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Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

June 2021



To my wife.



Abstract

Piecewise linear (PWL) modelling has many useful applications in the applied

sciences. Although the number of techniques for analysing nonsmooth systems

has grown in recent years, this has typically focused on low dimensional systems

and relatively little attention has been paid to networks. We aim to redress

this balance with a focus on synchronous oscillatory network states. For net-

works with smooth nodal components, weak coupling theory, phase-amplitude

reductions, and the master stability function are standard methodologies to

assess the stability of the synchronous state. However, when network elements

have some degree of nonsmoothness, these tools cannot be directly used and

a more careful treatment is required. The work in this thesis addresses this

challenge and shows how the use of saltation operators allows for an appro-

priate treatment of networks of PWL oscillators. This is used to augment all

the aforementioned methods. The power of this formalism is illustrated by

application to network problems ranging from mechanics to neuroscience.
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Glossary

Below is a list of abbreviations used in this thesis are given:

• ODEs - Ordinary differential equations,

• MSF - Master stability function,

• PRC - Phase response curve,

• iPRC - Infinitesimal phase response curve,

• IRC - Isostable response curve,

• iIRC - Infinitesimal isostable response curve,

• PWS - Piecewise smooth,

• PWL - Piecewise linear,

• ML - Morris-Lecar,

• PML - Piecewise linear Morris-Lecar,

• HH - Hodgkin-Huxley,

• SNIC - Saddle-node of invariant circle,

• FHN - FitzHugh-Nagumo,

• WC - Wilson-Cowan,

• LEs - Lyapunov exponents.
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Chapter 1

Introduction

1.1 Motivation

Oscillations (e.g. limit cycle, periodic, quasi-periodic or chaotic) are one of

the main forms of motion in nature and have fascinating properties. They can

occur over a multitude of scales ranging form arbitrary openings of ion channels

in cell membranes to the periodic motion of planets. In most cases, oscillatory

systems are not isolated and may have rich connections and quite complicated

interactions with other oscillatory units and evolve within a network setting.

Understanding collective behaviours of such systems including synchronisation,

clustering, and desynchronisation is an important research topic and has a

strong history. In these systems the emergent network activity depends on both

the connectivity structure and the dynamics of the network nodal components.

Synchronisation, first observed by Christian Huygens in 1665 [141], is an

interesting emergent behaviour of coupled dynamical systems and ubiquitous

in a wide range of research fields including engineering, biology, chemistry, and

social sciences [19, 240]. The word synchronous is often used in both everyday

and scientific language, and originated from the Greek word σύνχρóνoς, where

prefix σύν (syn) means the “same”, “together”, or “common” and χρóνoς

(chronos) means “time”. A direct translation of synchronous can be read as

“happening at the same time” or “sharing the common clock” [240]. Here we

2



use the related term synchronisation to refer to the adjustment of rhythms

of oscillatory units due to their interactions, and the term synchronised to

emphasise all oscillating objects in a network doing the same thing at the

same time. An extensive overview of synchronisation phenomena is given in

[28, 240] where plenty of examples from the applied sciences are also presented.

In the mathematical modelling of many important real world problems

(in various disciplines) the inclusion of nonsmooth phenomena plays a signif-

icant role to capture complex characteristics of dynamical evolution [35, 81].

Although there is a vast literature to explore synchronisation mechanisms of

coupled systems, only a very limited amount is devoted to investigate the syn-

chronisation of nonsmooth dynamical systems. Three of the major practical

tools available from the smooth nonlinear dynamical system theory to deter-

mine stability of the synchronous state are weak coupling theory [96, 137, 270],

phase-amplitude network formalism [92, 326], and the master stability function

(MSF) methodology [230]. However, key components in each method need to

be modified in the case where nodal components have some degree of nons-

moothness. This thesis addresses the extension and application of the theory

for smooth dynamical systems to nonsmooth ones at both node and network

levels by analysing some biological and mechanical oscillatory piecewise lin-

ear models. Our main motivation is to build a bridge between PWL systems

and synchronisation theory thereby contributing to the mathematical theory

of nonsmooth networks.

1.2 Overview of the thesis

The outline of this thesis is as follows.

Chapter 2

In this chapter we briefly summarise some of the main techniques that have

been developed for smooth dynamical systems and that we will adapt and

apply to nonsmooth models in the later chapters. We begin by reviewing the
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notion of isochrons and phase reduction theory for weakly driven limit cycle

attractors. We then recapitulate the concept of isostables and phase-amplitude

reduction that is useful for investigating the behaviour of oscillatory networks

beyond the weak coupling regime. We further present the second-order accu-

rate phase-amplitude reduction framework by including higher order correc-

tion terms to the phase and amplitude coordinate equations. Subsequently,

we restate the theory of weakly coupled oscillators and show how to perform

linear stability analysis of the phase locked states with a particular focus on

synchrony. Afterwards we outline a phase-amplitude network formalism that

enables us to measure the effect of coupling strength on the bifurcations of

network states. Finally, we recap the MSF methodology to assess the stability

of a synchronous state and illustrate this technique by studying a network of

linearly coupled Stuart-Landau oscillators.

Chapter 3

We start by introducing nonsmooth dynamical systems, some relevant ter-

minology and a natural classification of them depending on their degree of

nonsmoothness. Then we address a class of PWL systems with two linear

zones and describe how to build periodic orbits systematically. Afterwards

we present the PWL models (mainly drawn from neuroscience) that we study

throughout Chapter 4. Finally we briefly discuss the practicalities and the

utility of PWL modelling.

Chapter 4

We begin with modifying Floquet theory where the notion of saltation op-

erators is used to determine the stability of periodic orbits for planar PWL

systems. Then we derive the jump conditions relevant to the second-order

accurate phase and amplitude equations. Subsequently, we present the ex-

plicit construction process for these terms and compare against direct nu-

merical computations. Next we show how to determine the stability of a

synchronous network state by using weak coupling theory, a phase-amplitude

network framework, and the MSF in the case where nodes have PWL dynam-
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ics. Moreover, we test the stability of the synchronous state and assess the

accuracy of the predicted results from each method against direct numerical

simulations. Finally, we give a discussion to highlight the power of PWL mod-

elling for avoiding the limitation of phase and phase-amplitude reductions.

We also debate which method best reflects the effect of variation in coupling

strength on the bifurcations of network states for the models considered. The

combination of PWL modelling and nonsmooth MSF analysis is recognised as

an approach that does not require approximation and is the main tool used in

Chapters 5 and 6.

Chapter 5

We first introduce the single electro-mechanical Franklin bell model and show

how to build periodic orbits. We then use saltation operators to compute

the nontrivial Floquet exponent to assess stability and analyse bifurcations.

Afterwards we present a smoothing technique and show (numerically) that it

recovers results obtained using saltation operators. Following this we utilise the

MSF technique to determine the stability of synchronous network states, for

both smooth and nonsmooth networks. We also present numerical examples

to illustrate the theory. Finally, we discuss natural extensions and possible

applications of the results for networks of Franklin bells in energy harvesting

systems.

Chapter 6

First we introduce the model for an isolated Wilson-Cowan (WC) node with

a continuous PWL firing rate function. Then we construct periodic solutions,

derive an explicit formula to determine stability of these orbits and perform a

bifurcation analysis. Afterwards we study a network of PWL Wilson-Cowan

nodes, with nodal components arranged along a ring with distance-dependent

interactions. Next we test the stability of the synchronous state by implement-

ing the MSF methodology and study network bifurcations. Following this, we

replace the continuous PWL firing rate function by a Heaviside function. Once

again we build periodic orbits and formulate saltation matrices to determine
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the stability of periodic orbits. We also observe that the model supports un-

stable sliding periodic orbits, and perform a bifurcation analysis. We highlight

that the stability of the synchronous state is much harder to determine than

for the continuous case. We show that stability is strongly influenced by the

temporal order in which network components cross switching manifolds, and

that this in turn is determined by the choice of initial perturbation. Finally,

we discuss the new results about synchrony in networks of neural mass models,

as well as natural extensions.

Chapter 7

Here we consider the challenge of modelling sleep in a PWL context. We

start by introducing the PWL two process model, defining periodic orbits and

presenting relevant one dimensional maps. We then show how to construct

periodic orbits and determine their stability by utilising both nonsmooth Flo-

quet theory and a linear stability analysis of the maps of switching event times

around such orbits. Following this we derive a formula to compute Lyapunov

exponents (LEs), indicating the location of different solution patterns in pa-

rameter space. We build Arnol’d tongue boundaries by investigating both

saddle-node bifurcation of periodic orbits and grazing bifurcations. Next, we

outline how social factors effects human sleep dynamics with a particular fo-

cus on partners sharing the same bed and develop a phenomenological PWL

network model of this process. Finally, we summarise the work in this chapter

and emphasise new directions.

Chapter 8

We conclude the thesis by reviewing the key results of the previous chapters,

and highlight potential future research areas.
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Chapter 2

Background

2.1 Introduction

In this chapter, some terminology, relevant concepts, and results from the

existing literature are introduced to help understanding, self-containedness,

and presentation of the thesis. The exposition is of the introductory level, and

we sign-post the interested reader to the literature in favour of a less exhaustive

and overly long presentation. Here we essentially review techniques for smooth

dynamical systems that we will extend and apply in later chapters.

The organisation of the chapter is as follows. Section 2.2 introduces a dy-

namical system described by a system of nonlinear ordinary differential equa-

tions (ODEs) with a periodic solution, the notion of isochrons for limit cycle

attractors and phase reduction, as well as related terminology. Section 2.3 in-

troduces the concept of isostable coordinates and a phase-amplitude reduction

to explore the behaviour of oscillatory systems beyond the weak perturbation

paradigm. Moreover a higher order accurate phase-amplitude framework is

presented together with a computationally efficient strategy to calculate nec-

essary terms in the reduction process. Section 2.4 introduces a dynamical

system representation of networks of limit cycle oscillators, and then focuses

on an investigation of collective network behaviours. The theory of weakly cou-

pled oscillators for providing a phase description of the underlying networks
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dynamics is reviewed. Phase locked states and their linear stability analysis

are examined with a particular focus on synchrony. To uncover the effect of

coupling strength on the bifurcations of network states we further consider

phase-amplitude coordinates. Additionally, the master stability function for-

malism for studying network synchrony in systems with identical oscillators

and diffusive coupling is reviewed. To illustrate this technique numerically, a

network of linearly coupled Stuart-Landau oscillators is considered.

This chapter is mainly based on the studies [15, 92, 96, 137, 230, 270, 325,

326, 328]. Particularly, interested readers are referred to: [15] for isochron and

phase description; [325, 328] for isostable coordinates and a phase-amplitude

reduction; [96, 137, 270] for the theory of weakly coupled oscillators; [92, 326]

for coupled phase-amplitude oscillators, and finally [230] for the master stabil-

ity function formalism.

2.2 Isochrons and phase reduction

Let us consider a differential equation of the form

dx

dt
= f(x) + g(t), x ∈ Rn, (2.1)

that has a stable hyperbolic periodic orbit, i.e. a limit cycle xγ(t), with period

T for g(t) = 0 such that xγ(t + T ) = xγ(t). Here, f(x) represents an unper-

turbed dynamics and g(t) is a small external perturbation. We denote the

point set of the limit cycle in phase space by γ = {xγ(t) ∈ Rn, t ∈ R}. We as-

sign a phase coordinate θ(x) to each point x ∈ γ such that θ(x) : Rn → [0, 2π)

for which dθ (x(t)) /dt = ω and θ (x(t)) = θ (x(t+ T )) where the zero phase

θ(x0) = 0 is assigned for an arbitrary point x0 ∈ γ. Here we choose ω = 2π/T ,

however the choice of ω is a personal preference and there are other common

choices such as ω = 1, so that θ ∈ [0, T ) or ω = 1/T , so that θ ∈ [0, 1). On

the limit cycle, the use of phase coordinate reduces the nonlinear dynamics on
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Rn to a uniformly rotating dynamics on S1 with a constant velocity.

Let us denote the flow of the unperturbed system by ϕ(t, x̄0) where x̄0 is

the initial value when t = 0. Then, the basin of attraction of the limit cycle is

defined as

Bγ = {x ∈ Rn |ϕ(t, x)→ γ as t→∞}, (2.2)

that is, the set of all initial conditions tends to γ as time goes to infinity. It

is possible to extend the notion of phase to the entire basin of attraction Bγ.

We can assign a unique asymptotic phase θ(x∗) ∈ [0, 2π) to each point x∗ in

Bγ by the condition

lim
t→∞

∣∣∣∣ϕ(t, x∗)− ϕ(t+
T

2π
θ(x∗), x0)

∣∣∣∣ = 0, (2.3)

where x0 is initial reference point on γ with zero phase. Thus two points, on

and off the cycle in Bγ, have the same asymptotic phase if the distance between

unperturbed trajectories of the system (2.1) starting from these points vanishes

as t → ∞. The locus of all points x ∈ Bγ that share the same asymptotic

phase values is called an isochron. Formally, the isochron associated with a

given phase θ(x̃0), x̃0 ∈ γ can be defined as the set

Γθ(x̃0) = {x ∈ Bγ |θ(x) = θ(x̃0)}, (2.4)

where θ(x) is the asymptotic phase function. Thus, isochrons extend the phase

dynamics dθ (x(t)) /dt = ω over the basin of attraction. The set of isochrons,

for all θ ∈ [0, 2π), can also be considered as a foliation of Bγ by n− 1 dimen-

sional leaves. Although isochrons specify the full dynamics of a system with a

stable limit cycle, in general, their analytical calculation is often not possible.

An exception to this is plane-polar models where the radial component decou-

ples from the angular one [15]. Therefore, numerical methods are often used

for computing the isochron fibration of the basin Bγ. For further mathematical

properties and different methodologies that can be used during the computa-
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tion of isochrons we refer the reader to [129, 131, 196, 221, 239, 299, 332].

We have defined the phase and corresponding phase equation in some

neighbourhood U of the limit cycle by considering only the unperturbed sys-

tem. However, oscillators are usually exposed to external force or are mutually

interacting in a network setting [213]. For weak perturbations, although state

points leave the limit cycle γ, they still stay within U . With this in mind, we

consider the weakly perturbed system (2.1) in isochronal coordinates. This

can be written as

dθ

dt
=
∂θ

∂x
· dx

dt
=
∂θ

∂x
· (f(x) + g(t)) = ω +

∂θ

∂x
· g(t). (2.5)

We derive an equation for the phase dynamics by evaluating the right hand

side of (2.5) on the limit cycle xγ(t), to a first approximation, as

dθ

dt
= ω + Z(θ) · g(t), Z(θ) =

∂θ

∂x

∣∣∣∣∣
xγ(θ)

≡ ∇xγθ. (2.6)

Here we call Z(θ) ∈ Rn the (infinitesimal) phase response curve (iPRC) and it

is equal to the gradient of θ(x) evaluated on the limit cycle. The phase response

curve (PRC) quantifies the change in phase for weak external perturbations

acting along the limit cycle. To see this note that a perturbation δx in state

xγ, induces a corresponding change in phase given by:

∆θ = θ(xγ + δx)− θ(xγ) ' ∇xγθ · δx.

A standard technique for calculation of the iPRC is to solve the adjoint equa-

tion [95, 96, 137]

d∇xγ(t)θ

dt
= −Df(xγ(t))>∇xγ(t)θ, (2.7)

where Df(xγ(t))> is transpose of the Jacobian of f evaluated along the limit

cycle xγ(t). Here, equation (2.7) is solved subject to the normalisation condi-

tion ∇xγ(0)θ · f(xγ(0)) = ω, and T -periodicity of the solution ∇xγ(t)θ must be
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enforced. These two conditions give the required n initial conditions to solve

for the iPRC uniquely. In general, solutions of equation (2.7) are obtained

numerically, say, by implementing the adjoint routine in XPPAUT [91] or us-

ing the Matlab software package MatCont [125]. A detailed review of phase

reduction techniques, both analytical and numerical, for limit cycle oscillators

can be found in [239, 288].

2.3 Isostables and phase-amplitude reduction

Although the proposed phase reduction (2.6) is a widely used technique for

studying weakly perturbed oscillators, it is valid only in a small neighbour-

hood of the limit cycle. In general, phase only reduction strategies are suitable

for anticipating and examining the dynamics of coupled oscillators when in-

dividual limit cycles are strongly stable and robust to external perturbations.

When the magnitude of external perturbation increases and states are driven

away from the limit cycle, then the applicability of standard phase reduction

techniques reduces and often gives incorrect predictions about actual dynam-

ical behaviour. This is especially true if a nontrivial Floquet multiplier [157]

of the limit cycle is close to unity so that the decay rate of transversal per-

turbations to the periodic orbit is slow. In many applications [289, 327], the

presence and necessity of large amplitude perturbations requires the explicit

consideration of the dynamical behaviour in transversal directions to the limit

cycle xγ(t).

In order to overcome this limitation, Suvak and Demir [297] and Takeshita

and Feres [299] proposed some methods to compute a local but quadratic ap-

proximations of the isochrons for different models. Nevertheless, in realistic

settings, perturbations do not need to be small or they can act during a tran-

sient state, where perturbed solutions have not fully relaxed back to the limit

cycle. Hence, to compute phase change accurately away from the cycle (in

a transient state) or in response to strong driving effects, it is necessary to
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consider an extra variable, the amplitude variable, which traces the transver-

sal distance to the limit cycle. By utilising this new variable, Guillamon and

Huguet [131] have proposed a computational and geometric approach to build

a more accurate reduced system by introducing the concepts of Phase Re-

sponse Functions (PRF), to measure phase changes, and the Amplitude Re-

sponse Functions (ARF) to measure changes in amplitude. Letson and Rubin

[181] and Wedgwood et al. [319] utilised a moving orthonormal coordinate

framework along the limit cycle to define phase amplitude coordinates, and

they applied this to the FitzHugh-Nagumo (FHN) model [101, 212] and Mor-

ris–Lecar (ML) model [209], respectively. We also note that, other dynamical

modelling of phase-amplitude interactions (from a more numerical point of

view) have been proposed in [98, 139].

Analogous to the isochrons, Wilson and Moehlis [328] and Shirasaka et al.

[275, 277] have introduced the notion of isostables where isostable level sets

identify the initial points around the limit cycle such that solutions starting

from these points have the same relaxation property, namely their decay rate

toward the limit cycle is the same. Wilson and Ermentrout [325] increased

the accuracy of this phase-amplitude framework by introducing second-order

correction terms. Moreover, Kotani et al. [164] studied this phase-amplitude

reduction theory for limit cycle oscillators described by delay differential equa-

tions.

Here we will revisit the phase-amplitude reduction method proposed by

Wilson and Moehlis [328], and Wilson and Ermentrout [325]. The main mo-

tivation to choose this recent reduction framework is that it simplifies and is

computationally efficient when applied to the models that we work within later

chapters. This is an n−dimensional reduction (n is dimension of system (2.1))

and uses the notion of both isochrons and isostables. Isostables are introduced

as coordinates which represent a measure of distance in directions transverse

to the limit cycle. In this n−dimensional reduction, the first dimension char-

acterises the phase of the oscillator along the limit cycle and the remaining

12



n− 1 dimensions give a sense of transversal decay to the limit cycle along the

n − 1 isostable directions. The standard phase reduction (2.6) is augmented

to a phase-amplitude reduction by using these isostable coordinates as follows.

Here we follow the presentation of Wilson and Moehlis [328] to introduce this

theory.

Choose a point x0 on the limit cycle xγ(t) and denote the corresponding

isochron by Γ0 where Γ0 = {x ∈ Bγ |θ(x) = 0}. By considering Γ0 to be a

Poincaré surface define the Poincaré map P for the system (2.1) when g(t) = 0

as

P : Γ0 → Γ0; x→ P (x) = ϕ(T, x). (2.8)

Recall that ϕ denotes the unperturbed flow of the system (2.1) and T is the

period of the limit cycle xγ(t). This map satisfies P (x0) = x0 and therefore in

a small neighbourhood x0 one can approximate P from the equation (2.8) as

P (x) = x0 + DP (x− x0) +O(‖ x− x0 ‖2), (2.9)

where DP is the Jacobian of P evaluated at x0. Assume that DP is diagonalis-

able with a matrix V ∈ Rn×n whose columns form a basis of unit length eigen-

vectors {vk | k = 1, . . . , n} associated with the eigenvalues {λk | k = 1, · · · , n}

of DP . Note that the latter are often referred to as the Floquet multipliers

of the periodic orbit. There is at least one eigenvalue equal to one (corre-

sponding to perturbations along the periodic orbit), say by convention λn = 1.

Then for every eigenvector vk associated with the nontrivial Floquet multiplier

λk, k < n, isostable coordinates for a limit cycle are introduced in [325, 328]

as

ψk(x) = lim
l→∞

[e>k V
−1(ϕ(tlΓ, x)− x0)︸ ︷︷ ︸

τk(x,t)

exp(− log(λk)t
l
Γ/T )︸ ︷︷ ︸

ρk(x,t)

], (2.10)

where k = 1, . . . , n − 1. Here tlΓ denotes the lth return time to Γ0 under the

flow ϕ, and ek is the unit vector in the kth direction. In this definition, the flow

sequence
{
ϕ
(
tlΓ, x

)}
l∈Z+ approaches x0 in such a way that for large enough l,
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its convergence can be well approximated by

ϕ(tlΓ, x)− x0 =
N∑
i=1

λisi(x)vi, (2.11)

where si are coordinates of initial perturbation in the basis of eigenvectors of

DP . Note that this approximation is only valid in close vicinity to the limit

cycle. This is the case as l → ∞ so that the dynamics is well approximated

by a linearisation about the point x0. The term e>k V
−1 in the definition (2.10)

is used to choose the appropriate component of the equation (2.11) in the vk

direction and the resultant term τk(x, t) shrinks at a rate λk. From the above

definition of a Poincaré map, the flow crosses the Poincaré section every T

time units [213, 325, 326]. Therefore, the term ρk(x, t) grows at a rate 1/λk.

The resultant multiplication τk(x, t)ρk(x, t) approaches a constant value as l

tends to infinity, giving the isostable coordinate ψk(x). By implementing the

definition (2.10), isostable coordinates are defined for all x in the basin of

attraction of the limit cycle, not just on the Poincaré section. Similar to the

above asymptotic phase definition, ψk is an asymptotic isostable coordinate

which is defined according to the infinite time approach to the limit cycle.

Intuitively, each ψk coordinate can be considered as a signed distance from the

limit cycle in a direction specified by vk, and see [171, 321] for more details.

Although the definition of isostable coordinates seems complex, as demon-

strated in [207, 325, 328], one can obtain the dynamics of the isostables ψk and

its gradient ∇xγ(t)ψk as

dψk
dt

= κkψk, (2.12)

d∇xγψk
dt

=
(
κkI −Df (xγ(t))>

)
∇xγψk, (2.13)

where κk = log (λk) /T is the kth Floquet exponent, I is the Rn×n identity

matrix and Df is the Jacobian of f . Isostable coordinates decay exponen-

tially in the absence of external perturbations. The term ∇xγψk ≡ Ik(θ) is
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referred as the (infinitesimal) isostable response curve (iIRC). Uniqueness of

the IRC is ensured by T−periodicity along with the normalisation condition

∇x0ψk · vk = 1. The iIRC gives a measure of the effect of an external input

in driving the trajectory away from the limit cycle. Then the n−dimensional

system (2.1) can be written as

dθ

dt
= ω + Z (θ) · g(t), (2.14)

dψk
dt

= κkψk + Ik(θ) · g(t), for k = 1, . . . , n− 1. (2.15)

In this system, the first variable determines the phase of the flow along the

limit cycle, as in the equation (2.6), the remaining n− 1 dimension and equa-

tions capture information about the transversal distance from the limit cycle

along the kth eigenvector vk, k = 1, . . . , n− 1. As a result, this change of vari-

ables reflects the effect of an external drive on the oscillator’s phase change

by making use of the iPRC, and the change in its transversal distance to the

limit cycle by using the iIRC. In practice, for Floquet multipliers λk close to

zero, isostable coordinates ψk can be neglected since any perturbation in these

directions decay rapidly, and these coordinates can be assumed to be zero. If

all isostable coordinates are neglected, the system (2.14)-(2.15) recovers the

standard phase reduction (2.6).

To calculate iIRCs, we can use the direct method applying perturbations

∆xkk̂ at various locations along the limit cycle in the direction k̂ of the kth

coordinate. We record the time and state values of crossings of the Γ0 isochron,

and use this data with the definition (2.10) to measure the isostable change

∆ψ = ψk(x
γ + ∆xkk̂) − ψk(x

γ), which when divided by the magnitude of

the perturbation results in the iIRC. Alternatively, the iIRC can be derived by

solving equation (2.13) as a boundary value problem using a suitable numerical

method, and details of such an approach can be found in [207].

Although the phase dynamics decouple from the isostable dynamics, the

first-order accurate phase-amplitude reduction (2.14)-(2.15) provides a pow-
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erful framework for improving the accuracy of phase only reduced dynamics

(2.6) of oscillatory systems. One of the main characteristics of oscillators which

enables reduction to a phase only system (2.6) is that they should stay close

to the limit cycle; when the state moves away from the limit cycle, (2.6) be-

comes a poor approximation for the phase evaluation of the system. In cases

where the external perturbation must be large, one can make use of equation

(2.15) to limit the magnitude of the isostable coordinates in a way that the

phase-reduced dynamics remains valid. In this case, the proposed reduced

equations (2.14)-(2.15) set a moderately simplified framework within which

further analysis can be achieved.

Here, the reduction (2.14)-(2.15) is referred to as a first-order accurate

phase-amplitude reduction. In the next section, we will review how this reduc-

tion can be extended so that the additional information about the transversal

dynamics toward the limit cycle does indeed result in an improved description

of a reduced dynamics. We refer to this as a second-order accurate phase and

isostable reduction. This is studied by Monga et al. [207], and Wilson and

Ermentrout [325], and then applied to a thalamic neuron model [330], and a

model for gene regulation [123], respectively. Latterly, this has been extended

to an arbitrary order of accuracy, see for example [226, 323], though calculation

of the reduced terms requires expensive numerical computations. This in turn

has led to the development of so-called adaptive phase-amplitude reduction

framework [322, 324] where isostable coordinates are kept small (and therefore

the linear order approximation is sufficient) by continuously evolving the limit

cycle the isostable is measured with respect to, against family of stable periodic

orbits depending continuously on the parameter set that is varied. However,

this method is based on the smoothness of the periodic solutions and thus we

do not investigate this further here.
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2.3.1 Phase and isostable reduction with second-order

accuracy

As mentioned above, in a first order approximation, the phase and isostable

dynamics given by (2.14)-(2.15) are uncoupled and therefore the phase dy-

namics of the equation (2.14) are same as those of equation (2.6). However, in

some cases such as when a limit cycle is not strongly stable, it can be beneficial

to utilise a second-order approximation to the phase and isostable dynamics

to better understand how the system responds when it is perturbed. The

computation of second and higher-order approximations of responses close to

the periodic orbit has been investigated in [297, 299], which is effective for

understanding perturbations actions from the limit cycle. Nevertheless, it is

difficult to apply such strategies to systems which have already been perturbed

from the periodic orbit, at least without explicit information of the state with

respect to the periodic orbit. As we summarise below, isostable coordinates

can be utilised to tackle this problem resulting in a closed set of equations for

a second-order accurate phase-amplitude reduction. Originally, this reduction

framework was given by Wilson and Ermentrout [325].

For locations near to the limit cycle, the gradient of the phase and isostable

coordinates can be expanded as

∂θ

∂x

∣∣∣∣
xγ(θ)+∆x

=
∂θ

∂x

∣∣∣∣
xγ(θ)

+
∂2θ

∂x2

∣∣∣∣
xγ(θ)

∆x+O
(
‖ ∆x ‖2

)
=Z(θ) +Hθ,xγ(θ)∆x+O

(
‖ ∆x ‖2

)
, (2.16)

∂ψk
∂x

∣∣∣∣
xγ(θ)+∆x

=
∂ψk
∂x

∣∣∣∣
xγ(θ)

+
∂2ψi
∂x2

∣∣∣∣
xγ(θ)

∆x+O
(
‖ ∆x ‖2

)
=Ik(θ) +Hψk,xγ(θ)∆x+O

(
‖ ∆x ‖2

)
, k = 1, . . . , n− 1.

(2.17)

Here Hθ,xγ(θ) and Hψk,xγ(θ) are respectively the Hessian matrices of second

derivatives of θ and ψk evaluated at xγ(θ). Close to a periodic orbit, and using
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Floquet theory [127, 157, 161], one can write

∆x(t) =
n∑
i=1

ci exp (κit) ρi(t), (2.18)

where ci are constants determined by initial conditions, κi are Floquet expo-

nents and ρi(t) ∈ Rn are T−periodic eigenfunctions that can be approximated

according to

ρi(t) =
[ϕ (t, εvi + x0)− ϕ (t, x0)] exp (−κit)

ε
, (2.19)

where vi are the eigenvectors associated with the Floquet exponents κi, and

0 < ε � 1. Using the definition of isostables and as shown in [207, 325], one

can establish that ci = ψi, and then ∆x in the system (2.16)-(2.17) can be

obtained in terms of phase and isostable coordinates as

∆x (θ, ψ1, . . . , ψn−1) =
n−1∑
i=1

ψipi(θ), (2.20)

where pi(θ(0)+ωt) = ρi(t). Remembering the fact that dθ/dt = ∂θ/∂x ·dx/dt,

a second-order correction to the phase reduction can be obtained by combining

(2.16), (2.20) and the perturbed dynamics (2.1). In a similar way, the relation

dψk/dt = ∂ψk/∂x ·dx/dt, along with equations (2.17), (2.20) and (2.1), gives a

second-order correction to the isostable dynamics. The second-order accurate

phase-amplitude reduction is thus obtained as

dθ

dt
= ω +

(
Z(θ) +

n−1∑
i=1

[
Bi(θ)ψi

])
· g(t), (2.21)

dψk
dt

= κkψk +

(
Ik(θ) +

n−1∑
i=1

[
Cik(θ)ψi

])
· g(t), k = 1, . . . , n− 1, (2.22)

where Bi(θ) ≡ Hθ,xγ(θ)pi(θ) and Cik(θ) ≡ Hψk,xγ(θ)pi(θ). The system (2.21)-

(2.22) contains second-order correction terms and is different from the previous

reduced system (2.14)-(2.15). Here, the evaluation of phase dynamics explicitly
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depends on the isostable coordinates.

In order to solve system (2.21)-(2.22), we need to know Hθ,xγ(θ) and

Hψk,xγ(θ). To obtain these, we consider phase changes due to the perturba-

tion from the limit cycle:

∆θ = ∇xγθ ·∆x+
1

2
∆x>Hθ,xγ∆x+O

(
‖ ∆x ‖3

)
. (2.23)

If we consider a perturbed trajectory x(t) = xγ(t) + ∆x(t), where ∆x is a

small perturbation to the limit cycle xγ(t) at time t = 0, then a second-order

approximation to the evaluation of ∆x is given by

d∆x(t)

dt
=Df (xγ(t)) ∆x(t) +

1

2



∆x>(t)H1,xγ(t)

∆x>(t)H2,xγ(t)

...

∆x>(t)Hn,xγ(t)


∆x(t)

+O
(
‖ ∆x ‖3

)
,

(2.24)

where Hi,xγ(t) ≡ ∇ (∇fi) |xγ(t) is the Hessian matrix of second partial deriva-

tives of the ith component of f . By following a similar process of derivation

to equation (2.7), we first take the time derivative of equation (2.23). Then

we substitute d∆x(t)/dt from equation (2.24) into the result. Thereafter we

collect all ‖ ∆x ‖2 terms to obtain (cf. [325])

dHθ,xγ(t)

dt
=−

n∑
i=1

[
Zi (xγ(t))Hi,xγ(t)

]
−Df> (xγ(t))Hθ,xγ(t) −Hθ,xγ(t)Df (xγ(t)) ,

(2.25)

where Zi(xγ(t)) ≡ ∂θ/ ∂xi|xγ(t) . The solution of equation (2.25) can be found

using T -periodicity along with the normalisation condition

−Df> (xγ(t))∇xγ(t)θ = Hθ,xγ(t)f (xγ(t)) . (2.26)
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By starting with equation (2.7), this normalisation condition is obtained as

follows

−Df(xγ(t))>∇xγ(t)θ =
d∇xγ(t)θ

dt

=
∂∇xγ(t)θ

∂x

∂x

∂t

∣∣∣∣
xγ(t)

= Hθ,xγ(t)f(xγ(t)).
(2.27)

That is to say, the variation in the iPRC derived according to adjoint equation

(2.7) [i.e., the left-hand side of the equation (2.26)] for a perturbation from

the limit cycle needs to be equal to the change derived by using Hθ,xγ(t) [i.e.,

the right-hand side of the equation (2.26)].

As presented in [325], by using similar approaches for the deviation of

Hθ,xγ(t) (as shown above), we can show that Hψk,xγ(θ) is the periodic solution

of
dHψk,xγ(t)

dt
=κkHψk,xγ(t) −

n∑
i=1

[
I ik (xγ(t))Hi,xγ(t)

]
−Df> (xγ(t))Hψk,xγ(t) −Hψk,xγ(t)Df (xγ(t)) ,

(2.28)

where I ik (xγ(t)) ≡ ∂ψk/ ∂xi|xγ(t). This must be solved subject to both T -

periodicity of the solution of equation (2.28) and the normalisation condition

(
κkI −Df> (xγ(t))

)
∇xγ(t)ψk = Hψk,xγ(t)f (xγ(t)) . (2.29)

Similar to equation (2.27), this normalisation condition is obtained starting

from equation (2.13) as follows:

(
κkI −Df (xγ(t))>

)
∇xγ(t)ψk =

d∇xγ(t)ψk
dt

=
∂∇xγ(t)ψk

∂x

dx

dt

∣∣∣∣
xγ(t)

= Hψk,xγ(t)f (xγ(t)) .

(2.30)

Here we note that equation (2.25) depends upon information of the iPRC and

that (2.28) depends upon knowledge of the iIRC. Nonetheless both of these

can be found by using equations (2.7) and (2.13).
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As discussed in [207, 320, 325], the calculation of the matrices Hθ,xγ(θ)

and Hψk,xγ(θ) is computationally challenging. The expense of these computa-

tions increases with the square of the dimension of the system (2.1). For high

dimensional systems such computational effort becomes a limiting factor for

the proposed reduction. However, Wilson [320] proposed an alternative direct

method which reduces the computational effort to derive the terms Bi(θ) and

Cik(θ) in (2.21)-(2.22). Such a method is particularly useful when some of the

isostable coordinates can be ignored because they have Floquet multipliers

with small magnitude.

2.3.2 An alternative strategy for calculation of second-

order terms

Due to the limitations stated above, here we will review an alternative strategy

[320] to obtain the second-order terms Bi(θ) and Cik(θ) from equations (2.21)

and (2.22) with less computational effort (proportional to the dimension of the

system, rather than its square). We start by multiplying equation (2.25) by a

perturbation from the limit cycle ∆x(t) and obtain

dHθ,xγ(t)

dt
∆x(t) =−

n∑
j=1

[
Zj (xγ(t))Hj,xγ(t)∆x(t)

]
−Df> (xγ(t))Hθ,xγ(t)∆x(t)

−Hθ,xγ(t)Df (xγ(t)) ∆x(t).

(2.31)

Using the following observation

d

dt

(
Hθ,xγ(t)∆x(t)

)
=

d

dt

(
Hθ,xγ(t)

)
∆x(t) +Hθ,xγ(t)

d

dt
(∆x(t))

=
d

dt

(
Hθ,xγ(t)

)
∆x(t)

+Hθ,xγ(t)Df (xγ(t)) ∆x(t) +O
(
‖ ∆x ‖2

)
,

(2.32)
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we can rewrite equation (2.31) as

d

dt

(
Hθ,xγ(t)∆x(t)

)
=−

n∑
j=1

[
Zj (xγ(t))Hj,xγ(t)∆x(t)

]
−Df> (xγ(t))Hθ,xγ(t)∆x(t).

(2.33)

Here, we note that equation (2.33) is valid for any arbitrary small perturbation

∆x(t) from the limit cycle. In order to derive Bi(θ), we choose ∆x(t) =

ε exp (κit) pi(θ(t)) and substitute into equation (2.33). Then by utilising the

equality Bi(θ) = Hθ,xγ(θ)pi(θ) we obtain

d

dt

(
Bi(θ(t))ε exp (κit)

)
= −

n∑
j=1

[
Zj (xγ(t))Hj,xγ(t)pi(θ(t))ε exp (κit)

]
−Df> (xγ(t))Bi(θ(t))ε exp (κit) ,

(2.34)

which can be rearranged to yield

d

dt

(
Bi(θ(t))

)
=−

n∑
j=1

[
Zj (xγ(t))Hj,xγ(t)pi(θ(t))

]
−
(
Df> (xγ(t)) + κiI

)
Bi(θ(t)).

(2.35)

Then Bi(θ(t)) can be obtained by finding the T−periodic solution of equation

(2.35) along with the normalisation condition

−Z(θ(t))>Df (xγ(t)) pi(θ(t)) = f (xγ(t))> Bi(θ(t)). (2.36)

To obtain this normalisation condition we first transpose equation (2.26) and

then multiply by pk(θ(t)). Starting from equation (2.28) and pursuing a similar

technique, we obtain the relation

d

dt

(
Hψk,xγ(t)∆x

)
= κkHψk,xγ(t)∆x(t)−

n∑
j=1

[
Ijk (xγ(t))Hj,xγ(t)∆x(t)

]
−Df> (xγ(t))Hψk,xγ(t)∆x(t).

(2.37)
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By rearranging equation (2.37), we find

d

dt

(
Cik(θ(t))

)
=−

n∑
j=1

[
Ijk (xγ(t))Hj,x(t)pi(θ(t))

]
−
(
Df> (xγ(t)) + (κi − κk) I

)
Cik(θ(t)).

(2.38)

Hence, the T -periodic solution of equation (2.38) gives Cik(θ(t)) with the nor-

malisation condition

Ik(θ(t))> (κkI −Df (xγ(t))) pi(θ(t)) = f (xγ(t))> Cik(θ(t)), (2.39)

which is obtained by taking the transpose of equation (2.29) and multiplying

it by pi(θ(t)).

In order to find the required second-order reduction terms Bi(θ(t)) and

Cik(θ(t)) in system (2.21)-(2.22), utilising the alternative equations (2.35) and

(2.38) is more convenient because the latter does not require full computation

of the Hessians Hψk,xγ(t) and Hθ,xγ(t). In the following chapters we will im-

plement this method for piecewise linear models and show how it simplifies,

allowing more explicit calculations to be performed.

2.4 Networks of oscillators

In general, oscillatory systems are not isolated and may have rich connec-

tions and interactions occurring at different levels that can be quite com-

plicated. Scientists from many different areas such as engineering, physics,

biology, and sociology have studied collective behaviour of complex networks

and emergent patterns due to various interactions between network elements

[19, 239, 243]. Some famous examples are pendulum clocks, electronic circuits,

coupled Josephson junctions, social networks, cardiac pacemakers, flashing

fireflies, and neural oscillations in the human brain. The characterisation of

complex networks depends on both their structural and dynamical properties.
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Here, structure refers to the underlying topology of the network which deter-

mines the connectivity between the network elements (nodes), and dynamics

refers to the time evolution of the individual oscillators, the interaction be-

tween individual nodes, and the emergent collective behaviour at the network

level.

In many cases the governing equation of a network of N interacting oscil-

lators can be written in the form

dxi
dt

= fi(xi) + σgi(x1, x2, . . . , xN), i = 1, . . . , N. (2.40)

Here each node is described by xi ∈ Rn and its intrinsic dynamics are deter-

mined by fi. The coupling strength of the network is denoted by σ ∈ R and gi

comprises driving effects (state-dependent coupling) from the other nodes on

the ith node. As in many approaches, here we assume that the coupling struc-

ture is pairwise [14, 37], that is the coupling function gi can be decomposed

into the sum of pairwise interactions. Thus the system (2.40) can be written

as

dxi
dt

= fi(xi) + σ
N∑
j=1

wijGij(xi, xj), (2.41)

where interactions Gij are summed according to some weights wij ∈ R (some

of which may be zero) that represent the strength of the coupling between the

ith and jth node. Here, for illustration, we consider a simplified system of

interacting limit-cycle oscillator where Gij = G, and thus

dxi
dt

= fi(xi) + σ
N∑
j=1

wijG(xi, xj). (2.42)

In the forthcoming subsections, first, we will revisit the ideas behind phase

reduction of an oscillator network (by assuming the coupling strength to be

sufficiently small) and how the reduced phase dynamics can be utilised to assess

and predict network states and emergent collective dynamics. Then we will

review phase-amplitude approach for coupled systems. Finally, we will describe
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the master stability function technique [230] which can be explicitly used to

investigate the effect of coupling strength on the stability of the synchronous

state, and provide an example of networks of Stuart-Landau oscillators to

illustrate this methodology.

2.4.1 Weakly coupled phase oscillators

In order to analyse the oscillatory dynamics of many real world networks, re-

searchers from a variety of disciplines have used the theory of weakly coupled

oscillators [94, 169, 270]. In terms of equation (2.40) this reduces to the dimen-

sion of the system from Nn to N , by considering only a set of network phases.

Despite the dimension reduction, the phase description of network dynamics

can often provide a comprehensive picture of numerous collective behaviours.

In the literature, there are abundant studies; for example the books by Hop-

pensteadt and Izhikevich [137], Ermentrout and Terman [96] and Izhikevich

[146], explore this reduction framework from a rigorous mathematical perspec-

tive. Various approaches and algorithms have been independently introduced

by Malkin [137, 195], Neu [216], and Ermentrout and Kopell [94, 95] to ob-

tain phase dynamics and phase interaction functions (see equation (2.48)) of

coupled nonlinear oscillators.

Here following the method in Section 2.2, the phase model equation (2.6)

can be extended to a system of interacting limit-cycle oscillators given by the

dynamical equation (2.42), and the network’s phase dynamics takes the form

dθi
dt

= ωi + σZi (θi) ·
N∑
j=1

wijG (θi, θj) , i = 1, . . . , N, (2.43)

where G (θi, θj) = G(xγi (θi), x
γ
j (θj)), ωi is the natural frequency of the ith

oscillator, and θi ∈ [0, 2π). For each i, equation (2.43) behaves similarly to

that of (2.6), however the perturbation term g in equation (2.6) is replaced

by (the sum over) the coupling terms G which is now a function of phase

variables.
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Some of the first mathematical studies for deriving a phase dynamics of

population of coupled oscillators were performed by Winfree [331] and Ku-

ramoto [169]. The Winfree model, which is inspired by the synchronisation of

biological oscillators, is composed of N globally coupled phase oscillators and

is described by the network equations,

dθi
dt

= ωi +
σ

N
Z (θi) ·

N∑
j=1

P (θj) , (2.44)

where Z represents a biologically realistic iPRC, P specifies a pulsatile inter-

action function, and ωi are random variables drawn from a distribution. In

this model a separation of time scales assumption was used to characterise

an oscillator by its phase on cycle (strongly attractive limit cycle) and ampli-

tudes are neglected. By exploiting a mixture of analysis and numerics, Winfree

found that a large population (N � 1) of interacting limit cycle oscillators was

capable of macroscopic synchrony at a critical value of the variance of the fre-

quency distribution. Following this, Kuramoto introduced a more analytically

tractable model for phase oscillators with heterogeneous intrinsic frequencies

with interactions mediated by the sine of phase differences. Moreover, he pro-

posed an order parameter to quantify the overall collective synchrony of the

population. A more detailed review of the Kuramoto model can be found in

[2, 255].

Here for illustration we assume that all the oscillators are identical, and

ωi = ω for all i. If the coupling is sufficiently weak, the natural way to obtain

a phase-difference model from equation (2.43) is by averaging over one period

of oscillation. To do so, we introduce relative phase variables φi as

θi = φi + ωt, (2.45)

where φi represent deviations from the unperturbed dynamics along the limit

cycle with natural frequency ω. Then we can show the relative phases φi
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evolves (slowly) in time according to

dφi
dt

= σZ (φi + ωt) ·
N∑
j=1

wijG (φi + ωt, φj + ωt) , (2.46)

with 0 < σ � 1. This weak coupling assumption along with equation (2.46)

enables the relative phases φi to capture the coupling effect entirely. To apply

averaging effectively, the relative phases φi must evolve slowly so that over a

period they do not change significantly. Actually, the small valued σ guar-

antees a slow variation in φi by keeping the effect of coupling small on the

oscillator’s intrinsic dynamics over the period T = 2π/ω. Nevertheless, such

small driving effects shall accumulate as time evolves and will contribute to

emergent network dynamics, such as phase synchronisation. If we assume all

oscillators lock to a synchronised state, this state will be sustained as time

evolves on an order of 1/σ, that, for 0 < σ � 1, is considered longer than all

other distinguishing timescales in the system. Over this time, the ωt term will

experience a multitude of changes that are of order ω/σ. Thus, over a period

T , the φi shall be approximately time independent. Thereafter, we can average

the right-hand side of equation (2.46) over one period T by considering φi as

constant. To explore this averaging procedure rigorously one can find details

in [95, 130, 239, 265] and references therein.

The averaged dynamics along with the equation (2.45) results in the phase-

difference model for each phase variables θi as

dθi
dt

= ω + σ
N∑
j=1

wijH (θj − θi) , (2.47)

with the 2π−periodic phase interaction function (or coupling function)

H(χ) =
1

2π

∫ 2π

0

Z(s) ·G(s, χ+ s)ds. (2.48)

For a further discussion about the derivation of the phase interaction functions
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we refer the reader to [96, 169, 213, 270]. This theory has also been extended

to more complex systems such as the Mackey–Glass delay equation [219], a

spatially extended model that describes oscillatory convection in a cylindrical

Hele–Shaw cell [159], and stochastic systems [339].

2.4.2 Phase locked states and stability

The collective dynamical behaviours of phase oscillators has been analysed for

many different regular network structures. These include hierarchical networks

[285], rings with uni-directional or bi-directional coupling, and linear arrays

[14, 15, 37, 93, 94]. Weakly coupled networks of identical phase oscillators

described by equation (2.47) can support many different phase-locked states,

including synchrony and asynchrony. Following [15], we introduce a phase-

locked (1 : 1) solution of the form θi(t) = ζi + Ωt, where ζi is a constant phase

and Ω is the collective frequency of the coupled oscillators. From the phase

difference network model (2.47) we obtain

Ω = ω + σ

N∑
j=1

wijH (ζj − ζi) , i = 1, . . . , N. (2.49)

After assigning some reference oscillator, these N equations can be used to

determine the collective frequency Ω and N − 1 relative phases. In order

to study the local stability of a phase-locked solution Φ = (ζ1, . . . , ζN), we

linearise the system (2.47) around Φ by setting θi(t) = ζi + Ωt+ ∆θi(t) where

∆θi(t) is a small perturbation and expand this to first order in ∆θi(t) to obtain

Ω +
d∆θi

dt
= ω + σ

N∑
j=1

wijH (ζj + ∆θj − ζi −∆θi)

' ω + σ
N∑
j=1

wij [H (ζj − ζi) +H ′ (ζj − ζi) [∆θj −∆θi]] ,
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where H ′ (ζ) = dH (ζ) /dζ. Hence,

d∆θi
dt

= σ
N∑
j=1

wijH
′ (ζj − ζi) [∆θj −∆θi]

= σ

[
N∑
j=1

wijH
′ (ζj − ζi) ∆θj −∆θi

N∑
j=1

wijH
′ (ζj − ζi)

]

≡ σ

N∑
j=1

Ĥij(Φ)∆θj,

(2.50)

where

Ĥij(Φ) = wijH
′ (ζj − ζi)− δij

N∑
k=1

wikH
′ (ζk − ζi) . (2.51)

The Jacobian matrix Ĥ always has a zero eigenvalue with corresponding eigen-

vector (1, . . . , 1) which points in the direction of the locked flow. The phase-

locked solution is stable if all other eigenvalues have a negative real part.

We note that the Jacobian is in graph-Laplacian form which combines both

anatomy (through wik) and dynamics (through H ′). Therefore the stability

of phase-locked network states is effected by both network structure and the

intrinsic dynamics of the individual oscillators.

2.4.3 Synchrony

Synchronisation, as an emerging phenomenon of networks of dynamically inter-

acting oscillators, has fascinated researchers for many years. Synchronisation

phenomena are ubiquitous in nature and have important roles in diverse sci-

entific disciplines including physics, biology, chemistry, ecology, sociology, and

technology [10, 86, 240]. Many studies relate to whether networks behave co-

herently or whether more complicated spatiotemporal patterns, such as cluster

states can appear.

One of the classic examples of a phase-locked state that was discussed

in Subsection 2.4.2 is synchrony where θ1 = θ2 = · · · = θN−1 = θN with

θ̇i = Ω, ∀i. In this case, substitution into equation (2.47), shows that Ω must
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satisfy the following condition

Ω = ω + σH(0)
N∑
j=1

wij, ∀i, i = 1, . . . , N. (2.52)

One trivial way for this to hold for all i is the condition H(0) = 0. This

is the case for diffusive coupling, that is linear in the difference between

two state variables so that H(0) = 0, or for H(θ) = sin(θ) (the Kuramoto

model). Another way to guarantee the existence of synchronous solutions is if∑N
j=1wij = const, i.e. the sum is independent of i. This would be the scenario

for global coupling where wij = 1/N, such that the network has permutation

symmetry.

The existence of the synchronous solution implies that Jacobian matrix

has the form −σH ′(0)G where G is the graph-Laplacian whose entries are given

by

Gij = δij
∑
k

wik − wij. (2.53)

In order to determine stability of the synchronous state we calculate eigenvalues

of the Jacobian which are in the form

− σH ′(0)λi, (2.54)

where λi are the eigenvalues of G. We recall that G has one zero eigenvalue,

with the corresponding eigenvector (1, 1, . . . , 1, 1). Thus if all the remaining

eigenvalues of G lie on one side of the imaginary axis then stability is deter-

mined by the sign of σH ′(0). As an example of this situation we can consider

a weighted connectivity matrix with all positive entries because the graph-

Laplacian in this case would be positive semi-definite (minimum eigenvalue is

zero). One more specific example is global coupling with Gij = δij−N−1, with

an (N − 1 degenerate ) eigenvalue +1. As a result the synchronous solution

will be stable under the condition λ = −σH ′(0) < 0. Here we note that stabil-

ity of the synchronous state is independent of the coupling strength (though
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will depend on the sign of σ). Thus, this approach cannot be directly used to

predict any strong coupling instabilities since any change in the magnitude of

σ (keeping the sign same) does not alter the sign of λ [15].

2.4.4 Coupled phase-amplitude oscillators

As we mentioned above, phase reduction is an important mechanism to track

the timing of a limit cycle oscillation and has been widely used to under-

stand the dynamics of weakly coupled oscillators. Although phase reduction

is convenient to use in various application, it is only valid in close proximity

to a limit cycle and as coupling strength increases its applicability deterio-

rates. Due to this limitation, there is a huge interest to develop new reduc-

tion methodologies to determine dynamical properties of coupled limit cycle

systems where the weak coupling assumption is insufficient, see for example

[43, 92, 247, 257, 275, 277, 319, 325, 326]. However, for n-dimensional systems,

this is not an easy task because the derivation of accurate coupling functions

requires consideration of dynamical evaluation through the n − 1 transversal

coordinates to the limit cycle.

In order to examine the effect of coupling strength on the stability of emer-

gent network dynamics, we first review the relevant original work by Wilson

et al. [326], and Ermentrout et al. [92]. In both studies the phase-amplitude

formalism is used to analyse bifurcations that arise as the coupling strength

increases that standard phase reduction methods would fail to detect. We note

that the theory presented in [92, 326] was implemented only for networks of

two nodes and in the future chapter we will compare this theory against an

exact master stability function approach.

Consider a network of N identical coupled oscillators in the form

dxi
dt

= f(xi) + σ

N∑
j=1

wijG(xi, xj), i = 1, . . . , N. (2.55)

This system is similar to the equation (2.42), though here the oscillators are
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identical (fi = f, ∀i) and the decoupled dynamics (σ = 0) is determined by

dx(t)/dt = f(x), assumed to have a stable T periodic limit cycle xγ(t). For sim-

plicity all of the n−2 nontrivial Floquet multipliers are assumed to be close to

zero (perturbations in these directions annihilate rapidly), and therefore only

one isostable coordinate is needed per oscillator [325, 326]. We denote the cor-

responding Floquet exponent by κ < 0 and the corresponding eigenfunction by

p(t). We introduce phase coordinates θi and isostable (amplitude) coordinates

ψi for each node, and set perturbed solutions xi(t) = xγ (θi(t)) +ψi(t)p (θi(t)),

see equation (2.20). Then we let gi(t) ≡
∑N

j=1wijG (xi, xj) refer to the sum of

coupling terms and exploit the isostable reduction theory which was introduced

in Subsection 2.3.1 to find

dθi
dt

= ω + σ [Z (θi) + ψiB (θi)] · gi(t),

dψi
dt

= κψi + σ [I (θi) + ψiC (θi)] · gi(t).
(2.56)

These equations are similar to equations (2.21) and (2.22), and the functions

Z, I,B, C are calculated using the equation dx(t)/dt = f(x) as described in

Subsections 2.3.1 and 2.3.2. We expand the coupling function G ≡ G(α, β)

(assuming ψi are small) as follows

G (xi, xj) = G (xγ (θi(t)) + ψip (θi(t)) , x
γ(θj(t)) + ψjp (θj(t)))

' G (xγ (θi) , x
γ (θj)) + ψiG1 (xγ (θi) , x

γ (θj)) p (θi)

+ ψjG2 (xγ (θi) , x
γ (θj)) p (θj) ,

(2.57)

where G1 = ∂G/ ∂α|xγ(t) and G2 = ∂G/ ∂β|xγ(t). Using equation (2.56) along

with the definition of gi, and by preserving lowest order terms, we obtain

dθi
dt

=ω + σ

N∑
j=1

wij [h1 (θi, θj) + ψih2 (θi, θj) + ψjh3 (θi, θj)] ,

dψi
dt

=κψi + σ

N∑
j=1

wij [h4 (θi, θj) + ψih5 (θi, θj) + ψjh6 (θi, θj)] ,

(2.58)
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where

h1 (θi, θj) =Z (θi) ·G (xγ (θi) , x
γ (θj)) ,

h2 (θi, θj) =Z (θi) ·G1 (xγ (θi) , x
γ (θj)) p (θi)

+ B (θi) ·G (xγ (θi) , x
γ (θj)) ,

h3 (θi, θj) =Z (θi) ·G2 (xγ (θi) , x
γ (θj)) p (θj) ,

(2.59)

and

h4 (θi, θj) =I (θi) ·G (xγ (θi) , x
γ (θj)) ,

h5 (θi, θj) =I (θi) ·G1 (xγ (θi) , x
γ (θj)) p (θi)

+ C (θi) ·G (xγ (θi) , x
γ (θj)) ,

h6 (θi, θj) =I (θi) ·G2 (xγ (θi) , x
γ (θj)) p (θj) .

(2.60)

We note that the case ψi = 0 (neglecting the amplitude terms) is equivalent

to the standard phase reduction given by equation (2.43). In reference to

Subsection 2.4.1, we define a relative phase variable φi = θi − ωt, and note

that all the hi functions are 2π−periodic. We then average (2.58) over one

period T and introduce Hi(y) = (1/2π)
∫ 2π

0
hi(s, y + s)ds (which is similar to

the equation (2.48)). Following [92, 326], we consider a network of two nodes

(N = 2), so that equation (2.58) can be reduced, by choosing χ ≡ φ2 − φ1, to

the form

dχ

dt
= σ [H1(−χ)−H1(χ) + ψ1 (H3(−χ)−H2(χ))

+ψ2 (H2(−χ)−H3(χ))] ,

dψ1

dt
= κψ1 + σ [H4(χ) + ψ1H5(χ) + ψ2H6(χ)] ,

dψ2

dt
= κψ2 + σ [H4(−χ) + ψ2H5(−χ) + ψ1H6(−χ)] .

(2.61)

Determining stability of the fixed points of (2.61) corresponds to assessing

phase locked solutions of equation (2.58). To do so, first we find the fixed

points of the system (2.61), and then calculate their Jacobians. If the real

part of the eigenvalues of the Jacobian matrix are negative then a locked

solution will be stable. We note that both fixed points and their corresponding
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Jacobians depend on the coupling strength σ. In the case of a synchronous

solution, [χ, ψ1, ψ2]> = [0, 0, 0]>, stability is explicitly effected by any change

in the magnitude of σ, though this would not effect stability in the phase only

reduction, see equation (2.54). Illustrative numerical examples of this can be

found in [92, 326]. In the next chapter we will tailor this technique to some

PWL nonsmooth models.

2.4.5 Master stability function technique

In the previous subsections, we reviewed synchronisation in networks of oscil-

lators by focusing on both phase only and phase-amplitude approaches. There

is another convenient methodology to analyse the synchronous state of coupled

identical systems of periodic oscillators which is exact for strong diffusive cou-

pling. The original work by Pecora and Carroll [229] initiated this approach

by introducing the master stability function formalism. The MSF technique is

utilised to assess the stability of the synchronised state in terms of the spectral

properties of the network connectivity matrix.

In order to introduce the MSF formalism, we start with an arbitrary con-

nected network of N coupled identical oscillators. Each oscillator, represented

by the state vector xi, i = 1, . . . , N, in an m−dimensional space with isolated

(uncoupled) dynamics governed by dxi/dt = f (xi). The output for each node

is determined by a vector function H : Rm → Rm (which can be linear or non-

linear). For instance, for a three-dimensional system with x = (x(1), x(2), x(3)),

we can set H(x) = (0, x(2), 0), which means that the oscillators are linearly

coupled only through the x(2)−component. For a given coupling matrix with

components wij and a coupling (global) strength σ, the dynamics of a net-

work of N coupled identical oscillators, to which the MSF technique applies,
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is described by

dxi
dt

= f (xi) + σ

N∑
j=1

wij [H (xj)−H (xi)]

= f (xi)− σH (xi)
N∑
j=1

wij +
N∑
j=1

wijH (xj)

= f (xi)− σ
N∑
j=1

(
δij

N∑
k=1

wik − wij

)
H (xj)

≡ f (xi)− σ
N∑
j=1

GijH (xj) . (2.62)

Here, the matrix G ∈ RN×N with entries Gij is identified as the graph-Laplacian

(see equation (2.53)). By definition, the matrix G has zero row-sum. The

N − 1 constraints x1(t) = x2(t) = · · · = xN(t) = s(t) define the invariant

synchronisation manifold, with s(t) a solution in Rm of the uncoupled system,

that is ds(t)/dt = f(s(t)).

When all oscillators are initially set on the synchronisation manifold with

identical initial conditions, they will always remain synchronised. In order to

assess the stability of a synchronised state we perform a linear stability analysis

by inserting a perturbed solution xi(t) = s(t) + δxi(t) into equation (2.62) to

obtain the variational equation

dδxi
dt

= Df(s)δxi − σDH(s)
N∑
j=1

Gijδxj, (2.63)

where Df(s) ∈ Rm×m and DH(s) ∈ Rm×m denote the Jacobian of f(s) and

H(s) which are evaluated at the synchronous solution s(t), respectively. If we

introduce U = (δx1, δx2, . . . , δxN) ∈ RmN , and use the tensor (or Kronecker)

product ⊗ for matrices, the variational equation can be written as

dU

dt
= [IN ⊗Df(s)− σ(G ⊗DH(s))]U. (2.64)

We can organise (right) normalised eigenvectors of G into a matrix P such that
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P−1G = ΛP−1, with Λ = diag(λ1, λ2, . . . , λN) where λη are the corresponding

eigenvalues of G for η = 1, . . . , N. By introducing a new variable Y according

to the linear transformation Y = (P ⊗ Im)−1U , we obtain a block diagonal

system

dY

dt
= [IN ⊗Df(s)− σ(Λ⊗DH(s)]Y, (2.65)

where IN is the N × N identity matrix. Hence, this results in a set of N

decoupled m-dimensional equations parametrised by the eigenvalues of the

graph-Laplacian:

dξl
dt

= [Df(s)− σλlDH(s)] ξl, l = 1, . . . , N, (2.66)

where Df(s) and DH(s) are independent of the block label l. Since G has

the property of a zero row-sum, there is always a zero eigenvalue, say λ1 = 0,

with corresponding eigenvector (1, 1, . . . , 1) which characterises a perturbation

tangential to the synchronisation manifold. The remaining N − 1 transversal

perturbations (in relation with the other N − 1 solutions of equation (2.66))

must damp out in order for the synchronous state to be stable. For a general

matrix G some eigenvalues λl may be complex. This might be the case for

example when the coupling matrix is not symmetric. This leads us to consider

the following system

dξ

dt
= [Df(s)− µDH(s)]ξ, µ ∈ C, (2.67)

where ξ ∈ Cm. We observe that all the individual variational equations in the

system (2.66) have the same structure as that of the system (2.67). The only

difference between them is the parameter µl = σλl. In general, the equation

(2.67) is known as master variational equation, and in order to determine

stability of this equation, we calculate its largest Lyapunov exponent [130] as

a function of µ. The resulting function is called the master stability function.

More explicitly, for a given s(t), the MSF is characterised as the function that
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maps the complex number µ to the greatest Lyapunov exponent of equation

(2.67). Note that if s(t) is periodic, the MSF is defined as the function which

maps the complex number µ to the greatest Floquet exponent of the system

(2.67). The synchronised state of the network of coupled oscillators is stable

if the MSF is negative at µ = σλl where λl ranges over the eigenvalues of the

matrix G (excluding λ1 = 0). When the MSF is computed for an oscillator,

then to assess the stability of the synchronised state for arbitrary network one

needs only to calculate the eigenvalues of the matrix G [15].

It is clear that the Laplacian form of coupling in equation (2.62) guarantees

the existence of the synchronous state. However, there are other forms that

occur naturally. Consider for example the case:

dxi
dt

= f (xi) + σ
N∑
j=1

wijH (xj) . (2.68)

If we we substitute xi(t) = s(t), i = 1, 2, . . . , N , into the equation (2.68), we

find

ds

dt
= f (s) + σH (s)

N∑
j=1

wij. (2.69)

The only way to guarantee that all oscillators have the same behaviour is to

restrict
∑N

j=1 wij = constant for all i. In terms of dynamical evaluation, a

constant row sum means that if the motion is started on a synchronisation

manifold with identical initial values, it remains in a synchronised state. In

other words, the synchronised state is flow invariant which is a necessity to

have synchronised motion. If the constant is zero, then the system is often

referred to as balanced [72, 260, 262, 313]. If these row sums are not zero but a

fixed constant for all i, the synchronised state changes as the coupling strength

σ changes.

We also note that MSF framework can be applied to chaotic systems where

instead of calculating Floquet exponents, one needs to calculate Lyapunov ex-

ponents [63, 229, 231]. Moreover, the MSF formalism can be generalised to
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network settings where the coupling between nodes is characterised by some

time delay [64, 172]. The synchronous solution is a special network state,

particularly when compared to more unusual ones, like chimeras where asyn-

chronous and synchronous states co-exist [54, 188]. The MSF approach works

only to investigate stability of the synchronous states of networks of identical

nodes, though can be extended to nearly identical units [296].

For a more detailed discussion regarding the use of the MSF formalism we

refer the reader to [10, 15, 230, 243]. In the following subsection we provide an

explicit example to show how to compute and implement the MSF technique

for a smooth nonlinear system.

2.4.6 An illustrative example: a network of Stuart-Landau

oscillators

The Stuart-Landau equation, that represents a normal form of the Andronov-

Hopf bifurcation, is given by

dz

dt
= (ηR + iηI)z − (αR + iαI)|z|2z, (2.70)

where the state of the oscillator z = x + iy = Reiθ ∈ C, with x, y, R ∈ R and

θ ∈ [0, 2π). By using z = Reiθ , the system (2.70) can be transformed into

polar coordinates
dR

dt
= ηRR− αRR3,

dθ

dt
= ηI − αIR2,

(2.71)

where R = 0 is the only stable fixed point when ηR < 0.Moreover, if αR < 0 the

solutions may blow up in finite time, while if αR = 0 the equation for the radial

variable reduces to a first-order linear equation. If ηR > 0, R0 = 0 becomes

unstable and there is a stable fixed point R+ =
√
ηR/αR (corresponding to

a limit cycle with amplitude R+). A periodic solution bifurcates when ηR

crosses zero from below when αR > 0 and this is known as an Andronov-Hopf
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bifurcation. The emergent periodic solution can be written in closed form

(x(t), y(t)) = R+(cos(Ωt), sin(Ωt)), Ω = ηI − αIR2
+. This allows substantial

analytical progress to be made. In the literature, the analysis of the single

Stuart-Landau model has been studied by many authors and results are well

documented [104, 205, 224, 310]. A typical limit cycle solution is illustrated in

Fig. 2.1.
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Figure 2.1: A limit cycle (black) of a Stuart-Landau oscillator and flows from
different initial data (red), showing that the orbit is attracting. Parameters are
α = 1 and η = 2.

To better understand the complex dynamics of many real world coupled

systems, network models of Stuart-Landau oscillators are often used. Applica-

tions have included systems of electronic oscillators [23], semiconductor lasers

[41], chemical reaction-diffusion systems [144], and neural oscillators [8]. Re-

cently, the synchronisation of both homogeneous and heterogeneous networks

of Stuart-Landau oscillators has been studied in [104, 225, 234, 244, 263, 309,

310], where for instance, Salova and D’Souza [263] worked on properties of

splay (asynchronus) states and cluster synchronisation, Panteley et al. [225]

investigated synchronisation and other collective behaviours of networks of

heterogeneous systems, Pereti and Fanelli [234] explored how to achieve syn-

chronisation by allowing network plasticity over time, and Premalatha et al.

[244] examined chimera states in linearly coupled networks of Stuart-Landau

oscillators. Here we consider a network of N Stuart-Landau oscillators with

39



linear-coupling in the form

dzn
dt

= (1 + iη)zn − (1 + iα) |zn|2 zn

+ σ
N∑
m=1

wnm [zm − zn] , n = 1, . . . , N,
(2.72)

where zn ∈ C, σ ∈ R is the global coupling strength and wnm ∈ R are

the entries of a coupling matrix. By introducing the complex representation

zn = Rneiθn we can transform the system (2.72) into

dRn

dt
= Rn

(
1−R2

n

)
− σ

∑
m

GnmRm cos (θm − θn) ,

dθn
dt

= η − αR2
n − σ

∑
m

Gnm
Rm

Rn

sin (θm − θn) ,
(2.73)

where G is the graph Laplacian with components Gnm = −wnm + δnm
∑

l wnl.

It is easy to show that the synchronous oscillatory solution with non-zero am-

plitude is given by Rn = 1 and θn = Ωt with Ω = η − α. To asses the

stability of synchronous state we consider a perturbed solution of the form

(Rn(t), θn(t)) = (1 + δRn(t),Ωt+ δθn(t), ). The perturbations δxn = (δRn, δθn)

evolves according to

d

dt
δxn = Jδxn − σI2

∑
m

Gnmδxm, J =

 −2 0

−2α 0

 , (2.74)

where I2 is 2 × 2 identity matrix. Using a basis in which G is diagonal, this

decouples into N two-dimensional variational Floquet problems

d

dt
ξ = [J − σγI2] ξ, (2.75)

where γ are the eigenvalues of G. The matrix J−σγI2 is independent of time (a

linear autonomous system) and the Floquet problem can be solved in terms of

the matrix M(µ) = J− µI2. To do so we need to calculate eigenvalues of eM(µ)T

where T = 2π/(η−α). It is well known that if λ is an eigenvalue of M(µ) with
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an eigenvector v, then eλT is an eigenvalue of eM(µ)T with the same eigenvector.

The Floquet exponent of eM(µ)T that corresponds to the Floquet multiplier eλT

is ln(eλT )/T = λ. Therefore the real part of λ corresponds to the real part of

the Floquet exponent of eM(µ)T . Hence, the stability of the synchronous state

is determined by the sign of the real part of λ. The MSF can be constructed

as the real part of the largest eigenvalue of M(µ). The synchronous solution

is stable if MSF(µ) < 0 for all µ = σγ. The characteristic equation for the

eigenvalues λ of M(µ) is given by det [J − (λ+ µ)I2] = 0. Thus (λ + µ) is an

eigenvalue of J. The eigenvalues of J are easily calculated as 0 and −2. Thus

λ = −µ and λ = −µ− 2, and the MSF is negative for Re µ > 0.

In order to illustrate this result, we consider a ring network of 5 Stuart-

Landau oscillators. For ease of numerical simulations instead of system (2.73),

we use the following system by setting zn = xn + iyn:

dxn
dt

= xn − ηyn − xn
(
x2
n + y2

n

)
+ αyn

(
x2
n + y2

n

)
− σ

N∑
m=1

Gnmxm,

dyn
dt

= yn + ηxn − yn
(
x2
n + y2

n

)
− αxn

(
x2
n + y2

n

)
− σ

N∑
m=1

Gnmym.

(2.76)

Here we choose a connectivity matrix W with entries [W ]nm = wnm where

wnm =


0 1 0 0 1

1 0 0.1 0 0

0 0.1 0 1 0

0 0 1 0 0.1

1 0 0 0.1 1.1

 and n,m = 1, . . . , 5, (2.77)

hence, the graph-Laplacian is

G =


2 −1 0 0 −1

−1 1.1 −0.1 0 0

0 −0.1 1.1 −1 0

0 0 −1 1.1 −0.1

−1 0 0 −0.1 1.1

 . (2.78)
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All eigenvalues of the matrix G are real with the smallest one equal to zero.

As a result, the synchronous network state is linearly stable for σ > 0 because

the MSF is negative for all arguments on the positive real half-line, see left

plot in the Fig. 2.3 where we also indicate values of µl (γ of G). The right

plot of the Fig. 2.3 shows a direct numerical simulation and as we expect the

synchronous network state is stable. To illustrate the theory, we replace the

weights w23 and w32 of the connectivity matrix by w23 = w32 = −0.1. In this

scenario, the MSF is negative for one of the µl, say when l = p, implying

that the synchronous network state is unstable. Numerical simulations clearly

show a variation of the values for xn across the network, see Fig. 2.4. In

Fig. 2.2, we show a snapshot of the network activity where in the stable case all

nodes evolve together whereas in the unstable case they behave differently. To

predict the shape of the emergent network pattern we can use the eigenvector

that corresponds to the eigenvalue associated with p. As Fig. 2.5 depicts, the

eigenvector mirrors very closely the obtained values of xn.

Figure 2.2: A typical snapshot of a simulation showing network activity of a linearly
coupled ring network of five Stuart-Landau oscillators. The solid black line shows
the synchronous orbit, whilst the red filled green circles show individual behaviours
of oscillators. Left: Stable synchronous network state. All oscillators sit on top
of each other. Right: Unstable synchronous network state. The oscillators behave
differently. Node parameter values as in Fig. 2.1 and σ = 1. On the left panel G
is taken as in (2.78), and in the right panel we replaced weights w23 and w32 by
w23 = w32 = −0.1.

In the following chapters we will adapt and apply the theory for smooth

systems to treat nonsmooth systems at both the node and network levels for

variety of biological and mechanical systems, from nodes to networks.
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Figure 2.3: Left: MSF together with the values of µl (black dots) for a network of
5 oscillators. The white region indicates where the MSF is negative. Right: Space-
time plot of the network activity of xn. All parameter values are as in the left panel
of Fig. 2.2.
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Figure 2.4: Left: MSF together with the values of µl (black blue dots) for a net-
work of 5 oscillators, where we only change w23 and w32 to w23 = w32 = −0.1. Note
that µk = −0.0245 which corresponds to an unstable Floquet multiplier 1.1667 (rep-
resented by the blue dot). The white region represents where the MSF is negative.
Right: Space-time plot of the network activity of xn. All parameter values are as in
the right panel of Fig. 2.2.
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Figure 2.5: Left: The n = 5 components of the normalised eigenvector e1 corre-
sponding to the eigenvalue associated with µk in Fig. 2.4. Right: Normalised xn as
a function of n for a fixed time. All parameter values as in Fig. 2.4.
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Chapter 3

Nonsmooth oscillators with

piecewise dynamics

3.1 Introduction

Dynamical systems theory has a long and distinguished history and has been

proven to be a very powerful tool to analyse and understand behavioural phe-

nomena in a diverse range of problems in many different scientific fields includ-

ing engineering, physics, medical science, economics, and biology to mention

a few only [170, 235]. Many concepts of the classical theory rely on a smooth-

ness of the underlying system, but this excludes a large number of concrete

problems that arise in practice where nonsmooth phenomena play an impor-

tant role, see for example the books [35, 81, 152, 168]. Therefore, it is vital to

generalise concepts from smooth dynamical systems to cover nonsmooth ones,

though almost always such a generalisation is non-trivial since problems of this

kind are mathematically hard to handle.

Piecewise smooth (PWS) and piecewise linear (PWL) systems emerge in

modelling of many important real world problems. PWL systems constitute an

important class of nonsmooth models and are now commonplace in the applied

sciences [51, 78, 81]. Some of the wide range of applications can be found in

nonlinear engineering modelling, where certain processes are precisely modelled

44



by piecewise linear vector fields [242], mechanics, electronics, control theory,

economics, ecology, and biology, see for example [42, 51, 66, 73, 81, 109, 111,

124, 180], and references therein. Indeed, the piecewise modelling approach has

been used by physicists and engineers many years before it was formalised in

rigorous mathematical terms [51, 242]. To the best of our knowledge, Andronov

and co-authors [7] pioneered the investigation of piecewise linear systems from

a formal perspective with their work “Theory of Oscillations” in the mid-sixties

(whose Russian version was first released around the thirties).

Nonsmooth PWL systems can be characterised as the uniform limit of

smooth nonlinearities, and therefore, the global dynamics of a large number of

nonlinear models can sometimes be approximated by PWL models and vice-

versa [54, 242]. Some applications of this can be found in [183, 333] where

a qualitative agreement between two approaches is presented. It is also ob-

served that the accuracy of approximated solutions depends on the fineness

of the chosen piecewise linear caricature [49, 179]. Simply put, PWL mod-

elling gives analytical insight to nonlinear models by dividing the phase space

into different regions where trajectories evolve according to a linear dynami-

cal system, and then patching solutions together to obtain the full flow. The

main challenge during this process is the determination of the time-of-flight

in each linear zone [242]. PWL modelling is common for dynamical systems

with a discontinuous right hand side [100], such as in some gene regulatory

networks where genes switch abruptly and a new set of linear rules are deter-

mined for protein production [112, 118]. Additionally, this approach can also

be used to analyse discontinuous dynamical systems, for instance, impacting

mechanical oscillators [25], and cardiac oscillators [303]. Interestingly, PWL

systems can exhibit many different dynamical behaviours such as periodic so-

lutions, limit cycles, heteroclinic loops, homoclinic loops, strange attractors,

and chaos [47, 337], and even some more special bifurcations such as grazing

or sliding [81].

In a mathematical neuroscience context, as famous examples of PWL
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modelling, one may consider the McKean model [305], PWL Morris-Lecar

(PML) model [52], and integrate-and-fire models [55, 306]. In Section 3.4 we

provide model descriptions of the McKean model and the PML model, as well

as show how to construct periodic orbits. We also review the absolute model

that displays a nonsmooth Andronov-Hopf bifurcation, and the homoclinic

loop model. We show how the period and the amplitude of the periodic orbits

change under parameter variation, and for the McKean model we construct a

bifurcation diagram to explore the parameter region where a stable periodic

orbit co-exits with an unstable periodic orbit.

The organisation of the chapter is as follows. In Section 3.2 we introduce

nonsmooth dynamical systems [81, 100, 121] and their natural classification.

In Section 3.3 we consider a class of PWL systems with two linear zones and

formulate the explicit construction process for periodic orbits. We then present

the PWL models that we work with throughout Chapter 4. Finally, in Section

3.5, we give a discussion to emphasise the practicality and wide use of PWL

modelling.

3.2 Nonsmooth dynamical systems and a clas-

sification

We consider nonsmooth dynamical systems (continuous-time) that can be de-

scribed by a finite set (say N) of piecewise smooth ordinary differential equa-

tions, and introduce relevant terminology to make subsequent analysis clearer.

Phase space is partitioned into N open sets Ri, i = 1, . . . , N , where the system

is smooth in each of these Ri, so that

dx

dt
=



f1(x) if x ∈ R1,

f2(x) if x ∈ R2,

...

fN(x) if x ∈ RN .

(3.1)
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Here x ∈ Ri, Ri ⊂ Rn and each vector field fi is smooth. Across the bound-

aries Σij between adjacent regions Ri and Rj, vector fields change abruptly

and smoothness is lost. These non-empty discontinuity boundaries are called

switching manifolds and can be defined using a smooth indicator function

hij(x) = 0 when x ∈ Σij. This is illustrated in Fig. 3.1. The piecewise-smooth

flows ϕi(t, x), i = 1, . . . , N , satisfy

dϕi(t, x)

dt
= fi(ϕi(t, x)), ϕi(0, x) = x, x ∈ Ri, (3.2)

generated by the vector fields fi(x) in each region Ri. The overall flow of

the system is obtained by the composition of flows ϕi. Different classes of

PWS systems can be characterised according to the different scenarios that

take place when the overall flow ϕ intersects with the boundaries Σij where

switching between the regions Ri and Rj is governed by a switching (jump)

rule. Following [81, 82, 180] we shall classify the nonsmooth dynamical sys-

tems of interest here into three different types depending upon their degree of

discontinuity. In the following Table 3.1 we illustrate some typical shapes of

periodic behaviours for planar systems. In a recent book, Glendinning et al.

[121] presented both the historical and theoretical development of piecewise

smooth systems together a wide variety of examples.
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Figure 3.1: Schematic diagram showing the structure of the state space of a nons-
mooth system. A non-empty smooth border Σij between two adjacent regions Ri and
Rj is called a switching manifold. In the region Ri system is governed by the vector
field fi until the flow ϕi(t, x) reaches the switching manifold Σij where a switching
rule applies and then in the region Rj the flow ϕj(t, x) evolves according to the vector
field fj.

1. PWS continuous systems. Systems with continuous state and continu-

ous vector fields (fi(x) = fj(x)) but discontinuities in the first or higher

derivatives of f , i. e. ∃n ∈ Z, n ≥ 1, such that ∂nfi/∂x
n 6= ∂nfj/∂x

n,

across the switching manifolds Σij. These systems have a degree of

smoothness equal to two or higher, and have discontinuous Jacobians

(Dfi(x) 6= Dfj(x)) across the switching manifolds.

2. Filippov systems. Systems with continuous state but discontinuous vec-

tor fields (fi(x) 6= fj(x)) across the switching surface. These systems

have a degree of smoothness equal to one and are called Filippov sys-

tems [100]. The system described by the equation (3.1) does not define

f(x) if x is on Σij. A description of the dynamics on the switching

manifolds can be completed with the set-valued extension F (x)

dx

dt
∈ F (x) =


fi(x) if x ∈ Ri,

co {fi(x), fj(x)} if x ∈ Σij,

fj(x) if x ∈ Rj.

(3.3)
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where co(A) denotes the smallest closed convex set containing A:

co {fi(x), fj(x)} = {ςfi(x) + (1− ς)fj(x), ,∀ς ∈ [0, 1]} , (3.4)

where ς is a parameter that defines the convex combination and has no

physical meaning. The extension (or convexification) of a discontinuous

system (3.1) into a convex differential inclusion (3.3) is known as the

Filippov convex method [100]. If 〈∇hij, fi〉〈∇hij, fj〉 < 0 these systems

may have sliding motion [149, 153] along a switching manifold such that

ḣij = ∇hij · F = 0. Note that we use 〈·, ·〉 and · interchangeably to

denote the standard vector inner product. Then we can construct ς as

ς =
∇hij · fj

∇hij · (fj − fi)
. (3.5)

3. Impulsive systems. Systems which have instantaneous discontinuities

(jumps) in the solution at the switching boundaries Σij which are gov-

erned by smooth jump operators

x+ = Jij(x−), (3.6)

where x− denotes state of the system just before the impact and x+

denotes immediately thereafter. Here we consider switching manifolds

that behave like hard constraints such that Jij : Σij → Σij, i.e. the

jump operator maps the set Σij back to itself. These type of systems

have degree of smoothness zero and are called impulsive (or impacting)

systems. In the literature, J is referred as an impact rule (or law) and

the discontinuity boundaries Σij are called impact surfaces. The event of

a flow intersecting Σij is referred to as an impacting event and the time of

this event is named as the moment of impulsive action. Depending upon

the properties of the jump operator J, many different dynamics may be

observed. In this thesis, we shall restrict our attention to linear jump
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operators (matrices). To further understand the behaviour of impacting

systems we refer the reader to [35, 36, 81, 82].

Nonsmooth dynamical systems

Piecewise-smooth con-

tinuous systems

Filippov systems Impulsive systems

An illustration An illustration An illustration

Σ1

R1 
R2

R1 
R2

Σ1

x
-

x
+

Σ1

R2R1 

Example Example Example

Mechanical oscillators

with a one-sided elastic

support [180].

Mechanical systems

with dry friction or

visco-elastic supports

[180].

Impacting systems [81]

(e.g. Franklin Bells

[84]).

Table 3.1: Classification of non-smooth dynamical systems with possible schematic
illustration of some periodic orbits in R2. The first column corresponds to non-
smooth systems with continuous right hand side where both solutions and vector
fields are continuous across the switching manifold Σ1 between regions R1 and R2.
In this case we assume that the boundary Σ1 is not simultaneously attracting (or
repelling) from both sides, therefore all trajectories cross Σ1 transversally and no
sliding motion constrained to Σ1 can arise. The second column addresses nonsmooth
systems with discontinuous right hand side where solutions are continuous but vec-
tor fields discontinuous across the Σ1. Here it is possible to obtain both sliding (blue
orbit) and transversal (red orbit) periodic solutions across the Σ1 depending on the
underling dynamics. The third column depict systems with discontinuities (jumps)
in the state where x− is the state immediately before the jump and x+ immediately
thereafter.

3.3 Planar piecewise linear models

Planar piecewise linear systems [88, 108, 274] whose dynamics are defined on

two regions with a line of discontinuity have a simple tractable configuration,
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though might have complex dynamical properties. Therefore, we start by con-

sidering the following systems with two zones described by x = (v, w)> ∈ R2

with

dx

dt
=

 f1 ≡ A1x+ b1, if x ∈ R1,

f2 ≡ A2x+ b2, if x ∈ R2,
(3.7)

where A1,2 ∈ R2×2 are constant matrices and b1,2 ∈ R2 are constant vectors.

The regions R1 and R2 are given as

R1 = {x ∈ R2| h(x) > 0} and R2 = {x ∈ R2| h(x) < 0}, (3.8)

where we introduce an indicator function h : R2 → R given by

h(x) = v − a, (3.9)

so that switching events occur when h(x) = 0 which holds on the switching

manifold v = a. If a fixed point exists in Rµ its stability is determined by the

eigenvalues of Aµ, where µ ∈ {1, 2}. We can easily calculate these eigenvalues

λ±(Aµ) using the well known formula for planar systems

λ±(A) =
Tr(A)±

√
(Tr(A))2 − 4 det(A)

2
. (3.10)

Then, each region of the model can be classified in the trace-determinant plane

as saddle, attracting focus, repelling focus, attracting node, repelling node, and

centre.

Planar PWL systems of the form (3.7) have been studied for many years

due to the richness of their dynamical behaviours. Llibre et. al [186] studied

existence and maximum number of limit cycles for discontinuous piecewise pla-

nar linear differential systems, and discussed the application of these to some

physical problems. Freire et. al [107] considered continuous piecewise planar

linear systems with two zones and proposed a canonical form that captures

many interesting oscillatory behavior, and performed a bifurcation analysis.
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As well as exhibiting almost all types of dynamics observed in smooth nonlin-

ear systems, planar PWL systems may also support bifurcations that smooth

systems do not [81, 82]. However, compared to smooth systems, knowledge of

bifurcations in PWL systems is largely limited to specific examples and still

needs further investigation. One of the reasons which precludes the develop-

ment of results for PWL systems is the inability to generalise results for lower

dimensional systems to higher dimensional systems. In particular, dimension

reduction techniques are lacking, for example normal forms or centre mani-

fold theory [51]. Nevertheless, we can still start to develop a picture of the

theory of bifurcations in PWL systems by gathering results from the differen-

tial inclusions of Filippov [100], “C” bifurcations of Feigin [79, 99], and non-

smooth equilibrium bifurcations of Andronov and co-workers [7]. Examples of

well known bifurcations caused by discontinuities include grazing bifurcations,

sliding bifurcations, and discontinuous saddle-node bifurcations [81, 134].

One of the main advantage of using PWL modelling is that we can derive

closed form solutions for periodic orbits [242]. However, the analysis of such

dynamics is not trivial because we need to match the different solution pieces

obtained in separate linear regimes and this matching condition typically ne-

cessitates the explicit knowledge of time-of-flights (time spent by the flow in

a zone of phase space before reaching the switching manifold) in each region.

Essentially, we solve the system (3.7) in each of its linear zones using matrix

exponentials and demand continuity of solutions to construct orbits of the full

nonlinear flow. To clarify how to implement this, we denote a trajectory in

zone Rµ by xµ and solve (3.7) to obtain xµ(t, tµ0) = x(Aµ, bµ; t, tµ0) using the

solution form

x(A, b; t, t0) = G(A; t− t0)x(t0) +K(A; t− t0)b, (3.11)
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where t0 is the initial time, t > t0, and

G(A; t) = eAt, K(A; t) =

∫ t

0

G(A; s)ds = A−1[G(A; t)− I2], (3.12)

where I2 is the 2 × 2 identity matrix. If A has real eigenvalues λ± (ob-

tained from the formula (3.10)) such that Aq± = λ±q± with q± ∈ R2, then

G(A; t) may be diagonalised and written in the computationally useful form

G(A; t) = PeΛtP−1, where Λ = diag (λ+, λ−) ,P = [q+, q−] and q± =

[(λ± − a22) /a21, 1]> , where aij denote the entries of A with i, j = 1, 2. If A has

complex eigenvalues λ± = ν ± iu, then the corresponding complex eigenvec-

tors q± satisfies Aq = (ν± iu)q, q ∈ C2. In this case , G(A; t) = eνtPRutP−1,

where

Rut =

 cos(ut) − sin(ut)

sin(ut) cos(ut)

 , P = [Im(q),Re(q)] =

 0 1

û ν̂

 , (3.13)

with û = u/a12 and ν̂ = (ν − a11) /a12. We note that ν and u can be writ-

ten using the invariance of trace and determinant as ν = (a11 + a22) /2, u =
√
a11a22 − a12a21 − ν2.

Now, a closed orbit can be constructed from connecting two trajectories,

starting from an initial data x(0) = (a, w(0))>, which lies on the switching

surface, in each region according to

x(t) =


x1(t, 0) if t ∈ [0, T1]

x2(t, T1) if t ∈ (T1, T ]

, (3.14)

for some T > T1 > 0. A periodic orbit can be obtained by requiring that

x be T−periodic. Here Tµ, where T2 = T − T1, are the time-of-flights in

the respective zones Rµ. To complete the procedure we must determine the
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unknowns (T1, T2, w
1(0)) by simultaneously solving a system of three equations

a = v1(T1), a = v2(T2), w2(T2) = w1(0). (3.15)

This can be easily done using a numerical method for root finding such as

fsolve in Matlab along with implementing matrix exponentials using exmp.

Alternatively, explicit calculations of G(A; t) and K(A; t) can easily be per-

formed by explicit construction. Following [52], for real λ±, entries of the

matrix G are obtained as

G11(t) =
1

λ+ − λ−
{
λ+eλ+t − λ−eλ−t − a22

[
eλ+t − eλ−t

]}
,

G12(t) = −λ+ − a22

λ+ − λ−
λ− − a22

a21

[
eλ+t − eλ−t

]
,

G21(t) =
a21

λ+ − λ−
[
eλ+t − eλ−t

]
,

G22(t) =
1

λ+ − λ−
{
λ+eλ−t − λ−eλ+t + a22

[
eλ+t − eλ−t

]}
,

(3.16)

while those of K are

K11(t) = 1
λ+−λ−

{
eλ+t − eλ−t − a22

[
eλ+t−1
λ+
− eλ−t−1

λ−

]}
,

K12(t) = −λ+−a22

λ+−λ−
λ−−a22

a21

[
eλ+t−1
λ+
− eλ−t−1

λ−

]
,

K21(t) = a21

λ+−λ−

[
eλ+t−1
λ+
− eλ−t−1

λ−

]
,

K22(t) = 1
λ+−λ−

{
λ+

λ−

[
eλ−t − 1

]
− λ−

λ+

[
eλ+t − 1

]
+ a22

[
eλ+t−1
λ+
− eλ−t−1

λ−

]}
.

(3.17)

In the case A has complex eigenvalues, these matrices are given by

G(t) =
eνt

û

 û cos(ut)− ν̂ sin(ut) sin(ut)

− (ν̂2 + û2) sin(ut) û cos(ut) + ν̂ sin(ut)

 , (3.18)

and

K(t) =
1

û

 ûKr(t)− ν̂Kl(t) Kl(t)

− (ν̂2 + û2)Kl(t) ûKr(t) + ν̂Kl(t)

 , (3.19)
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where

Kr(t) = 1
ν2+u2 {ν [eνt cos(ut)− 1] + ueνt sin(ut)} ,

Kl(t) = 1
ν2+u2 {u [1− eνt cos(ut)] + νeνt sin(ut)} .

(3.20)

Now we shall consider four different PWL models, each of these has oscillatory

behaviour. For the first three models we will employ the above analysis to

construct periodic orbits with two pieces where each piece lies on a different

linear regime that are separated by one switching manifold, but in the final

model we tailor this technique to a periodic orbit composed of four pieces over

three distinct linear regimes slitted up by two switching manifolds.

3.4 Single neuron behaviour and the FitzHugh-

Nagumo model

The excitable properties of neural cells are often analysed by examining their

response to the injection of an external current. These responses depend on

membrane conductance properties and the reversal potentials of the ions which

are involved in generating the electrical response [53]. To better understand the

behaviour of biological neural systems, the formulation of analytically tractable

models has proven especially useful. The first mathematical description of neu-

ral activity given by Hodgkin and Huxley in 1952 [136] used a set of four cou-

pled nonlinear ordinary differential equations. Most modern day description

of biologically realistic nerves are based on extensions of the Hodgkin-Huxley

(HH) model and have many parameters and nonlinearities. However, even the

relatively simple HH model is mathematically intractable, in the sense that

it does not admit to any (as yet) closed form solutions [163, 306]. Therefore,

it is desirable to build simplified descriptions of neural activity, see for exam-

ple [1, 101, 116, 209, 212, 253], using lower dimensional differential equations

which includes some systematic reduction of the HH model to a planar system.

One can classify the dynamical structure of neural excitability for non-

bursting cells as being either Type I or Type II. Type I excitability is obtained
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when repetitive action potentials (periodic responses) are generated with an

arbitrarily low frequency, whereas in Type II excitability, increasing input cur-

rent produces repetitive action potentials with a non-zero frequency [163, 306].

Typically, in Type I systems periodic solutions emerge via a saddle-node on

invariant circle (SNIC) bifurcation or a homoclinic bifurcation [146] and that

of Type II systems arise through a Hopf bifurcation. The HH model has

Type II dynamics and it is observed that alternative planar models can be

implemented to fit firing rate responses and action potential shape [1]. The

governing mathematical description of these planar models are in the form of

two coupled nonlinear ordinary differential equations where one variable rep-

resents voltage and the other a gating variable. In general, the nullcline for

the voltage variable of many excitable systems has a cubic shape [52].

The classical example of the reduced HH model is the FitzHugh-Nagumo

model [101, 212] which retains many of the qualitative features of the HH

system and has Type II excitability. Although the HH model was originally

introduced to describe the squid giant axon, recent work has shown that the

FHN model may provide a better qualitative description [50] despite being

mathematically less complex. The governing equations for the FHN model are

εv̇ = f(v)− w − w0 + I, ẇ = g(v, w), (3.21)

where f(v) = Cv(v − a)(1 − v) and g(v, w) = v − γw − v0. The variable

v corresponds to membrane potential while w is associated with the refrac-

tory properties of a neural cell. The parameters C > 0, 0 < a < 1, ε > 0,

w0, v0 ∈ R, and γ > 0 may be considered as combinations of the membrane

reversal potentials and conductance properties whilst I is any externally in-

jected input [53]. Nullclines of the reduced HH model [1] and FHN model

have a common feature such that the v−nullcline (v̇ = 0) has a cubic shape

and the w−nullcline (ẇ = 0) is a monotonically increasing function of the

voltage variable. Moreover, the FHN model can capture slow-fast dynamics of
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the Hodgkin–Huxley system for small ε [53, 101, 212]. Figure 3.2 illustrates a

periodic orbit of the FHN model as well as the v (cubic shape) and w (linear)

nullclines.
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Figure 3.2: Phase plane for the FHN model, showing the v-nullclines (blue) and
w-nullclines (red), as well as a periodic orbit (black). Parameters: ε = 0.3, C = 1,
w0 = 0, I = 0.5, γ = 0.5, a = 0.1 and v0 = 0. The intersection of nullclines
(crossing point of blue and red curves) gives an unstable equilibrium point. One can
think of the cubic shaped v−nullcline composed of three pieces as left, middle, and
right branches. It is observed that if the equilibrium point lies on the right (or left)
branch of the v−nullcline, it is stable. Changing the parameter I causes the fixed
point to pass through the maximum (minimum) value of the cubic curve, where a
Hopf bifurcation occurs, giving rise to a stable periodic orbit (black).

Although the FHN model has a lower dimension and complexity than the

HH model it is still hard to analyse due to the nonlinear function f(v). This

has motivated mathematical neuroscientists to introduce and study some PWL

neural models by approximating f(v) with nonsmooth or even discontinuous

PWL caricatures. Even though nonlinear smooth planar models may be anal-

ysed by using some powerful geometric or numerical techniques [163], use of

a PWL framework enables one to derive closed form analytical solutions that

allows both qualitative and quantitative analysis of excitable systems.

3.4.1 The McKean model

A well known PWL approximation to the FHN model is the McKean model,

introduced by Henry McKean [201]. The governing equations of a single McK-
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ean neuron model has the form

Cv̇ = ρ(v)− w + I, (3.22)

ẇ = g(v, w), (3.23)

where C > 0, I is a constant input, and ρ(v) is a PWL version of the cubic FHN

nonlinearity f(v) whilst g(v, w) describes the linear behaviour of the gating

variable w. There are two popular choices to replace the cubic polynomial

f(v). The first choice is substituting f(v) by a PWL function ρ(v) with three

pieces. The second choice is a limiting case of the first one, for which the slope

of the middle piece goes to infinity, obtained by substituting f(v) with ρ(v) =

−v + Θ(v − a), where Θ is the Heaviside step function (Θ(v) = 0, v < 0 and

Θ(v) = 1, v > 0), and has been studied in [252, 254, 305, 306, 315]. Moreover,

recently Rotstein, Coombes, and Gheorghe [259] performed a reduction of the

FHN system, which is similar to that of McKean, by replacing f(v) with a

PWL function composed of four linear pieces, in order to examine an abrupt

transition between small and large amplitude oscillations, giving rise to canard

type solutions [75, 76].

Following the recently published paper by Coombes and Thul [54], in

this section we consider a model of the form (3.22)-(3.23) with C = 1, I = 0,

ρ(v) = −γv+ξΘ(v−a), and g(v, w) = bv, where γ, ξ and b are constants. This

model has been shown [305] to reproduce essential features of the dynamics

of the FHN model, including periodic solutions, and can be analysed using a

PWL approach. We can write this model in the form (3.7) by substituting

A1 = A2 = A, where

A =

 −γ −1

b 0

 , b1 =

 ξ

0

 , b2 =

 0

0

 . (3.24)

The vector field of the model is not defined on the switching manifold Σ1 =

{x ∈ R2| h(x) = 0}, where h(x) = v − a. Using the Filippov convex method
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[100], summarised in Section 3.2, we introduce a set-valued extension

ẋ ∈ f(x) =


f1(x) x ∈ R1,

co ({f1(x), f2(x)}) x ∈ Σ1,

f2(x) x ∈ R2,

(3.25)

where

f1 =

 −γv − w + ξ

bv

 and f2 =

 −γv − w
bv

 , (3.26)

such that R2 = R1 ∪ Σ1 ∪R2 and in this particular case,

co ({f1(x), f2(x)}) = {ζf1 + (1− ζ)f2, ∀ζ ∈ [0, 1]} . (3.27)

This system may have sliding motion along a switching manifold Σ1 such that

ḣ = ∇h · f = 0 where ∇h = (1, 0). Then we can construct ζ as

ζ =
∇h · f2

∇h · (f2 − f1)
=
γa+ w

ξ
≡ ζ(w), (3.28)

where w ∈ [−γa,−γa+ ξ]. The sliding motion along v = a is governed by the

vector field fs = ζ(w)f1 + (1− ζ(w))f2. This gives rise to

fs =

 0

bv

 , (3.29)

so that only w varies during sliding (along v = a) on Σ1.

The equilibrium point, which occurs at (v, w) = (0, 0), of the system lies

in the region R2 for a > 0. Using the formula (3.10), we can calculate the

eigenvalues λ± =
(
−γ ±

√
γ2 − 4b

)
/2. This equilibrium point is stable for

b, γ > 0, and globally attracting when γ2−4b > 0. It is a focus for γ2−4b < 0,

and there is a possibility that a periodic solution may arise in this case. For

a more detailed phase plane analysis and existence of periodic orbits (both

sliding and transversal) we refer the reader to [54].
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We observe that for some suitable parameter values, a stable periodic orbit

may co-exist with the stable equilibrium point (attracting focus), separated

by an unstable sliding periodic orbit. In the following Fig. 3.3, we illustrate

this. Both periodic orbits are constructed using the technique described in

Section 3.3. Since this model exhibits a co-existing stable and unstable periodic
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Figure 3.3: Periodic solutions of the McKean model. v−nullcline (blue-doted line)
and w−nullcline (purple-doted line) and switching manifold Σ1 (brown-doted line).
R1 (R2) represent the region where v > a (v < a). A transversal stable periodic
orbit given in black and an unstable sliding periodic orbit given in red. The stable
equilibrium point (focus type) (0, 0) lies on the region R2 indicated as a black filled
circle. Parameters: a = 0.3, b = 2, γ = 1, ξ = 3.

solution (see Fig. 3.3), it is natural to expect a saddle node bifurcation of limit

cycles (fold limit cycle bifurcation) under parameter variation. We illustrate

this by constructing a bifurcation diagram in Fig. 3.4. If parameters a and b

are chosen in the region S, then stable and unstable periodic orbits co-exists.

These collide and annihilate each other when a and b are on the curve Cb.

Tonnelier [305] has performed a more detailed bifurcation analysis for this

model and proposed an alternative method (the harmonic balance method)

to build periodic orbits. They obtained similar results as in Fig. 3.4 though

they only managed to treat the stability of periodic orbits numerically. Here

we have analysed the stability of periodic orbits analytically using the method

that will be presented in Section 4.2 and used this to construct the bifurcation

diagram in Fig. 3.4.
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Figure 3.4: Bifurcation diagram of the McKean model in the plane (a, b). In the
region S a stable periodic orbit co-exists with an unstable periodic orbit. On the
curve Cb solutions meet and annihilate via a saddle-node bifurcation of limit cycles.
Parameters: γ = 1 and ξ = 1.

3.4.2 The absolute model

Similarly to the McKean model, the absolute model [54] has PWL dynamics

but in this case the vector field changes continuously during the switching

boundary crossing. The model has the form

v̇ = | v − a | −w, (3.30)

ẇ = v − v − d(w − w), (3.31)

where |·| is the absolute value function and the constants a, d, w, v satisfy the

constraints a ≥ 0, 0 < d < 1, and w + (a − v)/d < 0. This system may be

transformed into to the form (3.7) with

A1 =

 1 −1

1 −d

 , A2 =

 −1 −1

1 −d

 , (3.32)

and,

b1 =

 −a

dw − v

 , b2 =

 a

dw − v

 . (3.33)
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We can easily calculate equilibrium point(s) by simultaneously solving the

equation for the nullclines. In the region R2 (where v < a), the equilibrium

point is at (v, w) = (da+ v− dw, a− v+ dw)/(d+ 1). The stability of this can

be determined from the eigenvalues of A2:

λ±(A2) =
−(1 + d)± i

√
4− (1− d)2

2
. (3.34)

Thus, in R2, the equilibrium point is a stable focus. Nevertheless, in R1 (where

v > a), the equilibrium point is at (v, w) = (dw − v + da, dw − v + a)/(d− 1)

and stability is determined by the eigenvalues of A1:

λ±(A1) =
1− d± i

√
4− (1 + d)2

2
. (3.35)

This implies, in R1, the equilibrium point is an unstable focus. This observa-

tion indicates that the absolute model can exhibit a nonsmooth Andronov-Hopf

bifurcation [152, 281, 282], that occurs when an equilibrium crosses a discon-

tinuity surface. For the absolute model this happens when the equilibrium

point shifts from R1 to R2 and the eigenvalues of the Jacobian jump across the

imaginary axis. In Fig. 3.5 we illustrate a stable periodic orbit (arising through

a nonsmooth Andronov-Hopf bifurcation) along with v and w nullclines. By

changing the value of w we move the equilibrium point (shown in Fig. 3.5 as a

black dot) through the switching manifold. As w is varied the period remains

constant and the amplitude scales linearly. A short proof of this (perhaps

counter-intuitive result) is given in Appendix B. We illustrate this result in

Fig. 3.6, using direct numerical construction (confirming the theory).

3.4.3 A model with a homoclinic loop

As a last model of a planar PWL system with a single switching manifold

(h(x) = v − a, with a = 0), we consider a system with a saddle point for

x ∈ R2 and an unstable focus for x ∈ R1, with a vector field that crosses the
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Figure 3.5: A stable periodic solution of the absolute model given in black.
v−nullcline (red-doted line) and w−nullcline (blue-doted line) and switching man-
ifold Σ1 (brown-doted line). R1 (R2) represent the region where v > a (v < a).
The unstable equilibrium point is in the zone R1 and indicated as a filled circle.
Parameters: a = 0, w = −0.1, v = 0.1, and d = 0.5.
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Figure 3.6: The absolute model. Left: Shape of the stable periodic orbits for w =
−0.076,−0.026, 0.024, 0.075, 0.12, 0.17. Right: Amplitude (period) of solution as a
function w colour in red (green). The period of oscillation remains constant and the
amplitude changes linearly when −0.1 < w̄ < 0.2. The equilibrium point crosses the
switching manifold when w ' 0.2 where the periodic solution is lost. For w > 0.2 the
system only supports a stable equilibrium point in the left zone. Other parameters
are as in Fig. 3.5.
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switching boundary continuously. In this scenario, we may build a homoclinic

orbit which tangentially touches the unstable and stable eigen-directions of the

saddle point in R2, and is also able to enclose the unstable focus in R1. This

model was first considered by Xu et al. [335] and then revisited in [54]. We

consider a system in the form (3.7) whose dynamics has the form

A1 =

 τ1 −1

δ1 0

 , A2 =

 τ2 −1

δ2 0

 , b1 =

 0

−1

 = b2. (3.36)

We observe that TrAµ = τµ and detAµ = δµ for µ ∈ {1, 2}. Xu et al. [335]

define a homoclinic orbit as degenerate if its limit equilibrium (corresponding

to the saddle point) lies on the switching manifold; otherwise, it is nondegen-

erate. By following this paper (Theorem 13, p.17), let us denote λ± (A2) = λ±

and λ± (A1) = ᾱ± iβ̄ with λ+ > 0 > λ− and β̄ > 0, and write

A =
1

2
ln
λ2
−
(
λ2

+ − 2ᾱλ+ᾱ
2 + β̄2

)
λ2

+

(
λ2
− − 2ᾱλ−ᾱ2 + β̄2

)
− ᾱ

β̄

(
2π − arctan

λ−ᾱ−
(
ᾱ2 + β̄2

)
λ−β̄

− arctan
ᾱ2 + β̄2 − λ+ᾱ

λ+β̄

)
, (3.37)

then a non-degenerate homoclinic orbit exists if and only if A = 0. Further-

more, the existence of a limit cycle or a homoclinic orbit necessitates τ1τ2 6 0,

see (Proposition 10, p.4), [335]. We illustrate an example of a periodic orbit

near the homoclinic loop in Fig. 3.7 along with v and w nullclines. As the

systems parameters move closer to the homoclinic case, the variation of period

and amplitude of the periodic solutions are plotted in Fig. 3.8. We can also

build a homoclinic loop when the system has a saddle point in R2 and a centre

(ᾱ = 0) in R1. In the later case, if we choose TrA1 = 0 = τ1, TrA2 = 0 = τ2,

detA1 = 1 = δ1, and detA2 = −1 = δ2 then we find λ± = ±1, ᾱ = 0 and

β̄ = 1. Putting these values in (3.37) gives A = 0. For this specific parameter

set we also observe (numerically) that an infinite number of periodic orbits live

inside the homoclinic orbit around a center.
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Figure 3.7: A stable periodic solution of the homoclinic model (near to a homoclinic
bifurcation) is given in black. v−nullcline (blue-doted line) and w−nullcline (red-
doted lines) and switching manifold Σ1 (brown-doted line). R1 (R2) represent the
region where v > a (v < a). The repelling focus (saddle point) is in the region R1

(R2) and indicated as a purple (green) filled circle. Parameters: a = 0, δ1 = 2,
δ2 = −0.3667 τ1 = 0.5, τ2 = −0.6333.
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Figure 3.8: Period (red) and amplitude (green) of stable periodic orbits of the
homoclinic model. The amplitude of the orbits approach that of the homoclinic loop,
with increasing period. The entries of A1 are a11

1 = τ1− pbif/4, a12
1 = −1, a21

1 = δ1−
pbif , a

22
1 = 0, and that of A2 are a11

2 = τ2 + pbif , a
12
2 = −1, a21

2 = δ2 + pbif/2, a
22
2 = 0,

and −0.8 < pbif < 0.00097. Other parameters as in Fig. 3.7
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3.4.4 Piecewise Linear Morris–Lecar model

Another well-studied biological neuron model for the production of action

potentials is the Morris-Lecar model. Originally, in 1981 Cathy Morris and

Harold Lecar designed this model to analyse the electrical activity in bar-

nacle muscle fibres [209]. The proposed model is a two dimensional nonlin-

ear conductance-based model, build on a reduced Hodgkin-Huxley formalism,

however it still captures many important features of neuronal activity. The

equations for the ML model have the form

C
dv

dt
= gCaM∞(v) (vCa − v) + gL (vL − v) + gKw (vK − v) + I, (3.38)

dw

dt
= λ(v) (w∞(v)− w) , (3.39)

where

M∞(v) =
1

2
[1 + tanh ((v − v1) /v2)] , (3.40)

w∞(v) =
1

2
[1 + tanh ((v − v3) /v4)] , (3.41)

λ(v) = φ̄ cosh ((v − v3)/(2v4)) . (3.42)

Here, C is the membrane capacitance, v is the membrane potential, and I

is the externally applied current (assumed to be constant). The parameters

vCa, vL, and vK represent equilibrium potentials of calcium, leak current, and

potassium, respectively, and gCa, gL, and gK denote the peak conductances of

corresponding ionic currents. The variable w (recovery variable) captures the

dynamics of the gating variables for both calcium and potassium, with M∞ and

w∞ denoting voltage dependent gating functions and λ(v) a voltage dependent

rate. vi, where i = 1, · · · , 4, are constant parameters that are chosen to fit

voltage clamp data, and φ̄ is a constant (significantly depends on temperature

of the cell).

Although the FHN model displays only Type II excitability, for suitable

parameter values the ML model can exhibit both Type I and Type II be-
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haviour, and Zhao and Gu have explored transitions between two classes in

[344]. The ML model can support Hopf bifurcations, homoclinic bifurcations,

and SNIC bifurcations, and for a more detailed bifurcation analysis we refer

the reader to [96, 308]. Nevertheless, a lot of cortical neurons in mammals,

for example pyramidal cells, are considered to have Type I excitability. Due

to its rich dynamics the ML model is believed to be more realistic than the

FHN model and has a widespread use in neurodynamics [163, 306]. We illus-

trate two different periodic orbits of the ML model in the Fig. 3.9, along with

nullclines and fixed points. As the external input I decreases, the amplitude

and period of periodic orbits grow and the orbit approaches the saddle point

(magenta filled circle), leading to a homoclinic bifurcation where the orbit and

saddle point collide.
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Figure 3.9: Phase plane of the Morris-Lecar model with stable periodic orbits in
black. The voltage variable (v) nullcline is illustrated in blue and that of the gating
variable (w) in red. The filled black circle shows an unstable fixed point, the filled
magenta circle is a saddle point and the filled green circle is a stable fixed point.
Parameters: C = 4.92, gL = 0.5, vL = −0.5, gK = 2, vK = −0.7, gCa = 1, vCa = 1,
v1 = −0.01, v2 = 0.15, v3 = 0.1, v4 = 0.145 and φ̄ = 0.241. Left: For I = 0.075 we
obtain a periodic orbit away from saddle point with period T ' 27.75. Right: We
decrease the value of I to 0.0692 and the orbit moves closer to saddle point while the
amplitude and period increase.

Tonnelier and Gerstner [306] introduced a PWL reduction of the ML

model to explore both qualitative description and quantitative analysis of Type

I excitable systems in a simplified framework. Following this, Coombes [52]

proposed another PWL caricature to this by using the model equations (3.22)-

(3.23) with a continuous ρ(v) (to approximate the cubic shape v-nullcline) in
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the form

ρ(v) =


−v if v < a/2,

v − a if a/2 ≤ v ≤ (1 + a)/2,

1− v if v > (1 + a)/2,

(3.43)

and a continuous choice of g(v, w) (to approximate the quadratic shape w-

nullcline) as

g(v, w) =

 (v − γ1w + b∗γ1 − b)/γ1 if v < b,

(v − γ2w + b∗γ2 − b)/γ2 if v ≥ b,
(3.44)

with the constraints −a/2 < b∗ < (1 − a)/2, a/2 < b < (1 + a)/2, γ2 > 0,

and γ1 ∈ R. The ML model can also be caricatured by other natural choices

such as choosing a discontinuous vector field for the gating variable w such as

g(v, w) = v−γw+Θ(v− b), which has been investigated in [306]. In Fig. 3.10,

a stable periodic orbit is shown along with nullclines and fixed points for the

PWL model defined by (3.22), (3.23), (3.43) and (3.44).

In order to construct periodic solutions, such as in Fig. 3.10, we used the

formalism presented in Section 3.3. We break the periodic orbit into pieces

such that each piece is governed by a linear equation. This is similar to the

system (3.7), but this time, the orbit has four distinct pieces, labelled by

µ = 1, 2, 3, 4, over three linear regimes and transversally crosses two switching

manifolds. Explicitly, we have

dx

dt
=



A1x+ b1 if x ∈ R2,

A2x+ b2 if x ∈ R1,

A3x+ b3 if x ∈ R2,

A4x+ b4 if x ∈ R3,

(3.45)

where R1 = {x ∈ R2| v > (1 + a)/2}, R2 = {x ∈ R2| b < v < (1 + a)/2} and
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R3 = {x ∈ R2| a/2 < v < b}, and therefore

A1 =

1/C −1/C

1/γ2 −1

 , A2 =

−1/C −1/C

1/γ2 −1

 , A4 =

1/C −1/C

1/γ1 −1

 ,
(3.46)

while

b1 =

(I − a)/C

b∗ − b/γ2

 , b2 =

(1 + I)/C

b∗ − b/γ2

 , b4 =

(I − a)/C

b∗ − b/γ1

 , (3.47)

A3 = A1 and b3 = b1. The time-of-flight spent during each piece is denoted by

Tµ, and the period of the orbit is T = Σ4
µ=1Tµ. To build a closed orbit we use

boundary crossing values of the voltage variable (v = b and v = (1 + a)/2),

equation (3.11), and simply demand periodicity of the solution. Choosing

initial data x1(0) = (b, w1(0))> and enforcing continuity of solutions by using

the matching conditions xµ+1(0) = xµ(Tµ) for µ = 1, 2, 3, determines Tµ and

w(0) by the simultaneous solution of

v1 (T1) = 1+a
2
,

v2 (T2) = 1+a
2
,

v3 (T3) = b,

v4 (T4) = b,

w1 (0) = w4 (T4) .

(3.48)

In Fig. 3.11, we illustrate the shape, amplitude and period of the orbit by

varying the external input I. Similar to the nonlinear case, the creation of

low frequency oscillations is linked with homoclinic bifurcation. We observed

that the amplitude and period of the periodic solution increases while I is

decreasing, and the orbit collides with a saddle point. Other types of periodic

orbits may be obtained, for example those that cross only v = (1 + a)/2

(built in the regions R1 and R2) or v = b (built in the regions R2 and R3),

or one that does not cross any of the switching manifolds. Euzebio and co-
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Figure 3.10: Phase plane of the piecewise linear Morris–Lecar model with a stable
periodic orbit in black. Parameters [52]: C = 0.825, I = 0.1, a = 0.25 b = 0.5,
b∗ = 0.2, γ1 = 2, and γ2 = 0.25. The periodic orbit is composed of four pieces, where
the first and third pieces are on R2, the second piece on R1, and the fourth piece
on R3. v−nullcline (blue line) and w−nullcline (red line) and switching manifolds
Σ1, Σ2, Σ3 (brown-dotted lines). The nullclines are a piecewise approximation to the
that of nonlinear model given in Fig. 3.9. The filled black circle shows an unstable
fixed point, the filled magenta circle is a saddle point and the filled green circle is a
stable fixed point (on region R4 = {x ∈ R2| v < a/2}).

workers [97] investigated bifurcations of piecewise linear differential systems

with three zones with a particular focus on the PML model. They proposed

some theorems to detect bifurcation of limit cycles for the PML model and

introduced the concept of scabbard bifurcation which is linked with the shape

of the bifurcating limit cycles. A scabbard bifurcation occurs when a limit

cycle is born out of a continuum of equilibrium points.

3.5 Discussion

Although dynamical systems theory is well developed for smooth systems,

it still needs further investigation for nonsmooth systems such as piecewise

smooth and piecewise linear systems. These systems may arise in modelling of
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Figure 3.11: Piecewise linear Morris–Lecar model. Left: Shape of the stable pe-
riodic orbits for I = 0.0945 (red), I = 0.0997 (green), I = 0.1031 (aqua), and
I = 0.165 (magenta). Right: Period (left axis in red) and amplitude (right axis in
green) of solutions as a function of I, where I ranges from 0.1645 to 0.094. Other
parameters as in Fig 3.10.

many important real world problems and are also utilised for phenomenolog-

ical models in many different areas of applied sciences including engineering

and biology. In addition to exhibiting almost all types of dynamics observed

in smooth nonlinear systems, e.g. periodic solutions, limit cycles, heteroclinic

and homoclinic orbits, and strange attractors, these systems may support bi-

furcations that smooth systems do not [81, 82].

Limit cycle oscillators with PWL dynamics are extensively studied in

nonsmooth dynamical systems theory with a large number of applications in

physics, engineering and biology, such as anti-lock braking systems [210], the

PWL Hindmarsch–Rose model [26], gene regulatory networks [119], and some

planar neuron models [52]. In general, for smooth nonlinear dynamical sys-

tems, this solution is not available in closed form whereas in the PWL case

we can construct this quasi-analytically rather than relying on numerical eval-

uation. Bifurcation of oscillatory solutions for such nonsmooth systems have

been studied by many researchers [51, 194, 279].

In a mathematical neuroscience context, PWL neural modelling is impor-

tant and has a long history of use for understanding and investigating many in-

teresting dynamical behaviours [55, 217]. Essentially, nonsmooth PWL models

can be considered as the uniform limit of smooth nonlinearities and the global
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dynamical behaviours of smooth models can be approximated by PWL mod-

els and vice-versa. PWL modelling allows to build explicit solutions of neuron

models and this make further analysis easier. For example, here we have shown

how to construct periodic solutions of the McKean model and the PML model,

and explored how the period and amplitude of such solutions varies. Making

use of a PWL modelling approach is not only practical to establish periodic

solutions in closed form but also helps to construct response functions and

understand the collective behaviour of coupled oscillatory systems which will

be studied in later chapters.
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Chapter 4

Stability and response of

periodic orbits in PWL systems

4.1 Introduction

The adaptation or extension of results from smooth dynamical systems theory

to nonsmooth systems is an appealing research area, and recently existence,

uniqueness, stability, bifurcations, maximal number of limit cycles, and adap-

tation of Lyapunov functions for PWL systems has been studied by many

authors, see for instance [40, 109, 110, 138, 182, 185, 187, 193, 345]. Here we

modify standard Floquet theory [157, 161] to treat PWL systems [54, 81] for

periodic solutions that are exposed to N switching events. This is achieved

using the notion of saltation matrices that we build at each time of event. A

saltation operator maps perturbations to the periodic orbits immediately be-

fore the switching event to immediately after, and have commonly been used

for the study of nonsmooth systems [15, 180]. During the computation of Flo-

quet exponents, the use of saltation matrices introduces a correction term (for

example, see equation 4.9) to the Floquet exponent formula for determining

stability.

Phase reduction theory is well developed for stable limit cycles of smooth

dynamical systems and has been conveniently applied to many biological,
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chemical and physical systems, particularly when exploring synchronisation,

and entrainment phenomenons [86, 96, 137, 332] and see Sections 2.2, 2.4.

However, the application of this theory to nonsmooth dynamical systems is

not trivial. The main reason for this is that the nonsmoothness of the vector

fields at the switching boundaries impedes direct implementation of the adjoint

equation (2.7) and further consideration is needed to compute discontinuities

in the iPRC.

There are a few recent studies that have focused on this problem. For

one dimensional systems, the phase normalisation condition is enough to de-

rive the size of jump in the iPRC which relates the iPRC immediately before

and after a switching event, but as the dimension of the system increases

this problem becomes far more complicated, i.e. for n dimensional systems,

n linearly independent equations are required to compute the iPRC uniquely.

In [55], Coombes et al. derived the discontinuous iPRC for the planar PWL

integrate-and-fire model by utilising normalisation conditions on both sides of

a switching surface. In [52], Coombes also computed the iPRC for the PWL

planar neuron models where the vector field changes continuously across the

switching manifold (the vector field has the same value immediately before the

switching event, on the switching manifold, and immediately after the switch-

ing event). For PWS systems, Park et al. [227], developed a jump operator

for the iPRC by using the normalisation condition and equality of directional

derivatives of the phase function in directions assigned by the vectors which

span the tangential surface to the switching manifold at the point where the

limit cycle and switching manifold intersect. They also found a relation be-

tween the saltation matrix for the variational equation and the jump operator

of the iPRC. Using a similar method, Chartrand et al. [46] constructed the

discontinuous iPRC for the resonate-and-fire model. In 2017, Shirasaka and

co-workers [276], adapted phase reduction theory to hybrid dynamical systems

(dynamical systems that contain both continuous and discrete state variables

[5]) after rigorously defining an asymptotic phase function for such systems in
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a suitable topology. They developed a jump operator to compute the size of

discontinuity in the iPRC and deduced that this operator is the same as the

inverse transpose of the saltation matrix. A special case of such systems was

also considered by Ladenbauer et al. [173] where a discontinuous iPRC was

built up for the exponential integrate-and-fire model. Ermentrout et al. [92]

have computed iPRC of the Izhikevich neuron model by numerically solving

the adjoint equation together with implementing the inverse transpose of a

saltation matrix to construct the jump operator for the iPRC at the discon-

tinuity boundary. Moreover, Wang et al. [317] produced the iPRC for some

ad-hoc planar nonsmooth systems for a limit cycle with sliding dynamics by

formulating a modified saltation matrix and then establishing relations be-

tween this matrix and the jump operator for the iPRC at the landing point

where a sliding motion starts, and the liftoff point where the sliding terminates.

To overcome limitations of phase only reduction methods, for smooth sys-

tems, various analytical, computational and geometric techniques are proposed

[131, 181, 275, 277, 297, 299, 319], including the phase-amplitude reduction

theory [325, 328] reviewed in Section 2.3. Recently, Wilson [320] extended this

phase-amplitude reduction formalism to treat PWS dynamical systems. Wil-

son also applied this theory to a nonsmooth model of cardiac myocytes to derive

a discontinuous iPRC, iIRC, and second-order correction terms. In this recent

approach, the theory simplifies in the case of PWL modelling, therefore in this

thesis we used this reduction method. Moreover, we know that utilising car-

icature systems (a PWL or discontinuous model) instead of nonlinear models

is found to be beneficial at the node level [177] and see Section 3.4, it has been

shown that this is advantageous at network level as well [54, 174, 175, 217].

Therefore, in this chapter we will address the stability of the synchronous

state in networks of PWL oscillators using coupled phase oscillator theory,

the phase-amplitude network formalism, and the MSF methodology, in each

case showing how to treat PWL systems. Each of the three are compared to

numerical results and to each other.
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The organisation of the chapter is as follows. In Section 4.2, by modify-

ing Floquet theory, we show how to determine the stability of periodic orbits

for planar PWL systems. In Section 4.3 and Section 4.4 we investigate the

jump condition in the iPRC and iIRC using different approaches, and explic-

itly compute these for the models considered. In Section 4.5, we derive the

general form for the second-order terms (necessary for the phase-amplitude re-

duction), B, C, for PWL systems along with an explicit calculation of them for

the models considered. In Section 4.6, we show how to determine the stability

of a synchronous network state. In Section 4.7, we test the stability of the

synchronous state of the considered models by using all three methods, and

then comparing these against numerical simulations to check the accuracy of

the predicted results. Finally, in Section 4.8, we give a discussion highlighting

the power of the PWL approach for circumventing the limitation of phase and

phase-amplitude reductions.

4.2 Stability: Adaptation of Floquet theory

For smooth dynamical systems

ẋ = f(x), (4.1)

where x ∈ Rn, f(x) is a continuously differentiable function, Floquet the-

ory [235] is a popular and well-developed technique to study stability and

bifurcations of periodic orbits. Let us denote Floquet multipliers and Floquet

exponents of a periodic orbit xγ(t) with period T , by λi and κi, respectively,

i = 1, . . . , n, where λi = eκiT holds. By following Perko [235], we revisit the

useful result
n∏
i=1

λi = exp

[∫ T

0

Tr(Df(xγ(t)))dt

]
, (4.2)

where Df(xγ(t)) is the Jacobian of f evaluated along xγ(t). Essentially, he

derives this result by using Liouville’s theorem [235], which formulates the
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determinant of the fundamental matrix (Wronskian) for a linearised system of

the form ẏ = Df(xγ(t))y.

For a planar system, with x ∈ R2, we can use this result and the fact that

one of the Floquet multiplier is equal to one, which corresponds to perturba-

tions along the periodic orbit, and show that the non-trivial Floquet exponent

(κsmooth) is

κsmooth =
1

T

∫ T

0

5 · f(xγ(t))dt =
1

T

∫ T

0

Tr(Df(xγ(t)))dt. (4.3)

The stability of periodic orbits can be determined from the sign of κsmooth such

that an orbit is stable if κsmooth < 0 and unstable if κsmooth > 0, see [235] for

more details.

For dynamical systems with nonsmooth or even discontinuous vector fields,

we can not directly make use of standard Floquet theory [157, 161]. Moreover,

we must carefully study the effect of perturbing a periodic orbit in location

where it crosses the switching boundaries. Here, we revisit the adaptation of

standard theory to PWL systems [54, 81] of the form

dx

dt
=



f1(x) ≡ A1x + b1 if x ∈ R1,

f2(x) ≡ A2x + b2 if x ∈ R2,

...

fN(x) ≡ ANx + bN if x ∈ RN ,

(4.4)

where Aµ ∈ Rn×n, bµ ∈ Rn, µ ∈ {1, . . . , N}, and support a non sliding periodic

orbit xγ(t) with N -pieces where each piece xγµ(t) is obtained by solving a

linear dynamics over the region Rµ. Switching events are prescribed by some

indicator functions hµ(x), that occur when hµ(x(tµ)) = 0, at switching times

tµ. The state of the system immediately after the switch is given by x(t+µ ) =

Jµ(x(t−µ )) where Jµ : Rn → Rn is the switch rule, t±µ = lim∆→0+(tµ ± ∆),

and x(t−µ ) denotes the state immediately before the event. Similar to the
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construction of periodic orbits, we can evaluate the variational equation

dδx(t)

dt
= Aµδx(t), for δx(t) ∈ Rµ, (4.5)

where δx(t) represents a perturbation to the periodic orbit, by solving this

linear system in each region and mapping perturbations across the switching

manifolds by making use of saltation matrices [105, 211]

S(tµ) = DJµ(xγ(t−µ ))

+
[ẋγ(t+µ )−DJµ(xγ(t−µ ))ẋγ(t−µ )][∇xhµ(xγ(t−µ ))]>

∇xhµ(xγ(t−µ )) · ẋγ(t−µ )
. (4.6)

Note that a detailed derivation of formula (4.6) is given in Appendix A. Salta-

tion operators are used to capture the evaluation of perturbations during the

boundary crossing where either the solution or the vector field (or both) has

a discontinuity. Some application of saltation matrices are reported by Muller

[211] to calculate Lyapunov exponents of discontinuous systems, and Fredriks-

son and Nordmark [105] in the normal form derivation for impact oscillators.

In recent years, they have been used to analyse both node and network be-

haviour of PWL or impacting oscillatory systems [54, 55, 217].

The evaluation of δx(t) over one period is obtained as δx(T ) = Mδx(0)

where M is given by

M = SNG(AN ;TN) . . . S2G(A2;T2)S1G(A1;T1). (4.7)

Here Tµ denotes the time-of-flight in each region, Sµ ≡ S(tµ), and G is given

in (3.12). The periodic orbit will be stable if all the nontrivial eigenvalues

(Floquet multipliers), λk, k = 1, . . . , n−1, of the matrixM have modulus less

than unity or corresponding Floquet exponents κk = ln(λk)/T have negative

real part. We note that one eigenvalue of M is equal to 1 which corresponds

perturbations along the periodic orbit.

In particular, for the absolute model, the homoclinic loop, and the McK-
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ean model (see Section 3.4) we have hµ(x) = v − a, µ ∈ {1, 2}, and the PML

model hµ(x) = v − b, µ ∈ {1, 4} and hµ(x) = v − (1 + a)/2, µ ∈ {2, 3}. The

switching rule is Jµ(x) = x (solution curves are continuous), and therefore

DJµ = I2, where I2 is 2 × 2 identity matrix. The saltation matrices are then

explicitly given by

S (tµ) =

 v̇γ(t+µ )
v̇γ(t−µ )

0

(ẇγ(t+µ )−ẇγ(t−µ ))
v̇γ(t−µ )

1

 . (4.8)

The non-trivial Floquet exponent of these planar nonsmooth systems can then

be calculated from the formula (see [54] for a similar description)

κ =
1

T

N∑
µ=1

[
Tµ TrAµ + log

v̇γ
(
t+µ
)

v̇γ
(
t−µ
)] . (4.9)

The logarithmic term reflects the contribution of discontinuous switching in

the vector field to the stability of an orbit. We note that if the vector field

switches continuously (though may be nonsmooth), S = I2 and therefore this

logarithmic term reduces to zero. The derivation of Floquet exponent formula

(4.9) is given in Appendix A. We can now use this formula (4.9) to calculate

Floquet exponents [54] of above PWL models. For the McKean model, we find

κ =
1

T

[
−γ(T1 + T2) + log

v̇γ
(
T+

1

)
v̇γ
(
T−1
) + log

v̇γ (T+)

v̇γ (T−)

]

= −γ +
1

T
log

(−γa− w (T1)) (−γa+ ξ − w(T ))

(−γa+ ξ − w (T1)) (−γa− w(T ))
. (4.10)

This is plotted in Fig. 4.1-panel (a) for the stable periodic orbits (κ < 0).

When b = 0.9683, a saddle-node bifurcation of periodic orbits is observed, see

Fig. 3.4. For the absolute model, we have the expression

κ =
1

T
[T1(1− d) + T2(−1− d)]

= −d+
2T1 − T

T
. (4.11)
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We illustrate this in Fig. 4.1-panel (b) as a function of w where κ switches to

zero when a nonsmooth Andronov-Hopf bifurcation occurs. For the homoclinic

model, formula (4.9) yields

κ =
1

T
(T1τ1 + T2τ2) . (4.12)

Finally, for the PML model, the Floquet exponent is

κ =
1

T

[
(−1 +

1

C
)(T1 + T3 + T4) + T2(−1− 1

C
)

]
= −1 +

T − 2T2

TC
. (4.13)

We compute this in Fig. 4.1-panel (c) as a function of the external drive I

where large amplitude oscillation emerge via a homoclinic bifurcation. For

systems with sliding periodic orbits, Bernardo et al. [81] proposed a formula

for the saltation matrix, and Wang et al. [317] have derived saltation operators

for some ad hoc PWL planar models.
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Figure 4.1: Plot of the Floquet exponent κ for the (stable) periodic orbits for the
three PWL planar models. (a)-The McKean model. When b = 0.9683, stable and
unstable periodic orbits annihilate each other via a saddle node bifurcation of periodic
orbits, this bifurcation can be also seen in Fig. 3.4. Parameters: a = 0.1, γ = 1,
ξ = 1 and 0.9683 ≤ b ≤ 2. (b)-The absolute model. Stable periodic orbits have a
constant κ for −0.1 ≤ w < 0.2 that suddenly reduces to zero when w ' 0.2 where a
nonsmooth Andronov-Hopf bifurcation occurs. Other parameters as in Fig 3.5. (c)-
PML model. κ as a function of external input I, where large amplitude oscillations
are first seen when I = 0.094. Other parameters are as in Fig 3.10.
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4.3 Phase response curves for piecewise linear

systems

As we introduced in Section 2.2, the iPRC is a periodic vector function which

measures changes in timing of a limit cycle in response to infinitely small

perturbations at each point along the cycle. Recall from Section 2.2 that for

smooth systems, the iPRC (Z(t)) can be found by solving the adjoint equation

dZ(t)

dt
= −Df(xγ(t))>Z(t), (4.14)

subject to the normalisation condition Z>(0)f(xγ(0)) = ω with periodicity

condition Z(t) = Z(t+ T ), T = 2π/ω. However, the adjoint method may not

be directly used for nonsmooth systems without further consideration. For

example, for some piecewise smooth systems the vector field may change dis-

continuously across the switching manifold and theretofore the Jacobian Df is

not defined at all points along the limit cycle. Nevertheless, for PWL systems,

Df(xγ(t)) is piecewise constant, and similar to the construction of periodic so-

lutions of the system (4.4), we can build a closed form solution for the adjoint

equation. But, abrupt changes in the vector field on the discontinuity surface

would lead to a discontinuous iPRC. Using the same labelling introduced for

the periodic orbit of (4.4), within the interior of each subregion Rµ, the iPRC

evolves according to

dZµ(t)

dt
= −A>µZµ(t), (4.15)

where A>µ = Dfµ(xγ(t))> is the transpose of the linearisation of the vector

field fµ evaluated along the xγµ(t) portion of the limit cycle. The explicit

solution of each subsystem is given by Zµ(t) = G(−A>µ ; t − tµ−1)Zµ(tµ−1)

where tµ−1 ≤ t < tµ and Zµ(tµ−1) is the initial value on the boundary of each

subregion. Now, we need to determine how the iPRC evolves across either

side of a switching manifold. For brevity, at each switching event time tµ, we

denote Z−µ for the iPRC vector immediately before the crossing, and Z+
µ for

81



that of just after the crossing.

For one dimensional nonsmooth systems, such as the leaky integrate-and-

fire (LIF) model or nonlinear integrate-and-fire (IF) models [55], the size of the

discontinuity can be computed explicitly, because the normalisation condition

dθ [x(t)] /dt = ω at t+µ yields one equation to find the unknown Z+
µ imme-

diately after the switching event. However, for n dimensional systems, the

normalisation condition only gives one equation for n−unknowns. In particu-

lar, for planar systems we need one more equation to determine the jump in

iPRC. To derive this we will summarise three different methods: (i) using the

relation between jump operator of the variational equation and that of iPRC

[227, 276], (ii) using the normalisation condition on either sides of the switch-

ing boundary [55], and (iii) using first principles along with linear matching

conditions [227, 320]. All of these three methods give equivalent results though

each has their own merit and practicality.

To derive the first method, let us consider an arbitrary state xγ on the

periodic orbit and a perturbed state xγ + δx where δx is an arbitrarily small

perturbation. This gives a time-independent phase shift ∆θ = θ(xγ + δx) −

θ(xγ) such that this shift remains constant (since all isochrons have the same

rotation rate) in time as the trajectories xγ(t) and xγ(t) + δx(t) starting from

those two points evolve. Using a first order Taylor expansion of θ(x), we obtain

∆θ = θ(xγ(t) + δx(t))− θ(xγ(t)) ' ∇xγ(t)θ · δx(t). (4.16)

Hence, we deduce that

Z(t) · δx(t) = const. (4.17)

holds both within the interior of each subregion Rµ and across the switching

manifolds due to the continuity of ∆θ [227, 317]. Therefore at any moment of

switching event tµ, we have

〈 Z−µ , δx−〉 = 〈 Z+
µ , δx

+〉 (4.18)
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where δx− = δx(t−µ ) and δx+ = δx(t+µ ). Then the saltation relation δx+ =

Sµδx
− gives

〈 Z−µ , δx−〉 = 〈 Z+
µ , Sµδx

−〉 = 〈 S>µ Z+
µ , δx

−〉, (4.19)

and therefore

〈 Z−µ − S>µ Z+
µ , δx

−〉 = 0. (4.20)

Since this holds for any arbitrary δx−, we find Z−µ − S>µ Z+
µ = 0. As a result,

we have the following relation between Z−µ and Z+
µ

Z+
µ = (S>µ )−1Z−µ , (4.21)

where (S>µ )−1 is the inverse of the transpose of Sµ. Shirasaka et al. [276]

have rigorously shown this relation for hybrid dynamical systems with limit

cycles by showing that the jump operator of the iPRC is equivalent to the

transpose of the inverse of the saltation matrix. They then implemented this

in an analytically tractable set of glued Stuart-Landau oscillators composed

of two discrete states and a two-dimensional continuous state variable, and

built the discontinuous iPRC using a direct numerical method and an adjoint

method, showing that both methods agreed.

As a second method, by following a similar process presented in [55], we

use the normalisation condition ∇xγ(t)θ · fµ(xγ(t)) = ω from either sides of

the each switching manifolds. To observe this more explicitly, let us con-

sider two regions Rµ and Rµ+1. In order to determine the initial condition

Zµ(t+µ−1) = [z1
µ, z

2
µ]> inside the region Rµ, we need to solve the following equa-

tions simultaneously

〈 Zµ(t+µ−1), [v̇γ(t+µ−1), ẇγ(t+µ−1)]>〉 = ω,

〈 Zµ(t−µ ), [v̇γ(t−µ ), ẇγ(t−µ )]>〉 = ω
(4.22)

for z1
µ and z2

µ where Zµ(t−µ ) = G(−A>µ ;Tµ)Zµ(t+µ−1). Similarly, to determine

the initial condition Zµ+1(t+µ ) = [z1
µ+1, z

2
µ+1]> inside the region Rµ+1, we need
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to solve

〈 Zµ+1(t+µ ), [v̇γ(t+µ ), ẇγ(t+µ )]>〉 = ω,

〈 Zµ+1(t−µ+1), [v̇γ(t−µ+1), ẇγ(t−µ+1)]>〉 = ω
(4.23)

for z1
µ+1 and z2

µ+1 where Zµ+1(t−µ+1) = G(−A>µ+1;Tµ+1)Zµ+1(t+µ ). Then the size

of discontinuity at each tµ is given by Zµ+1(t+µ )−Zµ(t−µ ). Coombes et al. [55]

have obtained iPRCs for the planar PWL-IF model by using this approach for

both regular and fast spiking orbits, as well as for bursting solutions.

Alternatively, assuming R>Z+
µ = Z−µ for some matrix R, and using the

normalisation condition, we have

〈 Z+
µ , ẋ

γ(t+µ )〉 = 〈 R>Z+
µ , ẋ

γ(t−µ )〉 = 〈Z+
µ ,Rẋγ(t−µ )〉, (4.24)

and this gives

〈 ẋγ(t+µ )−Rẋγ(t−µ ),Z+
µ 〉 = 0. (4.25)

Equation (4.25) holds for any arbitrary Z+
µ , and therefore we have ẋγ(t+µ ) =

Rẋγ(t−µ ). Now we will show the saltation matrix also satisfies ẋγ(t+µ ) =

Sµẋ
γ(t−µ ). To do so, we use formula (4.6) and multiply it from the right by

ẋγ(t−µ ) to find

S(tµ)ẋγ(t−µ ) = DJµ(xγ(t−µ ))ẋγ(t−µ )

+
[ẋγ(t+µ )−DJµ(xγ(t−µ ))ẋγ(t−µ )][∇xhµ(xγ(t−µ ))]>ẋγ(t−µ )

∇xhµ(xγ(t−µ )) · ẋγ(t−µ )

= DJµ(xγ(t−µ ))ẋγ(t−µ ) + ẋγ(t+µ )−DJµ(xγ(t−µ ))ẋγ(t−µ )

= ẋγ(t+µ ). (4.26)

Hence, we obtain R = Sµ, and this implies the relation Z+
µ = (S>µ )−1Z−µ holds.

Therefore, the first and second methods are equivalent.

As a final method, we will revise the technique that has been proposed

by Park et al. [227] and Wilson [320] to derive jump condition in the iPRC

for n dimensional piecewise smooth systems with n− 1 dimensional switching

surface Σµ that are transverse to xγ(t). This approach makes the following
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assumptions: (i) The level sets of the phase function θ(x) (the isochronal

surfaces) form a continuous foliation of an open neighbourhood of xγ(t). (ii)

θ(x) is at least twice differentiable within the interior of each region Rµ. (iii)

Each boundary Σµ is at least C1 (continuously differentiable) in an open ball

B(pµ, R) centred at pµ with radius R where pµ the intersection point of Σµ

and xγ(t). From this, it follows that at each crossing point pµ there exists a

tangent hyperplane Π spanned by an orthonormal set of n − 1 vectors wi for

i = 1, . . . , n−1. (iv) Directional derivatives of θ(x) exist on Π in all tangential

directions wi and are identical from either side. Then, for each boundary

crossing, using the assumption (iv) at crossing point pµ ∈ Σµ, they derived

following n− 1 equations

wi · Z−µ = wi · Z+
µ , i = 1, . . . , n− 1. (4.27)

They obtained final equation from the normalisation condition at either side

of switching manifold

f−µ (xγ(t−µ )) · Z−µ = ω = f+
µ (xγ(t+µ )) · Z+

µ , (4.28)

where f−µ is the vector field evaluated on the limit cycle immediately before

a switching event and f+
µ that of thereafter. Hence, they got n equations

to calculate each jump condition. Wilson [320], states that for all locations

on Π the local directional derivative of the phase coordinate in all directions

tangent to Π must be identical when approaching from either side, otherwise

continuity would be violated. Here we note that, although this assumption

guarantees the continuity of θ(x), in general, the asymptotic phase function will

not necessarily be differentiable in the directions transverse to the switching

boundary.

For the planar PWL models, we considered here, indicator functions are

in the form hµ(x) = v− cµ, where cµ is a constant, and therefore we have w1 =
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[0, 1]>. Then the equations (4.27)-(4.28) reduces to the system of equations

w1 · Z−µ = w1 · Z+
µ ,

f−µ · Z−µ = f+
µ · Z+

µ ,
(4.29)

using these, at each boundary crossing, we have CµZ+
µ = DµZ−µ , where

Cµ =

 v̇γ(t+µ ) ẇγ(t+µ )

0 1

 , Dµ =

 v̇γ(t−µ ) ẇγ(t−µ )

0 1

 . (4.30)

This yields a linear jump condition in the form Z+
µ = C−1

µ DµZ−µ . We also

observe that

C−1
µ Dµ =

 v̇γ(t−µ )

v̇γ(t+µ )

ẇγ(t−µ )−ẇγ(t+µ )

v̇γ(t+µ )

0 1

 = (S>µ )−1. (4.31)

This explicitly shows that first and last method give the same jump condition,

as expected. Park et al. [227] applied this method to compute iPRCs of a

piecewise constant model and a PWL Iris system.

The iPRCs of the McKean model, the absolute model, and the homoclinic

model take the form

Z(t) =


G(−A>1 ; t)Z(0), 0 ≤ t < T1,

G(−A>2 ; t− T1)(S>1 )−1G(−A>1 ;T1)Z(0), T1 ≤ t < T,

(S>2 )−1G(−A>2 ;T2)(S>1 )−1G(−A>1 ;T1)Z(0), t = T.

(4.32)

It remains to determine the initial condition Z(0) = [z1
0 , z

2
0 ]>. To do so we use

the normalisation condition at t = 0,

z1
0 [a1

11a+ a1
11w

1(0) + b1
1] + z2

0 [a1
21a+ a1

22w
1(0) + b1

2] =
2π

T
, (4.33)

where a1
ij, i, j = 1, 2, and b1

i are entries of the matrix A1 and the vector b1,

respectively, along with the periodicity Z(0) = Z(T ). By introducing the 2×2
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matrix

ΓZ = (S>2 )−1G(−A>2 ;T2)(S>1 )−1G(−A>1 ;T1), (4.34)

the periodicity condition Z(0) = ΓZZ(0), gives the equation

[ΓZ11 − 1]z1
0 + ΓZ12z

2
0 = 0. (4.35)

Then, using (4.33) and (4.35) we may write

ΨZ

 z1
0

z2
0

 =

 2π
T

0

 ,ΨZ =

 a1
11a+ a1

11w
1(0) + b1

1 a1
21a+ a1

22w
1(0) + b1

2

ΓZ11 − 1 ΓZ12


Then we can solve this using Cramer’s rule, which gives

z1
0 = det

(
ΨZ

1

)
/ det(ΨZ) and z2

0 = det
(
ΨZ

2

)
/ det(ΨZ) (4.36)

where

ΨZ
1 =

 2π
T

a1
21a+ a1

22w
1(0) + b1

2

0 ΓZ12

 , ΨZ
2 =

 a1
11a+ a1

11w
1(0) + b1

1
2π
T

ΓZ11 − 1 0

 .
Using a similar procedure, we can also construct the iPRCs for the PML model,

by solving Z over four subregions. Here we omit details of this by referring to

[52] for a detailed discussion.

For the considered models, in Fig. 4.2 we illustrated plots of iPRCs con-

structed implementing the above technique. Moreover, in Fig. 4.3, we depict

first order linear approximations to isochronal coordinates at various location

around the limit cycles. For the homoclinic model, as the periodic orbit be-

comes closer to the homoclinic bifurcation, the sensitivity of the limit cycle to

external perturbations increases, i.e. we need to choose small perturbations

otherwise a perturbed solution will not converge to the limit cycle.
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Using the relation Z(t) · δx(t) = const, we expect that components of the

iPRC vector will increase and reach a peak in the vicinity of the homoclinic

bifurcation. In Fig. 4.4, we plot the maximum value of the voltage component

Zv of the iPRC under parameter variation of pbif . We observe that as the limit

cycle approaches to the homoclinic orbit, the maximum value of Zv increases

quickly. For some particular values of pbif , plots of the iPRCs and shape

of the corresponding periodic orbits are shown in Fig. 4.5. As illustrated in

panel (c) [homoclinic loop] and panel (d) [PML model] of Fig. 4.3, at locations

on the limit cycle that are close to the saddle point, the phase coordinate

system breaks down and a better or exact coordinate system is needed to

avoid numerical discrepancies.
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Figure 4.2: Plot of the iPRC (red) and underlying shape of the periodic
v−component (blue). (a)-The McKean model with parameters as in Fig. 3.3. (b)-
The absolute model with parameters as in Fig. 3.5. (c) Homoclinic loop with param-
eters as in Fig. 3.7. (d)-PML model with parameters as in Fig. 3.10.
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Figure 4.3: Illustration of first order linear approximations to isochronal coor-
dinates at various locations around the limit cycles. (a)-The McKean model with
parameters as in Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5.
(c) Homoclinic loop with parameters as in Fig. 3.7. (d)-PML model with parameters
as in Fig. 3.10.
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Figure 4.4: Peak values of the voltage components Zv of the iPRC over param-
eter pbif for the homoclinic model. As periodic orbit approaches to the homoclinic
bifurcation, the maximum value of Zv increases rapidly. Entries of A1, A2 and pbif
values are defined as in Fig. 3.8, and other parameters as in Fig. 3.7.
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Figure 4.5: Shape of the homoclinic model iPRC in the homoclinic limit. The left
column shows plots of the iPRC for the voltage component. The right column shows
the corresponding limit cycle. Entries of A1 and A2 are defined as in Fig. 3.8. pbif
values from bottom to top: pbif = −0.4735;−0.0653; 1.781× 10−3, and 0.97× 10−3.
For the case pbif = 1.781 × 10−3, we zoom in the dynamics around the homoclinic
point. Other parameters as in Fig. 3.7.
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4.4 Isostable response curves for piecewise lin-

ear systems

Referring back to Section 2.3, the iIRCs are periodic vector functions that

give a quantification to the effect of an external perturbation in driving the

trajectory away from the limit cycle and can be obtained by solving the adjoint

equation (2.13). For nonsmooth systems, the adjoint equation (2.13) cannot

be directly used and needs a more careful treatment. Here we will handle

this problem for planar PWL systems which have only one non-trivial Floquet

exponent, therefore, for simplicity of notation, in (2.13), we replace ∇xγψk ≡

Ik(t) by I(t) and κk by κ. Using the same labelling introduced for the periodic

orbit of (4.4), inside the each subregion Rµ, iIRC evolves according to

dIµ(t)

dt
= QµIµ(t), (4.37)

where Qµ = (κI2 − A>µ ). The explicit solution of each subsystem is given

by Iµ(t) = G(Qµ; t − tµ−1)Iµ(tµ−1) where tµ−1 ≤ t < tµ and Iµ(tµ−1) is the

initial value at each subregion. Thereafter, we also need to determine how the

iIRC evolves across either side of a switching manifold. For brevity, at each

switching event time tµ, we denote I−µ for the iIRC vector immediately before

the crossing, and I+
µ for just after the crossing.

Now, we will revise the technique proposed by Wilson [320] to derive a

jump condition in the iIRC for an n dimensional piecewise smooth systems

with an n− 1 dimensional switching surface Σµ that is transverse to xγ(t). To

obtain jump operator for the iIRC, Wilson made the following assumptions:

(i) ψk(x) are continuous for all k in an open neighbourhood of xγ(t). (ii) ψk(x)

for all k are at least twice differentiable within the interior of each subregion

Rµ. (iii) Each boundary Σµ is at least C1 (continuously differentiable) in an

open ball B(pµ, R) centred at pµ with radius R where pµ is the intersection

point of Σµ and xγ(t). From this, it follows that at each crossing point pµ there
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exists a tangent hyperplane Π spanned by an orthonormal set of n− 1 vectors

wi for i = 1, . . . , n − 1. (iv) Directional derivatives of ψk for all k exist on Π

in all tangential directions wi and identical from either side. Similar to the

approach for iPRC, Wilson [320] states that, directional derivatives of the ψk

in all directions tangent to Π must be identical when approaching from either

side, otherwise continuity of the ψk coordinate would be violated. Then, for

planar PWL systems, at each boundary crossing point pµ ∈ Σµ, we have

w1 · I−µ = w1 · I+
µ . (4.38)

Equation (2.12), gives the relation ∂ψ/∂x · f(x) = κψ, and using this, along

with the continuity assumption of ψ, we have

f−µ (xγ(t−µ )) · I−µ = κψ− = κψ+ = f+
µ (xγ(t+µ )) · I+

µ , (4.39)

where f−µ is the vector field evaluated on the limit cycle immediately before

a switching event and f+
µ that thereafter. For the planar PWL models, we

consider here, hµ(x) = v−cµ, where cµ is a constant, and therefore w1 = [0, 1]>.

For this case equations (4.38)-(4.39) reduce to the system of equations

w1 · I−µ = w1 · I+
µ ,

f−µ · I−µ = f+
µ · I+

µ .
(4.40)

Using these, at each boundary crossing, we have CµI+
µ = DµI−µ , where Cµ and

Dµ are the same as in (4.30). This results in a linear jump condition in the

form I+
µ = C−1

µ DµI−µ = (S>µ )−1I−µ .

We can derive the same jump condition by considering an arbitrary point

xγ on the limit cycle and a perturbed state xγ + δx where δx is an arbitrarily

small perturbation. The difference between the corresponding isostables is

∆ψ = ψ(xγ + δx) − ψ(xγ), where we note ψ(xγ) = 0 (on the limit cycle the

isostable value is always zero). Using equation (2.12), this difference evolves
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according to d∆ψ
dt

= κ∆ψ in time as the trajectories xγ(t) and xγ(t) + δx(t)

starting from those two points evolve. The continuity assumption of ψ implies

∆ψ is continuous at the switching boundary, i.e. ∆ψ− = ∆ψ+. Using a first

order Taylor expansion, we find

∆ψ = ψ(xγ(t) + δx(t))− ψ(xγ(t)) ' ∇xγ(t)ψ · δx(t). (4.41)

Hence, at the time tµ of a switching event, we have

∆ψ− = I(t−µ ) · δx(t−µ ) = I(t+µ ) · δx(t+µ ) = ∆ψ+, (4.42)

or equivalently,

〈 I−µ , δx−〉 = 〈 I+
µ , δx

+〉. (4.43)

Then the relation δx+ = Sµδx
− gives

〈 I−µ , δx−〉 = 〈 I+
µ , Sµδx

−〉 = 〈 S>µ I+
µ , δx

−〉, (4.44)

which implies

〈 Z−µ − S>µ Z+
µ , δx

−〉 = 0. (4.45)

Since this holds for arbitrary δx−, we obtain I−µ − S>µ I+
µ = 0. As a result,

between I−µ and I+
µ , we have the relation

I+
µ = (S>µ )−1I−µ . (4.46)

As we expect, both methods gives the same jump condition. Therefore we

can obtain jumps in iIRC using saltation matrices. The iIRCs of the McKean
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model, the absolute model, and the homoclinic model are calculated form

I(t) =


G(Q1; t)I(0), 0 ≤ t < T1,

G(Q2; t− T1)(S>1 )−1G(Q1;T1)I(0), T1 ≤ t < T,

(S>2 )−1G(Q2;T2)(S>1 )−1G(Q1;T1)I(0), t = T,

(4.47)

where we need to determine initial condition I(0) = [i10, i
2
0]>. To do so we use

the normalisation condition,

i10v̄
1 + i20v̄

2 = 1, (4.48)

where v̄ = [v̄1, v̄2]> is the eigenvector associated with non-trivial Floquet mul-

tiplier λ̄, and the periodicity condition I(0) = I(T ). By introducing the 2× 2

matrix

ΓI = (S>2 )−1G(Q2;T2)(S>1 )−1G(Q1;T1), (4.49)

the periodicity condition I(0) = ΓII(0) gives the equation

[ΓI11 − 1]i10 + ΓI12i
2
0 = 0. (4.50)

Then, using (4.48) and (4.50) we may write

ΨI

 i10

i20

 =

 1

0

 , ΨI =

 v̄1 v̄2

ΓI11 − 1 ΓI12


Using Cramer’s rule, we can solve this to yield

i10 = det
(
ΨI

1

)
/ det(ΨI) and i20 = det

(
ΨI

2

)
/ det(ΨI), (4.51)

where

ΨI
1 =

 1 v̄2

0 Γ12

 , ΨI
2 =

 v̄1 1

Γ11 − 1 0

 .
Likewise, the iIRCs for the PML model, can be constructed by solving I over
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four subregions. Here we omit the details of this. For the models considered,

in Fig. 4.6 we give illustrative plots of iIRCs constructed implementing the

above technique. In these plots, dots are obtained through direct numerical

simulation of the original systems. To achieve this, say in the voltage com-

ponent v, we first applied a perturbation in the form δx(t) = [δv(t), 0]> at

various locations along the limit cycle, and then at each of these locations we

calculate the isostable change given by (4.41) where we obtain ψ(xγ(t)+δx(t))

from (2.10) and recognise that ψ = 0 on the cycle. For the introduced δx(t)

using ∆ψ ' ∇xγ(t)ψ · δx(t) we find

∆ψ '
(
∂ψ

∂v
,
∂ψ

∂w

)
(δv(t), 0)> = Iv(t)δv(t), (4.52)

hence, at each location, we approximate the voltage component of the iIRC as

Iv(t) ' ∆ψ/δv(t). In a similar way, one can compute the w−component of

the iIRC by introducing perturbations of the form δx(t) = [0, δw(t)]>. Monga

and Moehlis [206] computed the iIRC both numerically and analytically for a

planar smooth homoclinic loop model, and found a good agreement between

numerical and analytical approaches.

4.5 Second-order terms in response functions

for piecewise linear systems

For smooth planar systems, the second-order accurate phase-amplitude de-

scription (2.21)-(2.22), reduces to

dθ

dt
= ω + [Z(t) + B(t)ψ] · g(t), (4.53)

dψ

dt
= κψ + [I(t) + C(t)ψ] · g(t), (4.54)

where B(t) = Hθ,xγp(t), C(t) = Hψ,xγp(t), and the periodic function p(t) can

be obtained from (2.19). In this case, the evolution equation (2.35) of B(t)
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Figure 4.6: Illustration of v−components of the iIRCs (red) where blue circles are
obtained by direct numerical simulation of the original systems. (a)-The McKean
model with parameters as in Fig. 3.3. (b)-The absolute model with parameters as
in Fig. 3.5. (c) Homoclinic loop model with τ2 = 0.64 and other parameters as
in Fig. 3.7. (d)-PML model with parameters as in Fig. 3.10. To test the adjoint
method against to direct numerical simulation we choose δv = 10−4. The theory and
simulations show excellent agreement.

becomes

d

dt
(B(t)) = −

2∑
j=1

[
Zj (t)Hj,xγp(t)

]
−
(
Df> (xγ(t)) + κI2

)
B(t). (4.55)

Hence, B(t) is obtained by finding the T−periodic solution of equation (4.55)

along with the normalisation condition (2.36). For the C(t) term, following

from equation (2.38), for planar systems we have

d

dt
(C(t)) =−

2∑
j=1

[
Ij (t)Hj,xγp(t)

]
−Df> (xγ(t)) C(t), (4.56)

where Ij (t) = ∂ψ/ ∂xj|xγ . Then, the T -periodic solution of equation (4.56)

along with the normalisation condition (2.39) gives C(t).
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However, for PWL case, one has to be careful while evolving B(t), C(t),

and p(t) across the boundary crossing. For planar PWL systems in the form

(4.4), by following the definition (2.19)-(2.20), the T−periodic eigenfunction

p(t) can be explicitly written as

p(t) =



e−κteA1tv̄, 0 ≤ t < t1,

e−κteA2(t−T1)S1eA1T1 v̄, t1 ≤ t < t2,

...

e−κteAN (t−TN−1) . . . S2eA2(T2)S1eA1T1 v̄, tN−1 ≤ t < T,

e−κTSNeAN (TN ) . . . S2eA2(T2)S1eA1T1 v̄, t = T.

(4.57)

where v̄ is the eigenvector associated with non-trivial Floquet multiplier. For

the PWL models considered, in Fig. 4.7, we illustrate the voltage component of

the eigenfunction p(t) along with the underlying v−component of the periodic

orbit.
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Figure 4.7: Plots of the v−component of the eigenfunction p(t) (red-left axis) and
underlying shape of the periodic v−component (blue-right axis). (a) The McKean
model with parameters as in Fig. 3.3. (b) The absolute model with parameters values
as in Fig. 3.5. (c) Homoclinic loop model with parameters as in Fig. 3.7. (d) PML
model with parameters as in Fig. 3.10.
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Moreover, we depict periodic orbits and eigenfunctions in the (u,w) plane

in Fig. 4.8 where we also plot some level sets of isostable coordinates. In the

following subsections, we will show how to compute B(t) and C(t) for planar

PWL systems.
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Figure 4.8: For each PWL model, plots of the eigenfunctions p(t) and limit cycles
xγ(t) are given in red and black, respectively. We illustrate two level sets of isostable
coordinates, ψ1, ψ2, by plotting perturbed solutions parametrised by p(t) in the form
x(t) = xγ(t) + ψp(t) for a fixed ψ, where any point on these level sets approaches
to limit cycle with a same rate. As expected, we observed that while ψ → 0, x(t)→
xγ(t). We also calculated Floquet exponent σ of each model. (a) The McKean model
that has σ = −0.4705 and eigenvector v̄ = [−0.1536, 0.9881]>. Isostable level sets are
depicted for ψ1 = 0.3 (blue) and ψ2 = −0.3 (green), and parameters as in Fig. 3.3.
(b) The absolute model that has σ = −0.1534 and eigenvector v̄ = [0.5045, 0.8634]>.
Two isostable level sets ψ1 = 0.1 (blue) and ψ2 = −0.1 (green) are represented for
parameters values as in Fig. 3.5. (c) Homoclinic loop model that has σ = −0.4 and
eigenvector v̄ = [−0.68266, 0.7307]>. Isostable level set ψ1 = 0.2 is given colour in
blue and that of ψ2 = −0.06 is in green. Here we choose τ2 = −0.68 and other
parameters as in Fig. 3.7. (d) PML model that has σ = −0.1458 and eigenvector
v̄ = [−0.9997,−0.0254]>, and level sets ψ1 = 0.4 (blue) and ψ2 = −0.06 (green)
where parameters as in Fig. 3.10.
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4.5.1 Computing B(t) for piecewise linear systems

For planar PWL systems, the Hessian matrices Hj,xγ = ∇ (∇fj) |xγ , j = 1, 2,

are zero matrices, and therefore using a similar labelling introduced for the

periodic orbit of (4.4), inside the each subregion Rµ, B(t) evolves according to

d

dt
(Bµ(t)) = −(A>µ + κI2)Bµ(t), (4.58)

By denoting Kµ = −(A>µ + κI2), we can explicitly write solution of each

subsystem as Bµ(t) = G(Kµ; t−tµ−1)Bµ(tµ−1) where tµ−1 ≤ t < tµ and Bµ(tµ−1)

is the initial value at each subregion. Thereafter, we need to determine how

B(t) evolves across a switching boundary. For brevity, at each switching event

time tµ, we denote B−µ for B(t) which is evaluated immediately before the

crossing, and B+
µ for that of just after. Using equation (2.20), let us consider

a perturbed solution in the form x(t) = xγ + ψp(t), where ψ = O(ε) has a

small value, such that perturbed trajectory crosses the switching manifolds at

the perturbed switching times t̃µ = tµ + gµ(ψ) which are prescribed by the

continuous indicator functions hµ(x(tµ + gµ(ψ))) = 0. In general, gµ(ψ) will

depend on the geometry of a switching surface and the displacement ψp(t).

For the PWL models considered here, one can explicitly calculate gµ(ψ) as

follows. A first order Taylor expansion of hµ(x̃(t̃µ)) can be calculated as

hµ(x̃(t̃µ)) =hµ(x(tµ + gµ(ψ))) = hµ(xγ(tµ + gµ(ψ)) + ψp(tµ + gµ(ψ)))

'hµ(xγ(t−µ ) + ẋγ(t−µ )gµ(ψ)) +∇xhµ(xγ(t−µ + gµ(ψ)))·

ψp(t−µ + gµ(ψ))

'hµ(xγ(t−µ )) +∇xhµ(xγ(t−µ )) · ẋγ(t−µ )gµ(ψ) +∇xhµ(xγ(t−µ )) · ψp(t−µ ).

(4.59)

Since hµ(xγ(tµ)) = 0 = hµ(x̃(t̃µ)) then we have that

gµ(ψ) = −
∇xhµ(xγ(t−µ )) · ψp(t−µ )

∇xhµ(xγ(t−µ )) · ẋγ(t−µ )
= −

ψpv(t−µ )

v̇γ(t−µ )
, (4.60)
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where pv(t) is the first component of p(t). Equation (2.16) implies that imme-

diately before the switching event we have

∂θ

∂x

∣∣∣∣
xγ(t̃−µ )+ψp(t̃−µ )

=
∂θ

∂x

∣∣∣∣
xγ(t̃−µ )

+
∂2θ

∂x2

∣∣∣∣
xγ(t̃−µ )

ψp(t̃−µ ) +O
(
ε2
)

'Zµ(t−µ + gµ(ψ)) + ψBµ(t−µ + gµ(ψ)). (4.61)

A similar equation immediately after is obtained by evaluating (2.16) at t̃+µ =

t+µ + gµ(ψ). Using continuity of θ(x) and the above assumption (iv) for the

phase function, while approaching from either side of the switching manifold,

we have (
∂θ

∂x

∣∣∣∣
xγ(t̃−µ )+ψp(t̃−µ )

)
· w1 =

(
∂θ

∂x

∣∣∣∣
xγ(t̃+µ )+ψp(t̃+µ )

)
· w1, (4.62)

or equivalently,

[Zµ(t−µ + gµ(ψ)) + ψBµ(t−µ + gµ(ψ))] · w1 =[Zµ(t+µ + gµ(ψ))

+ψBµ(t+µ + gµ(ψ))] · w1. (4.63)

Taylor expanding this in orders of ψ gives

[
Zµ(t−µ ) +

(
dZµ
dt

∣∣∣∣
t=t−µ

)
gµ(ψ) + ψBµ

(
t−µ
)]
· w1

=

[
Zµ(t+µ ) +

(
dZµ
dt

∣∣∣∣
t=t+µ

)
gµ(ψ) + ψBµ

(
t+µ
)]
· w1 +O

(
ψ2
)
. (4.64)

Setting the O(ψ0) terms equal on either side of this equation yields the relation

given by (4.27). Using this along with normalisation conditions (see equation

(4.28)) we can construct the jump operator for Z at tµ, which is exactly the

same as given by equation (4.30). By collecting the O(ψ) terms in equation
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(4.64) we obtain the following

[(
dZµ
dt

∣∣∣∣
t=t−µ

)
gµ(ψ) + ψB−µ

]
· w1 =

[(
dZµ
dt

∣∣∣∣
t=t+µ

)
gµ(ψ) + ψB+

µ

]
· w1.

(4.65)

We may use equation (4.15) and (4.60) to rewrite (4.65) to obtain

ψ

[
pv(t−µ )

v̇γ(t−µ )
A>µZ−µ + B−µ

]
· w1 = ψ

[
pv(t−µ )

v̇γ(t−µ )
A>µ+1Z+

µ + B+
µ

]
· w1. (4.66)

In addition, the normalisation condition (2.36) holds on either sides of a switch-

ing manifold and therefore we have that

Z−µ · (Aµp(t−µ )) + f−µ · B−µ = 0 = Z+
µ · (Aµ+1p(t

+
µ )) + f+

µ · B+
µ . (4.67)

Combining (4.67) and (4.66) we have that

B+
µ · f+

µ = B−µ · f−µ + Z−µ · (Aµp(t−µ ))−Z+
µ · (Aµ+1p(t

+
µ ))

B+
µ · w1 = B−µ · w1 +

pv(t−µ )

v̇γ(t−µ )

[
A>µZ−µ − A>µ+1Z+

µ

]
· w1. (4.68)

Hence, the jump condition on B during the transition across a switching man-

ifold is

B+
µ = C−1

µ

(
DµB−µ + σµ

)
= (S>µ )−1B−µ + C−1

µ σµ, (4.69)

where σµ is the following vector

σµ =

 Z−µ · (Aµp(t−µ ))−Z+
µ · (Aµ+1p(t

+
µ ))

pv(t−µ )

v̇γ(t−µ )
(A>µZ−µ − A>µ+1Z+

µ ) · (0, 1)

 . (4.70)
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The B(t) of the McKean model, the absolute model, and the homoclinic model

are calculated from

B(t) =


G(K1; t)B(0), 0 ≤ t < T1,

G(K2; t− T1)[(S>1 )−1G(K1;T1)B(0) + C−1
1 σ1], T1 ≤ t < T,

(S>2 )−1(G(K2;T2)[(S>1 )−1G(K1;T1)B(0) + C−1
1 σ1]) + C−1

2 σ2, t = T,

where we need to determine initial condition B(0) = [b1
0, b

2
0]>. To do so we use

the normalisation condition (2.36),

b1
0v̇
γ(0) + b2

0ẇ
γ(0) = −Z(0)>Df (xγ(0)) p(0) ≡ q̃, (4.71)

where q̃ ∈ R and also use the periodicity condition B(0) = B(T ). By intro-

ducing ΓB1 ∈ R2×2 and ΓB2 ∈ R2×1 as follows

ΓB1 = (S>2 )−1G(K2;T2)(S>1 )−1G(K1;T1), (4.72)

ΓB2 = (S>2 )−1G(K2;T2)C−1
1 σ1 + C−1

2 σ2, (4.73)

we can write

B(0) = ΓB1B(0) + ΓB2 . (4.74)

Hence, using (4.71) and (4.74) we have

ΨB

 b1
0

b2
0

 =

 −ΓB2
1

q̃

 , ΨB =

 ΓB1
11 − 1 ΓB1

12

v̇γ(0) ẇγ(0)


Using Cramer’s rule, we solve this to yield

b1
0 = det

(
ΨB

1

)
/ det(ΨB) and b2

0 = det
(
ΨB

2

)
/ det(ΨB), (4.75)

where

ΨB
1 =

 −ΓB2
1 ΓB1

12

q̃ ẇγ(0)

 , ΨB
2 =

 ΓB1
11 − 1 −ΓB2

1

v̇γ(0) q̃

 .
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Similarly, we can also build B(t) for the PML model, by solving B over four

subregions. To illustrate some examples, in Fig. 4.9, we plot B(t) for the

McKean model and PML model.
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Figure 4.9: Plots of the v and w components of the function B(t) on the left and
right y axis, respectively. (a) The McKean model with parameters as in Fig. 3.3.
(b) PML model with parameters as in Fig. 3.10.

4.5.2 Computing C(t) for piecewise linear systems

For planar PWL systems, we use equation (4.56) and replace the Hessian

matrices by zero matrices, therefore, inside the each subregion Rµ, C(t) evolves

according to

d

dt
(Cµ(t)) = −A>µ Cµ(t), (4.76)

which is same as that of Z. We can explicitly write the solution of each

subsystem as Cµ(t) = G(−A>µ ; t − tµ−1)Cµ(tµ−1) where tµ−1 ≤ t < tµ and

Cµ(tµ−1) is the initial value at each subregion. Now, we need to determine how

C(t) evolves across a switching surface. By following similar steps as for the

calculation of B(t), and using (2.17), (4.60), along with continuity of ψ and

assumption (iv) for the isostable coordinates we obtain

[
Iµ(t−µ ) +

(
dIµ
dt

∣∣∣∣
t=t−µ

)
gµ(ψ) + ψCµ

(
t−µ
)]
· w1

=

[
Iµ(t+µ ) +

(
dIµ
dt

∣∣∣∣
t=t+µ

)
gµ(ψ) + ψCµ

(
t+µ
)]
· w1 +O

(
ψ2
)
. (4.77)
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Setting the O(ψ0) terms equal on either side of this equation yields the relation

given by (4.38). Using this along with the normalisation condition (4.39), we

can construct the jump matrix for I at tµ, which is exactly same as given in

above Section 4.4. By collecting the O(ψ) terms in equation (4.77) we obtain

the following

[(
dIµ
dt

∣∣∣∣
t=t−µ

)
gµ(ψ) + ψC−µ

]
· w1 =

[(
dIµ
dt

∣∣∣∣
t=t+µ

)
gµ(ψ) + ψC+

µ

]
· w1. (4.78)

We may use equation (4.37) and (4.60) to rewrite (4.78), to derive

ψ

[
pv(t−µ )

v̇γ(t−µ )
(A>µ − κI2)I−µ + C−µ

]
· w1 = ψ

[
pv(t−µ )

v̇γ(t−µ )
(A>µ+1 − κI2)I+

µ + C+
µ

]
· w1.

(4.79)

Additionally, the normalisation condition (2.39) holds on either sides of a

switching boundary and therefore we have that

I−µ · [(κI2 − Aµ)p(t−µ )]− f−µ · C−µ = 0 = I+
µ · [(κI2 − Aµ+1)p(t+µ )]− f+

µ · C+
µ .

(4.80)

Using (4.80) and (4.79) we have that

C+
µ · f+

µ = C−µ · f−µ + I+
µ · [(κI2 − Aµ+1)p(t+µ )]− I−µ · [(κI2 − Aµ)p(t−µ )]

C+
µ · w1 = C−µ · w1 +

pv(t−µ )

v̇γ(t−µ )

[
(A>µ − κI2)I−µ − (A>µ+1 − κI2)I+

µ

]
· w1. (4.81)

Thus, the jump condition on C during the transition across a switching bound-

ary is

C+
µ = C−1

µ

(
DµC−µ + ρµ

)
= (S>µ )−1C−µ + C−1

µ ρµ, (4.82)
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where ρµ is the following vector

ρµ =

 I+
µ · [(κI2 − Aµ+1)p(t+µ )]− I−µ · [(κI2 − Aµ)p(t−µ )]

pv(t−µ )

v̇γ(t−µ )

[
(A>µ − κI2)I−µ − (A>µ+1 − κI2)I+

µ

]
· (0, 1)

 . (4.83)

The C(t) of the McKean model, the absolute model, and the homoclinic model

are calculated from

C(t) =


G(−A>1 ; t)C(0), 0 ≤ t < T1,

G(−A>2 ; t− T1)[(S>1 )−1G(−A>1 ;T1)C(0) + C−1
1 ρ1], T1 ≤ t < T,

(S>2 )−1(G(−A>2 ;T2)[(S>1 )−1G(−A>1 ;T1)C(0) + C−1
1 ρ1]) + C−1

2 ρ2, t = T,

where we need to determine initial condition C(0) = [c1
0, c

2
0]>. To do so we need

two equations and one of them is obtained from the normalisation condition

(2.39) as

c1
0v̇
γ(0) + c2

0ẇ
γ(0) = I(0)> (κI2 −Df (xγ(0))) p(0) ≡ r̃, (4.84)

where r̃ ∈ R. By introducing ΓC1 ∈ R2×2 and ΓC2 ∈ R2×1:

ΓC1 = (S>2 )−1G(−A>2 ;T2)(S>1 )−1G(−A>1 ;T1), (4.85)

ΓC2 = (S>2 )−1G(−A>2 ;T2)C−1
1 ρ1 + C−1

2 ρ2, (4.86)

and using periodicity condition C(0) = C(T ), we can write

C(0) = ΓC1C(0) + ΓC2 . (4.87)

Thus, (4.84), (4.87), and a similar calculation for B(t) give

c1
0 = det

(
ΨC

1

)
/ det(ΨC) and c2

0 = det
(
ΨC

2

)
/ det(ΨC), (4.88)
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where

ΨC =

 ΓC1
11 − 1 ΓC1

12

v̇γ(0) ẇγ(0)

 , ΨC
1 =

 −ΓC2
1 ΓC1

12

r̃ ẇγ(0)

 , ΨC
2 =

 ΓC1
11 − 1 −ΓC2

1

v̇γ(0) r̃

 .
A similar procedure allows us to build C(t) for the PML model, by solving

C(t) over four subregions. For illustrative purposes, in Fig. 4.10, we plot C(t)

for the absolute model and the PML model. In these plots, dots are obtained

through direct numerical simulation of the original systems. To clarify direct

computation process, let us rewrite equation (2.17) for planar systems

∂ψ

∂x

∣∣∣∣
xγ+∆x

=
∂ψ

∂x

∣∣∣∣
xγ

+
∂2ψ

∂x2

∣∣∣∣
xγ

∆x+O
(
‖ ∆x ‖2

)
' I(t) + ψcC(t), (4.89)

where ∆x = ψcp(t) for some fixed small ψc. Then we shall evaluate these, say

in the w component, by choosing a perturbation in the form δx = [0, δw]> at

various locations along the cycle as follows.

ψcCw(t) ' lim
δw→0

ψ(xγ(t) + ∆x(t) + δx)− ψ(xγ(t) + ∆x(t))

δw

− lim
δw→0

ψ(xγ(t) + δx)− ψ(xγ(t))

δw

= lim
δw→0

ψ(xγ(t) + ∆x(t) + δx)− ψ(xγ(t) + ∆x(t))− ψ(xγ(t) + δx)

δw
,

where we know ψ(xγ(t)) = 0. We may dividing both sides by ψc and approxi-

mate Cw(t), at each location, by

Cw(t) =
ψ(xγ(t) + ∆x(t) + δx)− ψ(xγ(t) + ∆x(t))

ψcδv
− I

w(t)

ψc
, (4.90)

where we can calculate ψ(xγ(t)+∆x(t)+δx) and ψ(xγ(t)+∆x(t)) from formula

(2.10), and Iw(t) has been approximated in equation (4.52). In a similar way

one can calculate Cv(t) by choosing δx = [δv, 0]>.
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Figure 4.10: Plots of v and w components of the function C(t) on the left and right
y−axis, respectively. Black circles are obtained from direct numerical simulation. (a)
The absolute model has parameters as in Fig. 3.5, we choose δv = δw = 0.0001, and
ψc = 0.01. (b)-The McKean model with parameters as in Fig. 3.3, δv = δw = 0.012,
and ψc = 0.16. Theory and direct numerical evaluation show a good agreement.

4.6 Synchronization of coupled oscillators with

piecewise linear dynamics

The stability properties of the synchronous state in networks of piecewise linear

oscillators has been studied in [52, 54, 227] where the authors used MSF, and

weak coupling theory. Here we extend the phase-amplitude reduction, and

MSF approach to treat networks of nonsmooth PWL oscillators.

For ease of exposition we shall focus on a network of two identical nodes.

We shall consider diffusive coupling through the v component. This form of

coupling is also referred as to gap junction coupling and has a common use

in the context of biological neural networks [52, 55]. In this case, the network

dynamics can be written in the form

 v̇1

ẇ1

 =

Aµ1

 v1

w1

+ bµ1

+ σ

 v2 − v1

0

 ,
 v̇2

ẇ2

 =

Aµ2

 v2

w2

+ bµ2

+ σ

 v1 − v2

0

 ,
(4.91)

where each node evolves in the corresponding region Rµi , i = 1, 2, and µ1, µ2 ∈

{1, . . . , N}. Here we aim to determine the stability of the synchronous state
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by implementing both the MSF approach and coupled phase-amplitude frame-

work and comparing their results; the MSF being exact makes an interesting

bench-mark for the phase-amplitude reduction.

4.6.1 Networks of two phase-amplitude units

Ermentrout et. al [92] employed second-order accurate phase-amplitude re-

duction formalism to analyse the stability of the synchronous state for a pair

of synaptically coupled thalamic neurons [261]. Since, their model is a smooth

one, they computed iPRC, iIRC, and second-order terms B, C numerically

using the methods presented in Chapter 2. As we discussed above in Sections

4.3-4.5 (for piecewise linear oscillators) these terms may have discontinuities.

Here we will extend the the work in [92] to treat piecewise linear oscillators.

To do so, we first rewrite (4.91) in the phase-amplitude network setting form

as follows
dθi
dt

= ω + σ [Z (θi) + ψiB (θi)] gi(t),

dψi
dt

= κψi + σ [I (θi) + ψiC (θi)] gi(t), i = 1, 2,

(4.92)

where

g1(t) = [v2(t)− v1(t), 0]>,

g2(t) = [v1(t)− v2(t), 0]>.

(4.93)

Here, the four periodic vector functions Z, I,B and C are all computed by using

the PWL node dynamics as explained in Sections 4.3, 4.4, and Subsections

4.5.1, 4.5.2, respectively. Setting perturbed solutions around the periodic orbit

by using equation (2.20), in the v−components, we have vi(t) = vγ (θi(t)) +

ψi(t)p
v (θi(t)), and this gives

g1(t) = [vγ (θ2(t)) + ψ2(t)pv (θ2(t))− vγ (θ1(t))− ψ1(t)pv (θ1(t)) , 0]>,

g2(t) = [vγ (θ1(t)) + ψ1(t)pv (θ1(t))− vγ (θ2(t))− ψ2(t)pv (θ2(t)) , 0]>,

(4.94)

where we assumed ψ1 and ψ2 areO(ε) terms, and we obtained periodic function

p from (4.57). We then put g1 and g2 into (4.92) and expand this by only
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keeping terms to a leading order O(ε2), and find

θ̇1 =ω + σ [Zv (θ1) [vγ (θ2)− vγ (θ1)] + ψ1[Bv (θ1) (vγ (θ2) − vγ (θ1))

−Zv (θ1) pv(θ1)] + ψ2Zv (θ1) pv(θ2) ] ,

ψ̇1 =κψ1 + σ[Iv (θ1) (vγ (θ2)− vγ (θ1)) + ψ1[Cv (θ1) (vγ (θ2)− vγ (θ1))

−Iv (θ1) pv(θ1)] + ψ2I (θ1) pv(θ2)],

θ̇2 =ω + σ [ Zv (θ2) [vγ (θ1)− vγ (θ2)] + ψ1Zv (θ2) pv(θ1)

+ψ2[Bv (θ2) (vγ (θ1)− vγ (θ2))−Zv (θ2) pv(θ2)] ] ,

ψ̇2 =κψ2 + σ [ Iv (θ2) (vγ (θ1)− vγ (θ2)) + ψ1Iv (θ2) pv(θ1)

+ψ2[Cv (θ2) (vγ (θ1)− vγ (θ2))− Iv (θ2) pv(θ2)] ] ,

(4.95)

where Zv, Iv,Bv and Cv are the v component of the corresponding vectors.

Then by denoting

h1 (θ1, θ2) = Zv (θ1) (vγ (θ2)− vγ (θ1)) ,

h2 (θ1, θ2) = Bv (θ1) (vγ (θ2)− vγ (θ1))−Zv (θ1) pv(θ1),

h3 (θ1, θ2) = Zv (θ1) pv(θ2),

h4 (θ1, θ2) = Iv (θ1) (vγ (θ2)− vγ (θ1)) ,

h5 (θ1, θ2) = Cv (θ1) (vγ (θ2)− vγ (θ1))− Iv (θ1) pv(θ1),

h6 (θ1, θ2) = Iv (θ1) pv(θ2),

we may rewrite system (4.95) in the form

θ̇1 = ω + σ [h1 (θ1, θ2) + ψ1h2 (θ1, θ2) + ψ2h3 (θ1, θ2)] ,

ψ̇1 = κψ1 + σ [h4 (θ1, θ2) + ψ1h5 (θ1, θ2) + ψ2h6 (θ1, θ2)] ,

θ̇2 = ω + σ [h1 (θ2, θ1) + ψ2h2 (θ2, θ1) + ψ1h3 (θ2, θ1)] ,

ψ̇2 = κψ2 + σ [h4 (θ2, θ1) + ψ2h5 (θ2, θ1) + ψ1h6 (θ2, θ1)] .

(4.96)
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Now we introduce rotating phase variables φj as θj = φj + ωt and substitute

into (4.96), to obtain

φ̇1 =σ[h1 (φ1 + ωt, φ2 + ωt) + ψ1h2 (φ1 + ωt, φ2 + ωt)

+ψ2h3 (φ1 + ωt, φ2 + ωt)],

ψ̇1 =κψ1 + σ[h4 (φ1 + ωt, φ2 + ωt) + ψ1h5 (φ1 + ωt, φ2 + ωt)

+ψ2h6 (φ1 + ωt, φ2 + ωt)],

φ̇2 =σ[h1 (φ2 + ωt, φ1 + ωt) + ψ2h2 (φ2 + ωt, φ1 + ωt)

+ψ1h3 (φ2 + ωt, φ1 + ωt)],

ψ̇2 =κψ2 + σ[h4 (φ2 + ωt, φ1 + ωt) + ψ2h5 (φ2 + ωt, φ1 + ωt)

+ψ1h6 (φ2 + ωt, φ1 + ωt)].

(4.97)

Since here ψ1, ψ2 and σ are assumed to be O(ε), φj evolves slowly, that is

φ̇j ' 0 which almost eliminates the explicit time dependence of φj over one

period. However, such small deviations may accumulate over longer time and

will affect the emergent network dynamics. Hence, over a single period of

motion, we can set φj(s) ' φj(t), s ∈ [t, t + T ]. Moreover, we know all hk,

k = 1, . . . , 6, functions are T periodic, therefore, we can average these functions

over period T . Then averaging each hk over one period T = 2π/ω yields

hk(φ1 + ωt, φ2 + ωt) ' 1

T

∫ T

0

hk(φ1 + ωt, φ2 + ωt)dt

=
1

2π

∫ 2π

0

hk(u, u+ φ2 − φ1)du

≡ Hk(φ2 − φ1).

(4.98)

Averaging gives an approximation of (4.97) as [130, 265]

φ̇1 = σ [H1 (φ2 − φ1) + ψ1H2 (φ2 − φ1) + ψ2H3 (φ2 − φ1)] ,

ψ̇1 = κψ1 + σ [H4 (φ2 − φ1) + ψ1H5 (φ2 − φ1) + ψ2H6 (φ2 − φ1)] ,

φ̇2 = σ [H1 (φ1 − φ2) + ψ2H2 (φ1 − φ2) + ψ1H3 (φ1 − φ2)] ,

ψ̇2 = κψ2 + σ [H4 (φ1 − φ2) + ψ2H5 (φ1 − φ2) + ψ1H6 (φ1 − φ2)] .

(4.99)
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Then by choosing χ ≡ φ2 − φ1, these equations reduce to

χ̇ = σ [H1(−χ)−H1(χ) + ψ1 (H3(−χ)−H2(χ)) + ψ2 (H2(−χ)−H3(χ))] ,

ψ̇1 = κψ1 + σ [H4(χ) + ψ1H5(χ) + ψ2H6(χ)] ,

ψ̇2 = κψ2 + σ [H4(−χ) + ψ2H5(−χ) + ψ1H6(−χ)] ,

(4.100)

where we can compute each Hk by evaluating the following integrals

H1(χ) =
1

2π

∫ 2π

0

Zv(u) [v(u+ χ)− v(u)] du,

H2(χ) =
1

2π

∫ 2π

0

(Bv(u) [v(u+ χ)− v(u)]−Zv(u)pv(u)) du,

H3(χ) =
1

2π

∫ 2π

0

Zv(u)pv(u+ χ)du,

H4(χ) =
1

2π

∫ 2π

0

Iv(u) [v(u+ χ)− v(u)] du,

H5(χ) =
1

2π

∫ 2π

0

(Cv(u) [v(u+ χ)− v(u)]− Iv(u)pv(u)) du,

H6(χ) =
1

2π

∫ 2π

0

Iv(u)pv(u+ χ)du.

(4.101)

In Appendix (C), Fig. C.1, Fig. C.2, Fig. C.3, and Fig. C.4 we illustrate the

shape of H1, H3, H4, and H6, respectively. We choose to plot these functions

since the stability of synchronous state explicitly depend on these, see (4.103),

however the plots of H2 and H3 can be obtained from (4.101) similarly.

Determining the stability of the fixed points of (4.100) correspond to as-

sessing the stability of phase locked solution of (4.92) or equivalently that of

(4.91). To find fixed points, that satisfy [χ̇, ψ̇1, ψ̇2]> = [0, 0, 0]>, we shall first

numerically calculate

ψ1(χ) =
−σH4(χ)(κ+ σH5(−χ)) + σ2H4(−χ)H6(χ)

(κ+ σH5(−χ))(κ+ σH5(χ))− σ2H6(χ)H6(−χ)
,

ψ2(χ) =
−σH4(−χ)(κ+ σH5(χ)) + σ2H4(χ)H6(−χ)

(κ+ σH5(χ))(κ+ σH5(−χ))− σ2H6(−χ)H6(χ)
,

(4.102)

χ ∈ [0, 2π], and then put these into the right hand side of χ̇. If the right

hand side of χ̇ is also zero for a particular q̂ = (χ, ψ1(χ), ψ2(χ)), then we
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conclude q̂ is a fixed point of (4.100). Here we are particularly interested in the

stability of synchronous solution which corresponds to [χ, ψ1, ψ2]> = [0, 0, 0]>.

By denoting [χ̇, ψ̇1, ψ̇2]> ≡ F , we can calculate the Jacobian of F at [0, 0, 0] in

the form

JF =


−2σH ′1(0) 2σH3(0) −2σH3(0)

σH ′4(0) κ− σH6(0) σH6(0)

−σH ′4(0) σH6(0) κ− σH6(0)

 , (4.103)

whereH ′k(0) = [∂Hk(χ)/∂χ] |χ=0. These terms can be calculated from equation

(4.101), for example H ′1(0) = (1/2π)
∫ 2π

0
Zv(u)v′(u)du. Then we can compute

the eigenvalues of JF

λ1 = κ,

λ2 =
1

2
(−2σ(H ′1(0) +H6(0)) + κ)

+
1

2

√
((2σ(H ′1(0)−H6(0)) + κ)2 + 16σ2H3(0)H ′4(0),

λ3 =
1

2
(−2σ(H ′1(0) +H6(0)) + κ)

− 1

2

√
((2σ(H ′1(0)−H6(0)) + κ)2 + 16σ2H3(0)H ′4(0).

Hence, the synchronous solution is stable if all eigenvalues of λ1, λ2 and λ3

have negative real part. Here we also observe that, if we keep only O(ε) terms

in the expansion (4.95), we obtain

θ̇1 = ω + σ [Zv (θ1) (vγ (θ2)− vγ (θ1)))],

ψ̇1 = κψ1 + σ [Iv (θ1) (vγ (θ2)− vγ (θ1))] ,

θ̇2 = ω + σ [Zv (θ2) vγ (θ1)− vγ (θ2))],

ψ̇2 = κψ2 + σ [Iv (θ2) (vγ (θ1)− vγ (θ2))] .

(4.104)

By following the above procedure, this will reduce to

χ̇ = σ [H1(−χ)−H1(χ)] ,

ψ̇1 = κψ1 + σ [H4(χ)] ,

ψ̇2 = κψ2 + σ [H4(−χ)] .

(4.105)
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In this case the Jacobian at [0, 0, 0] will be

J εF =


−2σH ′1(0) 0 0

σH ′4(0) κ 0

−σH ′4(0) 0 κ

 (4.106)

which has eigenvalues λε1 = −2σH ′1(0), and λε2 = κ = λε3. Here we know that

the Floquet exponent κ is negative (periodic orbit is stable), and therefore the

stability of synchronous solution will be determined from the sign of −2σH ′1(0).

In Section 2.4, using weak coupling theory (phase only reduction), we found

that the stability of the synchronous state was determined from the sign of

−σH ′(0)λi, (see equation (2.54)). The coupling matrix of the network setting

(4.91) has the graph-Laplacian form

G =

 w12 −w12

−w21 w21

 =

 1 −1

−1 1

 , (4.107)

which has eigenvalues λ1 = 0 and λ2 = 2, and also from the corresponding

definitions we know H ′(0) ≡ H ′1(0). Hence, as expected, the eigenvalues of J εF

and the formula given in equation (2.54) yield the same result. At this level

of accuracy, in Fig. 4.11, for each PWL model we plot the phase interaction

function K(χ) = H1(−χ)−H1(χ). In both cases, variation of coupling strength

σ does not effect the sign of λε1 or −σH ′(0)λi, and therefore first order accurate

reductions cannot uncover any effect of the variation of σ on stability (apart

from a sign change). Both the second order reduction and MSF formalism

enable this.

4.6.2 Master stability function approach

The MSF methodology cannot be directly applied to networks of nonsmooth

oscillators. Here, we first review the technique that adapts the MSF to PWL

systems given in [54], and then apply this method to the models considered in
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Figure 4.11: Phase interaction functions. (a)-The McKean model with parameters
as in Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5. (c) Homoclinic
loop model with τ2 = 0.64 and other parameters as in Fig. 3.7. (d)-PML model with
parameters as in Fig. 3.10.

this chapter. We aim to show how the stability of the synchronous solution

changes under variation of the coupling strength in linearly coupled networks

settings for systems of the type (4.91). In Section 2.4, we introduced the MSF

technique for networks of smooth N identical m dimensional oscillators given

in equation (2.62) and decoupled this into a set of m dimensional systems in

the form (2.67) to assess the stability of synchronous state. For PWL systems

of the form (4.4) with linear diffusive coupling both Df(s) and DH(s) are

piecewise constant matrices. Therefore, in each subregion Rµ, (2.67) evolves

according to

dξµ
dt

= [Aµ − βJ ]ξµ, β ∈ C, (4.108)

where J = DH(s) and ξµ ∈ Cm. Then, we can solve this system using matrix

exponentials, i.e. ξµ(t) = G (Aµ − βJ ; t) ξµ(0); whereG(A; t) is given by (3.12),

though, we may need to be careful while evolving perturbations through the
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switching manifolds. Using the previous notation from Subsection 2.4.5 where

U = (δx1, δx2, . . . , δxN) ∈ RNm, at each event time tµ, we can write U+ =

(IN ⊗ S(tµ))U−. Then we may reuse the transformation Y = (P ⊗ Im)−1U to

obtain

Y + = (P ⊗ Im)−1U+ = (P ⊗ Im)−1(IN ⊗ Sµ)U−

= (P ⊗ Im)−1(IN ⊗ Sµ)(P ⊗ Im)Y − = (P−1 ⊗ I−1
m )(IN ⊗ Sµ)(P ⊗ Im)Y −

= (P−1IN)⊗ (I−1
m Sµ)(P ⊗ Im)Y − = (INP

−1)⊗ (SµI
−1
m )(P ⊗ Im)Y −

= (IN ⊗ Sµ)(P−1 ⊗ I−1
m )(P ⊗ Im)Y − = (IN ⊗ Sµ)(P−1P )⊗ (I−1

m Im)Y −

= (IN ⊗ Sµ)(IN ⊗ Im)Y − = (IN ⊗ Sµ)INmY
−

= (IN ⊗ Sµ)Y −.

(4.109)

Hence, (4.109) has m × m, N−block structure, and therefore the saltation

operator acts on each block with ξ(t+µ ) = S(tµ)ξ(t−µ ). Using the technique

in Appendix A to treat perturbations across a switching boundary, after one

period of motion (with N switching events), we have ξ(T ) = Γξ(0), where

Γ = SNG (AN − βJ ;TN) . . . S2G (A2 − βJ ;T2)S1G (A1 − βJ ;T1) . (4.110)

For PWL systems, we see that all the individual variational equations, in the

form (2.66), have the same structure as that of system (4.108). The only

difference being the additional term βl = σλl. Therefore by choosing some

reasonable value of β over the complex plane, we can determine the stability of

(2.66) by checking this for each βl = σλl over the MSF of (4.108). Alternatively,

we can calculate Γ for each l, where we denote each of them by Γ(l), and then,

the synchronous state will be stable if the periodic solution of a single node

is stable and the eigenvalues of Γ(l) for l = 2, . . . , n lie within the unit disc.

Here, as an example, we consider the network setting (4.91) of planar PWL

oscillators, for which the graph-Laplacian has eigenvalues λ1 = 0 and λ2 = 2
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(see equation (4.107)). Then equation (4.108) reads

dξµ
dt

= [Aµ − 2σJ ]ξµ, (4.111)

where ξµ ∈ R2, and stability will be determined from the eigenvalues of

Γ(l), l = 2. In the next section, we will illustrate the MSF (network inde-

pendent) for the McKean model, the absolute model, the homoclinic model,

and the PML model. Then we will determine the stability of the synchronous

state of (4.91) for each model under variation of coupling strength (σ).

4.7 Applications and comparisons

Here we examine the stability of the synchronous state using weak coupling

theory, the second-order accurate phase-amplitude network formalism, and the

MSF methodology. We compare results against the numerical simulations and

explore the accuracy of each approach.

4.7.1 Networks of the McKean and absolute models

For the McKean and absolute models presented earlier, by using the node

parameters as in Fig. 3.3 and Fig. 3.5, we find that the synchronous network

state is stable for small σ (weak coupling) and also observed that this stability

persists with increasing σ. All of the three methods give the same result,

and these results show excellent agreement with numerical simulations. These

results can be seen in Figs. 4.12 and 4.13.

4.7.2 Networks of piecewise linear Morris-Lecar model

For the PML model, phase-amplitude formalism and MSF approach predict

that the synchronous state is unstable for small σ and that can restabilise

by increasing σ. Using the MSF approach, the synchronous state is un-

stable for 0 ≤ σ ≤ 0.272 and stable for σ > 0.272. However, using the

phase amplitude network formalism, the synchronous state is predicted to be
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Figure 4.12: Networks of the McKean model. (a)-MSF together with the values
σλl where λl are eigenvalues of coupling matrix G. We know that G has eigenvalues
λ1 = 0 (brown dot) and λ1 = 2 (blue dot where we choose σ = 1). Under σ
variation, position of the blue dot changes along the x−axis. The MSF takes positive
and negative values on green and white regions, respectively. For σ > 0, the MSF
predicts that the synchronous state is always stable. (b)-Stability of the synchronous
state using phase-amplitude network formalism. Here we plot the maximum of the
real parts of the eigenvalues of the Jacobian matrix JF , denoting this by λα, where
λα = max{Re(λ1),Re(λ2),Re(λ3)}, and σ ∈ [0, 2.5]. As seen in (b), λα is always
negative, hence synchrony is always stable. In addition H ′1(0) = 0.5363 and therefore
λε1 = −2σH ′1(0) = −1.0727σ, thus from weak coupling theory, we conclude that the
synchronous state is always stable for σ > 0. Direct numerical simulations confirm
that the synchronous network state is always stable. Node parameters as in Fig. 3.3.

unstable for 0 ≤ σ ≤ 0.2071 and stable for σ > 0.2071. In addition to

this, H ′1(0) = −6.2766, and therefore using weak coupling theory, we derive

λε1 = −2σH ′1(0) = 12.5533σ, which is positive for σ > 0, and this implies

synchronous state is always unstable for positive coupling strength. We per-

formed direct numerical simulations and observed that the synchronous state

is unstable for 0 ≤ σ ≤ 0.272 and stable for σ > 0.272, which exactly agrees

with MSF result. Hence, in this case, although the phase amplitude network

formalism gave a better result than weak coupling theory, it is still insufficient

to detect the bifurcation point precisely. These results can be seen in Figs. 4.14

and 4.15.

4.7.3 Networks of the homoclinic (loop) model

For the homoclinic (loop) model, we consider two cases. As a first case, by

choosing τ2 = −0.68, we constructed a periodic orbit that is not very close

to the homoclinic limit (this can be thought as a smoothed homoclinic loop).

In the network setting, by using the MSF method, the synchronous state is
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Figure 4.13: Networks of the absolute model. (a)-MSF together with the values
σλl where λl are eigenvalues of coupling matrix G. We know that G has eigenvalues
λ1 = 0 (brown dot) and λ1 = 2 (blue dot where we choose σ = 1). Under σ
variation, the position of blue dot moves along the x−axis. The MSF takes positive
and negative values on green and white regions, respectively. For σ > 0, the MSF
predicts that the synchronous state is always stable. (b)-Stability of the synchronous
state using phase-amplitude network formalism. Here we plot the maximum of the
real parts of the eigenvalues of the Jacobian matrix JF , denoting this by λα, where
λα = max{Re(λ1),Re(λ2),Re(λ3)}, and σ ∈ [0, 2.5]. As seen in (b), λα is always
negative, hence the synchronous state is always stable. In addition H ′1(0) = 0.3038
and therefore λε1 = −2σH ′1(0) = −0.6077σ, thus from weak coupling theory, we
would predict that synchrony is always stable for positive σ. We also performed
direct numerical simulations and confirmed that the synchronous state is always
stable. Node parameters as in Fig. 3.5.

stable when 0 ≤ σ ≤ 0.2719, and unstable if 0.2719 < σ ≤ 0.5527, it then

restabilise for 0.5527 < σ. In this case, using phase-amplitude network for-

malism, the synchronous state is stable when 0 ≤ σ ≤ 0.00696, and unstable

if 0.00696 < σ, and stays unstable with increasing values of σ. Moreover,

H ′1(0) = 0.0966, and therefore λε1 = −2σH ′1(0) = −0.1932σ, thus from weak

coupling theory, the synchronous state is always stable for positive σ. We de-

pict these results in Fig. 4.16. We also performed direct numerical simulations

and find that the MSF method shows an excellent agreement with actual simu-

lation, see Fig. 4.17. Hence, as compared with weak coupling theory, although

the phase-amplitude network formalism detects a bifurcation point, it still does

not detect this point precisely. As a second case, we consider node parameter

as in Fig. 3.7 which is close to homoclinic limit. In the network setting of this

case, by using the MSF method, we find that the synchronous state is unstable

when 0 ≤ σ ≤ 0.0395, and stable if 0.0395 < σ ≤ 0.0439, then unstable for
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Figure 4.14: Networks of the PML model. (a)- The MSF together with the values
σλl where λl are eigenvalues of coupling matrix G with eigenvalues λ1 = 0 (brown
dot) and λ1 = 2 (blue dot where we choose σ = 1). Under σ variation, the position
of blue dot moves on the x−axis. The MSF takes positive and negative values on
green and white regions, respectively. For this particular G: the synchronous state
is unstable when 0 ≤ σ ≤ 0.272 and stable if σ > 0.272. This is explicitly shown in
panel (c), where we depict the maximum real part of the Floquet exponents (κmax)
by directly using (4.111). b)-Stability of the synchronous state using phase amplitude
network formalism. We plot the maximum of the real parts of the eigenvalues of the
Jacobian matrix JF , denoting this by λα, where λα = max{Re(λ1),Re(λ2),Re(λ3)},
and σ ∈ [0, 2]. As shown in panel (b), λα is positive when σ ∈ [0, 0.2071], hence the
synchronous state is unstable, and negative for σ > 0.2071 so the synchronous state
is stable. To compare these two approaches, in panel (d), we illustrate the bifurca-
tion points on the same figure where blue curve with green dot and red curve with
magenta dot correspond to the MSF approach and the phase-amplitude formalism, re-
spectively. In addition H ′1(0) = −6.2766 and therefore λε1 = −2σH ′1(0) = 12.5533σ,
thus from weak coupling theory, we conclude that synchrony is always unstable for
positive σ. We also performed direct numerical simulations in Fig. 4.15, and find
that the MSF approach gives the exact result. Node parameters as in Fig. 3.10.

0.0439 < σ ≤ 1.178, and again stable for 1.178 < σ ≤ 2.226, and then unstable

for any 2.226 < σ. In this case, by using the phase-amplitude network formal-

ism, we find that the synchronous state is always unstable for positive values

of σ. Moreover, H ′1(0) = −3.8424, and therefore λε1 = −2σH ′1(0) = 7.6848σ.

Thus from weak coupling theory, we would conclude that the synchronous
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Figure 4.15: Direct numerical simulations of PML networks for different σ values.
(a,b)- σ = 0.1. (c,d)- σ = 0.18. (e,f)- σ = 0.25. And (g,h)- σ = 0.28. In the left
panels (a, c, e, g) we plot network activity in the (v, w) plane, and in the right panels
we plot v1 and v2 components against time t. For all σ ≥ 0.272 the synchronous
network state is always stable, and for σ < 0.272 we observe different patterns. Node
parameters as in Fig. 3.10 and G is given by (4.107).
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state is always unstable when 0 < σ. We also performed direct numerical

simulations and find that the MSF method is in excellent agreement, and the

other methods not so. We illustrate these results in Figs. 4.16, 4.18, and 4.19.

Finally, we test the accuracy of these methods when the periodic orbit moves

away from the homoclinic case, by choosing −0.7 ≤ τ2 ≤ −0.6333, and find

that both phase-amplitude network formalism and weak coupling theory fail

to detect bifurcation points precisely. We show this using Fig. 4.20.

4.8 Discussion

In this chapter we have studied three methods to investigate the stability

properties of the synchronous state of networks of identical PWL oscillators,

namely weakly coupling theory, the phase-amplitude network formalism, and

the MSF approach. Although the weak coupling theory of oscillators is a pow-

erful tool and has been applied to a variety of problems across many different

areas of science [14, 137, 270], as we have shown above, it fails to reflect the

effect of coupling strength variation on the stability of the synchronous state.

In order to improve the accuracy of the standard first-order phase reduction

technique, various researchers have proposed higher order approximation to

compute isochronal coordinates more accurately, such as in [297, 299]. How-

ever, it is important to also consider the dynamical evolution of the perturbed

system in the transversal directions to the limit cycle, and this can be done by

introducing amplitude coordinates. Many approaches have been proposed for

smooth systems to tackle this problem, see for example, [43, 181, 319].

Recently, Wilson and Moehlis [328] introduced a new phase-amplitude

reduction framework that defines amplitude coordinates using Floquet the-

ory. Then, they improved this to a second-order accurate phase-amplitude

reduced system in [325]. Moreover, Wilson [320] extended this technique to

piecewise smooth systems by showing how to compute discontinuity conditions

for the first and second order terms of the phase and amplitude coordinates.

These studies, initially, have been done at node level. Ermentrout et al. [92],
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extended this framework to a network of two identical synaptically coupled

thalamic neuron models. They showed that there are interesting bifurcations

that are not captured by a phase only reduction. Wilson [326] made a simi-

lar observation for a pair of coupled complex Ginzburg-Landau oscillators. In

these two recent works, network units are prescribed by smooth systems, and

here we have extended this methodology to a network setting where nodes

have PWL oscillatory dynamics. This has enabled us to compute higher order

reduction terms in closed from, and therefore higher order coupling functions

more accurately.

We have confirmed predicted results from theory against the actual numer-

ical simulations for a variety of networks. For McKean and absolute systems

both weak coupling theory and phase-amplitude network formalism give the

same stability result for the synchronous state, and this is in agreement with

numerical simulations. However, for the PML network, weak coupling theory

predicts that synchrony is unstable for σ > 0 though the phase-amplitude for-

malism predicts that it unstable until σ = 0.2071 and stable for all larger σ.

Simulations suggest that synchrony is unstable until σ = 0.272 and stable for

all larger σ. In comparison the MSF approach for nonsmooth systems is in ex-

cellent agreement, both qualitatively and quantitatively, predicting σ = 0.272

as a bifurcation point. We obtained similar results for the homoclinic loop

network model, as summarised in Fig. 4.20.

Some interesting patterns, even at the level of networks of two nodes,

have been observed for the PML model, see Fig. 4.15. The phase-amplitude

network formalism maybe useful to test stability of these states as shown in

[92]. Hence, the PWL modelling approach is beneficial for both phase only

reduction and the phase-amplitude formalism since it allows one to compute

the terms iPRC, iIRC, B and C quasi-analytically, rather than relying on ex-

pensive numerical computations. Moreover, the MSF methodology gives exact

results for determining the stability of the synchronous state in networks of

PWL units without approximation or reduction.
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Figure 4.16: Networks of the homoclinic loop model. Plots in the left column belong
to a smoothed loop (τ2 = −0.68), and that of the right column belongs to the original
homoclinic loop. (a,b)- MSF together with the values σλl where λl are eigenvalues of
coupling matrix G with eigenvalues λ1 = 0 (brown dot) and λ1 = 2 (blue dot where
we choose σ = 1). In the green and white zones the MSF is positive and negative,
respectively. Under σ variation, the position of blue dot moves along the x−axis. In
panel (b), to show MSF is negative for 0.0395 < σ ≤ 0.0439, we show a zoom of this
area. In panel (c,d), we plot the maximum real part of the Floquet exponents (κmax)
to show the MSF results more explicitly. In panel (e,f), we test the stability of the
synchronous state using the phase-amplitude network formalism. Here we plot the
maximum of the real parts of the eigenvalues of the Jacobian matrix JF , denoting
this by λα, where λα = max{Re(λ1),Re(λ2),Re(λ3)}, and σ ∈ [0, 2.5]. In addition to
these, for smoothed loop, H ′1(0) = 0.0966 and therefore λε1 = −2σH ′1(0) = −0.1932σ,
thus from weak coupling theory, we would conclude that synchrony is always stable
for positive σ. For the original homoclinic loop, H ′1(0) = −3.8424 and therefore
λε1 = −2σH ′1(0) = 7.6848σ, thus from weak coupling theory, we would conclude
that synchrony is always unstable for σ > 0. We also performed direct numerical
simulations and found that the MSF approach was in excellent agreement with actual
network activity. Other node parameters as in Fig. 3.7.
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Figure 4.17: Direct numerical simulations of networks of the smoothed homoclinic
loop for different σ values. (a,b)- σ = 0.1 (c,d)- σ = 0.5, and (e,f)- σ = 0.6. In
the left panels (a, c, e) we plot network activity in the (v, w) plane and in the right
panels (b,d,f) we plot v1 and v2 components against time t. Node parameters as in
Fig. 3.7 with τ2 = −0.68 and G is given in (4.107).
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Figure 4.18: Direct numerical simulations of networks of the homoclinic loop (given
in Fig. 3.7) for different σ values. (a,b)- σ = 0.02 (c,d)- σ = 0.041, and (e,f)-
σ = 0.08. In the left panels (a, c, e) we plot network activity in the (v, w) plane and
in the right panels (b,d,f) we plot v1 and v2 components against time t. G is given
in (4.107)
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Figure 4.19: Direct numerical simulations of networks of the homoclinic loop for
different σ values. (a,b)- σ = 2, and (c,d)- σ = 2.6. In the left panels (a,c) we
plot network activity in the (v, w) plane and in the right panels (b,d) we plot v1 and
v2 components against time t. Node parameters as in Fig. 3.7 and G is given in
(4.107).
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Figure 4.20: Stability of the synchronous state of networks of the homoclinic loop
model. Here we compare three methods by choosing τ2 ∈ [−0.7,−0.6333] and σ ∈
[0, 1.5]. On blue and dark red regions the synchronous state is stable and unstable,
receptively. (a) MSF approach. (b) Phase amplitude network formalism. (c) Weak
coupling theory. We compare these result against direct network simulations and find
that the MSF approach agrees very well with simulations. Other node parameters as
in Fig. 3.7 and G is given by (4.107).
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Chapter 5

Networks of Franklin bells

5.1 Introduction

The history of the Franklin bell is long and well established. Although named

after the American scientist Benjamin Franklin it was in fact invented by the

Scottish Benedictine monk Andrew Gordon in Erfurt, Germany, around 1742.

The bell converts electrical energy into mechanical energy in the form of a

repeating mechanical motion and forms the basis for many modern day bell-

chimes, from security alarms to school bells. Franklin made use of Gordon’s

idea by connecting one bell to his pointed lightning rod, attached to a chimney,

and a second bell to the ground. One of his letters contains the following

description [103]

In September 1752 I erected an Iron Rod to draw the Lightning

down into my House, in order to make some Experiments on it,

with two bells to give Notice when the Rod should be electrified. A

contrivance obvious to every Electrician.

The original Franklin bell was composed of a pair of bells located a certain

distance apart and one conductive metal ball hanging between them from

an insulating string. It operates when one of the bells receives an electrical

discharge as a weather cloud crosses above the lightning rod connected to that
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bell while the other bell conducts the discharge to the ground. The shuttling

behaviour of the metallic ball between bells produces the chime and allows the

detection of lightning. This is a prototypical example of an impact oscillator.

In recent years, a considerable amount of research has been devoted to

the development of efficient techniques to analyse the dynamical behaviours

of impacting systems. This has been motivated in part by challenges arising

in control theory, population dynamics, chemistry, physics, biotechnologies,

economics, industrial robotics, to name but a few [44, 81, 82, 264, 280, 336].

Indeed, many real world systems can be characterised by instantaneous jumps

or switches in behaviour, which may be created by impulsive interactions. In

contrast to smooth dynamical systems, the analysis of such nonsmooth systems

is relatively underdeveloped. This is even more true at the network level. Thus,

it is of interest to either adapt techniques from the theory of smooth dynamical

systems or to develop entirely new ones, as in Chapter 4. We do so here with

a focus on synchronous periodic states in Franklin bell networks of arbitrary

topology. For some demonstrations of Franklin bell networks we refer the

reader to the growing number of videos that are being increasingly used in

scientific outreach activities [251]. We have made our own (using aluminium

drink cans and a hand operated electric generator) and see [268] for a link to

a video.

Since synchrony is a common behaviour seen in networks of oscillators with

graph-Laplacian coupling (of which diffusive coupling is a classic example), and

arises in many different areas [10, 11, 218, 231, 240, 241, 291, 316, 340, 342],

Pecora and Carroll [229, 231] developed a network Floquet theory that can

be diagonalised in the basis of the eigenvectors of the network connectivity

matrix. This means that the stability of the synchronous orbit can be as-

sessed in terms of a set of lower dimensional Floquet problems parameterised

by the (possibly complex) eigenvalues of the network connectivity matrix, see

Subsection 2.4.5 for more details. Recently, this method has been extended

to treat diffusively coupled networks of nonsmooth Filippov type [100] and
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integrate-and-fire piecewise linear oscillator models [54, 174, 217], making use

of saltation operators. These have been widely used in the nonsmooth dynam-

ical systems community to treat the linearised evolution of small perturbations

through switching manifolds [211] and see Section 4.2.

As well as developing the mathematical techniques for handling a truly

nonsmooth Franklin bell network, we further introduce a new form of smooth-

ing that circumvents the need for constructing saltation operators. At heart,

this technique introduces a virtual linear dynamical system that smoothly con-

nects the orbits before and after impact. The duration of this virtual trajectory

(that bridges the impact) is chosen as a control parameter δ. In the limit that

δ tends to zero the propagator for this virtual system recovers the saltation

rule. Thus working with small but finite δ we may treat the Franklin bell

network solely as a smooth system. As expected the MSF for the nonsmooth

network and the smoothed network show excellent agreement for small δ.

The organisation of the chapter is as follows. In Section 5.2, we provide

a detailed description of a model for a single Franklin bell. We show how to

construct periodic orbits and use the modified Floquet theory from Section 4.2

to assess solution stability. We use this to determine the bifurcation diagram as

a function of the restitution of the ball velocity upon impact with the bell. In

Section 5.3, we present the new smoothing technique and show that it recovers

the saltation operators previously constructed. Then in Section 5.4 we use the

MSF technique to determine the stability of synchronous network states, for

both smooth and nonsmooth networks. Numerical examples are presented in

Section. 5.5 and shown to be in excellent agreement with theory. Finally in

Section 5.6 we discuss the results in this chapter and natural extensions of the

work presented.

The results of this chapter have been published in [269].
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5.2 Model description and periodic orbits

In it simplest form the Franklin bell can be regarded as an electro-mechanical

system consisting of two oppositely charged parallel plates (representing the

metal bells) with a conductive particle (metal ball) which travels between

them. This is suspended from an insulting wire hanging midway between the

two plates. The polarisation of the plates is maintained by a battery, such that

the constant electric field between them generates an electrostatic force that

causes the ball to move. Upon impact with a plate the ball reverses direction

and moves toward the opposite plate. In this way a periodic impacting rhythm

can be generated. This is illustrated in Fig. 5.1. To formulate a mathematical
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Figure 5.1: A sketch of the electro-mechanical idealisation of a single Franklin
bell. Here a battery generates a constant voltage V across the circuit. An initially
stationary ball, hanging midway between the two charged plates, will have a charge
distribution that is positive on its right-hand side and negative on its left hand side.
Left: An initial push to the left will cause a stationary ball to be attracted to the left-
hand plate. Upon impact it will exchange charge with the plate and develop a net
positive charge distribution. The ball and plate will then both have positive charge
and repel each other. Right: The repulsive force from the left will cause an impact of
the ball with the right-hand plate, where it can collect negative charge. The negatively
charged metal ball will then be repelled from the negatively charged plate, and will
move to the left. Thus a repetitive impacting oscillation can develop. This is the
basis for chiming in a Franklin bell.

description of this idealised process we consider the metallic plates to be placed

at the positions u = ±a, with u ∈ R. The ball that travels between the plates

is governed by the dynamics of a forced damped simple harmonic (pendulum)

oscillator. The direction of the forcing is determined by the sign of the charge

carried by the ball at the instant before impact and is reversed after impact.
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The magnitude of this force is determined by the sum of the repelling and

attracting electrostatic forces, and will be assumed to be a constant denoted

by f . Thus we are led to the equations of motion for a single Franklin bell as

ü+ γ1u̇+ γ2u = sgn(u̇)f, if t 6= ti, (5.1)

u̇(t+i ) = −ku̇(t−i ), if t = ti. (5.2)

Here u, u̇, and ü are the position, velocity, and acceleration of the particle

at time t, respectively. The damping coefficient is given by γ1 > 0, γ2 > 0

sets the natural frequency of the pendulum, and k ∈ R+ is the coefficient

of restitution upon impact. The impact times ti are determined implicitly

from the conditions u(ti) = ±a, i ∈ Z. The dramatic change in velocity

at impact is governed by equation (5.2), where u̇(t−i ) represents the velocity

of the ball immediately before t = ti and u̇(t+i ) immediately thereafter, that

is u̇(t±i ) = limt→t±i
u̇(t). It is clear from the equation (5.1) that the right

hand side of the system changes discontinuously upon impact. Moreover, the

system is impulsive because of the velocity jump at the impact times. Thus, we

consider the basic Franklin bell model as a state-dependent impulsive system

with discontinuous changes in the vector field at impact times. Models of this

type exist in many in real world scenarios [80, 105, 184, 211, 336], and are

exemplified by impact oscillators. Thus, it is natural to analyse the Franklin

bell as a state-dependent impacting system [25, 105].

It is first sensible to examine the fixed point structure of the model. In-

troducing v = u̇ and denoting x = (u, v)T, then (5.1) and (5.2) can be written

in a state-space form as

ẋ = Ax+ fe, if t 6= ti, (5.3)

x(t+i ) = J
(
x(t−i )

)
, if t = ti, (5.4)
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where

A =

 0 1

−γ2 −γ1

 , fe =

0

f

 sgn(v), (5.5)

and J (x) = (u,−kv)T. As well as the jump rule J for describing what happens

at impact it is convenient to introduce two indicator functions h = h±(x) = u±a

that determine the times of impact according to h(x(ti)) = 0.

From (5.3) the stability of any equilibrium points is determined by the

eigenvalues of the matrix A. These are easily calculated as λ± = (−γ1 ±√
γ2

1 − 4γ2)/2. Remembering that γ1 and γ2 are both positive, we see that if a

fixed point exists then it is stable (being a node for γ2
1−4γ2 ≥ 0 and a focus oth-

erwise). Formally, equilibrium points can be calculated as (u, v) = (±f/γ2, 0).

Consequently if |f | < γ2|a| then both fixed points will be between the two

plates, and otherwise they will be virtual (lying outside of the physically ac-

cessible region). This latter case will guarantee the existence of impacts, and is

the one we focus on for the rest of the chapter since it is a necessary condition

for the existence of periodic orbits, and hence chiming in a Franklin bell.

5.2.1 Construction and stability of periodic solution

In general it is very hard to find closed form solutions for periodic orbits

in nonlinear dynamical systems. However, since (5.3) is a piecewise linear

system, it can be solved exactly in regions of phase space where v > 0 and

v < 0, respectively, and solutions glued together to construct periodic orbits.

Consider now a periodic motion that starts at t = 0+ at Plate 1 (see Fig. 5.1)

and returns to the same point after a period ∆. Let us denote the time-of-flight

for the trajectory from u = −a to u = a with v > 0 by ∆1. Using formulation

(3.11), an explicit form for this trajectory can be constructed with initial data

(u(0+), v(0+)) = (−a, v0) as:

u(t)

v(t)

 = eAt

−a
v0

+ A−1
(
eAt − I2

)0

f

 , 0 < t ≤ t1. (5.6)
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The impact time t1 is determined by the condition u(t−1 ) = a, and the time-of-

flight is simply ∆1 = t1. An application of the jump rule can then be used to

determine new initial data for the trajectory in the region where v < 0. This

yields u(t+1 )

v(t+1 )

 =

 a

−kv(t−1 )

 . (5.7)

Denoting the time-of-flight for the trajectory from u = a to u = −a with v < 0

by ∆2, then the corresponding trajectory is

u(t)

v(t)

 = eA(t−t1)

 a

v(t+1 )

− A−1
(
eA(t−t1) − I2

)0

f

 , t1 < t ≤ t1 + ∆2.

(5.8)

The impact time t2 is determined by the condition u(t−2 ) = −a, and the time-

of-flight is simply ∆2 = t2 − t1. An application of the jump rule at time t2

then gives (u(t+2 ), v(t+2 )) = (−a,−kv(t−2 )), and for the orbit to be periodic

this must match the initial data (u(0+), v(0+)) = (−a, v0). Thus a periodic

orbit, parametrised by (t1, t2, v0), will exist if there is a solution to the three

simultaneous nonlinear algebraic equations (similar to (3.15))

a = u(t1), −a = u(t2), v0 = −kv(t−2 ). (5.9)

If a solution exists then the period of oscillation for a periodic orbit with

x(t) = x(t+ ∆) is given by ∆ = ∆1 + ∆2.

To determine the stability of the periodic solution we follow the approach

given in Section 4.2. After one period of oscillation a perturbation δx(t) to

the periodic orbit will have evolved according to the formula δx(∆) = Qδx(0)

where

Q = S(t2)eA∆2S(t1)eA∆1 , (5.10)
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and

S(t) =

 −k 0

k v̇(t−)
u̇(t−)

+ v̇(t+)
u̇(t−)

−k

 . (5.11)

In (5.10), the saltation operator S(t) given by (5.11) is used to map perturba-

tions across the impact manifolds (where u = ±a). Thus, the periodic orbit

will be stable if the eigenvalues of Q lie within the unit disc. Since for a planar

system one of the Floquet multipliers is equal to one (corresponding to tangen-

tial perturbations along the orbit) there is only one non-trivial eigenvalue of Q

to consider. If we denote this by eκ∆ and use the result that detQ = eκ∆ × 1,

then we have that

κ =
1

∆
log detQ = −γ1 +

4

∆
log k. (5.12)

A periodic orbit will be stable if κ < 0. Thus if k < 1 then all periodic orbits

must be stable. However if the coefficient of restitution were taken to be greater

than one (corresponding to injecting energy into the system at impact) then

it would be possible for unstable periodic orbits to exist. An example of a

co-existing stable and unstable periodic orbit for k > 1 is shown in Fig. 5.2.

Here a stable periodic orbit is encircled by a an unstable periodic orbit with a

large amplitude.

A bifurcation diagram, summarising the properties of periodic orbits un-

der variation in the coefficient of restitution k is shown in Fig. 5.3. Here we

see that for k < 1 there is only one stable periodic orbit, whilst for k > 1 a

new unstable period orbit of large amplitude can be created. With increasing

k, it is ultimately destroyed in a saddle-node bifurcation of periodic orbits.

Mechanically, the case with k > 1 corresponds to energy being pumped into

the system at impact, as in many pinball machines, and is often referred to as

active impact [245].

134



-1 -0.5 0 0.5 1

u

-4

-3

-2

-1

0

1

2

3

4

v

Figure 5.2: Limit cycles of the Franklin bell model described by equations (5.1) and
(5.2). The impact manifolds (representing Plates 1 and 2 in Fig. 5.1) are fixed with
the choice a = ±1. The red dashed and blue solid curves shown an unstable and
stable periodic orbit for k = 1.6. Other parameters are γ1 = γ2 = 0.9, f = 0.93.
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Figure 5.3: Bifurcation diagram for limit cycles of the Franklin bell model given by
equations (5.1) and (5.2). Parameters are the same as that for Fig. 5.2. For k ≤ 1
there is only one stable periodic orbit. At k = 1 an unstable orbit with infinitely
large amplitude is born whose amplitude decreases with a further increase in k. For
k > 1 stable and unstable periodic orbits co-exist until k ' 1.663 where they are lost
in a saddle-node bifurcation of periodic orbits. The amplitude of the stable periodic
orbit is always less than that of the unstable orbit. Black solid (dashed) and red solid
(dashed) curves represent Floquet exponents and the amplitude of stable (unstable)
periodic orbits respectively.
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5.3 A piecewise linear smoothing technique

Although the nonsmooth system can be treated rigorously with the use of

saltation operators it is of interest to consider a smoothed version of the model,

which can be analysed with more traditional techniques. The choice of smooth-

ing is somewhat arbitrary and one may consider a variety of approaches and a

discussion can be found in Jeffrey [151]. If the model is written using poten-

tials, then the nonsmooth system has an infinitely steep potential at the two

plates, which could be replaced by a potential function with finite but steep

gradient at the plates. Instead here we choose to append new dynamical rules

at the end plates (and the regions beyond them), remove the strict impact

condition, and allow trajectories to cross through the switching manifolds. We

now envisage trajectories, beyond the plates, that smoothly connect to those

within the plates. If the latter are determined by the original nonsmooth sys-

tem then this effectively provides a smoothing. Preserving the shape of an

orbit this does not preserve its proper duration as further time is needed to

traverse the region outside the plates. If the time-of-flight could be reduced

to zero outside the plates then this would recover the truly nonsmooth trajec-

tory. Here we show that this can be achieved with a simple choice of linear

dynamical system outside the plates.

The formal description of the smoothed model is written by augmenting

the original model, given by (5.1) and (5.2), in the following way:

dx

dt
=


Ax+ fe, if |u| ≤ a

ARx+ fR, if u > a

ALx+ fL, if u < −a

, (5.13)

for as yet undetermined matrices AR,L ∈ R2×2 and vectors fR,L ∈ R2. Each

of the two new linear dynamical system is thus determined by six unknown

parameters (four for AR,L and two for fR,L). These can be computed from
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matching conditions at the points where u = ±a such that the solution for

x and ẋ is continuous and respects the rule for restitution. For example

if we denote the value of x when u = +a by x(ti) then we would require

ARx(ti) + fR = Ax(ti) + fe (two equations), x(ti + δt) = J (x(ti)) (two equa-

tions), and ARx(ti + δt) + fR = Ax(ti + δt) + fe (two equations). This gives a

total of six equations for six unknowns, parameterised by the time-of-flight δt.

The equation for x(t) can be determined explicitly using matrix exponentials,

as in Eq. (5.6) and Eq. (5.8), using the matrix A or AR,L as appropriate. The

six simultaneous nonlinear equations can be solved numerically. Similarly we

may match at u = −a and obtain a similar system of equations (under the in-

terchange of labels R to L). An illustration of this process is given in Fig. 5.4.
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Figure 5.4: A visualisation of a smoothed trajectory. Parameters are the same as
Fig. 5.2, with k = 0.5 and δt = 0.5. The trajectory in solid red coincides with that
of the nonsmooth system described by Eq. (5.3) and Eq. (5.4). The trajectories in
dashed blue are those from the augmented linear dynamical system, see Eq. (5.13),
and are constructed to match those in red at the points P1, . . . , P4 in a C1 fashion.

In Fig. 5.5 we show two examples of trajectories constructed by patch-

ing together matrix exponential solutions in the regions u < −a, |u| ≤ a, and

u > a, subject to the smoothing process described above. As we take δt smaller

and smaller we find that the smooth trajectory approaches that of the nons-

mooth system, as expected. The stability of periodic orbits in the smoothed

system can be easily determined using the fact that the non-trivial Floquet

exponent is given simply by κ = ∆−1
∫ ∆

0
TrD(s)ds, where D(s) represents the
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Jacobian along the periodic orbit. Due to the piecewise linear nature of the

model this reduces to κ = ∆−1
∑4

i=1 ∆i TrAi, see Section 4.2 for the details of

this. Here A1 = A3 = A, A2 = AR, A4 = AL and ∆ = ∆1+∆2+∆3+∆4, where

∆1,∆3 are the times-of-flight in the region |u| ≤ a and ∆2 = ∆4 = δt in the

regions where |u| > a. Moreover, the propagators in the regions u < −a and

u > a, exp(ALt) and exp(ARt) respectively, approximate the relevant saltation

matrices. The numerical evidence for this is provided in Fig. 5.6, where we

compare the components of S(t1) (see Eq. (5.11)) with those of exp(ARδt).

Although δt is under our control it is not guaranteed that this time-of-

flight can be made arbitrarily small. Here, we have only provided numerical

evidence that this is the case, and have not provided a formal proof. Rather we

have presented a practical method for smoothing systems with hard impacts,

obviating the need for the construction of saltation matrices. In the next

section we show how to treat networks of interacting Franklin bells, with both

hard and smoothed impacts.
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Figure 5.5: Stable periodic orbits of the continuous PWL model (5.13). Parame-
ters: k = 0.5, γ1 = γ2 = 0.9, f = 0.93, and a = ±1. The trajectories in solid red
are those of the nonsmooth model, and those in dashed blue those of the augmented
model. In A) the time-of-flight is δt = 0.5 and in B) δt = 0.0004. As δt is made
smaller and smaller the smoothed model has trajectories that approach more closely
those of the nonsmooth model.
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Figure 5.6: A plot of the components eij of the propagator exp(ARδt) as δt goes to
zero where i, j = 1, 2 (solid red lines). The black dashed line corresponds to the value
of the component in the saltation matrix S(t1). All parameter values as in Fig. 5.5.

5.4 A Franklin bell network

A Franklin bell network can easily be constructed by serial extension of the

network shown in Fig. 5.1. One simply hangs more metal balls from a cross-bar

and inserts a metal bell between each suspended ball. Other topologies are,

of course, possible which leads us to the consideration of general Franklin bell

networks. The vertices of such a network can be represented by the bell-ball-

bell combination and network edges by the interactions between them. From

a modelling perspective the interactions between nodes are mediated by the

vibrations communicated through the cross-bar. This is very reminiscent of a

system of Huygens clocks [141], albeit where the clocks are impact oscillators

rather than smooth limit-cycle oscillators. There is now a vast literature on

the study of the latter, see for example [86], though far less work has been

done on networks of impact oscillators. The exception to this perhaps being

the recent work of Shiroky and Gendelman [278] who examined a linear ar-

ray of Franklin bell oscillators. They analysed the properties of localised states
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(breathing modes), whereby only one of the network nodes made repetitive im-

pacts. The stability and bifurcation of these localised states was determined

using a Fourier–based Floquet theory adapted to cope with local impulsive

(Dirac-delta) effects. Thorin et al. [302] have also considered a similar prob-

lem, and most recently James et al. [148] have highlighted some of the many

open problems in the study of impact oscillator networks. Here we focus on

globally periodic synchronous impacting behaviour and show how to augment

techniques from the network science of smoothy coupled limit cycles to treat

impact oscillators. Moreover, by exploiting the PWL nature of a Franklin bell

network between impacts we show how to readily construct the MSF. This is a

powerful tool for determining the stability of a synchronous orbit in a network

of arbitrary topology.

We begin by describing the construction of the MSF for an impulsive

nonsmooth Franklin bell network, and then indicate how to perform the same

calculation for a smoothed system.

5.4.1 Master stability function for a nonsmooth Franklin

bell network

Consider an impacting Franklin bell network with N identical nodes labelled

by n = 1, 2, . . . , N , with interactions mediated by linear coupling between ball

displacements (representing the vibrational coupling through a crossbar). In

this case we have a network dynamics governed by the equation

ün + γ1u̇n + γ2un + σ
N∑
m=1

wnm (um − un) = sgn(u̇n)f, if t 6= tni , (5.14)

u̇n(t+ni) = −ku̇n(t−ni), if t = tni , (5.15)

where tni represents the ith impacting event time of the nth node, implicitly

determined by un(tni) = ±a. The parameter σ represents a global coupling

strength, whilst the specific influence of node m on node n is determined
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by the value wnm. The network structure is effectively encoded by a matrix

with elements wnm. The model equations (5.14)-(5.15), or variants thereof,

also arise naturally when considering mechanical vibro-impact chain systems

[114, 115, 128, 233]. It is convenient to write the network model in first order

form by introducing the state vector xn = (un, vn)T (where vn = u̇n) so that

ẋn = F (xn) + σ
N∑
m=1

wnm[H(xm)−H(xn)], if t 6= tni , (5.16)

xn(t+ni) = g
(
xn(t−ni)

)
, if t = tni . (5.17)

Here H : R2 → R2 describes the form of interaction between the compo-

nents of nodes and for the (linear) case considered here it is given simply

by H(u, v) = (0, u)T. The vector field F : R2 → R2 is the single node

dynamics prescribed by F (xn) = Axn + fen , with A as in Eq. (5.5) and

fen = (0, f)T sgn(vn).

From the form of coupling in Eq. (5.16) it is apparent that if xm = xn

for all pairs (m,n) then the coupling has no effect and the network reduces

to an uncoupled system of individual Franklin bells. Thus if an individual

bell can oscillate then a synchronous network state defined by the N − 1

constraints x1(t) = x2(t) = · · · = xN(t) = s(t) is guaranteed to exist, where

s(t) = (u(t), v(t))> is the periodic orbit of an isolated node. The techniques

for constructing this are precisely those of section 5.2.1. The network impact

times are also inherited directly from the periodic orbit of an isolated node so

that t1i = t2i = . . . = tNi = ti, for i = 1, 2.

To determine the stability of the synchronous network state it is first

convenient to rewrite Eq. (5.16) using the graph-Laplacian G given by (2.53).

The network dynamics between impacts then takes the succinct form

ẋn(t) = F (xn(t))− σ
N∑
m=1

GnmH(xm). (5.18)

If we now consider a small perturbation to the synchronous orbit by writing

141



xn(t) = s(t) + δxn(t) then we obtain the variational equation

d

dt
δxn = DF (s(t))δxn − σDH(s(t))

N∑
m=1

Gnmδxm, (5.19)

whereDF (s(t)) andDH(s(t)) are the Jacobian matrices of F (s(t)) andH(s(t)).

The PWL nature of the netwok model means that these can be explicitly cal-

culated as

DF (s(t)) = A and DH(s(t)) =

0 0

1 0

 . (5.20)

Using the technique presented in Section 2.4.5, we reduce (5.19) to a block

diagonal form where in each block we have a 2 × 2 linear dynamical system

parametrised by the eigenvalues of the graph-Laplacian:

d

dt
ξl = (A− σλlDH) ξl, l = 1, . . . , N, (5.21)

where ξl(t) ∈ C2. Then the evolution of the perturbations through the impact-

ing manifolds can be obtained using the same approach as in Sections 5.2.1

since saltation acts blockwise (see Section 4.6.2). Thus solutions of the set

of Floquet equations given by Eq. (5.21) are in the form ξl(∆) = Q(l)ξl(0),

l = 1, . . . , N , where

Q(l) = S(t2)eAl∆2S(t1)eAl∆1 , Al = A− σλlDH. (5.22)

One of the eigenvalues of the graph-Laplacian is zero (which we fix with the

choice λ1 = 0), with corresponding eigenvector (1, 1, . . . , 1)/
√
N tangential to

the periodic orbit. Thus the synchronous state will be stable if all the other

eigenvalues of Q(l), l = 2, . . . , N lie within the unit disc, and the periodic orbit

of an isolated node is stable. Since this argument is valid for an arbitrary graph-

Laplacian it is useful to consider a Floquet problem obtained from Eq. (5.22)
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under the replacement σλl → η ∈ C, so that Q(l)→ Q(ηl) where ηl ≡ σλl and

Q(η) = S(t2) exp[(A− ηDH)∆2]S(t1) exp[(A− ηDH)∆1]. (5.23)

Then the MSF can be computed independently of the network choice and

then used to assess the stability of the synchronous state in an arbitrary net-

work, simply by determining where the spectrum of the graph-Laplacian lies

in relation to the MSF.

We note that it is also natural to consider the stability of the synchronous

state in networks of identically coupled limit cycle oscillators using weakly

coupled phase oscillator theory. Doing so would give rise to a Kuramoto type

network model. The Jacobian determining the stability of the synchronous

state would have eigenvalues −σH ′(0)λl, where H(t) is a derived ∆-periodic

phase interaction function, and see Chapter 2 for a further discussion. In this

case, the stability of the synchronous state is independent of the strength of

interaction (though will depend on the network graph-Laplacian and the sign of

σ). Thus, it cannot be used to predict any strong coupling instabilities, whereas

the MSF approach can. Moreover, we may consider to use the phase-amplitude

network formalism presented in Section 4.6.1 but it gets more complicated

and computationally expensive for networks of N nodes since the number

of interaction functions increases. Also, as we observed in Section 4.7, it is

less accurate than the MSF approach to detect bifurcation points or even

sometimes insufficient to detect them.

5.4.2 Master stability function for a smoothed Franklin

bell network

The argument above shows how the MSF, originally developed for the study

of smooth systems, can be modified for the use of nonsmooth systems using

saltation operators. We can also sidestep the need to use saltation operators

using the smoothing technique described in section 5.3. In essence, this leads
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to the replacement of the saltation operators by propagators exp[AL,Rδt] for

some fixed small δt with AL,R determining the augmented dynamics in the

region where |un| > a. In this case the MSF can be constructed in an almost

identical fashion to that of section 5.4.1 under the replacement of Eq. (5.23)

by

Q(η) = exp[(AL − ηDH)δt] exp[(A− ηDH)∆2]

× exp[(AR − ηDH)δt] exp[(A− ηDH)∆1]. (5.24)

A comparison of the MSF for the nonsmooth and smoothed model is shown in

Fig. 5.7. The white region indicates where the MSF is negative. It can be seen

that as δt is chosen to be smaller and smaller that the agreement between the

two MSFs becomes closer and closer.

Figure 5.7: A comparison of the MSF between the smoothed and nonsmooth system.
Panels A), B), and C) are for the smoothed system and panel D) for the nonsmooth
system. A) δt = 1, B) δt = 0.5, and C) δt = 0.0004. The white region indicates
where the MSF is negative. Parameters are the same as Fig. 5.5. As δt → 0 there
is increasing agreement between the MSF of the smoothed model and that of the
nonsmooth model.
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5.5 Examples

In the following we will illustrate the above concepts with two kinds of network.

We begin with an undirected ring network, for which the symmetric coupling

strength between nodes n and m is given by

wnm = cn(δn,m−1 + δN−n+1,1) + cn−1δn,m+1 + cNδ1,N−m+1

n,m = 1, 2, . . . , N,

(5.25)

where cn, n = 0, 1, . . . , N is non-zero. Due to symmetry, all eigenvalues of the

matrix W (with components [W ]nm = wnm) are real. For a network of regular

springs, i.e. when cn > 0 for 0 ≤ n ≤ N , this entails that the eigenvalues

of the graph-Laplacian are all larger or equal to zero. As a consequence, the

synchronous network state is linearly stable since the MSF is negative for

all arguments on the positive real half-line, see Fig. 5.7D. In Fig. 5.8A, we

superimpose the ηl (σλl ≡ ηl) for a network of 15 nodes where cn = 1 if n

is odd and cn = 0.1 if n is even, while Fig. 5.8B shows results from direct

numerical simulations. As expected, the synchronous network state is stable.

Figure 5.8: (A) MSF together with the values of ηl (black dots) for a network of
15 nodes, where cn = 1 if n is odd and cn = 0.1 if n is even. (B) Space-time plot of
the network activity of un. All parameter values as in Fig. 5.5 and σ = 1.

It is now instructive to change one of the spring constants cn in the above

network to a negative value, which represents a repulsive spring. When we

choose c2 = −0.1, we obtain the results depicted in Fig. 5.9. In this case,

the MSF is negative for one of the ηl, say ηk, indicating that the synchronous
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network state is unstable. Indeed, numerical simulations clearly show a mod-

ulation of the values for un across the network, see Fig. 5.9B.

Figure 5.9: (A) MSF together with the values of ηl (black dots) for a network of 15
nodes, where cn = 1 if n is odd and cn = 0.1 if n is even, except for c2 = −0.1. Note
that ηk = −0.0665. (B) Space-time plot of the network activity of un. All parameter
values as in Fig. 5.5 and σ = 1.

To predict the shape of the emergent network pattern, we can make use

of the eigenvector that corresponds to the eigenvalue associated with ηk. As

Fig. 5.10 illustrates, the eigenvector resembles very closely the observed values

of un. Note how well the eigenvector captures the large peak and the small

oscillations of the network state.
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Figure 5.10: (A) Normalised eigenvector corresponding to the eigenvalue associated
with ηk in Fig. 5.9. (B) Normalised u as a function of n for a fixed time across the
network. All parameter values as in Fig. 5.9.

We can now move away from real eigenvalues of W by considering the

directed network shown in Fig. 5.11. The coupling strengths are given by
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Figure 5.11: Architecture of the directed ring network.

wnm = µ


0 1 1

−1 0 3

2 −2 0

 and n,m = 1, 2, 3, (5.26)

where µ is a real number, resulting in complex eigenvalues for W , hence we can

test the theory for such cases. If we choose µ−1 = 2.1 the MSF is negative at

the corresponding values of ηl, indicating that the synchronous network state

is stable (see Fig. 5.12A). Numerical simulations plotted in Fig. 5.12B confirm

the results from the linear stability analysis. Here, we plot the time evolution

of the v component of all three nodes, i.e. v1, v2 and v3. Because of synchrony,

the curves overlap and we can see only one trajectory.
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Figure 5.12: (A) MSF together with the values of ηl (black dots) for the directed
network shown in Fig. 5.11 for µ−1 = 2.1. (B) Time evolution of v1, v2 and v3. All
parameter values as in Fig. 5.5 and σ = 1.

When we change µ−1 to 1.9 we obtain a pair of complex conjugates ηl

that lie in the green region in Fig. 5.13A. Here, the MSF is positive, which

means that the synchronous network state is unstable. This can also be seen
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in Fig. 5.13B, where we plot trajectories for v1, v2 and. v3 from numerical

simulations. In contrast to Fig. 5.12B, all three trajectories can be clearly

distinguished. Note that the emergent pattern can be predicted from the real

eigenvector that is associated with the pair of complex eigenvalues ηl , see

Figs. 5.14. This is an example of a strong coupling instability.
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Figure 5.13: (A) MSF together with the values of ηl (black dots) for the directed
network shown in Fig. 5.11 for µ−1 = 1.9. (B) Time evolution of v1, v2 and v3. All
parameter values as in Fig. 5.5 and σ = 1.
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Figure 5.14: (A) Real part of the eigenvector corresponding to eigenvalues asso-
ciated with the complex ηk in Fig. 5.13. (B) v as a function of n for a fixed time
across the network. All parameter values as in Fig. 5.5 and σ = 1.

5.6 Discussion

Since their inception, Franklin bells have provided the blueprint for numerous

electro-mechanical impact oscillators [13, 84, 145, 162]. In its original incar-

nation, a Franklin bell consisted of two bells between which a metal ball was
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suspended. The regular chime of a Franklin bell results from the periodic mo-

tion of the metal ball between the two bells. Upon impact, the metal ball loses

some of its energy, which is captured by a restitution coefficient k < 1. In

this regime, only one periodic orbit of the underlying dynamical system (5.3)

and (5.4) exists, which is linearly stable (see Fig. 5.3). As we increase k past

one, an unstable solution emerges, which eventually collides with the stable

periodic orbit in a saddle node bifurcation. A restitution coefficient larger than

one corresponds to an active impacting surface where energy is transferred into

the metal ball instead of it being lost from it [113, 245, 312].

For constructing periodic solutions, the nonsmooth character of the gov-

erning equations does not pose any difficulties. Indeed, we can construct so-

lutions between impacts and then glue them together. Since the system in

(5.3) and (5.4) is piecewise linear, solutions are given explicitly in terms of

exponential functions. To assess linear stability, we use saltation matrices to

propagate perturbations through the impacting manifolds. One could now ar-

gue that at a microscopic scale, the dynamics of Franklin bells are actually

smooth and the nonsmooth character only emerges due to the coarse-grained

use of a restitution coefficient. Motivated by this notion, we developed a novel

smoothing technique, which is based on supplementing the original dynami-

cal system with two additional parts that describe the dynamics for u > a

and u < −a. In each region, we prescribe a linear dynamical system whose

coefficients are uniquely determined by demanding that the new pieces of the

orbit connect to the existing parts in a C1 fashion and satisfy the restitution

condition. What we need to prescribe, however, is the time-of-flight δt in these

two regions. In other words, once we impose a time-of-flight, all coefficients are

fixed. The advantage of this approach is that we can explore how the smooth

dynamical system approaches the nonsmooth one by reducing δt. As Fig. 5.5

illustrates, letting δt go to zero reduces the propagator in the regions u < −a

and u > a to the saltation matrices of the nonsmooth system, highlighting the

consistency of our new technique.
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The above discussion about smooth versus nonsmooth representations ties

into the discourse on hard impact modelling (particle exposed to a rigid con-

straint) and soft impact modelling (particle exposed to an elastic constraint)

[27]. Inelastic models are based on Newton’s law of impact and use two main

assumptions; (i) the interaction time with the rigid constraint is infinitely small

and (ii) that energy dissipation is characterised by a constant restitution co-

efficient. Explicitly, a restitution coefficient refers to the ratio of post- and

pre-impact velocities. In this modelling regime the rigid particle collides with

the stiff constraint and none of them are deformed during the collision. On

the other hand, soft modelling assumes a finite non-zero contact time and a

penetration of the constraint by the colliding body. In this modelling philoso-

phy, the hard impacting constraint is replaced with a spring–damper support

or cushioned as it is common in engineering. Elastic impact modelling can be

used to analyse different types of spring–damper support systems, which can

be either linear or nonlinear [67, 155, 191, 192, 272]. Interpolating between

these two scenarios is the case in which an elastic body impacts on a rigid

surface, which again leads to a nonzero interaction time [61].

While we use the time-of-flight δt to control the transition from smooth

to nonsmooth dynamics, applications in engineering typically adjust the pa-

rameters of the spring–damper system. Naturally, these two approaches are

equivalent. Shaw and Holmes [274] observed that as the stiffness of the cush-

ioned constraint approaches infinity, collision times go to zero and the system

becomes an inelastic impact oscillator. Further evidence for this equivalence is

provided in Ing et al. [142, 143]. The findings in [27, 156] also demonstrate that

the smooth system approaches the nonsmooth one for large spring–damper

stiffnesses. In addition, these studies show how the dynamics of the two sys-

tems diverges for softer spring–dampers. This is attributed to the growing

influence of external forces, such as gravity, and is consistent with the idea of

larger impact times, since only then have these external forces sufficient time

to interact.
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Having investigated a single Franklin bell, we next turned to networks of

N Franklin bells with arbitrary topology. Crucially, each node of the network

corresponds to a Franklin bell, and nodes are coupled via springs. Our work

contrasts that in Shiroky and Gendelman [278], where in a linear chain only

the central node was a Franklin bell, whilst the remaining nodes were classical

non-impacting pendula. Our interest was in the linear stability of the syn-

chronous network state. The existence of synchrony is guaranteed due to the

linear coupling between Franklin bells. For linear stability, we employed the

MSF approach [229], which reduces the complexity of the linear stability anal-

ysis from investigating a 2N -dimensional system of coupled equations to N

two-dimensional systems. As Fig. 5.7 illustrates, the MSF for the nonsmooth

model is well approximated by the one for the smoothed dynamics. How-

ever, as we make the time-of-flight δt in the additional regions |u| > a larger,

the topology of the MSF changes. A new bubble emerges around the origin,

and the extended white region of stability shifts to the right, cf. Figs. 5.7A

and 5.7D. For a ring network of standard springs, i.e. with positive spring

constants, the MSF predicts that synchrony is stable, which is confirmed by

direct numerical simulations (Fig. 5.8). By changing the spring constant of

one of the springs in the network to a repulsive value, one ηl crosses into the

green region where the MSF is positive, indicating that the synchronous net-

work state is unstable (Fig. 5.9). This highlights the fact that subtle changes

to the network parameters can have drastic consequences for the network dy-

namics. Close to the onset of instability, only one ηl crosses into the region

where the MSF is positive. In this case, the eigenvector associated with the

corresponding eigenvalue provides a good estimator for the emergent network

state as illustrated by Fig. 5.10. For the examples above, all eigenvalues of the

connectivity matrix W are real. By changing the topology of the network, the

eigenvalues of the graph-Laplacian may also become complex. Again, the MSF

predicts correctly the linear stability of the synchronous state, see Figs. 5.12

and 5.13.
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While we focussed our analysis on Franklin bells, the present study more

generally furthers our understanding of networks comprised of nodes with non-

smooth dynamics. To date, discontinuous and nonsmooth dynamical systems

have mostly been studied in isolation. Yet, networks are ubiquitous across

engineering and the natural and social sciences. It is therefore desirable to ex-

pand our toolbox from individual to interacting nonsmooth dynamical systems,

as recently advocated by Coraggio et al. [58] for piecewise-smooth systems,

with applications in seismology and load balancing in power grids. As we have

illustrated, concepts such as saltation matrices, which are useful at the node

level, carry over to the network level and expand the applicability of central

techniques for smooth dynamical systems, such as the MSF, to nonsmooth

systems. A possible extension of this work can be achieved by adding time

delays [292]. Moreover, the techniques used here could be adopted to vibro–

impact energy harvesting systems [3, 341] to test the efficiency at the network

level, and our smoothing method could be useful for the investigation of new

materials such as elastic support for fenders [283, 284].
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Chapter 6

Piecewise linear neural mass

models

6.1 Introduction

The brain is the most complicated organ in the body with a complex ar-

chitecture and rich dynamics involving approximately 1010 neurons and 1014

synapses. It is responsible for many vital functions, including learning, ac-

tion, cognition, and perception [200]. The structure and function of the brain

have been studied for hundreds of years; yet still there are many interesting

dynamical phenomena that remain a mystery such as precise description of

memory storage and retrieval. Although neural activity in the human brain

is a hard task to understand, it is important to explore this in order to better

treat disorders such as epilepsy [96]. Computational and mathematical models

are useful for gaining insight wider fundamental mechanisms of the brain, and

naturally complement experimental approaches. In a mathematical model one

can easily explore effects of parameter variation but this is very difficult and

expensive or even impossible in a real experimental environment. The main

weakness of mathematical models is that in general they are simplification

or idealisation of real behavior. However, it is expected that a well-defined

mathematical model could give proper insight into brain activities. There are
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various kinds of mathematical models for brain activity. These models can

have different levels of description, ranging from microscopic (single neuron

activity) through mesoscopic to macroscopic levels. Single neuron modelling

is important because the transmission of information (action potentials) in

the brain starts at that level (between neurons via axons and synapses). Fa-

mous examples of the single neuron modelling are the Hodgkin-Huxley model

[135], the FitzHugh-Nagumo model [101, 212] and the McKean model [201],

see Chapter 3 for more details. Mesoscopic models (typically 106 neurons)

explain how neural elements interact to yield emergent behaviour at the level

of microcolumns and cortical columns. And macroscopic models give informa-

tion about whole brain dynamics and interactions between large-scale neural

systems such as the thalamus, brain stem, and cortical regions [69].

The behavior of biological neural cells is often explored by examining the

response of their cell membrane potential to the injection of an external cur-

rent. When the postsynaptic potential reaches a threshold value, the neuron

produces an impulse or spike. These responses, called action potentials (typ-

ically ∼ 100mV amplitude and 1ms duration), are partially dependent upon

membrane conductance properties, and are the units of information transmis-

sion at the interneuron level. This information is thought to be encoded in

terms of the frequency of the action potentials, called firing rate, and in the

timing of action potentials [53, 69].

It is well known that brain functions such as cognitive, motor, and sensory

functions are implemented by large groups of interacting neurons [65, 200]. A

common way to model this is to simulate a large network of synaptically in-

teracting single neuron models. Although this is a useful way to understand

network behaviour it requires a lot of expensive computations. Another draw-

back of large simulations is that they may involve a large number of parameters.

Therefore it could be very difficult to see the influence of parameter changes.

These reasons have lead researchers to use mesoscopic and macroscopic models

to examine large scale brain dynamics. These models usually describe average
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activity of a large group of neurons and are less detailed than single neuron

models. Despite this they can often generate activity consistent with human

neuroimaging studies. Being computationally less expensive and having fewer

parameters makes analysis easier and therefore, mesoscopic and macroscopic

models studies are significantly important to better understand brain activi-

ties. One of the famous classes of mesoscopic models is called a neural mass

model [106].

Neural mass models generate brain rhythms using the notion of popula-

tion firing rates, aiming to side-step the need for large scale simulations of

more realistic networks of spiking neurons. Although they are not derived

from detailed conductance based models they can be motivated by a number

of phenomenological arguments [56], and typically take the form of systems of

nonlinear ordinary differential equations. Neural mass models are a key com-

ponent of the Virtual Brain project that aims to deliver the first simulation

of the human brain based on individual large-scale connectivity [266]. Such

large-scale brain network models are especially relevant to understanding rest-

ing state networks [34], whereby different regions of the brain’s sensorimotor

system oscillate slowly and synchronously in the absence of any explicit task.

The Wilson-Cowan model is one of the most well-known neural mass mod-

els for modelling the activity of cortex, and for a historical perspective see

[59, 134]. It describes the dynamics of two interacting populations of neurons,

one of which is excitatory and the other inhibitory. Interactions are mediated

between the populations with the use of a nonlinear sigmoidal firing rate func-

tion. In its most simple incarnation it consists of two nonlinear ODEs, and as

such has been widely studied using techniques from phase-plane analysis and

numerical bifurcation theory. Since the 1970s there has been a large amount

of attention devoted to the analysis of these models and their application in

neuroscience [77, 178, 220, 334].

It is important to note that from a mathematical modelling perspective all

neural mass models to date are essentially low dimensional coupled ODEs with
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a sigmoidal firing rate nonlinearity, exemplified by the Wilson-Cowan model.

Given their relevance to large scale brain dynamics it is highly desirable to

develop mathematical techniques for the analysis of Wilson-Cowan style neural

mass models at the large network level. Here we advocate for the replacement

of smooth sigmoidal nonlinearities in neural mass models by more tractable

functions, including piecewise linear and piecewise constant functions. We

refer to Chapter 3 for the advantages of using PWL neural modelling [55, 217].

In this chapter, first in Sections 6.2 and 6.3 we introduce the model for

an isolated Wilson-Cowan node with a PWL firing rate. The description of

dynamical states with reference to switching manifolds becomes very useful

[54], see Section 3.3. Making use of the techniques from Chapter 3, we show

how matrix exponentials can be used to patch together a periodic orbit, and

that Floquet theory simplifies considerably to yield explicit formulas for de-

termining solution stability. Next in Section 6.4 we consider a network of

PWL Wilson-Cowan nodes, with nodes arranged along a ring with distance-

dependent interactions. This particular choice of coupling guarantees the ex-

istence of the synchronous state. We then develop a linear stability analysis

of this state and show that this leads to a tractable variational problem of a

very similar type to that for the single node, albeit now parameterised by the

eigenvalues of the connectivity matrix. We use this to determine instabilities

that can lead to the formation of spatio-temporal network patterns. Then in

Section 6.5 we consider the case that the firing rate is a Heaviside function, for

which the techniques developed for studying PWL systems break down. Once

again periodic orbits can be constructed using matrix exponentials, although

standard Floquet theory must be now augmented to cope with the evolution

of linearised perturbations through the switching manifolds, see Section 4.2.

However, at the network level (Section 6.6) the stability of the synchronous

state is much harder to determine than for the continuous model. Here we

show the ideas from the study of Glass networks [90, 117, 118] developed by

Edwards [89] are particularly useful, and that stability is strongly influenced
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by the temporal order in which network components cross switching manifolds,

and that this in turn is determined by the choice of initial perturbation. Finally

in Section 6.7 we conclude with an overview of the new results about synchrony

in networks of neural mass models, and discuss the natural extension of this

work to treat non-synchronous states.

The results of this chapter have been published in [57].

6.2 The Wilson-Cowan model

For their activity-based neural mass model Wilson and Cowan [329, 330] dis-

tinguished between excitatory and inhibitory sub-populations. This seminal

(space-clamped) model can be written succinctly in terms of the pair of coupled

differential equations:

du

dt
= −u+F (Iu+wuuu−wvuv), τ

dv

dt
= −v+F (Iv +wuvu−wvvv), (6.1)

Here u = u(t) is a temporal coarse-grained variable describing the proportion

of excitatory cells firing per unit time at the instant t. Similarly the variable v

represents the activity of an inhibitory population of cells. The constants wαβ,

α, β ∈ {u, v}, describe the weight of all synapses from the αth population to

cells of the βth population, and τ is a relative time-scale.

u v

w
uv

w
vu

w
uu

w
vv

Iu

Iv

Figure 6.1: Schematic diagram of the Wilson-Cowan model.
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The nonlinear function F describes the expected proportion of neurons

receiving at least threshold excitation per unit time, and is often taken to have

a sigmoidal form. Here the terms Iα represent external inputs (that could be

time varying). For a historical perspective on the Wilson-Cowan model see

[77], and for a more recent reflection by Cowan see [60].

6.3 A piecewise linear reduction

In order to reduce the model to a mathematically tractable form we consider

the choice of a PWL firing rate function given by

F (x) =


0 x ≤ 0

ε−1x 0 < x < ε

1 x ≥ ε

. (6.2)

Some different illustrations of firing rate functions are shown in Fig. 6.2.

-0.2 -0.1 0 0.1 0.2

x

0

0.2

0.4

0.6

0.8

1
F(x)

Figure 6.2: Firing rate functions. PWL (black), sigmoidal (blue) and Heaviside
(red).

For appropriate choices of parameters the Wilson-Cowan model, with the

firing rate given by (6.2), can support stable oscillations. An example is shown

in Fig. 6.3, where we also plot the four switching manifolds defined by the
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condition that arguments to the function F in (6.1) take on the values zero

and ε.

 0

0.1

0.2

 0  0.2  0.4u

v

-0.1 0 0.1 0.2

U

-0.2

-0.1

0

V

Figure 6.3: Left: Phase plane for the Wilson-Cowan model with a PWL firing
rate, showing a stable periodic orbit. Parameters: ε = 0.04, τ = 0.6, Iu = −0.05,
Iv = −0.3, wuu = 1, wvu = 2, wuv = 1, and wvv = 0.25. The straight lines in
red and green show the switching manifolds, where Iu + wuuu − wvuv = 0, ε and
Iv + wuvu− wvvv = 0, ε respectively. Right: Same periodic orbit in the transformed
coordinate plane (U, V ). The straight lines in red and green show the switching
manifolds, where U = 0, ε and V = 0, ε respectively.

Away from the switching manifolds the dynamics governing the evolution

of trajectories is linear, and may be constructed using matrix exponentials.

To simplify further analysis it is first convenient to introduce new variables

(U, V ) such that u = (wvu(V − Iv) − wvv(U − Iu))/|W |, where |W | = detW ,

and v = (wuu(V − Iv)− wuv(U − Iu))/|W |, as well as the matrices

W =

wuu −wvu
wuv −wvv

 , J =

1 0

0 1/τ

 A = −WJW−1. (6.3)

With these choices (6.1) transforms to

d

dt

U
V

 = A

U − Iu
V − Iv

+WJ

F (U)

F (V )

 . (6.4)

In the representation (6.4) we see that the four switching manifolds are simply

defined by U = 0, U = ε, V = 0, and V = ε. The periodic orbit shown in
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Fig. 6.3 (encircling an unstable fixed point) crosses each of these manifolds

twice, so that the periodic trajectory is naturally decomposed into eight sep-

arate pieces. On each piece we shall denote the time-of-flight for a trajectory

to travel from one switching manifold to another by ∆i, i = 1, . . . , 8, so that

the period of the orbit is given by ∆ =
∑8

i=1 ∆i. As an explicit example of

how to construct a trajectory between two switching manifolds, consider the

region where 0 ≤ U ≤ ε and V < 0. In this case the solution of (6.4) is given

by

U(t)

V (t)

 = eA+(ε)t

U(0)

V (0)

− A−1
+ (ε)

(
eA+(ε)t − I2

)
A

Iu
Iv

 , t ≥ 0, (6.5)

where

A+(ε) =

A+ ε−1WJ

1 0

0 0


 . (6.6)

It is a simple matter to write down the trajectories in each of the remaining

regions of phase space visited by a periodic orbit. We may then use these

matrix exponential formulas to patch together solutions, setting the origin of

time in each region such that initial data in one region comes from final data

from a trajectory in a neighbouring region. We shall denote the periodic orbit

by (U, V ) such that (U(t), V (t)) = (U(t+ ∆), V (t+ ∆)). If we consider initial

data with (U(0), V (0)) = (U0, 0) then the eight times-of-flight and the unknown

U0 are determined self-consistently by the nine equations V (∆1) = ε, U(∆2) =

ε, U(∆3) = 0, V (∆4) = ε, V (∆5) = 0, U(∆6) = 0, U(∆7) = ε, V (∆8) = 0,

and U(∆8) = U0. The numerical solution of this nonlinear algebraic system of

equations can be used to construct periodic orbits such as the one shown in

Fig. 6.3. This system is also support an unstable periodic orbit and we depict

this together with the stable one in Fig. 6.4.
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Figure 6.4: A plot of the stable periodic orbit (blue), and an unstable periodic orbit
(dashed black). Parameters and switching manifolds as in Fig. 6.3.

Note that the construction of periodic orbits that do not cross all of the

switching manifolds can similarly be performed (requiring the simultaneous

solution of fewer equations). To determine stability we use results from Section

4.2, denoting non-trivial Floquet exponent by κ, for the PWL Wilson-Cowan

model we have that

κ =
1

∆

8∑
i=1

∆i TrAi, (6.7)

where A2 = A4 = A6 = A8 = A, A3 = A7 = A+(ε), and A1 = A5 = A−(ε),

where

A−(ε) =

A+ ε−1WJ

0 0

0 1


 . (6.8)

Thus a periodic orbit is stable if κ < 0. In Fig. 6.5 we present a plot of κ as

a function of τ , to show that the periodic solution in Fig. 6.3 is stable. Given

the above method to construct and determine the stability of a periodic orbit,

we next show how to extend this approach to treat synchronous solutions in

networks of Wilson-Cowan oscillators.
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-12
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0
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1
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Figure 6.5: A plot of the non-trivial Floquet exponent for the PWL Wilson-Cowan
model (left axis), as a function of the relative time-scale τ , with the period of the
orbit also shown (right axis). Parameters as in Fig. 6.3. Periodic orbits emerge
via a supercritical Hopf bifurcation as τ increases through τHopf ' 0.3. We see
that the branch of periodic orbits shown is stable, with stability decreasing to zero
as the solution is lost with increasing τ . This loss of existence occurs because of a
grazing bifurcation (coincident with a saddle-node bifurcation of periodic orbits, see
Fig. 6.4) at τgraze ∼ 0.6 whereby part of the trajectory develops a point of inflection
on the switching manifold v = (Iu+wuuu)/wvu (red solid line in Fig. 6.3), such that
beyond bifurcation the trajectory does not cross the switching manifold and instead
is attracted to the stable fixed point at (u, v) = (0, 0).

6.4 A piecewise linear Wilson-Cowan network

The study of coupled oscillator networks in biology, physics, and engineering

is now commonplace. Two particularly well known tools for studying patterns

of phase-locked states and their instabilities are the theory of weakly coupled

oscillators [169], and the master stability function [229], see Chapter 2 for more

details. The MSF approach (for identical oscillators) does not require any re-

striction on coupling strength. Therefore, here we favour the MSF approach

and show it simplifies considerably for a PWL choice of firing rate function

(though the numerical evolution of a system of dynamical equations, arising

from a Floquet variational problem, must be performed). This allows us to im-

prove upon previous mathematical studies of Wilson-Cowan networks, such as

those by Campbell and Wang [39] (who treated networks with nearest neigh-

bour coupling and established the condition for synchrony), Ueta and Chen

[311] (who performed a numerical bifurcation analysis for small networks),
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and Ahmadizadeh et al. [4] (who used perturbation techniques and numerics

to study synchrony in networks with diffusive coupling).

We consider a network of Wilson-Cowan nodes given by

dui
dt

= −ui + F

(
Iu +

N∑
j=1

Wuu
ij uj −

N∑
j=1

Wvu
ij vj

)
, (6.9)

τ
dvi
dt

= −vi + F

(
Iv +

N∑
j=1

Wuv
ij uj −

N∑
j=1

Wvv
ij vj

)
, i = 1, . . . , N, (6.10)

subject to the constraints
∑N

j=1Wuu
ij = wuu,

∑N
j=1Wvu

ij = wvu,
∑N

j=1Wuv
ij =

wuv, and
∑N

j=1Wvv
ij = wvv for all i. These row-sum constraints are natural

for networks arranged on a ring, and guarantee the existence of a synchronous

orbit (ui(t), vi(t)) = (u(t), v(t)) for all i = 1, . . . , N , where (u(t), v(t)) is given

by the solution of (6.1).

Figure 6.6: Architecture of a network of Wilson-Cowan consisting of 3 nodes.
Excitatory (inhibitory) cells are represented by blue (red) circles with corresponding
interactions and external inputs.

It is now convenient to introduce a vector notation for the coupled system

with X = (u1, v1, u2, v2, . . . , uN , vN) ∈ R2N and consider a change of variables

Y =WX + C, where C = 1N ⊗ (Iu, Iv), and
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W =Wuu⊗

1 0

0 0

−Wvu⊗

0 1

0 0

+Wuv⊗

0 0

1 0

−Wvv⊗

0 0

0 1

 . (6.11)

Here the symbol ⊗ denotes the usual tensor product for matrices, and 1N is

an N -dimensional vector with all entries equal to unity. This means that the

switching manifolds can be succinctly described by Yi = 0 and Yi = ε, and the

dynamics takes the form

d

dt
Y = A(Y − C) +WJF (Y ), (6.12)

where

J = IN ⊗ J, A = −WJW−1, (6.13)

where J is given by (6.3) and IN is the N × N identity matrix. If we denote

the synchronous solution by Y (t) = (U(t), V (t), U(t), V (t), . . . , U(t), V (t)) and

consider small perturbations such that Y = Y +δY , then these evolve according

to

d

dt
δY = AδY +WJDF (Y )δY, (6.14)

where DF (Y ) is the Jacobian of F evaluated along the periodic orbit.

Given the constraints on the matricesWαβ, with α, β ∈ {u, v} it is natural

to take these to be circulant matrices with Wαβ
ij = Wαβ

|i−j|. In this case the

normalised eigenvectors of Wαβ are given by ep = (1, ωp, ω
2
p, . . . , ω

N−1
p )/

√
N ,

where p = 0, . . . , N − 1, and ωp = exp(2πip/N) are the Nth roots of unity.

The corresponding complex eigenvalues are given by ναβ = ναβ(p) where

ναβ(p) =
N−1∑
µ=0

Wαβ
µ ωµp . (6.15)

If we introduce the matrix of eigenvectors P = [e0 e1 . . . eN−1], then we have
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that

(P ⊗ I2)−1W(P ⊗ I2) =

(P−1 ⊗ I2)(W uu ⊗

1 0

0 0

)(P ⊗ I2)− (P−1 ⊗ I2)(W vu ⊗

0 1

0 0

)(P ⊗ I2)

+ (P−1 ⊗ I2)(W uv ⊗

0 0

1 0

)(P ⊗ I2)− (P−1 ⊗ I2)(W vv ⊗

0 0

0 1

)(P ⊗ I2)

= (P−1W uuP )⊗ (I2

1 0

0 0

 I2)− (P−1W vuP )⊗ (I2

1 0

0 0

 I2)

+ (P−1W uvP )⊗ (I2

1 0

0 0

 I2)− (P−1W vvP )⊗ (I2

1 0

0 0

 I2)

= Λuu ⊗

1 0

0 0

− Λvu ⊗

0 1

0 0

+ Λuv ⊗

0 0

1 0

− Λvv ⊗

0 0

0 1


= diag(Λ(0),Λ(1), . . . ,Λ(N − 1)) ≡ Λ, (6.16)

where Λαβ = diag(ναβ(0), ναβ(1), . . . , ναβ(N − 1)), and

Λ(p) =

νuu(p) −νvu(p)
νuv(p) −νvv(p)

 , p = 0, 1, . . . , N − 1. (6.17)

Moreover, it is easy to establish that in the above notation

(P ⊗ I2)−1A(P ⊗ I2) = (P ⊗ I2)−1
(
−WJW−1

)
(P ⊗ I2)

= −(P ⊗ I2)−1W(P ⊗ I2)(P ⊗ I2)−1(IN ⊗ J)W−1(P ⊗ I2)

= −Λ((P−1IN)⊗ (I2J))W−1(P ⊗ I2)

= −Λ(IN ⊗ J)(P−1 ⊗ I−1
2 )W−1(P ⊗ I2)

= −Λ(IN ⊗ J)(P ⊗ I2)−1W−1(P ⊗ I2) = −Λ(IN ⊗ J)Λ−1. (6.18)

If we now consider perturbations of the form δZ = (P ⊗ I2)−1δY then from
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(6.14) we find that the linearised dynamics is described by the system

d

dt
δZ = (P ⊗ I2)−1A(P ⊗ I2)δZ + (P ⊗ I2)−1WJDF (Y )(P ⊗ I2)δZ

= −Λ(IN ⊗ J)Λ−1δZ + (P ⊗ I2)−1W(P ⊗ I2)(P ⊗ I2)−1JDF (Y )(P ⊗ I2)δZ

= −Λ(IN ⊗ J)Λ−1δZ + Λ(P ⊗ I2)−1JDF (Y )(P ⊗ I2)δZ

= −Λ(IN ⊗ J)Λ−1δZ + Λ(P ⊗ I2)−1(IN ⊗ J)(IN ⊗D)(P ⊗ I2)δZ

= −Λ(IN ⊗ J)Λ−1δZ + Λ((IN ⊗ J)(P ⊗ I2)−1)((P ⊗ I2)(IN ⊗D))δZ

= Λ(IN ⊗ J)
[
−Λ−1 + (IN ⊗D)

]
δZ. (6.19)

Here D ∈ R2×2 is the Jacobian of (F (U), F (V )), and is a piecewise constant

matrix that is only non-zero if 0 < U(t) < ε or 0 < V (t) < ε. In the former case

[DF ]11 = ε−1 with all other entries zero, and in the latter case [DF ]22 = ε−1

with all other entries zero. We see that (6.19) has a block structure where the

dynamics in each of N 2× 2 blocks is given by

d

dt
ξ = [A(p) + Λ(p)JD]ξ, p = 0, . . . , N − 1, ξ ∈ C2, (6.20)

with A(p) = −Λ(p)JΛ−1(p). Thus, comparing to (6.4), we see that the

variational equation for the network is identical to that for a single Wilson-

Cowan unit with W replaced by Λ(p). We note that for p = 0 the vari-

ational problem is identical to that for an isolated node since Λ(0) = W

(using ναβ(0) =
∑N−1

µ=0 Wαβ
µ = wαβ). Thus to determine the stability of

the synchronous state we only have to consider a set of N two dimensional

variational problems. Exploiting the fact that between switching manifolds

the variational problem defined by (6.20) is time-independent we may con-

struct a solution in a piecewise fashion from matrix exponentials and write

ξ(t) = exp[(A(p) + Λ(p)JD)t]ξ(0). We may then build up a perturbed tra-

jectory over one period of oscillation in the form ξ(∆) = Γ(p)ξ(0), where
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Γ(p) ∈ R2×2 is given by

Γ(p) = eA(p)∆8eA+(p;ε)∆7eA(p)∆6eA−(p;ε)∆5eA(p)∆4eA+(p;ε)∆3eA(p)∆2eA−(p;ε)∆1 ,

(6.21)

where

A+(p; ε) =

A(p) + ε−1Λ(p)J

1 0

0 0


 , (6.22)

and

A−(p; ε) =

A(p) + ε−1Λ(p)J

0 0

0 1


 . (6.23)

Thus if a periodic orbit of an isolated Wilson-Cowan node is stable then the

synchronous network solution will be stable provided all the eigenvalues of

Γ(p), for p = 0, . . . , N − 1, lie in the unit disc (excluding the one that arises

from time-translation invariance, with a value +1). For a fixed value of p

one of three bifurcations is possible, namely a tangent instability defined by

det(Γ(p)− I2) = 0, a period-doubling instability defined by det(Γ(p)+ I2) = 0,

and a Neimark-Sacker bifurcation defined by det Γ(p) = 1. If there is a p = pc

such that one of these instabilities occurs then the excited network state will

correspond to the eigenvector Re epc .

6.4.1 Example: a ring network

By way of illustration of the above theory let us consider a network of Wilson-

Cowan nodes arranged on a ring with an odd number of nodes. Introducing a

distance between nodes indexed by i and j as dist(i, j) = min(|i−j|, N−|i−j|),

we can define a set of exponentially decaying connectivity matrices according

to

Wαβ
ij = wαβ

e− dist(i,j)/σαβ∑N−1
j=0 e− dist(0,j)/σαβ

. (6.24)

Thus we have a set of four circulant matrices parametrised by the four spatial

scales σαβ that respect the row-sum constraints
∑N

j=1W
αβ
ij = wαβ. In Fig. 6.7
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Figure 6.7: A plot of the absolute value of the maximum eigenvalue of Γ(p) for
p = 0, . . . , N − 1 for a Wilson-Cowan ring network, with spatial scales σαβ = σ
for all α, β, and N = 31. Here σ ∈ [0.01, 8] and other parameters as in Fig. 6.3.
Blue (red) piece corresponds to (un)stable synchronous solution for the varying σ.
First (second) black dot for σ ' 0.190724 (σ ' 7.356) indicates a change from stable
(unstable) to unstable (stable).

we show a plot of the absolute value of the maximum eigenvalue of Γ(p) for

p = 0, . . . , N − 1 with σαβ = σ for all α, β varied over a finite interval to

detect bifurcation points of network instabilities. We observed that for small

coupling strength (σ) values the synchronous state is stable until σ ' 0.190724,

and unstable if σ ∈ (0.190724, 7.356), then restabilise for σ ≥ 7.356.

In Fig. 6.8 we show a plot of the eigenvalues of Γ(p) for p = 0, . . . , N−1 for

two different parameter choices. In one case all of the eigenvalues (excluding

the one arising from time-translation invariance) lie within the unit disc, whilst

in the other one leaves the unit disc along the negative real axis. This latter

scenario predicts an instability of the synchronous state, and is consistent

with direct numerical simulations. Moreover, by studying the spectrum under

parameter variation we can find the value of p = pc which goes unstable first.

In Fig. 6.9 we show time courses (obtained by direct numerical simulation)

for the components ui(t) of the emergent network state just beyond the point

of instability, as well as a plot of the real part of the spatial eigenvector epc .

We see that the spatial pattern of the network state is well predicted by epc ,

suggesting that the bifurcation is supercritical.

168



-1

 0

 1

-1  0  1

-1

 0

 1

-1  0  1
Figure 6.8: Spectral plots in the complex plane for a Wilson-Cowan ring network,
with spatial scales σαβ = σ for all α, β, and N = 31. Other parameters as in Fig. 6.3.
Left: σ = 0.15, and the synchronous solution is predicted to be linearly stable. Right:
σ = 0.191, and the synchronous solution is predicted to be linearly unstable.
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Figure 6.9: Direct numerical simulation of a Wilson-Cowan ring network, with
N = 31, just beyond the point of synchronous instability where σ = 0.191. Other
parameters as in Fig. 6.3. Here we plot the components ui(t) in a space-time plot.
The shape of the unstable mode epc, with pc = 16 (and also pc = 17 because of a
degeneracy) is depicted in blue at the top of the figure. The bifurcation point of the
linear instability is found to be in excellent agreement with simulations, with the
spatial pattern of the emergent network state predicted by epc.
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6.5 The Heaviside world

In a recent paper Harris and Ermentrout [134] considered a single Wilson-

Cowan population with a Heaviside nonlinearity, where the firing rate in (6.1)

takes the form F (x) = Θ(x), where Θ(x) = 0 for x < 0 and Θ(x) = 1 for x > 0.

The choice of a Heaviside firing rate has been very popular in mathematical

neuroscience ever since the seminal work of Amari (for neural field models), as

nicely exemplified by his recent article on the “Heaviside World” [6]. A case in

point is the work of Laing and Chow [176] for understanding binocular rivalry.

They considered a neural mass network model with recurrent excitation, cross-

inhibition, adaptation, and synaptic depression and showed that the use of a

Heaviside nonlinearity allowed the explicit calculation of the dominance dura-

tions of perceptions. A more recent use of the Heaviside firing rate has been

by McCleney and Kilpatrick [199] for neural activity models with spike rate

adaptation to understand the dynamics of up-down states. Using techniques

from Filippov systems and differential inclusions Harris and Ermentrout made

a study of periodic orbits for a Heaviside firing rate using a boundary value

problem approach. Here we show that we can recover their results using the

matrix exponential approach of Section 6.3. Moreover, we also extend their

work on a single node by showing how to determine the stability of periodic

orbits using a nonsmooth version of Floquet theory.

In the representation (6.4), with F = Θ, we see that the there are two

switching manifolds defined by U = 0 and V = 0. If we introduce the indicator

functions h1(U, V ) = U and h2(U, V ) = V then we can define these manifolds

(lines in this case) as

Σi =
{

(U, V ) ∈ R2 | hi(U, V ) = 0
}
. (6.25)

These switching manifolds naturally divide the plane into four sets. We denote

these by D++ = {(U, V ) |U ≥ 0, V ≥ 0}, D+− = {(U, V ) |U ≥ 0, V ≤ 0},
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D−− = {(U, V ) |U ≤ 0, V ≤ 0}, and D−+ = {(U, V ) |U ≤ 0, V ≥ 0}. If we

denote the elements of A by Aij, i = 1, 2 and j = 1, 2, where

A = − 1

|W |

wvuwuv/τ − wuuwvv wuuwvu(1− 1/τ)

wvvwuv(1/τ − 1) wuvwvu − wuuwvv/τ

 (6.26)

where |W | = wvuwuv − wuuwvv and then the U -nullclines are given by

V = Iv −
A11(U − Iu)

A12

+
1

A12



−wuu + wvu/τ (U, V ) ∈ D++

−wuu (U, V ) ∈ D+−

0 (U, V ) ∈ D−−

wvu/τ (U, V ) ∈ D−+

, (6.27)

and the V -nullclines are given by

V = Iv −
A21(U − Iu)

A22

+
1

A22



−wuv + wvv/τ (U, V ) ∈ D++

−wuv (U, V ) ∈ D+−

0 (U, V ) ∈ D−−

wvv/τ (U, V ) ∈ D−+

. (6.28)

An example set of nullclines is shown in Fig. 6.10.

To discuss fixed points and their stability it is first necessary to complete

the description of the dynamics on the switching manifolds. We do this using

the Filippov convex method (see Section 3.2) and extend our discontinuous

system into a convex differential inclusion. The Filippov extension of (6.4) is
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Figure 6.10: Phase plane for a Wilson-Cowan node with a Heaviside firing rate
(transformed coordinates), showing the U -nullclines (red) and V -nullclines (green),
as well as a stable periodic orbit (blue), and an unstable periodic sliding orbit (dashed
magenta). Parameters (excluding ε) as in Fig. 6.3.

then

d

dt

U
V

 ∈ F (U, V ) =



F++(U, V ) (U, V ) ∈ D++

co ({F++, F+−}, κ1) (U, V ) ∈ D++ ∩D+−

F+−(U, V ) (U, V ) ∈ D+−

co ({F+−, F−−}, κ2) (U, V ) ∈ D+− ∩D−−

F−−(U, V ) (U, V ) ∈ D−−

co ({F−−, F−+}, κ3) (U, V ) ∈ D−− ∩D−+

F−+(U, V ) (U, V ) ∈ D−+

co ({F−+, F++}, κ4) (U, V ) ∈ D−+ ∩D++

, (6.29)

where Fαβ(U, V ) = A[U − Iu, V − Iv]T + bαβ for α, β ∈ {+,−} and

b++ =

wuu − wvu/τ
wuv − wvv/τ

 , b+− =

wuu
wuv

 , (6.30)
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and

b−− =

0

0

 , b−+ =

−wvu/τ
−wvv/τ

 . (6.31)

Remembering co({f, g}, κ) = κf + (1 − κ)g with κ ∈ [0, 1] is the closed

convex hull of all values between f and g. A sliding solution may exist along a

switching manifold such that ḣi = ∇hi ·F = 0. The functions κj, j = 1, . . . , 4,

are chosen to ensure that ḣi = 0 along any switching manifold. See Section 3.2

and reference therein to find more detailed discussion about sliding phenomena.

For example if a sliding solution exists along the line U = 0 for V < 0 then

we would construct κ2 using ∇h1 = (1, 0) and F (0, V ) = κ2F+−(0, V ) + (1 −

κ2)F−−(0, V ) yielding

κ2 =
(1, 0) · F−−(0, V )

(1, 0) · (F−−(0, V )− F+−(0, V ))
. (6.32)

As illustrated in Fig. 6.10 it is possible for two nullclines to intersect and

create a fixed point (Uss, Vss). In the example shown this occurs for U < 0

and V < 0, so that (Uss, Vss) = (Iu, Iv). Linear stability analysis shows that

this is a stable node (with eigenvalues of A, namely −1 and −1/τ). Moreover,

this system also supports pseudo equilibria where either a nullcline touches a

switching manifold, or two switching manifolds intersect. A thorough explo-

ration of the pseudo equilibria of (6.1) can be found in [134]. Here we shall

simply focus on the pseudo equilibrium at (Uss, Vss) = (0, 0), and characterise

its stability by considering trajectories around this point. In fact given the

PWL nature of the dynamics it is sensible to consider the construction of pe-

riodic orbits, and determine the stability of the pseudo equilibrium in terms

of the stability of encircling small amplitude orbits.

6.5.1 Periodic orbits and their stability

A non-sliding periodic orbit around (0, 0) can be constructed in terms of the

times-of-flight in each region Dαβ. If we denote these four times by the symbols
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∆αβ then the period of the orbit is given by ∆ = ∆++ + ∆−+ + ∆−− + ∆+−.

We may then use a matrix exponential solution:

U(t)

V (t)

 = eAt

U(0)

V (0)

+ (I2 − eAt)


Iu
Iv

− A−1WJ

H(U)

H(V )


 , t ≥ 0.

(6.33)

to patch together solutions, setting the origin of time in each region such

that initial data in one region comes from final data from a trajectory in a

neighbouring region. We shall denote the periodic orbit by (U, V ) such that

(U(t), V (t)) = (U(t+∆), V (t+∆)). To indicate which region we are consider-

ing we shall simply add αβ subscripts to the formula in (6.33). In this way a pe-

riodic orbit that visits all four regions in turn can be parameterised by the five

unknowns U++(0), V ++(∆++), U−+(∆−+), V −−(∆−−), U+−(∆+−), and ∆αβ.

These are determined self-consistently by the five equations U++(∆++) = 0,

V −+(∆−+) = 0, U−−(∆−−) = 0, V +−(∆+−) = 0, and U+−(∆+−) = U++(0).

To determine the stability of such an orbit we may use the results from Section

4.2. In essence, different from the PWL case, we need to treat the propagation

of perturbations through a switching manifold using a saltation matrix, such

that Y (T+) = limε↘0 Y (T + ε) = SY (T ), where Y = (U, V ) denotes the vector

state of the system and S is the saltation matrix that acts at time T . Saltation

matrices can be derived in a number of ways (see Sections 4.2, 5.3), and in

the context of the PWL model discussed in Section 6.3, we can obtain the

relevant matrices by considering the approximation Θ(x) = limε→0 F (x). To

see this we introduce the vector Y (t) = (U(t), V (t)) and linearise the equations

of motion (6.4) by considering Y (t) = Y (t) + δY (t), for small perturbations

δY (t) = (δU, δV ). The linearised equations of motion are given by

d

dt
δY =

[
A+WJDF (Y (t))

]
δY. (6.34)

Here DF (Y (t)) is the piecewise constant matrix described after (6.19). Con-

sider for example the time-of-flight, t1(ε), between U = ε and U = 0. For small
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ε we may estimate t1(ε) using the result that U(t) ' U(t0) + U̇
∣∣∣
t=t0

(t − t0),

giving t1(ε) = −ε/ U̇
∣∣∣
t=∆++

. The corresponding change in state across this

small time interval can be obtained by integrating (6.34) to give

δY (T+)− δY (T ) = lim
ε→0

∫ T+t1(ε)

T

WJ

ε−1 0

0 0

 δY (t)dt. (6.35)

Thus we obtain δY (T+) = S1δY
−, with the saltation matrix S1 given by

S1 = I2 −
1

U̇(∆++)
WJ

1 0

0 0

 . (6.36)

The other saltation matrices (describing the passage through ε-neighbourhoods

of U = 0 and V = 0) are constructed in a similar fashion, and found to be

S2 = I2 −
1

V̇ (∆−+)
WJ

0 0

0 1

 ,
S3 = I2 +

1

U̇(∆−−)
WJ

1 0

0 0

 ,
S4 = I2 +

1

V̇ (∆+−)
WJ

0 0

0 1

 . (6.37)

It is straightforward to check that the saltation matrices (6.36)-(6.37) are

equivalent to those defined by (4.6). We now pass to the limit ε = 0, to

treat the Heaviside firing rate. Between switching events the perturbations

evolve according to exp(A(t − T ))δY (T+), for t > T , where δY (T+) is the

perturbation at the switching time. Thus after one period of oscillation we

may put this all together to obtain

δY (∆) = ΓδY (0), Γ = S4eA∆+−S3eA∆−−S2eA∆−+S1eA∆++ . (6.38)
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The periodic orbit will be stable if the eigenvalues of Γ lie within the unit disc.

Remember that one of the Floquet multipliers is equal to one, corresponding

to perturbations along the periodic orbit. Let us denote the other eigenvalue

by eκ∆ and use the results from Section 4.2 to get

κ = −
(

1 +
1

τ

)
+

1

∆
log

V̇ (∆+
+−)

V̇ (∆+−)

U̇(∆+
−−)

U̇(∆−−)

V̇ (∆+
−+)

V̇ (∆−+)

U̇(∆+
++)

U̇(∆++)
. (6.39)

A periodic orbit will be stable provided κ < 0. We shall say that the pseudo-

equilibria at (0, 0) is unstable (stable) if it is enclosed by a stable (unstable)

periodic orbit of arbitrarily small amplitude. We shall say that there is a

pseudo-Hopf bifurcation at (0, 0) when the pseudo-equilibrium changes stabil-

ity, namely when κ = 0. A plot of κ = κ(τ) is shown in Fig. 6.11 for the

parameters of Fig. 6.5. This shows a similar behaviour as for the steep PWL

firing rate function though in this case the stable periodic orbits appear via

a supercritical Hopf bifurcation for a larger value of τ . In essence we may

regard the second term on the right hand side of (6.39) as a correction term to

standard Floquet theory to cope with the nonsmooth nature of the Heaviside

firing rate.

6.5.2 An unstable periodic sliding orbit

The Wilson-Cowan node can also support an unstable periodic orbit that has a

component which slides along the switching manifold U = 0 for V ∈ [V1, V2], as

depicted in Fig. 6.10. The points V1,2 are easily calculated by determining the

points at which the U -nullclines touch the switching manifold where U = 0,

and are found to be V1 = (A11Iu + A12IV − wuu)/A12 and V2 = V1 + wuu/A12.

In reverse time initial data close to a sliding trajectory would be attracted to

it. Thus we can think of constructing an unstable periodoc sliding orbit, of

the type shown in Fig. 6.10, by breaking it into five pieces. All pieces of this

orbit are constructed similarly to before (see above), except the component
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Figure 6.11: A plot of the non-trivial Floquet exponent for the Wilson-Cowan model
with a Heaviside firing rate (left axis and colour in red), as a function of τ , with
the period of the orbit also shown (right axis and colour in green). Parameters as in
Fig. 6.10. Periodic orbits emerge via a supercritical Hopf bifurcation as τ increases
through τHopf ∼ 0.5239. We see that the stable periodic orbit grows as τ increases
to zero and terminates at a saddle-node bifurcation of periodic orbits at τ ∼ 0.6074
where it intersects with the larger, shrinking unstable periodic orbit. Beyond the
bifurcation the trajectory is attracted to the stable fixed point at (Uss, Vss) = (Iu, Iv).

that slides. Using the Filippov method and equation (6.32) we find κ2 =

(A11Iu − A12V + A12Iv)/w
uu, with the sliding dynamics prescribed by

d

dt

U
V

 =

0 0

0 A22 − A11w
uv/wuu


U
V

+

 0

bs

 , (6.40)

where bs = −A12Iu − A22Iv + (A11Iu + A12Iv)w
uv/wuu. In backward time the

periodic sliding orbit shown in Fig. 6.10 would slide up along U = 0 until the

point V = V2, where it would leave the switching manifold.

We now turn our attention to networks built from Wilson-Cowan nodes

with a Heaviside firing rate.

6.6 A network of Heaviside Wilson-Cowan

nodes

As we have shown in Section 6.5 the replacement of a sigmoidal firing rate by
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a Heaviside function can lead to highly tractable models for which substan-

tial analytical results can be obtained (with the use of matrix exponentials and

saltation matrices). However, at the network level the mathematical differences

between the treatment of smooth and nonsmooth firing rates are considerably

amplified relative to those at the single node level. At the node level it is well

known that regarding the Heaviside function as the steep limit of a sigmoidal

function can lead to arbitrarily many different non-equivalent dynamical sys-

tems. This is simply due to the non-uniqueness of the singular limits by which

smooth functions may tend towards discontinuities. For a recent perspective

on this issue see the work of Jeffrey [150]. Thus there is no reason to assume

that taking the limit ε→ 0 for the PWL network considered in Section 6.4 will

be relevant to a Wilson-Cowan network with a Heaviside nonlinearity. Namely

the approximation of a Heaviside function by a continuous function such that

Θ(x) = limε→0 F (x), where F (x) is given by (6.2), may have little utility given

that pointwise convergence need not imply distributional convergence.

We now return to the network introduced in Section 6.4, but replace the

dynamics of each node with the Heaviside limit studied in the previous section.

For the following analysis, it is convenient to rewrite (6.12) as

d

dt
Y = A(Y −F(Y )) , F(Y ) = C −A−1WJΘ(Y ). (6.41)

The network model (6.12), with a Heaviside nonlinearity, is reminiscent of

a so-called Glass network originally introduced for the study of biochemical

networks that are dominated by switch-like behaviour [117, 118], though here

the model has two-time scales. For a nice survey of periodic and aperiodic

behaviour in Glass networks we recommend the article by Edwards [89], and

for the application to gene networks see Edwards and Glass [90].

The synchronous network state is given by (6.33) (remembering the row-

sum constraint on the network connections). To study its linear stability we

consider values of the perturbed network state Y that are close to the syn-
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chronous network state at the unperturbed crossing times. Let T i denote the

time that the synchronous state moves between one of the four quadrants (as

illustated in Fig. 6.10). We then make the ansatz that the perturbed network

state Y can be expressed with respect to the synchronous orbit at one of the

switching times T i and write Y (t) = Y (T i)+δY (t) with t in the neighbourhood

of T i.

We first construct the saltation matrix through a switch, indexed by i =

1, . . . , 4. Suppose that the kth crossing occurs at a perturbed crossing time

Ti,k. The network states at two consecutive crossings are related via

Y (Ti,k+1) = eA(Ti,k+1−Ti,k)Y (Ti,k) +
(
I2N − eA(Ti,k+1−Ti,k)

)
F(Y (T+

i,k)) . (6.42)

This equation is obtained by integrating (6.41) using the observation that F

is constant between crossings. By linearising (6.42) we can relate the pertur-

bations between crossing events as

δY (Ti,k+1) = δY (Ti,k) + Y i,kδTi,k , (6.43)

where Y i,k = A(Y (T i)−F(Y (T+
i,k))) and δTi,k = Ti,k+1−Ti,k. For the node that

crosses at Ti,k+1, the corresponding component of δY (Ti,k+1), say at position

m, vanishes, since Ym(Ti,k+1) = Y m(T i) (namely the mth component of the

perturbed trajectory equals the mth component of the synchronous orbit).

Here, m ∈ {1, 3, . . . , 2N − 1} or m ∈ {2, 4, . . . 2N}, depending on whether the

crossing occurs along the V or U axis. We then see from (6.43) that

δTi,k = −δYm(Ti,k)

Y i,k
m

. (6.44)

At this point, m is still unknown. However, since m corresponds to

the node that crosses before any of the other remaining nodes do so, we

find it by minimising (numerically) (6.44) over the possible values of m, and

we denote it by mk. When we combine (6.43) and (6.44), we find that
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δY (Ti,k+1) = Γi,kδY (Ti,k) with

Γi,k = I2N −
Y i,keTmk
Y i,k
mk

, (6.45)

where em is the mth canonical basis vector in R2N . The saltation matrix for

each of the four switches is then given by

Li = Γi,N−1Γi,N−2 · · ·Γi,1 , i = 1, . . . , 4. (6.46)

The ordering of matrix multiplications in (6.46) is determined by the iterative

minimisation of the perturbations given by (6.44).

In the next step, we analyse how a perturbed network state is propagated

between saltation events. Let T+
i denote the time when the last node crosses

between quadrants. Here, the superscript makes explicit that all nodes have

crossed into the next quadrant. The next network event occurs when one of

the nodes crosses into the subsequent quadrant. This happens at a time T−i+1,

where the superscript indicates that only one node has crossed. We will make

the ansatz that T+
i = T i + δT+

i and T−i+1 = T i+1 + δT−i+1. We see from (6.41)

that

Y (T−i+1) = eA(T−
i+1−T

+
i )Y (T+

i ) +
(
I2N − eA(T−

i+1−T
+
i )
)
F(Y (T+

i )) , (6.47)

from which we obtain after linearisation

δY (T−i+1) = eA∆i

(
δY (T+

i )− Y ′(T+

i )δT+
i

)
+ Y

′
(T
−
i+1)δT−i+1 , (6.48)

where we have used the fact that F(Y (T+
i )) = F(Y (T−i+1)), since F is constant

between crossing events. Here Y
′
(t) denotes the differential of Y (t) with re-

spect to t. As above, the component of δY (T−i+1) that corresponds to the node

that switches first, say at position m, vanishes. Taking the mth component of
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(6.48) then yields an expression for the perturbation of the crossing time

δT−i+1 = − f im

Y
′
m(T

−
i+1)

, (6.49)

where the vector f i ∈ R2N is given by eA∆i

(
δY (T+

i )− Y ′(T+

i )δT+
i

)
. We again

find the value of m by minimising (6.49) over all admissible values of m and

refer to it as mi. This leads to δY (T−i+1) = ΓiδY (T+
i ) with

Γi =

(
Gi −

Y
′
(T
−
i+1)

Y
′
mi

(T
−
i+1)

eTmiGi

)
, (6.50)

and

Gi = eA∆i

(
I2N −

Y
′
(T

+

i )eT1 δT
+
i

δY1(T+
i )

)
. (6.51)

Taken together, we obtain after one period

δY (T+
4 ) = ΨδY (0) , Ψ = L4Γ4L3Γ3L2Γ2L1Γ1 . (6.52)

The matrices Γi act to propagate perturbations across a quadrant, and the

Li propagate perturbations through a switch. At first sight, the definition of

Gi suggests that we have introduced a dependence of Γi on δY (0) through

the inclusion of δY (T+
i ). This dependence can be avoided by noting that

δT+
i = δT−i +

∑
k δTi,k and the repeated use of (6.44), (6.45) and (6.49). The

drawback of this approach is that the resultant operator does not lend itself

to an interpretation of successive propagations and saltations, nor is it numer-

ically advantageous. Moreover, this operator would only remove the explicit

dependence of Ψ on δY (0). The minimisation steps that are necessary to deter-

mine the order in which nodes switch already leads to an implicit dependence

of Ψ on δY (0). Changing δY (0) can lead to a different order of switching, and

since matrix multiplication does not commute, Ψ can be different for different

δY (0). This has profound implications for asserting linear stability. The usual

argument that the eigenvalues of Ψ determine linear stability does not hold
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anymore. To see this, consider the propagation of δY (0) over multiple periods,

i.e.

δY (1) = Ψ(0)δY (0) , δY (2) = Ψ(1)δY (1) , δY (3) = Ψ(2)δY (2) , . . . (6.53)

so that

δY (m) = Ψ(m−1)Ψ(m−2) · · ·Ψ(0)δY (0) . (6.54)

The eigenvalues of Ψ(i) and Ψ(j) can be different for i 6= j. For some value

of i Ψ(i) may have all eigenvalues in the unit disc, whilst for another value

of i there may be some eigenvalues outside the unit disc. Over one period,

perturbations can therefore grow or shrink. This entails that for a product of

operators as in (6.54), δY (m) may be smaller than δY (0), although some Ψ(i)

might have some eigenvalues that lie outside the unit disc. Instead of looking

at the eigenvalues of individual Ψ(i), we could have studied the eigenvalues of

the product of operators in (6.54). We would have come to the same conclusion

since eigenvalues of the product operator move into and out of the unit disc

as we increase m.

Figures 6.12 and 6.13 illustrate the dependence of the spectra on random

initial conditions δY (0). In both figures, the left panel shows the spectra for

initial conditions when all eigenvalues of Ψ(0) lie within the unit disc. The

middle panel displays spectra with some eigenvalues outside the unit disc, and

the right panel is a blowup of the middle panel around the unit disc. For

Fig. 6.12, we chose a value of σ such that the synchronous orbit of the PWL

network, with a small values of ε = 0.001, is linearly stable. We observe that

the eigenvalues of the Heaviside network cluster around those of the PWL

network. While it appears that the majority of synchronous solutions are

stable (for this parameter choice), some initial conditions lead to eigenvalues

outside the unit disc. When zooming into the unit disc, we see some degree of

clustering, although this is not as pronounced as for the stable solutions.

For larger values of σ, the synchronous state of the PWL network becomes
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Figure 6.12: Spectral plots for a Heaviside Wilson-Cowan ring network with spatial
scales σαβ = 0.215 for all α, β, and N = 5. We sampled 2000 random initial
conditions, and eigenvalues are shown as open red circles. The filled blue circles are
the eigenvalues of the PWL network with the same parameter values and ε = 0.001.
(Left) Spectra for initial conditions that lead to eigenvalues that all fall into the unit
disc. (Middle) Spectra for initial conditions that lead to eigenvalues outside the unit
disc. (Right) Blow-up of the the middle panel around the unit disc. Other parameters
as in Fig. 6.3.

unstable (for small ε). The left panel of Fig. 6.13 shows that the eigenvalues

of the Heaviside network that all fall into the unit disc exhibit only a weak

association with the eigenvalues of the PWL network. In addition, it seems

that more initial conditions lead to unstable synchronous solutions than stable

ones. This mirrors the behaviour in Fig. 6.12, where the majority of initial

conditions gives rise to stable solutions. The blow-up in the right panel of

Fig. 6.13 illustrates that the eigenvalues of the Heaviside network form clusters

around those of the PWL network. While the notion of linear stability in terms

of eigenvalues of the propagator is lost for the Heaviside network, it appears

that the clustering of these eigenvalues reflects the stability of the PWL system,

at least for small values of ε (where the PWL firing rate becomes more switch

like).

6.7 Discussion

In this chapter we have shown that the combination of two popular approaches

in dynamical systems, namely PWL modelling of low dimensional oscillators

and the MSF, can be combined to give insight into the behaviour of network

states in neural mass network models. This is natural for this type of system

183



-1

 0

 1

-1  0  1

-20

 0

 20

-20  0  20

-1

 0

 1

-1  0  1

Figure 6.13: Spectral plots for a Heaviside Wilson-Cowan ring network with spa-
tial scales σαβ = 0.23 for all α, β, and N = 5. We sampled 2000 random initial
conditions, and eigenvalues are shown as open red circles. The filled blue circles are
the eigenvalues of the PWL network with the same parameter values with ε = 0.001.
(Left) Spectra for initial conditions that lead to eigenvalues that all fall into the unit
disc. (Middle) Spectra for initial conditions that lead to eigenvalues outside the unit
disc. (Right) Blow-up of the the middle panel around the unit disc. Other parameters
as in Fig. 6.3.

since the sigmoidal nonlinearity, ubiquitous throughout neuroscience modelling

of large scale brain dynamics, is well caricatured by a PWL reduction. We

have focused here on the bifurcation of the synchronous network state, and

shown how this can be determined in terms of a set of low-dimensional Floquet

problems, each of which can be solved using simple linear algebra. In essence

the PWL aspect of the model allows the variational problem for stability to be

solved without recourse to the numerical solution of an ordinary differential

equation. Closed form solutions are patched together, and although this may

appear inelegant at first sight, it does lead to explicit formulas for Floquet

exponents at the single node level, and is easily cast into algorithmic form for

accurate numerical computations at the network level. This nicely highlights

the benefits of PWL modelling. Importantly the approach advocated here is

not just limited to the construction and stability of the synchronous state.

Pecora et al. [232] and Sorrentino et al. [291] have recently extended the

MSF approach to treat more exotic states making extensive use of tools from

computational group theory. Thus the work presented here is readily extended

to treat non-synchronous states, such as clusters, and for a further discussion

see [217]. From a neuroscience perspective it would also be important to treat
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delays, arising from the finite propagation speed of action potentials relaying

signals between distinct brain regions [70]. In this case we would hope to

exploit the growing body of knowledge on PWL dynamics with time delay, as

exemplified by [271].

From a mathematical perspective we have also seen that there is an im-

portant difference between the analysis of a high gain continuous PWL sigmoid

and that of a discontinuous switch-like Heaviside firing rate. Although this can

be facilitated with the use of saltation matrices (to propagate perturbations

through switching manifolds) there is no MSF style approach that reduces the

study of synchrony to a set of sub-network Floquet problems. Moreover, in

contrast to the linear stability analysis of continuous systems, there is now

a new challenge of addressing the temporal order in which perturbations to

network states pass through a switching manifold. To treat this we have made

use of ideas originally developed for Glass networks [89], though note that

similar issues of ordering also arise in the analysis of pulse-coupled systems

[122, 160, 304]. In essence the analysis of a Wilson-Cowan network with a

Heaviside firing rate must be performed carefully, and with non-standard tools,

as its behaviour can differ from that of a similar network with a high gain PWL

sigmoid.
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Chapter 7

The two process model for

sleep-wake regulation

7.1 Introduction

Sleep is necessary for human beings to maintain a healthy mind and function-

ing body. During sleep, many systems in the body enter an anabolic state, and

this allows recovery of the nervous, muscular, and immune systems [24, 248].

A good sleep also helps restoration of the brain, wound healing, reducing pain

perception, restoring energy, and improving concentration [132, 294]. Sleep dis-

orders such as insomnia, sleep apnoea, hypersomnia, sleepwalking, and bruxism

result in poor sleep quality or mistimed sleep [17]. Sleep is related with many

health problems [190], including psychotic disorders and depression [301], di-

abetes [273], obesity [45], and cardiovascular disease [290]. The significant

association between sleep and health issues necessitates a good understanding

of the sleep-wake regulation process, and many properties of sleep are still not

fully understood.

Mathematical models has been utilised as a powerful instrument to ex-

plore biological mechanisms of sleep-wake regulation and circadian rhythms for

many years. Most classical models have at least a pair of oscillators and often

focus on the circadian rhythm forced by the suprachiasmatic nucleus (SCN),
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the need to sleep after being awake for a period of time, cyclic transitions

between rapid eye movement (REM) and nonrapid eye movement (NREM)

sleep types (per oscillation is nearly 90 minutes), and a sleep inertia rule, see

for example [17, 102, 166, 197, 198, 295]. The two process model [32, 62] is

a simple nonsmooth dynamical system, that can nonetheless capture many

essentials of the sleep-wake cycle. Recent developments have allowed a better

understanding of the neuronal systems that regulate sleep-wake mechanisms

[267] and more advanced neuronal models have been introduced [167, 300],

including the Phillips-Robinson (PR) model [236]. The PR model is based

on the interaction between wake boosting neurons and sleep boosting neurons

that are modulated by circadian and homeostatic processes, is physiologically

motivated [238]. It is also capable of describing the effects of caffeine, shift

work, and sleep deprivation on the sleep-wake cycle [246].

By using multiple timescale analysis Skeldon et. al [286] have shown that

the PR model can be reduced to the two process model. The link between

the PR model and the two process model allows one to describe some prop-

erties of the two process model more physiologically [30]. Moreover, there is

an association between the two process model and other more general neu-

ronal models, and that link has been investigated in [287]. Hence, exploring

the dynamics of the two process model helps to better understand sleep-wake

regulation and provides a clearer framework to explain some features of more

complex neuronal models.

To explain the sleep-wake cycle, the two process model introduces two

interacting oscillatory activities: a circadian process (sleep independent) and

a homeostatic process (sleep dependent). A circadian process is a rhythm that

repeats approximately every 24 hours. A homeostatic sleep process is a bio-

chemical adjustment within the body to keep physiological sleep requirements

within sensible bounds. The homeostatic process represents sleep pressure that

increases monotonically during wakefulness and decreases monotonically dur-

ing sleep. The lower and upper boundaries of sleep pressure are regulated by
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the circadian oscillation. Transition from sleep states to wake states happen

at the lower boundary and switching from wake states to sleep states occur

at the upper boundary. Examples of these are shown in Fig 7.2 for different

sleep-wake patterns.

Although the two process model is a relatively simple model it exhibits

many different sleep-wake patterns [62]. Nakao et. al [214, 215] have framed

this model as a one-dimensional map with gaps and linked this to a circle map

(utilising immanent periodicity of the circadian activity). Bailey et. al [18]

performed a detailed bifurcation analysis for the model [16, 74, 154]. They

also discussed the biological relevance of model parameters and how different

solutions can be associated with sleep-wake patterns of babies and adults.

Here we review and extend results from [18] by considering analytical ODE

modelling with switches and nonsmooth Floquet theory. Moreover, we show

that the original map-based analysis of the two process model is recovered using

an approach that treats nonsmooth flows. The main reason to reproduce and

extend results of [18] is as a basis for the future network studies (say involving

two interacting sleepers- common in co-habitation).

The organisation of the chapter is as follows. In Section 7.2 we intro-

duce the two process model by presenting it as an ODE system with switches

(namely a nonsmooth flow). We then define periodic orbits and present rele-

vant one dimensional maps. In Section 7.3, we give a construction of periodic

orbits. We then show how to determine the stability of periodic solutions with

an adaptation of Floquet theory, and also perform a linear stability analysis

of the maps of switching event times around such orbits. Utilising techniques

for nonsmooth systems, we derive a formula to compute Lyapunov exponents,

shedding light on where different solution patterns exist in parameter space.

We also show that the model may support super-stable periodic solutions. In

Section 7.4 we perform a bifurcation analysis and build Arnol’d tongue bound-

aries by examining both saddle-node bifurcations of periodic orbits and grazing

bifurcations. In Section 7.5, we review how social factors influence human sleep
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dynamics including partners sharing the same bed, and discuss a phenomeno-

logical network version of the two process model. Finally, In Section 7.6, we

give a discussion of the work presented in the chapter.

7.2 Model description and periodicity

The two process model is a fascinating and ostensibly simple prototype of

PWL modelling whose rich and complicated dynamical behaviours exemplify

many interesting phenomenon, see for example [74]. This model characterise

the timing and structure of sleep as the interaction of circadian and homeo-

static process evolution. To describe the combination of these two oscillatory

processes as continuous flows we consider the following model formulation:

ẋ(t) =



−x(t)

τw
+

1

τw
, if ẋ(t) > 0 and x(t) 6 H+(t), (7.1)

−x(t)

τs
, if ẋ(t) < 0 and x(t) > H−(t), (7.2)

with the circadian processes

H+(t) = H+
0 + a sin(2πt), (7.3)

H−(t) = H−0 + a sin(2πt). (7.4)

Here x(t) represents the homeostatic sleep pressure and oscillates between

the upper (H+(t)) and lower (H−(t)) threshold. We define xw(t, tw0 ) as the

homeostatic sleep pressure during wake, which starts at t = tw0 with the initial

value xw(tw0 ), and xs(t, t
s
0) as the homeostatic sleep pressure during sleep, which

starts at t = ts0 with the initial value xs(t
s
0). Then the explicit solution for

xw(t, tw0 ) can be calculated as follows

xw(t, tw0 ) = xw(tw0 )e−(t−tw0 )/τw +
1

τw

∫ t

tw0

e−(t−s)/τwds

= 1− [1− xw(tw0 )]e−
t−tw0
τw . (7.5)
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Similarly, we can obtain the solution for xs(t, t
s
0) as

xs(t, t
s
0) = xs(t

s
0)e−

(t−ts0)

τs . (7.6)

If initially the homeostatic sleep pressure starts on either threshold, these

initial values satisfy H−(tw0 ) = xw(tw0 ) and H+(ts0) = xs(t
s
0) on the lower

and upper threshold, respectively. We denote switching event times on the

lower threshold by T2i and that of on the upper by T2i+1 where i ∈ Z, T2i =

inf{t | x(t) = H−(t); t ≥ T2i−1} and T2i+1 = inf{t | x(t) = H+(t); t ≥ T2i}.

This model contains five parameters (see [17] for a detailed discussion on phys-

iological relevance, restrictions and derivation of the model parameters). The

parameter a is the circadian amplitude, τs and τw are time constants which de-

termine the rate of change of homeostatic sleep pressure during sleep and wake,

respectively. Borbely et. al [31] have investigated how to approximate these

time constants in relation with human monophasic/polyphasic sleep-wake pat-

terns by using some experimental data. H+(t) and H−(t) have period 1 that

symbolise one day, and H+
0 and H−0 are the mean values of them, respectively.

We note that biological constraints require a monotonically decreasing xs and

a monotonically increasing xw. Wake and sleep homeostatic pressures asymp-

tote to 1 and 0, respectively, and therefore stay in the interval (0, 1). These

restrictions yield τs > 0, τw > 0, and

a < H−0 < H+
0 < 1− a. (7.7)

Nakao et. al [214, 215] have shown that the dynamics of the two process model

can be studied using one dimensional maps with discontinuities. Using this

observation, Bailey et. al [18] introduced three different one dimensional maps

in terms of switching event times to study periodic orbits and their bifurcations.

These are: (i)− the down map Td : R→ R from upper to lower threshold, i.e. a

map that takes a point (H+(t0), t0) on the upper threshold and maps it into the
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next point on the lower threshold. (ii)− the up map Tu : R → R from lower

to upper threshold. Therefore, Td(t0) and Tu(t0) are the first times greater

than t0 such that xs(Td(t0), t0) = H−(Td(t0)) and xw(Tu(t0), t0) = H+(Tu(t0))

hold. (iii)− the map from upper threshold into itself (composition of the down

and up maps) Ts : R → R where Ts(t0) = Tu(Td(t0)). The upper and lower

thresholds are one day periodic (see equations (7.3) and (7.4)), hence all three

maps have the following property

Tj(t0 + 1) = Tj(t0) + 1, j = d, u, s. (7.8)

Examples of these maps are illustrated in Fig. 7.1. In panel (c) the diagonal

line helps to see fixed points of the map Ts(t0) (corresponding to periodic

solutions), e.g. here the two process model has a stable periodic orbit.

0 0.5 1
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1
(a)

0 0.5 1
0
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1
(b)

0 0.5 1
0

0.5

1
(c)

Figure 7.1: Illustrative examples of Tj mod 1 for j = d; u; s, showing behaviour
similar to [18]. Parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75, H−0 = 0.1562, and
a = 0.08675.

Bailey et. al [18] have shown that the map Ts is monotonic for a large

regions of the parameter plane, and in these regions Ts can be considered as

the degree 1 lift of a circle map on the interval [0, 1]. Thus the map has a

unique rotation number, which is independent of t0 [228, 249], given by

ρ(Ts) = lim
n→∞

T ns (t0)− t0
n

. (7.9)

If the rotation number ρ(Ts) is rational, then the map has periodic solutions

[158, 249]. The model has various types of periodic orbits and these can be

characterised as having p sleep-wake episodes in q days. Thus, t0 yields a (p, q)
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periodic orbit if T ps (t0) = t0 + q where (T js (t0) − t0) 6∈ N for j = 1, . . . , p − 1.

The monotonicity of Ts and relation (7.8) give that the set Ts([0, 1]) will be

accommodated in an interval of length 1. Hence, if Ts has a (p, q) periodic

solution, the greatest common divisor of p and q will be 1 and the theory

of monotonic circle maps implies that the function Ts has rational rotation

number ρ(Ts) = q/p, (cf. [12, 18]). We demonstrate some examples of (p, q)

periodic orbits in Fig 7.2.

0 1 2 3 4t
0

0.5

1
(a)

0 2 4t

0

0.5

1
(b)

0 2 4t

(c)

0 2 4t

(d)

Figure 7.2: Periodic solutions of the two process model (in [18] similar orbits
are presented with different parameters). (a)- A (1, 1) periodic orbit (one sleep-wake
episode in one day). The homeostatic sleep pressure (shown in light brown) increases
during wake and decreases during sleep. The upper and lower thresholds are shown in
black. Switching from wakefulness (sleep) to sleep (wakefulness) takes place at upper
(lower) threshold crossing. Parameters: τw = 0.70, τs = 0.5, H+

0 = 0.75, H−0 =
0.2469, and a = 0.09478. (b)- A (1, 2) periodic orbit (one sleep-wake episode in
two days). Parameters: τw = 1.426, τs = 0.6634, H+

0 = 0.75, H−0 = 0.2469,
and a = 0.09478. (c)- A (2, 1) periodic orbit (two sleep-wake episodes in one day).
Parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75, H−0 = 0.569, and a = 0.04659.
(d)- A (2, 3) periodic orbit (two sleep-wake episodes in three days). Parameters:
τw = 0.75, τs = 0.25, H+

0 = 0.75, H−0 = 0.08883, and a = 0.03213.
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7.3 Construction and stability of periodic or-

bits

Daan et. al [62] have shown that the two process model can describe a wide

range of sleep-wake periodic pattern. Using the methodology presented in

Section 3.3, we can explicitly construct any (p, q) periodic solution. Here we

will show the construction of a (1, 1) periodic orbit, but a similar method can

be implemented to build any (p, q) periodic orbit.

A (1, 1) periodic solution has period ∆ = 1 and contains one wake episode

and one sleep episode. To build this let us consider a solution xw(t, t0) that

starts from the lower threshold at t = t0 with an initial value xw(t0) = x0.

Since the solution starts at the lower threshold we also have H−(t0) = x0.

The solution will evolve according to equation (7.1) until it hits the upper

threshold at t = T1 with a state value xw(T1) = x1. We denote the duration of

the wake episode by ∆1 = T1 − t0. At the upper threshold H+(T1) = x1 holds

and the sleep state starts. Then the solution xs(t, T1) will evolve according to

equation (7.2) until it hits the lower threshold at t = 1 + t0 with a state value

xw(∆2) = x2 where ∆2 = 1−∆1 denotes the duration of the sleep episode. At

the lower threshold H−(t) = x2 holds and a switch from sleep to awake occurs.

Due to periodicity we also have that x2 = x0. To complete the procedure we

need to determine the unknowns (t0, x0,∆1, x1, x2) by simultaneously solving

a system of five equations:

x0 = H−0 + a sin(2πt0); x1 = 1− (1− x0)e−∆1/τw

x1 = H+
0 + a sin(2πT1); x2 = x1e−∆2/τs ; x2 = x0.

(7.10)

In general, to build any (p, q) periodic orbit one needs to solve system of

equations with more unknown parameters, for example to construct a (2, 3)

periodic orbit nine equations are required to determine nine unknowns. We

illustrate the shape of (1, 1) and (2, 3) periodic orbits in Fig 7.3 where we
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denote the duration of wake and sleep episodes by ∆2i+1 and ∆2i, respectively,

i ∈ Z.
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t

0

0.4

0.8
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Figure 7.3: Left panel: A (1, 1)−periodic orbit. In order to construct this orbit
explicitly, we need to determine (t0, x0,∆1, x1, x2). Here t0 is the waking up time
with initial homeostatic sleep pressure x0, ∆1 is the total awake time, x1 is the
homeostatic sleep pressure for which switching from wake to sleep occurs, and x2 is
the homeostatic sleep pressure for which switching from sleep to wake occurs. We
can find five equations using the explicit solution and threshold matching conditions
to solve these five unknowns uniquely. Parameters: τw = 0.75, τs = 0.417, H+

0 =
0.65, H−0 = 0.15, and a = 0.1. Right panel: A (2, 3)−periodic orbit, and to construct
this we need to determine nine unknowns (t0, x0,∆1, x1,∆2, x2,∆3, x3, x4). Here we
denote T1 = t0 + ∆1, T2 = T1 + ∆2, T3 = T2 + ∆3, T4 = t0 + 3, and ∆4 = T4 − T3.
At the lower threshold, switching from sleep to wake occurs at (t0, x0), (T2, x2), and
(T4, x4). At the upper threshold, switching from wake to sleep occurs at (T1, x1) and
(T3, x3). Parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75, H−0 = 0.1, and a = 0.05.

7.3.1 Stability I: Saltation approach

To determine the stability of periodic solutions we implement a similar method

to that presented in Section 4.2. However, we note that in this case switching

thresholds are not constant, and indicator functions are explicitly state and

time dependent [211]. Therefore we need to adapt Floquet theory and obtain

saltation matrices accordingly.

Let us consider a (p, q) periodic orbit x̄(t) of the system (7.1)-(7.2) and

a perturbed solution by x̃(t) = x̄(t) + δx(t), for some small perturbation

δx(t). Then during a wake state when T0 < t < T1 (or in general between

T2i < t < T2i+1), δx(t) evolves depend upon to

d

dt
δx(t) = − 1

τw
δx(t). (7.11)
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During a sleep state when T1 < t < T2 (or in general between T2i+1 < t < T2i+2),

δx(t) evolves according to

d

dt
δx(t) = − 1

τs
δx(t). (7.12)

Here we derive the saltation rule at event time t = T1 on the upper threshold.

A similar calculation can be done at any event time t = T2i+1 (t = T2i), i ∈ Z,

on the upper (lower) threshold. We introduce indicator functions h1(x(t), t) =

x(t) − H+
0 − a sin(2πt) and h2(x(t), t) = x(t) − H−0 − a sin(2πt) such that

switching events occur when h1(x(t), t) = 0 and h2(x(t), t) = 0 on the upper

and lower threshold, respectively. Hence the unperturbed (perturbed) trajec-

tory intersects with upper threshold at t = T1 (T̃1 = T1+δT1) that is prescribed

by h1(x(T1), T1) = 0 (h1(x(T̃1), T̃1) = 0). Here we assume δT1 > 0, however

for the case δT1 < 0 a similar argument holds. A Taylor expansion up to the

first order terms yields

h1(x̃(T̃1), T̃1) = h1(x̃(T1 + δT1), T1 + δT1) ' h1(x̃(T1) + x̃′(T1)δT1, T1 + δT1)

' h1(x̄(T1) + δx(T1) + x̄′(T−1 )δT1, T1 + δT1)

' h1(x̄(T1), T1) +5xh1(x̄(T1), T1)
[
δx(T1) + x̄′(T−1 )δT1

]
+5th1(x̄(T1), T1)δT1.

(7.13)

Using this along with the property h1(x̃(T̃1), T̃1) = 0 = h1(x̄(T1), T1), we obtain

5x h1(x̄(T1), T1)
[
δx(T1) + x̄′(T−1 )δT1

]
+5th1(x̄(T1), T1)δT1 = 0. (7.14)

Moreover we have

5x h1(x, t) = 1 and 5t h1(x, t) = −2aπ cos(2πt). (7.15)
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Then by combining equation (7.14) and (7.15) we obtain

δx(T1) + x̄′(T−1 )δT1 − 2aπ cos(2πt)δT1 = 0. (7.16)

Hence by solving equation (7.16) for δT1 we find

δT1 = − δx(t)

x̄′(t)− 2aπ cos(2πt)

∣∣∣∣
t=T−

1

= − δx(T−1 )

(1− x(T−1 ))/τw − 2aπ cos(2πT−1 )
.

(7.17)

We can approximate x̃(T+
1 ) by pulling back the perturbed solution an amount

of time δt starting from x̃(T̃+
1 ) and therefore we have that

δx(T+
1 ) ' x̃(T+

1 + δT1)− x̃′(T+
1 + δT1)δT1 − x̄(T+

1 )

' x̄(T+
1 ) + δx(T−1 ) + x̄′(T−1 )δT1 − x̄′(T+

1 )δT1 − x̄(T+
1 )

= δx(T−1 ) +
[
x̄′(T−1 )− x̄′(T+

1 )
]
δT1

= δx(T−1 ) +

[
1− x(T−1 )

τw
+
x(T+

1 )

τs

]
δT1.

(7.18)

As a result, using equation (7.17) and (7.18) we obtain

δx(T+
1 ) =

1−

(
1− x̄(T−1 )

τw

)
−
(
− x̄(T+

1 )

τs

)
1− x̄(T−1 )

τw
− 2aπ cos(2πT−1 )

 δx(T−1 )

≡ K1(T1)δx(T−1 ),

(7.19)

where K1(T1) denotes the saltation rule and is given by

K1(T1) =
τw
τs

[
2aπτs cos(2πT1) + a sin(2πT1) +H+

0

2aπτw cos(2πT1) + a sin(2πT1) +H+
0 − 1

]
. (7.20)

By following a similar method, the saltation rule K2(T2) at t = T2 on the lower

threshold can be computed as

K2(T2) =
τs
τw

[
2aπτw cos(2πT2) + a sin(2πT2) +H−0 − 1

2aπτs cos(2πT2) + a sin(2πT2) +H−0

]
. (7.21)
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We note that the saltation rule at any t = T2i+1 on the upper threshold is

equal to K1(T2i+1) and that of at any t = T2i on the lower threshold is equal

to K2(T2i).

Therefore for any (p, q)-periodic solution (p sleep and p wake in q days,

∆ = q), after one period of oscillation, a perturbed trajectory evolves according

to δx(q) = Mδx(t0) where

M = K2(T2p)e
−

∆2p
τs K1(T2p−1)e−

∆2p−1
τw . . . K2(T2)e−

∆2
τs K1(T1)e−

∆1
τw . (7.22)

Hence, the Floquet exponent is

κ =
1

q

[
−
(

1

τw
(∆1 + ∆3 + · · ·+ ∆2p−1) +

1

τs
(∆2 + ∆4 + · · ·+ ∆2p)

)
+

p∑
j=1

ln |K1(T2j−1)|+ ln |K2(T2j)|

]
.

(7.23)

The periodic orbit will be stable if the Floquet exponent κ has negative real

part. For example, in Figure 7.3, the (1, 1) and (2, 3) periodic solutions have

κ = −2.73 and κ = −1.253, respectively, thus both solutions are stable.

7.3.2 Implicit relation of the event times

Explicit solutions of the two process model during wake and sleep episodes

are given by equation (7.5) and (7.6), using these solutions we can obtain an

implicit relation between consecutive event times. Thus for a wake episode

when T2i ≤ t ≤ T2i+1 we have,

T2i+1 + τw ln |x(T2i+1)− 1| = T2i + τw ln |x(T2i)− 1|. (7.24)

Using the state values on the upper and lower thresholds, we can rewrite this

as

T2i+1+τw ln |H+
0 +a sin(2πT2i+1)−1| = T2i+τw ln |H−0 +a sin(2πT2i)−1|. (7.25)
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It is clear from equation (7.25) that T2i+1 can not be explicitly solved in terms

of T2i, but we can define an implicit function G1(T2i, T2i+1) = 0 where

G1(T2i, T2i+1) = T2i+1 − T2i − τw ln

∣∣∣∣ H−0 + a sin(2πT2i)− 1

H+
0 + a sin(2πT2i+1)− 1

∣∣∣∣ . (7.26)

Moreover, for a sleep episode when T2i+1 ≤ t ≤ T2i+2 we have,

T2i+2 + τs ln |x(T2i+2)| = T2i+1 + τs ln |x(T2i+1)|. (7.27)

Using the state values on the upper and lower thresholds, we obtain

T2i+2 + τs ln |H−0 +a sin(2πT2i+2)| = T2i+1 + τs ln |H+
0 +a sin(2πT2i+1)|. (7.28)

We observe that T2i+2 also can not be explicitly solved in terms of T2i+1,

however we can define an implicit function G2(T2i+1, T2i+2) = 0 where

G2(T2i+1, T2i+2) = T2i+2 − T2i+1 − τs ln

∣∣∣∣H+
0 + a sin(2πT2i+1)

H−0 + a sin(2πT2i+2)

∣∣∣∣ . (7.29)

In the next section we will use these implicit relations to assess the stability

of periodic orbits.

7.3.3 Stability II: Using the implicit relation of the event

times

A one dimensional map tn+1 = g (tn), where we assume g is differentiable, has

a fixed point if tn = tn+1. Thus to find fixed points t∗ of the map we need

to solve t∗ = g (t∗) for t∗. To investigate the stability of these fixed points

we consider a nearby orbit tn = t∗ + δn and determine whether this orbit is

attracted or repelled from t∗. Then using a first order approximation we obtain

t∗ + δn+1 = g(t∗ + δn) ' g(t∗) + g′(t∗)δn, (7.30)
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since t∗ = g(t∗), this yields the linearised map

δn+1 = g′(t∗)δn. (7.31)

The derivative of map at t∗ is called multiplier of the fixed point. Then the

fixed point t∗ is

i. Unstable (local repeller) if |g′ (t∗)| > 1,

ii. Marginal if |g′ (t∗)| = 1,

iii. Stable (local attractor) if |g′ (t∗)| < 1,

iv. Superstable if |g′ (t∗)| = 0.

We can use this to determine stability of any (p, q) periodic solution of the two

process model. To see this, let us take a (p, q) periodic orbit and assume it

start from lower threshold at t = T2i and consider a perturbed trajectory that

starts at a perturbed time t = T2i + δT2i. Periodic and perturbed solutions

reach to the upper threshold at t = T2i+1 and t = T2i+1 + δT2i+1, respectively.

A first order Taylor expansion of equation (7.26) gives

G1(T2i+δT2i, T2i+1+δT2i+1) = G1(T2i, T2i+1)+
∂G1

∂T2i

δT2i+
∂G1

∂T2i+1

δT2i+1. (7.32)

Then using G1(T2i + δT2i, T2i+1 + δT2i+1) = G1(T2i, T2i+1) = 0, we obtain

δT2i+1 = −
∂G1

∂T2i

∂G1

∂T2i+1

δT2i ≡ S1(T2i, T2i+1)δT2i, (7.33)

where

S1(T2i, T2i+1) = −

(
−1− τw

(
2πa cos(2πT2i)

H−
0 +a sin(2πT2i)−1

))
(

1 + τw

(
2πa cos(2πT2i+1)

H+
0 +a sin(2πT2i+1)−1

)) , (7.34)

Similarly a first order expansion of equation (7.29) yields

G2(T2i+1 + δT2i+1, T2i+2 + δT2i+2) = G2(T2i+1, T2i+2) +
∂G2

∂T2i+1

δT2i+1

+
∂G2

∂T2i+2

δT2i+2.

(7.35)
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We know G2(T2i+1 + δT2i+1, T2i+2 + δT2i+2) = G2(T2i+1, T2i+2) = 0, therefore

δT2i+2 = −
∂G2

∂T2i+1

∂G2

∂T2i+2

δT2i+1 ≡ S2(T2i+1, T2i+2)δT2i+1, (7.36)

where

S2(T2i+1, T2i+2) = −

(
−1− τs

(
2πa cos(2πT2i+1)

H+
0 +a sin(2πT2i+1)

))
(

1 + τs

(
2πa cos(2πT2i+2)

H−
0 +a sin(2πT2i+2)

)) . (7.37)

Hence for a (p, q) periodic orbit we have δT2p = µδT0 where

µ = S2(T2p−1, T2p)S1(T2p−2, T2p−1) . . . S2(T1, T2)S1(T0, T1). (7.38)

Thus the periodic orbit is stable when |µ| < 1. We note that the first method

(given in Section 7.3.1) and the second method (presented here) yield the same

stability result for a periodic orbit. In following subsections we will use the first

method to compute Lyapunov exponents and the second method to determine

parameter sets that give rise to superstable periodic orbits. A bifurcation

diagram, showing the Floquet exponents of periodic orbits under variation

of H−0 is presented in Fig. 7.4. At H−0 = 0.2102 and H−0 = 0.381 saddle-

node bifurcation of (1, 1) periodic orbits is observed. Examples of stable and

unstable periodic orbits are also shown. In Fig. 7.5 we plot the map Ts(t0) for

various H−0 values to show the creation/annihilation of (1, 1) periodic solutions

via saddle-node bifurcation. Both methods agree, i.e. bifurcations occur for

the same values of H−0 .

7.3.4 Lyapunov exponents

Lyapunov exponents quantify the exponential rates of convergence or diver-

gence of initially close orbits of an attractor in state space and are useful to

determine regions of parameter space with different emergent behaviour. Pe-

riodic attractors have non-positive exponents whereas chaotic attractors have

at least one positive Lyapunov exponent.
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Figure 7.4: (a) A bifurcation diagram for (1, 1) periodic orbits. When H−0 ∈
(0.2102, 0.381) stable and unstable periodic solutions coexist. At H−0 = 0.2102 and
H−0 = 0.381 these solutions are coincide and annihilate each other via saddle-node
bifurcation of periodic orbits. (b) An example of a stable periodic orbit with Floquet
exponent= −0.8905, and H−0 = 0.3035. (c) An example of an unstable periodic orbit
with Floquet exponent= 1.7508, and H−0 = 0.3035. Parameters: τw = 0.75, τs =
0.25, H+

0 = 0.75, and a = 0.04498.

For a general dynamical system ẋ = f(x), x ∈ Rn, the spectrum of the

LEs, λi, is given for some different initial conditions δxi(t0) as:

λi = lim
t→∞

1

t− t0
ln

∣∣∣∣ δx(t)

δxi(t0)

∣∣∣∣ , (7.39)

where δx(t) indicates evolution of the distance x̄(t) − x̃(t) between x̄(t) and

the perturbed trajectory x̃(t) with an initial condition x̄(t0) + δx(t0). For

smooth continuous dynamical systems, LEs are generally computed by solving

a variational equation where the Jacobian of the system is evaluated along an

orbit. Indeed, algorithms for computing the LEs of smooth continuous systems
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are well developed [22, 83, 258]. However, these classical algorithms cannot be

directly applied to compute LEs of nonsmooth dynamical systems. As we have

shown in Section 4.2, evaluation of the variational equation of a nonsmooth

system requires careful consideration. Here we develop the notion of Lyapunov

exponent for the two process model, by re-visiting techniques originally applied

in the analysis of impacting systems [68, 211].

Similar to the derivation of equation (7.22), for any arbitrary time t, the

overall deviation between two trajectories x̄(t) and x̃(t) of the two process

model can be written as

δx(t) = e−
(t−∆k)

τw K2(Tk)e
−∆k
τs K1(Tk−1)e−

∆k−1
τw . . . K1(T1)e−

∆1
τw δx(t0), (7.40)

where K1(t) and K2(t) are saltation rules given by equations (7.20) and (7.21),

respectively. Thus using formula (7.39) along with equation (7.40), we can
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Figure 7.5: The creation/annihilation of a pair of (1, 1) periodic orbits via a saddle-
node bifurcation as H−0 varying. (a) When H−0 = 0.19 no fixed point observed. (b)
At H−0 = 0.2102 the saddle-node bifurcation is occurred. (c) The map has two fixed
points, H−0 = 0.3035. (d) At H−0 = 0.381 the saddle-node bifurcation reappeared.
Parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75, and a = 0.04498.
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formulate the Lyapunov exponent of the two process model as

λ = lim
k→∞

1

T k − T 0
ln

∣∣∣∣∣
k∏
j=1

Kµ(Tj)e
− 1
τw

(∆1+∆3+···+∆k−1)e−
1
τs

(∆2+∆4+···+∆k)

∣∣∣∣∣
= lim

k→∞

1

T k − T 0

[
− 1

τw
(∆1 + ∆3 + · · ·+ ∆k−1)− 1

τs
(∆2 + ∆4 + · · ·+ ∆k)

+
k∑
j=1

ln |Kµ(Tj)|

]
,

where µ = 1 if j is odd and µ = 2 if j is even. Here we consider the trajectory

x̄(t) to start from the lower threshold but a similar formula can easily be

obtained when it starts from the upper threshold. We note that there are two

contributions to λ, one from the smooth flow during sleep and awake episodes

and the other from the discontinuous nature of the switching mechanism at

threshold crossings. We depict a LE diagram for the two process model in Fig.

7.6. We observe that the diagram shades parameter regions in which different

periodic solutions are occur.
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Figure 7.6: The Lyapunov exponents plot of the two process model in the (H−0 , a).
The diagram shades parameter regions in which different periodic solutions are ob-
served. Parameters: τw = 0.75, τs = 0.25, and H+

0 = 0.75.
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7.3.5 Superstable solutions

Inside the region where (1, 1) periodic orbits exist in Fig. 7.6, we observe a

turquoise curve on which the LE is minimised. This indicates that the model

may support some superstable periodic solutions. Then using this observation,

over that region we computed g′ (t∗) = (Td(Tu(t
∗)))′ as follows

µ = S2(T1, T2)S1(T0, T1), (7.41)

and obtained that |g′ (t∗)| = |µ| = 0 holds along this curve, hence, the two

process model exhibits (1, 1) superstable periodic orbits. The parameters in

the (a,H−0 ) plane that yield such orbits are illustrated in Fig. 7.7. The super-

position of the turquoise curve in Fig. 7.6 and the blue curve in Fig. 7.7 are

shown in Fig. 7.14.

0 0.2 0.4 0.6

0.2

0.3

0.4

a

Figure 7.7: Blue curve shows the parameters in the (a,H−0 ) plane that yield (1, 1)
superstable periodic solutions of the two process model. Other parameters: τw =
0.75, τs = 0.25, and H+

0 = 0.75.

7.4 Bifurcation of periodic solutions

In modern society, the most common sleep-wake pattern for adults is monopha-

sic (one wake and one sleep episodes per day). However, Daan et. al [62] have

shown that the two process model can describe a wide range of sleep-wake pat-
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terns including both fewer or more sleep-wake cycles per day. The sleep-wake

patterns with more than one sleep-wake cycle per day are called polyphasic.

Understanding the polyphasic patterns that the model displays is also biolog-

ically significant. For instance babies have polyphasic patterns that gradually

change into monophasic over the first few years of development [18, 204]. In

this section we aim to understand how transitions between different sleep-wake

patterns occur in the model by investigating the regions of existence of periodic

solutions.

7.4.1 Arnol’d tongues

Regions in the parameter space of the two process model where the rotation

number ρ is a fixed rational number shape tongue structures and these regions

are known as Arnol’d tongues. If the one dimensional map of the circle is

continuous saddle-node bifurcations are the only mechanism by which fixed

points are created and destroyed. Namely, at the tongue boundary a fixed

point for the map is generated via a saddle-node bifurcation. Then inside the

tongue, this fixed point breaks up into two fixed points, each of them goes

around the unit circle until intersecting at another saddle-node bifurcation on

the other tongue boundary, and then fixed points disappear. However, if the

map is discontinuous fixed points can be created/annihilated via both saddle-

node bifurcations and border collisions [74]. In the following subsections, we

will construct Arnol’d tongue borders in the (H−0 , a) plane of the two process

model by investigating both saddle-node bifurcations and grazing bifurcations

where the one dimensional map of events is discontinuous.

7.4.2 Borders created by saddle-node bifurcations

Bailey et. al [18] have shown that for small circadian amplitude, a, the one

dimensional map of the circle is continuous and the creation/destruction of

periodic orbits are only related to saddle-node bifurcations. Here we will use
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results from Section 7.3 to determine Arnol’d tongue structures for the regions

in parameter space where stable and unstable (p, q) periodic orbits co-exist.

At the tongue borders the following two conditions must hold: (i) a (p, q)

periodic solution must exist, and (ii) the Floquet exponent of the orbit must

be zero (since stable and unstable periodic solutions intersect). To clarify this

method we will construct saddle-node bifurcation boundaries of (2, 3) periodic

orbits. In order to construct a (2, 3) periodic solution that starts from the lower

threshold we need to determine nine unknowns (t0, x0,∆1, x1,∆2, x2,∆3, x3, x4)

where (t0, x0) is the initial condition, ∆1,∆3 (∆2,∆4) are duration of awake

(sleep) episodes, x1, x3 (x2, x4) are state values at the upper (lower) threshold

crossing, and at the saddle-node bifurcation points the orbit must have κ = 0

(a zero Floquet exponent). Using formula (7.23), the Floquet exponent of a

(2, 3) periodic orbit is

κ =
1

3

[
−
(

1

τw
(∆1 + ∆3) +

1

τs
(∆2 + ∆4)

)
+ ln |K1(T1)K1(T3)K2(T2)K2(T4)|

]
.

(7.42)

We will determine the saddle-node bifurcations of the (2, 3) periodic orbit on

the (H−0 , a) plane, treating H−0 as a bifurcation parameter and computing a

using the final condition κ = 0. Hence at each saddle-node bifurcation point we

need to determine ten unknown (t0, x0,∆1, x1,∆2, x2,∆3, x3, x4, a) by solving

the following ten equation simultaneously

x0 = H−0 + a sin(2πt0); x1 = 1− (1− x0)e−∆1/τw ,

x1 = H+
0 + a sin(2πT1); x2 = x1e−∆2/τs ,

x2 = H−0 + a sin(2πT2); x3 = 1− (1− x2)e−∆3/τw ,

x3 = H+
0 + a sin(2πT3); x4 = x3e−∆4/τs ,

x4 = x0; κ = 0.

(7.43)

We can solve this by using a nonlinear system solver in Matlab, such as fsolve.

We illustrate an example of the (2, 3) periodic orbit obtained by solving equa-
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tion (7.43) in Fig. 7.8. Then in the (H−0 , a) plane, to build tongue borders of
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0.8

 Floquet exponent =0

Figure 7.8: A (2, 3) periodic orbit that obtained at a saddle-node bifurcation
point with zero Floquet exponent. To construct this we find the ten unknowns
(t0, x0,∆1, x1,∆2, x2,∆3, x3, x4, a) by solving ten simultaneous equation given in
(7.43). Here (t0, x0) denotes the initial condition, ∆1,∆3 (∆2,∆4) are duration
of awake (sleep) episodes, x1, x3 (x2, x4) state values at the upper (lower) threshold
crossing. We obtained a = 0.0754 by solving this system for H−0 = 0.0499. Other
parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75

the (2, 3) periodic orbit, we follow the solution path of a values by adjusting

H−0 with small step sizes, where at each step we use the previous values of

(t0, x0,∆1, x1, ∆2, x2,∆3, x3, x4, a) as an initial guess. Utilising similar meth-

ods, tongue borders related to a saddle-node bifurcations of any (p, q) periodic

solution can be constructed. In Fig 7.9 we illustrated a few example of the

largest tongue boundaries. We note that the right-hand boundary of each

tongue terminates at a point where the saddle-node bifurcations cease to ex-

ist. In the following subsections, we will investigate this and determine the full

bifurcation sets including for large circadian amplitude, a.

7.4.3 Borders created by grazing bifurcations

We observed that the one dimensional map of the two process model has discon-

tinuities for some parameters, see for example Figs. 7.1 and 7.16. In such maps

border collision bifurcations occur when a fixed point of the map coincides with
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Figure 7.9: The saddle-node bifurcation curves in the (a,H−0 ) plane. We observed
that for small circadian amplitude, a the boundaries of Arnol’d tongues related to
the saddle-node bifurcations, and as a is increasing the right branches of each tongue
comes to an end. Here we show the largest few tongues, (1, 1) is in blue, (2, 1) is in
brown, and (2, 3) is in red, though tongue boundaries of any (p, q) periodic solution
have a similar behaviour. Parameters: τw = 0.75, τs = 0.25, and H+

0 = 0.75.

the endpoint of a gap. As parameters are varied, this yields a new mechanism

for the creation/destruction of periodic solutions of the model. Border col-

lision bifurcations have been studied for many nonsmooth systems including

piecewise smooth systems [120], piecewise smooth system with sliding orbit

[298], impact oscillator [38], switching systems [85], and also a classification of

such bifurcations for one dimensional maps is given in [147].

Skeldon et. al [286] have shown that gaps in the map of the two process

model can emerge when either the homeostatic sleep pressure during awake

ww (t, tw0 ), becomes tangential to the upper threshold, H+(t), or the homeo-

static sleep pressure on sleep, ws (t, ts0), becomes tangential to the lower thresh-

old, H−(t), many examples of such scenarios can be found in [18]. Near the

bifurcation points, a small difference in the initial conditions of two sleep-

wake trajectories may lead to a large change in the duration of a sleep/wake

episodes. The relation between solutions of the the two process model with

tangencies and sleep deprivation experiments is discussed in [286].

Bailey et. al [18] have shown that the two process model can lead two
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types of border collision, namely Type I and Type II border collisions. Type I

border collisions yield the creation/destruction of an unstable fixed point and

occur when a fixed point of the map coincides with the side of the gap where

the derivative of the map is infinite. This corresponds to periodic orbits of the

model such that the homeostatic sleep pressure switches at a tangency point.

Type II border collisions result in creation/annihilation of either an unstable

or a stable fixed point and occur when a fixed point of the map coincides with

the side of the gap where the derivative is finite. This corresponds to periodic

orbits in the two process model such that the homeostatic sleep pressure bypass

the tangency point and switches at a later time. For a detailed discussion on

analytical computation of map derivatives we refer the reader to [17]. We

depict examples of such periodic orbits and discontinuous maps in Fig. 7.16.

Gaps in the maps may occur due to tangencies at either the upper threshold or

lower threshold, therefore we need to examine Type I and II border collisions

for both the upper and lower thresholds. These border collisions are also called

grazing bifurcations or tangent bifurcations [147, 286].

7.4.4 Type I grazing bifurcation

The necessary conditions for a Type I grazing bifurcation at the upper (lower)

threshold of a (p, q) periodic orbit are: (i) a (p, q) periodic solution must exist,

and (ii) the homeostatic sleep pressure on wake (sleep) state must switch

to sleep (wake) state at the tangency point. To determine Type I grazing

bifurcations of a (p, q) periodic solution we simultaneously solve the equations

that are needed to build the orbit and the equation that holds at the tangency

point by utilising fsolve in Matlab.

To clarify this method we show how to determine Type I grazing bifur-

cations of (1, 1) periodic orbits. For an orbit starting from lower threshold, to

achieve this we need to determine (t0, x0,∆1, x1, x2, a), where these parameters
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are same as in equation (7.10), by simultaneously solving

x0 = H−0 + a sin(2πt0); x1 = 1− (1− x0)e−∆1/τw ,

x1 = H+
0 + a sin(2πT1); x2 = x1e−∆2/τs ,

x2 = x0; (1− x1) /τw = 2aπ cos(2π(t0 + ∆1)).

(7.44)

The final equation is derived from the tangency condition at the upper thresh-

old. In the left panel of Fig. 7.10 we illustrate a Type I grazing (1, 1) periodic

orbit obtained by solving (7.44). In the right panel of Fig. 7.10, we build the

corresponding one dimensional map with a gap where an unstable fixed point

of the map coincides with the side of the gap where the derivative of map is

infinite. Utilising similar methods, we can determine Type I grazing solutions

of any (p, q) periodic orbit.
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Figure 7.10: Left panel: An example of Type I grazing (1, 1) periodic solution
where (t0, x0) is initial value, ∆1(∆2) duration of awake (sleep) episodes, (T1, x1)
((T2, x2)) are switching time and state on the upper (lower) threshold. The orbit
tangentially intersect with the upper threshold and at the tangency point transition
from wake state to sleep state occur. For H−0 = 0.178 we find a = 0.0706, and
calculated Floquet exponet= 24.5159 hence periodic orbit is unstable. Right panel:
For the same parameter values we build the one dimensional map with gap. Unstable
fixed point of the map coincides with the side of the gap where the derivative of map
is infinite. Other parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75.

7.4.5 Type II grazing bifurcation

The necessary conditions for a Type II grazing bifurcation at the upper (lower)

threshold of a (p, q) periodic solution are: (i) a (p, q) periodic solution must
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exist, and (ii) the homeostatic sleep pressure on wake (sleep) state must con-

tinuously passes through the tangency point without switching. Similar to the

description in subsection 7.4.4, in order to determine Type II grazing bifurca-

tions of a (p, q) periodic solution we simultaneously solve the equations needed

to build the orbit and the equation that holds at tangency point.

To shed light on this method we show how to determine Type II graz-

ing bifurcations of (1, 1) periodic orbits. For an orbit starting from lower

threshold, to achieve this we need to determine (t0, x0,∆
t
1, x

t
1, ∆̄1, x1, x2, a), by

simultaneously solving

x0 = H−0 + a sin(2πt0); xt1 = 1− (1− x0)e−∆t
1/τw ,

xt1 = H+
0 + a sin(2πT t1);

(
1− xt1

)
/τw = 2aπ cos(2πT t1)

x1 = 1− (1− xt1)e−∆̄1/τw ; x1 = H+
0 + a sin(2πT1)

x2 = x1e−∆2/τs ; x2 = x0,

(7.45)

where two additional equations to that of equation (7.10) are obtained from

the tangency condition at (∆t
1, x

t
1). In the left panel of Fig. 7.11 we depict

a Type II grazing (1, 1) periodic solution obtained by solving (7.45). In the

right panel of Fig. 7.11, we illustrate the corresponding one dimensional map

with gap where a stable fixed point of the map coincides with the side of the

gap where the derivative of map is finite. Similarly, we can determine Type II

grazing solutions of any (p, q) periodic orbit.

In the following subsection we extend the bifurcation set depicted in Fig.

7.9 by including tongue boundaries related to grazing bifurcations.

7.4.6 Extended bifurcation set

We have shown that for the two process model both saddle-node bifurcations

and grazing bifurcations are related to creation and annihilation of periodic

solutions. Now we will explain how the presence of gaps in the map (when a

fixed point of the map coincides with one the side of the gap) augment the
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Figure 7.11: Left panel: An example of Type II grazing (1, 1) periodic solution
where (t0, x0) is the initial value, ∆t

1, ∆̄1(∆2) duration of awake (sleep) episodes,
(T1, x1) ((T2, x2)) are switching time and state on the upper (lower) threshold.
(T t1, x

t
1) is the tangency point on the upper threshold where the orbit passes through

this point continuously without switching. For H−0 = 0.4809 we find a = 0.1121, and
calculated Floquet exponent= −0.27991 hence periodic orbit is stable. Right panel:
For the same parameter values we build the one dimensional map with gap. Stable
fixed point of the map coincides with the side of the gap where the derivative of map
is finite. Other parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75.

saddle-node bifurcation diagram shown in Fig 7.9 and examine the effect that

has on creation/annihilation of periodic solutions in each region.

In the (H−0 , a) parameter space, we depict the curves associated with the

saddle-node bifurcations and the two types of grazing bifurcations in Fig. 7.12.

For small circadian amplitude, a, the one dimensional map is continuous (no

grazing bifurcation is observed) and Arnol’d tongue borders of (p, q) periodic

orbits are created by saddle-node bifurcations, where inside each tongue a sta-

ble and an unstable periodic solutions coexist. However, as the magnitude

of a increases, gaps that lead to border collision in the map cease to exist

and form a approximately U-shaped regions inside each tongue. The left-hand

boundaries of these U-shaped regions are related to Type I grazing bifurca-

tions and cannot intersect with saddle-node bifurcation curve (gradient of the

maps cannot be equal). The right-hand sides of these U-shaped regions are

associated with Type II grazing bifurcations. When the gradient of the map

at the border collision point is one, Type II grazing bifurcations and saddle-

node bifurcations coincide. At the intersection point, the right branch of a

saddle-node bifurcation curve terminates and the rest of tongue border is built
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by only Type II grazing bifurcations.

We observe that for the (1, 1) and (2, 1) tongues, Type I and Type II

grazing bifurcations occur due to a tangency at the upper threshold only.

However, for the (2, 3) tongue Type I (Type II) grazing bifurcations occur due

to a tangency at the lower (upper) threshold. To illustrate this we show an

example of a (2, 3) Type I (Type II) grazing periodic solution with a tangency

at the lower (upper) threshold in left (right) panel Fig. 7.13. Note that LEs

depicted in Fig. 7.6 shed light on the tongue borders. In Fig. 7.14, we plot

extended bifurcation curves on the LEs diagram and, as expected, bifurcation

curves sit in correspondence with the structure seen in LE diagrams.
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Figure 7.12: Shapes of the extended bifurcation curves in the (a,H−0 ) plane. Here
we show the largest few tongues, namely (1, 1), (2, 1), and (2, 3). Saddle-node bifur-
cation curves are same that of Fig. 7.9. Inside each tongue regime, Type I and Type
II grazing bifurcations form a U-shaped region. Type I grazing bifurcations occur
at the left boundary of U-shaped regime and Type II grazing bifurcations occur at
the right boundary. Grazing bifurcations that occur due to a tangency on the up-
per threshold depicted in black and those emerged due to a tangency on the lower
threshold shown in magenta. Parameters: τw = 0.75, τs = 0.25, and H+

0 = 0.75.

To better explain the creation/annihilation of periodic solutions in each

regime, in Fig. 7.15 we depict the (1, 1) tongue by labelling regions inside and

outside of the tongue boundaries. Inside the region (c) a stable and unstable

periodic orbit coexist. While moving from region (c) to (b) and (c) to (e) along

the solid blue curve, periodic orbits annihilated via a saddle-node bifurcation.
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Figure 7.13: Left panel: An example of Type I grazing (2, 3) periodic solution. The
orbit has a tangency point on the lower threshold indicated by the black arrow. As
expected orbit is unstable with Floquet exponent= 26.471. For H−0 = 0.08 we find
a = 0.0512. Right panel: An example of Type II grazing (2, 3) periodic solution.
The orbit has a tangency point on the upper threshold indicated by the black arrow.
For H−0 = 0.0703 we find a = 0.095, and calculated Floquet exponent= −3.99 hence
periodic orbit is stable. Other parameters: τw = 0.75, τs = 0.25, H+

0 = 0.75.
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Figure 7.14: We depict bifurcation curves that shown in Fig. 7.12 on the top of
LEs diagram 7.6. Actual bifurcation curves and indication of LEs are well agreed.
Here we exhibit only a few large tongues borders but the other small tongues also
agree with what LEs diagram 7.6 indicates, to check this see Figure 8 in [18].

An example of this case is shown in Fig. 7.4. While going from region (c)

to (d) along the red dashed curve, Type II grazing bifurcations occur due to

tangency with the upper threshold and unstable periodic solutions are lost.

In the middle panel of Fig 7.16 we illustrate an unstable Type II grazing
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periodic orbit, and the corresponding one dimensional map with gap. While

entering from region (c) to (d) along the green dashed curve, Type I grazing

bifurcations occur due to a tangency with the upper threshold and unstable

periodic solutions are lost. In the lower panel of Fig 7.16 we show an unstable

Type I grazing periodic orbit, and the corresponding one dimensional map

with a gap. While moving from region (d) to (e) along the solid red curve,

Type II grazing bifurcations occur as a result of a tangency with the upper

threshold and stable periodic solutions are lost. In the top panel of Fig 7.16 we

demonstrate a stable Type II grazing periodic orbit, and the corresponding one

dimensional map with a gap. Hence, inside the region (d) only stable periodic

orbits exist, and in regions (b) and (e) there is no (1, 1) periodic solution. For a

more detailed bifurcation analysis of the two process model using a map-based

approach we refer the reader to [17, 18].
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Figure 7.15: Enlarged shape of the (1, 1) tongue in the (a,H−0 ) plane where separate
regions are labelled. Solid blue curve shows the saddle-node bifurcations. Dashed red
(green) curve demonstrates Type II (Type I) grazing bifurcations due to tangency
with the upper threshold where unstable periodic solutions are lost. Solid red curve
depict Type II grazing bifurcations due to tangency with the upper threshold where
stable periodic solutions are lost. Inside the region (c) the model support both stable
and unstable periodic orbits however in (d) only stable solutions stand. The model
does not have any (1, 1) periodic solution in region (b) and (e). Other parameters:
τw = 0.75, τs = 0.25, and H+

0 = 0.75.
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Figure 7.16: Examples of Type I and Type II grazing (1, 1) periodic solutions and
the corresponding one dimensional maps with gap. Top left: A Type II grazing
stable periodic orbit that occurs on the solid red curve in Fig. 7.15. Top right:
Corresponding map with gap where fixed point of the map coincides with the side
of the gap where the derivative of the map is less than 1. Parameters: a = 0.106
and H−0 = 0.4724. Middle left: A Type II grazing unstable periodic orbit that occurs
on the dashed red curve in Fig. 7.15. Middle right: Corresponding map with gap
where fixed point of the map coincides with the side of the gap where the derivative
of the map is greater than 1 but finite. Parameters: a = 0.06205 and H−0 = 0.3779.
Bottom left: A Type I grazing unstable periodic orbit that occurs on the dashed green
curve in Fig. 7.15. Bottom right: Corresponding map with gap where fixed point of
the map coincides with the side of the gap where the derivative of the map is infinite.
Parameters: a = 0.05729 and H−0 = 0.2235. Other parameters: τw = 0.75, τs =
0.25, H+

0 = 0.75
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7.5 The two process model and co-sleeping

Sleep studies have a strong history but the vast majority of clinical articles

and research reports have focused on sleep dynamics at the level of the indi-

vidual [24, 190, 248, 294, 301]. Troxel [307] has stated that sleep is influenced

by both complex biological mechanisms and social factors. Arber et. al [9]

have reviewed links between individual’s sleep and society by focusing on the

concept from both macro and micro aspects. At the macro scale they have

addressed how cultural norms and rules effect sleep timing and patterns. At

the micro scale they reviewed impacts of social inequalities, gender relations,

power dynamics, and life course positions on sleep quality and duration. Un-

doubtedly sleep is embedded in a family context and in the literature there are

a number of studies that explore interrelations between parents’ and children’s

sleep with a particular focus on gender role and chronotype, see for example

[165, 314] and references therein.

In medieval times, people rarely slept alone. Bedrooms and beds were

shared by married couples and their children even sometimes including servants

and relatives [9]. In modern society, although bedrooms have become a more

private space, still most adults share their bed with a partner [87, 250, 256].

There is some evidence that the individual sleeping behaviour of one partner in-

fluences the other’s sleep [29, 293, 307, 338]. Therefore, exploring human sleep

in the context of a dyad is an important topic. Drews et. al [87] have shown

that the synchronisation of sleep stages is more effective when couples sleep

together than when they sleep in separate rooms. Troxel [307] has investigated

the effects of co-sleeping on the health of partners by introducing a conceptual

model. Strawbridge et. al [293] have analysed relationships between partners’

sleep problems and spouses’ marital quality, social involvement, well-being,

mental health, and physical health in a sample of 405 couples aged 51 to 94

years, and found association between these issues. Pankhurst et. al [223]

have investigated how one bed partner’s movements during sleep influence the

other. Yoon et. al [338] have studied the synchronisation of heart rhythms
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of bed partners during co-sleeping, by considering the mechanical interaction

between individuals via vibration through the bed. Moreover, Rosenblatt [256]

discussed this topic from various perspectives in his book “Two in a bed: the

social system of couple bed sharing”.

Although several studies have been undertaken to investigate co-sleeping

patterns [133, 203, 250], these are commonly based on observations and sta-

tistical analysis, and to the best of our knowledge there is no study to explore

this via a network science approach. Here we aim to build a network of the

two process model composed of heterogeneous male (xM(t)) and female (xF (t))

sleep dynamics each of which evolve according to equations (7.1) and (7.2) and

with a suitable interaction. With in this mind we first compute LEs of the two

process model in the (τw, τs) plane, see Fig. 7.17, planning to introduce hetero-

geneity by picking up different time scales for males and females. Since most
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Figure 7.17: Lyapunov exponent diagram in the (τs, τw) plane. LEs shaded dif-
ferent tongue borders where (1, 1), (1, 2) and (1, 3) tongues constitute the biggest
regions. Parameters: H−0 = 0.2469, H+

0 = 0.75, a = 0.09478. Note that these are
chosen from the (1, 1) tongue of Fig. 7.14.

adults have a (1, 1) sleep-wake cycle, we pick up male (τMs , τ
M
w ) and female

(τFs , τ
F
w ) sleep-wake time scale parameters from inside the (1, 1) tongue given

in Fig. 7.17. We couple them through thresholds by introducing shifts [140] to

the circadian processes timing mediated by a linear/PWL interaction function
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of sleep homeostasis xM(t) and xF (t). We define the circadian processes of

each individual as

Hα
M(t) = Hα

M0
+ a sin(2πφM(t)), (7.46)

Hα
F (t) = Hα

F0
+ a sin(2πφF (t)), (7.47)

where α ∈ {+,−} and

φ̇M(t) = 1 + σRM(xM(t), xF (t)), (7.48)

φ̇F (t) = 1 + σRF (xF (t), xM(t)). (7.49)

Here Hα
M and Hα

F denote the circadian thresholds of male and female, re-

spectively, and, Hα
M0

and Hα
F0

are their mean values. Coupling functions are

denoted by Rβ, β ∈ {M,F}, and the parameter σ represents the coupling

strength. Circadian shifts are governed by the evolution of φβ. For concrete-

ness, we choose Rβ(x, y) = y − x and Rβ(x, y) = Θ(y − x) (Θ is the Heaviside

step function), and observe (1, 1) locked or synchronised patterns where ini-

tially each individual has their own (1, 1) sleep-wake cycles. An example of

this is illustrated in Fig. 7.18. In that case, as time evolves, the circadian

processes approach each other, and the couple starts to sleep almost at the

same time though the male wakes up slightly later. We also coupled them

through a diffusive linear/PWL interaction of xM(t) and xF (t) as follows:

ẋM(t) = fM(xM(t)) + σRM(xM(t), xF (t)), (7.50)

ẋF (t) = fF (xF (t)) + σRF (xF (t), xM(t)), (7.51)

whilst keeping the circadian process evolution (given by equation (7.3) and

(7.4)) identical for each individual. Here the intrinsic sleep dynamics (given by

equation (7.1) and (7.2)) of the male and female are governed by fM(xM(t))

and fF (xF (t)), respectively. Again depending on the coupling strength we
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detect (numerically) (1, 1) locked or synchronised patterns. We plan to extend

this initial pilot study in future work.
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Figure 7.18: A network simulation of the two process model. We coupled them
through thresholds by introducing shifts to the circadian processes timing mediated
by a linear interaction function of xβ(t), β ∈ {M,F}. Left panel: Coupling strength
is σ = 0. Male and female have their own sleep-wake cycle with rotation number
ρβ = 1. Right panel: As we increased coupling strength to σ = 2.32, after sharing the
same bed for an amount of time, circadian processes approach to each other. We also
observe that couple almost sleep together but male waking up slightly later. Again
both have same rotation number ρβ = 1. Male (female) thresholds and solution
are given in black (light brown). Parameters: τMs = 0.3021, τMw = 0.6634, τFs =
0.2519, τFw = 0.6835, φM (0) = 0.06255, φF (0) = 0, a = 0.09478, H−β0

= 0.2469 and

H+
β0

= 0.75.

7.6 Discussion

Sleep is fundamental for the maintenance of mental health, body functioning

and cognitive performance, but many aspects of the sleep-wake mechanism

still need further investigation and mathematical modelling has a significant

role to play [250, 286]. The utilisation of mathematical models in sleep stud-

ies has a strong history and early models of sleep-wake regulation have been

reviewed by Moore-Ede et. al [208]. Almost four decades ago, Borbely [32],

and Daan et. al [62] proposed the two process model which was then extended

in [31] by exploiting experimental data. This seminal work had a big impact

on sleep studies and is still a popular model in the field of sleep research.

Particularly, the model has been used to analyse and conceptualise the major

two processes (circadian and homeostatic) underlying sleep-wake regulation,

and their nonlinear interactions. Moreover, in a wide range of experimental
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protocols the model replicates the intensity and timing of sleep [33]. The phys-

iological basis/relevance of the model and comparison with other models have

been discussed in [30, 237] and reference therein.

Recently, Bailey et. al [18] readdressed the two process model by for-

mally defining associated one dimensional maps. They explored the shape of

Arnol’d tongues by utilising properties of one dimensional maps of the circle

and maps with gaps. Here we reviewed and extended their result by using an

analytical modelling approach in the context of PWL systems. We constructed

periodic orbits semi analytically as in Section 3.3, and assessed the stability

of such solutions with a modification of Floquet theory to treat systems with

time-dependent switches. Around the periodic solutions, we also performed a

linear stability analysis of the maps of switching event times to compare both

approaches. We formulated computation of Lyapunov exponents for the model

by implementing techniques built for nonsmooth dynamical systems. The LE

diagrams gave an indication about Arnol’d tongue structure and parameter

regions where the model supports superstable periodic solutions. Utilising

these observations we performed a detailed bifurcation analysis where both

saddle-node bifurcation of periodic orbits and grazing bifurcations arose.

In most societies, the majority of adults share their bed with a partner.

Although there is a lot of medical and psychological studies on sleep and sleep

related problems, in most cases sleep is considered at the level of the individ-

ual [250], hence the topic of co-sleeping still needs investigation. With this

motivation we discussed a conceptual network of the two process model at

an simple phenomenological level. We numerically observed that when the

coupling strength between partners (with heterogeneous sleep dynamics) in-

creased, their sleep patterns approached each other. In a sociological context,

Meadows et. al [202] propose that at the start of relationship couples have

their personal sleep habitus (sleep latency, timing of going to bed, dark/light

ratio etc.) and clashes emerge when these do not match over time. Thus un-

derstanding networks of the two process model may help to predict/solve such

conflicts.
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Chapter 8

Summary and future

perspectives

In this thesis, I explored the dynamics of nonsmooth oscillatory systems at

both nodal and network levels. The intrinsic dynamics of nonsmooth mod-

els can be complex and this complexity scales up when we couple them to

build networks. Emergent network patterns depend both on nodal dynamics

and the form of coupling mediating interactions. Thus having a good un-

derstanding of nodal unit dynamics is necessary to uncover dynamics at the

network level. As an emergent network behaviour, we focused on synchro-

nisation and investigated the utilisation of various mathematical frameworks

including weak coupling theory, a recent phase-amplitude network formalism,

and the MSF methodology for networks of piecewise linear models. Depend-

ing upon the (dis)continuous changes in vector fields or trajectories of nodal

components and their (dis)continuous interactions at switches we confronted

different scenarios to determine the stability of periodic orbits and bifurcations

of the synchronous network state.

In Chapter 1, I presented the main motivation and a brief overview of

the thesis. In Chapter 2, I provided some background information by intro-

ducing relevant terminology and reviewing the existing literature for smooth

dynamical systems that was adapted and applied to nonsmooth ones in later
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chapters. In the final part of that chapter, I studied the MSF methodology for

nonlinear smooth systems and illustrated the concept by exploring bifurcations

of a (linearly coupled) network of Stuart-Landau oscillators. In Chapter 3, I

briefly introduced nonsmooth dynamical systems and presented a natural clas-

sification of them according to their degree of nonsmoothness. I then showed

how to build periodic solutions of planar PWL systems semi-analytically by

using matrix exponentials. I revisited the McKean model (a well known PWL

approximation to the FHN model) and showed that the model supports a fold

limit cycle bifurcation where a stable periodic orbit coincides with an unstable

sliding orbit. I also studied the absolute model that exhibits a nonsmooth

Andronov-Hopf bifurcation, as well as a homoclinic loop model. Afterwards I

reviewed the PML model that display periodic orbits with four distinct pieces

lying over three linear regimes. I concluded that chapter by discussing the

practicalities and wide use of PWL modelling in various branches of the ap-

plied sciences.

I began Chapter 4 by modifying standard Floquet theory to study the lin-

ear stability of periodic solutions for PWL systems by making use of a saltation

operator. I then considered nonsmooth terms for the second-order accurate

phase-amplitude reduction of limit cycle oscillators solving the relevant PWL

adjoint equations. I showed that this method may become discontinuous dur-

ing a boundary crossing, and explained how to derive relevant jump conditions.

Additionally, I reviewed the MSF methodology for PWL systems and explored

the inclusion of saltation operators into the master variational equation. Next

I addressed diffusively coupled networks of McKean, absolute, homoclinic loop,

and PML nodes. I compared the accuracy of the above mentioned methods

by measuring the effect of variation in coupling strength to detect network

bifurcations. I determined that the popular weak coupling theory does not

give accurate result about the stability of network states. Although the phase-

amplitude network formalism gives improved results in some cases it detected

bifurcation points inaccurately. However, the MSF approach gives exact bifur-
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cation points in excellent agreement with direct numerical simulations. Thus,

the MSF approach was adopted in the next two chapters for studying other

PWL network models.

The shuttling mechanism of a conductive particle between two metal

charged plates has been studied at both microscopic and macroscopic scales

[13, 84, 145, 162], as exemplified by Franklin’s bell. This was the topic of Chap-

ter 5. The original Franklin bell is an electro-mechanical oscillator that can

generate a repeating chime in the presence of an electric field, and Benjamin

Franklin famously used it as a lightning detector. I first investigated a single

Franklin bell, showing how to construct periodic orbits and how to determine

their linear stability and bifurcation. To cope with the nonsmooth nature of the

impacts I used saltation operators to develop the correct Floquet theory. We

further introduced a new smoothing technique that circumvents the need for

saltation and that recovers the saltation operators in some appropriate limit.

The proposed smoothing technique originated from the question that, instead

of imposing direct instantaneous impact conditions at the discontinuity sur-

faces, for any given arbitrary time-of-flight, is it possible to imitate (in a smooth

fashion) this sudden change with an impact-like motion by introducing some

new supplementary (virtual) PWL dynamics outside of the rigid constraints.

This idea is quite consistent with the soft impact modelling approach where an

impacting base is cushioned with a spring-damper [27, 142, 143, 274]. Next, I

considered the dynamics of a network of Franklin bells, using the augmented

MSF approach. I also used this to determine conditions for network induced

instabilities. In this case, I found working with the MSF approach particu-

larly useful as compared with time-dependent Lyapunov functions, inequality

techniques, and comparison principles, which were studied in [189, 318, 343].

This is because impacting moments of the model are prescribed by the state

of the system and this prevents direct utilisation of standard time-dependent

Lyapunov function approach. Baumann et. al [21] modified this method to

treat state-dependent impact oscillators and constructed a state-dependent
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Lyapunov function to explore synchronisation properties of networks of only

two oscillators.

In Chapter 6, I considered the famous Wilson-Cowan neural mass model

that describes large scale brain dynamics by replacing the classic sigmoidal

nonlinearity with a continuous piecewise linear firing rate function. Using

techniques from previous chapters, I used the network eigenvectors to predict

the onset of spatio-temporal network patterns arising from a synchronous in-

stability. I further considered the case of a discontinuous choice for the node

nonlinearity, namely the replacement of the sigmoid by a Heaviside nonlin-

earity. At the node level this allows for the existence of an unstable sliding

periodic orbit, which I explicitly constructed. At the network level the stabil-

ity analysis of the synchronous state was considerably more challenging than

for the continuous PWL case. Here I reported on the use of ideas originally

developed for the study of Glass networks to treat the stability of periodic

network states in neural mass models with discontinuous interactions.

A possible extension of the work presented in Chapter 6 can be done by

adding state and time dependent delays to the model to investigate large-scale

spatio-temporal patterns of brain activity. Also constant external inputs in

the model can be replaced by time dependent functions. From the biological

point of view the presence of delay terms is necessary for various reasons in-

cluding the finite propagation speed of action potentials along axons, and the

transduction between electrical and biochemical signals at synapses [20, 70].

The MSF methodology has been applied to networks of smooth systems with

homogeneous delay [48], distributed time delays [172], heterogeneous delay

[222], and these can be extended to PWL models. Moreover, the recent MSF

formalism for the multilayer networks with smooth nodal elements [71] can be

generalised to nonsmooth ones.

Finally, in Chapter 7, I considered the two process sleep model in the

context of nonsmooth dynamical system, and studied the construction and

stability of periodic solution. I then derived a formula for Lyapunov expo-
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nents and built Arnol’d tongue boundaries. I performed a bifurcation analysis

based on the nonsmooth Floquet theory, and compared results with that of a

map-based approach [18]. Afterwards, I addressed the influences of social in-

teractions on human sleep dynamics with a particular focus on partners sharing

the same bed. I also numerically studied dynamics of a simple phenomeno-

logical network model. Individuals can be categorised as short/long sleepers

and early/late risers [126], and social factors have effects on individual’s sleep

[9] and one partner could be dominant. For future work, I will continue to

explore sleep in a dyad framework by picking two co-habiting people (A,B).

I will model their interaction by considering that if A goes to bed early s/he

puts pressure on B to join her/him immediately. On weekday mornings they

might both awake at the same time (alarm clock driven), whilst at weekends

they have no constraints. Moreover, investigating sleep synchronisation of N

coupled individuals where coupling is described by physical or virtual inter-

actions including sharing same environment, mobile connection, social media

communication or TV broadcast, is another topic of interest.
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Pflügers Archiv-European Journal of Physiology, 463(1):121–137, 2012.

[25] S. R. Bishop. Impact oscillators. Philosophical Transactions: Physical
Sciences and Engineering, 347:341–351, 1994.

[26] F. Bizzarri, D. Linaro, and M. Storace. Pwl approximation of the
Hindmarsh-Rose neuron model in view of its circuit implementation.
In 2007 18th European Conference on Circuit Theory and Design, pages
878–881. IEEE, 2007.

228



[27] B. Blazejczyk-Okolewska, K. Czolczynski, and K. Kapitaniak. Hard ver-
sus soft impacts in oscillatory systems modeling. Communications in
Nonlinear Science and Numerical Simulation, 15:1358–1367, 2010.

[28] I. I. Blekhman. Synchronization in science and technology. ASME press,
1988.

[29] M. B. Blumen, M. A. Q. Salva, I. Vaugier, K. Leroux, M.-P. d’Ortho,
F. Barbot, F. Chabolle, and F. Lofaso. Is snoring intensity responsible
for the sleep partner’s poor quality of sleep? Sleep and Breathing, 16(3):
903–907, 2012.

[30] V. Booth and C. G. D. Behn. Physiologically-based modeling of sleep–
wake regulatory networks. Mathematical biosciences, 250:54–68, 2014.

[31] A. A. Borb and P. Achermann. Sleep homeostasis and models of sleep
regulation. Journal of biological rhythms, 14(6):559–570, 1999.
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M. Keles, E. Varoglu, and S. Dane. Effects of sleep deprivation, nico-
tine, and selenium on wound healing in rats. International journal of
neuroscience, 114(11):1433–1442, 2004.

[133] H. E. Gunn, D. J. Buysse, B. P. Hasler, A. Begley, and W. M. Troxel.
Sleep concordance in couples is associated with relationship characteris-
tics. Sleep, 38(6):933–939, 2015.

[134] J. Harris and B. Ermentrout. Bifurcations in the Wilson–Cowan Equa-
tions with Nonsmooth Firing Rate. SIAM Journal on Applied Dynamical
Systems, 14:43–72, 2015.

[135] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The
Journal of physiology, 117(4):500, 1952.

[136] A. L. Hodgkin and A. F. Huxley. Propagation of electrical signals along
giant nerve fibres. Proceedings of the Royal Society of London. Series
B-Biological Sciences, 140(899):177–183, 1952.

[137] F. C. Hoppensteadt and E. M. Izhikevich. Weakly connected neural net-
works, volume 126. Springer Science & Business Media, 2012.

[138] S.-M. Huan and X.-S. Yang. On the number of limit cycles in general
planar piecewise linear systems of node–node types. Journal of Mathe-
matical Analysis and Applications, 411(1):340–353, 2014.

[139] M. J. Hülsemann, E. Naumann, and B. Rasch. Quantification of phase-
amplitude coupling in neuronal oscillations: comparison of phase-locking
value, mean vector length, modulation index, and generalized-linear-
modeling-cross-frequency-coupling. Frontiers in neuroscience, 13:573,
2019.

[140] J. Husse, G. Eichele, and H. Oster. Synchronization of the mammalian
circadian timing system: light can control peripheral clocks indepen-
dently of the SCN clock: alternate routes of entrainment optimize the
alignment of the body’s circadian clock network with external time.
BioEssays, 37(10):1119–1128, 2015.

236
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[268] M. Şayli and S. Coombes. Networks of Franklin bells - an experiment,
2019, viewed on 20/02/2021. URL https://www.maths.nottingham.ac.
uk/plp/pmzsc/movies/FranklinBell.mp4.
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Appendix A

Saltation matrix and the

Floquet exponent formula

Let us consider a periodic orbit xγ(t) of the system (4.4) and a perturbed

trajectory x̃(t) = xγ(t) + δx(t), for some small perturbations δx(t) ∈ Rn, and

then linearise the equation of motion around the periodic trajectory. Between

switching events, perturbations are governed by

dδx(t)

dt
= Dfµδx(t), δx(0) = δx0, (A.1)

where the Jacobian Dfµ is a piecewise constant matrix (independent from the

periodic solution),

Dfµ = Aµ, µ = 1, . . . , N, (A.2)

inside the regions Rµ, so that δx(t) ≡ G(Aµ; t)δx0 = exp(Aµt)δx0 where δx0

is the initial perturbation at each region. We denote unperturbed event times

by tµ and that of perturbed events by t̃µ = tµ + δtµ, which are prescribed

by hµ(xγ(tµ)) = 0 and hµ(x̃(t̃µ)) = 0, respectively. The periodic and per-

turbed states after the switching event are given by xγ(t+µ ) = Jµ(xγ(t−µ ))

and x̃(t̃+µ ) = Jµ(x̃(t̃−µ )), where Jµ is the switch rule. Here we introduce

x(t−µ ) = lim∆→0+ x(tµ − ∆) so that the superscript shows that we evaluate

x(t) (or its derivative) immediately before the switching event, and similarly

x(t+µ ) = lim∆→0+ x(tµ + ∆) that immediately after. Now we consider the case

δtµ > 0, in which xγ(t) and x̃(t) are on opposite sides of the switching man-
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ifold (xγ(t) have already crossed the switching boundary). One can easily

obtain a similar derivation for δtµ < 0, see for example [217]. Then we have

x̃(t̃−µ ) = x̃(t−µ + δtµ) ' xγ(t−µ ) + δx(t−µ ) + ẋγ(t−µ )δtµ, and using a first order

Taylor expansion of Jµ we obtain

x̃(t̃+µ ) = Jµ(x̃(t̃−µ )) ' Jµ(xγ(t−µ ) + δx(t−µ ) + ẋγ(t−µ )δtµ)

' Jµ(xγ(t−µ )) + DJµ(xγ(t−µ ))[δx(t−µ ) + ẋγ(t−µ )δtµ]

' xγ(t+µ ) + DJµ(xγ(t−µ ))[δx(t−µ ) + ẋγ(t−µ )δtµ], (A.3)

where DJµ is the Jacobian of Jµ. In addition to this, a Taylor expansion of

hµ(x̃(t̃−µ )) (up to the first order) can be calculated as

hµt(x̃(t̃−µ )) = hµ(x̃(t−µ + δtµ)) = hµ(xγ(t−µ + δtµ) + δx(t−µ + δtµ))

' hµ(xγ(t−µ ) + ẋγ(t−µ )δtµ) +∇xhµ(xγ(t−µ + δtµ)) · δx(t−µ + δtµ)

' hµ(xγ(t−µ )) +∇xhµ(xγ(t−µ )) · ẋγ(t−µ )δtµ

+ ∇xhµ(xγ(t−µ )) · δx(t−µ ). (A.4)

Using this along with the definition of the continuous indicator functions

hµ(xγ(tµ)) = 0 = hµ(x̃(t̃µ)), we obtain

δtµ = −
∇xhµ(xγ(t−µ )) · δx(t−µ )

∇xhµ(xγ(t−µ )) · ẋγ(t−µ )
. (A.5)

Furthermore, we can approximate x̃(t+µ ) by pulling back the perturbed solution

δtµ time unit starting from x̃(t̃+µ ) as

x̃(t+µ ) ' x̃(t̃+µ )− ˙̃x(t̃+µ )δtµ ' x̃(t̃+µ )− ẋγ(t+µ + δtµ)δtµ

' x̃(t̃+µ )− ẋγ(t+µ )δtµ. (A.6)
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Then, using (A.3) and (A.6) we find

δx(t+µ ) = x̃(t+µ )− xγ(t+µ ) ' x̃(t̃+µ )− ẋγ(t+µ )δtµ − xγ(t+µ )

' xγ(t+µ ) + DJµ(xγ(t−µ ))[δx(t−µ ) + ẋγ(t−µ )δtµ]

− [xγ(t+µ ) + ẋγ(t+µ )δtµ]

= DJµ(xγ(t−µ ))δx(t−µ ) + [DJµ(xγ(t−µ ))ẋγ(t−µ )− ẋγ(t+µ )]δtµ .(A.7)

Hence, using (A.5) and (A.7) we may write δx+ in the form

δx+ = S(tµ)δx−,

where S(t) is the saltation matrix:

S(tµ) = DJµ(xγ(t−µ ))

+
[ẋγ(t+µ )−DJµ(xγ(t−µ ))ẋγ(t−µ )][∇xhµ(xγ(t−µ ))]>

∇xhµ(xγ(t−µ )) · ẋγ(t−µ )
. (A.8)

Therefore, the overall evaluation of δx(t) after one period of motion is

δx(T ) =Mδx(0), (A.9)

with the (generalised) monodromy matrix

M = S (tN)G(AN ;TN) . . . S (t2)G(A2;T2)S (t1)G(A1;T1), (A.10)

where T1, . . . , TN are the times of flight in each region. Hence, the periodic

solution xγ(t) will be stable if the nontrivial eigenvalues, which are also called

Floquet multiplier, of the matrix M reside within the unit disc.

Particularly, for the planar PWL models considered in the Chapter 3,

the switching rule is J (x) = x, so that DJ = I2, where I2 is 2 × 2 identity

matrix, and ∇xhµ(x) = (∂v, ∂w) (v− aµ) = (1, 0)>, therefore using the formula

(A.8) along with the system equations, we can explicitly calculate the saltation

matrix as

S (tµ) =

 v̇γ(t+µ )
v̇γ(t−µ )

0

(ẇγ(t+µ )−ẇγ(t−µ ))
v̇γ(t−µ )

1

 . (A.11)
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In the following Fig. A.1, we illustrate a schematic representation of this switch-

ing process. Remembering that one eigenvalues of the matrixM is equal to 1,

Figure A.1: Schematic representation of a switching event for the models consid-
ered in the Chapter 3. A periodic orbit xγ(t) crosses switching manifold v = aµ at
t = tµ and a perturbed orbit x̃(t̃) crosses at t = tµ + δt. A saltation matrix S(tµ)
maps δx− to δx+ at t = tµ.

that corresponds to perturbations along the periodic orbit, and denoting the

nontrivial multiplier by eκT , we find detM = eκT × 1. Thus,

eκT = det [S (tN)G(AN ;TN) . . . S (t2)G(A2;T2)S (t1)G(A1;T1)]

= detS (tN) . . . detS (t1) detG(AN ;TN) . . . detG(A1;T1)

=
v̇γ
(
t+N
)

v̇γ
(
t−N
) . . . v̇γ (t+1 )

v̇γ
(
t−1
) det eAN tN . . . det eA1T1

(A.12)

Finally, using the well known fact det eAt = eTrAt, we derive the useful formula

κ =
1

T

N∑
µ=1

[
Tµ TrAµ + log

v̇γ
(
t+µ
)

v̇γ
(
t−µ
)] . (A.13)
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Appendix B

The absolute model: Period is

independent of w

The absolute model (3.30)-(3.31) by choosing parameter a = 0 has the switch-

ing manifold h(x) = v. Therefore it can be written in the form (3.7) with

b1 = b2 =

 0

w/2− v

 ≡
 0

ξ

 . (B.1)

Using (3.11), we can write the solution in the form

x(t) =

 G1(t)x1(0) +K1(t)b1 if v ≥ 0,

G2(t)x2(0) +K2(t)b2 if v < 0,
(B.2)

where Gµ and Kµ, µ = 1, 2, are given in (3.12). Then we can construct a

periodic orbit that satisfies

x1 (T1) = G1 (T1)x1(0) +K1 (T1) b1,

x2 (T2) = G2 (T2)x2(0) +K2 (T2) b2,
(B.3)

at T1 and T2. Denoting x = (v, w)> and setting the conditions (3.15) such

that x1(T1) = (0, w1)> = x2(0) and x2(T2) = (0, w0)> = x1(0) we may write

the component of (B.3) as

0 = G1
12(T1)w0 +K1

12(T1)ξ, w1 = G1
22(T1)w0 +K1

22(T1)ξ,

0 = G2
12(T2)w1 +K2

12(T2)ξ, w0 = G2
22(T2)w1 +K2

22(T2)ξ,
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by rearranging this, we find

w0 = −K1
12(T1)ξ/G1

12(T1), w0 = (w1 −K1
22(T1)ξ)/G1

22(T1),

w1 = −K2
12(T2)ξ/G2

12(T2), w1 = (w0 −K2
22(T2)ξ)/G2

22(T2).

By combining these equations we obtain,

−K1
12(T1)ξ/G1

12(T1) = [−K2
12(T2)ξ/G2

12(T2)−K1
22(T1)ξ]/G1

22(T1),

−K2
12(T2)ξ/G2

12(T2) = [−K1
12(T1)ξ/G1

12(T1)−K2
22(T2)ξ]/G2

22(T2).

We observe that ξ cancels in both equations on both sides. Also using the

explicit formulations (3.18)-(3.19), we see that entries of Gµ and Kµ are inde-

pendent from ξ. Thus the remaining equations for solving T1 and T2 are not

depend on ξ and hence the period is independent from the choice of w and v.

Numerically, this is shown in Fig. 3.6 while w is varying.
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Appendix C

Coupling functions

Here we illustrate shape of the necessary 2π−periodic coupling functionsH1(χ),

H3(χ), H4(χ) and H6(χ) to determine the stability of the synchronous state

by implementing phase-amplitude network formalism in following Fig. C.1,

Fig. C.2, Fig. C.3, and Fig. C.4, respectively.
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Figure C.1: Illustration of H1(χ). (a)-The McKean model with parameters as in
Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5. (c) Homoclinic
loop model with parameters as in Fig. 3.7. (d)-PML model with parameters as in
Fig. 3.10.

258



0 2 4 6

-0.2

0

0.2

(a)

0 2 4 6
-2

-1

0

1

2
(b)

0 2 4 6

-400

-200

0

200

(c)

0 2 4 6
-40

0

40

80
(d)

Figure C.2: Illustration of H3(χ). (a)-The McKean model with parameters as in
Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5. (c) Homoclinic
loop model with parameters as in Fig. 3.7. (d)-PML model with parameters as in
Fig. 3.10.
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Figure C.3: Illustration of H4(χ). (a)-The McKean model with parameters as in
Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5. (c) Homoclinic
loop model with parameters as in Fig. 3.7. (d)-PML model with parameters as in
Fig. 3.10.
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Figure C.4: Illustration of H6(χ). (a)-The McKean model with parameters as in
Fig. 3.3. (b)-The absolute model with parameters as in Fig. 3.5. (c) Homoclinic
loop model with parameters as in Fig. 3.7. (d)-PML model with parameters as in
Fig. 3.10.
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