 3 + 3 = 6 
GIT7 12 Bead 3 
GIT10 6 + 14 + 23 Bead 2 + 3 + 2 = 7 
GIT13   Film + Bead 1 + 1 + 1 = 3 
GIT15 23 Bead + Fragment 1 + 1 + 1 = 3 
GIT19 32 Fragment 6 

 
 
Table 3.18 Microplastic presence in tilapia intact gastrointestinal tracts. This table 
shows the microplastic (MP) type, amount present and the numbered filter paper area 
where it was identified in each tilapia intact gastrointestinal tract (GIT) sample, after 
staining with Nile Red and DAPI and subsequent visualisation under the fluorescent 
microscope.  
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3.6.1 Bead in tilapia intact gastrointestinal tract 

Bead was the most prevalent microplastic type identified in the GITs, with 20 

identified which were present in 5 of the samples. Sample GIT10 had the highest 

microplastic content with 7 beads identified (Figure 3.19).  

 
 
Figure 3.19 Example of beads in tilapia intact gastrointestinal tract. This image 
shows an example of 2 beads in intact gastrointestinal tract sample GIT10 (Site 7B). Image 
A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation with 
DAPI. Image taken from area 6 on the 1/8th of filter paper on Lecia DFC420 microscope at 
X40 magnification. 
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3.6.2 Fragment in tilapia intact gastrointestinal tract 

Seven fragments were identified in all the GITs, of these 6 were identified in 

sample GIT19 and 1 fragment in sample GIT15 (Figure 3.20). The fragments 

fluoresced at a greater intensity than the other microplastic types in the GITs. 

 
 
Figure 3.20 Example of fragment in tilapia intact gastrointestinal tract. This image 
shows an example of a fragment in intact gastrointestinal tract sample GIT15 (Site 1A). 
Image A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation 
with DAPI. Image taken from area 23 on the 1/8th of filter paper on Lecia DFC420 
microscope at X40 magnification. 
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3.6.3 Film in tilapia intact gastrointestinal tract 

Of the six samples analysed, film was only observed in 1 of the samples, GIT13 

(Figure 3.21). 

 
Figure 3.21 Example of film in tilapia intact gastrointestinal tract. This image 
shows an example of a film in intact gastrointestinal tract (GIT) sample GIT13 (Site 18A). 
Image A is after 30 minutes incubation with Nile Red. Image B is after 5 minutes incubation 
with DAPI. Image taken from area 9 on the 1/8th of filter paper on Lecia DFC420 
microscope at X40 magnification. 
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3.7 Comparison of microplastic presence in caged versus wild tilapia 
intact gastrointestinal tracts 
 
Twenty-eight microplastics were identified in all 6 GIT samples. Nineteen (68%) 

microplastic pieces were identified in farmed/caged tilapia GIT samples (CTGIT) 

(n=3), whilst 9 (32%) were identified in wild tilapia GIT samples (WTGIT) (n=3) 

(Table 3.22).  

Bead was the microplastic type most identified in both CTGIT and WTGIT. A 

greater number of fragments were identified in CTGIT compared to WTGIT. No 

foams or fibres were identified in any of the CTGIT or WTGIT samples.  

 

  
Total 
MPs Fragment Foam Film Fibre Bead 

CTGIT 19 6 0 0 0 13 

WTGIT 9 1 0 1 0 7 
CTGIT 
ID 

 

GIT19, GIT19, 
GIT19, GIT19, 
GIT19, GIT19 

- - - GIT6, GIT6, GIT6, 
GIT6, GIT6, GIT6, 
GIT10, GIT10, 
GIT10, GIT10, 
GIT10, GIT10, 
GIT10 

WTGIT 
ID 

  

GIT15 - GIT13 - GIT7, GIT7, GIT7, 
GIT13, GIT13, 
GIT15, GIT15 

 
 
Table 3.22 Comparison of microplastic presence in caged vs wild tilapia intact 
gastrointestinal tracts. This table shows a comparison of the microplastic (MP) type and 
the amount identified in caged tilapia intact gastrointestinal tracts (CTGIT) (n=3) vs wild 
tilapia intact gastrointestinal tracts (WTGIT) (n=3), after staining with Nile Red and DAPI 
and subsequent visualisation under the fluorescent microscope. The intact gastrointestinal 
tract ID (GIT) is shown here and a sum of the total amount of microplastics identified in 
CTGIT vs WTGIT.   
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3.8 Site location comparison 

Tilapia were collected from 18 different site locations across Lake Victoria (Figure 

2.3), with fish from sites 1A, 1B, 1C, 3C, 4, 4D, 6B, 7A, 7B, 7D, 9B, 9E, 10, 11E, 

11F, 13B, 13D, 15B, 16B and 18A used in this study. No microplastics were found 

in fish from sites 1C, 3C and 7C. Fish from all the other sites (1A, 1B, 4, 4D, 5A, 

6B, 7A, 7B, 7D, 9B, 9E, 10, 11E, 11F, 13B, 13D, 15B, 16B and 18A) were found 

to contain microplastics.  

 

3.8.1 Site location comparison in tilapia muscle  

Site 16B (Mageta Island), where 3 of the caged fish (Ta35, Ta36 and Ta38) 

originated, had the greatest amount of microplastics (n=14) identified when 

comparing all the fish from all sites (Table 3.23). All samples contained 

microplastics, but the majority were found in 1 fish (Ta38), where 11 fibres were 

identified.  

Sites 1A (Dunga) and 1B (Dunga) had the greatest number of fish analysed. Eight 

WT were from site 1A (Dunga), and a total of 6 microplastics were identified in 4 

of these (Ta55, Ta61, Ta62 and Ta63). 10 CT were from Site 1B (Dunga), and a 

total of 7 microplastics were identified in the muscle from 5 of these (Ta12, Ta65, 

Ta66, Ta67 and Ta68).  

In the four WT from site 4 (Uyoma point), only 1 microplastic piece was identified 

in 1 fish (Ta74). Of the 3 CT from site 4 (Uyoma point), 2 microplastics were 

identified in 1 of the fish (Ta71). Of the two CT from Site 4D (Uyoma point), none 

were found to contain microplastics. However in the 3 WT from the same site (site 

4D, Uyoma point) all contained microplastics, with a total of 5 microplastics 

identified. 
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In the four CT from site 6B (Off Ngodhe), 2 microplastics were identified in 2 of 

the fish (Ta45 and Ta46). In the one CT from site 7A (Mbeo cages), 1 microplastic 

was identified in this fish (Ta50). Of the 7 CT from site 7B (Mbeo cages), 5 

microplastics were identified in 3 of the fish (Ta7, Ta47 and Ta78). Three WT were 

from site 7D (Mbeo cages), and a total of 5 microplastics were identified in 2 of 

the fish (Ta42 and Ta44).  

In the five CT from site 9B (Bridge Island), 3 microplastics were identified in 2 of 

the fish (Ta15 and Ta18). Of the three WT from site 9E (Bridge Island), 1 

microplastic was identified in 1 of the fish (Ta26).  

In the one CT from site 10 (Kadimo Bay – Anyanga), no microplastics were 

identified. In the one WT from site 10 (Kadimo Bay – Anyanga), 3 microplastics 

were identified in this fish (Ta51). In the three CT from site 11E (Madiany water 

intake), 1 microplastic piece was identified in 1 of the fish (Ta3). Of the three WT 

from site 11F (Madiany water intake), 8 microplastic pieces were identified in 2 of 

the fish (Ta9 and Ta10).  

In the three CT from site 13B (University of Eldoret pond), 1 microplastic was 

identified in 1 of the fish (Ta20). Of the four WT from site 13D (University of 

Eldoret pond), 7 microplastics were identified in 2 of the fish (Ta16 and Ta27). 

In the three WT from site 15B (Port Bunyala), 9 microplastics were identified in 

all 3 of the fish (Ta35, Ta36 and Ta38). Fish sourced from sites 1C (Dunga), 3C 

(Asat cages) and 18A (Sori Bay) had no detectable microplastics.  

A total 46 microplastic pieces (57%) were identified at sites where WT were 

harvested, with a total 35 microplastic pieces (43%) from those sites where CT 

were harvested. Sites where WT were harvested had 14% more microplastics in 

the fish, than in the fish at sites where CT were harvested.  
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Table 3.23 Site location comparison of microplastics in tilapia muscle. This table 
shows the presence of different microplastic (MP) types at each site location where caged 
tilapia muscle (Ta) samples (n=42) and wild tilapia muscle samples (n=38) were analysed 
in this study. The site locations in blue (site 1B) are where caged tilapia were analysed in 
this study and the locations in green (site 1A) are where wild tilapia were analysed. The 
total number of fish sourced from each site and the sample IDs (Ta) containing 
microplastics is shown. Fish at sites 1C, 3C and 18A had no detectable microplastics.  
 

Site  

Total 
number 
of fish 
sourced 
from 
site 

Sample 
IDs with 
MPs 
identified Fragment Foam Film Fibre Bead 

Total 
number 
of MPs 
identified 
at site 

1A 
8 

Ta55, 
Ta61, 

Ta62, Ta63 
3 0 2 1 0 6 

1B 

10 

Ta12, 
Ta65, 
Ta66, 

Ta67, Ta68 

3 0 0 2 2 7 

1C 3 - 0 0 0 0 0 0 

3C 1 - 0 0 0 0 0 0 

4 3 Ta71 0 0 0 1 0 1 

4 4 Ta74 0 0 0 2 0 2 

4D 2 - 0 0 0 0 0 0 

4D 
3 

Ta29, 
Ta33, Ta53 0 0 2 3 0 5 

6B 4 Ta45, Ta46 0 0 1 1 0 2 

7A 1 Ta50 0 0 0 1 0 1 

7B 
7 

Ta7, Ta47, 
Ta78 2 0 1 2 0 5 

7D 3 Ta42, Ta44 1 0 1 3 0 5 

9B 5 Ta15, Ta18 0 0 2 1 0 3 

9E 3 Ta26 1 0 0 0 0 1 

10 1 - 0 0 0 0 0 0 

10 1 Ta51 1 0 0 2 0 3 

11E 3 Ta3 1 0 0 0 0 1 

11F 3 Ta9, Ta10 0 0 1 1 6 8 

13B 3 Ta20 1 0 0 0 0 1 

13D 4 Ta16, Ta27 4 1 0 2 0 7 

15B 
3 

Ta39, 
Ta40, Ta48 9 0 0 0 0 9 

16B 
3 

Ta35, 
Ta36, Ta38 1 0 0 13 0 14 

18A 2 - 0 0 0 0 0 0 
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3.8.2 Site location comparison in tilapia gastrointestinal tract contents 

Samples were sourced from site 9 (Bridge Island), with CTGI from site 9E and 

WTGI from site 9B. Bead and fibre were found in fish from both sites, with a 

microplastic fragment seen in the GIT contents from a CT in site 9E (Table 3.24). 

In the 4 CT from site 9B (Bridge Island), their GIT contents contained a total of 3 

microplastics, found in in 3 of the 4 fish (GI2, GI3 and GI4). In the 1 WT from site 

9E (Bridge Island), 2 microplastics were identified in this sample (GI5).  

A total 4 microplastic pieces (75%) were identified in the CT from site 9B, with 

only 1 microplastic (25%) identified in the WT from site 9E. The GIT contents 

sourced from the site where caged fish were analysed contained more 

microplastics than fish sourced from the site where wild fish were sourced, but 

more CT (n=4) were analysed compared to only 1 WT.  

 

Site  

Total 
number 
of fish 
sourced 
from 
site 

Sample 
IDs with 
MPs 
identified Fragment Foam Film Fibre Bead 

Total 
number 
of MPs 
identified 
at sites 

9B 
4 

GI2, GI3, 
GI4 1 0 0 1 1 3 

9E 1 GI5 0 0 0 1 1 2 
 

Table 3.24 Site location comparison with microplastic presence in tilapia 
gastrointestinal tract contents. This table shows the presence of the different 
microplastic (MP) types at each site location where caged tilapia gastrointestinal tract 
contents samples (n=4) and wild tilapia gastrointestinal tract contents samples (n=1) 
were analysed in this study. The site location in blue (site 9B) is where caged tilapia were 
analysed and the location in green (site 9E) is where wild tilapia were analysed. The total 
number of fish sourced from each site and the sample IDs (GI) containing microplastics is 
shown.  
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3.8.3 Site location comparison in tilapia intact gastrointestinal tracts  

GIT samples were sourced from fish from sites 1A and 1B (Dunga), 4 (Uyoma 

point), 7B (Mbeo cages) and 18A (Sori Bay), with all fish analysed at these sites 

found to contain microplastics (Table 3.25). In the one WT from site 1A (Dunga), 

3 microplastics were identified in this sample (GIT15). In the one CT from site 1B 

(Dunga), 6 microplastics were identified in this sample (GIT19).  

In the one CT from site 4 (Uyoma point), 6 microplastics were identified in this 

sample (GIT6). In the one WT from site 4 (Uyoma point), 3 microplastics were 

identified in this sample (GIT7). In the one CT from site 7B (Mbeo cages), 7 

microplastics were identified in this sample (GIT10). In the one WT from site 18A 

(Sori Bay), 2 microplastics were identified in this sample (GIT13).  

The bead was the most prevalent microplastic type among the sites, with 20 beads 

out of the total of 28 microplastics identified overall. Beads were most common in 

fish at site 4, with a total of 9 beads identified in both CT and WT harvested from 

here.  A total of 19 microplastics were identified in the CT, compared to a total of 

9 microplastics identified in the WT. The GIT samples sourced from the sites where 

caged fish were analysed contained more microplastics than fish sourced from the 

sites where wild fish were sourced.   
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Site  

Total 
number 
of fish 
sourced 
from 
site 

Sample 
IDs with 
MPs 
identified Fragment Foam Film Fibre Bead 

Total 
number 
of MPs 
identified 
at sites 

1A 1 GIT15 1 0 0 0 2 3 
1B 1 GIT19 6 0 0 0 0 6 

4 1 GIT6 0 0 0 0 6 6 
4 1 GIT7 0 0 0 0 3 3 

7B 1 GIT10 0 0 0 0 7 7 
18A 1 GIT13 0 0 1 0 2 3 

 

Table 3.25 Site location comparison with microplastic presence in tilapia intact 
gastrointestinal tracts. This table shows the presence of the different microplastic (MP) 
types at each site location where caged tilapia intact gastrointestinal tract samples (n=3) 
and wild tilapia intact gastrointestinal tract samples (n=3) were analysed in this study. 
The site locations in blue (site 1B) are where caged tilapia were analysed and the locations 
in green (site 1A) are where wild tilapia were analysed. The total number of fish sourced 
from each site and the sample IDs (GIT) containing microplastics is shown.   
 

 

3.9 Comparison of microplastic presence in caged versus wild tilapia 
samples of muscle, gastrointestinal tract contents and intact 
gastrointestinal tracts 
 
Of the 81 microplastic pieces found in 38 (48%) of the 80 tilapia muscles analysed 

in this study, 35 (43%) of these were found in CT (n=42) and 46 (57%) 

microplastics were found in WT (n=38) (Figure 3.26). 

Five microplastic pieces were identified in 4 analysed tilapia GIT contents. Three 

of these microplastics were found in CT (n=4) and 2 were found in WT (n=1). 

Twenty-eight microplastic pieces were identified in all 6 of the analysed tilapia 

intact GITs, with 19 (68%) found in CT (n=3) and 9 (32%) in WT (n=3).  

A greater number of microplastics were found in the muscle of wild tilapia than 

farmed/caged, however more microplastics were found in the GIT (contents and 

intact) of caged tilapia than wild ones.  
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Figure 3.26 Comparison of microplastic content in caged vs wild tilapia samples.  
The graph shows a comparison of microplastic content in caged vs wild tilapia samples of 
the 3 different tilapia parts analysed (muscle, gastrointestinal tract contents (GI) and 
intact gastrointestinal tracts (GIT)). Total amount of microplastics (MP) identified in both 
caged (CT) and wild tilapia (WT) (shown in blue), vs total amount of MP found in CT (shown 
in orange), vs total amount of MP found in WT (shown in grey). X axis, categories used to 
show the 3 different tilapia parts analysed (fish muscle (n=80), fish GI (n=5) and fish GIT 
(n=6)). Y axis, shows the number of microplastics identified. 
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3.9.1 Comparison of microplastic type presence in tilapia muscle versus 
gastrointestinal tract contents versus intact gastrointestinal tracts 
 
In the muscle samples, fibre (n=35) was the most identified microplastic type 

(Figure 3.27), with foam (n=1) as the least identified type. Fragments (n=27), 

films (n=10) and beads (n=8) were also identified. In the GIT contents, both fibre 

(n=2) and bead (n=2) were the most identified microplastic type, one fragment 

was identified, and no foam or film (n=0) were identified. In the intact GITs, bead 

(n=20) was the most identified microplastic type, with fragment (n=7) and film 

(n=1) also identified, and no foam or fibre (n=0).  

 

 

Figure 3.27 Comparison of microplastic types present in tilapia muscle vs 
gastrointestinal tract contents vs intact gastrointestinal tracts. This graph shows 
a comparison of the total amount of each microplastic type identified in tilapia muscle 
(n=80) (shown in green) vs tilapia gastrointestinal tract contents (n=5) (shown in blue) 
vs tilapia intact gastrointestinal tracts (n=6) (shown in yellow). X axis, categories used to 
show the 5 different structural types of microplastic identified (fragment, foam, film, fibre 
and bead). Y axis, shows the number of microplastics identified.  
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3.9.2 Comparison of microplastic type presence in caged versus wild 
tilapia samples of muscle, gastrointestinal tract contents and intact 
gastrointestinal tracts 
 
In the muscle samples, of the 35 fibres identified, 21 were identified in CT, while 

14 were identified in WT. Of the 27 fragments identified, 8 were identified in CT, 

while 19 were identified in WT (Figure 3.28). Of the 10 films identified, 4 were 

identified in CT, while 6 were identified in WT. Of the 8 beads identified, 2 were 

identified in CT, while 6 were identified in WT. No foams were identified in CT, 

while the one identified was in WT. Fibre was identified more in the muscle of CT 

than WT, while fragment, bead, film and foam were identified more in the muscle 

of WT than CT. 

In the GIT contents samples, of the 2 beads identified, 1 was identified in CT and 

1 was identified in WT. Of the 2 fibres identified, 1 was identified in CT and 1 was 

identified in WT. The one fragment identified was in CT, while none were identified 

in WT. No foams or films were identified in the GIT contents of CT or WT. Fibre 

and bead were the most identified types in the GIT contents of both CT and WT, 

but an additional fragment was found in the CT than WT. 

In the intact GIT samples, of the 20 beads identified, 13 were identified in CT, 

while 7 were identified in WT. Of the 7 fragments identified, 6 were identified in 

CT, while 1 was identified in WT. No films were identified in CT, while the 1 

identified was in WT. No foams or fibres were identified in the GIT of CT or WT. 

Bead and fragment were identified more in the intact GIT of CT than WT, while 

film was identified more in the intact GIT of WT than CT.  
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Figure 3.28 Comparison of microplastic type presence in caged vs wild tilapia 
samples of muscle, gastrointestinal tract contents and intact gastrointestinal 
tracts. This graph shows a comparison between caged and wild tilapia samples of muscle 
(n=80), gastrointestinal tract (GIT) contents (n=5) and intact GITs (n=6) analysed in this 
study and their presence for the different microplastic (MP) types (fragment, foam, film, 
fibre and bead). Results for caged tilapia muscle are shown in blue, wild tilapia muscle are 
shown in orange, caged tilapia GIT contents are shown in grey, wild tilapia GIT contents 
are shown in yellow, caged tilapia intact GITs are shown in purple and wild tilapia intact 
GITs are shown in green. X axis, categories used to show the 5 different structural types 
of microplastics identified (fragment, foam, film, fibre and bead), and a sum of the total 
number of MPs identified. Y axis, shows the number of microplastics identified. 
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3.10 Genomic DNA extraction 

Genomic DNA was extracted from the plastisphere on the surface of the 

microplastics identified in the tilapia samples (Table 3.29) and from the plastic 

macrolitter collected from Lake Victoria (Tables 3.30 and 3.31). DNA was assessed 

for its quality (260/280 and 260/230) and the quantity (ng/µl). Any samples with 

a negative value for the 260/230 ratios were noted as a low or seemingly negative 

ratio, which may be the result of a contaminant absorbing at 230 nm or less.  

Recovered DNA concentrations from the remaining samples were low, ranging 

from 1.77-13.54ng/µl in the fish samples and 6.708-19.93ng/µl from the 

macroplastic litter. The quality of the DNA was variable (0.86-3.48 for 260/280 

and -2.55-2.03 for 260/230), with low ratios at both 260/280 and 260/230 ratio 

suggesting a contaminant absorbing at 280 nm or less and 230 nm or less 

respectively.  
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Sample ID 260/280 260/230 ng/µl 
Ta7 DNA 1 1.87 1.35 3.303 
Ta7 DNA 2 1.77 1.99 2.429 
Ta18 DNA 1 1.34 -0.99 3.389 
Ta18 DNA 2 1.46 -1.04 2.736 
Ta20 DNA 1 1.87 -2.55 2.385 
Ta20 DNA 2 1.72 0.58 4.465 
Ta33 DNA 1 1.77 2.03 13.54 
Ta33 DNA 2 1.87 -2.26 6.784 
Ta44 DNA 1 1.88 -0.62 1.962 
Ta44 DNA 2 0.86 -0.99 2.244 
Ta48 DNA 1 1.42 -0.25 3.082 
Ta48 DNA 2 2.18 -0.43 3.668 
Ta61 DNA 1 1.79 -0.56 3.329 
Ta61 DNA 2 1.39 -0.89 3.377 
Ta66 DNA 1 1.35 -0.62 2.651 
Ta66 DNA 2 2.93 0.56 3.944 
Ta69 DNA 1 1.19 2.34 4.215 
Ta69 DNA 2 3.48 0.31 5.448 
Ta72 DNA 1 1.59 -0.36 2.547 
Ta72 DNA 2 1.01 -0.28 2.216 
GI5 DNA 1 2.1 -0.16 1.814 
GI5 DNA 2 1.58 -0.17 1.77 
GIT13 DNA 1 1.62 1.35 4.442 
GIT13 DNA 2 1.45 0.32 5.554 

 

Table 3.29 Quality and quantity of genomic DNA from microplastics in tilapia 
muscle, gastrointestinal tract contents and intact gastrointestinal tracts. The 
table shows the quality (260/280 & 260/230 ratios) and quantity (ng/µl) values for the 
chosen 6 tilapia muscle (Ta), 1 gastrointestinal tract contents (GI) and 1 intact 
gastrointestinal tract sample (GIT). Two microplastics in each sample were chosen and 
their plastispheres were extracted independently and then assessed, resulting in 2 DNA 
extractions per sample (DNA 1 and DNA 2). The genomic DNA was assessed using a 
Nanodrop 8000. Samples with a seemingly negative 260/230 ratio were indicative of 
contaminant absorbing at 230 nm or less. 
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Table 3.30 Quality and quantity of genomic DNA from macroplastic litter 
collected from Lake Victoria. The table shows the quality (260/280 & 260/230 ratios) 
and quantity (ng/µl) values for the chosen 3 different coloured fishing net strands and 1 
sandwich bag litter collected from Lake Victoria. Two DNA samples were extracted and 
assessed per litter sample (DNA 1 and DNA 2). The genomic DNA was assessed using a 
Nanodrop 8000. 

 

 

Sample ID 260/280 260/230 ng/µl 
Blue net DNA 1 1.73 0.74 10.93 
Blue net DNA 2 1.64 0.58 12.91 
Green net DNA 1 1.52 0.61 11.45 
Green net DNA 2 1.66 0.73 9.919 
Yellow net DNA 1 1.81 0.84 9.594 
Yellow net DNA 2 1.58 0.46 7.183 
Sandwich bag DNA 1 1.62 0.70 19.93 
Sandwich bag DNA 2 1.68 1.06 14.75 

 

Table 3.31 Quality and quantity of genomic DNA from plastic litter collected from 
Lake Victoria – 2nd extraction. The table shows the quality (260/280 & 260/230 ratios) 
and quantity (ng/µl) values for the chosen 3 different coloured fishing net strands and 1 
sandwich bag litter collected from Lake Victoria. DNA extraction was repeated on another 
piece of the same sample. Two DNA samples were extracted and assessed per litter sample 
(DNA 1 and DNA 2). The genomic DNA was assessed using a Nanodrop 8000.  

 

 

Sample ID 260/280 260/230 ng/µl 
Blue net DNA 1 1.62 1.34 9.698 
Blue net DNA 2 1.57 0.79 10.67 
Green net DNA 1 1.81 0.94 6.708 
Green net DNA 2 1.76 0.58 6.876 
Yellow net DNA 1 1.99 1.05 10.49 
Yellow net DNA 2 1.52 0.63 10.16 
Sandwich bag DNA 1 1.61 2.59 13 
Sandwich bag DNA 2 1.83 1.53 14.52 
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3.11 Polymerase chain reaction 

PCR was carried out on all extracted genomic DNA. This included using primers to 

the 16S Ribosomal rRNA gene (Chakravorty et al., 2007), which aimed to 

determine if there was bacterial DNA present. In addition, several bacterial 

species-specific primer pairs were used to screen for presence or absence of key 

bacterial species. 

 

3.11.1 Presence of bacterial DNA 

Of the genomic DNA extracted from microplastics found in the 12 tilapia samples, 

Ta7, Ta20 and Ta48, were all positive for bacterial DNA presence using V3V6. 

Bands of the expected size (739bp) were present but were very faint, suggesting 

the level of bacterial DNA was detectable but low.  

All of the 8 extracted genomic DNA samples from the plastic litter collected from 

Lake Victoria also produced a band of the expected size using primers. Images of 

successful V3V6 PCRs are shown for samples of blue net (Figure 3.32), yellow net 

(Figure 3.33), green net (Figure 3.34), sandwich bag (Figure 3.35), Ta7 (Figure 

3.36) and Ta48 (Figure 3.37).  
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Figure 3.32 A typical image of a positive V3V6 PCR of blue net DNA 1 (1st batch). 
This is a typical image of a positive result with the expected band size of 739bp for bacterial 
DNA presence in lane E of blue net DNA 1 sample. V3V6 primers (Chakravorty et al., 2007) 
were used, at an annealing temperature of 58°C. Lane A is the negative control and lanes 
B and F are 1kb ladder (Promega).  
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Figure 3.33 Positive V3V6 PCR of yellow net DNA 1 and 2 (2nd batch). This image 
shows two PCRs – yellow net DNA 1 (left) and yellow net DNA 2 (right). There are positive 
results with the expected band size of 739bp for bacterial DNA presence in lanes C, D and 
E of yellow net DNA 1 (left) and lanes K, L and M of yellow DNA 2 (right). V3V6 primers 
(Chakravorty et al., 2007) were used, at an annealing temperature of 58°C. Lanes A and 
I are negative controls and lanes G and O are positive controls using Streptococcus uberis 
DNA. Lanes B, F, J and N are 1kb ladder (Promega). 
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Figure 3.34 Positive V3V6 PCR of green net DNA 1 and 2 (2nd batch). This image 
shows two PCRs – green net DNA 1 (left) and green net DNA 2 (right). There are positive 
results with the expected band size of 739bp for bacterial DNA presence in lanes C and E 
of yellow net DNA 1 (left) and lane M of yellow net DNA 2 (right). V3V6 primers 
(Chakravorty et al., 2007) were used, at an annealing temperature of 58°C. Lanes A and 
I are negative controls and lanes G and O are positive controls using Streptococcus uberis 
DNA. Lanes B, F, J and N are 1kb ladder (Promega). 
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Figure 3.35 Positive V3V6 PCR of sandwich bag DNA 1 and 2 (2nd batch). This image 
shows two PCRs – sandwich bag DNA 1 (left) and sandwich bag DNA 2 (right). There are 
positive results with the expected band size of 739bp for bacterial DNA presence in lanes 
C, D and E of sandwich bag DNA 1 (left) and lanes K and M of sandwich bag DNA 2 (right). 
V3V6 primers (Chakravorty et al., 2007) were used, at an annealing temperature of 58°C. 
Lanes A and I are negative controls and lanes G and O are positive controls using 
Streptococcus uberis DNA. Lanes B, F, J and N are 1kb ladder (Promega). 
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Figure 3.36 Positive V3V6 PCR of tilapia muscle Ta7 DNA 1 and 2 (2nd batch). This 
image shows two PCRs – Ta7 DNA 1 (left) and Ta7 DNA 2 (right). There are positive results 
with the expected band size of 739bp for bacterial DNA presence in lanes D and E of Ta7 
DNA 1 (left) and lane M of Ta7 DNA 2 (right). V3V6 primers (Chakravorty et al., 2007) 
were used, at an annealing temperature of 58°C. Lanes A and I are negative controls and 
lanes G and O are positive controls using Streptococcus uberis DNA. Lanes B, F, J and N 
are 1kb ladder (Promega). 
 
 
 

 

 

 

 

 

 

 



111 
 

 

 

Figure 3.37 Positive V3V6 PCR of tilapia muscle Ta48 DNA 1 and 2 (2nd batch). This 
image shows two PCRs – Ta48 DNA 1 (left) and Ta48 DNA 2 (right). There are positive 
results with the expected band size of 739bp for bacterial DNA presence in lanes C, D and 
E of Ta7 DNA 1 (left) and lane K of Ta48 DNA 2 (right). V3V6 primers (Chakravorty et al., 
2007) were used, at an annealing temperature of 58°C. Lanes A and H are negative 
controls and lanes G and N are positive controls using Streptococcus uberis DNA. Lanes B, 
F, I and M are 1kb ladder (Promega) 
 

 

3.11.2 Streptococcus uberis  

Primers to sub0888 (Leigh et al., 2010) were used to determine if Streptococcus 

uberis was one of the species of bacteria present in the plastisphere that were 

isolated from the micro- and macroplastics. None of the samples were positive.  

 

3.11.3 Klebsiella pneumoniae 

Primers to tyrB (Heilbronn et al., 1999) were used to determine if Klebsiella 

pneumoniae was one of the species of bacteria present, however none of the 

samples were positive.  
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3.11.4 Escherichia coli 

Primers to uspA (Chen and Griffiths, 1998) and uidA (Heijnen and Medema, 2006) 

were used to determine if Escherichia coli was one of the species of bacteria 

present; none of the samples were positive.  

 

3.11.5 Campylobacter coli and Campylobacter jejuni  

Primers to porA, an outer membrane protein (Fontanot et al., 2014), and jej, 

which targets the 16S rRNA (Linton et al., 1997), were used to determine if 

Campylobacter coli or C. jejuni were one of the species of bacteria present; none 

of the samples were positive.  

 

3.11.6 Lactobacillus  

Primers to lact (Dubernet et al., 2002) were used to determine if Lactobacillus was 

one of the species of bacteria present, however none of the samples were positive. 

 

3.11.7 Summary of PCR results  

An overview of all the PCR results collected is shown in Tables 3.38 and 3.39. 

Tilapia muscle (Ta), gastrointestinal tract contents (GI) and intact gastrointestinal 

tracts (GIT) (Table 3.38), as well as macroplastic litter results are shown (Table 

3.39). 
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  Ta7 Ta18 Ta20 Ta33 Ta44 Ta48 Ta61 Ta66 Ta69 Ta72 

V3V6 + - + - - + - - - - 

Streptococcus 
uberis N.T N.T N.T N.T N.T N.T N.T N.T N.T N.T 

Klebsiella 
pnuemoniae N.T N.T N.T N.T N.T N.T N.T N.T N.T N.T 

Escherichia 
coli (uspA) N.T N.T N.T N.T N.T N.T N.T N.T N.T N.T 

Escherichia 
coli (uidA) N.T N.T N.T N.T N.T N.T N.T N.T N.T N.T 

Campylobacter 
coli (porA) - N.T N.T N.T N.T - N.T N.T N.T N.T 

Campylobacter 
jejuni (porA) - N.T N.T N.T N.T - N.T N.T N.T N.T 

Campylobacter 
coli (jej) - N.T N.T N.T N.T - N.T N.T N.T N.T 

Campylobacter 
jejuni (jej) - N.T N.T N.T N.T - N.T N.T N.T N.T 

Lactobacillus  - N.T N.T N.T N.T - N.T N.T N.T N.T 

 
 
Table 3.38 Overview of PCR results from tilapia samples. This table shows the PCR 
results collected for the 10 tilapia muscle samples (Ta7, Ta18, Ta20, Ta33, Ta44, Ta48, 
Ta61, Ta66, Ta69 and Ta72), screened with primers for V3V6, sub0888, tyrB, uspA, uidA, 
‘porA’, ‘jej’, and ‘lact’ primers. Positive PCR results are shown with a (+) and negative PCR 
results are shown with a (-). Not tested samples (N.T) was when primers were not tested 
on this sample. 
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  Blue net Yellow net Green net Sandwich bag 
V3V6 + + + + 

Streptococcus 
uberis - - - - 

Klebsiella 
pnuemoniae - N.T N.T - 

Escherichia 
coli (uspA) - - - - 

Escherichia 
coli (uidA) - - - - 

Campylobacter 
coli (porA) N.T - N.T - 

Campylobacter 
jejuni (porA) N.T - N.T - 

Campylobacter 
coli (jej) N.T - N.T - 

Campylobacter 
jejuni (jej) N.T - N.T - 

Lactobacillus  N.T - N.T - 

 
 
 
Table 3.39 Overview of PCR results from macroplastic litter. This table shows the 
PCR results collected for the macroplastic litter and nets collected from Lake Victoria (blue 
net, yellow net, green net and sandwich bag), screened with primers for V3V6, sub0888, 
tyrB, uspA, uidA, ‘porA’, ‘jej’ and ‘lact’ primers. Positive PCR results are shown with a (+) 
and negative PCR results are shown with a (-). Not tested samples (N.T) was when primers 
were not tested on this sample.  
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3.12 Cloning 

The PCR products of V3V6 PCR were cloned for downstream sequencing with the 

aim of identifying the species of bacteria present. A TOPO TA cloning kit was used 

and white colonies were picked for further analysis (Figure 3.40). 

 
 
Figure 3.40 Cloned colonies from yellow net DNA 1. This image shows the white 
colonies that were obtained from a ligation of yellow net DNA 1 into the TA cloning vector 
pCR™2.1-TOPO® (Invitrogen). Only white colonies were circled, numbered on the plate 
and picked with a pipette tip and put into nutrient broth containing either ampicillin or 
kanamycin.  
 
 
 
3.12.1 Screening of colonies isolated 

White colonies were screened for presence of the inserted V3V6 product using 

M13 reverse and T7 primers, which anneal to the multiple cloning site of the 

pCR™2.1-TOPO® vector. Only 2 colonies (colony 9 and 11) from the yellow net 

sample DNA 1 produced bands of the expected size (Figure 3.41) 
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Figure 3.41 PCR from colony from ligation with yellow net DNA 1 sample. This 
image shows the positive PCR using M13 reverse and T7 primers, which anneal to the 
multiple cloning site of the pCR™2.1-TOPO® vector. Lanes B and D show positive results 
with the expected band size. PCR was conducted at an annealing temperature of 58°C. 
Lanes A and H are 1kb ladder (Promega).  
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3.13 ESEM/EDX screening  

ESEM was used to provide high resolution images which facilitated the 

visualisation and characterisation of surfaces within the samples, as well as 

elemental compositions. This was used to screen for microplastics and biofilm 

presence and rule out any non-plastic artefacts.  

 

3.13.1 Screening of control samples 

In order to visualise and characterise what the introduced surfaces (e.g. the filter 

paper) and methodology used to prepare the samples (e.g. the KOH) were having 

on the potential ESEM results, several controls were incorporated into the 

screening.  

 

3.13.1.1 Filter paper with no reagents 

A section of plain Whatman microfibre filter paper, with no reagents, was analysed 

by ESEM/EDX screening as a control, highlighting any interference coming directly 

from the filter paper. The filter paper had a fibrous appearance (Figure 3.42A), 

that could have been misinterpreted as microfibres. EDX analysis of the filter 

paper (spectrum 124) detected low carbon (C) levels demonstrating that the 

material was non-organic (Figure 3.42D), there were also medium levels of silicon 

(Si) and oxygen (O) and trace levels barium (Ba) associated with the structure. 

Small spherical bead structures were also identified (spectrum 122 and 123), with 

EDX analyses highlighting medium levels of O and Si, and low levels of chlorine 

(Cl) and Ba associated with the structure in spectrum 122 (figure 3.42B), and 

similarly highlighting medium levels of O and Si, and low levels of Cl and Ba 

associated with the structure in spectrum 123 (Figure 3.42C).  
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Figure 3.42 ESEM with EDX spectra of Whatman glass microfiber filters. (A) ESEM 
greyscale image taken of a Whatman glass microfiber filter (Sigma-Aldrich) used in this 
study. A scale was developed to group detected elements by their concentrations 
measured in cps/ev; >100 cps/ev is very high, 60-99 cps/ev is high, 20-59 cps/ev is 
medium, 10-19 cps/ev is low and <10 cps/ev is trace. (B) EDX spectra of spectrum 122 
showing medium levels of oxygen (O) and silicon (Si) and low levels of chlorine (Cl) and 
barium (Ba) associated with the structure within the image.  
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Figure 3.42 (continued) ESEM with EDX spectra of Whatman glass microfiber 
filters. (C) EDX spectra of spectrum 123 showing medium levels of oxygen (O) and silicon 
(Si) and low levels of chlorine (Cl) and barium (Ba) associated with the structure. (D) EDX 
spectra of spectrum 124 showing medium levels of O and Si and trace levels Ba associated 
with the structure. 
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3.13.1.2 Filter paper with KOH 

Filter paper with KOH (10% solution) was also analysed by ESEM/EDX screening 

as a control. The fibrous appearance of the filter paper was seen again on the 

greyscale EDX image (Figure 3.43A), however there were also clusters of lighter 

grey areas (spectrum 152). EDX analysis showed these having medium levels of 

potassium (K) (Figure 3.43C), Si levels were also lower here than observed on the 

filter paper alone. Spherical bead structures were identified (spectrum 151), with 

EDX analyses highlighting medium O, Si and K levels, and a K level was lower 

than that of filter paper alone (Figure 3.43B). There was also a low level of Ba and 

a trace level of C associated with the structure.   
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Figure 3.43 ESEM with EDX spectra of Whatman glass microfiber filters with 
potassium hydroxide. (A) ESEM greyscale image taken of a Whatman glass microfiber 
filter (Sigma-Aldrich) with potassium hydroxide (KOH) (10% solution) on its surface. (B) 
EDX spectra of spectrum 151 showing medium levels of oxygen (O), silicon (Si) and 
potassium (K), a low level of barium (Ba), and a trace level of carbon (C) associated with 
the structure in the image. (C) EDX spectra of spectrum 152 showing medium levels O, Si 
and K, and a trace level of C associated with the structure in the image. 
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3.13.1.3 Filter paper with Nile Red and DAPI stains 

Filter paper that had been stained with Nile Red and DAPI was analysed by 

ESEM/EDX screening as a third control. The fibrous filter paper appearance was 

seen again on the greyscale EDX image, along with sphere shaped deposits across 

its surface (Figure 3.44A). These were focussed on for EDX analyses (spectrum 

128) and found medium levels of O, Si, Cl and sodium (Na) (Figure 3.44B) and 

trace levels of Ba, zinc (Zn) and aluminium (Al). Analysis of a second sphere 

(spectrum 129) was similar highlighting medium levels of O, Si, Cl and Na (Figure 

3.44C), however there were lower levels of O and Si and higher levels of Na and 

Cl than the structure in spectrum 128. It also had trace levels of Ba, Zn and Al.  
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Figure 3.44 ESEM with EDX spectra of Whatman glass microfiber filters with Nile 
Red and DAPI stains. (A) ESEM greyscale image taken of a Whatman glass microfiber 
filter (Sigma-Aldrich) with Nile Red and DAPI stains on its surface. (B) EDX spectra of 
spectrum 128 showing medium levels of oxygen (O), silicon (Si), chlorine (Cl) and sodium 
(Na), and trace levels barium (Ba), zinc (Zn) and aluminium (Al) associated with the 
structure in the image. (C) EDX spectra of spectrum 129 showing medium levels O, Si, Cl 
and Na, and trace levels of Ba, Zn and Al associated with the structure. 
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3.13.1.4 Macroplastic litter and microbeads  

A selection of macroplastic litter and netting collected from Lake Victoria, plus 

extracted microbeads from the Clean & Clear facewash, were also analysed. These 

had been treated with KOH, Nile Red and DAPI stains. Their structure and 

elemental composition were recorded. ESEM grey scale and single-elemental-

coloured images were taken of these samples, however no EDX spectras were 

taken. 

ESEM screening of a mixture of microbeads and netting showed uniformly 

spherical structures and clusters of lighter grey areas, on the surface of a fibrous 

background material (Figure 3.45A). Single-elemental-coloured images taken of 

the same area, showed the strong association of Ba with the sphere structures 

(Figure 3.45G), with K (Figure 3.45D) and C (figure 3.45E) associated with the 

lighter grey areas. Si (Figure 3.45B), O (Figure 3.45C) and Na (Figure 3.45F) were 

also associated with the fibrous background structures.  
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Figure 3.45 ESEM greyscale with single-elemental-coloured images of 
macroplastic litter and microbeads. (A) ESEM greyscale image taken of a mixture of 
microbeads (extracted from 2017 Clean & Clear facewash) and netting collected from Lake 
Victoria. Single-elemental-coloured (SEC) images showing the presence of; (B) silicon (Si) 
associated with the structure within the image, (C) oxygen (O) associated with the 
structure, (D) potassium (K) associated with the structure, (E) carbon (C) associated with 
the structure, (F) sodium (Na) associated with the structure, (G) barium (Ba) associated 
with the structure.  
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3.13.1.5 Macroplastic litter without reagents  

Untreated macroplastic litter collected from Lake Victoria, with no reagents or filter 

paper present, was screened by ESEM and single-elemental-coloured images were 

taken, however no EDX spectras were taken. ESEM screening on one chosen area 

of this material showed numerous cube-shaped structures (Figure 3.46A), on the 

surface of a rougher material containing many grooves and pits. Single-elemental-

coloured images taken of the same area, showed O and calcium (Ca) were 

associated with the cube structures (Figure 3.46C and F). The presence of C 

(Figure 3.46B), O (Figure 3.46C) and Si (Figure 3.46D) were associated with the 

unsmooth background material. There were also lower levels of sulphur (S) 

(Figure 3.46E) and iron (Fe) (Figure 3.46G) associated with this structure within 

the image.  

ESEM screening on another chosen area on this material showed a larger (~900µm 

in length) elliptical shaped structure on a smoother material that was not uniform 

in appearance (Figure 3.47A). Single-elemental-coloured images taken of this 

same area, showed the structure to have a high content of O (Figure 3.47C), Ca 

(Figure 3.47D), phosphorus (P) (Figure 3.47F), with Ca and P specifically 

associated with this elliptical structure. Oxygen was also associated with the 

background material, as well as C (Figure 3.47B) with the latter not associated 

with the elliptical structure. There were also low levels of Si (Figure 3.47E) and Fe 

(Figure 3.47G) associated with the background structure within the image.  
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Figure 3.46 ESEM greyscale with single-elemental-coloured images of untreated 
macroplastic litter. (A) ESEM greyscale image taken of a section of macroplastic litter 
collected from Lake Victoria. Single-elemental-coloured (SEC) images showing the 
presence of; (B) carbon (C) associated with the structure within the image, (C) oxygen 
(O) associated with the structure, (D) silicon (Si) associated with the structure, (E) sulphur 
(S) associated with the structure, (F) calcium (Ca) associated with the structure and (G) 
iron (Fe) associated with the structure. 
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Figure 3.47 ESEM greyscale with single-elemental-coloured images of untreated 
macroplastic litter. (A) ESEM greyscale image taken of a different section of 
macroplastic litter collected from Lake Victoria. Single-elemental-coloured (SEC) images 
showing the presence of; (B) carbon (C) associated with the structure within the image, 
(C) of oxygen (O) associated with the structure, (D) calcium (Ca) associated with the 
structure, (E) silicon (Si) associated with the structure, (F) phosphorus (P) associated with 
the structure and (G) iron (Fe) associated with the structure. 
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3.13.2 Screening of the macroplastic 

Untreated macroplastic litter collected from Lake Victoria was screened for 

potential biofilm and bacterial presence. 

 

3.13.2.1 Presence of diatoms on plastic litter 

Numerous different shaped diatoms (Figure 3.48) were identified. These included 

circular flukes, longer rods and 3D diatoms. The long thin shaped diatom in Figure 

3.48A was potentially identified as the genus Fragilaria. Circular diatoms (Figures 

3.48B, C and D) were tentatively identified as the genus Cocconeis. The cylindrical 

shaped diatom in Figure 3.48C was potentially identified as the genus Aulacoseira. 

The ellipsoid shaped diatom in Figure 3.48D was potentially identified as the genus 

Achnanthes and the rectangular diatom in Figure 3.48D was potentially identified 

as the genus Tabellaria. 
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Figure 3.48 ESEM greyscale images of diatoms found on plastic litter from Lake 
Victoria. These greyscale images taken on the ESEM show different shapes of diatoms 
identified (shown by blue ring and arrows) on the biofilm of a section of macroplastic litter 
collected from Lake Victoria. (A) shows a long rod-shaped diatom, potentially identified as 
from the diatom genus Fragilaria. (B) shows a collection of circular fluke shaped diatoms, 
which were tentatively identified from the diatom genus Cocconeis. 
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Figure 3.48 (continued) ESEM greyscale images of diatoms found on plastic litter 
from Lake Victoria. These greyscale images taken on the ESEM show different shapes 
of diatoms identified (shown by blue rings and arrows) on the biofilm of a section of 
macroplastic litter collected from Lake Victoria. C) shows a circular diatom potentially 
identified as from the diatom genus Cocconeis and a cylindrical diatom potentially 
identified as from the genus Aulacoseira. (D) shows a group of different shaped 3D 
diatoms, which were tentatively identified as from the diatom genera Cocconeis, 
Achnanthes, and Tabellaria. 
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3.13.3 Screening of the filtered muscle  

The same filter paper samples used for fluorescent microscopy were sent for SEM 

analysis. These samples included 4 tilapia muscle samples (Ta18, Ta33, Ta44 and 

Ta48). ESEM screening included greyscale imaging, single-elemental-coloured 

imaging and EDX analysis.   

 

3.13.3.1 Filtered muscle - Ta18 

ESEM screening of the filtered muscle from sample Ta18 (CT, site 9B) identified a 

fibrous structure (Figure 3.49A), larger (>50µm in length) in size than the typical 

filter paper fibres observed (Figure 3.42A), with deposits on its outside structure; 

these were focussed on for EDX analyses. EDX analysis of these deposits 

(spectrum 44) showed high C and O levels (Figure 3.49B) and medium levels of 

Na, Si, K and Ba associated with them. EDX analysis of the larger fibrous structure 

(spectrum 45) had high levels of C, O and K (Figure 3.49C), with C and K levels 

higher and O level lower than the external deposits observed (spectrum 44). It 

also had trace levels of Ba, which were lower than observed in the external 

deposits (spectrum 44).  

Single-elemental-coloured (SEC) images were taken of the same area. These 

showed the presence of C (Figure 3.50D), Cl (Figure 3.50H) and S (Figure 3.50K), 

associated with the large fibrous structure.  

The presence of K (Figure 3.50A) and P (Figure 3.50G) were associated with both 

the fibrous structure and the background material. Presence of O (Figure 3.50B) 

and Na (Figure 3.50E) were associated with part of the large fibrous structure and 

the background material to the right of it.  

The presence of Si (Figure 3.50C) and Ca (Figure 3.50I) were associated with only 

the background material. The presence of Ba (Figure 3.50F) was associated with 
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the deposits on the outside of the fibrous structure, and the presence of 

magnesium (Mg) (Figure 3.50J) was associated with part of the background 

material to the right of the fibrous structure. 

A small elliptical structure (~7µm in length), shown by the blue arrow (Figure 

3.49A) was identified through SEC imaging, these highlighted the highest levels 

of K (Figure 3.50A), Cl (Figure 3.50H), Ca (Figure 3.50I) detected out of all the 

structures in view, associated with this elliptical structure.  
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Figure 3.49 ESEM with EDX spectra of filtered muscle. (A) ESEM greyscale image 
taken of a filtered muscle sample (Ta18, caged tilapia, site 9B), containing potassium 
hydroxide (10% solution), Nile Red and DAPI stains. (B) EDX spectra of spectrum 44 
showing high levels of carbon(C) and oxygen (O), and medium levels of sodium (Na), 
silicon (Si), potassium (K) and barium (Ba). (C) EDX spectra of spectrum 45 showing high 
levels of C, O and K and a trace level of Ba. 
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Figure 3.50 ESEM single-elemental-coloured images of filtered muscle. ESEM 
single-elemental-coloured (SEC) images taken of filtered muscle Ta18 (caged tilapia, site 
9B). SEC images showing the presence of; (A) potassium (K) associated with the structure 
within the image, (B) (O) associated with the structure within the image, (C) silicon (Si) 
associated with the structure, (D) carbon (C) associated with the structure, (E) sodium 
(Na) associated with the structure, (F) barium (Ba) associated with the structure, (G) 
phosphorus (P) associated with the structure, (H) chlorine (Cl) associated with the 
structure, (I) calcium (Ca) associated with the structure, (J) magnesium (Mg) associated 
with the structure and (K) sulphur (S) associated with the structure. 
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3.13.3.2 Filtered muscle – Ta33 

ESEM screening of the filtered muscle from sample Ta33 (wild tilapia, site 4D) 

identified another larger (>30µm in length) fibrous structure (Figure 3.51A) 

running down the centre of the image shown and larger in size than the filter 

paper fibres (Figure 3.42A), with deposits on its outside surface. Single-elemental-

coloured images were taken of this same area and showed the presence of C 

associated only with the large fibrous structure (Figure 3.51E). The presence of Si 

(Figure 3.51B) was exclusively associated with the background material. The 

presence of K (Figure 3.51D) was associated with all structures in the image, with 

lower levels of O (Figure 3.51C) and Na (Figure 3.51F) also associated with all 

structures. The presence of Ba was only associated with the outside deposits on 

the larger fibrous structure, and deposit clusters on the background material 

(Figure 3.51G).  
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Figure 3.51 ESEM greyscale with single-elemental-coloured images of filtered 
muscle. (A) ESEM greyscale image taken of a section of filtered muscle sample Ta33 (wild 
tilapia, site 4D). Single-elemental-coloured (SEC) images showing the presence of; (B) 
silicon (Si) associated with the structure within the image, (C) oxygen (O) associated with 
the structure, (D) potassium (K) associated with the structure, (E) calcium (C) associated 
with the structure, (F) sodium (Na) associated with the structure and (G) barium (Ba) 
associated with the structure. 
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3.13.3.3 Filtered muscle – Ta44 

ESEM greyscale screening of the filtered muscle from sample Ta44 (wild tilapia, 

site 7D) identified a larger (>75µm in length) darker grey structure on top of the 

fibrous background material (Figure 3.52A). The fibrous background had two small 

deposits similar to those observed in the other muscle samples. Single-elemental-

coloured images were taken of this same area and showed the presence of C 

(Figure 3.52C) associated with only the darker grey structure. The presence of Si 

(Figure 3.52B), O (Figure 3.52D) and Na (Figure 3.52E) were only associated with 

the fibrous background material. The presence of Ba (Figure 3.52F) and Ca (Figure 

3.52G) were associated exclusively with the two deposits on the background 

material, with Ca at a lower level.  
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Figure 3.52 ESEM greyscale with single-elemental-coloured images of filtered 
muscle. (A) ESEM greyscale image taken of a section of filtered muscle sample Ta44 (wild 
tilapia, site 7D). Single-elemental-coloured (SEC) image showing the presence of; (B) 
silicon (Si) associated with the structure within the image, (C) carbon (C) associated with 
the structure, (D) oxygen (O) associated with the structure, (E) sodium (Na) associated 
with the structure, (F) barium (Ba) associated with the structure and (G) calcium (Ca) 
associated with the structure. 
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3.13.3.4 Filtered muscle – Ta48 

ESEM greyscale screening of the filtered muscle from sample Ta44 (wild tilapia, 

site 15D) identified an artefact (>75µm in length), with a rough structural 

appearance (Figures 3.53A and 3.54A), which was on top of the fibrous 

background material. Single-elemental-coloured images were taken of this same 

area and showed the presence Ca (Figure 3.53F) and P (Figure 3.53G) exclusively 

associated with this artefact. Higher levels of C (Figure 3.54H) and Mg (Figure 

3.54I) were observed in this artefact when compared to the background structure. 

K (Figure 3.53D) was also associated with this artefact, but its presence was not 

uniform across the structure. The presence of O (Figure 3.53B) and Na (Figure 

3.53E) were similarly associated with the fibrous background material and a 

smaller area potentially on the surface of this artefact. There were also small areas 

of Ba (Figure 3.54J) and Cl (Figure 3.54K) associated with the artefact. The 

presence of Si (Figure 3.53C) was higher in the fibrous background material than 

in the artefact.   
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Figure 3.53 ESEM greyscale with single-elemental-coloured images of filtered 
muscle. (A) ESEM greyscale image taken of a section of filtered muscle sample Ta48 (wild 
tilapia, site 15D). Single-elemental-coloured (SEC) image showing the presence of; (B) 
oxygen (O) associated with the structure within the image, (C) silicon (Si) associated with 
the structure, (D) potassium (K) associated with the structure, (E) sodium (Na) associated 
with the structure, (F) calcium (Ca) associated with the structure and (G) phosphorus (P) 
associated with the structure. 
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Figure 3.54 ESEM greyscale with single-elemental-coloured images of filtered 
muscle. (A) ESEM greyscale image taken of a section of filtered muscle sample Ta48 (wild 
tilapia, site 15D). Single-elemental-coloured (SEC) image showing the presence of; (H) 
carbon (C) associated with the structure within the image, (I) magnesium (Mg) associated 
with the structure, (J) barium (Ba) associated with the structure and (K) chlorine (Cl) 
associated with the structure.  
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3.13.4 Screening of the filtered gastrointestinal tract contents 

The same filter paper sample used for fluorescent microscopy was sent for SEM 

analysis. One filtered GIT contents sample was sent for ESEM screening (GI5). 

ESEM screening included greyscale imaging, single-elemental-coloured imaging 

and EDX analysis.   

 

3.13.4.1 Filtered gastrointestinal tract contents – GI5 

ESEM greyscale screening of the filtered GIT contents from sample GI5 (wild 

tilapia, site 9E) identified an artefact (>75µm in length), with a mesh structural 

appearance (Figures 3.55A), with paler grey deposits on its surface. This artefact 

was on top of the fibrous background material. Single-elemental-coloured images 

were taken of this same area and showed high levels of C (Figure 3.55D) only 

associated with this mesh artefact.  

Higher levels of O (Figure 3.55B) were associated with the mesh artefact 

compared to the fibrous background material and the pale grey deposits observed 

on the mesh structure. The presence of Si (Figure 3.55E) was only associated with 

the fibrous background material. The presence of K (Figure 3.55C) was associated 

with the deposits on top of the mesh artefact, with no C present in areas where K 

was present on the mesh artefact. The presence of an area rich in Cl (Figure 3.55F) 

was also associated with some of the deposits seen in the greyscale image, and 

there was also no C present where the Cl deposits were. The deposits observed 

seem to be of two different components.  
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Figure 3.55 ESEM greyscale with single-elemental-coloured images of filtered 
gastrointestinal tract contents. (A) ESEM greyscale image taken of a section of filtered 
gastrointestinal tract contents sample GI5 (wild tilapia, site 9E). Single-elemental-
coloured (SEC) image showing the presence of; (B) oxygen (O) associated with the 
structure within the image, (C) potassium (K) associated with the structure, (D) carbon 
(C) associated with the structure, (E) silicon (Si) associated with the structure and (F) 
chlorine (Cl) associated with the structure. 
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3.13.5 Screening of the unfiltered muscle  

Four untreated muscle samples (Ta20, Ta66, Ta69 and Ta72) were also sent for 

ESEM screening. ESEM screening included greyscale imaging, single-elemental-

coloured imaging and EDX analysis.   

 

3.13.5.1 Unfiltered muscle – Ta20 

3.13.5.1.1 Spectrum 18 and 19 

Analysis of the unfiltered muscle from sample Ta20 (caged tilapia, site 13B) 

identified a group of fibrous rectangular structures, similar to that of microfibres, 

ranging from ~10 to 30µm in length (Figure 3.56A). Two of these fibre-like 

structures were focussed on for EDX analyses, see spectrum 18 (Figure 3.56B) 

and spectrum 19 (Figure 3.56C). EDX analysis of the structure analysed in 

spectrum 18 found it to have a high C level (Figure 3.56B), medium levels of O 

and Si, and a trace amount of Na associated with it. EDX analysis on another of 

these fibrous structures (spectrum 19) was similar, with a high C level (Figure 

3.56C) and a medium level of O associated with it. However, its Si and Na levels 

were both lower than that found in the first structure analysed (spectrum 18). In 

both structures, trace levels of Al, Mg, P, S, Ca, Ba, Zn and titanium (Ti) were also 

detected.  

Single-elemental-coloured images were also taken of this same area. A high level 

of Si (Figure 3.57G) was associated exclusively with the fibrous rectangular 

structures. The presence of O (Figure 3.57B) was also associated with these 

fibrous structures and the background material. The presence of C (Figure 3.57A), 

P (Figure 3.57C), K (Figure 3.57D) and S (Figure 3.57E) were all associated 

exclusively with the background material. There were also high levels of Ti (Figure 

3.57F) associated with two smaller areas on top of the background material. 
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Figure 3.56 ESEM with EDX spectra of unfiltered muscle. (A) ESEM greyscale image 
taken of a section of unfiltered muscle sample (Ta20, caged tilapia, site 13B), showing 
group of fibrous rectangular structures. (B) EDX spectra of spectrum 18 showing a high 
level of carbon (C), medium levels of oxygen (O) and silicon (Si), and a trace amount of 
sodium (Na) associated with the structure. (C) EDX spectra of spectrum 19 showing a high 
level of C, a medium level of O, a low level of Si and a trace amount of Na associated with 
the structure. 
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Figure 3.57 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a section of unfiltered muscle sample 
Ta20 (caged tilapia, site 13B). SEC image showing the presence of; (A) carbon (C) 
associated with the structure within the image, (B) oxygen (O) associated with the 
structure, (C) phosphorus (P) associated with the structure, (D) potassium (K) associated 
with the structure, (E) sulphur (S) associated with the structure, (F) titanium (Ti) 
associated with the structure, and (G) silicon (Si) associated with the structure. 
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3.13.5.1.2 Spectrum 20 and 21 

The two areas identified in sample Ta20 as having a high Ti content (Figure 3.57F), 

were screened further. Analysis identified an artefact (~7µm in length) with a 

different appearance to the background structure (Figure 3.58A). This artefact and 

the background structure were focussed on for EDX analyses, see spectrum 20 

(Figure 3.58B) and spectrum 21 (Figure 3.58C). EDX analysis of the artefact 

analysed in spectrum 20 found it to have a high C level (Figure 3.58B) and medium 

levels of O and Ti associated with it. EDX analysis of the background structure 

analyses in spectrum 21 found it to have a very high C level (Figure 3.58C) and 

medium level of O associated with it. There were only trace levels of Ti detected 

in the background material (spectrum 21).  

Single-elemental-coloured images were also taken of this same area. High levels 

of Ti (Figure 3.59F) were associated exclusively with the artefact marked by 

spectrum 20. The presence of C (Figure 3.59A) and S (Figure 3.59E) were 

associated only with the background structure. Higher levels of O (Figure 3.59B) 

were observed in the artefact when compared to the background structure, while 

P (Figure 3.59C) and K (Figure 3.59D) were associated with both the artefact and 

the background material. The artefact and background structure when compared 

had different compositions.     
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Figure 3.58 ESEM with EDX spectra of unfiltered muscle. (A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta20, caged tilapia, site 13B), 
showing an artefact. (B) EDX spectra of spectrum 20 showing a high level of carbon (C), 
and medium levels of oxygen (O) and titanium (Ti) associated with the structure. (C) EDX 
spectra of spectrum 21 showing a very high level of C, a medium level of O, and a trace 
level of Ti.  
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Figure 3.59 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a different section of unfiltered muscle 
sample Ta20 (caged tilapia, site 13B). SEC image showing the presence of; (A) carbon (C) 
associated with the structure within the image, (B) oxygen (O) associated with the 
structure, (C) phosphorus (P) associated with the structure, (D) potassium (K) associated 
with the structure, (E) sulphur (S) associated with the structure, and (F) titanium (Ti) 
associated with the structure.  
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3.13.5.1.3 Spectrum 26, 27 and 28 

Analysis of a different section of the unfiltered muscle from sample Ta20 identified 

another larger artefact with a similar structure to that seen in Figure 3.58A. ESEM 

greyscale screening identified an artefact with a rough surface (~50µm in length), 

which had a different appearance to the background structure (Figure 3.60A). This 

artefact and two different locations on the background structure were focussed on 

for EDX analyses, see spectrum 26 (Figure 3.60B), spectrum 27 (Figure 3.60C) 

and spectrum 28 (Figure 3.60D).  

EDX analysis of the structure analysed in spectrum 26 found it to have a very high 

C level (Figure 3.60B), a high level of Ti and a medium level of O associated with 

it. EDX analysis of the background material analysed in spectrum 27 found it to 

have a high C level (Figure 3.60C), with C level higher than in the artefact 

observed (spectrum 26). It also had a medium level of O, and a trace amount of 

Ti associated with it. EDX analysis of a different section of the background 

structure (spectrum 28) was similar and showed a very high C level (Figure 

3.60D), with C level lower than that of the other background structure analysed 

(spectrum 27). It also had a medium level of O and a trace amount of Ti associated 

with it. The two sections of the background structure analysed had similar 

compositions, while the identified artefact’s composition was different to them. 
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Figure 3.60 ESEM with EDX spectra of unfiltered muscle. (A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta20, caged tilapia, site 13B), 
showing an artefact. (B) EDX spectra of spectrum 26 showing a very high level of carbon 
(C), a high level of titanium (Ti) and a medium level of oxygen (O) associated with the 
structure.  
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Figure 3.60 (continued) ESEM with EDX spectra of unfiltered muscle. (C) EDX 
spectra of spectrum 27 showing a very high level of carbon (C), a medium level of oxygen 
(O) and a trace level of titanium (Ti) associated with the structure. (D) EDX spectra of 
spectrum 28 showing a very high level of carbon (C), a medium level of oxygen (O) and 
a trace level of titanium (Ti) associated with the structure.  
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3.13.5.1.4 Spectrum 35 

Analysis of another different section of the unfiltered muscle from sample Ta20, 

by ESEM greyscale imaging, identified a fibre-like artefact (~25µm in length), 

lodged into the background structure (Figure 3.61A). Only this fibre-like artefact 

was focussed on for EDX analysis, see spectrum 35 (Figure 3.61B). EDX analysis 

of the fibre-like artefact observed (spectrum 35) found it to have a high level of C 

(Figure 3.61B) and medium levels of O and Fe associated with it. However no EDX 

analysis of the background structure was performed.   
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Figure 3.61 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta20, caged tilapia, site 13B), 
showing a fibre-like artefact. (B) EDX spectra of spectrum 35 showing a high level of 
carbon (C), and medium level of oxygen (O) and iron (Fe) associated with the structure.  
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3.13.5.2 Unfiltered muscle – Ta66 

3.13.5.2.1 Spectrum 107 and 108 

Analysis of the unfiltered muscle from sample Ta66 (caged tilapia, site 1B) 

identified a spherical bead shaped artefact (~20µm in length), which had a rough 

surface (Figure 3.62A). This bead and the background structure were focussed on 

for EDX analyses, see spectrum 107 (Figure 3.62B) and spectrum 108 (Figure 

3.62C). EDX analysis of the bead analysed in spectrum 107 found it to have very 

high levels of C and O (Figure 3.62B), and medium levels of Cu, Zn, Al and Si 

associated with it. EDX analysis of the background structure analysed in spectrum 

108 showed it to have a very high C level and a high O level (Figure 3.62C). Higher 

levels of C, but lower levels of O were observed in the background structure when 

compared to the bead. It also had trace amounts of P, S and K. 

Single-elemental-coloured images were also taken of this same area. High levels 

of Zn (Figure 3.63F) and Cl (Figure 3.63G) were associated exclusively with the 

bead-shaped artefact. The presence of O (Figure 3.63B) was associated with both 

the artefact and the background material. A higher level of O was observed in the 

bead when compared to the background structure. The presence of C (Figure 

3.63A) was associated with the background material and potentially part of the 

bead, however this was a very small area of C on the bead, with C presence higher 

in the background structure. The presence of K (Figure 3.63C), P (Figure 3.63D) 

and S (Figure 3.63E) were associated with the background material and bead 

artefact. The bead identified had a different composition compared to the 

background structure.  
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Figure 3.62 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a section of unfiltered muscle sample (Ta66, caged tilapia, site 1B), showing a 
bead-like artefact. (B) EDX spectra of spectrum 107 showing very high levels of carbon 
(C) and oxygen (O), and medium levels of copper (Cu), zinc (Zn), aluminium (Al) and 
silicon (Si) associated with the structure. (C) EDX spectra of spectrum 108 showing a very 
high level of C and a high level of O, and trace amounts of phosphorus (P), sulphur (S) 
and potassium (K) associated with the structure. 
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Figure 3.63 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a section of unfiltered muscle sample 
Ta66 (caged tilapia, site 1B). SEC image showing the presence of; (A) carbon (C) 
associated with the structure within the image, (B) oxygen (O) associated with the 
structure, (C) potassium (K) associated with the structure, (D) phosphorus (P) associated 
with the structure, (E) sulphur (S) associated with the structure, (F) zinc (Zn) associated 
with the structure, and (G) chlorine (Cl) associated with the structure. 
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3.13.5.2.2 Spectrum 118 

ESEM greyscale screening of a different section analysed from the unfiltered 

muscle sample from Ta66 identified a triangular-like fragment (~30µm in length) 

(Figure 3.64A), lodged into the background structure. This fragment observed was 

focussed on only for EDX analysis, see spectrum 118 (Figure 3.64B). EDX analysis 

of the structure analysed in spectrum 118 found it to have high level of C and O 

(Figure 3.64B), and low levels of nickel (Ni), Cu, Cl and Zn associated with it. 

However no EDX analysis of the background structure was performed here.    

Single-elemental-coloured images were taken of this same area. There were high 

levels of Cl (Figure 3.65F), Na (Figure 3.65G) and Ni (Figure 3.65I) associated 

exclusively with the triangular-like fragment observed. The presence of C (Figure 

3.65A) and P (Figure 3.65E) were associated only with the background material. 

The presence of O (Figure 3.65B), S (Figure 3.65C), K (Figure 3.65D) and Ca 

(Figure 3.65H) were all associated with both the fragment and background 

material, with K and Ca levels across both structures being lower than that of O 

and S levels. The triangular-like fragment identified had a different composition 

compared to the background structure. 
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Figure 3.64 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta66, caged tilapia, site 1B), 
showing a fragment-like artefact. (B) EDX spectra of spectrum 118 showing high levels of 
carbon (C) and oxygen (O), and low levels of nickel (Ni), cupper (Cu), zinc (Zn) and 
chlorine (Cl) associated with the structure.   
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Figure 3.65 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a different section of unfiltered muscle 
sample Ta66 (caged tilapia, site 1B). SEC image showing the presence of; (A) carbon (C) 
associated with the structure within the image, (B) oxygen (O) associated with the 
structure, (C) sulphur (S) associated with the structure, (D) potassium (K) associated with 
the structure, (E) phosphorus (P) associated with the structure, (F) chlorine (Cl) associated 
with the structure, (G) sodium (Na) associated with the structure, (H) calcium (Ca) 
associated with the structure and (I) nickel (Ni) associated with the structure. 
 
 
 

 

 

 



162 
 

3.13.5.3 Unfiltered muscle – Ta69 

Analysis of the unfiltered muscle sample from Ta69 (caged tilapia, site 4) as shown 

by ESEM greyscale imaging, identified a sphere-shaped artefact (~20µm in length) 

(Figure 3.66A). Only this sphere-shaped artefact was focussed on only for EDX 

analysis, see spectrum 69 (Figure 3.66B). EDX analysis of the sphere-shaped 

artefact analysed in spectrum 69 found it to have a medium level of C (Figure 

3.66B) and low levels of O, P and K associated with it. However no EDX analysis 

of the background structure was performed here. 
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Figure 3.66 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta69, caged tilapia, site 4), 
showing a bead-like artefact. (B) EDX spectra of spectrum 69 showing a medium level of 
carbon (C) and low levels of oxygen (O), phosphorus (P) and potassium (K) associated 
with the structure.  
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3.13.5.4 Unfiltered muscle – Ta72 

3.13.5.4.1 Spectrum 100 

Analysis of the unfiltered muscle from sample Ta72 (wild tilapia, site 4) identified 

a group of elliptical shaped rods, which ranged in length from ~5-10µm (Figure 

3.67A). Only one of these rods was focussed on for EDX analysis, see spectrum 

100 (Figure 3.67B). EDX analysis of the rod structure analysed in spectrum 100 

found it to have very high levels of C and O (Figure 2.67B), and a medium level 

of P associated with it. There were also low levels of Mg and Ca associated it. 

However no EDX analysis of the background structure was performed here. 
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Figure 3.67 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a section of unfiltered muscle sample (Ta72, wild tilapia, site 4), showing a group 
of elliptical shaped rods. (B) EDX spectra of spectrum 100 showing very high levels of 
carbon (C) and oxygen (O), a medium level of phosphorus (P) and low levels of magnesium 
(Mg) and calcium (Ca) associated with the structure.  
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3.13.5.4.2 Spectrum 103 and 104 

ESEM greyscale screening of a different section of the unfiltered muscle from 

sample Ta72 identified two artefacts with different structural appearances to the 

background structure (Figure 3.68A). These two artefacts were focussed on for 

EDX analyses, see spectrum 103 (Figure 3.68B) and spectrum 104 (Figure 3.68B). 

EDX analysis of the larger artefact (~50µm in length) analysed in spectrum 103 

found it to have very high levels of C and O (Figure 3.68B), and a high level of Ca 

associated it. EDX analysis of the other smaller artefact (~20µm in length) in 

spectrum 104 found it to have a high level of C (Figure 3.68C), and medium levels 

of O, P and Ca associated with it. These two artefacts identified had similar 

elemental compositions, however the larger structure observed in spectrum 103 

had a higher content of C, O and Ca, compared to the smaller structure observed 

in spectrum 104, which had an additional presence of P.  
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Figure 3.68 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta72, wild tilapia, site 4), showing 
two artefacts. (B) EDX spectra of spectrum 103 showing very high levels of carbon (C) 
and oxygen (O), and a high level of calcium (Ca) associated with the structure. (C) EDX 
spectra of spectrum 104 showing a high level of C, and medium levels of O, P and Ca 
associated with the structure.  
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3.13.5.4.3 Spectrum 105 and 106 

ESEM greyscale screening of a different section of the unfiltered muscle from 

sample Ta72 identified two fibre-like structures with a fragment structure located 

between them (Figure 3.69A). One of the fibres and the fragment were focussed 

on for EDX analyses, see spectrum 105 (Figure 3.69B) and spectrum 106 (Figure 

3.69C). EDX analysis of the fibre-like structure analysed in spectrum 105 found it 

to have very high levels of C and Si (Figure 3.69B), and a medium level of O 

associated with it. EDX analysis of the fragment structure analysed in spectrum 

106 found it to have high levels of C, Zn and Na (Figure 3.69C), medium levels of 

O and Si and a trace amount of chromium (Cr) associated with it.  

Single-elemental-coloured images were also taken of this same area. A high 

presence of Si (Figure 3.70B) was associated exclusively with the two fibre-like 

structures. There was a high presence of Cl (Figure 3.70G) and Zn (Figure 3.70I) 

associated only with the fragment between the fibres, and an additional small area 

of Cl located below the fragment. The presence of O (Figure 3.70C) and P (figure 

3.70F) were associated with the background structure and the two fibre-like 

structures observed. Higher levels of O were also observed in the fragment when 

compared to the two fibres or the background structure. The presence of C (Figure 

3.70A) and K (Figure 3.70D) were associated exclusively with the background 

structure. The presence of S (Figure 3.70E) was associated with the fragment 

identified and the background structure, with a higher level of S observed in the 

fragment when compared to the background structure. The fibre-like structure 

observed in spectrum 105, had a different elemental composition to the fragment 

observed in spectrum 106, and both were different to the background structure. 
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Figure 3.69 ESEM with EDX spectra of unfiltered muscle. A) ESEM greyscale image 
taken of a different section of unfiltered muscle sample (Ta72, wild tilapia, site 4), showing 
two fibre-like structures and a fragment. (B) EDX spectra of spectrum 105 showing very 
high levels of carbon (C) and silicon (Si), and a medium level of oxygen (O) associated 
with the structure. (C) EDX spectra of spectrum 106 showing a high level of C, Zn and Na, 
and medium levels of O and Si, and a trace level of chromium (Cr) associated with the 
structure.  
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Figure 3.70 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a section of unfiltered muscle sample 
Ta72 (wild tilapia, site 4). SEC image showing the presence of; (A) carbon (C) associated 
with the structure within the image, (B) silicon (Si) associated with the structure, (C) 
oxygen (O) associated with the structure, (D) potassium (K) associated with the structure, 
(E) sulphur (S) associated with the structure, (F) phosphorus (P) associated with the 
structure, (G) chlorine (Cl) associated with the structure, (H) calcium (Ca) associated with 
the structure and (I) zinc (Zn) associated with the structure. 
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3.13.5.5 Diatom in unfiltered muscle  

ESEM greyscale screening of a different section of the unfiltered muscle from 

sample Ta72 identified a structure (Figure 3.71) potentially similar to that of the 

diatoms identified on the macroplastic litter from Lake Victoria (Figure 3.48). This 

structure (shown by a blue ring in Figure 3.71) was cylindrical shaped (~20µm in 

length), and had a mesh-like structure. This structure was potentially similar to 

diatom from the genus Aulacoseira. 

 

 

Figure 3.71 ESEM greyscale image of potential diatom found on unfiltered 
muscle. This greyscale image taken on the ESEM shows a cylindrical shaped artefact 
identified (shown by blue ring), with a mesh-like structure, potentially similar to the diatom 
from the genus Aulacoseira. 
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3.13.6 Screening of the unfiltered intact gastrointestinal tract 

One untreated intact GIT sample was sent for ESEM screening (GIT20). ESEM 

screening included greyscale imaging, single-elemental-coloured imaging and EDX 

analysis.   

 

3.13.6.1 Unfiltered intact gastrointestinal tract – GIT20 

Analysis of the unfiltered GIT from sample GIT20 (wild tilapia, site 1B) identified 

two fragment-like structures lodged into the background structure (Figure 3.72A). 

These two fragments were focussed on for EDX analyses, see spectrum 84 (Figure 

3.72B) and spectrum 85 (Figure 3.72C). EDX analysis of the fragment-like 

structure (~8µm in length) analysed in spectrum 84 found it to have a high level 

of C, O and Si (Figure 3.72B) associated with it. With the structure having a higher 

Si level, than C and O associated with it. EDX analysis of the other fragment-like 

structure (~5µm in length) analysed in spectrum 85 found it to have a high level 

of C (Figure 3.72C), a medium level of O and low levels of Al, Si and Fe associated 

with it. The level of C was similar between the two structures, however the 

structure observed in spectrum 84 had a greater content of Si than the other 

structure observed in spectrum 85. However the structure observed in spectrum 

85 had a greater presence of different inorganic elements, such as Al and Fe.  
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Figure 3.72 ESEM with EDX spectra of unfiltered intact gastrointestinal tract. A) 
ESEM greyscale image taken of a section of unfiltered intact gastrointestinal tract (GIT20, 
wild tilapia, site 1B), showing two fragment-like structures lodged into the background 
structure. (B) EDX spectra of spectrum 84 showing high levels of carbon (C), silicon (Si) 
and oxygen (O) associated with the structure. (B) EDX spectra of spectrum 85 showing a 
high level of C, a medium level of O, and low levels of Al, Si and Fe associated with the 
structure. 
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3.13.6.2 Diatoms in the unfiltered intact gastrointestinal tract 

ESEM greyscale screening of a different section of the unfiltered GIT from sample 

GIT20 identified two structures (Figure 3.73) similar to that of the diatoms 

identified on the macroplastic litter from Lake Victoria. The structure shown by 

the green ring in Figure 3.73 was cup shaped (~20µm in length) and had valves 

and pores on its surface, and was potentially similar to the diatom from the genus 

Aulacoseira. The structure shown by the blue ring in Figure 3.73 was longer and 

thinner (~25µm in length) and had valves as well, and was potentially similar to 

the diatom from the genus Nitzschia.  

 
Figure 3.73 ESEM greyscale image of two potential diatoms found on unfiltered 
intact gastrointestinal tract. This greyscale image taken on the ESEM shows two 
structures similar that of diatoms. The structure in the green ring is potentially similar to 
the diatom from the genus Aulacoseira and the structure in the blue ring is potentially 
similar to the diatom from the genus Nitzschi. 
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Both potential diatoms seemed adhered to a larger spherical artefact shown in 

Figure 3.73. Single-elemental-coloured images were taken of this same area to 

investigate this artefact. The presence of two areas rich in Si (Figure 3.74C) were 

associated exclusively with the two potential diatom structures. The presence of 

O (Figure 3.74B) was associated with both diatom structures, the artefact and 

background structure. Higher levels of O were also associated with the two diatom 

structures compared to the artefact and the background structure. The presence 

of C (Figure 3.74A) was associated with the artefact and the background material. 

However there was a similar area on the artefact where there was no presence of 

O or C. A lower presence of Cl (Figure 3.74D) and Na (Figure 3.74G) were 

associated exclusively with the background structure. Low levels of P (Figure 

3.74E), S (Figure 3.74F), K (Figure 3.74H), Ca (Figure 3.74I), Fe (Figure 3.74J) 

and Mg (Figure 3.74K) were found across all structures within the image.  
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Figure 3.74 ESEM single-elemental-coloured images of unfiltered muscle. ESEM 
single-elemental-coloured (SEC) images taken of a section of unfiltered muscle sample 
Ta72 (wild tilapia, site 4). SEC image showing the presence of; (A) carbon (C) associated 
with the structure within the image, (B) oxygen (O) associated with the structure, (C) 
silicon (Si) associated with the structure, (D) chlorine (Cl) associated with the structure, 
(E) phosphorus (P) associated with the structure, (F) sulphur (S) associated with the 
structure, (G) sodium (Na) associated with the structure, (H) potassium (K) associated 
with the structure, (I) calcium (Ca) associated with the structure, (J) iron (Fe) associated 
with the structure and (K) magnesium (Mg) associated with the structure. 
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4.0 Discussion 

Fish are an essential component of freshwater ecosystems, providing significant 

nutritional and economical value worldwide. Developing countries account for 94% 

of all freshwater fisheries  (FAO, 2020b), granting food and livelihoods to millions 

of people, and bringing economic wellbeing through tourism, exportation and 

restoration. 

The increasing concentration of people and growth of towns and cities around 

freshwater ecosystems, together with increasing human demands for water, have 

resulted in growing levels of degradation, pollution and threats to biodiversity 

within these ecosystems (Arthington et al., 2016). Organic substances constitute 

one of the main freshwater pollutants, coming from domestic sewage discharges 

(even after treatment) and from industries such as food processing. Other 

anthropogenic activities, such as agricultural, industrial and mining industries, all 

contribute to the contamination of aquatic ecosystems (Bashir et al., 2020), 

However, plastics are now considered the dominant pollutant in freshwater 

ecosystems (Azevedo-Santos et al., 2021) 

Annual global plastic production has increased from 1.5 million tonnes in the 1950s 

to over 381 million tonnes today, and is set to double by 2034 (Condor Ferries 

Ltd., 2020). Plastic production continues to increase in developing countries, as 

they adopt the use-and-dispose culture (Pinheiro, 2017). This high production, 

along with plastic’s high durability and inappropriate waste management, has led 

to the extensive accumulation of aquatic plastic debris in freshwater habitats. Of 

particular concern are microplastics, with their ability to adsorb persistent organic 

pollutants, transfer them around the environment and into the food webs of 

organisms at all trophic levels of the aquatic system (Andrady, 2011) (Gallo et al., 
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2018), polluting the environment and threatening aquatic life and consumers of 

fish and their products. 

This study investigated the presence of microplastics in tilapia, both farmed and 

wild, harvested from Lake Victoria in Kenya, who are a growing aquaculture 

producer. This study analysed microplastic presence in samples of tilapia GIT 

contents and intact GITs, and compared these with the microplastic prevalence in 

tilapia muscle, the part of the fish consumers would eat. The surfaces of 

microplastics were also analysed for the potential presence of biofilms. 

With a growing global population and an ever-increasing need for a cheap and 

sustainable food source, the demand for fish as a key source of protein that is free 

of pollutants, such as microplastics, is critical for the future of human health. 

 

4.1 The importance of tilapia 

Besides livestock, fish is the major source of animal protein supply, however 

depleting wild stocks is an increasing concern for fishermen, environmental 

organisations and policymakers. Sustainable aquaculture is playing an important 

role in the transition to a more environmentally and economically viable fish 

production, with selection of fish species key to this burgeoning industry (Yue et 

al., 2016) 

Tilapia are the third most produced aquatic species globally (Elizabeth Cruz-

Suarez et al., 2006). They are a hardy, prolific and fast-growing fish, with an 

adaptable and herbivorous diet (Yue et al., 2016). With their production 

performances improved through breeding, farmed tilapias reach market size (i.e. 

600-900g) in 6-9 months of culture (Ahmed, 2009). Farmed in over 120 countries, 

including Kenya, they were a plausible choice for monitoring microplastic 
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contamination in Lake Victoria, due to their recognition as a dominant ecological 

and commercial species. 

 

4.1.1 Choice of tissues used for analyses  

This study looked at fish tissue, consisting of skin and muscle, this was used as a 

representative biological model, as it is the key part of the fish entering the human 

food chain. Biological samples are important in representing the fate and sources 

of plastic pollution, if we are to consider the potential effects on human health, 

and therefore applicable for the quantification of microplastic load. Fish are 

bioindicators of the contaminants which directly reflect the condition of the 

environment. The skin is one of the largest organs in the fish body and is one of 

the first barriers pollutants encounter.  

The entire tilapia GIT as well as the contents of the GIT were also analysed. Over 

220 different fish species have been found to consume microplastics in the natural 

environment (Lusher, Welden, et al., 2017). When ingested, microplastics are 

thought to be concentrated in the GIT of the fish (Foekema et al., 2013) (Khan et 

al., 2020), causing physical harm, such as the internal abrasion or blockage, and 

they can also promote a deceptive sense of satiation, leading to a decrease in 

consumption of their true food. An additional and harmful aspect of plastic 

ingestion is the potential hazardous chemicals that could leach out from the plastic 

and into other essential organs of the fish (Baalkhuyur et al., 2018).  

 

4.1.2 A reproducible and cost-effective method to investigate microplastic 
presence  
 
Microplastic presence is typically assessed by digestion of an organism’s biological 

tissues and consequent analysis of the filtrates. Numerous methods have been 
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established, however most are not suitable as they are too expensive or time 

consuming to be reproduced on a large scale particularly in LMICs. Zinc chloride 

was considered a fairly inexpensive and effective flotation media, although there 

were reports of the degradation of the plastic polymer polyamide and its inability 

to fully digest GI contents (Coppock et al., 2017). Sodium chloride is a cheap and 

inert option for microplastic recovery, but studies have shown that its use could 

result in an underestimate of microplastic abundance, especially with high density 

plastics (Grbic et al., 2019). 

Strong alkaline bases, such as KOH, hydrolyse chemical bonds and denature 

proteins, allowing biological material to be removed. However, this is less 

applicable for fish digestive tracts, due to the higher presence of inorganic 

material. Following a 2-3 week incubation of KOH at 10%, excised stomach and 

intestines from fish have shown successful digestion of organic material (Foekema 

et al., 2013). This protocol was developed to allow the dissolution of whole GIT in 

fish and their muscle tissue at higher temperatures and shorter durations, without 

polymer degradation. Plastic polymers have shown resistance to KOH (Foekema 

et al., 2013), with no impact on polymer form or mass, except for polycarbonate 

(PC) and PET which have shown minor degradation (Lusher, Welden, et al., 2017) 

(Alexandre et al., 2016).  

 

4.1.2.1 Visualising microplastics  

The use of the dye Nile Red to visualise and quantify microplastics is increasingly 

common (Joon Shim et al., 2016). It absorbs on the surface of plastic, and is 

recommended at 10µg/ml with an incubation for 30-60min (Maes et al., 2017). 

The use of higher concentrations has resulted in an increase in the fluorescence 

intensity, but also an increase in unwanted background signal from the filter paper 
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(Maes et al., 2017). Incubation was tested for 60min but found no difference in 

fluorescence between those that were incubated at 30min compared to those 

incubated for 60min, therefore 30min was chosen for the subsequent analysis of 

the remaining samples.  

False positives have been found to arise with Nile Red, where an artefact will 

fluoresce, but might not be a microplastic (Stanton et al., 2019). The additional 

use of DAPI, following staining with Nile Red, allows any biological material that 

could have been wrongly identified as microplastics, to be correctly classified.  

 

4.2 The importance of having controls  

Controls were essential in ensuring confidence in any microplastics detected in the 

tilapia samples being correctly identified. The structure, size and elemental 

composition of microbeads from a facewash and macroplastic litter collected from 

Lake Victoria were analysed and the results were used to help the interpretation 

of results from the fish muscles, GIT and GIT contents.  

 

4.2.1 Microbeads from facewash 

The extracted blue and white microbeads from a facewash were easily visible to 

the naked eye at ~5mm in diameter. In a single shower, it is estimated that 

100,000 microbeads are washed down our drains, potentially ending up in our 

global water bodies (McGrath, 2018). Their small size results in them not being 

filtered out by most wastewater treatments, and entering the aquatic 

environment. The main concern is their ability to function like tiny sponges, 

adsorbing toxic chemicals from the surrounding waters (Nerín et al., 1996) and 

acting as a host for the development of biofilms (Harrison et al., 2018a). However, 

this can make them smell and taste similar to the normal diet of aquatic life, such 
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as fish, resulting in their ingestion across numerous aquatic species. Microbeads 

have been reported to be a million times more toxic than their surrounding waters  

(Animals Australia, 2019). The UK cosmetic industry recognised their pollution 

implications and placed a ban on their use in cosmetic products in 2018 (Pro, 

2017), replacing them with biodegradable alternatives such a jojoba beads.  

The extracted beads were used to spike fish samples as a control to endorse the 

reliability of both Nile Red and DAPI stain protocols following digestion. Alkaline 

digestion with KOH allowed the microbeads to collect at the top of the solution, 

from flotation based on their density, and they were seen collecting at the top 

edges of the filter paper. This area was focussed on when searching for 

microplastic presence in the tilapia samples. This also helped in method 

optimisation, as the KOH used demonstrated successful digestion of organic 

material present in the samples. 

Interestingly, when analysed by light microscopy the larger blue spiked 

microbeads used appeared as dark circles and did not fluoresce. Whilst an issue 

with the methodology was originally suspected, a previous study has showed that 

Nile Red struggles to adhere to larger microbeads (Hantoro et al., 2019). It is also 

possible that the staining incubation time with Nile Red was not sufficient for 

staining the larger beads (Maes et al., 2017). In addition, white polymers have 

been found to stain with Nile Red, while blue polymers, similar to these from the 

face wash, have been shown to be less absorbent (Mayes, 2018). 

 

4.2.2 Macroplastic litter from Lake Victoria  

Light microscopy of strands of the macroplastic netting collected from Lake 

Victoria revealed strong fluorescing fibre structures after staining with Nile Red, 
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for all the different coloured net pieces investigated. None of the net pieces 

fluoresced with DAPI confirming its reliability as a second stain.  

The macroplastic litter was also used in the screening for bacterial DNA and 

therefore biofilm presence. All the different coloured net pieces analysed were 

positive for bacterial DNA, highlighting the potential presence of a biofilm on the 

surface of the macroplastic.   

 

4.2.2.1 Diatoms found on macroplastic litter 

Studies have found diatoms and bacteria as the most common biota to exist on 

the microplastic’s biofilm (Reisser et al., 2014) (De Tender et al., 2017) (Schlundt 

et al., 2019). Macroplastic litter collected from Lake Victoria’s waters was screened 

by ESEM imaging for potential biofilm presence. Numerous different shaped 

diatoms (Figure 3.48) were potentially identified, including circular flukes, longer 

rods and 3D diatoms. These were tentatively identified as the diatom genera 

Fragilaria, Cocconeis, Aulacoseira, Achnanthes and Tabellaria which are all 

freshwater diatoms  (Poulíčková and Manoylov, 2019) (Forrest et al., 2020) 

(Amoatey and Baawain, 2019).  

Studies based on Lake Victoria’s waters have shown diatoms from the genera 

Navicula, Aulacoseira, Nitzschia and Pinnularia are abundant in the lake (Triest et 

al., 2012) (Stager et al., 2009). The diatom genus Aulacoseira has been shown to 

be abundant in the lake in the wet season (January to May), while the genus 

Nitzschia is abundant in the dry season (June to July) (Sitoki et al., 2012). In the 

Nyando river, feeding into the Winam gulf, the genus Cocconeis was found to exist 

in high abundance (Triest et al., 2012). Specifically in the Winam Gulf, the diatom 

genera Aulacoseira and Nitzschia have been the dominant types occupying the 

lake (Kundu et al., 2017). This supported the possibility of the structures identified 
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on the macroplastic litter being diatoms, as a cylindrical shaped structure similar 

to that from the diatom genus Aulacoseira was identified, and there was also a 

number of potential circular structures similar to that of the genus Cocconeis 

identified. These two freshwater diatom species have been identified in Lake 

Victoria and the rivers feeding into the lake.  

 

4.3 Is microplastic prevalence greater in wild or farmed fish? 

While analysing muscle, GIT and GIT contents, we were able to compare 

microplastic prevalence in these different tissues between the wild and the farmed 

tilapia. 

 

4.3.1 Fish muscle from wild fish contains greater numbers of microplastics 

The muscle of the wild tilapia had a greater prevalence of microplastics, with 46 

identified in 19 (50%) of the fish. In comparison, only 35 microplastics were found, 

present in 19 (45%) of the farmed/caged fish. This was in line with findings from 

a study on salmon, where wild caught salmon contained greater microplastic 

amounts than farmed (Moore, 2019). This result was thought to be the 

consequence of diet. Wild fish are allowed to travel freely and therefore have the 

potential to be exposed to more plastic pollution. Wild fish are also more likely to 

feed on smaller marine life, such as zooplankton, where studies have found high 

levels of microplastics ingested by 39 species of zooplankton (Botterell et al., 

2019).  

Feeding behaviour can also play a part in the uptake of microplastics, where the 

number of microplastics ingested was high when there was no or limited food 

available. This increase is because these fish are actively foraging on microplastics 
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when no food is available (Roch et al., 2020). This will occur more in the wild fish, 

as farmed fish are typically fed a minimum of twice a day (Njiru et al., 2004b).  

Wild fish can also vary in age, with older fish being potentially exposed to more 

plastic pollution, whereas farmed fish are usually harvested in Lake Victoria after 

only 6 months. With wild fish caught at an older age, this could allow more time 

for microplastics to translocate across the GIT epithelium into the muscle, and 

therefore result in the increase in the wild muscle (Abbasi et al., 2018) (Jovanović 

et al., 2018). The effects of accumulation in the muscle may be significant, 

especially with implications for food web transfer and fish as a food source (Roch 

et al., 2020).   

 

4.3.2 Is microplastic prevalence greater in the GIT from farmed tilapia? 

The farmed tilapia GIT contents analysed in this study had a higher microplastic 

content (3 pieces) than the wild GIT contents samples (2 pieces), however only 

small numbers of fish were analysed in this part of the study, 4 farmed and 1 wild 

tilapia. Interestingly when the intact GIT was analysed, farmed tilapia were found 

to again have a high microplastic content (19 pieces) compared to the wild fish (9 

pieces), with equal numbers of fish investigated (n=3).   

Taken together, these results suggest that the farmed tilapia have a greater 

prevalence of microplastics within their GIT than the wild fish. Aquaculture 

extensively uses plastic for both equipment and packaging, everything from 

polystyrene foam-filled fish cage collars, to plastic feed sacks and harvest bins 

(Holmyard, 2019). Farmed fish are fed commercial pellets and are enclosed in a 

netted environment, usually made of PE and PP plastics (Njiru et al., 2018). 

Damage to these cages by UV radiation, weathering and ageing could cause 

microplastics to be broken off and contribute, through ingestion, to the greater 
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prevalence of microplastics seen in the GIT from farmed fish. In addition, farmed 

fish can exhibit inquisitive behaviour towards parts of their cages, providing 

further potential to ingest harmful plastics through this behaviour (Roch et al., 

2020). Ghost gear when old and broken can get dropped by fishermen, with 

640,000 tonnes abandoned in global waters annually (World Animal Protection, 

2018). This often occurs in the vicinity of the bays where the fishermen are from, 

with these inshore regions the preferred location of fish farms (Xue et al., 2020). 

This can contribute to a high density of microplastics in these caged areas (Nelms 

et al., 2021).  

A study on the composition of a commercial fishmeal product used in the feeding 

of farmed fish was carried out to detect microplastic content (Gündoğdu et al., 

2021). Fishmeal is a dry, high-protein feed component primarily used in the 

aquaculture sector. The study tested 26 fishmeal products and found plastic 

content between 0-526.7 n kg-1 (Gündoğdu et al., 2021). Farmers using fishmeal 

or other commercial feed product could be adding another pathway for plastics to 

enter the food chain of farmed fish. 

The higher prevalence of microplastics found in the intact GIT compared to the 

GIT contents suggests that microplastics have the potential to become closely 

associated with the GIT structure, and therefore not easily removed when 

extracting the GIT contents. This is supported by studies which show the potential 

for accumulation in the GIT of marine and freshwater species across the world (De 

Sales-Ribeiro et al., 2020) (Neves et al., 2015) (Ding et al., 2018), and specifically 

in fish sourced from Lake Victoria, where 20% of caught Nile perch and Nile tilapia 

were found to contain plastics within their GITs (Biginagwa et al., 2016).  

However with such low numbers of microplastics and a greater number of farmed 

fish (n=4) analysed compared to wild (n=1), further work is needed to determine 
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whether caged fish are more likely to encounter and ingest microplastic than wild 

fish, and also to investigate the sources of these microplastics. 

 

4.4 Microplastics prevalence varies with geographical location 

Cities, towns, rivers, urbanisation and industrial activities all contribute to the 

plastic pollution of an aquatic environment. Lake Victoria is the central receiver of 

industrial and domestic waste from towns and cities around its basin and from 

industrial and agricultural waste from regions rich in mining activities and 

agriculture (Ngure et al., 2014). This is exacerbated by the numerous rivers which 

feed into the lake, carrying pollution from further afield (Oguttu et al., 2008). 

 

4.4.1 Kisumu  

Site 1A and 1B (Dunga), located on the Eastern shore of the Winam Gulf, in close 

proximity to the city of Kisumu, had the greatest number of fish analysed (n=20) 

and a high content of microplastics identified. Of the muscle samples analysed 

(n=18) at this site 50% were found to contain microplastics (Ta12, Ta55, Ta61, 

Ta62, Ta63, Ta65, Ta66, Ta67 and Ta68), with 13 microplastics identified in all 

the muscles. Two GITs (GIT15 and GIT19) were also analysed from this site and 

were found to contain 9 microplastic pieces between them. Kisumu, Kenya’s third 

largest city and the second largest city on the Lake Victoria basin (after Kampala, 

Uganda), sits on the Eastern edge of the Winam Gulf. Kisumu is the immediate 

former capital of Nyanza Province, and is an important link in the trade route 

between Lake Victoria and Mombasa because of its water and rail connections. It 

is also the chief terminus for the agricultural produce of Nyanza and Western 

provinces. Kisumu has a population of 721,082, with a rural population within 

Kisumu Country of 714,688 (KNBS, 2019). Like many growing urban areas of 
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developing countries, solid waste management is a major environmental and 

public health concern. Kisumu is facing increasing waste generation, an 

overflowing dumpsite and pollution from uncontrolled discarding of waste. Despite 

having an environmental department to manage solid waste services, the 

department lacks financial resources and the adequate technical capacity to 

effectively manage the waste generated (Sibanda et al., 2017). 

 

4.4.2 Northern Winam Gulf  

Site 15B (Port Buyala), located on the North-West shore of the Winam Gulf, had 

a high prevalence of microplastics identified (n=9) in all of the three fish analysed 

from the site (Ta39, Ta40 and Ta48). Fish also sourced from the nearby site 16B 

(Mageta Island), located on the North shore of the Winam Gulf, had the greatest 

amount of microplastics identified (n=14) when comparing all the fish from all the 

sites. Three fish were analysed (Ta35, Ta36 and Ta38) and all the samples 

contained microplastics, however the majority were found in one fish (Ta38), 

where 11 fibres were identified. Research has found Lake Victoria’s waters to 

exhibit an anti-clockwise flow (Nyamweya et al., 2016a). As there is a constant 

high volume of municipal pollution coming from Kisumu on the Eastern shore of 

the lake, this anti-clockwise current could be bringing an array of pollution from 

the city to the Northern shores of the Winam Gulf and polluting the aquatic 

environment and thereby the fish at sites 15B (Port Bunyala) and 16B (Mageta 

Island). Furthermore, poor education, typical of many smaller urbanisations in 

developing countries, has led to inhabitants directing the majority of their 

wastewater into the lake. A high amount of microfibres (n=13) were detected in 

the fish from site 16B. Washing machine and manual clothes washing runoff can 

deposit large amount of microfibres into the lake (GESAMP, 2016).  
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Sites 15B and 16B are also located near to areas of high mining and agricultural 

activities. Agricultural wastewater can run off into surrounding rivers and the lake, 

carrying pollution with them. Wastewater treatment sludge by-products are 

applied to agricultural lands and have been found to contain synthetic clothing 

microfibres (Bashir et al., 2020). These can persist in the soil or sludge for up to 

5 years post application, with some detecting them in field sites up to 15 years 

after application (Zubris and Richards, 2005). Here microplastics are retained in 

sludge, which is then applied as fertiliser, releasing the microplastics as a 

persistent terrestrial contaminant. This is escalated by the degradation of PE 

agricultural mulch films, which are used to modify soil moisture and temperature 

(Qi et al., 2020). As soil-contaminated films are non-recyclable and are often so 

thin, their extraction from the soil is difficult and they are left to contaminate the 

soil.  

In Kenya, mining is known to provide great socio-economic benefits, however it 

is also considered to be the largest pollution source, after the agricultural industry 

(Mitchell et al., 2020). Gold mining generates large amounts of mine waste and 

effluents, with considerable amounts of persistent harmful elements, that cause 

great environmental and human health concerns (Ogola et al., 2002). These 

harmful elements can be released into the lake and be picked up by microplastics, 

which could be acting as transport vectors into the fish and threatening their 

health. Fish from Lake Victoria have been found to contain concentrations of 

cadmium (Cd), lead (Pb), arsenic (As) and mercury (Hg) that were above the WHO 

and FAO maximum allowable concentration (Ngure et al., 2014).  
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4.4.3 Rivers 

Rivers play an important role in the transport of plastics into the lake. They can 

bring pollution from tourism, on-water activities and improper dumping of 

terrestrial waste. Furthermore storm and rainwater drainage, flooding and wind 

can transport plastic litter into freshwater ecosystems (Bellasi et al., 2020). 

Moreover, rivers and lakes operate as secondary microplastic producers, 

fragmenting the pollution by weathering and water currents. Sites 4 and 4D 

(Uyoma Point) are located at the mouth of the River Awach. A study tested water 

from the Awach mouth and found the water unsuitable for direct drinking water 

supply (Lalah et al., 2008). The close proximity to the market towns here was 

thought responsible for the high pollution levels. Microplastics were found in 

abundance (n=9) in the two intact GIT samples analysed from site 4 and in the 

wild muscle samples analysed from site 4D, with all three fish analysed containing 

a total of 5 microplastics. 

 

4.4.4 Entrance to the main lake body  

Sites 7B and 7D (Mbeo cages) and sites 13B and 13D (University of Eldoret pond) 

are located in the entrance to the Winam Gulf from the main lake body. This is 

the only entrance/exit that fishermen can use to access the main body of the lake. 

As they use this channel, they will often be pulling trawl nets, which are made 

from plastics, including PP, PE, PA, PS and PVC. These nets are often abandoned, 

lost, or discarded in this area, especially if breakage occurs from the net getting 

trapped on obstacles in the water (Nelms et al., 2021). Proper disposal of 

discarded fishing nets is costly, and some fisheries will often dump their nets into 

the water if they cannot afford the fee (Bracenet, 2020). Ghost gear is estimated 

to make up 30-50% of the total plastic pollution found in our waters (The 
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Guardian, 2019). It causes harm to aquatic life by entanglement, and the 

persistence of microfibres in the water, which the net releases through ageing in 

the water, these can then be ingested by fish and other aquatic organisms. 

Microfibres were one of the most commonly identified microplastic type in the 

muscle samples, with 35 microfibres identified in all the muscle samples, and were 

identified in fish analysed from sites 7B and 7D and sites 13B and 13D. 

There is little exchange between the Winam Gulf with the open lake (Nyamweya 

et al., 2016b), resulting in different water quality and often higher levels of 

pollution build up reported at those sites. Fish from those sites located in the 

Winam Gulf; sites 1A and 1B (Dunga), sites 4 and 4D (Uyoma Point), site 6B (Off 

Ngodhe), sites 7A and 7B (Mbeo cages), sites 13B and 13D (University of Eldoret 

pond), site 15B (Port Bunyala) and site 16B (Mageta Island), were all found to 

contain microplastics. As the Winam Gulf has many rivers feeding into it, and a 

high amount of agricultural, industrial, mining and domestic activity around its 

shores, it is perhaps no surprise that pollution amounts are markedly greater than 

in the main body of the lake (Kundu et al., 2017). 

There is a spatial association between human activities and microplastic 

prevalence.  Microplastic pollution sources in Lake Victoria are from numerous 

industries, such as mining, shipping, agro-processing factories, pharmaceutical 

industries and fisheries themselves. Levels at any one site across the lake can be 

affected by proximity to river mouths, industry and human activity. 

 

4.5 Are the bacteria detected from the plastisphere? 

Bacterial DNA was detected in some of the samples, despite the isolation of 

genomic DNA in low quantities. However, we cannot be sure that the bacteria from 
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which the DNA originated were part of the microplastic’s plastisphere. The bacteria 

could have been attached to other materials present in the samples. 

The microfibre filters used had 1.6µm pores (Sigma-Aldrich, 2020), which should 

have allowed any bacteria not attached to microplastics to pass through. However, 

bacteria could have been attached to plant material particularly in the GIT 

samples. Attempts to identify some of the bacteria were not fruitful.  

ESEM analysis of the unfiltered muscle from sample Ta72 identified a group of 

elliptical shaped rods (Figure 3.67A), which ranged in length from 5-10µm. Most 

bacteria are said to be 1-2µm in diameter and 5-10µm in length (Levin and Angert, 

2015), which supported the possibility of this group of structures potentially being 

bacteria. Furthermore, EDX analysis of one of these rods (Figure 3.67B) found it 

to have a very high C and O content, as well as a medium level of P and low levels 

of Mg and Ca associated with it. Aquatic bacteria have been found to require C, O 

and P for their growth and success (Vrede et al., 2002). Bacterial cell walls have 

also been found to show favourable conditions for calcium carbonate precipitation 

provided by the cell wall and the extracellular polymeric substance (Enyedi et al., 

2020), so that calcium and magnesium ions can then bind on the bacteria’s 

surface. This research supported the elemental composition of one of the rods 

identified, however it was felt that there was not enough evidence to fully support 

these rod structures as being bacteria. Further work using SEM imaging 

incorporating staining for bacteria and species could be used to clarify whether 

there was a plastisphere present and potentially identify some of its components.    

 

4.6 Can the plastisphere be visualised?  

Plastic debris acts as an appealing substrate for microorganisms to adhere to as 

it will persist longer than other natural floating substrates, and has been shown 
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to act as a transport vector for POPs (Zettler et al., 2013). Previous studies have 

used SEM imaging to visualise this plastisphere and to categorise any microbial 

communities living on the surface (Zettler et al., 2013) (Oberbeckmann et al., 

2014) (De Tender et al., 2017) (Kirstein et al., 2019). In this study ESEM and EDX 

analysis was used to screen samples for microplastic presence, based on their 

surface characteristics and elemental composition. It was also used in determining 

the microplastic content, and visualisation of the plastisphere. 

Biofilms formation typically constitutes a change in the lifestyle of the 

microorganism, whereby the genes involved in adhesion, chemotaxis and 

substrate transport are expressed to enable cells to from a matrix, and fluid 

channels to distribute nutrients between cells (Amaral-Zettler et al., 2020). SEM 

imaging from the samples analysed in this study has shown the plastisphere as a 

diverse microbial ecosystem, with members including cyanobacteria and diatoms. 

Diatom-like structures were identified on the macroplastic litter from Lake Victoria, 

and tentatively identified as the diatom genera Fragilaria, Cocconeis, Aulacoseira, 

Achnanthes and Tabellaria. ESEM screening of the unfiltered muscle from sample 

Ta72 identified a cylindrical shaped artefact, with a mesh-like structure, similar to 

that of the diatom genus Aulacoseira. The structure identified was ~20µm in 

length and had a unique mesh-like appearance similar to that of a diatom. The 

size of diatoms is said to range from 2-200µm in length, with the genus 

Aulacoseria being between 5-20µm in length (Genkal and Popovskaya, 1991).  

Another structure similar to that from the diatom genus Aulacoseria was identified 

in the ESEM screening of an unfiltered GIT. This structure was cup shaped and 

20µm in length, with valves and pores on its surface, similar to the diatom from 

the Aulacoseria genus.  
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Another longer and thinner structure with valves on its surface was also identified 

in sample GIT20. This structure was ~25µm in length, and resembled the diatom 

from the genus Nitzschia. Diatoms from the genus Nitzschia are between 8-30µm 

in length (Kelly et al., 2015) and are commonly found in freshwater environments. 

Studies based on Lake Victoria’s waters have shown diatoms from the genera 

Navicula, Aulacoseira, Nitzschia and Pinnularia are abundant in the lake (Triest et 

al., 2012) (Stager et al., 2009). 

A previous study attempting to visualise the plastisphere using SEM imaging, 

identified diatoms from the bacillariophyte genera including Navicula, Nitzschia 

and Sellaphora (Zettler et al., 2013), which are known biofilm formers in the 

aquatic environment (Congestri and Albertano, 2011). Another study found 

frequent diatoms from the genera Nitzschia, Cocconeis, Achnanthes and Amphora, 

when screening aquatic plastic debris by SEM imaging, with the genus Nitzschia 

as the most frequent diatom identified (Reisser et al., 2014). The diatom genera 

findings in this study were in line with common diatoms found on aquatic plastic 

debris in previous studies, as well as with common diatoms found in the waters of 

Lake Victoria. Furthermore, diatoms are not usually found in the muscle of fish 

and would not be present unless they had adhered to a substrate such as a 

microplastic. However they could have resulted from cross-contamination of the 

GIT during the processing of the fish, although this was felt unlikely as the sample 

preparation was performed in such a way to ensure no contamination between 

different samples of the fish would occur.  

Both of these potential diatoms were seen adhered to a larger spherical artefact 

(Figure 3.73), which when screened by EDX analysis was found to have a high 

carbon content associated with it. Plastics are commonly carbon based and due to 

its spherical shape, this structure was suspected as a microbead with the two 
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diatoms colonised on its plastisphere. Microorganisms have been found to colonise 

plastic substrates within hours of entering the aquatic environment (Harrison et 

al., 2018a). SEM images have shown various pennate diatoms colonising a PE 

biofilm after 1 week, but after 2 weeks many diatoms are pushed off from the 

surface as other microorganisms such as cyanobacteria attach to the biofilm 

community (Amaral-Zettler et al., 2020).  

A strong Si content can be indicative of diatoms (Wang et al., 2017a). Using ESEM 

alone, this could lead to diatoms being mistaken for microplastics as their 

structure is alike. ESEM screening of the filtered GIT contents from sample GI5 

demonstrated this, as an artefact was identified with a similar structure of a 

diatom. This however was ruled out, as the presence of Si was only associated 

with the fibrous background material. Instead, the meshed artefact had a high C 

content, with an area on its surface that was rich in Cl. This Cl-rich area could 

have indicated the unique property and presence of the plastic polymer PVC, 

however as the Cl area did not cover the whole of the mesh-like structure further 

work would be needed to confirm if this was a PVC plastic particle. 

 

4.7 Can SEM be used to screen for microplastic presence? 

Plastics are carbon based, so strong carbon peaks exhibited by EDX analyses of 

the fish samples were thought to be indicative of potential microplastic presence, 

as other materials present were expected to be non-organic. 

 

4.7.1 Microplastic misidentification   

A possible source of microplastic misidentification has been found to be from 

fractured fish bones (Wang et al., 2017a), which is characterised by an EDX 

spectra exhibiting high levels of calcium and phosphorus, this is usually common 
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in the screening of fish GIT contents but was found in this study in fish muscle. 

Screening of the filtered muscle from sample Ta48, highlighted an artefact 

(>75µm in length) with a similar structure to a microplastic fragment. Using SEM 

imaging, this structure was found to contain high amounts of Ca and P, with lower 

amounts of C and Mg. As this was found in the fish muscle, this artefact is 

potentially a fish scale. Its fragment-like structure could have led to this being 

mistaken for a microplastic, but this was ruled out by the high Ca/P content 

identified through SEM screening.   

A similar result was found in the screening of the unfiltered muscle from sample 

Ta72, where two fragment-like artefacts were identified which had a different 

appearance to the background structure. EDX analysis highlighted the larger of 

the artefacts (50µm in length) had a high Ca content, as well as very high levels 

of C and O associated with it. EDX analysis of the smaller artefact (20µm in length) 

found a high C level and medium levels of O, P and Ca associated with it. A study 

that analysed Atlantic fish using SEM/EDX imaging for microplastic prevalence 

found that shells and their fragments in the fish samples exhibited a strong Ca 

peak on EDX analysis (Wagner et al., 2017). Despite the high C content of these 

two artefacts, it was decided that the high presence of Ca and P suggest they were 

not plastic in origin but potentially fragments from shells, scales or bones.  

 

4.7.2 Determination of microfibre  

The screening of the unfiltered muscle from sample Ta20 identified a group of 

rectangular structures similar to that of microfibres, which ranged in length from 

10-30µm. When two of these fibre-like structures were focussed on by EDX 

analyses, they were both found to have high C levels, which supported their 

possibility of being microfibres. They were also found to both contain medium 
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levels of O, which correlates with a previous study which found that microfibres 

can exhibit a smaller O peak when examined with SEM/EDX (Blair et al., 2019). 

Single-elemental-coloured images were also taken of this same area and found 

these two fibres to contain high amounts of Si which was not indicated on the EDX 

analyses. Si is often added to plastic to form silicones which produce malleable 

rubber items, hand-resins and spreadable fluids (LifeWithoutPlastic, 2020). 

Silicones do not biodegrade, are completely inert and have been found to leach 

certain synthetic toxic chemicals at low levels (Jenke et al., 2006), with the chance 

of leaching increased in fatty substances, such as the muscle of the fish. While full 

confidence cannot be placed in the identification of these fibre-like structures in 

this sample being silicone plastic microfibres, organic structures with high Si 

contents should still not be found in the muscle of the fish, and it does raise 

concern for the possible leaching of toxic chemicals that could be occuring in the 

fish muscle.  

 

4.7.3 Determination of microbead  

A bead shaped artefact was identified, in the unfiltered muscle from sample Ta66, 

~20µm in length, with a sphere shape and a rough surface, which could have 

come from weathering and polymer degradation in the aquatic environment. EDX 

analysis of this bead found it to have a very high C level, which supported a plastic 

origin. Many inorganic elements were also detected, with medium levels of Cu, 

Zn, Al, and Si. EDX analysis allowed us to compare the background structure 

(muscle), which contain no Cu or Zn. Cu and Zn are both used as coatings on 

plastic, to reduce diffusion of O and protect the plastic (Bilek et al., 1966). These 

elements are often found together in PEN plastic and sometimes PVC (Papagiannis 

et al., 2004). However, they both raise concerns as they can accumulate in high 
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concentrations in the fish’s liver, causing toxicity to fish and a threat to human 

health if they translocate into the fish muscle, which was seen in this sample 

(Papagiannis et al., 2004). The adsorption of Cu and Zn from aquatic 

environments has been found to be higher from aged (sun-exposed) PVC and PS 

microbeads than for their virgin counterparts (Brennecke et al., 2016). As the 

bead shaped artefact in this sample had a very high C content and seemed to 

appear aged from its rough surface, it seemed probable that this could be a PVC 

or PS microbead. Furthermore the inorganic levels of Cu and Zn, that can appear 

at high levels in freshwater lakes (Papagiannis et al., 2004), supported the 

conclusion that this microbead could have adsorbed these from the aquatic 

environment and transported them into the fish. 

Another bead-like artefact (~20µm in length) was identified in the unfiltered 

muscle from sample Ta69, and found to have a high C peak, however this C level 

was not as high as those identified in the potential microplastics found in the other 

fish samples. The structure also had a low level of O, P and K associated with it. 

However, despite the distinctive sphere appearance of this artefact, there was no 

EDX analysis taken of the background structure (muscle) to compare the 

compositions, and therefore insufficient details to confirm that this artefact was a 

microbead. 

 

4.7.4 Determination of fragment  

Screening of a different section of the unfiltered muscle from sample Ta66 

identified a triangular-like fragment, ~30µm in length, lodged into the background 

structure (muscle) of the sample. When analysed it was found to have a high C 

content, and also medium peaks of Ni and Cl. SEC images were also taken of this 

same area and found the fragment structure to exclusively contain high amounts 
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of Cl, Na and Ni, but no C. Ni plating is used on plastics in the finishing industry, 

to prevent corrosion of the material (Naqash et al., 2020). If ingested, it can be 

toxic at high levels, and has been found to cause impairment of gas exchange 

(Blewett and Leonard, 2017), inhibit ion regulation and promote oxidative stress 

(Naqash et al., 2020) in fish. PVC plastic can be detected through SEM/EDX 

analysis from its unique elemental signature of containing Cl (Wang et al., 2017b), 

however as this fragment was shown to contained no C, it was felt unlikely that 

this was a microplastic fragment.  

 

4.8 Can microplastics act as a transport vector for harmful chemicals? 

4.8.1 Barium presence  

SEM screening detected low levels of Ba in all the filtered fish samples. This 

originally raised concern as Ba compounds are amongst the densest used as heat 

stabilisers (McKeen, 2019), especially in PVC (Turner and Filella, 2020a), and once 

ingested in fish have been shown to cause metabolic, neurological and kidney 

diseases (Turner and Filella, 2020a). There are even reports of breast cancer that  

have resulted from exposure to Ba in humans (Campanale et al., 2020). Screening 

of a plain section of the microfibre filter paper as a control, highlighted small bead 

structures on top of the fibrous filter paper material. When one of these bead 

structures was focussed on by EDX analysis it was found to have a low Ba content. 

As the filter paper had been screened without the addition, it suggested that the 

Ba must have been part of the composition of the filter paper.  

When screening one of the filtered muscles (sample Ta44), where a larger (>75µm 

in length) darker grey structure was identified on top of the fibrous background 

material. Single-elemental-coloured imaging revealed some deposits surrounding 

this structure, which were exclusively associated with high levels of Ba (Figure 
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3.52F). These structures were similar in shape to that of microbeads, however 

with Ba deposits detected in the composition of the filter paper, the potential for 

these to be microbeads was ruled out.  

 

4.8.2 Titanium presence 

To avoid unwanted interference from elements in the filter paper or reagents used 

in the filtering process, untreated sections of muscle and the GIT were also 

screened.  

The screening of the unfiltered muscle from sample Ta20 highlighted an artefact 

(~7µm in length) with a different appearance to the background structure. It was 

found to be rich in C with medium levels of Ti. Analysis of the background structure 

found it to also contain a very high level of C, but with no Ti. Single-elemental-

coloured images were also taken of this same area and confirmed that Ti was 

exclusively associated with the artefact identified. The results suggested that this 

artefact was potentially plastic in origin with possible titanium dioxide (TiO2) 

nanoparticles absorbed to it. TiO2, a common additive used in plastic 

manufacturing, acts as a UV blockers, preventing the polymer’s degradation (Cho 

and Choi, 2001). Studies however have shown that this TiO2 may be toxic to algae, 

bacteria and fish (Handy et al., 2008), by inducing oxidative DNA damage, lipid 

peroxidation and even cause an increase in nitric acid or hydrogen peroxide 

production in human bronchial epithelial cells if ingested by humans (Shah et al., 

2017).  

 

4.8.3 Iron presence  

Screening of a different section of the unfiltered muscle from sample Ta20 

identified a fibre-like structure (~25µm in length) lodged into the background 
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structure of the sample. Further analysis of this fibre-like structure found a high 

level of C, and medium levels of O and Fe. Although no EDX analysis of the 

background structure was performed, the presence of a fibre-like structure 

containing Fe in the fish muscle was unexpected. Iron oxide (Fe3O4) is a heavily 

used heat stabiliser additive in plastics, and also commonly used to achieve 

metallic finishes for aesthetic satisfaction (Sastri, 2014). High levels of Fe in fish 

have been found to damage fish gills (Hahladakis et al., 2018). We cannot be 

confident that this fibre was of microplastic origin. Future investigation to 

determine the source of origin is needed, as iron does not naturally occur in 

aquatic environments. Metallic pellets found, such as observed here, could indicate 

contaminants relating to mining and industrial activities (CIRDI, 2018). 

 

4.8.4 Magnesium presence 

Low levels of Mg were detected in many of the screened samples, including muscle 

and the GIT. Screening of the filtered muscle from sample Ta18 identified a large 

fibrous structure (>50µm in length), larger than the fibres observed in the filter 

paper. This large fibrous structure had external surface deposits rich in Ba (Figure 

3.50F). However given the Ba content of the filter paper, it was inconclusive as to 

whether this Ba originated from the filter paper or through plastic adhesion. The 

large fibrous structure contained high levels of C, Cl and S, which supported the 

possibility of it being a plastic microfibre. A smaller elliptical structure, on the 

outside structure of the larger fibrous artefact, was also identified that was not 

seen on the ESEM greyscale image. It was characterised by the highest levels of 

K, Cl, Ca and Mg detected from all the structures screened. SEM screening can 

sometimes result in Al interference detected in samples, as this can come from 

the gas chamber used (Abbasi et al., 2018), and it can therefore be difficult to 
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decide the origin of Al. The presence of Mg may result from the use of active 

magnesium oxide which is a plastic reinforcer added to rubber compounds, with 

its main function being the neutralisation of HCl that can be released during 

processing and degrade the plastic material (NikoMag, 2021). Mg is an important 

mineral for muscle and nerve function but can be toxic when greater than natural 

environmental levels. Magnesium sulphate, dependent on Ca concentrations 

present, has been found to be toxic to aquatic environments (Luo et al., 2016). 

While the presence of Mg detected on artefacts in the fish was unexpected and 

could be of health concern, it still could not be concluded whether this chemical 

contamination has entered the fish muscle by microplastics as a transport vector 

or through another route.   

While the presence of many of these detected elements (Cl, Cu, Zn, Ni, Ti, Fe, 

Mg) is not expected in the muscle and GIT of fish, it could not be conclusively 

determined if they had originated either from microplastics leaching common 

plastic additives, or from microplastics acting as a transport vector carrying 

chemicals into the fish body. Regardless, their presence provides evidence of the 

chemical risk posed by aquatic plastic debris, as some of these elements detected 

at high quantities can be toxic and/or have endocrine disrupting properties (Mato 

et al., 2001) (Koelmans et al., 2016b) (Turner and Filella, 2020b).  

 

4.8.5 Essential elements in tilapia  

Tilapia muscle for human consumption is known to provide several key essential 

elements, these include selenium (Se), Ca, Fe, Mg, K and Zn (Outa, Kowenje, et 

al., 2020). The results obtained in this study where higher levels of these elements 

were observed, may merely reflect what is already present in the fish muscle, and 

not be from microplastic contamination. However this would also have to be true 



203 
 

in the GIT samples, and as there were other elements identified such as Ti and 

Cr, it suggests that these elements were not from fish origin.  

 

4.9 Microplastics toxicity risk to fish 

The toxicity of microplastics in freshwater systems is not well studied. It is 

estimated that between 32% and 100% of freshwater invertebrates ingest 

microplastics (Watts et al., 2016). Ingestion depends on their abundance, shape, 

colour, smell and taste, which will be influenced by the microbial biofilm on the 

surface (GESAMP, 2016). Microplastics have been found in the GIT of commercially 

important fish for human consumption (Neto et al., 2020). Research on the 

interaction between the Nile tilapia and microplastics is still limited. One study 

confirmed microplastic presence in the GIT of Nile tilapia and Nile perch from the 

Tanzanian side of Lake Victoria (Biginagwa et al., 2016), but the presence of 

microplastics in the GIT of fish, does not provide direct evidence for human 

exposure risks, as this organ is not usually consumed. There is a concern however 

for the potential of translocation across the epithelium of the fish GIT into other 

organs or tissue parts consumed, as evidenced from the results of this study. 

Laboratory studies have demonstrated plastic particle translocation in fish. 

Translocation of PS nanoparticles has been observed in the brain of Crucian carp, 

penetrating the blood brain barrier, causing behavioural disorders, effecting their 

hunting and eating behaviour (Mattsson et al., 2017), and in the liver of the 

commercial species of European anchovies (Collard et al., 2018). Within the 

limited research on freshwater fish, Japanese medaka (Oryzias latipes) exposed 

to PE microplastics were found to have induced hepatic stress, resulting in 

glycogen depletion and cell necrosis in the fish (Rochman et al., 2013). It has 

been argued that the likelihood of translocation in fish to be small, however 
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previously it was felt that there was a lack of analytical methods capable of 

characterising and quantifying the small-sized plastic particles (Wagner et al., 

2017). 

It is still not clear whether the harmful effects observed in fish from microplastic 

ingestion are the result of additives and contaminants that leach from the plastic 

particles into the fish, or from the physical impact of the plastic itself. Effects such 

as oxidative stress, inflammation and immunological responses have been 

observed after exposure to microplastics and attributed to their physical impact 

(GESAMP, 2016).   

 

4.10 Microplastics toxicity risk to humans  

Since fish and their products constitute an important food source, especially in 

developing countries, there is an urgent need to assess the potential risks to 

humans involved. Although microplastics and human health is an emerging field, 

existing fields indicate potential particle, microbial and chemical hazards. Ingested 

microplastics can accumulate and employ a localised toxicity by inducing an 

immune response (Wright and Kelly, 2017). Chemical toxicity could occur from 

the leaching of additives or contaminants absorbed from the surrounding polluted 

aquatic environment (Wright and Kelly, 2017).  

With regards to existing research on the impacts of microplastics in humans, 

release of microplastics from the wear of prosthetic plastic implants has shown to 

have diverse internal effects, from DNA damage, necrosis, apoptosis, oxidative 

stress, inflammation and bone osteolysis (Lusher, Hollman, et al., 2017). Although 

there are no current studies related directly to the consumption of fish 

contaminated with microplastics or their contaminants, this is not surprising giving 

the complexity of this issue (Gallo et al., 2018). The FAO has reported that there 
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is a lack of basic toxicological data on the consumption of microplastics and also 

nanoplastics in humans as a food safety risk (Lusher, Hollman, et al., 2017). There 

is no data on the impact that the cooking and processing of fish and their products 

at high temperatures may have on the toxicity of microplastics. The European 

Food Safety Authority (EFSA) has estimated human exposure to microplastics 

following consumption of a portion of mussels (225g) to be 7µg of plastics (EFSA, 

2016). On average 4% of the weight of microplastics are additives (Bouwmeester 

et al., 2015), suggesting that the mussels could contain about 0.28µg of additives 

(4% of 7µg of plastic). There is some concern on endocrine function disruption 

from the ingestion of additives such as phthalates and bisphenol A (Bouwmeester 

et al., 2015), however it has been concluded that this amount of ingestion of 

additives would be small and not cause harm in humans (Gallo et al., 2018). 

Translocation across the human GIT epithelium is of concern, as this would imply 

internal organs and tissues were being exposed to these particles. Translocation 

in humans from the GIT into the lymphatic system of various types and sizes of 

microplastics has been found (Hussain et al., 2001). Major sites of entry were 

found to be M-cell rich Peyer’s patch in the intestines and the portal vein, thus 

resulting in microplastics reaching the liver (Volkheimer, 1975). Phagocytosis and 

endocytosis of the microplastic particles in the intestinal epithelium has also been 

reported to occur (Yoo et al., 2011). There are no studies on the harmful effects 

of microplastics in humans. Of the small fraction that may enter the lymphatic 

system, most will probably be eliminated via the spleen. However, localised effects 

in the GIT might be possible, as the presence of microplastics’ large surface area 

in the GIT lumen could interact with the GIT fluid present and result in large 

proteins adsorbing to the surface of the microplastics, this could cause local 

inflammation (Powell et al., 2007).  
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As the health concern from the leaching of chemicals adsorbed to the microplastics 

is of greater concern than the physical impact of the plastic particle in the human 

body, further research into leaching data and investigation into factors affecting 

the release of these compounds is needed.  

 

4.11 Disease level of fish in Lake Victoria 

In Kenya, there is a significant health risk to the people who are handling the fish. 

Men do the fishing, while the women will process and sell the fish, meaning they 

are at a higher risk of contamination. Fish are typically gutted on the floor of the 

beaches and surrounding shores of the lake, and then either cooked or directly 

sold by the women, usually on large tarpaulin sheets in the open sun (Wright and 

Kelly, 2017). Birds and stray animals, including dogs, can access the fish and 

potentially defecate and contaminate the product. The women have been 

encouraged to sell their fish off the ground in covered stalls, however the expense 

of building these stalls is often unaffordable and the advice is predominantly 

ignored.     

In this study, there was a correlation between high levels of microplastics and key 

sites, suggesting that these are less preferable sites to farm fish in Lake Victoria. 

These included sites located next to Kisumu city, the mouth of the river Awach, in 

the main entrance/exit way to the main body of the lake and near high industrial 

and agricultural activities. When selecting a site for a fish farm, proximity to cities, 

industrial, agricultural and mining activities and away from rivers and their mouths 

should always be considered, given the potential for higher levels of pollutants, as 

described here form microplastics.  
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4.12 Importance of microplastic monitoring in aquatic systems 

The staining methods used in this study were simple, cheap and easy to follow 

and could easily be reproduced in LMICs, such as Kenya, as a method of 

monitoring microplastic presence in their aquatic systems. A microscope is the 

only equipment needed for the screening, and the KMFRI at Lake Victoria have 

access to this equipment within their laboratories. Light microscopy enabled 

classification of the five microplastic types (fragment, foam, film, fibre and bead) 

and quantification of the particle sizes, which would facilitate regular screening for 

microplastic types in the waters and potentially determine microplastic pollution 

origins. For example, if there is a high amount of microfibres detected, this could 

be indicative of synthetic textile fibres entering the lake from washing machine 

runoff. By identifying the main types of microplastic pollutants, there is the 

potential to identify sources and consider mitigation strategies to reduce any 

further risk to both fish and human health.  

As we found that microplastic prevalence was greater in the muscle of wild fish, 

than in the muscle from farmed fish, this could potentially mean that eating 

farmed fish, that are grown only for 4-5 months could result in less microplastics 

potentially being ingested by humans. It therefore could be safer for humans to 

consume younger farmed fish, and with the aquaculture sector in Kenya set to 

grow in forthcoming years, this finding favours this growth more.    

Microplastic monitoring could also help fish farmers decide on sites to farm their 

fish. Areas could be assessed prior to aquaculture setup for pollution and 

microplastic levels, with those with the lowest pollution levels being the best 

location sites for the fish farms. For already established fish farm sites, 

microplastic pollution levels could still be monitored, as the fish farmers could 

rotate their caged areas within the site regularly, to ensure they are not farming 
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in the same location always, as over time this would result in a great increase of 

pollution build up. Given the potential for the actual fish cages to be a source of 

microplastic pollution, further work into the plastic used to make the cages may 

identify one more resistant to degradation.  

 

4.13 Limitations 

While over 80 tilapia were sampled for analysis in this study, they were 

predominantly from 2019, it would be interesting to analyse more recent samples 

from the same sites to determine if pollution levels have amplified, particularly 

given the increase in plastic waste from the COVID-19 pandemic. We were 

planning to return to Kenya to collect further samples as part of this study, 

however this was not possible as a result of the pandemic.  

With only five GIT contents analysed in this study, and only one from a wild fish, 

this restricted comparisons between the two sample types. Furthermore, the GIT 

contents were prepared by squeezing them into separate bags. As microplastics 

are small, it is inevitable that some remained caught between the microvilli folds 

of the intestines and were therefore not extracted; these microplastics could 

potentially be causing more harm. It would be good to have done histopathological 

investigations of the GIT looking for the location of microplastics. 

Some of the samples could not be analysed as there was too much undigested 

debris present, making the sample unreadable under the microscope. Shell pieces 

from bivalves are commonly found in the GIT of fish and these were found to be 

resistant to the digestion method used. Additionally scales and other strong 

structures such as bones may not be removed after acid digestion (Pearson et al., 

2013). Further optimisation of the methodology is needed to ensure it can be 

successful for all samples. An extra step to separate such high density materials 
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from whole fish digestates could be incorporated before microscopic analysis. 

(Karami et al., 2017).  

Diatoms were found on the macroplastic litter and fishing nets from Lake Victoria’s 

waters and in some samples. It cannot be guaranteed that these diatoms were 

part of the plastisphere in these samples, particularly in the GITs where diatoms 

can be frequently found (Kamanyi, 1997). Potential contamination could have 

occurred during the processing of the fish samples whereby diatoms from the GIT 

samples could have contaminated the muscle samples.  

Furthermore while we detected bacterial DNA from the macroplastic litter, net 

strands and in the tilapia samples, we cannot conclusively say whether the 

bacterial DNA originated from the plastisphere of the microplastic.  

 

4.14 Future work 

An extra step in the dissolving of the thicker and more debris filled GIT samples 

prior to filtration would prevent sample loss. Additionally, an extra step of flushing 

out the GIT during the sample preparation may ensure that the majority of the 

microplastics present in the GIT are recovered. However, the opening of the GIT 

may also allow the use of techniques such as histopathology to both visualise the 

location of the microplastics and determine if they cause changes in the GIT 

microstructure. 

As only a small number of fish GIT contents samples were analysed for 

microplastic prevalence in this study, further work is needed to determine whether 

farmed fish may be better for human consumption than wild fish, and also consider 

which is best for the health of the fish.  

Despite screening for numerous bacteria in the genomic DNA isolated, none that 

were looked for were detected. There are many common freshwater fish bacterial 
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species that were not tested for, such as Vibrio, Salmonella and Shigella 

(Schneeberger et al., 2019) (Onjong et al., 2018) (Journal and Hydrobiology, 

2018), and these could be screened for in any future work. Equally with such low 

levels of DNA isolated, we could include an enrichment step by first incubating the 

microplastic in bacterial growth media, prior to DNA extraction. 

Previous studies have used stains to highlight bacterial specific species during SEM 

screening (Priester et al., 2007) (Golding et al., 2016) (Bryant et al., 2016), and 

this is an approach which could be used in follow up work for this project. 

Metagenomic sequencing has also been used as a fast method to identify the range 

of species of bacteria present (Wright et al., 2020) (Yang et al., 2019) (Harrison 

et al., 2018b). Most studies focus on marine ecosystems, and there is a distinct 

lack of information concerning plastispheres assemblages within freshwater. By 

demonstrating an understanding of the repercussions associated with the 

microorganism-microplastic bond and carrying out more research into the 

ecological risks from antibiotic resistance genes in microbial communities on the 

aquatic plastisphere, this should highlight any critical threats for the future of 

aquatic ecosystems and also human health.   

Finally further research into the possible effect that leaching of chemicals, that 

may be being transported by microplastics into organisms, could be having on the 

health of fish and also humans is critical, as these chemicals are of the most 

concern due to potential endocrine disruption that they may cause. 

 

4.15 Conclusion  

This study highlights the importance of monitoring microplastic prevalence in fish 

farmed or caught for human consumption and the monitoring of microplastic 

pollution in the aquatic environment. It specifically highlights the importance of 
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the monitoring of microplastics in Kenya, and other developing countries, to 

ensure a sustainable and safe food source of fish is available for future 

populations.  

The FAO and WHO highlight that fish provides a cheap and easy source of protein 

and essential nutrients (FAO, 2020b) (WHO, 215AD), especially to those in LMICs, 

like Kenya. In many countries, there is no other affordable substitute for this high 

value food source, but its benefits could be negatively affected by the pollution 

from microplastics.  

This study found 48% of the tilapia muscle samples and 100% of the GIT samples 

analysed to be contaminated with microplastics. The most identified microplastic 

type in the muscle samples was fibres, with the muscle of wild fish having a 

greater prevalence than farmed fish. The most identified type in the GIT samples 

was beads, with the GIT of farmed fish having a greater prevalence than wild fish. 

Fish sourced key sites were found to be the most contaminated with microplastics. 

With pollution levels at any one site across the lake being affected by proximity to 

river mouths, cities, industry and human activity, the consideration of pollutant 

levels into the choice of sites for new fish farms should be a key factor.    

Potentially harmful elements were identified on the microplastics found in these 

fish, and there was an attempt to visualise the plastisphere, with future work 

needing to screen the specific species of bacteria on this plastisphere and the 

potential harm these could cause to fish and humans. 

There is a spatial association between human activities and microplastic 

prevalence. To ensure a future for fish as a safe food source and valued 

commodity, it is essential that all countries monitor their levels of microplastic 

pollution in the environment and in the fish they catch or harvest. With the 
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growing global resilience of fish as a source of protein and with the ever-increasing 

mass of plastic pollution, research such as this could not be more timely.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



213 
 

5.0 References  

Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A. and Hassanaghaei, 
M. (2018), “Microplastics in different tissues of fish and prawn from the 
Musa Estuary, Persian Gulf”, Chemosphere, Elsevier Ltd, Vol. 205, pp. 80–
87. 

AFP. (2020), “Kenya bans single-use plastics in protected areas”, Physorg, 
available at: https://phys.org/news/2020-06-kenya-single-use-plastics-
areas.html (accessed 19 March 2021). 

Africa Population. (2021), “Africa Population 2021 (Demographics, Maps, 
Graphs)”, World Population Review, available at: 
https://worldpopulationreview.com/continents/africa-population (accessed 
22 February 2021). 

AGMRC. (2018), “Aquaculture Fin Fish Species | Agricultural Marketing Resource 
Center”, Agricultural Marketing Resource Center, available at: 
https://www.agmrc.org/commodities-products/aquaculture/aquaculture-fin-
fish-species#Tilapia (accessed 11 February 2021). 

Ahmed, N. (2009), Development of Tilapia Marketing Systems in Bangladesh: 
Potential for Food Supply Final Report CF # 8/07 This Study Was Carried out 
with the Support of the National Food Policy Capacity Strengthening 
Programme. 

Alexandre, D., Anne-Laure, C., Laura, F., Ludovic, H., Charlotte, H., Emmanuel, 
R., Gilles, R., et al. (2016), “Microplastics in seafood: Benchmark protocol 
for their extraction and characterization”, Vol. 215, pp. 223–233. 

Amaral-Zettler, L.A., Zettler, E.R. and Mincer, T.J. (2020), “Ecology of the 
plastisphere”, Nature Reviews Microbiology, Nature Research, 1 March. 

Amoatey, P. and Baawain, M.S. (2019), “Effects of pollution on freshwater 
aquatic organisms”, Water Environment Research, John Wiley and Sons 
Inc., Vol. 91 No. 10, pp. 1272–1287. 

Andrady, A.L. (2011), “Microplastics in the marine environment”, Marine 
Pollution Bulletin, August. 

Animals Australia. (2019), “Plastic (not) fantastic: microbeads are poisoning our 
oceans | Animals Australia”, Australia, Animals, available at: 
https://animalsaustralia.org/features/plastic-microbeads-poisoning-marine-
life.php (accessed 19 November 2019). 

Ardjosoediro, I. and Neven, D. (2008), “The Kenya Capture Fisheries Value 
Chain : an AMAP-FSKG Value Chain Finance Case”, No. October, pp. 1–50. 

Arthington, A.H., Dulvy, N.K., Gladstone, W. and Winfield, I.J. (2016), “Fish 
conservation in freshwater and marine realms: status, threats and 
management”, Aquatic Conservation: Marine and Freshwater Ecosystems, 
John Wiley and Sons Ltd, Vol. 26 No. 5, pp. 838–857. 

ASC. (2018), “ASC leads fight against plastic waste from aquaculture with 
planned requirements on proper disposal - Aquaculture Stewardship 
Council”, available at: https://www.asc-aqua.org/news/latest-news/asc-
leads-fight-against-plastic-waste-from-aquaculture-with-planned-
requirements-on-proper-disposal/ (accessed 6 November 2019). 

Azevedo-Santos, V.M., Brito, M.F.G., Manoel, P.S., Perroca, J.F., Rodrigues-
Filho, J.L., Paschoal, L.R.P., Gonçalves, G.R.L., et al. (2021), “Plastic 
pollution: A focus on freshwater biodiversity”, Ambio, Springer Science and 
Business Media B.V., available at:https://doi.org/10.1007/s13280-020-
01496-5. 



214 
 

Baalkhuyur, F.M., Bin Dohaish, E.J.A., Elhalwagy, M.E.A., Alikunhi, N.M., 
AlSuwailem, A.M., Røstad, A., Coker, D.J., et al. (2018), “Microplastic in the 
gastrointestinal tract of fishes along the Saudi Arabian Red Sea coast”, 
Marine Pollution Bulletin, Elsevier Ltd, Vol. 131, pp. 407–415. 

Babayemi, J.O., Nnorom, I.C., Osibanjo, O. and Weber, R. (2019), “Ensuring 
sustainability in plastics use in Africa: consumption, waste generation, and 
projections”, Environmental Sciences Europe, Springer Verlag, Vol. 31 No. 1, 
p. 60. 

Bartley, D.M., De Graaf, G.J., Valbo-Jørgensen, J. and Marmulla, G. (2015), 
“Inland capture fisheries: status and data issues”, Fisheries Management 
and Ecology, Blackwell Publishing Ltd, Vol. 22 No. 1, pp. 71–77. 

Bashir, I., Lone, F.A., Bhat, R.A., Mir, S.A., Dar, Z.A. and Dar, S.A. (2020), 
“Concerns and threats of contamination on aquatic ecosystems”, 
Bioremediation and Biotechnology: Sustainable Approaches to Pollution 
Degradation, Springer International Publishing, pp. 1–26. 

Bellasi, A., Binda, G., Pozzi, A., Galafassi, S., Volta, P. and Bettinetti, R. (2020), 
“Microplastic contamination in freshwater environments: A review, focusing 
on interactions with sediments and benthic organisms”, Environments - 
MDPI, MDPI AG, 1 April. 

Bene, C. and Heck, S. (2004), “Fisheries and the Millennium Development Goals: 
Solutions for Africa”. 

Bidleman, T.F. (1984), “Estimation of Vapor Pressures for Nonpolar Organic 
Compounds by Capillary Gas Chromatography”, Analytical Chemistry, Vol. 
56 No. 13, pp. 2490–2496. 

Biginagwa, F.J., Mayoma, B.S., Shashoua, Y., Syberg, K. and Khan, F.R. (2016), 
“First evidence of microplastics in the African Great Lakes: Recovery from 
Lake Victoria Nile perch and Nile tilapia”, Journal of Great Lakes Research, 
International Association of Great Lakes Research, Vol. 42 No. 1, pp. 146–
149. 

Bilek, J.G., Kollonitsch, V. and Kline, C.H. (1966), “Zinc chemicals in plastics 
systems”, Industrial and Engineering Chemistry, Vol. 58 No. 5, pp. 28–36. 

Blair, R.M., Waldron, S., Phoenix, V.R. and Gauchotte-Lindsay, C. (2019), 
“Microscopy and elemental analysis characterisation of microplastics in 
sediment of a freshwater urban river in Scotland, UK”, Environmental 
Science and Pollution Research, Springer Verlag, Vol. 26 No. 12, pp. 12491–
12504. 

Blewett, T.A. and Leonard, E.M. (2017), “Mechanisms of nickel toxicity to fish 
and invertebrates in marine and estuarine waters”, Environmental Pollution, 
Elsevier Ltd, 1 April. 

Botterell, Z.L.R., Beaumont, N., Dorrington, T., Steinke, M., Thompson, R.C. and 
Lindeque, P.K. (2019), “Bioavailability and effects of microplastics on marine 
zooplankton: A review”, Environmental Pollution, Elsevier Ltd, 1 February. 

Bouwmeester, H., Hollman, P.C.H. and Peters, R.J.B. (2015), “Potential Health 
Impact of Environmentally Released Micro- and Nanoplastics in the Human 
Food Production Chain: Experiences from Nanotoxicology”, Environmental 
Science and Technology, American Chemical Society, 4 August. 

Bracenet. (2020), “5 Facts you should know about Ghost Nets : Bracenet”, 
Bracenet, available at: https://bracenet.net/en/blog/5-facts-you-should-
know-about-ghost-nets/ (accessed 7 April 2021). 

Bråte, I.L.N., Huwer, B., Thomas, K. V, Eidsvoll, D.P., Halsband, C., Almroth, 
B.C. and Lusher, A. (2017), Micro-and Macro-Plastics in Marine Species from 
Nordic Waters, TemaNord, available at:https://doi.org/10.6027/tn2017-549. 



215 
 

Brennecke, D., Duarte, B., Paiva, F., Caçador, I. and Canning-Clode, J. (2016), 
“Microplastics as vector for heavy metal contamination from the marine 
environment”, Estuarine, Coastal and Shelf Science, Academic Press, Vol. 
178, pp. 189–195. 

Britannica. (2019a), “Plastic - The polymers | Britannica”, available at: 
https://www.britannica.com/science/plastic/The-polymers#ref82466 
(accessed 17 February 2021). 

Britannica, T.E. of E. (2019b), “Lake Victoria | Size, Map, Countries, & Facts | 
Britannica.com”, available at: https://www.britannica.com/place/Lake-
Victoria (accessed 8 October 2019). 

Browne, M.A., Niven, S.J., Galloway, T.S., Rowland, S.J. and Thompson, R.C. 
(2013), “Microplastic moves pollutants and additives to worms, reducing 
functions linked to health and biodiversity”, Current Biology, Vol. 23 No. 23, 
pp. 2388–2392. 

Brummett, R.E., Lazard, J. and Moehl, J. (2008), “African aquaculture: Realizing 
the potential”, Food Policy, October. 

Bryant, J.A., Clemente, T.M., Viviani, D.A., Fong, A.A., Thomas, K.A., Kemp, P., 
Karl, D.M., et al. (2016), “Diversity and Activity of Communities Inhabiting 
Plastic Debris in the North Pacific Gyre”, MSystems, American Society for 
Microbiology, Vol. 1 No. 3, available 
at:https://doi.org/10.1128/msystems.00024-16. 

Cai, W. and Arias, C.R. (2017), “Biofilm formation on aquaculture substrates by 
selected bacterial fish pathogens”, Journal of Aquatic Animal Health, Taylor 
and Francis Inc., Vol. 29 No. 2, pp. 95–104. 

Calich, H. (2014), “Global population growth, wild fish stocks, and the future of 
aquaculture – Shark Research & Conservation Program (SRC) | University of 
Miami”, Shark Research , available at: 
https://sharkresearch.rsmas.miami.edu/global-population-growth-wild-fish-
stocks-and-the-future-of-aquaculture/ (accessed 1 March 2021). 

Campanale, C., Massarelli, C., Savino, I., Locaputo, V. and Uricchio, V.F. (2020), 
“A detailed review study on potential effects of microplastics and additives 
of concern on human health”, International Journal of Environmental 
Research and Public Health, MDPI AG, 2 February. 

Carson, H.S., Nerheim, M.S., Carroll, K.A. and Eriksen, M. (2013), “The plastic-
associated microorganisms of the North Pacific Gyre”, Marine Pollution 
Bulletin, Vol. 75 No. 1–2, pp. 126–132. 

Chae, Y. and An, Y.J. (2018), “Current research trends on plastic pollution and 
ecological impacts on the soil ecosystem: A review”, Environmental 
Pollution, Elsevier Ltd, 1 September. 

Chakravorty, S., Helb, D., Burday, M., Connell, N. and Alland, D. (2007), “A 
detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of 
pathogenic bacteria”, Journal of Microbiological Methods, NIH Public Access, 
Vol. 69 No. 2, pp. 330–339. 

Chen, J. and Griffiths, M.W. (1998), “PCR differentiation of Escherichia coli from 
other Gram-negative bacteria using primers derived from the nucleotide 
sequences flanking the gene encoding the universal stress protein”, Letters 
in Applied Microbiology, Blackwell Publishing Ltd., Vol. 27 No. 6, pp. 369–
371. 

Cho, S. and Choi, W. (2001), “Solid-phase photocatalytic degradation of PVC-
TiO2 polymer composites”, Journal of Photochemistry and Photobiology A: 
Chemistry, Elsevier, Vol. 143 No. 2–3, pp. 221–228. 

CIRDI. (2018), “Artisanal and Small-Scale Mining in Migori, Kenya | CIRDI - 



216 
 

Canadian International Resource and Development Institute”, CIRDI, 
available at: https://cirdi.ca/resource/video-artisanal-and-small-scale-
mining-in-migori-kenya/ (accessed 10 March 2021). 

Clean&Clear. (2017), “Microbeads Commitment & The Environment | Clean & 
Clear”, Clean & Clear, available at: 
https://www.cleanandclear.co.uk/microbead-commitment (accessed 4 
March 2021). 

Clear, C.&. (2017), “Microbeads Commitment & The Environment | Clean & 
Clear”, available at: https://www.cleanandclear.co.uk/microbead-
commitment (accessed 15 November 2019). 

Collard, F., Gasperi, J., Gilbert, B., Eppe, G., Azimi, S., Rocher, V. and Tassin, B. 
(2018), “Anthropogenic particles in the stomach contents and liver of the 
freshwater fish Squalius cephalus”, Science of the Total Environment, 
Elsevier B.V., Vol. 643, pp. 1257–1264. 

Condor Ferries Ltd. (2020), “100+ Plastic in the Ocean Statistics & Facts 
(2020)”, Condor Ferries, available at: 
https://www.condorferries.co.uk/plastic-in-the-ocean-statistics (accessed 5 
April 2021). 

Congestri, R. and Albertano, P. (2011), “Benthic Diatoms in Biofilm Culture”, 
Springer, Dordrecht, pp. 227–243. 

Consultancy.uk. (2019), “Land-origin plastic costs economy $19 billion every 
year”, available at: https://www.consultancy.uk/news/23051/land-origin-
plastic-costs-economy-19-billion-every-year (accessed 22 February 2021). 

Coppock, R.L., Cole, M., Lindeque, P.K., Queirós, A.M. and Galloway, T.S. 
(2017), “A small-scale, portable method for extracting microplastics from 
marine sediments”, Environmental Pollution, Elsevier Ltd, Vol. 230, pp. 829–
837. 

CORDIS. (2019), “Making fish farming in eastern Africa’s Lake Victoria 
sustainable”, Phys.Org, available at: https://phys.org/news/2019-07-fish-
farming-eastern-africa-lake.html (accessed 8 October 2019). 

Cosier, S. (2018), “Plastic: What Gets Thrown in the Great Lakes, Stays in the 
Great Lakes | NRDC”, NRDC, available at: 
https://www.nrdc.org/stories/plastic-what-gets-thrown-great-lakes-stays-
great-lakes (accessed 1 March 2021). 

Czigany, T. and Ronkay, F. (2020), “The coronavirus and plastics”, Express 
Polymer Letters, Vol. 14 No. 6, pp. 510–511. 

David, O.M., Wandili, S., Kakai, R. and Waindi, E.N. (2009), “Isolation of 
Salmonella and Shigella from fish harvested from the Winam Gulf of Lake 
Victoria, Kenya”, Journal of Infection in Developing Countries, Journal of 
Infection in Developing Countries, Vol. 3 No. 2, pp. 99–104. 

Deloitte. (2019), The Price Tag of Plastic Pollution An Economic Assessment of 
River Plastic, Deloitte, available at: 
https://www2.deloitte.com/content/dam/Deloitte/nl/Documents/strategy-
analytics-and-ma/deloitte-nl-strategy-analytics-and-ma-the-price-tag-of-
plastic-pollution.pdf (accessed 22 February 2021). 

Designing Building Wiki. (2020), “Designing Buildings Wiki”, Energy Efficiency of 
Building, pp. 8–11. 

Ding, J., Zhang, S., Razanajatovo, R.M., Zou, H. and Zhu, W. (2018), 
“Accumulation, tissue distribution, and biochemical effects of polystyrene 
microplastics in the freshwater fish red tilapia (Oreochromis niloticus)”, 
Environmental Pollution, Elsevier Ltd, Vol. 238, pp. 1–9. 

Dubernet, S., Desmasures, N. and GuÃ©guen, M. (2002), “A PCR-based method 



217 
 

for identification of lactobacilli at the genus level”, FEMS Microbiology 
Letters, Oxford University Press (OUP), Vol. 214 No. 2, pp. 271–275. 

EFSA. (2016), “Presence of microplastics and nanoplastics in food, with 
particular focus on seafood”, EFSA Journal, Vol. 14 No. 6, available 
at:https://doi.org/10.2903/j.efsa.2016.4501. 

Elizabeth Cruz-Suarez, L., Guadalupe Nieto-López, M., Alonso Villarreal-Cavazos, 
D., Garcia, A., Elizabeth Cruz Suárez, L., Ricque Marie, D., Tapia Salazar, 
M., et al. (2006), Tilapia Culture in Salt Water: Environmental 
Requirements, Nutritional Implications and Economic Potentials Production 
of Cold Tolerant Nile Tilapia View Project AQUACULTURE DEVELOPMENT IN 
THE NEAR EAST AND NORTH AFRICA View Project Tilapia Culture in Sal, 
available at: https://www.researchgate.net/publication/228674236 
(accessed 8 November 2019). 

Enyedi, N.T., Makk, J., Kótai, L., Berényi, B., Klébert, S., Sebestyén, Z., Molnár, 
Z., et al. (2020), “Cave bacteria-induced amorphous calcium carbonate 
formation”, Scientific Reports, Nature Research, Vol. 10 No. 1, pp. 1–12. 

EPA. (2020), “Learn about Polychlorinated Biphenyls (PCBs), United States 
Environmental Protection Agency”. 

Ercolini, D., Russo, F., Blaiotta, G., Pepe, O., Mauriello, G. and Villani, F. (2007), 
“Simultaneous detection of Pseudomonas fragi, P. lundensis, and P. putida 
from meat by use of a multiplex PCR assay targeting the carA gene”, 
Applied and Environmental Microbiology, Appl Environ Microbiol, Vol. 73 No. 
7, pp. 2354–2359. 

Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., 
Galgani, F., et al. (2014), “Plastic Pollution in the World’s Oceans: More than 
5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea”, PLoS 
ONE, Public Library of Science, Vol. 9 No. 12, available 
at:https://doi.org/10.1371/journal.pone.0111913. 

Facts, A. (2019), “LAKE VICTORIA - over 15 interesting key facts”, Africa Facts, 
available at: https://interesting-africa-facts.com/Africa-Landforms/Lake-
Victoria-Facts.html (accessed 8 October 2019). 

FAO. (2010), “FAO Fisheries & Aquaculture - Cultured Aquatic Species 
Information Programme - Oreochromis niloticus (Linnaeus, 1758 )”, 
Http://Www.Fao.Org/Fishery/Culturedspecies/Oreochromis_niloticus/En#tcN
A008C, available at: 
http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en 
(accessed 17 February 2021). 

FAO. (2015), “FAO Fisheries & Aquaculture - Fishery and Aquaculture Country 
Profiles - The Republic of Kenya”, available at: 
http://www.fao.org/fishery/facp/KEN/en (accessed 8 November 2019). 

FAO. (2018a), Sustainable Food Systems Concept and Framework WHAT IS A 
SUSTAINABLE FOOD SYSTEM? WHY TAKE A FOOD SYSTEMS APPROACH? 
CHANGING FOOD SYSTEMS, available at: 
http://www.fao.org/3/ca2079en/CA2079EN.pdf (accessed 8 February 2021). 

FAO. (2018b), WORLD FISHERIES AND AQUACULTURE, available at: 
www.fao.org/publications (accessed 25 February 2021). 

FAO. (2020a), “Aquaculture | FAO | Food and Agriculture Organization of the 
United Nations”, available at: http://www.fao.org/aquaculture/en/ (accessed 
5 November 2019). 

FAO. (2020b), The State of World Fisheries and Aquaculture 2020, The State of 
World Fisheries and Aquaculture 2020, FAO, available 
at:https://doi.org/10.4060/ca9229en. 



218 
 

FAO. (2020c), Aquaculture Growth Potential in Africa: WAPI Factsheet to 
Facilitate Evidence-Based Policy-Making and Sector Management in 
Aquaculture. 

FAO. (2021), “AQUACULTURE IN AFRICA”, FAO, available at: 
http://www.fao.org/3/x4545e/X4545e38.htm (accessed 13 January 2021). 

Fisherproject. (2020), “The Global Fishing Industry”, Fisherproject, available at: 
https://fisherproject.org/the-global-fishing-industry (accessed 25 February 
2021). 

Foekema, E.M., De Gruijter, C., Mergia, M.T., Van Franeker, J.A., Murk, A.J. and 
Koelmans, A.A. (2013), “Plastic in north sea fish”, Environmental Science 
and Technology, Vol. 47 No. 15, pp. 8818–8824. 

Fontanot, M., Iacumin, L., Cecchini, F., Comi, G. and Manzano, M. (2014), “PorA 
specific primers for the identification of Campylobacter species in food and 
clinical samples”, LWT - Food Science and Technology, Academic Press, Vol. 
58 No. 1, pp. 86–92. 

Forrest, S.A., Bourdages, M.P.T. and Vermaire, J.C. (2020), “Microplastics in 
Freshwater Ecosystems”, Handbook of Microplastics in the Environment, 
Springer International Publishing, pp. 1–19. 

Gabriel, U.U. and Akinrotimi, O.A. (2007), “Locally produced fish feed: potentials 
for aquaculture development in subsaharan Africa”, African Journal of 
Agricultural Research, Vol. 2 No. 7, pp. 287–295. 

Galgani, F., Hanke, G. and Maes, T. (2015), “Global distribution, composition 
and abundance of marine litter”, Marine Anthropogenic Litter, Springer 
International Publishing, pp. 29–56. 

Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., Nadal, A., et 
al. (2018), “Marine litter plastics and microplastics and their toxic chemicals 
components: the need for urgent preventive measures”, Environmental 
Sciences Europe, available at:https://doi.org/10.1186/s12302-018-0139-z. 

Garcia, S.M. and Rosenberg, A.A. (2010), “Food security and marine capture 
fisheries: Characteristics, trends, drivers and future perspectives”, 
Philosophical Transactions of the Royal Society B: Biological Sciences, Royal 
Society, 27 September. 

Genkal, S.I. and Popovskaya, G.I. (1991), “New data on the frustule morphology 
of aulacosira islandica (bacillariophyta)”, Diatom Research, Vol. 6 No. 2, pp. 
255–266. 

Geographic, N. (2019), “The World’s Plastic Pollution Crisis Explained”, available 
at: https://www.nationalgeographic.com/environment/habitats/plastic-
pollution/ (accessed 7 October 2019). 

GESAMP. (2016), “SOURCES, FATE AND EFFECTS OF MICROPLASTICS IN THE 
MARINE ENVIRONMENT: PART 2 OF A GLOBAL ASSESSMENT Science for 
Sustainable Oceans”, GESAMP, available at: www.imo.org (accessed 21 
November 2019). 

Godwin, A. (2000), “Plasticizer - an overview | ScienceDirect Topics”, Applied 
Polymer Science: 21st Centuary, available at: 
https://www.sciencedirect.com/topics/chemistry/plasticizer (accessed 18 
February 2021). 

Golding, C.G., Lamboo, L.L., Beniac, D.R. and Booth, T.F. (2016), “The scanning 
electron microscope in microbiology and diagnosis of infectious disease”, 
Scientific Reports, Nature Publishing Group, Vol. 6 No. 1, pp. 1–8. 

Gove, M. (2018), “World leading microbeads ban comes into force - GOV.UK”, 
GOV.UK, available at: https://www.gov.uk/government/news/world-leading-
microbeads-ban-comes-into-force (accessed 17 February 2021). 



219 
 

Graham Readfearn. (2018), “WHO launches health review after microplastics 
found in 90% of bottled water”, The Guardian, pp. 1–4. 

Grbic, J., Nguyen, B., Guo, E., You, J.B., Sinton, D. and Rochman, C.M. (2019), 
“Magnetic Extraction of Microplastics from Environmental Samples”, 
Environmental Science and Technology Letters, Vol. 6 No. 2, pp. 68–72. 

Gündoğdu, S., Eroldoğan, O.T., Evliyaoğlu, E., Turchini, G.M. and Wu, X.G. 
(2021), “Fish out, plastic in: Global pattern of plastics in commercial 
fishmeal”, Aquaculture, Elsevier B.V., Vol. 534, p. 736316. 

Güven, O., Gökdağ, K., Jovanović, B. and Kıdeyş, A.E. (2017), “Microplastic litter 
composition of the Turkish territorial waters of the Mediterranean Sea, and 
its occurrence in the gastrointestinal tract of fish”, Environmental Pollution, 
Vol. 223, pp. 286–294. 

Hahladakis, J.N., Velis, C.A., Weber, R., Iacovidou, E. and Purnell, P. (2018), 
“An overview of chemical additives present in plastics: Migration, release, 
fate and environmental impact during their use, disposal and recycling”, 
Journal of Hazardous Materials, Elsevier B.V., 15 February. 

Haines, B. (2019), “18 Amazing Facts About Lake Victoria, Uganda: Location, 
Cichlids, Map, Size, Islands | Uganda365”, Uganda365, available at: 
https://uganda365.com/facts-about-lake-victoria/ (accessed 8 October 
2019). 

Handy, R.D., Owen, R. and Valsami-Jones, E. (2008), “The ecotoxicology of 
nanoparticles and nanomaterials: Current status, knowledge gaps, 
challenges, and future needs”, Ecotoxicology, Ecotoxicology, July. 

Hantoro, I., Löhr, A.J., Van Belleghem, F.G.A.J., Widianarko, B. and Ragas, 
A.M.J. (2019), “Microplastics in coastal areas and seafood: implications for 
food safety”, Food Additives and Contaminants - Part A Chemistry, Analysis, 
Control, Exposure and Risk Assessment, Taylor and Francis Ltd., Vol. 36 No. 
5, pp. 674–711. 

Hardesty, B.D., Good, T.P. and Wilcox, C. (2015), “Novel methods, new results 
and science-based solutions to tackle marine debris impacts on wildlife”, 
Ocean and Coastal Management, Elsevier Ltd, Vol. 115, pp. 4–9. 

Harrison, J.P., Hoellein, T.J., Sapp, M., Tagg, A.S., Ju-Nam, Y. and Ojeda, J.J. 
(2018a), “Microplastic-associated biofilms: A comparison of freshwater and 
marine environments”, Handbook of Environmental Chemistry, Vol. 58, 
Springer Verlag, pp. 181–201. 

Harrison, J.P., Hoellein, T.J., Sapp, M., Tagg, A.S., Ju-Nam, Y. and Ojeda, J.J. 
(2018b), “Microplastic-associated biofilms: A comparison of freshwater and 
marine environments”, Handbook of Environmental Chemistry, Vol. 58, 
Springer Verlag, pp. 181–201. 

Heijnen, L. and Medema, G. (2006), “Quantitative detection of E. coli, E. coli 
O157 and other shiga toxin producing E. coli in water samples using a 
culture method combined with real-time PCR”, Journal of Water and Health, 
IWA Publishing, Vol. 4 No. 4, pp. 487–498. 

Heilbronn, J., Wilson, J. and Berger, B.J. (1999), “Tyrosine aminotransferase 
catalyzes the final step of methionine recycling in Klebsiella pneumoniae”, 
Journal of Bacteriology, American Society for Microbiology, Vol. 181 No. 6, 
pp. 1739–1747. 

Henry, B., Laitala, K. and Klepp, I.G. (2019), “Microfibres from apparel and 
home textiles: Prospects for including microplastics in environmental 
sustainability assessment”, Science of the Total Environment, Elsevier B.V., 
Vol. 652, pp. 483–494. 

Hidalgo-Ruz, V., Gutow, L., Thompson, R.C. and Thiel, M. (2012), “Microplastics 



220 
 

in the marine environment: A review of the methods used for identification 
and quantification”, Environmental Science and Technology, Vol. 46 No. 6, 
pp. 3060–3075. 

Holmyard, N. (2019), “Plastic pollution from aquaculture less than that from 
fishing”, SeafoodSource, 10 December. 

Hu, L., Chernick, M., Lewis, A.M., Lee Ferguson, P. and Hinton, D.E. (2020), 
“Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes)”, 
PLoS ONE, Public Library of Science, Vol. 15 No. 3, available 
at:https://doi.org/10.1371/journal.pone.0229962. 

Hussain, M.G., Barman, B.K., Karim, M. and Keus, E.H.J. (2013), “Progress and 
the Future for Tilapia Farming and Seed Production in Bangladesh”, 
WorldFish, available at: https://thefishsite.com/articles/green-crabs-
coming-to-maryland (accessed 17 February 2021). 

Hussain, N., Jaitley, V. and Florence, A.T. (2001), “Recent advances in the 
understanding of uptake of microparticulates across the gastrointestinal 
lymphatics”, Advanced Drug Delivery Reviews, Elsevier, 23 August. 

Hwang, J., Choi, D., Han, S., Jung, S.Y., Choi, J. and Hong, J. (2020), “Potential 
toxicity of polystyrene microplastic particles”, Scientific Reports, Nature 
Research, Vol. 10 No. 1, pp. 1–12. 

IUCN. (2018), IUCN (International Union for Conservation of Nature). 
Iwasaki, S., Isobe, A., Kako, S., Uchida, K. and Tokai, T. (2017), “Fate of 

microplastics and mesoplastics carried by surface currents and wind waves: 
A numerical model approach in the Sea of Japan”, Marine Pollution Bulletin, 
Elsevier Ltd, Vol. 121 No. 1–2, pp. 85–96. 

Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., 
Narayan, R., et al. (2015), “Plastic waste inputs from land into the ocean”, 
Science, American Association for the Advancement of Science, Vol. 347 No. 
6223, pp. 768–771. 

Jenke, D.R., Story, J. and Lalani, R. (2006), “Extractables/leachables from 
plastic tubing used in product manufacturing”, International Journal of 
Pharmaceutics, Elsevier, Vol. 315 No. 1–2, pp. 75–92. 

Jennies Foods. (2021), “Tilapia Fish - Jenniesfoods”, Jennies Cash & Carry, 
available at: https://jenniesfoods.co.uk/product/tilapia-fish/ (accessed 17 
February 2021). 

Joon Shim, W., Kyoung Song, Y., Hee Hong, S. and Jang, M. (2016), 
“Identification and quantification of microplastics using Nile Red staining”, 
MPB, available at:https://doi.org/10.1016/j.marpolbul.2016.10.049. 

Journal, A. and Hydrobiology, T. (2018), “Source Attribution of Salmonella and 
Escherichia coli Contaminating Lake Victoria fish in Kenya A”, Vol. 47, pp. 
39–47. 

Jovanović, B., Gökdağ, K., Güven, O., Emre, Y., Whitley, E.M. and Kideys, A.E. 
(2018), “Virgin microplastics are not causing imminent harm to fish after 
dietary exposure”, Marine Pollution Bulletin, Elsevier Ltd, Vol. 130, pp. 123–
131. 

Juma, D.W., Wang, H. and Li, F. (2014), “Impacts of population growth and 
economic development on water quality of a lake: Case study of Lake 
Victoria Kenya water”, Environmental Science and Pollution Research, 
Springer Verlag, Vol. 21 No. 8, pp. 5737–5746. 

Kamanyi, J. (1997), “Plankton identified in Stomach contents of Oreochromis 
nilotics (Pisces, CICHLIDAE) and the water system of Lakes Edward, George, 
and Kazinga channel - Uganda”, Fisheries Research Institute , available at: 
http://aquaticcommons.org/20614/1/paper 7.pdf (accessed 9 April 2021). 



221 
 

Karami, A., Golieskardi, A., Choo, C.K., Romano, N., Ho, Y. Bin and Salamatinia, 
B. (2017), “A high-performance protocol for extraction of microplastics in 
fish”, Science of the Total Environment, Elsevier B.V., Vol. 578, pp. 485–
494. 

Kateregga, E. and Sterner, T. (2009), “Lake victoria fish stocks and the effects 
of water hyacinth”, Journal of Environment and Development, Vol. 18 No. 1, 
pp. 62–78. 

Kelly, M.G., Trobajo, R., Rovira, L. and Mann, D.G. (2015), “Characterizing the 
niches of two very similar Nitzschia species and implications for ecological 
assessment”, Diatom Research, Taylor and Francis Ltd., Vol. 30 No. 1, pp. 
27–33. 

Khan, F.R., Mayoma, B.S., Biginagwa, F.J. and Syberg, K. (2018), “Microplastics 
in Inland African waters: Presence, sources, and fate”, Handbook of 
Environmental Chemistry, Vol. 58, Springer Verlag, pp. 101–124. 

Khan, F.R., Shashoua, Y., Crawford, A., Drury, A., Sheppard, K., Stewart, K. and 
Sculthorp, T. (2020), “‘The plastic nile’: First evidence of microplastic 
contamination in fish from the nile river (Cairo, Egypt)”, Toxics, MDPI AG, 
Vol. 8 No. 2, available at:https://doi.org/10.3390/TOXICS8020022. 

Kirstein, I.V., Wichels, A., Gullans, E., Krohne, G. and Gerdts, G. (2019), “The 
plastisphere – Uncovering tightly attached plastic ‘specific’ microorganisms”, 
PLoS ONE, Vol. 14 No. 4, available 
at:https://doi.org/10.1371/journal.pone.0215859. 

KMFRI. (2018), “Kenya Marine and Fisheries Research Institute - Sagana 
Aquaculture Centre”, available at: 
https://www.kmfri.co.ke/index.php/about-us/research-centres/sagana-
aquaculture-centre (accessed 16 February 2021). 

KMFRI. (2020), “Kenya Marine and Fisheries Research Institute - About us”, 
available at: https://www.kmfri.co.ke/index.php/about-us (accessed 13 
January 2021). 

KNBS. (2019), 2019 Kenya Population and Housing Census Volume 1: 
Population by County and Sub-County, 2019 Kenya Population and Housing 
Census, Vol. I, available at: http://dc.sourceafrica.net/documents/119746-
2019-Kenya-Population-and-Housing-Census-Volume.html (accessed 7 April 
2021). 

Koelmans, A.A., Bakir, A., Burton, G.A. and Janssen, C.R. (2016a), “Microplastic 
as a Vector for Chemicals in the Aquatic Environment: Critical Review and 
Model-Supported Reinterpretation of Empirical Studies”, Environmental 
Science and Technology. 

Koelmans, A.A., Bakir, A., Burton, G.A. and Janssen, C.R. (2016b), “Microplastic 
as a Vector for Chemicals in the Aquatic Environment: Critical Review and 
Model-Supported Reinterpretation of Empirical Studies”, Environmental 
Science and Technology. 

Koelmans, A.A., Besseling, E. and Foekema, E.M. (2014), “Leaching of plastic 
additives to marine organisms”, Environmental Pollution, Elsevier, Vol. 187, 
pp. 49–54. 

Koester, V. (2015), “Plasticizers – Benefits, Trends, Health, and Environmental 
Issues”, ChemViews, Wiley-Blackwell, available 
at:https://doi.org/10.1002/chemv.201500028. 

Konikoff, M. (2017), Introduction to the General Principles of Aquaculture - 1st 
Edition -, CRC Press, available at: https://www.routledge.com/Introduction-
to-the-General-Principles-of-Aquaculture/Ackefors-Huner-
Konikoff/p/book/9780367401979 (accessed 11 January 2021). 



222 
 

Kundu, R., Aura, C.M., Nyamweya, C., Agembe, S., Sitoki, L., Lung’ayia, H.B.O., 
Ongore, C., et al. (2017), “Changes in pollution indicators in Lake Victoria, 
Kenya and their implications for lake and catchment management”, Lakes & 
Reservoirs: Research & Management, Blackwell Publishing, Vol. 22 No. 3, 
pp. 199–214. 

Lalah, J.O., Ochieng, E.Z. and Wandiga, S.O. (2008), “Sources of heavy metal 
input into Winam Gulf, Kenya”, Bulletin of Environmental Contamination and 
Toxicology, Pb, Vol. 81 No. 3, pp. 277–284. 

LBDA. (2019), “Background – LBDA”, available at: 
https://lbda.go.ke/?page_id=1815 (accessed 16 February 2021). 

Leah, R.T. (2005), “The Biology of Lake Victoria”, University of Liverpool. 
Leigh, J.A., Egan, S.A., Ward, P.N., Field, T.R. and Coffey, T.J. (2010), “Sortase 

anchored proteins of Streptococcus uberis play major roles in the 
pathogenesis of bovine mastitis in dairy cattle”, Veterinary Research, Vet 
Res, Vol. 41 No. 5, available at:https://doi.org/10.1051/vetres/2010036. 

Levin, P.A. and Angert, E.R. (2015), “Small but mighty: Cell size and bacteria”, 
Cold Spring Harbor Perspectives in Biology, Cold Spring Harbor Laboratory 
Press, Vol. 7 No. 7, pp. 1–11. 

LifeWithoutPlastic. (2020), “Silicone”, LifeWithoutPlastic, available at: 
https://lifewithoutplastic.com/silicone/ (accessed 8 April 2021). 

Linton, D., Lawson, A.J., Owen, R.J. and Stanley, J. (1997), PCR Detection, 
Identification to Species Level, and Fingerprinting of Campylobacter Jejuni 
and Campylobacter Coli Direct from Diarrheic Samples, JOURNAL OF 
CLINICAL MICROBIOLOGY, Vol. 35, available at: http://jcm.asm.org/ 
(accessed 31 March 2021). 

Luo, S., Wu, B., Xiong, X. and Wang, J. (2016), “Effects of total hardness and 
calcium:magnesium ratio of water during early stages of rare minnows 
(Gobiocypris rarus)”, Comparative Medicine, American Association for 
Laboratory Animal Science, Vol. 66 No. 3, pp. 181–187. 

Lusher, A., Hollman, P. and Mendozal, J. (2017), Microplastics in Fisheries and 
Aquaculture: Status of Knowledge on Their Occurrence and Implications for 
Aquatic Organisms and Food Safety, FAO Fisheries and Aquaculture 
Technical Paper 615, available at:https://doi.org/978-92-5-109882-0. 

Lusher, A.L., Welden, N.A., Sobral, P. and Cole, M. (2017), “Sampling, isolating 
and identifying microplastics ingested by fish and invertebrates”, Analytical 
Methods, Royal Society of Chemistry, 7 March. 

Maes, T., Jessop, R., Wellner, N., Haupt, K. and Mayes, A.G. (2017), “A rapid-
screening approach to detect and quantify microplastics based on 
fluorescent tagging with Nile Red”, Scientific Reports, Nature Publishing 
Group, Vol. 7, available at:https://doi.org/10.1038/srep44501. 

Marine Conservation Society. (2019), “Microplastics | Marine Conservation 
Society”, available at: https://www.mcsuk.org/clean-seas/microplastics 
(accessed 1 October 2019). 

Martin, J. (2018), “Tourists’ plastic waste ruining idyllic holiday spots | 
Stuff.co.nz”, Stuff, available at: 
https://www.stuff.co.nz/travel/news/102773606/life-in-plastic-not-fantastic 
(accessed 8 November 2019). 

Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C. and Kaminuma, T. 
(2001), “Plastic resin pellets as a transport medium for toxic chemicals in 
the marine environment”, Environmental Science and Technology, ACS, Vol. 
35 No. 2, pp. 318–324. 

Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L.A. and 



223 
 

Cedervall, T. (2017), “Brain damage and behavioural disorders in fish 
induced by plastic nanoparticles delivered through the food chain”, Scientific 
Reports, Nature Publishing Group, Vol. 7 No. 1, pp. 1–7. 

Matxinandiarena, E., Múgica, A., Zubitur, M., Yus, C., Sebastián, V., Irusta, S., 
Loaeza, A.D., et al. (2019), “The effect of titanium dioxide surface 
modification on the dispersion, morphology, and mechanical properties of 
recycled PP/PET/TiO2 PBNANOs”, Polymers, Vol. 11 No. 10, available 
at:https://doi.org/10.3390/polym11101692. 

Mayes, A.G. (2018), Rapid Detection of Microplastics Using Fluorescent Tagging. 
McCarthy, N. (2020), “• Chart: Almost Half of World Fish Supply Now Comes 

From Aquaculture | Statista”, Statista, available at: 
https://www.statista.com/chart/2280/the-global-fish-farming-industry-is-
booming/ (accessed 26 February 2021). 

McGrath, M. (2018), “Plastic microbead ban: What impact will it have? - BBC 
News”, BBC News, available at: https://www.bbc.co.uk/news/science-
environment-42621388 (accessed 18 November 2019). 

McKeen, L. (2019), “Stabilizer (Agent) - an overview | ScienceDirect Topics”, 
The Effect of UV Light and Weather on Plastics and Elastomers (Fourth 
Edition), available at: https://www.sciencedirect.com/topics/materials-
science/stabilizer-agent (accessed 18 February 2021). 

Merrington, A. (2015), “New study reveals the global impact of debris on marine 
life - University of Plymouth”, University of Plymouth, available at: 
https://www.plymouth.ac.uk/news/new-study-reveals-the-global-impact-of-
debris-on-marine-life (accessed 23 October 2019). 

Michael, W. (2015), “Climate Change Shrinking Uganda’s Lakes and Fish | Inter 
Press Service”, IPS, available at: http://www.ipsnews.net/2015/08/climate-
change-shrinking-ugandas-lakes-and-fish/ (accessed 4 March 2021). 

Mitchell, C.J., Palumbo-Roe, B. and Bide, T. (2020), “Artisanal & small-scale gold 
mining research field work, Migori County, Kenya”, British Geological 
Survey. 

Mogoathle, L. (2019), “How Companies Are Turning the Tide of Plastic Pollution 
in Kenya”, Global Cititzen, available at: 
https://www.globalcitizen.org/en/content/coca-cola-fighting-plastic-
pollution-in-kenya/ (accessed 22 February 2021). 

Moore, G. (2019), “Study finds salmon fillets free from microplastics - 
FishFarmingExpert.com”, Fish Farming Expert, available at: 
https://www.fishfarmingexpert.com/article/more-microplastic-found-in-wild-
salmon-than-farmed/ (accessed 19 November 2019). 

Mosely, T. and McMahon, S. (2020), “COVID-19 Pandemic Has Led To More 
Ocean Plastic Pollution | Here & Now”, Wbur. 

Mraz, S. (2015), “Mineral Fillers Improve Plastics | Machine Design”, 
MachineDesign, available at: 
https://www.machinedesign.com/materials/article/21834429/mineral-fillers-
improve-plastics (accessed 19 March 2021). 

Munguti, J.M., Kim, J.-D. and Ogello, E.O. (2014), “An Overview of Kenyan 
Aquaculture: Current Status, Challenges, and Opportunities for Future 
Development”, Fisheries and Aquatic Sciences, Vol. 17 No. 1, pp. 1–11. 

Mwamburi, J. (2019), “Lake Sedimentary Environments and Roles of 
Accumulating Organic Matter in Biogeochemical Cycling Processes and 
Contaminants Loading Are Invasions of Water Hyacinth in Lake Victoria from 
1989 a Concern?”, Persistent Organic Pollutants, IntechOpen, available 
at:https://doi.org/10.5772/intechopen.79395. 



224 
 

Naqash, N., Prakash, S., Kapoor, D. and Singh, R. (2020), “Interaction of 
freshwater microplastics with biota and heavy metals: a review”, 
Environmental Chemistry Letters, Springer Science and Business Media 
Deutschland GmbH, 1 November. 

Nations, U. (2017), Fishery Exports and the Economic Developement of Least 
Developed Countries: Bangladesh, Cambodia, The Comoros, Mozambique, 
Myanmar and Uganda. 

Nelms, S.E., Duncan, E.M., Patel, S., Badola, R., Bhola, S., Chakma, S., 
Chowdhury, G.W., et al. (2021), “Riverine plastic pollution from fisheries: 
Insights from the Ganges River system”, Science of the Total Environment, 
Elsevier B.V., Vol. 756, p. 143305. 

Nerín, C., Tornés, A.R., Domeño, C. and Cacho, J. (1996), “Absorption of 
Pesticides on Plastic Films Used as Agricultural Soil Covers”, Journal of 
Agricultural and Food Chemistry, Vol. 44 No. 12, pp. 4009–4014. 

Neto, J.G.B., Rodrigues, F.L., Ortega, I., Rodrigues, L. dos S., Lacerda, A.L. d. 
F., Coletto, J.L., Kessler, F., et al. (2020), “Ingestion of plastic debris by 
commercially important marine fish in southeast-south Brazil”, 
Environmental Pollution, Elsevier Ltd, Vol. 267, p. 115508. 

Neves, D., Sobral, P., Ferreira, J.L. and Pereira, T. (2015), “Ingestion of 
microplastics by commercial fish off the Portuguese coast”, Marine Pollution 
Bulletin, Elsevier Ltd, Vol. 101 No. 1, pp. 119–126. 

Ngure, V., Davies, T., Kinuthia, G., Sitati, N., Shisia, S. and Oyoo-Okoth, E. 
(2014), “Concentration levels of potentially harmful elements from gold 
mining in Lake Victoria Region, Kenya: Environmental and health 
implications”, Journal of Geochemical Exploration, Elsevier B.V., Vol. 144 
No. PC, pp. 511–516. 

NikoMag. (2021), “Rubber and Plastics - NikoMag”, NikoMag, available at: 
https://nikomag-europe.com/index.php/markets/rubber-and-plastics 
(accessed 18 March 2021). 

Njiru, J., van der Knaap, M., Kundu, R. and Nyamweya, C. (2018), “Lake Victoria 
fisheries: Outlook and management”, Lakes & Reservoirs: Research & 
Management, Blackwell Publishing, Vol. 23 No. 2, pp. 152–162. 

Njiru, M., Kazungu, J., Ngugi, C.C., Gichuki, J. and Muhoozi, L. (2008), “An 
overview of the current status of Lake Victoria fishery: Opportunities, 
challenges and management strategies”, Lakes and Reservoirs: Research 
and Management, March. 

Njiru, M., Okeyo-Owuor, J.B., Muchiri, M. and Cowx, I.G. (2004a), “Shifts in the 
food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya”, 
African Journal of Ecology, Vol. 42 No. 3, pp. 163–170. 

Njiru, M., Okeyo-Owuor, J.B., Muchiri, M. and Cowx, I.G. (2004b), “Shifts in the 
food of Nile tilapia, Oreochromis niloticus (L.) in Lake Victoria, Kenya”, 
African Journal of Ecology, Vol. 42 No. 3, pp. 163–170. 

Nyamweya, C., Desjardins, C., Sigurdsson, S., Tomasson, T., Taabu-Munyaho, 
A., Sitoki, L. and Stefansson, G. (2016a), “Simulation of Lake Victoria 
circulation patterns using the regional ocean Modeling system (ROMS)”, 
PLoS ONE, Public Library of Science, Vol. 11 No. 3, available 
at:https://doi.org/10.1371/journal.pone.0151272. 

Nyamweya, C., Desjardins, C., Sigurdsson, S., Tomasson, T., Taabu-Munyaho, 
A., Sitoki, L. and Stefansson, G. (2016b), “Simulation of Lake Victoria 
Circulation Patterns Using the Regional Ocean Modeling System (ROMS)”, 
edited by Xie, S.-P.PLOS ONE, Vol. 11 No. 3, p. e0151272. 

O’Sullivan, A. and Sheffrin, S.M. (2003), Economics : Principles in Action, 



225 
 

Prentice Hall, Needham  Mass., available at: 
https://www.worldcat.org/title/economics-principles-in-
action/oclc/50237774 (accessed 11 January 2021). 

Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I. and Thompson, R.C. 
(2014), “Global warming releases microplastic legacy frozen in Arctic Sea 
ice”, Earth’s Future, American Geophysical Union (AGU), Vol. 2 No. 6, pp. 
315–320. 

Oberbeckmann, S., Loeder, M.G.J., Gerdts, G. and Osborn, M.A. (2014), “Spatial 
and seasonal variation in diversity and structure of microbial biofilms on 
marine plastics in Northern European waters”, FEMS Microbiology Ecology, 
Oxford University Press, Vol. 90 No. 2, pp. 478–492. 

Oberbeckmann, S., Osborn, A.M. and Duhaime, M.B. (2016), “Microbes on a 
bottle: Substrate, season and geography influence community composition 
of microbes colonizing marine plastic debris”, edited by Carter, D.A.PLoS 
ONE, Public Library of Science, Vol. 11 No. 8, p. e0159289. 

OECD. (2017), “Wild fisheries landings decline while aquaculture surges - 
OECD”, OECD, available at: https://www.oecd.org/newsroom/wild-fisheries-
landings-decline-while-aquaculture-surges.htm (accessed 25 February 
2021). 

OECD. (2020), OECD-FAO Agricultural Outlook 2020-2029, OECD, available 
at:https://doi.org/10.1787/1112c23b-en. 

Ogola, J.S., Mitullah, W. V. and Omulo, M.A. (2002), “Impact of gold mining on 
the environment and human health: A case study in the Migori Gold Belt, 
Kenya”, Environmental Geochemistry and Health, Springer Netherlands, Vol. 
24 No. 2, pp. 141–157. 

Ogonowski, M., Motiei, A., Ininbergs, K., Hell, E., Gerdes, Z., Udekwu, K.I., 
Bacsik, Z., et al. (2018), “Evidence for selective bacterial community 
structuring on microplastics”, Environmental Microbiology, Blackwell 
Publishing Ltd, Vol. 20 No. 8, pp. 2796–2808. 

Oguttu, H.W., Wb Bugenyi, F., Leuenberger, H., Wolf, M. and Bachofen, R. 
(2008), “Pollution menacing Lake Victoria: Quantification of point sources 
around Jinja Town, Uganda”, available at: http://www.wrc.org.za (accessed 
21 November 2019). 

Ogutu-Ohwayo, R. (1990), “The decline of the native fishes of lakes Victoria and 
Kyoga (East Africa) and the impact of introduced species, especially the Nile 
perch, Lates niloticus, and the Nile tilapia, Oreochromis niloticus”, 
Environmental Biology of Fishes, Kluwer Academic Publishers, Vol. 27 No. 2, 
pp. 81–96. 

Onjong, H.A., Ngayo, M.O., Mwaniki, M., Wambui, J. and Njage, P.M.K. (2018), 
“Microbiological safety of fresh tilapia (Oreochromis niloticus) from kenyan 
fresh water fish value chains”, Journal of Food Protection, International 
Association for Food Protection, Vol. 81 No. 12, pp. 1973–1981. 

Outa, J.O., Kowenje, C.O., Avenant-Oldewage, A. and Jirsa, F. (2020), “Trace 
Elements in Crustaceans, Mollusks and Fish in the Kenyan Part of Lake 
Victoria: Bioaccumulation, Bioindication and Health Risk Analysis”, Archives 
of Environmental Contamination and Toxicology, Springer, Vol. 78 No. 4, pp. 
589–603. 

Outa, N.O., Yongo, E.O., Keyombe, J.L.A., Ogello, E.O. and Namwaya Wanjala, 
D. (2020), “A review on the status of some major fish species in Lake 
Victoria and possible conservation strategies”, Lakes & Reservoirs: Research 
& Management, Blackwell Publishing, Vol. 25 No. 1, pp. 105–111. 

Papagiannis, I., Kagalou, I., Leonardos, J., Petridis, D. and Kalfakakou, V. 



226 
 

(2004), “Copper and zinc in four freshwater fish species from Lake Pamvotis 
(Greece)”, Environment International, Elsevier Ltd, Vol. 30 No. 3, pp. 357–
362. 

Pearson, G., Barratt, C., Seeley, J., Ssetaala, A., Nabbagala, G. and Asiki, G. 
(2013), “Making a livelihood at the fish-landing site”, available 
at:https://doi.org/10.1080/17531055.2013.841026. 

Pennington, J. (2016), “Every minute, one garbage truck of plastic is dumped 
into our oceans. This has to stop | World Economic Forum”, World Economic 
Forum, available at: https://www.weforum.org/agenda/2016/10/every-
minute-one-garbage-truck-of-plastic-is-dumped-into-our-oceans/ (accessed 
7 October 2019). 

Phys.org. (2020), “Coronavirus masks, gloves polluting Europe’s rivers”, 
Phys.Org, available at: https://phys.org/news/2020-07-coronavirus-masks-
gloves-polluting-europe.html (accessed 3 March 2021). 

Picó, Y. and Barceló, D. (2019), “Analysis and prevention of microplastics 
pollution in water: Current perspectives and future directions”, ACS Omega, 
American Chemical Society, Vol. 4 No. 4, pp. 6709–6719. 

Pinheiro, C. (2017), “Occurrence and Impacts of Microplastics in Freshwater 
Fish”, Journal of Aquaculture & Marine Biology, MedCrave Group, LLC, Vol. 5 
No. 6, available at:https://doi.org/10.15406/jamb.2017.05.00138. 

Pinto, M., Langer, T.M., Hüffer, T., Hofmann, T. and Herndl, G.J. (2019), “The 
composition of bacterial communities associated with plastic biofilms differs 
between different polymers and stages of biofilm succession”, edited by 
Kelly, J.J.PLoS ONE, Public Library of Science, Vol. 14 No. 6, p. e0217165. 

PlasticEurope. (2008), “PlasticEurope - What are plastics”, Association of Plastics 
Manufactures, available at: https://www.plasticseurope.org/en/about-
plastics/what-are-plastics (accessed 17 February 2021). 

Popma, T. and Masser, M. (1999), “Tilapia Life History and Biology”, South 
Regional Aquaculture Center, No. 283, pp. 1–4. 

Poulíčková, A. and Manoylov, K. (2019), “Ecology of Freshwater Diatoms – 
Current Trends and Applications”, Diatoms: Fundamentals and Applications, 
Wiley, pp. 289–309. 

Powell, J.J., Thoree, V. and Pele, L.C. (2007), “Dietary microparticles and their 
impact on tolerance and immune responsiveness of the gastrointestinal 
tract”, British Journal of Nutrition, Vol. 98, Europe PMC Funders, p. S59. 

Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C. and Rocha-Santos, T. 
(2020), “COVID-19 Pandemic Repercussions on the Use and Management of 
Plastics”, Environmental Science and Technology, American Chemical 
Society, Vol. 54 No. 13, pp. 7760–7765. 

Priester, J.H., Horst, A.M., Van De Werfhorst, L.C., Saleta, J.L., Mertes, L.A.K. 
and Holden, P.A. (2007), “Enhanced visualization of microbial biofilms by 
staining and environmental scanning electron microscopy”, Journal of 
Microbiological Methods, Elsevier, Vol. 68 No. 3, pp. 577–587. 

Pro, L. (2017), “Global Ban on Microbeads in Personal Care Products”, 
ChemSafetyPro, available at: 
https://www.chemsafetypro.com/Topics/Restriction/Latest_Status_of_Global
_Ban_on_Microbeads_in_Personal_Care_Products.html (accessed 19 
November 2019). 

Qi, R., Jones, D.L., Li, Z., Liu, Q. and Yan, C. (2020), “Behavior of microplastics 
and plastic film residues in the soil environment: A critical review”, Science 
of the Total Environment, Elsevier B.V., 10 February. 

Reisser, J., Shaw, J., Hallegraeff, G., Proietti, M., Barnes, D.K.A., Thums, M., 



227 
 

Wilcox, C., et al. (2014), “Millimeter-Sized Marine Plastics: A New Pelagic 
Habitat for Microorganisms and Invertebrates”, edited by Ianora, A.PLoS 
ONE, Public Library of Science, Vol. 9 No. 6, p. e100289. 

Roberts, G. (2018), “174,000 tonnes of plastic packaging lost annually in 
Kenyan environment | Resource Magazine”, Resource, available at: 
https://resource.co/article/174000-tonnes-plastic-packaging-lost-annually-
kenyan-environment-12693 (accessed 22 February 2021). 

Roch, S., Friedrich, C. and Brinker, A. (2020), “Uptake routes of microplastics in 
fishes: practical and theoretical approaches to test existing theories”, 
Scientific Reports, Nature Research, Vol. 10 No. 1, available 
at:https://doi.org/10.1038/s41598-020-60630-1. 

Rochman, C.M., Hoh, E., Kurobe, T. and Teh, S.J. (2013), “Ingested plastic 
transfers hazardous chemicals to fish and induces hepatic stress”, Scientific 
Reports, Nature Publishing Group, Vol. 3 No. 1, pp. 1–7. 

Roman Lehner. (2015), “Macro-, Meso-, Micro-, but What About Nanoplastic? - 
Planet Experts”, pp. 1–4. 

Rosato, D. and Rosato, M. (2004), “Reinforced Plastics - an overview | 
ScienceDirect Topics”, Plastic Product Material and Process Selection 
Handbook, available at: https://www.sciencedirect.com/topics/materials-
science/reinforced-plastics (accessed 18 February 2021). 

Ruiz-Grossman, S. and Dahlen, D. (2017), “Heartbreaking Photos Show What 
Your Trash Does To Animals | HuffPost UK”, HuffPost US, available at: 
https://www.huffingtonpost.co.uk/entry/plastic-trash-animals-
photos_n_58ee9ec1e4b0b9e984891ddf?ri18n=true (accessed 17 February 
2021). 

Rummel, C.D., Jahnke, A., Gorokhova, E., Kühnel, D. and Schmitt-Jansen, M. 
(2017), “Impacts of biofilm formation on the fate and potential effects of 
microplastic in the aquatic environment”, Environmental Science and 
Technology Letters, American Chemical Society, 1 July. 

De Sales-Ribeiro, C., Brito-Casillas, Y., Fernandez, A. and Caballero, M.J. (2020), 
“An end to the controversy over the microscopic detection and effects of 
pristine microplastics in fish organs”, Scientific Reports, Nature Research, 
Vol. 10 No. 1, p. 12434. 

Sastri, V. (2014), “Heat Stabiliser - an overview | ScienceDirect Topics”, Plastics 
in Medical Devices (Second Edition), available at: 
https://www.sciencedirect.com/topics/engineering/heat-stabiliser (accessed 
18 February 2021). 

Savoca, M.S., Tyson, C.W., McGill, M. and Slager, C.J. (2017), “Odours from 
marine plastic debris induce food search behaviours in a forage fish”, 
Proceedings of the Royal Society B: Biological Sciences, Royal Society 
Publishing, Vol. 284 No. 1860, p. 20171000. 

Scheren, P.A.G.M., Zanting, H.A. and Lemmens, A.M.C. (2000), “Estimation of 
water pollution sources in Lake Victoria, East Africa: Application and 
elaboration of the rapid assessment methodology”, Journal of Environmental 
Management, Academic Press, Vol. 58 No. 4, pp. 235–248. 

Schlundt, C., Mark Welch, J.L., Knochel, A.M., Zettler, E.R. and Amaral-Zettler, 
L.A. (2019), “Spatial structure in the ‘Plastisphere’: Molecular resources for 
imaging microscopic communities on plastic marine debris”, Molecular 
Ecology Resources, Blackwell Publishing Ltd, Vol. 20 No. 3, pp. 620–634. 

Schneeberger, P.H.H., Fuhrimann, S., Becker, S.L., Pothier, J.F., Duffy, B., 
Beuret, C., Frey, J.E., et al. (2019), “Qualitative microbiome profiling along 
a wastewater system in Kampala, Uganda”, Scientific Reports, Nature 



228 
 

Research, Vol. 9 No. 1, available at:https://doi.org/10.1038/s41598-019-
53569-5. 

Sewage, S.A. (2019), “Plastic Pollution - Facts and Figures • Surfers Against 
Sewage”, available at: https://www.sas.org.uk/our-work/plastic-
pollution/plastic-pollution-facts-figures/ (accessed 7 October 2019). 

Shah, S.N.A., Shah, Z., Hussain, M. and Khan, M. (2017), “Hazardous Effects of 
Titanium Dioxide Nanoparticles in Ecosystem”, Bioinorganic Chemistry and 
Applications, available at:https://doi.org/10.1155/2017/4101735. 

Shahbandeh, M. (2020), “• Global seafood market value forecast, 2019-2027 | 
Statista”, Statista, available at: 
https://www.statista.com/statistics/821023/global-seafood-market-value/ 
(accessed 19 March 2021). 

Shamseer Mambra. (2019), “How Is Plastic Totally Ruining The Oceans In The 
Worst Way Possible?”, Marine Insight, available at: 
https://www.marineinsight.com/environment/how-is-plastic-ruining-the-
ocean/ (accessed 5 November 2019). 

Sibanda, L.K., Obange, N. and Awuor, F.O. (2017), “Challenges of Solid Waste 
Management in Kisumu, Kenya”, Urban Forum, Springer Netherlands, Vol. 
28 No. 4, pp. 387–402. 

Sifuna, A. and Onyango, D. (2018), “Source Attribution of Salmonella and 
Escherichia coli Contaminating Lake Victoria fish in Kenya”, Researchgate, 
available at: 
https://www.researchgate.net/publication/324803765_Source_Attribution_o
f_Salmonella_and_Escherichia_coli_Contaminating_Lake_Victoria_fish_in_K
enya (accessed 19 March 2021). 

Sigma-Aldrich. (2020), “Whatman® glass microfiber filters, Grade GF/B Grade 
GF/B circles, 25 mm, 100/pk | glass fiber filters | Sigma-Aldrich”, available 
at: 
https://www.sigmaaldrich.com/catalog/product/aldrich/wha1820047?lang=e
n&region=GB (accessed 23 March 2021). 

Sireyjol Trucost, A., Georgieva Trucost, A., Wainwright Trucost, S., Haridwaj 
Trucost, A., Joshi Trucost, S., Bullock Trucost, S., Huang Trucost, C., et al. 
(2014), Valuing Plastics: The Business Case for Measuring, Managing and 
Disclosing Plastic Use in the Consumer Goods Industry, available at: 
www.gpa.unep.org (accessed 23 February 2021). 

Sitoki, L., Kurmayer, R. and Rott, E. (2012), “Spatial variation of phytoplankton 
composition, biovolume, and resulting microcystin concentrations in the 
Nyanza Gulf (Lake Victoria, Kenya)”, Hydrobiologia, Springer, Vol. 691 No. 
1, pp. 109–122. 

SPC. (2020), “Plating on Plastics | Plastic Electroplating Process | SPC”, SPC, 
available at: https://www.sharrettsplating.com/base-materials/plastics 
(accessed 19 March 2021). 

SpecialChem. (2018), “Pigments for Plastic Colorants: Types, Properties & 
Processing Guide”, available at: https://polymer-
additives.specialchem.com/selection-guide/pigments-for-plastics (accessed 
18 February 2021). 

Stager, J.C., Hecky, R.E., Grzesik, D., Cumming, B.F. and Kling, H. (2009), 
“Diatom evidence for the timing and causes of eutrophication in lake 
victoria, east africa”, Hydrobiologia, Kluwer Academic Publishers, Vol. 636 
No. 1, pp. 463–478. 

Stanton, T., Johnson, M., Nathanail, P., Gomes, R.L., Needham, T. and Burson, 
A. (2019), “Exploring the Efficacy of Nile Red in Microplastic Quantification: 



229 
 

A Costaining Approach”, available 
at:https://doi.org/10.1021/acs.estlett.9b00499. 

Steinberg, R.M., Walker, D.M., Juenger, T.E., Woller, M.J. and Gore, A.C. 
(2008), “Effects of perinatal polychlorinated biphenyls on adult female rat 
reproduction: Development, reproductive physiology, and second 
generational effects”, Biology of Reproduction, NIH Public Access, Vol. 78 
No. 6, pp. 1091–1101. 

Tabor, S. and Richardson, C.C. (1987), DNA Sequence Analysis with a Modified 
Bacteriophage T7 DNA Polymerase (DNA Polymerase I/Reverse 
Transcriptase/Chain-Terminating Inhibitors/2’-Deoxyinosine 5’-
Triphosphate/Processivity), Biochemistry, Vol. 84. 

Tall, A. (2015), “Fish trade in Africa an update GLOBEFISH Food and Agriculture 
Organization of the United Nations”, available at: http://www.fao.org/in-
action/globefish/fishery-information/resource-detail/en/c/338418/ (accessed 
1 March 2021). 

Tanaka, K. and Takada, H. (2016), “Microplastic fragments and microbeads in 
digestive tracts of planktivorous fish from urban coastal waters”, Scientific 
Reports, Nature Publishing Group, Vol. 6 No. 1, pp. 1–8. 

De Tender, C., Schlundt, C., Devriese, L.I., Mincer, T.J., Zettler, E.R. and 
Amaral-Zettler, L.A. (2017), “A review of microscopy and comparative 
molecular-based methods to characterize ‘Plastisphere’ communities”, 
Analytical Methods. 

The Guardian. (2019), “Dumped fishing gear is biggest plastic polluter in ocean, 
finds report | Environment | The Guardian”, The Guardian, available at: 
https://www.theguardian.com/environment/2019/nov/06/dumped-fishing-
gear-is-biggest-plastic-polluter-in-ocean-finds-report (accessed 7 April 
2021). 

Thiele, C.J., Hudson, M.D. and Russell, A.E. (2019), “Evaluation of existing 
methods to extract microplastics from bivalve tissue: Adapted KOH digestion 
protocol improves filtration at single-digit pore size”, Marine Pollution 
Bulletin, Elsevier Ltd, pp. 384–393. 

Thompson, R.C., Olson, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., 
McGonigle, D., et al. (2004), “Lost at Sea: Where Is All the Plastic?”, 
Science, Vol. 304 No. 5672, p. 838. 

Tolinski, M. (2015), “Colourants - an overview | ScienceDirect Topics”, Additives 
for Polyolefins (Second Edition), available at: 
https://www.sciencedirect.com/topics/engineering/colourants (accessed 18 
February 2021). 

Triest, L., Lung’ayia, H., Ndiritu, G. and Beyene, A. (2012), “Epilithic diatoms as 
indicators in tropical African rivers (Lake Victoria catchment)”, 
Hydrobiologia, Springer, Vol. 695 No. 1, pp. 343–360. 

Turner, A. and Filella, M. (2020a), “The influence of additives on the fate of 
plastics in the marine environment, exemplified with barium sulphate”, 
Marine Pollution Bulletin, Elsevier Ltd, Vol. 158, p. 111352. 

Turner, A. and Filella, M. (2020b), “The influence of additives on the fate of 
plastics in the marine environment, exemplified with barium sulphate”, 
Marine Pollution Bulletin, Elsevier Ltd, Vol. 158, available 
at:https://doi.org/10.1016/j.marpolbul.2020.111352. 

US Department of Commerce, N.O. and A.A. (2020), “What is aquaculture?”, 
National Ocean Service. 

Volkheimer, G. (1975), “HEMATOGENOUS DISSEMINATION OF INGESTED 
POLYVINYL CHLORIDE PARTICLES”, Annals of the New York Academy of 



230 
 

Sciences, Ann N Y Acad Sci, Vol. 246 No. 1, pp. 164–171. 
Vrede, K., Heldal, M., Norland, S. and Bratbak, G. (2002), “Elemental 

composition (C, N, P) and cell volume of exponentially growing and nutrient-
limited bacterioplankton”, Applied and Environmental Microbiology, 
American Society for Microbiology (ASM), Vol. 68 No. 6, pp. 2965–2971. 

Wagner, J., Wang, Z.M., Ghosal, S., Rochman, C., Gassel, M. and Wall, S. 
(2017), “Novel method for the extraction and identification of microplastics 
in ocean trawl and fish gut matrices”, Analytical Methods, Royal Society of 
Chemistry, Vol. 9 No. 9, pp. 1479–1490. 

Waiganjo, C. (2020), “Implementation and Enforcement of the Single-Use Plastic 
Ban in Kenya | Africa Up Close”, Africa Up Close, available at: 
https://africaupclose.wilsoncenter.org/implementation-and-enforcement-of-
the-single-use-plastic-ban-in-kenya/ (accessed 19 March 2021). 

Wang, Z.M., Wagner, J., Ghosal, S., Bedi, G. and Wall, S. (2017a), “SEM/EDS 
and optical microscopy analyses of microplastics in ocean trawl and fish 
guts”, Science of the Total Environment, Elsevier B.V., Vol. 603–604, pp. 
616–626. 

Wang, Z.M., Wagner, J., Ghosal, S., Bedi, G. and Wall, S. (2017b), “SEM/EDS 
and optical microscopy analyses of microplastics in ocean trawl and fish 
guts”, Science of the Total Environment, Elsevier B.V., Vol. 603–604, pp. 
616–626. 

Watts, A.J.R., Urbina, M.A., Goodhead, R., Moger, J., Lewis, C. and Galloway, 
T.S. (2016), “Effect of Microplastic on the Gills of the Shore Crab Carcinus 
maenas”, Environmental Science and Technology, American Chemical 
Society, Vol. 50 No. 10, pp. 5364–5369. 

Welcomme, R. and Lymer, D. (2012), “AN AUDIT OF INLAND CAPTURE FISHERY 
STATISTICS-AFRICA”, FAO, available at: www.fao.org/icatalog/inter-e.htm 
(accessed 25 February 2021). 

WHO. (215AD), Healthy Diet, available at: 
http://www.who.int/mediacentre/factsheets/fs394/en/ (accessed 9 April 
2021). 

WHO. (2019), “WHO | Information sheet: Microplastics in drinking-water”, WHO, 
World Health Organization, available at: 
http://www.who.int/water_sanitation_health/water-
quality/guidelines/microplastics-in-dw-information-sheet/en/ (accessed 25 
February 2021). 

Williams, A.E., Hecky, R.E. and Duthie, H.C. (2007), “Water hyacinth decline 
across Lake Victoria-Was it caused by climatic perturbation or biological 
control? A reply”, Aquatic Botany, Vol. 87 No. 1, pp. 94–96. 

Williams, L. (2019), “Everything you need to know about microplastics - 
Discover Wildlife”, Discover Wildlife, available at: 
https://www.discoverwildlife.com/people/facts-about-microplastics/ 
(accessed 7 November 2019). 

World Animal Protection. (2018), “To stop the deaths of countless marine 
animals, we need to tag fishing gear | World Animal Protection 
International”, World Animal Protection, available at: 
https://www.worldanimalprotection.org/news/stop-deaths-countless-
marine-animals-we-need-tag-fishing-gear (accessed 19 November 2019). 

Wright, R.J., Langille, M.G.I. and Walker, T.R. (2020), “Food or just a free ride? 
A meta-analysis reveals the global diversity of the Plastisphere”, ISME 
Journal, Springer Nature, Vol. 15 No. 3, pp. 789–806. 

Wright, S.L. and Kelly, F.J. (2017), “Plastic and Human Health: A Micro Issue?”, 



231 
 

Environmental Science and Technology, American Chemical Society, Vol. 51 
No. 12, pp. 6634–6647. 

WWF. (2020), “Sustainable Seafood | Industries | WWF”, WWF, available at: 
https://www.worldwildlife.org/industries/sustainable-seafood (accessed 4 
March 2021). 

Xanthos, D. and Walker, T.R. (2017), “International policies to reduce plastic 
marine pollution from single-use plastics (plastic bags and microbeads): A 
review”, Marine Pollution Bulletin, Elsevier Ltd, 15 May. 

Xue, B., Zhang, L., Li, R., Wang, Y., Guo, J., Yu, K. and Wang, S. (2020), 
“Underestimated Microplastic Pollution Derived from Fishery Activities and 
‘Hidden’ in Deep Sediment”, Environmental Science and Technology, 
American Chemical Society, Vol. 54 No. 4, pp. 2210–2217. 

Yang, Y., Liu, G., Song, W., Ye, C., Lin, H., Li, Z. and Liu, W. (2019), “Plastics in 
the marine environment are reservoirs for antibiotic and metal resistance 
genes”, Environment International, Elsevier Ltd, Vol. 123, pp. 79–86. 

Yoo, J.W., Doshi, N. and Mitragotri, S. (2011), “Adaptive micro and 
nanoparticles: Temporal control over carrier properties to facilitate drug 
delivery”, Advanced Drug Delivery Reviews, Elsevier, 1 November. 

Yue, G.H., Jiale, L. and Jiale, J. (2016), “Tilapia is the Fish for Next-Generation 
Aquaculture Molecular Breeding of Sugarcane View project graphene 
fabrication View project”, available at:https://doi.org/10.19070/2577-4395-
160003. 

Zettler, E.R., Mincer, T.J. and Amaral-Zettler, L.A. (2013), “Life in the 
‘plastisphere’: Microbial communities on plastic marine debris”, 
Environmental Science and Technology, Vol. 47 No. 13, pp. 7137–7146. 

Zubris, K.A. V. and Richards, B.K. (2005), “Synthetic fibers as an indicator of 
land application of sludge”, Environmental Pollution, Elsevier, Vol. 138 No. 
2, pp. 201–211. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



232 
 

6.0 Appendix  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 Tilapia muscle sample weights. This table shows all the sample weights (g) of 
the tilapia muscle samples used in this study, as well as the whole weight (g) of the muscle 
fillet. The sample ID of the muscle is shown (Ta).  
 
 

MUSCLE ID WHOLE WEIGHT (g) SAMPLE WEIGHT (g) 
Ta1 3.07 1.53 
Ta2 7.59 0.98 
Ta3 12.85 2.27 
Ta4 37.53 1.44 
Ta5 29.23 2.8 
Ta6 18.92 2.04 
Ta7 7.92 2.16 
Ta8 3.23 0.77 
Ta9 28.71 1.7 
Ta10 32.06 2.03 
Ta11 12.8 2.59 
Ta12 54.17 1.88 
Ta13 62.56 2.4 
Ta14 25.18 2.24 
Ta15 19.2 2.61 
Ta16 14.49 1.76 
Ta17 40.23 1.65 
Ta18 17.74 2.37 
Ta19 33.37 1.8 
Ta20 6.44 1.73 
Ta21 10.61 1.52 
Ta22 12.6 1.4 
Ta23 38.89 1.9 
Ta24 17.38 2.09 
Ta25 21.49 1.72 
Ta26 28.58 2.15 
Ta27 28.19 2.91 
Ta28 5.42 1.03 
Ta29 18.81 1.68 
Ta30 37.71 2.86 
Ta31 35.71 1.82 
Ta32 35.97 2.52 
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Table 1 (continued) Tilapia muscle sample weights. This table shows all the sample 
weights (g) of the tilapia muscle samples used in this study, as well as the whole weight 
(g) of the muscle fillet. The sample ID of the muscle is shown (Ta).  

 
 

Ta33 17.29 2.44 
Ta34 12.91 2.3 
Ta35 16.73 2.04 
Ta36 19.67 2.41 
Ta37 43.27 2.12 
Ta38 9.71 1.56 
Ta39 12.4 1.96 
Ta40 15.37 2.32 
Ta41 17.7 1.04 
Ta42 12.22 1.86 
Ta43 14.8 1.52 
Ta44 16.58 2.68 
Ta45 16.02 1.65 
Ta46 15.03 1.93 
Ta47 4.05 1.22 
Ta48 3.91 1.08 
Ta49 5.06 0.83 
Ta50 5.97 2 
Ta51  2.31 1.16 
Ta52 14.11 2 
Ta53 19.64 1.52 
Ta54 15.92 1.26 
Ta55 6.2 1.24 
Ta56 8.39 2.5 
Ta57 3.66 1.19 
Ta58 4.53 1.08 
Ta59 7.52 2.29 
Ta60 1.56 0.81 
Ta61 33.45 2.65 
Ta62 45.59 1.5 
Ta63 49 2.51 
Ta64 33.85 3.05 
Ta65 34.37 3.05 
Ta66 34.8 2.98 
Ta67 29.35 2.6 
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Table 1 (continued) Tilapia muscle sample weights. This table shows all the sample 
weights (g) of the tilapia muscle samples used in this study, as well as the whole weight 
(g) of the muscle fillet. The sample ID of the muscle is shown (Ta).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ta68 26.25 2.14 
Ta69 39.49 2.71 
Ta70 29.98 2.62 
Ta71 31.94 5.36 
Ta72 51.33 3.48 
Ta73 38.47 3.32 
Ta74 15.58 2.81 
Ta75 15.65 2.31 
Ta76 42.83 2.51 
Ta77 32.62 3.57 
Ta78 32.07 3.2 
Ta79 62.45 3.2 
Ta80 63.2 2.13 
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GIT ID 1st WEIGHT (g) 2nd WEIGHT (g) SAMPLE WEIGHT (g) 
GI1  6.24 2.23 4.01 
GI2  5.26 2.22 3.04 
GI3  5.18 2.07 3.11 
GI4  4.20 2.44 1.76 
GI5  2.28 2.55 0.27 
GIT6  4.14 0.78 3.36 
GIT7  4.10 0.94 3.16 
GIT10  5.90 0.85 5.05 
GIT13  4.50 0.79 3.71 
GIT15  7.51 0.64 6.87 
GIT19  14.05 0.74 13.31 

 

Table 2 Tilapia gastrointestinal tract and contents weights. This table shows all the 
sample weights (g) of the tilapia gastrointestinal tract contents (GI) and intact 
gastrointestinal tracts (GIT) used in this study. The 1st weight (g) represents the weight 
of the sample and the bag it was contained in and the 2nd weight (g) represents the empty 
bag. The final sample weight was determined by subtracting the two recorded weights.  
 

 

Table 3 Macroplastic litter and facewash beads weights. This table shows all the 
sample lengths (mm) and sample weights (g) for the different coloured macroplastic net 
strands found in Lake Victoria and the microbeads extracted from the facewash, used as 
positive controls in this study. 

MACROPLASTIC TYPE SAMPLE LENGTH (mm) SAMPLE WEIGHT (g) 
NET - BLUE  60 0.17 
NET - YELLOW  48 0.13 
NET - GREEN  Mixture of lengths 0.13 
NET - WHITE  42 0.01 
FACEWASH BEADS  2 0.03 


